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Abstract 

 

Tilia L. (lime or basswood) is a genus of large trees that are widely distributed in the 

temperate regions of the Northern Hemisphere. Tilia is an under-investigated genus 

with unknown species relationships. Therefore, a phylogeny of the genus was 

reconstructed. This revealed disagreement of the phylogenetic placement of some 

species and also indicated extensive hybridization. To investigate this further, the most 

tractable and widely distributed species across Europe, T. cordata (Mill.) or small 

leaved lime and T. platyphyllos (Scop.) or large leaved lime, were selected for study. 

This study aims to increase the understanding of genetic diversity and hybridization 

between the two Tilia species. Also, to gain insight into postglacial recolonization in 

Tilia across Europe, the patterns of population genetic structure were investigated.  

In order to achieve the goals, 15 microsatellite markers were developed for detailed 

genetic analysis. These loci clearly discriminated the two Tilia species. Cross-

amplification results indicated that twelve microsatellite markers amplified polymorphic 

loci in 24 species in the genus. A high level of polymorphism was observed in twenty-

five populations of T. cordata and 15 populations of T. platyphyllos from natural woods 

across Europe. The level of genetic diversity in T. platyphyllos is higher than in T. 

cordata. Both microsatellite and morphological analysis revealed that natural 

hybridisation and introgression have occurred between T. cordata and T. platyphyllos in 

sympatric UK populations, which could be of importance for adaptation and other 

evolutionary processes. The partial congruence of molecular and morphological analysis 

suggests that molecular markers are more reliable than morphological analysis for 

detecting hybridization. 

The stronger genetic structure observed in T. platyphyllos than in T. cordata suggested 

that the migration and colonization in the northern areas of T. cordata occurred before 

those of T. platyphyllos. Microsatellite analysis suggested different possible 

colonization routes between the two Tilia species. However, T. cordata and T. 

platyphyllos seem to share the three main refugia in southern Europe (Iberia, Italy and 

the Balkans). In addition, T. cordata seems to have additional putative refugia in eastern 

areas. The haplotype network and some shared haplotypes of eight chloroplast regions 

indicate incomplete lineage sorting rather than recent hybridization. 
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Chapter 1. General introduction 

 

1.1 Genetic diversity 

Genetic diversity is the fundament of biodiversity. It is commonly used to describe the 

amount of heritable variation within and between populations of organisms (Brown, 

1983; Lowe et al, 2004). The processes that lead to genetic diversity are mutation and 

recombination. Selection, genetic drift and gene flow of alleles among different 

populations cause variation in the diversity within populations (Rao and Hodgkin, 2002). 

Genetic diversity is the basis for species survival and adaptation to environments. In 

addition, genetic diversity is important for species or populations to colonize new 

ecological niches (Crawford and Whitney, 2010; Dlugosch and Parker, 2008).  

 

1.2 Factors influencing extent and distribution of genetic diversity 

It is generally accepted that genetic diversity changes over time and in space (Loveless 

and Hamrick, 1984). The extent and distribution of genetic diversity in plants depends 

on various factors: ecological and geographical factors, breeding system, bottlenecks 

and also human factors (Rao and Hodgkin, 2002).  

Different geographic locations usually differ in ecological characteristics such as 

latitude, altitude, temperature and moisture. These characteristics are significant in 

determining the distribution of genetic diversity and population structure. Climatic 

fluctuations during the post-glacial periods are believed to have had an important impact 

on genetic diversity, distribution ranges and differentiation in both plant and animal 

species that are living today (Hewitt, 2000). Under natural conditions, the habitats may 

define the characteristics of populations in which traits have evolved to survive. Even 

with small habitat differences, adaptive genetic variation often reacts with high 

sensitivity (Rao and Hodgkin, 2002).  

The breeding system of a species is another factor that significantly affects the extent 

and distribution of genetic diversity (Loveless and Hamrick, 1984). Information about 

breeding system can provide an insight into the genotypic distribution of plants in 

populations. Outcrossing helps plant species to maintain a high level of genetic diversity 
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and results in gradual changes in allele frequency between populations. Outbreeding 

species usually display inbreeding depression in various forms, such as a decrease in 

seed set, germination, survival and growth. In contrast, inbreeding species usually 

exhibit a lower level of genetic diversity and a greater difference in alleles between 

different populations than outcrossing species (Rao and Hodgkin, 2002). 

Bottlenecks can cause a dramatic loss of genetic variation. A population bottleneck 

occurs when population size is reduced, which could be the result of various events, 

such as an environmental disaster or human effects. In the population bottleneck, many 

alleles that were present in the original population are lost. Therefore, the remaining 

population has a low level of genetic diversity. The smaller the population size and the 

longer it remains small, the more genetic variation will be lost. The remaining 

population is faced with a high level of genetic drift, which can be described as the 

random change of allele frequencies in a population. Infrequently occurring alleles have 

a higher chance of being lost in a small population. The loss of genetic diversity in a 

new population can result in a population that is genetically distinct from the original 

population and this may accelerate the evolution of new species (William and Catton, 

2009).  

 

1.3 Tree diversity and their importance 

Trees harbour the vast majority of the world’s terrestrial biodiversity. An estimated 31% 

of earth surface is covered by forests (FAO, 2010) and trees make up approximately 90% 

of earth’s biomass (Whittaker, 1975). In addition, forests also supply essential services, 

such as controlling water runoff, protecting soils and providing space for recreation. 

Estimates of global tree species range from 60,000 to 100,000 taxa. Over time, trees 

have developed various characteristics to compete with other organisms and have 

evolved to survive. These processes lead to the current diversity of trees. However, 

more than 10% of the world tree species are found to be under threat of extinction 

(Oldfield et al, 1998) due to various factors, for example, deforestation, 

overexploitation and impact of climate change. To avoid these harmful consequences 

and sustain plant biodiversity, knowledge of genetic diversity and evolution is required. 

The assessment of genetic diversity and population structure provides basic information 

for increasing understanding of historical processes and evolution. Genetic diversity 
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also indicates whether populations can cope with changes in the environment, which 

may alter in an unpredictable way. This knowledge is a basic requirement for 

prioritizing populations or species that need conservation action to maintain the genetic 

resources. 

 

One important issue that affects the evolutionary rates of plant species is their 

generation times. Plants with longer generation times, such as trees and shrub species, 

generally show slower rates of nucleotide substitution than those with shorter generation 

times. For example, in Tilia, the age of trees when they begin to flower and produce 

seed ranges from six to 40 years old (Pigott, 2012). The long generation time of tree 

species and low recruitment make them have far fewer generations compared to herbs 

and other smaller plants for the same periods of time. Therefore, the longer-lived trees 

and shrubs evolve more slowly. Thus, the study of evolution in some plants that have a 

long generation time and evolve slowly is hard, particularly regarding the differentiation 

of closely related species (Smith and Donoghue, 2008). 

 

1.4 The genus Tilia and its distribution 

Tilia L. is a genus of large trees with 23 species in the family Malvaceae of the order 

Malvales (Bremer et al, 2003). Most species are diploid (2n = 82), outcrossing and 

insect pollinated. These species readily reproduce vegetatively, both naturally and 

through human management (Pigott, 2012). Tilia species are distributed in the 

temperate regions of the Northern Hemisphere, throughout Europe, some parts of Asia 

and North America. Tilia is commonly known as lime in Britain and linden or basswood 

in North America. Within Europe, four species occur naturally, T. cordata (Mill.), T. 

platyphyllos (Scop.), T. tomentosa (Moench.) and T. dasystyla (Stev.). Among these 

species, Tilia cordata (small leaved lime) and T. platyphyllos (large leaved lime) are 

widely distributed throughout almost the whole of Europe. The distribution range of T. 

platyphyllos is more limited than that of T. cordata and it is rare in northern Europe 

(Figure 1.1 a and b). Based on pollen identification, T. cordata was a major constituent 

and even a dominant deciduous tree species of the woodlands until about 3000 BC 

(Pigott, 1991).    

In the UK, Tilia was dominant in ancient woodland (Huntley and Birks, 1983). It has 

not been widely planted in woodlands and regenerates poorly from seed. Therefore, the 
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presence of Tilia indicates ancient woodlands (Pigott, 1969). T. cordata is common and 

naturally distributed in many parts of the UK, but only at low altitudes in the northern 

range in the Lake District and North Yorkshire (Pigott and Huntley, 1978). T. 

platyphyllos mostly occurs at the same latitudes as T. cordata. These two species can 

hybridise as they have overlapping flowering times. The hybrid, T. x europaea 

(common lime) has been planted in Europe including the UK since the Middle Ages 

(Pigott, 1991). They have been extensively planted in parklands and along roads in 

towns since the 17
th 

century, therefore they are now widespread (Pigott, 2012). Figure 

1.2 a-c shows the distribution of T. cordata, T. platyphyllos and their hybrid, T. x 

europaea, across the UK since 1930. This map shows all locations of planted as well as 

wild specimens, particularly inflating numbers of T. x europaea. 

 

 

Figure 1.1 The natural distribution area of T. cordata (a) and T. platyphyllos (b) in 2008. 

Map downloaded from EUFORGEN, http://www.euforgen.org 

(a) 

(b) 
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Figure 1.2 Distribution of T. cordata (a), T. platyphyllos (b) and T. x europaea (c) in 

Great Britain and Ireland. Different colours of dots indicate recorded date ranges;    -

1930,    1930-1969,    1970-1986,     1987-1999,     2000-2009 and     2010 – now. Map 

downloaded from Online Atlas of the British and Irish Flora, http://www.brc.ac.uk  

 

(a) (b) 

(c) 

http://www.brc.ac.uk/
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The distribution of Tilia across Europe has decreased due to human impact and climatic 

conditions. Tilia pollen disappeared from many sites from about 3000 BC, when 

humans began farming the areas, deforested large areas and managed the woodlands, for 

example by coppicing or pollarding for fodder. The analysis of pollen evidence 

indicated the significant decrease in Tilia pollen while the pollen of grasses and weeds 

were increasing during those periods (Pigott, 1991). In addition, Pigott (1991) stated 

that T. cordata is sensitive to low temperature during seed set and germination. It is 

suggested that the colder climate since the mid-Holocene has been the reason for the 

reduced ability of Tilia to set seed regularly (Huntley and Birks, 1983). In northern 

Europe Tilia are thought to have disappeared in many places because of the low seed 

fertility (Svejgaard Jensen, 2003). 

 

1.5 Importance and uses of Tilia 

1.5.1 Biodiversity value 

Tilia is an important species for biodiversity, in particular in mixed woods where it is 

accompanied by diverse plant, insect and fungal species. Tilia leaves are popular food 

for several species of moth caterpillars, such as the lime hawk, peppered, vapourer, 

triangle and scarce hook-tip moth. The flowers of Tilia also provide nectar for honey 

bees and pollen for pollinators. Old, hollow trunks and fallen trees provide habitats for 

many wood-boring insects, such as stag beetles (Royal Forestry Society, 2014). The 

scarce lime bark beetle (Ernoporus tiliae) is a lime dependent species as it is believed to 

feed almost exclusively on T. cordata. This beetle is recorded as an endangered species 

in the Red Data Book Category 1 and has been included on the priority UK Biodiversity 

Action Plan (UKBAP) list (Broome et al, 2004). Tilia can also be planted for soil 

improvement. Its leaves contain many minerals and when they have fallen in autumn 

they are favoured by earthworms. The leaves feed the soil organisms and take short 

periods (a few months) to decompose and turn into humus, compared to other tree 

species. For example, beech leaves take up to two years to decompose. Thus, Tilia 

improves the nutrient status of soils (Royal Forestry Society, 2014). 
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1.5.2 Human value 

Tilia trees, especially T. x europaea, are important as ornamental trees and are 

frequently used when deep shade is desired, particularly in parks and streets (Pigott, 

2012). The wood of Tilia is soft and light coloured with fine texture. These properties 

make it popular for model building, intricate carving and furniture making. Almost all 

parts of the tree can be used for fodder (Svejgaard Jensen, 2003). In the past, Tilia was 

used as a coppice species as it can produce long straight poles and the inner bark (bast) 

was used for making ropes. Tilia flowers were also important for honey production. 

These products have probably led to the wide spread of Tilia species during the Middle 

Ages. The flowers of Tilia are still important for producing a richly flavoured honey and 

its dried flowers can also be used for herbal tea. Tilia flower tea has a pleasant taste, due 

to the aromatic volatile oil. The flowers contain various active ingredients, such as 

flavonoids that act as antioxidants and mucilaginous constituents that reduce 

inflammation (Bradley, 1992). 

 

1.6 Approach and aims of research 

Tilia is an interesting genus to study because very little research has been carried out to 

evaluate the evolutionary history and genetic diversity of the genus. Also, species 

relationships within the genus are unknown and are complicated by frequent 

hybridization. So far only morphological characters and karyotypes of the whole species 

in the genus have been studied (Pigott, 2012). In addition, few molecular studies have 

been carried out, and only with a restricted number of species. In this study, phylogeny 

is analysed to increase understanding of the relationships and evolutionary history 

among the species in this genus. 

In order to clarify relationships of Tilia species, both chloroplast and nuclear regions 

were sequenced to provide data. The chloroplast genome is encoded in circular DNA 

and is non-recombinant and maternally inherited in most angiosperms. The multiple 

copies of chloroplast DNA and the availability of universal PCR primers facilitate PCR 

amplification of chloroplast DNA regions. It is commonly used in studies assessing 

variation at various levels from population, species, genera and higher taxonomic levels 

(Small et al, 2004). Over the last decade, nuclear genes have increasingly been used for 

assessing genetic variation as well as chloroplast DNA. One of the primary advantages 
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of nuclear genes for phylogenetic analysis is the higher rate of sequence evolution than 

in organellar genomes. The substitution rates of nuclear genes can be up to five times 

greater than those of chloroplast genes (Gaut, 1998). This advantage provides a useful 

source of DNA sequence data for understanding the relationships among low taxonomic 

levels, particularly when universal markers, such as chloroplast DNA primers, are 

unable to provide phylogenetic resolution. More details of chloroplast and nuclear DNA 

are discussed in Chapter 2. 

The resulting phylogeny reveals disagreement of the phylogenetic placement of some 

species. This indicates extensive hybridization among those Tilia species. To investigate 

this further, the most tractable and widely distributed species across Europe, T. cordata 

and T. platyphyllos, were selected for study. The hybridization and introgression 

between these two species was assessed. Also, their genetic diversity and population 

structure were investigated to gain insight into postglacial recolonization in Tilia across 

Europe. In order to achieve these goals, microsatellite markers needed to be developed, 

as they were not available for Tilia species. 

Microsatellites are sets of non-coding repetitive DNA sequences found abundantly in 

the genome of most taxa. Microsatellite markers are one of the most popular markers 

used for genetic studies. The high mutation rate of microsatellites makes them more 

informative among closely related species compared to other markers. In addition, 

microsatellite markers are co-dominant, so that homozygotes and heterozygotes can be 

identified. This allows the use of microsatellite markers to genotype individuals, assess 

parentage or detect hybrids. The combination of microsatellite markers produces a DNA 

fingerprint which is individual specific. As microsatellite markers provide the highest 

level of polymorphism, they are commonly used for the study of local patterns (Ellegren, 

2004). Microsatellites are discussed in more detail in Chapter 3. 
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The general details and aims of each chapter are as below:  

In Chapter 2, the phylogeny of the genus Tilia was reconstructed using chloroplast and 

nuclear regions to improve understanding of the relationships and evolutionary history 

among the species. 

In Chapter 3, details of microsatellite development were given. In addition, these 

markers were tested for polymorphism and their transferability to other species in the 

genus. 

In Chapter 4, microsatellite markers developed in Chapter 3 were used to assess the 

genetic diversity between and within T. cordata and T. platyphyllos from natural 

populations across Europe.  

In Chapter 5, patterns of population genetic structure of T. cordata and T. platyphyllos 

across Europe were investigated using microsatellite markers and chloroplast regions. 

Also, the observed geographical patterns in terms of recolonisation after postglacial 

periods were interpreted and possible refugia of the two Tilia species were identified.   

In Chapter 6, microsatellite markers and morphology were used to examine the extent of 

hybridisation between T. cordata and T. platyphyllos in sympatric populations in the 

UK. 

In Chapter 7, the findings of this study are discussed in a wider context. 
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Chapter 2. Phylogenetic analysis of the genus Tilia 

 

2.1 Abstract 

Tilia L. (Malvaceae) is a genus of twenty-three species of trees with unknown 

phylogenetic relationships. Fifty-five accessions, including twenty-two species, as well 

as subspecies and hybrids were sequenced for seven chloroplast regions and three low-

copy nuclear regions. Phylogenetic analysis revealed little resolution because of low 

sequence divergence, particularly of chloroplast DNA. Of the three nuclear regions, Grx 

was the most variable and provided the best resolution of the phylogeny among Tilia 

species. Although many species relationships are not well resolved, several 

relationships between species were apparent. The two American species, T. americana 

and T. caroliniana, formed a monophyletic clade, while European species are 

intermixed with Asian species. Interestingly, the two species that hybridise readily and 

have a similar geographical distribution in Europe, T. cordata and T. platyphyllos, seem 

not to be sister species. Some incongruence between phylogenetic trees suggested 

incomplete lineage sorting and supported extensive hybridisation among Tilia species. 

 

2.2 Introduction 

Phylogenetics is the study of evolutionary relationships among groups of organisms. 

Phylogenetic relationships are the foundation of evolutionary biology and other 

disciplines, such as biodiversity and biogeography. During recent decades, molecular 

sequence data have been widely used for examining plant evolutionary history, ranging 

from the close relationships between individuals to the relationships among genera in 

angiosperms (land plants) (Zhang et al, 2012). Among the molecular sequence data, 

three classes of DNA sequence data (chloroplast regions, nuclear ribosomal DNA and 

low-copy nuclear genes) have been widely reported for resolving plant relationships. 

The inclusion of DNA sequence data from both maternally inherited genome and 

biparentally inherited genome often provides robust phylogenetic relationships (Mort et 

al, 2007; Small et al, 2004).  
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2.2.1 Phylogenetic utility of chloroplast DNA 

Chloroplast DNA (cpDNA) sequences are reliable sources of molecular markers for 

phylogenetic studies. They are widely used for phylogeny reconstruction in plants. 

There are many properties of chloroplast DNA that make it an attractive tool. The 

presence of multiple copies of chloroplast DNA is a significant advantage to facilitate 

PCR amplification of specific regions. In addition, the structural stability of chloroplast 

has aided the design and use of universal PCR primers. Although there are some 

mutation during evolutionary divergence, such as insertion, deletion and inversion, the 

overall structure of gene order and content are consistent (Small et al, 2004). 

The other important features of the chloroplast DNA molecule are its uniparental 

inheritance and the fact that it is assumed to be non-recombinant as it is a haploid 

genome. The latter property simplifies the phylogenetic analysis because of the absence 

of allelic variation within individuals. However, due to its uniparental inheritance, 

chloroplast DNA sequence reveals only one parent, usually the maternal in angiosperms. 

Therefore, chloroplast DNA analysis of polyploids or hybrids may not reveal their full 

history. Hybrids or polyploid species will be in one of the two parental clades (Small et 

al, 2004). 

In angiosperms, a large number of different chloroplast regions have been investigated. 

Generally, the plant chloroplast genome evolves at a slower rate than the nuclear 

genome (Gaut, 1998). The variation rate varies among different regions of the 

chloroplast genome. Chloroplast protein coding regions, such as rbcL, matK and atpB, 

evolve more slowly than non-coding regions (introns and intergenic spacers) (Small et 

al, 2004). Therefore, coding DNA regions are best suited to reconstruct phylogenetic 

relationships among high level taxa, at family level or above, but may not useful for 

closely related species (Chase et al, 1993; Soltis et al, 1999). Among coding regions of 

the chloroplast genome, matK is one of the most rapidly evolving sections and has 

ubiquitous presence in plants (Hilu and Liang, 1997), thus it has been widely used as a 

marker for plant phylogeny (Vijayan and Tsou, 2010). The non-coding sequences of 

introns, such as in trnL, rpL16, trnK, and intergenic spacers, such as in psbD-trnT, psbJ-

petA, trnL-trnF, and trnS-trnG, are frequently used to reconstruct the relationships at 

lower taxonomic levels (Taberlet et al, 1991). However, due to the relatively slow rate 

of chloroplast evolution, sometimes even non-coding sequences fail to provide enough 

phylogenetic information in closely related taxa (Small et al, 1998). 
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2.2.2 Phylogenetic utility of nuclear ribosomal DNA 

Since the 1990s, one of the most commonly used markers for phylogenetic studies of 

plant taxa is the internal transcribed spacers (ITS1 and ITS2) of the ribosomal DNA 

(rDNA) (Baldwin et al, 1995). The faster evolution in the rDNA region can overcome 

the lack of informative characters due to the slow evolution of cpDNA and rDNA is still 

as commonly used as cpDNA (Small et al, 2004). The rDNA is a region in the nuclear 

genome, so it is biparentally inherited. This property can overcome the limitation of 

uniparental inherited chloroplast genome and is useful for unravelling hybrid formation 

and parentage of polyploids (Baldwin, 1992; Fehrer et al, 2007). In addition, the fast 

rate of evolution of ITS rDNA compared to organellar genes is advantageous for 

resolving phylogenetic relationships of closely related species (Mort et al, 2007).    

There are several other beneficial properties of the ITS region to use for phylogenetic 

inference. The nuclear ribosomal gene is composed of 18S-5.8S-26S rDNA and the ITS 

region is located in between these coding genes. The ITS priming sites are highly 

conserved. This allows amplification using universal primers for plants and fungi 

(White et al, 1990). In addition, this ribosomal gene exists in tandem arrays with 

hundreds to thousands of copies in plant genomes. Also, the ITS sequences in 

angiosperms are small (500-700 bp). These properties make the ITS region easy to 

isolate, even from ancient materials, and it can amplified by a standard PCR reaction 

(Alvarez and Wendel, 2003). 

The copy numbers of ITS are expected to be homogenized through a phenomenon 

termed concerted evolution. This phenomenon occurs when the different sequences of 

individual copies in the genome are homogenised to the same sequence type by a 

mechanisms of unequal-crossing over or gene conversion (Alvarez and Wendel, 2003; 

Elder and Turner, 1995). If the process of concerted evolution is complete, PCR 

amplification and subsequent sequencing can be easily performed. However, concerted 

evolution may also be a confounding effect. In principle, concerted evolution would act 

to eliminate paralogous sequences, which facilitate the inference of homology among 

taxa. If concerted evolution is incomplete, different rDNA copies can be present across 

the genome and these constitute orthologs and paralogs. This phenomenon makes the 

analysis of phylogeny more complicated or inconclusive (Alvarez and Wendel, 2003; 

Mort et al, 2007).  
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2.2.3 Phylogenetic utility of nuclear genes 

Over the last decade, nuclear genes are increasingly being used for phylogenetic 

reconstruction, particularly when universal markers, such as, cpDNA and ITS rDNA are 

unable to provide phylogenetic resolution. One of the primary advantages of nuclear 

genes for phylogenetic analysis is the higher rate of sequence evolution than organellar 

genomes. The substitution rates of nuclear genes can be up to five times greater than 

those of chloroplast genes (Gaut, 1998). This advantage provides a useful source of 

DNA sequence data for understanding the relationships among low taxonomic levels. 

For example, nuclear-encoded alcohol dehydrogenase (adhC) sequences were fully 

resolved the relationship among Gossypium L. species, whereas non-coding cpDNA 

showed incomplete resolution (Small et al, 1998). Another advantage of nuclear genes 

is that they are biparentally inherited, unlike the maternal inherited chloroplast genome. 

Also, nuclear genes are not subject to concerted evolution like the ITS rDNA, thus they 

are ideal candidates for detection of the origin of hybrids or polyploids (Calonje et al, 

2009; Small et al, 2004).  

However, there are also some difficulties in using nuclear regions for phylogenetic 

studies. The identification of DNA regions that are easily amplifiable and evolving fast 

enough to provide sufficient variation are a challenge. In eukaryotes, nuclear genes tend 

to exist in gene families, which consist of multiple copies of homologous genes due to 

duplication. This makes it difficult to identify orthologous from paralogous genes. Thus, 

nuclear genes with a low copy number or ideally a single copy are preferred. The lack 

of universal PCR primers of nuclear genes, as opposed to chloroplast marker and ITS 

rDNA, also hamper their phylogenetic utility (Calonje et al, 2009; Sang, 2002). 

Although nuclear regions usually require additional work, such as, primer design, PCR 

cloning and optimisation, it is worth the effort to increase the quality of phylogenetic 

reconstruction and to clarify the evolutionary processes of the nuclear genome. 

 

2.2.4 Nuclear genes used in this study 

Among nuclear genes, the nitrate reductase (Nr) gene is one of the low copy nuclear 

genes found in plant species, fungi and algae (Zhou and Kleinhofs, 1996). This gene 

catalyzes the reduction of nitrate to nitrite, facilitating the uptake of nitrogen from soil 

in plants. This gene has four exons and three introns in conserved positions in all 
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angiosperms studied (Salanoubat and Ha, 1993). The sequence of the Nr gene has been 

used for studies of phylogenetic relationships among closely related wild potatoes and 

for inferring the relationships of diploids and polyploids (Rodriguez and Spooner, 2009). 

Also, the relationships among Pistacia species have been resolved using this nuclear 

region (Yi et al, 2008). The comparison of Nr sequence data and granule-bound starch 

synthase I (GBSSI), ITS and the cpDNA sequence trnT-trnF in American Lycieae 

(Solanaceae) revealed that Nr sequence data had the most parsimony informative 

characters (Levin et al, 2009). The high rate of evolution of this low copy nuclear gene 

may make it a useful region for evolutionary studies of relationships among species.   

The WRKY genes are a gene family of transcription factors. They are involved in several 

pathways, such as regulating starch metabolism, seed development and the responses of 

biotic and abiotic stress in plants (Luo et al, 2005). The WRKY genes contain one or two 

highly conserved DNA binding domains with an intron. The independent loci of the 

WRKY genes have been clearly identified in various species, such as Theobroma cacao 

and Persea americana P. Mill. using locus-specific primers. These WRKY genes are 

easy to isolate and provide a high level of variation. They have been used for 

phylogenetic reconstruction in some species of Malvaceae and can be candidate regions 

of single and low-copy nuclear genes for phylogenetic reconstruction of low taxonomic 

levels (Borrone et al, 2007). Thus some WRKY loci are used in this study.      

Another nuclear gene used in this study is the ATP synthase subunit β (atpB) gene. This 

gene encodes the β-subunit of plastid ATP synthase (ATPase), which is an important 

enzyme that provides energy for the cells by catalysing ATP synthesis. From the 

identification of informative markers among 141 low copy nuclear regions in two 

groups of rosids, atpB was identified as a phylogenetically informative region in one of 

the two rosid groups studied, Psiguria (Steele et al, 2008). The other nuclear gene is the 

glutaredoxin (Grx) gene. This is a gene family coding for the oxidoreductase enzymes 

involved in a variety of cellular processes. One of the most documented functions of 

this gene in plants is its involvement in oxidative stress responses (Rouhier et al, 2006). 

The phylogenetic utility of this gene is unknown as this study is the first time the Grx 

gene is used for phylogenetic reconstruction.  

The analysis of these multiple evolutionarily independent regions of nuclear genes 

should provide a picture of relationships between the species (species tree) rather than 
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using a single gene, which reveals how that gene has evolved in a group of species 

(gene tree). 

2.2.5 Taxonomic history of Tilia 

Tilia species are widely distributed across all continents. The genus consists of 23 

species and is divided into three groups based on geographical distribution; European 

and western Asian species, north and central American species and eastern Asian 

species (Pigott, 2012) (Table 2.1). Four species are native to Europe and western Asia 

(T. cordata, T. dasystyla, T. platyphyllos and T. tomentosa). Some species are divided 

into subspecies based on the variation in morphological characters between populations 

and altitudinal and ecological distribution. For example, T. platyphyllos has been 

divided into three subspecies with a different geographical distribution and some 

different morphology of hairs on leaf surface and size and shape of fruit (Pigott, 2012). 

In North America, there are two Tilia species, T. americana and T. caroliniana with 

three subspecies. Seventeen species are recognized in eastern Asia. Three of these 

species, T. amurensis, T. paucicostata and T. tuan, are divided into subspecies as 

described in Table 2.1. Some species are native to and found in a specific location, such 

as T. kiusiana , which is found only in southern Japan, while T. maximowicziana 

occures in northern Japan (Pigott, 2012).  

In the genus Tilia, the basic chromosome number is 41. Almost all European and 

American species are diploid (2n = 82), except for one species, T. dasystyla, which is 

tetraploid (2n = 164). The eastern Asian species are diploid, tetraploid and also 

octaploid. T. amurensis is both diploid and tetraploid and T. nobilis is octaploid (2n = 

328).  

Extensive hybridisation among species within the genus Tilia has been recognized and 

reported (Pigott, 2012). The evidence of intermediate morphology of trees in mixed 

populations of two Tilia species has been investigated. Among European and western 

Asian species, the hybrid (T. x europaea) between T. cordata and T. platyphyllos has 

been widely studied. This hybrid was extensively cloned and frequently planted in 

England. In addition, T. cordata can hybridise naturally with the other species native in 

Europe, T. tomentosa (T. x jaranyana Simonk.) and T. dasystyla subsp. caucasica. 

Hybridisation with species in the US (T. americana) has been investigated as well. 

Another example of hybridisation between a European and western Asian species is 

between T. platyphyllos and T. tomentosa. This hybrid (T. x haynaldiana Simonkai) has 
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been observed in Hungary and in the Balkans (Pigott, 2012). All taxa of the US species 

can hybridise, both between species (T. americana and T. caroliniana) and between 

subspecies of T. caroliniana. Hybridisation has also been recognised in numerous 

species in eastern Asia. For example, in Japan hybrids of T. japonica with both T. 

maximowicziana and T. kuisiana were reported. In China, trees with intermediate 

morphology were investigated in mixed populations of T. chinensis and T. paucicostata 

and of T. collidonta and T. nobilis (Pigott, 2012). Some hybrids were treated as a new 

species due to the formation of a species with higher ploidy level. For example, the 

hybrid between T. oliveri (diploid, 2n = 82) and T. miqueliana (diploid, 2n = 82) is 

tetraploid (2n = 164). The hybrid would be allotetraploid, thus this hybrid is treated as a 

new species (T. concinna) (Table 2.1) (Pigott, 2012). Polyploidisation could lead to the 

blurring of species boundaries and make the species identification even more 

complicated. In the genus Tilia, there are two classes of polyploid species. 

Autopolyploidy is found in some species, such as T. maximowicziana (2n = 164) and T. 

nobilis (2n = 328), while allopolyploidy is found in some hybrids, such as T. x euchlora 

(2n = 164) (Pigott, 2012).   
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Table 2.1 Currently recognized species and subspecies of Tilia and their ploidy level, 

divided by geographical regions, based on Pigott (2012). 

Region Species Ploidy level 

Europe and western Asia T. cordata Mill. 2n = 82 

 
     - subsp. sibirica (Bayer) Pigott 2n = 82 

 
T. dasystyla Steven 2n = 164 

 
    - subsp. caucasica (v. Engl.) Pigott 2n = 164 

 
    - subsp. multiflora (Ledeb.) Pigott 2n = 164 

 
T. platyphyllos Scop. 2n = 82 

 
    - subsp. cordifolia (Besser) C.K. Schneid. 

 

 
    - subsp. pseudorubra C.K. Schneid. 

 

 
    - subsp. corinthiaca (Bosc ex K. Koch) Pigott 

 
  T. tomentosa Moench 2n = 82 

North America T.  americana L. 2n = 82 

 
T. caroliniana Mill. 2n = 82 

 
    - subsp. floridana (Small) E. Murray 2n = 82 

 
    - subsp. heterophylla (Vent.) Pigott 2n = 82 

      - subsp. occidentalis (Rose) Pigott 2n = 82 

Eastern Asia T. endochrysea Hand.-Mazz. 2n = 82 

 
T. henryana Szyszyl. 2n = 164 

 
T. amurensis Rupr. 2n = 82, 164 

 
    - subsp. taquetii (C.K. Schneid.) Pigott 2n = 82 

 
T. japonica (Miquel) Bayer. 2n = 82 

 
T. kiusiana Shiras. 2n = 82 

 
T. mongolica Maxim. 2n = 164 

 
T. paucicostata Maxim. 2n = 164 

 
    - subsp. dictyoneura (V. Engler) Pigott 

 

 
    - subsp. yunnanensis (Diels) Pigott 

 

 
T. collidonta Chang H.-t. 2n = 164 

 
T. chinensis Maxim. 2n = 164 

 
T. chingiana Hu&Cheng 2n = 82 

 
T. concinna Pigott 2n = 164 

 
T. mandshurica Maxim. 2n = 82 

 
T. maximowicziana Shiras. 2n = 164 

 
T. miqueliana Maxim. 2n = 82 

 
T. nobilis Rehder&Wilson 2n = 328 

 
T. oliveri Szyszyl. 2n = 82 

 
T. tuan Szyszyl. 2n = 164 

 
    - subsp. tristis Pigott 

 
      - subsp. oblongifolia (Rehder) Pigott   

 

There has been little taxonomic work done on the genus Tilia using molecular 

techniques. RAPD analysis was used for assessing the systematic relationships within 

some Tilia species, mainly those native in Europe and including one American species 

(T. americana) and one eastern Asian species (T. henryana). Also, hybrid clones (T. x 

europaea and T. x euchora) were investigated to clarify the parental species (Liesebach 
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and Sinko, 2008). Chloroplast regions (rpL32-trnL and ndhF-rpL32) have been used to 

construct the phylogeny of a subset of species in the genus Tilia. The results revealed 

that the US species appear to be monophyletic, while European and Asian species are 

intermixed within the same clade (McCarty, 2012). Analysis of ITS and 5.8S rDNA 

gene sequences and their secondary structure has been carried out to infer the phylogeny 

of Tilia species growing in northern Iran (Yousefzadeh et al, 2012). An unpublished 

study by Li et al (2002) of 12 diploid taxa of Tilia species based on a non-coding intron 

of the nitrate reductase (NIA) gene has shown that T. platyphyllos is not closely related 

to both T. cordata and any American species. This is the only study using the low copy 

sequences in the genus Tilia. In addition, all these previous studies have been done with 

a limited number of species. This study is the first in which almost all Tilia species 

(only one species has been missed out, T. paucicostata) have been analysed using both 

chloroplast and nuclear regions. The objective of this study is to reconstruct the 

phylogeny of the genus Tilia to improve understanding of the relationships and 

evolutionary history among the species.  

 

2.3 Materials and methods 

2.3.1 Species sampling 

A total of twenty-two species including subspecies and some hybrids of Tilia (55 

individuals) was analysed (Table 2.2). These species cover almost all species in this 

genus based on species identification by Pigott (2012). Only one species, T. 

paucicostata Maxim is not included in this study due to unsuccessful DNA extraction 

from herbarium specimen and no live specimen was located. Fresh leaves of most 

species were collected from a living collection in Cartmel, Cumbria, United Kingdom 

(Pigott, 2002). Two species (3 samples) of T. chinensis and T. miqueliana were obtained 

from Peasmarsh Place Arboretum, Rye, UK and one species of T. tomentosa ‘Petiolaris’ 

was obtained from the Royal Botanical Garden Edinburgh, UK (Table 2.2). No voucher 

specimens have been deposited because only leaves from ground level were available. 

