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Abstract 

 

Throughout the years numerous studies for non-aqueous Li-air or Li-oxygen batteries 

have been investigated to elucidate their reactions and mechanisms. However, there 

have been only a few models developed for Li-air batteries. Therefore, the main 

objective of this work was to develop mathematical models for non-aqueous Li-air 

battery to increase understanding of the air cathode behaviour as well as predict the 

battery performance during cycling. 

 

A micro-macro homogeneous mathematical model was developed for a rechargeable Li-

air battery using a concentrated binary electrolyte theory, and validated against 

experimental data. The dynamic behaviour of the porous cathode was determined by a 

numerical solution of the combined continuity, transport and kinetics equations. The 

microscopic behaviour included the local mass transfer between lithium peroxide 

(Li2O2) layer inside the cathode and active surface morphology changing with the Li2O2 

solid precipitate growth. The model predicted that the capacity and discharge potential 

were sensitive to the solubility of oxygen and also the cathode porosity, the cathode 

structure and kinetic parameters. In addition, the charging behaviour was simulated by 

modelling the dissolution of solid Li2O2 product. The model suggested that the charging 

voltage can be decreased depending on capability of electrolyte to dissolve the Li2O2 

discharge products. To improve the battery performance, the promising structure of a 

Li-air flow battery system with a electrolyte recycling unit continuously delivered the 

discharge capacity and provided high power density. 

 

To understand the deterioration of cycle performance and energy efficiency related with 

non-aqueous rechargeable Li-air batteries, a micro-macro homogeneous model was 

developed to include the practical feature of Li2CO3 formation which occurs by 

electrolyte degradation during battery cycling. A modelling study of cycling behaviour 

and battery performance was presented and included the influence of electrolyte 

solution degradation. The battery cycling simulation and porous-electrode experiment 

indicated that there was a gradual decrease in discharge capacity in a number of battery 

cycles due to the effect of the irreversible formation of the Li2CO3 discharge product. A 

good agreement between this cell cycling simulation and porous-electrode experiment 
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data was obtained, thus creating a more reliable model for a rechargeable Li-air battery 

in non-aqueous electrolyte. The termination of the discharged battery was not from the 

pore blockage but by the repeated depositing of discharge products as there are some 

available pores at the end of each discharge cycle. 

 

A macro-homogeneous model was developed to evaluate the impact of replacing pure 

oxygen with ambient air on the performance of a rechargeable non-aqueous Li-air 

battery. The model exhibited a significant reduction in discharge capacity, e.g. from 

1240 to 226 mAh gcarbon
-1

 at 0.05 mA cm
-2

 when using ambient air rather than pure 

oxygen. The model correlated the relationship between the performance and electrolyte 

decomposition and formation of discharge products (such as Li2O2 and Li2CO3) under 

ambient air conditions. The model predicted a great benefit of using an oxygen-selective 

membrane on increasing capacity. The results showed a good agreement between the 

experimental data and the model. 

 

A macro-homogeneous model was developed to evaluate the impact of replacing a 

conventional flooded electrode with gas diffusion electrode on the performance of a 

rechargeable non-aqueous Na-air battery under pure oxygen gas. The model 

demonstrated a significant improvement in battery performance, providing about a 48% 

increase in initial discharge capacity (over 1500 mAh gcarbon
-1

 at 0.1 mA cm
-2

) and 

higher discharge potential when using a gas diffusion electrode rather than a flooded 

electrode. Overall, the gas diffusion electrode model showed the promising 

performances for a rechargeable Na-air. The model correlated the relationship between 

the performance and electrolyte decomposition, which occurs during battery cycling, 

and formation of discharge products (such as Na2O2 and Na2CO3).  

 

From the analysis of the different models developed in this thesis, they can potentially 

be used to accurately describe the main mechanisms inside Li-air batteries as well as 

optimise the porous cathode structure by varying the battery parameters, leading to 

improve the battery performance. The developed model can be widely applied to 

evaluate the performances in other battery systems, which have the similar mechanisms.
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Nomenclature 

 

Unites are given is SI system. Boldface systems are vectors. Symbols used to simplify 

the symbolic representation of equations are not listed. 

 

   Specific interfacial area (m
2
 m

-3
) 

A  Membrane surface area (m
2
) 

    Concentration of species   (mol m
-3

) 

      Concentration of species   at the wall or surface of electrode (mol m
-3

) 

    Damköhler number (dimensionless) 

    Diffusion coefficient of species   (m2
 s

-1
) 

        Effective diffusion coefficient of species   (m2
 s

-1
) 

          Effective diffusion coefficient of species   across the film layer (m
2
 s

-1
) 

     Stefan-Maxwell binary diffusivities (m
2
 s

-1
) 

   
   

  Effective Stefan-Maxwell binary diffusivities (m
2
 s

-1
) 

 ̃    Symmetric diffusivities (m2 s
-1

) 

   Electrode potential of cathode at any state (V) 

    Electrode potential of cathode at standard state (V) 

  
   Theoretical open-circuit potential for reaction, m (V) 

   Activity coefficient of LiPF6 or NaPF6 salt 

   Faraday’s constant (96,485 C mol
-1

) 

 ̅  Permeation flow rate of gasses (mol s
-1

) 

  
   Gibbs free energy of formation (J mol

-1
) 

   Henry’s law constant (mol m
-3

 atm
-1

) 

    Exchange current density (A m
-2

) 

    Current density in the electrode phase (A m
-2

) 

    Current density in the electrolyte phase (A m
-2

) 

   Applied current density (A m
-2

) 

    Interfacial or local transfer current density of reaction m (A m
-2

) 

    Diffusion flux (kg m
-2

 s
-1

) 

   Reaction rate constant 

    Dissolution rate constant for Li2O2 during charge (s
-1

) 
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   Boltzmann constant (1.38 10
-23

 J K
-1

) 

   Thickness of discharged products film (m) 

    Thickness of electrolyte film (m) 

    Thickness of membrane (m) 

        Thickness of APL, separator, and porous cathode respectively (m)  

     Symbol for the chemical formula or molecular weight of species   

   (mol kg
-1

) 

   Number of electrons transferred in the electrode reaction 

    Molar flux of species   (mol m
-2

 s
-1

) 

        Mass flux of species i (kg m
-2

 s
-1

) 

   Geometrical factor or pressure inlet 

 ̅  Partial pressure of gases (Pa) 

   Permeability of gasses (mol m
-2

 s
-1

 Pa
-1

) 

   Constant in Stefan-Maxwell diffusion 

    Particle radius in the electrode (m) 

       Rate of Li2O2 dissolution in non-aqueous electrolyte (mol m
-3

 s
-1

) 

    Reaction rate term that accounts for electrochemical and chemical 

reactions (mol m
-3

 s
-1

) 

   Universal gas constant (8.3143 J mol
-1

 K
-1

) 

         Electrical resistivity across Li2O2 film formation (Ω m
2
) 

    Stoichiometric coefficient of species   in electrode reaction 

   Electrolyte fraction in the porosity of the electrode 

       Source terms (kg m
-3

 s
-1

) 

   Time (s) 

    Transference number of cation in electrolyte 

   Temperature (K) 

   Darcy velocity (m s
-1

) 

   Equilibrium potential (V) 

    Molecular diffusion volumes of species i (m
2
) 

    Superficial velocity in y-axis direction 

   Electrode potential (V) 

       Cell voltage (V)  

    Mass fraction of species i  

    Mole fraction of species i 
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    Valence of charge number of species   

 

Greek letters 

   Transfer coefficient 

   Symmetry factor 

   Porosity or void volume fraction of porous cathode 

    Initial volume fraction of cathode electrode (carbon, catalyst and binder) 

    Volume fraction of gas 

     Volume fraction of liquid electrolyte 

    Volume fraction of solid phase in porous cathode 

   Surface or activated overpotential (V)  

     Conductivity of electrolyte (S m
-1

)  

      Effective conductivity of electrolyte (S m
-1

) 

 ̃   Permeability of porous media (m
2
) 

   Viscosity of electrolyte (Pa s or kg m
-1

 s
-1

) 

    Pore-fluid viscosity of gas   in GDE (Pa s or kg m
-1

 s
-1

) 

    Viscosity of pure solvent (Pa s or kg m
-1

 s
-1

) 

   Number of moles of ions into which a mole of electrolyte dissociates 

    Numbers of moles of cations produced by the dissociation 

  of a mole of electrolyte  

   Density of mixture (kg m
-3

) 

    Density of a solid phase of species   (kg m
-3

) 

   Conductivity of the electrode (S m
-1

)  

      Effective conductivity of the electrode (S m
-1

)  

    Electric potential in the electrode (V)  

    Electric potential in the electrolyte (V)  

        Voltage drop across discharge products film formation (V) 

 

Subscripts and Superscripts 

o  Initial 

1  Electrode phase 

2  Electrolyte phase 

    Anodic 

     Cathodic 
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  ,  ,   Reaction for Li2CO3 formation from mechanism 1 and 2, and solvent 

degradation, respectively 

      Dissolution 

e  Electrolyte 

eff  Effective 

g  Gases 

     Electrode reaction, solid species or membrane 

 

Mathematical operators 

   Differential operator 

 

  
  Time derivative 

   Summation 

exp  Exponential function 

ln  Natural logarithm function 
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Chapter 1: Introduction 

 

This Chapter describes basic characteristics of batteries and definition in battery 

performance. Li-air batteries are introduced in term of the fundamental electrochemical 

reactions and theoretical energy, and compared to other commercial batteries.  

 

1.1 Introduction 

With the growing demand of global energy consumption and diminishing fossil fuels 

there is need to find renewable energy sources which are more sustainable and 

environmentally friendly compared to the oil-based energy. The continuous raise in CO2 

levels and the limited natural resources stimulate the search for high energy density and 

efficient energy storage, especially electrochemical systems such as fuel cells, batteries 

super capacitors. In particular, battery development is one of the most important factors 

of many pathways toward sustainable development, including energy sources for both 

fully electric or hybrid vehicles (EVs) in transportation and for energy storage for 

renewable energy. At present, the specific capacity of conventional rechargeable lithium 

ion battery (Li-ion) is limited by the amount of active materials (LiCoO2, LiMn2O2 or 

LiFePO4 for positive electrode) which can store only 130-150 mAh g
-1

 of charge 

compared with 300 mAh g
-1

 of the graphite negative electrode.  

 

Recently, a new type of lithium battery, the lithium-air battery (Li-air), is considered by 

a number of research groups as the promising technology for the power source in EVs 

[1, 2]. This battery, which combines the advantages of fuel cells and batteries, is an 

advanced energy storage and electrochemical technology to replace conventional Li-ion 

batteries in the near future. 

 

1.2 Li-air batteries, promising energy storage 

Research presented in this thesis investigated the rechargeable Li-air batteries, also 

called lithium-oxygen batteries (Li-O2). Due to their high theoretical energy densities, 

Li-air batteries are currently considered as one of the most important battery systems 

which contribute towards a number of applications, such as small portable electronics to 

electric vehicles. Moreover, Li-air batteries are different from many primary and 

secondary batteries in that the active materials are a pure lithium metal as the anode 
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material and air (or oxygen) is not stored inside the cell, but can be continuously 

derived from the environment around the cell. The use of ambient air as the active 

oxidant makes Li-air battery safer than commercial lithium-ion batteries. Li-air batteries 

have received much attention, because they provide a superior theoretical specific 

energy (13,000 Wh kg
-1

, based on Li metal alone), 5-10 times better than conventional 

rechargeable Li-ion batteries, using LiCoO2 or LiMn2O4 as the positive electrode [3]. At 

the same time, the batteries using cathodes with nickel and cobalt present risks to health 

and have environmental impact. This comes from the production, processing and use of 

these heavy metals, leading to resource depletion, global warming, and ecological 

hazards on disposal [4]. 

 

However, the practical performance of Li-air batteries is currently limited by the low 

current density, inadequate cyclability, and low charge/discharge efficiency. All of these 

problems are mostly due to the interfacial reactions of oxygen with the Li ions and the 

pore structure in the air electrode. Moreover, the discharge Li-air reaction is affected by 

the insoluble lithium oxides discharge products that can cover the active surface area of 

the cathode as well as blocking the pathway for reactive species, preventing further 

reactions inside the cathode. As a result, many research groups are developing key 

components in the Li-air cell, such as new materials for the positive electrode, 

electrolyte and catalyst, to overcome these problems. As experimental studies are very 

time-consuming and costly. Thus, the mathematical model of Li-air battery could be 

used as an important tool during the battery design and development. 

 

1.3 Battery configuration 

A battery is a device that converts chemical energy into electrical energy and vice versa. 

The chemical energy is stored in the electrochemical active species of the two 

electrodes inside the battery. The conversion between chemical and electrical energy 

occur through electrochemical reduction-oxidation (redox reactions) or charge-transfer 

reactions [5, 6]. The redox reactions take place at the electrode/electrolyte interface in a 

battery containing two electrodes separated by electrolyte and connected with external 

electronic wire. An electrode is a material such as metal or other electronic conductor in 

which only electrons are the mobile species. Generally, the term “battery” is used to 

describe a device that converts chemical energy directly to electrical energy. Hence, a 

battery is usually specified during discharging, whereas during charging electrical 
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energy is required to convert battery back to chemical energy. The basic 

electrochemical unit inside each battery cell during discharging consists of the three 

main components connected in series as followed [6]: 

 

1. The anode or negative electrode where the oxidation reaction takes place and 

supplies electrons to an external circuit during the electrochemical reaction. Anions 

(negative charge ion) migrate to this electrode. Hence, the negative electrode is the 

anode during discharging.  

2. The cathode or positive electrode where the reduction reaction takes place and 

accepts the electrons from the external circuit during the electrochemical reaction. 

Cations (positive charge ion) migrate to this electrode. Hence, the positive electrode 

is the cathode during discharging. 

3. The electrolyte or ionic conductor in which the ions are the mobile species inside 

the cell between anode and cathode.  The two electrodes are separated by an 

electrolyte such as an ion-conducting separator. The electrolyte used in 

electrochemical battery systems includes molten salts, dissociated salts in water or 

solvent solution and solid electrolytes. 

 

Figure 1-1 Electrochemical operation of a cell during: (a) charging and (b) discharging. 

 

The electrochemical battery during charging and discharging are schematically 

described in Figure 1-1(a) and (b), respectively. The negative electrode (-) is shown on 

the left and the positive electrode (+) on the right. Figure 1-1b shows that oxidation 

occurs at negative electrode during discharging, whereas reduction occurs at the positive 

electrode. The reverse takes place during charging.  
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In electrochemical systems, the anode is chosen for cell operation based on properties 

such as high efficiency as a reducing agent, high specific capacity output (mAh g
-1

), 

high conductivity, stability and low cost. Generally, the anode is mainly adopted a metal 

as active material especially when it has to be small and light weight. Lithium, known 

as the lightest metal, has a high value of electrochemical equivalence and has presently 

become a very attractive anode adopted in batteries in suitable and compatible 

electrolyte. 

 

The cathode is usually a highly oxidizing agent that can withstand contact with the 

electrolyte. In practical systems, a number of general cathode materials are metallic 

oxides. However, oxygen, taken directly from the atmosphere, is also used for cathode 

active materials in electrochemical cell, as in the Al, Mg, Zn or Li/air battery. 

 

The electrolyte must have the following characteristics:  good ionic conductivity, non-

reactive with the electrode materials, low volatility with temperature, safety in handling, 

and low cost.  

 

From a thermodynamic background, all batteries are composed of two separated 

electrode half-cell reactions; one electrode where the reduction reaction occurs can be 

represented by 

             (1-1) 

where   molecules of   consume   electrons    to from   molecules of  . The second 

electrode where the oxidation reaction occurs can be represented by 

              (1-2) 

The overall reaction in the cell is given by combining these two half-cell reactions 

              (1-3) 

The theoretical voltage of a reaction is determined by the difference between the Gibbs 

free energy of reactants and products. 

           
                  

                 
  (1-4) 

The change in standard free energy     of this reaction is related to the theoretical 
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voltage by 

           
         (1-5) 

where     = number of electrons transferred in the electrode reaction 

     = Faraday’s constant (96,485 C mol
-1

) 

    = Equilibrium potential or open-circuit voltage, OCV (V) 

 

1.4 The specific capacity and energy 

The theoretical specific capacity is the total quantity of charge involved in a reaction 

defined as coulombs or ampere-hours (Ah). Normally, theoretical specific capacity are 

normalized by active mass of materials that are involved in the electrochemical 

reactions and defined in the unit, ampere-hour per kilogram, (Ah kg
-1

) or mAh g
-1

.  

 Specific capacity                (1-6) 

where   is the number of electron transferred in the reaction,   is Faraday’s constant 

which is equal to 96,485 C mol
-1

, and   is the molecular weight (kg mol
-1

) of all the 

active or reacting materials in the system. The theoretical specific energy of batteries, 

i.e. the energy per unit mass is expressed in Wh kg
-1

 and is given by multiplying the 

specific capacity by the equilibrium potential or open-circuit voltage,    

 Specific energy   Specific capacity     (1-7) 

For instance, in the case of a Li-air battery, the lithium metal anode is oxidised to 

lithium ion with one electron transfer in the electrochemical reaction as presented in Eq. 

(1-8). From Eq. (1-6) and (1-7), ignoring oxygen and the nominal potential of the 

battery is 3V, the specific capacity and energy can be calculated by 

Specific capacity  = (1   96485 C mol
-1

) / (3600 C Ah
-1

   0.0069 kg mol
-1

) 

    = 3,884 Ah kg
-1

 

Specific energy  = 3,884 Ah kg
-1

   3 V 

    = 11,640 Wh kg
-1

 

Note that the term “energy density” means energy per unit volume. Some authors prefer 

to use the terms “gravimetric energy density” and “volumetric energy density” instead 

of “specific energy” and “energy density,” respectively. 
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1.5 Classification of batteries and electrochemical cells 

Batteries and electrochemical cells can be classified into primary (non-rechargeable) or 

secondary (rechargeable), depending on their capability to being electrically recharged. 

However, there are also another type of classification which uses the different structure 

and designs such as fuel cell. The definition on each electrochemical cells and batteries 

are as follow. 

 

1.5.1 Primary cells or batteries 

This type of battery is any kind of battery in which the reaction is not electrically 

reversible or rechargeable. They are commonly known as alkaline batteries, which 

contain zinc and manganese chemistry, and are currently used as the electrical source of 

power for various portable electronic devices, torches, toys and memory backup. The 

major advantage of primary batteries is long periods of storage due to their low self-

discharge rates compared to rechargeable batteries. Moreover, they also have a good 

shelf life and high energy density at low discharge rates. The main structure type of 

single cell cylindrical and flat button have been adopted in primary battery.  

 

1.5.2 Secondary or rechargeable cells or batteries 

This type of battery can be electrically recharged after discharge by applying an electric 

current which reverses the direction to that of the discharge current. The major 

applications of secondary batteries are as energy-storage devices that are normally 

connected to a current source. The energy is discharged through a load when required, 

for example, lead-acid batteries in various vehicles, uninterrupted power supplies (UPS) 

for emergency back-up and hybrid electric vehicles. Other rechargeable batteries consist 

of many dry cells which are enclosed units and are useful in electronic apparatus such as 

mobile phones, laptops, and tablet computers. This type of dry cell includes nickel-

cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), and lithium-ion 

(Li-ion) cells. 

 

1.5.3 Reserve batteries 

This type of battery is the same as primary cell which cannot recharge, except that the 

key component is separated from the rest of the battery before being used or activated. 

Therefore, this can eliminate the chemical self-discharge in the battery. Normally, the 
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electrolyte is the main part that is separated from the battery system. 

 

1.5.4 Fuel Cells 

Fuel cells are similar to batteries in basic electrochemical reaction that convert chemical 

active reactant into electrical energy in a clean, environmentally friendly way, with no 

greenhouse carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. However, in fuel 

cells, the active materials or reactants are continuously fed into the system from an 

external source when power is required, while active materials are not stored inside the 

cells. Then, the fuel cell has the capacity to produce electrical energy as long as the 

active materials are still fed to the electrode. Compared to battery, the electrical energy 

will terminate when limiting reactant is used up. Generally, the anode active materials 

applied to fuel cell are gaseous or liquid (hydrogen or methanol) and oxygen or air fed 

into the cathode side is the main reactant. Fuel cells have been developed for more than 

150 years as more energy efficiency and less pollutant [7]. The wide ranges of power 

applications for fuel cells include load levelling, on-site electric generators and electric 

vehicles. 

 

1.6 The lithium-air battery 

The world energy crisis is now a hot topic with the need to discover new efficient 

energy which is also environment friendly. At present, oil represents 34% of the wolrd’s 

total primary energy source and this accounts for 40% of total CO2 emission [8]. A 

major cause of environmental pollutant originates from the various transportation 

sectors so hybrid electric vehicles (EVs) or fully electric vehicles have been developed. 

However, the commercialization and popularization of EVs are still rather limited. It is 

widely acknowledged that the success of EVs hinges upon the performances and prices 

of energy storage technologies, especially batteries. Currently, there are a number of 

available battery technologies under on-going investigation and their energy densities 

are compared in Figure 1-2 [6, 9].  
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Figure 1-2 Comparing energy densities among current and developing batteries [9]. 

 

Figure 1-3 The specific energy densities (Wh kg
-1

) of various commercial rechargeable 

types of batteries compared to gasoline [8]. 

 

Comparing all commercial battery systems, Li-ion batteries are generally considered for 

efficient energy storage for portable electronic devices, such as mobile phones, laptop 

computers, digital cameras, music plate, etc., because of their high energy and power 

density. However, the specific energy density of conventional Li-ion batteries is limited 

by the amount of active material stored inside the electrode. A proposed solution is 

replacing the Li-ion cathode with an air/O2 electrode showing high theoretical energy 

density beyond current batteries as shown in Figure 1-3. From the calculated energy 

density in Eq. (1-7), the oxidation of 1 kg of lithium metal delivers 11640 Wh kg
-1

 not 

much lower than the energy density of gasoline as compared in Figure 1-3. Therefore, 

metal-oxygen or air batteries, especially for Li-air, have been generating interest as 
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batteries. 

 

Metal-oxygen or air batteries are different from other batteries in that the active 

material, oxygen or air, in the cathode is not stored in the battery system but can be 

supplied from the environmental atmosphere to a porous carbon cathode in the half-cell 

oxygen reduction electrode [10]. Hence, there is no need to carry the reactant on-board, 

and access of oxygen is theoretically infinite. Among anode metals (iron, zinc, 

aluminium, magnesium and calcium), lithium is the predominant active material used in 

the anode of the metal-air battery because of their merits of high energy density and 

flexibility for design in battery [11].  Table 1-1 shows standard redox potentials for 

various redox couples versus a standard hydrogen electrode (SHE)[5]. Lithium metal is 

considered as the strongest reducing agent with high voltage, high electrochemical 

equivalence (-3.04 V versus SHE) and also is the lightest metal, that is beneficial for 

diffusion (equivalent weight   6.94 g mol
-1

 and specific gravity   = 0.53 g cm
-3

). In 

the last 15 years, batteries have adopted lithium as the anode active material as metal 

compounds (LiMn2O4, LiCoO2 and LiFePO4) [12]. Li-air batteries are now interested by 

number of research groups as the promising technology for the key component in EVs 

[3, 13, 14]. 

