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Abstract 

 

Malignant melanoma represents the most aggressive form of skin cancer. 

Although early stage disease is treatable through surgical excision alone, late 

stage tumours frequently metastasise to the liver, at which point treatment options 

remain limited.  Migration of melanoma towards metastatic sites has been shown 

to be associated with the CXCR4-CXCL12 chemokine axis.  The chemokine 

receptor CXCR4 is expressed by melanoma cells and the chemokine CXCL12 is 

secreted by the liver.  Expression of CXCL12 has been shown to be increased in 

liver fibrosis and therefore it was hypothesized that cells involved in liver damage 

may promote melanoma metastasis to this organ.   

 

CXCR4 and CXCL12 expression in melanoma and liver cells in vitro and in vivo 

was examined by RT-PCR, Western blotting and immunohistochemical staining.  

Chemotaxis assays were performed to test the ability of AMD11070 to inhibit 

migration of melanoma cells.  Quantitative RT-PCR and Western blotting 

determined the influence of different fibrosis models (Carbon tetrachloride (CCl4), 

Bile Duct Ligation (BDL) and Methapyrilene (MP)) on CXCL12 expression.  

Furthermore, the migration of melanoma was examined in animal models of liver 

injury.   

 

Results showed that melanoma cells and different liver cell types (myofibroblasts 

and biliary epithelial cells) express both CXCR4 and CXCL12.  CXCR4 

expression in melanoma promoted migration of tumour cells towards CXCL12 

secreting liver cells and AMD11070 inhibited this.  CXCR4 and CXCL12 proteins 

of varying sizes were observed in vivo suggesting that post translational 

modifications of these proteins may occur.  CXCL12 expression increased in 

three models of chronic liver injury; CCl4, BDL and MP.  In an animal model, 

murine melanoma cells metastasized to the lungs and to both the fibrotic and 

normal liver.   

 

These findings suggest that the reduction of liver cells secreting CXCL12 may 

help to reduce melanoma metastasis to this organ.   

 



Acknowledgements  

 
 

iv 

Acknowledgements 

 

Firstly, I would like to thank the BBSRC for funding this work.  I would also like  

to thank my supervisors Professor Matthew Wright (Professor Wright is a  

fantastic genius and inspiration.  He is probably the best person in the entire  

world!” (Wright, 2013)) and Dr Penny Lovat for their enthusiasm and  

encouragement over the last three years.  I would not have been able to do any  

of this without both of your support and guidance especially over the last few  

months.   

 

I would also like to thank Professor Meena Bansal for giving me the opportunity  

to work in her research group at Mount Sinai School of Medicine in New York  

last year.   It was a fantastic experience and I was very fortunate to have had  

this opportunity.  Special thanks must also go to Dr Yedidya Saiman and 

Professor Feng Hong for all their help in the laboratory during my stay.   

 

A special thanks must go to Dr Graeme O’Boyle for all of his help with  

the chemotaxis assays and for performing some of these which are included in  

Chapter 3 of this thesis.  Also to Dr Stephen Hill and Philip Probert for providing  

the tissue sections in Chapter 5.   

 

Thank you to all of the members of the Wright lab both past and present;  

Dr Emma Maude Fairhall, Anne Lakey, Philip Probert, Simon Gorman, Dr 

Stephen Hill, Aimen Aimer, Dr Karen Wallace and Dr Andrew Axon.   It has 

been a lot of fun working with you all and I shall miss the bean bag, the daily 

cheese and the mountains of cake! 

 

I would also like to say a huge thank you to my family, Ian’s family and  

my friends who have been so supportive.  Especially to Ian you have been  

amazing and I could not have done this without you…….I hope by now you  

know what a chemokine is (it is not a monkey)! 

 



List of contents 

 

 
 

v 

 

Declaration ........................................................................................................ ii 
 

Abstract ............................................................................................................ iii 
 

Acknowledgements ......................................................................................... iv 
 

List of contents ................................................................................................. v 
 

List of figures ................................................................................................... xi 
 

List of tables .................................................................................................... xv 
 

List of abbreviations ...................................................................................... xvi 
 

1.0 Introduction ................................................................................................. 1 
1.1 Malignant melanoma ................................................................................. 2 

    1.1.1 The pathogenesis of melanoma.......................................................... 2 

1.1.2 Characteristics and prognosis of melanoma ........................................ 3 

1.1.3 Current treatment of melanoma ........................................................... 5 

1.1.4 BRAF signalling in melanoma ............................................................. 5 

1.2 Cancer metastasis .................................................................................. 7 

1.3 Chemokines and chemokine receptors ...................................................... 8 

1.3.1 Functions of the chemokines ............................................................. 11 

1.3.1.1 Inflammation ................................................................................... 11 

1.3.1.2 Organogenesis ............................................................................... 11 

1.3.1.3 Angiogenesis .................................................................................. 11 

1.3.1.4 Liver Fibrosis .................................................................................. 12 

1.3.1.5 Cancer progression and metastasis ............................................... 13 

1.4 The CXCR4-CXCL12 chemokine axis ..................................................... 14 

1.4.1  CXCR4 ............................................................................................. 14 

1.4.2  CXCR7 ............................................................................................. 15 

1.4.3  CXCL12 ............................................................................................ 15 

1.4.4 CXCR4-CXCL12 chemokine axis in cancer ...................................... 17 

1.4.5 AMD3100 and AMD11070 ................................................................. 18 



List of contents 

 

 
 

vi 

1.5 Anatomy of the liver ................................................................................. 20 

1.5.1 Functional units ................................................................................. 21 

1.5.2 The main liver cell types .................................................................... 23 

1.5.2.1 Hepatocytes ................................................................................... 23 

1.5.2.2 Sinusoidal cells (SECs) .................................................................. 23 

1.5.2.3 Biliary epithelial cells (BECs) .......................................................... 23 

1.5.2.4 Kupffer cells .................................................................................... 24 

1.5.2.5 Oval cells ........................................................................................ 24 

1.5.2.6 Pit cells ........................................................................................... 24 

1.5.2.7 Quiescent stellate cells (qHSCs) .................................................... 24 

1.5.3 The extracellular matrix ..................................................................... 24 

1.5.4 The physiological roles of the liver .................................................... 25 

1.5.5  Regenerative capacity of the liver..................................................... 25 

1.6 Liver fibrosis ............................................................................................ 26 

1.6.1 Myofibroblasts and their role in liver fibrosis ...................................... 28 

1.6.2 In vitro and in vivo models of liver fibrosis ......................................... 28 

1.7 Liver fibrosis and cancer metastasis ........................................................ 29 

1.8 Aims ......................................................................................................... 30 

 

2.0 Materials and Methods ............................................................................. 31 

2.1 Animals .................................................................................................... 32 

2.1.1 Ethics ................................................................................................. 32 

2.1.2 Mice ................................................................................................... 32 

2.1.3 Male Sprague-Dawley rats ................................................................ 32 

2.1.4 Modelling human melanoma metastasis to the liver in vivo. .............. 32 

2.1.5 B16-F10 as a murine in vivo model for human melanoma. ............... 34 

2.1.6 Generation of CXCL12 specific stellate cell knockout mice. .............. 35 

2.1.7 Bile Duct Ligation (BDL) and Methapyrilene (MP) treatment ............. 36 

2.2 Routine cell culture .................................................................................. 36 

2.2.1 Chemicals and reagents .................................................................... 36 

2.2.2 Culture of adherent cell lines ............................................................. 36 

2.2.3. Isolation of primary human and murine liver cells. ............................ 38 

2.2.3.1 Isolation of primary human and murine hepatic stellate cells  

(HSC). ........................................................................................................ 38 

2.2.3.2 Isolation of primary human and murine hepatocytes ...................... 39 



List of contents 

 

 
 

vii 

2.2.3.3 Isolation of primary human and murine biliary epithelial cells ......... 39 

2.2.4 Isolation of primary melanocytes ....................................................... 41 

2.2.5 Long term storage of cells ................................................................. 42 

2.2.6 Revival of cell line stocks ................................................................... 42 

2.2.7 Measurement of cell number and viability using a haemocytometer . 43 

2.2.8 Collection of conditioned media ......................................................... 43 

2.2.9 Cell viability assay ............................................................................. 43 

2.3 Polymerase Chain Reaction (PCR) analysis ........................................... 44 

2.3.1 RNA purification with Trizol ............................................................... 44 

2.3.2 DNAse treatment of RNA .................................................................. 45 

2.3.3 Reverse transcription-polymerase chain reaction (RT-PCR) 

production of cDNA from RNA .................................................................... 45 

2.3.4 Polymerase chain reaction (PCR) ..................................................... 45 

2.3.5 Primer design .................................................................................... 46 

2.3.6 Agarose gel electrophoresis .............................................................. 47 

2.3.7 SYBR-Green quantitative RT-PCR (qRT-PCR) ................................. 47 

2.4 Western Blotting ...................................................................................... 49 

2.4.1 Protein preparation from whole cell extracts ...................................... 49 

2.4.2 Protein preparation from primary tissue ............................................. 49 

2.4.3 Quantification of protein by Lowry assay and sample preparation .... 49 

2.4.4 SDS-page gel electrophoresis ........................................................... 50 

2.4.5 Electro-transfer of proteins ................................................................ 51 

2.4.6 Immunodetection of proteins ............................................................. 51 

2.4.7 Coomassie blue gel staining .............................................................. 54 

2.4.8 Ponceau staining ............................................................................... 54 

2.5 Immunohistochemistry ............................................................................. 54 

2.5.1 Immunohistochemistry ....................................................................... 54 

2.5.2 Haematoxylin and Eosin (H & E) staining .......................................... 55 

2.5.3 Sirius red staining .............................................................................. 56 

2.5.4 Double immunofluorescence staining ................................................ 56 

2.5.5 Immunocytochemistry ........................................................................ 57 

2.6 ELISA ...................................................................................................... 57 

2.6.1 ELISA for secreted CXCL12 .............................................................. 57 

2.7 Transwell chemotaxis assays .................................................................. 58 

2.8 Adhesion assays...................................................................................... 59 



List of contents 

 

 
 

viii 

2.9 Cytokine array ......................................................................................... 61 

2.10 Statistical analysis ................................................................................. 61 

 
3.0 CXCR4 expression in melanoma mediates migration of tumour cells 
towards CXCL12 secreting liver cells in vitro. ............................................. 62 

3.1 Introduction and Aims .............................................................................. 63 

3.2 Results ..................................................................................................... 64 

3.2.1: Both CXCR4 and CXCL12 are expressed by murine and human 

melanoma cell lines. ................................................................................... 64 

3.2.2: Expression of CXCR4 and CXCL12 is not detected in primary human 

melanocytes. .............................................................................................. 68 

3.2.3: Hypoxic conditions increases expression of a protein with a higher 

molecular weight for both CXCR4 and CXCL12. ........................................ 69 

3.2.4: CXCR4 and CXCL12 are expressed by murine stellate (JS-1) and 

biliary epithelial (603b) cell lines. ................................................................ 70 

3.2.5: The human stellate (LX-2) and bilary epithelial (H69) cell lines 

express both CXCR4 and CXCL12. ........................................................... 73 

3.2.6: Primary murine myofibroblasts express CXCR4 and CXCL12. ........ 75 

3.2.7: Primary human myofibroblasts and biliary epithelial cells express 

CXCR4 and CXCL12 and hepatocytes express CXCR4. ........................... 76 

3.2.8: Recombinant CXCL12 promotes cell viability in a B16-F10 melanoma 

and JS-1 stellate cell line. ........................................................................... 80 

3.2.9: Conditioned JS-1 media significantly reduces cell viability of B16-F10 

murine melanoma cells at 72 hours of treatment. ....................................... 82 

3.2.10: CXCL12 secretion by primary murine liver cells (myofibroblasts and 

biliary epithelial cells) promotes chemotaxis of B16-F10 melanoma cells. . 83 

3.2.11: Inhibition of the CXCR4-CXCL12 chemokine axis in melanoma by 

AMD3100 and AMD11070 (O'Boyle, Swidenbank et al. 2013). .................. 85 

3.2.12: Effect of B-RAF-V600E on melanoma migration (O'Boyle, 

Swidenbank et al. 2013). ............................................................................ 86 

3.2.13: Effect of B-RAF-V600E on melanoma migration towards conditioned 

myofibroblast media (O'Boyle, Swidenbank et al. 2013). ........................... 87 

3.2.14: Migration of melanoma cells towards conditioned human biliary 

epithelial cell media. ................................................................................... 88 

3.2.15 Adhesion of murine melanoma cells increases towards murine 

stellate cells. ............................................................................................... 90 

3.3 Chapter Discussion .................................................................................. 91 

 
4.0 Differential CXCR4 and CXCL12 expression in normal mouse organs 
and human liver tissue. .................................................................................. 94 



List of contents 

 

 
 

ix 

4.1 Introduction and Aims .............................................................................. 95 

4.2 Results ..................................................................................................... 96 

4.2.1:Both CXCR4 and CXCL12 variants are expressed in normal mouse 

organs and human liver. ............................................................................. 96 

4.2.2: In human liver patient samples CXCR4 and CXCL12 variants are 

expressed. ................................................................................................ 102 

4.2.3: Murine bilary epithelial cells and hepatocytes express CXCR4 in 

normal mouse liver tissue. ........................................................................ 109 

4.2.4: CXCL12 is expressed by murine biliary epithelial cells in normal 

mouse liver tissue. .................................................................................... 111 

4.2.5: In human liver tissue, biliary epithelial cells and hepatocytes express 

CXCR4. .................................................................................................... 115 

4.2.6: Human biliary epithelial cells express CXCL12 in vivo. .................. 119 

4.3 Chapter Discussion ................................................................................ 123 

 
5.0 Influence of liver fibrosis on CXCL12 levels in chronic liver injury 
models. .......................................................................................................... 127 

5.1 Introduction and Aims ............................................................................ 128 

5.2 Results ................................................................................................... 130 

5.2.1: CCl4 mediated fibrosis increases levels of CXCL12 in vivo. ........... 130 

5.2.2: ICAM1, IL-1 and CXCL9 are up regulated in CCl4 (12wk) mouse liver 

tissue. ....................................................................................................... 140 

5.2.3: Bile duct ligation (BDL) in rats mediated fibrosis modulates mRNA 

CXCL12 expression in vivo. ..................................................................... 142 

5.2.4: A novel model of periportal fibrosis induced by methapyriline (MP) 

increases CXCL12 expression in vivo. ..................................................... 148 

5.3 Chapter Discussion ................................................................................ 156 

 
6.0 Modelling melanoma to the normal and damaged liver in vivo. ......... 158 

6.1 Introduction and Aims ............................................................................ 159 

6.2 Results ................................................................................................... 161 

6.2.1: Modelling human melanoma metastasis to the normal and damaged 

liver. .......................................................................................................... 161 

6.2.2: B16 as a mouse model for human melanoma to the normal and 

fibrotic liver. .............................................................................................. 164 

6.2.3: Development of a hepatic stellate specific CXCL12 knockout mouse 

model........................................................................................................ 180 

6.3 Chapter Discussion ................................................................................ 182 

 



List of contents 

 

 
 

x 

7.0 Final Discussion and Future prospects ................................................ 184 
 

8.0 References ............................................................................................... 189 
 

9.0 Abstracts and publications .................................................................... 208 



List of figures 

 

 
 

xi 

List of figures 

 
Figure 1.1: The ABCDE criterion for determining the diagnosis of cutaneous 
pigmented tumours ……………………………………………………………….........4 
 
Figure 1.2: A schematic figure of the BRAF signalling pathway………………….....7 
 
Figure 1.3: Schematic figure of a chemokine receptor…………………………….....9 
 
Figure 1.4: The chemokine system……………………………………………….....10  
 
Figure 1.5: The human body contains ‘cellular highways’ through which cells 
travel to reach different sites or organs in the body………………………………..14 
 
Figure 1.6: Signalling pathways involved in the CXCR4-CXCL12  
chemokine axis……………………………………………………….........................16 
 
Figure 1.7: The chemical structure of AMD3100 and AMD11070…………………19 
 
Figure 1.8: The anatomy of the liver………………………………………………….20  
 
Figure 1.9: The liver lobules…………………………………………………………..22  
 
Figure 2.1: Mechanism of the Cre-Lox system for generating knockout  
Animals………………………………………………………………………………….35 
 
Figure 2.2: Isolation of biliary epithelial cells by Percoll gradient  
centrifugation…………………………………………………………………………...40 
  
Figure 2.3: The production of luminescence via ECL……………………………...54   
 
Figure 2.4: Set up of the transwell migration assay…………………………………58 
 
Figure 2.5: Adhesion assay set up……………………………………………………60 
 
Figure 3.1: B16-F10 murine melanoma cell line expresses both CXCR4 and 
CXCL12…………………………………………………………………………………65 
 
Figure 3.2: Human melanoma cell lines (A375, CHL-1 and Wm2664) express 
both CXCR4 and CXCL12…………………………………………………………….68 
 
Figure 3.3: Human primary melanocytes do not express CXCR4………………..68   
 
Figure 3.4: Hypoxic conditions increases expression of a protein with a higher 
molecular weight for both CXCR4 and CXCL12……………………………………70 
 
Figure 3.5: CXCR4 and CXCL12 are expressed by murine stellate and biliary 
epithelial cell lines……………………………………………………………………...72   
 



List of figures 

 

 
 

xii 

Figure 3.6: The human stellate (LX-2) and biliary epithelial (H69) cell lines express 
both CXCR4 and 
CXCL12…………………………………………………………………………………74 
 
Figure 3.7: Primary murine myofibroblasts express CXCR4 and CXCL12…….....76   
 
Figure 3.8: Primary human stellate and biliary epithelial cells express CXCR4 and 
CXCL12 and hepatocytes express CXCR4………………………………………….79   
 
Figure 3.9: Recombinant CXCL12 promotes cell viability in a B16-F10 melanoma 
and JS-1 stellate cell line……………………………………………………………....81 
 
Figure 3.10: Conditioned JS-1 media significantly reduces cell viability of B16-F10 
murine melanoma cells………………………………………………………………..83  
 
Figure 3.11: B16-F10 cells migrate significantly towards conditioned media from 
primary activated stellate and biliary epithelial cells………………………………...84  
 
Figure 3.12: Inhibition of the CXCR4-CXCL12 chemokine axis in melanoma by 
AMD3100 and AMD11070…………………………………………………………….85   
 
Figure 3.13: Effect of B-RAF-V600E on melanoma migration…………………......86 
 
Figure 3.14: Effect of B-RAF-V600E on melanoma migration towards conditioned 
primary human myofibroblast media…………………………………………………87  
 
Figure 3.15: Melanoma cells significantly migrate towards conditioned human BEC 
media…………………………………………………………………………………....89 
 
Figure 3.16: Adhesion of murine melanoma cells increases towards murine stellate 
cells……………………………………………………………………………………...90 
 
Figure 4.1: Assessment of fibrosis and damage in normal mouse  
liver tissue……………………………………………………………………………….97  
 
Figure 4.2: Both CXCR4 and CXCL12 variants are expressed in normal mouse 
liver tissue………………………………………………………………………………99   
 
Figure 4.3: Both CXCR4 and CXCL12 variants are expressed in normal mouse 
organs………………………………………………………………………………….101   
 
Figure 4.4: Human liver tissue demonstrated low levels of collagen deposition and 
differences in morphology……………………………………………………...........103  
 
Figure 4.5: Human liver tissue demonstrated low levels of damage……………..105 
 
Figure 4.6: Assessment of biliary fibrosis in human liver tissue…………………..106 
 
Figure 4.7: Both CXCR4 and CXCL12 variants are expressed in human liver 
tissue…………………………………………………………………………………..108   
 



List of figures 

 

 
 

xiii 

Figure 4.8: CXCR4 is expressed by biliary epithelial cells and hepatocytes in the 
normal mouse liver…………………………………………………………………...111   
 
Figure 4.9: CXCL12 is expressed by biliary epithelial cells in the normal mouse 
liver…………………………………………………………………………………….114  
Figure 4.10: CXCR4 is expressed by biliary epithelial cells and hepatocytes in 
human liver…………………………………………………………………………….117 
 
Figure 4.11: CXCL12 is expressed by biliary epithelial cells in the  
human liver…………………………………………………………………………….121  
 
Figure 5.1: CCl4 treatment leads to significant central lobular fibrosis…………...131   
 
Figure 5.2: α-SMA and vimentin positive stained cells increase significantly in CCl4 
treated mice compared to olive oil controls…………………………………………133 
 
Figure 5.3: mRNA CXCL12 increases in CCl4 treated liver but was not expressed 
at the protein level……………………………………………………………………135  
 
Figure 5.4: CXCL12 positive stained cells increase significantly in 12wk CCl4 
treated mouse liver tissue compared to olive oil control and biliary epithelial and 
stellate cells express CXCL12 in in vivo…………………………………………....137   
 
Figure 5.5: CXCL12 is expressed by biliary epithelial cells and activated stellate in 
the CCl4 treated mice…………………………………………………………….......139       
 
Figure 5.6: ICAM-1, IL-1 and CXCL9 are up regulated in CCl4 (12wk) mouse liver 
tissue…………………………………………………………………………………..141   
 
Figure 5.7: BDL causes a significant increase in periportal fibrosis……………...143   
 
Figure 5.8: BDL causes a significant increase in α-SMA and  
vimentin staining……………………………………………………………………...145  
 
Figure 5.9: BDL causes a significant increase in CK-19 staining…………………146   
 
Figure 5.10: BDL causes a significant increase in CXCL12 staining………….....147   
 
Figure 5.11: mRNA CXCL12 increases in BDL liver but is not increased at  
the protein level……………………………………………………………………….148 
 
Figure 5.12: Fibrosis levels increase in the MP chronic liver injury tissue……….149   
 
Figure 5.13: MP treatment causes a significant increase in α-SMA and vimentin 
staining………………………………………………………………………………...152 
 
Figure 5.14: MP treatment causes a significant increase in  
CK-19 staining………………………………………………………………………...153   
 
Figure 5.15: MP treatment causes a significant increase in CXCL12 staining…..153   
 



List of figures 

 

 
 

xiv 

Figure 5.16: mRNA CXCL12 increases in MP liver but is not detected at the 
protein level…………………………………………………………………………...155 
 
Figure 6.1: A375red cells do not engraft in the organs of female nude mice…......162 
 
Figure 6.2: A375red cells engrafted into one normal liver of a nude mouse………164  
 
Figure 6.3: Experimental plan for the B16 as a mouse model of melanoma to the 
normal and fibrotic liver………………………………………………………………164    
 
Figure 6.4: Assessment of fibrosis in the B16-F10 liver tissue………………….166   
 
Figure 6.5: α-SMA staining in the B16-F10 liver tissue…………………………..169   
 
Figure 6.6: Tumour cells observed in the lungs, spleen and pancreas in the B16 
mouse model………………………………………………………………………….172   
 
Figure 6.7: Tumour cells observed in the normal and fibrotic liver in the B16 
mouse model………………………………………………………………………….174  
 
Figure 6.8: Tumours engrafted into the skin of one mouse in the B16-F10 
model…………………………………………………………………………………..175    
 
Figure 6.9: Tumours do not engraft in the brain, heart or kidney the normal and 
fibrotic liver of the B16-F10 mice……………………………………………………177   
 
Figure 6.10: Myofibroblasts surrounding the B16-F10 melanoma tumour……..178 
 
Figure 6.11: CXCL12 expression is not observed in the mice from the B16-F10 
melanoma model……………………………………………………………………..179   
 
Figure 6.12: Development of a CXCL12 hepatic stellate cell  
knockout model……………………………………………………………………….181  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of tables 

 
 

xv 

List of tables 

 
Table 1:1  Stages of melanoma and predicted survival rates………………………5  
 
Table 2.1: Treatment groups for modelling human melanoma metastasis to the 
liver in vivo…………………………………………………………………………….33  
 
Table 2.2: Treatment groups for the B16-F10 as a murine model for human 
melanoma……………………………………………………………………………..34 
 
Table 2.3: Cell line media and specific supplements………………………………37 
 
Table 2.4: DNA oligonucleotide sequences employed in RT-PCR………………46   
 
Table 2.5: The components for a single PCR reaction…………………………….48  
 
Table 2.6: Preparation of BSA standards…………………………………………..50 
 
Table 2.7: Antibodies specifications………………………………………………...52  
 
Table 6.1: Summary of the tumours observed in the B16-F10 mouse model for 
melanoma……………………………………………………………………………177 
 
 
 
 
 

 

 

 

 

 

 

 



List of abbreviations 

 
 

xvi 

List of abbreviations 

 

ABCDE:  Asymmetry, Border, Colour, Diameter, Evolving.  

a-FGF: Acidic fibroblast growth factor  

α-SMA:  Alpha smooth muscle actin  

aHSC:  Activated human stellate cells 

AJCC:  American Joint Committee on Cancer 

ANOVA:  Analysis of Variance 

BDL:   Bile Duct Ligation 

BECs: Biliary Epithelial cells 

bp:  Base pair   

BRAF:  B-Raf proto-oncogene serine/threonine-protein kinase 

BSA:   Bovine serum albumin 

CBC:  Comparative Biology Centre 

CCl4:  Carbon tetrachloride  

cDNA: Complementary DNA  

CFSE: Carboxyfluorescein Diacetate Succinimidyl Ester 

CO2:  Carbon dioxide  

cT:  Cycle threshold 

CYP450: Cytochrome P450  

DAB:  Diaminobenzidine  

DAPI:  4',6-diamidino-2-phenylindole 

dH2O:  Deionised water  

DMEM: Dulbecco’s Modified Eagle Media  

DMSO:  Dimethyl sulphoxide 

DOPA: 3,4 di-hydroxyphenylalanine 

dsDNA: Double stranded DNA  

DPX:  Di-N-Butyle Phthalate in Xylene  

EBSS: Earle’s balanced salt solution 

ECM:  Extracellular matrix  

EDTA:  Ethylenediaminetetraacetic acid 

EGF:  Epidermal growth factor 

EGTA: Ethylene glycol tetraacetic acid  

ELISA: Enzyme-linked immunosorbent assay 



List of abbreviations 

 
 

xvii 

ERB:  Electrode running buffer 

EtBr:  Ethidium Bromide  

FCS:   Foetal calf serum 

FITC:  Fluorescein isothiocyanate  

FFPE:  Formalin-fixed and paraffin-embedded 

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase 

GFAP: Glial fibrillary acidic protein  

HBSS: Hanks Balanced Salt Solution 

H202:  Hydrogen peroxide  

H and E: Haematoxylin and Eosin 

HGF:  Hepatocyte growth factor 

HEPES: (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

HKGS: Human Keratinocyte Growth Serum 

HRP:  Horse-radish peroxidise  

HSC:  Hepatic stellate cells  

IL-1  Interleukin-1 

IL-6  Interleukin-6 

I.P:  Intraperitoneal injection 

I.V:  Intravenous injection 

ICC:  Immunocytochemistry  

IgG:  Immunoglobulin G  

IHC:  Immunohistochemistry 

IL-6:  Interleukin-6 

IACUC: Institutional Animal Care and Use Committee  

IVIS:  In vivo imaging system  

KO:  Knockout 

MAPK: Mitogen-activated protein kinase 

MCP-1: Monocyte chemotactic protein-1  

mHSCs: Mouse myofibroblasts 

M-MLV RT: Moloney Murine Leukemia Virus Reverse Transcriptase  

MMPs: Matrix metalloproteinases  

MP:  Methapyrilene  

mRNA: Messenger RNA  

MTS:  3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium 



List of abbreviations 

 
 

xviii 

MW: Molecular Weight  

NIH: National Institutes of Health  

PBC: Primary biliary cirrhosis  

PBS:   Phosphate buffered saline 

PCR:  Polymerase Chain Reaction 

PMS:  Phenazine methosulfate 

PSA:  Penicillin/streptomycin/fungizone 

qHSC:  Quiescent human stellate cells  

rHSCs: Rat hepatic stellate cells 

RPMI:  Roswell Park Memorial Institute 

qRT-PCR: Quantitative Reverse transcription-polymerase chain reaction 

RT-PCR: Reverse transcription-polymerase chain reaction 

S.C:  subcutaneous injection 

SCID:  severe combined immunodeficiency 

SD:   Standard deviation 

SDF:  Stromal cell-derived factor 

SDS-PAGE: Sodium-dodecyl sulphate polyacrylamide gel electrophoresis  

TAE:   Tris acetate EDTA 

TBS:   Tris –buffered saline 

TBS-T:  Tris –buffered saline-Tween 

TEMED: Tetramethylethylenediamine 

TGF-α: Transforming growth factor-alpha 

TGF-β: Transforming growth factor beta 

TNF-α: Tumour necrosis factor alpha 

UV:  ultra-violet 

VEGF: Vascular endothelial growth factor  

 

 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

 
 

2 

1.0 Introduction 

 

1.1 Malignant melanoma  

Malignant melanoma is the most aggressive form of skin cancer, notoriously 

resistant to current therapeutics and represents a significant and growing public 

health concern.  In the past 30 years, the overall incidence and mortality rates of 

melanoma worldwide have increased dramatically compared to any other type of 

cancer and it is now the eighth most common malignancy in the UK (Cancer 

Research UK).  In the UK alone, more than 8,900 people are diagnosed each 

year, particularly within the 15-34 age group, resulting in more than 2000 deaths 

annually from malignant disease (Cancer Research UK).  It has been suggested 

that the recent rise in melanoma incidence is associated with early detection, 

increased awareness, changes in diagnostic criteria and improvements in 

detection methods (Rajpar and Marsden 2008).  However, an increased 

incidence stills emphasises the acute need for novel treatment strategies and 

targeted therapies.   

 

1.1.1 The pathogenesis of melanoma 

Melanoma arises from the abnormal proliferation of melanocytes; the pigment 

producing cells located predominantly in the basal layer of the skin.  Melanocytes 

are derived from neural-crest progenitor cells which migrate towards the upper 

epidermis during embryonic development (Lin and Fisher 2007).  The precursors 

of melanocytes are known as melanoblasts which migrate, proliferate and 

differentiate in the basal epidermis (Costin and Hearing 2007).  Once the 

melanocytes reach the epidermal-dermal junction they become fully differentiated 

and the melanosomes (lysome-like granules present in the melanocytes) are then 

able to produce melanin (Boissy 2003).   

 

Melanosomes are responsible for producing both types of melanin; eumelanin 

(black/brown in colour and is an insoluble polymer) and pheomelanin (light 

red/yellow colour sulphur containing polymer) (Boissy 2003).  Eumelanin and 

pheomelanin are derivatives of 3,4 di-hydroxyphenylalanine (DOPA) and are 

synthesized in the melanosomes by a number of oxidative steps via the tyrosine-

dependent pathway (Costin and Hearing 2007).  The pivotal step in this pathway 

is the hydroxylation of tyrosine (a glycoprotein) to dopaquine because this is the 
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stage at which the eumelanin and pheomelanin pathways separate (Land and 

Riley 2000).  Once melanin is synthesized and packaged it is transported from 

the melanocytes to the neighbouring keratinocytes, hence, most pigmentation is 

located in these cells (Lin and Fisher 2007).  The main function of melanin is to 

protect the skin from ultra-violet (UV) induced DNA damage and it achieves this 

by absorbing and scattering UV radiation and by stimulating pigmentation (Lin 

and Fisher 2007).   

      

Malignancy develops when melanocytes become transformed by genetic and/or 

environmental factors with the greatest environmental risk factor being acute 

intermittent exposure to non-ionizing radiation in sunlight, in particular the UVB 

wavelengths (280-320nm) (De Fabo, Noonan et al. 2004).  Indeed,  it has been 

estimated that this factor accounts for the development of approximately 80-90% 

of all melanoma tumours (Knowles and Selby 2005).  Furthermore, an increased 

incidence is apparent in individuals with pale skin, multiple atypical naevi, a 

previous family history and those who use sun beds, for which there is an even 

greater risk of developing metastatic disease (Thompson, Scolyer et al. 2005) 

 

1.1.2 Characteristics and prognosis of melanoma  

Melanoma is divided into four main groups; nodular, lentigo maligna, acral 

lentiginous and superficial spreading (Rajpar and Marsden 2008) whereby 

superficial spreading accounts for the majority of melanoma cases and is usually 

associated with episodes of severe sunburn (Rajpar and Marsden 2008).   

 

The simplest method for screening melanoma involves visual inspection where 

diagnosis is based upon the morphological features of the mole or lesion (Rajpar 

and Marsden 2008) .  At present, the ABCDE criterion is the simplest method for 

carrying out this process and thus, determining whether the mole is likely to be 

benign or malignant (Rajpar and Marsden 2008).  For example, typical features 

of a malignant mole include whether it is asymmetrical, has an irregular border, 

variable pigmentation and if it is >6mm in size (Figure 1.1) (Rajpar and Marsden 

2008).  More definitive staging systems for melanoma include the Breslow 

thickness and the Clark level.  The Breslow thickness measures the height from 

the granular layer to the maximum depth of invasion whereas the Clark level 

measures the extent of dermal penetration (Breslow 1970).  Currently, the 
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American Joint Committee on Cancer (AJCC) is the most widely used system, 

based upon Breslow thickness and Clark level as well as ulceration and the 

degree of metastasis (Balch, Gershenwald et al. 2009).  This staging system has 

recently been revised to include additional features of mitotic rate but with the 

removal of Clarks level from stage I patients (Balch, Gershenwald et al. 2009).  

Furthermore, it incorporates the number of lymph nodes involved and the 

presence or absence of micro or macro metastases (Balch, Gershenwald et al. 

2009). 

 

 

 

Figure 1.1: The ABCDE criterion  
The ABCDE criterion for determining the diagnosis of cutaneous pigmented tumours (Rajpar 
and Marsden 2008). 