Among 55 individuals, 31 are European and western Asian species, eight are the US 

species and the remainders are native to eastern Asia. Theobroma cacao was selected as 

an outgroup due to the placement of Tilia in the same clade in the family Malvaceae, 

based on the analysis of rbcL sequence data (Alverson et al, 1998) and the availability 

of an annotated genome sequence of Theobroma cacao. 
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Table 2.2 List of Tilia species, provenance, region and label used in this study.           

* indicates samples obtained from Peasmarsh Place Arboretum, Rye, UK, ** indicates 

samples obtained from the Royal Botanical Garden Edinburgh, UK. 

Species Label Provenance 

T. cordata Pg35 Brigsteer, Kendal, UK 

T. cordata Pg36 Borrowdale, Cumbria, UK 

T. cordata Pg41 Coniston Water, Cumbria, UK 

T. cordata Pg12 Burton Wood, Aughton, Lancs, UK 

T. cordata Pg46 Hesketh Wood, Cartmel, UK 

T. cordata Pg01 Earls Colne, Essex, UK 

T. dasystyla subsp. caucasica Pg03 Lagodekhi, Georgia, UK 

T. dasystyla subsp. dasystyla Pg04 Yalta, Krim, UK 

T. platyphyllos Pg45 Longlands, Cartmel, UK 

T. platyphyllos Pg48 Yewbarrow, Grange, UK 

T. platyphyllos Pg50 Wood Broughton old park, UK 

T. platyphyllos Pg37 Bohinj, Slovenia 

T. platyphyllos subsp. cordifolia Pg02 Cambridge, UK 

T. platyphyllos subsp. cordifolia Pg15 Sutton, Sussex, UK 

T. platyphyllos subsp. corinthiaca Pg14 Peloponnese, Greece 

T. tomentosa Pg13 Crna Gora, Montenegro 

T. tomentosa Pg40 Chepelarska gorge, Rodopi, Bulgaria 

T. tomentosa 'Orbicularis' Pg39 Wisley, Surrey, UK 

T. tomentosa 'Petiolaris' Pg38 Cambridge, UK 

T. tomentosa 'Petiolaris'** RBGE - 

T. x europaea 'Hatfield' Pg44 Longlands, Cartmel, UK 

T. x europaea 'Hatfield' Pg47 Yewbarrow, Grange, UK 

T. x europaea 'Pallida' Pg43 Longlands, Cartmel, UK 

T. x europaea 'Pallida' Pg53 Longlands, Cartmel, UK 

T. x euchlora Pg49 Longlands, Cartmel, UK 

T. endochrysea Pg51 Guangdong, China 

T. henryana Pg24 Arboretum national des Barres, France 

T. amurensis Pg08 Arnold Arboretum, UK 

T. amurensis Pg31 Amur valley, Primorsky Krai, Siberia 

T. amurensis subsp. amurensis Pg10 Ussuriysk, Primorsky Krai, Siberia 

T. amurensis subsp. Taquetii Pg06 Ussuriysk, Primorsky Krai, Siberia 

T. amurensis subsp. Taquetii Pg32 Ussuriysk, Primorsky Krai, Siberia 

T. japonica Pg33 Hokkaido, Japan 

T. japonica Pg25 Kew, originally from Japan 

T. kiusiana Pg23 Kyushu, Japan 

T. monogolica Pg05 Beijing area, China 

T. callidonta Pg29 Longxi, Sichuan, China 

T. chinensis*  960 - 

T. chinensis*  986 - 

T. chingiana Pg26 Lashan, Jiangxi, China 

T. concinna Pg30 Xuzhou, Jiansu, China 

T. mandshurica Pg11 Beijing area, Hebei, China 

T. maximowicziana Pg28 Sendai, Honshu, Japan 

T. maximowicziana Pg34 Saporo, Hokaido, Japan 

T. miqueliana* 1752 - 

T. nobilis Pg07 Emei shan, Sichuan, China 

T. oliveri Pg27 Hubei, China 

https://www.google.co.uk/search?biw=1067&bih=697&q=Ussuriysk,+Primorsky+Krai,+Siberia&spell=1&sa=X&ei=SOJsU9DtHc7bPdnPgbgE&ved=0CCkQBSgA
https://www.google.co.uk/search?biw=1067&bih=697&q=Ussuriysk,+Primorsky+Krai,+Siberia&spell=1&sa=X&ei=SOJsU9DtHc7bPdnPgbgE&ved=0CCkQBSgA
https://www.google.co.uk/search?biw=1067&bih=697&q=Ussuriysk,+Primorsky+Krai,+Siberia&spell=1&sa=X&ei=SOJsU9DtHc7bPdnPgbgE&ved=0CCkQBSgA
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Table 2.2 Continued. 

Species Label Provenance 

T. tuan Pg09 Hubei, China 

T. tuan Pg22 Yunnan, China 

T. americana Pg19 Kane Co, Illinois, US 

T. americana Pg20 Whately, Massachusetts , US 

T. caroliana subsp. floridana Pg17 Florida Caverns, Mariana, Florida US 

T. caroliana subsp. floridana Pg18 Monterey, Sierra Madre, Mexico 

T. caroliniana subsp. caroliniana Pg16 Carolina border, US 

T. caroliniana subsp. occidentalis Pg52 Cinconchiaco, Mexico 

 

2.3.2 DNA extraction  

Total genomic DNA was extracted from dried Tilia leaves using a CTAB 

(cetyltrimethyl ammonium bromide) procedure (Morgan-Richards and Wolff, 1999). In 

short, approximately 1 cm
2 

leaves were ground in a mortar containing 800 µl of 2X 

CTAB, 1% of β-mercaptoethanol and a pinch of insoluble PVP (polyvinylpyrrolidone). 

The DNA solution was then transferred into a tube and incubated at 60 
o
C in heating 

block for 15-30 minutes with occasional mixing. After that, the tube was placed at room 

temperature for cooling before adding 600 µl of chloroform: isoamyl alcohol (24:1). 

The solution was mixed with a vortex mixer before being centrifuged at 13,000 rpm for 

5 minutes. The supernatant was transferred into a new tube and chloroform: isoamyl 

alcohol was added again. After centrifugation, supernatant was transfered into a fresh 

tube, and 0.7 volume of cold isopropanol (approximately 560 µl) was added and 

incubated at -20 
o
C for 15-30 minutes to precipitate DNA. The tube was centrifuged at 

13,000 rpm for 10 minutes and the supernatant was discarded. The pellet was washed 

with 1 ml of 70% ethanol and again centrifuged for 10 minutes (13,000 rpm). After this, 

the pellet was dried at 30 
o
C in the incubator and resuspended in 100 µl of TE buffer. 

The extracted DNA was stored at -20 
o
C until use. 

 

2.3.3 Chloroplast amplification and sequencing 

For all 22 Tilia species in this investigation, a total of seven regions (Table 2.3) were 

polymerase chain reaction (PCR) amplified and sequenced. PCR amplifications were 

carried out in 15 µl reactions containing 5 ng of template DNA, 1x reaction buffer, 

2mM MgCl2, 0.2 mM of each dNTP, 0.4 mM of each primer and 0.5 U of Taq DNA 

polymerase (Bioline). The PCR reactions were amplified as follows: an initial pre-
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denaturation step at 94 °C for 3 min, followed by 30-35 cycles of denaturation step at 

94 °C for 15 s, annealing temperature and time as described in Table 2.3, and extension 

at 72 °C for 60 s, and a final extension step of 72 °C for 4 min.  

PCR products were cleaned with Exo-SAP (USB Corporation, Cleveland, Ohio, USA). 

The following amounts of reagents were added into each sample: 1 µl of Shrimp 

Alkaline Phosphatase (SAP), 1.35 µl of Shrimp Alkaline Phosphatase buffer and 0.15 µl 

of Exonuclease I. The mixed reactions were incubated in a thermocycler at 37 °C for 40 

minutes and 80 °C for 15 minutes. The purified PCR products were sequenced using 

ABI Prism BigDye
®
 Terminator Version 3.1 Cycle Sequencing Kits (Applied 

Biosystem, Foster City, California, USA). Sequencing reaction were performed in 10 µl 

containing 1.5 µl of 5X sequencing buffer, 0.5 pmol of chloroplast primer, 0.5 µl of 

BigDye terminator sequencing mix and 0.5 µl of purified PCR product.  The sequencing 

reactions were amplified by 35 cycles of 96 °C for 10 min, 51 °C for 5 s and 60 °C for 4 

min. The sequences were visualized on an ABI 3100 automated sequencer (Applied 

Biosystems). All individuals were sequenced in one direction only. 

 

Table 2.3 Primer sequences and PCR details of seven chloroplast regions 

Primer name Sequence 
Length 

(bp) 

Annealing 

Temp 

(oC) 

Annealing 

time 

(second) 

Number 

of PCR 

cycles 

Reference 

MatK-390F CGATCTATTCATTCAATATTTC 
920 53 30 35 

Cuénoud et al 

(2002) MatK-1326R TCTAGCACACGAAAGTCGAAGT 

psbD CTCCGTARCCAGTCATCCATA 
1218 53 30 35 Shaw et al (2007) 

trnT-R CCCTTTTAACTCAGTGGTAG 

psbJ ATAGGTACTGTARCYGGTATT 
1269 53 30 35 Shaw et al (2007) 

petA AACARTTYGARAAGGTTCAATT 

rbcL-724R TCGCATGTACCTGCAGTAGC 

743 53 30 35 

Fay et al (1997) 

rbcL-F ATGTCACCACAAACAGAGACTAAAGC 
Kress and 

Erickson (2007) 

trnF-f ATTTGAACTGGTGACACGAG 
447 53 30 35 

Taberlet et al 

(1991) trnL-e GGTTCAAGTCCCTCTATCCC 

trnG (UCC) GAACGAATCACACTTTTACCAC 
844 53 30 35 Hamilton (1999) 

trnS (GCU) GCCGCTTTAGTCCACTCAGC 

trnL-c CGAAATCGGTAGACGCTACG 
456 53 30 35 

Taberlet et al 
(1991) trnL-d GGGGATAGAGGGACTTGAAC 

 

2.3.4 Nuclear amplification and sequencing 

Twelve nuclear regions, including ITS rDNA (White et al, 1990), obtained from species 

in the same genus were tested (Appendix 1). Among these nuclear regions, DNA was 

successfully amplified with three primer pairs (TcWRKY-13, atpB and ITS rDNA). 

Primers TcWRKY-13 were designed for Theobroma cacao (Borrone et al, 2007) and 
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primers atpB were designed for rosids (Steele et al, 2008). Two primers were developed 

for two other nuclear regions, nitrate reductase (Nr) and glutaredoxin (Grx) genes from 

T. platyphyllos sequences available in GenBank (Accession number AY138811.1 and 

AF406809.1, respectively). The sequences were aligned with the Theobroma cacao 

genome to identify exons before designing primers using Primer3 software version 0.4.0. 

However, the Nr primers amplified multiple PCR products, thus they were not further 

used. Therefore, four nuclear regions were used for phylogenetic analysis (Table 2.4). 

PCR reactions of all nuclear regions were the same as carried out in chloroplast regions. 

PCR cycling conditions were different for each region. For Grx region, the 

amplification was as follows: an initial denaturation step at 94 °C for 4 min, followed 

by 35 cycles of denaturation step at 94 °C for 30 s, annealing temperature at 57 °C for 1 

min and extension step at 72 °C for 30 s, and a final extension step of 72 °C for 7 min. 

The TcWRKY-13 and atpB sequences were amplified as follows: an initial pre-

denaturation at 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 15s, 

annealing at 56°C for 20 s and extension at 72 °C for 60 s, and a final extension of 

72 °C for 4 min. The PCR cycling conditions for ITS rDNA were pre-denaturation at 

94 °C for 3 min, followed by 30 cycles of denaturation at 94 °C for 30 s, primer 

annealing at 60°C for 30 s and primer extension at 72 °C for 60 s, and a final extension 

at 72 °C for 4 min. After amplification, PCR products were purified with Exo-SAP and 

sequenced using the same reaction as for chloroplast regions. 

 

Table 2.4 Primer sequences and PCR details of nuclear regions used in this study 

Primer name Sequence Reference 

GrxF TTTCAGCAAGTCGTACTGTCC 
Newly designed 

GrxR AATCAGCTTCCCATTCTTGTG 

TcWRKY-13F AAGCAAGTGAAAGGAAGTGAG 
 Borrone et al (2007) 

TcWRKY-13R TGAAAGCTCTTGGATCATCCGATGC 

atpB-51F CCTAGCTTGATGACACCAC 
Steele et al (2008) 

atpB-51R CTTGGACGTATCCTGAAT 

ITS4 TCCTCCGCTTATTGATATGC 
White et al (1990)  

ITS5 GGAAGTAGAAGTCGTAACAAGG 
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2.3.5 Nuclear gene cloning 

After sequencing, some individuals that showed multiple overlapping sequences were 

cloned. The PCR products were purified using QIAquick PCR Purification Kit (Qiagen). 

Cleaned PCR products were ligated in pJET1.2 vector using CloneJET™ PCR cloning 

kit (Thermo Scientific) and transformed into α-Select Competent Cells (Bioline). Eight 

colonies per individual were collected in 15 µl autoclaved water before they were 

heated at 99°C for 5 min in thermo cycle. Colonies were PCR amplified to check the 

insertion in 15 µl reactions containing 3 µl of heated colony solution, 1x reaction buffer, 

2mM MgCl2, 0.2 mM of each dNTP, 0.4 mM of each pJET1.2 primer and 0.5 U of Taq 

DNA polymerase (Bioline). The thermal cycle program had an initial pre-denaturation 

step at 94 °C for 3 min, followed by 35 cycles of denaturation step at 94 °C for 30s, 

annealing temperature at 60°C for 30s and extension step at 72 °C for 60s, and ending 

with 72 °C for 4 min. The PCR products were cleaned and sequenced as above. 

 

2.3.6 Sequence alignment and phylogenetic analysis 

Sequences from all regions were double-checked using the chromatograms, edited and 

aligned using Geneious version 6.1.4 (Drummond et al, 2011). The nuclear sequences 

were aligned with Theobroma cacao genome to identify intron and exon. The 

percentages of introns present in each nuclear gene sequence were calculated. All seven 

chloroplast regions of each sample were concatenated and regarded as a single sequence 

using Mesquite Version 2.75 (Maddison and Maddison, 2001). For clones of nuclear 

genes, all different sequences of each individual were used for phylogenetic analysis.  

Phylogenies were estimated using maximum parsimony (MP) and maximum likelihood 

(ML). For each data set, parsimony analysis was conducted in PAUP* version 4.0b10 

(Swofford, 2003) with the heuristic search option, random taxon addition sequence 

limited to 10 and tree bisectional reconnection (TBR) branch-swapping. Bootstrap 

support (Felsenstein, 1985) was estimated with 1000 replications. All trees of each data 

set were combined and produced as a 50% majority-rule consensus tree. Both 

consistency and retention index (CI and RI, respectively) were calculated to indicate the 

amount of homoplasy in the phylogenetic tree. Maximum likelihood analysis was 

performed as an alternative means of phylogenetic reconstruction using GARLI 2.0 

(Zwickl, 2006). The analysis was performed through heuristic search with TBR branch 
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swapping. 1000 bootstrap replications were performed to assess the robustness of 

branches. A 50% majority-rule consensus tree of each data set was constructed using 

PAUP*.  

 

2.4 Results 

2.4.1 Characteristics of chloroplast, nuclear DNA and ITS rDNA sequences 

Seven regions (MatK-390, psbD, psbJ, rbcL724, trnF, trnG and trnLc, Table 2.3) were 

sequenced for the phylogenetic analysis of 22 Tilia species. For nuclear genome 

analysis, four nuclear genes (Grx, TcWRKY-13, atpB and ITS rDNA) were successfully 

amplified in Tilia species (Table 2.4) and were further sequenced. After sequencing, 18 

individuals for Grx region and 15 individuals for atpB region showed heterozygote 

sites/ indels. PCR products of these individuals were cloned to obtain the sequences of 

individual copies of the regions. Diploid species showed two main copies of the nuclear 

regions, thus two sequences of cloned PCR products were used for further phylogenetic 

analysis. For the species that are polyploid, all different copies of the clones were 

analysed. The sequences of the clones of the hybrid (T. x europaea Hatfield) indicated 

two different sequences. One sequence is similar to T. cordata and the other is similar to 

T. platyphylos (Table 2.5). This is also observed in T. x euchlora, the hybrid of T. 

cordata and T. dasystyla (data not shown). 

For the ITS rDNA region, DNA from 26 individuals was cloned. Most of the 

individuals showed a large number of different ITS haplotypes. This makes 

phylogenetic inference difficult, also because variable sites were shared between 

individuals and between species, and thus did not reveal species relationships. Therefore 

the ITS region was not used for phylogeny reconstruction. Table 2.6 illustrates one of 

the diploid species (T. x europaea Hatfield) that had seven different copies of the ITS 

region. 
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Table 2.5 Variable sites of T. cordata, T. platyphyllos and T. x europaea Hatfield (hybrid) based on Grx region indicate the hybrid contained two gene 

copies from the parental species. 

Species 
Variable sites 

29 33 45 61 131 195 199-222 243 280 288 296 318 322 347 348 357 359 380 386 390 442 469 579 

T. cordata A A C A C A - T T C T G A T - A A A A A C T C 

T. platyphyllos T G T T A G + C G T C A G A + C G C G T T A T 

T. x europaea Hatfield clone 1 A A C A C A - T T C T G A T - A A A A A C T C 

T. x europaea Hatfield clone 2 A A C A C A - T T C T G A T - A A A A A C T C 

T. x europaea Hatfield clone 3 T G T T A G + C G T C A G A + C G C G T T A T 

T. x europaea Hatfield clone 4 T G T T A G + C G T C A G A + C G C G T T A T 

T. x europaea Hatfield clone 5 T G T T A G + C G T C A G A + C G C G T T A T 

T. x europaea Hatfield clone 6 T G T T A G + C G T C A G A + C G C G T T A T 

T. x europaea Hatfield clone 7 T G T T A G + C G T C A G A + C G C G T T A T 
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Table 2.6 Variable sites in clones of T. x europaea Hatfield (diploid species) based on based on ITS region 

T. x europaea 

Hatfield 

Variable sites 

12 43 54 113 121 129 170 195 213 216 224 243 371 412 413 416 436 440 442 444 496 541 542 548 580 581 590 591 593 598 

Clone 1 G G C G A T A T - C A T T T C A A A A A G A G T G T A G C G 

Clone 2 A G C G G T C G T C A C T T T A G C G G G G A T C T G G C A 

Clone 3 G G C G G T C G T T G T C T T G G C G G G G G C G C G A A A 

Clone 4 A G C G G T C G T T G T T T T G G C G G G G G C G C G A A A 

Clone 5 A G C G G T C G T T G T T T T G G C G G G G G C G C G A A A 

Clone 6 A A C A G T A T T C A T T T T G G C G G G G G C G C G A A A 

Clone 7 G G C G A T C G T T G T T T T A A A A A G G G C G C G G A A 

Clone 8 A G T G G C C G T T G T T C T G G C G G A G G C G C G A A A 
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The characteristics of the chloroplast and nuclear DNA sequences of 55 individuals in 

22 Tilia species are shown in Table 2.7. For seven combined chloroplast regions, the 

total number of aligned nucleotides was 2,843 bp of which 139 sites were variable and 

27 were parsimony informative (0.95%), with high consistency index (CI) and retention 

index (RI) of 0.96. There were 17 insertions-deletions (indels) ranging from 1 bp in 

trnLc to 13 bp in psbD. For nuclear regions, the aligned positions of Grx, TcWRKY-13 

and atpB data sets were 562, 386 and 410 bp, respectively. The parsimony informative 

characters were highest in Grx at 61 sites (10.85%), while those of TcWRKY-13 and 

atpB were 24 (6.22%) and 32 (7.80%), respectively. Among these nuclear regions, Grx 

had the highest percentage of intron presence in the sequence data (85.04%), while 

those of atpB and TcWRKY-13 were 59.04% and 17.36%, respectively. The CI of all 

nuclear regions were similar at approximately 0.83 and the RI were 0.95 in both Grx 

and TcWRKY-13 and 0.90 in atpB. Five and six indels were observed in Grx and atpB, 

respectively. No indel was detected in TcWRKY-13 regions. The longest indel, 23 bp, 

was found in the Grx region of all T. cordata and some clones of T. dasystyla, T. 

chinensis, T. x europaea Hatfield and T. x euchlora. 

 

Table 2.7 Characteristics of seven combined chloroplast and three nuclear regions of 56 

individuals of Tilia species. CI = consistency index, RI = retention index  

Data set 
Aligned 

positions 

No. of 

parsimony 

uninformative 

sites 

No. of 

parsimony 

informative 

sites 

Indels 

% of 

intron in 

the 

sequence 

CI RI 

Seven chloroplast regions 2,843 112 27 (0.95%) 17 - 0.962 0.956 

Grx 562 107 61 (10.85%) 5 85.04 0.837 0.951 

TcWRKY-13 386 27 24 (6.22%) 0 17.36 0.834 0.953 

atpB 410 81 32 (7.80%) 6 59.04 0.837 0.904 

 

 

2.4.2 Phylogenetic analysis 

Chloroplast DNA tree 

Maximun parsimony searches of combined chloroplast DNA yielded 380,063 

parsimonious trees. This topology of maximum parsimony (MP) tree was congruent 

with that of the maximum likelihood (ML) tree. Moreover, the bootstrap values for 
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branch robustness obtained from the maximum parsimony criterion were similar to 

those from likelihood criterion. Therefore, only the MP tree is presented, while 

presenting bootstrap values from both criteria (Figure 2.1).  

The 50% majority-rule consensus tree revealed that Tilia species can be divided into 

three major clades (A, B and C). Two species, T. endochrysea and T. kiusiana, did not 

group with other species. Clade A, which had the lowest bootstrap support (MP=58%, 

ML=75%), is the major clade comprising all four European species (T. cordata, T. 

platyphyllos, T. dasystyla and T. tomentosa), their hybrids (T. x europaea and T. x 

euchlora) and 13 species of eastern Asia (Figure 2.1). The relationships of the species 

within the clade are weakly resolved due to lack of sequence divergence. Clade B with 

high bootstrap support (MP=99%, ML= 96%) contained three eastern Asia species. Two 

out of three species (T. amurensis and T. tuan) in this clade were also present in clade A. 

Tilia species from the US (T. americana and T. caroliniana) formed a distinct group 

(clade C) supported by high bootstrap values (MP=78%, ML=79%).  
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Figure 2.1 The 50% majority rule consensus tree of maximum parsimony (MP) based 

on seven combined chloroplast DNA sequences from 22 Tilia species. Numbers above 

branches indicate bootstrap values of maximum parsimony and maximum likelihood 

analysis, respectively. Names after species represent the sample labels. Branch colours 

indicate the same species except that the two North American species are the  

same colour. 
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Nuclear DNA trees 

The phylogenetic analysis of the three nuclear regions, Grx, TcWRKY-13 and atpB, 

revealed that the topologies of 50% majority rule consensus trees obtained from 

maximum parsimony (MP) analysis in the three regions were very similar to the 

topology obtained from maximum likelihood (ML) analysis. Thus, only MP trees are 

presented (Figure 2.2, 2.3 and 2.4). The Grx region, which has the highest percentage of 

parsimony informative characters (10.85%), revealed the best resolved phylogenetic 

tree (Figure 2.2). The other two nuclear regions, with low numbers of parsimony 

informative sites, showed little phylogenetic resolution among 22 Tilia species. 

However, trees were largely congruent. In addition, the phylogenetic tree of each 

nuclear region was congruent with its unrooted phylogenetic networks (Appendix 2, 3 

and 4).  

The parsimony analysis revealed a close relationship of T. cordata, T. amurensis, T. 

japonica and T. chinensis. These four species grouped in the same clade for both Grx 

and TcWRKY-13 regions with strong support, a high MP bootstrap value (80% and 82%, 

respectively). The other two Eastern Asian species, T. kiusiana and T. mongolica, were 

also clustered closely to those four species. T. platyphyllos, and most individuals of T. 

dasystyla and T. tomentosa (all are European species) were grouped together in Grx 

region with 72% bootstrap support. It is clearly observed in all nuclear regions that the 

two main European species, T. cordata and T. platyphyllos, were separated in different 

groups. Their hybrids (T. x europaea) were polyphyletic, and clustered into both 

parental species clades. Also, T. x euchlora grouped into two clades of the parental 

species (T. cordata and T. dasystyla). The US species (T. americana and T. caroliniana) 

formed a monophyletic group for both Grx and atpB with 79% and 73% bootstrap 

support. These species were closely related to an eastern Asian clade comprised of T. 

oliveri, T. concinna and T. miqueliana, as well as the species T. chingiana, with low 

bootstrap support (58%) in Grx. The remaining species showed little to no phylogenetic 

resolution, particularly in the tree constructed from atpB sequences.  

In this study, some incongruence of the tree topology between chloroplast and nuclear 

regions was observed in some species, for example, some individuals of T. amurensis, T. 

tuan and T. nobilis. These species formed a clade (clade B, Figure 2.1) with high 

bootstrap support (99%) based on combined chloroplast regions but this relationship 



Chapter 2. Phylogenetic analysis 

 

31 
 

was not observed in nuclear phylogeny. Also, in the tree obtained from nuclear regions, 

T. nobilis and T. tuan largely formed unrooted relationships. In addition, conflicting 

placement between TcWRKY-13 and Grx was observed in some species. T. 

maximowicziana was clustered with T. mandshurica based on TcWRKY-13. On the 

other hand, one sequence of T. maximowicziana was placed with T. tomentosa and the 

other was placed in the clade of T. cordata, based on the Grx phylogenetic tree.  
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Figure 2.2 The 50% majority rule consensus tree of maximum parsimony (MP) based 

on Grx nuclear sequences from 22 Tilia species. Numbers above branches indicate 

bootstrap values of maximum parsimony and maximum likelihood analysis, 

respectively. Names after species represent the sample labels and the numbered cloned 

sequence. Branch colours indicate the same species except that the two North American 

species are the same colour. 
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Figure 2.3 The 50% majority rule consensus tree of maximum parsimony (MP) based 

on TcWRKY-13 nuclear sequences from 22 Tilia species. Numbers above branches 

indicate bootstrap values of maximum parsimony and maximum likelihood analysis, 

respectively. Names after species represent the sample labels. Branch colours indicate 

the same species except that the two North American species are the same colour. 
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Figure 2.4 The 50% majority rule consensus tree of maximum parsimony (MP) based 

on atpB nuclear sequences from 22 Tilia species. Numbers above branches indicate 

bootstrap values of maximum parsimony and maximum likelihood analysis, 

respectively. Names after species represent the sample labels and the numbered clone. 

Branch colours indicate the same species except that the two North American species 

are the same colour. 
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2.5 Discussion 

2.5.1 Molecular evolution of chloroplast, nuclear DNA and ITS rDNA in Tilia 

For the study of phylogeny at the low level of a taxonomic group, it is necessary to have 

sufficient informative characters. When using the chloroplast genome, which evolves 

relatively slowly, a multi-locus analysis is essential for sufficient phylogenetic 

resolution (Shaw and Small, 2004). The seven chloroplast regions (MatK-390, psbD, 

psbJ, rbcL724, trnF, trnG and trnLc) showed low variation within each particular 

region. Therefore, these chloroplast regions were combined. However, the number of 

parsimony informative sites of seven combined regions is still low (0.95%), compared 

to three nuclear regions (7-11%) as shown in Table 2.7. This is expected as generally 

the evolutionary rate of the chloroplast genome is slower than the nuclear genome (Gaut, 

1998). The lack of sufficient variation of the chloroplast regions leads to low resolution 

in phylogeny reconstruction. Most of the species relationships are not resolved. This 

limitation of chloroplast DNA, failing to provide a sufficient phylogenetic resolution at 

species level, is not unexpected and has been observed in many plant species (Small et 

al, 2004). 

Of the three nuclear regions examined in this study, Grx is the most variable region, 

with the greatest number of parsimony informative (PI) characters and almost twice the 

percentage of PI sites (10.85%) compared to the other two nuclear regions (Table 2.7). 

These could be due to the sequences of Grx region containing the highest percentage of 

introns compared to the other two regions, as the variations of the DNA sequences tend 

to occur in introns. Therefore, it is not unexpected that the Grx region provided a better 

phylogenetic resolution than the TcWRKY-13 and atpB regions.  

However, some species relationships are still not well resolved. The low resolution of 

phylogenetic trees in the genus Tilia could be the result of the long generation time. The 

age at which Tilia trees begin to flower and produce seed ranges from six to 40 years 

old depending on the environmental conditions, particularly related to light exposure. A 

tree in shady conditions may not produce flowers. In addition, human management (e.g. 

coppicing) has reduced sexual regeneration. Even though stems will mostly not survive 

longer than 200 – 300 years and are often hollow, it is well known that Tilia tree 

individuals can survive for many hundreds of years. The genotype may simply survive 

through sprouting near the base of the tree or through regeneration from branches 

touching the ground (Pigott, 1991; Pigott, 2012). Therefore, current genotypes may well 
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be ancient and seemingly separate trees could actually be the same genotype. This low 

recruitment leads to slow turnover of trees. The small number of generations may be 

insufficient for an individual gene to accumulate sufficient variation for resolving 

informative phylogenetic tree. Thus, the species within this genus Tilia seem to be 

genetically fairly close to each other, which is reflected in the fact that large numbers of 

species can hybridise. This evidence is also supported by a relatively small number of 

species within the genus (approximately 23 species) (Pigott, 2012) compared to other 

tree species in the same group of rosids, such as the genus Quercus (oak), which 

contains approximately 600 species (Hogan, 2012).  

The internal transcribed spacer (ITS) of nuclear ribosomal DNA is one of the most 

popular regions used for phylogenetic study among plant species. This rDNA region 

provides many advantages for phylogenetic reconstruction (Alvarez and Wendel, 2003). 

The high copy number of ITS rDNA in the genome facilitates PCR amplification, 

compared to the low-copy nuclear loci. However, the multiple copies of ITS per 

genome are subject to a process called concerted evolution. Due to this process, the 

multiple sequences in the genome will be uniform or largely one unique sequence 

within the individual (Alvarez and Wendel, 2003; Buckler et al, 1997). In the absence 

of sequence homogenisation, multiple copies of ITS rDNA sequences in one individual 

can result in misleading phylogenetic inference and distorted evolutionary history. 

Alvarez and Wendel (2003) stated that multiple ITS rDNA sequences are quite common 

in polyploid species and hybrids. From the analysis of ITS sequences of Tilia in this 

study, multiple ITS sequences were observed not only in polyploid species, but also in 

the diploid species. For example, the sequences of the diploid species T. x europaea 

Hatfield showed seven different sequences within an individual, while a maximum of 

two would be expected in a diploid hybrid. These results clearly indicate incomplete 

concerted evolution in the genus Tilia. Therefore, ITS rDNA sequences are not used 

here for phylogenetic inference.  

 

2.5.2 Relationships of Tilia species 

Phylogeny reconstruction from independent genome regions can increase the 

confidence of the relationships. Phylogenetic topologies of the different data sets can 

provide insight into evolutionary processes particularly with little genetic divergence 

between species (Steele et al, 2008). In this study although low resolutions of 
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phylogenetic trees were observed and some species relationships are still not well 

resolved, considering the tree topologies of all regions together did help to raise support 

for some species relationships. Among the reconstruction of phylogenetic trees, the tree 

obtained from the Grx DNA sequence has provided the highest resolution. Therefore, in 

order to discuss the relationships in the genus Tilia, I will concentrate mainly on this 

tree.   

Tilia are widely distributed species across all continents based on geographical 

distribution. The species were divided into three groups; European and western Asian 

species, eastern Asian species and north and central American species (Pigott, 2012). In 

the present study, some correlation between species groups and their geographical 

distribution was observed. American species, which are geologically separated, appear 

to be monophyletic in most phylogenetic trees. Most European species are intermixed 

with Asian species, although some of the European species did group together. These 

results supported the phylogenetic analysis based on two chloroplast regions (rpL32-

trnL and ndhF-rpL32) by McCarty (2012). 

 

North American species 

The two species from North America, T. caroliniana and T. americana, appear to form 

a monophyletic clade. This US clade is congruent with most of the phylogenetic trees 

(chloroplast DNA, Grx and atpB) except for TcWRKY-13. The placement of T. 

caroliniana and T. americana in the same clade suggested that intercontinental 

disjunction has evolved in the genus and separated the two US species from European 

and Asian species. The close relationship between the two species supports the view 

that T. caroliniana and T. americana are closely related and can hybridise (Pigott, 2012). 

Within the clade, the relationships of the species based on chloroplast sequences 

indicated that specimens collected from different regions of the American continent had 

genetic differences, particularly T. caroliniana subspecies occidentalis, which occupied 

the terminal position of the clade. This subspecies was collected from Mexico and used 

to be treated as a separate species, T. mexicana (Pigott, 2012). T. caroliniana subspecies 

floridana (Pg18) has the sister position to T. caroliniana subspecies occidentalis and 

was also collected from Mexico. The rest of the taxa in this clade were collected from 

the US. These results suggest a biogeographic relationship of northern and central 

American taxa.  
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Europe and western Asian species 

The phylogeny of European and western Asian species based on Grx sequences grouped 

them into two main clades. The first clade comprises only European and western Asian 

species (T. platyphyllos, T. dasystyla, T. tomentosa and some hybrids). T. cordata, 

which is the most common species in Europe, is in another clade with some eastern 

Asian species. The separation of T. cordata and T. platyphyllos into different clades was 

also observed in the analysis of other nuclear regions. This suggests that although these 

two species have a similar geographic distribution and can hybridise naturally (T. x 

europaea), they seem not to be sister species. The result is in agreement with the study 

of the relationships of twelve Tilia taxa based on the sequences of the nitrate reductase 

(NIA) gene, which revealed that T. platyphyllos is not closely related to T. cordata (Li et 

al, 2002). The clearly separated clades of T. cordata and T. platyphyllos also support the 

difference in morphology (Chapter 6). 

The main clade of European and western Asian species based on Grx comprises T. 

platyphyllos, T. dasystyla, T. tomentosa and some hybrids (T. x europaea and T. x 

euchlora) suggesting a biogeographic relationship among these European species. The 

close relationship of T. platyphyllos and T. dasystyla supports the similarity in 

morphological characters of the species. These two species differ only in a few 

morphological characters, such as the marginal teeth of the leaves, the distribution and 

type of hairs on the leaves and the size and thickness of the fruit wall (Pigott, 2012). 

Loria (1967) proposed that T. dasystyla should be treated as a subspecies of T. 

platyphyllos. In addition, the placement of T. dasystyla subspecies caucasica in the 

same clade as T. x europaea confirms the evidence based on morphology that T. 

dasystyla subspecies caucasica is very similar to some variants of T. x europaea. Pigott 

(2012) suggested that the tetraploid of T. dasystyla (2n=164) possibly originated from 

this hybrid (2n=82). Moreover, T. platyphyllos can hybridise with T. tomentosa and 

form a hybrid (T. x haynaldiana). T. tomentosa can hybridise with T. x euchlora and 

their hybrid was named T. x orbicularis (Pigott, 2012). The extensive hybridisation 

among these species was supported by the close relationships observed in the 

phylogenetic tree. 