 

Table 1-1 Standard electrode potentials in aqueous solutions at 25ºC in Volt vs. SHE 

Electrode reaction E
o
 / V Electrode reaction E

o
 / V 

Li
+
 + e

-
         Li -3.045 AgI

+
 + e

-
          Ag + I

-
 -0.152 

K
+
 + e

-
           K  -2.925 Sn

2+
 + 2e

-
        Sn -0.136 

Ca
2+

 + 2e
-
      Ca -2.840 Pb

2+
 + 2e

-
        Pb -0.125 

Na
+
 + e

-
         Na   -2.714 2H

+
 + 2e

-
         H2 0.00 

Mg
2+

 + 2e
-
     Mg -2.560 Sn

4+
 + 4e

-
        Sn

2+
 0.150 

Sc
3+

 + 3e
-
       Sc -2.030 AgCl  +  e

-
       Ag + Cl

-
 0.222 

Be
2+

 + 2e
-
       Be -1.970 0.5O2 + H2O + 2e

-
  2OH

-
 0.400 

Al
3+

 + 3e
-
       Al -1.670 Cu

+
 + e

-
            Cu 0.520 

Ti
2+

 + 2e
-
       Ti -1.630 Fe

3+
 + e

-
           Fe

2+
 0.771 

Mn
2+

 + 2e
-
     Mn -1.180 Ag

+
 + e

-
           Ag 0.799 

Zn
2+

 + 2e
-
      Zn -0.763 Pd

2+
 + 2e

-
         Pd 0.915 

Fe
2+

 + 2e
-
       Fe -0.440 O2 + 4H

+
 + 4e

-
      2H2O 1.229 
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1.6.1 Difference between Li-air and other batteries 

Owing to the outstanding properties in high voltage, high capacity, and the capability to 

use over a wide temperature range, lithium metal is regarded as an excellent material for 

both primary and secondary cells. The safety issues in using this high reactive metal are 

mainly considered in rechargeable or secondary cells. During battery operation in a 

rechargeable lithium cell, lithium at the negative electrode is oxidised to become lithium 

ion (Li
+
) which dissolve into the electrolyte. This process is reversed during the charge 

cycle and metallic lithium is electroplated back onto the anode surface forming an 

uneven porous deposit with a large surface area than the original metallic electrode. 

When the battery is repeatedly charged and discharged, the growing of lithium dendrites 

from the anode surface can cause short-circuiting in the battery when it forms through 

the separator and contacts the cathode. This behaviour can lead to battery explosion. 

However, due to the advantages of lithium metal, new advanced batteries have been still 

researched based on this metal, including Li-air. 

 

Li-air batteries are considered as highly electrochemical energy density which 

potentially theoretically provides specific energies of 11,640 Wh kg
-1

 by weight of 

lithium alone (excluding the weight of oxygen) and specific capacity 3,884 mAh g
-1

 [2, 

3, 13-15]. In using oxygen as the cathode, the Li-air battery can potentially provide a 

specific energy higher than those of commercially rechargeable batteries, as shown in 

Figure 1-3. Moreover, the energy density of Li-air battery is about 10 times greater than 

well-known Li-ion battery which is generally between 100-200 Wh kg
-1

. However, the 

practical energy of Li-air is still far from its theoretical energy. Then, further research is 

needed to improve the Li-air battery to achieve better energy efficiency. 

 

Theoretical energies and capacities for the metal-air batteries can be calculated from the 

Gibbs Free energies of formation data [16], and the results are compared in Table 1-2 

[6, 17].  
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Table 1-2 Theoretical specific energy and capacity comparison for selected 

metal/oxygen batteries 

Metal-air system 
OCV 

 (V) 

Specific energy 

(Wh kg
-1

) 

Specific capacity 

(mAh g
-1

) 

    
 

 
        2.91 11,302 

a
 3,884 

             2.96 11,640 
a
 3,884 

    
 

 
                    4.27 2,046 

a
 479 

    
 

 
            3.45 5,789 

a
 1,684 

                         2.70 4,021 
a
 1,489 

   
 

 
               2.76 3,491 

a
 1,267 

   
 

 
       1.65 1,353 

a
 820 

                            4.2 420 
b
 139 

b
 

a
 The molecular mass of O2 is not include in the calculation because O2 is free from the 

atmosphere and therefore does not have to be stored in the metal-air battery. 
b
 Based on       in Li1-xCoO2 

 

As can be seen from the table above, the Li-air couples have the most energy because 

lithium metal battery is the lightest metal with a high voltage, and thus greatest energy 

density of all metals. For this reason, there are many appearances of the battery design 

based on lithium metal as anode material. Generally, there are two types of Li-air 

batteries being developed, namely non-aqueous electrolyte system [13] and aqueous 

electrolyte system [17]. The possible electrochemical reactions of cathodic mechanism 

at the cathode and lithium metal oxidation at the anode for the two electrolyte systems 

could involve the following reactions [18]: 

Anode: 

                              
 
 (1-8) 

Cathode: (non-aqueous) 

                                            (1-9) 

                                            (1-10) 

Cathode: (aqueous) 

(Alkaline)                                             (1-11) 

(Acid)                                                    (1-12) 
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All standard reaction potentials shown above are measured with reference to the lithium 

electrode (    ).  The battery couple with Li-O2 in aqueous electrolyte solution has a 

high voltage, (    4.26 V) in the case of acidic electrolyte and     3.43 V in case of 

alkaline electrolyte [19]. However, this type of battery is not considered here because; 

(1) its theoretical energy density is estimated to be lower than a non-aqueous system 

when considering that acid and alkaline participate in the reactions [8, 19, 20], (2) the 

aqueous system faces the problems of electrolyte decomposition and severe corrosion of 

the lithium anode electrode with aqueous solution contact [21, 22]. 

 

To date, the non-aqueous battery system has generated most interest and shows a 

promising of electrical rechargeable ability. The idea of lithium metal anode combined 

with an oxygen electrode to achieve a high theoretical energy density was first proposed 

by Littauer and Tsia in 1976 [23], and the practical Li-air cell using non-aqueous 

electrolyte was first demonstrated experimentally by Abraham and Jiang in 1996 [13]. 

Their battery system, comprised a lithium foil anode, a non-aqueous electrolyte, and air 

electrode, provided a discharge capacity of 1300 mAh g
-1

 based on the weight of 

carbon, and was cycled several times. Lithium peroxide (Li2O2) is the main reduction 

product at the cathode, although the lithium oxide (Li2O) formation may be produced at 

high discharge rate [24]. The reversible cell voltages or equilibrium potential    ) of 

the Li-air battery are referenced vs        which make the equilibrium potential at the 

anode equal to zero as shown in Eq. (1-8). However, the other published literatures 

reported the    for Li2O2 as approximately 3.1 V [13, 25], no evidences on the 

thermodynamic of Gibbs free energy database were provided. Hence,    for Li2O2 

formation calculated from published Gibbs free energy data for the reaction is 2.96 V 

[16, 18].  

 

1.6.2 Types of Li-air battery 

Currently, four chemical architectures of Li-air batteries are being proposed worldwide, 

defined on the basis of the electrolyte used, as shown in Figure 1-4 [8]. These can be 

divided into three versions with liquid electrolytes, namely  

i. A fully aprotic/non-aqueous liquid electrolyte. 

ii. An aqueous electrolyte. 

iii. A mixed/hybrid system between an aqueous electrolyte immersing the cathode 

and an aprotic electrolyte immersing the anode. 
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iv. An all-solid-state battery with using a solid electrolyte. 

 

All four types of Li-air batteries use lithium metal as the anode and oxygen gas as the 

cathode. Although the fundamental electrochemical reaction depends upon the 

electrolyte around the cathode, all these four Li-air structures need to overcome the 

challenge of developing a high efficient electrode that maintains access of oxygen and 

limits its contaminants (e.g., H2O, CO2, N2) [8].  

 

 

Figure 1-4 Four different architectures of Li-air batteries. The main compartments are as 

labelled in the figure [8]. 

 

A liquid organic electrolyte is used in aprotic/non-aqueous electrolytic structure of Li-

air batteries. Lithium salts such as LiPF6, LiAsF6 LiN(SO2CF3)2, and LiSO3CF3 in 

organic solvent such as organic carbonates, ethers, and ester are normally used 

electrolytes [26]. In aqueous electrolytic cell, the Li-air battery configuration is similar 

to that of the aprotic structure except that the electrolyte is based on an aqueous solvent. 

However, in non-aqueous electrolyte, the Li-air performance of the aprotic structure is 

limited by the low oxygen solubility and the deposition of lithium oxides within the 

porous carbon cathode, which affect the transport of oxygen through the air cathode 

[17]. Li-air battery with aqueous electrolyte does not face the problem of cathode 
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blockage because the reaction products are soluble in aqueous electrolyte, which 

continuously maintain the battery performance over time [27]. However, the lithium 

anode can react violently with water, thus the Li-air battery with aqueous electrolyte 

structure requires an solid electrolyte interface (SEI) to cover the lithium metal. Usually, 

a glass or ceramic, which conducts lithium ions, is used as the SEI [27]. 

 

The advantages of both aprotic and aqueous structures are applied in the mixed structure 

of Li-air battery. A lithium anode is placed in the aprotic electrolyte side while the 

porous carbon cathode is placed in the aqueous electrolyte side. This mixed type of Li-

air battery can overcome limitations of either aqueous or aprotic structure. Generally, a 

lithium ion-conducting ceramic is used as membrane to separate the two electrolytes 

[27]. In a solid state structure, all electrolytes are solid polymers and are separated by a 

ceramic membrane [28]. However, the main disadvantage of this Li-air structure is the 

low ionic conductivity of the polymer electrolytes compared to the liquid electrolytes 

[29]. 

 

1.6.3 Li-air battery challenge  

The perfect structure for Li-air battery is a challenging issue as each alternative 

structure of Li-air batteries has specific advantage. Because only the aprotic system of 

non-aqueous electrolyte for Li-air batteries has demonstrated a promising result in 

rechargeability, this system has attracted worldwide attention and is the focus of this 

thesis. 

 

Figure 1-5 Schematic operation of rechargeable Li-air battery: (a) Discharging process, 

(b) Charging process [8]. 
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Generally, the Li-air cell contains a lithium metal anode, a dissolved lithium salt in a 

non-aqueous organic electrolyte and a porous air cathode composed of a large surface 

area of carbon, a catalyst and binder as shown in Figure 1-5 [8]. During battery 

discharge, lithium is oxidized to form lithium ions (Eq. (1-8)) at the anode and the latter 

transfer towards the cathode. Electrons from the oxidation reaction flowing through an 

external circuit then react with lithium ions and oxygen to create Li2O2 and Li2O in the 

pores of the cathode electrode. 

 

There is the evidence measured by Raman spectroscopy that the main electrochemical 

product of Li-air cell when discharge is the Li2O2 as shown in Eq. (1-8)  [13, 30]. The 

system arrangement of Li-air ⟨       |                       |             ⟩ is 

the same as the common metal-air ⟨          |                   |             ⟩ 

battery; however, the difference inside the porous cathode of Li-air is that the discharge 

products (Li2O2 and Li2O) are insoluble in the non-aqueous electrolytes. Then, these 

products are deposited inside the porous cathode’s active surface, block oxygen 

transport from the atmosphere and prevent further reaction in the cathode. This process 

is shown in Figure 1-6 [8]. 

 

Figure 1-6 The reaction products of Li2O2 deposited at the porous carbon cathode [8]. 

 

During discharge of the Li-air battery, oxygen from the atmosphere diffuses through the 

pores of the carbon cathode and is reduced to provide the cell energy capacity expressed 

as milliampere-hour per gram of carbon (mAh g
-1

). Many research groups are still 

improving the Li-air battery key components, such as materials for negative and 
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positive electrodes, electrolyte, catalyst and separators, to overcome the problems of 

lithium-air battery. 

 

Li-air batteries are now in the development stage and their practical energy density is 

still far from the theoretical values. Then, many research groups are still improving the 

key components, such as develop appropriate pore structure for negative and positive 

electrode, enhance suitable electrolytes and organic solvents, and synthesize high 

activity catalyst, to overcome the problem of Li-air battery and yield the best 

performance close to the theoretical value. Nowadays, battery technology is just 

changing from nickel metal hydride to commercial lithium-ion batteries and this 

required about 35 years in research and development. Therefore, the switching to high 

energy Li-air batteries technology should be considered in the same time range cycle of 

the lithium-ion battery. 

 

1.7 Objectives of this research 

The objective of this research focused on the mathematical modelling for the Li-air 

battery to increase understanding of the porous carbon cathode behaviour. The operation 

of the electrode depends on the transport of external dissolved oxygen through the pore 

of cathode, diffusion across the electrolyte, and reaction with the lithium ion to form the 

discharge products on the active surface of the porous cathode. The mathematical model 

to accurately describe the behaviour of Li-air batteries should provide suitable mass 

transport of both the lithium ion and oxygen inside the porous carbon and also consider 

the main mechanisms inside the Li-air batteries during operation. 

 

The aim of the research was the development of a time dependent computational model 

which could predict the behaviour of a Li-air battery using non-aqueous electrolyte 

during the battery operation including the cycling behaviour. 

 

The research programme was comprised of the following targets: 

1. Study the impact of lithium oxide formation in the pores of the cathode as well 

as the other products formation from electrolyte degradation.  

2. Develop a dynamic mathematical model of the Li-air battery system aimed at 

the porous cathode structure to predict the battery performance. The developed 

model could be implemented in other similar battery systems. 
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3. Develop a one-dimensional macro-homogeneous model to describe the Li-air 

battery behaviour during discharge and charge process. The model includes the 

dynamic change of the microscopic physical phenomena such as porosity, 

active area, and film thickness. 

4. Develop a one-dimensional macro-homogeneous model to investigate 

electrolyte degradation and to predict battery performance. 

5. Develop a one-dimensional macro-homogeneous model for the Na-air battery 

to study the impact of using a gas diffusion electrode as the cathode. 

A transient one-dimensional mathematical model was developed and used to study the 

performance of the Li-air cell during discharge. The model considers the negative 

(lithium metal) electrode, separator and positive (porous carbon) electrode, and predicts 

the electrochemical reactions in the electrode and mass transfer limitations. The model 

equation for Li-air batteries are presented in Chapter3. 

 

This thesis has been divided into 8 chapters 

 

Chapter 1 An overview of a basic principle of battery device and a focus on Li-air 

battery are presented. 

Chapter 2 The review in more details of each compartments of Li-air battery 

composed of anode, separator, electrolyte, catalyst and porous cathode is 

presented. 

Chapter 3 This Chapter describes the battery model that forms the core of this thesis. 

All basic governing equations of a micro-macro homogeneous mathematical 

model are explained. These include the combined continuity, transport and 

kinetics equations for the Li-air battery with a non-aqueous electrolyte. 

Those who want to have a thorough understanding of the background and 

construction of the models should read this Chapter. 

Chapter 4 A micro-macro homogeneous mathematical model is developed for a 

rechargeable Li-air battery using a concentrated binary electrolyte theory. 

The dynamic behaviour of the porous cathode is determined. The developed 

model is used to predict the effect of various parameters on battery 

performance including cell capacity and discharge-charge potential. 

Chapter 5 To understand the deterioration of cycle performance and energy efficiency 
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related with non-aqueous rechargeable Li-air batteries, a micro-macro 

homogeneous model has been developed to include the practical feature of 

Li2CO3 formation which occurs by electrolyte degradation during battery 

cycling. The discharge products can limit the cyclability and passivate the 

porous-cathode surface. A modelling study of cycling behaviour and cell 

performance for Li-air batteries in a non-aqueous electrolyte is presented 

which includes the influence of electrolyte solution degradation. 

Chapter 6 A macro-homogeneous model has been developed to evaluate the impact of 

replacing pure oxygen with ambient air on the performance of a 

rechargeable non-aqueous Li-air battery. The Li-air model is also integrated 

with an oxygen-selective membrane to improve the battery performance 

when using air as feeding.  

Chapter 7 The gas diffusion electrode model has been developed to evaluate the 

performance of rechargeable non-aqueous Na-air battery under pure oxygen 

gas. The model includes the loss from electrolyte degradation during battery 

cycling and is used to simulate the influence of operating condition, cell 

parameters and performance on the battery capacity. 

Chapter 8 Conclusions of the study are presented and future research directions are 

recommended. 
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Chapter 2: Li-air Battery Review 

 

This Chapter provides a brief review of the most important issues in the Li-air battery. 

The main attention will be aimed at the significant material components of the battery 

regarding recent research and development. Moreover, Li-air battery modelling, which 

is used to simulate the influence of operating conditions and to predict the cell 

performance on various parameters, is also reviewed. 

 

2.1 Introduction 

Despite many promising results on specific energy provided by the Li-air battery, its 

development is still in an early research stage and significant effort is necessary to 

overcome technical challenges for understanding the complex electrochemical 

reactions of Li-O2 during charge and discharge, optimising the appropriate electrolyte, 

and designing the cathode materials. Before Li-air batteries are ready for commercial 

markets many problems need to be solved to assure proper cyclability and 

rechargeability, particularly those related to the cathode: 

i. The incomplete discharge due to the blockage in the porous cathode, by 

lithium oxides. 

ii. The higher charge overpotential in comparison to the discharge overpotential, 

leading to low cycle efficiency. 

iii. The development of catalyst to increase cycle efficiency. 

iv. The decomposition of the carbonate-based and ether electrolytes during 

discharge [1].  

v. The protection of the cathode from moisture and CO2 by using an oxygen-

selective membrane [2]. 

vi. The improvement in the rechargeability and long life cycle of the battery. 

vii. The carbon corrosion problem at the cathode during battery charging. 

In recent years, there has been an increasing amount of literature on the Li-air battery. 

Different authors proposed their mechanisms for the discharge product formation 

during discharging of the Li-air battery. The possible cathode reactions during 

discharge to form the discharge products could involve the following reactions that are 

generally proposed as oxygen reduction reaction (ORR) 
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                                (2-1) 

                 (2-2) 

                                     (2-3) 

 

For charging, the electrochemical decomposition of Li2O2 directly to lithium and 

oxygen has been reported by Ogasawara et al. [3], and the charging reaction is referred 

to as the oxygen evolution reaction (OER) as follows: 

                   (2-4) 

 

An in situ spectroscopic study by Peng et al. found that the pathway for ORR in 

aprotic electrolyte includes the lithium superoxide (LiO2) as an intermediate species 

during oxygen reduction before it disproportionates to the final product Li2O2 [4]: 

oxygen reduction         
   

intermediate species   
           (2-5) 

disproportionate                 

 

However, for the OER or charging process, Li2O2 decomposes directly in a one-step 

reaction to evolve oxygen following the oxidation reaction of Eq. (2-4), and does not 

pass through the same route of LiO2 as an intermediate product in ORR [4]. It has 

been reported that the formation of the discharge products (Li2O2 and LiO2) are 

influenced by the kinetics of ORR, which are affected by the presence of the various 

catalyst [5] and the types of electrolytes and solvents applied in the Li-air battery [6]. 

Since the Li-air battery is currently progressing in its early stage of development, there 

are several scientific obstacles that need to be overcome in order to produce an 

effectively rechargeable Li-air battery. In the following sections, the recent 

development of rechargeable Li-air, including porous cathodes, catalysts, electrolytes, 

and lithium metal anodes is summarised to provide a better understanding of this 

technology. 

 

2.2 Development and challenges 

The Li-air battery is considered the most promising technology for the energy storage 

system and was preliminary studied in 1996 by Abraham and Jiang [7]. In this 

research, a Li-air cell had been proven to have the capability of a rechargeable 
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behaviour in a few cycles with good Coulombic efficiency. The cell system consists of 

a Li
+
 conductive medium organic polymer electrolyte (non-aqueous) placed between a 

lithium metal anode and a thin porous carbon electrode catalysed with cobalt 

phthalocyanine. The Li-air cell provided an OCV of 3 V. The obtained capacity and 

specific energy were about 1410 mAh g
-1

carbon and 250-350 Wh kg
-1

 at a discharge 

current density of 0.1 mA cm
-2

, respectively. The electrochemical reactions are the 

same as Eq. (1-8)-(1-10) shown in Chapter 1 with the Li2O2 detected as the main 

reduction product at the discharged carbon electrode without an evidence of Li2O. 

 

Afterwards Abraham and Jiang reported a novel Li-air battery [7], and the advantages 

of using a non-aqueous electrolyte to decrease the corrosion at the anode and 

substantially increase the capacity higher than conventional Li-ion batteries, Li-air 

batteries have now become an attraction for many research groups [2, 7-12], especially 

after the Bruce group demonstrated the rechargeability in 2006 [3, 9]. Consequently, 

IBM and theirs partners have initiated the Battery 500 project to estimate the Li-air 

potential as batteries for automotive application.  

 

As there are many compartments (e.g. porous cathode, catalyst, electrolyte and anode) 

in Li-air batteries, in the following section, the details will focus on the significant 

development for the porous cathode compartment by referring to only non-aqueous 

electrolyte systems. Next, the recent finding in electrolytes behaviour and new 

catalysts activity will be discussed. 

 

2.2.1 Porous carbon-based air cathode 

Because an air or oxygen electrode plays an important component connected to the 

performance of a Li-air battery, most of the previous work [2-6, 8-11] tried to improve 

the cathode based on carbon, of which the characteristics, such as porosity, surface 

area and morphology can affect the charge and discharge behaviour of the battery. In 

an operating cell, oxygen is dissolved in both gas phase and electrolyte solution, while 

the electrons move inside the conductive electrode material. During discharge, the 

oxygen molecules receive electrons from the cathode and interact with lithium ions to 

form lithium oxide products on the half-cell reduction. The intrinsic kinetics for this 

reaction at Li-air cathode are quite slow and affects the overall performance of the 

battery resulting in low discharge voltage and discharge rate. A porous carbon 
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structure, which allows air/oxygen to access to the gas transport channel and provides 

the storage for the discharge products of lithium oxides, is normally used as the air 

electrode in non-aqueous Li-air systems.  

 

In an aprotic solvent, both Li2O2 and Li2O are not soluble in non-aqueous electrolyte 

and deposit on the active surface of the cathode, leading to the blockage of the 

oxygen-diffusing pathway. Previous studies have reported that the decrease in battery 

capacity at high current density may be due to the direct results from the blockage of 

the pores by the discharge products, which cannot be completely removed by the 

oxidation reaction during the subsequent charge process [13, 14]. This significantly 

limits the oxygen reduction reaction and causes a lower specific capacity than the 

theoretical value. Hence, it seems that the porous carbon with high active area and 

better morphology structure is a key factor to improve the performance of Li-air 

batteries in terms of increasing capacity and cyclability, reducing the charge 

overpotential, and assuring a long cycle life. 

 

Up to now, in the air electrode, many research groups have focused on both various 

commercially available and synthesised meso-porous carbons. These carbons have 

appropriate surface area and pore volume to act as the cathode in the Li-air battery. 

The various types of carbon include activated carbon (AC), Super P, Vulcan XC-72, 

Ketjen black (KB), carbon nanotubes (CNTs), etc. [3, 15-20], their properties are 

summarised in Table 2-1. 

 

It can be seen from the data in Table 2-1 that the surface area of AC is highest among 

such carbons (2500 m
2
 g

-1
) but its specific capacity is the lowest (414 mAh g

-1
) 

because of its very small pore size of only 2 nm in diameter. Comparing this to the 

case of Super P carbon, although it has low surface area only 62 m
2
 g

-1
, relative to AC, 

the specific capacity showed the highest (1736 mAh g
-1

) [21]. This is due to its larger 

pore diameter (50 nm), which provides a better access for diffusion of reactants and 

the deposition of discharge products. This thus supports the results that porous carbons 

with high surface area and small pores, such as AC, provide the lower specific 

capacity and are less desirable than other carbons, which may have lower measured 

surface area but have suitable mesopores for lithium oxide deposition. 
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Table 2-1 Specific capacity (at discharge rate of 0.1 mA cm
-2

, the cutoff voltage at 2.0 

V), surface area and pore diameter of some carbon materials [21] 

Carbon material 
Surface area 

(m
2
 g

-1
) 

Pore diameter 

 (nm) 

Capacity  

(mAh g
-1

) 

Super P 62 50 1736 

Vulcan XC-72 250 2 76 

AC 
a
 2500 2 414 

CNT 
b
 40 10 583 

Graphite 6 - 560 

Ball-milled graphite 480 - 136 

MCF-C 
c
 824 30 2500 

a
 activated carbon; 

b 
carbon nanotube; 

c
 mesocellular carbon foam. 