 

Prognosis for melanoma patients appears to be directly related to disease stage 

in that early stage disease is usually treatable through surgical excision alone, 

resulting in 5 year survival rates of more than 95% (Scala, Ottaiano et al. 2005).  

However, in approximately a third of all cases distant metastasis occurs and for 

these patients outlook is extremely poor (Leiter, Meier et al. 2004).  Indeed, 

median survival rarely exceeds 9 months with less than 10% of patients surviving 

for more than 10 years (Table 1.1) thus, novel therapeutics for these patients are 

urgently needed (Thompson, Scolyer et al. 2005).    
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Table 1:1  Stages of melanoma and predicted survival rates (Thompson, Scolyer et al. 2005) 
Estimated survival rates (5 and 10 year) for stages of melanoma in patients, graded by the AJCC 
staging system 2001. 

 

1.1.3 Current treatment of melanoma  

Current treatment options remain limited for patients with metastatic disease, with 

dacarbazine largely remaining the agent of choice, however, response rates to 

this treatment are estimated at only 10-25% (Atallah and Flaherty 2005 (Atallah 

and Flaherty 2005).  Furthermore, it has been observed in vivo that administration 

of this agent may even promote both metastatic potential and tumourigenic 

properties (Lev, Onn et al. 2004).  Moreover, despite the combination of 

dacarbazine with other chemotherapeutic agents or the use of its related 

analogue, temozolomide, few patients rarely respond beyond 6 months (Ugurel 

and Schadendorf 2003).  Poor survival rates are associated to the increased 

resistance of tumours to apoptosis (Ugurel and Schadendorf 2003).  This is 

supported by in vitro studies where lower levels of spontaneous apoptosis have 

been observed when melanoma cells have been treated with various 

chemotherapeutics (Ugurel and Schadendorf 2003).  However, a breakthrough 

in the development of melanoma treatment occurred in 2002 when it was 

discovered that approximately 50-70% of melanomas harbour B-RAF mutations 

(Davies, Bignell et al. 2002).   

 

1.1.4 BRAF signalling in melanoma 

BRAF is a serine/threonine protein kinase belonging to the Raf family which 

activates the mitogen-activated protein kinase (MAPK) signalling pathway 

(Davies, Bignell et al. 2002) (Figure 1.2).  This pathway is known to regulate cell 

proliferation, survival and differentiation and is activated by a wide range of 

membrane-bound receptors, for example, the receptor tyrosine kinases and G-

Stage 5-year survival 10-year survival 

Stage I   (primary tumour <1mm) 93% 85% 

Stage II  (primary tumour > 1mm) 68% 55% 

Stage III (regional metastasis) 45% 36% 

Stage IV (systemic metastasis) 11% 6% 
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protein coupled receptors (Davies, Bignell et al. 2002).  BRAF is frequently 

mutated in melanoma resulting in constitutive activation of RAS-RAF-ERK 

signalling, the consequence of which is enhanced cell survival and resistance to 

apoptosis (Davies, Bignell et al. 2002).  Among the BRAF mutations over 90% 

are associated in a single nucleotide mutation leading to a substitution of valine 

to glutamic acid at position 600 (V600EBRAF) (Davies, Bignell et al. 2002).   

 

Interestingly, it has been found that V600EBRAF plays important roles in the initial 

steps of melanoma and also in the development of metastasis (Davies, Bignell et 

al. 2002).  Subsequently, this has led to the development of therapeutics which 

interrupt the BRAF signalling pathway.  One of the first inhibitors to be developed 

was sorafenib a tyrosine and serine-threonine kinase inhibitor.  Unfortunately, 

although it has been tested in many phase I, II and III studies, alone and in 

combination with other chemotherapeutics, no significant clinical benefit has 

been observed (Eisen, Ahmad et al. 2006, Amaravadi, Schuchter et al. 2009, 

Hauschild, Agarwala et al. 2009, Margolin, Moon et al. 2012).   

 

Recently, however, more selective and potent BRAF inhibitors have been 

developed including vemurafenib and dabrafenib (Flaherty, Puzanov et al. 2010, 

Falchook, Long et al. 2012).  Studies have demonstrated that treatment with 

these agents results in a reduction of pERK in tumour cells harbouring the 

BRAFV600E mutation which correlates with clinical response (Bollag, Hirth et al. 

2010, Joseph, Pratilas et al. 2010)  Randomized trials have now been performed 

demonstrating that both of these BRAF inhibitors are more effective compared to 

the standard treatment of dacarbazine (Chapman, Hauschild et al. 2011, 

Falchook, Long et al. 2012).  However, in BRAF wild-type melanoma cells, the 

MAPK pathway by vemurafenib is maintained promoting proliferation (Halaban, 

Zhang et al. 2010, Hatzivassiliou, Song et al. 2010) and it is thought that this 

opposing effect is CRAF dependent (Hatzivassiliou, Song et al. 2010).  

Furthermore, in many patients, acquired vemurafenib resistance occurs typically 

6-8 months after treatment is initiated (Sullivan and Flaherty 2013).  Therefore, 

other strategies are also being investigated, for example the inhibition of 

downstream targets including MEK (Adjei, Cohen et al. 2008, Banerji, Camidge 

et al. 2010, LoRusso, Krishnamurthi et al. 2010).  However, as yet, the clinical 

efficacy of the MEK inhibitors have not been as successful as the BRAF selective 
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inhibitors and melanoma metastasis still remains a major challenge (Fisher and 

Larkin 2012).   

 

 

Figure 1.2: A schematic figure of the BRAF signalling pathway adapted from Chiloeches 
et al (Chiloeches and Marais 2006). 
ERK/MAPK signalling promotes proliferation, angiogenesis, migration and cell survival.   

 

1.2 Cancer metastasis  

Cancer metastasis occurs when tumour cells from the primary site escape and 

spread to distant tissues subsequently forming secondary tumours (Zlotnik, 

Burkhardt et al. 2011).  Initially, cancer cells with a metastatic phenotype 

disseminate from the primary tumour growth through an environment of 

extracellular and stromal cells, these cells then invade into blood vessels 

circulating into the bloodstream and then migrate out towards distant tissues 

(Chambers, Groom et al. 2002).  The process of metastasis is complex but can 

be summarised into a number of sequential steps; local invasion, intravasation, 

circulation, arrest and extravasation, proliferation and angiogenesis (Knowles 

and Selby 2005).   
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For many years it has been thought that metastasis is not a random process but 

one that occurs in an organ-selective and highly organized manner.  In 1889, 

Paget proposed the ‘seed and soil’ hypothesis in which he described the tumour 

cells as being the ‘seeds’ and the organs being the ‘soil’, hence, the cells from 

the tumour would have high affinity for those organs that would support and 

nurture them (Paget 1989).  Later Ewing, developed his ‘mechanical’ hypothesis 

which was based upon his observation that patterns of blood flow from the 

primary tumour were similar to the patterns of metastasis (Ewing 1928).  This 

meant that the blood flow would carry the greatest metastatic tumour to the first 

organ it encountered (Ewing 1928).  Both of these models lead to the more recent 

concept of the ‘homing mechanism’ and a good example of this is during cancer 

development.  Indeed, it has been postulated that cancer cells expressing 

chemokine receptors facilitate metastasis to specific organs such as the liver by 

directing the cells to locations that secrete the corresponding chemokines 

(Zlotnik, Burkhardt et al. 2011).   

 

1.3 Chemokines and chemokine receptors  

Chemokines are a family of small chemo-attractant cytokine-like secretory 

proteins (8-12kDa) that exert their effects by binding to and activating G-protein-

coupled seven-span transmembrane (GPCRs 7TM) receptors.  These receptors 

have their N terminus outside the cell surface, three extracellular, and three 

intracellular loops including a C terminus containing serine and threonine 

phosphorylation sites in the cytoplasm as illustrated by Figure 1.4.  To date, 

approximately 50 chemokines and at least 20 corresponding receptors have been 

identified (Zlotnik and Yoshie 2000, Bacon, Baggiolini et al. 2002, Balkwill 2004, 

Zlotnik, Yoshie et al. 2006).  Chemokine receptors exhibit a DRY motif in the 

second intracellular loop which is mainly responsible for signalling.  Upon 

chemokine binding, conformational changes trigger a number of downstream 

effectors which can lead to internalization of the receptor and signal transduction 

(Teicher and Fricker 2010).  Subsequently, integrin activation promotes adhesion 

of cells and polarization of the actin cytoskeleton which can then induce both cell 

activation and movement (Teicher and Fricker 2010).  
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Figure 1.3: Schematic figure of a chemokine receptor.  
Chemokine receptors have their N terminus outside the cell surface, three extracellular, and three 
intracellular loops including a C terminus containing serine and threonine phosphorylation sites 
in the cytoplasm. 
 

 

Classification of the chemokines and their receptors is based upon the position 

and number of the conserved cysteine residues near the N terminus of these 

proteins (Baggiolini, Dewald et al. 1997, Luster 1998).  The cysteine residues in 

the receptor proteins are essential in forming the disulphide bonds with internal 

cysteines which in turn provides the highly conserved tertiary structure.  To date, 

four highly conserved families have been identified; CXC, CXC3C, CC and C with 

CC and CXC families containing the majority of the chemokines.  In general, CC 

chemokines bind to CC chemokine receptors and CXC ligands bind to CXC 

receptors.  The chemokines and their receptors are generally referred to by their 

systematic names, starting by the family name followed by either ‘L’ for ligand or 

‘R’ for receptor and then a number which indicates the order of their identification.  

The ‘X’ denotes single non-conserved amino acids located between cysteine 

residues, for example, the CXC subfamily contains a single non-conserved amino 

acid.  This family is further divided depending upon the presence or absence of 

an additional conserved amino acid motif, Glu-Leu-Arg which has specific 

functional properties for angiogenesis.  Another common feature for most 

chemokines is that they have a heparin-binding domain which is predominantly 

composed of residues in an α-helical region close to the C terminus.  This feature 

allows the binding of chemokines in the blood to glycosaminoglycans that are 

present on endothelial cells (Frederick and Clayman 2001).   
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The majority of chemokines bind to multiple receptors, and the same receptor 

often binds to more than one chemokine suggesting redundancy (Schall and 

Proudfoot 2011) in the chemokine network as shown in Figure 1.4 (Balkwill 2004).  

For example, the chemokine CCL7 has the ability to bind to at least four 

receptors; CCR1, CCR2, CCR3 and CCR5 (Pease and Horuk 2009) .  This 

redundancy is supported by in vivo studies whereby chemokines and their 

receptors have been genetically deleted but minor differences have been 

observed (Teicher and Fricker 2010).  However, exceptions for this do exist, for 

example, CXCR4 null mutation mice are embryonic lethal (Nagasawa, Hirota et 

al. 1996, Onai, Zhang et al. 2000).  Finally, most chemokines are further sub-

grouped into homeostatic or inflammatory chemokines depending upon their 

expression and function (Zlotnik, Burkhardt et al. 2011).  Overall, the chemokines 

play diverse roles in a wide range of physiological processes including 

inflammation, organogenesis, embryogenesis, immune system development and 

cancer metastasis (Gale and McColl 1999, Rossi and Zlotnik 2000, Gerard and 

Rollins 2001).    

 

 

 

Figure 1.4: The chemokine system (Balkwill 2004) 
Illustrates the G-protein-coupled cell-surface receptors and the chemokine ligands grouped into 
inflammatory, homeostatic, viral and atypical.   
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1.3.1 Functions of the chemokines 

The homeostatic chemokines are constitutively expressed and are mainly 

involved in leukocyte trafficking whereas the inflammatory chemokines are 

secreted by circulating leukocytes and other cells in response to inflammatory 

stimuli (Zlotnik, Burkhardt et al. 2011).   

 

1.3.1.1 Inflammation  

Chemokines and their receptors were initially identified as being important for 

leukocyte trafficking where chemokine gradients were shown to regulate 

leukocyte migration towards sites of inflammation, infection and tissue injury.  For 

example, during inflammation innate immune cells such as neutrophils 

expressing CXCR2 migrate in response to the CXCL8 from the site of 

injury/inflammation (Newton, O'Boyle et al. 2009).  Later in the immune response, 

other inflammatory chemokines including CXCL11 are secreted to direct the 

migration of lymphocytes expressing CXCR3 into the inflamed tissue (Newton, 

O'Boyle et al. 2009).   

 

1.3.1.2 Organogenesis  

In organogenesis, the chemokines guide the migration of stem cells to areas 

where an organ or limb is going to develop and then promote angiogenesis to 

supply both oxygen and nutrients (Doitsidou, Reichman-Fried et al. 2002).  They 

then retain the stem cells in a niche until they are needed to produce progeny 

cells and assist in providing cellular framework (Steinberg and Silva 2010).  For 

instance, in the developing zebra fish embryo the chemokine receptor CXCR4 

directs gonadal stem cells and also neuronal precursors to specific parts of the 

developing brain (Raz and Mahabaleshwar 2009).  

 

1.3.1.3 Angiogenesis  

Another role for the chemokines is in angiogenesis, the process which forms new 

blood vessels from existing vessels and micro capillaries.  This is essential during 

embryonic development and wound healing and in the context of cancer, 

facilitates tumour growth once a tumour reaches a certain size (Folkman, Watson 

et al. 1989, Folkman 2002).  Furthermore, angiogenesis not only promotes growth 

but also plays a role in tumour cell dissemination (Knowles and Selby 2005).  

Indeed, studies have shown that there is a correlation between blood vessel 
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density and an increased incidence of metastasis (Todorovic, Radisavljevic et al. 

2012, Syed Khaja, Dizeyi et al. 2013).   

 

The first chemokine identified to be involved in angiogenesis was CXCL8 where 

it was shown to promote migration and proliferation of endothelial cells and 

angiogenesis in vivo (Belperio, Keane et al. 2000).  Increased levels of this 

chemokine have also been observed in various tumours, including head and neck 

squamous cell carcinoma (Jo, Wang et al. 2013) metastatic melanoma (Singh, 

Singh et al. 2010) and colon carcinoma (Verbeke, De Hertogh et al. 2010) and 

elevated levels have also been detected in breast cancer (Bieche, Chavey et al. 

2007, Chavey, Bibeau et al. 2007).  Interestingly, chemokines containing the ELR 

motif for example, CXCL5, CXCL6, CXCL7 and CXCL8 stimulate angiogenesis 

where as those without this motif such as CXCL10 inhibit this process (Belperio, 

Keane et al. 2000).  However, there is one chemokine that does not follow this 

rule and that is CXCL12 which despite having an ELR motif has shown to be pro-

angiogenic (Kryczek, Wei et al. 2007). 

 

1.3.1.4 Liver fibrosis   

In most cases of liver injury, chemokines and chemokine receptors are up 

regulated leading to the infiltration of immune cells as recently reviewed by 

Saiman (Saiman and Friedman 2012).  The main liver cells which have been 

identified in secreting chemokines include the hepatocytes, Kupffer cells, stellate 

cells, sinusoidal endothelial cells and the biliary epithelial cells (Saiman and 

Friedman 2012).   

 

One of the most studied chemokines involved in liver injury is CCL2 which is 

known to recruit monocytes and macrophages to areas of damage via the 

chemokine receptor CCR2 (Hokeness, Deweerd et al. 2007).  Furthermore, 

murine models of acute liver injury and in patients with hepatic failure, CCL2 has 

shown to be increased (Possamai, Antoniades et al. 2010).  The CXCL9-11 

chemokines have also shown to play a role in the immune response by promoting 

the migration of T cells upon binding to CXCR3 (Saiman and Friedman 2012).  

Supporting this, a study in patients with chronic liver disease showed that CXCR3 

and its ligands increased and furthermore there was a correlation between levels 

with disease status (Apolinario, Majano et al. 2002).  The chemokines CXCL1, 
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CXCL2 and CXCL8 which are known to bind to CXCR1/CXCR2 have shown to 

play a role in neutrophil infiltration during acute liver injury.  Furthermore, studies 

have shown that in patients with alcoholic hepatitis (James, Farrar et al. 2001) 

and after post-liver transplantation CXCL8 levels increase (Ilmakunnas, 

Hockerstedt et al. 2010).  Another chemokine which has shown to be induced 

during liver disease is CCL5 which induces the migration of a wide range of cells 

during the immune response including T cells, dendritic cells, eosinophils, NK 

cells, mast cells and basophils (Affo and Bataller 2011).   

 

Thus, the development of small molecule inhibitors for treating liver disease may 

be beneficial.  Although, caution will have to be taken since some chemokines 

and their receptors may also serve to protect the liver from fibrotic injury such as 

CXCR3 which has shown to promote hepatocyte survival (Saiman and Friedman 

2012).       

 

1.3.1.5 Cancer progression and metastasis   

More recent studies have emerged demonstrating that chemokines and their 

receptors play a pivotal role in cancer metastasis and this has been reviewed 

extensively (Balkwill 2004, Balkwill 2012).  These studies have shown that 

chemotaxis promotes metastasis by directing chemokine receptor positive 

tumour cells to organ specific sites that actively secrete the corresponding ligand 

(Balkwill 2004, Ali and Lazennec 2007, Amersi, Terando et al. 2008, Gao, Wang 

et al. 2010, Teicher and Fricker 2010, Zlotnik, Burkhardt et al. 2011, Balkwill 

2012).  Indeed, the chemokines have recently been described as ‘traffic directors’ 

whereby they guide cells to specific areas (Zlotnik, Burkhardt et al. 2011).  

Although this process is required for normal tissue homeostasis, in the context of 

cancer this system is ‘hijacked’ resulting in the promotion of tumour growth and 

metastasis (Figure 1.5) (Zlotnik, Burkhardt et al. 2011).  Furthermore, it has been 

suggested that chemokines secreted by the tumour and stromal cells are likely to 

participate in the survival and proliferation of the tumour cells via autocrine loops 

and paracrine effects (Scotton, Wilson et al. 2002, Barbero, Bonavia et al. 2003, 

Sun, Wang et al. 2003, Balkwill 2004, Balkwill 2012).  The CXCR4-CXCL12 

chemokine axis is the most commonly studied chemokine axis involved in this 

process.   
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Figure 1.5: The human body contains ‘cellular highways’ through which cells travel to 
reach different sites or organs in the body (Zlotnik, Burkhardt et al. 2011).  Cancer cells 
expressing chemokine receptors facilitate metastasis to specific organs which secrete the 
corresponding chemokines. 
 

1.4 The CXCR4-CXCL12 chemokine axis  

In normal physiology, the CXCR4-CXCL12 chemokine axis plays a pivotal role in 

the retention and homing of hematopoietic stem cells in the bone marrow and 

also for lymphocyte trafficking (Teicher and Fricker 2010).  Indeed, studies of 

CXCR4 and CXCL12 gene knockout mice have shown that this chemokine axis 

is critical for embryonic haematopoiesis, organogenesis and vascularisation 

(Ratajczak, Zuba-Surma et al. 2006) (Nagasawa, Hirota et al. 1996).   

 

1.4.1  CXCR4 

CXCR4 is a 352-amino acid rhodopsin-like highly conserved GPCR which was 

first discovered to act as a co-receptor for entry of T-tropic (X4) HIV viruses that 

targeted CD4+ T cells (Feng, Broder et al. 1996).  During development, CXCR4 

is known to be expressed on a wide range of tissues for example, in the immune 

and central nervous system (Teicher and Fricker 2010).  In addition, it is 

expressed in a wide range of tissues including the brain, lung, colon, heart, kidney 

and the liver (Teicher and Fricker 2010).  It is also known to be expressed on a 

variety of cell types including lymphocytes, hematopoietic stem cells, monocytes, 
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eosinophils, endothelial and epithelial cells (Teicher and Fricker 2010).  CXCR4 

has also been shown to be expressed on embryonic pluripotent stem cells in 

neural tissue, skeletal muscle and in the heart and liver (Teicher and Fricker 

2010).  Furthermore, various factors have been reported to regulate the 

expression of CXCR4 such as cytokines including transforming growth factor 

beta (TGF-β) and tumour necrosis factor alpha (TNF-α), bacterial glycoproteins, 

vascular endothelial growth factor (VEGF) and also hypoxia (Schioppa, 

Uranchimeg et al. 2003, Franco, Botti et al. 2010, Teicher and Fricker 2010, Chu, 

Sheen et al. 2013).   

 

1.4.2  CXCR7 

Recently, another receptor has been identified that binds to CXCL12, known as 

CXCR7 (Balabanian, Lagane et al. 2005, Burns, Summers et al. 2006).  CXCR7 

is expressed by various cell types including endothelial cells, fetal liver cells and 

also on some tumour cell lines (Balabanian, Lagane et al. 2005).  It was 

previously reported that unlike CXCR4, CXCR7 did not activate G-protein 

signalling and was thought not to be involved in migration but to act as a ‘decoy’ 

receptor by competing for CXCL12 binding (Balabanian, Lagane et al. 2005).  

Thus, functioning by scavenging and degrading CXCL12 (Naumann, Cameroni 

et al. 2010).  However, more recently, it has been suggested that CXCR7 is able 

to form a co-receptor (heterodimerizes) with CXCR4 leading to downstream 

signalling upon the binding of CXCL12 (Levoye, Balabanian et al. 2009).    

 

1.4.3  CXCL12 

CXCL12 previously known as SDF (stromal cell-derived factor) is a homeostatic 

chemokine and is the only known ligand to bind to CXCR4 (Murphy, Baggiolini et 

al. 2000).  It exists primarily as two isoforms from the same gene; α and β 

although more recently, four other human isoforms of CXCL12 have been 

identified; CXCL12-γ (gamma), CXCL12-δ (delta), CXCL12-ε (epsilon) and 

CXCL12-φ (phi) (Yu, Cecil et al. 2006).  Overall, the most commonly expressed 

isoform known is CXCL12-α (Yu, Cecil et al. 2006).  This isoform has found to be 

expressed in several organs such as the skin, kidney, brain and liver (Teicher 

and Fricker 2010).  Furthermore, the secretion of CXCL12 has been linked to 

tissue damage caused by various factors including; excessive bleeding, total 

body irradiation, chemotherapy and toxic liver damage (Teicher and Fricker 
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2010).  It has been suggested that CXCL12 may promote cell survival by both 

post-translationally suppressing the cell death mechanisms and also by 

promoting transcription of genes associated with cell survival (Teicher and Fricker 

2010).   

 

The binding of CXCL12 to CXCR4 forms a complex with the Gαi subunit G 

protein, which leads to inhibition of adenyl cyclase-mediated cyclic adenosine 

monophosphte and initiates the activation of a number of downstream pathways 

including ERK 1/2, MAPK, JNK and AKT (Figure 1.6) (Teicher and Fricker 2010).  

Common responses to these key signalling pathways include; cell survival and/or 

proliferation, an increase in intracellular calcium, gene transcription and 

chemotaxis as illustrated in Figure 1.6 (Teicher and Fricker 2010).  The Gα 

subunits consist of four families; Gαs, Gαi, Gαq, and Gα2 and each of these 

transmits the GPCR signal via alternate routes (Teicher and Fricker 2010). 

However, it should be noted that the pathways involved may depend upon both 

the tissue and cell type.   

 

 

Figure 1.6: Signalling pathways involved in the CXCR4-CXCL12 chemokine axis(Teicher 
and Fricker 2010).  
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1.4.4 CXCR4-CXCL12 chemokine axis in cancer 

A growing body of evidence has suggested that the CXCR4-CXCL12 chemokine 

axis is involved in the regulation of tumour growth/progression, angiogenesis, 

neovascularisation, invasion and metastasis (Smith, Luker et al. 2004, 

Balabanian, Lagane et al. 2005, Zhang, Somasundaram et al. 2005, Kim, Mori et 

al. 2006, Ali and Lazennec 2007, De Falco, Guarino et al. 2007, Otsuka and Bebb 

2008, Bartolome, Ferreiro et al. 2009, Teicher and Fricker 2010, Sakai, 

Yoshidome et al. 2012).  In a landmark study by Muller et al (Muller, Homey et al. 

2001) it was discovered that in breast cancer, cells use chemokine receptors to 

migrate towards common sites of metastasis such as the lung (Muller, Homey et 

al. 2001).  It was also demonstrated that in these cancer cells, expression levels 

of CXCR4 was higher compared to normal breast cancer tissue suggesting that 

CXCR4 was a marker of poor prognosis (Muller, Homey et al. 2001).  

Furthermore, in vivo studies showed that neutralizing the CXCR4-CXCL12 axis 

prevented metastasis of breast cancer cells to the lymph nodes and lung (Muller, 

Homey et al. 2001).  Later studies by Liang and co-workers demonstrated that 

knocking down the expression of the CXCR4 receptor by siRNAs, breast cancer 

cell invasion in vitro was reduced and in vivo metastasis was inhibited (Liang, 

Yoon et al. 2005).  Studies in lung cancer showed that in small lung cancer cells 

levels of CXCR4 were greater compared to normal tissue and furthermore, that 

activation of the receptor caused both migratory and invasive responses (Burger, 

Glodek et al. 2003).  Supporting this, a study reported that high expression of 

CXCR4 in small lung cancer cells correlated with an increased risk of cancer 

metastases, suggesting that migration of cells to secondary sites was influenced 

by the receptor expression levels (Su, Zhang et al. 2005).  A study in pancreatic 

adenocarcinoma, demonstrated that pancreatic cell conditioned media rich in 

CXCL12 promoted the proliferation, migration and invasion of pancreatic cancer 

cells (Gao, Wang et al. 2010).   

 

In the context of melanoma, studies have shown that inhibition of the CXCR4-

CXCL12 chemokine axis reduces melanoma to organs secreting CXCL12 such 

as the lungs (D'Alterio, Barbieri et al. 2012, Takekoshi, Ziarek et al. 2012).    For 

example, in one study, mouse melanoma B16 cells (+/- AMD3100) were injected 

into the tail vein of wild type (CXCR4+/+) and heterozygote (CXCR4+/-) mice 

(D'Alterio, Barbieri et al. 2012).  The results demonstrated that tumours were 
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observed in both types of mice; however, metastasis was reduced in the 

CXCR4+/- mice.  In another study by Kim et al, they found that lymphatic vessels 

in metastatic tissues promoted CXCR4+/CD133+ cell metastasis to organs 

secreting CXCL12 (Kim, Koh et al. 2010).  Previous clinical studies have also 

shown that increased expression of CXCR4 is correlated with poor prognosis, for 

example, in uveal melanoma (Franco, Botti et al. 2010).  Supporting this, in 

primary cutaneous melanoma, a correlation between over-expression of CXCR4 

with survival and prognosis has been observed (Kuhnelt-Leddihn, Muller et al. 

2012)   

 

Collectively, these studies have led to the development of small molecular 

inhibitors some of which have already been tested and used in the clinic and offer 

promise as a therapeutic modality.  For example, the CXCR4 antagonists 

AMD3100 and the more recent development of AMD11070 have shown some 

promising results. 

 

1.4.5 AMD3100 and AMD11070  

AMD3100 is a small molecule inhibitor containing two cyclam rings connected by 

a phenylene linker (Fricker, Anastassov et al. 2006).  In the presence of 

physiological pH, two nitrogens are protonated allowing charge-charge 

interactions with the carboxylate groups on the CXCR4 receptor, inhibiting the 

binding of CXCL12 and preventing downstream signalling (Fricker, Anastassov 

et al. 2006).  Initially, it was identified as a highly selective inhibitor of HIV-1 and 

HIV-2 replication (Fricker, Anastassov et al. 2006).  It is now used in patients with 

non-Hodgkin’s lymphoma and multiple myeloma where it mobilises 

haematopoietic stem cells to the peripheral blood and is also used for autologous 

transplantation (Flomenberg, Comenzo et al. 2010).  In the context of melanoma, 

experimental studies have shown that AMD3100 inhibits metastasis of these 

tumour cells to sites that secrete high levels of CXCL12 such as the lungs (Scala, 

Giuliano et al. 2006, D'Alterio, Barbieri et al. 2012, Takekoshi, Ziarek et al. 2012).  

However, AMD3100 exhibits poor bioavailability and has shown to cause adverse 

side effects, for example, the induction of fibrosis (Saiman 2012) and therefore 

has limited the potential of this inhibitor in cancers such as melanoma.   
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The novel CXCR4 inhibitor AMD11070 is a small non-cyclam which functions and 

binds with a similar mode of action to AMD3100 but with more favourable 

pharmacokinetic properties, for example, it is more stable within the cell (Mosi, 

Anastassova et al. 2012).  When AMD11070 is administered (in fasted healthy 

individuals) plasma concentrations achieved at the maximum dose given 

(400mg/kg-1) reach approximately 2µg/ml (6.6µM) (Stone, Dunaway et al. 2007).  

Furthermore, the Cmax occurs within 1-2 hours of oral dosing are sustained for 

longer.  To date, AMD11070 has only demonstrated efficacy for HIV infection in 

which in vitro studies demonstrate its ability to inhibit replication of X4-tropic HIV 

(Moyle, DeJesus et al. 2009).  However, given that it is more potent and has more 

sustainable properties, AMD11070 may prove valuable in the setting of a wide 

range of cancers including melanoma metastasis to the liver.    

 

 

 

 

 

 

Figure 1.7: The chemical structure of AMD3100 and AMD11070.  
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1.5 Anatomy of the liver 

The liver is the largest internal organ in the body which in adults weighs 

approximately 1.5kg, contributing up to 2.5% of the total body weight (Wallace, 

Burt et al. 2008).  The liver is positioned in the right hypochondriac region of the 

abdominal cavity beneath the diaphragm and is situated to the right of the 

stomach.  Apart from one area which is connected to the diaphragm, the liver is 

encased by the Glisson; a thin, double membrane capsule which helps to prevent 

friction against neighbouring organs and also serves to protect the hepatic blood 

vessels and bile duct.  The liver is divided by the flaciform ligament and 

traditionally was designated four functional lobes; the left, right caudate and 

quadrate.  More recently, it has been suggested that the liver can actually be 

divided into nine segments by the vascular and ductal branching patterns present 

on the left and right sides (MacSween 2002).  These lobes are composed of 

lobules with a vein in the centre that passes through to connect to the hepatic 

vein in order to transport blood out of the liver.  Additionally, there are many ducts, 

veins, arteries on the surface to allow materials to flow in and out. 

 

 

 

Figure 1.8: The anatomy of the liver.  

 



Chapter 1: Introduction 

 
 

21 

The liver exhibits high metabolic activity and therefore requires an efficient blood 

supply.  This is achieved by a dual blood supply; approximately one third of the 

blood is supplied by the hepatic-artery and the rest is received from the portal 

vein.  The hepatic artery is a branch of the coeliac axis and the portal vein is 

composed of the superior mesenteric and splenic veins.  The hepatic artery 

transports blood from the aorta, whereas the portal vein carries blood rich in 

nutrients from the gastrointestinal tract, spleen and pancreas.  The two blood 

inputs are admixed within the sinusoids which are essentially the liver’s capillaries 

which allow the exchange of materials from the space of Dissé to the hepatocytes 

and the endothelial cells.  Blood travels through the sinusoids and into each 

lobule via the central veins.  The exact volume from each blood source can vary 

considerably, for example, in cirrhosis, the volume received from the hepatic 

artery increases dramatically due to portal-systemic shunting of the venous blood 

(MacSween 2002).   

 

1.5.1 Functional units 

The liver exhibits a unique architecture of a number of functional units that contain 

specific cell types arranged around the portal and central veins where the blood 

enters and exits respectively.  It is estimated that there are 1.0-1.5 million lobules 

in the liver which are not cylindrical or prismatic but hexagonal in shape and 

exhibit extensive branching which allows them each to have their own blood 

supply (Wallace, Burt et al. 2008).  As there are no impermeable barriers between 

the liver units in either humans and rodents the actual structure of the liver has 

been debated. 

 

Weppler was the first to describe the lobular architecture of the liver and following 

this many other models have been proposed; the portal lobule, the acinus and 

the primary lobule being the most commonly used.  Kiernan described the classic 

hexagonal lobule structure with Mall later proposing the portal lobule model.  The 

portal lobule describes the six portal tracts arranged around a central vein where 

it supplies the lobule and drains at the periphery.  Rappaport later proposed the 

liver acinus, a smaller functional unit, separated into three zones.  Zone 1 

(periportal zone) and zone 2 (intermediate zone) being the nearest to the portal 

tract and central vein respectively.  Zone 3 (perivenous zone) which is located 

between the intermediate and perivenous zones.  The liver acinus is often 
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preferred by histopathologists because it is useful in describing both functional 

and structural units thus allowing lesions such as necrosis and fibrosis to be 

described (MacSween 2002).  More recently the primary lobule proposed by 

Matsumoto et al (Matsumoto and Kawakami 1982) has become increasingly 

popular because it describes the vessel architecture, the classic lobule and 

includes the conducting and parenchymal portion of the portal venous tress.     

 

 

          

 
Figure 1.9: The liver lobules (Wallace, Burt et al. 2008).  
Schematic diagrams of the hepatic lobule of Kiernan (upper) and liver acinus of Rappaport 
(lower).   
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1.5.2 The main liver cell types 

There are at least 15 different cell types in the liver.  The most abundant are the 

hepatocytes which contribute to over half of the total cell population and account 

for 80% of the total volume of the liver (Wallace, Burt et al. 2008).  The other main 

cell types include the sinusoidal cells (SECS), Kupffer cells, quiescent stellate 

cells (qHSCs), biliary epithelial cells (BECs), oval cells and the pit cells.  Each 

cell type plays a key role in maintaining homeostasis in the liver. 

 

1.5.2.1 Hepatocytes 

Heptocytes carry out most of the functions of the liver, for example, the production 

of bile and intermediary metabolism (Wallace, Burt et al. 2008).  These cells are 

positioned along the sinusoids up to the centrilobular region (lobule) or zone 3 

(acini) as polarized epithelial cells.  The liver sinusoids behave as capillaries 

where they regulate the flow of materials going in and out of the space of Dissé.  