T. tomentosa, one of the four European species, clustered together with other European 

species based on Grx sequence analysis. Some individuals in this species were placed 

outside the European clade. Considering the location of the collection, T. tomentosa 
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Pg13 and some clones of T. tomentosa Pg40, which clustered outside the European 

clade, were collected from western Asia (Montenegro and Bulgaria, respectively). The 

other T. tomentosa were collected from the UK. This indicated that T. tomentosa from 

different geographical regions may have a different evolutionary history. However, all 

individuals within this species still clustered in the same group based on TcWRKY-13. 

This may reflect the little genome difference among these individuals for this gene. 

The polyphyletic origin of the hybrid T. x europaea was observed. The hybrid was 

placed into two clades of T. cordata and T. platyphyllos. This finding confirmed that 

hybridization occurred between these two species. The analysis of the sequences of the 

hybrid clones revealed that hybrids contained two genomes from the parental species. 

This is agreement with the intermediate morphology between T. cordata and T. 

platyphyllos observed in T. x europaea (Pigott, 2012). Moreover, the placement of T. x  

euchlora close to T. dasystyla and T. cordata also supports the evidence of hybridisation 

between these parental species (T. dasystyla and T. cordata) (Pigott, 2012).  

  

Eastern Asian species 

The phylogenetic relationships among eastern Asian species are not well resolved. 

Some intermixing between eastern Asian and European species were observed. In 

general, T. cordata, which is the most widely spread species across Europe, was 

clustered with three eastern Asian species, T. amurensis, T. japonica and T. chinensis, in 

the well resolved phylogenetic trees, particularly in TcWRKY-13. This suggests 

relatively close evolutionary relationships among these species. This finding is 

consistent with historical evidence that both T. amurensis and T. japonica have been 

treated as varieties of T. cordata based on their morphology. These three species are 

morphologically very similar and they are all variable. This causes a difficulty in 

species identification, particularly when no flowers are present (Pigott, 2012). Some 

morphological characters have been used to differentiate these species. For example, the 

consistent present of five staminodes distinguished T. japonica from T. cordata and T. 

amurensis. Inflorescence is another character that is used for separation of T. japonica 

from T. cordata. The number of branches and of flowers in T. japonica is much larger 

than those of T. cordata. The inflorescence of T. cordata is compact and erect compared 

to that of T. amurensis, which is usually widely branched and hangs down (Pigott, 

2012).  
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Surprisingly, T. chinensis also grouped in this clade. There is no evidence in terms of 

morphological affinities or biogeographic location to support the placement of this 

species closely related to those three species (T. cordata, T. japonica and T. amurensis). 

Prof. Pigott, an expert in Tilia identification, stated (personal communication) that a T. 

cordata tree at the Royal Botanic Garden, Kew, was treated as T. chinenesis and the 

same tree had been propagated and placed in other arboreta. In this study, the specimens 

of T. chinensis were collected from living species in Peasmarsh Place Arboretum, Rye, 

which could be propagated from the T. cordata tree in Kew. Therefore, it occupied the 

same clade as T. cordata in the phylogenetic trees. To clarify relationships of T. 

chinensis, a new sample is needed. Trees of T. chinensis in Peasmarsh Place Arboretum 

need to be identified by an expert and may need to be renamed. 

In the phylogeny based on Grx sequence data, the three eastern Asian species, T. 

miqueliana, T. concinna and T. oliveri, group in a sister relationship with T. chingiana 

and the US species. The close relationship among these three Asian species is congruent 

with the similarity in morphology (Pigott, 2012). The morphology of T. concinna 

resembles that of T. miqueliana in the form of leaves including leaf-shape and the 

marginal teeth. They differ only in the type of hairs at the underside of the leaves. Also, 

the morphology of stems, petiole and peduncles of T. concinna is similar to those of T. 

oliveri. In addition, it was suggested that T. concinna could be the product of 

hybridisation between the two diploid species, T. miqueliana and T. oliveri (Pigott, 

2012), which may have formed this allotetraploid species. Therefore, the taxonomic 

position among these species supported the close affinity between them. The sister 

relationship between T. chingiana and the cluster containing T. oliveri supports the 

evidence of hybridisation between these species (Pigott, 2012). The close relationship of 

these four eastern Asian species with the US species suggests some evolutionary 

relationships, although the bootstrap value is low (58%). 

Among Tilia species, T. endochrysea was placed separately from other member species 

in all phylogenetic trees. This is in agreement with the study of Tilia species based on 

the sequencing of the intron of the nitrate reductase gene (NIA) that separated T. 

endochrysea at the first division (Li et al, 2002). In addition, the result also supports the 

evidence from the fossil record, which suggest this species to be primitive. The 

morphology of bract and fruits based on fossil records of T. endochrysea is very similar 

to those of the living species in western USA and in central Europe (Pigott, 2006).  
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2.5.3 Data incongruence 

It has been suggested that a disagreement of some species in phylogenetic placement 

could be the result of incomplete lineage sorting or hybridisation among taxa (Mort et al, 

2007; Pigott, 2012; Small et al, 2004). Natural hybridisation between two Tilia species 

in mixed populations has been widely reported (Pigott, 2012) and seems to be a fairly 

common phenomenon in this genus. The presence of trees that have an intermediate 

morphology between two Tilia species has been investigated in many mixed 

populations not only between the two widely distributed species, T. cordata and T. 

platyphyllos, but also between numerous species in eastern Asia, for example, the 

hybrids between T. chinensis and T. paucicostata, between T. callidonta and T. nobilis, 

and between T. chingiana and T. oliveri. Also introgression was observed between the 

hybrids of T. japonica and T. maximowicziana (Pigott, 2012).  

In this study, conflicting placements between nuclear regions were observed in some 

species, such as T. maximowicziana with T. mandshruica based on TcWRKY-13. The 

placement of these species in the same group supports the similar morphology of these 

species. In addition, Pigott (2012) suggested that T. maximowicziana is possibly an 

autopolyploid of T. mandshurica. However, considering the analysis of Grx sequences, 

one clone of T. maximowicziana was placed with T. tomentosa and the other was placed 

in the clade of T. cordata. The conflict among phylogenetic trees in these species could 

be the results of the extensive hybridisation among species.  

 

2.6 Conclusion 

Phylogenetic analysis of 22 species in the genus Tilia revealed a fairly low resolution 

because of the lack of sequence divergence, particularly in chloroplast DNA. Of the 

three nuclear regions, Grx had the highest number of variable characters and provided 

more resolution of the phylogenetic reconstruction among Tilia species. The low 

resolution of phylogenetic trees could be the result of long generation time and low 

recruitment of Tilia species. Although some species relationships are not well resolved, 

several relationships between species were suggested. Tilia species in the US, T. 

americana and T. caroliniana, formed a monophyletic clade, while most European 

species are intermixed with Asian species. Including T. paucicostata in the analysis 
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would increase our understanding of species relationships of all species in the genus 

Tilia. The two main species in Europe, T. cordata and T. platyphyllos, seem to be 

evolutionarily distant. Some incongruence between phylogenetic trees suggested 

incomplete lineage sorting and supported extensive hybridisation among Tilia species. 
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Chapter 3. Isolation and characterization of microsatellite loci in Tilia 

platyphyllos (Malvaceae) and cross-amplification in related species 

 

3.1 Abstract 

Little molecular research has been carried out on the genus Tilia. There are currently no 

nuclear markers available for population genetics in this genus. In this study, 15 

microsatellite markers were developed from T. platyphyllos by using a microsatellite 

enrichment protocol. Most loci show a high level of polymorphism in two T. 

platyphyllos populations from France. Cross-amplification results indicated that 12 out 

of 15 loci amplified polymorphic loci in 20 species and two hybrids in the genus. These 

microsatellite markers will be useful tools for the study of genetic diversity and 

population structure and increase our understanding of their phylogeography and of the 

hybridization between Tilia species. 

This work has been published as the following: Phuekvilai P, Wolff K (2013). 

Characterization of microsatellite loci in Tilia platyphyllos (Malvaceae) and cross-

amplification in related species. Applications in Plant Sciences 1(4): 1200386. 

 

3.2 Introduction 

Microsatellites or Simple Sequence Repeats (SSR) or Short Tandem Repeats (STR) are 

sets of non-coding repetitive DNA sequences found abundantly in the genome of most 

taxa. Microsatellites are composed of motifs of 1- 6 nucleotide tandem repeats (Selkoe 

and Toonen, 2006; Tautz and Renz, 1984). The length of microsatellites typically varies 

between 5-40 repeats (Selkoe and Toonen, 2006). The variation of microsatellite repeats 

is mainly due to slippage and proofreading error during DNA replication. The slippage 

in replication occurs more frequently than point mutations, thus microsatellites tend to 

be highly variable. Generally, microsatellites with longer repeats are more polymorphic 

than those containing the shorter repeats (Ellegren, 2004). The mutation rate of 

microsatellites varies among different species, ranging from 10
-6 

in Drosophila (Schug 

et al, 1998) to 10
-3 

in humans (Brinkmann et al, 1998) with an average of 5 x 10
-4

 per 

locus per generation (Schlotterer, 2000). The mutation rates of microsatellite also differ 

drastically among repeat types. The estimated mutation rate in Arabidopsis thaliana 
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(Brassicaceae) was 2.03 x 10
-3

 per allele per generation for AT repeats, 3.31 x 10
-5

 for 

CT repeats, and 4.96 x 10
-5

 for CA repeats (Marriage et al, 2009). Unlike microsatellite 

regions, the DNA sequences surrounding microsatellites (flanking regions) are 

generally conserved. Thus, these regions can be used for designing specific primers to 

amplify polymorphic microsatellites, which can generate fragments through the 

polymerase chain reaction (PCR).  

 

3.2.1 DNA markers: microsatellites 

Microsatellite markers are one of the most popular markers used for genetic studies 

since their introduction in the late eighties. The first use of microsatellite markers in 

natural populations was reported more than 20 years ago (Ellegren, 1991; Schlotterer et 

al, 1991). Many advantages of microsatellites markers make them attractive and they 

remain popular. One of the advantages is their high reproducibility. As microsatellite 

analysis is based on PCR, only small amount of tissue sample are needed. In addition, 

due to the short length of the microsatellite PCR product, DNA samples that are partly 

degraded can still be analysed. Also, microsatellite analysis does not require very pure 

DNA. This allows microsatellite analysis after a simple DNA extraction and use for the 

analysis of ancient DNA (Ishida et al, 2012). Furthermore, the high mutation rate of 

microsatellites makes them more informative among closely related species compared 

to other markers. Morgante et al (1994) revealed that the genetic variation observed in 

61 soybean accessions (both wild soybean and elite germplasm) using microsatellites 

was almost two times higher than the genetic variation observed by AFLP. The co-

dominant inheritance of microsatellites is an advantage over other dominant markers. 

Microsatellites have been used increasingly since their introduction for various 

applications, such as in population genetics, molecular ecology, the construction of 

genetic maps, population structure, DNA fingerprinting, hybrid detection and parentage 

analysis (Ellegren, 2004; Guichoux et al, 2011; Jones et al, 2010).  

 

3.2.2 Development of microsatellite markers 

The standard method for microsatellite isolation requires the construction of a genomic 

library and sequencing (Squirrell et al, 2003). There are various protocols to isolate 

microsatellites from the genome (Weising et al, 2005). In the traditional method, 
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microsatellites were isolated from genomic libraries by hybridisation of colonies with 

microsatellite probes (Chase et al, 1996). However, this method is inappropriate for the 

species with large genomes as the detection of clones containing microsatellite repeats 

is relatively low (Park et al, 2009). The microsatellite enrichment method was 

introduced to facilitate the isolation. This protocol incorporates one step of 

microsatellite hybridisation prior to constructing the library. This can increase the 

number of clones containing microsatellites up to 80% (Kandpal et al, 1994). The recent 

development of next generation sequencing (NGS) technologies can facilitate the 

isolation of microsatellite markers (Kang et al, 2012; McEwen et al, 2011; Setsuko et al, 

2012).  

 

3.2.3 Transferability of microsatellites 

Microsatellite primers developed in one species can sometimes be used in closely 

related species of the same genus or family, which is known as transferability or cross-

species amplification. Microsatellites are transferable if they have conserved DNA 

sequences in their flanking regions across taxa. This is an important factor as it can save 

time and cost for developing a new set of microsatellite markers (Barbara et al, 2007). 

The cross-species transferability of microsatellites has been studied in various 

organisms. The success of amplification across species decreases if the divergence 

between species increases (Primmer and Merila, 2002). In plants, the success rate of 

transferability of polymorphic markers between species within a genus is approximately 

60% in eudicots and close to 40% in monocots. The transfer rate between genera 

reduces dramatically to 10% in eudicots  (Barbara et al, 2007). Tang et al (2010) 

showed a high transferability rate (66.7%) of Phyllostachys pubescens microsatellites 

derived from GenBank database in six related Phyllostachys species. Microsatellite 

markers developed from chokecherry (Prunus virginiana L.) can transfer across Prunus 

species and eleven other rosaceous species (63.2% and 58.7%, respectively). An 

average of 42.7% of amplifiable primers can amplify DNA from other rosaceous 

species (Wang et al, 2012).  
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3.2.4 Background of Tilia 

Tilia L. (lime or basswood) is a genus of large trees with approximately 20-25 species 

in the family Malvaceae of the order Malvales (Bremer et al, 2003). These species are 

distributed in the temperate climate of the Northern Hemisphere, throughout Europe, 

some parts of Asia and North America. Tilia cordata (small leaved lime) and T. 

platyphyllos (large leaved lime) are the two species that are widely distributed in Europe. 

They can hybridize, which results in the common lime, T. x europaea (Pigott, 1969). 

Species relationships within the genus are unknown and complicated by frequent 

hybridization. Although there are some morphological differences between T. cordata 

and T. platyphyllos, it is difficult to identify species in the absence of flowers and from 

characteristics of leaves at ground level; particularly hybrids can vary in morphology 

(Pigott, 1991).  

There are no nuclear markers suitable for population genetics currently available within 

this genus. Therefore, microsatellite markers are needed to increase our understanding 

of population genetics studies in this genus.  

The aims of this study are to develop a set of microsatellite markers of the genus. These 

markers will be tested for polymorphism and their transferability to other species in the 

genus for further population genetic studies. 

 

3.3 Materials and methods 

3.3.1 Plant materials 

Polymorphism was studied in two populations of T. platyphyllos in France, one from 

Issole (Alpes de Haute Provence) (44° 2'N 6° 49'E) (N = 20) and the other from Gorges 

de la Carança (Pyrénées Orientales) (42° 51'N 2° 22'E) (N = 20). For testing of 

microsatellite primer transferability, leaves were collected from 20 species and two 

hybrids of this genus (51 individuals) from a living collection in Cartmel, Cumbria UK 

as described in Table 2.2 (Chapter 2). No voucher specimens have been deposited 

because only leaves from ground level were available. 

 

http://www.panoramio.com/map/#lt=50.805737&ln=5.900087&z=4&k=2
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3.3.2 DNA extraction 

Genomic DNA was extracted from a fresh leaf bud of a mature T. platyphyllos tree at 

Chanstone Wood (52° 0’ 52.36’’N, 2° 56’ 37.98’’W) for constructing the library and 

genomic DNA of other samples was extracted from dried leaves using a CTAB 

(cetyltrimethyl ammonium bromide) procedure (Morgan-Richards and Wolff, 1999) as 

described in Chapter 2. The extracted DNA was dissolved in 100 µl of TE buffer and 

stored at -20 
o
C until use. 

 

3.3.3 Development of microsatellites and genotyping 

A microsatellite enrichment library was constructed by Dr. Kirsten Wolff. The protocol 

was based on Edwards et al (1996) and Squirrell and Wolff (2001). In short, 100 ng of 

purified DNA was digested with MboI (NEB, Beverly, Massachusetts, USA) and 

ligated to SauLA and SauLB linkers (Squirrell and Wolff, 2001). The ligated DNA was 

PCR amplified and the product was hybridized at 47 °C to nylon membranes with dot 

blots of (GA)15 and (CA)15 oligos. The eluted enriched DNA was PCR amplified and 

enriched for a second time, following the same method. The doubly enriched DNA was 

digested with MboI and ligated in pUC 19 vector (Qiagen, Hilden, Germany). The 

plasmids were transformed into competent E. coli cells (Bioline, London, UK). 

Recombinant colonies were selected by blue/white screening and M13 PCR 

amplification was used to estimate the size of the inserts. Inserts with a size between 

300 and 700 bp were sequenced using BigDye terminator V3.1 (Applied Biosystems, 

Foster City, California, USA). 

Clones from the enriched library were sequenced on an ABI PRISM 3130 Genetic 

Analyser (Applied Biosystems), and inserts with 9-20 dinucleotide repeats were chosen 

for primer design. Primers were designed using Primer3 software version 0.4.0 using 

default settings but selecting primers longer than 21 nucleotides (Rozen and Skaletsky, 

2000). 

The PCR amplification was performed in 10 µl multiplex reactions containing 5 ng of 

DNA, 1x reaction buffer, 2mM MgCl2, 0.2 mM of each dNTP, 0.1-0.2 mM of each 

primer and 0.5 U of Taq DNA polymerase (Bioline). Forward primers were labeled with 

FAM, HEX (Integrated DNA technologies, Coralville, Iowa, USA) or NED (Applied 

Biosystems) (see Table 3.1 for multiplex sets, specific concentration of primers and 
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fluorescent label). The PCR reaction for all multiplex sets was as follows: an initial pre-

denaturation step at 95 °C for 5 min, followed by 15 cycles of 95 °C for 15s, 54 °C for 

15s and 72 °C for 15s and 20 cycles of 89 °C for 20s, 52 °C for 20s, 72 °C for 20s, and 

a final extension step of 72 °C for 30 min. Complete PCR reactions were diluted 1:10 

with distilled water and 1 µl of this dilution was mixed with 10 µl of Hi-Di 

Formamide
TM

 (Applied Biosystems) and 0.1 µl of ROX-500 size standard before 

analysis on an ABI 3130xl Genetic Analyzer (Applied Biosystems). The data were 

analyzed by GeneMapper
®
 Software (Applied Biosystems) and GenAlEx6.5 (Peakall 

and Smouse, 2012).  The presence of null alleles was tested using Micro-Checker (Van 

Oosterhout et al, 2004). 

Table 3.1 Characterization of 15 microsatellite markers developed in the genus Tilia.      

a
 Size of the original fragment, 

b
 Fluorescent label on the forward primer. 

Locus Primer sequence (5'-3') Repeat motif 
Size 

(bp)a 

Primer 

conc. 

(mM) 

Fluorescent 

dyeb 

multiplex 

sets 

GenBank 

Accession No. 

Tc4 F: ATTTTAGAATGCCAACCTGCTAAG T6(GT)12 224 0.2 HEX B JQ289157 

 
R: TATTGAAGTCCATTTCCAATTGTC 

      
Tc5 F: TTTTCATACATTTAGAGACTTTTAGCA (AG)12 150 0.2 FAM D JQ289158 

 
R: TGCATGATTTGTATGTTTAGGG 

      
Tc6 F: CCATATCTTCTGCCAGTTTTCC (AG)12 143 0.2 HEX A JQ289159 

 
R: GGACTAATTTCTTCCTTTTATTAGGC 

      
Tc7 F: TTTACTTTTGCCAGTTGTGAGG (GA)13 234 0.1 FAM D JQ289160 

 
R: CACCTAGAATGCCTCCTATTCG 

      
Tc8 F: CGAAGAAACTGTCAAAACAACG (GA)13 160 0.1 HEX B JQ289161 

 
R: AGCTGGGTTTTAGAGGATAGGG 

      
Tc11 F: AGCTATGAAAGAACTATCAAGAGAAAG (AG)13 146 0.1 NED C JQ289162 

 
R: CCCCAAGACATTGCAGTAGAAC 

      
Tc31 F: TTTGCAAAGACTACTCCAAGAATC (GA)12 205 0.2 FAM B JQ289164 

 
R: AAATCGATGGTCAAGAACTAAATC 

      
Tc915 F: ACATCGATTGTATTTCCCTTTAAC (CT)16 165 0.2 HEX C JQ289165 

 
R: GTTGTATTTTGCCCTTAACATTG 

      
Tc918 F: AACGGCTAATTACTCCTAGTTTCG (AC)9(TC)2 240 0.2 HEX A JQ289166 

 
R: TGTTCAGCTCACTACTACCTTTCAC 

      
Tc920 F: AAATGTCTTCAGAGTGACTAGATGG (GA)2(GT)15(AG)4 232 0.1 FAM A JQ289167 

 
R: TGCCTCATTATTCTCCTAATTCTC 

      
Tc927 F: AGTCCTCCTGTCAAATGCTG (AG)10 157 0.1 FAM C JQ289168 

 
R: ATCACACTCGTTTATGACATCTTG 

      
Tc937 F: AGCCAACCAACTTTTACAATACAG (AG)13 162 0.1 NED A JQ289169 

 
R: AGATAAAAGCACATAAATCGATGG 

      
Tc943 F: ATTTCATCTTTCTCTAAAGCCTTG (CA)10 150 0.2 FAM B JQ289170 

 
R: GGGAAAGCCTGTGTTAGTTTC 

      
Tc951 F: TGTTATGACCTCACTTATAACCAAGT (CT)12 160 0.2 NED D JQ289171 

 
R: GGGTGAGCTGACAATATAGAAGAG 

      
Tc963 F: CTAACCCCATTCTCTTTAATTCTG (CT)11 238 0.2 HEX C JQ289172 

  R: GCTTTCATTTCAGTTTTCCTCTAC             

 

3.4 Results 

A total of 104 clones from the enriched library were sequenced and 96 clones contained 

microsatellite repeats with a minimum of five repeats. In total 31 primer pairs were 
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designed. These primers were tested on two populations of T. platyphyllos from France. 

Fifteen out of 31 primer pairs provided good patterns with the expected product size and 

were used for further characterisation. The allele size ranges of each locus in four 

multiplex sets are shown in Figure 3.1.  The other 16 primer pairs failed to amplify 

targets, amplified non-target sequences, or had nonspecific banding patterns in 

preliminary tests and were discarded. 

All 15 loci were highly polymorphic in the samples analysed. One locus (Tc943) was 

monomorphic within the Issole population, but was polymorphic in the Gorges de la 

Carança population. In these two populations, the number of alleles of the 15 loci 

ranged from 1 to 15, with a mean of 8.96. The observed and expected heterozygosities 

varied from 0.25 to 1.00 (average = 0.71) and 0.18 to 0.90 (average = 0.70), 

respectively. Significant departures from Hardy-Weinberg equilibrium were detected at 

Tc918 and Tc963 in the Issole population (P<0.05). For the Gorges de la Carança 

population, Tc4 and Tc920 deviated from HWE (P<0.01), which may indicate the 

presence of null alleles for those loci (Table 3.2). However, no homozygous null 

genotypes were detected. In addition, Micro-Checker also did not indicate any null 

alleles in these populations. 

These 15 loci were also tested for their amplification in 20 species and two hybrids in 

the genus Tilia. Most of the loci (12 out of 15) were transferable and polymorphic in 

most of the related species (Table 3.3). Tc915 failed to amplify in two species (T. 

americana and T. caroliniana) and Tc920 failed to amplify in three species (T. x 

euchlora, T. dasystyla and T. endochrysea). Tc918 was successfully amplified in only 

four species (T.x euchlora, T.x europaea, T. dasystyla and T. platyphyllos).  
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Table 3.2 Results of 15 microsatelite markers in two populations from France (Issole 

and Gorges de la Carança). A, number of alleles; He, expected heterozygosity; Ho, 

observed heterozygosity; HWE, Hardy–Weinberg equilibrium; N, sample size; 
 
ns, 

nonsignificant departure from HWE; * P < 0.05; ** P < 0.01. 

Locus 
France: Issole  (N = 20)   France: Gorges de la Carança (N = 20) 

A Ho He HWE 
 

A Ho He HWE
 

Tc4 8 0.85 0.82 ns 
 

11 0.70 0.85 ** 

Tc5 15 1.00 0.86 ns 
 

10 0.90 0.82 ns 

Tc6 8 0.70 0.82 ns 
 

7 0.75 0.76 ns 

Tc7 9 0.80 0.76 ns 
 

7 0.85 0.79 ns 

Tc8 6 0.90 0.77 ns 
 

8 0.80 0.80 ns 

Tc11 9 0.95 0.81 ns 
 

8 0.65 0.73 ns 

Tc31 9 0.80 0.80 ns 
 

9 0.90 0.80 ns 

Tc915 12 0.90 0.88 ns 
 

12 0.75 0.87 ns 

Tc918 2 0.10 0.18 * 
 

2 0.25 0.22 ns 

Tc920 9 0.65 0.59 ns 
 

5 0.30 0.54 ** 

Tc927 14 0.85 0.90 ns 
 

11 0.75 0.82 ns 

Tc937 10 0.85 0.81 ns 
 

9 0.95 0.80 ns 

Tc943 1 0.00 0.00 Monomorphic 
 

2 0.30 0.26 ns 

Tc951 8 0.60 0.64 ns 
 

6 0.75 0.71 ns 

Tc963 14 0.85 0.87 *   15 0.90 0.88 ns 
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Table 3.3 Amplification of 15 microsatellite loci across 20 species and two hybrids in the genus Tilia. –, failed amplification; +, successful 

amplification with one allele; ++, successful amplification with more than one allele; 
a 
Numbers in parentheses show number of samples tested. 

Species
a
 Tc4  Tc5  Tc6  Tc7  Tc8  Tc11  Tc31  Tc915  Tc918  Tc920  Tc927  Tc937 Tc943 Tc951  Tc963 

T. x euchlora (1) ++ ++ + ++ ++ ++ ++ ++ + - ++ ++ ++ ++ ++ 

T. x europaea (4) ++ ++ ++ ++ ++ ++ + ++ + ++ ++ ++ ++ ++ ++ 

T. americana L. (2) ++ ++ ++ ++ + ++ ++ - - ++ ++ ++ ++ ++ ++ 

T. amurensis Rupr. (4) ++ ++ ++ ++ + ++ ++ ++ - ++ ++ ++ ++ ++ ++ 

T. callidonta Hung T. Chang (1) + + ++ ++ + ++ ++ ++ - ++ ++ ++ ++ + ++ 

T. caroliniana Mill. (5) ++ ++ ++ ++ ++ ++ ++ - - + ++ ++ ++ ++ ++ 

T. chingiana Hu & Cheng (1) ++ ++ ++ ++ + + ++ ++ - ++ + + ++ ++ ++ 

T. concinna Pigott (1) ++ ++ + ++ + ++ ++ ++ - ++ ++ ++ ++ ++ ++ 

T. cordata Mill. (6) ++ ++ ++ ++ + ++ ++ ++ - ++ + ++ ++ ++ ++ 

T. dasystyla Steven (2) ++ ++ ++ ++ ++ ++ ++ ++ ++ - ++ ++ ++ ++ ++ 

T. endochrysea Hand.-Mazz. (1) ++ ++ ++ ++ + ++ ++ ++ - - + ++ + + + 

T. henryana Szyszył. (1) ++ ++ ++ ++ + ++ ++ ++ - ++ ++ ++ ++ ++ ++ 

T. japonica (Miq.) Simonk. (2) ++ ++ ++ ++ + ++ ++ ++ - ++ ++ ++ ++ ++ ++ 

T. kiusiana Makino & Shiras. (1) ++ ++ ++ ++ + + ++ ++ - + ++ ++ ++ + + 

T. mandshurica Rupr. & 
+ ++ ++ ++ + ++ ++ + - ++ ++ ++ + + ++ 

Maxim. (1) 

T. maximowicziana Shiras. (2) ++ ++ ++ ++ + ++ ++ ++ - ++ ++ ++ + ++ ++ 

T. mongolica Maxim. (1) ++ ++ ++ ++ ++ ++ ++ ++ - ++ ++ ++ ++ ++ ++ 

T. nobilis Rehder & 
+ + ++ ++ + + ++ ++ - + ++ ++ ++ ++ ++ 

E. H. Wilson (1) 

T. oliveri Szyszył. (1) ++ ++ ++ ++ + + + ++ - + ++ + ++ + ++ 

T. platyphyllos Scop. (7) ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 

T. tomentosa Moench (4) ++ ++ ++ ++ + ++ ++ + - ++ ++ ++ ++ + ++ 

T. tuan zyszył. (2) ++ ++ ++ ++ + ++ ++ ++ - ++ ++ ++ ++ ++ ++ 



Chapter 3. Isolation of microsatellite loci 

 

52 
 

 

 

Figure 3.1 The allele size range of each microsatellite primer in four multiplex reactions 

as described in Table 3.1. (a) = multiplex set A, (b) = multiplex set B, (c) = multiplex 

set C and (d) = multiplex set D. Colour are assigned to microsatellite primers labelled 

with FAM (       ), NED (       ) and HEX (       ) fluorescent dyes.   

 

3.5 Discussion 

Of the 31 microsatellite primers designed, 15 pairs showed polymorphism. The other 16 

primer pairs failed to amplify targets, amplified non-target sequences, or had 

nonspecific band patterns. These are commonly reported problems of designing 

microsatellite primers. The absence of PCR products may be the result of null alleles. A 

mutation in the flanking regions (primer binding sites) can lead to poor or failure of 

amplification (Jarne and Lagoda, 1996).  

The success of amplification of multiple microsatellites in a single PCR reaction 

(multiplexing) can significantly reduce cost and time for genetic analysis. In general, for 
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using multiplex PCR, microsatellite primers are combined in such a way that  the 

overlapping allele size ranges are labelled with different fluorescent dyes, while those 

with non-overlapping size ranges can be labelled with the same fluorescent dye 

(Guichoux et al, 2011). However, in this study, the microsatellite primers were labelled 

with fluorescent dyes before combining the multiplex sets.  

Most of the microsatellite loci developed from T. platyphyllos can amplify in many 

related species. Primer Tc918 was the only primer that amplifies in just four species. 

Because this primer amplifies in T. platyphyllos but not in T. cordata this locus may be 

useful for the identification of the two species and their hybrid. The successful 

amplification of these loci could facilitate genetic studies in other Tilia species as it can 

save time and cost for developing new primer sets. 

 

3.6 Conclusion 

These 15 highly polymorphic microsatellite markers will be useful tools for the study of 

population structure in T. platyphyllos and increase our understanding of their 

phylogeography and of the hybridization between Tilia species. Furthermore, the 

success of cross-amplification in related species will assist the future study of genetic 

diversity across the genus. 
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Chapter 4. Assessing genetic diversity and differentiation between Tilia 

cordata and T. platyphyllos across Europe using microsatellite markers  

 

4.1 Abstract 

In this study I determined the genetic diversity and differentiation of two Tilia species. 

Twenty-five populations of T. cordata and 15 populations of T. platyphyllos were 

collected from natural woods across Europe. Thirteen microsatellite markers developed 

from T. platyphyllos were used for the genetic analysis. These loci show a high level of 

polymorphism in both T. cordata and T. platyphyllos and can clearly discriminate these 

two species. The level of genetic diversity in T. platyphyllos is higher than in T. cordata 

for all diversity measures (Na, Ae, Ho and He). However, this could at least partly be the 

result of ascertainment bias because the markers were isolated from T. platyphyllos. 

Fixation indices were close to zero, indicating an outcrossing mating system. Averaged 

across all loci, the genetic differentiation between the two species was high and 

significant (Fst = 0.308, P<0.001), which supports the results from Principal Coordinates 

Analysis (PCO) and Structure analysis. The markers have different levels of 

differentiation between species and alleles were shared between the two species.  

 

4.2 Introduction 

Genetic variation is an important concept for population genetic study. Genetic diversity 

and genetic differentiation are two components that have been widely studied in various 

organisms. The term genetic diversity is commonly used to describe the amount of 

heritable variation within and between populations or species (Brown, 1983; Lowe et al, 

2004). It is of fundamental importance for populations or communities of the species for 

adaptation to changing or new environments (Crawford and Whitney, 2010; Dlugosch 

and Parker, 2008). 

The study of genetic variation is important in various fields: evolutionary biology, 

ecology and conservation biology. It can improve understanding of the process of plant 

evolution and adaptation to the environment. For example, the study of genetic 

differentiation between Quercus petraea and Q. robur indicated low genetic 

differentiation between these oak species. Although they shared most alleles, the 
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detection of a low rate of gene flow suggested that the shared alleles resulted from 

shared ancestral polymorphism (Muir and Schlotterer, 2005).  

 

The analysis of genetic variation also provides an understanding of environmental 

adaptation and natural selection. By comparing the level of differentiation between 

species or among populations within a species, it is possible to identify loci important 

for adaptive divergence or specific traits (Charlesworth et al, 1997; Storz, 2005). 

Molecular markers that are supposed to be selectively neutral could be linked to 

adaptive genes or genome regions under selection. In addition, the knowledge of genetic 

variation is essential for establishment of effective conservation programmes. This 

information can be used as a guideline for the exploitation of genetic resources (Rao and 

Hodgkin, 2002). 

 

4.2.1 Tools to detect genetic variation 

The assessment of population genetic diversity is usually performed at the molecular 

level. A wide range of molecular markers have been used, from allozymes, which is the 

first type of genetic marker introduced, to markers which directly measure the variation 

in the DNA sequences. The markers based on DNA sequence polymorphism, such as 

restriction fragment length polymorphism (RFLP), Random Amplified Polymorphic 

DNA (RAPD), Amplified Fragment Length Polymorphisms (AFLP) and Simple 

Sequence Repeats (SSR), are commonly used for genetic studies in plant science.  

Among the molecular markers, microsatellites or Simple Sequence Repeats (SSR) are 

potentially the most informative. The popularity of microsatellite markers is because 

they are widely present and randomly dispersed in the genome. Also, they have co-

dominant inheritance, their variation is easy to assess by PCR and they have high 

polymorphism due to high mutation rate (Tautz, 1989).  

 

4.2.2 Microsatellite ascertainment bias  

Microsatellite markers are useful for genetic analysis due to their cross-amplification in 

closely related species. Although microsatellite repeats have a high rate of mutation, 

their flanking regions are more stable. Therefore, the primers designed from one species 

often amplify in closely related species (Coote and Bruford, 1996; Davis et al, 2002).  
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During the isolation of microsatellite loci, the sequences that contain longer repeats are 

preferred over the shorter and interrupted ones. After specific primers have been 

designed, they will be optimized and tested with a set of samples. Only markers that 

show polymorphism will be selected. These processes lead to the average allele length 

being longer in the original species than that in the other closely related species. This 

phenomenon is known as ascertainment bias (Vowles and Amos, 2006). The first 

finding of ascertainment bias in microsatellites was used in the comparison of 

microsatellite length between human and chimpanzees, using markers developed from 

humans (Rubinsztein et al, 1995). The study revealed that microsatellite loci observed 

in humans were significantly longer than those in chimpanzees. The researchers pointed 

out that this could be the result of the different rates of microsatellite mutation in these 

closely related species. However, Ellegren et al (1995) argued that this difference in 

microsatellite length could be due to ascertainment bias. Therefore, cross-species 

comparisons of genetic diversity with markers developed from one species need careful 

consideration.  