 

Due to the fact that Li-air performance is strongly dependent on the carbon structure, 

new carbon materials with different morphologies, surface area, porosity and pore 

volume have been proposed and studied. Yang et al. [21] demonstrated that meso-

cellular carbon foam (MCF-C) prepared by a nanocasting technology can provide 

much better discharge capacity (2500 mAh g
-1

) than other commercial carbons owning 

to its appropriate particle size (824 m
2
 g

-1
) and large mesopores structure (pore 

diameter 30 nm), as shown in Table 2-1.  
 

The compared performance on the other types of porous carbon had been studied by 

Park et al. [22] as shown in Table 2-2. The Li-air cell was fabricated from 0.4 g of 

various carbons on the circular disk (1.962 cm
2
). The electrolyte was 1 M LiPF6 in a 

carbonated solvent mixture. It can be seen that among all commercial carbon 

materials, Ketjen black EC600JD, with the largest surface area of 1325 m
2
 g

-1
 and pore 

volume of 2.47 cm
3
 g

-1
, provides the highest specific capacity (2600 mAh g

-1
).  

 

The same commercial carbon materials used for the air electrode are also studied by 

Solomon et al. [23], and the results show that fabricated composite cathode using 

carbon with high surface area and high micro and macrospores volume (Ketjen black 

EC600JD) exhibits mechanically stable and high porosity structure. The high pore 

volume of carbon powder allow oxygen and electrolyte solution to diffuse through the 

active site of electrode.  
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Table 2-2 Specific capacity (at discharge rate of 0.1 mA cm
-2

, the cutoff voltage at 1.5 

V), surface area and pore diameter of some commercial carbon materials [22] 

Carbon material 
Surface area 

(m
2
 g

-1
) 

Pore volume 

 (cm
3
 g

-1
) 

Capacity  

(mAh g
-1

) 

Ketjen black EC600JD 1325 2.47 2600 

Super P 62 0.32 2150 

Ketjen black EC300JD 890 1.98 956 

Denka black 60 0.23 757 

Ensaco 250G 62 0.18 579 

 

Figure 2-1 demonstrates the idea of how the discharge lithium oxide products could 

form and be accommodated inside the different cathode morphology [13]. In case of 

the carbon with a majority of micro-pores, the pore entrance would be blocked by the 

lithium oxides, and thus the inside pore surface becomes inaccessible. On the other 

hand, the larger pores provide more space for the discharge products and allow the 

access of the electrolyte and oxygen at the same time. This information on lithium 

oxide product formation supports the results that the porous carbons with high surface 

area and small pores, such as AC, as presented in Table 2-1 provide the lower specific 

capacity than the other carbon, and vice versa. 

 

Figure 2-1 Accommodation of lithium oxide products in various pore sizes of carbon 

electrode [13]. 
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Recently, a unique carbon structure of graphene nanosheets (GNSs) has been 

synthesised [24, 25] and used as an active cathode with high electrocatalytic activity 

for the oxygen reduction reaction (ORR). When used in the non-aqueous Li-air battery 

this GNS based cathode delivered a discharge capacity of 8705.9 mAh g
-1

, which is 

the highest capacity of any carbon-based electrode in Li-air batteries ever reported 

[26]. This might be due to the specific morphology of GNSs, which provides the ideal 

three-phase (solid-liquid-gas interface) electrochemical interface areas for electrolyte 

wetting and the oxygen diffusion, thus increasing the discharge capacity significantly. 

The presence of a three-phase interface, where the lithium ions in liquid electrolyte, 

the oxygen from the atmosphere and the active carbon or insoluble solid products 

coexist, is highly desirable for non-aqueous Li-air batteries [13]. 

 

Moreover, in order to optimise the cell performance, the amount of carbon loading 

could be considered during the electrode preparation. An amount of porous carbon 

loading on the air cathode should be appropriate to maintain the porosity structure, 

electronic conductivity, transport of electrolyte and diffusion of oxygen [15, 27]. Too 

low in carbon loading and the electrode cannot provide enough space for depositing 

the insoluble discharge products, and thus the Li-air performance will decrease. On the 

other hand, too high in carbon loading will compress the pore volumes together and 

then hinder the accessing of oxygen from outside the electrode [22, 28]. It is worth 

noting that different carbon materials have different optimal amounts of loading 

depending on their unique characteristics.  

 

2.2.2 Electrocatalysts 

The standard potential (  ) for a general organic Li-air battery based on 

thermodynamic data of Li2O2 reduction product is        (Equation 1-9). However, 

for the real Li-air battery investigated nowadays, the discharge potential for the 

oxygen reduction reaction (ORR) and charge potential for the oxygen evolution 

reaction (OER) are normally different from the theoretical value; approximately 

around 2.5-2.7 V and above 4.0 V, respectively [29, 30]. These differences 

(overpotential) from standard potential, severely reduce the electrical energy 

efficiency during battery discharge and charge cycle (only 62.5% charge/discharge 

efficiency). Electrocatalysts can improve the round-trip efficiency of the Li-air battery, 

by reducing the cell overpotential and thus can potentially maintain the cycle 
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performance for long cycle life.  

 

Two types of catalysts have been the focus of research, namely metal oxide and noble 

metal catalysts (Pd, Pt, Au and Ru). These catalysts are used with different electrolytes 

and show reasonable but not as yet suitable cycling ability. 

 

 Metal oxide catalysts 

A number of studies have investigated the use of manganese oxides in differently 

structural forms as the catalysts for Li-air battery as they are inexpensive, easy to 

prepare, and have high catalytic activity [3, 18, 31-37]. Debart et al. studied the effect 

of electrolytic manganese dioxide (EMD) on the cycle performance of Li-air battery as 

demonstrated in Figure 2-2 [38]. A Li-O2 cell in which the porous cathode consists of 

only carbon, has been discharged at a potential of around 2.6 V with subsequent 

charging occurring at around 4.8 V. After the EMD have been incorporated into the 

porous cathode, this has a significant increase in discharge capacity to around 1000 

mAh g
-1

 and shifts the charging potential to a lower voltage of 4.3 V. 

 

Figure 2-2 The Li-O2 cell discharge/charge profiles of carbon (Super S, at a rate 70 

mA        
  ) and MnO2/C (blue, 70 mA        

  ) catalyst (adapted from [38]). 

 

Consequently, several studies on the Li-air performance by using different structural 

forms of MnOx catalysts have been systematically investigated by Bruce and co-

workers [3, 33]. These catalysts include commercial Mn2O3, Mn3O4, bulk MnO2 (α, β, 
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γ and λ), α-MnO2 nanowires, and β-MnO2 nanowires. The α-MnO2 nanowires were 

reported to be the best effective catalysts for rechargeable Li-air batteries giving a 

specific capacity up to 3000 mAh   g
-1

 due to their special crystal structure and high 

surface area, showing the high BET surface area of 22 m
2
 g

-1
 compared to 12 m

2
 g

-1
 

from β-MnO2 nanowires. Zhang et al. also applied α-MnO2 nanorods as cathode 

catalyst into a composite paper air electrode mixed with carbon nano-tubes (CNTs) 

and carbon nano-fibres (CNFs) and studied their performance in Li-air batteries 

with/without α-MnO2 nanorods as cathode catalysts [36]. It was reported that the 

catalysts did not improve the discharge capacity but increased the charge capacity and 

cyclability. Zhang et al. [36] concluded that α-MnO2 enhanced the charge behaviour 

due to its reaction with the discharge products Li2O to form Li2MnO3 during discharge 

process. Thereafter, Li2MnO3 could be converted back to Li2O and α-MnO2 during 

charge process. 

 

Besides manganese as a based metal catalyst in Li-air batteries, other transition metal 

oxides such as Fe, Co, Ni and Cu, as well as binary oxides combining these two 

transition metals,  have also been studied [38]. Among them, Fe2O3 demonstrates the 

highest initial capacity of 2,700 mAh g
-1

 at a constant current of 70 mA g
-1

, while 

Fe3O4, CuO and CoFe2O4 show the better capacity retention capability (6.67% per 

cycle), i.e. Fe3O4 provides the discharge capacity of 1,200 mAh g
-1

 on 1st cycle and 

maintains the capacity of 800 mAh g
-1

 on 10th cycle [38]. 

 

Hence, these studies showed that a good catalyst is the key on the performance of 

oxygen electrode in that of its initial energy capacity, capacity retention and lower 

charging voltage. It should be noted that although manganese oxides are very 

promising for the Li-air catalysts, the real role of catalytic mechanism which affects 

the battery performance during discharge and charge is still not clear and requires 

more research in the future. 

 

 Noble metal catalysts 

As the ORR in the Li-air cathode is similar to the reaction inside the fuel cell, then the 

noble metal catalysts applied in the fuel cell have been studied in the Li-air system to 

reduce the overpotential between discharge and charge cycle. Lu et al. revealed that 

the 40% loading of gold catalyst (Au) on carbon can improve the ORR during 

discharging and the same loading of platinum (Pt) has the strong influence on OER 
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during charging [39]. They continuously studied the combination of these two noble 

metals on a carbon cathode and created a bi-functional catalyst as shown in Figure 2-3, 

which gave a higher discharge voltage than pure Vulcan XC-72 carbon by 150-360 

mV, and the average charge potential of PtAu/C is reduced to 3.6 V (900 mV lower 

than that of pure carbon). Their system can account for a round-trip efficiency of 

approximately 77% [16].  

 

Figure 2-3 The Li-O2 cell discharge/charge profiles of carbon (black, at a rate 85 mA 

       
  ) and bi-functional PtAu/C (red, 100 mA        

  ) catalyst at a rate of 0.04 mA 

cm
-2

 [16]. 

 

Thapa et al. developed the carbon free cathode for Li-air batteries by adding a small 

amount of Pd to mesoporous α-MnO2 [40, 41]. The charge-discharge performance for 

the Li-air battery using mesoporous α-MnO2 supported Pd electrode at a low current 

density of 0.025 mA cm
-2

 in pure oxygen demonstrated an initial discharge capacity of 

365 mAh          
   (corresponded to 3650 mAh        

  ). The discharge plateau 

increases to 2.7-2.9 V, while the charge voltage reduces to 3.6 V, providing a system 

efficiency of 82%. The further charge-discharge of the Li-air battery showed the 

rechargeable ability up to 7 cycles with 97 % capacity retention. 

 

It should be noted that although the electrocatalysts of the cathode in Li-air batteries 

can significantly improve the both ORR and OER together with reducing the 

overpotential and increasing the round-trip efficiency, the catalytic mechanism of 

these catalysts during the cycling of the battery is still unclear.  
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2.2.3 Electrolyte 

Over the past few years, most of the research work in Li-air batteries have mainly 

focused on the development of new catalysts and cathode materials as previously 

described above, while some progress has been made for the Li-air electrolyte which is 

the key factor to obtain the high efficiency from these devices [2, 11, 12, 42]. 

Moreover, the basic properties of the electrolyte such as ionic conductivity, reactants 

and products solubility, viscosity, and volatility influence the Li-air battery 

performance in terms of specific capacity and cell voltage [27, 43-45]. In some cases, 

it has been demonstrated that heterogeneous electrocatalysts in non-aqueous organic 

for Li-air battery promote the electrolyte solvent decomposition rather than the desired 

ORR at the cathode, and the catalyst for Li-air battery may be unnecessary [46]. A 

recent study by Freunberger et al. reported the same aspect that the electrolytes 

degradation to form lithium formate (HCO2Li), lithium acetate (CH3CO2Li), and 

lithium carbonate (Li2CO3), rather than the desired Li2O2 product, was the dominant 

process being catalysed by the α-MnO2 nanowires [47]. In the cases above, the 

catalyst seems to favour the electrolyte decomposition instead of the electrochemical 

process. Hence, the real role of catalyst in non-aqueous electrolytes needs to be 

researched more in the future. 

 

In general, electrolytes with high solubility as well as high diffusivity of oxygen must 

be considered to ensure the maximum concentration of dissolved oxygen throughout 

the entire cathode pores and to improve the Li-air performance [42]. Another factor 

affecting the cell capacity of a Li-air battery is the electrolyte quantity that fills the 

void space of the porous carbon network. As shown in Figure 2-4, Xu et al. 

demonstrated that the highest discharge capacity can be obtained at an optimum 

electrolyte quantity (the amount in millilitre of 1 M LiTFSI in PC:EC) presented in the 

void space of the Li-air battery [48]. When the electrolyte is below the optimum point, 

an increase in electrolyte amount shows the better cell capacity due to the more 

capability in dissolution of oxygen and transportation of Li
+
 ions. Above the maximum 

amount of electrolyte, the cell performance decreases significantly as a result of the 

flooding inside the pores and decreasing three-phase regions (gas/liquid/solid 

interface) in electrode. 



                                                                          Chapter 2: Li-air Battery Review  

32 | P a g e  

 

 

Figure 2-4 The influence of electrolyte quantity (mL) on the discharge capacity of Li-

air batteries. The electrolyte formulation is 1.0 M LiTFSI in PC:EC (1:1 by weight) 

[48]. 

 

Generally, as described in the first Chapter, the Li-air or Li-O2 batteries can be 

operated on two types of electrolytes, namely non-aqueous and aqueous electrolyte. 

Although in both systems the discharge process involves mainly the oxygen reduction 

reaction, electrochemical mechanisms of non-aqueous and aqueous electrolyte are 

totally different inside the porous cathode resulting in completely distinct products. In 

a non-aqueous system, the discharge products are insoluble in the electrolyte, and they 

normally form a solid passivation on the active area of the carbon surface and possibly 

fill the available pores, leading to block the diffusivity of oxygen to the reaction sites. 

For these reasons, the practical specific capacity or energy of Li-air batteries is still far 

from the theoretical aspects.  

 

As shown in Figure 2-5, two models of the catalytic ORR zones in both non-aqueous 

and aqueous systems has been proposed by Zhang and Foster [49]. In the aqueous 

system, the active area can be divided into three parts, namely liquid (electrolyte), 

solid (catalyst), and gas phase (O2) called “a three-phase reaction zone”, while the 

non-aqueous may be described by a two-phase reaction zone in the presence of both 

liquid electrolyte and solid carbon/catalyst. Comparing both advantages and 
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disadvantages of the two systems, the aqueous electrolytes shows the formation of 

soluble discharge products resulting in no pore clogging, but the lithium anode may be 

severely damaged from water corrosion, leading to more difficult cell fabrication. On 

the other hand, the non-aqueous electrolyte can demonstrate higher specific capacity 

and better rechargeability than the aqueous cells. In the following section, both 

electrolytes will be reviewed. 

 

Figure 2-5 Models of the reaction zones for catalytic ORR. (a) aqueous electrolyte-

based cells: “three phase reaction zone”; (b) non-aqueous electrolyte-based cell: “two 

phase reaction zone” [49]. 

 

 Non-aqueous electrolytes 

Besides the carbon and catalyst, significant research has also been carried out with 

appropriate non-aqueous electrolytes based on three different classes, namely i) 

organic liquid carbonates and other solvents, ii) hydrophobic ionic liquids and iii) 

polymer (gel) electrolyte. In general the solvent should ideally enable relatively high 

oxygen solubility and stability, have low volatility so that they are not lost by 

evaporation during charging and facilitate good ionic conductivity and be stable under 

charge and discharge conditions.  

 

The organic carbonate-based electrolytes have been widely used and proven in the 

conventional Li-ion battery because of their low volatility, compatibility with lithium 

anode, high ionic conductivity and oxidation stability with respect to the Li/Li
+
 couple. 

In the case of the Li-air battery, organic carbonate-based electrolytes (e.g., LiPF6 in 

propylene carbonate, (PC) or ethylene carbonate (EC)) have been widely used [3, 15, 

27, 34, 43, 50, 51]. Also different co-solvents, such as ethylene carbonate, ethers or 

glymes, are also used in combination with these carbonate electrolytes in order to 

increase the oxygen solubility, decrease viscosity and increase ionic conductivity, and 

the polarity [44, 52]. Xu et al. investigated the Li-air and found that both discharge 
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capacity and energy density depended on the lithium salts in the cell, e.g. the cells with 

lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) showed higher O2 solubility (5.8 

mg litre
-1

) and lower viscosity (7 mPa.s) than  both lithium hexfluorophosphat (LiPF6) 

and lithium perchlorate (LiClO4)-based electrolyte  [44]. Moreover, the Li-air batteries 

with organic carbonated electrolytes demonstrated a much higher discharge capacity 

than those using ether- or glyme-based electrolytes (a discharge capacity of 167.5 

mAh g
-1

 in the 1.0 M LiTFSI in PC:EC (1:1 by weight), whereas 21-27 mAh g
-1

 in 

ether-based solvents) [44]. This was because ethers and glymes-based electrolyte have 

higher accessibility to the carbon porous structure, leading to easy blocking of oxygen 

pathways [44].  

 

However, all the previously mentioned carbonate-based electrolytes suffer from a 

serious limitation that they decompose to by-products during discharge, as shown by 

detailed spectroscopic studies (FTIR, Raman, differential electrochemical mass 

spectrometry, in situ GC/MS) [51, 53, 54] and are not good prospects as electrolytes 

for Li-air or Li-O2 batteries. In using the carbonate-based solvents, the intermediate 

species, superoxide, formed during the battery discharging can undergo the 

nucleophilic reaction. As a result of this, a solvent degradation occurs to generate H2O, 

CO2, Li2CO3, as well as other lithium alkyl carbonates, such as HCO2Li, CH3CO2Li, 

C3H6(OCO2Li)2, at the porous cathode [51, 53, 54]. The charging process then 

involves the oxidation of these carbonated by-products with the evolution of H2O and 

CO2. The proposed mechanism for the reaction schemes are suggested in the previous 

reports [51, 55] and presented in Chapter 5.  

 

Freunberger et al. analysed spectroscopic studies on Li-O2 cells with alkyl carbonate 

electrolyte and showed that the large formation of Li2CO3 together with lithium 

formate and lithium acetate by-products generated from the electrolyte degradation 

prefer to accumulate on the cathode surface [51]. This behaviour leads to a failing 

battery mechanism involving the electrolyte consumption and the fast capacity fading 

on the consecutive battery cycling. Therefore, the currently reversible Li-air batteries 

in an organic carbonate-based electrolytes is not a sustainable system, because, in 

reality, the formation of the carbonate by-products through the reductive 

decomposition of carbonate solvent are oxidized to form H2O and CO2 in the 

subsequent charging which is different reaction route comparing to discharge process. 

Hence, a more stable electrolyte, that can ensure the formation of desired Li2O2 on air 
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electrode and does not undergo to an irreversible by-products formation during 

discharging, is required for genuinely rechargeable Li-air batteries. 

 

To eliminate the electrolyte degradation effects on carbonate solvent, ether-based 

electrolytes were chosen for candidate in Li-air batteries because of good stability, 

excellent rate capacity and high oxygen solubility [14]. With viscosity is lower than 

carbonated-base electrolyte, ether-based solvents seem to be a promising. Read studied 

the ether-based solvent with different salts and confirmed that once a certain level of 

oxygen solubility is reached, viscosity becomes the key factor to determining the 

optimum cell capacity [56]. Hence, further work on ether-based electrolyte try to 

reduce the electrolyte viscosity to improve the cell performance. It has been suggested 

that using the crown ethers as an additive into the electrolytes could improve the 

capability to coordinate with lithium ions and thus increase the ionic conductivity of 

the electrolyte [57-59].   

 

Xu et al. examined several crown ethers as additives into the carbonate-based 

electrolyte and demonstrated that the appropriate content of crown ether (15 wt% in 

the electrolyte) can significantly improve the Li-air battery capacity (about 28%) [60]. 

However, a recent study from Freunberger et al. found that although ether-based 

electrolytes are more stable than organic carbonates, they also experience 

decomposition during operation [47]. The first discharge for Li-O2 cell using ether-

based electrolytes confirms the formation of Li2O2, but on the subsequent cycling the 

Li2O2 disappears as the discharge product and the electrolyte decomposes to form a 

mixture of Li2CO3, HCO2Li, CH3CO2Li, polyethers/esters, CO2 and H2O. For these 

reasons, even the ether-based solvents would not be suitable as the electrolyte for Li-

air battery systems. Therefore, finding suitable electrolytes that can ascertain the 

formation of desired lithium oxide products on the air electrodes and reduce other by-

products during cycling process remains a major challenge. 

 

Another factor in the Li-air battery relates to the solubility of lithium oxides, the 

discharge products of the cathode reaction, which are normally insoluble in an organic 

solvent. Certain additives or co-solvents added to the battery electrolytes can partially 

increase the dissolution of lithium oxides and thus enhance the Li-air battery 

performance. Tris(pentafluorophenyl)borane (TPFPB) additive can help to partially 

dissolve lithium oxide products (Li2O2 and Li2O) which can increase the surface of 
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carbon exposed for further ORR [48]. 

 

The vaporisation of organic electrolyte can also limit the Li-air performance in term of 

discharge capacity and cyclability. As a result, hydrophobic ionic liquids (ILs) were 

also investigated for the Li-air battery owing to no vapour pressure and their 

compatibility with the lithium anode. This type of electrolyte has been mostly applied 

in the conventional Li-ion batteries [61]. The first study of an ionic liquid composing 

of 1-alkyl-3methyllimidazolium tetrafluoroborate as the electrolyte was undertaken by 

Kuboki et al. to examine the discharge behaviour of the air electrode [62]. The cell 

with ILs demonstrated a high discharge capacity of 5360 mAh g
-1

 for more than 56 

days at very low current density of 0.01 mA cm
-2

 in an air environment at 60% 

humidity without electrolyte vaporisation and hydrolysis of the anode. ILs were also 

prepared as components in polyvinylidene fluoride (PVDE) base gel electrolytes. 

Zhang et al. have synthesised a propylimidazolinium-TFSI-silica-PVdF-HFP gel as a 

Li-air electrolyte, which can stabilise the anode/electrolyte interface and thus reduce 

lithium anode corrosion [63]. The cell gave a discharge capacity about 2800 mAh g
-1

, 

better than the case of a pure ionic liquid system (1500 mAh g
-1

). Hence, the 

hydrophobic ILs are good candidates for long-term use in practical system of 

rechargeable Li-air batteries. 

 

 Aqueous electrolytes 

Unlike the non-aqueous electrolytes, the aqueous electrolytes are restricted to weak or 

strong acid or basic solutions. As previously mentioned, lithium oxide discharge 

products are insoluble in organic electrolyte; however, these products are generally 

soluble in the aqueous solutions when applied as electrolyte in Li-air battery. This is 

regarded as the main advantage of the aqueous Li-air system and the porous cathode 

does not suffer from the blockage or passivation of the solid products, leading to lower 

cell performance. The typical aqueous solutions is the mixture LiOH-LiCl-H2O [17, 

64], and many other systems are also considered, such as LiOH, HCl/LiClO4, 

HNO3/LiNO3 etc. [65]. 

 

However, in the case of aqueous electrolyte, an anode-protecting layer with high Li
+
 

conductivity is required to prevent the lithium metal corrosion, and this makes the cell 

system more complicated than that of the non-aqueous electrolytes. Hence, the Li-air 

battery using an aqueous electrolyte still needs a good structural design to maintain its 
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performance. In this study, the aqueous Li-air battery is not include here because its 

theoretical energy density is estimated to be lower than a non-aqueous battery system. 

This aqueous Li-air batteries are still facing the most challenging problem in the 

anode, which needs to be protected from the highly-reacting Lithium metal [8, 66]. 

Moreover, due to the similarity in the fundamental reactions at the cathode of the 

battery with aqueous electrolyte system, the successfully developed technology from 

the Zn-air battery or fuel cell systems can be used in the aqueous Li-air batteries. 