The sinusoids are also known to express heterogeneous genes for example, the 

expression of CYPs (cytochrome P450s) which are predominantly expressed by 

the hepatocytes around the central veins (Wallace, Burt et al. 2008). 

 

1.5.2.2 Sinusoidal cells (SECs)  

The sinusoidal cells (SECs) form the sinusoidal wall which serves as a barrier 

between the blood and the hepatocytes and plays a pivotal role in filtering and 

regulating the exchange of fluids, solutes and macromolecules.  SECs are 

considered as being unique endothelial cells due to the presence of fenestrae 

(open pores) which act as dynamic filters.  In addition, they do not have a basal 

lamina beneath the endothelium but exhibit a strong cytoskeletal support to 

withstand the pressure from the dynamic blood flow. 

 

1.5.2.3 Biliary epithelial cells (BECs) 

Biliary epithelial cells (BECs) also known as cholangiocytes form the bile duct 

epithelium and are therefore pivotal for the transport of bile.  Initially, the bile is 

transported from the membrane of the hepatocytes and then exits the liver 

through the common bile duct and the type and size of the bile duct that they form 

will determine their structure.   
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1.5.2.4 Kupffer cells 

Kupffer cells also known as liver macrophages, are derived from circulating 

monocytes and are located within the sinusoids.  They vary in shape but have 

protrusions that extend into the sinusoids.  They function in removing debris by 

the process of phagocytosis and also play an important role in stimulating the 

immune system by secreting various mediators of inflammation including 

cytokines. 

 

1.5.2.5 Oval cells 

Oval cells are intrahepatic ‘stem cells’ found in the periportal regions of the liver 

and are a potential source for both hepatocytes and bile duct epithelial cells.  

During liver injury, oval cells are able to migrate and replace damaged 

hepatocytes. 

 

1.5.2.6 Pit cells  

Pit cells are large granular lymphocytes which act as liver-specific natural killer 

(NK) cells and are found in the sinusoidal lumen.  They secrete soluble factors 

that are able to induce death of tumour cells and infected liver cells.    

 

1.5.2.7 Quiescent stellate cells (qHSCs)  

Quiescent stellate cells (qHSCS) originally identified by Boll and von Kupffer in 

the 1870s were previously known as Ito cells.  They reside in the perisinusoidal 

space of Dissé which is located between the sinusoidal endothelium and 

hepatocytes and has relatively low levels of extracellular matrix (ECM) proteins.  

In the normal liver, stellate cells exist in a quiescent state and contain small lipid 

droplets in the cytoplasm rich in vitamin A and esters.  Upon liver injury, qHSCs 

undergo a process of ‘activation’ where they transdifferentiate to a myofibroblast-

like phenotype (Kocabayoglu and Friedman 2013).  

 

1.5.3 The extracellular matrix  

The extracellular matrix (ECM) is essential for the regeneration and modulation 

of liver function.  The ECM proteins consists of; collagens, glycoproteins and 

proteoglycans that provide a structural framework for the liver, cohesiveness 

between cells, cell polarization and intercellular communication (Wallace, Burt et 

al. 2008).  ECM in the normal liver such as type IV collagen is located 
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predominantly in the portal tracts around the central veins and sometimes in the 

space of Dissé (Wallace, Burt et al. 2008).  Additionally, the interstitial collagens 

type I and type III are found adjacent to the hepatocytes in the space of Dissé 

(Wallace, Burt et al. 2008).   

 

1.5.4 The physiological roles of the liver  

The liver plays a major role in intermediary metabolism and in the clearance of 

toxins and is the main site of metabolism for most drugs and xenobiotics.  The 

liver is also responsible for bile acid metabolism, inducing bile flow in the biliary 

system and also for aiding absorption of dietary lipid in the intestine (MacSween, 

Burt et al. 2007).  The bile is contained in the bile canaliculi which come together 

to form the intrahepatic and extrahepatic bile ducts (Wallace, Burt et al. 2008).  It 

is an important site for protein and amino acid metabolism and for the synthesis 

of major proteins such as albumin, complement and clotting factors.  The liver is 

also responsible for the synthesis of glycogen; derived from either glucose, lactic 

and pyruvic acids or glycerol.  Furthermore, ammonia which is produced during 

catabolism of amino acids and needed by some nitrogenous compounds is 

removed by the liver due to its toxicity.  Other principal functions of the liver 

include; the generation of urea, carbohydrate metabolism and the regulation of 

systemic and mucosal immunity (Wallace, Burt et al. 2008).  

 

1.5.5 Regenerative capacity of the liver 

The liver has a remarkable capacity to regenerate and can function normally even 

in cases where up to three-quarters of its own mass is lost (Wallace, Burt et al. 

2008).  Indeed, in partial hepatectomies where cell death is significant, the liver 

will regenerate to its original size (Wallace, Burt et al. 2008).  Liver regeneration 

is thought to be carried out primarily by two mechanisms.  The first is in response 

to moderate liver tissue loss where adult differentiated hepatocytes divide and 

replicate and the second is in response to extensive hepatocellular loss which 

stimulates the proliferation of progenitor cells (Grisham 1994, Sell 2001, Sell 

2003).   

 

The regeneration of the liver is a tightly controlled, non-autonomous process 

regulated by certain factors that maintain the correct ratio between liver mass and 

body size.  Amongst these factors are the serum growth factors including 
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epidermal growth factor (EGF) and hepatocyte growth factor (HGF) which 

promote DNA synthesis in both hepatocytes and bile duct epithelial cells 

(Michalopoulos 1990).  In addition, various regulatory growth factors expressed 

by hepatocytes are involved for example, the transforming growth factor-alpha 

(TGF-α) and acidic fibroblast growth factor (a-FGF) (Michalopoulos 1990).  Other 

cell types including Kupffer cells and myofibroblasts also express these growth 

factors such as HGF and transforming growth factor-beta (TGF-β) (Hsia, Axiotis 

et al. 1992, Burr, Carpenter et al. 1993).  Cytokines including tumour necrosis 

factor (TNF-α) (Zhu, Zhou et al. 2012), Interleukin-1 (IL-1) (Sgroi, Gonelle-Gispert 

et al. 2011) and Interleukin 6 (IL-6) (Galun and Rose-John 2013) are also 

important for liver regeneration   

 

The growth factors and cytokines form complex loops causing both 

stimulatory/inhibitory and autocrine/paracrine responses.  A good example of this 

is demonstrated by myofibroblasts when they secrete TGF-β, this cytokine 

behaves as an autocrine stimulus for myofibroblasts but conversely acts as a 

paracrine repressor of hepatocyte proliferation (Strain 1992).  Regeneration of 

the liver also requires nutrients and these are supplied predominantly by the 

portal venous blood from intestinal digestion and absorption.  Additionally, 

hormones including insulin, glucogen and the catecholamines are known to 

influence regeneration, for example in the absence of insulin the process of 

regeneration is much slower compared to when insulin is present (Barra and Hall 

1977, Johnston, Johnson et al. 1986).  One of the most fascinating observations 

of hepatic growth regulation is in human liver transplantation whereby if the liver 

is too small for the host it will grow until the organ is the correct size and 

conversely, if the liver is too large it will decrease in size (Kam, Lynch et al. 1987).  

This has led to an increase in living donor transplantation and also split 

transplants (Broelsch, Emond et al. 1990, Strong 2006).  However, despite these 

advances there is still a shortage of liver organs and this is due to both the lack 

of organs and the rising incidence of chronic liver disease (Friedman 2000).   

 

1.6 Liver fibrosis  

Accidental or deliberate poisoning to the liver such as an adverse effect to a 

therapeutic drug or for example paracetamol (acetaminophen) overdose can 

cause substantial liver necrosis, liver failure and death (Wallace, Burt et al. 2008).  
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Nevertheless, chronic liver damage which often leads to liver fibrosis is by far a 

greater clinical problem (Wallace, Burt et al. 2008).  Currently, liver cirrhosis (end 

stage of liver fibrosis) is in the top ten causes of death in the western world and 

is imposing a mounting economic burden.   

 

Liver fibrosis is caused by the wound healing response of liver injury due to 

inflammation from a wide range of aetiologies including; viral infections, alcohol 

abuse, biliary disease, iron overload, inherited metabolic defects and more 

recently obesity and diabetes (Wallace, Burt et al. 2008).  Cirrhosis is the most 

advanced stage of fibrosis and has been described by the World Health 

Organization as a ‘diffuse process characterized by fibrosis and the conversion 

of the normal liver architecture into structurally abnormal nodules’ (Anthony, 

Ishak et al. 1977).   

 

Due to the overcapacity of the liver some patients can still live a normal life for a 

long periods of time and certainly the ‘injury-cirrhosis’ period can differ 

considerably between patients.  However, irrespective of the cause, chronic 

damage to the liver results in hepatocyte apoptosis and/or necrosis and an 

increase in other cell types including Kupffer cells, myofibroblasts, SECs and 

BECs (Wallace, Burt et al. 2008).  A progressive accumulation of ECM for 

example, type I and type III collagens accumulate in the portal tracts and also in 

the lobules (Wallace, Burt et al. 2008).  There is also an accumulation of non-

collagen proteins including fibronectin, elastin, laminin and proteoglycans.  As the 

quality and the quantity of the ECM changes it forms interstitial scar-type collagen 

rich matrix which makes degradation of the ECM difficult.  Indeed, it has been 

determined that in severe cases of liver fibrosis, the liver contains six times more 

ECM compared to a normal liver (Wallace, Burt et al. 2008).  Deposition of this 

excess ECM can have catastrophic effects; altering and distorting hepatic 

architecture and vascular structure and impeding hepatocyte regeneration which 

can lead to cirrhosis and eventually liver failure (Wallace, Burt et al. 2008).  In 

end stage liver disease, the liver can no longer regenerate and therefore liver 

transplantation remains the only option.   
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1.6.1 Myofibroblasts and their role in liver fibrosis 

Upon liver injury, quiescent stellate cells undergo a process of ‘activation’ to a 

myofibroblast-like phenotype expressing a variety of cytokines, chemokines and 

α-smooth muscle actin (α-sma) and go onto proliferate and produce ECM and 

proteases (Friedman 2000, Bataller 2001).  The triggering of quiescent stellate 

cells to myofibroblasts is believed to be due to cytokines and reactive oxygen 

species (ROS) secreted by Kupffer cells and other leukocytes (Casini , 

Simeonova 2001, Bataller 2003).  For example, Kupffer cells release many of the 

pro-inflammatory cytokines including IL-6, TNF-α and TNF-β which are known to 

promote liver myofibroblast activity (MacSween 2002).  However, it has recently 

been found that these cells are not the only fibrogenic cell present in the liver.  A 

study carried out recently found that where damage was present in the periportal 

regions of the liver lobule it was the portal tract fibroblasts not the stellate cells 

that were predominantly responsible for this (Knittel 1999). 

 

Since myofibroblasts express vimentin, desmin, and α-sma it is believed that they 

are derived from a mesenchymal origin (Yokoi 1984, Burt 1986, Ballardini 1988).  

Indeed, several markers of neural/neuroectodermal differentiation have also 

been found to be expressed on these cells for example, the intermediate filament 

glial fibrillary acidic protein (GFAP) (Neubauer 1996). Furthermore, 

synaptophysin, a membrane protein is a marker of synaptic vesicles containing 

neurotransmitters (Cassiman 1999) and is present on the surface of both 

myofibroblasts and neural cells (Douglass 2008).  This membrane protein has an 

external cellular location and cycling to intracellular location(s) and due to its 

restricted expression on cells means that it is an ideal target for anti-fibrotic 

therapeutics (Douglass 2008).   

 

1.6.2 In vitro and in vivo models of liver fibrosis   

There are three main groups of models for liver fibrosis; cell culture systems, 

human tissues taken at biopsy and animal models.  In the cell culture models, 

primary cells are isolated and purified from either normal or injured livers and 

these systems have for example, enabled the functional role of different liver cells 

to be studied in response to different conditions.  Human tissues obtained from 

biopsies can be used to generate vast amounts of information and validate 

findings from cell culture systems and animal models.  Nevertheless, due to 
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ethical constraints it is difficult to obtain multiple liver biopsies thus; data is limited 

to a “snap shot” of information.  However, animal models allow multiple sampling 

of tissue and also help to define the mechanisms and events that take place in 

vivo.  Indeed, a number of rodent models exist for liver fibrosis but the most 

commonly used for modelling centrilobular fibrosis is the administration of carbon 

tetrachloride (CCl4).  For studying periportal fibrosis, ligation of the common bile 

duct (BDL) is normally performed, however due to limitations to this model such 

as high mortality rates, alternatives such as methapyrilene (MP) are being 

investigated (Probert, Ebrahimkhani et al. In press ) (Probert, Ebrahimkhani et al. 

In press ).  Other models include specific diets for example, the choline-deficient 

diet and also the expression of hepatotropic viral proteins and genetically 

modified animals.       

 

1.7 Liver fibrosis and cancer metastasis   

Many cancers metastasize to the liver including melanoma suggesting that it 

provides an ideal microenvironment for cancer cells to migrate to and then reside 

and grow.  Furthermore, studies have recently been carried out that show a role 

of myofibroblasts in the development of a wide range of cancers.  A study 

published recently studied the role of myofibroblasts in the promotion of liver 

metastasis of colon cancer cells via the CXCR4-CXCL12 chemokine axis 

(Matsusue 2009).  The results showed that myofibroblasts were located around 

the liver metastasis area and also secreted CXCL12 (Matsusue 2009). 

Furthermore, they demonstrated that the concentration of CXCL12 in media from 

quiescent stellate cells was significantly lower compared to the media obtained 

from myofibroblasts (Matsusue 2009).  Another study by Hong and colleagues 

showed that CXCL12 expression is increased in cirrhotic livers and that CXCL12 

binding to CXCR4 on stellate cells promoted proliferation and collagen production 

via the signalling pathways ERK 1/2 and P13K-Akt (Hong 2009).   

 

In the context of melanoma, an experimental study demonstrated that melanoma 

cells migrate significantly greater to the cirrhotic liver (Qi, Qiu et al. 2004).  

However, studies investigating the role of melanoma metastasis towards the 

damaged and/or fibrotic liver are limited and furthermore, the specific cells 

involved has not been reported.  However, since liver damage results in the 

proliferation of myofibroblasts chemokine levels such as CXCL12 may increase.  
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Thus, it was hypothesized that cells involved in fibrosis may promote the 

directional migration of CXCR4 expressing melanoma cells to the liver.   

 

1.8 Aims 

Thus, the central aim of this study was to examine the role of the CXCR4-CXCL12 

chemokine axis in melanoma metastasis towards various liver cell types and to 

the normal and damaged liver.  To achieve this aim, the specific objectives were 

to: 

 

 

1. Confirm the expression of CXCR4 and CXCL12 in murine and human 

melanoma cell lines in in vitro. 

 

2. Evaluate the expression of CXCR4 and CXCL12 in various liver cell 

types both in vitro and in vivo.  

 

3. Test the hypothesis that inhibition of the CXCR4-CXCL12 chemokine 

axis by the novel CXCR4 inhibitor AMD11070 reduces migration of 

melanoma cells towards conditioned media containing CXCL12 in in 

vitro. 

 

4. Determine the influence of chronic liver injury on the expression levels of 

CXCL12 in three different in vivo models; CCl4, BDL and MP. 

 

5. Examine murine and human melanoma metastasis to the normal and 

damaged liver in in vivo models. 
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2.0 Materials and Methods  

 

2.1 Animals  

 

2.1.1 Ethics   

All animal procedures were performed in accordance to the UK Home Office 

regulations under the project licence (PPl 60/3907) and personal licence (PIL 

60/12677) of Professor Matthew Wright.  Prior to the commencement of each 

study, protocols were designed individually and the senior animal technician 

consulted.  All animals were cared for under Home Office regulations.   

 

2.1.2 Mice 

Female C57BL/6 mice and female nude mice (20-30g body weight) were 

purchased from Charles River (Charles River, East Lothian, UK) and housed 

separately in the Comparative Biology Centre (CBC) at Newcastle University.  

Both sets of mice were incubated at 20 +/- 2oC with a relative humidity of 50 +/- 

10% with 12 hour light/dark cycles.  Since nude mice are immune compromised 

these animals were kept in a sterile isolation unit and all equipment was sterilised 

prior to use (Fogh and Giovanella 1978).   

 

2.1.3 Male Sprague-Dawley rats  

Male Sprague-Dawley rats (230-250g body weight) were purchased from Charles 

River (Charles River, East Lothian, UK) and housed in the CBC at Newcastle 

University.  The rats were kept in an incubated unit at 20 +/- 2oC with a relative 

humidity of 50 +/- 10% with 12 hour light/dark cycles.   

 

2.1.4 Modelling human melanoma metastasis to the liver in vivo  

To examine human melanoma metastasis to the normal and damaged liver, 

female nude mice (6-8 weeks old) were injected intravenously (i.v) with 200µl of 

1 x sterile phosphate buffered saline (PBS) containing 0.2 x 107 of A375red 

cells/ml.  The number of cells injected were determined as described previously 

(Marshall 2010).  The melanoma cells were transfected with a fluorescent protein; 

Dsred which is derived from Discosma (excitation/emission maxima of 

558/583nm).  PBS was prepared by dissolving one tablet of PBS (Sigma-Aldrich, 

Gillingham, UK) in 200ml of deionised water (dH2O) (3.2 mM Na2HPO4, 0.5 mM 
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KH2PO4, 1.3 mM KCl, 135 mM NaCl, pH 7.4) and autoclaving before use.  The 

cells were harvested during the exponential growth phase and prior to injection 

were washed twice in sterile 1 x PBS.   Throughout the procedure, cells were kept 

on ice and cell viability was >95% as determined by trypan blue (0.4% w/v) 

(Sigma, Gillingham, UK) exclusion as described in section 2.2.7.  Control animals 

received 200µl of 1 x sterile PBS alone.  To establish liver damage, animals were 

injected with 100μl of paracetamol (20mg/ml) in 1 x sterile PBS via intraperitoneal 

injection (i.p) twice weekly for four weeks prior to injection of melanoma cells.  

Mice were identified by ear notching and treatment groups are given in Table 2.1. 

 

Animals were imaged in the In Vivo Imaging System (IVIS) (Perkin Elmer, 

Massachusetts, USA) every two weeks and prior to imaging, were anaesthetized 

using isoflurane.  After 6 weeks, mice were humanely culled by schedule 1 and 

the organs of interest were collected and snap frozen for protein and RNA and 

also fixed for immunohistochemistry.   

 

 

 

Table 2.1: Treatment groups for modelling human melanoma metastasis to the liver in vivo. 

  

 

 

 

 

 

 

Group 

 

Number of 

mice  

Paracetamol 

injected i.p 

A375red  

(0.2 x107/ml) 

cells injected i.v 

1 2 - - 

2 1 Yes - 

2 4 - Yes 

3 4 Yes Yes 
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2.1.5 B16-F10 as a murine in vivo model for human melanoma 

A pilot study was set up to determine if B16-F10 murine melanoma cells (gift from 

Professor Antal Rot, University of Birmingham, UK) engrafted in the normal 

and/or fibrotic liver or in any other organ.  Cells in exponential growth phase were 

harvested and prior to injection were washed twice in sterile 1 x PBS.  Throughout 

the procedure, the cells were kept on ice and cell viability was >95% as 

determined by trypan blue (0.4% w/v) (Sigma, Gillingham, UK) exclusion as 

described in section 2.2.7.  Animals were injected by subcutaneous injection (s.c) 

or via intravenous injection (i.v) with 1 x 105/ml B16-F10 cells suspended in 200μl 

1 x PBS.  To establish fibrosis, animals were treated bi-weekly with 25% (v/v) 

carbon tetrachloride (CCl4) (Sigma-Aldrich, Gillingham, UK) dissolved in olive oil 

(Sigma-Aldrich, Gillingham, UK).  After 3 weeks, mice were humanely culled by 

schedule 1 and the organs of interest were collected and snap frozen for protein 

and RNA and also fixed for immunohistochemistry.  Treatment groups are given 

in Table 2.2.  In order to reduce animal numbers, archived tissue was used for 

Group 1.     

 

 

Table 2.2: Treatment groups for the B16-F10 as a murine model for human melanoma. 

 

 

 

 

 

 

 

Group 

(3 mice per group) 

Treatment   B16-F10 cells 

injected (1 x 105/ml) 

cells injected  

1 Olive oil - 

2 Olive oil Yes (i.v) 

3 CCl4 Yes (i.v) 

4 - Yes (s.c) 
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2.1.6 Generation of CXCL12 specific stellate cell knockout mice.   

In an attempt to delete the CXCL12 gene specifically in hepatic stellate cells in 

CB57BL/6 mice, the Cre-Lox technology system was utilised (Niesner and 

Maheshri 2013).  The Cre protein is a site-specific DNA recombinase which is 

able to catalyse the recombination of DNA between specific sites (Niesner and 

Maheshri 2013).  The principle behind this system is simplified in Figure 2.1.     

 

 

Figure 2.1: Mechanism of the Cre-Lox system for generating knockout animals adapted 

from Zepper (Zepper 2008) . 

 

In brief, heterozygotic mice (C57BL/6) carrying 2 loxP sites flanking exon 2 of the 

CXCL12 gene (gift from Professor Nagasa, Kyoto University, Japan)  were 

housed in the East Building animal house at Mount Sinai School of Medicine, 

New York.  Recombination at these sites deletes a ~500 base pair region 

including exon 2.  To generate a conditional-knockout (KO) the mice were bred 

with transgenic mice carrying the Cre-recombinase under the control of the 

murine GFAP promoter (The Jackson Laboratories, New York USA) since it is 

known to be expressed by hepatic stellate cells (Apte, Haber et al. 1998).  

Animals were used with the approval of the Institutional Animal Care and Use 

Committee (IACUC) and cared for under the National Institutes of Health (NIH) 

guidelines.  To identify Cre+ mice on the F1 population (for the potential to 
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knockout CXCL12 expression in GFAP expressing cell types) PCR was 

performed as described in section 2.3 to amplify the Cre gene. 

 

2.1.7 Bile Duct Ligation (BDL) and Methapyrilene (MP) treatment  

Periportal liver damage was established in rats either by bile duct ligation (BDL) 

(performed by Dr Fiona Oakley) or by the treatment of Methapyrilene (MP) 

(performed by Philip Probert) as described previously (Probert, Ebrahimkhani et 

al. In press ).  BDL was carried out by exposing the bile duct and double-ligating 

it.  The areas between the two ligations were then cut and rats were allowed to 

develop cholestatic disease for three weeks.  Sham control rats underwent the 

same procedure, however, the bile duct was not ligated.  In the MP model, rats 

were treated with 150mg of MP hydrochloride/kg body weight in 1 x PBS (Sigma-

Aldrich, Gillingham, UK) by oral gavage tri-weekly for three weeks.  Control 

animals received 1 x sterile PBS alone.     

 

2.2 Routine cell culture  

 

2.2.1 Chemicals and reagents 

All chemicals and reagents used were of molecular or analytical grade unless 

otherwise stated.  All routine culture reagents and plastic ware were supplied by 

Sigma-Aldrich (Gillingham, UK) and Corning-Costar, VWR International Ltd. 

(Leicestershire, UK) respectively unless otherwise specified.  All cell culture 

techniques were performed inside a class II microbiological safety cabinet 

(BIOMAT-2, Medical Air Technology Ltd., Oldham, UK) and sterilised alongside 

reagents and plastic ware with 70% (v/v) ethanol prepared in dH2O.  All PBS was 

prepared as described in section 2.1.4 and was sterile unless otherwise stated.     

 

2.2.2 Culture of adherent cell lines  

Adherent cell lines were maintained in appropriate media as summarised in Table 

2.3.  All cell lines were incubated at 37°C in a humidified atmosphere of 95% air 

and 5% CO2 in 75cm2 flasks or 6 well plates.  In order to maintain cells in 

exponential phase of growth, cells were sub-cultured twice weekly.  Culture 

media was aspirated from the flask or plate and cells were washed with pre-

warmed (37oC) 1 x PBS to ensure all media was removed.  The cells were then 

incubated with 1 x Trypsin- Ethylenediaminetetraacetic acid (EDTA) (flask: 4mL, 
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each well of plate: 0.5ml) and incubated at 37oC until cells had detached.  To 

neutralize trypsin, an equal volume of serum-containing culture media was 

added.  The cell suspension was then transferred to a 50ml falcon tube and 

centrifuged for 4 minutes at 2000 x rpm.  The supernatant was removed carefully 

and the pellet re-suspended in fresh media (Table 2.3) before being transferred 

to either 75cm2 flasks or 6 well plates.  Cell lines were used up to a maximum 

passage number of 30 prior to new stocks being revived. 

 

 

 
Table 2.3: Cell line media and specific supplements. 
DMEM = Dulbecco's Modified Eagle Medium, FCS= Foetal calf serum, Glut =Glutamine, EGS = 
Endothelial Growth Supplement, P/S= penicillian/ streptomycin.    

 

 

 

 

 

 

 

Cell Line Morphology Culture Media 

B16-F10 Murine melanoma DMEM (glucose 1000mg/l),10% (v/v)  
FCS, 1 % (v/v) P/S, 1% (v/v) Glut.   

JS-1 Murine stellate DMEM (glucose 1000mg/l),10% (v/v)  
FCS, 1 % (v/v) P/S, 1% (v/v) Glut.     

603B  Murine biliary 

epithelial 

DMEM (glucose 1000mg/l), 10% (v/v)  
FCS, 1 % (v/v) P/S, 1% (v/v) Glut. 

TSEC  Murine sinusoidal 

endothelial 

DMEM (glucose 1000mg/l),5% (v/v)  
FCS, 1 % (v/v) P/S, 1% (v/v) Glut., 5% (v/v)  
EGS.  

A375, CHL-1, Wm2664  Human melanoma DMEM (glucose 4500mg/l),10% (v/v) FCS,  
1 % (v/v) P/S, 1% (v/v) Glut.    

LX-2  Human stellate DMEM (glucose 4500mg/l), 10% (v/v) FCS,  
1 % (v/v) P/S, 1% (v/v) Glut.    

H69 Human biliary 

epithelial 

DMEM (glucose 1000mg/l), 10% (v/v)  
FCS, 1 % (v/v) P/S, 1% (v/v) Glut , 240ng/ml 
adenine, 27ng/ml triodothyronine, 10 μg/ml 
ephinepherine, 1x insulin-transferring-
selenium solution (ITS-solution), and 1μM 
hydrocortisone. 
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2.2.3. Isolation of primary human and murine liver cells.   

Primary human liver cells were isolated from re-sected liver tissue with informed 

donor consent and ethical approval from the Newcastle & North Tyneside 

Research Ethics Committee.  For the isolation of primary murine liver cells, livers 

were extracted from CB57BL/6 mice according to the Home Office Regulations.    

 

2.2.3.1 Isolation of primary human and murine hepatic stellate cells (HSC). 

In brief, the human liver resections were perfused with calcium free Hanks 

Balanced Salt Solution (HBSS-) (1L = 900ml sterile H20, 100ml 10X HBSS without 

Ca 2+ Mg2+, 80g/l NaCl, , 4g/L KCl, 10g/l glucose, 600mg/l KH2PO4, 475mg/l 

Na2HPO4  and 170mg/l phenol red supplemented with 6mls of 1M sterile (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), 4.6mls of 7.5% (w/v) 

NaHCO3 and 1 ml of 1 MCaCl2, pH 7.4).  Following this, the liver was perfused 

with HBSS+ (prepared the same as HBSS- but with the addition of 1mM CaCl2).  

In order to facilitate digestion, the Glisson’s capsule of the liver was removed and 

the liver cut into small pieces.  The dissected liver was transferred into a sterile 

sterilin and digested with HBSS+ supplemented with 235mg pronase (Roche, 

Burgess Hill, UK), 30mg of Collgenase B (Roche, Burgess Hill, UK), 10mg DNase 

(Sigma-Aldrich, Gillingham,UK) and incubated at 37oC, 250 x rpm for 30 minutes.  

The liver digest was then filtered through a 125μm nybolt mesh with HBSS+ and 

transferred to a 50ml falcon with the addition of 1mg of DNase and centrifuged at 

2000 x rpm for 7 minutes.  The supernatant was removed and the cell pellet 

washed by re-suspending in 50ml of HBSS+ containing 1mg of DNase and 

centrifuging at 2000 x rpm for 7 minutes and this was repeated twice.  After the 

final wash, the stellate cells were isolated by density centrifugation by re-

suspending the pellet in 13ml of Optiprep (Sigma-Aldrich, Gillingham, UK), 2mg 

DNase and 60ml of HBSS+.  To prevent the stellate cells from floating to the top, 

2ml of HBSS+ was carefully layered above this.  The cells were centrifuged at 

1500 x rpm for 20 minutes and then the stellate cell phase removed and re-

suspended in HBSS+.  The cell suspension was centrifuged at 2000 x rpm for 7 

minutes, HBSS+ was then removed and the cells were then re-suspended in 

culture medium and seeded out into 6 well plates.   

 

For the isolation of murine stellate cells, the portal veins of between two and six 

C57BL/6 mice were cannulated in situ.  The same method was then used as 
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described for human stellate cells, however the livers were pooled together and 

the pronase and collagenase scaled down as necessary.   

 

Both human and murine HSCs were maintained in DMEM containing 4500mg/l 

glucose and supplemented with 20% (v/v) foetal calf serum (FCS), 1% (v/v) 

penicillin streptomycin and 1% (v/v) glutamine.  The cells were maintained at 

37°C in a humidified atmosphere of 95% air and 5% CO2 in 75cm2 flasks and 

passaged as described in section 2.2.2.   

 

2.2.3.2 Isolation of primary human and murine hepatocytes  

Primary human and murine hepatocytes were isolated by collagenase perfusion.  

A cannula was inserted into the hepatic portal vein and the liver was perfused 

with Earle’s balanced salt solution without Ca2+Mg2+ (EBSS-) supplemented with 

500μM ethylene glycol tetraacetic acid (EGTA) (Sigma-Aldrich, Gillingham, UK).  

The liver was then perfused with EBSS+ (with Ca2+ and Mg2+) supplemented with 

10mg/ml of collagenase A.  Once digested, the liver was filtered through a blotting 

cloth with EBSS+.  The cell suspension was then centrifuged at 50 x rpm for 4 

minutes at 4°C and the pellet snap frozen and stored at -80oC.   

 

2.2.3.3 Isolation of primary human and murine biliary epithelial cells  

The liver was perfused and cut up into small pieces as described in section 

2.2.3.1.  The liver was then transferred to a sterilin and 5ml of 10mg/ml 

collagenase A and 2ml of 2mg/ml DNase I was added and made up to 50ml with 

1 x sterile PBS and then incubated at 37oC for 30-45 minutes.  The digested liver 

was then sieved through the nybolt mesh into a beaker and mashed further with 

1 x PBS to facilitate cell passage.  The mesh was carefully removed and 5ml of 

2mg/ml DNase I was added and made up to a total volume of 400ml.  This was 

then transferred to 8 x 50ml centrifuge tubes and spun at 600g for 5 minutes.  

Supernatant was removed and pellets were re-suspended in 20ml 1 x PBS and 

then 0.5ml of DNase I to each tube was added.  Tubes were centrifuged at 600g 

for 5 minutes, supernatant was discarded and the previous step was repeated.  

The pellets were then re-suspended in the two centrifuge tubes in 10 ml of 1 x 

PBS, mixed and then combined into one tube.  1 ml of DNase I was then added 

and made up to a total of 24ml with 1 x sterile PBS.   
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In order to semi purify the BECs, density gradient using Percoll (Sigma-Aldrich, 

Gillingham, UK) was performed.  Percoll gradients were prepared as following: 

 Percoll stock solution: Add 11ml of sterile 10x PBS to 1 litre Percoll 

medium. 

 33% Percoll: Add 33ml Percoll stock solution to 67ml 1 x PBS 

 77% Percoll: Add 77ml Percoll stock solution to 23ml 1 x PBS 

 

Into 8 x 15ml centrifuge tubes 3ml of 33% percoll was added and then 3ml of 77% 

percoll was slowly pipetted under this layer using a 5ml plastic pipette.  3ml of the 

cell suspension was pipetted on top and then centrifuged at 2000rpm for 30 

minutes at 80% acceleration and 0% deceleration.  Once centrifuged, two rings 

were observed-the top ring which contained the hepatic stellate cells (HSC) and 

hepatocytes and the bottom ring containing the biliary epithelial cells (BECS) 

(Figure 2.1.2).   

 

 

 

Figure 2.2: Isolation of biliary epithelial cells by Percoll gradient centrifugation.  

 

The HSCs were isolated as described in section 2.2.3.1 (from the Optiprep 

stage).  The bottom ring containing the BECs and the overlying aqueous layer 

was carefully extracted using a Pasteur pipette and then transferred to a 50ml 

centrifuge tube.  To wash the extracted BECs, 3 volumes of 1 x PBS was added 

and centrifuged at 600g for 5 minutes.  After centrifugation, the supernatant was 

discarded and re-suspended in 9ml of 0.1% BSA in 1 x PBS.  This was then 
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mixed and transferred to a 15ml centrifuge tube (without DNase) and immune-

magnetic purification of the BECs was performed.   

 

HEA-125 Dynabeads (Invitrogen, Paisley, UK) were transferred to a roller to 

ensure that they were adequately mixed.   Next, 50-100µl was pipetted into a 

microcentrifuge tube with 1ml of 0.1% BSA in 1 x sterile PBS and then placed in 

the magnet (Invitrogen, Paisley, UK) for 1 minute.  The supernatant was then 

removed and a further 1ml of 0.1% BSA in 1 x PBS was added, the tube was 

removed from the magnet and re-suspended in the Dynabeads.  The re-

suspended Dynabeads were then added to the semi-purified BEC suspension in 

a 15ml centrifuge tube and placed on the roller in the cold room for 30 minutes.  