 

4.2.3 The study of genetic diversity in Tilia 

T. cordata and T. platyphyllos are the two main Tilia species that are distributed in 

Europe (Pigott, 1991). They are diploid (2n = 82) (Pigott, 2012) and the evidence of 

mating system is unclear. Pigott (2012) suggested that T. cordata in natural population 

in the UK contains both self-compatible and self-incompatible individuals. Only a few 

molecular studies have been reported in these species. A genetic study of T. cordata and 

T. platyphyllos has been carried out using isozyme markers (Fromm and Hattemer, 2003; 

Maurer and Tabel, 1995). Chloroplast DNA variation using PCR-RFLP was studied in 

T. cordata populations in 2003 (Fineschi et al, 2003). RAPD analysis was used to study 

genetic diversity in T. rubra (Hosseinzadeh Colagar et al, 2013) and these markers were 

also used to clarify some systematic relationships within the genus (Liesebach and 

Sinko, 2008). In 2012, ITS regions were used to infer the phylogeny of Tilia species 

from Iran (Yousefzadeh et al, 2012). Our study is the first use of nuclear microsatellite 

markers to determine genetic variation in the two Tilia species across Europe. 

In this study, we aimed to assess the genetic diversity between T. cordata and T. 

platyphyllos from natural populations across Europe using 13 nuclear microsatellite 

markers. The genotypic data were also used to investigate genetic differentiation 
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between the two species and within species. In addition, the result is also used to 

confirm that these microsatellite markers can clearly assign individuals to species. 

 

4.3 Materials and methods 

4.3.1 Plant materials 

Leaves were collected from 25 populations of T. cordata (427 samples) and 15 

populations of T. platyphyllos (222 samples) in natural woods across Europe by Dr. 

Kirsten Wolff and collaborators. For most locations, the species were already described 

based on morphology (leaf characters and direction of inflorescence) (refer to Table 6.3, 

Chapter 6). The two species are mixed in some locations (DEBO, CZST, SKBL, FRCE, 

AUTH, AUDO and AUSO). In these cases, individuals were genetically analysed 

before species classification. Samples from Switzerland were collected from several 

populations in north west Switzerland and maintained in an orchard (CHLO and CHFR). 

The number of individuals sampled varied from one to 31 per population. Only one T. 

cordata tree was sampled from Spain as this species is very rare there. A leaf of each 

sample was dried and preserved at 4 °C until use. 
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Table 4.1 Countries, locations, population codes, coordinates (latitude and longitude) 

and sampling sizes of T. cordata and T. platyphyllos after hybrids and further generation 

samples were omitted. 

Species Country Location Label 
Latitude 

(N) 

Longitude 

(E ) 

No. of 

samples 

T. cordata Norway 
Sogn og Fjordane, 

Asane nature reserve 
NOSO 61.85753 6.19563 16 

 
Finland Niinisaari FINI 61.81667 29.38333 15 

  
Muukonsaari FIMU 61.16001 28.48196 14 

 
Denmark Åbybjerg  DEAB 57.10241 9.35310 30 

  
Bolderslev  DEBO 55.0168 9.38901 20 

 
Germany 

Colbitz Wasserwerk 

parking area 
GECO 52.33027 11.55722 20 

 
United Kingdom Highbury Wood UKHB 52.17621 -3.34183 16 

 
the Netherlands Margraten NEMA 50.80000 5.75000 25 

  
Gulpen NEGU 50.79595 5.89453 25 

 
Poland Lezajsk PLLE 50.26360 22.38580 10 

 
Czech Republic Velky Osek CZVO 50.10143 15.17778 21 

  
Šternberk, Vrapač CZST 49.72490 17.01900 14 

 
Slovakia 

Blatnica, Gaderská 

dolina 
SKBL 48.94860 18.96550 6 

 
France 

Foret Dom de 

Mouthiers 
FRMO 48.91388 4.91441 20 

  
Cessieres FRCE 49.55877 3.48875 8 

 
Ukraine Rosilna UARO 48.76970 24.39570 14 

 
Austria 

Thayatal Park near 

Heardegg 
AUTH 48.84747 15.88003 15 

  
Sommerein AUSO 48.59052 16.69553 23 

  
Dobra AUDO 47.98599 16.69553 21 

  
Stams AUST 47.27566 10.97716 22 

 
Switzerland Lobsigen Park CHLO 47.30774 8.26685 25 

 
Hungary Oltárc HUOL 47.00000 19.00077 20 

 
Italy Lasen, Dolomites ITLA 46.07000 11.92000 19 

  
Veltre, Dolomites ITVE 46.04000 11.95000 2 

  Spain Huesca SPHU 42.58778 0.18889 1 

T. platyphyllos Denmark Bolderslev  DEBO 55.01680 9.38901 10 

 
United Kingdom Kings’ Wood UKKI 53.39842 -1.18188 18 

 
Germany Lichtenstein GELC 51.30277 13.01875 31 

 
Czech Republic Šternberk, Vrapač CZST 49.72490 17.01900 2 

 
France Cessieres FRCE 49.55877 3.48875 13 

  
Gorges de la CaranÇa FRCC 43.37431 2.45211 20 

  
Issole FRIS 43.27211 0.11420 20 

 
Slovakia 

Blatnica, Gaderská 

dolina 
SKBL 48.94860 18.96550 7 

 
Austria 

Thayatal Park near 

Heardegg 
AUTH 48.84747 15.88003 2 

  
Sommerein AUSO 48.59052 15.39742 15 

  
Leopoldsberg AULE 48.27707 16.35467 25 

  
Dobra AUDO 47.98599 16.69553 14 

 
Switzerland Frieswil CHFR 47.07213 7.14241 24 

 
Spain Huesca SPHU 42.58778 0.18889 7 

  Greece Aggistro GRAG 41.35664 23.48132 10 
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4.3.2 DNA extraction and microsatellite genotyping 

Total genomic DNA was extracted from dried Tilia leaves using a CTAB 

(cetyltrimethyl ammonium bromide) procedure (Morgan-Richards and Wolff, 1999) as 

described in Chapter 2. The extracted DNA was dissolved in 100 µl of TE buffer and 

stored at -20 
o
C until use. All samples were genotyped using 13 out of 15 microsatellite 

loci (Chapter 3) (Phuekvilai and Wolff, 2013). Two primer pairs (Tc11 and Tc918) 

were not included in the analysis because null alleles were detected in these loci and 

they only amplify in T. platyphyllos. PCR reactions were performed as described in 

Chapter 3. GeneMapper
® 

Software (Applied Biosystems) was used to determine 

fragment sizes and alleles were manually scored and edited before population genetic 

analysis. The presence of null alleles was tested using Micro-Checker (Van Oosterhout 

et al, 2004). 

 

4.3.3 Data analysis 

After scoring alleles in all 649 samples, initial observations showed that there were nine 

hybrids and further generation plants (refer to Chapter 6). All individuals in this 

category (≥ 10% clustering by STRUCTURE with the minority class) were omitted 

from further population genetic analysis, leaving 422 T. cordata and 218 T. platyphyllos 

(Table 4.1). Genetic diversity was analyzed in terms of the number of alleles per locus, 

allele ranges, average number of alleles (Na), effective number of alleles (Ae), observed 

heterozygosity (Ho) and expected heterozygosity (He), fixation index (F), and deviation 

from Hardy-Weinberg by using the computer software GenAlEx version 6.5 (Peakall 

and Smouse, 2012). The significance of fixation index (F) was tested using FSTAT 

version 2.9.3.2 (Goudet, 2002). The significance of the difference between the number 

of alleles per locus of the two Tilia species was carried out using pairwise t-tests in 

Minitab version 16 (Minitab Inc.). GenAlEx was also used to estimate the genetic 

differentiation between species and between populations within each species in term of 

Fst and to construct a graph of allele frequency of the loci. The genetic differentiation 

was measured using Fst instead of Rst because Gaggiotti et al (1999) found that in a 

study using a small number of microsatellite loci (<20 loci) and small sample sizes 

(<10), Fst is more suitable and provides a more conservative approach than Rst. Also, in 

some cases microsatellites may gain or lose a large number of repeats (Ellegren, 2004) 

and therewith not strictly follow the stepwise mutation model as used in Rst estimation. 
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Genetic differentiation in term of D was also calculated using SMOGD (Crawford, 2010) 

to compare the results with Fst. The genetic distance matrix was constructed to carry out 

a Principal Coordinates Analysis (PCO) with GenAlEx. Analysis of molecular variance 

(AMOVA) with 1,000 permutations and linkage disequilibrium was carried out using 

Arlequin 3.5 (Excoffier and Lischer, 2010).  

The identification of clusters (species) and admixed individuals was also analyzed using 

Bayesian clustering software, STRUCTURE Version 2.3.3 (Pritchard et al, 2000). In 

this software, the number of clusters (K) is estimated and individuals will be assigned to 

one or more clusters. The number of clusters was set from one to four (total number of 

expected species plus two). The program was run with 20,000 burn-in period, followed 

by 20,000 iterations using the Markov Chain Monte Carlo (MCMC) method with the 

admixture model and correlated allele frequencies. Other parameters were set as default 

values. To estimate the optimal grouping (K), software STRUCTURE HARVESTER 

(Earl and vonHoldt, 2012) was used. This program detects the number of K groups that 

shows the best fit with the data and produces plots of ΔK and K values. The optimal 

grouping (K) was chosen as the highest ΔK value. 

Populations with number of samples less than five (ITVE and SPHU, T. cordata, and 

CZST and AUTH, T. platyphyllos) were not included in genetic diversity analysis in 

order to minimize the variance of gene diversity (Pons and Petit, 1995) but were 

included in genetic differentiation analysis. 

 

4.4 Results 

4.4.1 Genetic diversity estimates 

A total of 640 samples of T. cordata and T. platyphyllos were genotyped using 13 

microsatellite markers. Genetic diversity was compared between the two species. The 

results showed high levels of polymorphism. Marker Tc963 had the highest number of 

alleles (47 alleles) in both T. cordata and T. platyphyllos. The number of alleles in T. 

cordata ranged from two (Tc8) to 41 (Tc963), with an average of 5.47 (Table 4.2 and 

4.4). The number of alleles in T. platyphyllos is between ten (Tc943) and 30 (Tc963), 

with an average of 8.09 (Table 4.2 and 4.5). A total number of 317 alleles weas 

identified, with an average of 6.02 alleles per locus (Table 4.3). T. cordata had fewer 

alleles per locus than T. platyphyllos (t-value -2.35, P < 0.05). T. cordata only had more 
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alleles for Tc943 and Tc963 than T. platyphyllos. The largest allele size range was also 

detected for Tc963, from 171 to 311 bp (Table 4.2). Overall, T. cordata usually has 

shorter fragments (fewer repeats) and a smaller size range than T. platyphyllos. 

 

Table 4.2 Number of alleles and allele size ranges of 13 microsatellite loci in 422 T. 

cordata individuals and 218 T. platyphyllos individuals 

Locus 
No. of  alleles   Allele size ranges 

T. cordata T. platyphyllos Overall   T. cordata T. platyphyllos Overall 

Tc4 18 23 25 
 

211-240 203-251 203-251 

Tc5 24 25 30 
 

134-189 134-195 134-195 

Tc6 17 18 21 
 

122-154 122-171 122-171 

Tc7 10 21 23 
 

217-237 226-272 217-270 

Tc8 2 16 17 
 

139-141 141-174 139-174 

Tc31 11 16 19 
 

192-229 194-227 192-229 

Tc915 23 26 31 
 

133-189 143-191 133-191 

Tc920 15 20 22 
 

205-242 177-272 177-272 

Tc927 4 27 29 
 

142-153 144-197 142-197 

Tc937 10 15 16 
 

148-164 150-184 148-184 

Tc943 12 10 16 
 

134-158 129-154 129-158 

Tc951 9 18 21 
 

146-164 146-186 146-186 

Tc963 41 30 47   171-311 222-281 171-311 

 

The highest average number of alleles (Na), effective number of alleles (Ae) and 

heterozygosity were detected at locus Tc963 (Table 4.3). The average expected 

heterozygosity (He) per locus over all populations in both species ranged from 0.29 (Tc8) 

to 0.85 (Tc963) (Table 4.3), with an average of 0.59. The three lowest He were observed 

in Tc8, Tc927 and Tc943 (0.29, 0.40 and 0.45, respectively). The He at locus Tc8 was 

lowest because only two alleles were detected in T. cordata populations. This locus was 

fixed for that allele in 24 out of 25 T. cordata populations. This similar pattern, with 

high degree of fixation in populations of T. cordata, was also observed at Tc927. The 

fixation index (F) over all populations ranged from -0.13 (Tc5) to 0.09 (Tc4), with an 

average over all loci of -0.04. Tc4 significantly departed from Hardy-Weinberg 

equilibrium in eight out of 36 populations (P < 0.001), exhibiting a deficit of 

heterozygotes as indicated by positive values of fixation index in those populations 

(Appendix 5). 
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Table 4.3 Diversity measures and F value (fixation index) of 13 microsatellites as 

average over loci in 422 T. cordata individuals and 218 T. platyphyllos individuals. Na, 

Average number of alleles; Ae, Effective number of alleles; Ho, observed; He, expected; 

F, fixation index 

Locus Na Ae Ho He F 

Tc4 7.33 4.50 0.666 0.731 0.085 

Tc5 7.73 4.54 0.809 0.729 -0.125 

Tc6 7.00 4.31 0.786 0.743 -0.068 

Tc7 4.33 2.80 0.560 0.532 -0.046 

Tc8 3.40 2.37 0.308 0.289 -0.040 

Tc31 4.70 2.74 0.501 0.496 0.008 

Tc915 8.55 5.32 0.827 0.779 -0.069 

Tc920 6.50 3.94 0.783 0.716 -0.112 

Tc927 4.95 3.03 0.408 0.400 -0.024 

Tc937 5.05 2.91 0.593 0.538 -0.107 

Tc943 2.90 1.94 0.478 0.446 -0.086 

Tc951 3.75 2.11 0.463 0.472 0.018 

Tc963 12.10 7.70 0.816 0.847 0.021 

Average 6.02 3.71 0.615 0.594 -0.043 

 

T. platyphyllos showed a higher level of genetic diversity as average across populations 

than T. cordata. The effective number of alleles (Ae) was smaller in T. cordata (average 

of 3.30) than in T. platyphyllos (average of 4.88) (Table 4.4 and 4.5). Ae ranges between 

2.48 (FINI) and 3.85 (CHLO) among the populations of T. cordata, whereas T. 

platyphyllos had a wider range, from 3.15 (SPHU) to 6.05 (AULE). The average 

expected heterozygosity (He) over 13 loci in T. cordata varied between 0.43 and 0.61, 

with a mean of 0.54. FINI had the lowest He, while CZST had the highest He. The 

average He in T. platyphyllos ranged from 0.64 to 0.79, with a mean of 0.73 (Table 4.5). 

The population with the lowest He was SPHU (7 individuals), while the population with 

the highest He was AULE. A t-test showed significant higher Na, Ae, He in T. 

platyphyllos than in T. cordata (P < 0.001).  

The fixation index (F) of most populations in both species was close to zero with non-

significant deviation from zero, which means populations were under random mating 

and this indicates an outcrossing mating system. A significant positive value of F 

(P<0.001) was detected in CZST (0.22) among T. cordata populations and in GRAG 
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(0.12) among T. platyphyllos populations. This indicated a deficit of heterozygotes in 

these populations. 

Pairwise linkage disequilibrium of markers in each population was calculated. The 

results indicated that 328 out of 2,808 possible pairs (11.7%, P < 0.05) showed 

significant evident of linkage. Each population had different linked loci and the number 

of linked loci was low; therefore, each microsatellite locus was considered unlinked to 

others. 
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Table 4.4 Diversity measures for 13 microsatellite markers of 23 populations of T. 

cordata. N, number of samples analysed; Na, Average number of alleles; Ae, Effective 

number of alleles; Ho, observed heterozygosity (mean over loci); He, expected 

heterozygosity (mean over loci); F, fixation index (mean over loci). A significant 

positive or negative deviation of F from zero is indicated as *** P<0.001. 

Population  N Na Ae Ho He F 

NOSO 16 4.69 2.71 0.553 0.518 -0.078 

FINI 15 4.54 2.48 0.456 0.428 -0.049 

FIMU 14 4.85 2.78 0.533 0.517 0.022 

DEAB 30 6.38 3.45 0.548 0.540 -0.023 

DEBO 20 6.31 3.83 0.523 0.559 0.018 

GECO 20 5.31 3.10 0.569 0.552 -0.056 

UKHB 16 4.38 2.96 0.476 0.517 0.080 

NEMA 25 6.38 3.54 0.551 0.566 0.008 

NEGU 25 5.23 3.34 0.511 0.543 0.020 

PLLE 10 5.15 3.43 0.631 0.570 -0.115 

CZVO 21 5.62 3.13 0.480 0.504 0.020 

CZST 14 5.85 3.69 0.467 0.606 0.221*** 

SKBL 6 4.62 3.27 0.526 0.547 0.045 

FRMO 20 5.77 3.63 0.500 0.559 0.129 

FRCE 8 4.08 2.87 0.510 0.499 0.014 

UARO 14 5.46 3.67 0.595 0.603 -0.005 

AUTH 15 5.46 3.61 0.544 0.550 0.000 

AUSO 23 7.08 3.71 0.575 0.569 -0.013 

AUDO 21 6.62 3.51 0.524 0.564 0.045 

AUST 22 5.38 3.37 0.549 0.575 0.046 

CHLO 25 6.46 3.85 0.551 0.579 0.061 

HUOL 20 5.15 3.29 0.508 0.538 0.070 

ITLA 19 5.15 2.68 0.513 0.508 0.011 

Average 18.20 5.47 3.30 0.530 0.544 0.022 
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Table 4.5 Diversity measures for 13 microsatellite markers of 13 populations of T. 

platyphyllos. N, number of samples analysed; Na, Average number of alleles; Ae, 

Effective number of alleles; Ho, observed heterozygosity (mean over loci); He, expected 

heterozygosity (mean over loci); F, fixation index (mean over loci). A significant 

deviation of F from zero is indicated as *** P<0.001.  

Population  N Na Ae Ho He F 

DEBO 10 4.85 3.41 0.808 0.662 -0.219 

UKKI 18 6.92 4.29 0.696 0.733 0.055 

GELC 31 9.92 4.98 0.749 0.733 -0.020 

FRCE 13 7.54 4.69 0.746 0.716 -0.023 

FRCC 20 9.46 5.27 0.750 0.731 -0.027 

FRIS 20 8.62 4.94 0.738 0.745 0.008 

SKBL 7 7.31 5.48 0.791 0.717 -0.116 

AUSO 15 9.15 5.36 0.753 0.740 -0.028 

AULE 25 10.85 6.05 0.785 0.790 0.005 

AUDO 14 7.23 4.72 0.775 0.714 -0.088 

CHFR 24 10.62 5.55 0.772 0.755 -0.025 

SPHU 7 4.54 3.15 0.681 0.636 -0.071 

GRAG 10 8.23 5.52 0.638 0.751 0.123*** 

Average 16.43 8.09 4.88 0.745 0.725 -0.032 

 

4.4.2 Genetic differentiation  

The AMOVA revealed high genetic differentiation between the two species explaining 

25.21% of the total genetic variance. This variation was almost five times higher than 

the variation among populations within species (5.62%), while the remainder of the 

variation (69.17%) was within populations (Table 4.6). 

Table 4.6 AMOVA analysis using 13 microsatellite loci of all 36 Tilia populations 

Source of variation d.f. 
Sum of 

squares 

Variance 

components 

Percentage of 

variation 

Among species 1 874.24 1.49 25.21% 

Among populations within species 38 554.62 0.33 5.62% 

Within populations 1240 5070.98 4.10 69.17% 

Total 1279 6499.84 5.92 100% 

 

Fst and D indicate genetic differentiation between T. cordata and T. platyphyllos. Higher 

Fst values (P<0.001) were observed between the two species (average of 0.31) than 

within each species (average of 0.07 and 0.08 within T. cordata and T. platyphyllos, 
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respectively). D had similar results (Table 4.7 and 4.8). The highest average D was 

observed between the two species at 0.44, while those within T. cordata and T. 

platyphyllos were 0.11 and 0.32, respectively.  

The three highest levels of interspecific differentiation were observed for Tc8, Tc927 

and Tc943 with Fst values of 0.68, 0.54 and 0.53, respectively (Table 4.7). This can be 

caused by specific alleles being present only in one species with a high frequency. For 

example, allele 141 for Tc8, allele 142 for Tc927 and allele 143 for Tc943 were found 

only in T. cordata, while other alleles with low frequencies were found in T. 

platyphyllos (Figure 4.1 a, b and c).  

The three loci with the lowest Fst between species were Tc4, Tc963 and Tc915 with Fst 

values of 0.10, 0.08 and 0.13, respectively. The low level of interspecific differentiation 

at these loci is because alleles of these loci were mostly shared between the two species 

(Figure 4.1 d, e and f).  

The genetic diversity between populations within species expressed as Fst and D showed 

different results at some loci (Table 4.7 and 4.8). The highest Fst among populations 

within T. cordata was observed at Tc8 (0.37). In contrast, D at this locus showed almost 

the lowest. The lowest Fst among populations within T. cordata was observed in Tc963 

(0.04), whereas this alleles had the highest D value (0.38). Fst  and D within T. 

platyphyllos populations were quite similar in all loci except for Tc943, which had the 

lowest D, while its Fst was in the middle range. 
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Table 4.7 Fst values among populations within Tilia species and between species 

resulting from analysis including all samples and analysis of the two species separately. 

Locus 
Intraspecific Interspecific 

T. cordata T. platyphyllos T. cordata - T. platyphyllos 

Tc4 0.072 0.070 0.099 

Tc5 0.073 0.077 0.185 

Tc6 0.064 0.089 0.129 

Tc7 0.121 0.080 0.389 

Tc8 0.367 0.090 0.675 

Tc31 0.036 0.069 0.436 

Tc915 0.081 0.055 0.125 

Tc920 0.072 0.087 0.158 

Tc927 0.045 0.070 0.541 

Tc937 0.060 0.066 0.386 

Tc943 0.137 0.076 0.533 

Tc951 0.052 0.089 0.288 

Tc963 0.035 0.072 0.083 

Total 0.073 0.076 0.308 

 

Table 4.8 D values among populations within Tilia species and between species  

Locus 
Intraspecific Interspecific 

T. cordata T. platyphyllos T. cordata - T. platyphyllos 

Tc4 0.272 0.430 0.389 

Tc5 0.228 0.536 0.542 

Tc6 0.213 0.464 0.390 

Tc7 0.134 0.434 0.514 

Tc8 0.016 0.419 0.427 

Tc31 0.023 0.371 0.430 

Tc915 0.376 0.396 0.531 

Tc920 0.328 0.269 0.446 

Tc927 0.011 0.510 0.413 

Tc937 0.048 0.358 0.425 

Tc943 0.166 0.031 0.520 

Tc951 0.070 0.126 0.294 

Tc963 0.383 0.579 0.643 

Total 0.108 0.323 0.442 

 

 



Chapter 4. Genetic diversity and differentiation 

 

68 
 

 

 

 

 

 

0.00

0.50

1.00

139 141 145 147 150 152 154 156 158 160 162 164 166 168 170 172 174

Tc8

F
re

q
u
en

cy
 

Allele size        

Allele Frequency for Tc8 

0.00
0.20
0.40
0.60
0.80
1.00

1
4

2

1
4

3

1
4

4

1
4

7

1
4

8

1
5

1

1
5

3

1
5

5

1
5

7

1
5

9

1
6

1

1
6

3

1
6

5

1
6

7

1
6

9

1
7

1

1
7

3

1
7

5

1
7

7

1
7

9

1
8

1

1
8

3

1
8

4

1
8

6

1
8

8

1
9

0

1
9

2

1
9

4

1
9

7

Tc927

F
re

q
u
en

cy
 

Allele size 

Allele Frequency for Tc927 

0.00
0.20
0.40
0.60
0.80
1.00

129 132 134 136 139 141 143 145 146 147 148 149 150 152 154 158

Tc943

F
re

q
u
en

cy
 

Allele size 

Allele Frequency for Tc943 

0.00
0.10
0.20
0.30
0.40

2
0

3

2
1

1

2
1

5

2
1

7

2
1

9

2
2

1

2
2

3

2
2

4

2
2

5

2
2

6

2
2

8

2
2

9

2
3

0

2
3

1

2
3

2

2
3

3

2
3

4

2
3

5

2
3

6

2
3

8

2
4

0

2
4

2

2
4

4

2
4

8

2
5

1

Tc4

F
re

q
u
en

cy
 

Allele size 

Allele Frequency for Tc4 

a) 

b) 

c) 

d) 



Chapter 4. Genetic diversity and differentiation 

 

69 
 

 

 

Figure 4.1 Allele frequency at loci Tc8 (a), Tc927 (b), Tc6 (c), Tc4 (d), Tc963 (e) and 

Tc915 (f). Colours indicate species:    T. cordata and     T. platyphyllos 

The genetic similarity of the two Tilia species (640 samples) was visualized by 

Principal Coordinates Analysis (PCO) (Figure 4.2). The first two axes of PCO 

accounted for 75.70% of total variation (67.92% and 7.78% for the first and second axis, 

respectively) and showed a clear grouping, separating the species.  

Bayesian analysis of genetic structure demonstrated that the model with K = 2 (the 

highest K) (Figure 4.4) gave the optimal grouping. This again revealed that 40 

populations of Tilia were clearly clustered into two groups according to the species. The 

25 populations of T. cordata were assigned to cluster I, while the 15 populations of T. 

platyphyllos were assigned to cluster II (Figure 4.3). The result was identical to the 

species differentiation illustrated by PCO (Figure 4.2). 
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Figure 4.2 Principal Coordinates Analysis (PCO) of genetic distance using 13 

microsatellite markers (GenAlEx) of 640 samples in both T. cordata and T. platyphyllos 

populations, coding the populations by colour. Dots indicate T. cordata samples and 

triangles indicate T. platyphyllos samples. 

 

 

 

Figure 4.3 Genetic structure analysis between the two Tilia species (640 samples) using 

13 microsatellite loci, estimated using STRUCTURE. The model with K = 2 showed the 

highest K value. 
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Figure 4.4 Value of Delta K against K of all Tilia individuals 

 

4.5 Discussion 

4.5.1 Overall genetic diversity 

Microsatellite data indicated that both T. cordata and T. platyphyllos had a high level of 

genetic diversity. Many microsatellite alleles were detected (16 – 47 alleles per locus) 

with wide ranges of allele sizes. No samples with more than two alleles per locus were 

found, which supported that both T. cordata and T. platyphyllos are diploid (Pigott, 

2012). Also, a high observed (Ho) and expected heterozygosity (He) over all loci in all 

populations was observed (0.62 and 0.59, respectively). Most of the fixation indices (F) 

of the populations were close to zero (Appendix 5 and 6). The results are the first 

genetic evidence that both T. cordata and T. platyphyllos have an outcrossing mating 

system. 

Most loci were in Hardy-Weinberg equilibrium in both species, which also indicates 

that the populations are under random mating and largely outcrossing. However, 

substantial deviations from Hardy-Weinberg equilibrium (P<0.001) with high fixation 

index (F>0.5) found in some populations at a few loci. The high fixation index 

(heterozygote deficit) at Tc4 of FINI, DEBO, CZVO, CAZT, AUTH, FROM T. cordata 

populations and at Tc951 of FRCE T. platyphyllos population could be due to null 

alleles. Micro-Checker also confirmed that null alleles may be present at these loci. 

However, from the analysis of 640 samples in both T. cordata and T. platyphyllos 

populations using 13 markers, homozygous null alleles were not detected and therefore 

presence of null alleles in certain populations cannot be excluded, but they were not at a 

high frequency.  
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4.5.2 Comparison of genetic diversity between the two species 

The level of genetic diversity in T. platyphyllos is higher than in T. cordata for all 

measures of diversity (Na, Ae, Ho and He, Table 4.4 and 4.5). In addition, the length and 

size range of microsatellite alleles observed in T. platyphyllos tend to be greater than 

those in T. cordata (Table 4.2). The higher diversity in T. platyphyllos than in T. 

cordata could be the result of ascertainment bias: microsatellite repeats tend to be 

longer in the species from which they have been developed. The longer alleles tend to 

be more variable than the shorter alleles, thus more polymorphism and higher 

heterozygosity should be observed in the microsatellite isolated species than in related 

species (Ellegren et al, 1995). In this analysis, all 13 microsatellites used were 

developed from T. platyphyllos. The method to isolate microsatellites from genomic 

DNA was based on hybridization with repeat oligo probes (as described in Chapter 3). 

Using this method, longer microsatellite repeats can potentially hybridize better with the 

probes than shorter repeats. Also, when choosing markers, microsatellites with small 

numbers of repeats are avoided. This selection of microsatellite loci may create a bias 

and result in a higher number of repeats than average, compared to that in closely 

related species. 

Another explanation of the different genetic diversity between species is the different 

time of migration and recolonisation. According to the pollen record, the most abundant 

pollen found during the Pleistocene period was of T. cordata. T. platyphyllos is 

sensitive to low temperature (Pigott, 2012) and this could indicate that T. platyphyllos 

recolonized the north later than T. cordata. Therefore, lower genetic diversity would be 

expected in T. platyphyllos because it would have fewer generations compared to those 

of T. cordata. However, we find a higher diversity in T. platyphyllos and therefore time 

of migration does not explain the difference we observed. 

Population size can be another explanation for a difference in genetic diversity. In 

general, small populations have a strong effect of genetic drift, which leads to the loss 

of variation. T. platyphyllos is classified by the IUCN Red List of Threatened Species as 

Critically Endangered in Norway and Sweden, Endangered in Albania, and Least 

Concern in many countries, such as Belgium, Denmark, Germany, Switzerland and the 

United Kingdom (Khela, 2013). The smaller population size of T. platyphyllos would 

lead to lower genetic diversity in T. platyphyllos than in T. cordata. In contrast, the 
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results in this study showed higher genetic diversity in T. platyphyllos than in T. cordata. 

This can be explained only by bias resulting from using microsatellite markers 

developed from T. platyphyllos. However, to prove this, new microsatellite markers 

developed from T. cordata should be used. 

Other studies have also shown that the use of microsatellite markers across species may 

affect genetic diversity measures, such as heterozygosity, allele size variance or number 

of segregating alleles (Li and Kimmel, 2013). A number of studies of ascertainment bias 

have been carried out in various species. For example, Ellegren et al (1997) studied the 

differentiation in length of microsatellite loci between cattle and sheep. Hutter et al 

(1998) studied the variation of microsatellite loci between Drosophila melanogaster and 

D. simulans. Thus, it is not surprising that the alleles were longer in T. platyphyllos, 

where markers were isolated from, than those observed in T. cordata. The ascertainment 

bias could lead to the higher genetic diversity detected in T. platyphyllos than in T. 

cordata. Therefore, development and use of additional microsatellite markers from T. 

cordata could clarify this ascertainment bias hypothesis.  

A significant positive fixation index was observed in CZST and GRAG (T. cordata and 

T. platyphyllos populations, respectively). This could be explained by the Wahlund 

effect, which resulted from population substructure. This phenomenon occurs when 

more than one population with different allele frequencies are treated as a single 

population. This result was also support by the deviation from Hardy-Weinberg 

equilibrium in CZST at several loci (Appendix 5). The high fixation index is not the 

result of clones because no clone was detected in the population. 

 

4.5.3 Genetic differentiation 

Genetic differentiation between and within T. cordata and T. platyphyllos was 

investigated using 13 microsatellite loci. The results from PCO and Structure analysis 

indicated that the microsatellite loci clearly separated the individuals to species 

categories. This was supported by the high Fst of 0.308 over all loci, which indicated a 

significant differentiation between the two species. The observation of higher 

interspecific differentiation (Fst) than intraspecific differentiation in all loci confirmed 

that the combination of all 13 microsatellite loci was efficient at species discrimination. 
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Even with the removal of the loci with the highest Fst (Tc8, Tc927 and Tc943) from the 

analysis, individuals still clustered by species (data not shown).  

The analysis of AMOVA revealed that the genetic variation between T. cordata and T. 

platyphyllos explained 25% of the total genetic variance (P < 0.001) and the 

interspecific Fst value was high compared to those for microsatellite markers in other 

tree species. For example, the average Fst between two oak species, Quercus petraea 

and Q. robur, was 0.10 (Neophytou et al, 2010). This high and significant Fst over all 

loci in Tilia indicates low gene flow between T. cordata and T. platyphyllos and 

supports the limited hybridisation and introgression between the two species observed 

in sympatric UK populations (Chapter 6). 

The allele frequencies of individual loci indicated that a high level of differentiation 

between T. cordata and T. platyphyllos is observed in some genome regions, while 

other genome regions are seemingly shared between species. A high frequency of one 

allele with a high degree of fixation was observed only in T. cordata at some loci, 

namely Tc8, Tc927 and Tc943. Thus these loci can be considered as species specific. 

This phenomenon is also shown in the high interspecific Fst for these loci.  

Under directional selection, the frequency of a favoured allele will increase and become 

more common or eventually fixed. The fixation of an allele can also be the result of 

genetic drift. However, genetic drift will reduce the diversity of the whole genome 

rather uniformly. In our case, the three loci with the highest Fst (Tc8, Tc927 and Tc943) 

showed fixation of specific alleles in one species. These loci may reside within the 

genomic regions associated with genes responsible for morphological traits that strongly 

discriminate between the two species (Muir and Schlotterer, 2005). For example, genes 

that control reproductive isolation have been documented in various closely related 

species. Neophytou et al (2010) observed the fixation of specific microsatellite loci 

between two oak species, Q. petraea and Q. robur. The results revealed that the species 

discriminant locus QrZAG96 locates within the genome associated with a 

morphological quantitative trait locus (QTL) for petiole length, which is different 

between the two species. Therefore, in our study the three loci with a high degree of 

fixation in one species could represent the genome regions linked to selected loci 

maintaining species integrity or reproductive isolation, such as gene control of 

flowering time. Further studies on mapping the markers and quantitative trait loci (QTL) 

could be carried out to support these results. 
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For some loci, allele ranges were shared between the two species, which resulted in a 

low Fst value. The three lowest Fst were observed in Tc4, Tc963 and Tc915. The shared 

alleles between the two species could be explained by shared ancestral variation or gene 

flow between the two species (Muir and Schlotterer, 2005). However, the gene flow 

between the two species seems to be limited, with nine hybrids and further generations 

detected among 649 individuals across Europe and low numbers of hybrids detected in 

sympatric populations in the UK (refer Chapter 6). Therefore, shared ancestral variation 

could be the reason for the shared alleles.  

The measurement of population differentiation using Fst and D has been debated 

recently. Fst is calculated based on within population diversity (expected heterozygosity), 

which can lead to difficulties in comparison of the index among species or among loci. 

On the other hand, D uses a multiplication partitioning of genetic diversity, based on 

effective number of alleles, which scales linearly with the genetic diversity, while 

expected heterozygosity does not (Meirmans and Hedrick, 2011). In this study, the two 

indices were calculated. The genetic differentiation within species showed differences 

between Fst and D at some loci. The highest Fst within T. cordata was observed at Tc8 

(0.37) compared to other loci. In general, the more alleles are detected, the lower the 

maximum Fst. With more than two alleles, the Fst cannot reach one. Thus, the high Fst in 

Tc8 could be due to the small number of alleles (2 alleles). On the other hand, almost 

the lowest D (0.016) was observed at this locus, which reflected the similarity among 

populations. From the observation of allele frequency at this locus, most populations 

were almost fixed at one allele (141 bp) (Figure 4.1 a). This phenomenon indicated that 

D better reflected the similarity among populations than Fst. Low values of D were also 

observed in Tc927 in T. cordata and Tc943 in T. platyphyllos with a high frequency of 

one distinct allele. Meirmans and Hedrick (2011) suggested that Fst reflects the fixation 

and not the differentiation in allele frequencies among populations in the case where 

different alleles are fixed in different populations. However, Fst performs better than D 

for demographic inference (Whitlock, 2011). For example, if there are three alleles in 

three populations and the same alleles go to fixation in three subpopulations, in this case, 

Fst value will be high (one), while D will be zero. On the other hand, if different alleles 

go to fixation in different subpopulations both Fst and D in this case will be one. This 

suggests that Fst would be better for describing the distribution of genetic variation, 

while D would be better for measuring the differentiation of allelic frequencies among 
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populations. Meirmans and Hedrick (2011) also suggested that in highly variable 

markers alternative indices such as D should be used in addition to Fst. 