 

2.2.4 Separators 

Besides a cathode electrode and the electrolytes compartments of a Li-air battery, an 

ideal separator should be considered for gases prevention, good penetrator for Li
+
, 

high storage for electrolyte, suitable mechanical properties, etc. Up to date, there are 

three types of separators: inorganic ceramic membranes [1, 64, 67-70], polymer-

ceramic (PC) compound separators [71] and polymer separators [7, 72]. 

 

The inorganic ceramic separator is the recent development of a fast ionic conducting 

ceramic such as LISICON and LIPON which prevent gas access in the cell and show 

high ionic conductivity. However, the disadvantages of this separator limiting for 

practical Li-air cell are its fragile behaviour and high cost issue. Hence, PC separators 

have been used to enhance the mechanical strength and reduce the cost 

simultaneously. Generally, polymer separators applied in conventional Li-ion 

batteries, such as Celgard porous polyolefin separators and glass fibre, have been used 

in Li-air batteries owing to their high ionic conductivity, low resistance and low cost. 

The first organic Li-air battery developed by Abraham and Jiang was prepared by 

using a non-aqueous thin solid polymer electrolyte membrane as the separator [7]. 

However, these separators cannot completely block the gases to the anode and could 

result in electrode corrosion. As such, a better separator is urgently required to 

increase the Li-air performance. 

 

2.2.5 Anode electrode 

Owing to its extremely high energy density compared to common lithium-intercalated 

carbon anodes, lithium metal is regarded as a good anode compartment of Li-air 

batteries. However, it still faces the most challenging issue due to its stability loss for 

the long-term operation, mainly in the case of practical application in ambient 
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atmosphere. This is different from the current laboratory tests so far, which are 

conducted on the Li-air cell using mostly pure O2 as the active material. There are 

some exceptional cases that operate the Li-air batteries by using ambient air [17, 24, 

73]. The Li-air battery with air operation is presented in Chapter 6. In fact, lithium 

metal is highly reactive with moisture and CO2, which both come from the air and/or 

electrolyte decomposition. Moreover, lithium metal as an anode electrode in organic 

electrolyte faces a problem with dendrite formation after many charge-discharge 

cycles, which finally may lead to short circuits between the anode and cathode due to 

the prolonged deposition/dissolution of lithium [74]. These effects reduce cycle life 

and safety of rechargeable Li-air batteries with lithium metal as an anode electrode.  

 

At present, the solution for this problem is the separation of a lithium anode from 

contact with the liquid electrolyte. The proposed method includes interfacial or 

protective layers coated on the metallic lithium, such as polymer, ceramics, or glasses 

which provide conductivity for lithium ions [75]. Another approach to prevent 

moisture and electrolyte decomposition products in the air electrode has been 

proposed by Crowther et al. [18]. They developed a silicone rubber oxygen-selective 

membrane to protect the outer surface of cathodes from moisture as well as to increase 

the oxygen permeation. This silicone rubber blocks the water transport from the 

atmosphere into the Li-air battery and also prevents the solvent loss from the cell into 

atmosphere. The Li-air battery with a cathode protected with the thin 83 μm silicone 

rubber delivered a discharge capacity of 570 mAh g
-1

 at a discharge rate 0.2 mA cm
-2

, 

whereas the unprotected cathode showed a capacity only 151 mAh g
-1

. 

 

Generally, there are a number of studies which have been investigated on the effects of 

catalyst to improve the discharge potential [16, 41], battery capacity, and lowering the 

charge potential [15, 76]. Although those studies are usually focused on the 

performance of the cathode air electrode or non-aqueous electrolyte in Li-air batteries, 

usage of lithium metal is another factor for achieving high energy density. Effects of 

lithium amount used for anode electrode on the discharge capacity were recently 

studied [77]. It has been demonstrated that the discharge capacity of a Li-air battery 

decreased from 1760 to 370 mAh g
-1

 when the amount of lithium on the anode 

reduced from 14 to 0.9 mg, respectively. Moreover, the cyclability of the cells also 

decreased with increasing the usage of lithium because there are more dendrite 

formation and porous structure of the deposited lithium after 10th cycle [77]. 
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2.3 Modelling of lithium air battery 

Recently, many research groups have developed and improved the key components, 

such as new materials for negative and positive electrode, electrolyte, catalysts, and 

separators, to overcome the problems of Li-air battery and yield the best performance. 

Besides experimental works, battery mathematical modelling on electrochemical and 

chemical reactions has been previously applied to understand and support many 

research groups for optimising many conventional batteries including metal-air 

batteries [78-84]. A mathematical model is essential for the battery development 

process, because a battery model after validation with experiment data can be used to 

identify battery-limiting mechanisms and predict battery performance for design, 

scale-up, and optimisation with adjusting parameters. Owing to a current application 

of high-performance computers, modelling and simulation have been applied in the 

study of many batteries, such as lead-acid [85, 86], nickel-metal hydride [87], and Li-

ion [88], and fuel-cells as proton-exchange-membrane [89, 90]. Up to date, there has 

been an increasing amount of mathematical simulations used to investigate metal-air 

batteries. 

 

Recently, Zn-air batteries have been considered as promising power sources and 

energy storage devices because of their high specific energy (more than 100 Wh kg
-1

), 

and inexpensive and environmental materials. A one-dimensional numerical model of 

electrically rechargeable Zn-air battery had been developed and used to validate with 

the galvanostatic experiments [91]. The model included diffusion and migration of the 

dissolved species in the electrolyte of the porous Zn electrode and the separator. The 

electrochemical and chemical reactions occurring in both the porous Zn electrode and 

oxygen electrode, which were assumed to be flat electrodes, were considered in the 

model. The model can be fitted well with experimental data, such as cell voltage, the 

Zn electrode potential and O2 potential with Zn as reference electrode. The simulation 

model showed the concentration profiles of participated species, current source 

density, and partial current source density profile during discharging and charging of 

the Zn-air battery. The cyclability of battery performance from the simulation model 

demonstrated up to 40 cycles and predicted that hydroxide (   ) depletion was a 

limiting factor for high-current discharge. This model proved to be beneficial for 

optimising Zn-air battery [91]. 
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The context of the various reaction mechanisms in many batteries can be found in 

current battery systems, which include intercalation batteries (e.g. nickel-metal 

hydride battery, C6/LiCoO2, and other Li-ion couples), plating or stripping batteries 

(e.g. Li and Zn metal), alloying batteries (e.g. Li-Si alloys), and solution-precipitation 

batteries (e.g. Pb/PbO2, Zn/O2 and, some Li/S) [92]. However, a non-aqueous 

electrolyte system like Li-air battery is different from those batteries previously 

mentioned above. In Li-air battery, the discharge products of lithium oxides (Li2O2 

and Li2O) seem to be completely insoluble in non-aqueous electrolyte unlike the 

conventional intercalation Li-ion batteries or the solution-precipitation lead-acid 

batteries. With these differences and complicated mechanisms of Li-air battery, 

mathematical modelling is required for design and optimisation. Because the study on 

Li-air battery is still in an early stage and also lacks the physical understanding in 

complex reaction mechanisms of a non-aqueous system, the current mathematical 

model is only a starting point of physical equations which aim to improve the system 

performances. 

 

Zheng et al. carried out the model predicting the theoretical energy density of the Li-

air batteries based on the thermodynamic equations [93]. The calculation of specific 

energy and energy density based on the weight of the electrode and volume of air 

electrode were estimated in both aqueous and non-aqueous electrolytes. The battery 

performance was calculated including weight of the electrolyte, carbon cathode with 

70% porosity and lithium, but excluding construction materials-current collector and 

housing. It was determined that the energies of Li-air cell are extremely dependent on 

the porosity of the air electrode. In alkaline aqueous electrolyte, the maximal Li-air 

cell specific energy and energy density were estimated at 1300 Wh kg
-1

 and 1520 Wh 

L
-1

, respectively, and 1400 Wh kg
-1

 and 1680 Wh L
-1

 in acidic electrolyte. For the non-

aqueous electrolyte, the assumption was made that the discharge terminated if all pore 

volume of the air cathode was filled or plugged with lithium oxide. The specific 

energy and energy density in this case were 2790 Wh kg
-1

 and 2800 Wh L
-1

, 

respectively. 

 

Recently, a diffusion-limited transient mathematical model with air cathode flooded 

with an organic electrolyte had been developed by Sandhu et al. [79]. The one-

dimensional model was simulated by assuming that the cathode structure was the 
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number of cylindrical open-ended pores each of which had mean pore radius,   ̅ . The 

electrochemical reaction and the Li2O2 formation took place inside these cylindrical 

pores. The simulation profiles presented the distribution of the Li2O2 product in the 

cathode during battery discharging in the assumption that the lithium ion concentration 

in the electrolyte solution was high enough to consider as a constant value, and the 

electrochemical cathode reaction was assumed to be pseudo first-order with respect to 

the dissolved oxygen concentration. The specific capacities of the Li-air battery, as a 

function of oxygen partial pressure and current density, were also predicted and 

compared with literature experiment results. Moreover, the model showed that the 

battery performance as measured in terms of specific capacity increased when the 

cathode thickness was reduced. 

 

Similarly, the model of the air electrode with cylindrical pores structure had been 

designed to increase power rate operation of Li-air batteries [94]. Several methods 

were proposed to improve the power performance, such as a single pore system, dual 

pore system materials and dual pore systems with multiple time-release catalysts. The 

simulated results demonstrated that the dual pore system, which consists of two 

interconnected porosity systems: one that is catalysed and one that is not catalysed, 

increased the oxygen transport into the area of air cathode. However, this system alone 

can only offer high power for a short period. Then, the time-release catalysts technique 

coupled together with the dual pore configuration was proposed to prevent the decline 

of power output during discharge process. 

 

The recent study of Li-air model using the theory of concentrated binary electrolyte 

solution was carried out by Andrei et al. [95]. This model was similar to the previous 

intercalation models for Li-ion batteries [78, 96, 97]. However, the model also 

included the oxygen transport diffusion and reaction inside the porous cathode. Unlike 

the kinetic reaction from Sandhu et al. [79], the electrochemical oxygen reduction 

reaction depended on the Li
+
 and oxygen concentrations. Once again this model also 

assumed the structure of the cathode as many open-ended cylindrical pores as shown 

in Figure 2-6. It has been demonstrated that the discharge product of Li2O2 is 

deposited uniformly on the inner surface of the pores. The Li-air discharge capacity 

was largely dependent on the oxygen diffusivity in the electrolyte and the discharge 

current density. Therefore, several methods in order to increase the specific capacity 

and energy density of the Li-air battery were proposed, for example using a uniformly 
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distributed catalyst and a non-uniform catalyst. The former increased only the current 

and power density of the system while the latter improved only the specific capacity 

and energy density. In addition, the solvents with high oxygen solubility and 

diffusivity demonstrated the enhancement of the energy density. 

 

Figure 2-6 Schematic diagram of the Li-air model with cylindrical pores for oxygen 

diffusion and Li2O2 formation inside the porous carbon cathode [95]. 

 

However, the micrograph from Scanning Electron Microscopy (SEM) revealed that 

the Li-air cathode structure was formed as the porous carbon matrix with high 

tortuosity, as shown in Figure 2-7, rather than straight pores which are assumed in the 

previously mentioned models [79, 94, 95]. Hence, the more exact detailed structure of 

the porous cathode model has been proposed by using a macro-homogeneous model 

theory which simulates the battery using a volume-averaging technique and accounts 

for the essential features of an actual electrode (porosity, volume fraction and active 

surface area) without going into exact geometric details of porous carbon electrode as 

described in the next section.  
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Figure 2-7 The SEM micrograph of a cross-section of pristine porous carbon electrode 

with 45 μm thick prepared by casting a mixture of carbon powder and binder on a thin 

open aluminium mesh. 

 

2.4 Li-air battery with macroscopic model 

The cathode structure in Li-air batteries could be considered as the porous electrode 

(as shown in Figure 2-7), which consists of porous matrices of a single electronic 

conduction (carbon powder) or mixtures of solids together with essentially 

nonconducting, reactive materials in addition to electronic conductors. Therefore, the 

Li-air model in this study is based on porous electrode theory, which was first carried 

out by Newman and Tiedemann [98, 99]. This theory considers the porous electrode as 

the macroscopic description, which consists of porous matrices of an active electronic 

conductor or a mixture of solids. Moreover, the void spaces of the porous matrices are 

served as a host for penetration of electrolyte solution, and also served as a reaction 

site for any chemical and electrochemical processes. At any given time, these reactions 

rates vary depending on the electrode physical structure, conductivity of porous 

matrices, electrolyte properties and individual parameters on each electrode reactions. 
After discharging, the void space of the porous cathode is filled with the insoluble 

discharge products depending on the electrochemical reactions occurring inside the 

battery and the applied electrolytes as displayed in Figure 2-8. Unlike the pristine 

electrode as shown in Figure 2-7, it is apparent from the micrograph that the 

morphology of the discharged electrode is filled with the solid products throughout the 
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entire porosity. 

 

Figure 2-8 The SEM micrograph of a cross-section of porous carbon electrode form 

the discharged Li-air battery. 

 

Therefore, the macro-homogeneous model, which is a useful tool for a theoretical 

analysis in this complicated porous electrode, is applied in this Li-air model study. To 

simplify such a complex structure, the model accounts for only the essential structure 

of an actual electrode without considering the exact geometric detail of a porous 

electrode. This model assumes that the porous electrode is an average of solid 

electrode and the electrolyte, which involves the averaging of various variables over 

the overall dimensions of the electrode. Moreover, the model should be predicted by 

the parameters which can be obtained by simple physical measurements [98, 99]. For 

example, a complex porous structure can be described by its porosity or void fraction 

inside the electrode and its average surface area per unit volume. 

 

There are numerous mathematical macro-homogeneous models applied on the 

previous batteries simulation, especially for lithium-ion batteries and fuel cell 

modelling. Mathematical modelling of lithium-ion batteries involving the macro-

homogeneous model of dependant variables, such as electrolyte phase potential, solid 

phase potential and solution concentrations, was developed by Doyle et al. [78, 88, 98, 

100]. The models for lithium-ion intercalation consisting of a porous electrode, 

separator and a current collector were based on actual physical parameters of the 

battery system and specify for boundary and initial conditions. This model also used a 
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theory of concentrated solution due to the high concentration of electrolyte [99]. 

Moreover, this effort on lithium-ion model development can be applied further for 

similar electrochemical battery systems, e.g. modelling of nickel/metal hydride (Ni-

MH) and silver-zinc batteries [80, 87]. 

 

Figure 2-9 Simulation results demonstrating the relative impacts of eliminating oxygen 

transport limitations and eliminating the electronic resistance of the discharge 

products: (a) 0.08 and (b) 0.47 mA cm
-2

 [82]. 

 

The difference from aqueous system, the Li-air discharge products being solid and an 

insulator in non-aqueous system causes the Li-air battery model to be much more 
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complicated and it is difficult to identify the limiting factors that contribute to the cell 

overpotential (i.e., the factors may come from the oxygen mass transport limit or the 

products passivation limit). Albertus et al. recently developed the macro-homogeneous 

modelling work and experimental results to determine the principal factor limiting the 

Li-air battery capacity [82]. As shown in Figure 2-9, they concluded that the 

passivation of the cathode surface by the non-conducting discharge products, such as 

Li2CO3 and lithium alkyl carbonate, is the critical limitation in non-aqueous Li-air 

system [82]. At low discharge rate (Figure 2-9a), removing oxygen transport limitation 

(by setting diffusion coefficient of oxygen to infinity) had little effect on the discharge 

potential and capacity. However, when removing the passivation of the solid products 

(by setting the electronic resistivity of solid products to zero), the battery discharge 

capacity dramatically increased to 20,500 mAh g
-1

 higher than the case with 

passivation resistivity provided only 720 mAh g
-1

. The similar results were obtained at 

high discharge current density as demonstrated in Figure 2-9b. Albertus et al. points 

out that passivation resistivity is the crucial role to be overcome for a non-aqueous Li-

air battery with a high practical specific energy and capacity [82]. 

 

2.5 Conclusions 

In this review, the fundamentals and recent progress in the field of Li-air batteries have 

been summarised. Nevertheless, the research on Li-air batteries is still at an early 

stage. There are still many challenges facing the design of rechargeable Li-air batteries 

such as optimizing cathode structure, blockage of the porous carbon cathode, 

decomposition of the electrolyte during charge and discharge, and the highly reactive 

Li anode with atmospheric moisture. The mathematical modelling can describe the 

mechanism inside the Li-air battery. Hence, the previous and present models are 

developed based on the starting point of these review information. When more details 

of physical and electrochemical information for Li-air battery are available, the model 

can be improved to meet those of practical Li-air behaviours and can be used as a tool 

to develop the Li-air battery.  
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Chapter 3: Li-air Model 

 

 

This chapter describes the basic governing equations of a micro-macro homogeneous 

mathematical model. These include the combined continuity, transport and kinetics 

equations as well as the model parameters for the Li-air batteries with a non-aqueous 

electrolyte. The model was used to describe and predict the Li-air behaviour as 

presented in Chapters 4, 5, 6 and 7. 

 

3.1 Introduction 

Electrochemical energy devices, such as lead-acid and lithium batteries, as well as fuel 

cells, are widely used in consumer applications and electric vehicles. These devices and 

modern metal-air batteries such as Zn, Al, Na, and Li are now increasingly in demand 

for the purpose of developing more advanced energy storage with higher energy 

density, higher capacity, and longer cycle life. Mathematical modelling is extremely an 

indispensable tool during the process of battery design and development. Once a battery 

model has been validated with experiments, it plays an important role to identify cell-

limiting mechanisms and predict cell performance for design, scale-up, and 

optimisation. Modelling and simulations consume less time, effort and cost than an 

experimental process. Therefore, owing to high-performance computers and useful 

numerical equations, modelling and simulation of battery and fuel cell system has been 

rapidly studied together with the experimental field. 

 

3.2 Governing equations 

A mathematical description of a prismatic cell of Li-air battery has been developed 

involving conservation of mass and current, species transport, and reaction kinetics in 

the cathode and separator to clarify the mechanism inside the battery. The model used in 

this study is applied to a Li-air cell consisting of a thin lithium anode electrode, an 

anode protective layer (APL), a separator, and a porous carbon oxygen/air cathode filled 

with an organic electrolyte as shown in Figure 3-1. As the porous cathode is flooded 

with an organic electrolyte, no gas phase occurs in the porosity of the air cathode. 

Current collectors are placed at the back of each electrode. The equations are presented 

with time-dependent to describe the dynamic behaviour of Li-air batteries during 
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discharge and charge processes. In this section a general form of the governing 

equations used in Chapters 4, 5, 6 and 7 is presented. 

 

Figure 3-1: Schematic diagram of the computation domain for a Li-air battery during 

discharge. The inset demonstrates the porous carbon cathode. 

 

3.2.1 Transport of species 

The mass balance of a species   was obtained by applying the law of conservation of 

mass of species    to the volume element fixed in space, where the species was moving 

through. The mass balance for a system with the reactions is as follows: 

 

{

         
         
            

}  {
       
      

  
}  {

       
      
   

}  {

                  
              

                         
} (3-1) 

 

As the model was based on the macroscopic theory of porous electrode which considers 

the solution and solid matrix phases to be a superimposed continuum [1, 2]. Based on 

this approach, a material balance equation in term of the concentration for species   

transport in the liquid electrolyte can be expressed as: 

 
      

  
          (3-2) 

where     is the bulk concentration of species   in the solution phase which is averaged 



                                                                                            Chapter 3: Li-air Model 

58 | P a g e  

 

over the volume of the solution in the pores,   is the porosity of the electrode which is 

the electrolyte space in the matrix phase,    is the molar flux of species   in the porous 

solution averaged over the cross sectional area of the electrode, and    is the volumetric 

production rate of species   from the solid phase (electrode material) to solution phase 

(electrolyte in the porous) within the porous electrode.  

 

As the lithium salts are always used as the electrolyte in a Li-air battery, the 

concentration of ionic species in the electrolyte is the same as the concentration of 

lithium ions (Li
+
) due to the binary electrolyte assumption (an electrolyte dissociates 

into one positive ion and one negative ion). This takes into account the fact that ionic 

species were transported by diffusion and by migration while other species were moved 

by diffusion only. The convection term was negligible in the model because the porosity 

of electrode was filled with the electrolyte, i.e. flooded electrode. Hence, the molar flux 

in Eq. (3-2) for mass transfers for both Li
+
 and species in the battery can be expressed 

respectively as: 

                  
    
 

  (3-3) 

                (3-4) 

where         and        are the effective diffusion coefficients of Li
+
 and species  , 

respectively,    is the transference number of Li
+
,   is Faraday’s constant which is 

equal to 96,485 C mol
-1

, and    is the current density in the solution phase or electrolyte 

current density which can be defined by the gradient of the potential in concentrated 

electrolyte solution as [1, 3]: 

     
  

    
 

   

 
(
  
   

 
  

    
 

   

   
) (  

    

    
)      (3-5) 

where  ,   ,   ,   , and   represent the number of electrons transferred, the 

stoichiometric coefficients for cation and solvent, the number of cations, and the 

number of moles of ions into which a mole of electrolyte dissociates, respectively.   and 

   are the molar concentrations of the electrolyte and solvent in the electrolyte phase, 

respectively. For Li-air battery, a 1:1 binary electrolyte is applied in the cell. Then,    = 

0,    = -1,   =   = 1, and   = 2. The Eq. (3-5) can be rearranged into the current 

density in electrolyte as: 
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      (  

    

      
)       (3-6) 

where      is the effective conductivity of the electrolyte,    is the electrolyte potential 

(electric potential of Li
+
),   is the universal gas constant which is 8.3143 J mol

-1
 K

-1
,   

is the cell temperature in Kelvin, and   is the activity coefficient of LiPF6 salt.  

 

In the solid matrix phase, the movement of electrons is governed by Ohm’s law which 

evaluates the electric potential variation or potential of electron,   , as follows: 

               (3-7) 

where      is the effective conductivity of the electron in the electrode. This parameter 

is affected by the volume fraction of solid electrode inside the porous cathode. 

Moreover, the effective parameters of       ,      and      in the above equations also 

depend on the tortuosity of individual phases in the porous cathode (through porosity or 

volume fraction). These parameters are applied only for the porous cathode region and 

are corrected to account for the porosity effect using the Bruggeman correlation [4]: 

                  (3-8) 

                (3-9) 

             (3-10) 

                 (3-11) 

where    ,   ,   and   are the diffusion coefficient of the Li
+
 and each specie in 

electrolyte and the conductivity of electrolyte and electron in the cathode, respectively. 

 

3.2.2 Conservation of charge 

For the porous electrode theory, the charge conservation for the matrix and solution 

phases would require the divergence of the total current density to be zero as defined 

by: 

             (3-12) 

During battery discharging or charging, the electrochemical reactions occurring at the 

electrode/electrolyte interface (charges transfer reaction) are expressed for individual 

reactions according to the conventionally general formula which takes the form: 
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       (3-13) 

The charge transfer from solid phase to electrolyte phase per unit volume of electrode 

(    ) is related to the all local charge transfer current density (  ) of electrochemical 

reactions  , occurring at the cathode given by: 

      ∑   
 

 (3-14) 

This equation states that the transfer current per unit electrode volume is equivalent to 

the electrode chemical reaction rate where the    is a species symbol participating in 

the electrochemical reaction,    and    are the charge number and the stoichiometric 

coefficient of the species  ,   is the number of electron transferred in the reaction,   is 

the specific interfacial area of the pore per unit volume of the total electrode, and    is 

local transfer current density between electrode and electrolyte interface of each 

reaction at the cathode. The values of   ,   , and   can be defined by matching with an 

individual electrode reaction using the general form of Eq. (3-13). For example, in the 

Li2O2 formation reaction in Eq. (3-15), the values of    ,    , and   of Li
+
 are -2, 1, and 

2, respectively: 

                            (3-15) 

 

Once the charge transfer from solid phase to electrolyte phase in the porous electrode is 

determined in Eq. (3-14), the superficial production or consumption rate of each species 

(referred to Eq. (3-2)) from solid phase to pore solution in the individual reactions m is 

given by Faraday’s law: 

     
  
  

      ∑
     
  

  
 

 (3-16) 

3.2.3 Rate expressions at cathode 

For Li-air battery, the porous cathode is regarded as the main contributor to the battery’s 

performance as its thickness and surface area cover almost the entire Li-air 

compartments. Hence, the reactions and chemical mechanisms for the charge/discharge 

products mainly occur in this area.  

