

Quantitative Analysis of the Release

Order of Defensive Mechanisms

Thesis by

Suliman Abdullah Alsuhibany

In Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

School of Computing Science, Newcastle University

Newcastle upon Tyne, UK

June 2014

i

ABSTRACT

Dependency on information technology (IT) and computer and information security

(CIS) has become a critical concern for many organizations. This concern has essen-

tially centred on protecting secrecy, confidentiality, integrity and availability of infor-

mation. To overcome this concern, defensive mechanisms, which encompass a variety

of services and protections, have been proposed to protect system resources from mis-

use. Most of these defensive mechanisms, such as CAPTCHAs and spam filters, rely in

the first instance on a single algorithm as a defensive mechanism. Attackers would

eventually break each mechanism. So, each algorithm would ultimately become useless

and the system no longer protected. Although this broken algorithm will be replaced by

a new algorithm, no one shed light on a set of algorithms as a defensive mechanism.

This thesis looks at a set of algorithms as a holistic defensive mechanism. Our hypothe-

sis is that the order in which a set of defensive algorithms is released has a significant

impact on the time taken by attackers to break the combined set of algorithms. The ra-

tionale behind this hypothesis is that attackers learn from their attempts, and that the

release schedule of defensive mechanisms can be adjusted so as to impair the learning

process. To demonstrate the correctness of our hypothesis, an experimental study in-

volving forty participants was conducted to evaluate the effect of algorithms’ order on

the time taken to break them. In addition, this experiment explores how the learning

process of attackers could be observed. The results showed that the order in which algo-

rithms are released has a statistically significant impact on the time attackers take to

break all algorithms. Based on these results, a model has been constructed using Sto-

chastic Petri Nets, which facilitate theoretical analysis of the release order of a set of

algorithms approach. Moreover, a tailored optimization algorithm is proposed using a

Markov Decision Process model in order to obtain efficiently the optimal release strat-

egy for any given model by maximizing the time taken to break a set of algorithms. As

our hypothesis is based on the learning acquisition ability of attackers while interacting

with the system, the Attacker Learning Curve (ALC) concept is developed. Based on

empirical results of the ALC, an attack strategy detection approach is introduced and

evaluated, which has achieved a detection success rate higher than 70%. The empirical

findings in this detection approach provide a new understanding of not only how to de-

tect the attack strategy used, but also how to track the attack strategy through the prob-

abilities of classifying results that may provide an advantage for optimising the release

order of defensive mechanisms.

ii

ACKNOWLEDGEMENTS

This four year period of study has been a long journey with many trials and tribulations.

There have been ups and downs, roadblocks and dead ends. However, at the same time,

I also have gained various skills and knowledge during this period. All these are not

possible without the help, guidance, and support of several people during my time here

at Newcastle University.

Firstly and foremost, I would like to express my gratitude to my supervisor Professor

Aad van Moorsel for his valuable guidance and support throughout the duration of my

study here at Newcastle University. His comments and insight during our various dis-

cussion sessions help me to shape my research and solve many research problems. Spe-

cial thanks for Dr. Peter Andras and Dr. Jeff Yan for being members of the supervision

committee.

I would like also to extend my gratitude to these people individually, who has been in-

volved in my research work both directly and indirectly namely; Dr. Charles Morisset,

Dr. Chris Smith, Dr. Nur Haryani Zakaria, Ahmad Alonaizi and the rest of the partici-

pants that have took part in any of the experiment work that I have conducted; for which

without the full commitment and co-operation from each of you, the research would not

have been a success.

Last but not least, my special gratitude is due to my father Abdullah and my mother

Nourah for always being there when I needed them most. They deserve far more credit

than I can ever give them. I could not imagine the level that I have reached without their

warm-heartedness, support and help. Also, I would like to sincerely thank from the bot-

tom of my heart, my beloved wife Nourah who always provides support and love to me

and my daughter Tamara who bring joy and smile at all times. Finally, I dedicate this

research to my brother, and my sisters, who have supported and encouraged me.

Suliman Abdullah Alsuhibany

iii

TABLE OF CONTENTS

LIST OF TABLES .. VII

LIST OF FIGURES ... VIII

GLOSSARY OF TERMS .. X

CHAPTER 1. INTRODUCTION ... 1

1.1 CONTEXT & MOTIVATION .. 1

1.2 RESEARCH HYPOTHESIS & QUESTIONS .. 7

1.3 RESEARCH AIM & OBJECTIVES .. 8

1.4 RESEARCH METHODOLOGY ... 9

1.5 CONTRIBUTIONS OF THE THESIS ... 10

1.6 PUBLICATION HISTORY .. 12

1.7 STRUCTURE OF THE THESIS .. 13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

2.1 ATTACKERS, DEFENDERS AND THEIR MOTIVES ... 16

2.1.1 Attackers .. 16

2.1.2 Defenders ... 17

2.1.3 Motivation of Attackers and Defenders ... 17

2.2 DEFENSIVE MECHANISM .. 18

2.2.1 What is a Defensive Mechanism? .. 18

2.2.2 Interactive Defensive Mechanism ... 18

2.2.3 Examples of Interactive Defensive Mechanisms 21

2.3 AN OVERVIEW OF THE LEARNING ACQUISITION PROCESS 27

2.3.1 Learning Curve Theory .. 27

2.3.2 Problem-Based Learning Approach... 31

2.3.3 Effects of Information Order in Learning Process 33

2.4 SECURITY QUANTIFICATION AND ATTACK MODELLING 37

2.4.1 Security Quantification and Attacker Behavior 38

2.4.2 Time-To-Compromise System .. 41

2.4.3 Game Theoretic Security Approach .. 42

2.5 ANOMALY DETECTION TECHNIQUES .. 44

2.6 STOCHASTIC MODELLING FORMALISMS... 45

Table of Contents

iv

2.6.1 Continuous-Time Markov Chain ... 48

2.6.2 Continuous-Time Markov Decision Process ... 49

2.6.3 Stochastic Petri Nets .. 51

2.6.4 Software Tools for Building and Solving SPN Models 53

2.7 SUMMARY .. 56

CHAPTER 3. EXPERIMENTAL STUDY .. 57

3.1 EXPERIMENT SCOPE ... 58

3.2 HYPOTHESES .. 58

3.3 EXPERIMENT SETUP ... 59

3.3.1 The Experimental Design .. 59

3.3.2 System .. 60

3.3.3 Attackers .. 61

3.3.4 Algorithms ... 62

3.3.5 Materials: stimulus and rationale ... 65

3.3.6 Variables .. 65

3.3.7 Measurement Units .. 65

3.3.8 Generalisation and Threats Validity .. 66

3.3.9 Avoiding Bias and Control Measures .. 67

3.4 EXPERIMENT PROCEDURE .. 68

3.4.1 Instructions to subjects... 68

3.4.2 Procedures .. 68

3.4.3 Collected Data.. 69

3.5 RESULTS AND ANALYSIS .. 69

3.5.1 Testing Hypothesis: Does Order Matter? .. 69

3.5.2 The Influence of Order on Defeating Future Algorithms 72

3.5.3 The Influence of Order on Defeating All Algorithms 73

3.5.4 Attacking Process .. 73

3.6 DISCUSSION ... 74

3.7 SUMMARY .. 76

CHAPTER 4. MODELLING OF RELEASE ORDER STRATEGIES 78

4.1 STOCHASTIC MODEL .. 79

4.2 PROPOSED STOCHASTIC PETRI NET (SPN) MODEL .. 80

4.2.1 SPN: An Overview .. 80

4.2.2 Evaluation Tools .. 82

4.2.3 Model Assumptions ... 83

4.2.4 Model Metrics .. 84

4.3 MODEL DESIGN AND PERFORMANCE ... 84

4.3.1 Performance Metrics Calculation .. 87

4.3.2 Further Details for the Used Functions .. 88

4.4 CASE STUDY .. 90

4.5 RESULTS AND ANALYSIS .. 92

4.5.1 Replicating the Results of Release Order .. 92

Table of Contents

v

4.5.2 Algorithms Order vs. MTTSF ... 93

4.5.3 Attacker’s Knowledge Acquisition Process .. 94

4.6 DISCUSSION ... 95

4.7 SUMMARY .. 96

CHAPTER 5. OPTIMAL RELEASE ORDER STRATEGIES...................................... 98

5.1 DERIVING OPTIMAL RELEASE ORDER STRATEGY .. 99

5.1.1 Modelling the Release Order Strategy ... 100

5.2 OPTIMISATION ALGORITHM ... 102

5.3 APPLICATION TO THE EXAMPLE ... 104

5.3.1 Markov Decision Process for Example ... 105

5.4 DISCUSSION ... 106

5.5 SUMMARY .. 107

CHAPTER 6. ATTACKER LEARNING CURVE .. 109

6.1 AN OVERVIEW OF ATTACK SCENARIO .. 110

6.2 ATTACKER LEARNING CURVE .. 111

6.2.1 Extracting Similarity-Based Data .. 113

6.2.2 Accumulative Manipulation .. 114

6.2.3 Illustrative Example to ALC .. 115

6.3 STRATEGIES APPLIED IN ATTACK PROCESS ... 116

6.3.1 Observed Strategies ... 117

6.3.2 Impact of All Strategies in Breaking Algorithms 119

6.4 ATTACKER LEARNING CURVE MODEL (ALCM) .. 120

6.4.1 Knowledge Model.. 120

6.4.2 Proposed ALCM .. 121

6.4.3 Performance of the Proposed Model ... 122

6.5 DISCUSSION ... 124

6.6 SUMMARY .. 126

CHAPTER 7. DETECTION OF ATTACK STRATEGIES ... 128

7.1 STRATEGY-BASED DETECTION APPROACH: AN OVERVIEW 129

7.1.1 Types of Attack Strategies ... 130

7.1.2 Detection Approach: DLDA .. 130

7.1.3 The Workflow of the Detection Approach .. 131

7.2 EXPERIMENTAL EVALUATION .. 133

7.2.1 Experiment Setup ... 133

7.2.2 Experiment Procedure.. 137

7.3 RESULTS OF THE EVALUATION ... 138

7.3.1 Overall Rates of Success Detection ... 138

7.3.2 Probabilities of Classification .. 139

7.4 DISCUSSION ... 141

7.5 SUMMARY .. 143

CHAPTER 8. CONCLUSION AND FUTURE WORK .. 144

Table of Contents

vi

8.1 SUMMARY OF CONTRIBUTIONS .. 145

8.2 REFLECTIONS ON RESEARCH OUTCOMES ... 147

8.2.1 The first research question ... 147

8.2.2 The second research question .. 148

8.2.3 The third research question .. 149

8.2.4 The fourth research question.. 150

8.2.5 The fifth research question .. 150

8.2.6 Overall Reflection .. 151

8.2.7 Applicability to Other Security Scenarios ... 152

8.3 FUTURE WORK ... 155

APPENDIX A: EXPERIMENT MATERIALS .. 158

APPENDIX B: ACCUMULATIVE MANIPULATION OF TEST SETS 169

APPENDIX C: PROBABILITY OF CLASSIFICATION RESULTS 172

BIBLIOGRAPHY ... 176

vii

LIST OF TABLES

Table 1.1: The Confusion Matrix ... 2

Table 2.1: Attacker Types [135]. ... 17

Table 2.2: Basic Security Tradeoffs [9]. .. 19

Table 2.3: Guidelines for estimating the learning rates in different fields [137]. 29

Table 2.4: Hybrid approaches in which an unsupervised machine learning algorithm is

applied as a first layer. .. 44

Table 3.1: Symbols used in pseudo code and their values in the experiments. 63

Table 3.2: The Experiment Measurement Units. ... 65

Table 3.3: Order of two algorithms A1 and A2. .. 70

Table 3.4: Breaking A1 for each group. ... 71

Table 3.5: Breaking A2 for each group. ... 71

Table 3.6: Breaking A3 for each group. ... 72

Table 3.7: Breaking all algorithms for each group. ... 73

Table 4.1: Identifying the Symbols. ... 85

Table 4.2: Fire rate of Break_Released_Algo transition. ... 91

Table 6.1: Calculating the Accumulative Manipulation. ... 115

Table 6.2: Fitted Parameters for Group 1. ... 123

Table 6.3: Fitted Parameters for Group 2. ... 123

Table 7.1: The Number of Samples of each Strategy for Group 1. 134

Table 7.2: The Number of Samples of each Strategy for Group 2. 135

Table 7.3: The Results of Classifying each Strategy. .. 139

Table 7.4: The probability of classifying one of the correctly classified samples. 140

Table 7.5: The probability of classifying one of the incorrectly classified samples. ... 140

viii

LIST OF FIGURES

Figure 1.1: Abstract System Model. ... 5

Figure 2.1: An example Tradeoff in Intrusion Detection System [9]. 20

Figure 2.2: An example of a text-based CAPTCHA (Hotmail, 2013) 21

Figure 2.3: An example of an image-based CAPTCHA [76]. .. 22

Figure 2.4: CAPTCHA Developing System [10]. .. 23

Figure 2.5: Source of IP addresses of spam emails [151]. .. 24

Figure 2.6: An example of a passive warning page vs. a suspected unsafe site [142]. ... 25

Figure 2.7: Learning Curve in the simulation [58]. .. 30

Figure 2.8: Performance over time for all three presentation order types [91]. 37

Figure 2.9: A typical attacking process [70]. .. 39

Figure 2.10: The standard attack phase [70]. .. 39

Figure 2.11: A Graphical Petri Net Example. ... 51

Figure 3.1: Pseudo code of A1. ... 63

Figure 3.2: Pseudo code of A2. ... 64

Figure 3.3: Pseudo code of A3. ... 64

Figure 3.4: The average time (in minutes) for ‘attackers’ to break the algorithms. 70

Figure 4.1: A graphical illustration of the proposed SPN model. 85

Figure 4.2: A Guard Function for Superset Algorithm. .. 88

Figure 4.3: A Guard Function for Subset Algorithm. ... 88

Figure 4.4: A Guard Function for Independent Algorithm. .. 88

Figure 4.5: A Distribution Function for controlling the Attack Rate λ 89

Figure 4.6: A Reward Function for Evaluating the Security of a System....................... 90

Figure 4.7: A Reward Function for Evaluating Knowledge Gained by the Attacker. 90

Figure 4.8: Replicating the results of release order... 92

Figure 4.9: MTTSF vs. Algorithm Orders. ... 93

Figure 4.10: Attacker’s Knowledge Acquisition Process. .. 94

Figure 5.1: The Backward Optimization Algorithm. .. 103

Figure 5.2: Markov Decision Process for Example. ... 105

Figure 6.1: Attack Scenario... 110

Figure 6.2: The structure of the ALC. ... 112

Figure 6.3: Example of Structured Attacker Performance. ... 113

Figure 6.4: Example of Unstructured Attacker Performance.. 114

file:///C:/Users/بهاء/Desktop/Thesis_Backup/Draft/Thesis_Templet_Last%20version.docx%23_Toc378597432

List of Figures

ix

Figure 6.5: The Attacker Learning Curve Based on the Accumulative Manipulation. 116

Figure 6.6: Original Spam E-mail. .. 118

Figure 6.7: Using Random Addition. .. 118

Figure 6.8: Using Thesaurus Substitution. .. 118

Figure 6.9: Using Perceptive Substitution. ... 118

Figure 6.10: Using Add Spaces ... 119

Figure 6.11: Using Delete Spaces. .. 119

Figure 6.12: The average Accumulative Manipulation vs. all strategies. 120

Figure 6.13: Result of running the proposed model on Group 1 and Group 2. 124

Figure 7.1: The workflow of the Detection Approach. ... 132

Figure 7.2: The average of ALC-Based accumulative manipulation for each strategy.134

Figure 7.3: The average of ALCM-Based accumulative manipulation for each strategy.

 ... 135

Figure 7.4: The ALC-Based accumulative manipulation of attacker’s attempts. 136

Figure 7.5: The ALCM-Based accumulative manipulation of attacker’s attempts. 136

x

GLOSSARY OF TERMS

Term Definition

Security

The sum of all measures taken to prevent loss of any kind,

which can occur due to user error, hardware failure, mali-

cious acts, acts of nature and defects in code [139].

Security Attack
Any action, such as interruption, interception and modifica-

tion that compromises the security of information [26].

Successful Attack Any attempt of attack that is executed successfully.

Attacker
An agent (human or computational) that attempts the attack

[111].

Attacker’s manipula-

tion

The distance between one attempt from an attacker and his

previous attempts [14].

Accumulative ma-

nipulation

Attacker’s aggregated amount of knowledge, which effec-

tively represents how close the attacker is to breaking the

defensive mechanism [14].

Computer Security

The prevention of, or protection against, access to informa-

tion by unauthorised users, as well as intentional but unau-

thorised destruction or alteration of that information [26].

Prevention

The security procedures undertaken by implementing safe-

guards, such as a defensive mechanism, in order to make a

secure system [111].

Defensive Mechanism
As stated by Bishop in [26], is to institute controls that pre-

serve secrecy, confidentiality, integrity and availability.

Interactive Defensive

Mechanism

A defensive mechanism that operates while interacting with

an attacker.

Non-Interactive De-

fensive Mechanism

A defensive mechanism that operates without interacting

with an attacker.

Release Order of De-

fensive Mechanism

The arrangement of releasing a set of defensive mechanisms

according to a particular sequence [11].

System resources
A finite set of resources e.g. communication or computa-

tional resources that an attacker intends to misuse [139].

System’s feedback
The simple Boolean response or reasons that attackers re-

ceive from the system for the failure of their request [11].

Model

As defined by Wilson in [146] is “the explicit interpretation

of a situation, or one idea about that situation. It can be ex-

pressed in mathematics, symbols or words, but is essentially

a description of entities, processes or attributes and the rela-

tionships between them.”

1

Chapter 1. INTRODUCTION

This chapter introduces the idea of the research undertaken; in particular, the back-

ground, motivation, and problems of the research are detailed. This chapter also in-

cludes the research hypothesis with several research questions set out for further inves-

tigation. Furthermore, the research aim and objectives are stated.

This chapter also explains the methodology of the research, which is empirically based

in nature with a novel experimental work that is carried out to evaluate the proposed

idea. Moreover, the main contributions of the research are described and the publication

history is presented. Towards the end of this chapter, the structure of this thesis is de-

tailed.

1.1 Context & Motivation

Dependency on information technology (IT) and computer and information security

(CIS) has become a critical concern for many organisations. This concern has been

mainly about protecting secrecy, confidentiality, integrity and availability of informa-

tion when using computer systems. For this reason, much research has been conducted

in this area by proposing defensive mechanisms, which are based on algorithms that aim

to protect system resources from misuse. These algorithms encode a set of rules that

characterize and recognize attempts at misuse, and prevent any adverse effect on system

resources.

In this thesis, a defensive mechanism is used as a broad term which encompasses a vari-

ety of services and products that preserve secrecy, confidentiality, integrity and avail-

ability. In order to precisely define a defensive mechanism in terms of classification

Chapter 1 – Introduction

2

performance, we begin with the confusion matrix
1
 that helps to understand how a defen-

sive mechanism performs correct/incorrect classification, as shown in Table 1.1. Termi-

nologies presented in Table 1.1 are explained as follows. True Positive (TP) indicates

that the defensive mechanism correctly classifies a malicious attempt as malicious. True

Negative (TN) indicates that the defensive mechanism classifies a normal attempt as

normal. These two classification results (i.e. TP and TN) are accurate. Moreover, False

Negative (FN) indicates that the defensive mechanism classifies a malicious attempt as

normal. Finally, False Positive (FP) indicates that the defensive mechanism classifies a

normal attempt as malicious. These two classification results (i.e. FN and FP) are inac-

curate. The key point to highlight is that an attacker is successful if it is classified as a

FN.

Table 1.1: The Confusion Matrix

 Prediction of a defensive Mechanism

Attack Not attack

R
ea

li
ty

A
tt

a
ck

True Positive

(TP)

False Negative

(FN)

N
o
t

a
tt

a
ck

False Positive

(FP)

True Negative

(TN)

Given this confusion matrix, we categorise defensive mechanisms, based on their pre-

dicted results, into two main categories: Assertive
2
 and Predictive

3
 defensive mecha-

nisms. The predicted results of an Assertive defensive mechanism are always accurate:

TP or TN. For instance, an access control system [53] restricting entrance to a property,

a building or a room to authorised persons under a well-defined policy (i.e., a policy

either clearly denying or allowing and that is typically defined as “to set who can use

what information in a computer system” [69]) is an Assertive defensive mechanism.

1 The term confusion matrix is generally known as a contingency table or an error matrix that represents a specific

table layout, which gives visualization of the performance of an algorithm, where each column of the matrix states

the examples in a predicated class, whereas each row states the examples in an actual class [136].

2 Since assertive theories throughout the history of philosophy have sprung from diverse motives and considerations,

in this thesis assertiveness is the idea that everything that happens is completely determined by prior conditions.

3 A prediction refers to a quantitative description about what will happen under specific conditions [121].

Chapter 1 – Introduction

3

On the other hand, due to uncertainty as well as several essential tradeoffs
4
 between

security and other forms of important factors such as usability or accessibility in design-

ing a defensive mechanism, the predicted results of a predictive defensive mechanism,

in addition to the accurate classification results, can also include FP and FN. This cate-

gory can be divided into two types: Interactive and non-Interactive defensive mecha-

nisms. With the interactive type, the attackers can get feedback from the system with

regards to their attempt, in particular after each failed attempt. This feedback may be a

simple Boolean response or may include a reason for the failure. For example, in a

CAPTCHA system [143], an attacker gets feedback from the system indicating whether

an attempt is successfully passed or not. Similarly, with a spam-filter system (e.g., [4,

42, 116]), an attacker can obtain a response with regards to a spam email that is submit-

ted to target users. Furthermore, in a biometrics authentication
5
 system, an attacker can

know the result of cheating attempts such as a cheated face or voice. As a result of this

feedback on the attacker’s performance, the prediction results of the interactive defen-

sive mechanism type can gradually identify a malicious attempt as a normal attempt (i.e.

attackers can learn while a TP attempt becomes a FN), where feedback gained can be a

key factor to revealing a defensive algorithm’s rules. For instance, the attacker can send

spam messages as normal messages. The underlying assumption is that the protection

accuracy of a system against an attack begins to gradually decrease over time
6
.

In the non-Interactive type, the attacker, in contrast, cannot get feedback from the sys-

tem. For example, in airport security identification devices, the prediction results are

observed only by the responsible person behind these devices. Even though a FN pre-

diction result can occur, for example when dangerous items, such as weapons, are mis-

taken for keys or coins, the attacker still cannot estimate the prediction results of this

defensive mechanism type. Another example is in antivirus systems [114]; the predic-

tion results of these systems can be observed by only the user. Not only can a FN pre-

diction result occur, but also a FP prediction result, such as when a normal file is identi-

fied as a virus.

At present in the literature, interactive defensive mechanisms are qualitatively studied;

that is, once a defensive mechanism is broken, the security officer must deploy another

4 More details regarding these tradeoffs are presented in Chapter 2 (Table 2.2).

5 The term biometric authentication refers to the identification of humans by their characteristics or features.

6 This type of protection mechanisms will be referred to as systems that are eventually breakable.

Chapter 1 – Introduction

4

one, which will in turn eventually be broken, leading the officer to deploy a new defen-

sive mechanism, and so on and so forth. For instance, once several CAPTCHA schemes

such as Microsoft and Yahoo are released in 2007, an attack is improved and subse-

quently these released schemes are broken [150]. This causes to develop new schemes.

In 2011, these new schemes are broken again by an attack that has been applied in [32].

Additionally, deploying a defensive mechanism has a cost; for example, Caliendo et al.

calculated in [33] the cost of deploying a spam-filter within a particular organization at

about fifteen thousand Euros for the first year. Furthermore, the security officer must

usually work within a given budget constraint, and has therefore a limited number of

defence mechanisms to deploy. For this reason, it is important to look at the problem of

interactive predictive defensive mechanisms across several of attacks.

With the background issues presented above, this research intends to fill the gap by

placing its focus on interactive predictive defensive mechanism. The rationale for this

limited focus is explained as follows. In the practical use of interactive predictive defen-

sive mechanism, attackers and defenders exchange ‘victories,’ each celebrating (tempo-

rary) success in breaking and defending. That is, as attackers interact with the system,

they receive feedback that augments their knowledge of the rules of the algorithm which

is used by the system to characterize misuse. They are then able to adapt their future

interactions in accordance with this augmented knowledge, increasing their ability to

break the defensive algorithms deployed, until eventually reaching the point where the

defensive mechanism is broken, the spam-filter rules are overridden or CAPTCHAs are

automatically deciphered.

Since most interactive predictive defensive mechanism rely on a single algorithm as a

defence mechanism [11, 12] and when this algorithm is broken, it will be replaced with

another, we investigate a methodology to prolong the interaction between an attacker

and a security system for as long as possible. As an attacker can gradually derive the

rules that are used by the defensive mechanism to classify attempts as a result of inter-

acting with the system, the aim of this study is not to prevent breaking the defensive

mechanism as much as lengthening the time necessary to break it. Therefore, the

method proposed in this research is a set of algorithms approach as a holistic defence

Chapter 1 – Introduction

5

mechanism. When studying sets of algorithms, various issues arise about how to con-

struct the algorithms and in which order
7
, or in which combination to release them.

In order to precisely define the problem under consideration, we provide an abstract

system model of the attack scenario, involving the attacker and the system as shown in

Figure 1.1. This model describes a general class of interactive security solutions, which

includes CAPTCHAs, certain spam filters, and intrusion tolerance algorithms. This

class of mechanisms is characterized by an intelligent defensive algorithm being at-

tacked and eventually broken, and then being replaced by a new intelligent defensive

mechanism. Furthermore, this model provides the basis of the experimental study pre-

sented in Chapter 3, which is revised into a stochastic model in Chapter 4 in order to

analyse the release order of security algorithms, and is refined into a stochastic model in

Chapter 5 to derive optimal release strategies. Each component of this abstract system

model is detailed as follows:

Figure 1.1: Abstract System Model.

Security Layer. To maintain the security of the system, the security layer must be up-

dated. Within this update, the algorithm used by the security layer is replaced by anoth-

er algorithm from the pool to encapsulate a different set of rules such that requests that

are misusing system resources are no longer permitted to pass through the security lay-

er. The attacker must repeat the process of knowledge acquisition in order to determine

the new classification rules so that he can continue sending requests to misuse system

resources. This process of learning takes time and the overall aim of the algorithms is to

maximize the time until all are broken.

7 The order terms refers in this thesis to the arrangement or disposition of defence algorithms in relation to each other

according to a particular sequence, pattern, or method.

Chapter 1 – Introduction

6

System Resources. In the system model, it is assumed that a finite set of resources can

be used, e.g. communication or computation resources. The pool of security algorithms

is contained by a security layer deployed to protect the system resources from misuse,

e.g. excessively high consumption or consumption for unacceptable purposes. These

algorithms classify requests to the system as acceptable or unacceptable based upon a

set of rules. If a request is classified as acceptable, then the request proceeds and the

system resources are consumed. A request that is classified as unacceptable cannot pro-

ceed through the security layer, and feedback is provided to the user regarding the failed

request.

Algorithms. The selection of algorithms when updating the security layer determines

the subsequent security of the system. In particular, a set of algorithms D, D = {d1, d2,

..., dn}, n > 1, dn ∈ D, represents the security layer of the system. Each of these algo-

rithms includes a number of rules R = {r1, r2, …, rn}, n ≥ 1 to protect the system. Based

on the rules of an algorithm, a set of algorithms is classified into three types: overlap-

ping rules, non-overlapping rules or mixed. In the first type, some of the rules are a sub-

set of each other ri ⊂ ri+1. The importance of this type can be in breaking up a defense

algorithm into a set of algorithms, and more details about this will be given later in

Chapter 3. In the non-overlapping rules type, all the rules are independent ri ≠ ri+1. The

importance of this type can be in using variance algorithms that might force the attacker

back to the beginning of the learning phase. For example, when an algorithm is broken

by an attacker, the attacker needs to discover a new approach to break the next release

algorithm. The possible reason behind this can be that there were not patterns that could

be exploited from the first released algorithm in order to break the next release algo-

rithm, and more details about this will be given later in Chapter 4. The third type is us-

ing mixed overlapping rules and non-overlapping rules algorithms ri ⊂ ri+1 and ri+1 ≠

ri+2. The importance of this type can be, in addition to the importance of the first and

second type, that releasing an independent algorithm which has non-overlapping rules

between dependent algorithms that have overlapping rules might impair the attacker’s

learning process.

Attacker. An attacker is an agent (human or computational) that attempts to misuse

system resources. The attacker makes requests for the system resources, which pass

through the security layer as described above. The attacker has some prior knowledge

about the rules used to classify requests, and attempts to design requests to be classified

Chapter 1 – Introduction

7

as acceptable. On each failed attempt, the attacker receives some feedback from the sys-

tem. This feedback may be a simple Boolean response, or may include reasons for the

failure. The attacker can add this feedback to his knowledge, and use this knowledge to

inform his subsequent requests. By repeatedly performing this knowledge acquisition

process
8
, the attacker can derive the rules that are used by algorithms to classify re-

quests. This includes both the parameters used and the values of these parameters. The

attacker can then misuse system resources by sending requests that are structured in

such a way that they fulfil the rules of the algorithm in the security layer. In this case,

the algorithm is considered ‘broken’.

Intuitively, releasing a set of algorithms one by one sequentially extends the required

time to break a system, rather than releasing only one algorithm. However, the order in

which algorithms are released may be essential in terms of extending the time taken to

break all algorithms. The question for the defender is then to find out the order in which

to release these algorithms so that the time until all algorithms are broken is maximized.

1.2 Research Hypothesis & Questions

Based on the aforementioned problems discussed, the order in which algorithms are

released may thus be important. As a consequence, this research postulates that the

longer it takes for the attacker to acquire the necessary knowledge regarding classifica-

tion, the longer the system is protected from misuse. In line with this, the research hy-

pothesis is:

Hypothesis: “The time taken by a series of attackers to break a set of interactive prob-

abilistic defensive mechanism is dependent on the order in which the algorithms are

released.”

The main reasoning behind this hypothesis is that the time it takes an attacker to break a

defensive algorithm may depend on what the attacker has learned from earlier success-

ful attacks on similar algorithms. Therefore, if this hypothesis is valid, one may be able

to defend better against attacks by impairing the process of learning of attackers. There

may be many ways in which this can be achieved, but in this thesis the most direct im-

8 In the education context, for example Kahn and O’Rourke stated in [72] that learning is driven by a process of in-

quiry.

Chapter 1 – Introduction

8

plication of this reasoning is considered to be that the order in which defensive algo-

rithms are released may impact the learning process.

Bearing in mind the hypothesis mentioned above, a number of research questions have

been set forward to guide the research work, as well as the construction of this thesis:

Research Question (1):

“Does the order in which different defensive mechanisms are released impact the time

an attacker needs to break each one of them?”

Research Question (2):

“Could we optimize the order in which defensive mechanisms are released?”

Research Question (3):

“How does dependency between algorithms impact on ability to answer question 2?”

Research Question (4):

“Could we model the learning acquisition process of attackers?”

Research Question (5):

“Based on understanding the learning acquisition, can we devise an attacker detection

approach?”

1.3 Research Aim & Objectives

Following the research problem, the hypothesis and the research questions presented in

the previous two sections, the aim of this research is to investigate a set of algorithms

approach for an interactive defensive mechanism which focuses on the order in which to

release these algorithms, so that the time until all algorithms are broken is maximised.

With several research questions to be answered as listed above, the objectives of this

research to achieve its aim are:

Objective (1):

 To conduct a review of relevant existing approaches and related theories.

Objective (2):

 To identify and propose an ordered releasing strategy for a set of algorithms ap-

proach.

Chapter 1 – Introduction

9

Objective (3):

- To develop and conduct an evaluation experiment for the proposed order.

Objective (4):

- To build a model and analyse different algorithm orders.

Objective (5):

- To derive an optimisation algorithm for releasing security algorithms.

Objective (6):

- To devise an attack detection approach based on the learning curve that can pro-

vide an advantage to optimising the release order algorithm.

The above objectives have been reached throughout the course of this research. Many

interesting insights were gained and lessons learned from this research and these are

discussed in Chapter 8.

1.4 Research Methodology

In order to achieve the research aim, a research methodology was prepared which cov-

ered all research aspects, from collecting the preliminary research data to the evaluation

of the work. The research methodology is summarised as follows:

I. Literature review: This stage of the study aims to identify the weaknesses of

interactive defensive mechanism types. In addition, it aims to review the ex-

isting interactive defensive mechanism approaches (methods, models, tech-

niques, frameworks) in order to investigate their ability to accommodate to

weaknesses.

II. Proposing a new approach: As a result of this research, an approach will be

proposed which is expected to address the weaknesses of the existing ap-

proaches to interactive defensive mechanism types, and which includes vari-

ous aspects that have not yet been covered.

III. Evaluation: In this stage, the proposed approach will be evaluated. Specifi-

cally, an empirical-based approach undertaken with a novel experimental

study was set up in order to evaluate the proposed approach.

Chapter 1 – Introduction

10

The participants involved in all of the experimental works were recruited

from the student body of this university. The recruitment process was man-

aged through emails and posters distributed among the students on the cam-

pus (Appendix A). In order to guarantee that ethical procedures were fol-

lowed, the methods of recruitment and the process of informed consent (Ap-

pendix A) for all the experimental work carried out, was approved by the uni-

versity ethical committee (UEC).

The experimental work focused on the ordering of algorithms, which aimed

to investigate the question of whether the order in which a set of defensive al-

gorithms is released has a significant impact on the time taken by attackers to

break the combined set of algorithms. Several simplified but representative

spam filter algorithms and a web-based system on which to perform the ex-

periment were developed to support this experiment. This study of the order-

ing of several algorithms involved forty participants. Details of the ordering

of several algorithms, including the results and analysis, will be discussed in

Chapter 3.

1.5 Contributions of the Thesis

This thesis addresses the issue of the release of a set of algorithms as an interactive de-

fensive mechanism in general and focuses on the issue of maximising the time taken by

an attacker to break all algorithms. The key area of concern is, when a released algo-

rithm is broken by an attacker, how much knowledge is gained that can provide the at-

tacker with patterns to break the next released algorithm.

This thesis provides the following five key contributions to address the issue of the re-

lease order of security algorithms in interactive defensive mechanisms:

 An introduction to the issue of interactive defensive mechanisms in a system,

which includes (i) appropriate categorisation of defensive mechanisms, and (ii) a

definition of interactive defensive mechanism types (Addressed in Chapter 1).

The result of the categorisation scheme of defensive mechanisms is based on the

expected results of a defensive mechanism from the confusion matrix and is use-

ful to interested parties such as researchers, defensive mechanism designers and

developers as a tool to classify a defensive mechanism. The view of interactive

Chapter 1 – Introduction

11

defensive mechanisms is based on the perspective of depending on a single algo-

rithm as a defensive mechanism and the learning acquisition ability of attackers.

This view is important and useful since it provides a consistent and clear under-

standing of the problem of interactive defensive mechanisms in a system. Hav-

ing such a view enables various interested parties, such as researchers, defensive

mechanism design and defensive mechanism developers, to work from the same

reference point, which is as unambiguous as possible

 A novel controlled experimental study for evaluating whether the order of utilis-

ing a set of algorithms methodology as a defensive mechanism matters (Ad-

dressed in Chapter 3). This includes its design, in addition to numerous devel-

oped secure algorithms. The developed controlled experimental study facilitates

a real-life interaction between a system that includes a set of algorithms and an

attacker in terms of time taken to break the system

 A model for the release order of security algorithms using Stochastic Petri Nets

(Addressed in Chapter 4). The proposed model is designed based on the underly-

ing principles of the developed controlled experimental study, which can de-

scribe the interaction between an attacker, the set of algorithms used by a system

and the knowledge gained by an attacker with each attack. This framework fa-

cilitates theoretical analysis of the releasing order of a set of algorithms method-

ology. Based on empirical results achieved from the controlled experimental

study, the proposed model is parameterised and evaluated

 An optimisation algorithm to compute the optimal release strategy for a set of

defensive algorithms (Addressed in Chapter 5). Due to the fact that the results of

the experiment showed that the release order of defensive algorithms has a sig-

nificant impact on the time needed to break a set of defensive algorithms, the

problem of the release order strategy for a set of defensive algorithms is mathe-

matically modeled as a Markov Decision Process and provides a tailored algo-

rithm to efficiently solve any model within the class of models presented. The

model solution should scale without problems to optimize the release order of

tens of defensive algorithms

Chapter 1 – Introduction

12

 A notion of accumulative manipulation of an attacker that is derived from the

experimental study. Since breaking an interactive defensive algorithm typically

requires several attempts by the attacker, the attacker’s knowledge gradually in-

creases with each attempt. As such, the attacker performs each attempt following

a structured strategy rather than randomly modifying their requests. Thus, the

accumulative manipulation is defined as the attacker’s aggregated amount of

knowledge that effectively represent how close the attacker is to breaking the de-

fensive mechanism. This notion also forms the basis of the Attacker Learning

Curve (ALC) approach, which reflects the influence of the strategy used by the

attacker. Based on this approach, a detection of attack strategy mechanism is in-

troduced and implemented. This detection mechanism can provide an advantage

for the developed optimisation algorithm with regard to prolonging the protec-

tion of an interactive defensive mechanism as long as possible. Furthermore, the

results of evaluating this detection mechanism indicate that the ALC offers a set

of efficient features and heuristics for a machine learning technique in order to

detect the attack strategy qualitatively. (Addressed in Chapters 6 and 7).

1.6 Publication History

This thesis includes work that has been published in peer-reviewed publications written

by the author. These publications are as follows:

1. Alsuhibany, S. A., Alonaizi, A., Morisset, C., Smith, C., and van Moorsel, A.

“Experimental Investigation in the Impact on Security of the Release Order of

Defensive Algorithms,” Proceeding in 3
rd

 IFIP International Workshop on Se-

curity and Cognitive Informatics for Homeland Defence (SeCIHD’13), volume

8128 of Lecture Notes in Computer Science (LNCS), Springer, September 2–6,

2013, pp. 321–336.

2. Alsuhibany S. A., and van Moorsel, A. “Modelling and Analysis of Release Or-

der of Security Algorithms Using Stochastic Petri Nets,” Proceeding in 8
th

 In-

ternational Conference on Availability, Reliability and Security (ARES’13),

IEEE Computer Society, September 2-6, 2013, pp. 437–445.

Chapter 1 – Introduction

13

3. Alsuhibany, S. A., Alonaizi, A., Morisset, C., and van Moorsel, A. “Optimizing

the Release Order of Defensive Mechanisms,” Proceeding in 29
th

 Annual UK

Performance Engineering Workshop (UKPEW’13), 4
th

 Jul, 2013, pp. 34–41.

4. Alsuhibany, S. A., Morisset C., and van Moorsel, A. “Detection of Attack

Strategies,” Proceeding in 8
th

International Conference on Risks and Security of

Internet and Systems (CRiSIS’13), IEEE Computer Society, October 23-25,

2013, pp. 1–8.

In addition to peer-reviewed papers, a technical report has been written and published in

the School of Computing Science Technical Reports Series.

1. Alsuhibany, S. A., Alonaizi, A., Smith, C., and van Moorsel, A. Optimizing the

Release Order of Defensive Mechanisms. School of Computing Science. 2012.

School of Computing Science Technical Report Series 1333, available at:

http://www.cs.ncl.ac.uk/publications/trs/papers/1333.pdf

This was a preliminary version of the results of validating the main hypothesis and the

derivation of the optimisation algorithm.

1.7 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 provides a relevant literature review and offers background information that

allows the reader to understand the topics and related work in the area of defensive

mechanisms. The chapter presents examples of different interactive defensive mecha-

nisms. It focuses on the effectiveness of information order in the education and psy-

chology fields, as well as shedding light on the learning curve theory. It also explains

related works on game theory, attack modelling and attacker’s behaviour in terms of

time-to-compromise a system. Moreover, it mainly highlights the anomaly detection

technique work on hybrid, machine learning based classifiers in which an unsupervised

machine learning algorithm is applied as a first layer for observing an attack attempt.

Finally, stochastic modelling formalisms and a number of tools that are used for sto-

chastic modelling and solving are presented.

http://www.cs.ncl.ac.uk/publications/trs/papers/1333.pdf

Chapter 1 – Introduction

14

Chapter 3 describes the controlled experimental study, which examines the hypothesis

that the time spent on breaking a set of defensive algorithms depends on the order in

which these algorithms are released. This chapter explains the experiment setup, includ-

ing the system developed and the experiment procedures, including data collection. The

findings of this evaluation study are detailed and discussed in the chapter.

Chapter 4 introduces the proposed model of the release order of security algorithms

using Stochastic Petri Nets (SPN). In this chapter, the SPN model, assumptions and per-

formance metric calculations are described. Based on the results achieved from the ex-

perimental study, the model is parameterised. Furthermore, the results obtained by

evaluating the SPN model are presented.

Chapter 5 explains the approach to the derivation of optimal release strategies. Based

on a continuous time Markov Decision Process, a tailored optimisation algorithm is

provided. An application is presented based on the empirical results of the experimental

study. This optimisation algorithm can efficiently obtain the optimal release strategies

for any given model.

Chapter 6 demonstrates the Attacker Learning Curve (ALC) that is formed by accumu-

lative manipulation notions of an attacker. This ALC is derived from the data collected

in Chapter 3. This chapter also describes an Attacker Learning Curve Model (ALCM)

that is inspired by a previous model used for describing developers’ learning curve dur-

ing software development.