 

4.6 Conclusion 

Genetic diversity and differentiation between T. cordata and T. platyphyllos were 

studied for the first time using microsatellite markers. This study revealed that the two 

Tilia species have an outcrossing mating system. They were clearly distinct and high 

levels of genetic diversity were detected by using 13 microsatellite loci. Higher genetic 

diversity was observed in T. platyphyllos than in T. cordata. However, this could be an 

artefact of developing markers from T. platyphyllos. Ideally, T. cordata microsatellite 

markers would be used to support the hypothesis that the lower genetic diversity in T. 

cordata is because of ascertainment bias. Although microsatellite markers revealed 

clearly differentiation between the two Tilia species, some shared alleles were also 

observed. The allele sharing could be explained by ancestral polymorphism or these loci 

are potentially linked to genes that have adaptive advantages. Some species specific 

alleles were detected in some loci. This could suggest directional selection of some 

specific genome regions, which maintain species integrity. Further study on QTL 

mapping or genome wide association analysis could be carried out to support these 

results. 
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Chapter 5. Population structure and phylogeography of Tilia cordata 

and T. platyphyllos across Europe 

 

5.1 Abstract 

In this study we investigate patterns of population genetic structure and gain insight into 

postglacial recolonization in Tilia across Europe. Thirteen microsatellite markers were 

used to analyse 24 T. cordata and 15 T. platyphyllos populations. In addition, eight 

chloroplast regions were analysed with two individuals per country from each species. 

We identified low genetic diversity in the peripheral populations, which supports the 

rapid expansion of tree species from southern Europe during postglacial periods. Some 

chloroplast haplotypes were shared between the two species. The haplotype network 

suggested that these shared haplotypes could be the result of incomplete lineage sorting 

rather than recent hybridization. Bayesian analysis revealed strong genetic structure in T. 

platyphyllos but weaker in T. cordata. This could be because migration and colonization 

in the northern areas by T. cordata occurred before those by T. platyphyllos. 

Microsatellite analysis suggested different possible colonization routes between two 

Tilia species. However, T. cordata and T. platyphyllos seem to share the three main 

refugia in southern Europe (Iberia, Italy and Balkans). In addition, T. cordata seems to 

have additional putative refugia in eastern areas (Caucasus). 

 

5.2 Introduction 

Population genetic structure is the distribution of genotypes across space through time 

(Hewitt and Butlin, 1997). The patterns of population structure are shaped by various 

factors from natural processes to human impact. Phylogeography is the study of the 

historical and contemporary processes responsible for the geographic distribution of 

genealogical lineages (Avise et al, 1987). Thus, phylogeographic study is a powerful 

tool to understand population structure and evolutionary processes in living species. 

The climatic fluctuation during the Pleistocene glaciation is believed to have an 

important impact on distribution ranges and differentiation in both plants and animals 

species. The multiple oscillations between warm and cold glacial conditions during 

these periods caused the extinctions of some European tree flora, while some dispersed 
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to new locations and some survived in refugia and expanded again during the warm 

periods. These phenomena had a strong effect on population structure of the species that 

are living today (Hewitt, 2000). Phylogeography has been studied under the hypothesis 

that considers this period as a major factor for species distribution. 

 

5.2.1 Ice ages and glacial refugia 

The Quaternary cold periods in Europe (2.4 Myr to present), particularly in the last 

glacial cycle (115,000 to 15,000 years ago) (Birks, 1986), appear to have had a dramatic 

influence on the distribution of plants and animals. During the last ice age, the polar ice 

sheets spread across northern Europe, including the whole of Scandinavia and northern 

Britain. Mountain blocks, such as the Alps, Pyrenees and Carpathians, were also 

covered with ice caps (Hewitt, 2000). In that period, European temperate forests were 

considerably more restricted than today. They occupied mainly the southern peninsulas, 

such as Iberia, Italy, and the Balkans (the southern refugia hypothesis), where the 

climate was more suitable to survive (Bennett et al, 1991). This long-term isolation in 

the different southern refugia led to genetic differentiation among populations. The 

expansion and colonisation of the species from southern refugia toward the north 

occurred during the warm interglacial periods and post glaciation (began 15,000 to 

10,000 years ago).  

During the post-glacial periods, populations at the northern limit range of the refugia 

expanded into the northern areas and colonized new suitable territory. This expansion 

occurred remarkably rapidly as the climate warmed suddenly. The leading edge 

populations would have dispersed and colonized the areas far from the main refugia. 

The pioneers would rapidly expand to fill the new territory before others arrived, thus 

their genotypes would dominate in the new areas. These newly colonized populations 

would be favoured by natural selection and might act as barriers, which prevent the later 

migrants from occupying the colonized areas. The repeat of successive founder events 

over a long colonisation route of the expansion led to the loss of genetic variation of the 

leading populations. This rapid expansion has been considered to reduce genetic 

diversity in large areas of northern Europe (Hewitt, 1999). The end of the last ice age 

allowed trees to move northwards about 8000-13000 years ago. This evidence was 

observed and documented from the pollen records (Huntley and Birks, 1983). 
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5.2.2 Molecular markers suitable for phylogeographic studies  

Phylogeographic patterns in plants have been studied using various molecular 

approaches. Chloroplast DNA is one of the useful tools for phylogeographic studies and 

identification of postglacial colonization routes in plants (Petit et al, 2002; Taberlet et al, 

1998). Since chloroplast DNA is non-recombinant and maternally inherited in most 

angiosperms, it is transmitted through the maternal line only. Therefore, clearer 

population structure and colonization patterns of chloroplast DNA can be observed than 

from nuclear genes. Considering these characteristics, chloroplast DNA seems to be an 

ideal tool for the study of evolutionary processes in the historical events that shaped the 

genetic structure of plant species. However, due to the absence of recombination of 

chloroplast DNA, it can only represent a single gene genealogy. Thus, using this 

genome will hardly capture all historical events that occurred within the species 

(Heuertz et al, 2006). In addition, the low mutation rates of chloroplast genomes in 

some species seems to be one of the obstacles to obtaining sufficient variation to 

explain the historical events of the species (Provan et al, 2001). 

Nuclear markers have been suggested for phylogeographic studies since they show 

recombination and are biparentally inherited and, therefore, integrate several 

genealogical processes. The availability of highly polymorphic microsatellite markers 

and the development of Bayesian approaches provide opportunities to investigate the 

population genetic processes during recolonization that affected the current patterns of 

population genetic structure (Heuertz et al, 2006). The combination of both chloroplast 

and microsatellite markers could reveal more information about the historical events of 

the species than using only a single marker (Bai et al, 2010).  

 

5.2.3 Postglacial colonization patterns of plants in Europe 

The influence of the Quaternary period on the geographic distribution of plants across 

Europe has received a lot of attention in the past decade. The pollen record is the 

traditional data source that has effectively explained the expansion of tree species. 

Huntley and Birks (1983) mapped the distribution of pollen of trees across Europe at 

500 year intervals for each tree species, for the last 13,000 years. The patterns indicated 

most forest trees expanded from the southern areas and they suggested the possible 

refugia for each tree species. The combination of molecular data and the evidence of the 
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pollen record revealed the postglacial migration history and recolonization of many 

plant species. Also, these data can suggest locations of putative refugia in southern 

Europe. 

The studies of phylogeographic inferences of forest tree species across Europe revealed 

that most of the species shared three distinct major refugia in the southern peninsulas 

(Iberia, Italy and Balkan) during the last ice age. Also, the tree species shared some 

postglacial migration lineages during recolonization towards the north (Taberlet et al, 

1998). For example, the homogeneity of chloroplast DNA observed in common beech 

(Fagus sylvatica) from northern Spain, France, German, Poland and Balkans together 

with the pollen evidence (Huntley and Birks, 1983) indicated a postglacial colonization 

route from the Balkan refugia, while the migration from the Iberian and Italian refugia 

was inhibited due to the rapid expansion from the Balkan population that filled the area 

first (Demesure et al, 1996). The colonization route from the main refugia in the 

Balkans is similar to that of the black alder (Alnus glutinosa) (King and Ferris, 1998). 

The study of chloroplast DNA variation in oaks (Quercus spp.) suggested postglacial 

colonization routes from at least three southern refugia, the Iberian peninsula, Italy and 

the Balkans (Dumolin-Lapegue et al, 1997a). The expansion to northern and western 

Europe came from the Iberian peninsula. Other species have a similar lineage, such as 

hazel (Corylus avellana) (Palme and Vendramin, 2002) and English holly (Ilex 

aquifolium L.) (Rendell and Ennos, 2003). The recolonization of oaks into eastern 

Europe from the Balkan refugia was also observed in ash (Fraxinus excelsior) (Heuertz 

et al, 2004) and silver fir (Abies alba) (Konnert and Bergmann, 1995).    

In Tilia, pollen evidence shows that during the end of the last glaciation, about 18,000 

BP, Tilia was present only in Greece and southern Italy. The rapid expansion of Tilia 

from the Balkan peninsula across Bulgaria to the Black Sea coast and the expansion 

from Italy to the southern and southeastern borders of the Alps occurred at the end of 

the Late-glacial (11,500 BP). Then Tilia spread to the north and northwest of Europe 

and reached southern Scandinavia and England by 8,000 BP (Figure 5.1). Tilia reached 

the edge of the species range in Finland and Scandinavia then stopped the migration at 

around 6,000 BP (Huntley and Birks, 1983). The migration rate of Tilia during the first 

half of the Holocene, based on pollen material, is between 350 and 820 metres per year 

(Lang, 2003). As Tilia is an insect pollinated plant, the abundance of pollen in deposits 

is more limited than for wind pollinated plants. However, its location is more reliable as 
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pollen is not prone to be wind dispersed. In addition, apart from ice age refugia, 

hybridisation may have impacted on the distribution of variation in Tilia species. 

 

Figure 5.1 Distribution of Tilia during the Late and Postglacial periods based on pollen 

data. Lines indicate millennia before present (Huntley and Birks, 1983). 

 

Molecular markers are one of the reliable tools for clarification of the distribution of 

variation of a species. The only molecular study on Tilia phylogeography is based on 

chloroplast variation in T. cordata using PCR RFLP. The results indicated that the 

distribution of 14 chloroplast haplotypes revealed low geographic structure and low 

genetic differentiation among 17 populations (Fineschi et al, 2003). 

The objectives of our study are to detect the patterns of population genetic structures of 

T. cordata and T. platyphyllos across Europe by using microsatellites and chloroplast 

DNA. It is also to interpret the observed geographical patterns in terms of recolonisation 

after postglacial periods and identify possible refugia of the two Tilia species.   
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5.3 Materials and methods 

5.3.1 Plant materials: microsatellite analysis 

For population structure and phylogeographic analysis using microsatellite markers, the 

genotypic data of 13 microsatellite loci in 24 populations of T. cordata (421 individuals) 

and 15 populations of T. platyphyllos (218 individuals) obtained in Chapter 4 (Table 4.1) 

were analysed. One population of T. cordata from Spain, which contains only one 

individual, is not included in the microsatellite analysis.    

 

5.3.2 Plant materials: chloroplast analysis 

Two individuals per country from each Tilia species were used, except for T. cordata in 

Spain where only one individual was available. In total 51 individuals from 16 

populations (31 individuals) of T. cordata and 10 populations (20 individuals) of T. 

platyphyllos were analysed (Table 5.1). DNA was extracted from leaves using CTAB 

based procedure (see Chapter 2). 
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Table 5.1 Countries, locations, population codes and coordinates (latitude and longitude) 

of T. cordata and T. platyphyllos used for chloroplast analysis 

Species Country Location Label 
Latitude 

(N) 

Longitude 

(E ) 

T. cordata Norway 
Sogn og Fjordane, Asane 

nature reserve 
NOSO 61.85753 6.19563 

 
Finland Niinisaari FINI 61.81667 29.38333 

 
Denmark Åbybjerg  DEAB 57.10241 9.35310 

 
Germany Colbitz  GECO 52.33027 11.55722 

 
United Kingdom Anston Stones Wood UKANS 53.34426 -1.20715 

 
the Netherlands Gulpen NEGU 50.79595 5.89453 

 
Poland Lezajsk PLLE 50.26360 22.38580 

 
Czech Republic Velky Osek CZVO 50.10143 15.17778 

 
Slovakia Blatnica, Gaderská dolina SKBL 48.94860 18.96550 

 
France Foret Dom de Mouthiers FRMO 48.91388 4.91441 

 
Ukraine Rosilna UARO 48.76970 24.39570 

 
Austria Stams AUST 47.27566 10.97716 

 
Switzerland Lobsigen Park CHLO 47.30774 8.26685 

 
Hungary Oltárc HUOL 47.00000 19.00077 

 
Italy Lasen, Dolomites ITLA 46.07000 11.92000 

  Spain Huesca SPHU 42.58778 0.18889 

T. platyphyllos Denmark Bolderslev  DEBO 55.01680 9.38901 

 
United Kingdom Kings’ Wood UKKI 53.39842 -1.18188 

 
Germany Lichtenstein GELC 51.30277 13.01875 

 
Czech Republic Šternberk, Vrapač CZST 49.72490 17.01900 

 
France Cessieres FRCE 49.55877 3.48875 

 
Slovakia Blatnica, Gaderská dolina SKBL 48.94860 18.96550 

 
Austria Thayatal Park near Hardegg AUTH 48.84747 15.88003 

 
Switzerland Frieswil CHFR 47.07213 7.14241 

 
Spain Huesca SPHU 42.58778 0.18889 

  Greece Aggistro GRAG 41.35664 23.48132 

 

5.3.3 Chloroplast sequencing 

Eight chloroplast regions were amplified. Primer sequences are listed in Table 5.2. The 

PCR amplifications were carried out in 15 µl reactions containing 5 ng of template 

DNA, 1x reaction buffer, 2mM MgCl2, 0.2 mM of each dNTP, 0.4 mM of each primer 

and 0.5 U of Taq DNA polymerase (Bioline). The PCR reactions were amplified as 

follows: an initial pre-denaturation step at 94 °C for 3 min, followed by 30-35 cycles of 

denaturation step at 94 °C for 15s, annealing temperature and time are as described in 

Table 5.2, and extension step at 72 °C for 60s, and a final extension step of 72 °C for 4 

min. PCR products were purified with Exo-SAP and sequenced using the same reaction 

as described in Chapter 2 before visualisation on an ABI 3100 automated sequencer 

(Applied Biosystem). The level of chloroplast variation is typically low, thus the 

samples were only sequenced in one direction. 
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Table 5.2 Primer sequences and PCR details of eight chloroplast regions 

Primer 

name 
Sequence 

length 

(bp) 

Annealing 

Temp 
(oC) 

Annealing 

time 
(second) 

Number 

of PCR 
cycles 

Reference 

atpI TATTTACAAGYGGTATTCAAGCT 
1157 53 30 35 Shaw et al (2007) 

atpH CCAAYCCAGCAGCAATAA C 

ndhF GAAAGGTATKATCCAYGMATATT 
768 53 30 35 Shaw et al (2007) 

rpl32R CCAATATCCCTTYYTTTTCCAA 

petL AGTAGAAAACCGAAATAACTAGTTA 
1161 50-65 

ramp  

0.3 oC/s 
30 Shaw et al (2007) 

psbE TATCGAATACTGGTAATAATATCAGC 

psbA CGAAGCTCCATCTACAAATGG 
495 53 30 35 Hamilton (1999) 

trnH ACTGCCTTGATCCACTTGGC 

psbJ ATAGGTACTGTARCYGGTATT 
1269 53 30 35 Shaw et al (2007) 

petA AACARTTYGARAAGGTTCAATT 

rpl32F CAGTTCCAAAAAAACGTACTTC 
649 53 30 35 Shaw et al (2007) 

trnL CTGCTTCCTAAGAGCAGCGT 

trnG  GAACGAATCACACTTTTACCAC 
844 53 30 35 Hamilton (1999) 

trnS GCCGCTTTAGTCCACTCAGC 

trnQ GCGTGGCCAAGYGGTAAGGC 
1204 50-65 

ramp  
0.3 oC/s 

30 Shaw et al (2007) 

rps16x1 GTTGCTTTYTACCACATCGTTT 

 

5.3.4 Microsatellite data analysis 

In order to understand whether genetic diversity is correlated with geographical 

gradients, the correlation between expected heterozygosity (He) of each population and 

geographic-coordinates (latitude) was analysed for each species using Minitab16 

software. The genetic distance matrices of individuals within each species were 

constructed to carry out a Principal Coordinates Analysis (PCO) using GenAlEx version 

6.5 (Peakall and Smouse, 2012). In addition, genetic differentiations between 

populations (Pairwise Fst) of each species were determined by GenAlEx. To test the 

patterns of Isolation by Distance (IBD) of the populations in each species, geographic 

distance matrices were constructed by calculating the pairwise distances between each 

population in kilometres using the Mantel test in GenAlEx. Both pairwise Fst and 

pairwise genetic distance matrices were uploaded onto Genepop on the Web version 4.2 

(Raymond and Rousset, 1995), option 6. The pairwise Fst were converted to Fst/(1-Fst), 

and the correlation with the log transformed (ln) geographic distance was calculated 

(Mantel test). 

The patterns of population structure in both T. cordata and T. platyphyllos were 

analyzed using Bayesian clustering software, STRUCTURE Version 2.3.3 (Pritchard et 

al, 2000). A number of clusters (K) are estimated and individuals will be assigned to 

one or more clusters. The number of clusters was set from 1 to 26 for T. cordata 
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analysis and from 1 to 17 for T. platyphyllos analysis (total number of populations plus 

two). The program was run using the same parameters as described in Chapter 4. The 

results from STRUCTURE were then downloaded onto software STRUCTURE 

HARVESTER (Earl and vonHoldt, 2012) to estimate the optimal grouping (K). To 

visualize population clusters on a geographical scale, PhyloGeoViz (Tsai, 2011) was 

used to convert the proportion assignment to each cluster to pie charts and overlaid on 

the map. 

 

5.3.5 Chloroplast data analysis 

Chloroplast sequences were double-checked using the chromatograms, edited and 

aligned using Geneious version 6.1.4 (Drummond et al, 2011). All eight chloroplast 

regions of each sample were concatenated and regarded as a single locus using 

Mesquite Version 2.75 (Maddison and Maddison, 2001). A chloroplast network was 

constructed based on statistical parsimony using median-joining network using Network 

version 4.6.1.1 (Bandelt et al, 1999). Insertions and deletions (indels) were manually 

edited as a single base substitution and set as double weight for the analysis. The 

distribution maps were constructed based on the frequencies of the haplotypes using 

PhyloGeoViz (Tsai, 2011).  

 

5.4 Results 

5.4.1 Geographical patterns of genetic diversity 

Geographical patterns of genetic diversity in T. cordata and T. platyphyllos based on 

microsatellite markers showed a negative correlation between expected heterozygosity 

(He) and degrees north (latitude) (Figure 5.2 a and b). A significant decline (P<0.05) in 

genetic diversity toward the north was detected in T. cordata (R
2
 = 0.28), while no 

significant correlation (R
2
 = 0.01, P>0.05) was detected in T. platyphyllos. It must be 

noted that T. platyphyllos has a smaller range of latitudes (41.35664-55.01680 
o
N) 

compared to T. cordata (46.07000-61.85753 
o
N). (As the distribution range of T. 

platyphyllos is limited in northern Europe, the highest latitude of population we can get 

is from Denmark.)  
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Figure 5.2 Correlation between the genetic diversity (He) and latitude (
o
N) in T. cordata 

populations (a) and in T. platyphyllos populations (b) 

 

5.4.2 Isolation by Distance (IBD) 

The correlation between genetic and geographic distance (Mantel test) indicated 

significant patterns of isolation by distance in both T. cordata and T. platyphyllos (R
2
 = 

0.22 and 0.12, respectively, P<0.05) (Figure 5.3 a and b). The positive correlations 

reveal that populations are more similar when they are geographically close than those 

at longer distances. The matrices of pairwise Fst and geographic distance of T. cordata 
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are shown in appendix 7 and 9, respectively and those of T. platyphyllos are shown in 

appendix 8 and 10, respectively. 

 

 

 

 

Figure 5.3 Correlation between genetic distance (based on converted pairwise Fst) and 

log (ln) geographic distance (based on pairwise distance in km) of T. cordata 

populations (a) and of T. platyphyllos populations (b). 
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5.4.3 Patterns of population genetic structure based on microsatellite analysis: T. 

cordata 

The population structures of 24 populations (421 individuals) of T. cordata were 

analysed using PCO and STRUCTURE. The PCO approach based on microsatellite 

markers did not show clear grouping of individuals by populations. Figure 5.4 shows a 

scatter plot of genetic distance within T. cordata populations with 41.91% of total 

variation (22.82% and 19.09% for the first two axes). Although the PCO illustrated low 

genetic differentiation between populations, some groupings were observed. For 

example, FINI population (light green dots) was presented only on the left in the graph. 

The model-based clustering method implemented in STRUCTURE, which assesses the 

most likely number of clusters based on allele frequency of microsatellite markers, 

cannot determine the optimal grouping in T. cordata individuals. Although the highest 

ΔK was detected at K = 2, the natural logarithm of estimated probability of the data 

increased with K value. Thus, it is difficult to determine the best value of K (Figure 5.5 

a and b). Therefore, the structure analyses at different K values were inspected (K = 2, 3, 

4 and 6). K = 5 is not presented due to only minor changes from K= 4. K = 2 did not 

reveal a clear structure of the populations in central Europe, while populations from the 

north (FINI, FIMU in Finland) were largely clustered together (Figure 5.6 and 5.7 a, at 

K = 2). K = 3 and 6 also did not give clear information based on geographical pattern, 

whereas K = 4 reveals the best clustering based on geographical regions (Figure 5.6 and 

5.7 b, at K = 4). 
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Figure 5.4 Principal Coordinates Analysis (PCO) of genetic distance using 13 

microsatellite markers (GenAlEx) of 421 individuals in T. cordata populations, coding 

the populations by colour. 

 

 

          

Figure 5.5 Value of ΔK against K of T. cordata individuals (a) and means of the 

estimated natural logarithm probability of the data against K (b).  
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Figure 5.6 Genetic structure of 421 T. cordata individuals (24 populations) based on 

microsatellite markers according to the Bayesian analysis using the program 

STRUCTURE at different K. Each vertical bar represents individuals. Colours indicate 

population assignment. 
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Figure 5.7 Geographical distribution of 24 populations of T. cordata based on 

microsatellite markers at K = 2 (a) and K = 4 (b). Colours on pies indicate frequency of 

population assignment in each location. 
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5.4.4 Patterns of population genetic structure based on microsatellite analysis: T. 

platyphyllos 

The microsatellites within 15 populations (218 samples) of T. platyphyllos were 

visualised by the PCO. The results show that a total of 42.01% of the variation is 

accounted by the first two axes (22.27% and 19.75%, Figure 5.8). Some individuals 

were clustered by populations. For example, individuals from the AUDO population are 

very near each other and plotted in the upper left, individuals from UKKI are on the 

lower left, while those from DEBO are on the lower right of the graph. In addition, the 

grouping based on geographical regions was also observed. For example, individuals 

from Austria (4 populations: AULE, AUTH, AUSO and AUDO) were largely plotted in 

the upper left on the graph, while individuals from southern France (FRIS and FRCC) 

and northern Spain were largely plotted on the right.  

In STRUCTURE analysis of T. platyphyllos, the highest ΔK showed that K = 4 is the 

best clustering (Figure 5.9 and 5.10). Population assignment visualized on a 

geographical map separates the populations by geographical regions. Individuals from 

eastern populations (7 populations) were assigned largely to the same cluster (Figure 

5.11). Individuals from southern France and northern Spain were largely clustered 

separately from those in northern France and central Europe, while individuals from the 

UK were largely assigned to a separate cluster. K = 9, which had the second highest ∆K, 

did not depict a clear distribution pattern. Therefore, only genetic structure at K = 4 is 

shown. 
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Figure 5.8 Principal Coordinates Analysis (PCO) of genetic distance using 13 

microsatellite markers (GenAlEx) of 218 individuals in T. platyphyllos populations, 

coding the populations by colour. 

 

 

      

Figure 5.9 Value of ΔK against K of T. platyphyllos individuals (a) and Means of the 

estimate natural logarithm probability of the data against K (b).  
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Figure 5.10 Genetic structure of T. platyphyllos individuals based on microsatellite 

markers according to the Bayesian analysis using the program STRUCTURE at K = 4. 

Each vertical bar represents individuals. Colours indicate population assignment. 

 

 

 

Figure 5.11 Geographical distribution of 15 populations of T. platyphyllos based on 

microsatellite markers at K = 4. Colours on pies indicate frequency of population 

assignment in each location. 
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5.4.5 Chloroplast variation and geographic distribution 

The chloroplast variation of eight regions in both T. cordata and T. platyphyllos was 

limited (Table 5.3). The total length of the concatenated eight chloroplast regions was 

2179 bp. Nine substitutions and eleven indels (from five bp in the psbJ to 72 bp in the 

trnQ) were detected. A total of eleven haplotypes were identified. Among these 

haplotypes, four haplotypes (Hap2, Hap4, Hap5 and Hap7) were found only in T. 

cordata, while five haplotypes (Hap6, Hap8, Hap9, Hap10 and Hap11) were specific to 

T. platyphyllos. Two haplotypes (Hap1 and Hap3) were shared by the two Tilia species 

(Table 5.4). 

The network of chloroplast haplotypes analysed revealed close relationships of some 

haplotypes of the two Tilia species (Figure 5.12). Hap1 is the most frequent haplotype, 

found in 27.45% of the individuals in both species (32.26% in T. cordata and 20% in T. 

plartyphyllos individuals). Hap10, which is specific to T. platyphyllos, has the largest 

number of differences from other haplotypes, with seven sites different from T. cordata 

Hap7. Two haplotypes of T. platyphyllos (Hap8 and Hap9), which were found in Greek 

and German populations, respectively, linked by just one step mutation to Hap7, which 

is found only in a T. cordata population from Finland. Also, T. cordata Hap5 was 

closely linked to T. platyphyllos Hap6 with three different mutations.  

There was some geographic structure to the distribution of haplotypes in T. cordata 

(Figure 5.13). Hap1 exhibited the most widespread distribution across mainland Europe 

with some structure to the distribution from Northern Spain to Denmark and Norway. 

Hap2, which is linked to Hap1 by one base substitution, had a scattered distribution in 

central Europe. Hap5 showed a mosaic distribution, being found in two populations in 

the east (Czech Republic and Hungary) and also in the geographically remote UK 

population, whereas Hap7 occurred only in one relatively distant population, Finland. 

Within T. platyphyllos, a little stronger structure of haplotype distribution was observed 

(Figure 5.14). Hap10, which is different from other haplotypes, was distributed in the 

western populations (Spain, France and UK), while some haplotypes were restricted to 

only one population of T. platyphyllos, such as Hap6, Hap8 and Hap11. 
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Table 5.3 Polymorphic sites in the eight regions of chloroplast DNA in T. cordata and T. platyphyllos. Indels are indicated with a number followed by 

letter (see Notes) 

Cp regions atpI   ndhF   petL   psbA   psbJ   rpl32F   trnG   trnQ 

Positions 313 
319-

336 
426 

 
101 179 

 
295 

 

215-

223 

328-

337 

357-

363 

364-

373  
385 

400-

404 
503 

614-

646  

343-

359 
421 

 

268-

290 
511 

 

272-

288 

392-

463 

Polymorphic 

site 
1 2a 3   4 5   6   7b 8c 9d 10e   11 12f 13 14g   15h 16   17i 18   19j 20k 

Hap1 A - C 
 

G C 
 

G 
 

- - - - 
 

A + A + 
 

- T 
 

- A 
 

- - 

Hap2 A - C 
 

G C 
 

G 
 

- - - - 
 

C + A + 
 

- T 
 

- A 
 

- - 

Hap3 A - C 
 

G C 
 

G 
 

- - - - 
 

A + A + 
 

- G 
 

- A 
 

- - 

Hap4 A - C 
 

G C 
 

G 
 

- - - - 
 

A - A + 
 

- G 
 

- A 
 

- - 

Hap5 A - C 
 

G T 
 

A 
 

- - + - 
 

A + A - 
 

- G 
 

- G 
 

- + 

Hap6 A - C 
 

G T 
 

A 
 

- - - - 
 

A + A + 
 

- G 
 

- G 
 

- - 

Hap7 A - C 
 

T C 
 

G 
 

- - - - 
 

A + C + 
 

- G 
 

- G 
 

- - 

Hap8 A - C 
 

T C 
 

G 
 

+ - - - 
 

A + C + 
 

- G 
 

- G 
 

- - 

Hap9 A + C 
 

T C 
 

G 
 

- - - - 
 

A + C + 
 

- G 
 

- G 
 

- - 

Hap10 A - T 
 

T C 
 

G 
 

- + + + 
 

A - C + 
 

- G 
 

+ G 
 

+ - 

Hap11 C - C   G T   A   - - - -   A + A +   + G   - G   - - 

Notes: Eleven indel sites found in all chloroplast haplotypes are as follows: 

a: TTTTTATTATTTATATTT 

b: TTATTACCA 

c: TTTATATTAT 

d: TATAAATAA 

e: TATTATAA 

f: CTTTT 

g: TTATACTTATTATATTATCCTTATTACTTATT 

h: AATTAATAATAAATAAT 

i: TTATTATTTATTCTAGTTATTCT 

j: TCTATCGAGTTATTTGA 

k: GAAAAGTTTAATTTTAATATTTAATTTTAATAAATAGAAAAGTATATTTATAATATATAATTTTAATAAATA 
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Table 5.4 Number of chloroplast haplotypes found in individuals of T. cordata and T. 

platyphyllos. 

Haplotypes 
Number of individuals found 

T. cordata T. platyphyllos 

Hap1 10 4 

Hap2 8 0 

Hap3 4 3 

Hap4 1 0 

Hap5 6 0 

Hap6 0 2 

Hap7 2 0 

Hap8 0 2 

Hap9 0 1 

Hap10 0 6 

Hap11 0 2 

 

 

Figure 5.12 Haplotype network of chloroplast haplotypes in T. cordata and T. 

platyphyllos using statistical parsimony. Sizes of circles are proportional to the 

haplotype frequency. Colours of the rim indicate the Tilia species found with that 

haplotype (red = T. cordata and blue = T. platyphyllos). Numbers on the line indicate 

the polymorphic sites (Table 5.3). 
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Figure 5.13 Haplotype network (a) and distribution of chloroplast haplotypes of T. 

cordata populations (b).  
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Figure 5.14 Haplotype network (a) and distribution of chloroplast haplotypes of T. 

platyphyllos populations (b). 

 

5.5 Discussion 

5.5.1 Genetic diversity and associated geographical patterns 

The genetic diversity in term of He decreased as latitude increased (Figure 5.2), with a 

significant correlation in T. cordata. The higher genetic diversity observed in southern 

populations than in the north supports the hypothesis of migration of plants from the 
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southern refugia after the postglacial period. The high genetic diversity in southern 

populations could be due to the favourable climate and stable environments in southern 

refugia during glacial periods. These conditions have provided suitable habitats for 

living species, including plants, to survive, whereas other parts in northern Europe were 

largely covered with ice sheets. Thus, genetic diversity tends to be more accumulated in 

southern populations than in the northern populations. The decline of genetic diversity 

toward the north observed in both  Tilia species could be explained by the leading edge 

model (Hewitt, 1999). This model implies that during warm interglacial periods, 

populations from the southern refugia expanded into new ice-free territories toward 

north. This expansion occurred rapidly to colonize and dominate the new habitats before 

others arrived. The phenomenon would occur several times during setting up new 

colonisation. As a consequence, the leading edge populations would experience 

repeated bottlenecks or genetic drift, which could lead to the loss of genetic diversity 

(Hewitt, 1999). In addition, edge populations can have less gene flow compared to the 

central population because they can only receive migration from one direction 

(GarciaRamos and Kirkpatrick, 1997).  

The genetic diversity, which is usually higher in southern populations and tends to 

reduce along latitudinal gradients, has been reported in several plant species. Similar 

patterns were detected in white oak Quercus spp. (Dumolin-Lapegue et al, 1997b), in 

black alder Alnus glutinosa (King and Ferris, 2000), in heather Calluna vulgaris 

(Rendell and Ennos, 2002) and in hornbeam Carpinus betulus (Grivet and Petit, 2003).  

 

5.5.2 Population genetic structure of T. cordata and T. platyphyllos  

The population genetic structure analysis using a Bayesian method based on 

microsatellite data revealed the geographical patterns in both T. cordata and T. 

platyphyllos. Although Principal Coordinates Analysis (PCO) detected no structure 

within each species, some grouping of populations was observed. Some structure based 

on geographical regions in both species was detected by STRUCTURE analysis. Even 

though the precise K value was difficult to infer from our dataset, the overall patterns 

can tentatively be interpreted.  

The patterns of genetic structure illustrated by STRUCTURE analysis in both species of 

Tilia revealed high genetic differentiation of the range edge populations, which are 
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more recently colonized areas. In T. cordata, populations in the north (Norway and 

Finland), which is the highest distribution range in degrees north of T. cordata, almost 

formed clusters of their own. Isolated clusters were also observed in the T. platyphyllos 

populations in Denmark and the UK. These results could be because during the rapid 

northward and westward expansion from southern refugia after the post-glacial periods, 

Tilia may have experienced genetic drift or bottleneck during the long distances of 

migrations. A loss of alleles seems to have occurred in the range edge populations 

during colonisation. The number of alleles (Na) and effective number of alleles (Ae) was 

lower on average in northern populations than in southern populations in both species 

(Table 4.4 and 4.5, in Chapter 4). In addition, the largely isolated populations can be 

due to the barriers to gene flow along the migration routes. The water barriers (North 

and Baltic Sea) seem to limit the amount of gene flow between populations and lead to 

population isolation, particularly separation between T. platyphyllos in the UK and the 

mainland populations. 

The significant Isolation by Distance (IBD) patterns in both T. cordata and T. 

platyphyllos (Figure 5.3) also supported the divergence of the range edge populations 

due to the longer distance of migration from the south compare to populations in central 

Europe. Also, these significant trends of IBD may reflect population colonisation from 

different glacial refugia in southern Europe or even further east from unknown refugia. 

It is clearly seen in eastern populations of T. platyphyllos that are near the Greek 

population (Balkan refugia), and the results from STRUCTURE also assigned these 

populations largely in a single cluster. 