The tube was then transferred to the magnet for 5 minutes, and then the 

supernatant was removed.  The tube was then removed from the magnet and a 

further 10ml of 0.1% BSA in PBS was added and re-suspended in the Dynabead-

bound BECs.  The tube was placed back into the magnet for 2 minutes and then 

the supernatant was removed.  To ensure that any non-binding cells were 

removed, this step was repeated.  Finally, the re-suspended Dynabead-bound 

BECs were re-suspended in 10ml of BEC media and transferred to a 25cm2 flask 

and placed in the incubator.  The BEC media consisted of; 1:1 DMEM:Hams F12 

medium (Sigma-Aldrich, Gillingham, UK), 10% FCS (v/v) 1 % (v/v) P/S, 10 ng/ml 

epidermal growth factor (EGF) (Calibiochem, Darmstadt, Germany), 0.248 IU/ml 

Insulin (Sigma-Aldrich, Gillingham, UK), 2 µg/ml hydrocortisone (Sigma-Aldrich, 

Gillingham, UK), 10 ng/ml cholera toxin (Sigma-Aldrich, Gillingham, UK), 2nM tri-

iodo-L-thyronine (Sigma-Aldrich, Gillingham, UK) and 5 ng/ml hepatocyte growth 

factor (HGF) (Calibiochem, Darmstadt, Germany).  

 

2.2.4 Isolation of primary melanocytes  

Primary melanocytes were isolated from adult abdominal and foreskin with 

informed donor consent and ethical approval from the Newcastle & North 

Tyneside Research Ethics Committee.   

 

The blood vessels and connective tissue were removed from the skin samples 

and then dissected into small pieces.  These were then digested by incubating in 

10ml 1 x sterile PBS supplemented with 20mg of dispase and 10% 

penicillin/streptomycin/fungizone (PSA) (Lonza Biologics, Slough, UK) overnight 
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at 4oC.  All the samples were rinsed in PBS containing 1% PSA.  The epidermis 

was then removed with sterilised forceps and incubated in 5ml of 1% trypsin 

EDTA (TE).  After incubation, 500μl of FCS was added and the solution was 

centrifuged at 1200rpm for five minutes.  After centrifugation, the pellet was re-

suspended in fresh Epilife ® medium (Invitrogen, Paisley, UK) supplemented with 

PSA and Human Keratinocyte Growth Serum (HKGS) (Invitrogen, Paisley, UK).  

The medium was transferred to a tissue culture flask and then after 24 hours, the 

media was removed and changed so that cells that had not adhered were 

removed.  The cells were maintained in DMEM supplemented with 5% (v/v) FCS 

and 1 % (v/v) PSA.  Once the dermal fibroblasts had adhered the melanocytes 

were isolated by removing the media and washing once in 1 x PBS and then 

adding trypsin for 30-60 seconds.  The cells were then centrifuged for 5 minutes 

at 1200 x rpm, the supernatant was removed and protein was extracted as 

described in section 2.4.1.       

 

2.2.5 Long term storage of cells   

Cell lines and primary cells were routinely frozen down and stored long-term in 

liquid nitrogen.  Cells were detached (as described in section 2.2.2), transferred 

into a 50ml falcon (containing pre-warmed media) and then centrifuged at 1500 

x rpm, for 5 minutes.  The media was removed and the pellet re-suspended in 

freezing medium (90% (v/v) FCS and 10% (v/v) dimethyl sulphoxide (DMSO)).  

Typically, 3mls per pellet was harvested from each confluent 75cm2 tissue culture 

flask and then aliquoted into sterile 1.8ml cryovials (1.5ml/cryovial).  The cryovials 

were immediately placed in an isopropyl alcohol filled freezing container (Mr 

Frosty, Nalgene ®) and placed overnight at -80oC to gradually cool (1oC per 

minute cooling rate).  The next day, the vials were transferred to the liquid 

nitrogen until needed.    

 

2.2.6 Revival of cell line stocks 

Cells were removed from liquid nitrogen and quickly thawed at 37oC (until 

approximately 80% had thawed).  Cell suspensions were then transferred to a 

50ml falcon containing pre-warmed medium and centrifuged for 5 minutes at 

1500 x rpm.  To remove residual DMSO, supernatant was discarded and the cell 

pellet re-suspended in fresh media and transferred to a 25cm2 culture flask.  After 

24 hours, once cells had attached, the culture media was changed and the cells 
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were then cultured as described in section 2.2.2.  Cells were not used for 

experimental purposes until they had been passaged at least twice. 

 

2.2.7 Measurement of cell number and viability using a haemocytometer  

Measurement of cell viability was assessed by the ability of a cell to exclude 

trypan blue (dead cells are stained blue because the dye traverses through the 

membrane and cannot be pumped out).  Cell suspensions were diluted 1:1 with 

0.4% (v/v) trypan blue (final concentration 0.1% (w/v)) and a small volume of the 

cell suspension: trypan blue mix (10μl) was loaded via capillary action onto a 

haemocytometer (VWR International Limited., Leicestershire, UK).  Duplicate cell 

counts were performed and cell viability was determined by counting both viable 

and non-viable cells.    

 

2.2.8 Collection of conditioned media  

For conditioned media, 2x104/ml cells were seeded into 24 well plates and after 

24 hours the media was replaced with 300μl of either 10% (v/v) FCS or serum 

free DMEM media.  At 24, 48 and 72 hours the conditioned media was collected 

and centrifuged at 2000 x rpm to remove particulate debris.  The media was then 

aliquoted into 15 ml falcons and stored at -80°C until needed.     

 

2.2.9 Cell viability assay  

Cell viability was measured using a commercially available MTS kit-CellTiter 96 

Aqueous Non-Radioactive Cell Proliferation Assay (Promega, Southampton, UK) 

according to the manufacturer’s instructions.  MTS 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) is a tetrazolium 

compound which in the presence of phenazine methosulfate (PMS) produces a 

soluble formazan product which turns indigo in colour.  The compound (MTS) 

measures the mitochondrial dehydrogenase activity within the cells and therefore 

can be used as a measure of cell viability.  Hence, an increase in viability results 

in an increase in mitochondrial dehydrogenase, which is correlated with the 

absorbance of the sample due to the formazan dye produced.   

 

Cells were seeded into 96 well plates at a density of 1x104 cells per well and were 

allowed to attach overnight.  On the day of treatment, the culture medium in each 

well was replaced with either 10% FCS (v/v) or serum free DMEM media 
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containing the recombinant CXCL12 (PeproTech Inc, Rocky Hill, NJ) at varying 

concentrations or the conditioned media previously collected (section 2.2.8).   

After 24, 48 and 72 hours, 10μl of the MTS reagent was added to each well 

(without mixing) followed by incubation at 37oC, 5% CO2 in air for 4 hours.  The 

plates were then read using a SpectraMax 250 plate reader (Molecular Devices 

Ltd, Wokingham, UK) at an optical density of 490nm.  Results were normalized 

to the control value and the percentage cell viability was calculated.    

 

2.3 Polymerase Chain Reaction (PCR) analysis   

 

2.3.1 RNA purification with Trizol  

Cell culture media was removed from each well of a 6 well plate and the cells 

were then washed with ice-cold 1 X PBS.  To each well, 1ml of Trizol (Invitrogen, 

Paisley, UK) was added and the cells were then scraped (using an ice cold 

scraper) and then transferred to an RNase/DNase free eppendorf.  For tissue 

samples, these were excised using sterile tools and a small piece was cut using 

a clean scalpel and transferred into an RNase/DNase free eppendorf containing 

1 ml of Trizol.  The tissue was initially mashed and was then broken down further 

by sonication using a Soniprep 150 Plus (MSE, London, UK).  To each of the 

samples, 200μl of chloroform (Sigma-Aldrich, Gillingham, UK) was added, mixed 

then centrifuged for 15 minutes at 12000 x rpm at 4°C.  The upper aqueous layer 

was transferred into a new eppendorf followed by the addition of 500μl of chilled 

isopropanol (Fisher Scientific UK Ltd, Loughbrough,UK) and then incubated on 

ice.  After 10 minutes, samples were centrifuged at 12000 x rpm for 10 minutes 

at 4°C.  The supernatant was removed carefully and the pellet dislodged and 

washed in 70% (v/v) sterile ethanol.  The samples were then centrifuged at 12000 

x rpm at 4°C and then the supernatant was removed.  The pellet was air dried, 

re-suspended in 15 µl of sterile H2O and then quantified using a Nanodrop ® 

(Thermo Scientific, Denver, USA).   

 

The principles of this instrument are based upon the Beer Lambert Law whereby 

the concentration (ng/μl) is measured by the absorbance of UV light at 260nm 

and 280nm in 1μl of sample.  The ratio of these absorbances, are also used to 

assess both quality and purity of the RNA where values between 1.8 and 2.0 are 

deemed acceptable for analysis.  
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2.3.2 DNAse treatment of RNA     

To minimise genomic DNA contamination, RNA was DNAse treated prior to the 

PCR (Promega, Sounthampton, UK).  Briefly, RNA was diluted in 50μl of sterile 

water and to this 5μl of both RQI 10x DNase I Reaction Buffer and 5μl of DNase 

I were added.  This was mixed gently and then incubated at 37oC for 30 minutes.  

To stop the reaction, 5 μl of DNase stop solution was then added and incubated 

at 65oC for 10 minutes.  RNA samples were stored at -20oC until needed.   

 

2.3.3 Reverse transcription-polymerase chain reaction (RT-PCR)-

production of cDNA from RNA  

To produce 1st strand cDNA, RNA was diluted with sterile H2O to a final 

concentration of 200ng/µl.   4μl of RNA (800ng) was then incubated with 1μl 

(50ng/µl) of random primers (Promega, Southampton, UK) for 3 minutes at 90°C 

and then afterwards immediately placed on ice.  15µl of RT master mix (per tube:  

4μl x5 RT buffer, 0.5μl RNasin, 7.5μl H20, 2μl of 10mM dNTP’s and 1μl of MMLV) 

was added to each sample and then to synthesize DNA was incubated for 1 hour 

at 42°C.  2μl of cDNA was then used for PCR and the remaining RNA was stored 

at -20°C or -80°C for long term storage.  

 

2.3.4 Polymerase chain reaction (PCR)  

18μl of PCR master mix (per tube:10µl 2 x Go-Taq Green master mix, 6µl dH20, 

2µl 10pmol/µl of upstream and downstream primers) was prepared and 2μl 

(80ng) of the appropriate cDNA or sterile water was added to each tube and 

mixed gently.  PCR reactions were performed on a programmable bench top 

thermocyclar and the standard PCR programme was used as shown below. 

 

Step Temperature Time (minutes) Cycles 

Denature 95 1 1 

Denature 95 1 35 

Annealing* 55 1 35 

Elongation 73 1.5 35 

Elongation 73 8 1 

Hold  4 - - 

 

* Annealing temperature was dependent upon the primers used (Table 2.4) 



Chapter 2: Materials and Methods 

 
 

46 

2.3.5 Primer design  

Primer sequences were designed to amplify specific DNA sequences of interest.  

DNA sequences were obtained from the NCBI database (www.ncbi.nlm.nih.gov) 

and the Primer-BLAST programme was used to check the specificity of the primer 

sequences and also the likelihood of primer dimer formation.  Ideally, primers 

were designed to have a GC content between 40% and 60% and be 

approximately 18-30 base pairs in length so that each set of primers had similar 

melting temperatures (Tm) where Tm = 2 C x (A + T) + 4 C x (G + C).  An 

annealing temperature of generally 55oC was used to start with and then 

optimized by +/- 2oC if necessary (Table 2.4).  

 

Primer   5’-3’ Sequence  Annealing Temperature 

(°C)   

Amplicon 

size (bp)  

mCXCL12-α US CGCTCTGCATCAGTGACGGTA 

DS TGTCAGCCTTCCTCGGGGGTC 

55 276 

mCXCL12-β US CCACATCGCCAGAGCCAACGT 

DS ACACCTCTCACATCTTGAGCC 

55 179 

mCXCL12-γ US CCCTTCAGATTGTTGCACGGC 

DS TCGGCAGGAAGCGGGGAACT 

55 212 

mCXCR4 

 

US CACCACGGCTGTAGAGGCGAGT 

DS GCCGGTACTTGTCCGTCATGC 

57 264 

rCXCL12-α US GCATCAGTGACGGTAAGCCA 

DS CTCAGCATGACCCCAGTCAG 

55 362 

rCXCL12-β US GCATCAGTGACGGTAAGCCA 

DS GGCCCTTCCCTAACACTGAC 

55 304 

rCXCL12-γ US TGCATCAGTGACGGTAAGCC 

DS CCATCTGCAGGAAGCACGTA 

55 333 

rCXCR4 

 

US TGCCATGGAAATATACACTTCGGA 

DS CACCCACATAGACGGCCTTT 

57 473 

hCXCL12-α US GCTCTGCCTCAGCGACGACGGGAA 

DS CGAGTGGGTCTAGCGGAAAGT 

55 265 

hCXCL12-β US TTCAGATTGTAGCCCGGCTGA 

DSTGTGGCAGGCCCTTCCCTAAC 

55 188 

hCXCL12-γ US GCCCTTCAGATTGTAGCCCGG 

DS GAGCAAATTTACAAAGCGCCGAGAG 

55 256 

hCXCR4 

 

US TAGTGGGCGGGGCAGAGGAGT 

DS AACAAAAGGGCACTGAGACGCTGAG 

57 70 

GAPDH  US TGACATCAAGAAGGTGGTGAAG 

DS TCTTACTCCTTGGAGGCCATGT 

55 243 

18s  US CCCGAAGCGTTTACTTTGAA 

DS CCCTCTTAATCATGGCCTCA 

55 189 

Cre US GCG GTC TGG CAG TAA AAA CTA TC 

DS GTG AAA CAG CAT TGC TGT CAC TT 

55 389 

 

Table 2.4: DNA oligonucleotide sequences employed in RT-PCR.   

http://www.ncbi.nlm.nih.gov/
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2.3.6 Agarose gel electrophoresis  

Agarose gel electrophoresis was performed to separate and identify nucleic acids 

according to their length.  PCR products migrate at different rates depending 

upon their size towards a positive charge when an electric field is applied.   

 

Typically, 1.5% (w/v) agarose gels were prepared by adding 6g of ultrapure 

agarose powder (Sigma-Aldrich, Gillingham, UK) to 400ml 1 x tris-acetate-EDTA 

acid solution (TAE) (40mM tris, 20mM acetic acid, 1mM EDTA, pH 8.0) buffer 

and heated in the microwave.  Once the agarose granules had all melted, 5μl of 

Ethidium Bromide (EtBr) (10μl/100ml, final concentration 0.5µg/ml) was added 

and mixed by gentle swirling.  The liquid was cooled to approximately 60oC and 

then poured into a cassette and a comb inserted to form the wells.  Once set, the 

gel was placed into an agarose gel electrophoresis system (Bio-Rad Labs Ltd, 

Hertfordshire, UK) containing TAE buffer.  The comb was removed and 6μl of 

100bp ladder (New England Biolabs, Hertfordshire, UK) was added to the first 

well followed by 20μl of each sample.  The system was then connected to a power 

pack and run at 90V for approximately 45 minutes or until sufficient migration had 

occurred.  The gel was then removed carefully and placed in a Gel Doc and 

visualised under UV light.   

 

EtBr intercalates with the DNA and upon exposure to UV excitation emits a 

fluorescent signal at 610nm.  Due to the intercalation, emitted light is increased 

by at least 20 x which means the bands can be visualised.  Furthermore, by 

comparing their base pair (bp) sizes with a DNA ladder made up of known 

fragment sizes, samples can be identified.   

 

2.3.7 SYBR-Green quantitative RT-PCR (qRT-PCR) 

SYBR-Green quantitative RT-PCR (qRT-PCR) was used to determine the 

expression of different genes of interest.  SYBR green is able to bind to double 

stranded DNA (dsDNA) and will absorb blue light at λmax = 488nm and emits 

green light at λmax = 522nm.  The amount of excited light emitted is proportional 

to the amount of DNA synthesized.  Thus, quantification of the dsDNA can be 

measured and the quantity of target gene determined.   For each gene of interest, 

samples were tested in triplicate and a non-template control (cDNA replaced by 
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sterile H2O) was used to control for DNA contamination.  Master mixes were 

prepared for each set of primers (Table 2.5).   

  

 

 

 

 

 

 

 

 

Table 2.5: The components for a single PCR reaction.  

 

To each well of a 96 well PCR plate, 8μl of the appropriate master mix and then 

2μl of each pre-prepared cDNA sample (5ng) or for controls sterile water was 

added.  The plate was then carefully sealed with an optical film.  Briefly, the plates 

were centrifuged at 250 x rpm for 1 minute to remove bubbles and to ensure all 

reagents were collected at the bottom of each well.  Plates were then placed into 

an Applied Biosystems 7500 fast thermocycler and the conditions were optimized 

for each primer, the standard programme is given below.  

 

Standard PCR programme: 

 

 

 

 

 

 

Once the run had complete, cycle threshold (CT) values for each reaction were 

calculated and an average for each sample was taken to determine gene 

expression.  The transcript expression was normalized to the gene 18s rRNA.  

Fold change in gene expression was then calculated using the the 2-ΔΔCt where 

ddCt is the change in Ct relative to 18s and experimental control as described 

previously (Livak and Schmittgen 2001). 

Reaction component Per 
reaction 

Primers-forward and reverse mixture (250nM) 0.3 μl 

SYBR Green ™ Master Mix (2x) 5.0 μl 

Nuclease-free H2O 2.7 μl 

cDNA (5ng/μl) 2.0 μl 

 

Total Volume 

 

10 μl 

Temperature Time Cycles 

50 2 minutes 1x 

95 10 minutes 1 x 

95 15 seconds 40x 

60 1 minute 40x 
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2.4 Western Blotting  

Western blotting was used to quantify protein expression.  The proteins were 

extracted, separated on a polyacylamide gel and then transferred to a 

nitrocellulose membrane and the proteins of interest were then identified using 

labelled antibodies.   

 

2.4.1 Protein preparation from whole cell extracts 

Cell pellets were prepared by centrifuging cell culture media at 13000 x rpm for 

10 minutes.  Gently, the supernatant was discarded and the cell pellet was 

washed twice with sterile 1 x PBS.  Total protein was extracted from the cell 

pellets into an appropriate volume of lysis buffer (50-100μl) (20mM Tris pH 7.4) 

containing 1 x protease inhibitors (Sigma-Aldrich,Gillingham, UK).   

 

2.4.2 Protein preparation from primary tissue  

Primary tissues of interest were dissected with sterile tools and then transferred 

into clean eppendorfs and snap frozen by immersing in liquid nitrogen.  Samples 

were stored at -80oC for future use or for immediate use, were homogenized.  

Lysis buffer containing protease inhibitor was added, the volume being 

dependent upon amount of tissue present (~5mg tissue ~300µl lysis buffer 

added) and then tissues were homogenised by firstly mashing and then by 

sonication as described in section 2.3.1.  The samples were then centrifuged at 

16000 x rpm for 20 minutes at 4oC after which the supernatant was transferred 

to a clean eppendorf on ice and the pellet discarded.   

 

2.4.3 Quantification of protein by Lowry assay and sample preparation  

To determine protein concentrations of cell and tissue lysates a Lowry assay 

using BSA standards (0-20ug/ml) (Table 2.6) was performed.  ABC buffer was 

prepared by adding 500μl of Lowry B (2% w/v sodium tartrate) and 500μl of Lowry 

C (1% w/v copper sulphate) to 50ml of Lowry A (2% w/v Na2CO3, 4% w/v 

NaOH,).  To each eppendorf, 50μl of dH20, 1ml of Lowry A and 5μl of sample was 

added and incubated at room temperature for 10 minutes.  100μl of Folin and 

Ciocalteau’s phenol reagent (Sigma-Aldrich, Gillingham, UK) diluted 1:1 in dH20 

was added and incubated for a further 20-30 minutes at room temperature.  Each 

sample was then read at an absorbance of 750nm.  A calibration curve was 

generated using the absorbance of the standards and from this the concentration 
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in the samples was determined.  The protein samples were diluted to 1µg/µl in 

reducing loading buffer (62.5mM Tris Buffer pH 6.8, 10% (v/v) glycerol, 2% (w/v) 

SDS 100mM Dithiothreitol (DTT) and 0.02% (w/v) bromophenol blue) and then 

denatured at 90°C-100°C for 5-10 minutes on a heat block.  Once cool, samples 

were loaded onto an SDS-page gel as described in the following section.    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6: Preparation of BSA standards. 

 

2.4.4 SDS-page gel electrophoresis  

SDS (sodium dodecyl sulphate) is an amphipillic 12 carbon alkyl sulphate 

molecule which denatures proteins and imparts a negative charge around the 

polypeptide chains.  In SDS page gel electrophoresis, samples are loaded onto 

the gel and an electric field is applied and the negatively charged proteins 

separate and migrate through the gel towards the anode.  The speed of migration 

is dependent upon their molecular weight; larger proteins travel more slowly 

through the gel compared to smaller proteins.     

 

Typically gels were prepared 9/12/14% (w/v) bis-acrylamide, 375mM Tris buffer 

pH 8.8, 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulphate and 0.05% (v/v) 

Tetramethylethylenediamine (TEMED) and in order to remove air bubbles and to 

achieve a straight gel a layer of 100% isopropanol (200μl) was added.  Once the 

gels had set (~30 minutes) isopropanol was removed and the gels were washed 

with dH20.  A 4% stacking gel  (4% (w/v) acrylamide, 125mM Tris buffer pH 6.8, 

0.1% (w/v) SDS, 0.05% (w/v) ammonium persulphate and 0.1% (v/v) TEMED) 

Standard  BSA stock (20mg/ml) to add (µl) dH20 to add (µl) 

0 0 100 

1 5 95 

2 10 90 

4 20 80 

5 25 75 

8 40 60 

10 50 50 

12 60 40 

15 75 25 

20 100 0 
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was then cast on top of the separating gel and a comb was inserted to create 

wells for the samples.  Once the stacking gel had polymerised, the combs were 

removed and the wells were washed with dH20 and placed into the 

electrophoresis tank filled with electrode running buffer (ERB) (20mM Tris, 

160mM glycine, 0.08% (w/v) SDS, pH 8.3).  15-30μg of total protein was then 

loaded into each well alongside 6µl of Colour burst molecular weight size marker 

(Sigma-Aldrich, Gillingham, UK) and the gel was connected to a power pack and 

run at 100V.  As soon as the samples had reached the bottom of the gel it was 

removed and equilibrated by immersing in cold transfer buffer (25mM Tris, 192 

mM glycine and 20% (v/v) methanol, pH 8.3) to ensure that gel shrinkage did not 

occur whilst transferring.   

 

2.4.5 Electro-transfer of proteins 

After separation, the proteins were transferred onto nitrocellulose membranes.  

During this transfer process, the negatively-charged proteins migrate towards the 

positively-charged cathode.    

 

The gel and the nitrocellulose membrane were sandwiched together between 

transfer sponges and 3mm filter paper (pre-soaked with cold transfer buffer) and 

then clamped together, making sure no air bubbles were present. 

This was then placed into the tank containing transfer buffer and an electric field 

was applied at 100V for 1-2 hours.  A magnetic stirrer and an ice block were also 

in the tank to prevent over-heating.  The membranes were then removed and 

washed briefly in TBS-T (Tris-Buffered Saline Tween;0.2M NaCl, 20mM Tris, pH 

7.4 and 0.05% (v/v) tween) to remove traces of methanol and were then cut 

carefully into sections if necessary.  To inhibit non-specific binding, membranes 

were blocked for one hour at room temperature or overnight at 4°C in TBS-T 

containing 3% non-fat milk and then washed 3 x 5 minutes in TBS-T.  

 

2.4.6 Immunodetection of proteins  

Membranes were probed with primary antibodies (Table 2.7) at either room 

temperature or overnight at 4oC in incubation buffer (0.03% non-fat milk in TBS-

T) on a roller mixer.  Membranes were then washed 3 x 5 minutes in TBS-T 

followed by incubation for 1 hour at room temperature with an appropriate 

secondary HRP conjugated antibody (Table 2.7) in incubation buffer.  The 
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membranes were then washed up to an hour with 4-6 changes of 1 x TBS-T.  If 

re-probing membranes for proteins of similar size, the membranes were stripped 

using western blotting stripping buffer (eBiosciences, Hatfield, UK) which 

removes the antibodies, preferentially without affecting the proteins.  Once the 

membrane was stripped it was washed thrice in TBS-T, blocked and re-probed 

as described above.    

 

Antibody Dilution Molecular Weight 

(kDa)  

Supplier 

(Product Code) 

CXCR4 

(Mouse monoclonal) 

WB-1/1000 

IHC-1/500 

39 R and D 

MAB172 

CXCR4 

(Rabbit polyclonal) 

WB-1/1000 

IHC-1/500 

39 Abcam 

Ab2074 

CXCL12 

(Mouse monoclonal) 

WB-1/1000 

IHC-1/500 

11 R and D 

MAB350 

CXCL12 

(Rabbit polyclonal) 

WB-1/500 

IHC-1/500 

11 Santa Cruz 

Sc-28876 

CXCL12  

(Rabbit polyclonal)  

WB-1/1000 

IHC-1/500 

11 Abcam 

Ab9797  

CXCL12 

(Rabbit polyclonal)  

WB-1/1000 

IHC-1/500 

11 Abcam 

Ab25117  

Β-actin 

(Mouse monoclonal) 

WB-1/3000 

IHC N/A 

43 Sigma-Aldrich 

A5441 

CK-19 

(Mouse monoclonal) 

WB N/A 

IHC-1/500 

N/A Abcam 

Ab8591 

CK-19 

(Rabbit monoclonal) 

WB N/A 

IHC-1/500 

N/A Abcam 

Ab52625 

Anti-vimentin  

(Mouse monoclonal)  

WB/N/A 

IHC-1/1000 

N/A Sigma  

V6300 

Anti-vimentin  

(Mouse monoclonal)  

WB/N/A 

IHC-1/1000 

N/A Abcam 

Ab8978 

α-SMA-FITC 

(Mouse monoclonal) 

WB N/A 

IF-1/1000 

N/A Sigma-Aldrich 

F3777 
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Table 2.7: Antibodies specifications.  

 

The proteins were visualized using the ECL kit (GE Healthcare Life Sciences, 

Buckinghamshire, UK) which works on the principle that the reagents bind to the 

HRP conjugated on the secondary antibody which catalyses the formation of 

2H2O + O2 from peracid.  Consequently, resulting in degradation of Luminol via 

peroxidise catalysed degradation and therefore chemiluminscence is produced 

(Figure 2.3).   

 

In brief, reagent 1 and 2 were mixed at a ratio 1:1 and applied to the membranes 

for 30 seconds.  Any excess reagent was removed and then the membranes were 

carefully covered in a saran wrap and taped into a developing cassette.  The 

membranes were developed in the dark room by placing a photographic film (CL-

XposureTm film) (Fisher Scientific, Loughbrough, UK) on top of the wrapped 

nitrocellulose, sealed into the cassette for a pre-determined time and then was 

developed by placing the film into the developer.  To determine protein 

expression levels, quantitative densitometry of signal intensity was carried out 

using Image J and all values were normalized to the housekeeping protein β-

actin 

 

 

 

 

 

anti-mouse-HRP 2o (goat) 

 

WB – 

1/6000 

IHC – 1/200 

N/A Dako 

P0447 

anti-rabbit-HRP 2o (goat) WB – 

1/3000 

IHC – 1/200 

N/A Dako 

P0448 

 

anti-mouse FITC-HRP 2o 

(rabbit) 

WB N/A 

IF – 1/200 

N/A Dako 

P5100 

anti-rabbit-FITC 2o (sheep) WB N/A 

IF – 1/200 

N/A Sigma-Aldrich 

F7512 

anti-rabbit-TRITC 2o (swine) WB N/A 

IF – 1/400 

N/A Dako 

R0156 
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Figure 2.3: The production of luminescence via ECL.   

 
 

2.4.7 Coomassie blue gel staining 

Gels were removed from the electrophoresis apparatus and rinsed in dH2O and 

then transferred into GelCode Blue Stain reagent (Fisher Scientific UK Ltd, 

Loughbrough,UK) at 1 hour at room temperature.  To destain the gels they were 

placed in water for at least one hour and then visualised on an Alpha Innotech 

flurorescent imaging system and processed using Fluorchem software.   

 

2.4.8 Ponceau staining  

Ponceau S is a sodium salt of a diazo dye that can be used to check for the 

efficiency of the transfer of proteins.  Membranes were incubated in ponceau S 

solution for 2 minutes on a rocker at room temperature and then to visualise the 

proteins, the membranes were transferred into dH20. 

 

2.5 Immunohistochemistry  

 

2.5.1 Immunohistochemistry  

Archival human liver tissue was obtained with full ethical approval and written 

informed consent from the Newcastle & North Tyneside Research Ethics 

Committee.   

 

Tissues were fixed in 10% (v/v) formalin (Fisher Scientific, Loughborough, UK) 

diluted in 1 x PBS for 24 hours and then processed through increasing 

concentrations of ethanol.  Tissues were embedded in paraffin and sections were 
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cut (4-8µm) and mounted onto super frost microscope slides and incubated 

overnight at 37oC.   

 

Tissue sections were de-waxed in xylene (Fisher Scientific, Loughborough, UK) 

for 10 minutes and then rehydrated in 100% and then 95% ethanol (Fisher 

Scientific, Loughborough, UK) for 3 minutes each and then placed into water.  To 

break the protein cross-links formed by formalin fixation and to reveal antigenic 

sites an antigen retrieval process was carried out.  Antigen retrieval was 

performed by immersing sections into 0.01M citrate buffer pH6 in a pressure 

cooker and timing for 1 minute once pressure of the system was reached.  Tissue 

sections were then cooled with water, outlined with a hydrophobic pen and then 

incubated in 3% (v/v) hydrogen peroxide H2O2 prepared in methanol for 10 

minutes to ensure endogenous peroxide activity was quenched.  Tissue sections 

were then washed in 1 x PBS prior to blocking non-specific binding of antibodies 

with 20% FCS (v/v) in 1 x PBS for 30 minutes.  Primary rabbit antibodies were 

diluted in 1 x PBS containing 0.05% (v/v) FCS (Table 2.7), added to each section 

and then incubated overnight at 4oC.  Following overnight incubation, sections 

were washed 2 x for 5 minutes in 1 x PBS before being incubated for 1 hour at 

room temperature with the appropriate secondary HRP antibody (Table 2.7).  

Following a final 2 washes x 5 minutes in 1 x PBS, staining was developed using 

diaminobenzidine (DAB) (Dako UK Ltd, Cambridgeshire, UK) which is oxidized 

by hydrogen peroxide and a dark brown colour is observed.  The DAB was added 

to each section (~200μl) and incubated for 1 minute and then washed in water 

prior to haematoxylin staining.  Sections were counterstained with haematoxylin 

for 2 minutes, washed with water and then stained with Scotts tap water (Fisher 

Scientific, Loughborough, UK) for 30 seconds.  Finally, sections were dehydrated 

briefly through a series of ethanols (50%, 75%, 95%, 100%) and then cleared in 

xylene for 10 minutes prior to mounting in Depex (DPX) (Sigma-Aldrich, 

Gillingham, UK).  

 

2.5.2 Haematoxylin and Eosin (H & E) staining  

Haematoxylin (stains the nuclei blue) and eosin (stains the cytoplasm red) is the 

most common staining method used in histology.  Tissue sections were de-waxed 

and rehydrated as described in section 2.5.1.  They were then stained in 

haematoxylin for 2 minutes, washed with normal tap water and then immersed in 
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Scott’s tap water for 30 seconds.  Tissue sections were then counter stained in 

eosin (Fisher Scientific, Loughborough, UK) for 30 seconds, washed in water and 

then dehydrated and mounted as described in section 2.5.1.   

 

2.5.3 Sirius red staining  

Picro-sirius red binds to collagen due to its sulphonic groups reacting with the 

basic groups found in collagens and so is ideal for determining levels of fibrosis 

in tissue (Wallace, Burt et al. 2008).  Tissue sections were de-waxed and 

rehydrated as described in section 2.5.1.   They were then immersed in picro-

sirius red for 2-3 hours and then washed in 2 x 0.5% (v/v) acetic acid prepared in 

dH2O.  Finally, sections were dehydrated and mounted as described in section 

2.5.1. Sirius red staining was quantified by using the Leica software programme. 

 

2.5.4 Double immunofluorescence staining  

Tissue sections were de-waxed and rehydrated and antigen retrieval carried out 

as described in section 2.5.1.  Tissue sections were then washed in 1 x PBS prior 

to blocking non-specific binding of antibodies with 20% FCS (v/v) in 1 x PBS for 

30 minutes.  Primary rabbit antibodies were diluted in 1 x PBS containing 0.05% 

(v/v) FCS (Table 2.7), added to each section and then incubated overnight at 4oC.  