Chapter 7 shows the proposed attack strategy detection approach that builds upon the

ALC concept of knowledge that is presented in Chapter 6. The results of evaluating this

detection approach include not only an ALC experiment-based, but also an ALCM

model-based. A discussion regarding the probability results of classifying cor-

rect/incorrect classified samples is also provided.

Chapter 8 concludes the thesis by examining all research questions thoroughly and in

parallel to meet the research aim and objectives set out earlier. Implications of this work

and the benefits of the findings will also be discussed. Also, this final chapter includes

all contributions of this thesis to this field of study followed by several possible future

research avenues.

15

Chapter 2. BACKGROUND AND

LITERATURE REVIEW

This chapter provides background information and a literature review related to the re-

search conducted in this thesis in order to give the context for the problem of interactive

defensive mechanisms. The background gives information about the theoretical and

practical problems for the defender of the system, with regard to the time needed to

break a set of algorithms, and for the attacker, with respect to the knowledge gained.

The fundamental concepts used in this thesis are introduced, and the relationship be-

tween these concepts is investigated. The relevant literature pertaining to these concepts

is then reviewed, drawing from several disciplines including: presenting different per-

spectives on the motivations behind investigating the learning acquisition process (such

as learning curve theory); describing different quantitative security techniques used by

researchers (such as Time-To-Compromise-System); and presenting approaches to de-

tect anomaly attacks in order to improve the protection of a system. Such an approach

differs from previous works, which focus on concepts and methodologies from the per-

spective of a single discipline. The value of this cross-disciplinary approach is to pro-

vide a theoretical and practical basis for the study of interactive defensive mechanisms

in a secure system.

The remainder of this chapter is structured as follows. Section 2.1 gives an overview

regarding attackers, defenders and their motives. Section 2.2 highlights the definition of

a defensive mechanism and interactive defensive mechanism with several examples.

Section 2.3 presents the learning acquisition process with respect to the learning curve

theory, a problem-based learning approach and the effectiveness of information order in

the learning process. Section 2.4 discusses the quantitative security methodology of at-

Chapter 2 – Background and Literature Review

16

tack modelling. Section 2.5 outlines anomaly detection techniques in which an unsuper-

vised machine learning algorithm is utilised as a first layer for observing an attack at-

tempt. Section 2.6 explores stochastic modelling formalisms, and then describes those

that are relevant to this thesis. This section also summarizes a number of tools used to

build a model. Finally Section 2.7 concludes this chapter.

2.1 Attackers, Defenders and their Motives

In general, the importance of utilising the Internet as an integral way of conducting

daily business has increased continuously in several areas including banks, schools and

services providers. However, it is not only those with good intentions who can connect

to the Internet, but also those with malicious goals. Since the Internet has become ubiq-

uitous, computer security has become more important than ever. Security researchers

have therefore long been interested in understanding what an attacker can do to the

Internet and what can be done to prevent attacks through defenders. In light of this, the

definition of attackers, defenders and their motives are presented in the following sub-

sections.

2.1.1 Attackers

The term ‘attacker’ is defined as people who attempt to compromise the confidentiality,

integrity, or even control of a computer network without its owner’s knowledge [9].

Although this definition reflects a very broad umbrella that covers people with very dif-

ferent backgrounds and motivation, a possible classification of this definition is pro-

posed in [135] as shown in Table 2.1. The following explains briefly each attack type

that is shown in Table 2.1.

In an early period of networks and the Internet, Gray Hat hackers dominated the at-

tacker scene [9]. Curiosity and fame were key in motivating these attackers who were

often asocial individuals. Furthermore, Script Kiddies mimic hackers for fame by using

self-developed tools. When a widespread device, such as a game, is protected, a

Cracker removes the protection of this device. Nowadays, this concept has been ex-

tended to include various activities such as blackmailing individuals and stealing money

from bank accounts. The Malicious Users and system administrators are an important

class of attacker. This is because attackers are inside an organisation; therefore, the po-

Chapter 2 – Background and Literature Review

17

tential for causing damage can be high. For example, malicious users can steal corporate

secrets or costumers’ data [9].

Table 2.1: Attacker Types [135].

Actor Description

Script Kiddie Often young, no sophisticated skills, motivated by fame.

Gray hat hacker
Semi-Professional, criminal intent, sophisticated attack tools

and programs.

Cracker Modifies software to remove protection.

Malicious user Inside organisation, criminal intent.

Malicious system

administrator

Control of network, criminal intent, potentially significant

damage.

2.1.2 Defenders

Ideally, defensive actions should take place against security issues that are raised by

attackers, when using a networked system. Indeed, the responsibility for securing net-

work and systems lies with the system administrators. In addition to configuring and

monitoring the networks against attacks, the system administrators are responsible for

enforcing formal and informal security polices and educating users on possible vulner-

abilities [18].

2.1.3 Motivation of Attackers and Defenders

The motivation of attackers seems difficult to be determined. In particular, several

places indicate that they are very appealing to attacker such as law enforcement and de-

fence department. Also, as some systems are easy to be attacked, attackers use them as

targets [139].

There are several challenges of network security from the defender’s perspective. One

of these challenges is the lack of motivation. This challenge partly stems from the diffi-

culty in quantifying the value added by network security. Furthermore, misalignment of

incentives is another challenge. That is, since several researchers exaggerate the risks

for their own benefits, management usually has an incentive to cover up security

breaches. There is thus a huge gap between system administrators and people suffering

security breaches (e.g., customers of a bank) [9].

However, various recent optimistic developments for defensive mechanisms have taken

place. Firstly, the level of awareness of network security has increased in different ar-

Chapter 2 – Background and Literature Review

18

eas, ranging from government and business to the general public. Secondly, perceiving

that security is an important feature leads to making demands for secure networks and

systems. As a result of this, security services for both organisations and individuals have

emerged. Finally, the nature of emerging security facilities, whether for individuals or

organisations, supports dynamic prevention and improved response defence [9].

2.2 Defensive Mechanism

Given the importance of both computer security and the existing vulnerabilities, this

section presents the definition of a defensive mechanism, interactive defensive mecha-

nism and examples for interactive defensive mechanisms.

2.2.1 What is a Defensive Mechanism?

A defensive mechanism, as stated by Bishop in [26], is that which institutes controls

that preserve secrecy, confidentiality, integrity and availability. The interpretations of

these four aspects vary due to the contexts in which they arise. In the computer security

context, these aspects are interpreted as follows [18, 26]:

 Secrecy refers to the effects of the defensive mechanism used to limit the num-

ber of principals which can access information, such as cryptography or com-

puter access controls.

 Confidentiality indicates the concealment of information or recourses against an

unauthorised person.

 Integrity refers to preventing unauthorised persons from modifying the informa-

tion.

 Availability refers to the ability to use the information or resources requested by

the user. The aspect that is relevant to security is preventing Denial of Service

(DoS) attack in which someone might deliberately arrange to deny access to the

information by making it unavailable.

2.2.2 Interactive Defensive Mechanism

Considering the definition of a defensive mechanism, a variety of defensive mecha-

nisms have been developed. Despite the main categories encompassing widely deployed

Chapter 2 – Background and Literature Review

19

solutions including firewalls and antivirus, this subsection essentially reviews the inter-

active defensive mechanism type that is pointed out in Chapter 1. In particular, based on

the predicted results from the confusion matrix that is shown in Figure 1.1, defensive

mechanisms are categorised into two major types: Assertive and Predictive. As men-

tioned previously, the results of an assertive defensive mechanism are always a TP pre-

diction result or TN prediction result, such as an access control system restricting under

a well-defined policy. On the other hand, due to several fundamental tradeoffs in de-

signing a defensive mechanism, as summarised in Table 2.2 [9], a predictive defensive

mechanism can also include FP prediction results and FN prediction results. The follow-

ing sheds light on the tradeoffs indicated in Table 2.2 that cause a FP prediction result

and a FN prediction result, as well as a TP prediction result and a TN prediction result.

Table 2.2: Basic Security Tradeoffs [9].

Tradeoff Security versus

Usability Difficulty of use and mental overhead

Accessibility Access restrictions based on location or role

Overhead Costs on system and network resources

Economics Monetary and manpower costs

Typically, usability represents a basic tradeoff that lies between security risk and ease of

use, where additional security mechanisms impair usability, therefore making the sys-

tem less usable for its user. A real-life example is when the user of a computer network

wants to access data easily while expecting the sensitive data to be protected from unau-

thorised access. Since the application of such defensive mechanisms is for achieving a

satisfactory level of security between the user and sensitive data, a level of usability is

sacrificed [9].

Accessibility is another factor that needs to be balanced in the network security, where a

service is accessible to as many people as possible. For instance, a spam email can rep-

resent a downside to the unrestricted accessibility of a network, while a network with

restricted accessibility that protects users against spam emails can have accessibility

tradeoffs.

Chapter 2 – Background and Literature Review

20

Furthermore, the overhead that is caused by security systems with regard to system and

economic resources is also an important tradeoff. As such, the defensive mechanism

used, such as antivirus or firewall, utilises both network and system resources, such as

bandwidth and memory. Consequently, the system administrator needs to maintain the

defensive mechanism, even though it is open source and free [9].

In addition to the aforementioned fundamental tradeoffs, a number of tradeoffs that can

occur during the operation of defensive mechanisms need to be taken into account. For

instance, a basic performance criterion for an intrusion detection system is the FP pre-

diction result. The tradeoff can be a decrease in the FP prediction result, which leads to

decreasing the system’s sensitivity, and increasing the FN prediction result, which in

turn leads to decreasing the system effectiveness, as shown in Figure 2.1. As a solution,

upper bounds for the FP prediction result and lower bounds for the FN prediction result

should be determined according to the specifications of the deployed network.

Figure 2.1: An example Tradeoff in Intrusion Detection System [9].

Hence, the predictive defensive mechanism is divided into two types: interactive defen-

sive mechanisms and non-interactive defensive mechanisms. In the interactive defensive

mechanism, the attacker can get feedback from the system after each attempt, whether

the attempt passes through the defensive mechanism or not. This feedback may be a

simple Boolean response or may include a reason for the failure. Accordingly, the feed-

back plays an important role in breaking this type of defensive mechanism gradually

over time. In contrast, with a non-interactive defensive mechanism, the attacker cannot

obtain feedback from the system. For example, in antivirus systems, the prediction re-

sults of these systems can be observed by only the user. Also, in airport security identi-

fication devices, the prediction results are observed only by the responsible person be-

hind these devices. As noted previously in Chapter 1, this thesis focuses mainly on the

Chapter 2 – Background and Literature Review

21

problem of the interactive defensive mechanism. Therefore, the following provides sev-

eral examples of interactive defensive mechanisms.

2.2.3 Examples of Interactive Defensive Mechanisms

Despite the fact that there are several interactive defensive mechanisms, this section

outlines those most widely deployed, including CAPTCHAs, Spam-Filters and Anti-

Phishing systems. Moreover, these mechanisms provide an indication to systems that

are eventually breakable over time, as mentioned in Chapter 1.

CAPTCHAs

In 1996, Moni Naor was the first person who proposed to use automated Turing tests to

verify that a human is in the loop [101]. For the same reason, the CAPTCHA system

was developed. CAPTCHA is a Completely Automated Public Turing test to tell Com-

puters and Humans Apart. It is a program that generates and grades tests that humans

can pass easily, whereas computers cannot [143]. CAPTCHA is defined formally in

[22] by Baird and Popat. Since then, it has been established for several applications; for

instance, it protects against spammers who abuse email accounts by writing programs

which automatically sign up for thousands of email accounts for this purpose. As a re-

sult, CAPTCHA plays a significant role in reducing spam and has been adopted by

various websites, including Microsoft, Google, and Yahoo.

A high-quality CAPTCHA must satisfy two main requirements: robustness and usabil-

ity. The robustness aspect is the strength of CAPTCHAs to defend against adversarial

attacks, while the usability aspect is, by definition, in the effortlessness for humans to

pass its challenges.

So far, three main types of CAPTCHAs have been deployed. The first is Text-based,

which consists of sophisticated distorted text images that are unrecognisable to even

state of the art of pattern recognition programs, though recognisable to users’ eyes. The

users are typically required to perform a text recognition task to pass these tests. Figure

2.2 shows an example of a text-based CAPTCHA.

Figure 2.2: An example of a text-based CAPTCHA (Hotmail, 2013)

Chapter 2 – Background and Literature Review

22

The second type is Image-based, which consists of images that are unrecognisable to

state of the art of image recognition programs, but remain recognisable to users. The

users are typically required to perform an image recognition task to pass these tests. For

example, PIX is one of the first Image-based schemes; more details about PIX and EPS-

Game, which are used for creating the required image database, can be found in [144].

Figure 2.3 shows an example of an image-based scheme.

Figure 2.3: An example of an image-based CAPTCHA [76].

The third type is Sound-based and consists of sophisticated distorted speech that is

again unrecognisable to state of the art of speech recognition programs, but recognisable

to users. Users are typically required to perform a speech recognition task to pass these

schemes. For example, a word is said and the user must type the word [35]. These sys-

tems are usually used alongside text-based schemes for disabled people.

Although developers have proposed several mechanisms to create more robustness

CAPTCHAs against the attackers, a number of successful attacks have been reported.

For example, Moy et al. [100] defeated EZ-Gimpy (99% success rate) and the 4-letter

Gimpy-r (78% success rate). In addition, a number of CAPTCHAs have been broken

[150] by counting the number of pixels of each segmented character, achieving a suc-

cess rate of almost 100%. More recently, a systematic evaluation methodology has been

applied in [32] to 15 current CAPTCHA schemes from popular web sites, in which the

authors found that 13 of these schemes were vulnerable to automated attacks.

Therefore, once a new CAPTCHA is released, a new attack is developed. In light of

this, Alsuhibany proposed in [10] a CAPTCHA developing system, as shown in Figure

2.4, which shows the targeted area that satisfies security and usability aspects, although

Chapter 2 – Background and Literature Review

23

as a result of this, once the developed scheme is released, an attack is improved and

subsequently the released scheme is broken.

Figure 2.4: CAPTCHA Developing System [10].

Spam-Filters

Despite the fact that CAPTCHAs are applied to protect against spammers who abuse

email accounts, unsolicited emails have become a serious problem with tangible costs

felt by virtually every internet user. Several approaches have been proposed by re-

searchers for filtering unsolicited emails. These approaches are classified into two major

methods [4]. The first method is the reputation-based filters that rely on information

outside of the content of the individual email messages. For example, origin based tech-

niques classify spam email based on network information including black lists [42] and

white lists [51, 116]. Furthermore, social networks aim to assign to each message a

probability of it being spam, based on the past history of the user. Implicit techniques

[82] and explicit techniques [52] are examples on the social network method. Besides

this technique, traffic analysis is used in [103] to identify when a host or network issues

an abnormally large number of emails. Although this method can mitigate the impact of

spam email, studies in [61] and [52] stated numerous disadvantages can take place for

the black list and white list.

In contrast to the reputation-based filter, content-based filters detect spam email by ex-

amining the content of the email regardless of its origin. For example, in heuristic fil-

ters, an email is classified as spam by searching for patterns that are commonly identi-

fied in spam, such as in [42]. For fingerprinting filters, spam emails are detected by

computing and comparing the fingerprint of any incident email, for example, via an ap-

proximate or exact hashing algorithm or digest [44]. Moreover, machine learning filters

aim to automatically derive spam and not spam classifiers, therefore avoiding the hu-

Chapter 2 – Background and Literature Review

24

man labour required to maintain rule-based filters. There are several categories of ma-

chine learning including: statistical filters [50], genetic algorithms [103], artificial im-

mune systems [75], and artificial neural networks [75]. Density-based clustering [152]

is considered on the server side, which can process hashed versions of messages. As

content-based filters can detect spam with such accuracy, spammers are increasingly

devising attacks to thwart them. For example, four groups of attacks have been intro-

duced in [147]: tokenization, obfuscation, weak statistical and strong statistical. Fur-

thermore, an extensive survey has been conducted in [41] on content-based spam filters.

This survey concludes that, as computers improve continually and processing power

becomes cheaper, it may become more likely that the better developed mechanisms

against spam-emails can be more widely employed. However, it seems that 100% accu-

racy is not expected to be achieved by any automated filter or even a combination of

filters (e.g., naïve Bayes and genetic programming). The reason behind this is the

changing nature of spam and improving attacks on statistical filters.

Moreover, Yeh et al. observed and analysed in [151] a large number of spam-emails.

For each spam email, they collected source IPs, the URLs within the emails, and the

web sites of the URL. Figure 2.5 illustrates the geographic distribution of the spam

source IP addresses. They observed by tracing some spam campaigns that most are

likely manipulated by various automatic programmes.

Figure 2.5: Source of IP addresses of spam emails [151].

In 2012, Caliendo et al. investigated in [33] the cost impact of spam filters by measuring

the effect of information system technologies in organisations. They found the cost of

deploying a SPAM filter within a particular organization to be approximately fifteen

thousand Euros for the first year, which means that while the security officer must usu-

Chapter 2 – Background and Literature Review

25

ally work within a given budget constraint, and has therefore a limited number of de-

fence mechanisms to deploy, there is a need to investigate a method to mitigate this di-

lemma.

Anti-Phishing

Phishing attack is the king of the social-engineering attack in which people are tricked

into sharing sensitive information or installing malware on their devices by using a

spoof email message [63]. Phishing attack is increasingly pervasive and sophisticated.

That is, it has spread further than email messages by means of SMS, instant messaging,

social networking and massive multiplayer games [60].

To protect users against this attack, a number of Anti-Phishing algorithms have been

developed. For example, Fette et al. developed in [49] the first email phishing filter.

Afterwards, blocking phishing sites was proposed as a defence mechanism against

phishing attack. As such, numerous commercial browsers are designed to block phish-

ing attempts by means of a number of approaches (e.g. [1]). Figure 2.6 shows an exam-

ple of a passive warning page against a suspected unsafe site. Since these approaches

are installed in browsers, their efficiency can be evaluated empirically. For instance,

Sheng et al. examined in [133] the most important block-lists and browser tools, show-

ing that zero-hour protections achieved by block lists had a TP (i.e., True Positive) rate

of less than 20%. They found that, despite the fact that deployed heuristics were rather

effective in identifying phishing attack attempts, they were simply warning people in

web browsers rather than blocking probable phishing sites.

Figure 2.6: An example of a passive warning page vs. a suspected unsafe site [142].

Chapter 2 – Background and Literature Review

26

In light of the protection approaches against phishing attacks, taking down phishing

sites has also been proposed by several organizations. Therefore, end users who click on

a phishing website should be shown a message such as “The requested page is not

available” [63].

Furthermore, a very recent broad survey conducted in [74] reviewed a number of anti-

phishing software techniques. This survey concluded that applying machine learning

techniques as a defence mechanism against phishing attack is promising due to their

effectiveness with respect to classifying the phishing attack in the publically known lit-

erature.

For phishing attack against costumers, the Anti-Phishing Working Group APWG is an

international consortium of law enforcement, industry and academic researchers de-

voted to combating Internet scams and online fraud [19]. This group stated that the peak

was in 2010 where APWG identified more than 115,000 unique phishing sites world-

wide [19, 85]. In spite of this, phishing costs varied widely in terms of the expected

damage, ranging from $61,000,000 per year to $3,000,000,000 per year in the U.S. [60].

Security experts and phishing attackers are in a rat race nowadays. Since security ex-

perts make great efforts to develop and improve techniques to detect phishing and spam

attacks, attackers are continually learning new techniques and consequently changing

their strategies [20]. Although most scientific papers (e.g., [117]) emphasize that train-

ing and education overcome the human weakness to some extent regarding phishing

attacks, updating the detection algorithms continually can improve human knowledge in

the fight against phishing attacks.

Given these examples, attackers augment their knowledge of the rules of the algorithm,

which is used by the system, by receiving feedback as a result of the interaction between

them and the algorithm. In order to determine the new rules, the attacker must repeat

this process of learning acquisition. Therefore, the learning acquisition process plays an

important factor in this thesis. As stated previously in Chapter 1, the longer it takes for

the attacker to acquire the necessary knowledge regarding the rules of the algorithm, the

longer the system is protected from misuse. Accordingly, since the work in this thesis

considers using a learning acquisition process as a rationale in Chapter 1, an overview

of this process is presented in the next section.

Chapter 2 – Background and Literature Review

27

2.3 An Overview of the Learning Acquisition Process

The first serious discussions and development of learning theories emerged during the

1970s with Rumelhart and Normans [124]. These theories argued that knowledge is

structured in the form of schemata (i.e. a mental structure of preconceived ideas). The

schemata can be modified in three ways: Accretion, Tuning and Restructuring. Accre-

tion takes place when a learner has certain disjointed ideas about the material to be

learned, with gaps that need to be filled in order to learn. This kind of learning has also

been termed gap filling [37]. Tuning illustrates the evolutionary changes for interpreting

information. Finally, Restructuring refers to modifications in knowledge that include

the creation of new structures that are constructed either to account for new information

or to reinterpret old information. Therefore, during the process of learning, an individ-

ual’s understanding of the domain can change, usually resulting in a degree of restruc-

turing of knowledge [145].

In light of the aforementioned theory, the following subsections discuss related con-

cepts, which will be discussed with results of Chapters 3, 4 and 6. First of all is the

learning curve theory. In addition, the importance of practical experience in learning is

presented in this section by Problem-Based Leaning (PBL) as one of the best known

self-directed learning approaches. Furthermore, the effectiveness of information order

on the intentional and incidental learning concepts is discussed.

2.3.1 Learning Curve Theory

Learning Curve Theory is an early investigation of learning concentrated on the per-

formance of individual subjects. This investigation shows that the time required to exe-

cute a task reduces at a decreasing rate as experience of the task improves. Therefore,

the learning curve signifies a graphical illustration of increasing the learning with ex-

perience.

In particular, the term ‘learning curve’ is exploited in two significant ways: where a

body of knowledge is increased over time, or where an identical task is repeated in a

number of trials [118]. There is a large volume of published studies describing the role

of the learning curve in two main fields: psychology and economics. These are outlined

in the following.

Chapter 2 – Background and Literature Review

28

Learning Curve in Psychology and Cognitive Fields

In 1885, Wozniak was the first person to explain the learning curve [148]. He conducted

an experiment that involved memorising a series of nonsense syllables, then recording

the success over a number of trials. Accordingly, the yield results of this experiment

were represented by a diagram of learning against trial numbers. Accordingly, learning

curve theory is involved explicitly or implicitly in most of the studies discussed previ-

ously.

Several learning curve models have been investigated in the cognitive science field. For

instance, Card et al. [34] investigated the learning which occurred while using cursor

positioning devices by testing the performance on the continuous movement devices

against the predictions of Fitts’s Law. Four devices were evaluated for this study. As a

result, the mouse was found to be fastest on all counts and also to have the lowest error

rate. Another study by Anderson proposed in [16] a framework for skills acquisition.

The proposed framework includes two main stages in the improvement of cognitive

skills. The first stage is procedural in that domain knowledge is directly personified in

procedures for performing the skill, whereas the other stage is a declarative one, in

which the facts about the skill domain are interpreted. This framework is based on the

Adaptive Control of Thought-Rational (ACT-R) production system [17] in which the

distinction between procedural and declarative knowledge is essential. The declarative

knowledge represents a propositional network, while procedural knowledge represents

the productions.

Learning Curve in the economic Field

In 1936, Theodore Paul Wright [149] was the first to attempt to formulate relations be-

tween learning variables in quantitative form. He explored the impact of learning on

production costs in the aircraft industry. That is, the relationship between the amount of

time it takes an organization with a learning rate percentage of r to produce the n
th

 item

can be expressed by an operation manager as an equation:

Tn = T1 (n
b
)

where Tn indicates the time required to complete the n
th

 task, and b indicates ln(r)/ln(2),

where r indicates the learning rate percentage.

Chapter 2 – Background and Literature Review

29

In general, the majority of learning rates r range between 70% and 90%. Usually, this

learning percent is determined by statistical analysis of actual cost data for similar prod-

ucts. Stewart et al. proposed in [137] guidelines for estimating learning rates in different

situations, as shown in Table 2.3.

Table 2.3: Guidelines for estimating the learning rates in different fields [137].

Field Learning rate

Aerospace 85%

Shipbuilding 80-85%

Complex machine tools for new models 75-85%

Repetitive electronics manufacturing 90-95%

Repetitive machining or punch-press operations 90-95%

Repetitive electronic operations 75-85%

Repetitive welding operations 90%

Raw materials 93-96%

Purchased parts 85-88%

In consideration of mathematical models, Hackett compared in [57] the efficiency of a

selection of models of learning. One of these models was an accumulative learning

model proposed by Restle and Greeno [120]. They posited that all information on the

activity being learnt is accumulated. Furthermore, a number of methods have already

been suggested to model and assess the software development process. For example,

Hanakawa et al. proposed in [58] a simulation model for software development that

takes into account the developer’s learning curve; thus, it can be used to compute a de-

veloper’s productivity. Particularly, they proposed a knowledge model that shows quan-

tity of gain to a developer’s knowledge by executing an activity. This quantity of gain to

the developer’s knowledge is derived from the relationship between bij, which is the

developer’s experience level i while performing the activity j, and , which is the re-

quired knowledge level to execute this activity. This model is based on the following

assumptions:

 If bij is higher than , the developer i does not achieve any new knowledge by

executing activity j. This means that the developer’s knowledge level is un-

changed.

Chapter 2 – Background and Literature Review

30

 If bij is lower than , the developer i gains a quantity of new knowledge by exe-

cuting the activity j. This means the developer’s knowledge level is increased.

The amount gained depends on the gap between the current knowledge and the

required knowledge level.

The simulation knowledge model proposed in [58] is defined as follows:

 1

where is the quantity of gain to knowledge of developer i by executing the activ-

ity j, which has knowledge level , at time t; Kij is the maximum quantity of gain to

knowledge of the developer i by executing activity j; bij is the developer i’s knowledge

level about activity j; E is the developer’s efficiency of gain to knowledge by executing

activity j; and is the required knowledge level to execute the primitive activity of ac-

tivity j.

The knowledge level is reset to the developer’s new knowledge level bij at each step:

 bij (t+1) = bij (t) + Lij(t) 2

Therefore, by plotting the level of the developer’s knowledge in time sequence, the de-

veloper’s learning curve during the execution of an activity can be obtained. In the

simulation of this model, the growth of the developer’s knowledge level bij during the

execution of activity j shows the developer’s learning curve, as shown in Figure 2.7. In

this figure, Line (1) shows the learning curve in the simulation in which the growth of

the developer’s knowledge level bij has a great impact on the development progress.

Additionally, when the activity is chosen in ascending order of the required knowledge

level, then the shape of the learning curve will be flat, as shown in Line (2).

Figure 2.7: Learning Curve in the simulation [58].

Chapter 2 – Background and Literature Review

31

Broader Interpretation

The learning curve notion was introduced in the educational and psychology fields, but

this notion has gained a broader interpretation over time. For example, “Efficiency

Curve”, “Experience Curve”, “Improvement Curve”, “Cost Improvement Curve”,

“Learning Curve” and “Progress Curve” are often utilised interchangeably. Generally

speaking, all learning displays incremental changes over time. Furthermore, in the eco-

nomic field, in view of the fact that the development indicates a whole system learning

progress with varying rates of progression, the subject is rates of development. In this

thesis, Attacker Learning Curve concept is developed that will be detailed in Chapter 6.

Since the attackers deal with the released algorithm as a problem needs to be solved, a

Problem-Based Learning approach, which is a widely known self-directed learning skill

curriculum approach in the education field, is highlighted in the following subsection.

The correlation between this approach and our work is discussed in Chapter 6.

2.3.2 Problem-Based Learning Approach

There is also a large volume of published studies describing the role of Problem-Based

Learning (PBL) approach and its significance in improving learning skills. Barrows and

Tamblyn [23] are two of the main theorists behind PBL. They have made a key contri-

bution to the development of the next historical stage of medical education. For this,

they presented in [23] the scientific basis of the PBL approach in medical education. In

addition, they described the methods of problem-based medical learning that have been

developed over the years at McMaster University.

A study by Norman analyzed in [107] three concepts: Problem-solving skills, solving a

problem and the problem-based learning concept. This study referred to problem-

solving skills, as described and measured in medical education, possessing a number of

characteristics. Firstly, a skill should be a general strategy. Secondly, it is applicable in

a variety of situations. Finally, it is independent of the specific knowledge of situations.

Furthermore, this study, supported later by Neville [105], pointed out that despite the

heterogeneity of the extensive literature on PBL, there is certainly sufficient cognitive

psychological evidence to validate this approach of learning. Not only this, but there is

also a significant amount of empirical evidence of effective learner outcomes.

Chapter 2 – Background and Literature Review

32

Brown et al. proposed in [31] the improvement of a new cognitive apprenticeship to

train students’ thinking and problem solving skills to be included in school subjects

such as reading. This study introduces a framework that offers a critical lens for evaluat-

ing both the advantages and the disadvantages of different learning environments and

teaching approaches. Furthermore, this study and others in [77, 29] stated that PBL has

dual importance in helping learners not only to construct knowledge, but also to develop

strategies.

In another major study, Norman and Schmidt examined in [108] the psychological basis

for PBL using theoretical perspectives. As there has been no assessment of the experi-

mental evidence underneath the possible differences in students’ learning that can be

attributed to PBL, these theoretical perspectives are primarily from cognitive psychol-

ogy. They found that there is a strong basis for the idea of the PBL and there is an evi-

dence to support its effect on the learning process.

In consideration of enhancing the value of PBL, Kolodner et al. showed in [77] how the

suggestions of Case-Based Reasoning (CBR) can improve the PBL approach. In par-

ticular, CBR is proposed in [78] as a method for implementing software that can solve

problems based on past experience. This method provides a cognitive theory that situ-

ates learning in reasoning regarding real-world situations. Also, it has several principals,

for example the computational accounts it provides of reasoning activities, particularly

of knowledge access, access to old experience (Cases), and use of old experience in rea-

soning. These principals have been utilized to inform the design of stand-alone learning

environments [132]. However, CBR was not able to describe the teacher’s role and

other issues of classroom practice. As a result, this study found that PBL methodology

could offer principals of practice to go along with CBR’s educational principals. To

achieve the goal of this study by combining PBL and CBR, it is necessary, for example,

to analyze why PBL works can contribute to understanding how to move PBL to a new

environment; as well as to consider the design of computer programs to facilitate the

learning from a problem-solving activities point of view.

Hmelo and Ferrari investigated in [62] how the tutorial process in PBL can be used to

develop higher order thinking skills. This investigation takes into account the role of the

problem, the facilitator role, collaboration among the students, and the importance of

students’ reflection. For example, facilitators are responsible for encouraging all stu-

Chapter 2 – Background and Literature Review

33

dents to be actively involved, encouraging them to express their thoughts and critically

respond to comments of other students. Two forms of guidance are recommended to

assist learners in engaging in meaningful independent learning. The first is that prior

independent learning activities with discussion should be held. The second is that the

location of learning resources may prove useful in learning additional concerning as-

signed learning issues. This study concluded that because PBL places the learning abil-

ity in real-world problems, it is well suited to help students not only to become active

learners, but also to develop strategies and construct knowledge.

In the following subsection, the effectiveness of representing information order in the

learning acquisition process is reviewed.

2.3.3 Effects of Information Order in Learning Process

Following Rumelhart and Norman’s learning theory [124], a number of studies have

investigated whether category learning is influenced by the order in which examples are

presented.

Since this thesis evaluates whether the order in which different defensive mechanisms

are released will impact the time an attacker needs to break each one of them, effects of

information order in the learning process is reviewed in this section in order to be com-

pared with our results in Chapters 3 and 4.

Elio and Anderson investigated in [47] the difference between two models of schema

abstraction
9
: the Generalization model and the Instance-only model. This investigation

was done by conducting three experiments. In the first experiment, the aim was to ma-

nipulate the likelihood of forming category generalization in two different sets of study

exemplars, keeping the similarity of transfer items between two study sets as constant as

possible. In the second experiment, two generalized conditions were constructed: the

first condition, in which forming generalization may be facilitated by blocking, and the

second condition, in which forming generalizations was hindered by random presenta-

tion of instances. In the third experiment, a generalized study set and a control study set

were designed, each with its own transfer item set and the relationship between the

transfer set and the study set was set to be as equivalent as possible for both generalized

and control materials. The results of these experiments are as follows. In the experi-

9 The schema abstraction refers to a mental structure of preconceived idea [47].

Chapter 2 – Background and Literature Review

34

ments 1 and 3, accuracy and confidence on transfer items were better in generalized

condition than in the control condition, whereas in experiment 2, study items were

learned faster and transfer performance was better with blocked presentation than with

random presentation. In all experiments, there was an effect on the similarity of transfer

items to study materials. Furthermore, when training is blocked into groups of mutually

similar examples, then categories are learned faster.

The same authors, Elio and Anderson, evaluated in [48] the effects of information order

and variance on schema abstraction. This evaluation was accomplished by measuring

the transfer performance after different numbers and different types of category exem-

plars had been studied. The stimuli were descriptions of people belonging to one of two

clubs and all the categories were constructed using numerical notation. For example, an

item such as 1113 may translate as “Works for the government, is college educated, is

single, plays chess, like jazz.” To test the effect of category variance on the schema ab-

straction, a large variable category in which different number types both shared many

overlapping features and had unique feature patterns was needed. The results of this

evaluation revealed that transfer performance was better if subjects began with a low-

variance sample and were gradually introduced to the allowable variation on subsequent

samples than if they consistently saw representative samples. On the other hand, this

information order effect may interact with a teach model subject to be more analytical

about the material performed better if their initial and subsequent samples were repre-

sentatives of the category variation.

In 1994, Medin and Bettger examined in [98] the influence of order of examples on old-

new recognition memory
10

. Specifically, there were two groups; each can see exactly

the same set of examples but in two different orders. The first group’s order maximizes

the similarity of successive examples, while the second group’s order minimizes the

similarity. When the sequence of examples has been presented, the participants are

given an old-new recognition test. If shared properties of successively presented exam-

ples are selectively strengthened, the two orders should produce both main effect and

interactions in recognition. This study concludes that a strong learning advantage can be

achieved when training objects are presented in an order that tends to maximize the

similarities between successive examples. Related work on the effect of semantic or-

10 Old-new recognition memory refers to measure item-specific memory, devoid of inter-item associations [98].

Chapter 2 – Background and Literature Review

35

ganization on word recognition is consistent with this prediction. Particularly, when

word lists are compared with words from categories, recognition is better if examples

are blocked by the category than if they are overlapping [102].

Another study by Clapper and Bower investigated in [40] the difference between two

general methods of an unsupervised category learning concept. The first method is

based on learning explicit correlation rules or associations within a stimulus domain.

The second method is based on inventing separate categories to capture the correlation

structure of the domain. The unsupervised category learning is not arbitrarily predefined

by the experimenter; rather, subjects should discover categories or explore a given

stimulus domain concerning a sequence effect. This investigation was accomplished by

experimental studies. There were three conditions: blocked condition, mixed condition

and control condition. In the blocked condition, the stimuli were partitioned into two

categories based on patterns of correlated attribute values. In the mixed condition, in-

stances of both categories were randomly interspersed in the training sequence rather

than being grouped into a separate block. Finally, in the control condition, as none of

the attributes were distinct categories, all attributes of the stimuli varied independently.

The results showed that the overall score of learning was higher in the two correlated

conditions (blocked and mixed) than in the controlled condition. Also, the learning was

higher in the contrast condition than in the practice condition throughout the experi-

ment. Additionally, the learning increased while the number of instances increased.

Moreover, it was clear from the subjects’ performance in this study that diagnostic fea-

tures of many of the fuzzy categories used in standard supervised learning experiments

are often highly unreliable.

To maximize comparison and understanding how memory affects category learning,

Sandhofer and Doumas examined in [131] sequencing training instances experimen-

tally. The results of this experiment indicated that the learning process significantly in-

creases when learning begins by interacting with a limited set of highly similar exem-

plars. However, the process increases more slowly when the instances are distributed

and dissimilar. The results of this study showed that the information order effects were

examined with a symbolic connectionist model of general learning and representation

discovery. In short, this study suggested that when a presentation of examples is ordered

in such a way that discrete instances of a category could be more readily connected in

memory, category learning and discovery are more likely to occur. In addition, begin-

Chapter 2 – Background and Literature Review

36

ning learning by interacting with a limited set of highly similar exemplars leads to more

learning than when instances are distributed and dissimilar.

It is important to recognize that the presentation order effects are especially interesting

in the light of categorization models that emphasize incremental learning from trial to

trial. For instance, Sakamoto et al. examined in [126] how people learn about the vari-

ance of categories based on two basic approaches of explaining the nature of the mind:

the mechanistic and rational approaches. The mechanistic models attempt to simulate

human behaviour using processes analogous to those used by humans, while the rational

analyses attempt to characterize the environment and the behavioural effects that hu-

mans look to optimize. In this study, the authors’ argument was that mechanistic models

are best suited for driving surprising behaviour predictions. Their argument was vali-

dated empirically. The overall results demonstrated that the participants showed sensi-

tivity to category variability and assigned transfer items which lay between two catego-

ries to the higher variability category. This assumes that people can learn the mean and

the variability of each category and use this information to classify new items. Further-

more, although one category was ordered semi-regularly, both ordered and random

fashions had equal variance. Therefore, the difference between the stimuli on successive

trials was small. In short, this study concluded that people assess variability by building

incremental adjustments to memory representation of the source of local comparisons.

Mathy and Feldman recently investigated in [91] the mechanism in which concepts are

learned from examples by manipulating the presentation order. In particular, they intro-

duced the idea of a rule-based presentation order. This idea is a sequence that respects

the internal organization of the examples within a category. In this investigation, the

performance of subjects with the rule-based presentation order was compared with both

the similarity-based and dissimilarity-based orders. The hypothesis behind this was that

the rule-based presentation order would better facilitate the learning process compared

to other approaches, especially in highly structured concepts. As a result, their study

yields a better learning approach compared to the similarity-based order approach that

maximizes the adjacency of the training examples previously found to be most advanta-

geous in artificial classification tasks [47, 48, 98]. Furthermore, the proposed order in

this study was better in terms of learning than the dissimilarity-based order. To show the

results in a meaningful way, the learning curves of all presentation orders, as shown in

Figure 2.8, illustrate the influence of a presentation order on learning. Specifically,

Chapter 2 – Background and Literature Review

37

ranking of effectiveness of the three presentation orders was visible in learning curves

and can be expresses as follows: rule-based similarity-based dissimilarity-based.

More importantly, the three learning curves were statistically distinct.

Figure 2.8: Performance over time for all three presentation order types [91].

The differences between the presentation orders depend on the nature of the concepts

learned. Particularly, the rule-based presentation order gives a substantial benefit in case

the category is highly structured. As such, it contains salient sub-categories around

which the presentation order can be organized. It is more likely that a rule-based presen-

tation is, in effect, a random presentation. However, a similarity order might encourage

a sequence of short-term over specific hypotheses (blind alleys) based on accidentally

contiguous examples, which would impede learning.

2.4 Security Quantification and Attack Modelling

As the work in this thesis considers utilizing a quantitative measure as a target approach

to the release order of defensive mechanisms, this quantitative measure is reviewed in

this section under the attack modelling umbrella.

In the dependability community, there are several well-known and efficient approaches

for quantifying reliability, availability and safety. In the security community, there is a

motivation behind quantified security that is a variation of the following thought: since

we cannot measure it, we cannot control it. In trying to ascertain how well security re-

quirements are met, a significant challenge is to provide an accurate knowledge of secu-

Chapter 2 – Background and Literature Review

38

rity properties in relevant operational settings. To address this problem, the quantifica-

tion of security can be a solution to such needs. Mostly during the past decade, there-

fore, numerous studies have been accomplished on applying the dependability paradigm

to security. Furthermore, it has been claimed in scholarly literature and by leading stan-

dards organisations that such quantification is not only possible, but also beneficial and

can even be necessary for good security management [15, 27, 36, 64, 113]. In this sec-

tion, the importance of attacker behaviour in quantifying security, and the estimation of

the time to compromise a system component that is visible to an attacker and game the-

ory are highlighted.

2.4.1 Security Quantification and Attacker Behavior

The relationship between attack modelling, security quantification and the attacker be-

haviour has been widely investigated [5, 30, 70, 80, 89, 110, 127]. A groundbreaking

paper was proposed by Brocklehurst et al. in [30] as a first attempt towards operational

measures of computer security. They developed a quantitative theory of operational se-

curity by conducting an experiment in which attackers would be allowed to break a sys-

tem under controlled conditions. The Mean Effort to Security Breach as a quantitative

measure is defined and discussed. The study pointed out two significant results: the lack

of quantitative measures for determining operational security and relative security as-

sessment to the reliability domain. In addition, the study stated that quantifying the con-

tribution that is made by different resources, as well as the ability and experiences of the

attacker need more investigation.

Based on empirical data collected from an intrusion experiment, Jonsson and Olovsson

[70] devised a hypothesis on typical attacker behaviour. The hypothesis suggests that

the attacking process can be divided into three phases: the learning phase, the standard

attack phase and the innovative phase, as shown in Figure 2.9. The probability for suc-

cessful attacks in the standard attack phase is expected to be considerable, while in the

learning and innovative phases it is expected to be small. That is, the inexperienced at-

tacker spends more time in the learning phase before actually crossing the attacking

skill threshold, as indicated in Figure 2.10a. On the other hand, the experienced attacker

progresses much faster in the following phases, as indicated in Figure 2.10b.

Chapter 2 – Background and Literature Review

39

Figure 2.9: A typical attacking process [70].

Figure 2.10: The standard attack phase [70].