A stronger genetic structure based on geographical region was observed in T. 

platyphyllos compared to T. cordata. This could be because migration and 

recolonisation toward north after postglacial periods in T. cordata occurred before that 

in T. platyphyllos. Thus, T. cordata would have more generations in the newly 

colonized area, which could lead to more opportunities for gene flow between 

populations in T. cordata than in T. platyphyllos. This phenomenon may have produced 

a reduction of genetic differentiation among populations and less clear population 

structure of T. cordata. The fewer generations of T. platyphyllos due to the later 

recolonisation could aid in the maintenance of genetic differentiation among the original 

sources, namely southern refugia. This result supported the modelling of potential range 

limit distributions of tree species in Europe during the Last Glacial Maximum (LGM) 

(Svenning et al, 2008). This modelling, predicted by simulation of LGM climates and 
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tree distribution using the data of 22 current tree species distribution, revealed that T. 

cordata would have distributed relatively far north from the southern refugia compared 

to T. platyphyllos. In addition, the pollen record indicated that the most abundant pollen 

found during the Pleistocene period was of T. cordata and the considerable tolerance to 

low temperature of T. cordata (Pigott, 2012) could also support the possibility of the 

earlier migration and recolonisation toward the north of T. cordata than of T. 

platyphyllos. 

 

5.5.3 Post-glacial colonisation routes and possible refugia of T. cordata and T. 

platyphyllos 

The analysis of microsatellite data suggested different possible colonisation routes of T. 

cordata and T. platyphyllos from southern putative refugia. At least two putative glacial 

refugia could exist in T. cordata, whereas three putative refugia could be defined in T. 

platyphyllos. Chloroplast haplotypes observed in T. cordata suggest different 

colonisation routes compared to microsatellite analysis, particularly in the range edge 

populations, such as the British and Norwegian populations. In contrast, chloroplast 

haplotypes observed in T. platyphyllos agree with the potential colonisation route to the 

UK from the Iberian peninsula defined by microsatellite analysis. 

Considering the distribution of T. cordata based on population structure analysis from 

microsatellites, K = 4 reveals the best clustering. This clustering indicates some signals 

of post-glacial colonisation and migration routes of T. cordata from southern to 

northern Europe (Figure 5.6 and 5.7 b, at K = 4). The pattern of population structure 

could identify at least two putative refugia in the Balkan and Italian peninsulas. The 

different clusters found in Finnish and Norwegian populations were present in the 

eastern European populations. This could imply that the genotypes in the two northern 

populations could derive from Balkan refugia after the ice age. The distribution pattern 

observed also suggests the expansion from the southern refugia to fill the north of 

Europe was divided into two possible different migration routes. The first possible 

routes could expand from the Balkans via Russia to Finland, while the second route 

could expand through central Europe to Denmark and Norway. The main cluster present 

in the UK could suggest the contribution of refugia from the Italian peninsula (Figure 

5.15). These expansion routes from the two main refugial areas support the spread of 

Tilia analysed using pollen evidence during Late Glacial and postglacial periods (Lang, 
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2003). The study revealed that during the last glaciation (18,000 BP), Tilia was present 

only in the Balkan Peninsula and southern Italy. Then Tilia spread to the north and 

northwest of Europe and reached southern Scandinavia and England by 8,000 BP 

(Figure 5.1). However, the main genotype in Finland and Eastern Europe could have 

distributed from refugia in the Caucasus and the main genotype in the UK could derive 

from Iberia. Due to the lack of samples from these areas, the putative Caucasus and 

Iberia refugia cannot be confirmed. 

Considering chloroplast haplotype distribution of T. cordata, it is possible that three 

refugia existed in Iberia, Italy and the Balkan Peninsula. The haplotypes suggest some 

different colonisation routes compared to microsatellite analysis (Figure 5.16). Hap1, 

which is the most widespread and predominant haplotype, could suggest the expansion 

route was from Iberia to Denmark and Norway. However, due to the limited sampling 

of T. cordata from Spain (one individual), it is difficult to determine the reliable 

colonisation routes and confirm the existence of this refugium in T. cordata. If the 

chloroplast haplotypes and microsatellite analysis are combined, the colonisation route 

to Norway may have come from two potential refugia (Italy and Iberia). The 

distribution of Hap2 could suggest the existence of putative glacial refugia in the Italian 

peninsula, which supports the results of microsatellite distribution. Cross-over of 

haplotype distribution was observed in Hap5, which indicates the UK haplotype 

probably came from the Balkan Peninsula or eastern areas during the postglacial 

expansion (Figure 5.16). This colonisation route is different from the pattern implied by 

microsatellite analysis, which suggests an origin from refugia in Italy. From the results 

of both chloroplast haplotypes and microsatellite data, it is possible that the colonisation 

of T. cordata in the UK could originate from two putative refugia, in Italy and the 

Balkans. However, to confirm the colonisation route from the southern refugia, more 

samples need to be analysed, particularly in the UK. The mixing of different lineages in 

the north has also been observed in white oaks (Quercus sp.), which indicated that the 

colonisation in southern Scandinavia could derive from two routes from refugia in 

Iberia and Italy (Dumolin-Lapegue et al, 1997a; Petit et al, 2002).    

The distribution pattern based on microsatellite data in T. platyphyllos indicated three 

putative refugia in Iberia, Italy and the Balkan Peninsula (Figure 5.17). The main cluster 

found in six populations in Eastern Europe, which were grouped into the same cluster as 

the Greek population, could suggest a distribution route from the Balkans during the 

postglacial period. Despite the lack of T. platyphyllos sampling from Italy, the main 
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cluster observed in central Europe (German, France and Swiss populations) could imply 

a postglacial colonisation route from Italian refugia. The main clusters in the UK 

population and the Danish population are both found in the populations from southern 

France and Spain, which could suggest that they may have shared the potential refugia 

in Spain (Iberia) and there was colonisation by two different routes toward the north. 

Although there is no pollen evidence of Tilia in Spain and Portugal during the last 

glaciation (18,000 BP), the coherent results of both microsatellite analysis and 

chloroplast haplotype (Haplotype 10) (Figure 5.18) in the expansion of T. platyphyllos 

from northern Spain to the UK could support the existence of this potential refugium. 

Also, the result could be explained by the presence of a land bridge during the post-

glacial period, due to the low level of the sea (Rohling et al, 1998).  

In the chloroplast haplotype analysis, the results indicated that some haplotypes were 

restricted to single populations. Thus, sequencing more samples in other locations 

would allow more reliable determination of the patterns of chloroplast distribution. In 

addition, adding samples from the potential refugial areas would build a complete 

picture of post-glacial colonisation routes and more accurately define the possible 

refugia in the two species of Tilia. 
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Figure 5.15 The possible migration routes of T. cordata based on microsatellite data. 

 

 

Figure 5.16 The possible migration routes of T. cordata based on chloroplast haplotypes. 
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Figure 5.17 The possible migration routes of T. platyphyllos based on microsatellite 

data. 

 

Figure 5.18 The possible migration routes of T. platyphyllos based on chloroplast 

haplotypes. 
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5.5.4 The sharing of chloroplast haplotypes between T. cordata and T. platyphyllos 

The haplotype network indicated some sharing of haplotypes between T. cordata and T. 

platyphyllos. In general, sharing haplotypes in closely related species may be caused by 

incomplete lineage sorting of ancient polymorphisms and by hybridization. In our study, 

the haplotype network suggests that incomplete lineage sorting is a more likely cause of 

sharing haplotypes between T. cordata and T. plattyphyllos than recent hybridisation. 

The long generation time of Tilia could be a reason for the incomplete lineage sorting. 

The age at which Tilia trees begin to flower and produce seed ranges from six to 40 

years old, depending on the environmental conditions, particularly related to light 

exposure (Pigott, 2012). In addition, in natural woodlands this may be even later if there 

are no gaps. The long period of time for producing the next generation may be 

insufficient for clearly separating the two species, particularly by using DNA regions 

with a low rate of evolution, such as chloroplast DNA. 

The haplotypes Hap1 and Hap3 were shared by both species and are at an intermediate 

position in the network. This could indicate that these haplotypes are ancient and 

present in the common ancestor, and now present in T. cordata and T.platyphyllos after 

the two species split. This hypothesis is also supported by the fact that the terminal 

haplotypes in the network are all species specific. In addition, several lines showed a 

mixture of haplotypes belonging to the two species, which also suggests incomplete 

sorting. For example, Hap8 and Hap9, which were found only in T. platyphyllos, are 

separated by one mutation step (indel) from the neighbouring haplotype (Hap7) found 

only in T. cordata. Moreover, the shared haplotypes occurred in non-overlapping 

sampling areas of the two species. Also populations in mixed stands had different 

haplotypes. T. cordata in Spain possessed Hap1, while T. platyphyllos had Hap10. This 

could indicate that recent hybridisation between T. cordata and T. platyphyllos is 

infrequent. These results are also supported by the low hybridization and introgression 

detected in the UK (Chapter 6). However, pollen evidence of the hybrid found during 

the middle of the Pleistocene (Hoxanian interglacial) could indicate that the 

hybridisation was more frequent at that ancient time (Pigott, 2012). 

Some intermediate haplotypes not observed in this study could indicate a high 

extinction rate of chloroplast lineages, which may result from high rates of lineage 

sorting. However, as the sampling numbers and sites were limited, this hypothesis 
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cannot be tested. Adding samples would complete the chloroplast network and may aid 

in explanation of the lineage sorting of chloroplast haplotypes in the species.      

In plants, sharing of chloroplast haplotypes between closely related species has often 

been observed, such as in two sympatric beeches (Facus lucida and F. longipetiolatta) 

(Zhang et al, 2013), in red maple and silver maple (Acer rubrum L. and A. saccharinum 

L.) (Saeki et al, 2011), in birches (Betula pendula, B. pubescens and B. nana) (Palme et 

al, 2004) and in ash (Fraxinus excelsior and F. angustifilia) (Heuertz et al, 2006). 

 

5.6 Conclusion 

Our study confirmed the expectation that populations at the range edge have low genetic 

diversity and are genetically more isolated than the populations near the southern 

refugia. This supports the rapid recolonisation of tree species during the postglacial 

periods. In addition, the stronger genetic structure observed in T. platyphyllos than in T. 

cordata suggests that T. cordata could migrate and colonize the northern areas before T. 

platyphyllos. According to the results of both microsatellite and chloroplast haplotypes, 

the colonisation routes of T. cordata are different from T. platyphyllos. However, the 

two Tilia species seem to share the three main refugia in southern Europe (Iberia, Italy 

and Balkans). T. cordata seems to have additional putative refugia in Caucasus (eastern 

areas).To clarify the colonisation routes and confirm the existence of ice age refugia, 

more samples, particularly from the putative refugia, need to be analysed. Considering 

the chloroplast haplotype network, the shared haplotypes of the two Tilia species could 

be the result of incomplete lineage sorting rather than recent hybridization. 
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Chapter 6. Contrasting molecular and morphological methods for the 

identification of interspecific gene flow between Tilia cordata and T. 

platyphyllos in the UK 

 

6.1 Abstract 

Hybridisation is a significant process in plant evolution. The accurate identification of 

hybrids is a necessary process required for understanding evolutionary consequences of 

hybridisation. Tilia cordata and T. platyphyllos are common in the UK and they can 

form a hybrid (T. x europaea). There is little genetic information available on natural 

hybridisation and introgression of these species. In this study, nuclear microsatellite 

markers and morphological characters were used to determine natural hybridisation and 

introgression between T. cordata and T. platyphyllos in ten sympatric UK populations 

and compare the use of these two methods for detection of the hybrid. The results 

revealed that hybridisation has occurred between T. cordata and T. platyphyllos. 

Microsatellite results indicated clear separation of the two species. The hybrids detected 

are mainly first generation hybrids, but introgression was also detected. The results 

from molecular and morphological analysis were partially congruent. The hybrids had 

overlapping ranges of hybrid index (HI) with the pure parental species. The results 

suggest that molecular markers are more reliable than HI analysis, based on leaf 

characters, for detecting hybridization. The hybridization and introgression observed 

could indicate gene flow between the two species, of importance for adaptation and 

other evolutionary processes.  

 

6.2 Introduction 

Hybridisation is a common phenomenon in plants (Grant, 1981; Harrison, 1993). It 

occurs when the reproductive isolation (RI) between closely related species is 

incomplete (Stebbins, 1959). It has been suggested that approximately 25% of plant 

species hybridise with at least one other species (Mallet, 2005). Hybridisation is a 

significant process in plant evolution as it produces genetic combinations between 

different species (Arnold, 1997; Arnold et al, 2004; Rieseberg and Carney, 1998). This 

process can lead to the origin of new species, subspecies, races or ecotypes through 
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homoploid (parental species and hybrid have the same ploidy level) and polyploid 

(parental species and hybrid have different ploidy level) hybridisation (Rieseberg and 

Wendel, 1993). 

The consequences of hybridisation and introgression are also a potential source of 

evolutionary novelty. These processes increase genetic diversity and also provide a 

possibility of transferring genes involved in plant adaptation (Rieseberg and Wendel, 

1993). Anderson (1949) was the first to describe that introgression may have an 

advantage if genes are exchanged between two species. This could facilitate adaptation 

and contribute to colonisation of novel habitats as exemplified by the adaptive 

introgression of Helianthus paradoxus (Rieseberg, 1991).  

Often hybrids are fully fit or even if they have a reduced fitness compared to their 

parental species, they are often able to contribute to the next generation and may 

introgress with their parental species, which results in hybrid swarms. The phenotype 

and genotype in hybrid swarms can vary considerably depending upon the type of 

crosses, such as back-crossing or selfing of first generation hybrids (Abbott, 1992). 

Therefore, the correct identification of hybrids is important and necessary for the 

understanding of evolutionary processes. 

 

6.2.1 Methods used for studying hybrids in plants 

Hybridisation and hybrid detection in plants have been studied in many groups. Both 

morphological and molecular methods have been commonly used to distinguish species 

and to detect hybrids (Duminil and Di Michele, 2009). The morphological approach is 

the traditional way for species and hybrid identification, relying on the fact that hybrids 

typically show a morphology intermediate between the parental species. Historically 

hybrids were identified using a hybrid index approach, introduced by Anderson (1949). 

This approach identifies hybrids using a number of different traits of the two parental 

species. Traits from one species are scored as zero, while those from the second species 

are scored as two. Each sample is scored for all morphological characters and the total 

scores are calculated. While parental types score extreme values, hybrids have a total 

score intermediate between the two parental species.  This has been a successful 

approach and continues to be used (e.g. Kiaer et al (2007), Thorsson et al (2007), 

Tovar-Sanchez and Oyama (2004)). 
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Variation of morphological characters can be due to both genetic and environmental 

effects (Rieseberg, 1995). Even different samples of the same genotype may have 

variation of morphology because of phenotypic plasticity (Garzon et al, 2011). In 

addition, the morphological characters of hybrids, or further generations, may not be 

intermediate between their parents but closer toward one parental species. Therefore, 

the detection of hybrids using only morphological traits may lead to detection error. In 

the last few decades, molecular methods have been widely used for species 

determination and hybrid detection (Duminil and Di Michele, 2009). 

Molecular markers are powerful tools to identify species and to detect hybrids. Study at 

the DNA level provides an advantage over the morphological approach because genetic 

material is stable in all plant tissue and does not vary due to the environment or the 

stage of plant development. Often morphological and molecular approaches are used in 

combination to identify species and hybrids. For example, hybridisation between 

species in the genus Quercus (the oaks) was studied using various types of genetic 

markers. By using nine RAPD markers and morphological characteristics of leaves, the 

hybridisation between two closely related Mexican red oaks, Quercus affinis and Q. 

laurina, was analyzed. Sixteen populations including 12 hybrid zones showed partially 

congruent results between morphological characters and genetic markers (Gonzalez-

Rodriguez et al, 2004), with morphological analyses indicating a smaller number of 

intermediate samples than molecular analyses.  

 

Evidence for natural hybridisation and introgression was reported in four  naturally co-

occurring oak species (Quercus robur, Q. petrea, Q. pubescens and Q. frainetto) (Curtu 

et al, 2007). In this study, 13 morphological characters (mainly leaf morphology), 

chloroplast DNA, seven isozymes and six microsatellite markers were used to define 

species and assess hybridisation among the four oak species (269 samples). Genetic 

clustering showed a high correlation with morphological analyses. Some incongruence 

between morphological and genetic discrimination was found. Curtu et al (2007) 

suggested that those with intermediate morphology are not necessarily hybrids. 

Therefore, hybrid identification based only on morphological characters can lead to 

wrong conclusions. 

 

In 2010, seven nuclear microsatellite markers and leaf morphology were used to analyse 

interspecific gene flow in hybrid zones of Q. hypoleucoides, Q. scytophylla and Q. 
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sideroxyla in north-western Mexico (Penaloza-Ramirez et al, 2010). Hybrids between 

each pair of species, back-crosses and a probable triple hybrid of three species were 

detected. Other studies of hybridisation and hybrid detection between oak species have 

been reported. Some had incongruent or partially congruent results between 

morphological and genetic characters (Bacilieri et al, 1996; Craft and Ashley, 2006; 

Craft et al, 2002; Kremer et al, 2002), while some had correspondence between these 

two approaches (Fortini et al, 2009; Gailing et al, 2012; Howard et al, 1997). 

 

6.2.2 Hybridisation between T. cordata and T. platyphyllos 

Tilia cordata and T. platyphyllos are both regarded as native in England and Wales 

(Pigott, 1969) and the former was dominant in ancient woodland 5000 yr BP (Huntley 

and Birks, 1983). In the UK, Tilia has not been widely planted in woodland and 

regenerates poorly from seed. Therefore, the presence of Tilia indicates  ancient 

woodlands (Pigott, 1969). T. cordata is naturally distributed in many parts of the UK, 

being found naturally as far north as the Lake District (latitude 54
o
 30’N) and North 

Yorkshire (Pigott and Huntley, 1978). T. platyphyllos mostly occurs at the same 

latitudes as T. cordata, although it does not extend naturally as far north. If these two 

species are sympatric, as is typically the case, hybridisation may occur as they have 

overlapping flowering times (Pigott, 2012). The hybrid between T. cordata and T. 

platyphyllos, T. x europaea L. (common lime), shows intermediate morphology 

between its parental species.  Elwes and Henry (1906) considered that T. x europaea 

occurred rarely naturally. Little concrete evidence of introgression has been reported. At 

Harton, Cambridge, seedlings grown from a T. platyphyllos tree growing close to T. x 

europaea showed a hybrid phenotype (Pigott, 1969). Introgression in Tilia species is 

thought to be limited as hybrids produce few viable seeds (Fromm, 2001). However, 

this evidence is limited and introgression of Tilia species remains to be confirmed. 

Therefore, the occurrence of natural hybridisation and introgression needs to be clarified.  

 

6.2.3 Detection of Tilia species and hybrids using morphological and molecular 

approaches 

T. cordata and T. platyphyllos are frequently found together in woods, which could 

promote hybridisation between them. The identification of the pure species and hybrids 

using morphological traits is difficult as the hybrids show intermediate traits with 
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overlapping ranges of characteristics between the species. The identification is even 

more difficult if only a few traits are used. The main characteristics for species 

identification are the morphology of leaf, flower and fruit (Pigott, 2012). The two 

species differ in many traits, such as the shape of leaf buds, the colour of leaves,  the 

presence/ absence of hairs on mature leaves from fully exposed parts of the crowns, the 

sharpness of the marginal teeth of leaves, the number of flowers in cymes, the number 

of stamens, the thickness of fruit walls (Pigott, 2012), the position of inflorescences and 

bracts, the scent of flowers  (Pigott, 1991) and the size and shape of pollen grains 

(Andrew, 1971; Chambers and Godwin, 1971; Wicksell and Christensen, 1999). 

Although these morphological characters are reliable and clearly separate the two 

species, it is difficult to obtain some characteristics, such as the number of flowers, 

inflorescence position and pollen type because flowers are not always present.  

In addition, the variability of traits within species is extremely high. Morphological 

traits are highly affected by environments.  Samples differ in leaf shape, size, form of 

marginal teeth and number of flowers in cymes. Leaf characters are the main feature 

used in many analyses and these are particularly sensitive to the environment. The 

amount of light and water are important factors that influence leaf traits, such as size, 

dimension, margin and structure (Traiser et al, 2005). Even in the same tree, leaf size 

and shape from different parts can be different. The leaves from basal sprouts are 

normally larger than those from the crown and also have different shapes. In addition, 

full light exposed leaves have reddish-brown tufted hairs on the lower surface, while 

leaves from the shade have pale brown or colourless tufted hairs (Pigott, 1991). 

Therefore, using a morphological approach the location of the leaves on the tree is very 

important for hybrid detection. Also, hybrids have both intermediate and a mixture of 

characters of each of the two parental species (Pigott, 1991). In contrast, molecular 

methods detect species differentiation and hybrids at the DNA level with limited 

environmental variation. 

A small number of studies on hybridisation and species identification in Tilia have been 

published. The characters used in the HI approach are based on the morphology of 

leaves, petioles and young twigs. In 1969, Pigott used Anderson’s method to examine 

the variation of the two Tilia species and the hybrids in Derbyshire Limestone, England. 

The results reveal that many trees in this location have intermediate morphology 

between the two parental species, which was proposed to be the result of hybridisation. 
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However, the occurrence of introgression could not be established, possibly due to the 

method of detection (morphology). 

Wicksell and Christensen (1999) studied the hybridisation between T. cordata and T. 

platyphyllos in Denmark, using leaf morphology with seven quantitative and eight 

qualitative characters (Table 6.1). From the analysis of 111 samples in 12 Tilia stands, 

collected from both natural population and planted avenues, 50 samples were identified 

as pure T. cordata, while 46 and 15 were defined as pure T. platyphyllos and hybrids, 

respectively. Among these 15 hybrids, 10 were from natural populations (Wicksell and 

Christensen, 1999).  

 

Table 6.1 Morphological characteristics of T. cordata and T. platyphyllos described by 

Wicksell and Christensen’s method (Wicksell and Christensen, 1999) 

Characters T. cordata T. platyphyllos 

Length of leaf, including basal lobe 45-106 mm 53-144 mm 

Length of lamina, excluding basal lobe 40-91 mm 48-135 mm 

Width of lamina 40-82 mm 40-113 mm 

Width of apex 2-9 mm 3-15 mm 

Length of petiole 25-62 mm 22-62 mm 

Number of teeth per cm on the broadest part of leaf 3-7 3-5 

Number of lateral veins of first order 4-6.5 6-10 

Presence of hairs on upper and lower surface glabrous pubescent 

Type of hairs stellate or forked simple 

Colour of hair reddish-brown white 

Colour of abaxial surface glaucous green 

Lateral veins of second and third order on abaxial 

surface 
not raised raised 

Presence of hairs on petiole glabrous pubescent 

Presence of hairs on twig glabrous pubescent 

Direction of inflorescence  obliquely erect pendulous 

 

Pollen is also used for identification of T. cordata, T. platyphyllos and the putative 

hybrid. Chambers and Godwin (1971) used scanning electron microscope to investigate 

whole and fractured pollen grains of Tilia taken from the herbarium in Cambridge, UK. 

The results indicate differences in size and pattern of pollen grains and in structure of 

pollen walls between the two species and their hybrid (Chambers and Godwin, 1971). 

Andrew (1971) published his study of pollen in Tilia in the same year. 23 samples of 
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British Tilia showed that the average size of pollen was smaller in T. cordata than in T. 

platyphyllos. In T. cordata, pollen had finer reticulation and a rounder outline than in T. 

platyphyllos. In the hybrid, T. x europaea, the pollen showed a mixed pattern of the two 

parental species.  

Molecular markers, which are not affected by environmental variation, have also been 

used for species and hybrid detection. The isozyme method was used for identification 

of clones of T. cordata in a seed orchard and detection of clonal samples along a 

country road in Germany (Maurer and Tabel, 1995). Fromm and Hattemer (2003) used 

allozymes to study species differentiation between T. cordata, T. platyphyllos and their 

hybrid, using buds and seeds of 140 T. cordata, 67 buds of T. platyphyllos and seven 

hybrids in Germany. The study suggested that hybridisation and introgression between 

T. cordata and T. platyphyllos is limited as there are several species-specific enzyme 

variants (Fromm and Hattemer, 2003). 

This study aims to utilise and compare molecular markers and a morphological 

approach to examine the extent of hybridisation between T. cordata and T. platyphyllos 

across the range of their sympatric populations in the UK. I have used highly 

polymorphic nuclear microsatellite markers developed from T. platyphyllos (Phuekvilai 

and Wolff, 2013), which also amplify well in T. cordata. This is combined with a 

Hybrid Index (HI) approach (Pigott, 1969). Individuals from ten sympatric locations in 

the UK have been investigated to address the question whether hybrids are formed 

between T. cordata and T. platyphyllos in natural populations and to evaluate whether 

morphological and molecular data give consistent results. 

 

6.3 Materials and methods 

6.3.1 Plant materials 

Leaf and young twig samples from 144 Tilia trees were collected from nine locations, 

considered to hold sympatric populations of T. cordata and T. platyphyllos based upon 

SSSI citations (Natural England website). An additional population (Roudsea) was 

beyond the northern range of T. platyphyllos in the UK and was considered to have only 

T. cordata (Table 6.2). Branches fully exposed to sunlight were utilised to provide 

samples from each tree. The number of trees per location ranged from five to 19, 

depending on population sizes (mean number of trees sampled per population = 14.4). A 



Chapter 6. Interspecific gene flow 

 

116 
 

minimum of twelve leaf samples per tree were taken, ten for morphometric analysis and 

two leaves for DNA extraction. The location of each tree was also recorded using GPS 

(Garmin eTrex). Among these trees sampled, individuals from two locations were 

collected by the author (ANS and KIN), the others were collected by colleagues at Edge 

Hill University. 

 

Table 6.2 Locations, population codes, coordinates (latitude and longitude) and number 

of trees sampled of the ten Tilia study sites 

Location Pop. code Latitude and longitude Sample size 

Anston Stones Wood ANS 53.34426, -1.207147 18 

Crews Hill Wood  CHW 52.35649, -2.692415 16 

Dumbleton Dingle  DUD 52.33138, -2.438264 12 

Earl’s Hill  EAR 52.63727, -2.869548 5 

Highbury Wood HBW 52.17621, -3.341825 16 

Kings’ Wood KIN 53.39842, -1.181878 18 

Knapp and Papermill  KPM 52.36835, -2.708353 13 

Lady Park Wood  LPW 51.82497, -2.659069 17 

Roudsea ROU 54.23339, -3.025833 19 

Tick Wood  TIC  52.62624, -2.526978 10 

 

6.3.2 Molecular analysis 

DNA extraction and microsatellite genotyping 

144 samples were genotyped using microsatellites. A leaf of each sample was dried and 

kept at 4 °C. Genomic DNA was extracted using a cetyltrimethylammonium bromide 

(CTAB) procedure (Morgan-Richards and Wolff, 1999) as described in Chapter 2. The 

extracted DNA was dissolved in 100 µl of TE buffer and stored at -20 
o
C until use. All 

samples were genotyped using 13 microsatellite loci (Phuekvilai and Wolff, 2013). PCR 

reactions were performed as described in Chapter 3. GeneMapper
® 

Software (Applied 

Biosystems) was used to determine fragment sizes and alleles were manually scored and 

edited before analysing in GenAlEx version 6.5 (Peakall and Smouse, 2012). 
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Hybrid detection using microsatellite data 

Principal Coordinates Analysis (PCO) was performed using GenAlEx6.5 (Peakall and 

Smouse, 2012). To allocate samples to genealogical classes, Bayesian clustering 

analysis was performed using the NewHybrids program Version 1.1 (Anderson and 

Thompson, 2002). By using the default setting, the program was run with 10
5 

iterations 

of the Markov Chain Monte Carlo (MCMC) method and did not use prior allele 

frequency information. The samples were assigned to one of the six possible 

genealogical classes (parental species, F1, F2 or backcross to each parent), which is 

visualized with different coloured bars. If multiple samples with the same genotype 

were detected, only one was included in NewHybrids. 

 

6.3.3 Morphological analysis 

A minimum of ten leaves per tree were collected and measured. The morphology was 

analysed based on the methods of Pigott (1969). Nine characters of leaves, petioles and 

young twigs were scored as 0 for T. cordata character states, 1 for intermediate 

character between T. cordata and T. platyphyllos and 2 for T. platyphyllos character 

states (Table 6.3). The total Hybrid Index (HI) score of each tree was calculated. A HI 

of six or seven was  used as the reference HI of a putative first generation hybrid (Pigott, 

1969). The HI scores were obtained from our colleagues at Edge Hill University. The 

frequency distributions of HI were plotted for each population. 
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Table 6.3 Characters of T. cordata, T. platyphyllos and their hybrids used for assessing 

hybridization based on Pigott (1969) method 

Score 
T. cordata Hybrid T. platyphyllos 

(0) (1) (2) 

Leaves 
- Largest leaves on second 

order shoots <8 cm long 

Largest leaves on second 

order shoots 8-10 cm long 

Largest leaves on 

second order 

shoots >10 cm long 

 

- Adaxial surface flat; 

terriary veins not raised on 

abaxial surface 

Intermediate 

Adaxial surface 

rugose; tertiary veins 

prominent on abaxial 

surface 

 
- Abaxial surface glaucous Intermediate Abaxial surface green 

 

- Veins hairsless on abaxial 

surface 
Veins with scattered hairs Veins very hairy 

 

- No hairs between veins on 

abaxial surface 

Scattered hairs between 

veins on abaxial surface 

Hairy between veins 

on abaxial surface 

 

- No hairs on adaxial 

surface 

Scattered hairs on adaxial 

surface 

Many hairs on adaxial 

surface 

Petiole - < 1.2 mm diameter 1.2-1.5 mm diameter >1.5 mm diameter 

 
- No hairs Few hairs Many hairs 

Young 

twigs 
- No hairs Few hairs Many hairs 

 

6.3.4 Correlation between morphological characters and molecular analysis 

The consistency of morphological characters and molecular analysis was calculated as 

the correlation between HI and the value loading on the first axis of PCO of all samples, 

(dot plots with trend lines) using Microsoft Excel 2010.  

 

6.4 Results 

6.4.1 Molecular analysis 

Microsatellite analysis of 144 samples from ten UK populations showed high genetic 

diversity. However, five groups of individuals in four different populations were found 

to share the same genotype across all 13 loci, presumably as a result of clonal 

reproduction. Two clones were detected in Dumbleton Dingle (DUD). Seven samples 

(DUD03, 04, 05, 06, 07, 10 and 11) showed the same genotype at all 13 loci, and two 

other samples in this population (DUD01 and 02) were also a clone. The other three 

clones were detected in three populations with two samples per clone, namely Highbury 
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Wood (HBW08 and 09), Knapp and Papermill (KPM05 and 06) and Tick Wood (TIC02 

and 05).  

The PCO (Principal Coordinate Analysis, Figure 6.1) shows that the UK samples were 

clustered into two groups. Considering the morphology, samples from one cluster 

belonged to the species T. cordata, and the other to T. platyphyllos. The first two axes 

of PCO account for 59.88% and 11.44% of the molecular variance (71.32% of the total 

variation). The T. platyphyllos cluster (right) was more compact than the T. cordata 

cluster (left). Samples from Kings’ Wood (KIN) and Earl’s Hill (EAR) clearly fell into 

the T. platyphyllos cluster and samples from Highbury Wood (HBW) and Roudsea 

(ROU) clearly fell into the T. cordata cluster. Other populations were a mix of T. 

cordata and T. platyphyllos, with some hybrids. Twelve samples that were plotted in 

between the two main clusters (Figure 6.1, with data label) were considered to be 

hybrids (NewHybrids). These were one sample from Crews Hill Wood (CHW08), seven 

samples from Dumbleton Dingle (DUD03, 04, 05, 06, 07, 10 and 11), two samples from 

Knapp and Papermill (KPM05 and 06) and two samples from Tick Wood (TIC02 and 

05). However, eleven of these samples were identified as clones, as mentioned earlier. 

Therefore, four genetically different hybrids were detected from ten UK populations 

using genetic markers illustrated by PCO. In addition, three samples (CHW05, LPW11 

and 12) were plotted closer towards the T. platyphyllos cluster. These samples were 

defined later by NewHybrids as F2 (CHW05) and T. platyphyllos (LPW11 and 12). 
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Figure 6.1 Principal Coordinate Analysis of ten UK populations using 13 microsatellite 

markers. Blue circle indicates samples which coincided largely with T. cordata 

morphology, red circle indicates samples which coincided largely with T. platyphyllos 

morphology. The populations are coded by colour (GenAlEx).  

= ANS,    = CHW,    = DUD,    = EAR,     = HBW,    = KIN,    = KPM,    = LPW,     = 

ROU and    = TIC 

 

For Baysian clustering only unique genotypes were analysed (a single sample per clone, 

134 samples). NewHybrids analysis classified samples into six genealogical classes: T. 

cordata, T. platyphyllos, F1, F2 and backcross to each parental species (Figure 6.2). The 

results are consistent with the result from the PCO (CHW, DUD, KPM and TIC). One 

sample of each population from Crews Hill Wood (CHW8), Dumbleton Dingle (DUD), 

Knapp and Papermill (KPM) and Tick Wood (TIC) were F1, whereas one sample from 

Crews Hill Wood (CHW5) was identified as F2. Two samples from Lady Park Wood 

(LPW11 and 12), placed in between parental species in PCO, but closer towards T. 

platyphyllos, were assigned as T. platyphyllos in NewHybrids. There was one sample 

(ROU20) that is undetermined, equally likely F2 hybrid, backcross to T. cordata and 

pure T. cordata, and was plotted near the edge of the T. cordata cluster by PCO (Figure 

6.1, with data label). The other samples were assigned to be pure parental species (either 

T. cordata or T. platyphyllos), which was consistent with the results from the PCO 

analysis.  

CHW05 

CHW08 

DUD03, DUD04, 

DUD05, DUD06, 

DUD07, DUD10, DUD11 

KPM05, KPM06 

LPW11 

LPW12 

TIC02, TIC05 

C
o

o
rd

. 
2

 

Coord. 1 

ROU20 



Chapter 6. Interspecific gene flow 

 

121 
 

 

 

 

 

Figure 6.2 Genealogical classes analysis of 136 samples from 10 UK populations. The 

colours in each column indicate the probabilities of the corresponding classes for each 

sample (NewHybrids). Ff= T. cordata,      = T. platyphyllos,      = F1 hybrid,     = F2 

hybrid,      = backcross to T. cordata,     = backcross to T. platyphyllos 

 

6.4.2 Morphological analysis 

The hybrid index (HI) of our samples ranged from 0 to 17. Based only on morphology, 

samples with low total scores (0-5) are indicated as T. cordata, while samples with a 

high HI (8-17) are T. platyphyllos and those with HI of 6 or 7 are hybrid. The broadest 

range of HI was in Crews Hill Wood (CHW), Dumbleton Dingle (DUD) and Lady Park 

Wood (LPW), while Knapp and Papermill (KPM) had morphologically identified mixed 

species with a distribution in the direction of T. cordata and Anston Stones Wood (ANS) 

in the direction of T. platyphyllos. Four populations appeared not to have both pure 

species in sympatry. Highbury Wood (HBW) and Roudsea (ROU) only had trees 

identified as T. cordata and hybrids, while Tick Wood (TIC) and Kings’ Wood (KIN) 

only had T. platyphyllos and hybrids.  