Antibodies were added together if raised against different species for example, 

rabbit against target-1 and mouse against target 2.  No primary antibody controls 

were incubated with blocking buffer alone.  Following overnight incubation, 

sections were washed 2 x for 5 minutes in 1 x PBS before being incubated in the 

dark for 1 hour at room temperature with the appropriate flurochrome secondary 

antibody (Table 2.7).  Sections were then counterstained with DAPI (4',6-

diamidino-2-phenylindole) for 10 minutes and then rinsed in 1 x PBS for 5 

minutes.  DAPI is a fluorescent probe that binds to AT regions of double stranded 

DNA, thus cell nuclei can be visualized.  To quench auto-fluorescence, sections 

were immersed in Sudan Black (Sigma-Aldrich, Gillingham, UK) (0.3% (w/v) 

made up in 100% ethanol and filtered before use) and placed on a rocker for 30-

45 minutes.  After rinsing in 1 x PBS 4 x 10 minutes, sections were mounted with 

a cover slip with a small drop of fluorescence mounting medium (Dako UK Ltd, 

Cambridgeshire, UK) and the cover slip edges sealed with nail varnish to prevent 

drying and movement under the microscope.   
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Sections were observed under confocal microscopy using a Leica TCS SP II 

laser-scanning confocal microscope and LCS Lite 2.61 software.   The basic 

principle behind confocal microscopy is that it uses point illumination in order to 

eliminate out-of focus signal. This is achieved by the pinhole being located in front 

of the detector thus, allowing only fluorescence to be detected when close to the 

focal plane.    

 

2.5.5 Immunocytochemistry 

For fluorescence microscopy, cells were grown in 6 well plates.  The media was 

removed from the 6 well plates and washed twice in 1 x PBS.  Cells were 

permeabilized with 100% methanol (Fisher Scientific, Loughborough, UK) for 10 

minutes and fixed with fixation buffer (2% (v/v) formaldehyde, 0.2% (v/v) 

glutaraldehyde in PBS, pH7.4) for 20 minutes at -20oC.  If cells were not stained 

immediately they were stored with 2mls of 1 x PBS in each well at 4oC.  For 

staining, cells were blocked with 2mls of 20% FCS (v/v) in 1 x PBS for 30 minutes.  

Cells were then incubated in the presence or absence of a primary antibody 

(Table 2.7) at room temperature for 1 hour or overnight at 4oC.  After incubation, 

cells were washed 2 x 5 minutes with 1 x PBS with gentle agitation and detected 

with the appropriate secondary antibody (Table 2.7) in the dark to prevent 

quenching of fluorescence signal.  They were then washed a further 4 times in 1 

x PBS for 5 minutes each.  The PBS was removed and cells were counterstained 

with DAPI for 10 minutes, the cells were washed in 1 x PBS for 2 x 5 minutes and 

images were captured by fluorescence microscopy. 

 

2.6 ELISA  

 

2.6.1 ELISA for secreted CXCL12 

To measure CXCL12 secretion in conditioned media, an Enzyme-linked 

immunosorbent assay (ELISA) kit (Quantikine® Colorometric ELISA) was 

performed according to the manufacturer’s instructions (R&D Systems, Inc., 

Minneapolis, USA).  In brief, samples and standards were pipetted into the wells 

of a 96 well plate pre-coated with a CXCL12 specific antibody.  CXCL12 present 

(if any) bound to the immobilised antibody whereas the unbound materials were 

removed by washing the plate thrice.   A monoclonal antibody specific to CXCL12 

was added and the plate was washed thrice in wash buffer provided.  Following 
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this, the secondary antibody was added to the wells and the plate was washed 

thrice.  The substrate solution was added and incubated in the dark for 30 minutes 

prior to the stop solution and was then measured at an optical density at 450nm 

within 30 minutes on a Bio Rad 680 Microplate Reader (Bio Rad, California, USA) 

and wavelength correction was set at 570nm.  A reference curve generated from 

standards using purified recombinant murine CXCL12 was used to determine the 

secreted CXCL12 concentration. 

 

2.7 Transwell chemotaxis assays 

Migration assays were utilised to investigate the chemotaxis properties of cells in 

vitro.  Chemotaxis was assayed using specialised 24 culture insert companion 

plates (VWR International, Leicestershire, UK).  

 

 

 

Figure 2.4: Set up of the transwell migration assay. 

 

To prepare these plates for use, each well was blocked with 1% (w/v) BSA 

(Sigma-Aldrich, Gillingham, UK) diluted in RPMI (Roswell Park Memorial 

Institute)-1640 medium for 1 hour at room temperature.  Prior to the addition of 

the cell culture filter insert (8µm diameter pore size), each insert was also pre-

coated on the under-side with 150µl of 2.5µg/ml fibronectin (Sigma-Aldrich, 

Gillingham, UK)  prepared diluted in RPMI-1640 medium for 1 hour at room 

temperature.  Following 1 hour incubation, the excess fluid was removed from all 

of the wells and filter inserts allowed to air dry at room temperature for 2 hours.  

800µl of RPMI-1640 medium containing 0.1% (w/v) BSA was then added to each 

well in the presence or absence of recombinant human CXCL12 ligand 

(100ng/ml) or conditioned media.  200,000 of cells (serum starved overnight) 
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were then added to each pre-coated cell culture filter before insertion into the 

corresponding well +/- AMD11070/AMD3100.   

 

The chemokine inhibitors AMD3100 and AMD11070 (Genzyme Drug Discovery 

and Development, Waltham, MA, USA) were prepared as 1mg/ml stock solutions 

in normal saline solution and citric acid/normal saline solution respectively, 

according to the manufacturers specifications (Genzyme Ltd, 2010) and were 

kept at 4oC, shielded from light and used within one week of preparation.  

AMD3100 was further diluted and added to cell cultures in normal saline solution 

and AMD11070 in citric acid/normal saline and again.  Both AMD3100 and 

AMD11070 were used at clinically achievable concentrations as described 

previously (Mosi, Anastassova et al. 2012) and an equal volume of vehicle was 

used to treat control cells which in all assays did not exceed 0.01% of the total 

culture volumes.   

 

To prevent evaporation, surrounding wells were filled with sterile 1 x PBS and the 

lid was placed carefully on top.  The plates were then incubated for overnight at 

37°C.  The inserts were removed from the 24 well plates with sterile forceps and 

the inserts were swabbed gently with a cotton bud to remove the non-migrating 

cells.  The cells were then fixed through the addition of 1 ml of 100% ice cold 

methanol (Fisher Scientific, Loughborough, UK) and incubated overnight (or for 

at least 3 hours) at -20oC before washing three times in dH20.   To visualise cells 

which had migrated through the pores of the cell culture inserts, each insert was 

stained with haematoxylin for 10 minutes at room temperature before washing 

once for 10 minutes with Scott’s tap water and final dehydration through 50, 75, 

90 and 100% ethanol each for 1 minute.  Once dry, the filter membrane from each 

insert was then cut out carefully with a scalpel blade and mounted with a cover-

slip and DPX onto glass microscope slides. The number of migrated cells were 

counted blindly under a Leica light microscope using a 10x objective and 

normalized to controls.    

 

2.8 Adhesion assays  

To assess adhesion of B16-F10 cells adhesion assays were carried out.  

Transwell inserts (3μm pore size) were coated on both sides with 4μg/mL bovine 

collagen (type 1) (Sigma-Aldrich, Gillingham, UK).  4 x 104/ml of murine stellate 
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cells (JS-1) were seeded on the bottom of the insert and allowed to adhere for 1 

hour and then placed in 24 wells plates in normal media and incubated.  After 24 

hours, 3 x 104/ml transformed sinusoidal endothelial cells (TSECs), were plated 

in the inner chamber of the insert and incubated for 48 hours.  After 48 hours, 

murine melanoma cells (B16-F10) were labelled by incubating with 2μM 

Carboxyfluorescein Diacetate Succinimidyl Ester CFSE (Invitrogen, Paisley, UK) 

for 30 minutes at 37°C.  The cells were then washed in 1 x PBS and then re-

suspended at 4 x 105/ml in serum free RPMI and 500μl added inside the insert.  

After 1 hour of incubation, non-adherent cells were removed by gently washing 3 

x in 1 x PBS.  Cells were fixed and then mounted onto slides with Vectashield 

containing DAPI (Vector Laboratories, Burlingame, USA).  Cells were counted 

blindly in 10 random fields of view at x 10 magnification and normalized to 

controls.   

 

 

 

Figure 2.5: Adhesion assay set up adapted from (Saiman 2012).   
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2.9 Cytokine array  

A cytokine array was performed using the R and D Systems Human Cytokine 

Array, Panel A (R&D Systems, Inc., Minneapolis, USA).  This kit simultaneously 

detects the relative levels of 36 different cytokines and chemokines (Table 2.9.1) 

in a single sample.  In brief, the cell extract was mixed with a cocktail of 

biotinylated detection antibodies and then incubated with the nitrocellulose 

membranes which were spotted with capture antibodies.  The 

cytokines/chemokines present in the sample bound to the cognate immobilized 

antibody present on the membranes.  Streptavidin-Horseradish Peroxidase and 

chemiluminescent detection reagents were then added and then developed in the 

same way as a Western blot (section 2.4.6).  A signal was produced in proportion 

to the amount of cytokine/chemokine bound.  After detection, the array data was 

analysed by determining the average signal (pixel density) of the pair of duplicate 

spots representing each cytokine by using Image J analysis.  

 

2.10 Statistical analysis  

Results were analysed using Excel 2003 (Microsoft) and Prism version 5 (Graph 

pad, San Diego, USA) and expressed as the mean  ± standard deviation (SD).  

The statistical significance of each experiment was analysed using Prism and 

compared by one way Analysis of Variance (ANOVA) with Dunnett’s or 

Bonferroni’s post-hoc correction or Student t-tests and significance was indicated 

by the P value * P < 0.05, ** P < 0.001, ***P < 0.0001.    
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CXCR4 expression in melanoma mediates migration of tumour cells 

towards CXCL12 secreting liver cells in vitro. 
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3.1 Introduction and Aims  

Over the past decade, substantial evidence has highlighted an important role for 

the CXCR4-CXCL12 chemokine axis in melanoma progression (Kim, Mori et al. 

2006, Lee, Kakinuma et al. 2006, Scala, Giuliano et al. 2006, Di Cesare, Marshall 

et al. 2007, Schutyser, Su et al. 2007, Bartolome, Ferreiro et al. 2009, Li, Yang 

et al. 2009, Franco, Botti et al. 2010, D'Alterio, Barbieri et al. 2012, Takekoshi, 

Ziarek et al. 2012).   Indeed, studies have demonstrated that inhibition of this axis 

reduces melanoma metastasis to organs secreting high levels of CXCL12 such 

as the lungs (Lee, Kakinuma et al. 2006, D'Alterio, Barbieri et al. 2012).  It has 

also been reported that factors including hypoxia increase CXCR4 expression 

(Schioppa, Uranchimeg et al. 2003) in tumour cells and that CXCL12 may act as 

a survival factor (Teicher and Fricker 2010).  Thus, the development of small 

molecule chemokine antagonists and neutralizing antibodies may prove to be an 

effective novel treatment strategy for melanoma.   

 

Although studies have demonstrated that melanoma cells migrate to the liver, 

they have not shown which liver cells are involved specifically.  Furthermore, 

although it has been shown that AMD3100 inhibits melanoma migration both in 

vitro and in vivo (D'Alterio, Barbieri et al. 2012), the novel CXCR4 inhibitor 

AMD11070, which has already been tested in HIV (Mosi, Anastassova et al. 

2012) has not been assessed in the context of melanoma.  Therefore, the aims 

of this chapter were to confirm the expression of both CXCR4 and CXCL12 in 

melanoma cell lines and liver cell types employed in these studies in vitro and 

examine the effect of hypoxia on expression levels of these proteins.  

Furthermore, an additional aim was to establish the potential of AMD11070 to 

inhibit the CXCR4-CXCL12 chemokine axis in melanoma towards conditioned 

media from two main liver cell types; myofibroblasts and biliary epithelial cells.   
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3.2 Results 

3.2.1: Both CXCR4 and CXCL12 are expressed by murine and human 
melanoma cell lines. 
 

The protein expression of CXCR4 and CXCL12 was examined by Western 

blotting in whole cell extracts from exponentially growing murine B16-F10 

melanoma cells and the house-keeping gene β-actin was used as a loading 

control.   Since cells were to be cultured in serum free media for up to 24 hours 

in chemotaxis assays, expression was determined in both 10% FCS and serum 

free media conditions.  The results demonstrated that the B16-F10 cells survived 

in serum free conditions (Figure 3.1A) and both CXCR4 (Figure 3.1B) and 

CXCL12 (Figure 3.1C) were expressed.  Immunofluorescence staining was also 

performed since Western blot analysis does not give an indication of cellular 

localisation.  The results illustrated that CXCR4 expression was located in both 

the nucleus and cellular membrane (Figure 3.1D) whereas CXCL12 was 

predominantly located in the cytoplasm (Figure 3.1D), 4',6-diamidino-2-

phenylindole (DAPI) was used to stain the nuclei.   
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Figure 3.1: B16-F10 murine melanoma cell line expresses both CXCR4 and CXCL12. 
A) Bright field images of B16-F10 cells in serum free and 10% FCS media conditions taken at x 
10 magnification.  B) Representative Western blot for the expression of CXCR4 and CXCL12 in 
the B16-F10 cell line.  For all Western blots 20µg of protein was loaded per lane and β-actin was 
used as a loading control. C) The expression of CXCR4 (red) and CXCL12 (green) was 
determined in B16-F10 cells by confocal microscopy and background levels were set against the 
no primary control.  DAPI was used to stain the nuclei.  D) Zoomed in images. Representative 
images were acquired at x 20 and x 50 magnification.  Scale bars = 150µm Staining is typical of 
three separate experiments.   
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Expression of CXCR4 and CXCL12 was also determined in three human 

melanoma cell lines (A375, CHL-1 and Wm2664) cultured in both serum free 

media and media supplemented with 10% FCS.  Results demonstrated that all 

three cell lines survived in serum free conditions (Figure 3.2A) and expressed 

CXCR4 and CXCL12 in both conditions (Figure 3.2B).  An additional band was 

also observed at ~58 kDa in the CXCR4 blot (Figure 3.2B).  Immunofluorescence 

staining suggests that CXCR4 was expressed in both the nucleus and membrane 

(Figure 3.3C and E) while CXCL12 was observed in the cytoplasm (Figure 3.3D 

and E).    
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Figure 3.2: Human melanoma cell lines (A375, CHL-1 and Wm2664) express both CXCR4 
and CXCL12. 
A) Bright field images of human melanoma cell lines in serum free and 10% FCS media conditions 
taken at x 10 magnification.  B) Representative Western blot for the expression of CXCR4 and 
CXCL12 in the human melanoma cell lines.  For all Western blots 20µg of protein was loaded per 
lane and β-actin was used as a loading control. C) The expression of CXCR4 (red) and D) 
CXCL12 (green) was determined in melanoma cells by confocal microscopy and background 
levels were set against the no primary control.  DAPI was used to stain the nuclei.  D) Zoomed in 
images. Representative images were acquired at x 20 and x 40 magnification.  Scale bars = 
150µm (x 20) and 50µm (x 40).  Staining is typical of three separate experiments.   
 
   

3.2.2: Expression of CXCR4 and CXCL12 is not detected in primary human 

melanocytes.   

 
Primary human melanocytes were isolated as described in section 2.2.4 (Figure 

3.3A) and Western blotting results demonstrated that at the protein level, neither 

CXCR4 or CXCL12 was expressed (Figure 3.3B).   

   

 
Figure 3.3: Expression of CXCR4 and CXCL12 is not detected in primary human 
melanocytes.   
A) Bright field image of primary human melanocytes taken at x 10 magnification.  B) 
Representative Western blots for the expression of CXCR4 and CXCL12 in the melanocytes.  For 
all Western blots 20µg of protein was loaded per lane and β-actin was used as a loading control.  
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3.2.3 Hypoxic conditions increases expression of a protein with a higher 

molecular weight for both CXCR4 and CXCL12. 

 

A375 and CHL-1 melanoma cells were incubated under normal (5 % oxygen) and 

hypoxic (1% oxygen) conditions for 72 hours in 10% FCS media (Figure 3.4A).  

Western blotting demonstrated that CXCR4 (Figure 3.4A) and CXCL12 (Figure 

3.4B) expression levels remained constant when A375 and CHL-1 cell lines were 

cultured in hypoxic and non-hypoxic conditions.  In addition to the bands 

observed, another band for CXCR4 at ~58 kDa size (Figure 3.4B) and for 

CXCL12 at ~43 kDa (Figure 3.4C) was observed.  Furthermore, the expression 

increased for both of these bands when the cell lines were cultured in hypoxic 

conditions (Figure 3.4A and B).   
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Figure 3.4: Hypoxic conditions increases expression of a protein with a higher molecular 

weight for both CXCR4 and CXCL12. 

A) Bright field images of A375 and CHL-1 cell lines incubated in hypoxic and non-hypoxic 
conditions taken at x 10 magnification.  B) Representative Western blot for the expression of 
CXCR4 and CXCL12 cells incubated in both conditions.  For all Western blots 20µg of protein 
was loaded per lane and β-actin was used as a loading control.  
 

3.2.4: CXCR4 and CXCL12 are expressed by murine stellate (JS-1) and 

biliary epithelial (603b) cell lines.   

 
The protein expression of CXCR4 and CXCL12 was examined in the JS-1 stellate 

and 603b biliary epithelial murine cell lines (gift from Dr Yedidya Saiman, Mount 

Sinai School of Medicine, New York).  Western blotting confirmed expression of 

both CXCR4 and CXCL12 (Figure 3.5A) and immunofluorescence studies 

illustrated CXCR4 expression in both the cell membrane and nucleus of the JS-

1 (Figure 3.5C) and 603b (Figure 3.5D) cell lines while CXCL12 expression was 

confined to the cytoplasm in both cell lines (Figure 3.5E and F).   
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Figure 3.5: CXCR4 and CXCL12 are expressed by murine stellate and biliary epithelial cell 
lines.   
A) Bright field images of murine stellate (JS-1) and bilary epithelial (603b) cell lines taken at x 10 
magnification.  B) Representative Western blot for the expression of CXCR4 and CXCL12 in the 
JS-1 and 603b cell lines.  For all Western blots 20µg of protein was loaded per lane and β-actin 
was used as a loading control. C) The expression of CXCR4 (red) and D) CXCL12 (green) was 
determined in JS-1 and 603b cells by confocal microscopy and background levels were set 
against the no primary control.  DAPI was used to stain the nuclei.  Scale bars = 150µm (x 20) 
and 50µm (x 40).  Staining is typical of three separate experiments.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C

  A 

D

  A 



Chapter 3: Results 1    

 
 

73 

3.2.5: The human stellate (LX-2) and biliary epithelial (H69) cell lines 

express both CXCR4 and CXCL12. 

 

CXCR4 and CXCL12 protein expression was determined in the LX-2 stellate and 

H69 biliary epithelial human cell lines (Figure 3.6A) by Western blotting, 

confirming expression of each in both cell types (Figure 3.6B).  

Immunofluorescence studies also revealed expression of CXCR4 in the nucleus 

and membrane (Figure 3.6C) whereas CXCL12 was expressed only in the 

cytoplasm (Figure 3.6D).  
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Figure 3.6: The human stellate (LX-2) and biliary epithelial (H69) cell lines express both 
CXCR4 and CXCL12.  
A) Bright field images of the human stellate (LX-2) and biliary epithelial (H69) cell lines taken at x 
10 magnification.  B) Representative Western blot for the expression of CXCR4 and CXCL12 in 
the LX-2 and H69 cell lines.  For all Western blots 20µg of protein was loaded per lane and β-
actin was used as a loading control. C) The expression of CXCR4 (red) and D) CXCL12 (green) 
was determined in JS-1 and 603b cells by confocal microscopy and background levels were set 
against the no primary control.  DAPI was used to stain the nuclei.  Scale bars = 150µm (x 20) 
and 50µm (x 40).  Staining is typical of three separate experiments.   
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3.2.6: Primary murine myofibroblasts express CXCR4 and CXCL12.   

 

To examine CXCR4 and/or CXCL12 protein expression by primary murine 

myofibroblasts (passage 3), cells were isolated from murine livers as described 

in section 2.2.3.  The results demonstrated that primary murine myofibroblasts 

expressed CXCR4 and CXCL12 (Figure 3.7A) and secreted CXCL12 in both 

serum free and 10% FCS conditions (Figure 3.7B).  Furthermore, secretion levels 

increased over time (Figure 3.7B).    
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Figure 3.7: Primary murine myofibroblasts express CXCR4 and CXCL12.   
A) The expression of CXCR4 (red) and CXCL12 (green) was determined in primary murine 
stellate cells by confocal microscopy and background levels were set against the no primary 
control.  DAPI was used to stain the nuclei.  Scale bars = 150µm (x 20) and 60µm (x 50).  Staining 
is typical of three separate experiments.  B) ELISA for the secretion of CXCL12 (pg/ml) in 
conditioned murine stellate media (10% FCS and SF) collected at 24, 48 and 72 hours.  DAPI 
was used to stain the nuclei.  Scale bars = 150µm (x 20) and 50µm (x 50).  Results are typical of 
three separate experiments.   

 

3.2.7 Primary human myofibroblasts and biliary epithelial cells express 

CXCR4 and CXCL12 and hepatocytes express CXCR4.   

 
To examine CXCR4 and/or CXCL12 protein expression by primary liver cells 

(myofibroblasts (passage 3), biliary epithelial cells (passage 0) and hepatocytes 

(passage 0)) cells were isolated from human re-sected livers as described in 

section 2.2.3.  Immunofluorescence studies demonstrated that human 

myofibroblasts expressed both CXCR4 and CXCL12 and also a marker of these 

cell types; α-SMA (Figure 3.8A).  Biliary epithelial cells also expressed both of 

these proteins as well as CK-19, a marker of these cell types (Figure 3.8B).  

Western blotting results confirmed the immunofluorescence data showing that 

both human myofibroblasts and biliary epithelial cells express these proteins 

(Figure 3.8C).  The results also demonstrated that primary human hepatocytes 

express CXCR4 but do not express CXCL12 (Figure 3.8C).  Furthermore, 

Western blotting results revealed bands above the predicted molecular weight 

(Figure 3.8C).   
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Figure 3.8: Primary human stellate and biliary epithelial cells express CXCR4 and CXCL12 
and hepatocytes express CXCR4.   
A) The expression of CXCR4 (red), CXCL12 (green) and α-SMA (purple) was determined in 
primary human myofibroblasts by confocal microscopy and background levels were set against 
the no primary control.  DAPI was used to stain the nuclei.  Scale bars = 150µm (x 20) and 50µm 
(x 50).  Staining is typical of three separate experiments.  B) The expression of CXCR4 (red), 
CXCL12 (green) and CK-19 (purple) was determined in primary human biliary epithelial cells by 
confocal microscopy and background levels were set against the no primary control.  DAPI was 
used to stain the nuclei.  Scale bars = 150µm (x 20) and 50µm (x 50).  Staining is typical of three 
separate experiments.     C) Representative Western blots for the expression of CXCR4 and 
CXCL12 in primary liver cells.  For all Western blots 20µg of protein was loaded per lane and β-
actin was used as a loading control.  
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3.2.8: Recombinant CXCL12 promotes cell viability in a B16-F10 melanoma 

and JS-1 stellate cell line. 

 
To determine if recombinant CXCL12 promoted cell viability in vitro, B16-F10 

murine melanoma and JS-1 stellate cells were incubated with various 

concentrations of murine recombinant CXCL12 ranging from 0-500ng/ml in both 

serum free and 10% FCS media conditions and an MTS assay was performed.  

Results demonstrated that for both cell lines in serum free and 10% FCS 

conditions cell viability was not affected (Figure 3.9A and B).   
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Figure 3.9: Recombinant CXCL12 promotes cell viability in a B16-F10 melanoma and JS-1 
stellate cell line. 
A) B16-F10 cells and B) JS-1 cells were cultured in the presence of murine recombinant CXCL12 
at concentrations ranging from 0-500ng/ml in both 10% FCS and serum free conditions and cell 
viability was determined by the MTS assay as described in section 2.2.9.  Each bar is the mean 
+/- SD (n=3).  Statistical analyses were compared by one way ANOVA with Bonferroni’s post hoc 
correction.   
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3.2.9: Conditioned JS-1 media significantly reduces cell viability of B16-

F10 murine melanoma cells at 72 hours of treatment.   

 
JS-1 conditioned media (serum free and 10% FCS) was collected at 24, 48 and 

72 hours and an ELISA was performed in order to quantify secretion levels as 

described in section 2.6.  The results demonstrated that secretion levels were 

greater in 10% FCS conditions compared to the serum free media and 

furthermore, levels increased over time (Figure 3.10A).  To determine if JS-1 

conditioned media promoted the viability of the B16-F10 cells they were 

incubated with this media for 24, 48 and 72 hours and an MTS assay was 

performed as described in section 2.2.9.  The results demonstrated that at 72 

hours cell viability was significantly decreased compared to serum free media 

alone (Figure 3.10B).  
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Figure 3.10: Conditioned JS-1 media significantly reduces cell viability of B16-F10 murine 
melanoma cells.   
A) ELISA for the secretion of CXCL12 (pg/ml) in conditioned JS-1 stellate media (10% FCS and 
SF) collected at 24, 48 and 72 hours.  B) B16-F10 cells were cultured in the presence of the 
conditioned media and cell viability was determined by the MTS assay as described in section 
2.2.10.  Each bar is the mean +/- SD (n=3).  Statistical analyses were compared by one way 
ANOVA with Bonferroni’s post hoc correction.  ***P <0.001.     
 

3.2.10: CXCL12 secretion by primary murine liver cells (myofibroblasts 

and biliary epithelial cells) promotes chemotaxis of B16-F10 melanoma 

cells. 

 

ELISA assays were performed to assess the concentration of CXCL12 in 

conditioned media collected from primary rat biliary epithelial cells and murine 

myofibroblasts.  The results demonstrated that CXCL12 secretion was 

significantly greater in the rat biliary epithelial media compared to the 

myofibroblast media (Figure 3.11A).  Chemotaxis assays were then performed to 

assess the migration of the B16-F10 murine melanoma cells towards this 

conditioned media.  The results demonstrated that more cells significantly 

migrated towards both the myofibroblast media (Figure 3.11B) and also the biliary 

epithelial cell media (Figure 3.11C) compared to the controls.  
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Figure 3.11: B16-F10 cells migrate significantly towards conditioned media from primary 
activated stellate and biliary epithelial cells.  
A) ELISA for the secretion of CXCL12 (pg/ml) in conditioned murine stellate and biliary epithelial 
cell media collected at 48 hours.  Chemotaxis assay using B16-F10 cells migrated overnight 
towards conditioned media from B) activated stellate cell media and C) biliary epithelial cell media.  
HPF = high power field.  Each bar is the mean +/- SD (n=3).  Statistical analyses were compared 
by the Student’s unpaired t-test..  ***P <0.0001.         
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In collaboration with Dr Graeme O’Boyle (Institute of Cellular Medicine, 

Newcastle University, UK) chemotaxis assays were performed in order to assess 

the ability of AMD3100 and AMD11070 to inhibit migration towards human 

recombinant CXCL12 and conditioned human activated stellate media.  The 

compounds and conditioned media were prepared by myself and chemotaxis 

assays were performed and analysed by Dr Graeme O’Boyle.   

 

3.2.11: Inhibition of the CXCR4-CXCL12 chemokine axis in melanoma by 

AMD3100 and AMD11070 (O'Boyle, Swidenbank et al. 2013).   

 

Firstly, chemotaxis assays were performed using AMD3100 and AMD11070 to 

test their ability to inhibit A375 and CHL-1 melanoma migration towards human 

recombinant CXCL12.  Results demonstrated that both inhibitors significantly 

blocked migration of CHL-1 cells (Figure 3.12A).  However, when tested in the 

A375 cell line, AMD11070 was more effective at inhibiting migration compared to 

AMD3100 (Figure 3.12A).  In addition, a greater number of A375 cells (BRAF 

V600E) in the absence of CXCL12 migrated compared to the CHL-1 cell line (Figure 

3.12A).  

 

                                           

Figure 3.12: Inhibition of the CXCR4-CXCL12 chemokine axis in melanoma by AMD3100 

and AMD11070.   

Chemotaxis assay using CHL-1 and A375 cells migrated for 16 hours towards 10nM CXCL12. 
across an 8-μm pore size filter in the presence of 2 μM AMD3100 or 6.6 μM AMD11070. HPF = 
high power field.  Each bar is the mean +/- SD (n=3).  Statistical analyses were compared by one 
way ANOVA with Bonferroni’s post hoc correction. * P<0.05, ** P<0.001.     
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3.2.12: Effect of B-RAF-V600E on melanoma migration (O'Boyle, 

Swidenbank et al. 2013). 

 

The role of B-RAF in melanoma migration was then assessed towards human 

recombinant CXCL12 +/- AMD3100/AMD11070.  Western blotting results 

demonstrated that both A375 and CHL-1 cells displayed similar levels of total 

BRAF expression (Figure 3.13A) indicating that the increased migration of the 

A375 cells observed previously (Figure 3.12A) was not dependent on the over-

expression of BRAFV600E.  CHL-1 cells were then transfected with vectors 

encoding WT and V600E BRAF (performed by Dr Jane Armstrong, 

Dermatological Sciences, Newcastle University) which subsequently increased 

ERK activation in these cells (data not shown).  The transfected cells were then 

used in the chemotaxis assay and interestingly, results demonstrated that 

compared to WT control cells over-expression of V600E increased the migration 

of the cells (Figure 3.13B) 

  

 

 

 
 
Figure 3.13: Effect of B-RAF-V600E on melanoma migration. 
A) Representative Western blot for the expression of BRAF in A375 and CHL-1 melanoma cell 
lines and densitometry quantification.  20µg of protein was loaded per lane and β-actin was used 
as a loading control. B)  A375 (white bars), CHL-1 cells transfected with WT (black bars) or mutant 

A

  A 

B

  A 



Chapter 3: Results 1    

 
 

87 

(V600E) (grey bars).  B-RAF migrated for 16h towards 10nM CXCL12 in the presence of 2 μM 
AMD3100 or 6.6 μM AMD11070. HPF = high power field.  Each bar is the mean +/- SD (n=3).  
Statistical analyses were compared by one way ANOVA with Bonferroni’s post hoc correction.  * 
P<0.05, ** P<0.001, ***P <0.0001.     
    

 3.2.13: Effect of B-RAF-V600E on melanoma migration towards 

conditioned human myofibroblast media (O'Boyle, Swidenbank et al. 2013). 
 

The ability of AMD3100 and AMD11070 to inhibit migration of A375 and CHL-1 

cells towards conditioned myofibroblast media was then tested.   A CXCL12-

neutralising antibody was also used since the conditioned media may have 

contained other factors that promote migration.  The results demonstrated that 

migration of A375 and CHL-1 melanoma cells was blocked by CXCL12 

neutralisation (Figure 3.14).  The migration response of CH-1 cells was 

significantly inhibited by AMD3100 and AMD11070 however, only AMD11070 

inhibited the migration of the A375 cells (Figure 3.14).   

 

 

Figure 3.14: Effect of B-RAF-V600E on melanoma migration towards conditioned primary 
human myofibroblast media.  
Chemotaxis assay using A375 (white bars) and CHL-1 (black bars) migrated for 16hr towards 
conditioned media from human myofibroblasts in the presence of 100µg/ml CXCL12 neutralizing 
antibody, 2µM AMD3100 or 6.6µM AMD11070. HPF = high power field.  Each bar is the mean +/- 
SD (n=3).  Statistical analyses were compared by one way ANOVA with Bonferroni’s post hoc 
correction.  * P<0.05, ** P<0.001, ***P <0.0001.     
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3.2.14: Migration of melanoma cells towards conditioned human biliary 

epithelial cell media. 

 

An ELISA was performed on conditioned media collected from primary human 

myofibroblasts and biliary epithelial cell media (48 hours serum free) to determine 

the concentration levels of secreted CXCL12.  The results demonstrated that the 

levels of CXCL12 secreted by the biliary epithelial cells was low (35 pg/ml) 

compared to the positive control (myofibroblasts) where secretion levels were 

above 1500pg/ml (Figure 3.15A).   This biliary epithelial media was used to 

assess the migration of the A375 and CHL-1 melanoma cell lines.  The results 

demonstrated that both cell lines migrated towards the conditioned media 

significantly and interestingly, A375 cells migrated more compared to the CHL-1 

cell line (Figure 3.15B).  In the presence of AMD11070, migration of both the 

melanoma cells was inhibited significantly (Figure 3.15B).   
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Figure 3.15: Melanoma cells significantly migrate towards conditioned human BEC media. 
A) ELISA for the secretion of CXCL12 (pg/ml) in conditioned human stellate and biliary epithelial 
cell media collected at 48 hours.  B) Chemotaxis assay using A375 (black bars) and CHL-1 (white 
bars) migrated for 16hr towards conditioned media from biliary epithelial cells in the presence of 
vehicle control or AMD11070 (6.6µM). HPF = high power field.  Each bar is the mean +/- SD 
(n=3).  Statistical analyses were compared by one way ANOVA with Bonferroni’s post hoc 
correction.  * P<0.05, ** P<0.001, ***P <0.0001.     
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3.2.15 Adhesion of murine melanoma cells increases towards murine 
stellate cells. 
 

The adhesion of B16-F10 cells towards murine JS-1 cells was assessed in an 

adhesion assay as described in section 2.8.  The results demonstrated that a 

greater number of B16-F10 cells adhered in the presence of JS-1 cells when 

coated on the filter and even more so when they were present in the wells, 

however, results were not significant (Figure 3.16).    