 

Li2O2 formation: 

The actual reaction paths and mechanisms for the discharge products are not available 
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and are quite complex involving various intermediates [5, 6]. Hence, to describe the 

electrochemical kinetic expression for the porous cathode, the model adopts the kinetic 

expression based on Eq. (3-15) for Li2O2 formation. For electrochemical reaction of 

Li2O2 at the cathode, a modified version of the Butler-Volmer equation is applied to the 

model using two rate coefficients. The reaction for Li2O2 formation depends on the 

concentration of (Li
+
) and oxygen in a non-aqueous electrolyte for discharge and the 

concentration of Li2O2 during charge as in the following equation: 

  
  

   (      
)   [

       

  
  ]           

 (     )   [
    

  
  ] (3-17) 

                   
  (3-18) 

                  (3-19) 

where    is local transfer current density between electrode and electrolyte interface for 

Li2O2 reaction,       is the molar concentration of species   at the wall or surface of 

electrode and can be determined in Eq. (3-26),    and    are the anodic and cathodic 

rate constant, respectively,   is the symmetry factor equal to 0.5,    is surface or 

activated overpotential for individual reaction,  , at the cathode,        and       are 

the voltage drop and the electrical resistivity across Li2O2 film formation, 

respectively,    is the volume fraction of solid Li2O2, and   
  is the theoretical open-

circuit potential for each reaction. The subscript   defined in the Eq. (3-17) to Eq. 

(3-19) is presented in case there is more than one electrochemical reaction at a porous 

cathode.  

 

3.2.4 Rate expressions at anode 

The electrochemical reaction rate for the anode is the oxidation of lithium metal to 

soluble Li
+
 into the electrolyte. This anode electrode was used as the reference electrode 

in Li-air battery model and its standard reference potential was equal to 0 V. The 

electrochemical reaction is described by a general Butler-Volmer equation as follows: 

      [   (
       

  
  )     (

    

  
  )] (3-20) 

where    is exchange current density for anode electrode,    is surface or activated 

overpotential for reaction at anode, and the other parameter are as described above. 
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3.2.5 Specific interfacial area 

The specific area,   of the electrode/electrolyte interface in Eq. (3-14) and Eq. (3-16) is 

decreased by the morphology and dynamic change of the porosity due to the solid 

discharge products. These discharge products can be any lithium oxides, lithium 

carbonates as well as lithium alkyl carbonates as described in Chapter 2. However, only 

Li2O2 and Li2CO3 were considered as the model for the discharge products in this study. 

These products are insoluble in several non-aqueous electrolytes and cover the active 

surface area during battery discharging. The variation of effective local surface area per 

unit volume of electrode can be commonly written by a geometric relation [7, 8] as 

follows: 

     [  (
  
  

)
 

] (3-21) 

where    and    are the volume fraction of solid discharge products, and initial 

electrode porosity, respectively. This empirical equation is used to describe the dynamic 

change in the interfacial area for electrochemical reactions that occur during discharge 

because of the fast passivation of Li2O2 and Li2CO3 covering a portion of the active 

sites for electrochemical reaction over the carbon surface [9]. The magnitude of 

exponent   is a geometrical factor indicating the morphology shape of the solid 

peroxide that covers the active area. Small values of   indicate that the flat, plate-like 

precipitate of Li2O2, conversely, large values of   reflects the needle-like solid which 

cover small active area. In Chapter 2, the SEM micrograph of a cross-section of porous 

carbon electrode from the discharged Li-air battery shows that the morphology of the 

discharged products look like flat-plated shape, therefore the value of       has been 

applied in this model. 

 

3.2.6 Dynamic porosity change 

The porosity volume change of the carbon electrode will be decreased due to the 

formation of insoluble solid products covering the catalyst and active particles as 

described in Eq. (3-22). Thus, the effective diffusivity for all species inside the cell and 

the effective ionic conductivity are influenced by the porosity change due to the Li2O2 

and Li2CO3 formation. These parameters can be corrected by the Bruggeman 

relationship (referred to Eq. (3-8)-Eq. (3-11)). Because the solid distributions in the 

model are Li2O2 and Li2CO3, we use the properties of these solids for the build-up of 

discharge products inside the porous electrode as expressed in the following 
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relationship: 

 
  

  
  ∑    

  

    
             

 
(3-22) 

where    and    are the molecular weight and the mass density of solid discharged 

products, respectively. The volume fraction of the discharged solid formation can be 

determined from the cathode volume balance as shown in Figure 3-2 and Eq. (3-23) 

           (3-23) 

where    is the initial volume fraction of solid phase of cathode electrode (active 

carbon, catalyst and binder).  

 

Figure 3-2: Schematic diagram of volume fraction in the porous cathode electrode 

 

 

Figure 3-3: Schematic diagram of reactant transport inside the porous electrode and the 

growth of discharge products on the surface of spherical electrode particle. The inset 

shows the enlargement of diffusion transport through the barrier of discharge product 

layer,    
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3.2.7 Transport through discharge products layer 

In practice, the electrode surface may not be uniformly covered during the battery 

discharge and its cover may grow while discharging. However, to simplify the 

calculation, the build-up of the solid products is assumed to uniformly cover the 

electrode surface of the previous deposit. During discharge in a short period of time, a 

thin discharge products layer (Li2O2 or Li2CO3) could be formed continuously, covering 

the active carbon surface. This implies that the discharge products form a spherical shell 

on the surface of spherical active particles, as illustrated in Figure 3-3. Hence, the 

diffusion of Li
+
 and oxygen species from the porous media has the additional transport 

resistance through these layers. In other words, the transport of active reactants 

comprises two types of diffusion regimes. The first one is diffusion of Li
+
 and oxygen 

reactants along the porous media and the other is their pass through the discharge 

product film layer. The latter transport can be derived according to Fick’s law as 

presented in Eq. (3-24), which is proportional to the concentration gradient between the 

bulk and active surface, corresponding with the electrochemical reaction in which each 

species is consumed at the active electrode surface (Eq. (3-16)).  

 

To determine the species concentrations at the active electrode surface, Fick’s law for 

diffusion was used as follows: 

            

   
  

 (3-24) 

where    is the reactants molar flux across the discharge product layer,         is the 

effective diffusion coefficient of species   across the film layer. The molar flux of 

reactant can be obtained from the local charge transfer current density at cathode (   ) in 

the following relationship: 

    
  
  

   (3-25) 

 Combining Eq. (3-24) and Eq. (3-25) together with the assumption that the film layer is 

very thin, the molar concentration of species   at the surface of electrode can be 

obtained as: 

  
  
  

   
                

 
 (3-26) 
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   (
     

  
)
   

      (3-27) 

where   is the thickness of the film calculated from the volume fraction of the solid 

discharge products by assuming the spherical electrode particles and uniform covering 

of solid products as shown in Figure 3-3 and Eq. (3-27), and    refers to the particle 

radius in the electrode.  

 

3.2.8 Charging process 

The rate expression for a Li-air cathode presented in the previous section includes two 

rate constants,    for anodic current and    for cathodic current. During discharge, the 

second term on the right hand side of Eq. (3-17) is predominant due to the negative 

overpotential (  ). However, it is other way around during the charging process due to 

the positive overpotential. The model assumes one-step charging reaction to form Li
+
 

and oxygen, and depends on the Li2O2 concentration in organic electrolyte as in the 

following reaction: 

                   (3-28) 

It is known that the Li2O2 is insoluble in most organic solvents and deposits on the 

active surface of carbon. However, there are limited concentrations (saturated 

concentration) that Li2O2 can dissolve into the non-aqueous electrolyte. Tasaki et al. 

(2009) reported the solubility of various lithium salts, such as lithium carbonate 

(Li2CO3), lithium fluoride (LiF), lithium hydroxide (LiOH) and Li2O, in organic 

solvents and found that Li2O is the lowest solubility (less than 9 10
-5

 mol dm
-3

) in 

carbonate-based solvent [10]. 

 

For battery on charge, the provided solid Li2O2 volume fraction (      
  has been 

produced. There will be a finite Li2O2 concentration (      
  dissolved in solution 

(saturation concentration), and the rate of oxidation reaction (Eq. (3-28)) would be 

constant and will only decrease when the solid is consumed or       
 goes below the 

solubility limit. Therefore, the model assumption applied on charge is that the 

dissolution rate         of solid peroxide is quick compared to the electrochemical 

reaction and can be written in Eq. (3-29). The dissolution rate equation is included for 

      
 species balance in Eq. (3-2) during battery on charge and the driving force term 

for this reaction is when the       
 decreases below its solubility in the 
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electrolyte       . 

               
            

  (3-29) 

where    is the dissolution rate constant for Li2O2 during charge which assumed very 

fast (    4 s
-1

), and      is the solubility limit of Li2O2 dissolved in organic 

electrolyte (      9 10
-5

 mol dm
-3

). The dissolution rate in Eq. (3-29) is coupled with 

the electrochemical oxidation reaction (Eq. (3-17)) during charging battery. 

 

3.3 Constitutive relations and model parameters 

To solve the governing equations listed and described in Section 3.2, all of the 

parameters for reactants and materials and physical properties were carefully selected 

from the published literature available so that they could be applied in the model. These 

input parameters could strongly influence the results of battery behaviour, therefore it 

was important to estimate and/or select them rigorously. In this section, a detailed 

description of how these parameters and properties were obtained is presented. The 

other parameters, which were not described in this section, are summarised in Table 3-4 

of Section 3.4. 

 

3.3.1 Cell design geometry 

The thickness of each region in the model of the Li-air battery was set by following the 

experimental cell construction. The separator and porous cathode electrode are 

completely flooded with non-aqueous electrolyte so that there is no gas phase in the 

battery model. The model also neglects the carbon particle size distribution in the 

positive electrode, i.e. only one single size of carbon particle is considered in the model. 

This particle size is used to determine the specific surface area presented in Section 

3.3.4. The model also assumes that all the carbon particles are well connected to the 

current collector (nickel or copper mesh), then the contact resistances are zero. 

 

When the lithium metal anode of Li-air battery is in contact with the organic electrolyte 

or solvent, it reacts instantly to form a thin Li-ion conductive film on its surface [10, 

11]. As the reaction between lithium anode and electrolyte continues, a multilayer 

deposition of lithium salts is created. This passivation layer is known as an anode 

protective layer (APL) or solid electrolyte interface (SEI) and is shown in Figure 3-4. 

The composition of SEI depends on the electrolyte and the type of active material on 
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which the SEI is formed [12]. The SEI barrier inhibits the reaction between the lithium 

anode and organic electrolyte, and also prevents the corrosion of lithium metal from the 

moisture [13]. Initially, SEI formation protects the anode electrode, but, as the battery 

repeats charge/discharge cycles, it affects battery performance such as the self-

discharge, the safety problem due to lithium dendrite formation, and the irreversible 

capacity [10, 13, 14]. However, these SEI effects are not considered in this Li-air 

model. The SEI thickness has been reported at more than 5 nm [12] and its thickness 

continues to grow over time during the battery’s cycles [15, 16]. The SEI in the lithium 

battery containing LiPF6 in carbonate-based solvent has been identified by transmission 

electron microscopy (TEM) and was reported as 50 nm thick [17]. This value was 

applied as SEI thickness in our Li-air model. 

 

Figure 3-4: Schematic drawing of the solid electrolyte interface (SEI) on the lithium 

metal anode. SEI formed by reduction of the organic electrolyte. 

 

Glass-fibre filter paper GF/C or Celgard 5500 membrane is normally used as a separator 

between the anode and cathode compartment in a Li-air battery [18-20]. The separators 

have a wide range of thickness (15 – 110 μm) depending on the material types and 

manufacturers [21]. The separator of 50 μm thickness was applied in the model.  

 

For the cathode thickness, this region is considered the crucial part because many 

reactions and products perform in this area to obtain the high battery performance. 
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Similar to the separator, many research groups reported different cathode thicknesses 

depending on their electrode preparation. Zhang et al. (2010) produced the porous 

cathode with the thickness of carbon film at around 700-800 μm [18]. Read (2002) 

prepared the air cathode from Super P carbon black and the finished electrode had a 

thickness of 800 μm [22]. Hence, the average cathode thickness of 750 μm was applied 

in our Li-air model. It is worth noting that the thickness of the APL and the separator 

are much smaller than the thickness of cathode. Hence the exact values in these regions 

insignificantly affect the results of the model simulation in term of battery behaviour 

and performance.  

 

3.3.2 The transport properties of lithium salt in non-aqueous electrolyte 

The transport properties of lithium salt in electrolyte solution, such as diffusion 

coefficient (   ), transference number (  ), activity coefficient (  ), and conductivity 

( ) depend on both the dissolved lithium salt concentration in non-aqueous electrolyte 

and the various type of organic solvent. In practice, lithium hexafluorophosphate 

(LiPF6) is normally used as electrolyte of choice for a Li-air battery because it has been 

widely adopted in Li-ion batteries in previous decades [23]. Hence, the model assumed 

that the LiPF6 dissolved in acetonitrile solvent was used as the electrolyte solution in a 

Li-air battery and the transport properties of LiPF6 had little change in different 

solvents. The acetonitrile solvent was chosen due to the formation of Li2O2 when using 

this solvent [5]. However, due to the unavailable information of some transport 

properties for acetonitrile solvent, the other transport properties of the other solvents 

were applied to the model instead. In summary, the diffusion coefficient of LiPF6 in 

acetonitrile was applied in the model, whereas the other transport properties of 

electrolyte, such as   ,    and   , were used from the mixture solvent of ethylene 

carbonate and ethyl methyl carbonate (EC:EMC) as reported below. 

 

The other solvents, especially carbonate-based electrolytes, are not stable and 

decompose to form the Li2CO3 by-product [24-26]. The model with the electrolyte 

degradation effect is presented in Chapter 5.  

 

Diffusion coefficient: 

The measurement of diffusion coefficient of LiPF6 in various solvents for lithium 

batteries was reported by Stewart and Newman [27]. The diffusion coefficient of LiPF6 
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solutions in acetonitrile (ACN) and in a 1:1 mixture by weight of ethylene carbonate 

and diethyl carbonate (EC:DEC) were measured at room temperature. It has been shown 

that the diffusion coefficient decreases with electrolyte concentration as a result of an 

increase in the viscosity of concentrated electrolyte [27]. The relationship between 

diffusion coefficient and concentration can be determined according to the following 

equations: 

LiPF6 in acetonitrile                                  (3-30) 

LiPF6 in 1:1 (EC:DEC)                                  (3-31) 

where     is in cm
2
 s

-1
 and     is the concentration in mol dm

-3
. Figure 3-5 shows the 

variation of diffusion coefficient with concentration for solution of LiPF6 in ACN and in 

a 1:1 mixture by weight of EC:DEC. It can be seen that at 1 molar concentration the 

diffusion coefficient of LiPF6 dissolved in ACN is higher about one order of magnitude 

than the diffusion coefficient in EC:DEC. 

 

Figure 3-5: Diffusion coefficient as a function of the LiPF6 concentration dissolved in 

ACN and in a 1:1 ratio mixture by weight of EC:DEC at room temperature, Eq. (3-30) 

and Eq. (3-31) respectively.  The diffusion coefficient decreases with an increase in 

LiPF6 concentration [27].  
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Transference number: 
Another electrolyte parameter used to describe the charge transport in the battery model 

is transference number (or transport number). This parameter describes the charge 

transport of the specific ions of electrolyte, i.e. the fractions of current carried by cation 

and anion [28]. In the LiPF6 solution,    is the transference number for     and    

assigns for    
 . An analogous expression is clearly described as: 

         (3-32) 

For and electrolyte containing many ions,   

 ∑    

 

 
(3-33) 

Generally, liquid electrolytes show both cation and anion transference number 

depending on how many ions can carry the charge, whereas solid electrolytes have one 

mobile ion (cation    = 1 or anion    = 1). In lithium batteries, electrolytes with low 

lithium ion transference numbers and salt diffusion coefficients result in large 

concentration polarisations during the operation of the battery. This leads to 

deterioration in battery performance and cycling stability [29].  

 

The lithium ion (Li
+
) transference number for LiPF6 in a 3:7 mixture by weight of 

ethylene carbonate and ethyl methyl carbonate (EC:EMC) was reported for 

concentrations between 0.2 and 2.0 mol dm
-3

 at room temperature by Nyman et al. 

(2008) as shown in the following relationship [29]: 

                                   
              

  (3-34) 

 

The Li
+
 transference number as a function of the LiPF6 concentration in EC:EMC 

solvents is presented in Figure 3-6. This expression for transference number in Eq. 

(3-34) was applied in the model to describe the Li
+
 transport, which was changing 

during the battery operation. 

 

Activity coefficient: 

The activity coefficient (  ) is one of the thermodynamic properties that describe the 

transport phenomena in an electrolyte. Nyman et al. (2008) reported the transport 

properties and thermodynamic properties for LiPF6 in 3:7 (EC:EMC) by using 

experiments which combined a mathematical description [29]. The polynomial equation 
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of the concentration-dependent activity coefficient for LIPF6 was fitted to the 

experimental results and presented in the equation below [29]: 

(  
     

         

)  
             

                       

            
              

                     
 (3-35) 

 

The activity coefficient as a function of the LiPF6 concentration in 3:7 (EC:EMC) 

solvent is plotted in Figure 3-7. 

 

Figure 3-6: The lithium ion transference number as a function of the LiPF6 

concentration dissolved in a 3:7 ratio mixture by weight of EC:DEC at room 

temperature, Eq.(3-34) [29]. 
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Figure 3-7: The activity coefficient as a function of the LiPF6 concentration dissolved in 

a 3:7 ratio mixture by weight of EC:DEC at room temperature, Eq.(3-35) [29]. 

 

Conductivity: 

Electrolyte conductivity ( ) is a measure of the ability of an electrolyte solution to 

conduct an electric current. The higher its conductivity, the more ions there are in the 

electrolyte solution. In the porous cathode electrode, the LiPF6 solution in non-aqueous 

solvent is responsible for the movement of ions in the solution. The conductivity of 

LIPF6 electrolyte in a 3:7 ratio mixture by weight of EC:DEC at various concentrations 

was reported in the following relationship [29]: 

           
          

             (3-36) 

where   ,    and    are the coefficient values which are summarised in Table 3-1. The 

conductivity as a function of the LiPF6 concentration in 3:7 (EC:EMC) solvent is 

plotted in Figure 3-8. As can be seen from the graph, the maximum conductivity is 

obtained at 1 molar of LiPF6. Hence, the initial electrolyte concentration applied in the 

Li-air model was operated based on this concentration. At the low concentration 

regions, the conductivity increases with the LiPF6 concentration until it reaches the 

highest conductivity at 1 molar because of the increasing ions which become 

dissociated from the electrolyte. However, at high concentration regions, the electrolyte 

viscosity is increasing as well as the LiPF6 in the solution leading to decreasing in its 
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conductivity as described previously by [30]. 

 

Figure 3-8: The conductivity as a function of the LiPF6 concentration dissolved in a 3:7 

ratio mixture by weight of EC:DEC measured at room temperature, Eq. (3-36) [29]. 

 

Table 3-1: coefficient values for the LiPF6 conductivity in Eq. (3-36) 

A1 (10
-2

 S dm
8
 mol

-3
) A2 (10

-2
 S dm

3.5
 mol

-2
) A1 (10

-2
 S dm

2
 mol

-1
) 

1.297 0.059 -25.1 0.44 33.29 0.39 

 

Density: 

The density of the electrolyte solutions (LiPF6 in various solvents) have been reported 

by the manufacturer [31] within the range of 1.20-1.22 g cm
-3

 at 25ºC as summarised in 

Table 3-2. The electrolyte density of 1.20 g cm
-3

 was used in the model for all 

simulations. 

  

Table 3-2: Density and conductivity of LiPF6 electrolyte in various solvents 

Solvents mixture by weight Density (g cm
-3

) at 25ºC Conductivity (mS cm
-1

) 

EC:DEC (1:1) 1.21 7.50 

EC:EMC (1:1) 1.20 9.50 

EC:DMC:EMC (1:1:1) 1.22 11.0 

EC:DEC:EMC (1:1:1) 1.22 10.5 
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3.3.3 Porosity of porous carbon electrode 

In the case of porous cathode electrodes, the total surface area of a carbon material can 

be determined by the sum of the surface areas of all pore sizes, containing micro pores 

to macro pores. For an electrode with the same mass, the surface area of the material is 

inversely related to the size of the pores, i.e. material with the high distribution of small 

pores has a greater surface area than material with a high distribution of large pores. In 

practice, the carbon powders (primary particles) will combine or aggregate together 

during the cathode preparation due to the addition of binding material (PTFE or PVDF) 

or the mechanical pressure to form the aggregated particles or secondary particles [32]. 

Thus, there are two types of pores created during the cathode formation process. The 

first type of pore is formed between the primary carbon particles inside the aggregated 

particles and the second type of pore is the space between the aggregated particles as 

shown in Figure 3-9.  

 

A detailed study of the correlation between the average pore diameter of carbon cathode 

and discharge capacity of Li-air battery by Tran et al. (2010) reported that the discharge 

capacity increases linearly with the increase of average pore diameter [32]. They also 

concluded that the discharged products are preferentially formed in macro-pores and 

meso-pores, while the micro-pores size is inaccessible of the discharge products. Thus, 

in the model, the porosity of the cathode electrode is assumed to be the uniform 

contribution of average pore sizes, in which the electrochemical reactions can occur. 

The initial cathode porosity (  ) of 0.73 is applied in this model study. This value 

represents the porosity of pristine electrodes including the PTFE or PVDF binding 

materials (lower than the porosity of pristine electrode without binder,   0.85) [22, 33]. 

This porosity is served as the space for electrolyte and the accommodation for discharge 

products. The specific interfacial area is presented in the next section. 

 

3.3.4 Specific interfacial area 

The specific interfacial area ( ) is the active surface area of the electrolyte/electrode 

interface where the charge transfer reaction occurred per unit volume of the total 

electrode.  This parameter is an important piece in the battery modelling especially in 

the battery performance, and provides the information regarding the microscopic 

geometry of electrode interface. To determine the specific interfacial area, it should 

provide the average interfacial area of the electrode without going to the actual 
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geometric detail of the pores. The specific interfacial area in the Li-air battery varies in 

relation to changes in the electrode morphology and dynamic mechanism due to the 

solid particles precipitation inside the porous electrode.  

 

Figure 3-9: Schematic illustration of the spherical particles of radius    in the porous 

cathode. 

 

Assuming that the spherical particles of radius    inside the electrode as shown in Figure 

3-9, the specific area can be calculated by [8]: 

    
   
  

 
       

  
 (3-37) 

where    is the initial porosity of the electrode, which is         in our model. A 

particle of radius    can be estimated by the scanning electron microscope (SEM) image 

of the porous carbon morphology from our research group as shown in Figure 3-10. It 

can be seen from the figure that the diameter of spherical particle is around 0.5   , 

(          ).  Input these values into Eq. (3-37) to determine the specific interfacial 

area of the cathode electrode for the model is 3.24   10
6
 m

2
 m

-3
. 
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Figure 3-10: SEM image of the pristine porous carbon electrode. 