In order to model the attack behaviour, a study by Sallhammar et al. investigated in

[127] the attacker behaviour that can be integrated in the transition rate matrix of a sto-

chastic model for operational security evaluation. It aims to provide a realistic measure

of operational security and an approach was recommended by the authors to compute

the expected behaviour for rational attackers. In this approach, it is considered that the

attacker rewards the possible costs - if the actions are detected by the system - and the

probabilities of succeeding with particular attack actions.

Almasizadeh and Azgomi developed in [5] a method for quantifying security based on

the assumption that a typical attacker needs time to perform the attack phase. During the

attack, the attacker can be detected by the system; therefore, the overall attacking proc-

ess is interrupted. In addition, a generic model which focuses on evaluating security and

allowing analysis of the security of systems capable of detecting and responding to at-

tacks has been developed in [89].

In 2013, Krautsevich et al. described in [80] their initial ideas on modelling the behav-

iour of an attacker that has uncertain knowledge about a computer system. Their model

is based on Markov Decision Processes (MDP) theory, which will be explained later in

Section 2.6.2, for predicting possible attacker’s decisions.

Chapter 2 – Background and Literature Review

40

Ortalo et al. developed in [110] a tool to evaluate the security of a system based on at-

tacker behaviour. That is, in order to evaluate the quantitative measure characterizing

the operational security based on a privilege graph, it is necessary to recognize the sce-

nario of attacks that can be attempted by a possible attacker to achieve the objective.

Therefore, this study describes a technique for transforming a privilege graph into a

Markov chain. Thus, as a result of a series of atomic attacks on a system, the resulting

Markov chain signifies enhanced privileges gained by an attacker.

Sallhammar et al. presented in [128] a new approach to integrate security and depend-

ability evaluation. Their approach is inspired by all the previous studies and is based on

the underlying assumption that an attacker has a complete knowledge of the system

states, the possible transitions between states and existing vulnerabilities. However, this

assumption might not be accurate in a real life scenario.

Aghajani and Azgomi presented in [2] a high-level stochastic model to evaluate several

significant security measures of a multi-layer. Their model is based on stochastic activ-

ity networks that are a stochastic extension of Petri nets. This model can capture at-

tacker behaviour and the system responses of intrusion tolerant web services architec-

ture. Similarly, Sahner et al. used quantitative modelling techniques in [125] to evaluate

security properties. Additionally, Goseva-Popstojanova et al. proposed in [54] a state

transition model depicting the dynamic behaviour of an intrusion tolerant system. This

model contains a framework defining the vulnerability and the threat set. Several pieces

of work use the concept of the MDP in the context of security. For instance, Kreidl in-

troduced a simple MDP in [81] with only three states (normal, under attack and failure)

and three decisions (wait, defend and reset), which analyses the cost of defence coun-

termeasures against the cost of an intrusion.

Likewise, Roy et al. proposed in [122] an Attack Countermeasure Tree (ACT) to con-

sider both attacks and countermeasures in an attack tree structure. They devised several

objective functions based on greedy, branch and bound techniques. The aim of these

functions is to reduce the number of countermeasures, reduce investment cost, and ex-

ploit the benefit from implementing a certain countermeasure set. In the design of this

study, each countermeasure optimization problem can be solved not only with probabil-

ity assignments to the model, but also without this probability. However, their solution

focuses on a static attack scenario and predefined countermeasure for each attack.

Chapter 2 – Background and Literature Review

41

2.4.2 Time-To-Compromise System

In recent years, there has been an increasing amount of literature on the time taken for

an attacker to compromise a system and misuse its resources. McQueen et al. proposed

in [96] a new model for estimating the time to compromise a system component that is

visible to an attack. This study provides a function of known and visible vulnerabilities

and attacker skill level that can estimate the expected value of the time-to-compromise.

The proposed model suggests a number of strategies for reducing the risk of cyber

threats. For example, the time necessary for an attacker to compromise components can

be increased theoretically by government restrictions on the publication of valid ex-

ploits. Moreover, the authors emphasized that unless there is a constant effort to disable

services as soon as a new vulnerability is discovered, the dynamic nature of cyber secu-

rity is decreasing over time. However, there were a number of downsides in the model,

such as the estimation of available exploits to various skill levels of the attackers was

not validated.

Kadota et al. considered the constrained regret-optimization problem for a semi-Markov

decision process in [71]. As such, the expected regret-utility of the total reward earned

until the reaching time to a given absorbing subset is minimized subject to multiple ex-

pected regret-utility constraints. Therefore, a saddle point theorem is achieved and the

existence of a constrained optimal policy proved by introducing a corresponding La-

grange function.

In 2006, McQueen et al. suggested in [97] a methodology for obtaining a quantitative

measurement of the risk reduction. This risk reduction is achieved when a control sys-

tem is modified with a view to enhancing cyber security defence mechanisms against

attackers. Furthermore, in this study as well as in [96], it was recommended that the

attackers’ skill levels should be considered when determining the mean time to com-

promise a system. In addition, these studies pointed out that a number of techniques

proposed for estimating cyber security are likely to require considerable details about

the target system. This can make these techniques unmanageable as a comparative tool

for multiple systems. Therefore, this was addressed by Leversage and Byres in [83] by

offering a model which focuses on being a comparative tool and becomes a more gener-

ally applicable methodology, though still allowing meaningful comparisons. They stated

that the selection of time as the unit of measurement is fundamental to the model’s

Chapter 2 – Background and Literature Review

42

strength. Similarly, Nguyen and Sood proposed in [106] a quantitative analysis of Self-

Cleansing Intrusion Tolerance (SCIT) that is time-based intrusion tolerance architecture.

By utilizing SCIT to systems, engineers are offered the capability of adjusting the sys-

tem of intrusion tolerance specified by Mean Time To Security Failure (MTTSF).

Paulauskas and Garsva provided simulation results in [112] to evaluate the computer

system security by using Mean Time-to-Compromise criteria. They highlighted that the

effect of the attack depends largely on the attacker’s skill level. Thus, their study sug-

gests a normal skill level distribution in the skill group.

2.4.3 Game Theoretic Security Approach

Game theory is a mainstream research topic in the economic community. Economic

concepts have been applied to computer security to address the analysis of strategic

choices between attackers and defenders at an assumed cost. As game theory views the

interactions between attacker and defender as two players, it can provide a mathematical

framework for analyzing and modelling network security problems. In traditional net-

work security solutions, McInerney et al. discussed in [94] one of the first approaches to

applying game theory to network security. Feedback Reasoning for Information Assur-

ance Response System is proposed (FRIARS). A FRIAR is an automatic Information

Assurance technique and is based on a MDP.

Lye and Wing modelled in [88] the interaction between an attacker and a defender as a

two-player stochastic game. By using their model, the best-response strategies for the

players (attacker and defender) can be computed and then the results can be used by the

administrator to enhance the security of the network. Generally, their study showed how

a very general game-theoretic formalism can be applied to the security concept.

Alpcan et al. investigated in [6] the problem of Nash Equilibrium Design for a general

class of games from an optimization and control theoretic perspective. Specifically, this

study considered how long it took the game to approach a Nash equilibrium when many

players were trying to solve it in a distributed way. A feedback system approach is sug-

gested as a control input to make the system robust and to control the system’s progress.

A study by Jiang et al. examined in [67] an active defence using an approach to attack

prediction. In particular, the study systematically identifies cost factors of a cost-

sensitive model and introduces the attack strategy prediction and optimal active defence

Chapter 2 – Background and Literature Review

43

strategy decision algorithm. In addition to this study, Alpcan and Baser utilized in [7]

the Min-max Q learning approach in order to gradually improve of the defender’s qual-

ity. This work can handle reactive defence actions, while Shive et al. proposed in [134]

proactive defence measures based on a game theory inspired defence architecture.

A game theory is also recommended in [129] as a method for modelling the probabili-

ties of expected attacker behaviour in a quantitative model. This method models the

penetration attempt as a series of intentional state changes. These changes lead the se-

cure system from an assumed secure state to a state in which one or more of the systems

aspects are attacked. At each intermediate stage of the attack, the attempt might be de-

tected by the system to bring the system back to the first secure state.

Sallhammar et al. proposed a game theory approach in [130] to attack modelling as a

means for computing and therefore predicting the expected attacker strategy. In their

study, the possible use of the Nash Equilibrium as a part of the transition probabilities in

a state transition model is defined.

The interaction of an attacker and the network administrator as a repeated game is mod-

elled in [8] with finite steps or infinite steps. In particular, the study is focused on estab-

lishing a quantitative approach with a practical degree of abstraction in order to analyse

the underlying principles for the development of Intrusion Detection Systems (IDSs).

By utilizing a modified version of this study, Bloem et al. introduced in [28] an Auto-

matic or Administrator Response (AOAR) algorithm for allocating the time that a sys-

tem administrator has available to respond to attacks. Although it lays out a practical

implementation of an algorithm and demonstrates its utility, the study lacks a formal

theoretical framework.

Roy et al. recently conducted a comprehensive survey [123], concluding that most of

the current research in game theory are based on static games, games with perfect in-

formation, or games with complete information.

There are a number of detection techniques that can be used to improve the protection

of a system, such as Anomaly Detection Techniques. Due to the fact that a type of

anomaly detection technique is part of the work undertaken in this thesis, as shown in

Chapter 7, it is reviewed in the next section.

Chapter 2 – Background and Literature Review

44

2.5 Anomaly Detection Techniques

There exist a considerable number of studies that consider a hybrid
11

 design approach

based on anomaly detection techniques, as shown in [84], but these formulations do not

fit exactly with the approach in this thesis that shown in Chapter 7. Thus, this section

mainly highlights the related works on hybrid machine learning based classifiers in

which an unsupervised machine learning
12

 algorithm is applied as a first layer for ob-

serving an attack attempt, as summarised in Table 2.4.

Table 2.4: Hybrid approaches in which an unsupervised machine learning algorithm is

applied as a first layer.

Author Method 1 Method 2 Evaluation Methodology

Khan et al. [73] Unsupervised Supervised Simulation Clustering, SVM

Liu et al. [86] Unsupervised Supervised * Clustering, SOM

Liu and Yi [87] Unsupervised Supervised Simulation SOM, Neural

Gunes et al. [55] Unsupervised Unsupervised ** SOM

Horng et al. [65] Unsupervised Supervised ** Clustering, SVM

Zhang et al. [153] Unsupervised Supervised ** SOM, KAA

Ours [14] Unsupervised Supervised Real data
Density-based,

DLDA

* 1998 DARPA Intrusion Detection Evaluation Data and TCP dump raw data.

** KDDCUP99 training data.

A Dynamically Growing Self-Organizing Tree (DGSOT) algorithm is used in [73] to

train Support Vector Machines (SVM) for classification and reducing both false nega-

tives and false positives. Similarly, Liu et al. proposed in [86] an IDBGC algorithm (In-

trusion Detection Based in Genetic Clustering). This algorithm includes two stages: a

nearest neighbour clustering and a genetic optimization. The main purpose of the first

stage is to decrease the size of data objects to a reasonable one; therefore, it can be suit-

11 A hybrid approach typically consists of two functional components. The first one takes raw data as input and gen-

erates intermediate results. The second one will then take the intermediate results as the input and produce the final

results [84].

12 The unsupervised algorithm seeks out similarities between pieces of data in order to characterize them, whereas the

supervised algorithm builds a concise model of the distribution of class labels in terms of predictor features.

Chapter 2 – Background and Literature Review

45

able for genetic algorithms in the second stage. Their experiment is evaluated by using

1998 DARPA Intrusion Detection Evaluation Data and TCP dump raw data. In addi-

tion, Liu and Yi proposed in [87] a modified, unsupervised learning algorithm

PCASOM (Principal Components Analysis and Self-Organizing Map) and neural net-

works as a detection method. Their simulation is carried out to illustrate the perform-

ance of the proposed method by using DARPA 1998 evaluation data sets. Therefore, the

detection rate is 94.286% (660 out of 700).

Gunes et al. investigated in [55] a hierarchy of Self-Organizing Feature Maps as an ID

approach. They demonstrated that using a two-layer self-organizing map (SOM) hierar-

chy, based on all 41-features from the KDDCUP99 training set, can achieve 90.4% a

detection rate under test conditions; interestingly, this represents the best performance

based on an unsupervised learning algorithm.

Moreover, Horng et al. proposed in [65] an SVM-based network intrusion detection

system with algorithm clustering for data pre-processing. This algorithm could provide

highly qualified, abstracted and reduced datasets. According to their experiment on

the KDD Cup 1999, the proposed system could reach an accuracy of 95.72%.

Recently, Zhang et al. proposed in [153] a novel approach by combining the SOM and

the kernel auto-associator (KAA). The SOM organizes the prototypes of samples while

the KAA provides data description of normal connection patterns. Using the KDD CUP,

1999 dataset, the performance of the proposed scheme was compared with some state-

of-the-art novelty detection methods in terms of separating normal connection patterns

from intrusive connection patterns. This showed marked improvements in terms of the

high intrusion detection accuracy and low false positives.

As a stochastic model is a part of the work carried out in this thesis as a target formal-

ism when modelling the release order of defensive mechanisms, an overview of this

stochastic model is presented in the next section.

2.6 Stochastic Modelling Formalisms

Since the likelihood of the occurrence of large various daily events is probabilistic mak-

ing them described as stochastic processes, these events are modelled using stochastic

models which rely on probabilistic theory. The stochastic process is a mathematical rep-

Chapter 2 – Background and Literature Review

46

resentation of the system with probabilistic or random characteristics. Furthermore, it

forms the system behaviour as a function of times which can be continuous or discrete

[90].

In order to identify the stochastic process formally, numerous definitions require intro-

duction first. The first definition is of the Random Experiment. This is an experiment

that can have one or more potential results (e.g., student’s marks). Secondly, the Sample

Space of this experiment is a set of all potential results which can be finite or infinite

(e.g., a positive integer between 0 and 100). When a single result is achieved from the

Sample Space (e.g., a student’s mark is 62), then it is called a Sample Point. Another

definition is the Random Variable that is a function known over the Sample Space of an

experiment. It provides a real number to each result from the Sample Space. An exam-

ple of this is the random variable Pass that gives fail (i.e. 0) results to students whose

marks are under 50, while it gives passes (i.e. 1) otherwise [99].

Given these aforementioned definitions, the Stochastic Process {Xt, t ∈ T} is defined as

a set of random variables sorted by a parameter, from an indexed set, T that mostly

represents a time t. Therefore, Xt is supposed to be the current state of the system at time

t, and the State Space S of this process is the set of all the random variable values [99].

The State Space S of a stochastic process can be either Discrete or Continuous. The

Discrete is when the states can be counted by positive integers, while the Continuous is

the opposite. Consequently, the stochastic process is supposed to be a Continuous-State

Stochastic Process (or a Chain) if its state space is continuous (e.g., the waiting time of

jobs to be served), or a Discrete-State Stochastic Process if its state space is discrete

(e.g., the number of job arrivals). Additionally, the index set T can be continuous if the

process is examined during an interval of time, or discrete if the process is examined in

specific time instants. As a result, the stochastic process can be a Continuous-Time Sto-

chastic Process if its time parameter is continuous (e.g., during the whole week), or a

Discrete-Time Stochastic Process if its time parameter is discrete (e.g., every day of the

week). Bearing these in mind, the stochastic process can be one of four types depending

on the combination between state types and time types. These types are as follows: (1)

Continuous-Time Continuous State Space Stochastic (e.g., the waiting time of custom-

ers arriving at any time of the week); (2) Continuous-Time Discrete State Space Sto-

chastic Process (e.g., the number of customers waiting in a shop at any time of the

Chapter 2 – Background and Literature Review

47

week); (3) Discrete-Time Discrete State Space Stochastic Process (e.g., the number of

customers waiting in a shop every day of the week); and finally (4) Discrete-Time Con-

tinuous State Space Stochastic Process (e.g., the waiting time of customers arriving

every day of the week) [25, 59, 99].

Most existing stochastic processes offer several kinds of dependence between the states

that have previously occurred, the current state and the future state. As an example, the

total gain of a person after n coin flips depends on the gain at the end of the (n-1)
th

 flip.

However, as this dependence becomes more complicated, the analysis of such systems

becomes more difficult. For this reason, a process with dependence of the first-order is

desirable [25]. There is a set of stochastic processes that exploits this particular kind of

dependency of the system states. This is called the Markov Property or the Memoryless

Property that considers the future state. This consideration relies only on the present

state, and this property is independent of the previous states or the time spent in the cur-

rent state. In other words, the firing rate of system activities is exponentially distributed

[99]. The Markov Process is a stochastic process that satisfies the Markov Property,

whereas in the Semi Markov Process, the sojourn time of the current state impacts the

next state (i.e. the Memoryless property of the state’s sojourn time is not valid) [59].

As stated previously, the stochastic process illustrates the behaviour of the system with

states and activities that change them [119]. In order to assist the application of an ana-

lytical and numerical solution, these stochastic models often utilise a Markov or Semi-

Markov chain. Although this describes the system at a low level, given all the states and

transitions that the system may go through, high-level modelling formalisms, such as

Stochastic Petri Nets (SPNs), are often used because of the complexity of giving a full

representation of every state and transition in a concrete system. These formalisms are

then automatically transformed into the core Markov or Semi-Markov chain [140].

In the next sub-sections, three modelling paradigms that are used to describe stochastic

systems are reviewed. Since Semi-Markov mode and Stochastic Discrete Event System

are not utilised in this thesis, they will not be described. Only the paradigms that have

been used in this thesis are described; these are the Markov Chain, the Markov Decision

Process model and the Stochastic Petri Net (SPN). Furthermore, the software tools for

building and solving models are also described.

Chapter 2 – Background and Literature Review

48

2.6.1 Continuous-Time Markov Chain

The Markov Chain is a mathematical model that transitions from one state to another

between a finite or countable state space [109]. The term “Markov Chain” indicates the

sequence of random variables X1, X2, …, Xn with the Markov Property. Formally:

The stochastic process is a continuous-time Markov chain if for all s, t

0 and nonnegative integers i, j, x (u), 0 u s [121]:

Particularly, a continuous-time Markov chain is a stochastic process which has Markov

property and in which the conditional distribution of the future X (t + s) given the pre-

sent X (s) and the past X (u), u s, relies merely on the present and is independent

of the past.

Additionally, once is independent of s, then the continuous-

time Markov chain is supposed to have stationary or homogeneous transition probabili-

ties. For example, a continuous-time Markov chain enters state i at time 0, and the proc-

ess does not leave state i during the next 10 minutes. The probability that the process

will not leave state i during the following 10 minutes can be described as follows. By

the Markov chain property, the probability that the process remains in state i during the

interval [10, 20] is just the unconditional probability that it stays in state i for at least 10

minutes [121]. As such, if Ti indicates the amount of time that the process stays in state i

before making a transition into a different state, then:

Or generally, by the same reasoning

for all s, t 0. Therefore, the random variable Ti is memoryless and should thus be ex-

ponentially distributed.

Chapter 2 – Background and Literature Review

49

Based on the above, a continuous-time Markov chain can be defined as follows: it is a

stochastic process with properties which mean that each time it enters state i:

- The amount of time it spends in that state before making a transition into a

different state is exponentially distributed with the mean, and

- If the process leaves state i, then it next enters state j with some probability

Pij that satisfies the following: Pii = 0 for all i and for all i.

Specifically, a continuous-time Markov chain is a stochastic process that moves from

one state to another in accordance with a discrete-time. However, it is such that the

amount of time it spends in each state is exponentially distributed. Moreover, the

amount of time that the process consumes in state i and the next state visited should be

an independent random variable. In the case that the next state visited was dependent on

Ti, information as to how long the process has already been in state i would be relevant

to the prediction of the next state.

As an optimisation problem is a part of the work undertaken in this thesis that is solved

via a Markov Decision Process model, as shown in Chapter 5, this model is reviewed in

the next subsection.

2.6.2 Continuous-Time Markov Decision Process

The Markov Decision Process (MDP), which is an extension of the Markov chain, pro-

vides a mathematical framework for modelling decision making in conditions where the

results are slightly random and slightly under the control of a decision maker. There-

fore, the MDP is a constructive tool for studying a wide range of optimisation problems

[109]. Formally, the MDP is a 4-tuple (S, A, Pa (s, s`), Ra (s, s`)), where

 S is a finite set of states

 A is a finite set of actions

 Pa(s, s`) = Pr (st+1 = s` | st = s, at = a) is the probability that action a in state s

at time t leads to state s` at time t+1

 Ra (s, s`) is the immediate reward received after the transition from state s to

state s`

Chapter 2 – Background and Literature Review

50

The core problem of the MDP is to find a policy for the decision maker. This policy is a

rule π for choosing actions when in state s. Typically, a policy π is a set of numbers π =

{πi (a), a ∈ with the understanding that if the process is in state i, then

action a is to be chosen with probability πi (a) as follows [109]:

πi (a)=

In the continuous-time Markov Decision Process, the decision can occur at any time

chosen by the decision maker. Thus, one of the best ways to model the decision making

process for a system that has continuous dynamics is by using the continuous-time

Markov decision process. The continuous-time Markov Decision Process (CTMDP) is

defined as follows. In the case that the state space and action are finite, the definition is

[56]:

 S: State Space

 A: Action Space

 Q (i|j, a): , a transition rate function

 R (i, a): , a reward function

In the case that the state space and action are controlled [56]:

 X: state space

 U: state of possible control

 a transition rate function

A reward rate function is such that where,

 is the reward function [56].

In this thesis, CTMDP is utilised to develop an optimisation algorithm that will be ex-

plained in Chapter 5. Moreover, as the release order of defensive algorithms is modelled

by using Stochastic Petri Nets (SPNs), as shown in Chapter 4, the next sub-section re-

views this SPN approach.

Chapter 2 – Background and Literature Review

51

2.6.3 Stochastic Petri Nets

In order to achieve a qualitative measure, Petri Nets (PNs) are widely used for model-

ling systems with simultaneous and chronological transitions in order to obtain qualita-

tive measures. They are also very effective in representing system concurrency and syn-

chronisation [90]. The Petri net is a type of directed graph with an initial state called the

initial marking. The basic graph of a Petri net is a directed, bipartite graph consisting of

two kinds of nodes. The first are called places, and the second transitions. Arcs (or ar-

rows) connect places and transitions. The arcs can only connect a place with a transition

or a transition with a place. Connections between two nodes that are of the same kind

are not allowed (e.g. that connect a place with a place).

In graphical Petri net representations, places are drawn as circles and transitions as bars

or boxes. The initial distribution of tokens among places is called the initial marking of

the Petri net. The marking of tokens over places determines the state of a Petri net. A

transition is enabled if each place connected to the transition contains at least one token.

The firing of transitions changes the distribution of tokens and produces new states.

Transitions are generally assumed to be the active components of Petri nets. Transitions

can stand for tasks, events, operations, transformations, transportation, and so on.

However, places are usually passive and they could represent a medium, phase, and

condition. Tokens often indicate physical objects or represent information. The flow of

these tokens and the firing of transitions are then used to model the dynamic behaviour

of the system. Figure 2.11 illustrates a simple example of a graphical Petri net, where

the circles represent places (P1, P2, P3 and P4), the bars correspond to transitions (t1

and t2) and tokens are represented by small dots (in P1).

Figure 2.11: A Graphical Petri Net Example.

A Petri net model can use transitions to represent tasks and places which stand for the

pre- and post-conditions of the tasks or resources involved in the system. A transition is

Chapter 2 – Background and Literature Review

52

enabled if each input place contains at least a number of tokens which equal the weight

of the flow relationship from the places to the transition; when a transition fires, it con-

sumes a number of tokens from each input place and produces a number of tokens equal

to the weight of the flow relation from the place to the transition. For example, t1 in

Figure 2.11 produces two tokens to P2 and P3.

The numbers of tokens contained in the place are used to define the situation or condi-

tion of a Petri net state. When firing transitions, removing tokens from input places and

adding them to output places identifies a change in state and describes the dynamic be-

haviour of a Petri net. The initial marking denotes the distribution of tokens over places.

The arcs connect places with transitions or vice versa. Arcs are grouped into the two

types that are used in this thesis with respect to transitions. These types are as follows:

input arcs, which go from places to transitions shown by arrows, and output arcs, which

go from transitions to places shown by arrows.

In the interest of allowing the extraction of quantitative and time-related performance

results, Stochastic Petri Nets (SPNs) were introduced by assigning exponentially dis-

tributed random functions to the delay of the Petri net transitions. By means of this ex-

ponential distribution, the state of the modelled system can be changed in a probabilistic

way. Not only this, but it also allows the estimation of more cumulative performance

results from the steady state distribution like the average delay. Moreover, since SPNs

with the exponential distribution and Continuous-time Markov chain both use the mem-

oryless property of transition firing, the exponential distribution allows SPNs to resem-

ble Continuous-time Markov chains [90].

One of the SPN’s features is that it provides an integration of graph modelling and

probabilistic modelling. This feature allows a system’s behaviour to be analysed. As

such, while an SPN is capable of giving a visual description of a system process, it is

automatically transformed into the underlying Markov Chain model for performance

analysis [3]. In order to achieve performance results, firstly the defined reward variables

should be converted to their equivalent essential state-level stochastic processes with the

corresponding rewards specified at the state level [3].

There are several limitations of an SPN. Firstly, as the SPN is mostly able to model

small-sized systems, SPN graphs become extremely complicated when the system size

Chapter 2 – Background and Literature Review

53

increases. This leads to a significant increase in the number of Markov states. Further-

more, transitions with low impact on the model might not require being associated with

an exponential distribution, since the SPN needs to associate an exponential distribution

with each transition. That is, removing the time from the transition with low impact

might result in a smaller number of Markov states. Therefore, the performance extrac-

tion is simplified.

On the other hand, Generalised Stochastic Petri Nets (GSPNs) were constructed in [3]

to overcome the aforementioned shortcomings of SPNs. GSPNs introduce two types of

transitions: Timed and Immediate. The former transition is included with an exponen-

tial-distributed delay function, while the latter is included with zero time delay. Accord-

ingly, a delay function is merely related to timed transitions and is dependent on a place

marking. In immediate transitions, a firing priority is declared over timed transitions if

they are both enabled. If multiple immediate transitions are enabled, they fire based on a

probability distribution function [3].

Although GSPNs exploit all the SPN’s characteristics, the smaller reachability set of a

GSPN reduces the confusion of performance analysis much more than SPNs do [3].

There is an additional arc called an inhibitor that can be used by GSPNs alongside the

places, timed/immediate transitions and directed arcs. This inhibitor arc enables a transi-

tion to fire in such a way that is opposite to that of the normal arc, while the input place

that is connected to the inhibitor does not contain tokens. This additional arc offers a

more flexible description of the system graph and also decreases its size [3].

The SPN is used to model the release order of defensive algorithms, as shown in Chap-

ter 4. In the next subsection, software tools that are used to build and solve an SPN

model are reviewed.

2.6.4 Software Tools for Building and Solving SPN Models

Numerous software tools have been introduced in order to assist in accomplishing all

the steps of modelling, starting from building the model and ending with solving the

model. As a part of this thesis focuses on the stochastic mode, and SPN specifically, the

software tools that will be reviewed in this section relate to the tools that solve SPN

models. Nevertheless, the largest proportion of this section is devoted to the first tool

under review, because it is the only used tool for implementation in Chapter 4.

Chapter 2 – Background and Literature Review

54

SPNP

The Stochastic Petri Net Package (SPNP) is a modelling tool that is utilised for analys-

ing the performance, dependability and performability of a system model. Furthermore,

SPNP is exploited for building and solving Stochastic Petri Net (SPN) Reward Models,

specifically Stochastic Reward Net (SRN) with the foundation of Markov Reward Mod-

els (MRM) [38].

An SPNP allows a number of results to be obtained, for instance transient, steady-state,

cumulative, and time-averaged measures using an analytic model or discrete simulation.

The reward rates can be defined by the SPNP at the net level. Furthermore, although

non-Markovian SPN models can be also defined using an SPNP, and can be solved by

using discrete event simulation.

The SPNP has a textual and a graphical input method. In the textual input method, the

CSPL is applied, which is a subset of the C programming language with additional con-

structs for defining the model parameters [38]. In terms of the graphical input, the iSPN

interface has a set of graphical user interfaces (GUIs) to aid creating and solving the

model. Several of these GUIs are explained as follows.

 Petri Net editor: this assists construction of the SRN model graphically.

 Function definition GUI: this assists creation of the reward, guard, distribu-

tion, arc cardinality, and probability functions.

 Environment GUI: this assists options for setting up the environment. For

example, the solver type (i.e. numerical or simulation) and, from the same

GUI, the analysis option (i.e. steady state or transient) can be specified.

 Animation GUI: this assists visualising how the tokens move from one place

to another in the model.

 Analysis frame: this assists in defining the time used to solve the reward

variables. In addition to this, from the same frame, the model can be run and

then the results represented.

Since the following tools are not utilised in this thesis, only a brief description for each

tool will be given.

Chapter 2 – Background and Literature Review

55

Möbius

The Möbius is used in a wide range of discrete state computing systems for perform-

ance modelling. As such, it is a framework that involves both multiple formalisms, such

as SAN, and multiple solution approaches, such as simulation. Several of these ap-

proaches are independent of the modelling formalism being used. Thus, these may be

utilized in combination with each other [45].

In addition, by using multiple modelling formalisms, the Möbius tool allows a single

model to be built. When a model has been built, it is converted into a model which is

specified by using Möbius framework components. In addition, communication be-

tween different parts can use an Abstract Functional Interface (AFI). This AFI is a

group of C++ functions which enable interaction between different models and solvers

[43].

PIPE

The Platform Independent Petri net Editor (PIPE) is an open source Petri net modelling

tool. It allows users to identify queries on the modelled system and solve them. Once

the model is created and the performance query of interest is identified using the PIPE

front-end user interface, they are both converted into XML files and then sent to the

Analysis Server for assessment. Note that because a single query can include a number

of sub-queries that need to be evaluated before the main query is assessed, the query is

decomposed into its sub-queries based on their dependencies. The analysing server

manages several distributed analysing tools such as SMARTA and MOMA. That is, it

allocates each derived query to an appropriate analysing tool, after transforming the

XML files into an input type that is suitable for that tool [46].

GreatSPN

The Graphical Editor and Analyser for Timed and Stochastic Petri Nets (GreatSPN) is a

software tool for creating, validating and analysing the system model. There are two

main techniques that can be used to build a model: a Generalised Stochastic Petri Net

(GSPN) (and its extensions) and a Stochastic Well-formed Net (SWN). Moreover, as

GreatSPN has no common rate and impulse reward definition, it can define performance

results that have limited expressive power [115].

Chapter 2 – Background and Literature Review

56

2.7 Summary

This chapter has provided background information regarding two important aspects re-

lated to the contribution accomplished by this thesis. Firstly, this chapter presented the

importance of defensive mechanisms in the Internet against attackers who attempt to

abuse the services. The discussion included essential definitions of both an attacker and

a defender. This was followed by interactive defensive mechanism types, which re-

vealed a number of security algorithm examples that are expected to be broken over

time. The discussion also included the fundamental idea behind these algorithms, and

the developing circle life of an algorithm being released and eventually broken. The

learning curve theory in psychology, and cognitive and economic fields that apply to the

attacker learning process were highlighted, and a rationale for this choice was also in-

cluded. Furthermore, this was followed by more discussion on several relevant theories

related to the learning acquisition process. The discussion included relevant existing

work on the effectiveness of information order in the learning process.

Secondly, this chapter examined several related works in the literature to support the

proposed methodology which will be evaluated and discussed thoroughly in the follow-

ing chapter including a review of quantitative security by modelling attacks, modelling

attacker behaviour and estimating the time to compromise a system components; a

game theory framework to identify the best attack and defence strategies; and an explo-

ration of anomaly detection techniques in which unsupervised machine algorithms were

applied as a first layer in hybrid approaches in order to detect an attack attempt.

Additionally, the discussion in this chapter also elaborated on the background of sto-

chastic modelling formalisms; in particular, the focus was directed towards the model-

ling of the release order of defence algorithms, which are used to evaluate an attacker’s

performance. The continuous-time Markov Decision Process was selected as a tool to

develop the optimisation algorithm, while stochastic Petri nets and their tools were se-

lected as an instrument to represent the interaction between defence algorithms and an

attacker.

57

Chapter 3. EXPERIMENTAL STUDY

This chapter reports a controlled-laboratory experiment that has been carried out as a

method to evaluate the proposed idea. In this experiment, investigating whether the or-

der of the release algorithms will matter or not, the influence of the release order on in-

dependent algorithms and the importance of the strategies used in the knowledge acqui-

sition process are evaluated.

The effect of the presentation order on the learning mechanism is not new. That is, pre-

vious research in the field of education and psychology provide several insights into the

effect of presentation order [47, 48, 91, 98, 131]. However, to the best of our knowl-

edge, we are the first to address this particular issue of the release order strategy in the

information security concept. There exists a considerable amount of related work that

considers the attack and defence interaction as a game-theoretic problem such as in [67,

88, 134], but these formulations do not fit exactly with our approach. Chapter 2 dis-

cusses this further.

Since the content-based type of spam filters
13

 have been found to offer a very good

model for our experimental requirements, it is important to point out that it is not the

objective of the experiment to say anything definitive about spam filter algorithms.

Thus, a bespoke spam filter was designed that would fit the purposes of the experiment,

although this has created an intuitively appealing experiment that has various elements

in common with traditional spam filters. The designed spam filter includes several algo-

rithms that act as a defensive mechanism against attackers.

13 This is an electronic mail (e-mail) service feature that is designed to block unwanted e-mail messages sent by un-

ethical senders. This feature has different types such as Bayesian filter, Blacklist-White-list and Content-Based filter,

which is the most common type [41]. The developed content-based filter will be discussed in Sections 3.3.2 and

3.3.4. Moreover, the content-based filter is highlighted in Chapter 2 (Section 2.2.3).

Chapter 3 – Experimental Study

58

Furthermore, an automated program can be used to break the algorithms of the designed

spam filter. However, a form of understanding of a human learning process can be seen

clearly by sending e-mails to evade a spam filter, as automated approaches are abstrac-

tions of this human learning process that require encoding by humans. Any automated

approach would need to know the parameters to try, and the range within which these

parameters may fall.

The remainder of this chapter is structured as follows. The experiment scope is pre-

sented in Section 3.1. Section 3.2 defines the main hypothesis under test. Section 3.3

outlines the experiment setup. The experiment procedure is presented in Section 3.4.

Section 3.5 reports the results. Section 3.6 provides the discussion. Finally, Section 3.7

summaries this chapter. Moreover, an early version of this experimental study was pub-

lished in [11].

3.1 Experiment Scope

This experiment covers the evaluation of a set of algorithms approach, investigating

specifically the importance of a set of algorithms from the release order perspective, the

significance of breaking up a secure algorithm into a set of algorithms, the broadening

of understanding of the knowledge acquisition process in the information security, and

the impact of the strategies used in breaking an algorithm in the knowledge acquisition

process.

3.2 Hypotheses

A controlled laboratory experiment study was carried out in order to investigate the re-

search questions of this thesis. This study focuses on the impact of the release order of

defensive algorithms on the time needed to break them. Therefore, the main hypothesis

under test is:

Hypothesis H1: The time it takes to break a series of algorithms is dependent on the

order in which the algorithms are released.

Since the rationale included in improving the interactive defensive mechanism approach

was framed using a set of algorithms, it is interesting to see whether there is any signifi-

cant difference in the release order of dependent algorithms on further independent al-

Chapter 3 – Experimental Study

59

gorithms. Hence, a hypothesis
14

, which is a rather subtle variant of the previous one, is

that:

Hypothesis H2: The time taken to defeat a future algorithm does not depend on the or-

der in which earlier algorithms were broken.

The next section explains the experimental setup of this study.

3.3 Experiment Setup

The experiment involves subjects acting as potential attackers, carrying out attacks on a

test system, within which a number of different defence algorithms have been deployed.

The experimental design, the system, attackers, algorithms, material, variables, meas-

urement units, generalisation and threat validity, avoiding bias and control measures are

discussed in the following subsections.

3.3.1 The Experimental Design

The experiment used the between-subject design, in which each participant is exposed

to only one of the experimental conditions. That is, two sets of subjects break a series of

defence algorithms where the order is different between the groups. This type of design

ensures that the exact same algorithms are used in each experiment condition, and that

there is no unnecessary confounding factor biasing the results (at the cost of recruiting

relatively many participants).

The participants are randomly assigned to one of the following two experimental

groups:

 Group 1 (G1): The order of algorithms for this group was: Algorithm 1

(A1), Algorithm 2 (A2) then Algorithm 3 (A3).

 Group 2 (G2): The order of algorithms for this group was: Algorithm 2

(A2), Algorithm 1 (A1) then Algorithm 3 (A3).

Specifics about the algorithms will be given in Section 3.3.4.

14 There is an additional reason to consider this particular hypothesis, namely whether the use of a Markov decision

model with a state space that simply keeps track of which algorithms are broken can be justified. The hypothesis

corresponds to demonstrating the memoryless property of the Markov model with that state space. The Markov deci-

sion model itself is outside the scope of this chapter, and more details will be given in Chapter 5.

Chapter 3 – Experimental Study

60

In order to gather more information to improve the design of the experiment, a pilot

study was conducted. Four PhD students and Four MSc students from the school of

computing science at Newcastle University participated in this study. The pilot study

emulated a similar environment, conditions and measures of the planned experiment

and its running scenario, and gathered related information in the shape of errors, prob-

lems, comments, observations, suggestions, required time and task implementation

flow. Based on this information, modifications and improvements were made to the ex-

periment design and the developed algorithms. The modifications included changing the

thresholds of similarity that are utilised in the defence algorithms developed in order to

manage the difficulty and adjust the system to be more usable for the participants. Other

modifications were related to the arrangement of the experiment instructions. The pilot

study also helped in estimating the required time for each subject to perform the ex-

periment; thus, 30-40 minutes was found to be suitable for the participants. The required

improvements to the experiment material and measurement were made and then the real

experiment was started.

It was made clear to the subjects that the data collected in the experiment are strictly

confidential to the experimenter and his supervisor. They are only used for research

purposes and not for any other intention. The subjects’ contact details were only used

for announcing the winners (i.e. the first and the second winner).

3.3.2 System

A challenge in designing the experiment was to design a system that could be breached

by ordinary people in a matter of minutes. It was found that a content-based spam filter

could offer a very good model for the experiment requirements. Although as mentioned

there is no attempt to study and derive results for spam filters themselves, it is believed

that the simple spam filters have enough similarities with reality to act as an example of

the class of systems introduced in Chapter 1 (Figure 1.1).

Thus, a web-based system on which to perform the experiment was developed. A Web

application was also developed, which enabled each participant to perform a registration

process (e.g. choosing a username, password and educational background), sign a con-

sent form, and read a brief introductory page with necessary information (e.g. descrip-

tion of the experiment, experiment factors, the participant goal, and applied method on

how to defeat a content-based spam-filter). The participants could then begin the ex-

Chapter 3 – Experimental Study

61

perimental process, interacting with the spam-filter algorithms. The main idea was that

the participants tried to send e-mails that pass through the spam filters, as described in

more detail in Section 3.4. The system recorded all attempts and the time taken by each

participant to break each algorithm in each session. The interfaces of the web applica-

tion developed are included in Appendix A.

The settings of this developed system are flexible for further investigation. For instance,

it can be possible to add more algorithms with varying robustness. Moreover, the simi-

larity threshold of each algorithm and the number of attackers for each group can be

increased/decreased. Also, it can be possible to change the e-mail text.

3.3.3 Attackers

A nontrivial problem was to find potential attackers. The aim was to find attackers that

could be considered to be non-specialists. Whilst specialist attackers or security experts

could have been recruited, they would have provided information mostly about where

and how particular algorithms needed to be improved and less about learning. Forty

students were recruited for this experiment (34 male and 6 female, something that was

not considered relevant for this experiment). The typical age range of subjects was 24-

33 with 4 participants in the group 40+. The subjects of this experiment were 40 Mas-

ter’s and PhD students from the School of Computing Science and other schools in

Newcastle University. The subjects were recruited by email; emails were sent to all

MSc students and PhD students at the school and this returned a positive response from

40 subjects.

37 subjects have technical backgrounds (majoring in computer science and engineer-

ing), and the remaining 3 subjects non-technical (in linguistics). It is important to note

that because our aim was to observe the learning acquisition, the learning process is ac-

complished despite the backgrounds, as stated in [72].

Each participant was offered £5 for participation. To motivate participants to do their

best, like real attackers, an additional incentive to increase their motivation was offered.

The participant who got the highest score in each group was awarded £40 while the sec-

ond ranked subject was awarded £20. The highest score is based on the time and num-

ber of trials to complete the task.

Chapter 3 – Experimental Study

62

3.3.4 Algorithms

The rationale behind the defensive spam-filter algorithms constructed is as follows. A

simple algorithm A1 acts as a base algorithm and a more complicated algorithm A2 ex-

tends the rules used by A1. In other words, the rules in A1 are a subset of A2, which is

the first case to consider when one wants to test a hypothesis. The third algorithm A3

does not share any rule with A1 or A2, and acts as a simple independent algorithm.

Hence, the first hypothesis H1 is challenged by means of the following question:

Q1 – Do G1 and G2 break A1 and A2 within a similar amount of time?

Furthermore, the second hypothesis H2 is challenged by means of the following ques-

tion:

Q2 – Do G1 and G2 break A3 within a similar amount of time?

A negative answer will be provided in Section 3.5 to Q1 along with a positive answer to

Q2. The specific algorithms A1, A2 and A3 will now be described, as well as pseudo

code describing their operation. Modern density-based spam filters [152] form the basis

for implementing the algorithms. These spam filters detect a spam e-mail message by

utilising an unsupervised learning engine that plays an increasingly important role in

this type of filter.