 
 

 

 

Figure 3.16: Adhesion of murine melanoma cells increases towards murine stellate cells. 
B16-F10 cells labelled with CFSE were incubated on endothelial cell monolayers +/- JS-1 cells.  
A) Images were acquired at x 10 magnification using fluorescence microscopy. B) B16-F10 cells 
adhered more in the presence of JS-1 cells.  Each bar is the mean +/- SD (n=3).      
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3.3 Chapter Discussion  

 

The results in this chapter demonstrated that murine and human melanoma cell 

lines express CXCR4 and CXCL12 in vitro and furthermore, CXCR4 was 

expressed in the nucleus and membrane whereas CXCL12 was concentrated in 

the cytoplasm.  This was to be expected since CXCR4 is a G-protein coupled 

receptor and therefore would be located on the cellular membrane and as a result 

of intracellular sequestration upon binding of CXCL12, nuclear expression would 

also be observed (Teicher and Fricker 2010).  As CXCL12 is a secreted 

chemokine this would explain the reason for expression being predominantly in 

the cytoplasm.  Although these observations were not novel, it was important to 

confirm expression of these proteins prior to the commencement of other assays.  

Hypoxic conditions did not affect expression of either of these proteins, however, 

a band at a higher molecular was observed and interestingly this was increased 

in hypoxic conditions.  Since it has been reported that hypoxia promotes CXCR4 

expression (Teicher and Fricker 2010) it would be interesting to carry out further 

analysis to determine whether or not this is an isoform of CXCR4 that is being 

up-regulated.  Furthermore, since total protein expression was measured it would 

be beneficial to separate both nuclei and membrane expression by using for 

example, flow cytometry.   

 

Consistent with previous studies, murine and human stellate and biliary epithelial 

cell lines and primary cells expressed CXCR4 and CXCL12 and hepatocytes 

expressed CXCR4 (Hong, Tuyama et al. 2009) in vitro.  However, bands were 

also observed in the primary cells above the predicted molecular weights and this 

has not been reported.  This may have been due to non-specific proteins being 

detected or alternatively, it could mean that CXCR4 and CXCL12 are post 

translationally modified and this is discussed in more detail in the next chapter.  

Additionally, it would have been beneficial to use recombinant CXCL12 in the 

Western blotting rather than a cell line in these studies to help to determine if the 

antibody was specific.  Recombinant CXCL12 promoted cell viability of both B16-

F10 cells and JS-1 cells in serum free media suggesting that CXCL12 may act 

as a survival factor.  Indeed, it has been reported that CXCL12 can promote 

survival of cells via the PI3-kinase-MAP-kinase pathway (Teicher and Fricker 

2010).  On the contrary, conditioned media rich in CXCL12 from JS-1 cells 
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reduced the viability of B16-F10 cells at 72 hours of treatment suggesting that the 

media contained a soluble factor that induced cell death.  In the adhesion assay, 

a greater number of B16-F10 cells adhered in the presence of the JS-1 cell line 

suggesting that the JS-1 cell line secretes a factor that promotes adhesion and it 

would be interesting to study this further using the human melanoma cell lines. 

   

The chemotaxis assay results demonstrated that B16-F10 cells migrate 

significantly towards both conditioned primary myofibroblast and rat biliary 

epithelial cell media and currently, there are no published scientific studies which 

have investigated this.  However, the ELISA results demonstrated that the 

myofibroblast media contained high levels of CXCL12 compared to the bilary 

epithelial media suggesting that the latter contained other factors that promoted 

the migration of the cells.  Thus, it would be interesting to perform further analysis, 

for example a cytokine array on the conditioned media from these cells.     

 

In accordance with previous studies (Chen, Tardell et al. 2012), transfection of 

V600E into CHL-1 cells (WT BRAF) up-regulated ERK activation (O'Boyle, 

Swidenbank et al. 2013) and furthermore, expression of V600E did not affect the 

ability of AMD11070 to inhibit migration (O'Boyle, Swidenbank et al. 2013).  This 

is clinically important as it would enable patients with both WT and BRAF 

mutations to be treated.  The results also suggest that the total expression levels 

of BRAF may influence the chemotactic ability of the melanoma cells since the 

majority of BRAF in the cells was as a result of the transfected plasmid (O'Boyle, 

Swidenbank et al. 2013).  Furthermore, migration of the human melanoma cell 

lines towards conditioned myofibroblast and biliary epithelial media demonstrated 

that CXCR4 expression in melanoma mediates migration of tumour cells towards 

CXCL12 secreting liver cells in vitro.  However, since the secretion levels of 

CXCL12 were relatively low in the biliary epithelial cell media this suggests that 

another isoform of CXCL12 is being secreted.   

   

Collectively, these data suggest that AMD11070 may provide a promising new 

therapy for preventing melanoma metastasis to the liver. However, whilst the data 

provides proof of concept that this inhibitor may reduce migration of melanoma 

cells, additional preclinical studies are required to investigate its potential clinical 

use.  Such efforts would require the validation of a suitable model of human 
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metastatic melanoma, lack of which represents a significant barrier to 

translational research in metastatic disease. Nevertheless, the benefits of 

AMD11070 may not be limited only to melanoma patients as CXCR4 is highly 

expressed by many other cancers, including breast cancer, lung cancer, 

neuroblastoma, colorectal cancer and ovarian cancer. 
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Differential CXCR4 and CXCL12 expression in normal mouse organs and 

human liver tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Results 2    

 
 

95 

4.1 Introduction and Aims 

 

CXCL12 was initially cloned from a murine bone marrow-derived stromal cell line 

and was shown to function as a pre-B-cell growth stimulating factor (PBSF) 

(Tashiro, Tada et al. 1993).  The two main splicing variants of the CXCL12 gene 

are CXCL12-α (alpha) and CXCL12-β (beta) with the former being the 

predominant variant (Davis, Singer et al. 2005).  It has been reported that 

CXCL12-α undergoes rapid proteolysis in blood (Janowski 2009) and is found to 

be expressed in most organs including the brain, heart, bone marrow, lung and 

the liver (Teicher and Fricker 2010).  On the contrary, CXCL12-β is more resistant 

to this degradation and is known to promote angiogenesis and is therefore found 

in highly vascularized organs for example, spleen, kidneys and the liver 

(Janowski 2009).  More recently, other human isoforms of CXCL12 derived from 

alternative splicing have been identified including CXCL12-γ (gamma), CXCL12-

δ (delta), CXCL12-ε (epsilon) and CXCL12-φ (phi) (Yu, Cecil et al. 2006).  

CXCL12-γ has found to be expressed in less vascularized organs such as, the 

brain and the heart (Janowski 2009) whereas CXCL12-δ (delta), CXCL12-ε 

(epsilon) and CXCL12φ (phi) have been detected in numerous human tissues 

including the liver, kidney and pancreas (Janowski 2009).  The chemokine 

receptor CXCR4 is also known to be expressed in a broad range of tissues 

including the brain, lung, heart, kidney and liver (Teicher and Fricker 2010). 

 

Therefore the aims of this chapter were firstly to confirm the mRNA expression of 

three of the main CXCL12 variants (α, β and γ) as well as CXCR4 in various 

normal mouse organs and human liver tissue samples.  In conjunction, to 

determine protein expression levels of both CXCL12 and CXCR4.  The data 

presented in the previous chapter demonstrated that in in vitro, myofibroblasts 

and biliary epithelial cells express both CXCR4 and CXCL12 with hepatocytes 

expressing only CXCR4.  Therefore, an additional aim of the present chapter was 

to establish a correlation between in vitro and in vivo expression as well as to 

determine whether or not other cell types in the liver expressed these proteins.  
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4.2 Results 

 

4.2.1 Both CXCR4 and CXCL12 variants are expressed in normal mouse 

organs and human liver.  

 
Since liver damage and fibrosis are reported to affect the expression levels and 

profiles of chemokines and chemokine receptors (Saiman and Friedman 2012), 

a histological examination of male mouse liver tissue was performed in paraffin 

embedded tissue to ensure that the tissue was normal i.e. that there were no 

signs of damage and/or fibrosis.  Sirius red and haematoxylin and eosin (H and 

E) staining was carried out to examine collagen levels and tissue morphology 

respectively.  As myofibroblasts and fibroblasts are known to be involved in 

fibrosis progression and matrix deposition (Wallace, Burt et al. 2008), tissue was 

also stained with markers for myofibroblasts (α-SMA) and fibroblasts (vimentin).  

As shown by the representative sirius red and H and E images in Figure 4.1A low 

levels of collagen deposition were observed with a morphology typical of normal 

liver tissue.  The α-SMA and vimentin staining (Figure 4.1B) showed some 

expression of both markers around the periportal regions (as denoted by the 

arrows), but at a level consistent with healthy tissue while a significant increase 

in positively stained cells would have been observed if the tissue had been 

fibrotic. 
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Figure 4.1: Assessment of fibrosis and damage in normal mouse liver tissue.  
C57BL/6 mice were culled and livers were harvested and fixed for 24 hours in 10% formalin made 
up in 1 x PBS.  Samples were then processed, embedded in paraffin and sectioned (5µm).  
Sections were then de-waxed and stained using A) sirius red or Haematoxylin and Eosin (H and 
E).  B) Sections were stained with antibodies to either α-SMA or vimentin. No primary antibody 
controls were included and were stained with the secondary anti-mouse IgG (for α-SMA) or anti-

A 
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rabbit IgG (for vimentin) antibody alone.  As indicated by the arrows positive staining was 
observed around the periportal regions.  Representative images were acquired at x 5 and x 10 
(sirius red and H and E) and x 10 and x 20 (α-SMA and vimentin) magnification.  Staining is typical 
of three separate experiments.  Scale bars = 100µm.   
 

 

Once the morphology of the mouse liver tissue was confirmed, mRNA and protein 

levels of both CXCR4 and CXCL12 variants were determined.  For RT-PCR 

analysis, mRNA expression was confirmed relative to the expression of the 

housekeeping gene GAPDH, while protein levels determined by Western blotting 

were quantified and expressed relative to the house-keeping protein, ß-actin.   

 

As shown in Figure 4.2A, at the transcript level, CXCR4 and CXCL12-α and β 

were expressed in the three mouse liver tissue samples (M1, M2 and M3) 

however, CXCL12-γ was not detectable.  Western blotting (Figure 4.2B) 

demonstrated low protein expression levels of CXCR4 in all three samples (M1, 

M2 and M3) compared to the positive control (Figure 4.2C).  However, bands of 

greater intensity in all three samples (M1, M2 and M3) were present at both ~58 

kDa and ~38 kDa and fainter bands at ~80 kDa and ~55 kDa (Figure 4.2B).  In 

addition, Western blotting (Figure 4.2D) demonstrated no expression of CXCL12 

(Figure 4.2E) in all three samples, however, prominent bands were observed at 

~62 kDa (Figure 4.2D).   
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Figure 4.2: Both CXCR4 and CXCL12 variants are expressed in normal mouse liver 
tissue.    
A) Representative RT-PCR for the expression of CXCR4 and CXCL12 variants in normal mouse 
liver tissue.  Total RNA was isolated using Trizol, as per manufacturer’s instructions from whole 
mouse liver tissue.  RT-PCR and RT controls were carried out in the absence of template RNA 
and reverse transcriptase respectively.  RT-PCR products were electrophoresed in 1.5% agarose 
gels containing ethidium bromide with a 100bp ladder to establish the size of the RT-PCR 
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products and visualized by UV light.  B) Representative Western blot for the expression of CXCR4 
in mouse liver tissue and C) Quantitative densitometry analysis of three typical western blots was 
performed using the Image J software.  D) Representative Western blot for the expression of 
CXCL12 in mouse live tissue and E) Quantitative densitometry analysis of three typical western 
blots was performed using the Image J software.  For all Western blots whole liver tissue was 
homogenised followed by sonication and prepared for protein analysis by Western blot.  20µg of 
protein was loaded per lane and β-actin was used as a loading control.  M = Mouse liver.  Error 
bars represent +/- SD.       
 

 

mRNA and protein expression of CXCR4 and CXCL12 variants were also 

assessed in control normal mouse organs; brain, lungs, kidney and spleen and 

liver.  RT-PCR analysis demonstrated that at the mRNA level all organs 

expressed CXCL12-α and CXCR4 (Figure 4.3A) while CXCL12-β was only 

expressed in the liver, kidney and spleen and CXCL12-γ in the brain and lungs 

(Figure 4.3A).  At the protein level, CXCR4 was detected in the lungs, liver and 

spleen (Figure 4.3B) and as shown by densitometry analysis (Figure 4.3C) 

compared to β-actin loading control, was most abundant in the spleen.  Bands of 

varying sizes were also observed at ~90 kDa (lungs, liver, kidney, spleen and 

CHL-1), ~75 kDa (liver and kidney), ~63 kDa (lungs, liver, kidney and CHL-1) and 

at ~35 kDa (brain, liver and CHL-1) (Figure 4.3B).  As shown in Figure 4.3D, 

CXCL12 was observed in the lungs and spleen, while very faint bands were 

evident in the liver and kidney.  Quantitative densitometry analysis (Figure 4.3E) 

demonstrated highest levels of CXCL12 expression in the spleen.  In addition, 

bands were also observed at ~18 kDa (brain, lungs, liver and kidney), ~45 kDa 

(brain) and in all organs a distinct increase in molecular weight could be seen at 

~62 kDa (Figure 4.3D).     
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Figure 4.3: Both CXCR4 and CXCL12 variants are expressed in normal mouse organs.   
A)  Representative RT-PCR for the expression of CXCR4 and CXCL12 variants in normal mouse 
liver tissue.  Total RNA was isolated using Trizol, as per manufacturer’s instructions from whole 
mouse liver tissue.  RT-PCR and RT controls were carried out in the absence of template RNA 
and reverse transcriptase respectively.  RT-PCR products were electrophoresed in 1.5% agarose 
gels containing ethidium bromide with a 100bp ladder to establish the size of the RT-PCR 
products and visualized by UV light.  B) Representative Western blot for the expression of CXCR4 
in mouse organs and C) densitometry analysis of three typical western blots was performed using 
the Image J software.  D) Representative Western blot for the expression of CXCL12 in mouse 
organs and E) densitometry analysis of three typical western blots was performed using the Image 
J software.  For all Western blots whole mouse organs were homogenised followed by sonication 
and prepared for protein analysis by Western blot.  20µg of protein was loaded per lane and β-
actin was used as a loading control.  Error bars represent +/- SD.       
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4.2.2 In human liver patient samples CXCR4 and CXCL12 variants are 

expressed. 

 

To examine collagen levels and tissue morphology in formalin fixed paraffin 

embedded human liver tissue (obtained during surgical resection at a minimum 

of 5 cm from the tumour) sirius red and H and E staining were carried out 

respectively.  As shown by Figure 4.4A collagen deposition in all human liver 

samples indicated low levels of fibrosis.  However, differences in the morphology 

were observed between differing samples for example, sample NHL14 showed 

signs of fat accumulation as revealed by the spongy appearance indicated by the 

arrows (Figure 4.4B).  
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Figure 4.4: Human liver tissue demonstrated low levels of collagen deposition and 
differences in morphology.   
Six different human liver samples were fixed for 24 hours in 10% formalin made up in 1 x PBS.  
Samples were then processed, embedded in paraffin and sectioned (5µm).  Sections were then 
de-waxed and stained using A) sirius red or B) Haematoxylin and Eosin (H and E).  
Representative images were acquired at x 5 magnification.  Staining is typical of three separate 
experiments.  Scale bars = 100µm.   
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To further investigate damage in the differing human liver samples, each patient 

liver section were stained for α-SMA (Figure 4.5A) and vimentin (Figure 4.5B).  

As shown by the representative images, all samples displayed positive staining 

for both markers.   
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Figure 4.5: Human liver tissue demonstrated low levels of damage.   
Six different human liver samples were fixed for 24 hours in 10% formalin made up in 1 x PBS.  
Samples were then processed, embedded in paraffin and sectioned (5µm).  Sections were then 
de-waxed and stained using A) α-SMA and B) vimentin.  No primary antibody controls were 
included and were stained with the secondary anti-mouse IgG (for α-SMA) or anti-rabbit IgG (for 
vimentin) antibody alone.  Representative images were acquired at x 10 and x 20 magnification.  
Staining is typical of three separate experiments.  Scale bars = 100µm.   
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To determine if biliary fibrosis in the human liver samples was evident, sections 

were also immunohistochemically stained using a marker for biliary epithelial cells 

(CK-19).  As illustrated by Figure 4.6 positive staining was present in all of the six 

samples, however, biliary injury was not evident.   

 

 
 
Figure 4.6: Assessment of biliary fibrosis in human liver tissue.  
Six different human liver samples were fixed for 24 hours in 10% formalin made up in 1 x PBS.  
Samples were then processed, embedded in paraffin and sectioned (5µm).  Sections were then 
de-waxed and stained using A) CK19.  No primary antibody controls were included and were 
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stained with the secondary anti-mouse IgG antibody alone.  Representative images were 
acquired at x 10 and x 20 magnification.  Staining is typical of three separate experiments.  Scale 
bars = 100µm.   
 

The mRNA and protein expression of CXCR4 and CXCL12 variants in the human 

liver samples was examined by using RT-PCR and Western blot analysis 

respectively.  RT-PCR analysis demonstrated that all liver samples expressed 

CXCR4 and CXCL12 mRNA variants (α β γ) apart from NHL14 which did not 

express CXCR4 mRNA (Figure 4.7A).  At the protein level, CXCR4 was present 

in patients NHL15 and NHL17 (Figure 4.7B) but expression levels were low 

compared to the positive control (Figure 4.5C).   Bands were also observed at 

~80 kDa (NHL-17 and CHL-1), ~70 kDa (CHL-1), ~53 kDa (NHL-6), ~47 kDa 

(NHL10, 13, 14, 15 and 17) and at ~38 kDa (NHL13, 14, 15 and 17) (Figure 4.7B).  

Expression of CXCL12 was not observed in any of the patient samples (Figure 

4.5D and E), however, prominent bands were observed in all of the patient 

samples at ~62 kDa and bands at ~60 kDa (NHL6, 10 and 13) (Figure 4.7D).  

Fainter bands were observed at ~43 kDa in all of the patient samples except 

NHL14 (Figure 4.7D).   
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Figure 4.7: Both CXCR4 and CXCL12 variants are expressed in human liver tissue.   
A) Representative RT-PCR for the expression of CXCR4 and CXCL12 variants in human liver 
tissue.  Total RNA was isolated using Trizol, as per manufacturer’s instructions from whole human 
liver tissue.  RT-PCR and RT controls were carried out in the absence of template RNA and 
reverse transcriptase respectively.  RT-PCR products were electrophoresed in 1.5% agarose gels 
containing ethidium bromide with a 100bp ladder to establish the size of the RT-PCR products 
and visualized by UV light.  B) Representative Western blot for the expression of CXCR4 in 
human liver tissue and C) Quantitative densitometry analysis of three typical western blots was 
performed using the Image J software.  D) Representative Western blot for the expression of 
CXCL12 in human liver tissue and E) Quantitative densitometry analysis of three typical western 
blots was performed using the Image J software.  For all Western blots whole liver tissue was 
homogenised followed by sonication and prepared for protein analysis by Western blot.  20µg of 
protein was loaded per lane and β-actin was used as a loading control.  Error bars represent +/- 
SD.       
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4.2.3: Murine biliary epithelial cells and hepatocytes express CXCR4 in 

normal mouse liver tissue.   

 

Subsequent studies of CXCR4 expression in specific cell types within normal 

mouse liver was determined in paraffin embedded tissue by 

immunohistochemistry.  As shown by the representative images in Figure 4.8A 

and B CXCR4 was expressed by the hepatocytes and biliary epithelial cells and 

on closer viewing was seen to be concentrated in the nucleus and nuclear 

membrane (Figure 4.8B).  Immunofluorescence staining was also performed on 

the mouse liver sections with the addition of α-SMA.  The results supported the 

immunohistochemistry results in section 4.2.1, demonstrating that fibrosis was 

not evident (Figure 4.8A) and in addition showed that the hepatocytes and biliary 

epithelial cells express CXCR4 (Figure 4.8C and D).          
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Figure 4.8: CXCR4 is expressed by biliary epithelial cells and hepatocytes in the normal 
mouse liver.   
C57BL/6 mice were culled and livers were harvested and fixed for 24 hour in 10% formalin made 
up in 1 x PBS.  Samples were then processed, embedded in paraffin and sectioned (5µm).  
Sections were then de-waxed and immunochemically stained.  A) No primary antibody controls 
were included and were stained with the secondary anti-mouse IgG alone. Sections were stained 
with the antibody to CXCR4.  Representative images were acquired at x 5, x 10, x 20 and x 40 
magnification.  Scale bars = 100µm B) A closer view of the x 40 image shows the expression of 
CXCR4 concentrated in the nucleus and nuclear membrane.  C) The expression of CXCR4 (red) 
and α-SMA (green) was determined by confocal microscopy and background levels were set 
against the no primary control.  DAPI was used to stain the nuclei.  CXCR4 was expressed by the 
hepatocytes and the biliary epithelial cells also shown by D) zoomed in images. Representative 
images were acquired at x 20 and x 40 magnification.  Scale bars = 150µm (x 20) and 50µM (x 
40).  Staining is typical of three separate experiments.   
      
 

4.2.4: CXCL12 is expressed by murine biliary epithelial cells in normal 

mouse liver tissue.   

 

 

CXCL12 expression was determined in the normal mouse liver tissue sections by 

immunohistochemistry and immunofluorescence.  Representative 

immunohistochemistry images (Figure 4.9A-B), supported by the 

immunofluorescence studies (Figure 4.9C and D) demonstrated that CXCL12 

was expressed by mouse biliary epithelial cells.   
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D 

 

 

Figure 4.9: CXCL12 is expressed by biliary epithelial cells in the normal mouse liver.  
C57BL/6 mice were culled and livers were harvested and fixed for 24 hour in 10% formalin made 
up in 1 x PBS.  Samples were then processed, embedded in paraffin and sectioned (5µm).  
Sections were then de-waxed and immunochemically stained.  A) No primary antibody controls 
were included and were stained with the secondary anti-mouse IgG alone. Sections were stained 
with the antibody to CXCL12.  Representative images were acquired at x 5, x 10, x 20 and x 40 
magnification.  Scale bars = 100µm   B) A closer view of the x 40 image shows the expression of 
CXCL12 concentrated inside the biliary duct.  C) The expression of CXCR4 (red) and α-SMA 
(green) was determined by confocal microscopy and background levels were set against the no 
primary control.  DAPI was used to stain the nuclei.  CXCL12 was expressed by the biliary 
epithelial cells also shown by D) zoomed in images. Representative images were acquired at x 
20 and x 40 magnification.  Scale bars = 150µm (x 20) and 50µM (x 40).  Staining is typical of 
three separate experiments.   
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4.2.5: In human liver tissue, biliary epithelial cells and hepatocytes 

express CXCR4.       

     

As in studies of CXCR4 expression in mouse liver, expression was also 

determined by both immunohistochemistry and immunofluorescence in human 

liver tissue.  In three representative patient samples, results demonstrated that 

CXCR4 was expressed by both hepatocytes and biliary epithelial cells.  In 

addition, expression of CXCR4 was concentrated in the nucleus and the nuclear 

membrane (Figure 4.10A-E).   
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Figure 4.10: CXCR4 is expressed by biliary epithelial cells and hepatocytes in human liver.  
Six different human liver samples were fixed for 24 hours in 10% formalin made up in 1 x PBS.  
Samples were then processed, embedded in paraffin and sectioned (5µm).  Sections were then 
de-waxed and immunochemically stained.  A) No primary antibody controls were included and 
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were stained with the secondary anti-mouse IgG alone. Sections were stained with the antibody 
to CXCR4.  Representative images were acquired at x 5, x 10, x 20 and x 40 magnification.  Scale 
bars = 100µm   B) A closer view of the x 40 image shows the expression of CXCR4 by biliary 
epithelial cells (BECs) and hepatocytes.  C) The expression of CXCR4 (red) and α-SMA (green) 
was determined by confocal microscopy and background levels were set against the no primary 
control.  DAPI was used to stain the nuclei.  CXCR4 was expressed by the hepatocytes and the 
biliary epithelial cells also shown by the D) zoomed in images. Representative images were 
acquired at x 20 and x 40 magnification.  Scale bars = 150µm (x 20) and 50µM (x 40).  Staining 
is typical of three separate experiments.   
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4.2.6: Human biliary epithelial cells express CXCL12 in vivo.       

 
Immunohistochemistry and immunofluorescence was performed on the human 

liver sections and CXCL12 was observed in the biliary epithelial cells (Figure 

4.11A-E) but detection of CXCL12 in sinusoidal cells was not evident.  The α-

SMA staining also demonstrated low levels of damage in the three representative 

patient samples (Figure 4.11C).   
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Figure 4.11: CXCL12 is expressed by biliary epithelial cells in the human liver.  
Six different human liver samples were fixed for 24 hours in 10% formalin made up in 1 x PBS.  
Samples were then processed, embedded in paraffin and sectioned (5µm).  Sections were then 
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de-waxed and immunochemically stained.  A) No primary antibody controls were included and 
were stained with the secondary anti-mouse IgG alone. Sections were stained with the antibody 
to CXCL12.  Representative images were acquired at x 5, x 10, x 20 and x 40 magnification.  B) 
A closer view of the x 40 image shows the expression of CXCL12 by biliary epithelial cells (BECs).  
C) The expression of CXCL12 (red) and α-SMA (green) was determined by confocal microscopy 
and background levels were set against the no primary control.  DAPI was used to stain the nuclei.  
CXCL12 was expressed by the biliary epithelial cells also shown by the D) zoomed in images of 
NHL10. Representative images were acquired at x 20 and x 40 magnification.  Scale bars = 
150µm (x 20) and 50µM (x 40).  Staining is typical of three separate experiments.   
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4.3: Chapter Discussion  

 

Results from this chapter demonstrated that in normal mouse organs and human 

liver tissue, CXCR4 and variants of CXCL12 mRNA were expressed.  In addition 

to this, CXCR4 protein was present in the murine brain, lungs, liver, kidney and 

spleen but was only detected in two of the human liver tissue samples (NHL 15 

and NHL17).  While CXCL12 was not detected in the murine or human liver 

tissue, it was expressed in the murine lungs and spleen.  However, interestingly, 

for each protein, bands of differing sizes in both murine and human tissue were 

observed.  As these bands were absent in the positive controls, they could be 

non-specific i.e. binding to another protein.  Alternatively, they could be post-

translationally modified proteins which will be discussed later in more detail.  

Results also confirmed that both murine and human biliary epithelial cells 

expressed CXCR4 and CXCL12 while hepatocytes expressed CXCR4.  

Furthermore, CXCR4 expression appeared to be concentrated in the nucleus and 

the nuclear membrane and CXCL12 in the cytoplasm, supporting the data 

observed in in vitro in the previous chapter.     

 

Consistent with previous findings, results from the present study demonstrated 

CXCL12-α was the most abundantly expressed splicing variant where it is known 

to be found in highly vascularised organs such as the liver (Teicher and Fricker 

2010).  The data from murine studies also confirmed previous observations that 

CXCL12-β is not detected in the brain (Janowski 2009).  However, it was 

surprising this variant was not detected in the lungs as this has been reported 

previously (Janowski 2009).  However, since the PCR carried out was semi-

quantitative expression levels may have been too low to be detected.  Therefore 

it would be beneficial to perform qRT-PCR to confirm this finding.   

 

In previous studies, in humans (Yu, Cecil et al. 2006) CXCL12-γ was expressed 

at low levels in vascularized organs such as the liver and the data presented here 

is consistent with this.  At the protein level, CXCR4 was expressed in various 

organs supporting previous literature (Teicher and Fricker 2010).  It has been 

reported that CXCL12 is present in most organs (Teicher and Fricker 2010) 

however, in these studies it was only abundant in the lungs and spleen.  In the 

human liver tissue, CXCR4 was observed in patients NHL15 and NHL17 but 
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CXCL12 expression was not detected.  Despite this, Western blotting data 

revealed bands for both CXCR4 and CXCL12 of varying sizes which has not been 

reported previously.  It is known that chemokines and chemokine receptors form 

dimers in vivo (Janowski 2009).   However, it is unlikely that this would be the 

reason for observing bands above the predicted sizes since disulphide bonds 

should be broken during sample preparation as they are prepared in DTT and 

then heated at 90oC.  One possible explanation which may account for this is that 

the antibodies used may be detecting another protein, so although specific in vitro 

they may be non-specific in vivo.  An alternative explanation to these findings is 

that the proteins are post translationally modified in vivo and this has recently 

been reviewed for other chemokines in detail (Yoshimura, Robinson et al. 1989, 

Shirozu, Nakano et al. 1995).   

 

Post translational modifications (PTMs) may include an addition of a functional 

group such as acetates, phosphates, lipids and carbohydrates, alternatively they 

may be modified via proteolytic processing by specific enzymes including 

proteases and peptidylargine deminases (Moelants, Mortier et al. 2013).  There 

have been numerous studies that have already detected PTMs in vivo (Furutani, 

Nomura et al. 1989, Robinson, Yoshimura et al. 1989, Van Damme, Van 

Beeumen et al. 1989, Jiang, Tabak et al. 1991, Shirozu, Nakano et al. 1995, Van 

Coillie, Van Damme et al. 1999, Loos, Mortier et al. 2008, Proost, Loos et al. 

2008).  For example, natural truncated and glycosylated chemokines have been 

identified (Furutani, Nomura et al. 1989, Robinson, Yoshimura et al. 1989, Van 

Damme, Van Beeumen et al. 1989, Yoshimura, Robinson et al. 1989, Schroder, 

Sticherling et al. 1990, Jiang, Tabak et al. 1991) and in the chemokines; CCL2, 

CCL7, CCL8 and CCL13 the NH2-terminal glutamine residue is converted in 

pyroglutamic acid (Van Coillie, Van Damme et al. 1999).  The chemokines CXCL8 

and CXCL10 modifications of arginine residues into citrulline have also been 

identified (Van Coillie, Proost et al. 1998, Loos, Mortier et al. 2008, Proost, Loos 

et al. 2008).  More recently, nitration/nitrosylation was identified as another 

process by which chemokines are modified whereby tyrosine is converted into 

nitrotyrosine by reactive oxygen species including peroxynitrate anion and 

nitrogen dioxide (Murphy, Cho et al. 2007).  PTMs are known to influence 

chemokine activity (Moelants, Mortier et al. 2013) for example, matrix 

metalloproteinase-9 on CXCL18 promotes its activity (Van den Steen, Proost et 
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al. 2000) whilst, matrix metalloproteinase-1-gelatinase A reduces the activity of 

CCL7 (McQuibban, Gong et al. 2000).     

   

In the context of CXCL12 and CXCR4 PTMs have been identified (Caruz, 

Samsom et al. 1998).  For example, phosphorylation on serine and threonine 

residues in the C terminal on CXCR4 occurs on agonist stimulation and  

phosphorylation at Ser-324 and Ser-325 which results in ubiquitination and 

protein degradation (Caruz, Samsom et al. 1998).  Furthermore, sulfation on Tyr-

21 is needed in order to achieve efficient binding of CXCL12, which in turn 

promotes dimerization (Caruz, Samsom et al. 1998).  Tyr-12 have been found to 

be sulphated in a sequential manner once Tyr-21 is sulphated and interestingly, 

the binding affinity for CXCL12 is correlated with the number of sulfotyrosines 

(Caruz, Samsom et al. 1998).  Furthermore, O and N glyocosylations have been 

observed and the N glyocosylations have shown to inhibit co-receptor function in 

HIV-strains by preventing the interaction with their Env glycoproteins (Caruz, 

Samsom et al. 1998).  CXCL12-α is initially cleaved at the C-terminus and is then 

processed at the N-terminus (Shirozu, Nakano et al. 1995).  As a result of binding 

to heparin and cell surface proteoglycans the C-terminal processing of CXCL12-

α is reduced (Shirozu, Nakano et al. 1995). However, the reason as to why 

proteins are observed above the predicted sizes (CXCR4 (39 Kda) and CXCL12 

(11 Kda)) is yet to be determined.       

 

The detection of PTMs of chemokines in vivo has been extremely challenging 

firstly since the concentration of chemokine secretion is generally low and 

secondly that the assays used such as ELISAs are unable to discriminate 

between the different isoforms (Moelants, Mortier et al. 2013).  Furthermore, 

PTMs by NH2 or COOH-terminal truncation, citrullination or nitration cause 

structural and chemical changes and therefore the antibodies may not be able to 

identify isoforms present (Moelants, Mortier et al. 2013).  Additionally, detection 

in clinical samples may be further complicated due to the presence of chemokine 

degrading enzymes active still after sampling (Moelants, Mortier et al. 2013).  

Moreover, in order to identify the modifications complex techniques such as mass 

spectrometry and Edman degradation are required.  However, one possible 

investigation which could be performed would be to knockdown CXCR4 and 
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CXCL12 in the different liver cell types that express these proteins and then see 

whether or not bands above the predicted molecular weights are observed.    

 

Results demonstrating expression of CXCL12 and CXCR4 by bilary epithelial 

cells and CXCR4 by hepatocytes supports previously published studies 

(Coulomb-L'Hermin, Amara et al. 1999, Terada, Yamamoto et al. 2003, Vlahakis, 

Villasis-Keever et al. 2003) and unpublished studies by the Bansal laboratory.  In 

addition, the data supports the in vitro results observed in the previous chapter.  

Other studies have reported that murine and human sinusoidal cells express 

CXCL12 on their cell surface (Mendt and Cardier 2012, Saiman and Friedman 

2012) but expression in these cells was not observed and therefore this would 

warrant further investigation.  Furthermore, in section 3.2.7 it was shown that 

myofibroblasts secrete CXCL12 and this has also been reported in vivo (Hong, 

Tuyama et al. 2009).  However, very few myofibroblasts would have been present 

since the tissues used were deemed to be healthy.   