 

3.3.5 Kinetic parameters 

In Section 3.2.3, the rate expressions for the Li2O2 formation were introduced without 

proper explanation as to why this kinetic model was based on the two reaction rate 

constants (Eq. (3-17)) instead of the general Butler-Volmer equation. Let us consider 

the simplest possible redox electrode reaction, where   is the oxidised species and   is 

the reduced species:  

         (3-38) 

If only one reaction occurs at the electrode, then the reactions, which depend on the 

surface overpotential and reactant concentrations, in cathodic and anodic direction can 

be expressed as: 

  
 

  
        [

       

  
 ]         [

    

  
 ] (3-39) 

where    and    are rate constants for the anodic and cathodic reaction, respectively, 

and    and     are the concentration of the anodic and cathodic reactants, respectively.  

 

At the equilibrium potential (  , the net rate of reaction is zero and then the rate of the 
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forward reaction equals to the rate of the backward reaction. Then Eq. (3-39) becomes: 

       [
       

  
 ]         [

    

  
 ] (3-40) 

Rearrangement of the Eq. (3-40) yields the equilibrium potential (   as: 

   
  

  
  (

    
    

) (3-41) 

The surface overpotential   is defined as the difference between the actual potential and 

the equilibrium potential as:  

       (3-42) 

Substituting the Eq. (3-41) and Eq. (3-42) into Eq. (3-40) yields: 

  
 

  
        [

       

  
         (

    
    

)]

        [
    

  
     (

    
    

)] 
(3-43) 

Rearrange the Eq. (3-43) into the general Butler Volmer equation given by: 

     {   [
       

  
  ]     [

    

  
  ]} (3-44) 

where the exchange current density (  ) is defined by: 

           
     

       
       

  (3-45) 

This equation is known as the Butler-Volmer equation, which is normally used as the 

kinetic equation for battery and fuel cell modelling.  

 

However, in practice, the reaction of Li2O2 formation (                  ) is 

not a completely reversible reaction, which consists of many elementary reactions [5, 6, 

34]. Hence, the assumption of reversible reaction (where the rate of the forward reaction 

equals the rate of the backward reaction) in Eq. (3-40) may not be applicable to using 

the general Butler-Volmer equation in the Li-air battery model. 

 

Therefore, the kinetic model was based on the two reaction rate constants as described 

in Eq. (3-39) and can be expressed in the Li2O2 formation reaction as presented in Eq. 
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(3-17). A problem with this kinetic expression is that it does not consider the standard 

potential for the reaction in terms of the Nernst behaviour as shown in Eq. (3-47), i.e. 

surface overpotential ( ) is expressed in terms of the standard potential as present in Eq. 

(3-42):  

                                (3-46) 

      
  

  
  [

   
   
 

      

] (3-47) 

The Nernst equation describes that the standard potential (  ) is varied as a function of 

the concentrations of species, which is involved in electrochemical reaction. As the 

assumption of reversibility for Eq. (3-46)  may not be valid to use the general Butler-

Volmer equation, thus the kinetic reaction for Li2O2 formation have to consider the two 

rate constants of anodic (  ) and cathodic (  ) as separate values. These values are 

optimised to fit with the experimental results of the discharge and charge behaviour of 

Li-air battery. The values of     1.11   10
-15

 m s
-1

 and     3.4   10
17

 m
7
 s

-1
 mol

-2
 

are fitted well with the experiment. 

 

3.3.6 Electrical resistivity across Li2O2 film 

In Eq. (3-18), the surface overpotential for the cathode kinetic reaction includes the 

voltage drop from the electrical resistivity across the discharges products Li2O2, which 

is defined as expression (                ) in Eq. (3-19). To determine the electrical 

resistivity (     ), Li et al. (2001) measured the interface resistance with a value of less 

than 50 Ω cm
2
 between a lithium metal electrode and a polymer electrolyte and found 

that the interface resistance depends on the lithium salts formed on the surface [35]. 

This interface resistance is sometimes called solid electrolyte interface (SEI) which is 

normally formed on the electrode in lithium-ion batteries during the first few cycles 

[10]. SEI films consist of many insoluble materials including lithium oxides (LiOx), 

lithium carbonate (Li2CO3), lithium fluoride (LiF), lithium hydroxide (LIOH), etc [10, 

36]. Hence, the solid discharge products (Li2O2 and Li2CO3), formed on the active 

surface of the Li-air batteries, are similar in chemical and physical properties to those of 

SEI layer. Therefore, the model used the electrical resistivity of SEI to define the 

electrical resistivity of Li2O2 (     ). The electrical resistivity of Li2O2 from the study 

of Li et al. (2001) is constant value as 50 Ω cm
2
 [35].  
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However, to develop a model which is close to the practical behaviour of a Li-air 

battery, the electrical resistivity of Li2O2 could be dynamical changed with Li2O2 build 

up during the battery discharging process. Thus, the electrical resistivity of Li2O2 is 

modified so that it is dynamically changed with the Li2O2 layer ( ) expressed in Eq. 

(3-48) [37] as follows: 

      =      [        ] (3-48) 

where   is the thickness of the discharged product film as defined in Eq. (3-27),    and 

   are the film resistivity constant with the value of 4.9   10
7
 and 3.6   10

-7
, 

respectively.  

 

It is worth noting that the constant value of      = 50 Ω cm
2
 was used only in the Li-air 

model in Chapter 4, and the dynamic value of       in Eq. (3-48) was applied 

thereafter. 

 

3.3.7 Oxygen solubility and diffusion in organic electrolyte 

Finding the appropriate electrolyte is currently one of the greatest challenges to 

achieving high performance in Li-air batteries [38]. It was found that electrolyte 

formulation has a substantial effect on both cell performance and on the type of 

deposited product formed during discharging [22, 24, 34, 39]. The electrolyte with high 

oxygen solubility and diffusivity can provide a superior battery performance with high 

discharge capacity. Hence, the transport of the oxygen through the porous electrode, in 

which the electrolyte is filled all the void space, is an important set of parameters 

applied in the Li-air battery model.  

 

Read et al. (2003) studies the oxygen transport properties of several organic electrolytes 

by using the measurements of oxygen solubility and electrolyte viscosity [39]. The 

oxygen diffusion coefficients were also calculated from the Stokes-Einstein 

relationship. The oxygen solubility was measured in term of the Bunsen coefficient, 

which is defined as the volume of gas (oxygen) absorbed by unit volume of solvent. 

Read et al. (2003) calculated and reported the Bunsen coefficient in unit of “cm
3
 O2/cm

3
 

liquid” at 1 atm and 25 ºC for LiPF6 salt dissolved in various solvents as presented in 

Table 3-3 [39]. 
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Table 3-3: Bunsen coefficient of oxygen in various electrolytes 

Electrolyte
 a

 
Bunsen coefficient  

(cm
3
 O2/cm

3
 liquid) 

Concentration calculated 

from ideal gas law (mol dm
-3

) 

1 M LiPF6 PC:EC (1:1) 0.0482 0.00197 

1 M LiPF6 PC 0.0516 0.00211 

1 M LiPF6 PC:DME (1:1) 0.0722 0.00295 

1 M LiPF6 PC: DMC (1:1) 0.0729 0.00298 

1 M LiPF6 PC:DEC (1:1) 0.0787 0.00322 

1 M LiPF6 PC:DME (1:2) 0.0998 0.00408 

0.5 M LiPF6 PC:DME (1:2) 0.1218 0.00498 
a
 Propylene carbonate (PC), Ethylene carbonate (EC), 1,2-dimethoxyethane (DME), Dimethyl carbonate 

(DMC), Diethyl carbonate (DEC) 

 

From the Bunsen coefficient, the saturated oxygen concentration which is dissolved in 

the electrolyte and applied in the model can be calculated from the ideal gas law 

expressed as: 

        (3-49) 

where   is pressure from the experiment (1 atm),   is the volume of oxygen dissolved 

in electrolyte,   is the number of moles,   is the universal gas constant equal to 82.06 

cm
3
 atm K

-1
 mol

-1
, and   is the temperature form the experiment (298.15 K). As the 

Bunsen coefficient is reported in terms of units of cm
3
 O2/cm

3
 electrolyte, the saturated 

oxygen concentration is calculated from the ideal gas law and presented in Table 3-3. It 

can be seen that the type of electrolyte influences on the oxygen concentration leads to 

different battery performances.  

 

Because the oxygen concentrations vary depending on the electrolyte applied to the Li-

air battery, the model was adopted according to the moderate concentration of oxygen 

(0.00322 mol dm
-3

 from 1 M LiPF6 PC:DEC) to represent the dissolved oxygen 

concentration. Moreover, this electrolyte was also used to represent the transport 

properties of lithium salt described in Section 3.3.2.  

 

Knowing the electrolyte viscosity, the diffusion coefficient of oxygen (   
) in organic 

electrolyte was determined by the Stoke-Einstein relation as shown in the following 
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equation [39]: 

    
 

  

    
 (3-50) 

where   is the effective hydrodynamic radius of oxygen (121 pm),   is the Boltzmann 

constant (1.38 10
-23

 J K
-1

), and   is the electrolyte viscosity. The diffusion coefficient 

of oxygen calculated by Read et al. (2003) using Eq. (3-50) is 7  10
-6

 cm
2
 s

-1
 [39], 

which is lower than the diffusion coefficient of lithium ion. 

 

3.4 Summarised parameters 

The parameters described in this chapter are summarised in Table 3-4. The other 

parameters that were not mentioned before were also included. These basic parameters 

are applied in the Li-air model used in all chapters unless other values are specified.  

 

3.5 Numerical solution 

The solution of the governing equations coupled with the initial condition was obtained 

through a numerical method which is called the finite element method (FEM). In any 

system, the derivation of the governing equations to describe the behaviours inside the 

particular system requires a good understanding of the physical and/or chemical process 

along with mathematical models. However, it is extremely difficult to obtain an exact 

solution for these models, which include a set of coupled differential and algebraic 

equations. This problem can be overcome by using an approximate solution through 

numerical methods such as FEM. The finite element method is a computational 

technique that subdivides an object of interest into very small finite-size elements, 

called finite elements. Each element is assigned a set of characteristic equations 

(physical and/or chemical properties and boundary conditions), which are then solved 

simultaneously to predict the object’s behaviour following the assigned physical and 

chemical equations [40, 41].  

 

As the finite element method can divide the domain of an object into a set of simple sub 

domains or finite elements, then it is not limited solely to use in a domain with complex 

geometries. The basic steps of the finite element analysis of a problem are [41] as 

follows: 
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Table 3-4: Parameters used in the Li-air model (SI unit) 

Parameter Value Unit symbol Ref. 

Cell properties     

Thickness of APL 5 10
-8

 m LA [18] 

Thickness of separator 5 10
-5

 m LC [18] 

Thickness of  porous positive electrode 7.5 10
-4

 m L [18] 

Conductivity of positive electrode 10 S m
-1

   [42] 

Porosity 0.73 -    [43] 

Specific interfacial area of cathode 3.24 10
6
 m

2
 m

-3
   Calculated 

Electrical resistivity across Li2O2 film formation 50 Ω m
2
       [35] 

Electrolyte properties     

Electrolyte 
 
concentration 1000 mol m

-3
       [22] 

Solubility factor of oxygen 0.34 -    
 [42] 

External oxygen concentration in air at 1 atm 9.46 mol m
-3

         [42] 

Oxygen concentration at x=L (    
          3.22 mol m

-3
       [39] 

Solubility limit of Li2O2 dissolved in electrolyte 0.09 mol m
-3

      [10] 

Li
+
 diffusion coefficient 

a
 2.11 10

-9
 m

2
 s

-1
     [27] 

Oxygen diffusion coefficient  7 10
-10

 m
2
 s

-1
    

 [39] 

Conductivity of Li
+
 in electrolyte 

a
 0.9487 S m

-1
   [29] 

Transference number of Li
+ a

 0.2594 -    [29] 

               
a
 -1.03 - - [29] 

Kinetic parameters     

Reaction rate coefficient anodic current  1.11 10
-15

 m s
-1

    Fitted 

Reaction rate coefficient cathodic current 3.4 10
-17

 m
7
 s

-1
 mol

-2
    Fitted 

Dissolution rate coefficient of Li2O2 4.0 s
-1

    Fitted 

Exchange current density for anode 1 A m
-2

    Fitted 

Symmetry factor 0.5 -   [42] 

General parameter     

Mass density of Lithium peroxide (Li2O2) 2140 kg m
-3

       
 [44] 

Mass density of electrolyte solution (LiPF6) 1200 kg m
-3

        [44] 

Mass density of carbon 2260 kg m
-3

    [44] 

Particle radius in the electrode 25 10
-8

 m    [19] 

Operating temperature 298.15 K    

a
 vary with concentration 
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i. Discretization of the given domain into a collection of finite elements. 

ii. Derivation of element equations for all elements in the mesh. 

iii. Assembly of element equations to obtain the equations of the whole problem. 

iv. Imposition of the boundary conditions of the problem. 

v. Solution of the assemble equations. 

vi. Post-processing of the results. 

 

The first three steps are the major features of the finite element method and they are 

closely related. The discretization of the domain represents the complex geometries 

which are subdivided into geometric simple domains called elements. The shape of each 

element depends on the complexity and dimension of the geometry. For 1D the domain 

is simply divided into smaller intervals (used in this work); for 2D the domain can be 

divided into triangular or quadrilateral mesh elements; finally, in 3D the domain 

separation is done by tetrahedral, hexahedral, or prism mesh elements. The 

approximation functions used over each mesh element are in general algebraic 

polynomials which are derived using interpolation theory. These functions are 

dependent on several aspects, such as, geometry, number and location of nodes (which 

are selected points used to express the polynomial approximation), and quantities to be 

interpolated. The assembly of elements is based on the idea that the solution is 

continuous at the inter-element boundaries. The final system of algebraic equations is a 

numerical analogy of the original mathematical model [41, 45-47]. 

 

3.6 Building and solving a Li-air model using COMSOL 

In this work, the conservation equations and the boundary conditions described above 

were discretized using a finite element method and solved in a one-dimensional battery 

system using a commercial software package COMSOL multiphysics (version 4.3) [40]. 

The COMSOL software is designed to solve a set of coupled differential and algebraic 

equations. The battery simulation model was performed on a 32 bit Windows platform 

with 4 GB RAM, and Intel Core 2 Duo 2.93 GHz processor. The different transport 

equations and the electrochemical reactions were solved as time dependent until the cell 

voltage reached the stop condition during discharge and charge. The general steps to 

build the model are explained below: 

i. Build the Li-air battery geometry. Due to the one-dimension model, the 
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geometry of a Li-air battery was created as the straight line containing 3 

different domains following the thickness as demonstrated in Figure 3-1 (APL, 

separator and porous cathode). Each domain can be assigned with governing 

equations which represent the physical behaviour in that domain. 

ii. Add the COMSOL module. The COMSOL software not only capable to solve a 

set of coupled differential and algebraic equations, but also has the optional 

modules for specific application [40]. These modules provide the built-in physic 

interfaces in the particular discipline. In this work, “Batteries & Fuel Cell 

Module”, had been applied to the Li-air model. This module provides 

customised physics interfaces for modelling of batteries and fuel cells. These 

physics interface have tools for building detailed models of the configuration of 

the electrodes and electrolyte in electrochemical cells. They include descriptions 

of the electrochemical reactions and the transport properties that influence the 

performance of batteries, i.e. transportation for concentrated binary electrolyte, 

porous electrodes and user-defined equations (modified Butler-Volmer equation, 

dynamic porosity change, specific interfacial area and electrical resistivity across 

Li2O2 interface). 

iii. Specify the governing equations. The model equations which describe the 

physical phenomena on the domains were assigned for each domain using the 

set of governing equation in Section 3.2. Note that this governing equations 

were described the physics in the form of porous cathode domain. The other 

domains also use the same governing equations without the porosity variable ( ). 

iv. Define the initial value. To solve the governing equations, the initial values for 

all variables, such as electrolyte concentrations, porosity, specific surface area 

and cell potential, must be specified to model. The initial values were chosen 

base on the experiments and the micrograph from the Scanning Electron 

Microscopy (SEM). The initial concentration of 1 molar was used due to the 

highest electrolyte conductivity as described in Section 3.3.2. The initial 

porosity of 0.73 was chosen from the literature which measures the pore volume 

by BET technique as shown in Section 3.3.3. The specific surface area was 

calculated from the micrograph of electrode prepared by our group (Section 

3.3.4). The initial cell potential was chosen as 2.96 V vs Li/Li
+
 due to the 

standard cell potential for Li2O2 formation. 

v. Build the mesh for 1D model. The meshing technique is one of the processes to 

solve the problem in the finite element method described in Section 3.5. The 
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mesh feature enables the discretisation of the geometry model into smaller unites 

of simple shapes (or mesh elements). This mesh generation divides a complex 

problem into small elements to solve accurately solution. In this work, the 

geometry for a Li-air model was divided in 5027 mesh elements (all in 

intervals). The software can create a mesh for the simulation domain. There are 

different levels of size that the user can select to mesh the domain (Extremely 

fine, Extra Fine, Finer, Fine, Normal, Coarse, Coarser, Extra coarse, Extremely 

coarse). These mesh sizes do not affect much on the results obtained from 

simply 1D model. However, they significantly impact on the simulation time 

used to converge to solution, i.e. the smaller mesh size on the domain, the more 

usage time to find the solution. In a Li-air model, the “Extra fine” was used to 

create a mesh. 

vi. Create the study for solving the model. There are many study type provided in 

COMSOL software to be selected depending on the behaviour of the problem. 

Two common studies are “stationary study”, which is used for a stationary or 

steady-state situation where all variables are not depend on time, and “time 

dependent study”, which is used for transient simulation using a time dependent 

solver for computing the solution over time [40]. In a Li-air model, the 

mechanism and structure always changed with time during discharge and charge 

so that the time dependent study was chosen. In COMSOL, the solver is a 

numerical technique for finding approximate solution to boundary value 

problems for differential equations. For the time dependent problem, the 

Newton’s method (also known as the Newton-Raphson method) was selected to 

solve the model equation [40]. The maximum number of iterations was set to 25. 

The solution was considered as a converged solution when the difference 

between the two results was less than 10
-4

 (relative tolerance) for all variables. 

The number of 25 was specified because the simulation can find a converged 

solution. If the number is lower than 25, the solution are not meet the criteria 

(relative tolerance less than 10-4) and cannot converge to solution. 

vii. Specify the stop conditions. These conditions stop the solver when a specified 

condition is fulfilled. For a Li-air battery, the battery potentials were specified to 

stop the solver at 2.2 V and 4.2 V for discharge and charge process, respectively. 

These voltages are the stop voltage for discharge (2.2 V) and charge (4.2 V) 

process in galvanostatic operation of Li-air battery. If the Li-air battery is 

discharged lower than 2.2 V, the irreversible products such as Li2O and Li2CO3 



                                                                                            Chapter 3: Li-air Model 

86 | P a g e  

 

occur instead of desired Li2O2 which is reversible during charge. Likewise, if the 

battery is charged higher than 4.2 V, the carbon is corroded to form CO2 and 

finally product Li2CO3. 

viii. Create the results. All data from the simulated models were obtained by the 

post-processing step. 

 

These are the main steps used to build and to solve the Li-air battery model. The 

simulation time to obtain the solution was around 20-35 minutes depending on the 

complication of the models. 

 

3.7 Conclusion 

A micro-macro homogeneous mathematical model was developed for a rechargeable Li-

air battery using a concentrated binary electrolyte theory. All phenomena in the Li-air 

battery were described using differential and algebraic equations, which were based on 

the physical and chemical behaviour of the species and battery processes. All the 

transport processes were taken into account when considering the main feature which 

occurred in the Li-air battery. 

 

The main features of this model were the considerations of the time and space 

dependence of the battery system, the microscopic behaviours of the local mass 

transport through the discharge products (Li2O2) layers and the potential loss from the 

resistivity of lithium oxides film, and the dynamic change of the active surface area and 

the porosity with the Li2O2 growth. It is also important to note that the majority of the 

system parameters and species properties were treated as dependent variables. In order 

to solve these equations, a commercial software package was used to solve and analyse 

the battery system through the finite element method. 

 

In summary, the developed model, which included the important details of battery 

feature, can be used to describe the behaviour of Li-air batteries as well as to optimise 

the performance and structure of these battery electrodes. 
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Chapter 4: Modeling the Micro-Macro Homogeneous of a Li-air 

Battery  

 

In this chapter, a one-dimensional micro-macro homogeneous model for a Li-air battery 

with a non-aqueous electrolyte is presented. The model incorporates the flooded porous 

cathode electrode with a concentrated binary electrolyte theory described in Chapter 3. 
The dynamic behaviour of the porous cathode was determined by a numerical solution 

of the combined continuity, transport and kinetics equations. This model considered the 

microscopic behaviour of the local mass transfer between lithium peroxide (Li2O2) layer 

inside the cathode and the active surface morphology changing with the Li2O2 growth. 

The main purpose of this model was to develop the Li-air battery model including the 

microscopic behaviour and to predict the battery’s performances in term of various 

parameters. Initially, the model in this chapter only considers the Li2O2 as the discharge 

product during Li-air operation. Then, the developed model included the Li2CO3 from 

the electrolyte degradation reactions to create a more realistic Li-air model which is 

closer to the practical Li-air batteries as presented in the next chapter.  

 

4.1 Introduction 

The development of high performance and light-weight energy storage devices has 

recently focused on the rechargeable lithium-air batteries. Owing to their high energy 

density, which is theoretically up to 11,640 Wh kg
-1

 (which is about 10 times greater 

than well-known lithium-ion battery), such batteries are now considered as one of the 

promising alternatives to lithium-ion batteries with potentially wide applications, from 

small portable electronics to electric vehicles. The first Li-air system with a non-

aqueous electrolyte was presented by Abraham and Jiang in 1996 [1]. After their 

promising rechargeable ability was demonstrated by the Bruce group [2], Li-air batteries 

have attracted much more attention among many research groups [2-7].   

 

As shown in Figure 4-1, a Li-air battery contains a metal lithium anode, a solid polymer 

separator and a porous carbon or catalyst-loaded carbon air electrode filled with an 

organic electrolyte comprising lithium salt dissolved in an aprotic solvent. The porous 

carbon electrode provides a site for the electrochemical reduction of oxygen. During the 

battery’s operation, oxygen (coming from the external air) is dissolved in the 
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electrolyte, penetrates through the pore of the cathode and reacts with the lithium ion 

(Li
+
) at the active site. It is important to understand the oxygen reduction mechanisms, 

including the intermediate steps (e.g. formation of discharge products).  

 

Figure 4-1: Schematic diagram of a computation domain for a Li-air cell during 

discharge showing 3 sub domains. The inset demonstrates the porous carbon cathode 

flooded with electrolyte. 

 

Up to now, there have been various mechanisms for oxygen reduction reactions (ORR) 

depending on the types of electrolytes, catalysts and battery operating conditions. Peng 

et al. (2011) [8] investigated in situ spectroscopic data of oxygen reactions in a non-

aqueous electrolyte and found strong evidence that lithium superoxide (LiO2) is indeed 

an intermediate species during oxygen reduction before its disproportion in relation to 

the final Li2O2 product. For battery charging, the reaction is simply the oxidation of 

Li2O2 directly into oxygen and Li
+
 without passing through the intermediate LiO2 route. 

Based on literature [1, 8-10], the model assumes the following battery reactions: 

Anode                           (4-1) 

Cathode                                   (4-2) 

                        (4-3) 

Combining 

 Eq. (4-2) and Eq. (4-3) 
                                  (4-4) 
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All standard reaction potentials shown above are measured with reference to the lithium 

electrode (    ). Li2O2 is the main reaction product which is considered in this model 

because it is insoluble in the organic electrolyte and could cover the active surface area 

inside the porous cathode as well as block the pathway for reactive species (Li
+
 and 

oxygen). This behaviour prevents further reactions inside the cathode and contributes to 

the end of the discharging of the battery [10, 11]. Zhang et al. (2010) found that the 

fraction of the discharged Li2O2 can be further converted to Li2O at a high discharge 

voltage below 2 V [10]. Therefore, the conversion of Li2O2 to Li2O is not considered 

(Eq. (4-4)) because, if anything occurs at all, it only occurs at a significantly more 

negative (lower) potential below 2 V, which is beyond the potential range of the model.  