Note that some of the symbol names being used in the pseudo code of the algorithms

are given in Table 3.1. Briefly, the symbols in Table 3.1 are explained as follows. As in

[152], a hash-based vector representation is used. That is, for each e-mail, hash values

of each length 9 substring extracted from the e-mail are calculated
15

, and then the first N

of them is used as a vector representation of the e-mail. To check a single e-mail, in or-

der to find similar previous e-mails which share S% of the same hash values, the algo-

rithm checks the database. As a result, an e-mail which is transferred more than D times

is marked as spam. Therefore, the algorithm does evaluate whether an e-mail message is

spam or not based on the similarity with previously submitted e-mail. This similarity

will be exploited later in Chapter 6 for constructing the Attacker Learning Curve notion.

15 The standard hash function provided in the Java library is used.

Chapter 3 – Experimental Study

63

Algorithm 1 (A1). This algorithm is a simple implementation of the proposal of [152]

where only the first part of the message is checked for similar hashes. Furthermore, the

similarity threshold is 75. The pseudo code of this is shown in Figure 3.1.

Table 3.1: Symbols used in pseudo code and their values in the experiments.

Symbol Meaning Value

D Spam threshold 100

N Number of hash values for each email 100

S1 Similarity threshold “Algorithm 1&3” 75%

S2 Similarity threshold “Algorithm 2” 65%

Input: T: Text of Mail

 Var h: Hash value

Output: R: result of detection

New-Hash-DB-Candidate ← Make N Hash values from T

For h in New-Hash-DB-Candidate do

 For each first 25 hash in New-Hash-DB-Candidate do

 If hi in H1 is similar to hj in H2

 Then increment similarity, increment j and i=j

 Else increment j

 If H1 and H2 share S1 same hash value

 Then R= detected;

 Update-Similar-Mail (Mail in Hash-DB pointed by h)

 If No. of Similar Mail > D

 Then Mark Hash-DB as “spam”

Else R= no similarity

// If No Similar Entry exists in Hash DB

 Store-New-Mail (New-Hash-DB-Candidate)

Return R;

Figure 3.1: Pseudo code of A1.

Algorithm 2 (A2). This algorithm is similar to A1 except that, before any calculation of

the hash values, the message would go through word transformation that would delete

all redundant letters and white spaces, and would unify letter case, and transform com-

mon number shortcuts to their equivalent letters (e.g. 4 would become for). Those trans-

formations would create a harder algorithm since it would detect any attempt of the at-

tacker to trick the spam filter by using such word transformations. Furthermore, the

similarity threshold is 65. In other words, this algorithm has more rules to increase the

robustness level. The pseudo code of this is shown in Figure 3.2.

Algorithm 3 (A3). This algorithm is a simple implementation of the proposal of [152];

however, the last part of the message is checked for similar hashes, and the similarity

threshold is 75. The pseudo code of this is shown in Figure 3.3.

Chapter 3 – Experimental Study

64

It is worthwhile to note that the reason behind using a different threshold is that it was

empirically found that the similarity threshold can play an important role in terms of

determining the difficulty of an algorithm. That is, in A1 and A3, the attacker needs to

modify only 25% of the part that the algorithm is checking, while it is 35% in A2.

Input: T: Text of Mail

 Var h: Hash value

Output: R: result of detection

// Remove all white spaces; make the whole text .lowercase

.T’ = Normalise (T)

 //Remove triple letters; convert some numbers to letters (like

4 to for)

 New-Hash-DB-Candidate ← Make N Hash values from T

 For h in New-Hash-DB-Candidate do

 For each first 25 hash in New-Hash-DB-Candidate do

 If hi in H1 is similar to hj in H2

 Then increment similarity, increment j and i=j

 Else increment j

 If H1 and H2 share S2 same hash value

 Then R= detected;

 Update-Similar-Mail (Mail in Hash-DB pointed by h)

 If No. of Similar Mail > D

 Then Mark Hash-DB as “spam”

 Else R= no similarity

// If No Similar Entry exists in Hash DB

 Store-New-Mail (New-Hash-DB-Candidate)

 Return R;

Figure 3.2: Pseudo code of A2.

Input: T: Text of Mail

 Var h: Hash value

Output: R: result of detection

For read T until the last part

New-Hash-DB-Candidate ← Make N Hash values from the last part of T

For h in New-Hash-DB-Candidate do

For each first 25 hash in New-Hash-DB-Candidate do

 If hi in H1 is similar to hj in H2

 Then increment similarity, increment j and i=j

 Else increment j

 If H1 and H2 share S1 same hash value

 Then R= detected;

 Update-Similar-Mail (Mail in Hash-DB pointed by h)

 If No. of Similar Mail > D

 Then Mark Hash-DB as “spam”

 Else R= no similarity

// If No Similar Entry exists in Hash DB

 Store-New-Mail (New-Hash-DB-Candidate)

Return R;

Figure 3.3: Pseudo code of A3.

Chapter 3 – Experimental Study

65

3.3.5 Materials: stimulus and rationale

The stimulus material provided to participants consisted of some default e-mail text.

The subjects were asked to send this text to the server, as if it was a typical e-mail. The

e-mail text was chosen to be 512 characters in length. Although real-life spammers may

send messages that are shorter than this, the length of messages provides the subjects

with sufficient text to utilize a range of different strategies to breach the spam-filter.

The same e-mail text was assigned to all subjects, rather than allowing each subject to

write his own e-mail. There were several reasons for this. First, self-written e-mails may

be of different lengths, making the measurement and comparison of participant’s learn-

ing a difficult task. Second, self-written e-mails might be chosen because they are easy

to type (or, in perverse cases, particularly hard to type). This would again introduce bi-

ases that are difficult to control. Third, the use of the same e-mail template across all

subjects means that each subject can be treated as an impostor for all the other subjects,

putting testing on a firm foundation. Finally, using the same e-mail for everyone af-

fected experimental control over unanticipated biases.

3.3.6 Variables

In this experiment, the main independent variable is the algorithm order. The time con-

sumed to break each algorithm and the numbers of trials are the dependent variables.

3.3.7 Measurement Units

Table 3.2 defines the measurement units (e.g. time taken, effort), which are used in this

experiment.

Table 3.2: The Experiment Measurement Units.

The Unit Definition How is it measured?

Time taken

The duration of time that is

spent in order to break a spe-

cific algorithm.

Difference between start time and

end time of breaking the algorithm.

Effort
The exertion necessary to

break a specific algorithm.

Number of trials and the manipula-

tion accomplished on the email text

to break the algorithm.

Chapter 3 – Experimental Study

66

3.3.8 Generalisation and Threats Validity

Generalisation

Since the content-based spam-filter was chosen as the form to evaluate the proposed

approach for this experiment, other interactive defensive mechanisms such as

CAPTCHA can be applied. However, it would be costly (time consuming and impossi-

ble) to cover all interactive defensive mechanisms in this thesis. Thus, the objective of

this research is to show the validity of the claim that release order matters. That in itself

is challenging. Showing it holds for another interactive defensive mechanism is an addi-

tional difficulty, beyond the scope of this research.

Validation

The experiment validity is an important issue in ensuring the quality and generalisabil-

ity of findings. Two types of validity are involved in this experiment: internal validity,

which is concerned with how the study supports the findings; and external validity,

which is concerned with generalisability of the results. The threats to internal and exter-

nal validity are addressed and taken into account as follows:

Internal Validity

For internal validation, the following factors are taken into account:

Selection: The subjects were randomly assigned to the control and experimental groups.

History: Most of the subjects were selected from the same place; therefore, in order to

reduce any influential effects, they were recruited and contacted individually and per-

formed the tasks individually at different times.

Motivation: Since the subjects were volunteers and the tasks did not take a long time,

there was little concern about boredom or loss of enthusiasm during the experiment.

Time: The time required for the experiment was estimated after conducting a pilot

study and the subjects were informed of this when they were recruited. During the ex-

periment, they were told to take enough time to perform the task and that they could

stop if they were not willing to continue.

Training: A brief description was given to all of the subjects and the necessary clarifi-

cation and training was provided before starting the task. Moreover, the subjects were

told that they had the right to ask any questions.

Chapter 3 – Experimental Study

67

External Validation

A number of measures were taken in order that the sample reflected the rationale for the

learning acquisition process. Although the selected sample was mostly comprised of

subjects with a technical background, some had no technical background as the aim was

to observe learning acquisition, not to evaluate the algorithms themselves. Thus, this

does not threaten the validity of the research.

3.3.9 Avoiding Bias and Control Measures

Experiments are very sensitive to errors. Many errors could arise due to bias in the ex-

periment. The following measures were taken to avoid and reduce any bias in this ex-

periment:

 The subjects were randomly divided into Group 1 and Group 2.

 Since the aim was to recruit non-specialist attackers in order to observe

learning acquisition, the inconsistency-bias produced by attackers’ back-

grounds is reduced. In addition, as stated in [47, 72] the learning process is

achieved regardless of the backgrounds of subjects.

 Self-written emails were not allowed because these may have been of dif-

ferent lengths, making the measurement and comparison of participants’

learning a difficult task. Therefore, a default email text was prepared for all

participants.

 The maximum number of changes (i.e., manipulations) they were allowed to

introduce at each trial was 80. This made it impossible for participants to

write a completely different e-mail message.

 The copy and paste functions were not activated to avoid sending com-

pletely different e-mails.

 The system recorded time consumption individually in order to avoid the

subjects affecting each other or any other meaning, provide the same level

of support, observe subjects’ progress during the task implementation, and

give the same amount of time and support.

 On all the data documents, only the subjects’ reference numbers were used,

rather than the names. This anonymity made the data analysis more reliable

and maintained the subjects’ privacy.

Chapter 3 – Experimental Study

68

3.4 Experiment Procedure

In this section, the way the experiment was run is explained, i.e., instructions to sub-

jects, procedures and the data collected.

3.4.1 Instructions to subjects

Subjects were instructed to act as attackers whose goal was to defeat the spam-filter al-

gorithms by successfully passing through the spam filter algorithms with 3 e-mails

(where each e-mail is interpreted as a batch of 100
16

). The subjects were instructed that,

to defeat an algorithm, they should introduce enough changes to the message template

provided to trick the spam filter into thinking that the message being sent was genuine.

Subjects were also informed that there are a number of candidate attacks that spammers

can enact to fool spam filter algorithms. For example [51]: Random addition, Thesaurus

substitution, Perceptive substitution and Aimed addition. The aim of this was creating a

level playing field for all participants.

Subjects were told that if they needed a break, they were to do so after they had de-

feated all the algorithms. Subjects were able to gauge their progress by looking at a

counter at the right of the screen which showed how many e-mails had been sent suc-

cessfully so far and how many yet remained. Subjects were advised to focus on the task

and to avoid distractions, such as talking with the experimenter, while the task was in

progress.

3.4.2 Procedures

The experiment was begun with a brief description about the experiment aim, phases

and the assigned tasks to make the subjects ready for the task implementation. Since a

web application was developed on which to perform the experiment, each participant

was able to firstly perform a registration process (e.g. choosing a username, password,

educational background, age, and gender). Then, each participant was asked by the sys-

tem to read and sign the consent form and the participant was informed of the right to

stop at any time. After this, each participant was asked to read a brief introductory page

16 In the original algorithm [152], when an e-mail message transferred more than 100 times, then it is marked as

spam. Therefore, due to the time limitation of the experiment, each sent e-mail message is interpreted as a batch of

100.

Chapter 3 – Experimental Study

69

with necessary information (e.g. description of the experiment, experiment factors, the

participant goal, applied method on how to defeat a content-based spam-filter). The par-

ticipant could then begin the experimental process, interacting with the spam-filter algo-

rithms. The main idea was for the participants to try to send e-mails that would pass

through the spam filters. In particular, after every e-mail message sent by the partici-

pant, the system gave information about the progress made: whether the spam attempt

passed or failed and, once the algorithms were considered defeated, a notice that the

deployed algorithm of the system had been changed. Note that it was necessary to de-

feat each algorithm twice by an attacker in order to confirm the learning process, and

more details regarding its usefulness will be given later in Chapter 6. At the end of the

experiment, each participant was informed about the score achieved, the time taken and

the number of trials. Finally, the participant was asked to fill in a short sur-

vey/questionnaire about his or her experience.

3.4.3 Collected Data

The time taken by each participant to defeat the algorithms in each session was recorded

by the system. Furthermore, the number of trials and the e-mails sent for each session

were recorded for later analysis. Thereafter, the questionnaires were collected.

3.5 Results and Analysis

In the experimental study, all the participants successfully completed their tasks. The

following sub-sections will discuss the hypothesis with respect to the ordering of the

algorithms A1 and A2, the hypothesis regarding the insensitivity of the order of A1 and

A2 with respect to the time used to defeat A3, and the impact of order on defeating all

algorithms.

3.5.1 Testing Hypothesis: Does Order Matter?

The average time needed to break each algorithm in the two groups is shown in Figure

3.4. From the totals (the rightmost bar), it can be seen that Group 1 took longer than

Group 2. This indicates there are implications of the ordering of the algorithm, which

will be discussed in more detail below. As expected, the ‘tougher’ algorithm A2 took

more time to break than A1. In Group 2, it took on average 16.2 minutes and in Group

1, 14.1 minutes. The time needed to break A1 was far less in Group 2, possibly because

Chapter 3 – Experimental Study

70

learning the techniques to break A2 first, which is effectively a superset of A1, is

enough to break A1. The statistical significance of this will now be discussed.

Table 3.3 compares the algorithms A1 and A2 in the two groups, with respect to time

needed (middle column) as well as trials made (rightmost column). For both, average

(Avg.), standard deviation (SD) and maximum (Max) and minimum (Min) values are

provided. With respect to average time, it was found that the time needed for breaking

A1 and A2 in Group 1 was 25.0 minutes, while it was 20.1 minutes in Group 2. A t-test

yields a result of t=1.89, p<0.1, indicating that the difference between Group 1 and

Group 2 is indeed statistically significant.

Figure 3.4: The average time (in minutes) for ‘attackers’ to break the algorithms.

Table 3.3: Order of two algorithms A1 and A2.

Group
Total time Total trials

Avg. SD Max Min Avg. SD Max Min

1 25.0 10.6 57.1 13.5 33.4 20.1 99.0 14.0

2 20.1 4.3 26.0 10.8 26.1 8.3 40.0 11.0

Therefore, the answer to Q1 can be seen as negative, by observing that G2 broke A1+A2

in significantly less time than G1. This result validates the hypothesis H1, since it was

the case that the order of release had an impact on the time required to break an algo-

rithm.

With respect to the number of trials, there was found to be a less significant difference.

The average number of trials was 33.4 for Group 1 and 26.1 for Group 2. However, this

difference is not statistically significant (t=1.55, p=0.139). The discrepancy between

0

10

20

30

40

Group 1 Group 2

A
v

a
ra

g
e

T
im

e
(m

in
)

Algorithm 1

Algorithm 2

Algorithm 3

Total

Chapter 3 – Experimental Study

71

time and trials is interesting; it does not invalidate the claim that order matters but

shows that it is not always apparent (and, of course, as always, possibly not true). This

is discussed more at the end of this section. Additionally, Chapter 6 highlights the effect

of the applied strategy on the knowledge gained, where a strategy with few trials in-

creases the knowledge gained more effectively than others with many trials.

Looking then at A1 and A2 individually, it is evident that the difference in the total

time/trials can be attributed particularly to the time/number of trials it takes to break A1.

Comparing the time and trials to break A1 in the two groups in Table 3.4, a t-test yields

a result of t=6.33, p<0.001, indicating that the time consumed to break A1 in Group 1 is

significantly higher than that in Group 2. Also, a statistically significant difference is

found in the number of trials (t=6.62, p<0.005).

Table 3.4: Breaking A1 for each group.

Group
Total time A1 Total trials A1

Avg. SD Max Min Avg. SD Max Min

1 10.9 4.7 24.8 5.5 14.8 6.8 31 6

2 3.8 1.3 6.5 0.86 4.3 1.87 8 2

Likewise, Table 3.5 compares A2 in the two groups. A t-test yields a result of t=-1.32,

p=0.196, indicating that the time consumed to break A2 in Group 2 is not significantly

higher than that in Group 1. The difference found in number of trials was also not found

to be a statistically significant (t=-0.86, p=0.399). In other words, the difference for A2

is less significant than that for A1. This suggests that attackers learn more from A2 than

from A1, in terms of how much helps them to speed them up in attacking the other algo-

rithm.

Table 3.5: Breaking A2 for each group.

Group
Total time A2 Total trials A2

Avg. SD Max Min Avg. SD Max Min

1 14.1 6.2 32.3 7.8 18.6 14.7 74 8

2 16.2 3.4 21.3 8.9 21.7 7.2 34 9

Chapter 3 – Experimental Study

72

It is worthwhile to note that previous research assumed, based on psychology studies,

that interacting with a limited set of highly similar exemplars leads to more learning

than when the instances are distributed and dissimilar [131]. The order results appeared

to confirm this assumption. The average time of breaking A1 in Group 2 was 3.8 min-

utes, and the maximum time was 6.5 compared to 10.9 minutes and the maximum time

was 24.8 minutes in Group 1. In contrast, the average time of breaking A2 in Group 2

was 16.2 minutes, as opposed to 14.1 minutes in Group 1.

3.5.2 The Influence of Order on Defeating Future Algorithms

The negative answer to Q1 validates the hypothesis H1; however it is also necessary to

verify that the difference between G1 and G2 indeed comes from the release order, and

not from the fact that G2 contains more naturally talented attackers. To research this

question, the third algorithm A3 was added at the end of each experiment group. This

provided an opportunity to check if the order of the previous algorithms had any effect

on the time needed to defeat the subsequent algorithm A3.

A3 is compared in the two groups in Table 3.6. A t-test yields a result of t=0.14,

p=0.891, indicating that there is no statistically significant difference between the times

needed to break A3 in Groups 1 and Group 2. Also, no statistically significant differ-

ence was found in the number of trials (t=1.12, p=0.273). Hence, this points to a posi-

tive answer to Q2, by observing that G1 and G2 take a similar amount of time to break

the independent algorithm A3. This result validates hypothesis H2.

Table 3.6: Breaking A3 for each group.

Group

Total time A3 Total trials A3

Avg. SD Max Min Avg. SD Max Min

1 6.70 4.93 17 0.97 8.8 10.3 49 2

2 6.5 4.4 16.3 0.56 6.05 4.4 20 2

One needs to be careful in generalizing this result: it is not claimed here that any inde-

pendent algorithm would require the same amount of time, regardless of the history of

the attackers. It may be that if A3 was more closely related to A1 and A2, the results

would be different. In addition, one would expect that aspects which influence the

memory of the attacker may matter, such as the absolute time it takes to break algo-

Chapter 3 – Experimental Study

73

rithms. After all, it is not unlikely that attackers simply forget more of the knowledge

gained from earlier attacks if the attack is more distantly in the past. Thus, this experi-

ment is regarded as an initial look at this issue.

3.5.3 The Influence of Order on Defeating All Algorithms

To complete the discussion, it is necessary to revisit the influence of ordering on the

time and effort it takes to break all three algorithms.

The effects of all algorithms in the two groups are compared in Table 3.7. A t-test yields

a result of t=1.76, p<0.1, indicating that the time needed to break the series of algo-

rithms in Group 1 is significantly higher than in Group 2. The average number of trials

is 42.3 trials in Group 1 compared to 32.1 trials in Group 2, and a t-test yields a result of

t=1.78, p<0.1, indicating that the number of trials in Group 1 is statistically significantly

higher than in Group 2. This is somewhat surprising, since the time to break A3 differs

little between groups, and it was shown in Section 3.5.1 that, without algorithm A3, the

difference in the total numbers of trials of the two groups is not statistically different.

This may suggest that, with respect to the number of trials needed, the validity of the

hypothesis is at the edge of statistical significance.

Table 3.7: Breaking all algorithms for each group.

Group
Total time Total trials

Avg. SD Max Min Avg. SD Max Min

1 31.7 10.8 59.4 17.4 42.3 23 112 16

2 26.6 7.36 36.1 12.2 32.1 11 56 13

3.5.4 Attacking Process

Qualitative data were collected, in the form of surveys, to verify that the attacking proc-

ess was accomplished by structured strategies that are based on the knowledge gained

rather than complete randomness. In particular, an analysis was carried out of the strate-

gies that were used to defeat the algorithms, the part of the e-mail that the participants

believed that each algorithm was checking, and the algorithm which the participants

thought was the toughest to defeat.

Chapter 3 – Experimental Study

74

Most of the participants, (90% or 36 out of 40), used structured strategies to defeat the

algorithms. In particular, 42% (15 out of 36) used Thesaurus substitution, Perceptive

substitution and Delete spaces, 33% (12 out of 36) used Random addition, Thesaurus

substitution, Perceptive substitution and Add spaces, and 25% (9 out of 36) used Per-

ceptive substitution. A further investigation will be carried out for these strategies in

Chapter 6.

In terms of identifying the correct part of the e-mail that each algorithm is checking, the

results in Group 1 were 70% (14 out of 20), 80% (16 out of 20) and 75% (15 out of 20)

for A1, A2 and A3, respectively. In Group 2, the results were 100% (20 out of 20),

100% (20 out of 20) and 70% (14 out of 20) for A1, A2 and A3, respectively. Further-

more, it was observed that 80% (16 out of 20) in Group 1 found that A2 was the hardest

algorithm, whereas 95% (19 out of 20) found that A2 was the hardest algorithm in

Group 2.

3.6 Discussion

For simplicity and consistency purposes, the hypotheses are discussed one by one here-

after, in the same order that they were introduced in the previous sections.

Hypothesis H1: The time it takes to break a series of algorithms is dependent on the

order in which the algorithms are released.

This experimental study provides statistically significant evidence that the release order

for a set of algorithms can increase the time needed to break a system’s security. In par-

ticular, as shown in Table 3.3, the time required by Group 1 to break the algorithms was

significantly higher than Group 2. Thus, the main objective of this experiment, namely

that ‘order matters’ is established. In other words, the result of the experiment does sup-

port hypothesis H1.

It is important to point out that the value in testing the two conditions (i.e. A1 is de-

ployed before A2, and A2 is deployed before A1) in which the defences are over-

lapping, were necessary to build the hypothesis on solid ground before conducting fur-

ther experiments. Even though several studies in the psychology and education fields

indicated that learning curves can be considerably increased by interacting with a lim-

ited set of highly similar exemplars [e.g. 47, 98, 131], these studies were only focused

Chapter 3 – Experimental Study

75

on the effectiveness of the presentation order on the categorization models. For this rea-

son, in this experiment, even the trivial assumption (i.e. A2 is deployed before A1) is

tested to avoid surprises. Hence, the experimental results achieved from these condi-

tions can lead to a further experiment in which the algorithms’ order is, for instance, a

subset, independent and superset or other orders.

There was not found to be a statistically significant difference in the number of trials

when breaking A1 and A2 in Group 1. A possible explanation for this might be that the

strategy used may impact the knowledge gained, regardless of the number of trials. In

other words, in a single trial, some strategies may provide more feedback to the attacker

than others. Since there were several strategies applied by the attackers in this study

based on the results of the survey, it can be assumed that the released algorithm’s rules

can be disclosed by some strategies faster than other. A further investigation will be

undertaken in Chapter 6.

Since A1 is a simplified version of A2, the experiments also indicate that the success of

attacks can be delayed by breaking up an algorithm into parts that are released in se-

quence. It would be unwise to generalize that conclusion too quickly, but it is an inter-

esting insight which implies that the reasoning that, by breaking up an algorithm into

subsets the attacker is ‘taught’ how to attack, is less valid.

Hypothesis H2: The time taken to defeat a future algorithm does not depend on the or-

der in which earlier algorithms were broken.

The concatenation of A3 at the end of both Groups 1 and 2 yielded an interesting and

important result. It showed that, despite the knowledge gained at any point of the re-

lease chain, injecting a non-subset algorithm would force the attacker back to the learn-

ing phase. Accordingly, we carried out an investigation in Chapter 4 into such orders,

for example, A2, A3 and A1 and these led to more interesting results. Furthermore, it is

of note that the insight that breaking A3 takes an equal amount of time for both groups

was used as confirmation that a Markov model is an appropriate formalism for the prob-

lem at hand, as will be shown in Chapter 5. Thus, the result of the experiment does sup-

port hypothesis H2.

Furthermore, based on the qualitative data, it was found that the participants performed

the attacking process by employing strategies which used the skills gained. This result

Chapter 3 – Experimental Study

76

seems to be consistent with other researchers in the education field which found that

using such strategies can help to construct knowledge [62, 97]. Although applying such

strategies can assist in increasing the learning acquisition process, it might, on the other

hand, facilitate the detection of the attacker. This will be investigated in more detail in

Chapter 7.

A recent study by Mathy and Feldman in the field of education stated in [91] that a dis-

similarity-based presentation order was statistically less effective in terms of learning.

Therefore, as the aim here in this thesis was to impede the learning process of the at-

tackers, there can be similarities between the attitudes expressed by the order of Group

1 in the experiment and that described by Mathy and Feldman. Hence, it could con-

ceivably hypothesise that a dissimilarity-based presentation order might be useful to the

release order strategy of defensive mechanisms.

The findings in this chapter support previous research into this quantitative security area

which link a time and an attack phase. For instance, Almasizadeh and Azgomi assumed

in [5] that a typical attacker needs time to perform the attack phase. They used this as-

sumption as a starting point to develop a model that focuses on evaluating security and

allows the analysis of the security of systems capable of detecting and responding to

attacks.

This combination of findings may provide some support for the conceptual premise of

quantitative measures for determining operational security by proposing prolonging the

time of breaking defensive algorithms as long as possible.

3.7 Summary

This chapter has presented the control-laboratory experiment conducted to validate the

hypothesis that the order in which defensive algorithms are released impacts the success

of the attacker. The rationale behind this hypothesis is based on the observation that

attackers increase knowledge by learning from their attempted attacks, and on the intui-

tion that the learning experience of attackers can be influenced by the order in which

defensive algorithms are released. The experiment was undertaken at the School of

Computing Science at Newcastle University. There were 40 recruited subjects (MSc and

PhD students). This chapter has included the experimental design, system, measure-

ments and procedures involved.

Chapter 3 – Experimental Study

77

Through a between-subjects experiment with simplified but representative spam filter

algorithms, it has been possible to show that the order in which defensive algorithms are

released indeed influences the length of time attacks take. This is a very encouraging

result for this line of research, indicating that the problem merits study. The experiment

also provides an indication that breaking up a defensive algorithm can be a beneficial

tool in prolonging the overall attack time, but this issue needs to be researched in much

more detail before this conclusion can be drawn more widely. Furthermore, the experi-

ment shows that success in breaking future algorithms does not depend on how that to-

tal amount of knowledge was gained.

Since the results of this chapter are encouraging, modelling the release order of defen-

sive algorithms is worth to studying. With such a model, it can be possible to estimate

the time needed to break a given set of algorithms without conducting a time-consuming

experiment. Therefore, the following chapter will discuss and present the Stochastic

Petri Net, to model the release order strategy.

78

Chapter 4. MODELLING OF RELEASE

ORDER STRATEGIES

This chapter presents the proposed model of the utilization of several algorithms to act

as a defence mechanism. As the attack evolves, the algorithm used by the system is

changed to maintain the security property. The aim of changing the algorithm is to

maximize the time before the next security breach. This time is based upon the knowl-

edge the attacker gains from previous attempts to breach the system. Although the at-

tacker is subject to limited time, knowledge and rationality, he/she may develop tools

that aim to decrease the required time and rationality while still requiring the knowledge

to encode. As attackers learn from their attempts, the order of the algorithms impacts on

the time taken to break a system (i.e., an attacker needs to defeat a set of algorithms in

order to break the system), as verified in Chapter 3.

The model in this chapter is developed based on Stochastic Petri Nets (SPN), which can

describe the interaction between an attacker, the set of algorithms used by a system, and

the knowledge gained by the attacker with each attack. This framework allows for a

theoretical analysis of the release order of a set of algorithms, and for a better estimate

of the time required to break a defensive algorithm in various algorithm orders. Based

on the empirical results in Chapter 3, the model is parameterized, evaluated and allows

us to draw a conclusion in terms of understanding the effectiveness of interleaving in-

dependent algorithms (i.e., with disjointed sets of rules) with dependent algorithms (i.e.,

with overlapping sets of rules), with respect to the time required for an attacker to break

the algorithms. An early version of this model was published in [12].

Chapter 4 – Modelling of Release Order Strategies

79

The remainder of this chapter is organized as follows. Section 4.1 defines stochastic

modelling formalisms, and illustrates briefly those that are relevant to this chapter. Sec-

tion 4.2 describes Stochastic Petri Nets, presenting an overview of Stochastic Petri Nets,

evaluation tools, model assumptions, and model metrics. In Section 4.3, model design

and performance are described. Section 4.4 offers a case study in order to evaluate the

performance of the proposed model. The results and analysis are discussed in Section

4.5. The discussion is presented in Section 4.6. Finally, Section 4.7 summarizes this

Chapter.

4.1 Stochastic Model

The reason for the occurrence of a great many daily events is so complex that they are

best defined as probabilistic, meaning they can be described as stochastic processes. For

this reason, these events are modelled using stochastic models which rely on probabilis-

tic theory. A Stochastic Process is a mathematical representation of the system with

probabilistic or random characteristics. Within such a model, a stochastic process repre-

sents the behaviour of the system over time, given the occurrence of certain events. It

models the system behaviour as a function of time which could be continuous or dis-

crete [90].

In order to assess the interaction between the attackers and the defence mechanism, a

stochastic model is constructed, which refines and formalizes the abstract model de-

scribed in Chapter 1 (Figure 1.1). Broadly speaking, a stochastic model can be depicted

as a state transition diagram, which describes all relevant operational system states and

the possible transitions between these states. To describe time aspects between events, a

rate matrix is specified. It is usually assumed that both the next event and the time be-

fore this event are random. Hence, the behaviour of the system is a stochastic process.

The main advantage of this modelling approach is that it captures dynamic aspects of

system behaviour, which is arguably an applicable approach for modelling the security

of a system [138]. More details about stochastic modelling formalisms can be found in

Chapter 2 (Section 2.6).

To allow the extraction of quantitative and time-related performance results, Stochastic

Petri Nets (SPNs) are utilized for the model in this chapter and are explained in the fol-

lowing section.

Chapter 4 – Modelling of Release Order Strategies

80

4.2 Proposed Stochastic Petri Net (SPN) Model

In this section, an overview of SPNs, evaluation tools used in modelling the release or-

der of defensive mechanisms, assumptions of the model, and the metrics of the model

are discussed.

4.2.1 SPN: An Overview

Stochastic Petri Nets (SPNs) are built by assigning exponentially distributed random

functions
17

 to the delays of Petri net transitions. This allows the extraction of quantita-

tive and time-related performance results. The SPN is a technique used to model and

analyse the dynamic behaviour of parallel and distributed systems such as business

processes. It is a mathematical modelling technique used to describe a probabilistic na-

ture as a function of a parameter that usually has the meaning of time. It has been used

as a helpful modelling formalism and analytic tool in many applications. It is used for

the performance evaluation of distributed and parallel computer systems and has been

proposed for modelling the qualitative and quantitative analysis of current systems [90].

SPNs use timed transitions, and the delays of a transition firing are a random variable

with an exponential distribution λi. This means that the transition is associated with a

random firing delay, of which the probability density functions are negative exponen-

tials with specific rates. In this case, the distribution of a random variable Xi of the firing

time of a transition is given by the equation: FXi (X) =1 e
λ.x

, and the average time of

firing the transition Ti is equal to 1/ λi. This allows the mapping of an SPN system onto

continuous-time Markov chains (CTMC) [3] in order to analyse and compute interesting

performance measures such as the probability of transition firing, the probability of be-

ing in a subset of markings, or the mean number of tokens.

The SPN is defined formally in [90] as a 4-tuple, SPN = (P, T, F, λ) where:

1. P = {p1, p2, ..., pm} is a finite set of places.

2. T = {t1, t2, ..., tn} is a finite set of transitions.

3. F (P × T) ∪ (T × P) is a set of flow relations.

4. λ = {λ1, λ2, ..., λn} is a finite delay associated with each transition.

17 The exponential distribution is very widely used in performance modelling and denotes the probability distribution

that describes the time between events that occur continuously and independently at a constant average rate [138].

Chapter 4 – Modelling of Release Order Strategies

81

The relationships between places and transitions are P ∩ T = and P ∪ T ≠ . A place

p is called an input place of transition t if, and only if, there exists a direct arc from p to

t. In contrast, place p is called an output place of transition t only if there exists a direct

arc from t to p. A place p contains zero or more tokens at any time, which are drawn as

black dots. The initial distribution of tokens among places is called the initial marking

of the Petri net. This marking represents a state in the Petri net. Each transition has a

specific firing delay, which specifies the amount of time that must elapse before the

transition can fire. The firing rate λi is associated with the timed transition ti of the Petri

net.

Since, as mentioned previously, SPNs are a modelling formalism that account for the

randomness of event occurrence times, competition for resources, simultaneous pro-

gress of independent processes and synchronization of multiple flows make them suit-

able for representing the security status of a system in terms of attacker behaviour. As

an abstract modelling formalism, SPNs do not directly refer to any specific aspect of the

security domain, but expect the modeller to provide the meaning of places, tokens and

transitions. In the context of the security phenomena that are highlighted in this thesis,

the classical interpretation of Petri Net elements is as follows:

 Places represent a set of algorithms that are not yet deployed, a deployed

algorithm, a broken algorithm, an attacker and an attacker’s knowledge.

 Tokens inside a place (the marking of the place) model the number of algo-

rithms, the attacker, and the attacker’s knowledge gained after breaking an

algorithm. Tokens are anonymous entities that do not carry any qualifying

information; thus, the security of the system or the algorithms entity they

represent changes as they move from one place to another. Tokens are not

always graphically depicted, apart from those cases in which they are nu-

merous.

 Transitions represent the system status change. There are two fundamental

transitions in the proposed model in this chapter: changing the broken algo-

rithm with a new one by the system at rate “μ”, and making the attack by the

attacker at rate “λ”. For the former, the rate of the transition μ represents the

speed at which the system reacts. For the latter, the rate of the transition λ

represents the speed of the attacks. Furthermore, there is an immediate tran-

Chapter 4 – Modelling of Release Order Strategies

82

sition (i.e. not a timed transition) for moving the token from the broken al-

gorithm to both the attacker’s knowledge and the attacker.

 Arcs (arrows linking places to transitions and transitions to places) repre-

sent the flow of system transformations, from attacker to a new algorithm,

from a new algorithm to a broken algorithm, from a broken algorithm to at-

tacker’s knowledge, and from a broken algorithm to attacker.

In order to generate and evaluate the proposed SPN model, an appropriate stochastic

analysis tool is chosen. More details about the chosen evaluation tool will be given in

the following sub-section.

4.2.2 Evaluation Tools

Given the SPN model, a stochastic analysis tool is required to generate, solve and

evaluate this model. Since there are several stochastic analysis tools, such as Stochastic

Petri Net Package (SPNP) [38], Möbius [45] and Platform Independent Petri net Editor

(PIPE) [46], an SPNP tool was chosen in this study. Moreover, although a further tool

might be suitable to be applied to building, solving and evaluating the proposed SPN

model in this study, the SPNP software tool was found to be more suitable due to its

features such as textual and graphical input methods.

The SPNP tool creates files of a standard structure using a CSPL (C-based SPN lan-

guage) specific to SPNP. This CSPL is a simple input language that is based on C pro-

gramming language and which represents the model textually with its state variables,

actions, reward variables and solving commands in a single file. For ease of reference,

this is here called the SPNP file. This SPNP file should contain six basis functions [38],

each of which is designed to carry out one or several tasks by using a number of rele-

vant functions. These six functions, used in the mapping relations, are described as fol-

lows:

- option(): This function is used to carry out certain tasks by calling on some

relevant function which affects the way in which the Stochastic Reward Net

(SRN) is described and solved.

- net(): This function is used to define an SRN. The following functions are

called on by this function:

Chapter 4 – Modelling of Release Order Strategies

83

 place() and init(): The former is used to define a place with a name p;

and the latter defines the initial number of tokens in place p to be n.

 imm(): This function defines the time transition.

 rateval() and probval(): The first of these functions defines the firing

rate of the timed transition t and the firing weight or probability of an

immediate transition t as a constant value val. The function probval()

needs to be used only if the value of the firing weight of the immedi-

ate transition is different from the default value 1.0.

 priority(): This defines the priority of transition.

- assert(): This is a Boolean marking function used to check the validity of

each newly found marking.

- ac_init(): This function is used to call a set of functions before starting the

construction of the reach ability graph in order to output information about

the model to the “.out” file of the SPNP.

- ac_reach(): This function is used to call a set of functions after the con-

struction of the reach ability graph is completed in order to output informa-

tion about it to the “.out′” file of the SPNP.

- ac_final(): This function calls a set of functions designed for the user to

flexibly define outputs; for example, a function to solve the Markov chain

numerically at time t or for steady state analysis, and a function to output

data about the Markov chain and its solution.

In the interests of clarifying and simplifying the application of measurements, schedule

and functions of the chosen SPNP tool, the following assumptions have been made.

4.2.3 Model Assumptions

The design of the proposed model is based on a set of assumptions related to the system,

attack, and attackers. These assumptions are as follows:

 The distribution times for replacing an algorithm (i.e. when the released al-

gorithm is broken, it is replaced by a new algorithm) and attack attempt to

break the algorithm are assumed to be exponentially distributed with the

rates of μ and λ, respectively. The assumption of exponential distribution

Chapter 4 – Modelling of Release Order Strategies

84

can be easily relaxed by defining other time distributions and evaluating the

model using SPNP version 6.0 [39].

 The system enters a security failure state when all algorithms are broken.

 There is only one attack against the system. The reason behind this is to fo-

cus on the modelling process of the interactions between the attacker and

the system.

 Only scenarios of attacks that eventually lead to breaking all algorithms are

considered, and not the scenarios which may be aborted during the attack

process. Therefore, in the model, there is not a place that allows the attacker

to interrupt an ongoing attack.

To represent key properties of the proposed model, a metric over the proposed model

can be defined. This metric is discussed in the following sub-section.

4.2.4 Model Metrics

Since the main concern in this study is the security of the interactive defensive mecha-

nisms, a metric is required that encapsulates this security concern and the relationships

between this concern and the time (as the attacker evolves in the proposed SPN model).

Hence, a particularly meaningful metric which is most suitable for this study is the

Mean Time to Security Failure (MTTSF) [2]. This metric represents the average time

elapsed to reach a security failure state. Accordingly, a higher MTTSF is desirable. For

this approach, a security failure occurs when all algorithms have been broken, and the

attacker can misuse the system resources.

4.3 Model Design and Performance

The proposed SPN model is designed and evaluated by using SPNP [38] to describe the

system behaviour under attack with the objective of assessing the MTTSF of the system.

Using the graphical representation feature of the SPNP tool, as noted previously, it is

possible to represent several algorithms, which vary in terms of rules, the order of the

released algorithm, an attacker and the knowledge gained by the attacker. This graphical

representation of all elements of the model helps in understanding the modelled system.

Chapter 4 – Modelling of Release Order Strategies

85

Therefore, Figure 4.1 presents a graphical illustration of the proposed SPN model, and

Table 4.1 identifies the used symbols in the proposed SPN model.

Figure 4.1: A graphical illustration of the proposed SPN model.

Table 4.1: Identifying the Symbols.

Symbol Meaning

Sup_Algs Superset algorithm

Sub_Algs Subset algorithm

Ind_Algs Independent algorithm

Rel_Sup_Algs Transition to release a super algorithm

Rel_Sub_Algs Transition to release a subset algorithm

Rel_Ind_Algs Transition to release an independent algorithm

Released_Algo Released algorithm

Break_Released_Algo Transition to break the released algorithm

Broken_Algo Broken algorithm

T_Attacker_Knowledge Transition to increase attacker’s knowledge

Attacker_Knowledge Knowledge gained by the attacker

Chapter 4 – Modelling of Release Order Strategies

86

The explanation of places and transitions utilised in the proposed model is in the follow-

ing. The places Sup_Algs, Sub_Algs and Ind_Algs represent a set of defence algorithms.

Specifically, Sup_Algs and Sub_Algs represent the overlapping type (i.e. Sup_Algs ⊃

Sub_Algs as described previously in Chapter 1 (Section 1.1)), while Ind_Algs represents

a non-overlapping algorithm type (i.e. independent algorithm). This means that A1 is a

simplified version of A2, whereas A3 does not share any rule with A1 or A2. In addi-

tion, there are three timed transitions: Rel_Sup_Algs, Rel_Sub_Algs, Rel_Ind_Algs and

Break_Released_Algo. As usual, the transition time is non-zero and follows a probabil-

ity distribution, e.g., the exponential distribution. The first three transitions are associ-

ated with an enabling function in each transition that guards the firing of the transition

depending on the Released_Algo state. This enabling function avoids releasing a new

algorithm while the current algorithm remains unbroken, and can control the releasing

order of algorithms. When an algorithm released in Released_Algo place is broken, the

selected algorithm will be enabled to deploy a new token (i.e. a new algorithm).

The construction of the model takes the system’s lifecycle into account. Initially, a set

of algorithms is placed in Sup_Algs, Sub_Algs and Ind_Algs places as tokens. Each al-

gorithm has a weight reflecting the patterns that can be exploited when broken. In par-

ticular, there are overlapping rules between subset algorithms and superset algorithms,

whereas independent algorithms have different rules, reflecting various weights between

them and the dependent algorithms. The selection of a released algorithm is modelled

by firing one of the transitions Rel_Sup_Algs, Rel_Sub_Algs or Rel_Ind_Algs. Once an

algorithm is selected, a token at a time (if it exists) is moved from an associated place to

the Released_Algo place.