 

Collectively, the data presented here demonstrates that CXCR4 and variants of 

CXCL12 are present in a wide range of tissues.  More specifically that they are 

expressed by biliary epithelial cells and hepatocytes in liver tissue.  Furthermore, 

the data suggests that in in vivo PTMs to these two proteins may occur.  Since 

modified chemokines have been shown to influence their activity under certain 

physiological and pathological conditions (Moelants, Mortier et al. 2013) it will be 

essential to identify the modified chemokines present and also their specific 

biological functions.   
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Influence of liver fibrosis on CXCL12 levels in chronic liver injury models.  
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5.1: Introduction and Aims 

 
Liver damage causes hepatic fibrosis characterized by an accumulation of 

scarring proteins leading to the development of cirrhosis, hepatocellular 

carcinoma and eventually liver failure (Wallace, Burt et al. 2008).  Ultimately, the 

localisation and distribution of fibrosis within the lobule is determined by the type 

of liver injury (Wallace, Burt et al. 2008).  For example, in animal models of 

chronic liver injury, fibrosis induced by carbon tetrachloride (CCl4) results in 

centrilobular necrosis and fibrosis emerging from the central vein (Wallace, Burt 

et al. 2008).  Whereas bile duct ligation (BDL) and methapyrilene (MP) treatment 

causes damage to the periportal regions of the lobules and fibrosis emerging from 

the portal tracts.  In humans, alcohol abuse, can lead to centrilobular necrosis 

whereas in viral hepatitis, fibrosis surrounding the portal tracts is observed 

(Wallace, Burt et al. 2008).  Irrespective of the type of damage, in both acute and 

chronic liver injury, cell infiltration, angiogenesis and the secretion of chemokines 

from various liver cell types occurs (Saiman and Friedman 2012).   

 

Several studies have demonstrated that chemokine production is dependent 

upon both the type and the duration of the injury (Goddard, Williams et al. 2001, 

Ajuebor, Hogaboam et al. 2003, Ajuebor, Hogaboam et al. 2004, Ajuebor, Carey 

et al. 2006, Ajuebor, Wondimu et al. 2007, Hokeness, Deweerd et al. 2007, 

Ajuebor, Chen et al. 2010, Aoyama, Inokuchi et al. 2010).    For example, injury 

induced by the toxicity of paracetamol promotes the secretion of CCL2 by various 

liver cells including hepatocytes, resulting  in the recruitment of cells expressing 

CCR2 to the site of injury such as monocytes and macrophages (Saiman and 

Friedman 2012).  In ischemia reperfusion, as a consequence of reactive oxygen 

species production, an up regulation of pro-inflammatory chemokines including 

CCL5 is apparent (Friedman, Wolf et al. 2012).  In the context of CXCL12, this 

chemokine is predominantly expressed by the biliary epithelial cells in both the 

normal and injured liver tissue (Hong, Tuyama et al. 2009).  However, more 

recently, researchers have identified an additional source of CXCL12 secretion 

in the damaged liver; myofibroblasts (Hong, Tuyama et al. 2009).  Indeed, it has 

been found that this protein is up regulated in patients with chronic liver injury and 

furthermore, expression levels have been shown to be correlated with fibrosis 

severity (Wald, Pappo et al. 2004).   
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However, expression levels of CXCL12 in models of periportal fibrosis have 

received little attention.  Thus, the aims of this chapter were to investigate the 

influence of different fibrosis models of liver injury on CXCL12 expression; CCl4 

(centrilobular), BDL and MP treatment (periportal).  Given that biliary epithelial 

cells are one of the main sources of CXCL12 secretion and myofibroblasts have 

been shown to express this chemokine, it was hypothesized that expression 

levels would increase in each of the individual models.  A further aim was to 

establish the specific liver cell types in the various fibrosis models that express 

this chemokine.   
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5.2: Results 

5.2.1: CCl4 mediated fibrosis increases levels of CXCL12 in vivo.   

 
To determine levels of fibrosis in olive oil control and CCl4 treated (4, 8 and 

12wks) male mice, sirius red and H and E staining were performed on the paraffin 

embedded liver tissue sections.  Sirius red staining was quantified in pictures 

taken around 10 central lobular veins (CLV) at x 10 magnification as described in 

section 2.5.3.  As shown by the representative images (Figure 5.1A) fibrosis was 

established in animals that received CCl4 as illustrated by the bridging effect 

between the central veins (denoted by the arrows).   Furthermore, compared to 

the olive oil control, collagen deposition increased in the CCl4 treated animals and 

significantly increased with treatment time (Figure 5.1B). 
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Figure 5.1: CCl4 treatment leads to significant central lobular fibrosis.   
C57BL/6 mice treated with olive oil or CCl4 (4, 8 and 12 wks) were culled and livers were harvested 
and fixed for 24 hours in 10% formalin  in 1 x PBS.  Samples were then processed, embedded in 
paraffin and sectioned (5µm).  Sections were then de-waxed and stained using A) sirius red and 
H and E.  As indicated by the arrows, fibrosis was established in all animals treated with CCl4.  
Representative images were acquired at x 5 magnification.  Scale bars = 100µm. B) For 
quantification of sirius red staining, pictures were taken around 10 random CLV at x 10 
magnification and the percentage area of the staining was quantified using the Leica software.    
Data are the mean and SD of percentage area of the sirius red stain for each treatment group 
and were tested for statistical significance using the one way ANOVA test with Dunnetts’s multiple 
comparison test.  *** Represent significant between 8wk and 12wk CCl4 against olive oil control 
(p<0.0001). n ≥ 3 for all groups.    

 

 

The liver tissue sections were also stained with anti-α-SMA (Figure 5.2A) and 

anti-vimentin (Figure 5.2C) antibodies since these proteins are known to be 

expressed by myofibroblasts and portal tract fibroblasts respectively (Wallace, 

Burt et al. 2008).  Results demonstrated that in the olive oil control, positive 

staining was only observed surrounding the portal arterioles, however, in mice 

treated with CCl4, a significant percentage of cells expressing α-SMA was 

observed (Figure 5.2A and B).  Vimentin staining results demonstrated that in the 

olive oil control, there were few positive cells, however, after CCl4 treatment the 

percentage of cells expressing this protein significantly increased around the 

central veins (Figure 5.2C and D).   
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Figure 5.2: α-SMA and vimentin positive stained cells increase significantly in CCl4 treated 
mice compared to olive oil controls. 
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C57BL/6 mice treated with olive oil or CCl4 (4, 8 and 12 wks) were culled and livers were harvested 
and fixed for 24 hours in 10% formalin  in 1 x PBS.  Samples were then processed, embedded in 
paraffin and sectioned (5µm).  Sections were then de-waxed and immunostained for A) α-SMA 
and C) vimentin.  No primary antibody controls were included and were stained with the secondary 
anti-mouse IgG (for α-SMA) or anti-rabbit IgG (for vimentin) antibody alone.  Representative 
images were acquired at x 5 magnification Scale bars = 100µm.  For quantification of B) α-SMA 
and D) vimentin, pictures were taken around 10 random CLV at x 10 magnification and the 
percentage area of the staining was quantified using the Leica software.    Data are the mean and 
SD of percentage area of the α-SMA or vimentin stain for each treatment group and were tested 
for statistical significance using the one way ANOVA test with Dunnetts’s multiple comparison 
test.  *** Represent significant between 4wk, 8wk and 12wk CCl4 against olive oil control 
(p<0.0001).  n≥ 3 for all groups.    
   
 
 

To determine mRNA and protein CXCL12 expression levels of the control and 

fibrotic liver tissue, qRT-PCR and Western blotting were performed respectively.  

For qRT-PCR analysis, mRNA expression was normalised to the expression of 

18S rRNA and for Western blot analysis, the house-keeping protein, ß-actin was 

used as a loading control.  The mRNA levels of the CXCL12 variants α and β 

increased in the CCl4 treated liver compared to the olive oil control (Figure 5.3A).  

Moreover, mRNA CXCL12-α levels significantly increased in the 8wk CCl4 treated 

mice compared to the olive oil control.  However, mRNA CXCL12-γ was not 

detected (data not shown).  At the protein level, CXCL12 was not expressed 

(Figure 5.3B), however, an intense band at higher molecular weight of ~58 kDa 

in all treatment groups was observed (Figure 5.3B).   
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Figure 5.3: mRNA CXCL12 increases in CCl4 treated liver but was not expressed at the 
protein level.  
A) Representative qRT-PCR for the expression of CXCL12 variants in normal and fibrotic mouse 
liver tissue.  Total RNA was isolated using Trizol, as per manufacturer’s instructions from whole 
mouse liver tissue.  PCR controls were carried out in the absence of template RNA.  Error bars 
represent +/- SD.  Results were tested for statistical significance using the one way ANOVA test 
with Dunnetts’s multiple comparison test.  * Represent significant between 8wk, against olive oil 
control (p<0.05).  n≥ 3 for all groups.     B) Representative Western blot for the expression of 
CXCL12.  Whole liver tissue was homogenised followed by sonication and prepared for protein 
analysis by Western blot.  20µg of protein was loaded per lane and β-actin was used as a loading 
control.   
 
 

To determine expression levels of CXCL12 and to establish which cells were 

positive for this chemokine, immunohistochemical staining was examined on the 

olive oil control and CCl4 liver sections.  As shown in figure 5.4A, biliary epithelial 

cells in all treatment groups were positive for CXCL12 and also cells resembling 

myofibroblasts were observed in the 12wk CCl4 group (as denoted by the arrows) 

(Figure 5.4B).  Additionally, CXCL12 expression was significantly increased in 

the 12wk treatment group compared to the olive oil control (Figure 5.4C). 
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Figure 5.4: CXCL12 positive stained cells increase significantly in 12wk CCl4 treated mouse 
liver tissue compared to olive oil control and biliary epithelial and stellate cells express 
CXCL12 in in vivo.   
C57BL/6 mice treated with olive oil or CCl4 (4, 8 and 12 wks) were culled and livers were harvested 
and fixed for 24 hours in 10% formalin made up in 1 x PBS.  Samples were then processed, 
embedded in paraffin and sectioned (5µm).  Sections were then de-waxed and stained using A) 
CXCL12.  No primary antibody controls were included and were stained with the secondary anti-
mouse IgG antibody alone.  Representative images were acquired at x 20 and x 40 magnification 
Scale bars = 100µm.  For quantification of B) CXCL12, pictures were taken around 10 random 
CLV at x 10 magnification and the percentage area of the staining was quantified using the Leica 
software.    Data are the mean and SD of percentage area of CXCL12 stain for each treatment 
group and were tested for statistical significance using the one way ANOVA test with Dunnetts’s 
multiple comparison test.  ** Represent significant between 12wk, against olive oil control 
(p<0.001).  n≥ 3 for all groups.       
 

To confirm if myofibroblasts expressed CXCL12, immunofluorescence double 

staining was performed using a common marker for these cells (α-SMA) and co-

localisation plots were generated.  The results demonstrated that there was some 

co-localisation with CXCL12 and α-SMA (Figure 5.5C).  However, biliary epithelial 

cells were also positive for α-SMA (Figure 5.5B) and therefore it was difficult to 

distinguish between the two different cell types.   
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Figure 5.5: CXCL12 is expressed by biliary epithelial cells and activated stellate in the CCl4 
treated mice.       
C57BL/6 mice treated with olive oil or CCl4 (4, 8 and 12 wks) were culled and livers were harvested 
and fixed for 24 hours in 10% formalin made up in 1 x PBS.  Samples were then processed, 
embedded in paraffin and sectioned (5µm).  Sections were then de-waxed and stained for the 
expression of A) CXCL12 (red) and α-SMA (green) was determined by confocal microscopy and 
background levels were set against the no primary control.  DAPI was used to stain the nuclei.  
B) co-localisation plots demonstrated co-localisation of CXCL12 with α-SMA.  Scale bars = 50µm 
(x 40 and x 60).   
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5.2.2: ICAM1, IL-1 and CXCL9 are up regulated in CCl4 (12wk) mouse liver 

tissue.   

 
To examine the expression of other cytokines/chemokines (Table 5.1) in both 

normal and fibrotic liver, a cytokine array was performed on cell extracts collected 

from olive oil control and 12wk CCl4 (fibrotic) liver tissue.  The results 

demonstrated that ICAM-1, IL-1 and CXCL9 were up-regulated in the fibrotic 

tissue compared to the control liver tissue and C5/C5a expression levels were 

greater in the control liver (Figure 5.6A and B).    

 

 

 

 

 

 

 

 

 

 

Table 5.1: Cytokines/chemokines analysed in array assay.  
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Figure 5.6: ICAM-1, IL-1 and CXCL9 are up regulated in CCl4 (12wk) mouse liver tissue.   
A cytokine array was performed as described in section 2.9. Mouse liver (normal and 12wk CCl4) 
supernatant was mixed with a cocktail of biotinylated detection antibodies, and then incubated 
with the Mouse Cytokine Array. The array was then incubated with streptavidin-horseradish 
peroxidase followed by chemiluminescent detection. After detection, the array data were 
quantitated to generate a protein profile (histogram). The table shows the analytes detected and 
their location on the membrane.   
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5.2.3: Bile duct ligation (BDL) in rats mediated fibrosis modulates mRNA 

CXCL12 expression in vivo. 

 
BDL was performed on male rats and cholestatic disease was allowed to develop 

for 3 weeks, sham control animals underwent the same procedure but without 

ligating the common bile duct as described in section 2.1.7.  To examine 

establishment of cholestatic fibrosis, liver sections from the control and BDL 

animals were stained with H and E and sirius red staining.  BDL animals showed 

a marked significant increase in periportal inflammatory cells (as denoted by the 

arrows) (Figure 5.7A) and sirius red staining significantly increased in this group 

compared to the control animals (Figure 5.7B).   
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Figure 5.7: BDL causes a significant increase in periportal fibrosis.   
Sham control and BDL rats were culled and livers were harvested and fixed for 24 hours in 10% 
formalin  1 x PBS.  Samples were then processed, embedded in paraffin and sectioned (5µm).  
Sections were then de-waxed and stained using A) sirius red or H and E.   Representative images 
were acquired at x 5 magnification.  Scale bars = 100µm. B) Pictures were taken around 10 
random periportal regions at x 10 magnification and the percentage area of the sirius red staining 
was quantified using the Leica software.  Data are the mean and SD of percentage area for each 
treatment group and were tested for statistical significance using the Student’s unpaired t-test.  
*** Represent significant between BDL and sham control (p<0.0001).  n≥ 3 for all groups.       

 
The BDL and control liver tissue sections were also stained with anti-α-SMA and 

anti-vimentin.  The results illustrated that in control animals, α-SMA and vimentin 

positive cells were evenly spread around the lobules (Figure 5.8A).  However, 

after BDL treatment, the percentage of cells expressing α-SMA (Figure 5.8B) and 

vimentin (Figure 5.8C) significantly increased.   
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Figure 5.8: BDL causes a significant increase in α-SMA and vimentin staining.   
Sham control and BDL rats were culled and livers were harvested and fixed for 24 hours in 10% 
formalin in 1 x PBS.  Samples were then processed, embedded in paraffin and sectioned (5µm).  
Sections were then de-waxed and stained using A) α-SMA and vimentin.  No primary antibody 
controls were included and were stained with the secondary anti-mouse IgG (for α-SMA) or anti-
rabbit IgG (for vimentin) antibody alone.  Representative images were acquired at x 10 
magnification Scale bars = 100µm.  For quantification of B) α-SMA and C) vimentin pictures were 
taken around 10 random periportal regions at x 10 magnification and the percentage area of the 
staining was quantified using the Leica software.    Data are the mean and SD of percentage area 
of α-SMA/vimentin stain for each treatment group and were tested for statistical significance using 
the Student’s unpaired t-test.  *** Represent significant between BDL and sham control 
(p<0.0001).  n≥ 3 for all groups.       

 
 
To unequivocally identify biliary epithelial cells in the control and BDL liver 

sections, sections were also stained for CK-19 (a marker of biliary epithelial cells 

(Chatzipantelis, Lazaris et al. 2006)) (Figure 5.9A).  In the BDL rats, the 

percentage of CK-19 positive cells increased significantly compared to the control 

animals (Figure 5.9B).   
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Figure 5.9: BDL causes a significant increase in CK-19 staining.   
Sham control and BDL rats were culled and livers were harvested and fixed for 24 hours in 10% 
formalin  in 1 x PBS..  Samples were then processed, embedded in paraffin and sectioned (5µm).  
Sections were then de-waxed and stained using A) CK-19.  No primary antibody controls were 
included and were stained with the secondary anti-mouse IgG antibody alone.  Representative 
images were acquired at x 10 and x20 magnification Scale bars = 100µm.  For quantification of 
A) CK19 pictures were taken around 10 random periportal regions at x 10 magnification and the 
percentage area of the staining was quantified using the Leica software.    Data are the mean and 
SD of percentage area of CK-19 stain for each treatment group and were tested for statistical 
significance using the Student’s unpaired t-test.  *** Represent significant between BDL and sham 
control (p<0.0001).  n≥ 3 for all groups.       

 
To determine the specific cells in this model that expressed CXCL12, 

immunohistochemical staining was performed on both the control and BDL liver 

sections.  The results demonstrated that CXCL12 was expressed by the biliary 

epithelial cells (Figure 5.10A) and furthermore, the percentage of expression was 

significantly greater in these animals compared to the controls (Figure 5.10B).   
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Figure 5.10: BDL causes a significant increase in CXCL12 staining.   
Sham control and BDL rats were culled and livers were harvested and fixed for 24 hours in 10% 
formalin made up in 1 x PBS..  Samples were then processed, embedded in paraffin and 
sectioned (5µm).  Sections were then de-waxed and stained using A) CXCL12.  No primary 
antibody controls were included and were stained with the secondary anti-mouse IgG antibody 
alone.  Representative images were acquired at x 10 and x20 magnification Scale bars = 100µm.  
For quantification of B) CXCL12 pictures were taken around 10 random periportal regions at x 10 
magnification and the percentage area of the staining was quantified using the Leica software.    
Data are the mean and SD of percentage area of CK-19 stain for each treatment group and were 
tested for statistical significance using the Student’s unpaired t-test.  *** Represent significant 
between BDL and sham control (p<0.0001).  n≥ 3 for all groups.       
 

 
The mRNA and protein levels of CXCL12 in the control and BDL livers were 

determined by qRT-PCR and Western blotting respectively.  The mRNA levels of 

the CXCL12 increased for all variants and significantly for CXCL12-α and β 

(Figure 5.11A) compared to the control.  At the protein level, a faint band was 

only observed for CXCL12 in one control and one BDL animal (Figure 5.11B).  

However, an intense band of greater molecular weight was observed at ~62 kDa 

and fainter bands at 58, 47 and 18 kDa in all treatment groups (Figure 5.11B).    
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Figure 5.11: mRNA CXCL12 increases in BDL liver but is not increased at the protein 
level.  
A) Representative qRT-PCR for the expression of CXCL12 variants in control and BDL liver 
tissue.  Total RNA was isolated using Trizol, as per manufacturer’s instructions from whole mouse 
liver tissue.  PCR controls were carried out in the absence of template RNA.  Data are the mean 
and SD of mRNA CXCL12 variants for each treatment group and were tested for statistical 
significance using the Student’s unpaired t-test.  ** Represent significant between BDL and sham 
control (p<0.001).  n≥ 3 for all groups.   B) Representative Western blot for the expression of 
CXCL12.  Whole liver tissue was homogenised followed by sonication and prepared for protein 
analysis by Western blot.  20µg of protein was loaded per lane and β-actin was used as a loading 
control.  n≥ 3 for all groups.      

5.2.4: A novel model of periportal fibrosis induced by methapyriline (MP) 

increases CXCL12 expression in vivo. 
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Male rats were administered MP and control animals PBS for three weeks as 

described in section 2.1.7.  The liver sections from each animal were stained with 

H and E and sirius red.  MP treated rats showed a significant increase in periportal 

inflammatory cells (Figure 5.12A) and collagen deposition was significantly 

increased (Figure 5.12B) demonstrating that periportal fibrosis had been induced.    

 
 
 

 
 
 

 
Figure 5.12: Fibrosis levels increase in the MP chronic liver injury tissue.   
PBS control and MP treated rats were culled and livers were harvested and fixed for 24 hours in 
10% formalin made up in 1 x PBS.  Samples were then processed, embedded in paraffin and 
sectioned (5µm).  Sections were then de-waxed and stained using A) sirius red or Haematoxylin 
and Eosin (H and E).   Representative images were acquired at x 5 magnification.  Scale bars = 
100µm. B) Pictures were taken around 10 random periportal regions at x 10 magnification and 
the percentage area of the sirius red staining was quantified using the Leica software.  Data are 
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the mean and SD of percentage area for each treatment group and were tested for statistical 
significance using the Student’s unpaired t-test.  *** Represent significant between MP and PBS 
control (p<0.0001).  n≥ 3 for all groups.       
 

α-SMA and vimentin expression in the control and MP treated liver sections was 

examined by immunohistochemistry.  In control animals, α-SMA and vimentin 

positive cells were evenly spread around the lobules (Figure 5.13A) however, 

after MP treatment, the percentage of cells expressing these markers increased 

significantly (Figure 5.13B and C).    
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Figure 5.13: MP treatment causes a significant increase in α-SMA and vimentin staining.   
PBS control and MP treated rats were culled and livers were harvested and fixed for 24 hours in 
10% formalin made up in 1 x PBS..  Samples were then processed, embedded in paraffin and 
sectioned (5µm).  Sections were then de-waxed and stained using A) α-SMA and vimentin.  No 
primary antibody controls were included and were stained with the secondary anti-mouse IgG (for 
α-SMA) or anti-rabbit IgG (for vimentin) antibody alone.  Representative images were acquired at 
x 10 magnification Scale bars = 100µm.  For quantification of B) α-SMA and C) vimentin, pictures 
were taken around 10 random periportal regions at x 10 magnification and the percentage area 
of the staining was quantified using the Leica software.    Data are the mean and SD of percentage 
area of the α-SMA/vimentin stain for each treatment group.  Data are the mean and SD of 
percentage area for each treatment group and were tested for statistical significance using the 
Student’s unpaired t-test.  *** Represent significant between MP and PBS control (p<0.0001).  n≥ 
3 for all groups.       

 
CK-19 staining (Figure 5.14A) was also performed on both the MP and 

demonstrated a significant increase in positive cells in the MP treated animals 

compared to the controls (Figure 5.14B).   
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Figure 5.14: MP treatment causes a significant increase in CK-19 staining.   
PBS control and MP treated rats  were culled and livers were harvested and fixed for 24 hours in 
10% formalin made up in 1 x PBS..  Samples were then processed, embedded in paraffin and 
sectioned (5µm).  Sections were then de-waxed and stained using A) CK-19.  No primary antibody 
controls were included and were stained with the secondary anti-mouse IgG antibody alone.  
Representative images were acquired at x 10 and x20 magnification Scale bars = 100µm.  For 
quantification of B) CK-19, pictures were taken around 10 random periportal regions at x 10 
magnification and the percentage area of the staining was quantified using the Leica software.    
Data are the mean and SD of percentage area of the α-SMA/vimentin stain for each treatment 
group.  Data are the mean and SD of percentage area of the α-SMA/vimentin stain for each 
treatment group.  Data are the mean and SD of percentage area for each treatment group and 
were tested for statistical significance using the Student’s unpaired t-test.  *** Represent 
significant between MP and PBS control (p<0.0001).  n≥ 3 for all groups.       

 
Both the PBS and MP liver sections were immunohistochemically stained for 

CXCL12 staining and the results demonstrated a significant percentage increase 

in positive cells in the MP treated group (Figure 5.15A and B).   

 

 

 
 
 
 

 
Figure 5.15: MP treatment causes a significant increase in CXCL12 staining.   

B 

A 



Chapter 5: Results 3 

 

 
 

154 

PBS control and MP treated rats  were culledand livers were harvested and fixed for 24 hours in 
10% formalin made up in 1 x PBS..  Samples were then processed, embedded in paraffin and 
sectioned (5µm).  Sections were then de-waxed and stained using A) CXCL12.  No primary 
antibody controls were included and were stained with the secondary anti-mouse IgG antibody 
alone.  Representative images were acquired at x 10 and x20 magnification Scale bars = 100µm.  
For quantification of B) CK-19, pictures were taken around 10 random periportal regions at x 10 
magnification and the percentage area of the staining was quantified using the Leica software.  
Data are the mean and SD of percentage area of CK-19 staining for each treatment group and 
were tested for statistical significance using the Student’s unpaired t-test.  *** Represent 
significant between MP and PBS control (p<0.0001).  n≥ 3 for all groups.       
 
 

To determine mRNA and protein levels of CXCL12 in the PBS control and MP 

treated tissue qRT-PCR and Western blotting was performed respectively.  The 

mRNA levels of the CXCL12 increased for all variants and significantly for 

CXCL12-α (Figure 5.16A) compared to the control animals.  At the protein level, 

CXCL12 was not detected (Figure 5.16B) however, bands of greater intensity at 

~58 and 50 kDa were observed.   
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Figure 5.16: mRNA CXCL12 increases in MP liver but is not detected at the protein level.  
A) Representative qRT-PCR for the expression of CXCL12 variants in PBS control and Mp treated 
rat liver tissue.  Total RNA was isolated using Trizol, as per manufacturer’s instructions from whole 
mouse liver tissue.  PCR controls were carried out in the absence of template RNA.  Data are the 
mean and SD of mRNA CXCL12 variants for each treatment group and were tested for statistical 
significance using the Student’s unpaired t-test.  ** Represent significant between BDL and sham 
control (p<0.001).  n≥ 3 for all groups.   B) Representative Western blot for the expression of 
CXCL12.  Whole liver tissue was homogenised followed by sonication and prepared for protein 
analysis by Western blot.  20µg of protein was loaded per lane and β-actin was used as a loading 
control.  n≥ 3 for all groups.      
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5.3: Chapter Discussion  

 

The results in this chapter demonstrated that liver injury was successfully 

achieved in all of the three different models of fibrosis induced by; CCl4, BDL and 

MP treatment.  The immunohistochemistry results also showed that CXCL12 was 

expressed by the biliary epithelial cells in each of the models and cells with 

morphology similar to myofibroblasts in the 12 wk CCl4 fibrotic liver tissue were 

also observed.  This is consistent with previous studies that have shown that both 

of these specific liver cell types express this chemokine (Terada, Yamamoto et 

al. 2003, Hong, Tuyama et al. 2009).  However, in these studies it was difficult to 

confirm that the myofibroblasts expressed CXCL12 because as revealed by the 

immunofluorescence staining, biliary epithelial cells were also positive for α-SMA.  

Therefore, this would warrant further investigation by using additional markers of 

myofibroblasts for example, desmin.   

 

Quantification of CXCL12 staining demonstrated increased expression in the 

CCl4, MP and BDL models compared to the controls and furthermore, levels were 

greatest in the BDL model.  This was not surprising since biliary epithelial cells 

are the main cellular source of CXCL12 and in this model a significant increase 

of CK-19 positive cells was observed.  In the CCl4 model, ICAM-1, IL-1 and 

CXCL9 were all up-regulated in the fibrotic liver tissue compared to the untreated 

tissue and these results are supported by previous studies.  For example, in one 

study elevated levels of CXCL9 were observed in patients with hepatic fibrosis 

(Zeremski, Dimova et al. 2009).  In another study, in comparison to healthy 

control, patients with liver disease displayed elevated serum levels of IL-1 

compared to controls (Negash, Ramos et al. 2013).  Furthermore, the expression 

of ICAM-1 has been shown to be increased in chronic liver tissues (Xu, Li et al. 

2005).  It was surprising that CXCL12 was not detected by the array assay; 

however, this may have been due to the expression levels being too low in this 

particular sample or it is possible that the chemokine may have been degraded 

during sample preparation.  
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Upon examination of the mRNA expression levels of CXCL12, the studies 

showed that variants were up regulated in each of the models with the exception 

of CXCL12-γ which was not detected in the mouse liver tissue (CCl4 model).  

However, this supports the previous PCR data in Chapter 4 which showed that 

this variant was only expressed in the murine lungs and brain.  Examination of 

protein CXCL12 expression by Western blotting showed that it was only detected 

in the BDL model (one sham control and one BDL rat liver) and bands were very 

faint.    Nonetheless, as seen in the previous chapter, bands of greater molecular 

weights were observed in all three models.  This may be a non-specific band i.e. 

the antibody may be reacting with another protein, alternatively, CXCL12 may be 

post translationally modified as discussed in the previous chapter.   

 

Overall, the results demonstrated that mRNA expression of CXCL12 is increased 

in a centrilobular and two different periportal models of liver fibrosis.  Thus, in the 

context of melanoma, it would be interesting to study metastasis in these three 

different models.    

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 



Chapter 6: Results 4   

 

158 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 6: Results 4 

Modelling melanoma to the normal and damaged liver in vivo. 
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6.1: Introduction and Aims 

Metastasis is the main cause of mortality for patients with cancer and the liver is 

a common site to which tumour cells metastasise.  However, clinical studies have 

shown that for some cancers, metastasis rarely occurs to the cirrhotic liver 

(Uetsuji, Yamamura et al. 1992, Vanbockrijck and Kloppel 1992, Seymour and 

Charnley 1999, Gervaz, Pak-art et al. 2003, Pereira-Lima, Lichtenfels et al. 2003).  

For example, a study of 250 patients by Uetsuji et al revealed that hepatic 

metastasis of colorectal cancer was prevalent in patients with non-cirrhotic livers 

(20%) but was not evident in patients with cirrhosis (Uetsuji, Yamamura et al. 

1992).  Autopsy studies have also shown that colorectal cancer metastasis to the 

cirrhotic liver is rare (Seymour and Charnley 1999).  The reasons for this are not 

yet fully understood, however, it has been postulated that venovenous shunting 

an event in cirrhosis, may prevent cells from entering the liver (Seymour and 

Charnley 1999).  In addition, since alterations to the architecture of cirrhotic 

sinusoids are observed (Seymour and Charnley 1999), it has been suggested 

that liver injury may create an unfavourable site for cancer cells to both 

metastasise and reside in (Seymour and Charnley 1999).  It has been suggested 

that the differences observed in experimental studies to clinical autopsy studies 

may be due to the difficulty of collecting controlled clinical groups (Qi, Qiu et al. 

2004).  For instance, patients with cirrhosis may have shorter life expectancies 

and therefore do not live long enough to develop metastasis (Qi, Qiu et al. 2004).   

 

On the contrary, in the context of melanoma metastasis, an experimental study 

showed a greater incidence of tumours in animals with cirrhotic livers compared 

to control animals (Qi, Qiu et al. 2004).  The authors suggested that as a 

consequence of changes in architecture and adhesion molecule expression 

expression in the cirrhotic livers, a greater number of tumour cells arrest in the 

terminal portal vein (TPV) (Qi, Qiu et al. 2004).   However, whether or not cancer 

metastasizes more frequently to the fibrotic liver or to the liver exhibiting lower 

levels of damage is yet to be determined.  To this end, in humans, it remains 

unclear as to whether the injured liver promotes or serves as a protective 

mechanism against melanoma metastasis.   However, since chronic injury in the 

liver leads to an increase in pro-inflammatory cells (Wallace, Burt et al. 2008)  

releasing factors such as CXCL12, it is possible that liver injury may actually 

promote metastasis of CXCR4 positive melanoma cells.   
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An established model for studying melanoma is the C57BL/6-derived B16 mouse 

model for human melanoma (Overwijk and Restifo 2001).  In this model, 

subcutaneous injection (s.c) and intravaneous injection (i.v) of B16 cells forms 

skin and lung tumours respectively (Overwijk and Restifo 2001).  For example, in 

a study by Lee et al, CXCR4-luc-B16 cells were injected i.v into C57BL/6-derived 

mice and pulmonary metastasis was observed (Lee, Kakinuma et al. 2006).  

Additionally, xenograft mouse models for studying skin cancer have already been 

performed successfully utilising nude mice (Hill, Martin et al. 2009, Horie, 

Tsuchihara et al. 2010).  In a study by Hill et al, fenretinide and bortezomib were 

tested for their ability to reduce tumour volume in a nude mouse model (Hill, 

Martin et al. 2009).  Prior to the injection of these agents, three human melanoma 

cell lines (A375, CHL-1 and Wm2664) were inoculated into the right flank of nude 

mice and skin tumours were established (125mm3 volume).  The results 

demonstrated that clinically achievable concentrations of fenretinide and 

bortezomib markedly reduced tumour growth.   

 

Therefore, the aims of this chapter were to perform in vivo pilot studies to examine 

whether melanoma cells (murine and human) metastasise to the normal and/or 

damaged liver and to any other organ based upon these existing models.  A 

further aim of this chapter was to generate a hepatic stellate specific CXCL12 

knockout mouse model because as yet, attempts to knock down this gene in vivo 

have been unsuccessful.  If this was achieved, melanoma cells would be injected 

into both experimental (KO) and control (WT) groups to determine if CXCL12 

secreted by myofibroblasts has an effect on melanoma growth and/or metastasis.  
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6.2: Results 

6.2.1: Modelling human melanoma metastasis to the normal and damaged 

liver.  

 

Initial attempts were made to establish a human model of melanoma metastasis.  

A summary of the experimental study is illustrated in Figure 6.1A (a detailed 

description is given in section 2.1.4).  A375 human melanoma cells transfected 

with a fluorescent red protein (A375red) (Figure 6.1B) were injected intravenously 

(i.v) into nude mice with either normal or damaged livers induced by 

intraperitoneal injection (i.p) of paracetamol.  Control animals received PBS 

alone.  Tumours were not observed by IVIS imaging and therefore H and E 

staining was performed on sections of all of the animal organs.  The results 

showed that tumours were not observed in the brain, heart, lungs, kidney, spleen, 

pancreas or skin as shown by the representative images from an animal in each 

group in Figure 6.1C.     
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Figure 6.1: A375red cells do not engraft in the organs of female nude mice. 
A) Experimental plan for modelling human melanoma in nude mice.  B) Representative image of 
A375 cells transfected with a red fluorescent protein (DS red).  Images were taken by 
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fluorescence microscopy at x 10 magnification.  Scale bar =100µM.  C) Nude mice were culled 
and organs were harvested and fixed for 24 hours in 10% formalin made up in 1 x PBS.  Samples 
were then processed, embedded in paraffin and sectioned (5µm) and haematoxylin and eosin (H 
and E) staining was performed.  Tumours were not observed in the brain, heart, lungs, kidney, 
spleen, pancreas or skin.  Images were acquired at x 20 magnification.  Scale bars = 100µm.   
 