ANS CHW DUD EAR HBW KIN 

KPM LPW ROU TIC KIN 
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Sixteen out of 144 samples (11.11%) were identified as hybrids. Hybrids (with HI of 6 

or 7) were detected in almost all of the populations, except in Lady Park Wood (LPW), 

where only pure species of T. cordata and T. platyphyllos were identified and in Earl’s 

Hill (EAR), where only T. platyphyllos was detected. The frequency distribution of the 

HI in each population did not reveal a consistent pattern across the sites surveyed 

(Figure 6.3). 
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(a) Anston Stones Wood (ANS) 

(b) Crews Hill Wood (CHW) 

(c) Dumbleton Dingle (DUD) 

(d) Earl’s Hill (EAR) 
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(e) Highbury Wood (HBW) 

(f) Kings’ Wood (KIN) 

(g) Knapp and Papermill (KPM) 

(h) Lady Park Wood (LPW) 
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Figure 6.3 The frequency distribution of hybrid index (HI) in 10 populations with 

sympatric T. cordata and T. platyphyllos. Numbers on bars are the names of each 

individual. Colours indicate species and hybrid classes as defined by NewHybrids.  

    = T. cordata,      = T. platyphyllos,      = F1 hybrid,     = F2 hybrid,     = undetermined 

class 

 

6.4.3 Comparison of morphological and molecular analysis 

Molecular analysis indicated four first generation hybrids, one second generation hybrid 

and one undetermined class (ROU20). The four F1 hybrids consist of three clones in 

DUD, KPM  and TIC and one sample in CHW (12 samples in total) while 

morphological analysis defined more hybrids (16 samples) with a HI of 6 or 7. Of the 

twelve hybrids detected in the molecular analysis, only six samples (DUD05, DUD07 

DUD10, KPM05, KPM06 and TIC05) had a HI of 6 -7. In some populations, hybrids 

(HI of 6 or 7) were detected, e.g. in Highbury Wood (HBW) and King’s Wood (KIN), 

but molecular analysis defined these populations as pure T. cordata and T. platyphyllos, 

respectively (Figure 6.3). 

(i) Roudsea (ROU) 

(j) Tick Wood (TIC) 

 

 

) 
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There was a strong positive correlation between HI and the loading of the first axis of 

PCO in the 144 samples (R
2 

=0.762, Figure 6.4), indicating overall strong coherence of 

molecular and morphological identification of species and hybrids. The trend line 

crosses the HI axis (PCO value = 0) at approximately HI 7. However, the HI of the 

samples identified as the same clone varied from 3 to 8 in DUD (seven samples, 

DUD03, 04, 05, 06, 07, 10, 11), 6 and 7 in KPM (two samples, KPM05, 06) and 7 and 9 

in TIC (two samples, TIC02, 05).  

Samples deviating from the trend line indicated conflicting results in hybrid detection 

between molecular analysis (PCO and NewHybrids) and morphological analysis, if 

relying on HI classification of 1 – 5 as T. cordata, 6 and 7 as hybrid and 8 – 18 as T. 

platyphyllos (Fig 6.3). In the CHW population, CHW08 was assigned as F1 in 

NewHybrids, but the HI was low (1, indicating T. cordata) and another (CHW05) was 

defined as F2 hybrid with a high HI (15, indicating T. platyphyllos). DUD03 and 

DUD04 are assigned as F1 hybrid, but have a HI indicating T. cordata. Although one 

sample in Roudsea (ROU20) was undetermined class by NewHybrids, but most likely 

F2 hybrid, the value of the first HI (3) indicated it as T. cordata.  

 

 

 

Figure 6.4 Correlation between hybrid index (HI) and the first axis of PCO of all 

individuals. Labels indicates the hybrids detected by molecular approach. 

0

2

4

6

8

10

12

14

16

18

-0.800 -0.600 -0.400 -0.200 0.000 0.200 0.400 0.600 0.800 1.000

TIC05 

TIC02 

KPM05 

KPM06

5 

DUD06

KPM06

5 

DUD10

KPM06

5 

DUD05,07 

DUD11 

DUD03,04 

CHW08

KPM06

5 

 

HI 

1
st
 axis of PCO value 



Chapter 6. Interspecific gene flow 

 

126 
 

Details of the HI, the value of the first axis of PCO and species detection results from 

NewHybrids analysis of each sample are shown in Appendix 11. 

 

6.5 Discussion 

6.5.1 Hybridisation and introgression 

Here we used molecular and morphological characters to study the biology of T. 

cordata and T. platyphyllos in UK populations. The study showed that recently 

developed nuclear microsatellites have the power to genetically identify the two Tilia 

species native to the UK, as well as their hybrid. We have unequivocally shown that 

hybridisation and introgression occurs. Although the identification of trees as pure 

species or hybrid with both methods is not always identical, there is a strong coherence 

between both methods. The HI ranges of hybrids and parental species overlap and this 

suggests that a HI of six and seven is not a definite identification of a hybrid. Therefore, 

molecular analysis is likely to be more reliable than morphological analysis to identify 

hybrids and subsequent generations. 

The detection of hybrids in four of the ten populations supports the previous evidence 

that hybridisation between these species occurs in nature (Elwes and Henry, 1906; 

Pigott, 1969; Wicksell and Christensen, 1999). T. cordata flowers 14 days later than T. 

platyphyllos and they are both protandrous (Pigott, 2012). Hybrids flower in the 

intermediate period of the parental species (Weryszko-Chmielewska and Sadowska, 

2010). As the flowering times of the species and their hybrids partially overlap, the 

occurrence of hybridisation, introgression and back-crossing can be expected. The 

chance of hybridisation can increase if the flowering of T. platyphyllos is delayed, for 

example, when T. platyphyllos grows in a colder location (higher up on a mountain) 

than T. cordata.  

We detected a small proportion (3%, 4 out of 134) of first generation hybrids and less 

than 2% (two out of 134) of further generation hybrids. This is a small percentage 

compared to some other tree species. For example, in the genus Quercus 15-55% 

hybrids were detected (Jensen et al, 2009; Moran et al, 2012). This low proportion in 

Tilia supports the restricted hybridisation and introgression between T. cordata and T. 

platyphyllos reported in a German population using allozymes (Fromm and Hattemer, 

2003). It also fit with the fact that the two species have remained two separate 
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evolutionary genetic entities. However, considering the fact that introgression is evident 

(two samples), there is scope for gene flow between the species, resulting in possible 

further evolution and adaptation. Even in populations that currently have only one of the 

two species present (ROU and TIC) a hybrid was detected. Inevitably, the flowers from 

these hybrid trees will be pollinated with pollen from the species present in majority, 

resulting in introgression. 

Five clones in four populations (DUD, HBW, KPM and TIC) were identified by 

molecular markers as three hybrids and two T. cordata. It is well-known that Tilia has 

the ability for vegetative reproduction. The tree can sprout from cut or fallen stems and 

branches that touch the ground can generate new shoots and become a new tree. They 

can also produce new stems from vertical shoots or from dormant buds in the root collar 

(Pigott, 1991).  

 

6.5.2 Accord between methods 

The results of hybrid detection from the PCO and NewHybrids analyses are largely 

congruent. Four samples that were plotted between the two parental species (PCO) were 

defined as first generation hybrids (F1) after NewHybrids analysis. In addition, there are 

three samples plotted between the two parental clusters, but closer to T. platyphyllos in 

PCO, and NewHybrids analysis identified one (CHW05) as a second generation hybrid 

(F2) and the other two (LPW11 and LPW12) were defined as T. platyphyllos. Therefore, 

NewHybrids analysis not only confirmed the results from PCO that there are hybrids in 

the populations but also classified the genealogical classes of samples that were plotted 

in the area where it is hard to define their class. The class of one sample (ROU20) 

cannot be defined by NewHybrids, being F2 hybrid (most likely), pure T. cordata or 

backcross to T. cordata. It is worth considering that Roudsea is considered to be beyond 

the range of T. platyphyllos.  

One second generation hybrid (F2) was detected in the CHW population, where also a 

first generation hybrid (F1) was detected. This indicates that the hybrid between T. 

cordata and T. platyphyllos is fertile. Pigott and Huntley (1981) claimed that T. cordata 

is probably self-sterile and therefore out-crossing. Alleles detected in the F2 (CHW5) 

were not present in the F1 hybrid (CHW8), which indicated that this F1 is not one of the 

parents of the F2. Therefore, there must have been other F1 hybrids in the population. In 
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the TIC population, the F1 was detected among pure T. platyphyllos samples. This 

indicates that the other parental species (T. cordata) must have been present in the past 

or T. cordata is present in the location but was not sampled. Hybridisation and 

introgression between these two species was clearly established. 

Correlation between morphological characters (HI) and the first axis of PCO showed a 

strong positive correlation; T. cordata samples have a low value of HI and a negative 

value of the first axis PCO, while T. platyphyllos samples have a high HI value and 

positive value of the first axis PCO. The trend line crosses the hybrid index axis at 

approximately 7, which is close to the value (6-7) used as a reference for hybrid 

identification (Pigott, 1969). 

The molecular and morphological analyses largely lead to the same conclusion 

regarding classification of species and hybrids with some conflicting results. Out of 144 

samples analysed, 121 samples had consistent results, while 13 samples did not give 

consistent results. Molecular analysis identified 12 hybrids (F1) (3 clones) and one F2 

hybrid, while only six of them had HI value of 6 or 7 and the rest were defined as pure 

species based on morphological analysis (HI). The results showed that it is impossible 

to identify F2 trees by morphological analysis. One F2 detected by molecular analysis 

(NewHybrids) had HI of 15, which was much higher than any F1. The HI of T. cordata 

ranged from 0-7, T. platyphyllos ranged from 7-17 and the hybrids ranged from 1-9. 

Studies in other species in some cases show congruent results between these two 

approaches (Fortini et al, 2009; Gailing et al, 2012; Howard et al, 1997), while others 

had incongruent or partial congruent results between morphological and genetic 

characters (Bacilieri et al, 1996; Craft and Ashley, 2006; Craft et al, 2002; Kremer et al, 

2002). 

This variation and overlap of HI between species and hybrids is probably caused by 

plasticity and the effect of the environment. The amount of light and position on the tree 

affects leaf morphology in Tilia (Pigott, 1991; Traiser et al, 2005). However, we cannot 

rule out that genes that affect leaf morphology could have a different evolutionary 

history than ‘selectively neutral’ microsatellite loci. It is possible that natural selection 

has affected genes associated with morphological characters and has resulted in weaker 

distinction of species and hybrids with HI than molecular markers.  

This implies that it is difficult to use HI of leaf characters on its own to identify the 

species or hybrid status of a tree. Similarly, samples that have been shown to be a clone 
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indicate that the HI of genetically identical samples can have a wide range: HI values of 

of 0 and 3 (DUD), 3 and 5 (HBW) for T. cordata and 6 and 7 (KPM), 7 and 9 (TIC), 3 

to 8 (DUD) for F1. This confirms the strong effect of plasticity and the environment 

(Abrams, 1994; Garzon et al, 2011). A tree with a HI of 6 can be T.cordata or hybrid, a 

tree with HI of 7 can be T. cordata, T. platyphyllos or hybrid. The use of standard 

samples may alleviate this problem to some extent, in particular for amount of hairs on 

adaxial surface of leaves or young twigs. Therefore, using these nine morphological 

characters to identify species and hybrids without standard samples carries a risk of an 

error of detection. Adding characteristics of inflorescences and fruits, which are clearly 

different between the two parental species, would help an accurate identification. 

However, it is not universally possible because of the short duration of flowering, 

flowering higher up in the crown of trees or the tree may not be flowering at all. 

Microsatellite analysis seems to be more reliable to detect species and hybrids as this 

method is not affected by environmental factors. However, the complementarity of the 

data also highlights opportunities. For example, the variable morphology of trees that 

were identified as clones may help us understand which characters are the most reliable 

for identification and which characters seem to have the greatest plasticity. Studying 

genes associated with those characters could reveal the evolutionary potential for 

between species gene flow. 

Molecular data are certainly more helpful for determining the extent of introgression 

(generations beyond F1) than morphological data (Rieseberg and Ellstrand, 1993) and 

may indicate the direction of introgression, showing the evolutionary potential of the 

two species. However, in some situations genotyping is not practical and the 

morphological methods could suffice for the detection of first generation hybrids, in 

particular if characters from flowers and fruits are included.  

 

6.6 Conclusion 

The present study indicates that natural hybridisation between T. cordata and T. 

platyphyllos has occurred. Molecular analysis using microsatellite markers clearly 

separated the two Tilia species and accurately detected first and second generation 

hybrids. Morphological analysis showed some conflict with molecular analysis. The 

hybrids had overlapping ranges of HI with the pure parental species as morphological 
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characters are highly affected by environment. This suggested that a HI of six and seven 

is not a definite identification of a hybrid. In addition, using morphological analysis 

could identify only a possible first generation hybrid, but identifying a second 

generation hybrid is clearly not possible. Therefore, molecular analysis should be more 

reliable for species determination and hybrid detection than morphological analysis. 

However, in some situations it is not practical to use genotyping. Morphological 

methods could suffice for the detection of first generation hybrids, if characters from 

flowers and fruits are included. Accurate species detection using morphological 

characters could also depend on the experience of the person doing it. 
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Chapter 7. General discussion 

  

This thesis reports on the genetic diversity and the evolutionary history in an 

understudied genus, Tilia. Microsatellite markers were developed and potentially have a 

broad application in science and forestry. In Chapter 6, species specific alleles and 

species specific non-amplification were observed, clearly identifying the two UK 

species of the genus, T. cordata and T. platyphyllos, which are difficult to identify using 

only morphological characters. Many species in the genus are morphologically very 

similar (Pigott, 2012). In particular hybrids are morphologically not discrete. The cross-

amplification of the microsatellite markers in other species in the genus gives the 

potential to use them for accurate species identification, similar to their use in T. 

cordata and T. platyphyllos. In addition, these markers could facilitate other genetic 

studies in other species, saving time and cost for developing new primer sets. 

A combination of microsatellite markers can be used for generating genetic fingerprints 

of individuals, thus they are important for cultivar identification, which is useful for 

landscape planners and botanists. The microsatellite markers from this study have 

already been used to identify Tilia trees (T. x europaea, common lime) to find potential 

sources of propagating Tilia trees instead of the trees that were potentially to be felled in 

Walpole Park, London (Phuekvilai, unpublished data). In this study, these microsatellite 

markers were used to investigate the relationships of those individual trees, whether 

they are genetically identical or closely related. Also, the basal sprout and epicormic 

buds on the trunk were genotyped to confirm that they are genetically identical to their 

canopy buds, which indicated that the trees were not grafted on rootstocks. 

Microsatellite markers have been used to identify cultivars in various plant species, such 

as olive (Olea europaea L.) (Rekik et al, 2008), fig (Ficus carica L.) (Achtak et al, 

2009), almond (Prunus dulcis Mill.) (Dangl et al, 2009) and apple (Malus × domestica 

Borkh.) (Patzak et al, 2012). In addition, microsatellites developed in one species may 

allow analysis in taxonomically related species. For example, 52 microsatellite markers 

developed from two oak species, Quercus robur and Q. petraea, were used to identify 

twelve European chestnut (Castanea sativa) cultivars grown in Italy (Boccacci et al, 

2004). Therefore, Tilia microsatellite markers are not only useful for genetic 

fingerprinting within the same genus but may also be useful for other closely related 

genera, such as cacao (Theobroma cacao) and cotton (Gossypium hirsutum).   
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Microsatellite markers can be used to understand the population dynamics within the 

landscape and broad geographical areas. The investigation of T. cordata and T. 

platyphyllos populations across Europe indicated that there is some genetic structure of 

Tilia, based on geographical regions. This information can be important for restoration 

projects, as it allows practitioners to select source populations for new establishment. 

These genetic diversities may be associated with local adaptation to the habitat (Linhart 

and Grant, 1996). At a small scale, assessing the dynamics of genetic diversity and 

differentiation of a population in a wooded landscape can increase understanding of the 

effects of population fragmentation. Habitat fragmentation disrupts the processes of 

population connectivity and reduces effective population size. This leads to the 

reduction of genetic diversity within populations and increases genetic differentiation 

between populations (Young et al, 1996). In many habitats, where genetic diversity is 

degraded or species have gone locally distinct, reintroducing and restocking programs 

need to be considered. For such plans, microsatellites can aid in selection of sources of 

reproductive materials, such as those from local provenance, to maintain or increase 

genetic diversity and improve habitat connectivity. Therefore, assessing genetic 

diversity is essential not only for landscape planners, but also for conservationists to 

plan the best strategies and select materials to maintain genetic diversity in wooded 

landscapes.  

Microsatellites offer insight into historical processes of colonisation and population 

evolutionary history. This information is essential for making predictions of 

contemporary and future colonisation and distribution range of the species. The 

potential for the survival of a species depends on its adaptation to environmental 

alterations, such as climate change. Climate is one of the important factors that drive 

plant distribution. The effects of global climate warming on living species are becoming 

apparent during the last decades (Yang and Rudolf, 2010). There is much evidence of 

climate change impacting upon tree species. For example, using microsatellite markers, 

Truong et al (2007) reported that the recent shift in the range of mountain birch, Betula 

pubescens ssp. tortuosa, above the treeline in northern Sweden is attributed to climate 

warming. Tilia is a warmth-demanding forest tree. With the warmer climate, they are 

likely to become more prolific throughout their distribution range. It is predicted that 

their distribution range may shift northwards (Hemery et al, 2010). Microsatellites we 

developed can be used to increase understanding of the adaptation of Tilia to climate 

changes. An example is use for exploring genetic data along the range edge of the 
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species to investigate new founding individuals in the newly established populations 

outside its current range. The investigation of migration rate could indicate whether the 

range shift of the species is the result of warming climate.  

Phylogenetic analysis reveals that the genus Tilia is evolving slowly. The species within 

this genus seems to be genetically fairly close to each other. Thus, a low resolution of 

phylogenetic relationships was observed (Chapter 2). This is also supported by the 

cross-amplification of microsatellite markers in most species in the genus (Chapter 3) 

and the fact that large numbers of species can hybridise. The relationships observed in 

the phylogeny are largely congruent with their morphology. From this study, it is 

interesting that the two main species in Europe, T. cordata and T. platyphyllos seem to 

be evolutionarily distant, although these two species hybridise naturally (Pigott, 2012). 

In the trees generated (Chapter 2), the hybrids, T. x europaea, are clustered into both 

parental species clades. However, phylogenetic reconstruction in this study had limited 

numbers of individuals of each species. Therefore, adding more samples of each species 

could strengthen the species relationships of the genus Tilia and could increase 

understanding of extensive hybridisation among the species. 

As shown in Chapter 6, the analysis of hybridisation between T. cordata and T. 

platyphyllos in sympatric UK populations indicated that the hybrids are mainly first 

generation hybrids with limited introgression. Fewer hybrids were detected using 

microsatellite markers than using morphological approaches, as morphological 

characters are highly affected by environment. In addition, a few hybrids and 

introgression were also observed in sympatric populations in Austria and Spain. These 

individuals were first thought to be pure species from their leaf morphology (Phuekvilai, 

unpublished data). These results illustrate that molecular analysis using microsatellites 

should be more reliable for hybrid detection than morphological analysis. In particular, 

using morphological analysis it is not possible to identify a second generation hybrid. In 

addition, introgression seems not to be apparent in sympatric populations. This may be 

because hybridisation is actually infrequent. Thus, more extensive sampling is needed. 

However, the low level of introgression detected may also be because hybrids are not 

fertile. Therefore, both pollen and seed fertility of the hybrids need to be investigated 

and quantified.  
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Appendix 

Appendix 1. Nuclear primers tested for phylogenetic analysis. * indicated the primers 

that were successfully amplified in all Tilia species. 

Primer name Sequence species of origin Reference 

CelA-F GATGGAATCTGGGGTTCCTGTTTGC Gossypium  Cronn et al (2002) 

CelA-R GGGAACTGATCCAACACCCAGGA     

A1341-F GCATGCTGAATTGACAGAACCAGCY Gossypium Cronn et al (2002) 

A1341-R CACTCACAAAGTTATGCCGGATGY     

ADHx4-3 GGGCAGACTAGGTTTTCCAAAG Gossypium Cronn et al (2002) 

ADH-P2 GCACAGCCACACCCCAACCCTG     

hsp90_15F ACGGACAAGAGCAAGCTGGATG Rosids Steele et al (2008) 

hsp90_15F TTGTAGTCTTCCTTGTTCTCAG 
  

atpB-51F* CCTAGCTTGATGACACCAC Rosids Steele et al (2008) 

atpB-51R* CTTGGACGTATCCTGAAT     

actin_61F ATGGGACAAAAAGATGCTTA Rosids Steele et al (2008) 

actin_61R TAGAAGCACTTCCTGTGGA     

TcWRKY-11F GGTAGTGAATATCCAAGAAGC Theobroma cacao  Borrone et al (2007) 

TcWRKY-11R ACAGGACATCCAGGAGTTG     

TcWRKY-12F ACGCATCCTAATTGTGAAGTG Theobroma cacao   Borrone et al (2007) 

TcWRKY-12R TTTTCTAACAGGGCAACCG     

TcWRKY-13F* AAGCAAGTGAAAGGAAGTGAG Theobroma cacao   Borrone et al (2007) 

TcWRKY-13R* TGAAAGCTCTTGGATCATCCGATGC     

GrxF* TTTCAGCAAGTCGTACTGTCC T. phatyphyllos 
Newly designed 

GrxR* AATCAGCTTCCCATTCTTGTG   

Nr-F AACCGCTGATAACTGGATCG T. phatyphyllos 
Newly designed 

Nr-R TCGAACCGATATCTCCTTGG   

ITS4* TCCTCCGCTTATTGATATGC   
(White et al (1990)) 

ITS5* GGAAGTAGAAGTCGTAACAAGG   

 

 

 



 
 

135 
 

 

Appendix 2. Phylogenetic network based on Grx region from 22 Tilia species (Split 

Tree4 version 4.1.3.1) 
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Appendix 3. Phylogenetic network based on TcWRKY-13 region from 22 Tilia species 

(Split Tree4 version 4.1.3.1) 

 

 

Appendix 4. Phylogenetic network based on AtpB region from 22 Tilia species (Split 

Tree4 version 4.1.3.1) 
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Appendix 5. Summary data of diversity measures by locus for each population of Tilia cordata. N, number of samples analysed; Na, Average number 

of alleles; Ae, effective number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; F, fixation index. The significant from Hardy 

Weinberg (Signif HW) is indicated as ***P<0.001; **P<0.01; *P<0.05; NS, no significant; Mono, monomorphic loci. Null, Null allele detected by 

Micro-Checker 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

NOSO N 16 16 16 16 16 16 16 16 16 16 16 16 16 

 
Na 7 5 7 3 1 3 4 5 3 3 4 5 11 

 
Ae 5.020 2.415 4.531 1.459 1.000 1.373 2.522 2.844 1.547 1.373 2.994 2.667 5.505 

 
Ho 0.875 0.750 0.813 0.375 0.000 0.313 0.688 0.813 0.313 0.313 0.438 0.688 0.813 

 
He 0.801 0.586 0.779 0.314 0.000 0.271 0.604 0.648 0.354 0.271 0.666 0.625 0.818 

 
F -0.093 -0.280 -0.043 -0.193 #N/A -0.151 -0.139 -0.253 0.116 -0.151 0.343 -0.100 0.007 

  Signif HW NS NS NS NS Mono NS NS NS NS NS ** NS NS 

FINI N 15 15 15 15 15 15 15 15 15 15 15 15 15 

 
Na 4 5 8 2 1 1 8 7 2 1 4 5 11 

 
Ae 1.915 2.356 3.629 1.471 1.000 1.000 2.368 4.737 1.069 1.000 2.632 2.296 6.818 

 
Ho 0.200 0.467 0.800 0.400 0.000 0.000 0.533 1.000 0.067 0.000 0.800 0.733 0.933 

 
He 0.478 0.576 0.724 0.320 0.000 0.000 0.578 0.789 0.064 0.000 0.620 0.564 0.853 

 
F 0.581 0.189 -0.104 -0.250 #N/A #N/A 0.077 -0.268 -0.034 #N/A -0.290 -0.299 -0.094 

  Signif HW ***
Null

 NS NS NS Mono Mono * NS NS Mono NS NS NS 

FIMU N 14 14 14 14 14 14 14 14 14 14 14 14 14 

 
Na 3 4 7 3 1 4 6 7 2 5 3 4 14 

 
Ae 2.390 3.379 2.481 2.074 1.000 1.581 2.010 3.806 1.237 1.876 2.279 2.481 9.561 

 
Ho 0.500 0.786 0.714 0.429 0.000 0.286 0.500 0.786 0.071 0.500 0.643 0.714 1.000 

 
He 0.582 0.704 0.597 0.518 0.000 0.367 0.503 0.737 0.191 0.467 0.561 0.597 0.895 

 
F 0.140 -0.116 -0.197 0.172 #N/A 0.222 0.005 -0.066 0.627 -0.071 -0.145 -0.197 -0.117 

  Signif HW NS NS NS NS Mono * NS NS * NS NS NS NS 
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Appendix 5. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

DEAB N 29 30 30 30 30 30 30 30 30 30 30 30 30 

 
Na 9 10 6 2 1 3 11 7 3 3 3 6 19 

 
Ae 4.751 3.673 3.147 1.991 1.000 1.185 7.826 5.678 1.439 1.185 1.909 2.951 8.072 

 
Ho 0.793 0.833 0.767 0.400 0.000 0.167 1.000 0.833 0.367 0.167 0.400 0.700 0.700 

 
He 0.790 0.728 0.682 0.498 0.000 0.156 0.872 0.824 0.305 0.156 0.476 0.661 0.876 

 
F -0.005 -0.145 -0.124 0.196 #N/A -0.068 -0.146 -0.011 -0.202 -0.068 0.160 -0.059 0.201 

  Signif HW NS * NS NS Mono NS NS *** NS NS NS NS NS
Null 

DEBO N 20 20 20 20 20 20 20 20 20 20 20 20 20 

 
Na 9 8 8 2 2 4 11 10 3 4 4 2 15 

 
Ae 7.339 3.279 4.545 1.956 1.051 1.597 6.957 5.229 1.107 1.597 2.319 1.663 11.111 

 
Ho 0.300 0.700 0.800 0.550 0.050 0.400 0.900 0.750 0.100 0.400 0.400 0.550 0.900 

 
He 0.864 0.695 0.780 0.489 0.049 0.374 0.856 0.809 0.096 0.374 0.569 0.399 0.910 

 
F 0.653 -0.007 -0.026 -0.125 -0.026 -0.070 -0.051 0.073 -0.039 -0.070 0.297 -0.379 0.011 

  Signif HW ***
Null

 NS NS NS NS NS NS NS NS NS NS NS NS 

UKHB N 16 16 16 16 16 16 16 16 16 16 16 16 16 

 
Na 6 4 5 3 1 3 6 7 1 4 3 3 11 

 
Ae 3.459 2.427 1.969 2.216 1.000 1.575 5.020 4.741 1.000 2.124 2.599 1.662 8.678 

 
Ho 0.688 0.750 0.438 0.375 0.000 0.188 0.750 0.750 0.000 0.438 0.688 0.500 0.625 

 
He 0.711 0.588 0.492 0.549 0.000 0.365 0.801 0.789 0.000 0.529 0.615 0.398 0.885 

 
F 0.033 -0.276 0.111 0.317 #N/A 0.487 0.063 0.050 #N/A 0.173 -0.117 -0.255 0.294 

  Signif HW NS NS NS NS Mono * NS NS Mono NS NS NS NS
Null

 

GECO N 20 20 20 20 20 20 20 20 20 20 20 20 20 

 
Na 6 11 6 2 1 3 8 7 2 4 3 3 13 

 
Ae 2.867 5.634 3.478 1.600 1.000 1.766 4.545 4.348 1.220 2.116 1.995 2.247 7.547 

 
Ho 0.600 0.750 0.650 0.400 0.000 0.600 0.900 0.800 0.200 0.750 0.400 0.600 0.750 

 
He 0.651 0.823 0.713 0.375 0.000 0.434 0.780 0.770 0.180 0.528 0.499 0.555 0.868 

 
F 0.079 0.088 0.088 -0.067 #N/A -0.383 -0.154 -0.039 -0.111 -0.422 0.198 -0.081 0.135 

  Signif HW *** NS * NS Mono NS NS NS NS NS NS NS NS 
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Appendix 5. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

NEMA N 25 25 25 25 25 25 25 25 25 25 25 25 25 

 
Na 8 9 8 2 1 4 9 8 3 4 4 5 18 

 
Ae 5.656 4.386 3.541 1.625 1.000 1.696 3.492 4.941 1.274 2.039 2.244 2.166 12.019 

 
Ho 0.720 0.760 0.720 0.360 0.000 0.440 0.760 0.720 0.240 0.560 0.520 0.560 0.800 

 
He 0.823 0.772 0.718 0.385 0.000 0.410 0.714 0.798 0.215 0.510 0.554 0.538 0.917 

 
F 0.125 0.016 -0.003 0.064 #N/A -0.072 -0.065 0.097 -0.115 -0.099 0.062 -0.040 0.127 

  Signif HW *** NS NS NS Mono NS NS NS NS NS NS NS NS 

NEGU N 25 25 25 25 25 25 25 25 25 25 25 25 25 

 
Na 6 10 9 2 1 3 9 6 1 4 2 3 12 

 
Ae 4.237 7.310 5.208 1.855 1.000 1.486 5.435 4.417 1.000 1.778 1.676 2.399 5.556 

 
Ho 0.480 0.800 0.840 0.640 0.000 0.320 0.920 0.760 0.000 0.520 0.400 0.720 0.240 

 
He 0.764 0.863 0.808 0.461 0.000 0.327 0.816 0.774 0.000 0.438 0.403 0.583 0.820 

 
F 0.372 0.073 -0.040 -0.389 #N/A 0.022 -0.127 0.018 #N/A -0.188 0.008 -0.235 0.707 

  Signif HW ***
Null 

NS NS NS Mono NS *** NS Mono NS NS NS ***
Null 

PLLE N 10 10 10 10 10 10 10 10 10 10 10 10 10 

 
Na 4 7 9 1 1 3 8 5 4 5 4 3 13 

 
Ae 2.597 4.167 5.556 1.000 1.000 2.020 4.878 3.846 1.869 2.740 2.326 2.532 10.000 

 
Ho 0.800 0.800 0.900 0.000 0.000 0.400 0.800 1.000 0.600 0.700 0.700 0.700 0.800 

 
He 0.615 0.760 0.820 0.000 0.000 0.505 0.795 0.740 0.465 0.635 0.570 0.605 0.900 

 
F -0.301 -0.053 -0.098 #N/A #N/A 0.208 -0.006 -0.351 -0.290 -0.102 -0.228 -0.157 0.111 

  Signif HW NS NS NS Mono Mono NS NS NS NS NS NS NS NS 

CZVO N 21 21 21 21 21 21 21 21 21 21 21 21 21 

 
Na 6 7 8 2 1 3 9 8 3 4 2 4 16 

 
Ae 2.358 2.061 4.846 1.747 1.000 1.213 6.041 4.955 1.156 1.418 1.982 2.557 9.383 

 
Ho 0.238 0.571 0.905 0.524 0.000 0.190 0.905 0.762 0.143 0.333 0.524 0.429 0.714 

 
He 0.576 0.515 0.794 0.427 0.000 0.176 0.834 0.798 0.135 0.295 0.495 0.609 0.893 

 
F 0.587 -0.110 -0.140 -0.225 #N/A -0.084 -0.084 0.045 -0.059 -0.131 -0.057 0.296 0.201 

  Signif HW ***
Null

 *** NS NS Mono NS NS * NS NS NS NS **
Null 
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Appendix 5. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

CZST N 14 14 14 14 14 14 14 14 14 14 14 14 14 

 
Na 9 6 8 4 2 3 10 8 3 3 4 3 13 

 
Ae 5.158 2.253 4.000 1.903 1.960 1.782 6.759 5.370 1.338 1.537 3.769 1.840 10.316 

 
Ho 0.286 0.500 0.786 0.429 0.000 0.286 0.786 0.643 0.286 0.357 0.500 0.357 0.857 

 
He 0.806 0.556 0.750 0.474 0.490 0.439 0.852 0.814 0.253 0.349 0.735 0.457 0.903 

 
F 0.646 0.101 -0.048 0.097 1.000 0.349 0.078 0.210 -0.131 -0.022 0.319 0.218 0.051 

  Signif HW **
Null 

NS NS NS ***
Null

 ** NS NS NS NS * NS NS 

SKBL N 6 6 6 6 6 6 6 6 6 6 6 6 6 

 
Na 7 6 6 3 1 3 8 7 2 4 2 3 8 

 
Ae 4.235 4.500 4.500 1.412 1.000 1.412 6.545 5.143 1.385 1.714 1.800 2.323 6.545 

 
Ho 0.500 0.833 1.000 0.167 0.000 0.333 1.000 0.833 0.333 0.500 0.333 0.333 0.667 

 
He 0.764 0.778 0.778 0.292 0.000 0.292 0.847 0.806 0.278 0.417 0.444 0.569 0.847 

 
F 0.345 -0.071 -0.286 0.429 #N/A -0.143 -0.180 -0.034 -0.200 -0.200 0.250 0.415 0.213 

  Signif HW NS NS NS ** Mono NS NS NS NS NS NS NS NS 

FROM N 20 20 20 20 20 20 20 20 20 20 20 20 20 

 
Na 11 9 6 3 1 2 7 8 3 3 2 3 17 

 
Ae 6.897 4.255 3.846 1.766 1.000 1.471 4.469 4.082 1.288 1.865 1.835 2.292 12.121 

 
Ho 0.350 0.800 0.800 0.500 0.000 0.100 0.800 0.800 0.150 0.350 0.400 0.700 0.750 

 
He 0.855 0.765 0.740 0.434 0.000 0.320 0.776 0.755 0.224 0.464 0.455 0.564 0.918 

 
F 0.591 -0.046 -0.081 -0.153 #N/A 0.688 -0.031 -0.060 0.330 0.245 0.121 -0.242 0.183 

  Signif HW ***
Null 

NS NS NS Mono **
Null 

NS * NS NS NS NS NS
Null 

FRCE N 8 8 8 8 8 8 8 8 8 8 8 8 8 

 
Na 5 6 4 2 1 3 6 5 1 3 3 3 11 

 
Ae 2.977 3.282 2.844 1.753 1.000 1.471 4.571 3.657 1.000 1.471 2.246 1.855 9.143 

 
Ho 0.500 0.750 0.750 0.125 0.000 0.375 1.000 0.875 0.000 0.375 0.750 0.125 1.000 

 
He 0.664 0.695 0.648 0.430 0.000 0.320 0.781 0.727 0.000 0.320 0.555 0.461 0.891 

 
F 0.247 -0.079 -0.157 0.709 #N/A -0.171 -0.280 -0.204 #N/A -0.171 -0.352 0.729 -0.123 

  Signif HW NS NS NS * Mono NS NS NS Mono NS NS *
Null 

NS 
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Appendix 5. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