The attacker now attempts to break the deployed algorithm at an initial rate. Once the

deployed algorithm is broken, it is moved to the Broken_Algo place, which is modelled

by the transition of Break_Released_Algo, the firing of which will move a token into

place Broken_Algo. Then, the T_Attacker_Knowledge transition immediately translates

this token to both the Attacker_Kowledge place, which increases the attacker’s knowl-

edge, and the Attacker place, which in turn will prepare to break the next deployed algo-

rithm. Now, the attacker attempts to break the new deployed algorithm, which is re-

leased after breaking the previous algorithm by firing one of the transitions

Rel_Sup_Algs, Rel_Sub_Algs or Rel_Ind_Algs. Once the released algorithm is defeated,

the next one is released, and so on and so forth.

Chapter 4 – Modelling of Release Order Strategies

87

It is important to note that the firing rate λ of the attacking process is controlled by the

Break_Released_Algo transition, in order to have an effect on the firing rate (i.e. Attack

Rate λ) in defeating the released algorithm through a sequence of trials.

The time taken for an attacker to cause a transition from one state to another depends on

two significant factors: the attacker’s knowledge and the robustness of the system.

Therefore, it is considered in this thesis that the time taken to break an algorithm is cal-

culated by [12]:

 Ti = (SL*RLi) 1

where Ti is the time taken to break algorithm i, SL is the skill level of the attacker that

can be derived by normal distribution intervals suggested in [112] and RL is the robust-

ness level of the algorithm. The attack rate λ is simply calculated by [12]:

 λ = 1/Ti 2

Finally, the system is considered as experiencing a security failure if the security failure

condition described in Section 4.2.4 is met, which is when all algorithms have been

broken. This is modelled by making the system enter an absorbing state when the condi-

tion is met. Specifically, the absorbing state is represented in Figure 4.1 when all algo-

rithm tokens are transferred to the Attacker_Knowledge place.

As stated earlier, this model has been implemented into an SPNP tool [38], which sup-

ports the adopted modelling formalism and allows for graphical model definition and

for solution via simulation.

4.3.1 Performance Metrics Calculation

As mentioned previously in Section 4.2.2, a MTTSF is chosen in this study in the inter-

ests of achieving the security metric. An MTTSF can be obtained using the concept of

mean time to absorption (MTTA) in the SPN model. In particular, a reward assignment

is used so that a reward of 1 is assigned to all states except absorbing states, which is

done with the following reward assignment function: if mark (Released_Algo) = 1 (i.e.

an algorithm is released) then return 1, else return 0. As also stated previously, the ab-

sorbing state occurs when all tokens of the algorithms are moved to the At-

tacker_Knowledge place. The MTTSF of the system is then simply the expected accu-

mulated reward until absorption E[Y (∞)], defined as follows:

Chapter 4 – Modelling of Release Order Strategies

88

 ∈

where S denotes the set of all states except the absorbing ones, ri (reward) is 1 for those

states and Pi (t) is the probability of state i at time t.

4.3.2 Further Details for the Used Functions

In the proposed SPN model, several tasks are mapped to various functions defined in

the C functions of the CSPL file. These functions are Guard, Distribution and Reward

functions. There are three guard functions in order to control the release order of the

algorithms. Specifically, in the transition of each type of algorithm (i.e. subset algo-

rithms, superset algorithms and independent algorithms) as shown in Figure 4.1, there is

a guard function. Based on the order that is needed for evaluation, the guard function of

each transition will be defined. For instance, if the order that will be evaluated is a su-

perset, subset and independent algorithm, then the guard functions for the superset, sub-

set and independent algorithm are shown in Figures 4.2, 4.3, and 4.4, respectively.

Figure 4.2: A Guard Function for Superset Algorithm.

Figure 4.3: A Guard Function for Subset Algorithm.

Figure 4.4: A Guard Function for Independent Algorithm.

if (mark("Released_Algo")==1 || mark("Released_Algo")==0 &&

mark("Sub_Algs")==1)

return (0);

else if (mark("Sup_Algs")==0 && mark("Released_Algo")==0 &&

mark("Sub_Algs")==0)

return (1);

if (mark("Sup_Algs")==1 || mark("Sup_Algs")==0 &&

mark("Released_Algo")==1)

return (0);

else if (mark("Sup_Algs")==0 && mark("Released_Algo")==0)

return (1);

if (mark("Released_Algo")==1)

return (0);

else

return (1);

Chapter 4 – Modelling of Release Order Strategies

89

As shown in the above figures, the guard function of superset algorithms allows releas-

ing a super algorithm if there is not yet a released algorithm. In order to release a subset

algorithm, the guard of this algorithm verifies, if there is no released algorithm whether

a super algorithm or other types, then a subset algorithm is allowed to be released; oth-

erwise, it is not. Finally, while there is not a released superset or subset algorithm, an

independent algorithm is allowed to be released.

Moreover, in order to control the attack rate λ for each released algorithm, a distribution

function is developed in the Break_Released_Algo transition. The attack rate of an at-

tacker is evaluated by using the distribution function that is presented in Figure 4.5.

That is, while the number of tokens in the Attaker_Kowledge place is less than 1 or

equal to 0, then the first released algorithm attack rate is returned; if not, then while the

Attaker_Kowledge place is less than 2 or equal to 1, then the second released algorithm

attack rate is returned; otherwise, if the Attaker_Kowledge place is less than 3 or equal

to 2, then the third released algorithm attack rate is returned.

In respect to reward functions, there are two reward functions in order to analyse both

the security and the amount of knowledge that an attacker has achieved during the at-

tacking process. The security of a system is evaluated by using the reward function that

is depicted in Figure 4.6. As such, while there is a released defensive algorithm, 1 is

returned, indicating that the algorithm is not yet broken. However, in case the released

algorithm is broken, 0 is returned. With regards to the amount of knowledge achieved

by the attacker, this is analysed by using a reward function that is shown in Figure 4.7.

In particular, Expected reward rate at time t function, which its experiment parameters

are start value, stop value and increment value, is used to analyse the reward amount at

time t. This time represents the attacker’s trial in this model. Therefore, with each attack

if(mark("Attaker_Knowledge")==0 || mark("Attaker_Knowledge")<1) return λ

for the first released algorithm;

else if(mark("Attaker_Knowledge")==1 || mark("Attaker_Knowledge")<2) re-

turn λ for the second released algorithm;

else if(mark("Attaker_Knowledge")==2 || mark("Attaker_Knowledge")<3) re-

turn λ for the third released algorithm;

Figure 4.5: A Distribution Function for controlling the Attack Rate λ

Chapter 4 – Modelling of Release Order Strategies

90

attempt, the reward function returns the amount of knowledge that the attacker has

gained. For example, when analysing the reward amount for 10 trials, then the experi-

ment parameters of Expected reward rate at time t function are 1 for the start value, 10

for the stop value and 1 for the increment value.

Figure 4.6: A Reward Function for Evaluating the Security of a System.

Figure 4.7: A Reward Function for Evaluating Knowledge Gained by the Attacker.

Given that the developed model is evaluated by means of a case study that is based on

the previous experiment presented in Chapter 3, this case study will be discussed in the

following section.

4.4 Case Study

This section presents a case study to evaluate the performance of the proposed model

discussed in the previous section. The purpose of this evaluation is to investigate the

degree to which the proposed model can achieve its objectives. Furthermore, it aims to

explore and discuss any areas that need to be enhanced. The chosen case study is a

spam-filter system. Since the previous experiment shown in Chapter 3 was conducted

using a form of spam-filter system, the results of that experiment are utilised in this case

study. More importantly, the model can be parameterised based on empirical results.

Therefore, all the following numerical values are the results achieved from that experi-

ment.

The following is a brief explanation of the experiment, which involved subjects acting

as potential attackers carrying out attacks on a spam filter system. By using simplified

but representative spam filter algorithms, the study was able to show that the order in

which defensive algorithms are released influences the length of time attacks take.

There were three algorithms A1, A2 and A3 acting as a set of defence mechanisms,

such that A1 was a subset of A2, while A3 was independent of both A1 and A2. The

attackers were divided into two groups, Group 1 and Group 2; the algorithms in Group

return (mark("Attaker_Knowledge"));

if (mark("Released_Algo")==1) {return 1;}

else {return 0;}

Chapter 4 – Modelling of Release Order Strategies

91

1 were released in the order A1, A2 and A3, while the release order in Group 2 was A2,

A1 and A3. Each attacker was asked to break the algorithms sequentially, and the time

taken to break each algorithm was recorded, as well as the trials. The average time to

break all algorithms for each group is shown previously in Table 3.7. The best order to

maximize the time taken to break all algorithms by the attackers was in Group 1 (i.e.

A1, A2 and A3).

Since the time taken to break each algorithm is known, the fire rate λ of

Brak_Released_Algo transition for each algorithm is derived from Equation (2) as

shown in Table 4.2. Furthermore, the default fire rate of releasing defence algorithms

(i.e. Rel_Sup_Algs, Rel_Sub_Algs and Rel_Ind_Algs transitions) is μ1= μ2 = μ3 = 1, re-

spectively. This means that the system reacts through 1 time unite in order to replace the

broken algorithm with another algorithm.

Table 4.2: Fire rate of Break_Released_Algo transition.

Order of the algorithms
Fire rate

A1 A2 A3

A1, A2 and A3 0.0917 0.0709 0.1492

A2, A1 and A3 0.2631 0.0617 0.1538

In addition to the aim of the previous experiment – investigating the influence of the

release order of defensive algorithms – this case study aims to analyse the interleaving

of independent algorithms with dependent ones. Hence, the release process of algo-

rithms is thus: firstly, the Rel_Sub_Algs transition is fired (i.e. for releasing A1); once

this algorithm is broken, the Rel_Ind_Algs transition is fired (i.e. for releasing A3); fi-

nally, after breaking this algorithm, the Rel_Sup_Algs transition is fired (i.e. for releas-

ing A2). So, once this algorithm is broken, the MTTSF is calculated.

More importantly, the fire rate of algorithm A2 is taken from Group 2 (as shown in Ta-

ble 4.2), since the release order of the algorithm in Group 2 was A2, A1 and A3. There-

fore, it is assumed that releasing the independent algorithm among dependent algo-

rithms can impair the learning process of the attackers. Even though A1 was broken and

the attacker’s knowledge was increased, breaking A2 after A3 forced the attacker back

to the beginning of the learning phase. This additional release order allows a compari-

son with that of the best order in the previous experiment (i.e. A1, A2 and A3).

Chapter 4 – Modelling of Release Order Strategies

92

This order of interleaving of independent algorithms with dependent ones can be ap-

plied also for this order: A2, A3 and A1. In this case study, however, the order namely

A1, A3 and A2 is only analysed.

4.5 Results and Analysis

This section presents the numerical data obtained from evaluating the SPN model and

discusses the physical meaning. Firstly, the results achieved in the previous experiment

are replicated based on the MTTSF metric. Moreover, the effect of the algorithm orders

on the MTTSF is examined for both the first order of the previous experiment (i.e. A1,

A2, and A3) and the proposed order in this section (i.e. A1, A3 and A2). Finally, the

progress of the attacker’s knowledge acquisition process is shown for both orders.

In the following figures, “E. Order” represents the experiment-based order, while “M.

Order” represents the model-based order (i.e. A1, A3 and A2). Moreover, “E. Attacker

Knowledge Progress” represents the attacker’s knowledge progress based on the ex-

periment order, while “M. Attacker Knowledge Progress” represents the attacker’s

knowledge progress based on the proposed model order.

4.5.1 Replicating the Results of Release Order

The results achieved in the previous chapter are replicated by the proposed SPN model

based on the fire rates that are presented in Table 4.2, with the purpose of demonstrating

the performance of the proposed model. Figure 4.8 demonstrates the influence of the

algorithm order on the time taken to break all algorithms by mode-based generated re-

sults.

80726456484032241681

35

30

25

20

15

10

5

0

Trials

M
TT
SF

Group 2

Group 1

Figure 4.8: Replicating the results of release order

Chapter 4 – Modelling of Release Order Strategies

93

A comparison of the results of the proposed SPN model solution with those obtained via

the real experiment reveals that in the proposed model the MTTSF for Group 1 is about

31.1 minutes, while it is about 25.8 minutes for Group 2. These results indicate that the

time taken to break all algorithms in Group 1 is extended longer than in Group 2, as

reported from experimental results in the previous chapter. It is noticeable that the esti-

mation of 80 as the number of trials for the Expected reward rate at time t function is

found to be suitable empirically.

4.5.2 Algorithms Order vs. MTTSF

The implication of the algorithm order, which is the E. Order and M. Order, on the

MTTSF is shown in Figure 4.9, where it can be observed that the proposed order (i.e.

model-based order) achieves a higher MTTSF than the experiment order. In particular,

the amount of time needed for breaking the proposed order is almost 35 minutes. On the

other hand, the time needed for breaking the experiment-based order is approximately

31 minutes.

Although the order of Group 1 (i.e. A1, A2 and A3) in the previous experiment intro-

duces an approach to, for instance, break one algorithm into a number of algorithms

while keeping a level of security, the proposed order in this thesis can improve the secu-

rity of this order, as shown in Figure 4.9. That is, each subset algorithm obtained from

the main algorithm can be followed by an independent algorithm. Even though an at-

tacker may observe this release strategy, he needs to return to the learning phase with

each independent algorithm.

80726456484032241681

35

30

25

20

15

10

5

0

Trials

M
TT

SF
 (

m
in

.)

E. Order

M. Order

Figure 4.9: MTTSF vs. Algorithm Orders.

Chapter 4 – Modelling of Release Order Strategies

94

On the other hand, the order of Group 2 in the experiment (i.e. A2, A1 and A3) might

not be improved by the proposed order, as A2 is the superset and A1 the subset algo-

rithm. However, interleaving independent algorithms might lead to increasing the time

taken to break the subset algorithm, as in E. Order.

4.5.3 Attacker’s Knowledge Acquisition Process

The estimation of the attacker’s knowledge acquisition progress for breaking all algo-

rithms is shown in Figure 4.10, which is obtained by estimating the time for the token of

the broken algorithm to arrive at the Attacker_Knowledge place (i.e. the absorbing

state). This estimation has been obtained by using the Expected reward rate at time t

function that uses the reward function that is shown in Figure 4.7 and 80 as the stop

value for its experiment parameters.

As shown in Figure 4.10, the process of knowledge acquisition in the proposed order

(i.e. M. Attacker Knowledge Progress) seems extended in comparison to the experiment

order (i.e. E. Attacker Knowledge Progress). Although the Group 1 order in the previ-

ous experiment proved empirically that breaking up an algorithm in subsets does not

necessarily ‘teach’ the attacker how to attack, impairing the learning process with an

independent algorithm among dependent algorithms can be a strategy to extend the

breaking time of a system. Moreover, the knowledge acquisition progress of the attack-

ers with the Group 2 order of the previous experiment might be affected by the pro-

posed order.

80726456484032241681

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Trials

Th
e

 A
lg

o
ri

th
m

s

E. A ttacker Know ledge Progress

M. A ttacker Know ledge Progress

Figure 4.10: Attacker’s Knowledge Acquisition Process.

Chapter 4 – Modelling of Release Order Strategies

95

4.6 Discussion

The present study was designed to model the application of set of algorithms to act as a

defensive mechanism. The Stochastic Petri Nets were used for the formalization. Using

the developed model, in addition to the proposed release order of algorithms in the pre-

vious experiment, the investigation of the effect of algorithms with disjointed rule sets

interleaved with algorithms which have overlapping rules is accomplished.

The results of this developed model replicate the time taken to break all algorithms for

both groups by using a MTTSF metric. This indicates that the metric used is appropriate

for the proposed model, which is defined by the reward function illustrated in Figure

4.6. The results obtained by evaluating the proposed model through empirical results are

very encouraging.

Another important finding was that such an interleaving of independent algorithms with

dependent ones can maximise the time required to break a defence mechanism. In par-

ticular, as shown in Figure 4.9, the time that was required to break the system was ex-

tended by the model-based order compared to the order of Group 1 in the previous ex-

periment. Although the previous experiment highlighted the interesting insight that the

success of attacks can be delayed by breaking up an algorithm in parts that are released

in sequence, this insight can be improved by the proposed order in this case study.

In this study, the methodology of presenting the attacker’s knowledge acquisition proc-

ess, as shown in Figure 4.10, yielded an interesting prediction of the importance of the

release order of the algorithm. Specifically, the learning progress of the attackers in the

Group 1’s order in the previous study was affected by the proposed order in this case

study. A study in the field of psychology, based on empirical results, stated that when

the instances are distributed and dissimilar, this leads to a reduction in the learning

process [131]. The results of the proposed order can confirm this assumption. Therefore,

a possible explanation for this study’s results may be the enforcement of an attacker to

return to the learning phase with each independent algorithm. These findings suggest

that the proposed order appears promising in terms of extending the length of the learn-

ing acquisition process as much as possible.

Nevertheless, the proposed order (i.e. model-based order) might not be recommended to

such systems as Group 1’s order due to the following facts: 1) Deploying/releasing a

Chapter 4 – Modelling of Release Order Strategies

96

defensive mechanism has a cost. For instance, recently, a study by Caliendo et al. calcu-

lated in [33] the cost of deploying a spam filter within a particular organisation, and

found that the cost is circa fifteen thousand Euros for the first year. 2) Most companies

have limited resources, and therefore a limited number of defensive mechanisms they

can deploy over a given period of time. Therefore, in this context, Group 1’s order

seems economically better than the proposed order, where given a “complex” mecha-

nism, it can generate (for a low cost) many more subsets of this mechanism then can be

released according to Group 1’s order.

Furthermore, Jonsson and Olovsson suggested a hypothesis in [70] that the attacking

process can be split into three phases: the learning phase, the standard attack phase, and

the innovative attack phase. The probability for successful attacks during the learning

and innovative phases is expected to be small. The proposed order provides further sup-

port for this hypothesis in terms of the learning phase, as the learning process is as-

sumed in this study to be impaired with an independent algorithm among dependent

algorithms.

It is worthy to note that the interaction between the attacker and the defender in the pro-

posed SPN model appears like a game between two players. For instance, Lye and

Wing modelled in [88] the interaction between an attacker and a defender as a two-

player stochastic game. Their model could compute the best-response strategies for the

players and then use the results by the administrator to enhance the security of a system.

However, it typically does not consider maximizing the duration of the game as the ob-

jective, but aim for Nash or other equilibria.

4.7 Summary

This chapter has proposed a model of a set of defensive algorithms approach, based on

the assumption that a single defence algorithm has a number of drawbacks due to the

attacker learning as time progresses. The proposed model is constructed by using Sto-

chastic Petri Nets (SPN), which can describe the interaction between an attacker, the set

of algorithms used by a system, and the knowledge gained by an attacker with each at-

tack. The purpose of this framework was to facilitate theoretical analysis of the release

order of a set of algorithms approach.

Chapter 4 – Modelling of Release Order Strategies

97

Due to several important features, a Stochastic Petri Net Package (SPNP) is utilised as a

software tool to implement the proposed model. Based on the empirical results achieved

from the previous experiment conducted in Chapter 3, the proposed model is parameter-

ized and evaluated. The model allows the results obtained previously in Chapter 3 to be

replicated. Not only this, but it also demonstrates and predicts the consequences of in-

troducing algorithms that are not a subset of a set of used algorithms, which forces the

attacker back to the beginning of the learning phase.

The study has gone some way towards enhancing our understanding of the interleaving

of independent algorithms with dependent ones, which was a model-based order. De-

spite this model’s apparent cost efficiency, this study offers some insight into impeding

the learning acquisition process of the attacker.

Studying and developing an optimisation algorithm is important. As shown in Chapter

3, a statistically significant impact on the time attackers take to break all algorithms,

while breaking A3 took an equal amount of time for both groups. This can be used as

confirmation that a Markov model is an appropriate formalism for the problem at hand.

Therefore, the following chapter will entail discussion of the use of a Markov model

and optimisation of the release order of a set of defensive algorithms.

98

Chapter 5. OPTIMAL RELEASE ORDER

STRATEGIES

This chapter defines an optimal strategy approach that has been accomplished for the

release order of defensive algorithms. Specifically, since the order in which spam filter

algorithms are released has a statistically significant impact on the time attackers take to

break all algorithms, as shown in Chapter 3, this problem is modelled as an optimisation

problem
18

 using a stochastic model in this chapter. In order to get a model that has, on

one hand, enough complexity to capture the complexity of the phenomenon in the prob-

lem and, on the other hand, enough structure and simplicity, a continuous-time Markov

Decision Process (CTMDP) is found to be a suitable tool for this optimisation problem.

This CTMDP allows determining an optimal strategy for the model. The objective of

this optimisation algorithm will be the release order of algorithms so as to maximise the

time until the attackers break through all algorithms available. For this, when maximis-

ing the mean time to break algorithms, well-known iterative algorithms [141] can be

applied. Therefore, this chapter provides a version of such an iterative algorithm that

exploits the absorbing nature of the underlying Markov chain and avoids generating

(and storing) the whole Markov chain. An early version of this optimisation algorithm

was published in [13].

The remainder of this chapter is structured as follows. Section 5.1 provides a prelimi-

nary outline of the approach to the derivation of optimal release strategies and estab-

lishes a design for how the continuous-time Markov Decision Process is applied. Sec-

tion 5.2 describes the proposed optimisation algorithm. An application example is pro-

18 Generally, an optimisation problem seeks values of the variables that lead to an optimal value of the function that is

to be optimised.

Chapter 5 – Optimal Release Order Strategies

99

vided in Section 5.3. The discussion is presented in Section 5.4. Section 5.5 summarises

the chapter with an overall discussion.

5.1 Deriving Optimal Release Order Strategy

The release order of defensive mechanisms has indeed influenced the time attackers

take to break them, as verified in Chapter 3. Particularly, the time required by Group 1

to break the algorithms was significantly higher than Group 2. Moreover, the concatena-

tion of Algorithm 3 (i.e. A3) at the end of both Group 1 and Group 2 yielded an interest-

ing result, namely that the time taken to break A3 is not significant; rather, the signifi-

cance lies with which algorithms were broken. This result therefore can indicate that

injecting a significantly different algorithm forces the attackers back to the learning

phase. Whether this can be extended to more similar algorithms remains to be seen.

Thus, optimising the release order of defensive algorithms is a problem worthy of study.

This optimisation is a procedure used to make a system as effective as possible in terms

of maximising the time taken by attackers to break the system. To study and determine

the optimal release strategies, a stochastic model that takes into account the important

aspects of the problem is used in this study.

Broadly, a stochastic model is a model that involves probability, or randomness, associ-

ated with time and events. When using such a model, a stochastic process represents the

behaviour of the system over time, given the occurrence of certain events. A stochastic

model can be depicted as a state transition diagram, which describes all relevant opera-

tional system states and the possible transitions between these states. To describe time

aspects between events, a rate matrix is specified. One usually assumes that the event

that will occur next in the system, as well as the time before this event, is random.

Hence, the behaviour of the system is a stochastic process. The main advantage of this

modelling approach is that it captures dynamic aspects of system behaviour, which it

can be argued is an applicable approach for modelling the security of a system [138].

Such a stochastic process is known as a Markov process.

A Markov process is a special type of stochastic process in which the conditional prob-

ability distribution function satisfies the Markov property or the Memoryless property of

a Markov chain. This Memoryless property means that the past history of a random

variable that is exponentially distributed plays no role in predicting its future. For in-

Chapter 5 – Optimal Release Order Strategies

100

stance, when X is the random variable that denotes the length of time that a person

spends in a service and X is exponentially distributed, then the probability that the per-

son in service finishes at some future time t is independent of how long that person has

already been in service. Accordingly, as observed in Chapter 3, the concatenation of

Algorithm 3 at the end of both groups (i.e. Groups 1 and 2) demonstrated the memory-

less property of the Markov model.

Therefore, the optimisation problem is modelled in this study as a Markov Decision

Process [24] with a state space S that simply keeps track of which algorithms are bro-

ken. This allows determining an optimal strategy from the model. More details regard-

ing the utilisation of Markov Decision Process are given in the next section.

5.1.1 Modelling the Release Order Strategy

A Markov Decision Process (MDP) is a widely unified framework for modelling and

describing sequential decision making problems that arise in engineering, economics,

operations research and computer science [24]. MDP is also useful for studying a wide

range of optimisation problems. There are four principal components in an MDP model:

a state space, an action space, the effects of the actions and the immediate cost incurred

by the actions. A decision process is characterized by the fact that in each state there is a

choice to be made between possible actions. Each action takes the process to a new

state.

Since time is an essential factor in the problem at hand, a continuous-time Markov De-

cision Process (CTMDP) is introduced. As the released algorithm is broken and knowl-

edge regarding its rules is gained by the attacker, the system responds to this by replac-

ing the defeated algorithm with another one. The system does not make the decision

about replacing actions blindly, but takes into account past, current, and possible future

states of the attackers and also possible rewards that are connected with the actions. The

goal of the system in this study is to maximise the time taken by the attacker to break all

algorithms.

Formally, CTMDP is a set P = {S, A, λ, R}, where:

1. S is a set of system states si S.

2. A is a set of possible actions ai A in any state si S.

Chapter 5 – Optimal Release Order Strategies

101

3. λ is a transition delay λa associated with any actions ai A, and is also used

if the action results in a transition from state i to j.

4. R is a set of rewards functions rij dependent on the state si and the action aij.

States in the MDP must reflect the amount of knowledge gained by the attacker. Here

the very natural assumption is made that if a given set of algorithms has been broken,

the time it takes to break future algorithms is the same regardless of the order in which

the earlier algorithms were broken. (The experiments showed this a valid assumption,

since the time to break A3 was not influenced by the order in which the earlier ones

were broken). Then, the state is completely specified by maintaining which algorithms

are broken. If G is the set of all algorithms (with |G| elements), then a state s ∈ S is a

tuple s = (g1,g2,…,g|G|), where gi = 0 if the i-th algorithm has not been broken yet, gi = 1

if the i-th algorithm has been broken.

The actions in a state represent the selection of a next algorithm to be released. Thus,

there is an action corresponding to any algorithm that is not yet broken; that is, there are

as many possible actions in state si ∈ S as there are 0 elements.

The delays signify the time it takes for an attacker to break the algorithm associated

with action ai. This time depends on the knowledge gained from breaking earlier algo-

rithms, which is maintained in the state.

This formulation immediately shows that there exist, at most, 2
|G|

 states. The possible

order in which the |G| algorithms can be released is |G|!. To determine which release

order is optimal, it is first necessary to define the optimization criterion. For that opti-

mization criterion, a reasonably efficient algorithm is required to search through the

many options.

The particular metric of interest (and, hence, the optimization criterion) in this study, as

mentioned previously, is for maximizing the time it takes to break all algorithms. There-

fore, let the stochastic process R(t), defined for t ≥ 0, indicates if all algorithms have

been broken at time t: R(t) = 1 if s = (1,1,…,1) and otherwise R(t) = 0. It is important to

note that R(t) turns 1 only once, and then stays 1. The probability that all algorithms are

broken at time t is P(R(t) = 1), where P indicates the probability, as usual. R(t) also pro-

Chapter 5 – Optimal Release Order Strategies

102

vides the Mean Time to Security Failure
19

 (MTTSF) [2]: E [R(t)] =

,

and with higher moments similarly. In what follows, R (t) is referred to as the time to

security failure.

Finding the best strategy corresponds to a standard Markov Decision Process optimiza-

tion problem with a finite horizon only for the first moment
20

 E [R(t)], but not for higher

moments or its distribution. In the following section, a specific backward algorithm is

presented that efficiently generates all paths ‘backwards’ from the state in which all al-

gorithms have been broken.

5.2 Optimisation Algorithm

The optimization term in this chapter, and in the thesis, refers to the selection of a best

defensive algorithm to be released from a set of available alternative algorithms. The

selection of best defensive algorithm to be released is calculated by a probability distri-

bution. In order to describe this probability distribution, the exponential distribution

needs to be defined. As mentioned previously in Chapter 4, the exponential distribution

is the probability distribution that describes the time between events that occur continu-

ously and independently at a constant average rate. Despite the exceptional mathemati-

cal tractability that flows from the memoryless property of the exponential distribution,

mathematical tractability sometimes is not sufficient to overcome the need to model

processes for which the exponential distribution is simply not adequate. Thus, Phase-

type distributions [138] permit the modelling of more general distributions, while main-

taining some of the tractability of exponential distribution.

To calculate the optimal strategy of the release order in the proposed optimisation algo-

rithm, it is useful to realize that any selected sequence of algorithms corresponds to a

hypo-exponential distribution, which in turn is a special case of a Phase-type distribu-

tion. The hypo-exponential is a series of k exponential distributions, each of which has

its own rate λi, the rate of the i
th

 exponential distribution. If there are k independently

distributed exponential random variables xi, then the random variable:

19 For quantifying the security of a system, MTTSF refers to the length of time to reach such absorbing states [2].

20 The first moment refers to a mathematical quantity that is defined in relation to random mathematical objects

known as a point process. This point process seeks to represent a collection of points randomly on some underlying

mathematical space. Therefore, the sth moment of a set of data with a total of n discrete points X1, X2, …, Xn is given

by the formula: (X1
s+X2

s+...+Xn
s/n). For instance, the first moment was set as s = 1 [104].

Chapter 5 – Optimal Release Order Strategies

103

is hypo-exponentially distributed [138]. Therefore, the following result for hypo-

exponential distributions is needed: If H1 is hypo-exponential with rates λ1,…,λK and

MTTSF E[R1(t)], and H0 is hypo-exponential with rates λ0, λ1,…,λK, and MTTSF

E[R0(t)], then E[R0(t)] = 1/λ0 + E[R1(t)].

Although this is an obvious result, it is important to note that the same does not hold for

higher moments. In other words, lower moments are utilised here in this optimisation.

The above implies that a backward algorithm can be executed that optimizes for hypo-

exponential distributions of increasing length. The backward algorithm is an inference

algorithm which computes the posterior marginal of all state variables given a sequence

of observations. The algorithm represents the principle of dynamic programming to ef-

ficiently compute the values that are required to obtain the posterior marginal distribu-

tion [121]. Thus, it implies that known MDP theory can be used, since reward ri,j = 1/ λi,j

can be associated with each transition from state i to j. Because of the specific structure

of the proposed model, it makes sense to provide a bespoke algorithm that avoids gen-

erating the complete state space S as shown in Figure 5.1.

Figure 5.1: The Backward Optimization Algorithm.

In the proposed backward optimisation algorithm, it is noticeable that (1,1,…,1) is the

absorbing state with all algorithms broken. The algorithm starts from that absorbing

start = (0,0,…,0);

end = (1,1,…,1);

For All s ∈ S set ETs = 0;
ToDoSet = {end};

While(ToDoSet ≠ {start}) Do {

 ToDoSet = {s|si, for any i ToDoSet}

 For All s ToDoSet Do {

 For All i ∈ S such that s i Do {

 If(1/λs,i + ETi > ETs) Then {

 ETs = 1/λs,i + ETi;

 BestNexts = i;

 }

 }

 }

 }

Chapter 5 – Optimal Release Order Strategies

104

state and explores all possible previous states (stored in ToDoSet). For each previous

state, it selects the action that maximizes the time to reach the absorbing state (stored in

the BestNext variable associated with each state). This continues until the state with no

broken algorithms is reached.

Given the backward optimisation algorithm, the optimal order of releasing the algo-

rithms is then obtained as follows, in the tuple Optimal:

s = start;

Optimal = (s);

While(s ≠ end) Do {

Optimal = (Optimal, BestNexts);

s = BestNexts;

}

It is noted that the above algorithm neither generates the complete state space S, nor all

possible sequences of algorithms. The storage required is approximately

N!/[(N/2)!(N/2)!] real-valued variables, which occurs halfway through the backward

algorithm (which starts with a single state (end) and ends with a single state (start)).

That still limits the size of the model one will be able to solve, but with modern day

computing equipment this implies that the problem can be solved for up to several tens

of algorithms.

It is important to remark that the above algorithm does not work if higher moments are

considered. Moreover, it is also straightforward to find release strategies that optimize

the MTTSF, but which do not optimize the second moment of the time until security

failure.

5.3 Application to the Example

This section presents an example in which the best strategy can be achieved. The exam-

ple presented, with three algorithms, is of course a simple case, in that it has only a few

states, and the best release strategy can therefore be easily computed. Nevertheless, it is

useful to provide the MDP for this case that is discussed in the following subsection.

Chapter 5 – Optimal Release Order Strategies

105

5.3.1 Markov Decision Process for Example

In the experimental study conducted in Chapter 3, the release order of the three devel-

oped algorithms (A1, A2, A3) was: A1, A2 then A3 for Group 1, while it was A2, A1

then A3 for Group 2. The MDP for this is provided in Figure 5.2.

Figure 5.2: Markov Decision Process for Example.

As mentioned, there are three algorithms in this example, (A1, A2, A3), leading to 8

theoretically possible states (denoted by the circles in Figure 5.2). Since the release or-

ders for both groups in the experimental study put A3 at the end, the possible order is

restricted in this example and always puts algorithm A3 last. The actions in each state

are given by the arcs. Only in state (0,0,0) there is a choice between actions, namely to

first release algorithm A1 (leading to (1,0,0)) or algorithm A2 (leading to 0,1,0). The

arcs are labelled according to the time it takes to completely break the algorithm, as

seen from the experiment carried out in Chapter 3. Referring back to Chapter 3, Group 1

followed the trajectory at the top of Figure 5.2, using 10.9 minutes to break A1 and 14.1

minutes to break A2. Group 2 followed the trajectory at the bottom of Figure 5.2, using

16.2 minutes to break A2 and 3.8 minutes to break A1. Then all participants broke A3,

in an average of 6.6 minutes.

The backward optimization algorithm of Figure 5.1 traverses backwards and picks the

best action. Before getting to state (0,0,0), it obtains intermediate results of 14.1 + 6.6 =

20.7 for state (1,0,0) and 3.8 + 6.6 = 10.4 for state (0,1,0). For state (0,0,0), it then se-

lects the action that maximizes the time to security failure, so it releases algorithm A1

first (the trajectory at the top of Figure 5.2), because 10.9 + 20.7 > 16.2 + 10.4. Thus,

the optimal release strategy becomes A1 followed by A2 followed by A3.

Chapter 5 – Optimal Release Order Strategies

106

5.4 Discussion

The experimental study accomplished in Chapter 3 confirms that optimising the release

order for a set of algorithms can increase the time needed to break a system’s security in

a statistically significant manner. This optimisation problem led to investigating an ap-

propriate formalism to optimise the release order strategy. Accordingly, the optimisa-

tion problem is modelled mathematically as a Markov Decision Process and a tailored

optimisation algorithm is provided, as shown in Figure 5.1 using efficient quantitative

methods.

By applying the optimisation algorithm, the optimal release order of the defensive algo-

rithms indicates that releasing the subset algorithms before the superset algorithms can

maximise the length of time taken to break the algorithms. This is because, according to

the empirical results accomplished in Chapter 3, the rules of superset algorithms need

more time to be disclosed, even though the rules of its subset algorithm have been ex-

ploited. Although gaining knowledge of the rules for subset algorithms by the attackers

could offer a number of indications of how the rules of superset algorithms act, releas-

ing the superset algorithms after the subset algorithms keeps the attackers in the learn-

ing phase for a considerable length of time.

The results of applying the proposed optimisation algorithm to dependent algorithms

(i.e. super and subset algorithms) suggest that it may be a suitable tool for optimising

the release order of a set of algorithms which was basically one algorithm broken up

into superset and subset parts. Furthermore, when a system has a limited type of defen-

sive algorithm, this optimisation algorithm may be adapted to optimise the release order

of these algorithms.

Moreover, the consequence of using the model-based order proposed in Chapter 4 is

that the proposed optimisation algorithm may be a suitable tool to release a set of algo-

rithms for a system that has unrestricted types of defensive algorithms (i.e. using mixed

dependent and independent algorithms). Although establishing this kind of system may

be a challenge in terms of cost, the security level of the system can be increased signifi-

cantly by releasing each independent algorithm. As a result, a tradeoff can be recog-

nised clearly between the security level and the financial cost in addition to the third

factor, which is the usability that complements them, as reported in [68].

Chapter 5 – Optimal Release Order Strategies

107

It is interesting to note the relative correlation between the release order of the defensive

algorithms strategy and the game theory approach, with regards to the demand of the

optimisation problem. That is, game theory can provide a mathematical framework for

analysing and modelling network security problems. This framework has been targeted

by various studies such as in [6, 7, 67, 129, 130]. The optimisation algorithm is applied

in these studies in order to provide a level of security from different angles. For in-

stance, Alpcan et al. investigated in [6] how long it took the game to approach a Nash

equilibrium when many players tried to solve it in a distributed way. A feedback system

approach is suggested as a control input to make the system robust and to control the

system’s progress. In addition to this study, Alpcan and Baser utilized in [7] an optimal

reactive defensive action through the Min-max Q learning approach in order to the

gradually improve the defender’s quality. Moreover, Jiang et al. developed in [67] an

optimal active defensive strategy decision algorithm. Despite these studies which in-

volve dynamic games apply optimisation algorithms in order to find the best solutions

among a set of candidate solutions, none of them consider the attacker’s learning and/or

maximizing the duration of the game as the game’s objective.

Likewise, an optimisation algorithm was used in [122] in order to gain scalable optimal

countermeasure selection using implicit enumeration on Attack Countermeasure Trees

(ACT). However, this solution focuses on a static attack scenario and predefined coun-

termeasure for each attack.

5.5 Summary

This chapter has given an account of and the reasons for the demand of optimising the

release order of a set of algorithms approach. This demand for optimisation is intro-

duced in Chapter 3, which schedules the release of defensive algorithms so as to pro-

long the time attackers need to successfully defeat all algorithms.

In this chapter, the aim was to develop and provide an optimisation algorithm for the

release order of defensive algorithms. Therefore, this chapter has provided a tailored

optimisation algorithm using a Markov Decision Process to obtain efficiently the opti-

mal release strategies for any given model.

Based on the empirical results achieved in Chapter 3, an application example has been

demonstrated. The results of this application indicate that the proposed optimisation

Chapter 5 – Optimal Release Order Strategies

108

algorithm may be a useful tool to optimise a set of similar algorithms with variation in

their rules. Not only this, but the proposed optimisation algorithm can also be a practical

tool to optimise a set of mixed dependent and independent algorithms. Nonetheless, this

type of several algorithms for a system can be costly in terms of money, though the se-

curity level of the system could be increased, and a tradeoff between the security and

expense of the system could be recognised intuitively. In general, therefore, the pro-

posed model solution should scale without problems to optimise the release order of

tens of defensive algorithms.

As the learning acquisition process of the attacker plays an important role in this thesis,

the next chapter sheds light on this topic by investigating an Attacker Learning Curve

notion based on the data collected in the controlled experimental study carried out in

Chapter 3.

109

Chapter 6. ATTACKER LEARNING CURVE

This chapter explains the proposed Attacker Learning Curve (ALC) notion, while ana-

lysing the data collected from the experimental study reported in Chapter 3. Since the

defence algorithms used in the experiment evaluate the attackers’ attempts based on a

similarity mechanism, this leads to similarity-based quantitative data. Therefore, the

idea of the ALC lies in collecting the attempts data of an attacker when several manipu-

lated attempts to break an algorithm are carried out by the attacker. As such, accumula-

tive manipulation, which is the attacker’s aggregated amount of knowledge, can gradu-

ally create the ALC. The ALC effectively represents how close an attacker is to break-

ing a defence algorithm.

This chapter also outlines several strategies which were utilised to break the algorithms,

and which were discovered when analysing the attackers’ attempts. By applying the

proposed ALC, the impact of all used strategies used in breaking the algorithms is dem-

onstrated. Furthermore, an ALC is formalised as an Attacker Learning Curve Model

(ALCM) that allows estimation of the learning curve of an attacker to break an algo-

rithm. An early version of this proposed ALC notion and its model were published in

[14].

The remainder of this chapter is organised as follows. Section 6.1 begins by the theo-

retical dimensions of the proposed idea of the ALC. Section 6.2 describes the design,

synthesis, characterisation and evaluation by an illustrative example of the ALC. In Sec-

tion 6.3, the impact of all observed strategies in breaking an algorithm is discussed. Sec-

tion 6.4 describes the inspired ALCM. Section 6.5 presents the discussion. Finally, Sec-

tion 6.6 summarises the chapter.

Chapter 6 – Attacker Learning Curve

110

6.1 An overview of Attack Scenario

In order to define the principle behind this chapter, an overview of the attacker scenario

is provided, involving the attacker and the defensive mechanism, as shown in Figure

6.1. This figure describes the interaction scenario between an attacker and a security

defensive mechanism.

Figure 6.1: Attack Scenario.

The scenario starts with an attacker who has prior knowledge regarding the rules used

by the defensive algorithms to classify a request. Then, the attacker attempts to structure

requests systematically in order for the requests to be classified by the security layer as

accepted, since the security layer classifies requests as acceptable or not based on a set

of rules. An acceptable request can proceed through the security layer and use system

resources, while an unacceptable request is blocked. On each failed attempt (i.e. unac-

ceptable request), the attacker receives feedback from the system with regards to the

failed attempt, as shown in Figure 6.1. This feedback may be a simple Boolean re-

sponse, or may include reasons for the failure, as mentioned previously in Chapter 1.