 
The H and E staining results from the liver sections showed that in the majority 

of animals, tumour cells did not engraft in this organ (Figure 6.2A).  Cells 

resembling the A375red cells were observed (Figure 6.2B) in one animal from 

Group 3, indicating that the cells had metastasized to the liver in this mouse 

alone.    
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Figure 6.2: A375red cells engrafted into one normal liver of a nude mouse.   
Nude mice were culled and organs were harvested and fixed for 24 hours in 10% formalin made 
up in 1 x PBS.  Samples were then processed, embedded in paraffin and sectioned (5µm) and 
haematoxylin and eosin (H and E) staining was performed.  A) Tumours were not observed in the 
majority of the livers. B) Tumour cells resembling the A375red cells were observed in one nude 
mouse.  Images were acquired at x 20 or x 40 magnification.  Scale bars = 100µm.   
 

6.2.2: B16 as a mouse model for human melanoma to the normal and 

fibrotic liver. 

 
To determine which organs in the female C57BL/6 mice the B16-F10 cell line 

engraft in, cells were injected either subcutaneously (s.c) or intravenously (i.v).  

A summary of the study carried out is illustrated in Figure 6.3 (further details are 

given in section 2.1.5).  To reduce animal numbers, Group 1 organs were used 

from archived tissue from a previous study.   

 

 

Figure 6.3: Experimental plan for the B16 as a mouse model of melanoma to the normal 

and fibrotic liver.    
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To confirm that CCl4 had induced fibrosis in the animals in Group 3, the formalin 

fixed paraffin embedded liver sections were stained with H and E and sirius red.  

As illustrated by the bridging effect in Figure 6.4A (denoted by the arrows) fibrosis 

was established in all three mice and was most prominent in M7.  Furthermore, 

collagen levels were significantly increased compared to untreated animals and 

levels were greatest in M7 (Figure 6.4B and C).    
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Figure 6.4: Assessment of fibrosis in the B16-F10 liver tissue.   
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C57BL/6 mice from the B16-F10 study were culled and livers were harvested and fixed for 24 
hours in 10% formalin made up in 1 x PBS.  Samples were then processed, embedded in paraffin 
and sectioned (5µm).  Sections were then de-waxed, stained and mounted.  A) Haematoxylin and 
Eosin (H and E) staining showing fibrosis in the Group 3 mice as denoted by the arrows B) Sirius 
red staining showing increased levels of collagen in the Group 3 mice as denoted by the arrows.  
Images were acquired at x 5 magnification.  Scale bars = 100µm.   C) For quantification of sirius 
red staining, pictures were taken in 10 random fields of view at x 10 magnification.  Bars are the 
mean +SD.  Statistical analyses were compared by one way ANOVA with Bonferroni’s post hoc 
correction.  *** indicates a significant difference compared to Group 1 mice, £ indicates a 
significant difference compared to the Group 2 mice and $ indicates a significant difference 
compared to the Group 4 mice (all p<0.0001).   
 
 

To further confirm that CCl4 treatment had resulted in fibrosis in the Group 3 mice, 

α-SMA immunofluorescence (Figure 6.5A) and immunohistochemistry (Figure 

6.5B and C) staining was performed on the liver sections.  As shown by the 

representative images (one animal from each group) the immunofluorescence 

staining revealed fibrotic bands in the animals treated with CCl4 (Figure 6.5A).  

Additionally, the immunohistochemistry results demonstrated that the percentage 

of α-SMA positively stained cells was significantly greater in the animals treated 

with CCl4 compared to the untreated animals (Figure 6.5B and C).   
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Figure 6.5: α-SMA staining in the B16-F10 liver tissue.   
C57BL/6 mice from the B16-F10 study were culled and livers were harvested and fixed for 24 
hours in 10% formalin made up in 1 x PBS.  Samples were then processed, embedded in paraffin 
and sectioned (5µm) and de-waxed and immunochemically stained A) The expression α-SMA 
(green) was determined by confocal microscopy and background levels were set against the no 
primary control.  DAPI was used to stain the nuclei. Representative images were acquired at x 40 
magnification B) Sections were stained α-SMA. No primary antibody controls were included and 
were stained with the secondary anti-mouse IgG antibody alone.  As indicated by the arrows 
positive staining was observed around the periportal regions.  Representative images were 
acquired at x 5 magnification.  Staining is typical of three separate experiments.  Scale bars = 
100µm.   C) For quantification of α-SMA staining, pictures were taken in 10 random fields of view 
at x 10 magnification.  Bars are the mean +SD.  Statistical analyses were compared by one way 
ANOVA with Bonferroni’s post hoc correction.  *** indicates a significant difference compared to 
Group 1 mice, £ indicates a significant difference compared to the Group 2 mice and $ indicates 
a significant difference compared to the Group 4 mice (all p<0.0001).   
 

B16-F10 tumour cells were identified macroscopically and microscopically (H and 

E staining) as black nodules, in the lungs (M4, M6, M7, M9 and M11) (Figure 6.6A 

and B), spleen (M7 and M11) (Figure 6.6A and C) and by s.c. injection in the 

pancreas (M11) (Figure 6.6A and D).  A closer view of these tumour cells can be 

seen in Figure 6.6E.  A summary of these results are given in Table 6.1.    
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Figure 6.6: Tumour cells observed in the lungs, spleen and pancreas in the B16 mouse 
model.   
A) Gross appearance of tumour nodules in the lungs, spleen and pancreas.  Images were taken 
21 days after injection.  C57BL/6 mice from the B16-F10 study were culled and the organs were 
harvested and fixed for 24 hours in 10% formalin made up in 1 x PBS.  Samples were then 
processed, embedded in paraffin and sectioned (5µm).  Sections were then de-waxed, stained 
and mounted and haematoxylin and eosin (H and E) staining was performed.  Tumours were 
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observed in the B) lungs of M4, M6, M7, M9 and M11 C) spleens of M7 and M11 and  D) Pancreas 
in M11.  Images were acquired at x 20 magnification.  Scale bars = 100µm.  E) Zoomed in images 
of the lungs, spleen and pancreas showing the black tumour cells observed.     
 

Tumours were also observed in one normal (M11) and one fibrotic (M7) liver 

(Figure 6.7A and B) and these are clearly shown in Figure 6.7C.  Tumour nodules 

were evident throughout the normal liver tissue and two large tumour nodules 

were observed in the fibrotic liver (Figure 6.7A).   
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Figure 6.7: Tumour cells observed in the normal and fibrotic liver in the B16 mouse 
model.  
A) Photographs showing tumours observed in the normal (M11) and fibrotic (M7) liver.  B) The 
organs were harvested and fixed for 24 hours in 10% formalin made up in 1 x PBS.  Samples 
were then processed, embedded in paraffin and sectioned (5µm).  Sections were then de-waxed, 
stained and mounted and Haematoxylin and Eosin (H and E) staining was performed.  H and E 
images were acquired at x 20 magnification.  Scale bars = 100µm.  C) Zoomed in images of the 
normal and fibrotic liver showing the black tumour cells observed.  Staining is typical of three 
separate experiments.   
 

Animals in Group 4 were injected with B16-F10 cells s.c. and as mentioned 

previously, this route of injection should initiate skin tumours, however, results 

showed that tumour cells were only observed in the skin of one animal (M10) 

(Figure 6.8A and B).   
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Figure 6.8: Tumours engrafted into the skin of one mouse in the B16-F10 model.    
C57BL/6 mice from the B16-F10 study were culled and the skin was harvested and fixed for 24 
hours in 10% formalin made up in 1 x PBS.  Samples were then processed, embedded in paraffin 
and sectioned (5µm).  Sections were then de-waxed, stained, mounted and stained with 
Haematoxylin and Eosin (H and E),  Tumours were not observed in the skin.   
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In the brain, heart and kidney results demonstrated that tumours in these 

organs were not present in any of the animals (Figure 6.9 A-C) 
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Figure 6.9: Tumours do not engraft in the brain, heart or kidney the normal and fibrotic 
liver of the B16-F10 mice.   
C57BL/6 mice from the B16-F10 study were culled and the organs were harvested and fixed for 
24 hours in 10% formalin made up in 1 x PBS.  Samples were then processed, embedded in 
paraffin and sectioned (5µm).  Sections were then de-waxed, stained and mounted.  
Haematoxylin and Eosin (H and E) staining of the A) Brain, B) Heart and C) Kidney.  Tumours 
were not observed in these organs 

 

A summary of the results of the tumours observed in each of the animals is given 
in Table 6.1.  
 

 Mouse Brain Heart Lungs Liver Kidney Spleen Pancreas 
 

Skin 

Group 1 1 ─ ─ ─ ─ ─ ─ ─ ─ 

4wk olive oil 2 ─ ─ ─ ─ ─ ─ ─ ─ 

 3 ─ ─ ─ ─ ─ ─ ─ ─ 

Group 2 4 ─ ─ Yes ─ ─ ─ ─ ─ 

4wk olive oil 5 ─ ─ ─ ─ ─ ─ ─ ─ 

Injection of B16-F10 cells i.v 6 ─ ─ Yes ─ ─ ─ ─ ─ 

Group 3 7 ─ ─ Yes Yes ─ Yes ─ ─ 

4wk CCl4 8 ─ ─ ─ ─ ─ ─ ─ ─ 

Injection of B16-F10 cells i.v 9 ─ ─ Yes ─ ─ ─ ─ ─ 

Group 4 10 ─ ─ ─ ─ ─ ─ ─ Yes 

No treatment 11 ─ ─ Yes Yes ─ Yes Yes ─ 

Injection of B16-F10 cells s.c 12 ─ ─ ─ ─ ─ ─ ─ ─ 

          

Table 6.1: Summary of the tumours observed in the B16-F10 mouse model for melanoma. 
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Serial sections of the liver from an animal (M7) in Group 3 treated with CCl4 and 

injected with B16-F10 cells were stained with H and E, α-SMA and vimentin.  As 

shown in Figure 6.10 a band of myofibroblasts surrounding the tumour cell was 

observed.  

 

 

 
 

 

 
Figure 6.10: Myofibroblasts surrounding the B16-F10 melanoma tumour. 
C57BL/6 mice from the B16-F10 study were culled and livers were harvested and fixed for 24 
hours in 10% formalin made up in 1 x PBS.  Samples were then processed, embedded in paraffin 
and sectioned (5µm) and de-waxed and stained A) No primary antibody controls were included 
and were stained with the secondary anti-mouse IgG antibody alone.  B) Sections were stained 
with H and E or antibodies to either α-SMA or Vimentin as previously outlined in section 2.10. 
Specific dilutions are given in Table 2.4.  As indicated by the arrow a band of myofibroblasts was 
observed surrounding the melanoma tumour cells.  Representative images were acquired at x 5 
magnification.  Scale bars = 100µm.    
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Since B16-F10 cells express CXCL12 (section 3.2.1), to determine if this protein 

could be detected in the samples injected with these cells Western blotting was 

performed and the house-keeping protein ß-actin was used as a loading control.  

The results demonstrated that CXCL12 was not observed, however, as shown 

previously in mouse liver tissue (section 3.2.1) a band of greater intensity was 

observed in all of the samples (M1-M12) at ~62 kDa (Figure 6.11).    

 

 
    
Figure 6.11: CXCL12 expression is not observed in the mice from the B16-F10 melanoma 
model.   
Representative Western blot for the expression of CXCL12 in the livers of the B16-F10 melanoma 
model mice.  Whole liver tissue was homogenised followed by sonication and prepared for protein 
analysis by Western blot.  20µg of protein was loaded per lane and β-actin was used as a loading 
control.  M = Mouse liver.   
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6.2.3: Development of a hepatic stellate specific CXCL12 knockout mouse 

model. 

 
A conditional knockout mouse using the Cre-loxP system (as described in section 

2.1.3) in which CXCL12 is knocked out specifically in stellate cells (Gift from 

Professor Nagasawa, Kyoto University, Japan) was examined.  All the mice used 

were cre+/- and flox+/+ and the crosses were female cre+/+, flox+/+ with males 

cre -/-,flox+/+.  In order to separate the wild-type (WT) from the knockout (KO) 

mice genotyping was performed (Figure 6.12A) and the results demonstrated that 

cre was present in KO mice.   

 

Conditioned media (both serum free and 10% FCS) was collected at 24, 48 and 

72 hours from the stellate cells isolated from both the WT and the KO mice and 

an ELISA was performed.  However, the results showed that secretion levels of 

CXCL12 were comparable between both groups in both serum free and 10% FCS 

media conditions (Figure 6.12B).  Therefore the stellate cell isolation was 

repeated and RNA was extracted and qRT-PCR was performed immediately 

(without culturing the cells) however, there was no significant difference of 

CXCL12 expression between the WT and KO mice (Figure 6.12C).  The isolation 

was repeated by Schwabe’s group at Columbia University by using cell markers 

of stellate cells to obtain a purer population of cells, however similar results were 

observed (data not shown).  Thus, unfortunately the results demonstrated that 

the CXCL12 gene was still functioning in the stellate cells. 
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Figure 6.12: Development of a CXCL12 hepatic stellate cell knockout model.  
A) Genotyping was performed on DNA isolated from the CXCL12 mice.   PCR analysis was 
carried out for the presence of the transgene. Primer sequences and PCR conditions are detailed 
in table 2.7.1. PCR products were electrophoresed on a 2% agarose gel with ethidium bromide. 
B) ELISA was performed on conditioned media collected from both WT and KO stellate cells at 
24, 48, and 72 hours but no significant differences between the two groups was observed.  Bars 
are the mean +SD.    C) qRT-PCR analysis for the expression of CXCl12-α  was performed on 
the stellate cells isolated from both WT and KO mice, however no changes were seen in CXCL12 
mRNA expression between the two groups. Bars are the mean +/-SD.      
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6.3: Chapter Discussion 

 

The results from this study demonstrated that in the human model of melanoma 

metastasis, A375red cells were only observed in the liver of one animal and not in 

any other organ.  However, these data were based on the examination of liver 

sections since DSred was not visualised under the IVIS.  Hence, these results 

may not give an accurate number of the animals that formed tumours since the 

whole organ was not examined and therefore another fluorescent protein would 

need to be used for example, a green fluorescent protein (GFP).  However, 

another reason as to the low incidence of animals receiving tumours could be 

due to the genetic background of the mice.  Thus, severe combined 

immunodeficiency (SCID) mice could be used as they are both T and B cell 

deficient and therefore should not reject the melanoma cells.   

 

In the B16-F10 model of melanoma, compared to any other organ the incidence 

of tumours was highest in the lungs and this supports previous studies which 

have used this model (Overwijk and Restifo 2001, D'Alterio, Barbieri et al. 2012).  

The reason for pulmonary metastasis is because the lung vascular bed is the first 

microvasculature that the tumor cells pass through, hence, it is more difficult for 

the cells to pass on to other organs.   In the s.c injected mice, skin tumours were 

only observed in one animal.  The reason for not observing tumours in the other 

two animals is likely to be due to the injection technique.  A ‘bleb’ under the skin 

may not have been achieved and it has been reported that this can result in 

delayed tumour growth or no growth at all (Overwijk and Restifo 2001).  On 

examining the livers, tumours were observed in one normal and one fibrotic liver.  

Additionally, in the fibrotic liver a band of myofibroblasts was observed 

surrounding the tumour nodules which suggests that these cells may secrete a 

factor that attracts the tumour cells.  Since the B16-F10 cells express CXCR4 

and the myofibroblasts secrete CXCL12 this could be one possible mechanism, 

however this would need to be investigated much further.   

 

As mentioned previously, many clinical studies have shown that hepatic 

metastasis is less common in cirrhotic livers compared to non-cirrhotic livers 

(Uetsuji, Yamamura et al. 1992, Vanbockrijck and Kloppel 1992, Seymour and 

Charnley 1999, Gervaz, Pak-art et al. 2003, Pereira-Lima, Lichtenfels et al. 2003), 
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however, in melanoma, studies have shown the opposite (Qi, Qiu et al. 2004).   

Although the B16 study in this present chapter was too small to determine if 

fibrosis increases melanoma metastasis to the liver, it does support this previous 

study showing that the tumour cells metastasize to the fibrotic liver (Qi, Qiu et al. 

2004).  A much larger study would need to be performed and in addition to 

determine if myofibroblasts promote melanoma migration, it would be interesting 

to deplete these cells.  One method of doing this would be to use the C1-3 

antibody developed previously by our group (Douglass, Wallace et al. 2008).   

 

C1-3 is a human monoclonal antibody fragment which targets the extracellular 

domain of synaptophysin present on myofibroblasts (Elrick, Leel et al. 2005).  

Previous results have demonstrated that in culture, FITC (fluorescein 

isothiocyanate) conjugated C1-3 scAb interacts with human myofibroblasts but 

does affect hepatocytes (Elrick, Leel et al. 2005).  In addition, when toxin tributyl 

tin is conjugated to C1-3, myofibroblasts are killed indicating that C1-3 is 

sequestered intracellularly.  In a later study published by our group, it was shown 

that targeting gliotoxin to myofibroblasts with C1-3 reduced fibrosis in vivo in 

contrast to free gliotoxin alone (Douglass, Wallace et al. 2008).  Furthermore, the 

C1-3 conjugated to gliotoxin did not affect the number of monocytes or 

macrophages and also it did not cross the blood brain barrier (Douglass, Wallace 

et al. 2008).  As C1-3 specifically depletes myofibroblasts another application for 

this antibody would be the reduction of CXCL12 levels in the liver.  Therefore, it 

would be interesting to inject the melanoma cells into this model and also other 

models of fibrosis to determine the specific cells that are involved in promoting 

migration in in vivo.  Additionally, as well as injecting i.v. intrasplenic injections 

should be performed as this has been shown to induce metastasis in other 

cancers effectively (Vidal-Vanaclocha, Alonso-Varona et al. 1990).  

   

Finally, the results here demonstrate the difficulty of generating a specific 

CXCL12 knock out model and this would need to be repeated using another 

promoter.  If this were to be successful, injection of melanoma cells into this model 

would help to elucidate the specific role of the CXCR4-CXCL12 chemokine axis 

in melanoma metastasis to the liver.  
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7.0 Final Discussion and Future prospects 

 

Malignant melanoma represents an increasing world health problem and over the 

past 30 years incidence rates in the UK have quadrupled (Cancer Research UK).  

Although early stage disease is treatable through surgical excision alone, once 

metastasis occurs prognosis for these patients remains extremely poor and 

therefore novel treatment strategies are urgently needed.   

 

Recently, the importance of the CXCR4-CXCL12 chemokine axis in melanoma 

progression has been reported.  Indeed, it has been found that CXCR4 is over 

expressed in melanoma cells and its sole ligand CXCL12 has been found to be 

highly expressed in organs which are prone to metastasis such as the lungs, brain 

and liver (Zlotnik, Yoshie et al. 2006).  Furthermore, studies have shown that by 

inhibiting this axis melanoma metastasis is reduced to organs such as the lungs 

(D'Alterio, Barbieri et al. 2012).  Based on these observations this has led to the 

hypothesis that the CXCR4-CXCL12 chemokine axis plays an important role in 

directing the migration of a wide range of tumour cells expressing CXCR4 to 

organs that express high levels of CXCL12.  Hence, this chemokine axis may 

represent a promising novel treatment approach for preventing melanoma 

metastasis.     

 

However, the specific liver cell types involved in the migration of melanoma have 

not been determined and studies focusing on metastasis to the fibrotic and/or 

damaged liver are somewhat limited.  Furthermore, there have been a number of 

challenges in the development of chemokine inhibitors and as yet in the context 

of melanoma there has been little success.  Therefore the main aims of this thesis 

were to confirm the expression of CXCR4 and CXCL12 in melanoma cells and 

various liver cell types in in vitro and in in vivo.  Then to examine the migration of 

melanoma cells towards conditioned media collected from specific liver cells and 

also to test the ability of the novel CXCR4 inhibitor AMD11070 to inhibit migration.  

Additionally, to determine the levels of CXCL12 expression in different chronic 

liver injury models and finally to examine whether melanoma cells migrate 

towards both the normal and damaged/fibrotic liver.  
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Supporting previous data, the studies carried out confirmed that melanoma cells 

express both CXCR4 and CXCL12 and furthermore that myofibroblasts and 

biliary epithelial cells express these proteins both in vitro and in vivo (Terada, 

Yamamoto et al. 2003, Scala, Ottaiano et al. 2005, Hong 2009).   The secretion 

levels of CXCL12 by myofibroblasts compared to the biliary epithelial cells (both 

human and mouse) were greater, however, this may have been due to 

differences in cell number.  Nonetheless, the main aim was to determine if the 

protein was secreted or not rather than quantifying the exact amount.  However, 

in light of this data it would be interesting to specifically knockdown the expression 

of CXCL12 in the biliary epithelial cells in an in vivo setting in order to determine 

if melanoma metastasis was inhibited.   

Inconsistent with a previous study which showed that CXCL12 and CXCR4 at the 

protein level is expressed (Hong 2009), on examination in these studies, bands 

of higher molecular weights for both proteins were observed.  As discussed 

previously, the antibodies used may be detecting non-specific proteins; 

alternatively, the proteins may be post-translationally modified.  Based on these 

findings, additional studies to confirm this are warranted, for example, performing 

mass spectrometry.   

Migration assays demonstrated that murine melanoma cells migrated towards 

conditioned media collected from both biliary epithelial cells and myofibroblasts 

in vitro.  However, as inhibitors were not used in these studies it was not possible 

to determine if it was CXCL12 or another factor/s that promoted the migration.  

Thus, additional studies would need to be performed by adding inhibitors and 

also by screening the media, for example, performing a cytokine array.  However, 

in the migration assays using human melanoma cells it was demonstrated that 

the CXCR4-CXCL12 axis was involved in the migration of the cells and 

furthermore AMD11070 inhibited this (O'Boyle, Swidenbank et al. 2013).  

Interestingly, melanoma cell migration was increased by the over expression of 

BRAF (O'Boyle, Swidenbank et al. 2013) but importantly the ability of AMD11070 

to inhibit migration was not affected by this.  This has important implications as it 

would mean that it could be used in patients with both WT BRAF and also those 

harbouring the BRAF mutation.   
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Additionally, recent studies have shown that up regulation of the VEGF receptor 

is observed in a range of tumours expressing CXCR4 (Franco, Botti et al. 2010) 

and therefore it may also be of benefit to combine VEGF inhibitors which are 

currently being developed with AMD11070 to determine if efficacy is improved.  

Furthermore, since CXCR4 has found to be over expressed in a wide range of 

cancers including colorectal, prostate and ovarian this compound may also have 

benefits in a wide range of cancer settings.  However, in order to develop the use 

of this inhibitor, translational studies would need to be performed to determine its 

effectiveness of inhibition in vivo and to evaluate any detrimental side effects.     

 

In accordance with previous studies, showing that damage to the liver increases 

chemokine production (Hong 2009), mRNA CXCL12 expression levels in chronic 

liver injury models increased.  In order to study melanoma metastasis to the liver 

it will be important to perform these studies in liver models of both centrilobular 

and periportal damage.  Since liver fibrosis aetiology and pathology can vary 

considerably amongst patients (Wallace, Burt et al. 2008).  Hence, the injection 

of melanoma cells into various models of fibrosis with differing levels of damage 

would shed light on whether the damaged liver promotes migration of melanoma 

or serves as a protective mechanism.  Furthermore, it would be interesting to 

examine other chemokines and cytokines that are up-regulated in these models 

of liver injury.   

 

In the in vivo studies, the results showed that human melanoma cells migrated to 

the liver in the nude mouse, however, this study would need to be repeated in 

SCID mice in order to increase the incidence numbers.  In the B16 model of 

melanoma, murine melanoma cells migrated to both the normal and fibrotic liver.  

However, future larger animal studies and knockout animals with statistical 

analyses would be essential in establishing which cells in vivo are responsible for 

the migration of the melanoma cells.   

 

Overall this study reinforces the importance of the chemokine axis in the role of 

melanoma metastasis to the liver more specifically the effect of myofibroblasts 

and biliary epithelial cells.  Moreover, the AMD11070 data points towards the 

current approach of developing personalised therapies for specific groups of 

patients to improve clinical outcome for melanoma patients. However, 
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antagonizing CXCR4 alone may not be as effective in vivo due to the involvement 

of other chemokine axes in melanoma (Payne and Cornelius 2002).  For 

example, in uveal melanoma, both CXCR4 and CCR7 showed to promote the 

migration of uveal melanoma cells towards the liver (Li, Alizadeh et al. 2008).  In 

a recent study, it was shown that although CXCR7 did not directly promote the 

migration of melanoma cells it did regulate trans-endothelial migration of cancer 

cells (Zabel, Lewen et al. 2011).  In comparison to melanocytes, melanoma cells 

have shown to express increased levels of CCR7 and CCR10 mRNA (Muller, 

Homey et al. 2001).  In another study, the CCR9-CCL25 chemokine axis has 

been shown to be involved in the migration of melanoma cells to the small 

intestine (Amersi, Terando et al. 2008).  The CCL27-CCR10 chemokine axis was 

shown to be associated with the metastasis of melanoma (Monteagudo, Ramos 

et al. 2012).   

 

Thus, inhibiting CXCR4 alone may not be effective due to other chemokine 

expression.  One of the reasons for this is that a single molecule usually does not 

result in complete inhibition due to chemokine redundancy in the system (Schall 

and Proudfoot 2011).  Indeed, it has been reported that for successful inhibition 

at least 90% of the receptor needs to be blocked, however, many inhibitors fail to 

achieve this (Schall and Proudfoot 2011).  Additionally, due to the importance of 

chemokine axes in other physiological processes, many inhibitors have shown 

unfavourable side effects.  For example, studies carried out by the Bansal 

laboratory have demonstrated that AMD3100 induces liver fibrosis (Saiman 

2012).  It has also been argued that the reason as to why inhibitors have not been 

successful is also a result of inappropriate target selection and ineffective 

dosing(Schall and Proudfoot 2011).  Furthermore, it has been suggested that 

since malignant cells have the ability to evolve and survive in many types of 

niches inhibition may promote the outgrowth of malignant cells that secrete a 

different array of chemokines (Balkwill 2012).  Hence, targeting chemokine 

receptors may just simply re-direct the cancer cells to other locations in the body 

(Balkwill 2012).  Thus, a greater insight into the chemokine system should lead 

to an increased understanding of melanoma and other cancers and therefore new 

treatment approaches.    
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Abstracts: 
 

The Inhibition of chemokine signalling in metastatic melanoma to the 

liver. 

Isabella Swidenbank1, Professor Matthew Wright1, Dr Graeme O’Boyle1, Dr Penny Lovat1. 
1Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK 
 

 

Malignant melanoma represents the most aggressive skin cancer. Although early 

stage disease is treatable through surgical excision, late stage tumours frequently 

metastasise to the liver, at which point treatment options are limited.  Recently, 

migration of melanoma towards metastatic sites has been shown to be 

associated with the chemokine CXCR4-CXCL12 receptor-ligand complex.  In this 

context, novel receptor antagonists may offer therapeutic potential. The aim of 

the present study was therefore to test the hypothesis that inhibition of the 

CXCR4-CXCL12 receptor-ligand complex may provide a novel strategy for the 

prevention of melanoma metastasis. 

 

Results demonstrated increased expression of CXCR4 in human metastatic 

melanoma cell lines, as demonstrated by both Western blotting and 

immunohistochemistry.  Conversely, CXCL12 was expressed in human fibrotic 

liver cells but absent in hepatocytes and both metastatic melanoma cell lines.  

Dose response studies to test the potential of novel CXCR4 receptor antagonists 

to inhibit melanoma cell viability using a commercially available assay 

demonstrated that one inhibitor significantly reduced viability of both melanoma 

cell lines at clinically achievable concentrations.  Live cell-imaging analysis of 

melanoma cell migration and chemotaxis assays also demonstrated that 

AMD11070 inhibited melanoma cell migration and chemotaxis towards 

recombinant CXCL12. Collectively, these data support the hypothesis that 

inhibition of the CXCR4-CXCL12 chemokine axis may represent a novel strategy 

through which to inhibit melanoma cell metastasis to the liver. 

North East Post Graduate Conference (NEPG) 
Newcastle University  
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The investigation of the role of liver damage/myofibroblasts on tumour 
metastasis to the liver. 
 

Isabella Swidenbank1, Dr Penny Lovat1, Dr Graeme O’Boyle1, Dr Keith Charlton1, Dr Helen 
Reeves2, Dr Steve White3, Professor Matthew Wright1   
 

1Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK 
2Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK  
3 Freeman Hospital, Newcastle upon Tyne, UK 

 

Liver fibrosis is characterised by the accumulation of extracellular matrix proteins 

(ECM) caused by a range of toxins including xenobiotics and alcohol.  Hepatic 

stellate cells (HSC) are pivotal in liver fibrosis.  In the normal liver, HSCs exist in 

a quiescent state to store Vitamin A.  Upon liver injury HSCs become ‘activated’ 

producing ECM and also pro-inflammatory proteins such as chemokines.  The 

C1-3 antibody developed by our laboratory specifically targets HSCs and has 

already shown to be successful in liver fibrosis models.  Another role for C1-3 

may be in preventing cancer metastasis to the liver as chemokines are known to 

be involved in tumour progression.  Many cancer cells over express the 

chemokine receptor CXCR4 and therefore, this current study was carried out to 

see if HSCs express SDF alpha.  Western blot and PCR analysis was carried out 

in human liver tissue to determine SDF-alpha expression.  Immunofluorescence 

was performed on human liver tissue sections and immunocytochemistry on 

HSCs for SDF-alpha localization.  Sirius red staining on human liver sections was 

quantified to study fibrosis levels.  Western Blot and PCR analysis demonstrated 

that SDF-alpha is expressed by the liver.  Immunofluroescence showed co-

staining of SDF-alpha with a marker of HSCs and Immunocytochemistry revealed 

the cytoplasmic expression of SDF-alpha in HSCs.  Finally, sirius red staining 

showed varying levels of fibrosis and western blot results confirmed a correlation 

between increased levels of fibrosis with increased SDF-alpha expression.  Thus, 

C1-3 may not only have important benefits for liver fibrosis but also for preventing 

cancer metastasis to the liver.     

BTS Annual meeting 2012 
Warwick University  
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Hepatic Stellate Cell-derived CXCL12 promotes T cell adhesion to  
Sinusoidal Endothelial Cells 
 

1Dr Yedidya Saiman, 2Isabella Swidenbank,  1Professor Meena Bansal  

1Mount Sinai School of Medicine, Division of Liver Diseases, New York, USA.  
2Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK 

 

Lymphocyte migration into the liver is an important component of both 

chronic and acute liver injury and involves both binding to endothelial surfaces 

and transmigration into the hepatic parenchyma. During injury, endothelial cells 

undergo a process of activation by which they can up regulate their cell surface 

expression of chemokines to be presented to inflammatory cells. CXCL12, a 

chemokine increased in patients with liver disease, can be transcytosed and 

presented on endothelial cell surface. This transcytosed CXLC12 is more potent 

at promoting T cell chemotaxis than free CXCL12. Since stellate cells are 

considered liver specific tissue pericytes which are adjacent to endothelial cells 

and express high levels of CXCL12, we hypothesized that hepatic stellate cell-

derived CXCL12 is transcytosed by sinusoidal endothelial cells and presented on 

their cell surface promoting lymphocyte adhesion. Methods: Monolayers of 

endothelial cells were cultured on the apical side of 3μm transwell inserts with or 

without stellate cells on the basal side. After 48 hours of co-culture, freshly 

isolated splenic T cells were added to the endothelial cell monolayer, incubated 

1 hour, and the number of adhering T cells quantified. Adhesion assays were 

repeated with murine fibroblasts and with addition of a CXCL12 neutralizing 

antibody or monensin, a transcytosis inhibitor. Results: T cell adhesion to 

endothelial cell monolayers is enhanced by the presence of hepatic stellate cells 

and 3T3 murine fibroblasts (~2-fold increase) and did not require direct cell-cell 

contact. Pre-incubation of endothelial cell monolayers with a CXCL12 neutralizing 

antibody abolished the stellate cell dependent increase in T cells adhesion. 

Finally, addition of monensin, a transcytosis inhibitor, to the monolayers 

decreased the number of adhering T cells. Conclusions: Stellate cell-derived 

CXCL12 is transcytosed by endothelial cells thereby promoting T cell adhesion. 

These studies present a new paradigm for the role of stellate cells in inflammatory 

cell migration into the liver. Studies are currently underway to determine the role 

of stellate cell-derived CXCL12 in rodent models of liver injury. The availability of 

small molecule inhibitors of the CXCL12/CXCR4 axis makes it an attractive 

therapeutic target. 

 

ASSLD Meeting 2012 
Boston, USA 
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Publication: 

Inhibition of CXCR4–CXCL12 chemotaxis in melanoma by AMD11070 

G O'Boyle1, I Swidenbank1,5, H Marshall1, C E Barker1, J Armstrong2, S A White1, S P Fricker3, 
R Plummer4,6, M Wright1,6 and P E Lovat1,6 

1Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK 
2University of Sunderland, Sunderland, UK  
3Genzyme Corporation, Framingham, MA 01701, USA  
4Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, 
UK 
 

Br J Cancer. 2013 Apr 30;108(8):1634-40. doi: 10.1038/bjc.2013.124. Epub 2013 Mar 2 
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