 

Thus, a micro-macro homogeneous mathematical model, dealing with the entire 

electrode-electrolyte cell system as two continua (one from the electrode matrix and the 

other from the solution filling in all the space of the electrode), is developed for the 

cycling operation of a porous cathode of a rechargeable Li-air battery using a 

concentrated binary electrolyte theory [12, 13]. The model predicts the time dependence 

of electrolyte concentration, non-uniform porosity and reaction rate. A more accurate 

kinetic reaction in a porous cathode is established by including the dependency of the 

diffusion transport on reactant concentrations and the solubility limit of the product. 

Important parameters, such as porosity and thickness of electrode, electrolyte transport 

properties and surface activity, are investigated through this modeling study. The model 

predicts the direction of improving the Li-air battery performance in terms of the 

discharge product formation and dynamic model parameters. 

 

In a different way from previous model approaches [14, 15], assuming that the cathode 

only contains a large number of cylindrical pores without considering the macroscopic 

aspects, our model considers electrochemical kinetic dependency on both Li
+
 and 

oxygen species and includes local mass transport through the solid Li2O2 layer. In 

addition, variable physical and chemical properties are carefully applied in the model 

based on available experimental data which has been published. Therefore, this model 

can be used to describe the behaviour of Li-air batteries as well as to optimise the 

performance of these batteries. 
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4.2 Model Development 

4.2.1 Model description 

A mathematical description for a prismatic Li-air battery has been developed involving 

the conservation of mass and current, species transport, and kinetic reaction in the 

cathode and separator to clarify the mechanism inside the cell. The model used in this 

work is a Li-air cell consisting of a thin lithium sheet negative electrode, an anode 

protective layer (APL), a separator, and a porous carbon oxygen/air cathode filled with 

an organic electrolyte as shown in Figure 4-1. Current collectors were placed at the back 

of each electrode. Therefore, the one-dimensional computational domain was divided 

into 3 different sub domains: an APL layer, a separator layer and a porous cathode 

layer. 

 

A concentrated binary electrolyte theory is used to describe the motion for each species 

in the electrolytic solution. The Li2O2 formation inside the porous cathode is presented 

using a macro-homogeneous porous model, defining the electrode by its porosity which 

is initially uniform but changes during the battery discharge. The macroscopic theory of 

porous electrode treats the solution and solid matrix phases as superimposed continuum. 

The details of governing equations and parameters are described in Chapter 3. 

 

4.2.2 Model assumptions 

In addition to the general assumption discussed throughout Chapter 3, the following 

assumptions were used with this particular model:  

i. The Li2O2 was the main reaction product (Eq. (4-2)) and was only formed inside 

the porous cathode. 

ii. The electrolytes used in Li-air batteries assumed a binary monovalent electrolyte 

which consists of a single salt in a homogeneous organic solvent mixture. 

iii. The Li
+
 diffusion could be simulated by the concentrated solution theory. 

iv. The pores within cathode were full of liquid phase electrolyte (flooded 

electrode). 

v. The oxygen was assumed to dissolve in the organic electrolyte with the saturated 

concentration initially. 

vi. The convection for mass transport was negligible inside the Li-air battery. 

vii. The Li-air cell was operated in isothermal condition so that the thermal effect is 

not considered. 
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4.2.3 Governing equations 

Taking into account all assumptions, the governing equations described in Chapter 3 

can be summarised in Table 4-1. The definitions and expressions of all parameters are 

referred to in Chapter 3. It is worth noting that the governing equations in Table 4-1 are 

derived for the porous cathode sub domain layer. The same governing equations are 

applied to the other layers except that there is no reaction in those layers. 

 

Table 4-1: Governing equations used in the micro-macro homogeneous model 

Equation description   

1. Transport of species   

Species material balance 
      

  
          (4-5) 

Molar flux for Li
+
                  

    
 

 (4-6) 

Molar flux for oxygen    
             

 (4-7) 

2. Conservation of charge   

Solid-phase current density               (4-8) 

Liquid-phase current density              
       

 
      (  

    

      
)        (4-9) 

Charge conservation             (4-10) 

Charge transfer current density          (4-11) 

3. Rate expression at cathode   

Butler-Volmer equation 

  
  

   (        )   [
       

  
  ]

           
 (     )   [

    

  
  ] 

 

(4-12) 

4. Rate expression at anode   

Butler-Volmer equation      [   (
       

  
  )     (

    

  
  )] (4-13) 
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4.2.4 Boundary conditions 

All materials and species properties were computed using the methodology described in 

Chapter 3. Boundary conditions (Table 4-2) had to be applied for all variables of 

interest, in order to solve the governing equations (Eq. (4-5) –Eq. (4-13)). The boundary 

dimensions discussed in this section are referred to their position in Figure 4-1. To solve 

the governing equation for the battery cycling process, initial conditions are specified 

for all the species concentration inside the electrochemical battery, the porosity, the 

specific interfacial area, and the cell thickness. These initial values applied in the Li-air 

battery model are adopted from literature and summarised in Table 3-4. 

 

Table 4-2: Boundary conditions used in the micro-macro homogeneous model 

Conservation of species  

Boundary condition were imposed for Li
+
 and oxygen concentration, and for 

the solid and electrolyte current density       : 
 

   
    

         (4-14) 

      (4-15) 

     (4-16) 

     (4-17) 

Boundary condition           

     (4-18) 

Boundary condition       :  

   
   (4-19) 

               (4-20) 

The voltage of the cell was calculated by the difference between the electrode 

potential at cathode current collector and the electrolyte potential at the anode 

side 

 

                      (4-21) 

 

From Figure 4-1, a schematic view of the model cell can be formed consisting of four 

boundaries and three regions. The constant for oxygen concentration feeding at the right 

side of the cathode       can be estimated from the oxygen’s solubility     
  and the 

external concentration           as shown in Table 3-4. At the current collector or the 

back side of the carbon electrode      , the current density in the solid phase is equal 

to the applied discharge current density ( ), the current density in the electrolyte phase 

equals to zero, and the flux of each species is zero. At the carbon electrode/separator 
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interface        the continuous boundary conditions are specified for the fluxes of all 

species, i.e.    at   
  equal to    at   

 . The current density in the solid phase in this 

interface becomes zero, and the current density in the electrolyte then equals the applied 

discharge current density. These boundary conditions are summarised in Table 4-2. 

 

4.2.5 Solution technique 

The conservation equations and the boundary conditions described above were 

discretized using a finite element method and solved in one-dimensional battery system 

by commercial software package COMSOL multiphysics (version 4.2a). The COMSOL 

software is designed to solve a set of coupled differential and algebraic equations and 

the battery simulation model is performed on a 32 bit Windows platform with 4 GB 

RAM, and Intel Core 2 Duo 2.93 GHz processor. The different transport equations and 

the electrochemical reactions were solved as time dependent. The solutions were 

considered as converged solutions when the differences between the two results were 

less than 10
-4

 (relative tolerance) for all variables. 

 

4.3 Results and Discussion 

4.3.1 Effect of applied current density 

The simulated voltage-capacity curve of the Li-air battery during discharge and then 

charge in 1 M LiPF6 dissolved in an organic solvent between 2.4 and 4.2 V vs. Li/Li
+
 at 

0.1 mA cm
-2

 is shown in Figure 4-2. It can be seen from Figure 4-2 that the simulated 

results match the experimental voltage well during discharge at 1 atm of oxygen [7]. 

During discharge, the cell potential fell steeply at the beginning due to the high kinetic 

resistance for the oxygen reduction reaction [16, 17], from a voltage of 3.4 V to a 

plateau at around 2.7 V, and decreased continuously to 2.4 V. As the battery starts to 

operate in discharging phase, saturated oxygen dissolving in the electrolyte solution is 

consumed. Consequently, the discharge overpotential or activation losses become 

greater and thus the potential falls at the beginning. The reason for termination of the 

discharge process was increased polarisation because solid Li2O2 were formed and 

passivated the surface of the pores [18]. 

 

In the charge process, the voltage increased sharply to reach plateau at about 4.0 V and 

recharging occurred at 4.0-4.2 V as shown in Figure 4-2. From the model result, the 

large charge overpotential can contribute to the limited solubility of solid Li2O2 in the 
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non-aqueous electrolyte, which results in the high polarisation during charge process. In 

practice, there may be a number of other contributing factors for the large charge 

overpotential other than the low solubility of Li2O2, such as poor electronic conductivity 

of Li2O2 [19], and contaminants of Li2CO3 in the discharge products from electrolyte 

decomposition [20]. 

 

Figure 4-2: Voltage-capacity curve on discharge then charge for a Li-air battery at a rate 

of 0.1 mA cm
-2

. The electrolyte contains 1 M LiPF6 dissolved organic solvent. The 

oxygen solubility factor in the electrolyte is 0.38. The cathode electrode thickness is 750 

μm with porosity of 0.73. The cell cycle is simulated between 2.4 and 4.2 V in pure 1 

atm of oxygen at operating temperature 298.15 Kelvin. The model compares to the 

published data [7]. 

 

The discharge cell potential at around 2.5-2.7 V was also compared to our group’s 

previous report  and showed a good agreement for a similar battery discharged in 1 atm 

oxygen as shown in Figure 4-3 [21]. Although some of the parameters, such as carbon 

material and electrolyte solution, applied in the model are different from the 

experimental data in Figure 4-3, the model results and experimental data showed 

similarities, suggesting that the model is a promising tool to identify the Li-air cell 

mechanisms and forecast the cell performance for design and scale-up. The discharge 

capacity based on weight of carbon for the case with the parameters in Table 3-4 was 

about 722 mAh gcarbon
-1

. From the model simulation, the potential rise at the end of 
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charge process results from the deficiency of the Li2O2 dissolving in the electrolyte. 

Therefore, the charging overpotential suddenly increased. 

 

Figure 4-3: Voltage-capacity curve on discharge then charge for a non-aqueous Li-air 

battery at a rate of 0.1 mA cm
-2

. The other parameters used in the model are the same as 

described in Figure 4-2. The model compares to our group’s experiment. 

 

Figure 4-4: Change of positive electrode over-potential during discharge at a rate 0.1 

mA cm
-2

 at different discharge state (0% = battery is fully charged). 
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Figure 4-5: Local concentrations of oxygen profile inside the Li-air cell during 

discharge at a rate 0.1 mA cm
-2

 at different discharge state (0% = battery is fully 

charged). The other parameters used in the model are the same as described in Figure 

4-2. 

 

As shown in Figure 4-4, the discharge process was terminated by a rapid increase in 

polarisation from 200 mV at the start of battery discharge to 550 mV at the end of 

discharge (100% discharge state) due to the oxygen concentration limitation resulting 

from solid Li2O2 formation on the cathode surface, inhibiting the flow of reactants 

(oxygen, Li
+
, and electrons) to the active surface as shown in Figure 4-5.  

 

Figure 4-5 presents the oxygen concentration profiles inside the cell during battery 

discharging at various discharge states. The oxygen concentration decreases at the 

oxygen feed side of the cathode and oxygen cannot diffuse further inside the electrode 

because of the continuous growth of Li2O2 solid on the active surface of the porous 

carbon in an electrode. The deposition of this solid product diminishes the available 

pores for electrolytes resulting in either increasing Li2O2 insulated film or pore 

blocking. Both phenomena lead to the restriction of oxygen transportation and severely 

limit the cell’s capacity. As can be seen from Figure 4-5, the region near the 

separator/cathode interface (dimensionless near 0-0.1) demonstrates very low oxygen 
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concentration (0.3 mol m
-3

) at 25% discharge state and no oxygen is presented at 100% 

discharge state. 

 

To overcome this problem, the suitable carbon material should be used with a 

sufficiently large pore size distribution over the entire electrochemically active surface 

as a cathode to provide enough space for the discharge products. The effect of different 

initial cathode porosities is presented later in Section 4.3.4. The variation of the cathode 

porosity as a function of space and time for a discharge current of 0.1 mA cm
-2

 is 

presented in Figure 4-6. As the diffusion coefficient of oxygen is very low compared to 

that of Li
+
 species in this non-aqueous electrolyte, the porosity falls predominantly at 

the oxygen feed side of the cathode due to the Li2O2 formation. As the extent of 

discharge increases to 100% discharge state the porosity falls almost to zero and thus 

blocks the diffusion of oxygen species into the cell, as already presented in Figure 4-5. 

 

Figure 4-6: Local porosity profile inside the Li-air cell during discharge at a rate 0.1 mA 

cm
-2

 at different discharge state (0% = battery is fully charged). The other parameters 

used in the model are the same as described in Figure 4-2. 

 

Figure 4-7 shows the effect of applied current density on the simulated discharge curves 

for a Li-air battery using the same cathode details as shown in Figure 4-2. The discharge 

capacity demonstrates a large decrease from 1350 mAh gcarbon
-1 

at low current density of 
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0.05 mA cm
-2

 to 213 mAh gcarbon
-1

 at a high current density of 1 mA cm
-2

. This is 

consistent with experiments published by Read (2002) [7] and indicates a similar trend 

to that of previous groups in that the current density has significant effects on the Li-air 

battery’s capacity [22, 23]. Moreover, the discharge voltage plateau is also lower with 

increasing current density.  

 

The capacity loss at the high discharge rates can be discussed in terms of the transport 

limitation of oxygen diffusion through the cathode flooded with electrolyte, which 

cannot maintain the electrochemical reaction (oxygen-diffusion limitation). Thus, 

oxygen reduction occurs in a small region close to the cathode-current collector 

interface as the discharge rate increases. Moreover, the rapid porosity reduction due to 

the deposition of Li2O2 on the surface of the active area also limits oxygen transport into 

the cell and incompletely utilises the full capacity of the electrode porosity. 

 

Figure 4-7: Comparison of the voltage-capacity curve between the model and 

experiment for a non-aqueous Li-air battery at different discharge rate (a) 0.05 mA cm
-2

, 

(b) 0.1 mA cm
-2

, (c) 0.2 mA cm
-2

, (d) 0.5 mA cm
-2

, and (e) 1.0 mA cm
-2

. The other 

parameters used in the model are the same as described in Figure 4-2. 

 

For a battery on charge, after the provided solid lithium peroxide (      
  has been 

produced during discharging, there will be a finite Li2O2 concentration (      
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dissolved in solution (saturation concentration). The rate of oxidation reaction (battery 

charging) would be constant and will only decrease when the solid Li2O2 is consumed 

or       
 goes below the solubility limit       . Therefore, the model assumption 

applied on charge is that the dissolution rate         of solid peroxide is quick compared 

to electrochemical reaction and can be written in Eq. (4-22). The dissolution rate 

equation is included for       
 species balance in Eq. (4-5) during battery on charge and 

the driving force term for this reaction is when the       
 decreases below its solubility 

in the electrolyte       . It can be expressed as follows: 

               
            

  (4-22) 

where    is the dissolution rate constant for Li2O2 during charge which assumed very 

fast, and      is the solubility limit of Li2O2 dissolved in organic electrolyte.  

 

In the charge process, the voltage increased sharply to reach a plateau at about 4.0 V as 

shown in Figure 4-2 and this is largely consistent with the published charge curve at the 

same charging rate with a slight difference [7]. The charge capacity is almost equal to 

its capacity when discharging (discharge and charge capacity 722 and 674 mAh gcarbon
-1

, 

respectively). Hence, this model, in which the published parameters are applied, can be 

used to describe the Li-air battery behaviour as well as optimise the cell performance 

and will be compared later to the actual experimental data which was generated in our 

lab. 

 

4.3.2 Effect of oxygen solubility 

One of the major drawbacks of current Li-O2/Li-air batteries is the low current densities 

at which the cell operates. The important factor that limits the performance of a Li-air 

battery is the solubility of oxygen in the electrolyte. It was summarised from the work 

of Read et al. (2002) that, to improve the performance of Li-air batteries, one should 

either increase the diffusion coefficient of oxygen or increase the oxygen solubility in 

the organic electrolyte to enhance the reaction rate of the cathode so that the solid Li2O2 

efficiently fills in the entire pores [7, 11]. In this section, the solubility of oxygen is 

varied in the model to simulate the cell cycling behaviour. In practice, this parameter 

can be increased by using a solvent with a high capability to dissolve oxygen, such as a 

solvent based on perfluorinated solvents or ether-based electrolytes [24]. When the 

solubility of oxygen is increased from the base case of 3.22 mol m
-3

 to a high solubility 



                       Chapter 4: Modelling the Micro-Macro Homogeneous of a Li-air Battery  

104 | P a g e  

 

of oxygen concentration of 9.46 mol m
-3

, the discharge specific capacity and specific 

energy of a Li-air cell increase as is shown in Figure 4-8. The battery capacity when 

discharged at a  low current density 0.1 mA cm
-2

 increased  from 722 mAh gcarbon
-1  

at
 

the low oxygen solubility (oxygen concentration 3.22 mol m
-3

)  to 1400 mAh gcarbon
-1 

at 

the highest oxygen solubility (oxygen concentration 9.46 mol m
-3

). 

 

Figure 4-8: Effect of oxygen solubility at a rate of 0.1 mA cm
-2

 on the specific capacity 

and energy for a Li-air battery. The other parameters used in the model are the same as 

described in Figure 4-2. 

 

Moreover, it can be seen from Figure 4-9 that the discharge potential of the Li-air 

battery also increases, from ca. 2.68 V to 2.80 V with the highly dissolved oxygen 

concentration in the electrolyte. The cell performance is enhanced because the oxygen 

can substantially diffuse further inside the porous structure when a solvent with a 

greater solubility of oxygen is used. For the battery cycling, it is apparent from the same 

figure that no significant difference can be seen from the charge potentials of Li-air 

battery at various oxygen solubilities, i.e. increasing dissolved oxygen will not affect the 

cell’s performance significantly on the charging period as can be appreciated from the 

kinetic oxidation reaction. 



                       Chapter 4: Modelling the Micro-Macro Homogeneous of a Li-air Battery  

105 | P a g e  

 

 

Figure 4-9: Effect of oxygen solubility at a rate of 0.1 mA cm
-2

 on the voltage-capacity 

curve on discharge then charge for the Li-air battery. The other parameters used in the 

model are the same as described in Figure 4-2. 

 

It is interesting to note that the difference in discharge capacity among the works 

reported previously [7, 9, 18, 24] is largely as a result of the diverse properties of 

electrolytes to dissolve the distinct amount of soluble oxygen. A recent study by Lu et 

al. (2011) [24] showed that the high discharge capacity of Li-air battery can be 

attributed to higher oxygen solubility in the electrolyte with 1,2-dimethoxyethane 

(DME) used in his work than that oxygen solubility in the electrolyte with propylene 

carbonate (PC). From his work, the solubility of oxygen in the electrolyte with DME is 

around 8.76 mol m
-3

 providing the specific capacity 2,600 mAh gcarbon
-1

 at low discharge 

current density of 250 mA gcarbon
-1

 (which compares to approximately 0.1 mA cm
-2

 in 

our simulation). This capacity is higher than in our work (only 1,400 mAh gcarbon
-1

) with 

the same solubility of oxygen concentration. Many possible explanations could account 

for this but one factor might be that the diffusion coefficient for oxygen in our model (7 

x 10
-10

 m
2
 s

-1
) is lower than the one in electrolyte with DME (4 x 10

-9
 m

2
 s

-1
) and the 

transference numbers describing the fraction of the total current carried by Li
+
 in a 

solution are different between the two electrolytes. However, if these parameters are 

applied in our model including the solubility of oxygen in DME (8.76 mol m
-3

) at low 
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discharge current density of 0.1 mA cm
-2

, the cell capacity from our simulation (2,400 

mAh gcarbon
-1

) almost equals the cell using DME electrolyte. Therefore, this developed 

model can be appropriately used to predict the behaviour of Li-air battery when 

changing detailed parameters.  

 

4.3.3 Effect of lithium peroxide solubility 

The discharged products of a Li-air battery, Li2O and Li2O2, are not very soluble in a 

non-aqueous electrolyte and are also considered as one of the main reasons that limit the 

battery’s performance. Therefore, introducing some additives or co-solvents to the 

electrolyte solution can partially enhance the solubility of the discharged products and 

improve the battery performance. It has been demonstrated that adding 

tris(pentafluorophenyl) borane (TPFPB) can substantially increase the solubility of 

Li2O2 in carbonate based solvent from very low amount of 0.19 mol m
-3

 to 190 mol m
-3

 

[25]. Consequently, it is interesting to use the model to simulate the variation of Li2O2 

solubility on performance.  

 

On addition of the TPFPB additive, not only does the solubility of the lithium oxide 

increase but also both the Li
+
 transference numbers and the electrolyte conductivities 

are enhanced for those electrolytes with added TPFPB complex [25]. Xie et al. (2008) 

reported that the addition of TPFPB increases the Li+ transference numbers (  ) as high 

as 0.7 (   equal to 0.26 applied in the model) [25]. The increase in both transference 

numbers and conductivity was not considered in our current model which is focused 

only the effect of Li2O2 solubility. From the data in Figure 4-10, it is apparent that 

increasing the solubility of Li2O2 in the electrolyte does not affect the discharge voltage 

and specific capacity of the Li-air cell’s performance. However, there is a significant 

improvement in the charge cycling cell voltage, i.e. the magnitude of charge voltage 

decreased by approximately 400 mV at higher Li2O2 concentration dissolved in the 

electrolyte. The improvement in charge potential in the case of increasing the Li2O2 

solubility is related to better surface oxidation reaction kinetics (Eq. (4-12). 
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Figure 4-10: Effect of Li2O2 solubility factor at a rate of 0.1 mA cm
-2

 on the voltage-

capacity curve on discharge on discharge then charge for the Li-air battery. The other 

parameters used in the model are the same as described in Figure 4-2 

 

4.3.4 Effect of kinetic rate constant and porosity 

As the cell’s performance depends on the porous electrode, one option to improve the 

battery’s operation is that the applied catalysts, such as metal oxide catalysts and noble 

metal catalysts, with carbon active materials can reduce the overpotential and thus 

increase the cell’s efficiency. To investigate the effect of different catalysts on the 

battery’s behaviour, the effect of cathodic rate constant (    on the discharge voltage of 

the cell as a function of the specific capacity is shown in Figure 4-11. This rate 

coefficient is assumed to be constant and having a uniform distribution inside the 

cathode. As can be seen from the results in Figure 4-11, the discharge voltage plateau 

gradually increases with the high value of    due to the reduced overpotential of the 

cathode electrode. The value of 3.4 10
-16

 m
7
 s

-1
 mol

-2
 of    demonstrated an onset 

voltage of about 2.85 V, and an average voltage plateau of 2.82 V (only 140 mV lower 

than estimated equilibrium potential of 2.96 V for Li2O2 formation). This can be 

attributed to the reasonably high reduction reaction activity at the carbon/catalyst 

interface with higher catalyst activity.  
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Figure 4-11: Effect of cathodic rate constant (  ) at a rate of 0.1 mA cm
-2

 on the 

voltage-capacity curve on discharge. The other parameters used in the model are the 

same as described in Figure 4-2. 

 

However, there was a relatively small increase in the specific capacity of the cathode at 

different rate constants. The results of this study do not support those of previous 

research [6, 18, 26] which demonstrate that the various catalysts can improve both the 

specific capacity and discharge voltage. A possible explanation for this might be that 

the carbon porosity is modified by the reaction with catalyst during the preparation [27]. 

As a result, some of the closed micro-pores are opened for the greater access of 

discharge products, and some open pores are widened. However, this effect which 

influences the battery capacity was not included in our model with applying the same 

cathode structure (carbon loading, thickness and porosity) in every case. 