Indeed, this feedback can be a fundamental aspect that motivates attacks on the interac-

tive defensive mechanisms, as detailed in Chapter 1. In particular, the attacker learns

from the feedback, and uses it for subsequent requests. By repeatedly performing this

knowledge acquisition process, the attacker can gradually derive the rules used by the

algorithms to classify requests, including both the parameters used, and the value of

these parameters. For example, attackers executed an attack on several CAPTCHA

schemes by gradually deriving the parameters used and the value of these parameters,

until this scheme was broken [150]. The attacker can then misuse the system resources

by sending requests that are structured in such a way that they are classified as accept-

able by the algorithm that is in the security layer, in which case, the algorithm is consid-

ered broken.

Chapter 6 – Attacker Learning Curve

111

The focus of this scenario is mainly on a similarity assessment mechanism, where any

request from each attacker is evaluated by comparing this request with all previous re-

quests. In this light, a similarity threshold, which is a lower limit for the similarity of

two data records that belong to the same cluster, is defined. Additionally, it is assumed

in this scenario that an attacker sends a set of messages in order to break the released

algorithm that is in the security layer. Intuitively speaking, a rule R consists of a set of

previous messages that are known to be attacks. This set is updated with each attempt,

and so Rn = {p1, p2, …, pn} is written for the rule R at step n, where each pi denotes the

previous attempt at step i. An attacker submits a message m with some manipulations

against a rule R, and either this message is considered different enough and is thus ac-

cepted, or it is not, in which case m is added to R. The difference between m and R is

calculated with the functions:

 ∈

 ∈

where hi(m) indicates the i
th

 hash value of the message m, and MH is the maximal num-

ber of hashes. Given a rule R and a message m, if m has a lower similarity threshold ST,

then m is accepted and added to R (i.e. the rule of the algorithm is broken); otherwise, m

is rejected.

For the purpose of this scenario, a detection approach adapted from that utilised in

Chapter 3 (i.e., using a spam filtering detection approach) is used to detect attempts of

attackers. This is the experimental scenario considered here, but it is also a good fit for

the detection of abnormal database queries, or detection of information leakage. More

details of how this spam filtering detection approach is exploited to develop the ALC

are discussed in the following section.

6.2 Attacker Learning Curve

The Learning Curve phenomenon is widely known, especially in the psychology and

economic fields. As such, this phenomenon is exploited in two significant ways: where

a body of knowledge is increased overtime or where an identical task is repeated in a

number of trials [118]. For instance, since organisations gain experience with produc-

tion, productivity and quality improve at a decreasing rate. In other words, accumulating

experience leads to improved performance [21].

Chapter 6 – Attacker Learning Curve

112

Accordingly, the notion of the Attacker Learning Curve (ALC) is that, as attackers gain

knowledge with regards to the rules used in the defensive mechanism, accumulating

experience regarding the applied rules in the defensive mechanism leads to improved

performance in breaking the defensive mechanism. In view of this, the accumulation of

experience can be anticipated quantitatively based on the detection approach of at-

tacker’s attempts. That is, the attacker’s attempt is evaluated by Similarity-Based

evaluation method which is explained briefly in the next subsection. This produces

quantitative data (i.e., Similarity-Based data) which is the distance between the attempt

and the similarity threshold, as shown in Figure 6.2. Since breaking a defensive algo-

rithm typically requires several attempts by attackers, each attempt is manipulated by

attackers in order to avoid detection. Thus, the accumulative manipulation, which is the

attacker’s aggregated amount of knowledge, can gradually build the ALC that effec-

tively represents how close an attacker is to breaking a defensive algorithm. Figure 6.2

depicts the structure of the ALC, starting with the detection of the attacker’s attempt

through the accumulative manipulation process, and then achieving the ALC. Based on

the ALC, both quantitative data (i.e., Accumulative-Based data) and qualitative data

(i.e., Strategy) are organized as an input in the Training data. The qualitative data will

be highlighted in Section 6.3. In addition, although Training data are beyond the scope

of this chapter, they will be defined and used as phase 2, and the components of the

structure of the ALC as phase 1 in the proposed detection approach that will be de-

scribed in the next chapter (Section 7.1.3).

Figure 6.2: The structure of the ALC.

Based on the data analysed from the previous experiment, the following subsection

shows examples on how the attacker performance is extracted from the similarity

evaluation results of the defence algorithm.

Chapter 6 – Attacker Learning Curve

113

6.2.1 Extracting Similarity-Based Data

The similarity evaluation approach is one of the common approaches in interactive de-

fensive mechanisms to determine an attack attempt [152]. Since the previous controlled

experiment study uses a similarity evaluation approach, each similarity result of each

attempt is recorded and collected
21

. Based on the data collected from this experiment,

similarity-based data are developed in this study to demonstrate the attacker’s progress

during the attacking process. Therefore, Figure 6.3 shows an example of one attacker’s

performance, which is extracted from the experiment data to break all algorithms (i.e.

Algorithm 1 (A1), Algorithm 2 (A2) and Algorithm 3 (A3)). The example shown in

Figure 6.3 uses structured strategies to break the algorithms. More details about strate-

gies applied in the attack process are in Section 6.3.

Figure 6.3: Example of Structured Attacker Performance.

In contrast, Figure 6.4 illustrates an example of one of the attackers’ performances to

break all algorithms by using random strategies. Hence, the impact of the strategies on

the attack process can be observed in terms of time taken. Furthermore, these similarity-

based data encourage investigation into the accumulative manipulation concept.

As the accumulative manipulation term has an important implication for developing the

ALC, the formalism of this term is presented in the following subsection.

21 For each algorithm, an attack attempt is evaluated against a similarity threshold. While the similarity of an attempt

is above the similarity threshold, the attacker needs to try again.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

%
 o

f
Si

m
ila

ri
ty

-B
as

e
d

 D
at

a

Trials

Similarity of A1

Similarity of A2

Similarity of A3

Threshold of A1&A3

Threshold of A2

Chapter 6 – Attacker Learning Curve

114

Figure 6.4: Example of Unstructured Attacker Performance.

6.2.2 Accumulative Manipulation

The manipulation of an attacker denotes the distance between one attempt from an at-

tacker and his previous attempts. The accumulative manipulation of an attacker Ak is

therefore given by the function AcMan, defined as:

where R is a rule and denotes the i
th

 message sent by . For example, consider the

simple case where the length of a message is limited to 7, i.e., MH=7, where the rule R

is initialised with “Message” and where the similarity threshold is set to ST=2, meaning

that at least two characters need to be different in order for a message to be accepted. If

 attempts to submit “Message”, then all hash values are identical, and this attempt is

therefore rejected, and .

If the next message sent by is “Messoge”, then “ ” “ ” ,

and it follows that “ ” . Since this value is still below ST, the new

message is added to the rule, i.e., R = {“Message”, “ ”} and

 Now, if the next message is “Messo9e”, it remains the case that

 “ ” , since considers the minimum of . However,

 , thus denoting that the attacker has made some pro-

gress. It is worth noting here that the accumulative manipulation can continuously in-

crease, even if the attacker never breaks the rule. More details will be given in the fol-

lowing subsection by presenting an illustrative example based on empirical results.

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

%
 o

f
Si

m
ila

ri
ty

-B
as

e
d

 D
at

a

Trials

Similarity of A1

Similarity of A2

Similarity of A3

Threshold of A1&A3

Threshold of A2

Chapter 6 – Attacker Learning Curve

115

Next, an ALC example derived from the empirical results of the experimental study in

Chapter 3 is described. This example demonstrates the efficiency of accumulative ma-

nipulation.

6.2.3 Illustrative Example to ALC

In order to link the data collected in Chapter 3 with the derivation of the ALC, the

background of the attack attempt detection mechanism is briefly outlined. In the ex-

periment, attackers sent a manipulated e-mail to the system for breaking its security al-

gorithms. Each e-mail submitted was evaluated by a similarity approach to quantita-

tively determine an attack attempt based on similarity with previously submitted e-

mails. The level of similarity is exploited in this study by calculating the accumulative

manipulation. In particular, the similarity of submitted emails, which is determined by

the similarity threshold, is subtracted from the whole hash values (i.e. 100 hash val-

ues
22

), and this difference is called the amount of effective manipulation (e.g. the third

column in Table 6.1). This amount is then increased accumulatively while the attacker

is attempting to break an algorithm, as shown in the fourth column in Table 6.1.

Table 6.1 presents the calculation of the accumulative manipulation of one of the at-

tackers, who performed the attack task successfully in the previous experiment in Chap-

ter 3. The similarity threshold of this algorithm was 75%. Based on this accumulative

manipulation, Figure 6.5 illustrates the ALC.

Table 6.1: Calculating the Accumulative Manipulation.

Trials Similarity Manipulation=100-Similarity Accumulative Manipulation

1 100 0.00 0.00

2 95 5.00 5.00

3 91 9.00 14.00

4 99 1.00 15.00

5 92 8.00 23.00

6 87 13.00 36.00

7 97 3.00 39.00

8 84 16.00 55.00

9 73 27.00 82.00

10 88 12.00 94.00

11 76 24.00 118.00

12 69 31.00 149.00

22

 More details regarding the value of parameters are presented in Chapter 3, specifically in Section 3.3.4.

Chapter 6 – Attacker Learning Curve

116

121110987654321

160

140

120

100

80

60

40

20

0

Trials

A
cc

u
m

u
la

ti
v

e
 M

a
n

ip
u

la
ti

o
n

Attacker Learning Curve

Figure 6.5: The Attacker Learning Curve Based on the Accumulative Manipulation.

It is important to note that the attackers in the experiment were asked to break the algo-

rithm twice (i.e. pass through the spam filter algorithm with 3 e-mails, where the first

email was for training the database and the remaining two are for breaking the algo-

rithm). The reason behind this was to make sure that the attacker was learning during

the attack process. For this, in Table 6.1, the row highlighted in orange corresponds to

the first break, while the one highlighted in red corresponds to the second break. Hence,

as shown in Table 6.1, once the attacker had defeated the algorithm, the second break

required only two trials.

6.3 Strategies Applied in Attack Process

Since attackers’ tactics and techniques are constantly evolving, attackers are continually

developing new attack tools and strategies to enable the possibility of a successful at-

tack process against a secure system. In the interests of understanding the strategies ap-

plied in an attack process of the previous experiment, qualitative data in the form of a

survey were collected from the experimental study, as mentioned in Chapter 3, to verify

that the attacking process was accomplished by structured strategies based on the

knowledge gained rather than complete randomness. In particular, each attacker was

asked to detail the strategy (or strategies) that were used to defeat the algorithms, the

part of the email that the participants believed that each algorithm was checking, and the

algorithm which the participants thought was the toughest to defeat, as shown in Ap-

Chapter 6 – Attacker Learning Curve

117

pendix A. The results of this survey indicate that 90% of the attackers (36 out of 40)

used structured strategies to defeat the algorithms.

These results led to further investigation into the text of the e-mails sent by each at-

tacker. The main purpose of this investigation was not only to identify the most effec-

tive strategy in terms of consuming time in the attacking process, but also to demon-

strate the influence of the observed strategies on the ALC. Thus, the following subsec-

tions describe the observed strategies and their impact on breaking the algorithms by

utilising the ALC based on the results of the investigation.

6.3.1 Observed Strategies

There were three main strategies that attackers used which were discovered by means of

the investigation procedures. These strategies are as follows:

 Thesaurus substitution, Perceptive substitution, Delete spaces.

 Random addition, Thesaurus substitution, Perceptive substitution, Add

spaces.

 Perceptive substitution.

where Random Addition adds random characters to the original email text; Thesaurus

Substitution substitutes some words of the original text with synonyms defined in a the-

saurus; Perceptive Substitution substitutes some characters of words in the original text

without changing the aim of how the words are to be perceived by the reader, for exam-

ple, “security” could become “s3curity”; Add Spaces randomly adds spaces; and Delete

Spaces randomly deletes spaces. The effectiveness of each of these strategies in ma-

nipulating a given e-mail text is described as follows.

Suppose that a spam e-mail is sent by an attacker to users, as shown in Figure 6.6. This

e-mail can be then manipulated by the attacker using a Random Addition strategy, The-

saurus Substitution strategy, Perceptive Substitution strategy, Add Spaces strategy or

Delete Spaces strategy, as shown in Figures 6.7, 6.8, 6.9, 6.10 and 6.11, respectively.

Chapter 6 – Attacker Learning Curve

118

Figure 6.6: Original Spam E-mail.

Figure 6.7: Using Random Addition.

Figure 6.8: Using Thesaurus Substitution.

Figure 6.9: Using Perceptive Substitution.

Chapter 6 – Attacker Learning Curve

119

Figure 6.10: Using Add Spaces

Figure 6.11: Using Delete Spaces.

The influence of each strategy on the ALC is discussed in the following subsection.

6.3.2 Impact of All Strategies in Breaking Algorithms

Since the ALC effectively represents how close an attacker is to breaking a defensive

algorithm, it is interesting to demonstrate the impact of each observed strategy, which is

described in the previous section, in breaking all algorithms outlined in Chapter 3 by the

proposed ALC. In addition, because of the experimental groups (i.e. Group 1 and Group

2 as stated in Chapter 3) took a similar amount of time to break algorithm 3 (A3), a

demonstration of the impact of all observed strategies in breaking algorithms is only

based on the data collected for breaking A3 in both groups. The reason for this is that it

allows demonstration of the ALC in a comparable model. In other words, the results of

the ALC based on Group 1’s data can be compared with those of the ALC based on

Group 2’s data. For this, the average accumulative manipulation of each strategy in both

groups is calculated, as depicted in Figure 6.12.

It can be observed that although the groups are disjointed, each strategy behaves in a

comparable way in each group. For example, in both groups, strategy 2 was the most

Chapter 6 – Attacker Learning Curve

120

effective in terms of breaking the algorithm, whereas strategy 3 was the least effective.

In other words, the time taken to break an algorithm by using strategy 3 was longer than

that for strategy 2.

161412108642

250

200

150

100

50

0

Trials

A
v

g
.

A
cc

u
m

u
la

ti
v

e
 M

a
n

ip
u

la
ti

o
n

S1 in G1

S2 in G1

S3 in G1

S1 in G2

S2 in G2

S3 in G2

Avg. Performance of all strategies

Figure 6.12: The average Accumulative Manipulation vs. all strategies.

Based on these results, the ALC is modelled as an Attacker Learning Curve Model

(ALCM). The developed ALCM is inspired by a previous model used for describing the

development learning curve during software development. More details are presented in

the following section.

6.4 Attacker Learning Curve Model (ALCM)

This section describes the proposed ALCM that has the potential to estimate the learn-

ing curve of an attacker in breaking an algorithm. Specifically, since several models

have been proposed for software development to estimate the progress of software de-

velopment, one of these models [58] is used here in this chapter as a starting point for

constructing the proposed ALCM. In the following, the knowledge model of the previ-

ous model of software development, the proposed ALCM, and the performance of the

proposed model are presented.

6.4.1 Knowledge Model

Hanakawa et al. proposed in [58] a simulation model for software development that

takes into account the developer’s learning curve (more details are in Section 2.3.1).

Chapter 6 – Attacker Learning Curve

121

This model shows quantity of gain to a developer’s knowledge by executing an activity.

This quantity of gain to the developer’s knowledge is derived from the relationship be-

tween bij, which is the developer’s experience level i while performing the activity j, and

θ, which is the required knowledge level to execute this activity. This model is defined

as follows [58]:

 1

where Lij (t) is the quantity of gain to knowledge of developer i by executing the activity

j, which has knowledge level θ, at time t; Kij is the maximum quantity of gain to knowl-

edge of the developer i by executing activity j; bij is the developer i’s knowledge level

about activity j; E is the developer’s efficiency of gain to knowledge by executing activ-

ity j; and θ is the required knowledge level to execute the primitive activity of activity j.

The knowledge level is reset to the developer’s new knowledge level bij at each step:

bij (t+1) = bij (t) + Lij(t) 2

Therefore, by plotting the level of the developer’s knowledge in time sequence, the de-

veloper’s learning curve can be determined during the execution of an activity. In the

simulation of this model, the growth of the developer’s knowledge level bij during the

execution of activity j shows the developer’s learning curve, as shown previously in

Chapter 2 (Figure 2.7). In that figure, Line (1) shows the learning curve in the simula-

tion in which the growth of the developer’s knowledge level bij has a great impact on

the development progress. Additionally, when the activity is chosen in ascending order

of the required knowledge level, then the shape of the learning curve will be flat, as

shown in Line (2). In light of this, Equation (1) can be exploited to form the proposed

ALCM, and this is described in the subsequent section.

6.4.2 Proposed ALCM

As the proposed ALCM is based on Equation (1), each factor in this equation is devel-

oped for the purposes of the proposed model as follows. The required knowledge level

 is defined by the Algorithm Robustness Level (ARL) [14]:

Chapter 6 – Attacker Learning Curve

122

 ARL=T/SL 3

where T is the time required to break the algorithm and SL is the skill level of the at-

tacker. This skill level is divided into three main categories, as suggested by [112]: Be-

ginner, Intermediate and Expert. Since the previous experiment presented in Chapter 3

focuses on beginner attackers
23

, a single value is considered for SL, experimentally de-

fined as 0.3, and this value is also used for the parameter E, characterizing the efficiency

of the attacker. The quantity of knowledge gained of the developer Lij is defined with

regard to Attacker Knowledge AKij. The maximum quantity of knowledge that can be

gained Kij is defined with respect to the used strategy Sij by the attacker i in order to

break an algorithm j, and has empirically established values 7.5, 10.5 and 5 for strate-

gies 1, 2 and 3, respectively. Finally, the developer’s knowledge level bij is replaced by

Accumulative Attacker Knowledge AccAKij that defines the attacker’s knowledge level i

about an algorithm j. The proposed ALCM is then defined as follows:

 4

The knowledge level is reset to the attacker’s knowledge level AccAKij

 AccAK (t+1) = AccAK (t) + AK (t) 5

By parameterising the proposed ALCM based on the empirical results achieved in the

previous experiment, estimating the performance of an attacker is possible. The follow-

ing section presents the results of evaluating the proposed model.

6.4.3 Performance of the Proposed Model

In order to evaluate the performance of the ALCM, the parameters of the model are fit-

ted with the empirical data from Groups 1 and 2, presented in Table 6.2 and Table 6.3,

respectively. Figure 6.13 presents the results of fitting the model with both groups, ob-

tained with the Java jmathplot library
24

. For the sake of clarity, the curves are presented

by using percentage-based grading; that is, each curve reaches 100% when the corre-

sponding strategy in the corresponding group breaks the algorithm’s rules.

23 In particular, the results of the survey indicate that most of the participants had a beginner skill level.

24 https://code.google.com/p/jmathplot/

https://code.google.com/p/jmathplot/

Chapter 6 – Attacker Learning Curve

123

The results of running the model based on the parameters derived from both Groups 1

and 2, as shown in Figure 6.13, indicate that strategy 2 is more efficient in both groups

in terms of increasing the learning acquisition process of the attacker, while strategy 3 is

less efficient. By using the proposed model, therefore, it is possible to estimate the

learning curve of an attacker in breaking an algorithm. For example, when the strategy

S, the skill level of the attacker SL, and the robustness of the algorithm ARL are given,

the progress of the attacker can be predicted. Furthermore, the accumulative output of

the model can also be used for the proposed detection approach which will be shown

later in the next chapter.

Table 6.2: Fitted Parameters for Group 1.

Strategy

Strategy

(S)

Avg. Braking

Time (T) min-

utes

Skill

level

(SL)

Algorithm Robustness

Level

(ARL)

Attacker

Knowledge

(AK)

1 7.5 7.32 0.3 24.4 0.0

2 10.5 6.12 0.3 20.4 0.0

3 5 12.7 0.3 42.3 0.0

Table 6.3: Fitted Parameters for Group 2.

Strategy

Strategy

(S)

Avg. Braking

Time (T)

minutes

Skill

level

(SL)

Algorithm Robustness

Level

(ARL)

Attacker

Knowledge

(AK)

1 7.5 6.24 0.3 20.8 0.0

2 10.5 5.8 0.3 19.3 0.0

3 5 11.9 0.3 39.7 0.0

Chapter 6 – Attacker Learning Curve

124

Figure 6.13: Result of running the proposed model on Group 1 and Group 2.

6.5 Discussion

This chapter set out to quantitatively represent the knowledge gained by attackers. The

correlation between various manipulated attempts in order to break the interactive de-

fensive algorithms and the accumulated manipulation could gradually build the Attacker

Learning Curve (ALC). This ALC represents quantitatively how close an attacker is to

breaking a defensive algorithm.

Based on the empirical results achieved in Chapter 3, it could be possible to obtain the

manipulation amount of each attacker’s attempt. As a consequence, the ALC was repre-

sented as shown in Figure 6.5. Although the learning curve concept in the fields of psy-

chology and education has been signified by a graphical illustration of increasing the

knowledge with experience [126], to the best of our knowledge this is the first study

that proposes the notion of accumulative manipulation, which forms the basis of the

ALC, in the security context.

Furthermore, the strategies observed indicate that the attacking process was accom-

plished by means of structured strategies based on knowledge gained rather than com-

plete randomness. This finding corroborates the idea of the Problem-Based Learning

(PBL) approach [23], which is a widely known self-directed learning approach in the

16151413121110987654321

100

80

60

40

20

0

Trials

%
 o

f
A

c
c
u

m
u

la
ti

v
e

 A
tt

a
c
k
e

r'
s
 K

n
o

w
le

d
g

e

S1 in G1

S2 in G1

S3 in G1

S1 in G2

S2 in G2

S3 in G2

Chapter 6 – Attacker Learning Curve

125

education field that leads to gaining knowledge via thinking strategies. For instance,

Hmelo and Ferrari concluded in [62] that PBL is used to help students not only to be-

come active learners, but also to develop strategies and construct knowledge. In general,

it may thus be that such connections exist between conducting an attack repetitively

against a defensive algorithm and a PBL approach, where an attacker needs to learn

strategies to defeat a defensive algorithm and where the students are required to learn

strategies to solve a given problem.

On the other hand, the feedback gained through unstructured attacks seems to have been

unhelpful to the attackers, as shown in Figure 6.4. An implication of this is the possibil-

ity that an attacker who applies an unstructured attack strategy may interrupt ongoing

attacks due to the huge number of trials and consequent time consumption. This impli-

cation might also apply to structured attacks when an ineffective strategy is adopted,

since feedback achieved from this strategy could be unhelpful, as strategy 3 was shown

in Figure 6.12.

Another important finding was the validation of the hypothesis concerning the influence

of the observed strategies on the developed ALC, as shown in Figure 6.12. This influ-

ence reflects the impact of the strategy with regards to its feedback to the attacker. For

example, the feedback of strategy 2 was more effective in helping to reveal the rules of

the released algorithm than others. Although strategy 1 has overlapping strategies with

strategy 2, the feedback of strategy 2 was more supportive in terms of the attacker learn-

ing process. Hence, it is possible to hypothesise that the strategy used can be identified

by using such detection approaches. This hypothesis will be validated in the next chap-

ter.

It is encouraging to compare this result of the impact of the strategy used with that

found by Jonsson and Olovsson who found in [70] that the inexperienced attacker

spends more time in the learning phase, while the experienced attacker spends less time.

It can thus be suggested that the inexperienced attacker’s progress might be improved

by employing a more effective strategy. Conversely, the experienced attacker’s progress

might be reduced by ineffective strategies. Moreover, this finding on the importance of

the strategy applied in the attack enhances previous researches into this area such as in

[96, 112] which links attacker skill levels and determines the mean time used to com-

prise a system. Moreover, these findings regarding the manipulated attempts of attack-

Chapter 6 – Attacker Learning Curve

126

ers support the idea of Hung et al. who stated in [66] that it was easy for attackers to

search convex classifiers to find input that can avoid being classified as negative.

Additionally, if the ALCM inspired by a previous model that is utilised for explaining a

developer’s learning curve, the evaluation of the ALCM suggests the applicability of

using it. It is important to note that the knowledge acquisition process of an attacker

presented in Chapter 4 used the developed model, as shown in Figure 4.10. However,

this derivation of the attacker knowledge acquisition process did not take into account

the strategy applied in the attacking process. Therefore, the ALCM seems a typical

model to estimate the learning curve of an attacker to break an algorithm, due to its rec-

ognition of the strategy applied in the attacking process.

This combination of findings provides support for the conceptual premise that the order

of defensive algorithms matters due to the rationale that attackers learn from their at-

tempts. Not only this, but it also bears in mind the possibility of improving the proposed

release order strategy of a set of algorithms, which will be highlighted in Chapter 7.

6.6 Summary

This chapter has investigated the central importance of the Attacker Learning Curve

(ALC) notion of breaking an algorithm. In this investigation, the aim was to represent

the ALC quantitatively by observing the accumulative manipulation of an attacker for

each attack. The aim was also to represent the ALC based on several applied strategies.

This ALC was then modelled to estimate the learning acquisition process of an attacker.

The results of this investigation show that the developed ALC could represent the per-

formance of an attacker quantitatively, depending on the detection approach applied to

detect the attempts of attackers. Furthermore, by means of the ALC, it could be possible

to distinguish between the strategies used of an attack.

The study has gone some way towards enhancing our understanding of the attacker’s

performance to break a system using quantitative data. Therefore, this work contributes

to existing knowledge on the acquisition process of the attacker by providing the notion

of accumulative manipulation, which forms the basis of the ALC, then modelling this as

the Attacker Learning Curve Model (ALCM).

Chapter 6 – Attacker Learning Curve

127

Since the recognisability of the ALC for the applied strategies could affect the probabil-

ity of detecting them, the next chapter highlights a proposed approach that enables de-

tection of the strategies used based on the defined ALC notion given in this chapter.

128

Chapter 7. DETECTION OF ATTACK

STRATEGIES

This chapter describes the proposed simple but novel attack strategy detection approach

that builds upon the Attacker Learning Curve (ALC) concept which was explained pre-

viously in Chapter 6. That is, as stated in Chapter 1, defensive mechanisms should face

attackers who interact with the system by mostly applying a strategy. This strategy

plays an important role in receiving feedback
25

 on effectiveness to the attackers. It also

augments the knowledge of the attackers regarding the rules used by defensive mecha-

nisms to characterize misuse. They are then able to adapt their future interactions ac-

cordingly, increasing their ability to break the defensive mechanisms, until eventually

reaching the point where the defensive mechanism is broken.

A number of interesting solutions have emerged such as Anomaly Intrusion Detection

System (AIDS) that utilizes normal usage behaviour patterns to recognize the intrusion.

The detection techniques of the AIDS can be classified into three main categories [84]:

Statistic-based, Knowledge-based and Machine Learning-based. The machine learning-

based category has several advantages such as flexibility and adaptability, and can be

generally classified as either Unsupervised or Supervised learning
26

. Several studies

have investigated hybrid
27

schemes from different angles (e.g., [55][65]), and although

25 As defined in Chapter 1, the feedback may be a simple Boolean response, or may include reasons for the failure.

26 As defined in Chapter 3, the unsupervised algorithm seeks out similarities between pieces of data in order to char-

acterize them, whereas the supervised algorithm builds a concise model of the distribution of class labels in terms of

predictor features [84].

27 A hybrid approach typically consists of two functional components. The first one takes raw data as input and gen-

erates intermediate results. The second one will then take the intermediate results as the input and produce the final

results [84].

Chapter 7 – Detection of Attack Strategies

129

most of these studies have focused on classifying records as either normal or abnormal

behaviour, detecting the type of attack strategy has not yet been investigated. Thus,

knowing which strategy an attacker is using can provide an advantage for the security

mechanism, for instance by using an attack-defence tree [79], or by optimizing the re-

lease order of algorithms [12, 13], which was previously discussed in Chapters 3, 4 and

5.

Hence, an attack strategy detection approach is proposed in this chapter. Based on the

collected data in Chapter 3, each abnormal attempt of an attacker is detected using an

unsupervised learning algorithm, which leads to the construction of the ALC. Since the

ALC differs from one attack strategy to another, as demonstrated in the previous chap-

ter, the following question is asked: Can the applied attack strategy be detected quanti-

tatively by using the accumulative manipulation of attackers?

To explore this question, the previous experimental study’s groups are divided into two

sets: a training set, which is Group 1, and a testing set, which is Group 2. Therefore, the

corresponding ALC of each attacker belonging to a training set for each strategy is gen-

erated. Then, a Diagonal Linear Discriminant Analysis (DLDA) classification method

is applied to detect the strategy used by attackers belonging to the testing set. This de-

tection mechanism achieved a detection success rate higher than 70% on experimental

data. An early version of this proposed detection approach was published in [14].

The rest of this chapter is organised as follows. Section 7.1 outlines types of attack

strategies, the applied detection approach and the workflow of this detection approach.

Section 7.2 reports the experimental evaluation. The results of this evaluation are pre-

sented in Section 7.3. Section 7.4 presents the discussion. Finally, Section 7.5 summa-

rises this chapter.

7.1 Strategy-Based Detection Approach: An overview

The underlying principle of the proposed attack strategy detection approach is that the

accumulative manipulation, which was developed in the previous chapter, is character-

istic for each observed strategy. In this section, a brief outline regarding the observed

strategies, the methodology of the detection approach and the workflow of the detection

approach are presented.

Chapter 7 – Detection of Attack Strategies

130

7.1.1 Types of Attack Strategies

Despite the fact that strategies observed in the previous experimental study have been

provided in detail previously in Chapter 6, a brief outline of these strategies is given in

this section in the interests of reminding the reader. Thus, the observed strategies are

divided into three main strategies
28

 as follows:

1. Thesaurus substitution, Perceptive substitution, Delete spaces.

2. Random addition, Thesaurus substitution, Perceptive substitution, Add

spaces.

3. Perceptive substitution.

The first two strategies contain mixed types of strategies. In contrast, the third strategy

contains only one strategy. The influence of these strategies on the performance of the

attackers is obviously demonstrated by the proposed ALC, as shown in the previous

chapter (Figure 6.12). Thus, the implication of this finding in relation to making fea-

tures and heuristics leads to investigate a strategy detection method. In order to develop

the detection approach, these features and heuristics can be used as a training set for a

supervised learning machine that classifies the strategy used based on the training set. In

light of this, a Diagonal Linear Discriminant Analysis (DLDA) is chosen to be a detec-

tion approach in this chapter for classifying the strategy used based on the accumulated

manipulation notion that was developed from collected data in Chapter 3. The following

subsection defines this chosen classification methodology.

7.1.2 Detection Approach: DLDA

Among many possible prediction techniques, a Discriminant analysis approach is util-

ised in this chapter due to several advantages such as the powerful but computer-

intensive bootstrap methodology [95]. This advantage is now computationally feasible

with the relatively easy access to high-speed computers.

There are different discriminant methods for classifying the data. These methods in-

clude traditional ones such as Nearest Neighbours and Linear Disciminant Analysis, as

well as more modern ones such as Classification Trees. Since each observed strategy

has small samples, Diagonal Linear Discriminant Analysis (DLDA) is applied to clas-

28 The definition of each strategy is given in Chapter 6 (Section 6.3.1).

Chapter 7 – Detection of Attack Strategies

131

sify the strategy used, as a common technique for data classification. This method is a

variation of Linear Discriminant Analysis (LDA), which is used to fit the linear combi-

nation of features that best separate two or more classes of object or event.

In DLDA, however, the common within-group covariance matrix is assumed to be di-

agonal. The resulting combinations may be used as a linear classifier, or more com-

monly in dimensionality reduction before later classification. This method is the sim-

plest case of the maximum likelihood discriminant rule, in which the class densities are

supposed to have the same diagonal covariance matrix. The most important advantage

of the DLDA algorithm lies in its computational efficiency [95].

Furthermore, one of the features that motivated the choice of this method is that it does

not require a large sample compared with others such as the Quadratic Linear Dis-

criminant Analysis (QLDA) type. Finally, many researchers have pointed out that the

naive Bayes classifier of high-dimensional data with small sample sizes sometimes

known as DLDA. More details about DLDA can be found in [95].

Given the approach used for the detection mechanism, the subsection below describes

the workflow of the proposed strategy detection approach starting from detecting an

attack attempt to detecting the applied strategy.

7.1.3 The Workflow of the Detection Approach

This section explains the workflow of the proposed strategy detection approach as a

preparation for the implementation stage of this approach, which will be discussed in

the next section. The workflow is depicted in Figure 7.1.

As shown in Figure 7.1, the workflow is divided into two phases: Phase 1 and Phase 2.

Phase 1, which was shown previously in Chapter 6 (Section 6.2), includes the detection

of attack attempts that produce quantitative data (similarity-based) and the ALC that is

represented by accumulative manipulation of each attempt with the corresponding strat-

egy. Phase 2 starts with a training data set that includes the accumulative manipulation

(i.e., Quantitative data) and the strategy (i.e., Qualitative data). Moreover, Phase 2 con-

tains Attack Detection based on Qualitative data that is trained by both the training data

set and the output of the proposed Attacker Learning Curve Model (ALCM), which was

developed in the previous chapter (Section 6.4).

Chapter 7 – Detection of Attack Strategies

132

Figure 7.1: The workflow of the Detection Approach.

Each component of both phases is discussed as follows:

 Attack Attempt: Initially, each attack attempt is observed by using an unsu-

pervised learning algorithm. Using a similarity evaluation function, it de-

cides that an attempt is abnormal when the similarity between the attempt

and a set of known abnormal attempts is higher than an empirically defined

similarity threshold. Thus, the next step exploits this Similarity-Based quan-

titative data.

 Attacker Learning Curve (ALC): The notion behind the Learning Curve is

that accumulating experience leads to improved performance [21]. For the

ALC, since breaking a defence algorithm typically requires several attempts

by attackers, each attempt, which is signified by Similarity-Based data, is

manipulated in order to avoid detection. Thus, the accumulative manipula-

tion, which is the attacker’s aggregated amount of knowledge, can gradually

build the ALC that represents effectively how close an attacker is to break-

ing a defence algorithm.

 Training Data: A training set is a set of data used in different areas of in-

formation science to discover potentially predictive relationships. Since the

proposed detection approach relies on a supervised learning machine, the

accumulated manipulation data (Quantitative data) are associated with the

corresponding strategy (Qualitative data) in this training set data, known

from manually analyzing attacker attempts.

 Attack Detection Based on Qualitative Data: The proposed detection ap-

proach depends on a supervised machine learning that uses a DLDA type of

Phase 1 Phase 2

Chapter 7 – Detection of Attack Strategies

133

discriminant function. This supervised machine learning takes place using a

training set that is prepared in the previous stage. The main purpose of this

detection approach is to investigate the possibility of detecting the attack

strategy used by means of a given accumulated manipulation. Therefore, a

strategy could be detected unless it is not recognised in stage 2. In this case,

the strategy is new and its accumulated manipulation should be updated in

the ALC stage.

As the workflow of the detection approach is depicted and explained in this section, the

next section presents an evaluation experiment that will not only show the detection

results of ALC-based accumulative manipulation, but also the results of the ALCM-

based accumulative manipulation.

7.2 Experimental Evaluation

In order to test the question of whether the strategy used in an attack can be detected

based on the accumulative manipulation of the attacker, an evaluation experiment is

conducted. The main question under investigation is:

- Can the applied attack strategy be detected quantitatively based on the ac-

cumulative manipulation of attackers?

This section presents an experimental evaluation of the above question by firstly de-

scribing the setup of and then the procedure of this experiment.

7.2.1 Experiment Setup

The experiment study reported in Chapter 3 involves subjects acting as potential attack-

ers carrying out attacks on a test system, within which a number of different security

algorithms have been developed. One aspect of the collected data is the similarity

amount of each submitted e-mail. Since Groups 1 and 2 took a similar amount of time to

break Algorithm 3 (A3), as stated in Chapter 3, the training set as well as the testing set

is based upon the data collected from breaking A3. Therefore, the data collected from

Group 1 for breaking A3 are used as a training set, while a test set utilises the data col-

lected from Group 2 for breaking A3. Furthermore, the software and computing used to

conduct the experiment are presented.

Chapter 7 – Detection of Attack Strategies

134

Training Set

The training set is divided into two main sets: ALC-Based and ALCM-Based. As such,

the former is based on the accumulative manipulation of attacks accomplished by the

experiment, whereas the latter is based on the accumulative manipulation carried out by

the proposed model. For both sets, the training set is built on the average accumulative

manipulation of Group 1 for each observed strategy. As mentioned in Chapter 6, 90% of

the attackers (i.e. 36 out of 40) used structured strategies to defeat the algorithms. Spe-

cifically, in Group 1, there were 17 attackers who used structured strategies, and the

distribution of the number of attackers on each observed strategy is shown in Table 7.1.

Table 7.1: The Number of Samples of each Strategy for Group 1.

Total 3 2 1 Strategy

17/36 4 6 7 Number of Samples

The average ALC-Based accumulative manipulation of each strategy for this training

set is illustrated in Figure 7.2, while the average ALCM-Based accumulative manipula-

tion of each strategy for the training set is shown in Figure 7.3.

Figure 7.2: The average of ALC-Based accumulative manipulation for each strategy.

0 50 100 150 200 250

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Accumulative Manipulation

A
v

er
a

g
e

o
f

A
tt

a
ck

er
s

T
ri

a
ls

Avg. Accumulative

Manipulation of S3

Avg. Accumulative

Manipulation of S2

Avg. Accumulative

Manipulation of S1

Chapter 7 – Detection of Attack Strategies

135

Figure 7.3: The average of ALCM-Based accumulative manipulation for each strategy.

Test Set

The test set is divided into two test sets: the ALC-Based and ALCM-Based test sets. For

both sets, the accumulative manipulation of each attacker in Group 2 is used in the test

set. Since the number of attackers who used structured strategies in Group 1 was 17, the

number of attackers who used structured strategies in Group 2 was 19. It is important to

note that even though the difference in attacker numbers in the groups is small, it seems

useful to utilise Group 2 as a test set in terms of evaluating the effectiveness of the pro-

posed detection approach. The number of attackers who employed each strategy for

Group 2 is shown in Table 7.2.

Table 7.2: The Number of Samples of each Strategy for Group 2.

Total 3 2 1 Strategy

19/36 6 5 8 Number of Samples

The accumulative manipulation of each of the 19 attackers in Group 2 used in the test

set is compared against both the ALC and the ALCM for the corresponding strategy

built from Group 1. The ALC-Based accumulative manipulation of each attacker in

0 50 100 150 200 250

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Accumulative Manipulation

A
v

er
a

g
e

o
f

A
tt

a
ck

er
s

T
ri

a
ls

Avg. Accumulative

Manipulation of S3

Avg. Accumulative

Manipulation of S2

Avg. Accumulative

Manipulation of S1

Chapter 7 – Detection of Attack Strategies

136

Group 2 is shown in Figure 7.4, whereas the ALCM-Based accumulative manipulation

of each attacker in Group 2 is shown in Figure 7.5.

Figure 7.4: The ALC-Based accumulative manipulation of attacker’s attempts.

Figure 7.5: The ALCM-Based accumulative manipulation of attacker’s attempts.

0

50

100

150

200

250

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

A
cc

u
m

u
la

ti
ve

 M
an

ip
u

la
ti

o
n

 f
o

r
e

ac
h

 A
tt

e
m

p
t

Attackers

0

50

100

150

200

250

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

A
cc

u
m

u
la

ti
ve

 M
an

ip
u

la
ti

o
n

 f
o

r
e

ac
h

 A
tt

e
m

p
t

Attackers

Chapter 7 – Detection of Attack Strategies

137

Software and Computing

MATLAB
29

 (version 7.6) is used as standard software for classification method realiza-

tion, with a Statistics Toolbox [93]. This Statistics Toolbox provides statistical and ma-

chine learning algorithms and tools for organising, analysing and modelling data.

Among these algorithms and tools, the “classify” function is selected, which performs

the classification by using different types of Discriminant analysis. The syntax and de-

scription of this function will be highlighted in the following section. For the purposes

of this experiment, the type “Diaglinear”, which was mentioned previously as DLDA, is

used to carry out the classification results.

Classification Function Used

As stated above, the classify function is selected to perform the classification task. The

syntax and the description of this function are as follows. The syntax of the classify

function is [93]:

[class, POSTERIOR] = classify (sample, training, group, ‘type’)

The description of the above syntax is that sample, training, group and type refer to the

test set, training set, strategy and Diaglinear, respectively. That is, this function classi-

fies each row of the data in the test set into one of the strategies in the training set. The

test and training sets should be matrices with the same number of columns. Strategy is a

grouping variable for the training set. It is a unique value defined strategy; each element

defines the strategy to which the corresponding row of the training set belongs. In this

experiment, the strategy is 1, 2, and 3. The training set and strategy should have the

same number of rows. The output class indicates the strategy to which each row of the

test set has been assigned, and is of the same type as group. Furthermore, the output also

returns a matrix POSTERIOR – estimates of the posterior probabilities that the j
th

 train-

ing set was the source of the i
th

 test set observation. The results of this matrix

POSTERIOR are detailed in Section 7.3. In addition, more details regarding the classify

function are in [93].

7.2.2 Experiment Procedure

In this section, the procedures involved in the experiment are explained. As such, the

detection approach is trained separately by both training sets, ALC-Based and ALCM-

29 MATLAP refers to matrix laboratory which is a high-level mathematical language [92].

Chapter 7 – Detection of Attack Strategies

138

Based accumulative manipulation, through the classify function. In other words, the

ALC-Based accumulative manipulation is used with the corresponding strategy firstly

to train the detection approach using the classify function. Meanwhile, the test set of

ALC-Based accumulative manipulation, which comprises only the accumulative ma-

nipulation of each attacker, is fed to the classify function. Since this test set includes

only the accumulative manipulation of each strategy, the detection approach classifies

the predictability of each attacker’s accumulative manipulation for a specific strategy.

Once the results of this classification (i.e. detection) stage are achieved, the next stage

of training for ALCM-Based accumulative manipulation is prepared. Secondly, the

same procedure is followed for the training and test sets of ALCM-Based accumulative

manipulation in the detection approach through the classify function.