UARO N 14 14 14 14 14 12 14 14 14 14 14 14 14 

 
Na 5 6 10 2 1 4 6 8 3 5 5 4 12 

 
Ae 3.500 3.322 7.000 1.324 1.000 2.304 4.000 5.158 1.537 2.925 2.596 3.187 9.800 

 
Ho 0.500 0.786 0.500 0.286 0.000 0.167 0.786 0.857 0.429 0.786 0.786 0.929 0.929 

 
He 0.714 0.699 0.857 0.245 0.000 0.566 0.750 0.806 0.349 0.658 0.615 0.686 0.898 

 
F 0.300 -0.124 0.417 -0.167 #N/A 0.706 -0.048 -0.063 -0.226 -0.194 -0.278 -0.353 -0.034 

  Signif HW * NS *
Null 

NS Mono **
Null 

NS NS NS NS NS NS NS 

CHLO N 25 25 25 25 25 25 25 25 25 25 25 25 25 

 
Na 9 9 6 3 1 6 11 7 2 6 3 3 18 

 
Ae 5.507 4.921 3.551 2.319 1.000 2.013 5.580 5.020 1.041 2.046 2.197 1.947 12.887 

 
Ho 0.880 0.800 0.680 0.560 0.000 0.360 0.880 0.840 0.040 0.440 0.440 0.400 0.840 

 
He 0.818 0.797 0.718 0.569 0.000 0.503 0.821 0.801 0.039 0.511 0.545 0.486 0.922 

 
F -0.075 -0.004 0.053 0.015 #N/A 0.285 -0.072 -0.049 -0.020 0.139 0.192 0.178 0.089 

  Signif HW NS NS NS NS Mono NS
Null 

NS NS NS * * NS ** 

AUTH N 15 15 15 15 15 15 15 15 15 15 15 15 15 

 
Na 8 7 5 4 1 2 9 8 2 3 3 3 16 

 
Ae 5.000 3.913 3.061 1.982 1.000 1.471 6.000 5.556 1.069 1.737 2.018 2.261 11.842 

 
Ho 0.333 0.933 0.600 0.600 0.000 0.267 0.933 0.800 0.067 0.467 0.600 0.533 0.933 

 
He 0.800 0.744 0.673 0.496 0.000 0.320 0.833 0.820 0.064 0.424 0.504 0.558 0.916 

 
F 0.583 -0.254 0.109 -0.211 #N/A 0.167 -0.120 0.024 -0.034 -0.099 -0.189 0.044 -0.019 

  Signif HW **
Null 

NS NS * Mono NS NS NS NS NS NS NS NS 

AUSO N 23 23 23 23 23 23 23 23 23 23 23 23 23 

 
Na 10 7 9 5 1 3 14 9 2 3 2 5 22 

 
Ae 4.661 3.792 4.541 2.543 1.000 1.615 7.007 5.264 1.139 1.615 1.784 2.416 10.907 

 
Ho 0.739 0.826 0.870 0.609 0.000 0.391 0.783 0.913 0.130 0.391 0.391 0.565 0.870 

 
He 0.785 0.736 0.780 0.607 0.000 0.381 0.857 0.810 0.122 0.381 0.440 0.586 0.908 

 
F 0.059 -0.122 -0.115 -0.003 #N/A -0.027 0.087 -0.127 -0.070 -0.027 0.110 0.035 0.043 

  Signif HW NS NS NS NS Mono *** NS NS NS *** NS NS NS 
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Appendix 5. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

AUDO N 21 21 21 21 21 21 21 21 21 21 21 21 21 

 
Na 9 8 7 4 1 5 13 9 2 5 2 4 17 

 
Ae 5.128 6.485 4.240 1.960 1.000 1.282 5.690 4.846 1.385 1.500 1.982 2.609 7.475 

 
Ho 0.429 0.905 0.857 0.524 0.000 0.238 0.810 0.714 0.333 0.381 0.238 0.619 0.762 

 
He 0.805 0.846 0.764 0.490 0.000 0.220 0.824 0.794 0.278 0.333 0.495 0.617 0.866 

 
F 0.468 -0.070 -0.122 -0.069 #N/A -0.082 0.018 0.100 -0.200 -0.143 0.519 -0.004 0.120 

  Signif HW ***
Null 

NS *** NS Mono NS NS ** NS NS *
Null 

NS NS 

AUST N 22 22 22 22 22 22 22 22 22 22 22 22 22 

 
Na 10 7 8 2 1 2 10 8 2 3 3 3 11 

 
Ae 4.676 3.216 5.232 1.996 1.000 1.658 5.095 4.033 1.146 2.495 2.091 2.547 8.566 

 
Ho 0.864 0.682 0.682 0.500 0.000 0.273 0.727 0.773 0.136 0.636 0.409 0.636 0.818 

 
He 0.786 0.689 0.809 0.499 0.000 0.397 0.804 0.752 0.127 0.599 0.522 0.607 0.883 

 
F -0.099 0.010 0.157 -0.002 #N/A 0.313 0.095 -0.027 -0.073 -0.062 0.216 -0.048 0.074 

  Signif HW NS
 

NS NS NS Mono NS NS * NS NS NS NS NS 

HUOL N 20 20 20 20 20 20 20 20 20 20 20 20 20 

 
Na 8 6 6 3 1 3 10 7 1 3 3 3 13 

 
Ae 5.229 3.137 4.145 1.766 1.000 1.629 6.897 5.634 1.000 1.559 2.005 2.168 6.557 

 
Ho 0.600 0.800 0.800 0.350 0.000 0.350 0.900 0.900 0.000 0.300 0.450 0.450 0.700 

 
He 0.809 0.681 0.759 0.434 0.000 0.386 0.855 0.823 0.000 0.359 0.501 0.539 0.848 

 
F 0.258 -0.174 -0.054 0.193 #N/A 0.094 -0.053 -0.094 #N/A 0.164 0.102 0.165 0.174 

  Signif HW NS
Null 

NS NS NS Mono NS NS NS Mono NS NS NS **
Null 

ITLA N 19 19 19 19 19 19 18 19 18 19 19 19 18 

 
Na 8 8 7 4 1 4 7 5 2 4 2 4 11 

 
Ae 3.592 4.056 2.490 2.117 1.000 1.391 3.857 3.989 1.057 1.566 1.819 2.195 5.684 

 
Ho 0.579 0.842 0.632 0.526 0.000 0.158 0.667 0.737 0.056 0.316 0.474 0.737 0.944 

 
He 0.722 0.753 0.598 0.528 0.000 0.281 0.741 0.749 0.054 0.361 0.450 0.544 0.824 

 
F 0.198 -0.118 -0.056 0.003 #N/A 0.438 0.100 0.017 -0.029 0.126 -0.052 -0.354 -0.146 

  Signif HW NS NS NS NS Mono ***
Null 

NS NS NS NS NS NS NS 
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Appendix 6. Summary data of diversity measures by locus for each population of T. platyphyllos. N, number of samples analysed; Na, Average number 

of alleles; Ae, effective number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; F, fixation index. The significant from Hardy 

Weinberg (Signif HW) is indicated as ***P<0.001; **P<0.01; *P<0.05; NS, no significant; Mono, monomorphic loci. Null, Null allele detected by 

Micro-Checker 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

DEBO N 10 10 10 10 10 10 10 10 10 10 10 10 10 

 
Na 6 3 4 4 6 6 7 3 6 6 2 5 5 

 
Ae 4.545 2.020 2.857 2.985 2.857 4.762 5.128 2.299 4.348 4.762 1.342 3.226 3.226 

 
Ho 1.000 0.500 1.000 0.600 0.800 1.000 1.000 0.900 0.800 1.000 0.300 0.600 1.000 

 
He 0.780 0.505 0.650 0.665 0.650 0.790 0.805 0.565 0.770 0.790 0.255 0.690 0.690 

 
F -0.282 0.010 -0.538 0.098 -0.231 -0.266 -0.242 -0.593 -0.039 -0.266 -0.176 0.130 -0.449 

  Signif HW * NS NS NS NS NS NS NS NS NS NS * NS 

UKKI N 18 18 18 18 18 18 18 18 18 18 18 16 18 

 
Na 8 9 6 4 5 7 8 7 9 7 4 5 11 

 
Ae 5.635 5.635 4.235 3.192 1.940 3.927 4.909 4.985 6.894 4.263 2.274 2.639 5.268 

 
Ho 0.889 0.833 0.889 0.722 0.444 0.611 0.611 0.889 0.833 0.667 0.611 0.375 0.667 

 
He 0.823 0.823 0.764 0.687 0.485 0.745 0.796 0.799 0.855 0.765 0.560 0.621 0.810 

 
F -0.081 -0.013 -0.164 -0.052 0.083 0.180 0.233 -0.112 0.025 0.129 -0.091 0.396 0.177 

  Signif HW NS NS NS NS NS NS
Null 

NS NS NS NS NS ***
Null 

NS 

GELC_T

p 
N 31 31 31 31 31 31 31 31 31 31 31 31 31 

 
Na 9 13 9 12 11 8 12 8 13 8 4 6 16 

 
Ae 4.866 7.421 5.309 7.226 5.653 4.916 5.523 2.490 5.125 4.916 1.220 2.010 8.110 

 
Ho 0.871 0.839 0.774 0.935 0.903 0.839 0.839 0.613 0.839 0.839 0.194 0.419 0.839 

 
He 0.794 0.865 0.812 0.862 0.823 0.797 0.819 0.598 0.805 0.797 0.181 0.503 0.877 

 
F -0.096 0.031 0.046 -0.086 -0.097 -0.053 -0.024 -0.024 -0.042 -0.053 -0.072 0.166 0.043 

  Signif HW NS NS NS NS NS NS NS NS NS NS NS NS NS 
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Appendix 6. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

AULE N 25 25 25 25 25 25 25 25 25 25 25 25 25 

 
Na 11 14 12 14 9 12 12 9 12 12 4 6 14 

 
Ae 4.562 7.764 6.378 8.446 5.459 7.485 7.440 3.666 5.708 7.576 2.137 1.947 10.081 

 
Ho 0.800 0.760 0.880 0.880 0.880 0.760 0.960 0.680 0.920 0.800 0.640 0.400 0.840 

 
He 0.781 0.871 0.843 0.882 0.817 0.866 0.866 0.727 0.825 0.868 0.532 0.486 0.901 

 
F -0.025 0.128 -0.044 0.002 -0.077 0.123 -0.109 0.065 -0.115 0.078 -0.203 0.178 0.067 

  Signif HW NS NS NS NS NS NS NS NS NS NS NS NS * 

SKBL N 7 7 7 7 7 7 7 7 7 7 7 7 7 

 
Na 8 11 8 9 7 6 11 5 10 7 3 1 9 

 
Ae 6.533 8.909 6.125 7.000 5.444 3.161 9.800 3.063 8.167 3.920 1.556 1.000 6.533 

 
Ho 1.000 0.857 0.714 0.857 0.857 0.857 1.000 0.857 0.857 1.000 0.429 0.000 1.000 

 
He 0.847 0.888 0.837 0.857 0.816 0.684 0.898 0.673 0.878 0.745 0.357 0.000 0.847 

 
F -0.181 0.034 0.146 0.000 -0.050 -0.254 -0.114 -0.273 0.023 -0.342 -0.200 #N/A -0.181 

  Signif HW NS NS NS NS NS NS NS NS NS NS NS Mono NS 

CHFR N 24 24 24 24 24 24 24 24 24 24 24 24 24 

 
Na 11 13 11 8 10 10 14 7 15 10 4 6 19 

 
Ae 4.683 6.436 5.878 5.166 6.508 4.861 9.000 3.740 8.727 4.721 1.293 1.993 9.143 

 
Ho 0.917 0.917 0.792 0.958 0.833 0.917 0.958 0.667 0.875 0.792 0.250 0.458 0.708 

 
He 0.786 0.845 0.830 0.806 0.846 0.794 0.889 0.733 0.885 0.788 0.227 0.498 0.891 

 
F -0.166 -0.085 0.046 -0.188 0.015 -0.154 -0.078 0.090 0.012 -0.004 -0.103 0.080 0.205 

  Signif HW NS NS NS ** NS * NS NS NS * NS NS ***
Null 

FRCE N 13 13 13 13 13 13 13 13 13 13 13 13 13 

 
Na 8 14 6 5 7 7 9 6 10 7 4 4 11 

 
Ae 5.729 10.903 4.278 2.380 4.390 5.121 6.377 1.965 3.976 5.121 1.617 2.099 7.042 

 
Ho 0.769 1.000 0.923 0.615 0.769 1.000 0.923 0.615 0.769 1.000 0.385 0.077 0.846 

 
He 0.825 0.908 0.766 0.580 0.772 0.805 0.843 0.491 0.749 0.805 0.382 0.524 0.858 

 
F 0.068 -0.101 -0.205 -0.061 0.004 -0.243 -0.095 -0.253 -0.028 -0.243 -0.008 0.853 0.014 

  Signif HW NS NS ** NS NS NS NS NS NS NS NS ***
Null 

NS 
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Appendix 6. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

FRIS N 20 20 20 20 20 20 20 20 20 20 20 20 20 

 
Na 8 15 8 9 6 9 12 9 14 10 1 8 14 

 
Ae 5.556 7.080 5.556 4.167 4.420 5.063 8.081 2.432 9.639 5.128 1.000 2.740 7.692 

 
Ho 0.850 1.000 0.700 0.800 0.900 0.800 0.900 0.650 0.850 0.850 0.000 0.600 0.850 

 
He 0.820 0.859 0.820 0.760 0.774 0.803 0.876 0.589 0.896 0.805 0.000 0.635 0.870 

 
F -0.037 -0.164 0.146 -0.053 -0.163 0.003 -0.027 -0.104 0.052 -0.056 #N/A 0.055 0.023 

  Signif HW NS NS NS NS NS NS NS NS NS NS Mono NS * 

FRCC N 20 20 20 20 20 20 20 20 20 20 20 20 20 

 
Na 11 10 7 7 8 9 12 5 11 9 2 6 15 

 
Ae 6.452 5.674 4.188 4.790 4.908 4.969 7.547 2.180 5.674 4.908 1.342 3.448 8.081 

 
Ho 0.700 0.900 0.750 0.850 0.800 0.900 0.750 0.300 0.750 0.950 0.300 0.750 0.900 

 
He 0.845 0.824 0.761 0.791 0.796 0.799 0.868 0.541 0.824 0.796 0.255 0.710 0.876 

 
F 0.172 -0.093 0.015 -0.074 -0.005 -0.127 0.135 0.446 0.090 -0.193 -0.176 -0.056 -0.027 

  Signif HW ** NS NS NS NS NS NS ** NS NS NS NS NS 

AUSO N 15 14 15 14 15 15 15 15 15 15 15 14 15 

 
Na 10 12 9 8 9 10 13 9 10 10 4 4 11 

 
Ae 6.081 8.167 5.233 2.545 6.000 6.716 6.522 4.327 6.716 6.716 1.724 1.248 7.627 

 
Ho 0.933 1.000 0.800 0.571 0.800 0.867 0.933 0.733 0.733 0.867 0.533 0.214 0.800 

 
He 0.836 0.878 0.809 0.607 0.833 0.851 0.847 0.769 0.851 0.851 0.420 0.199 0.869 

 
F -0.117 -0.140 0.011 0.059 0.040 -0.018 -0.102 0.046 0.138 -0.018 -0.270 -0.077 0.079 

  Signif HW NS NS * NS NS NS NS NS NS NS NS NS NS 

AUDO N 14 14 14 14 14 14 14 14 14 14 14 14 14 

 
Na 9 9 8 8 9 8 8 6 10 8 2 2 7 

 
Ae 6.426 6.426 5.091 5.521 5.765 4.723 5.158 3.698 6.877 4.723 1.508 1.074 4.308 

 
Ho 1.000 0.929 0.929 0.857 1.000 0.857 0.929 0.786 1.000 0.857 0.429 0.071 0.429 

 
He 0.844 0.844 0.804 0.819 0.827 0.788 0.806 0.730 0.855 0.788 0.337 0.069 0.768 

 
F -0.184 -0.100 -0.156 -0.047 -0.210 -0.087 -0.152 -0.077 -0.170 -0.087 -0.273 -0.037 0.442 

  Signif HW NS NS NS NS NS NS NS NS NS NS NS NS *
Null 
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Appendix 6. continued. 

Pop   Tc4 Tc5 Tc6 Tc7 Tc8 Tc31 Tc915 Tc920 Tc927 Tc937 Tc943 Tc951 Tc963 

SPHU N 7 7 7 7 7 7 7 7 7 7 7 7 7 

 
Na 5 3 6 4 4 5 7 4 5 5 2 3 6 

 
Ae 3.063 2.000 3.920 2.970 1.849 3.769 4.900 2.970 4.083 3.769 1.690 1.556 4.455 

 
Ho 0.857 0.714 0.571 0.714 0.286 0.714 0.857 0.857 0.714 0.714 0.571 0.286 1.000 

 
He 0.673 0.500 0.745 0.663 0.459 0.735 0.796 0.663 0.755 0.735 0.408 0.357 0.776 

 
F -0.273 -0.429 0.233 -0.077 0.378 0.028 -0.077 -0.292 0.054 0.028 -0.400 0.200 -0.289 

  Signif HW NS NS NS NS * NS NS NS NS NS NS NS NS 

GRAG N 10 10 10 10 10 10 10 10 10 10 10 10 10 

 
Na 12 6 10 9 12 8 6 6 12 8 3 5 10 

 
Ae 7.407 3.571 8.333 5.882 8.333 5.882 4.878 3.571 8.333 6.250 1.361 1.724 6.250 

 
Ho 0.800 0.700 0.900 0.900 1.000 0.300 0.700 0.600 0.800 0.400 0.300 0.500 0.400 

 
He 0.865 0.720 0.880 0.830 0.880 0.830 0.795 0.720 0.880 0.840 0.265 0.420 0.840 

 
F 0.075 0.028 -0.023 -0.084 -0.136 0.639 0.119 0.167 0.091 0.524 -0.132 -0.190 0.524 

  Signif HW NS NS NS * NS **
Null 

NS * NS *
Null 

NS NS **
Null 
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Appendix 7. Pairwise Fst between 23 T. cordata populations 

  NOSO FINI FIMU DEAB DEBO GECO UKHB NEMA NEGU PLLE CZVO CZST SKBL FROM FRCE UARO AUTH AUSO AUDO AUST CHLO HUOL ITLA 

NOSO 0.000                                             

FINI 0.166 0.000                                           

FIMU 0.145 0.031 0.000                                         

DEAB 0.094 0.089 0.081 0.000                                       

DEBO 0.082 0.085 0.077 0.046 0.000                                     

GECO 0.093 0.126 0.076 0.081 0.063 0.000                                   

UKHB 0.157 0.134 0.100 0.079 0.051 0.102 0.000                                 

NEMA 0.092 0.103 0.057 0.055 0.034 0.029 0.056 0.000                               

NEGU 0.113 0.124 0.094 0.065 0.063 0.060 0.078 0.038 0.000                             

PLLE 0.102 0.175 0.099 0.092 0.103 0.070 0.134 0.053 0.083 0.000                           

CZVO 0.081 0.076 0.072 0.057 0.044 0.054 0.101 0.045 0.087 0.063 0.000                         

CZST 0.073 0.118 0.101 0.082 0.051 0.071 0.104 0.053 0.087 0.076 0.050 0.000                       

SKBL 0.057 0.102 0.049 0.043 0.043 0.019 0.094 0.021 0.023 0.035 0.024 0.027 0.000                     

FROM 0.099 0.129 0.083 0.076 0.038 0.064 0.064 0.025 0.049 0.078 0.056 0.067 0.038 0.000                   

FRCE 0.101 0.086 0.063 0.057 0.038 0.047 0.063 0.024 0.038 0.077 0.037 0.056 0.003 0.042 0.000                 

UARO 0.131 0.168 0.089 0.118 0.101 0.085 0.130 0.069 0.097 0.015 0.079 0.084 0.038 0.075 0.098 0.000               

AUTH 0.079 0.089 0.062 0.049 0.033 0.023 0.077 0.028 0.025 0.050 0.029 0.037 0.000 0.040 0.029 0.053 0.000             

AUSO 0.100 0.121 0.090 0.101 0.068 0.074 0.110 0.070 0.101 0.113 0.076 0.073 0.050 0.074 0.077 0.112 0.061 0.000           

AUDO 0.082 0.112 0.073 0.094 0.063 0.044 0.104 0.053 0.093 0.108 0.066 0.075 0.031 0.049 0.055 0.108 0.061 0.021 0.000         

AUST 0.110 0.095 0.066 0.065 0.034 0.057 0.064 0.037 0.052 0.069 0.049 0.067 0.047 0.026 0.056 0.062 0.022 0.077 0.070 0.000       

CHLO 0.097 0.103 0.062 0.076 0.047 0.067 0.074 0.043 0.048 0.085 0.059 0.073 0.036 0.028 0.060 0.073 0.030 0.075 0.060 0.031 0.000     

HUOL 0.080 0.108 0.093 0.050 0.042 0.051 0.099 0.051 0.062 0.064 0.035 0.044 0.015 0.060 0.043 0.073 0.009 0.071 0.079 0.047 0.065 0.000   

ITLA 0.180 0.091 0.088 0.085 0.085 0.105 0.104 0.105 0.104 0.155 0.099 0.132 0.102 0.110 0.078 0.146 0.079 0.134 0.114 0.086 0.092 0.110 0.000 
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Appendix 8. Pairwise Fst between 13 T. platyphyllos populations 

  DEBO UKKI GELC FRCE FRCC FRIS SKBL AUSO AULE AUDO CHFR SPHU GRAG 

DEBO 0.000                         

UKKI 0.155 0.000                       

GELC 0.137 0.095 0.000                     

FRCE 0.135 0.088 0.044 0.000                   

FRCC 0.118 0.108 0.059 0.068 0.000                 

FRIS 0.128 0.108 0.049 0.049 0.039 0.000               

SKBL 0.143 0.082 0.049 0.046 0.060 0.048 0.000             

AUSO 0.134 0.086 0.039 0.061 0.079 0.053 0.034 0.000           

AULE 0.135 0.083 0.047 0.059 0.069 0.065 0.020 0.021 0.000         

AUDO 0.161 0.120 0.075 0.099 0.102 0.086 0.054 0.048 0.042 0.000       

CHFR 0.132 0.087 0.044 0.044 0.068 0.051 0.025 0.045 0.047 0.064 0.000     

SPHU 0.171 0.137 0.096 0.138 0.103 0.134 0.112 0.103 0.114 0.137 0.114 0.000   

GRAG 0.133 0.119 0.074 0.088 0.089 0.077 0.063 0.060 0.062 0.061 0.083 0.111 0.000 
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Appendix 9. Pairwise distances (km) between 23 T. cordata populations 

  NOSO FINI FIMU DEAB DEBO GECO UKHB NEMA NEGU PLLE CZVO CZST SKBL FROM FRCE UARO AUTH AUSO AUDO AUST CHLO HUOL ITLA 

NOSO 0.00                                             

FINI 1210.47 0.00                                           

FIMU 1178.83 87.29 0.00                                         

DEAB 557.84 1240.61 1175.48 0.00                                       

DEBO 782.79 1379.63 1306.59 231.92 0.00                                     

GECO 1106.87 1498.45 1416.61 549.12 331.07 0.00                                   

UKHB 1218.69 2219.91 2156.36 981.20 895.96 1012.54 0.00                                 

NEMA 1229.84 1885.27 1807.69 739.13 528.42 435.82 647.36 0.00                               

NEGU 1230.13 1879.02 1801.27 736.62 524.44 426.84 657.20 10.17 0.00                             

PLLE 1625.22 1354.32 1269.05 1143.29 1021.57 786.31 1794.77 1174.86 1164.75 0.00                           

CZVO 1418.56 1566.98 1480.31 867.44 671.72 353.49 1308.75 671.55 661.38 513.35 0.00                         

CZST 1504.69 1545.21 1457.95 963.61 783.05 479.19 1447.07 809.10 798.93 388.20 138.32 0.00                       

SKBL 1639.66 1570.45 1483.45 1109.19 939.38 643.17 1609.12 967.75 957.61 286.53 301.90 165.35 0.00                     

FROM 1441.47 2086.03 2006.72 957.22 744.27 602.84 686.36 218.11 220.75 1265.36 752.10 881.01 1024.99 0.00                   

FRCE 1377.73 2094.54 2017.65 924.00 727.03 643.32 560.44 212.06 219.70 1351.78 839.72 973.11 1123.33 125.92 0.00                 

UARO 1842.50 1483.65 1401.53 1363.78 1238.17 987.96 1986.35 1353.79 1343.62 220.54 682.32 545.65 397.67 1421.86 1517.76 0.00               

AUTH 1566.92 1668.58 1581.39 1015.55 816.94 492.87 1404.02 757.73 747.72 494.80 148.38 127.84 225.81 801.20 902.69 623.34 0.00             

AUSO 1582.83 1709.56 1622.43 1028.88 824.71 496.65 1382.71 735.46 725.57 538.32 168.76 172.66 264.48 768.77 873.16 660.55 45.50 0.00           

AUDO 1677.16 1731.68 1644.39 1127.26 930.01 605.76 1498.06 850.70 840.87 485.18 259.93 194.80 198.65 874.10 982.17 575.09 113.13 117.23 0.00         

AUST 1649.38 1990.79 1905.03 1098.20 867.81 563.58 1161.80 546.33 538.74 898.54 440.10 521.62 621.21 485.54 607.81 1010.31 404.00 360.24 435.62 0.00       

CHLO 1623.15 2091.35 2007.42 1091.59 860.74 606.16 992.64 429.39 424.60 1083.42 594.36 697.90 813.99 306.30 432.20 1207.79 590.65 549.65 635.57 204.43 0.00     

HUOL 1840.40 1774.18 1687.59 1299.91 1114.50 798.11 1702.07 1054.81 1045.04 439.87 444.98 336.48 216.69 1068.67 1180.28 447.71 310.24 322.02 204.97 607.40 811.74 0.00   

ITLA 1793.31 2076.20 1989.57 1239.27 1010.61 696.61 1297.86 695.08 687.84 904.26 509.30 556.23 618.08 613.68 738.84 984.13 428.86 383.63 419.89 152.14 310.74 551.20 0.00 
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Appendix 10. Pairwise distances (km) between 13 T. platyphyllos populations 

  DEBO UKKI GELC FRCE FRCC FRIS SKBL AUSO AULE AUDO CHFR SPHU GRAG 

DEBO 0.00                         

UKKI 709.84 0.00                       

GELC 478.51 990.45 0.00                     

FRCE 727.03 535.40 701.76 0.00                   

FRCC 1387.60 1146.09 1185.60 692.23 0.00                 

FRIS 1466.99 1130.01 1317.42 745.18 189.46 0.00               

SKBL 939.38 1483.15 498.01 1123.33 1410.82 1578.92 0.00             

AUSO 824.71 1273.60 346.26 873.16 1154.03 1318.45 264.48 0.00           

AULE 889.33 1352.06 412.87 949.65 1204.89 1373.51 205.94 78.75 0.00         

AUDO 930.01 1390.63 453.86 982.17 1217.13 1388.28 198.65 117.23 41.08 0.00       

CHFR 897.14 918.21 634.96 386.50 551.16 693.86 902.90 638.56 702.18 723.93 0.00     

SPHU 1534.52 1206.35 1370.19 815.65 203.82 76.34 1613.25 1355.20 1407.37 1420.22 740.63 0.00   

GRAG 1836.01 2270.45 1364.03 1798.26 1737.51 1926.76 915.03 1024.16 952.06 910.99 1445.18 1924.35 0.00 
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Appendix 11. Details of hybrid index, value of the first axis of PCO and species 

detection results from NewHybrids analysis of each sample in 10 locations in the UK 

No. Sample Hybrid index 1
st
 axis of PCO value 

NewHybrids 

identification 

1 ANS01 10 0.656 T. platyphyllos 

2 ANS02 13 0.466 T. platyphyllos 

3 ANS03 13 0.582 T. platyphyllos 

4 ANS04 14 0.642 T. platyphyllos 

5 ANS05 11 0.511 T. platyphyllos 

6 ANS06 8 0.634 T. platyphyllos 

7 ANS07 5 -0.592 T. cordata 

8 ANS08 13 0.603 T. platyphyllos 

9 ANS09 13 0.589 T. platyphyllos 

10 ANS10 14 0.655 T. platyphyllos 

11 ANS11 7 0.644 T. platyphyllos 

12 ANS12 5 -0.582 T. cordata 

13 ANS13 11 0.551 T. platyphyllos 

14 ANS14 15 0.680 T. platyphyllos 

15 ANS15 12 0.627 T. platyphyllos 

16 ANS16 12 0.650 T. platyphyllos 

17 ANS17 11 0.592 T. platyphyllos 

18 ANS18 8 0.641 T. platyphyllos 

19 CHW01 3 -0.493 T. cordata 

20 CHW02 15 0.561 T. platyphyllos 

21 CHW03 10 0.537 T. platyphyllos 

22 CHW05 15 0.244 F2 

23 CHW06 16 0.605 T. platyphyllos 

24 CHW08 1 -0.067 F1 

25 CHW09 0 -0.631 T. cordata 

26 CHW11 1 -0.605 T. cordata 

27 CHW12 1 -0.653 T. cordata 

28 CHW13 6 -0.562 T. cordata 

29 CHW14 2 -0.587 T. cordata 

30 CHW15 12 0.535 T. platyphyllos 

31 CHW17 11 0.702 T. platyphyllos 

32 CHW18 10 0.737 T. platyphyllos 

33 CHW19 7 0.452 T. platyphyllos 

34 CHW20 9 0.542 T. platyphyllos 

35 DUD01
a
 0 -0.628 T. cordata 

36 DUD02
a
 3 -0.628 T. cordata 

37 DUD03
b
 3 -0.083 F1 

38 DUD04
b
 3 -0.083 F1 

39 DUD05
b
 6 -0.083 F1 
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Appendix 11. Continued. 

No. Sample Hybrid index 1
st
 axis of PCO value 

NewHybrids 

identification 

40 DUD06
b
 8 -0.083 F1 

41 DUD07
b
 6 -0.083 F1 

42 DUD08 2 -0.517 T. cordata 

43 DUD09 0 -0.568 T. cordata 

44 DUD10
b
 7 -0.083 F1 

45 DUD11
b
 5 -0.083 F1 

46 DUD12 15 0.586 T. platyphyllos 

47 EAR1 15 0.661 T. platyphyllos 

48 EAR2 11 0.592 T. platyphyllos 

49 EAR4 14 0.613 T. platyphyllos 

50 EAR5 16 0.613 T. platyphyllos 

51 EAR6 11 0.622 T. platyphyllos 

52 HBW01 2 -0.418 T. cordata 

53 HBW02 3 -0.664 T. cordata 

54 HBW03 2 -0.641 T. cordata 

55 HBW04 3 -0.657 T. cordata 

56 HBW05 1 -0.604 T. cordata 

57 HBW06 1 -0.669 T. cordata 

58 HBW07 3 -0.575 T. cordata 

59 HBW08
c
 5 -0.419 T. cordata 

60 HBW09
c
 3 -0.419 T. cordata 

61 HBW10 7 -0.499 T. cordata 

62 HBW11 2 -0.585 T. cordata 

63 HBW12 1 -0.597 T. cordata 

64 HBW13 1 -0.656 T. cordata 

65 HBW14 3 -0.339 T. cordata 

66 HBW15 2 -0.623 T. cordata 

67 HBW16 3 -0.514 T. cordata 

68 KIN01 9 0.603 T. platyphyllos 

69 KIN02 7 0.662 T. platyphyllos 

70 KIN03 10 0.569 T. platyphyllos 

71 KIN04 15 0.513 T. platyphyllos 

72 KIN05 10 0.517 T. platyphyllos 

73 KIN06 11 0.646 T. platyphyllos 

74 KIN07 12 0.552 T. platyphyllos 

75 KIN08 9 0.706 T. platyphyllos 

76 KIN09 12 0.637 T. platyphyllos 

77 KIN10 9 0.648 T. platyphyllos 

78 KIN11 10 0.658 T. platyphyllos 
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Appendix 11. Continued. 

No. Sample Hybrid index 1
st
 axis of PCO value 

NewHybrids 

identification 

79 KIN12 13 0.612 T. platyphyllos 

80 KIN13 16 0.524 T. platyphyllos 

81 KIN14 16 0.538 T. platyphyllos 

82 KIN15 15 0.601 T. platyphyllos 

83 KIN16 12 0.504 T. platyphyllos 

84 KIN18 15 0.514 T. platyphyllos 

85 KIN19 14 0.684 T. platyphyllos 

86 KPM03 12 0.684 T. platyphyllos 

87 KPM05
d
 7 -0.018 F1 

88 KPM06
d
 6 -0.018 F1 

89 KPM07 3 -0.586 T. cordata 

90 KPM08 5 -0.665 T. cordata 

91 KPM09 4 -0.587 T. cordata 

92 KPM11 11 0.699 T. platyphyllos 

93 KPM13 3 -0.694 T. cordata 

94 KPM14 3 -0.665 T. cordata 

95 KPM15 0 -0.333 T. cordata 

96 KPM17 4 -0.534 T. cordata 

97 KPM18 5 -0.551 T. cordata 

98 KPM19 3 -0.571 T. cordata 

99 LPW01 3 -0.290 T. cordata 

100 LPW02 2 -0.590 T. cordata 

101 LPW03 3 -0.433 T. cordata 

102 LPW04 3 -0.458 T. cordata 

103 LPW05 5 -0.526 T. cordata 

104 LPW06 3 -0.520 T. cordata 

105 LPW07 2 -0.565 T. cordata 

106 LPW08 3 -0.507 T. cordata 

107 LPW09 1 -0.547 T. cordata 

108 LPW11 17 0.325 T. platyphyllos 

109 LPW12 15 0.321 T. platyphyllos 

110 LPW14 4 -0.182 T. cordata 

111 LPW15 3 -0.576 T. cordata 

112 LPW16 4 -0.648 T. cordata 

113 LPW17 16 0.589 T. platyphyllos 

114 LPW18 2 -0.466 T. cordata 

115 LPW19 15 0.459 T. platyphyllos 

116 ROU01 4 -0.538 T. cordata 

117 ROU02 3 -0.388 T. cordata 
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Appendix 11. Continued. 

No. Sample Hybrid index 1
st
 axis of PCO value 

NewHybrids 

identification 

118 ROU03 3 -0.433 T. cordata 

119 ROU04 2 -0.435 T. cordata 

120 ROU06 3 -0.673 T. cordata 

121 ROU07 5 -0.638 T. cordata 

122 ROU08 3 -0.407 T. cordata 

123 ROU09 6 -0.431 T. cordata 

124 ROU10 4 -0.397 T. cordata 

125 ROU11 6 -0.369 T. cordata 

126 ROU12 4 -0.569 T. cordata 

127 ROU13 4 -0.418 T. cordata 

128 ROU14 4 -0.285 T. cordata 

129 ROU15 5 -0.546 T. cordata 

130 ROU16 6 -0.618 T. cordata 

131 ROU17 6 -0.328 T. cordata 

132 ROU18 6 -0.385 T. cordata 

133 ROU19 3 -0.634 T. cordata 

134 ROU20 3 -0.291 undetermined 

135 TIC01 14 0.610 T. platyphyllos 

136 TIC02
e
 9 0.004 F1 

137 TIC05
e
 7 0.004 F1 

138 TIC06 9 0.682 T. platyphyllos 

139 TIC07 11 0.593 T. platyphyllos 

140 TIC11 11 0.633 T. platyphyllos 

141 TIC12 14 0.535 T. platyphyllos 

142 TIC13 10 0.559 T. platyphyllos 

143 TIC15 10 0.529 T. platyphyllos 

144 TIC16 11 0.649 T. platyphyllos 

 

Note: 
a-e

 indicated five clones detected in four populations. 
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