7.3 Results of the Evaluation

In order to assess the proposed detection approach, the two ALC-Based and ALCM-

Based test sets were successfully fed to the detection approach. In this section, the over-

all success detection rate and probabilities of the classification are presented. Note that,

because the standard performance, including precision and recall, is beyond the scope of

this thesis, it is not presented in this chapter.

7.3.1 Overall Rates of Success Detection

The overall detection rates on both the ALC-Based and ALCM-Based test sets are

73.68% and 68.42%, respectively. In other words, given the accumulative manipulation

of an attacker from Group 2, there are 14 chances out of 19 to find the correct strategy

of this attacker when training the detection approach on the average ALC-Based accu-

mulative manipulation for each strategy in Group 1, as shown in Table 7.3. In contrast,

there are 13 chances in 19 when training the detection approach on the average ALCM-

Based accumulative manipulation built from Group 1, as shown in Table 7.3. Addition-

ally, Table 7.3 shows the details of detecting each strategy.

It is important to point out that these detection results are based on the correct detection

of each sample’s trials until the first breaking attempt, since the attacker is asked to

break each algorithm twice. As noted before in Chapter 6 (Section 6.2.3), the reason for

asking the attackers to break an algorithm twice is to ascertain the learning process.

Chapter 7 – Detection of Attack Strategies

139

Table 7.3: The Results of Classifying each Strategy.

ALC-Based test set ALCM-Based test set

Strategy
Total

Strategy
Total

1 2 3 1 2 3

Number of Samples 8 5 6 19 8 5 6 19

Correct Classification 5 4 5 14 5 3 5 13

Incorrect Classification 3 1 1 5 3 2 1 6

It is apparent from this table that the DLDA can be an effective method for detecting the

strategy of an attacker quantitatively. As shown in Table 7.3, strategies 2 and 3 were

detected with a high success rate, while most of the undetected attackers were using

strategy 1. Moreover, the detection results using the ALCM-Based test set are quite en-

couraging, and attacks using strategies 2 and 3 were detected with a high success rate,

whereas most of the undetected attackers used strategy 1, as observed in the ALC-Based

test set. More details regarding each attacker’s accumulative manipulation, classified

results and labelled results for both ALC-Based and ALCM-Based test sets are pre-

sented in Appendix B.

Bearing in mind the overall success detection rate, the probability aspect of classifying

each attempt with a specific strategy, which is provided by the classify function as

shown in Section 7.2.1, can be useful in terms of tracking the classification process of

an attacker’s attempt. Therefore, the following section sheds light on this aspect.

7.3.2 Probabilities of Classification

Interestingly, the results of the matrix POSTERIOR, which is a returned output with the

detection results, can allow tracking of the classification process until the attacker

breaks the algorithm. That is, a positive correlation was found between the applied

strategy in the attack and the increase of the probability with each attempt. For example,

Table 7.4 shows the successive probabilities of the classification for a subject using

strategy 3 (i.e. attacker number 5 in Appendix C for ALC-based and ALCM-based test

sets). From the data in Table 7.4, it is worth observing that the probability of classifica-

tion using strategy 3 almost always increases both for the ALC and the ALCM, which

tends to indicate that the confidence in the classification increases with the number of

trials.

Chapter 7 – Detection of Attack Strategies

140

This observation might allow us to conjecture that if the number of trials were increased

significantly, the accuracy of the detection would also increase. Not only this, but it

might add an improvement to the proposed release order strategy by introducing a Pro-

active Defence Approach. That is, instead of waiting until an algorithm is broken to re-

place it, such a moment could be anticipated and a new algorithm deployed in time.

However, due to the time limitation, this will be for future work.

Table 7.4: The probability of classifying one of the correctly classified samples.

Trial

Probability of classifying each

strategy (ALC-Based)

Probability of classifying each

strategy (ALCM-Based)

1 2 3 1 2 3

1 0.528 0.338 0.132 0.224 0.351 0.424

2 0.258 0.361 0.379 0.261 0.362 0.375

3 0.229 0.352 0.418 0.240 0.356 0.402

4 0.203 0.365 0.431 0.234 0.354 0.410

5 0.261 0.365 0.372 0.222 0.350 0.427

6 0.229 0.352 0.418 0.163 0.321 0.515

7 0.133 0.298 0.568 0.104 0.271 0.623

One the other hand, Table 7.5 shows the probabilities of the classification for a subject

using strategy 1 who was wrongly classified as using strategy 2 (i.e. attacker number 6

in Appendix C for the ALC and ALCM).

Table 7.5: The probability of classifying one of the incorrectly classified samples.

Trial

Probability of classifying each

strategy (ALC-Based)

Probability of classifying each strat-

egy (ALCM-Based)

1 2 3 1 2 3

1 0.528 0.338 0.132 0.528 0.338 0.132

2 0.528 0.338 0.132 0.335 0.372 0.292

3 0.362 0.375 0.261 0.282 0.366 0.351

4 0.371 0.379 0.248 0.350 0.372 0.277

5 0.371 0.386 0.242 0.270 0.365 0.364

From the data in Table 7.5 on the ALC-Based test set case, it is worth observing that the

probability of the classification as strategy 1 is quite close to that of strategy 2, which

could be interpreted as of rather low confidence in the final result. On the other hand, no

Chapter 7 – Detection of Attack Strategies

141

relative convergence was found in the ALCM-Based test set case compared to the ALC-

Based test set, since the probability of strategy 1 is the lowest of all, as shown in Table

7.5. From the data in this table for the ALCM-Based test set, it can be seen that the ap-

proach is inaccurate, which underlines the fact that this approach might not be perfect.

More details on the probability of detecting each attempt using the predicted strategy

are presented in Appendix C.

7.4 Discussion

The present study was designed to determine the effect of the developed ALC on the

possibility of detecting the attack strategy used experimentally. The results of this ex-

periment show that the correct detection rate on the testing set of the ALC-Based accu-

mulative manipulation was 73.68%. Since this is, to the best of our knowledge, the first

attempt to detect the attack strategy used, the accuracy obtained with this experiment

indicates that the notion of accumulative manipulation, which forms the ALC, can be

successfully used as an input feature for a supervised detection algorithm.

It is interesting to note that although the results of the matrix of POSTERIOR could al-

low tracking by the detection approach, the percentage of incorrect classification was

31.58% (i.e., 6 out of 19 attackers). However, a possible explanation for this might be

that overlapping between the types of strategies used could affect the accumulative ma-

nipulation produced. Accordingly, this may cause a misclassification in the detection

approach, as the detection approach relies essentially on the ALC, which is formed by

the accumulative manipulation of each attacker. For instance, Table 7.5 shows the prob-

abilities of the classification for a subject that was using strategy 1, and was wrongly

classified as using strategy 2. Since there is an overlap between two types of strategies:

Thesaurus substitution and Perceptive substitution, this may cause misclassification.

Hence, a security mechanism that can monitor and log the manipulation performed by

an attacker can leverage that information to detect the strategy used by the attacker.

Such knowledge can be particularly useful in adapting the defensive mechanism to that

particular attacker, in terms of efficiency (e.g., deploying the best way to block that at-

tacker) or cost (e.g., only deploying countermeasures for that particular kind of at-

tacker). Furthermore, this finding has important implications for developing an ap-

Chapter 7 – Detection of Attack Strategies

142

proach that considers the evolution of the classification instead of the final classification

only.

In the current study, the results obtained from the ALCM-Based test set show that a

learning curve model can be utilised to detect the strategy used by an attacker. Although

this approach is less accurate compared to the ALC-Based test set, it does not require

training the classifier with effective previous attempts, but can directly build the learn-

ing curves from the possible attacker skill levels, the strategies used and the robustness

of the algorithms, as noted previously in Chapter 6.

There are several limitations to the work presented here in this chapter. Firstly, the

number of participants for each strategy is quite low. However, this work is considered

as proof of the concept, showing that using accumulative manipulation makes sense in

some contexts. Clearly, further work is required in order to understand which contexts

are suitable and which are not. Secondly, only attempts that are known to be attacks are

used. In other words, the data are not cluttered with data coming from normal usage. In

a practical setting, it would probably be necessary to first detect whether a particular

user is attacking the system, and only then try to detect which strategy is being em-

ployed. Finally, in the design of the experiment, the attackers do not care about being

detected or not, whereas an actual inside-attacker would try to hide as much as possible.

It is however difficult to design an experiment that can cover all possible kinds of at-

tack, and the goal of the work presented here is not to provide a tool ready to use in any

possible context, but rather to identify the features that can be useful when using ma-

chine learning in the context of security.

Indeed, the results presented in this chapter corroborate the ideas of Liao et al., who

pointed out in [84] the need for a better understanding of the different types of features

and heuristics for specific goals in network intrusion detection. In other words, selecting

and understanding an effective set of features is a challenging and labour-intensive task.

Therefore, the results in this chapter have identified a proper set of features for the de-

tection of attack strategies.

These findings will doubtless be much scrutinized, but there are some immediately de-

pendable conclusions for the likelihood of detecting the applied attack strategy quantita-

tively.

Chapter 7 – Detection of Attack Strategies

143

7.5 Summary

This chapter has proposed an attack strategy detection approach using the original con-

cept of an attacker accumulative manipulation developed in the previous chapter, which

is abstracted as the Attacker Learning Curve (ALC). Based on the results of the devel-

oped ALC and its model, the proposed detection approach is evaluated. The result of

this evaluation shows that the overall detection success rate is higher than 70%. Return-

ing to the question posed at the beginning of this chapter: “Can the applied attack strat-

egy be detected quantitatively by using the accumulative manipulation of attackers?”, it

is now possible to state that the attack strategy applied can be detected quantitatively.

Moreover, the empirical findings in this study provide a new understanding of not only

detecting the attack strategy used quantitatively, but also tracking the attack strategy

used through the probabilities of the classification.

The findings in this chapter may be subject to at least two limitations. First, data used in

the experiment are not cluttered with data coming from normal usage because the at-

tempts are known to be attacks. In other words, it would probably be necessary to first

detect whether a particular user is attacking the system, and only then to try to detect

which strategy is being adopted. Furthermore, a limitation of this study may be that the

number of samples in each strategy was relatively small. However, we consider this

work as a proof of concept, showing that using accumulative manipulation makes sense

in some contexts.

In the next chapter, a summary of the research contributions and several potential future

works are presented.

144

Chapter 8. CONCLUSION AND FUTURE

WORK

This chapter concludes the thesis with a discussion of the findings of this research and

with a future work. In particular, this thesis has given an account of and the reasons for

interactive defensive mechanisms from the perspective of the knowledge acquisition

process of attackers and proposed a set of algorithms approach, of which the rationale

was to prolong the protection of a system as far as possible. A cornerstone of this thesis

was the investigation into whether the order of releasing a set of defensive algorithms

has an effect on the time taken to break all algorithms or not. Through an experimental

study, it was possible to demonstrate that the order in which defensive algorithms are

released does indeed influence the time attacks take. Based on the empirical results

achieved by this experiment, a Stochastic Petri Net model was developed, which can

describe the interaction between an attacker and a set of algorithms, in order to estimate

the time required to defeat a defensive algorithm with various algorithm orders. Fur-

thermore, an optimisation algorithm was proposed to obtain efficiently the optimal re-

lease strategy by using a Markov Decision Process model. To contribute an advantage

for the interactive defensive mechanisms, a detection of attack strategy approach, which

relies on the developed Attacker Leaning Curve (ALC) notion, was proposed and evalu-

ated.

The remainder of this chapter is organised as follows. Section 8.1 outlines the contribu-

tions made by this thesis. Section 8.2 then provides reflections on the research con-

ducted in this thesis in order to answer the research questions. Finally, Section 8.3 offers

a discussion on potential future works which can be derived from the research works

conducted in this thesis.

Chapter 8 – Conclusion and Future Work

145

8.1 Summary of Contributions

The thesis has made several contributions as follows:

 A Classification scheme of defensive mechanisms (Addressed in Chapter 1).

Based on the insight into the confusion matrix in for instance in machine learn-

ing, a classification scheme that consists of different dimensions such as asser-

tive and predictive defensive mechanisms has been proposed. Furthermore, the

interactive and non-interactive defensive mechanisms are introduced under the

predictive defensive mechanism umbrella. To our knowledge, the proposed clas-

sification scheme has not been introduced by other researchers. The value of

such classification is in providing interested parties such as researchers, defen-

sive mechanism designers and developers with a tool to accurately classify de-

fensive mechanisms. Moreover, this classification has allowed the identification

of a correlation between a defensive mechanism, such as an interactive defensive

mechanism, and other possible factors such as the knowledge acquisition proc-

ess of attackers. This provides a consistent and clear understanding of the prob-

lem of interactive defensive mechanisms.

 A novel experimental study for evaluating the proposed approach (Ad-

dressed in Chapter 3). One of the challenges in this thesis was designing an

experiment in order to evaluate whether the release order of a set of defensive

algorithms matters. More precisely, the dilemma was to design a system that

could be reached by non-specialists in a matter of minutes, since the rationale

behind the proposed approach was that attackers learn from their attempts.

Hence, we decided a spam-filter would offer a very good model for the experi-

mental requirements. Based on a chosen content-based spam filter, several sim-

plified but representative algorithms were developed. Accordingly, a web-based

system was developed as well, which allows the participants to interact with the

algorithms of the spam filter in order to break them. Using this developed sys-

tem, the evaluation of the release order of defensive algorithms in terms of time

taken to break them was carried out. Not only this, but also the attackers’ learn-

ing progress was observed and analysed quantitatively.

 A model for the release order of a set of defensive algorithms (Addressed in

Chapter 4). The proposed model represents a generic application level blueprint

Chapter 8 – Conclusion and Future Work

146

for the underlying principle of the developed experimental study. A Stochastic

Petri Net model was used to construct the proposed model. As such, this model

could allow for a theoretical analysis of the release order of a set of algorithms,

and for a better estimation of the time required to break a defensive algorithm

with various algorithm orders. This approach is unique and important since there

has been no such attempt to provide a model that addresses the issue of the re-

lease order of the defensive algorithms. Moreover, this model could be a valu-

able tool to interested parties such as interactive defensive algorithm designers

and developers of interactive defensive algorithms.

 An optimisation algorithm to obtain the optimal release strategies (Ad-

dressed in Chapter 5). Based on the empirical results, which are presented in

Chapter 3 and demonstrate that the release order of defensive algorithms has a

statistically significant impact on the time attackers take to break all algorithms,

an optimisation algorithm has been proposed. The metric of interest (and, hence,

the optimisation criterion) in this algorithm was to maximise the time it takes to

break a set of algorithms. The approach to the proposed optimisation algorithm

was to mathematically model the optimisation problem, and to present a bespoke

and efficient solution algorithm that derives the optimal release strategy for any

model. The mathematical model used on this algorithm was the Markov Deci-

sion Process model, with a specific state space that is utilised to derive the effi-

cient optimisation algorithm. To the best of our knowledge, this is the first to

address this particular issue of optimising the release strategy to delay a success-

ful attack success for as long as possible.

 An approach to demonstrate an attacker’s progress (Addressed in Chapter

6). Since the feedback achieved from a system while an attacker attempts to

break it plays an important role in gradually weakening the security level of in-

teractive defensive algorithms, a quantitative approach to show the effectiveness

of this feedback from the attacker perspective has been proposed. This approach

is the accumulative manipulation amount of an attacker’s attempts that led to

developing the Attacker Learning Curve (ALC) concept. The value of this con-

cept is not only in demonstrating the performance of an attacker during the at-

tack process, but also in distinguishing the applied strategy in the attack. Fur-

thermore, the ALC concept represents the importance of the feedback to the at-

Chapter 8 – Conclusion and Future Work

147

tacker in terms of disclosing rules of the defensive algorithms. Therefore, this

concept can reduce the gap of knowledge by showing quantitatively both the

progress level of an attacker and the strategy used in an attack.

 A mechanism to detect the attack strategies (Addressed in Chapter 7).

Based on the ALC concept developed, a mechanism to detect attack strategies

has been proposed. This mechanism exploits the features and heuristics that can

be provided by the proposed accumulative manipulation, which forms the ALC

concept, in order to detect attack strategies. The performance of the proposed

mechanism shows the practicality and efficiency of this novel detection mecha-

nism. The value of this detection mechanism is in providing an advantage for the

security mechanism, for instance by using an attack-defence tree, or even by op-

timising the release order of algorithms, which has been proposed in Chapter 5.

8.2 Reflections on Research Outcomes

This section provides reflections on the research conducted in this thesis in light of the

research questions addressed in Section 1.2. In particular, each research question is an-

swered first, and then a reflection on the overall thesis is provided.

8.2.1 The first research question

The first research question was as follows: Does the order in which different defensive

mechanisms are released impact the time an attacker needs to break each one of them?

This is indeed a practical question to investigate, particularly when a set of algorithms

scheme proposed is new to the defensive mechanism realm. The majority of interactive

defensive mechanisms can be considered from a qualitative point of view by releasing a

single defensive mechanism. In practice, using an interactive defensive mechanism,

such as a CAPTCHA or spam filter, the attacker and defender exchange ‘blows’, each

celebrating (temporary) success in breaking and defending. However, the feedback giv-

en by the system during the attack process by attackers allows for the gradual disclosure

of the rules included in the defensive algorithms over time. The issue of feedback seems

evident in the interactive defensive mechanisms, as discussed in Chapter 1. Therefore,

this has led to propose a set of defensive mechanisms approach in order to prolong the

time needed to break a system. Intuitively, releasing a set of algorithms one by one se-

Chapter 8 – Conclusion and Future Work

148

quentially extends the required time to break a system, rather than releasing only one

algorithm.

In order to evaluate whether the order will affect the security level of a system in terms

of maximizing the time taken to break all algorithms, a controlled laboratory experiment

study was conducted. The results of this experimental study revealed that the order in

which interactive defensive mechanisms are released has a statistically significant im-

pact on the time attackers take to break all algorithms (Figure 3.4, Tables 3.3 and 3.7). It

is important to note that the effect of the presentation order on the learning mechanism

is not new in the fields of education and psychology. As such, previous research pro-

vides several insights and experiments into the effect of presentation order [48, 91, 98,

131]. However, to the best of our knowledge, this is the first experiment to address this

particular issue of the release order strategy in the security field. This allows the ques-

tion to be answered as follows:

“The order in which different defensive mechanisms are released can impact the time an

attacker needs to break each one of them.”

8.2.2 The second research question

The second research question was as follows: Could we optimize the order in which

defensive mechanisms are released?

The release order of defensive mechanisms has indeed influenced the time attackers

take to break them, as answered in question 1. Therefore, optimizing the release order of

defensive mechanisms is a problem worthy of study. The aim of this optimization is to

make a system as effective as possible in terms of maximizing the time taken by attack-

ers to break the system. Thus, we have provided in Chapter 5 a tailored optimization

algorithm using a Markov Decision Process to obtain efficiently the optimal release

strategies for any given model. Moreover, the proposed model solution should scale

without problems to optimize the release order of tens of defensive mechanisms. This

allows the question to be answered as follows:

 “We could optimize the order in which defensive mechanisms are released using a

Markov Decision Process.”

Chapter 8 – Conclusion and Future Work

149

8.2.3 The third research question

The third research question was as follows: How does dependency between algorithms

impact on ability to answer question 2?

The proposed set of defensive algorithms approach leads to an investigation of not only

independent and dependent defensive algorithms, but also of the defensive algorithm of

which these algorithms were originally a part. Since Algorithm 1 was a simplified ver-

sion of Algorithm 2 in the controlled experimental study that was carried out in Chapter

3, the results of this study showed that the success of attacks can be delayed (i.e. extend-

ing the time of attack) by breaking up an algorithm into parts, when these parts are re-

leased in a specific order. This specific order was determined by the results of the exper-

iment, in which a subset defensive algorithm was released before the superset defensive

algorithm, as shown in the order of Group 1. On the other hand, the success of the at-

tack could be also delayed by breaking up an algorithm into parts when the parts are

released in the reverse order, as shown in the order of Group 2, but not as much as the

order of Group 1. Thus, it is an interesting insight that implies the intuitive reasoning

that by breaking up a defensive algorithm into parts the attacker is not ‘taught’ how to

attack.

Furthermore, in the setup of the controlled experimental study, Algorithm 3 was a rela-

tively independent (i.e. non-subset) defensive algorithm using a quite different defen-

sive approach to that of Algorithms 1 and 2 was applied. In light of this, the concatena-

tion of Algorithm 3 at the end of the release order of Group 1 and Group 2 yielded in-

teresting and important results. These results showed that, despite the knowledge gain at

any point of the release chain, injecting a non-subset algorithm would force the attacker

back to the learning phase. More importantly, the time taken to break Algorithm 3 in

both groups was equal. This finding has important implications for developing an opti-

mization algorithm for the order release strategy, which has been accomplished by

means of a Markov Decision Process model, as reported in Chapter 5. This allows the

question to be answered as follows:

“It could be useful to break up a defensive algorithm into multiple algorithms, and re-

lease them one by one if the order of these multiple algorithms is that the subset defen-

sive algorithm is released before the superset defensive algorithm.” Also:

Chapter 8 – Conclusion and Future Work

150

“The time taken to defeat a future independent defensive algorithm does not depend on

the order in which earlier algorithms were broken.”

8.2.4 The fourth research question

The fourth research question was as follows: Could we model the learning acquisition

process of attackers?

Since an exploration was carried out to find out the answer to all of the previous ques-

tions, the common denominator between them was the attacker’s aggregated amount of

knowledge. Using quantitative data that collected from the experiment, an accumulative

manipulation notion that represents effectively how close an attacker is to breaking a

defensive algorithm was developed. As noticed previously, this can be observed through

a number of attempts accomplished by the attackers, which forms the basis of the ALC

(i.e. the attacker’s performance by accumulative experience). Using this approach, it

was possible to not only demonstrate the attacker’s performance, but also to distinguish

between the attack strategies applied by means of different amounts of effective manip-

ulation for each attacker’s attempts.

Additionally, we also developed an Attacker Learning Curve Model (ALCM) that is

inspired by a previous model that is utilised for explaining a developer’s learning curve,

as presented in Chapter 6. The evaluation of the ALCM suggests the applicability of

using it. Although the knowledge acquisition process of an attacker presented in Chap-

ter 4 derived through the developed model, as shown in Figure 4.10, this derivation of

the attacker knowledge acquisition process did not take into account the strategy applied

in the attacking process. Therefore, the ALCM seems a typical model to estimate the

learning curve of an attacker to break an algorithm, due to its recognition of the strategy

applied in the attacking process. This allows the question to be answered as follows:

“We could empirically model the learning acquisition process of attackers.”

8.2.5 The fifth research question

The fifth research question was as follows: Based on understanding the learning acqui-

sition, can we devise an attacker detection approach?

The results of the ALC have attracting an interest by us to devise an attacker detection

approach that can add an enhance security level to the release order strategies. Thus, a

Chapter 8 – Conclusion and Future Work

151

detection of attack strategies approach has investigated and evaluated empirically based

on the data of ALC that collected from the controlled experimental study. The empirical

findings from this method provide an additional advantage with respect to supporting

the proposed approach for prolonging the time taken to break a set of defensive mecha-

nisms, that is, by considering the evolution of the attacker’s performance. This allows

the question to be answered as follows:

“A detection methodology for attack strategies has been developed which could be used

to prolong the time taken to break a system as far as possible.”

8.2.6 Overall Reflection

This section gives an overall opinion regarding the viability of the proposed methodolo-

gy.

The methodology proposed in this thesis starts from a set of defensive mechanisms as a

holistic defensive approach and maps it to the release order strategy. Automated ap-

proaches to breaking defensive mechanisms, such as bots, were purposely not used, as

they are beyond the scope of this research. The reason for this is that any automated

approach would need to know the parameters to try, and the range in which these pa-

rameters may fall. Instead, the significant challenges in answering the aforementioned

questions should be stressed, in terms of designing a representative experiment, system

implementation of the experiment, and conducting, and analyzing the experiment. In

particular, as it is assumed that an attacker is human, the problem of human learning

would be seen clearly by sending e-mails to evade a content-based spam filter, as it re-

quires a low degree of technical proficiency (i.e. it is possible to show the objective to

non-specialists people). Consequently, a content-based spam filter was chosen because

it allows some understanding of a human learning process, as automated approaches are

abstractions of this human learning process that require encoding by humans.

It is significant to note that the testing of the two conditions, in which the defenses are

overlapping (i.e. Algorithm 1 and Algorithm 2), was necessary to build a solid hypothe-

sis before further experiments were conducted. It is hard to predict how our brains pro-

cess knowledge and, hence, even the trivial assumptions should be tested to avoid sur-

prises. In addition, adding Algorithm 3 at the end of the two experimental conditions is

harmless to the integrity of the original experiment results, which pertained to the re-

Chapter 8 – Conclusion and Future Work

152

lease order. Rather, the addition of Algorithm 3 has provided an insight into the effect

of non-wholly overlapping algorithms on overlapping algorithms.

Furthermore, an abstract model of human learning was considered as a starting point. It

is assumed that a simple feedback loop exists, in which a human acts and then learns,

then acts, and so on. More complex learning processes would certainly be interesting to

investigate, but it is believed that the approach in this thesis provides a valid starting

point. Accordingly, an accumulative manipulation of an attacker notion could be devel-

oped that effectively represents the learning curve of the attacker. Moreover, this notion

allows a distinction between the applied attack strategies to be measured quantitatively.

Based on the features and heuristics that are provided by this notion, a detection of at-

tack strategies approach is proposed and evaluated. Although a number of important

limitations in the evaluation of this proposed detection approach need to be considered,

the aim behind this approach is not to provide a tool ready to use in any possible con-

text, but rather to identify the features that can be useful when using machine learning in

the context of security.

This research is exploratory in nature, not directly aiming to support or refute any exist-

ing theories or practice. However, it does open up a new platform for more research to

be conducted in the near future. This research also does not attempt to provide an ulti-

mate solution to the existing issues, but instead opens possible avenues to be investigat-

ed. This research does not provide a silver bullet to an issue but instead creates more

opportunity for interested parties to collaborate in an effort to improve the existing pro-

posed countermeasures.

8.2.7 Applicability to Other Security Scenarios

This section speculates how the concepts that are presented in this thesis would relate to

other security scenarios e.g. CAPTCHA. In general, due to the utilization of a set of

algorithms rather than a single algorithm as a defensive mechanism, it is assumed that

the algorithm with more security rules than another is already known. For example, if

Algorithm 1 has a, b and c rules and Algorithm 2 has the same rules plus an advanced

one i.e. a, b, c and d, that is, if the similarity between the proposed defensive algorithms

is known, then their deployment can be ordered appropriately. As a result, the optimiza-

tion order increased the time needed to break the defensive algorithm from 16.2 min-

utes, in the case of applying Algorithm 2 alone, to 25 minutes in the case of applying

Chapter 8 – Conclusion and Future Work

153

the optimized set of defensive algorithms (i.e. releasing Algorithm 1, which was the

subset, took 10.9 minutes, then releasing Algorithm 2, which was the superset, took

14.1 minutes). By generalizing the optimization approach, it could be applied to any

security system that currently depends on a single defensive algorithm. It is important to

emphasise that the objective of this research is to show the validity of the claim that the

release order of defensive algorithms matters. That in itself is challenging. Showing that

it holds true for another system, such as a CAPTCHA, is an additional and difficult

question beyond the scope of this thesis.

However, this section describes how the experiment would be different and how differ-

ences between algorithms and attackers would be classified in case, for instance,

CAPTCHA. Therefore, the following highlights the algorithms, attackers and the ex-

periment.

Algorithms

It could be possible to generate three types of CAPTCHAs: overlapping rules, non-

overlapping rules or mixed. For the first type, the rules of generating such text-based

CPATCHAs have, for example, the following characteristics:

 Eight characters are used in each sample;

 Only upper case letters and digits are used, and

 Foreground (i.e. sample text) is dark red whereas background is light gray.

While such samples have, in addition to the previous characteristics, the following char-

acteristics:

 Warping (both local and global) is used for character distortion;

 Nine and seven characters are used in each sample;

 Small case letters are used, and

 Foreground is blue, green and back whereas background is white.

Thus, based on the characteristics, a generator can produce a set of overlapping

CAPTCHAs with a view to not only extent the time taken to break the system, but also

to break up a CAPTCHA into parts.

Chapter 8 – Conclusion and Future Work

154

For the second type, the rule of generating the samples are based on text-based scheme

as shown for instance in Figure 2.2 and image-based scheme as shown for example in

Figure 2.3. Thus, a generator can produce a set of non-overlapping CAPTCHAs in order

to prolong the time to break the system as this is the cornerstone of this thesis.

Finally, for the mixed type, it can generate for example overlapping text-based schemes

and image-based scheme which represents non-overlapping rules scheme. Furthermore,

it can also generate text-based scheme by generating independent text-based schemes.

Attackers

According to the state of the art of CPATCHAs, all attackers against CAPTCHAs are

automated programs (i.e. bots) [100, 150, 32]. The automated programs are abstracted

of humans learning process that require encoding by human. Therefore, any automated

programs would need to know the parameters to try, and the range within which these

parameters can fall. Depending on the targeted CAPTCHA scheme, the automated pro-

gram should be encoded by a set of heuristics that are observed by human after acquir-

ing such feedbacks
30

.

For example, an automated program can be encoded by the following heuristics that

control the movement of the automated program in order to break a text-based sample

scheme:

 Whenever feasible, an automated program moves down vertically as much as

possible. As such, down movement is the direction that has the highest priority.

 The automated program moves down from its starting point until it is immedi-

ately above a foreground pixel.

 When the automated program moves left and up only, it move left one pixel, and

then moves down as much as possible.

 When the automated program moves right and up, it moves right one pixel, and

then moves down as much as possible.

 A vertical slicing line could be a legitimate segmentation line.

 Distance control, when the automated program reaches the bottom line, it is

done. On the other hand, when the automated program cannot reach the bottom,

it is aborted and all its trace is deleted.

30 The feedback concept has been explained in Chapter 1 (Section 1.1)

Chapter 8 – Conclusion and Future Work

155

Once the automated done these heuristics successfully, a recognition approach can be

used with a view to identify a specific letter of the targeted CAPTCHA. It is important

to note that the automated program that is utilised to break a set of CAPTCHAs needs to

be learned by sophisticated heuristics, since all of attacks, to the best of our knowledge,

are developed against a system that has only a single algorithm to generate

CAPTCHAs.

Experiment

The common methodology that is used in order to observe and analyse CAPTCHA

schemes follows the practical in the fields such as computer vision and machine learn-

ing. In particular, an attack is built on observing and analysing a random number of

samples. These samples are called a “Sample set”. To show the effectiveness of a de-

veloped attack, a large “Test set” of random samples are tested by the developed attack,

which is no prior knowledge about any sample in this set.

So, the time taken by the attacker to analyse the released schemes and testing the attack

on the observed schemes could be calculated. Since the time was playing an important

role in the previous experiment with a view to demonstrate the impact of the release

order of a set of algorithms on the time taken to break them, this impact could be shown

to CAPTCHAs. Furthermore, this could be shown also to other security scenarios.

Moreover, as we mentioned previously, the proposed optimisation algorithm is in-

creased the time needed to break the defensive algorithms. By generalising this optimi-

sation algorithm, it could be applied to any security system that currently depends on a

single defensive algorithm. The next section provides some discussion on possible fu-

ture work relevant to this research.

8.3 Future Work

The research work presented in this thesis provides a basis for a number of potential

related future works as follows:

 It would be useful to conduct a controlled experimental study in which the

defensive algorithms are not wholly overlapping and in fact are qualitatively

different, and in which defensive algorithms are returned to be released

again rather than removed (i.e. not released again) when the next defensive

Chapter 8 – Conclusion and Future Work

156

algorithm is deployed. This would provide an insight into the effectiveness

of the knowledge gained on the attacker’s performance when the broken al-

gorithm is released after breaking a different one. Although it might be in-

convenient to re-release a broken algorithm against attacks, it would be in-

teresting to investigate the amount of remaining knowledge regarding this

algorithm after breaking a relatively different one.

 It would be worth investigating a proactive defensive approach based on ei-

ther related algorithms (i.e. algorithms which have overlapping rules) or

non-related algorithms. The idea behind this approach is that the released

algorithm is replaced with another one before it is broken, based on the pro-

posed optimization algorithm which applies a set of related algorithms,

while the proposed optimization algorithm might not be applied in the case

where a set of non-related algorithms is used. This would provide an insight

into the length of the time needed to break an algorithm with knowledge

gained intermittently.

 It would be interesting to investigate whether we can extend the developed

Petri Net model, which is in Chapter 4, in order to prolong the time needed

to break a system. That is, based on the probability of attacker’s knowledge

evolution to break the released algorithm, it could replace the released algo-

rithm by another algorithm from the pool of algorithms before breaking the

released one.

 It would be of value to conduct more research to study further the accuracy

of the proposed detection attack strategy approach before a defensive algo-

rithm’s rules are broken and to understand how to establish better confi-

dence in the classification results, for instance by considering the evolution

of the classification instead of the final classification only.

 It would be interesting to develop an approach that considers qualitative rea-

soning, in light of what has been considered here in this research, based on

formal logic, to model the knowledge gained by the attackers by combining

both a qualitative and quantitative approach. This would provide an oppor-

tunity to get more precise detection results.

Chapter 8 – Conclusion and Future Work

157

 Since the proposed detection of attack strategies was useful for insider at-

tacks particularly, and evaluated based on attempts that are known to be at-

tacks, it would be interesting to first detect whether a particular user is at-

tacking the system, and only then to try to detect which strategy is being

used by the attacker. This could be carried out in a controlled experimental

study in which random attackers are involved among ordinary users.

 As the main goal of the detection of attack strategies presented here in this

thesis is to identify the features that can be useful when using machine

learning in the context of security, it would also be interesting to try the

proposed detection approach in a different context in which, for instance, an

attacker types commands into a terminal looking for misconfiguration.

158

APPENDIX A: EXPERIMENT MATERIALS

Contents

- Participants Recruiting Email

- Screenshots for the System Website

o Registration Page

o Participant Consent Form Page

o Experiment instructions

o An Example to an attacker’s attempts to break the system

o Survey Page

o Logout Page

Appendix A: Experiment Materials

159

Participants Recruiting Email

Hello,

My name is Suliman and I am PhD student at School of Computing Science. As part of

my research work, I am planning to evaluate a novel defence mechanism by conducting

an experiment. Therefore, I need participants to take place in this experiment. The ex-

periment takes only about 30-40 minutes.

The experiment will be as a game, the higher score you get, the higher reward you will

achieve. Specifically, the first winner will get £40 and the second winner will get £20.

Additionally, just for the participation, each participant will get £5.

The experiment would take place at Cybercrime lab, room 702, Claremont Tower on

13
th

 April to 17
th

 April 2012. I will be there from 9:00am till 6:30pm and you can

choose to come between these hours to try out the experiment at any date of the above

dates.

If you are interested in helping out, please e-mail me at (suliman.alsuhibany@ncl.ac.uk)

and I will allocate a slot for you.

For any further information, please do not hesitate to contact me.

Thank you and I am waiting for your participation in this experiment.

Suliman Alsuhibany

Cybercrime lab

Room 702, Claremont Tower

School of Computing Science

Newcastle University

suliman.alsuhibany@ncl.ac.uk

mailto:suliman.alsuhibany@ncl.ac.uk
mailto:suliman.alsuhibany@ncl.ac.uk

Appendix A: Experiment Materials

160

Screenshots for the System Website - Registration Page

Appendix A: Experiment Materials

161

Screenshots for the System Website - Participant Consent Form Page

(1)

Appendix A: Experiment Materials

162

Screenshots for the System Website - Participant Consent Form Page

(2)

Appendix A: Experiment Materials

163

Screenshots for the System Website – Experiment instructions

Appendix A: Experiment Materials

164

Screenshots for the System Website - An Example to an attacker’s at-

tempts to break the system

- A number of successful/failed trials for Breaking Algorithm 1

Appendix A: Experiment Materials

165

Appendix A: Experiment Materials

166

- A trial for Breaking Algorithm 2

- A trial for Breaking algorithm 3

Appendix A: Experiment Materials

167

- Breaking the system

Screenshots for the System Website – Survey Page

Appendix A: Experiment Materials

168

Screenshots for the System Website – Logout Page

169

APPENDIX B: ACCUMULATIVE MANIPULATION OF TEST SETS

Contents

 ALC-Based Accumulative Manipulation

 ALCM-Based Accumulative Manipulation

Appendix B: Accumulative Manipulation of Test Sets

170

ALC-Based Accumulative Manipulation

Note: Green colour: classified successfully, while Red colour: misclassified. An L. result refers to labelled data and C. result refers to classified result.

ALC-based Accumulative manipulation

Attacker

Trial A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 20 11 0 9 0 0 0 18 0 7 0 23 0 0 0 0

3 0 0 17 38 29 7 37 0 3 6 45 2 12 0 42 0 15 17 0

4 5 11 45 65 47 16 64 0 11 9 113 7 38 0 42 0 27 44 0

5 17 16 76 92 68 42

10 40 12

7 67 9 82 7 38 73 0

6 39 22

81 49

28 69 21

36

14 95 8 65

0

7 61 48

91 80

54

43

57

41 115 15 91

15

8 88 78

130

87

61

77

62 149 24

39

9 110

151

87

114

86

44

61

10 134

204

113

116

111

66

79

11 184

123

124

110

12

134

136

133

13

151

159

191

14

172

210

15

223

L. results S3 S1 S1 S2 S3 S1 S1 S2 S1 S3 S2 S3 S1 S1 S2 S3 S1 S2 S3

C. results S3 S1 S2 S2 S3 S2 S1 S1 S1 S3 S2 S3 S1 S1 S2 S3 S2 S2 S2

Appendix B: Accumulative Manipulation of Test Sets

171

ALCM-Based Accumulative Manipulation

ALCM-based Accumulative manipulation

Attacker

Trial A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 5.009 11.8 17.93 10.9 7.571 15 6.67 7.07 5.635 26.97 6.882 9.111 5.65 12.4 7.35 8.1 11.38 7.7

3 9.211 10.83 26.8 39.39 23.1 16.38 35.3 14.29 15.8 11.94 62.3 14.25 21.09 12 26.4 15.3 17.6 25.67 16.02

4 19.31 17.762 46.9 65.98 36.9 26.89 64 23.17 27.2 19.1 112.6 22.19 38.24 19.1 42.6 23.8 29.2 44.68 25.05

5 30.49 26.297 76 92 52.7 39.85

33.77 43.1 27.35

30.78 66.93 27.4 61.5 33.1 43.7 72.49 34.95

6 42.98 37.322

71.2 56.65

46.87 68.9 37.09

40.14

37.2 84.5 43.4 63.1

45.87

7 57.14 52.668

93.4 80

63.9

48.92

50.43

49.1 113 54.7 91

58.05

8 73.45 76.988

121

87

63.91

61.82

64.2 149 67.4

71.81

9 92.65

158

84.15

74.59

84.5

81.8

87.6

10 115.9

204

113

89.1

111

98.5

106.1

11 145.3

105.9

118

128.3

12

125.7

142

156.1

13

149.9

173

191

14

180.7

201

15

222.6

L. results S3 S1 S1 S2 S3 S1 S1 S2 S1 S3 S2 S3 S1 S1 S2 S3 S1 S2 S3

C. results S3 S2 S1 S2 S3 S2 S1 S1 S2 S3 S2 S3 S1 S1 S3 S3 S1 S2 S2

172

APPENDIX C: PROBABILITY OF

CLASSIFICATION RESULTS

Contents

- ALC-Based Accumulative Manipulation

- ALCM-Based Accumulative Manipulation

Appendix C: Probability of Classification Results

173

ALC-based Probability of detecting each attempt to the predicted strategy

Trials

A
tt

ac
ke

r

st
ra

te
gy

1 2 3 4 5 6 7 8 9 10 11

1

1 0.528 0.528 0.171 0.233 0.322 0.237 0.178 0.125

2 0.338 0.338 0.356 0.370 0.305 0.355 0.329 0.291

3 0.132 0.132 0.471 0.396 0.371 0.406 0.492 0.583

2

1 0.528 0.528 0.528 0.528 0.498 0.482 0.389

2 0.338 0.338 0.338 0.338 0.348 0.353 0.370

3 0.132 0.13 0.132 0.132 0.152 0.164 0.239

3

1 0.528 0.528 0.365 0.363

2 0.338 0.338 0.372 0.368

3 0.132 0.132 0.261 0.267

4

1 0.528 0.355 0.360 0.365

2 0.338 0.475 0.454 0.372

3 0.132 0.169 0.184 0.261

5

1 0.528 0.258 0.229 0.203 0.261 0.229 0.133 0.095

2 0.338 0.361 0.352 0.365 0.365 0.352 0.298 0.261

3 0.132 0.379 0.418 0.431 0.372 0.418 0.568 0.643

6

1 0.528 0.528 0.362 0.371 0.371

2 0.338 0.338 0.375 0.379 0.386

3 0.132 0.132 0.261 0.248 0.242

7

1 0.528 0.471 0.434

2 0.338 0.356 0.364

3 0.132 0.171 0.200

8

1 0.528 0.528 0.528 0.528 0.495 0.434 0.372 0.370

2 0.338 0.338 0.338 0.338 0.349 0.364 0.345 0.323

3 0.132 0.132 0.132 0.132 0.154 0.200 0.281 0.305

9

1 0.528 0.528 0.498 0.488 0.458

2 0.338 0.338 0.348 0.351 0.359

3 0.132 0.132 0.152 0.159 0.181

10

1 0.528 0.528 0.223 0.291 0.270 0.302 0.242 0.305 0.189

2 0.338 0.338 0.369 0.335 0.364 0.327 0.371 0.323 0.361

3 0.132 0.132 0.406 0.372 0.364 0.369 0.386 0.370 0.448

11

1 0.528 0.371 0.328

2 0.338 0.379 0.372

3 0.132 0.248 0.298

12

1 0.528 0.528 0.233 0.322 0.166 0.264 0.178 0.127 0.047

2 0.338 0.338 0.370 0.305 0.354 0.363 0.329 0.293 0.190

3 0.132 0.132 0.396 0.371 0.478 0.371 0.492 0.579 0.762

13
1 0.528 0.478 0.448 0.379

2 0.338 0.354 0.361 0.371

Appendix C: Probability of Classification Results

174

ALC-based Probability of detecting each attempt to the predicted strategy

3 0.132 0.166 0.189 0.248

14

1 0.528 0.528 0.528 0.528 0.478 0.448 0.379

2 0.338 0.338 0.338 0.338 0.354 0.361 0.371

3 0.132 0.132 0.132 0.132 0.166 0.189 0.248

15

1 0.528 0.322 0.370 0.319 0.357

2 0.338 0.371 0.389 0.371 0.398

3 0.132 0.305 0.239 0.309 0.243

16

1 0.528 0.528 0.528 0.528 0.233 0.322 0.322 0.312 0.369 0.331 0.203

2 0.338 0.338 0.338 0.338 0.171 0.305 0.305 0.316 0.258 0.299 0.365

3 0.132 0.132 0.132 0.132 0.471 0.371 0.371 0.371 0.372 0.369 0.431

17

1 0.528 0.528 0.298 0.369 0.331 0.327

2 0.338 0.338 0.568 0.372 0.369 0.369

3 0.132 0.132 0.133 0.258 0.299 0.302

18

1 0.528 0.528 0.291 0.261

2 0.338 0.338 0.583 0.643

3 0.132 0.132 0.125 0.095

19

1 0.528 0.528 0.528 0.528 0.528 0.528 0.371 0.370 0.322 0.298 0.264

2 0.338 0.338 0.338 0.338 0.338 0.338 0.379 0.396 0.371 0.372 0.371

3 0.132 0.132 0.132 0.132 0.132 0.132 0.248 0.233 0.305 0.328 0.363

ALCM-based Probability of detecting each attempt to the predicted strategy

Trials

A
tt

ac
ke

r

st
ra

te
gy

1 2 3 4 5 6 7 8 9 10 11

1

1 0.528 0.528 0.224 0.222 0.240 0.151 0.084 0.037

2 0.338 0.338 0.351 0.350 0.356 0.312 0.249 0.169

3 0.132 0.132 0.424 0.427 0.402 0.535 0.666 0.793

2

1 0.528 0.312 0.369 0.312 0.296 0.362 0.312

2 0.338 0.371 0.372 0.371 0.369 0.372 0.371

3 0.132 0.316 0.257 0.316 0.334 0.264 0.316

3

1 0.528 0.318 0.357 0.371

2 0.338 0.371 0.372 0.319

3 0.132 0.310 0.269 0.308

4

1 0.278 0.362 0.311 0.320

2 0.366 0.372 0.370 0.371

3 0.355 0.265 0.317 0.307

5

1 0.224 0.261 0.240 0.234 0.222 0.163 0.104 0.097

2 0.351 0.362 0.356 0.354 0.350 0.321 0.271 0.263

3 0.424 0.375 0.402 0.410 0.427 0.515 0.623 0.639

6
1 0.528 0.335 0.282 0.350 0.270

2 0.338 0.372 0.366 0.372 0.364

Appendix C: Probability of Classification Results

175

3 0.132 0.292 0.351 0.277 0.365

7

1 0.528 0.382 0.447

2 0.338 0.361 0.344

3 0.132 0.256 0.208

8

1 0.512 0.492 0.469 0.440 0.414 0.402 0.382

2 0.344 0.350 0.357 0.363 0.367 0.369 0.371

3 0.143 0.156 0.173 0.196 0.217 0.227 0.245

9

1 0.512 0.335 0.351 0.369 0.360

2 0.344 0.372 0.366 0.372 0.365

3 0.143 0.292 0.282 0.258 0.274

10

1 0.528 0.047 0.087 0.136 0.188 0.238 0.248 0.287 0.301

2 0.338 0.190 0.252 0.301 0.334 0.356 0.358 0.345 0.328

3 0.132 0.762 0.660 0.562 0.476 0.404 0.392 0.367 0.369

11

1 0.528 0.350 0.289

2 0.338 0.372 0.368

3 0.132 0.277 0.342

12

1 0.528 0.256 0.222 0.208 0.158 0.110 0.065 0.039 0.047

2 0.338 0.361 0.350 0.344 0.317 0.277 0.222 0.174 0.190

3 0.132 0.382 0.427 0.447 0.523 0.612 0.711 0.786 0.762

13

1 0.528 0.510 0.489 0.464

2 0.338 0.345 0.351 0.358

3 0.132 0.144 0.159 0.176

14

1 0.528 0.512 0.492 0.469 0.440 0.402 0.468

2 0.338 0.344 0.350 0.357 0.363 0.369 0.357

3 0.132 0.143 0.156 0.173 0.196 0.227 0.174

15

1 0.528 0.226 0.224 0.163 0.104

2 0.338 0.351 0.351 0.321 0.271

3 0.132 0.421 0.424 0.515 0.623

16

1 0.528 0.357 0.319 0.278 0.234 0.188 0.142 0.0970 0.056 0.047 0.025

2 0.338 0.269 0.308 0.366 0.354 0.335 0.305 0.263 0.208 0.190 0.141

3 0.132 0.372 0.371 0.355 0.410 0.476 0.552 0.639 0.734 0.762 0.832

17

1 0.528 0.372 0.351 0.370 0.372 0.379

2 0.338 0.335 0.366 0.323 0.350 0.371

3 0.132 0.292 0.282 0.305 0.277 0.248

18

1 0.528 0.312 0.350 0.369

2 0.338 0.371 0.372 0.372

3 0.132 0.316 0.277 0.258

19

1 0.528 0.370 0.357 0.319 0.278 0.234 0.229 0.208 0.188 0.185 0.175

2 0.338 0.392 0.372 0.371 0.366 0.410 0.418 0.424 0.476 0.454 0.496

3 0.132 0.236 0.269 0.308 0.355 0.354 0.352 0.366 0.335 0.360 0.328

176

BIBLIOGRAPHY

[1] Abu-Nimeh, S., Nappa, D., Wang, X., and Nair, S. 2007. A comparison of Ma-

chine Learning Techniques for Phishing Detection. In Proceedings of The An-

tiPhishing Working Group’s Second Annual eCrime Researchers Summit

(Pittsburgh, Pa, USA, Oct. 4–5, 2007), 60–69.

[2] Aghajani, Z., and Azgomi, M. A. 2009. Security Evaluation of an Intrusion

Tolerant Web Service Architecture Using Stochastic Activity Networks. Lec-

tures on Advances in Information Security and Assurance, edited by J. Park, H-

H. Chen, M. Atiquzzaman, C. Lee, T-h. Kim, and S-S. Yeo, Springer Lecture

Notes in Computer Science, 260–269.

[3] Ajmone Marsan, M., Conte, G., and Balbo, G. 1984. A Class of Generalized

Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Sys-

tems. ACM Transactions on Computer Systems, 2(2), 93–122.

[4] Alkahtani, H. S., Gardner-Stephen, P. A. U. L., and GOODWIN, R. 2011. A

Taxonomy of Email SPAM Filters. In Proceedings of the 12
th

 International

Arab Conference on Information Technology (ACIT’ 11), (Riyadh, Saudi Ara-

bia), 351–356.

[5] Almasizadeh, J., and Azgomi, M. A. 2009. Intrusion Process Modelling for

Security Quantification. In Proceedings of the International Conference on

Availability, Reliability and Security (ARES’ 09). IEEE Computer Society, Los

Alamitos, 114–121.

[6] Alpcan, T., and Pavel, L. 2009. Nash Equilibrium Design and Optimization. In

Proceedings of the International Conference on Game Theory for Networks, Is-

tanbul, 13-15 May, 164–170.

[7] Alpcan, T., and Baser, T. An Intrusion Detection Game with Limited Observa-

tions. 2006. In Proceedings of the 12
th

 International Symp on Dynamic Games

and Applications, Sophia Antipolis, France, July, 3–6.

Bibliography

177

[8] Alpcan, T., and Baser. T. 2004. A Game Theoretic Analysis of Intrusion Detec-

tion in Access Control Systems. In Proceedings of the 43
rd

 IEEE Conference

on Decision and Control, 1568–1573.

[9] Alpcan, T., and Basar, T. Network Security: A Decision and Game-Theoretic

Approach. Cambridge University Press. 2011.

[10] Alsuhibany, S. A. 2011. Optimising CAPTCHA Generation. In Proceedings of

the Sixth International Conference on Availability, Reliability and Security

(ARES’ 11), IEEE Computer Society, Austria, Vienna, 740–745.

[11] Alsuhibany, S. A., Alonaizi, A., Morisset, C., Smith C., and van Moorsel, A.

2013. Experimental Investigation in the Impact on Security of the Release Or-

der of Defensive Algorithms. In Processing in 3
rd

 IFIP International Workshop

on Security and Cognitive Informatics for Homeland Defence (SeCIHD’13),

volume 8128 of Lecture Notes in Computer Science (LNCS), Springer, Sep-

tember 2–6, 321–336.

[12] Alsuhibany, S. A., and van Moorsel, A. 2013. Modelling and Analysis of Re-

lease Order of Security Algorithms Using Stochastic Petri Nets. In Processing

in 8
th

 International Conference on Availability, Reliability and Security

(ARES’13), IEEE Computer Society, September 2-6, 437–445.

[13] Alsuhibany, S. A., Alonaizi, A., Morisset, C., and van Moorsel, A. 2013. Op-

timizing the Release Order of Defensive Mechanisms. In Processing in 29
th

Annual UK Performance Engineering Workshop (UKPEW’13), 4
th

 Jul, 34–41.

[14] Alsuhibany, S. A., Morisset C., and van Moorsel, A. Detection of Attack

Strategies. 2013. In Processing in 8
th

International Conference on Risks and

Security of Internet and Systems (CRiSIS’13), IEEE Computer Society, Octo-

ber 23–25, to appear.

[15] American National Standards Institute (ANSI). 2008. The Financial Impact of

Cyber Risk. Internet Security Alliance (ISA). Retrieved Jun 14, 2013 from:

http://www.ansi.org/meetings_events/events/Cyber_Risk08.aspx

http://www.ansi.org/meetings_events/events/Cyber_Risk08.aspx

Bibliography

178

[16] Anderson, J. R. Cognitive Skills and Their Acquisition, Psychology Press,

1981.

[17] Anderson, J. R. Language, Memory, and Thought, Psychology Press, 1976.

[18] Anderson, R. Security Engineering: A Guide to Building Dependable Distrib-

uted Systems. Wiley Publishing, Inc. 2
nd

 edition. 2008.

[19] Anti-Phishing Working Group. Phishing Activity Trends Report: Third Quarter

Report, Jan. 2010 [online]: http://apwg.org/reports/apwg_report_Q3_2009.pdf

[20] Arachchilage, N. A. G. Gaming for Security. 2013. ITNOW, 55(1), 32–33.

[21] Argote, L. 2013. Organizational Learning Curves: An Overview. Organiza-

tional Learning. Springer, Pittsburgh, US, 1–29.

[22] Baird, H. S., and Popat, K. 2002. Human Interactive Proofs and Document Im-

age Analysis. In Proceedings of 5
th

 IAPR Int. Workshop on Document Analysis

Systems (DAS’ 02), vol. 2423 of LNCS, 507–518.

[23] Barrows, H. S., and Tamblyn, R. M. Problem-Based Learning: An Approach to

Medical Education, Springer Series on Medical Education, New York, 1980,

Edition: 1.

[24] Bellman, R. 1957. A Markovian Decision Process. Indiana University: Journal

of Mathematics and Mechanics, 6(5), 679–684.

[25] Bhat, U. N., and Miller, G. K. Elements of Applied Stochastic Processes,

Wiley-Interscience, Edition 3, 2002.

[26] Bishop, M. Computer Security: Art and Science. Addison-Wesley, 2003.

[27] Blakley, B., Mcdermott, E., and Geer, D. 2001. Information Security is Infor-

mation Risk Management. In Proceedings of the 2001 Workshop on New Secu-

rity, (Cloudcroft, New Mexico, USA), 97–104.

http://apwg.org/reports/apwg_report_Q3_2009.pdf

Bibliography

179

[28] Bloem, M., Alpcan, T., and Basar, T. 2006. Intrusion Response as a Resource

Allocation Problem. In Proceedings of the 45
th

 IEEE Conference on Decision

and Control, San Diego, CA, 6283–6288.

[29] Bransford, J. D. The Jasper Project: Lessons in Curriculum, Instruction, As-

sessment, and Professional Development, New York: Routledge, 1997.

[30] Brocklehurst, S., Littlewood, B., Olovsson, T., and Jonsson, E. 1994. On

Measurement of Operational Security. In Proceedings of the Ninth Annual

IEEE Conference Computer Assurance (COMPASS ’94), IEEE Computer So-

ciety, 257–266.

[31] Brown, J., Collins, A., and Newman, S. 1989. Cognitive Apprenticeship:

Teaching the Crafts of Reading, Writing, and Mathematics. In Resnick, L. B.

(ed.), Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser,

Erlbaum, Hillsdale, NJ, 453–494.

[32] Bursztein, E., Martin, M., and Mitchell, J. 2011. Text-Based CAPTCHA

Strengths and Weaknesses. In Proceedings of the 18th ACM conference on

Computer and communications security (CCS ’11), New York, NY, USA,

ACM, 125–138.

[33] Caliendo, M., Clement, M., Papies, D., and Scheel-Kopeinig, S. 2012. The

Cost Impact of Spam Filters: Measuring the Effect of Information System

Technologies in Organizations. Information Systems Research, 32(3), 1–13.

[34] Card, S. K., English, W. K., and Burr, B. J. 1978. Evaluation of Mouse, Rate

Controlled Isometric Joystick, Step Keys, and Text Keys for Text Selection on

a CRT. Ergonomics, 21(8), 601–613.

[35] Chan, T. Y. 2003. Using a Text-to-Speech Synthesizer to Generate a Reverse

Turing Test. In Proceedings of 15
th

 IEEE International Conference on Tools

with Artificial Intelligence (ICTAI 03), 226–232.

Bibliography

180

[36] Chew, E., Marianne, S., Kevin, S., Nadya, B., Anthony, B., and Will, R. 2007.

Nist Performance Measurement Guide for Information Security. Technical re-

port, NIST Institute. Retrieved July 3, 2013 from:

http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf

[37] Chi, M. T. 2008. Three Kinds of Conceptual Change: Belief Revision, Mental

Model Transformation, and Ontological Shift. In S., Vosniadou, A., Baltas and

X., Vamvakoussi, (Eds.), Re-Framing the Conceptual Change Approach in

Learning and Instruction. Advances in Learning and Instruction Series, El-

sevier Press, 61–82.

[38] Ciardo, G., Muppala, J., and Trivedi, K. 1989. SPNP: Stochastic Petri Net

Package. In Proceedings of the Third International Workshop on Petri Nets

and Performance Models, IEEE Press, Kyoto 11–13 Dec, 142–150.

[39] Ciardo, G., Fricks, R. M., Muppala, J. K., and Trivedi, K. S. SPNP Users Man-

ual Version 6.0, Department Electrical Engineering, Duke University,1999.

[40] Clapper, J. P., and Bower, G. H. 1994. Category Invention in Unsupervised

Learning. Journal of Experimental Psychology: Learning, Memory, and Cogni-

tion, 20(2), 443–460.

[41] Clark, K. P. 2008. A Survey of Content-based Spam Classifiers. [Online].

Available at:

http://pdf.aminer.org/000/223/637/collaborative_detection_of_spam_in_peer_t

o_peer_paradigm_based.pdf

[42] Cook, D., Hartnett, J., Manderson, K., and Scanlan, J. 2006. Catching Spam

Before it Arrives: Domain Specific Dynamic Blacklists. In Proceedings of the

Australasian Information Security Workshop (Network Security) (AISWNet-

Sec’06), (Hobart, Australia), 193–202.

[43] Daly, D., Deavours, D. D., Doyle, J. M., Webster, P. G., and Sanders, W. H.

2000. Möbius: An Extensible Tool for Performance and Dependability Model-

ling. In Proceedings of the 11
th

 International Conference on Computer Per-

http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://pdf.aminer.org/000/223/637/collaborative_detection_of_spam_in_peer_to_peer_paradigm_based.pdf
http://pdf.aminer.org/000/223/637/collaborative_detection_of_spam_in_peer_to_peer_paradigm_based.pdf

Bibliography

181

formance Evaluation: Modelling Techniques and Tools (TOOLS ’00),

Springer-Verlag Berlin, Heidelberg, 332–336.

[44] Damiani, E., di Vimercati, S. D. C., Paraboschi, S., and Samarati, P 2004. An

Open Digest-based Technique for Spam Detection. In Proceedings of the 2004

International Workshop on Security in Parallel and Distributed Systems (San

Francisco, CA USA, September, 2004), 15–17.

[45] Deavours, D. D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J. M.,

Sanders, W. H., and Webster, P. G. 2002. The Möbius Framework and its Im-

plementation. IEEE Transactions on Software Engineering, 28(10), 956–969.

[46] Dingle, N. J., Knottenbelt, W. J., and Suto, T. 2009. PIPE2: a Tool for the Per-

formance Evaluation of Generalised Stochastic Petri Nets. ACM SIGMETRICS

Performance Evaluation Review, 36(4), 34–39.

[47] Elio, R., and Anderson, J. R. 1981. The Effects of Category Generalizations

and Instance Similarity on Schema Abstraction. Journal of Experimental Psy-

chology: Human Learning and Memory, 7(6), 397–417.

[48] Elio, R., and Anderson, J. R. 1984. The Effects of Information Order and

Learning Mode on Schema Abstraction. Memory and Cognition, 12(1), 20–30.

[49] Fette, I., Sadeh, N., and Tomasic, A. 2007. Learning to Detect Phishing Emails.

In Proceedings of the 16
th

 International World Wide Web Conference (Banff,

Canada, May 8–12, 2007), 649–656.

[50] Freschi, V., Seraghiti, A., and Bogliolo, A. 2006. Filtering Obfuscated Email

Spam by means of Phonetic String Matching. Advances in Information Re-

trieval: 28
th

 European Conference on IR Research ECIR’ 06 (London, UK,

2006), Springer-Verlag Berlin, Heidelberg, 505–509.

[51] Garcia, F. D., Hoepman, J. H., and Van Nieuwenhuizen, J. 2004. Spam Filter

Analysis. In Proceedings of 19
th

 IFIP International Information Security Con-

ference, (Toulouse, France), Springer-Verlag Berlin, Heidelberg, 395–410.

Bibliography

182

[52] Golbeck, J., and Hendler, J. A. 2004. Reputation Network Analysis for Email

Filtering. In Proceedings of Conference on Email and Anti-Spam (CEAS’ 04),

1–8.

[53] Gollmann, D. Computer Security, 3rd Edition, Wiley Publishing, 2011.

[54] Goseva-Popstojanova, K., Wang, F., Wang, R., Gong, F., Vaidyanathan, K.,

Trivedi, K., and Muthusamy, B. 2001. Characterizing Intrusion Tolerant Sys-

tems Using a State Transition Model. In Proceedings of the Information Sur-

vivability Conference and Exposition, (DISCEX ’01), 211–221.

[55] Gunes Kayacik, H., Nur Zincir-Heywood, A., and Heywood, M. I. 2007. A

Hierarchical SOM-Based Intrusion Detection System. Engineering Applica-

tions of Artificial Intelligence, 20(4), 439–451.

[56] Guo, X., and Hernandez-Lerma, O. Continuous-Time Markov Decision Proc-

esses: Theory and Applications. Spring, 2009.

[57] Hackett, E. A. 1983. Application of A set of Learning Curve Models to Repeti-

tive Tasks. The Radio and Electronic Engineer, 53(1), 25–32.

[58] Hanakawa, N., Morisaki, S., and Matsumoto, K. I. 1998. A Learning Curve

Based Simulation Model for Software Development. In Proceedings of the 20
th

International Conference on Software Engineering, (Kyoto, Japan, April 19-

25), 350–359.

[59] Haverkort, B. R. Performance of Computer Communication Systems: A Model-

Based Approach, John Wiley & Sons, Inc., New York, NY, USA, 1998.

[60] Herley, C., and Florêncio, D. 2008. A Profitless Endeavour: Phishing as a

Tragedy of the Commons. In Proceedings of the New Security Paradigms

Workshop (Lake Tahoe, Ca), 22–25.

[61] Heron, S. Technologies for Spam Detection. 2009. Network Security, 1(1), 11–

15.

Bibliography

183

[62] Hmelo, C. E., and Ferrari, M. 1997. The Problem-Based Learning Tutorial:

Cultivating Higher Order Thinking Skills. Journal for the Education of the

Gifted, 20(4), 401–422.

[63] Hong. J. 2012. The State of Phishing Attacks. Communications of the ACM,

55(1), 74–81.

[64] Hoo, K. J. S. 2000. How Much Is Enough? A Risk-Management Approach to

Computer Security. Technical report, Consortium for Research on Information

Security and Policy (CRISP) [Online]:

http://cisac.stanford.edu/publications/how_much_is_enough__a_riskmanageme

nt_approach_to_computer_security/

[65] Horng, S. J., Su, M. Y., Chen, Y. H., Kao, T. W., Chen, R. J., Lai, J. L., and

Perkasa, C. D. 2011. A Novel Intrusion Detection System Based on Hierarchi-

cal Clustering and Support Vector Machines. Expert Systems with Applica-

tions, 38(1), 306–313.

[66] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I. P., and Tygar, J. D.

2011. Adversarial Machine Learning. In Proceedings of the 4
th

ACM workshop

on Artificial Intelligence and Security (AISec’11), 43–58.

[67] Jiang, W., Tian, Z. H., Zhang, H. L., and Song, X. F. 2008. A Stochastic Game

Theoretic Approach to Attack Prediction and Optimal Active Defence Strategy

Decision. In Proceedings of the 2008 IEEE International Conference on Net-

working, Sensing and Control (ICNSC’08), Hainan, China, 6–8 April, 648–

653.

[68] Johansson, J. M. The Fundamental Tradeoffs. Retrieved September 11, 2013

from, http://technet.microsoft.com/en-us/library/cc512573.aspx

[69] Jones, A. K., and Lipton, R. J. 1975. The Enforcement of Security Policies for

Computation. In Proceedings of the 5
th

 ACM symposium on Operating systems

principles. Austin, Texas, United States, 197–206.

http://cisac.stanford.edu/publications/how_much_is_enough__a_riskmanagement_approach_to_computer_security/
http://cisac.stanford.edu/publications/how_much_is_enough__a_riskmanagement_approach_to_computer_security/
http://technet.microsoft.com/en-us/library/cc512573.aspx

Bibliography

184

[70] Jonsson, E., and Olovsson, T. 1997. A Quantitative Model of the Security In-

trusion Process Based on Attacker Behaviour. IEEE Transactions on Software

Engineering, 23(4), 235–245.

[71] Kadota, Y., Kurano, M., and Yasuda, M. 2006. Regret-Optimal Policies in Ab-

sorbing Semi-Markov Decision Processes with Multiple Constraints. In Pro-

ceedings of the Development of Information and Decision Processes, 87–94.

[72] Kahn, P., and O’Rourke, K. Guide to Curriculum Design: Enquiry-Based

Learning, Higher Education Academy, York, 2004. [Online]. Available:

http://www.heacademy.ac.uk/resources.asp?id=359&process=full_record§

ion=generic

[73] Khan, L., Awad M., and Thuraisingham, B. 2006. A New Intrusion Detection

System Using Support Vector Machines and Hierarchical Clustering. The In-

ternational Journal on Very Large Data Bases, 16(4), 507–521.

[74] Khonji, M., Iraqi, Y., and Jones, A. 2013. Phishing Detection: A Literature

Survey. Communications Surveys & Tutorials, IEEE Communications Society,

(99), 1–31.

[75] Khorsi, A. 2007. An Overview of Content-Based Spam Filtering Techniques.

Informatica (Slovenia), 31(3), 269–277.

[76] Kim, J. W., Chung, W. K., and Cho, H. G. 2010. A new Image-Based

CAPTCHA Using the Orientation of the Polygonally Cropped Sub-images. The

Visual Computer, vol. 26(8), 1135–1143.

[77] Kolodner, J. L., Hmelo, C. E., and Narayanan, N. H. 1996. Problem-Based

Learning Meets Case-Based Reasoning. In Edelson, D. C. and Domeshek, E.

A. (eds.), Proceedings of ICLS 96, AACE, (Charlottesville, VA), 188–195.

[78] Kolodner, J. Case-Based Reasoning, San Francisco, CA, USA: Morgan Kauf-

mann, 1993.

http://www.heacademy.ac.uk/resources.asp?id=359&process=full_record§ion=generic
http://www.heacademy.ac.uk/resources.asp?id=359&process=full_record§ion=generic

Bibliography

185

[79] Kordy, B., Mauw, S., Radomirović, S., and Schweitzer, P. 2011. Foundations

of Attack-Defence Trees. (Edits,) Pierpaolo Degano, Sandro Etalle, and Joshua

D. Guttman, Formal Aspects in Security and Trust, Springer in Lecture Notes

in Computer Science, 80–95.

[80] Krautsevich, L., Martinelli, F., and Yautsiukhin, A. 2013. Towards Modelling

Adaptive Attacker’s Behaviour. Foundations and Practice of Security.

Springer Berlin Heidelberg, 357–364.

[81] Kreidl, O. P. 2010. Analysis of a Markov Decision Process Model for Intrusion

Tolerance. In Proceedings of the International Conference on Dependable Sys-

tems and Networks Workshops (DSN-W 10), IEEE Press, 156–161.

[82] Lam, H. Y., and Yeung, D. Y. 2007. A Learning Approach to Spam Detection

based on Social Networks. In Proceedings of Conference on Email and Anti-

Spam (CEAS’ 07), (Mountain View, California USA), 1–9.

[83] Leversage, D. J., and Byres, E. J. 2007. Comparing Electronic Battlefields:

Using Mean Time-to-Compromise as a Comparative Security Metric. In Pro-

ceedings of the 4
th

 international Conference of Mathematical Methods, Models,

and Architectures for Computer Network Security, Computer Network Secu-

rity. Springer Berlin Heidelberg, 213–227.

[84] Liao, H. J., Tung, K. Y., Richard Lin, C. H., and Lin, Y. C. 2013. Intrusion

Detection System: A Comprehensive Review. Network and Computer Applica-

tions, 36(1), 16–24.

[85] Litan, A. Phishing Attack Victims Likely Targets for Identity Theft. Gartner

Group, 4 May 2004 [online]: http://www.social-engineer.org/wiki/archives/IdTheif/IdTheif-

phishing_attack.pdf

[86] Liu, Y., Chen, K., Liao, X., and Zhang, W. 2004. A Genetic Clustering Method

for Intrusion Detection. Pattern Recognition, 37(5), 927–942.

http://www.social-engineer.org/wiki/archives/IdTheif/IdTheif-phishing_attack.pdf
http://www.social-engineer.org/wiki/archives/IdTheif/IdTheif-phishing_attack.pdf

Bibliography

186

[87] Liu, G., and Yi, Z. 2006. Intrusion Detection Using PCASOM Neural Net-

works. In Proceedings of the Third International Symposium on Neural Net-

works (ISNN06), Chengdu, China, Springer-Verlag Berlin, Heidelberg, 240–

245.

[88] Lye, K. W., and Wing, J. M. 2005. Game Strategies in Network Security. In-

ternational Journal of Information Security, 4(2), 71–86.

[89] Madan, B. B., Gogeva-Popstojanova, K., Vaidyanathan, K., and Trivedi, K. S.

2002. Modelling and Quantification of Security Attributes of Software Sys-

tems. In Proceedings of the IEEE International Conference on Dependable

Systems and Networks (DSN 02), IEEE Press, 505–514.

[90] Marsan, M. A. 1990. Stochastic Petri Nets: An elementary introduction. In Ad-

vances in Petri Nets 1989, Springer: Lecture Notes in Computer Science pages

1–29.

[91] Mathy, F., and Feldman, J. 2009. A Rule-Based Presentation Order Facilitates

Category Learning. Psychonomic Bulletin & Review, 16(6), 1050–1057.

[92] Matlab. The Language of Technical Computing. 2012. Retrieved September

15, 2013 from: http://www.mathworks.com/products/ matlab/.

[93] MATLAB online support:

www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml1.

[94] McInerney, J., Stubberud, S., Anwar, S., and Hamilton, S. 2001. FRIARS: a

Feedback Control System for Information Assurance using a Markov Decision

Process. In Proceedings of the IEEE 35
th

 International Carnahan Conference,

IEEE Press, 223–228.

[95] McLachlan. G. Discriminant Analysis and Statistical Pattern Recognition.

Wiley, New York, 1992.

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml1

Bibliography

187

[96] McQueen, M. A., Boyer, W. F., Flynn, M. A., and Beitel, G. A. 2005. Time-to-

Compromise Model for Cyber Risk Reduction Estimation. In Proceedings of

the First Workshop on Quality of Protection (Milan, Italy – September 15),

Springer US, 49–64.

[97] McQueen, M. A., Boyer, W. F., Flynn, M. A., and Beitel, G. A. 2006. Quanti-

tative Cyber Risk Reduction Estimation Methodology for a Small SCADA

Control System. In Proceedings of the 39
th

 Annual Hawaii Conference on Sys-

tem Science (HICSS 06), 226–237.

[98] Medin, D. L., and Bettger, J. G. 1994. Presentation Order and Recognition of

Categorically Related Examples. Psychonomic Bulletin and Review, 1(2), 250–

254.

[99] Mitrani, I. Probabilistic Modelling. Cambridge University Press, 1998.

[100] Moy, G., Jones, N., Harkless, C., and Potter, R. 2004. Distortion Estimation

Techniques in Solving Visual CAPTCHAs. In Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition, vol. 2, pp. 23–28.

[101] Naor, M. 1996. Verification of a Human in the Loop, or Identification via the

Turing Test [online]. Available:

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human_abs.html

[102] Neely, J. H., and Balota, D. A. 1981. Test-Expectancy and Semantic Organiza-

tion Effects in Recall and Recognition. Memory & Cognition, 9(3), 283–300.

[103] Nelson, B., Barreno, M., Chi, F. J., Joseph, A. D., Rubinstein, B. I., Saini, U.,

Sutton, C. A., Tygar, J. D., and Xia, K. 2008. Exploiting Machine Learning to

Subvert your Spam Filter. In Proceedings of the first USENIX Workshop on

Large-Scale Exploits and Emergent Threats, April 2008.

[104] Neuts, M. F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic

Approach, John Hopkins University Press, 1981.

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human_abs.html

Bibliography

188

[105] Neville, A. J. 2009. Problem-Based Learning and Medical Education Forty

Years on: A Review of its Effects on Knowledge and Clinical Performance.

Med Princ Pract, 18(1), 1–9.

[106] Nguyen, Q., and Sood, A. 2009. Quantitative Approach to Tuning of a Time-

Based Intrusion-Tolerant System Architecture. In Proceedings of the 3
rd

 Work-

shop Recent Advances on Intrusion-Tolerant Systems, [Online]:

http://wraits09.di.fc.ul.pt/wraits09paper2.pdf

[107] Norman, G. 1988. Problem-Solving Skills, Solving Problems, and Problem-

Based Learning. Medical Education, 22(4), 279-286.

[108] Norman, G. R., and Schmidt, H. G. 1992. The Psychological Basis of Problem-

Based Learning: A Review of the Evidence. Academic Medicine, 67(9), 557-

565.

[109] Norris, J. R. Markov Chains, Cambridge University Press, 1998.

[110] Ortalo, R., Deswarte, Y., and Kaâniche, M. 1999. Experimenting with Quanti-

tative Evaluation Tools for Monitoring Operational Security. IEEE Trans Soft-

ware Engineering, 25(5), 633–650.

[111] Oxford. Dictionary of Computing, Fourth Ed. Oxford University Press, 1996.

[112] Paulauskas, N., and Garsva, E. 2008. Attacker Skill Level Distribution Estima-

tion in the System Mean Time-to-Compromise. In Proceedings of the 1
st
 IEEE

International Conference on Information Technology (IT 2008), (Gdansk, Po-

land, May 19-21), 1–4.

[113] Payne, S. C. 2006. A Guide to Security Metrics. Technical report, SANS Insti-

tute. Retrieved July 20, 2013 from: http://www.sans.org/reading-

room/whitepapers/auditing/guide-security-metrics-55

[114] Peng, W. 2012. Analysis and Exploration of Related Issues on the Computer

Network Security Based on Firewall and Anti-Virus Software. In Processing in

http://wraits09.di.fc.ul.pt/wraits09paper2.pdf
http://www.sans.org/reading-room/whitepapers/auditing/guide-security-metrics-55
http://www.sans.org/reading-room/whitepapers/auditing/guide-security-metrics-55

Bibliography

189

Advanced Technology in Teaching-Proceedings of the 2009 3rd International

Conference on Teaching and Computational Science (WTCS 2009), Springer

Berlin Heidelberg, 45–49.

[115] Performance Evaluation Group. GreatSPN Users Manual, version 2.0.2. De-

partment of Computer Science, University of Torino, 2001 [Online]:

http://www.di.unito.it/~susi/DIDATTICA/SPC04-05/manual.pdf

[116] Pfleeger, S. L., and Bloom, G. 2005. Canning Spam: Proposed Solutions to

Unwanted Email. IEEE Security and Privacy, 3(2), 40–47.

[117] Purkait, S. 2012. Phishing Counter Measures and their Effectiveness – Litera-

ture Review. Information Management & Computer Security, 20(5), 382–420.

[118] QFINANCE. 2013. Definition of Learning Curve. Retrieved July 17, 2013

from: http://www.qfinance.com/dictionary/learning-curve

[119] Qureshi, M. A., and Sanders, W. H. 1994. Reward Model Solution Methods

with Impulse and Rate Rewards: An algorithm and numerical results. Perform-

ance Evaluation, 20(4), 413–436.

[120] Restle, F., and Greeno, J. G. Introduction to Mathematical Psychology. Addi-

son-Wesley, Oxford, England, 1970.

[121] Ross, S. M. Introduction to Probability Models, Academic Press, 1997.

[122] Roy, A., Kim, D. S., and Trivedi, K. S. 2012. Scalable Optimal Countermea-

sure Selection Using Implicit Enumeration on Attack Countermeasure Trees. In

Proceedings of the International Conference on Dependable Systems and Net-

works (DSN 12), IEEE Press, 1–12.

[123] Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., and Wu, Q. 2010. A

Survey of Game Theory as Applied to Network Security. In Proceedings of the

43
rd

 Hawaii International Conference on System Sciences, Honolulu, HI, 1–10.

http://www.di.unito.it/~susi/DIDATTICA/SPC04-05/manual.pdf
http://www.qfinance.com/dictionary/learning-curve

Bibliography

190

[124] Rumelhart, D.E., and Norman, D.A. 1976. Accretion, Tuning and Restructur-

ing: Three Modes of Learning. ERIC Document Reproduction Service No.

ED134902, (Report no. 7602).

[125] Sahner, R. A., Trivedi, K. S., and Puliafito, A. Performance and Reliability

Analysis of Computer Systems. Kluwer Academic Publishers, Boston, 1995.

[126] Sakamoto, Y., Jones, M., and Love, B. C. 2008. Putting the Psychology Back

into Psychological Models: Mechanistic versus Rational Approaches. Memory

& Cognition, 36(6), 1057–1065.

[127] Sallhammar, K., Helvik, B. E., and Knapskog, S. J. 2005. Incorporating At-

tacker Behaviour in Stochastic Models of Security. In Proceedings of the 2005

International Conference on Security and Management (SAM’05). Las Vegas,

Nevada, USA, 79–85.

[128] Sallhammar, K., Helvik, B. E., and Knapskog, S. J. 2006. On Stochastic Mod-

elling for Integrated Security and Dependability Evaluation. The Journal of

Networks, 1(5), 31–42.

[129] Sallhammar, K., and Knapskog, S. J. 2004. Using Game Theory in Stochastic

Models for Quantifying Security. In Proceedings of the 9
th

 Nordic Workshop

on Secure IT Systems, November, Espoo, Finland.

[130] Sallhammar, K., Knapskog, S. J., and Helvik, B. E. 2005. Using Stochastic

Game Theory to Compute the Expected Behaviour of Attackers. In Proceed-

ings of the 2005 International Symposium on Applications and the Internet

Workshops. (Saint2005), 102–105

[131] Sandhofer, C. M., and Doumas, L. A. A. 2008. Order of Presentation Effects in

Learning Colour Categories. Journal of Cognition and Development, 9(2),

194–221.

[132] Schank, R. C., Fano, A., Bell, B., and Jona, M. 1994. The Design of Goal-

Based Scenarios. The Journal of the Learning Sciences, 3(4), 305–346.

Bibliography

191

[133] Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., and Zhang, C. 2009.

An Empirical Analysis of Phishing Blacklists. In Proceedings of the Sixth Con-

ference on Email and Anti-Spam (Mountain View, California, USA, July 16–

17, 2009).

[134] Shiva, S., Roy, S., and Dasgupta, D. 2010. Game Theory for Cyber Security. In

Proceedings of the Sixth Annual Workshop on Cyber Security and Information

Intelligence Research.

[135] Simmonds, A., Sandilands, P., and van Ekert, L. 2004. An Ontology for Net-

work Security Attacks. In Proceedings of the 2
nd

 Asian Applied Computing

Conference (AACC), Kathmandu, Nepal, Springer Lecture Notes in Computer

Science, 317–323.

[136] Stehman, S. V. 1997. Selecting and Interpreting Measures of Thematic Classi-

fication Accuracy. Remote Sensing of Environment, 62(1), 77–89.

[137] Stewart, R. D., Wyskida, R. M., and Johannes, J. D. Cost Estimator’s Refer-

ence Manual. New York, NY, Wiley, 1987

[138] Stewart, W. J. Probability, Markov Chains, Queues, and Simulation: The

mathematical Basis of Performance Modelling, Princeton University Press,

2009.

[139] Strebe, M. Network Security Jumpstart, SYBEX, 2002.

[140] Suto, T., Bradley, J. T., and Knottenbelt, W. J. Performance Trees: Expressive-

ness and Quantitative Semantics. In Proceedings of the 4
th

 International Con-

ference on the Quantitative Evaluation of Systems (QEST ’07), IEEE Com-

puter Society, 41–50.

[141] Tijms, H. C. Stochastic Models: An Algorithmic Approach, John Wiley and

Sons, 1994.

Bibliography

192

[142] Tim Anderson’s ITWriting. Retrieved August 10, 2013 from:

http://www.itwriting.com/

[143] Von Ahn, L., Blum, M., and Langford, J. 2004. Telling Humans and Computer

Apart Automatically. Communication of the ACM, 47(2), 56–60.

[144] Von Ahn, L. 2005. Human Computation. PhD thesis, School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh, PA, USA.

[145] Vosniadou, S., and Brewer, W. F. 1987. Theories of Knowledge Restructuring

in Development. Review of Educational Research, 57(1), 51-67.

[146] Wilson, B. Systems: concepts, methodologies, and applications. New York,

NY, USA: John Wiley & Sons (2nd ed.), Inc., 1990.

[147] Wittel, G. L., and Wu, S. F On Attacking Statistical Spam Filters. 2004. In

Proceedings of the First Conference on Email and Anti-Spam. (CEAS 2004)

[Online]. Available:

http://pdf.aminer.org/000/085/123/on_attacking_statistical_spam_filters.pdf

[148] Wozniak, R. H. 1999. Introduction to Memory: Hermann Ebbinghaus

(1885/1913). Classics in the history of psychology, Retrieved July 20, 2013

from: http://psychclassics.yorku.ca/Ebbinghaus/wozniak.htm

[149] Wright, T. 1936. Factors Affecting the Cost of Airplanes. Journal of Aeronau-

tical Science, 3(4), 122–128

[150] Yan, J., and El Ahmad, A. S. 2007. Breaking Visual CAPTCHAs with Naïve

Pattern Recognition Algorithms. In Proceedings of the 23
rd

 Annual Computer

Security Applications Conference (ACSAC’07), FL, USA, IEEE computer so-

ciety, 279–291.

[151] Yeh, C. C., Wang, T. Y., and Fu, H. Y. 2011. Observation and Analysis on

Spam Sending Behaviour. In Proceedings of the Third International Confer-

http://www.itwriting.com/
http://pdf.aminer.org/000/085/123/on_attacking_statistical_spam_filters.pdf
http://psychclassics.yorku.ca/Ebbinghaus/wozniak.htm
http://psychclassics.yorku.ca/Ebbinghaus/wozniak.htm

Bibliography

193

ence on Communications and Mobile Computing (CMC). IEEE computer soci-

ety, 19–22.

[152] Yoshida, K., Adachi, F., Washio, T., Motoda, H., Homma, T., Nakashima, A.,

Fujikawa H., and Yamazaki, K. 2004. Density Based Spam Detector. In Pro-

ceedings of the 2004 ACM international conference on Knowledge discovery

and data mining (SIGKDD’ 04), ACM, 486–493.

[153] Zhang, B., Zhang, Y., and Lu, W. 2012. Hybrid Model of Self-Organizing Map

and Kernel Auto-Associator for Internet Intrusion Detection. International

Journal of Intelligent Computing and Cybernetics, 5(4), 566–581.