 

For the case of varying initial cathode porosity, the pore structure of a porous carbon 

cathode is a significant factor in the Li-air battery’s performance. The large pore volume 

allows more spaces for the three-phase among carbon solid, liquid electrolyte and 

oxygen gas, able to facilitate the reaction in the electrode [22, 28]. The extra volume 

inside the cathode also provides more space for accommodating the solid discharge 

products. Thus, the model evaluated the effect of initial cathode porosity. When varying 
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the cathode porosity, the specific surface area of the cathode as described in Chapter 3 

was also changed and considered in each case following the expression below: 

    
   
  

 
       

  
 (4-23) 

The variations in specific surface area with the cathode porosity obtained from the 

relation in Eq. (4-23) are presented in Table 4-3. It is apparent that the specific surface 

area reduces with the increasing porosity due to the decrease in active material.  

 

Table 4-3: Specific surface and discharge capacity for different initial porosity 

Initial porosity 
Specific surface  

area (m
2
 m

-3
) 

Discharge capacity  

(mAh gcarbon
-1

) 

0.60 4.80 10
6
 466.83 

0.73 3.24 10
6
 714.97 

0.80 2.40 10
6
 874.51 

0.85 1.80 10
6
 1000.68 

 

As shown in Figure 4-12, the results show that the battery capacity increases with more 

space available to accommodate discharge products. The effect of porosity in the model 

can be referred to the pore structure of the cathode in practical Li-air batteries. If the 

carbon materials used to fabricate the cathode electrode have meso-pore or macro-pore 

structures, they are beneficial for accommodating discharge products, thus leading to a 

high discharge capacity [28, 29].  

 

It is worth noting that the changing of porosity in the model only affects the specific 

surface area of the cathode as shown in Table 4-3. This has no effect on the quantity of 

carbon loading on the electrode. Hence, the discharge capacities are calculated on the 

same basis of gram carbon to consider the effect of varying porosity only as presented 

in Table 4-3 and Figure 4-12. Moreover, it is assumed in relation to the porosity applied 

in the model that there are no micro-pore channels which are not utilised by lithium 

oxides inside the porous cathode, i.e. all the pore spaces have been accommodated by 

the discharge products. 
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Figure 4-12: Effect of initial cathode porosity at a rate of 0.1 mA cm
-2

 on the voltage-

capacity curve on discharge. The other parameters used in the model are the same as 

described in Figure 4-2. 

 

4.3.5 Effect of cathode thickness 

Besides concentrations and discharge conditions affecting the Li-air battery’s behaviour, 

the thickness of the cathode electrodes also plays an important role in the 

electrochemical performance. Figure 4-13 shows the cell discharge voltage as a function 

of specific capacity for the different cathode thickness. Obviously, the thicker the 

electrode, the lower the cell’s performance in term of specific capacity. This can be 

attributed to both the slow diffusion of oxygen dissolved in non-aqueous electrolyte and 

the long residence time moving through the thicker electrode. A number of 

experimental published works showed that the scanning electron microscopy (SEM) 

images of the cathode surface on the air side (   ) of the fully discharged battery 

were almost filled in the space by solid lithium oxides deposition [10, 24, 30], but this 

behaviour did not appear on the separator side (    ). To investigate the effect of 

cathode thickness, the dimensionless, Damköhler number, is introduced as shown in the 

equation below: 
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   ⁄

           
 ⁄

 (4-24) 

 

The Damköhler number defined in Eq. (4-24) expresses a ratio of current density of 

electrochemical reaction rate to oxygen diffusion rate, or it can be said to refer to the 

ratio of the characteristic time of oxygen diffusion to the reaction time. A unity of 

Damköhler number means an equal rate of surface electrochemical reaction and oxygen 

mass transport due to diffusion. From the Damköhler number (Da) for each cathode 

thickness in Figure 4-13, it indicates that all the numbers are greater than unity and the 

higher value (Da = 4.95) provides lower specific cell capacity (410 mAh gcarbon
-1

) when 

discharging Li-air at the current density of 0.1 mA cm
-2

.  

 

When the Damköhler number is large (more than unity), the Li-air performance is 

controlled by the diffusion of oxygen which has a low diffusion coefficient in non-

aqueous electrolyte and can also be affected by the tortuosity of the porous cathode. As 

a result, the cell demonstrated the small specific capacity as the thicker electrode and 

high value for the thinner electrode. To further calculate the Damköhler number, Table 

4-4 compares this number in relation to different cathode thicknesses and discharge 

current densities. The Damköhler number for the cathode thickness of 750 μm at 

different discharge rates as shown in Table 4-4 corresponds to the voltage-capacity 

curve in Figure 4-7 which describes the better Li-air performance as the low Damköhler 

number at small discharge rate. This study has shown that, to meet the high cell 

performance (Damköhler number lower than unity), the cathode electrode should be on 

average at a thickness of around 500-750 μm and operating on the low current density 

(0.05 mA cm
-2

). For the higher discharge rate or thicker cathode, the cell will suffer 

from the diffusion-controlled limitation which can overcome this problem using the 

electrolyte with high solubility and diffusivity of oxygen to reduce the Damköhler 

number. 
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Figure 4-13: Effect of cathode thickness on different Damköhler numbers at a rate of 

0.1 mA cm
-2

 on the voltage-capacity curve on discharge. The other parameters used in 

the model are the same as described in Figure 4-2. 

 

Table 4-4: Comparison of Damköhler number in different cathode thickness and 

discharge current densities for oxygen diffusion coefficient (   
          m

2 
s

-1
). 

Thickness 

(μm) 

0.05 (mA cm
-2

) 0.1 (mA cm
-2

) 0.2 (mA cm
-2

) 0.5 (mA cm
-2

) 
250 0.41 0.83 1.65 4.13 

375 0.62 1.24 2.48 6.19 

500 0.83 1.65 3.30 8.25 

750 1.24 2.48 4.95 12.38 

1000 1.65 3.30 6.60 16.51 

1250 2.06 4.13 8.25 20.64 

1500 2.48 4.95 9.91 24.76 

 

4.3.6 Electrolyte with high solubility Li2O2 additive 

One of the main issues during the operation of a Li-air battery is the build-up of the 

solid Li2O2 depositing and covering the active surface of the porous cathode. From the 

previous section, some amount of boron complex, e.g. tris (pentafluorophenyl) borane 

(TPFPB), can substantially increase the solubility of Li2O2 in a carbonate-based solvent 

within a limited concentration. Hence, it would be interesting to model the cell in the 
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absence of solid oxide formation in case the electrolytes have a high solubility of Li2O2. 

Without solid formation, the porosity and active surface area inside the cathode are 

assumed to be constant during the discharge operation. Then, the local concentration of 

Li2O2 increases continuously with time in the electrolyte. This may affect the density 

and viscosity of the electrolyte solution and the diffusivity of oxygen when high 

concentrations Li2O2 are encountered.  

 

The data for the density of electrolytes depending on concentration of Li2O2 is not 

known, therefore, we have adopted the information of solution density which is 

dependent on LiPF6 concentrations from [31]. The variation of electrolyte density is 

increased linearly with LiPF6 concentrations. Changes et al. (2002) measured the 

electrolyte density depending on LiPF6 concentrations between 0.2-1.5 molar at 25 °C 

[31] and this data is extrapolated to the desired concentration in the model as present in 

Table 4-5. The volume of the cell system is assumed to be constant during simulation.  

Similarly, the viscosity of the electrolyte solution also changes with salt concentration 

and this relation is applied in the model. Changes et al. (2002) [31] investigated the 

relative viscosity (  ) of a concentrated electrolyte solution by applying the Jones-Dole 

equation which was used to describe the viscosity of solutions when the salt 

concentration ( ) is varied as in the following expression: 

       ⁄           (4-25) 

where   and    (2.59 10
-3

 Pa s, in PC:DME solvent) are the viscosities of the solution 

and pure solvent respectively, and A and B are the coefficients which are 0.4 (M
-1

)  and 

1.10 (M
-2

), respectively. Moreover, the diffusivity coefficient of oxygen decreases with 

increasing viscosity of the electrolyte. To describe this behaviour, the relationship 

between viscosity and the diffusion coefficient of oxygen is given by the Stokes-

Einstein equation as follows:  

    
 

  

    
 (4-26) 

The definitions for each parameter in equation above are defined in Chapter 3 in the 

oxygen diffusion section. The variations of electrolyte density, viscosity, and diffusion 

coefficient of oxygen depending on the solution concentrations are summarised in Table 

4-5. These variables are applied in the Li-air model only in this section to describe the 

effect of electrolyte with high solubility Li2O2 additive. 
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Table 4-5: Variations of electrolyte density, viscosity, and oxygen diffusion coefficient 

depending on solution concentration 

Concentration 

(mol dm
-3

) 

Density 

(kg m
-3

) 

Viscosity 

(Pa s) 

Oxygen diffusion 

coefficient (m
2
 s

-1
) 

0.2 1135 2.71 10
-3

 6.65 10
-10

 

0.5 1163 2.59 10
-3

 5.89 10
-10

 

1.0 1207 3.07 10
-3

 4.41 10
-10

 

2.0 1306 4.09 10
-3

 2.32 10
-10

 

3.0 1403 13.69 10
-3

 1.32 10
-10

 

5.0 1595       10
-3

 5.62 10
-11

 

 

The results of cell voltage discharge at 0.1 mA cm
-2

 obtained in the model with and 

without the solid lithium oxide formation is shown in Figure 4-14a. The specific 

capacity predicted by the model without the formation of solid (546 mAh gcarbon
-1

) is 

lower than the model that includes the effect of the porosity change due to the Li2O2 

solid formation. The former also demonstrates a slightly lower discharge voltage 

plateau compared to the latter. This effect may be the result of the high density and 

viscosity of the electrolyte solution when highly soluble salts are encountered.  

 

As the salt concentration in electrolyte solution increased with time by the high-

dissolved discharge product of Li2O2, the oxygen diffusion rate fell because of the high 

salt concentration and increasing solution viscosity. It can be seen from the oxygen 

transport inside the porous cathode in Figure 4-14b that the decrease in oxygen 

concentration with discharge time is greater than the case with the solid Li2O2 formation 

(Figure 4-5) and the diffusion is limited very close to the cathode/current collector 

interface owing to the high resistance of oxygen transport in a highly viscous solution. 

 

The results of this study indicate that the high salt concentration which leads to an 

increase in the density and viscosity of the electrolyte severely deteriorates the Li-air 

performance at a higher rate than is the case with the solid Li2O2 formation. In order to 

use the electrolyte with high solubility of Li2O2, the discharged electrolyte needs to be 

replaced with the fresh one to maintain the performance of the Li-air battery. This 

mechanism with the circulating fresh electrolyte is presented in the next section in a Li-

air flow battery. 
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Figure 4-14: (a) Comparison of the Li-air cell discharge voltage at a rate 0.1 mA cm
-2

 

between cell with and without solid Li2O2 formation. (b) Local concentrations of 

oxygen profile inside the Li-air cell without solid Li2O2 formation during discharge at a 

rate 0.1 mA cm
-2

 at different discharge state (0% = battery is fully charged). 

 

4.4 A Li-air Flow Battery 

As mentioned earlier, although Li-air batteries have a remarkably theoretical energy 

density they still suffer from major problems as follows: (1) the battery’s discharge 

products (Li2O2/Li2O) are not soluble in organic electrolytes leading to deposits mostly 

near the air side of the porous air electrode because of the high oxygen concentration on 

this side. This leads to inhomogeneous distribution of the solid products on the pores of 
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electrode and limit the usage of the cathode volume. This behaviour leads to a 

deterioration in the battery’s performance on cycling as shown in Chapter 5; and (2) the 

low diffusion and solubility of oxygen in organic electrolyte limits the battery’s ability 

to operate at the high current and power densities.  

 

To overcome this problem, a new design structure of Li-air flow battery which consists 

of two functional units, an electrochemical reaction unit (ordinary Li-air battery) and an 

electrolyte recycling unit, was recently proposed [32-34]. In this system, a metallic 

lithium anode in an organic electrolyte and a porous cathode in an aqueous electrolyte 

are placed in the same compartment and separated by a lithium ionic conductor 

(LISICON) separator [32, 35]. Instead of using oxygen directly from the atmosphere, 

the electrolyte with saturated oxygen is circulated into the porous electrode of 

electrochemical reaction unit and thereafter it is replenished the oxygen concentration 

with an electrolyte recycling system as shown in Figure 4-15. 

 

Figure 4-15: Schematic representation of the developed Li-air flow battery with 

electrochemical reaction unit and electrolyte recycling unit. 

 

He et al. (2010) investigated a Li-air fuel cell with a flow design structure for 

discovering improved stability and performance in a battery [32]. The cell consists of 

two subunits: an energy conversion unit that performs the electrochemical reaction and 

a reaction-product recycling unit that collects/removes LiOH discharge product. The 

aqueous alkaline electrolyte was applied in this Li-air flow battery. However, the 
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oxygen in this system was still obtained from the atmosphere and not from the 

electrolyte recycling unit, which serves as the carrier medium to remove the discharge 

product (LiOH) and prevent corrosion under strong alkaline conditions. This new 

designed battery structure maintains galvanostatic discharge curve at 0.5 mA cm
-2

 for 

one week with a voltage plateau near 2.8 V and a high discharge capacity of about 

19,000 mAh g
-1

 (mass including carbon, catalyst and binder).  

 

A recent study by Chen et al. (2013) reported the first time of a high-rate rechargeable 

Li-air flow battery [34]. It consists of a lithium-ion conducting glass-ceramic membrane 

sandwiched by a lithium anode in an organic electrolyte and a carbon nanoform cathode 

through which oxygen-saturated aqueous electrolyte flows. The oxygen was bubbled 

separately in the electrolyte recycling unit to replenish its saturation before the 

electrolyte was circulated back to the electrochemical reaction unit to supply sufficient 

oxygen for high power output. The main advantage of the new design of Li-air flow 

batteries compared to conventional Li-air batteries is that oxygen is supplied from the 

aqueous electrolyte solution instead of diffusing from the window of the porous 

cathode. Hence, the battery performance is not limited by the oxygen’s diffusion along 

the cathode thickness any more. A Li-air flow shows a high capacity of 5 mA cm
-2

 and 

gives a power density of 7.64 mW cm
-2 

at a constant discharge current density of 4 mA 

cm
-2

.  

 

Therefore, it is interesting to develop the cathode structure of the present Li-air battery 

model into a flow battery system. The domain boundary that considers the Li-air flow 

battery in the two-dimensional model is shown as the dotted line in Figure 4-15. Thus, 

the flow battery model was operated in a two-dimensional system. To enable the flow 

system, a mathematical model which includes the convection term of oxygen 

concentration has been proposed to develop a continuous flow into the porous cathode 

in the direction of the y-axis and flow out at the bottom of the porous cathode as shown 

in Figure 4-15. The model assumed that the flow of electrolyte affected only the oxygen 

species in the Li-air flow system. 

 

Thus, the flow of saturated oxygen electrolyte maintains a uniform concentration of 

oxygen throughout the entry cathode electrode during the discharging battery. 

Therefore, the flux equation for oxygen mass transport expressed in Eq. (4-7) was 

modified to include the convection term as follows: 



                       Chapter 4: Modelling the Micro-Macro Homogeneous of a Li-air Battery  

118 | P a g e  

 

    
             

      
 (4-27) 

where     is the superficial velocity in y-axis direction which corresponds to superficial 

volume averages over a unit volume of the cathode electrode including both pores and 

matrix. This velocity is defined as volume flow rates per unit cross section of the 

electrode. Thus, to keep a constant oxygen concentration over the entire cell, the 

electrolyte was assumed to flow into the porous electrode on the y-axis direction at very 

low flow rate as 0.05 cm s
-1

. As a result, the system can simply be assumed to have a 

laminar flow and an average constant concentration of oxygen.  

 

Moreover, the circulated electrolyte in the flow battery model was used as the organic 

electrolyte in a way which was different from the published papers which used an 

aqueous electrolyte [32, 34]. This flow model also assumed that the discharge products 

were removed immediately after the oxygen reduction reaction with the flow of 

electrolyte, i.e. the concentration of discharge products was lower than their saturated 

concentration and thus there was no accumulation of the solid discharge products inside 

the pores of the cathode. To compare the battery’s performance between the flooded 

electrode and flow battery, the same model parameters as presented in previous section 

were applied to the flow battery. The biggest difference is that the saturated oxygen was 

circulated in the direction of the y-axis instead of accessing it from the atmosphere. 

 

With the same other parameters as presented in this chapter, the voltage-capacity curve 

on discharge at a rate of 0.1 mA cm
-2

 obtained from the Li-air model of the flooded 

electrode (without convection term) and the flow battery electrode can be compared in 

Figure 4-16. It is apparent that the flow electrode demonstrates a substantial increase in 

specific capacity for more than 1,000 mAh gcarbon
-1

 (discharged time equal to 19 days). 

Moreover, the discharge voltage plateau also increases for the new proposed type of 

electrode about 110 mV due to the steady distribution of oxygen concentration inside 

the cathode electrode compared to the diffusion-limited oxygen in flooded electrode 

(provided capacity only 722 mAh gcarbon
-1

). 

 

The solid discharge products (Li2O2 and Li2CO3) are the major factor that limits the 

discharge capacity of the Li-air with the flooded electrode.  Without the accumulation of 

these products, the surface area of the cathode can repeatedly perform the 

electrochemical reaction, and there are no voltage and active surface losses from the 
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solid resistivity and passivation, respectively. As can be seen from the discharge curve 

of flooded electrode in Figure 4-16, the discharge voltage gradually drops from 2.73 V 

to 2.58 V during discharge and reaches the voltage of 2.4 at the end of discharge due to 

the mass transport limitation. In contrast to the flow electrode, the discharge curve 

remains steady due to no accumulation of solid inside the porous cathode. Moreover, it 

is apparent that the developed flow electrode battery can provide the everlasting 

discharge capacity as long as the continuous supply of the oxygen through the porous 

cathode.  

 

Figure 4-16: Voltage-capacity curve on discharge for a non-aqueous Li-air battery 

compared between the flow electrode and flooded electrode battery at a rate of 0.1 mA 

cm
-2

. The electrolyte contains 1 M LiPF6 dissolved in an organic solvent. The cathode 

electrode thickness is 750 μm with a porosity of 0.73. 

 

The voltage-capacity curves on discharge at various discharge current densities obtained 

from the model of Li-air flow battery are presented in Figure 4-17. It is apparent that the 

flow battery can operate at a high current density and maintain the discharge 

performance for more than 17 days at all discharge rates. With the increase of applied 

current density, the discharge voltage linearly decreases. The operating voltage is 

maintained at 2.77 V at the low current density of 0.1 mA cm
-2

, and even at the high 

current density of 4 mA cm
-2

, the discharge voltage still keeps steady at 1.67 V. In 
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contrast to the case of a flooded electrode, the highest discharge current density was 

only 1 mA cm
-2

 with the discharge capacity at 200 mAh gcarbon
-1

, as presented in Figure 

4-7. 

 

Figure 4-18 clearly presents a linear decrease in the discharge voltage with the growth 

of applied current densities, while the power density sharply increases with the current 

density. The performances of the Li-air flow battery model follow the same trend of 

Chen et al. (2013) [34]. In their work, the acid electrolyte was flowed into the cathode 

electrode and showed that the discharge voltage decreased from 3.2 V at a current 

density of 1 mA cm
-2

 to 1.5 V at a high current density of 5 mA cm
-2

, and a Li-air flow 

battery provided the maximal power density of 7.46 mW cm
-2

 at the current density of 4 

mA cm
-2

 [34]. The difference in the flow battery performances between this model and 

their work results from the different electrolytes supplied to the cathode electrode, 

leading to the difference in standard cell potential (2.96 V in organic electrolyte and 

4.26 V in acid electrolyte). 

 

Figure 4-17: Comparison of the voltage-capacity curves on discharge for a non-aqueous 

Li-air flow battery at different current densities. The electrolyte contains 1 M LiPF6 

dissolved in organic solvent. The cathode electrode thickness is 750 μm with a porosity 

of 0.73. 
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This clearly shows that the new developed structure of the Li-air battery integrated with 

an electrochemical reaction unit and an electrolyte recycling unit provides a continuous 

reduction of inexhaustible oxygen supplied from the recycling unit. This design not only 

delivers a steady discharge voltage, but also allows the Li-air to operate at the high 

current densities. Meanwhile, the Li-air flow battery has the potential to deliver a high 

capacity and energy. In view of the model results, the developed Li-air flow battery 

could be a promising alternative battery structure for an energy source.  

 

Figure 4-18: The power performance for a non-aqueous Li-air flow battery at different 

current densities. The electrolyte contains 1 M LiPF6 dissolved in organic solvent. The 

cathode electrode thickness is 750 μm with a porosity of 0.73. 

 

However, the flow battery model in this study was based on the simplistic assumptions 

without considering the practical behaviour. The Li-air flow model presented above 

only investigated the main mechanisms of the real Li-air flow system. The following 

aspects are not included in the flow model: 

i. The metallic lithium is consumed during the continuous discharge and at the 

high current density. Its thickness could reduce with the battery’s operation and 

this leads to the cell’s termination. 

ii. The ohmic resistance of the lithium ion separator, which is a lithium-ion 

conducting glass-ceramic membrane, was reported as the predominant 

resistance (90 Ω m
2
) in the Li-air flow battery [34]. The flow battery system 
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needs the thick membrane to prevent the crossover of species and provide a 

stable separator. 

iii. The electrolyte regeneration rate of oxygen should be balanced to the oxygen 

reduction rate at cathode electrode of the Li-air battery. In this case, the volume 

of the electrolyte storage unit could be varied according to the energy output 

requirements so that the recycling unit has enough time to replenish the oxygen 

concentration. 

Clearly, the above aspects need to be investigated in the future for the development of 

the Li-air flow battery to create model results which are close to producing a practical 

Li-air flow system. 

 

4.5 Conclusion 

A micro-macro homogeneous one-dimensional model has been developed for the 

rechargeable Li-air battery using a concentrated binary electrolyte theory. The model 

successfully predicts the effects of an applied current density, solubility limits for both 

oxygen and Li2O2, a high degree of Li2O2 accumulation and the influence of the cathode 

structure. This model considers the time dependence and space dependence of the 

battery system and also includes the mass transport along the depth of the cell and the 

local mass transfer between Li2O2 layers and active surface morphology changing with 

the Li2O2 growth. The simulated cell potential for discharging is around 2.5-2.7 V and 

charging at around 4 V, which are in line with the experimental data. The nominal 

discharge capacity based on weight of carbon alone at 0.1 mA cm
-2

 is about 722 mAh 

gcarbon
-1

, which is in agreement with the experimental observation. Increasing the 

solubility limit of oxygen enhances the discharge capacity and also increases the cell 

discharge potential, but does not affect the charge potential. Improving the solubility of 

Li2O2 in the electrolyte can reduce the charging voltage but has little effect on the cell 

capacity. The present model can predict the potential and capacity of the battery and 

correlates the battery performance to parameters of reaction species and cathode 

structures with reasonable accuracy. 

 

Moreover, the new developed structure of a Li-air flow battery integrated with an 

electrochemical reaction unit and an electrolyte recycling unit can continuously deliver 

the discharge capacity from inexhaustible oxygen supplied from the recycling unit. This 

could be a promising alternative battery structure for the energy storage device.  
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Chapter 5: Modelling of Electrolyte Degradation and Cycling 

Behaviour in a Li-air Battery 

 

 

In this Chapter, a micro-macro homogeneous model was developed to understand the 

continuous deterioration of cycle performance and energy efficiency related with non-

aqueous rechargeable Li-air batteries. This includes the practical feature of Li2CO3 

formation which occurs by electrolyte degradation during battery cycling. Discharge 

products such as Li2O2 and Li2CO3, formed in various non-aqueous electrolytes can 

limit the cyclability and passivate the surface of the porous cathode. This model 

followed the same structure of the micro-macro homogeneous model discussed in 

Chapter 4. The main differences were the addition of electrolyte degradation and 

product formation of Li2CO3. With this model it was possible to create a more practical 

computational model for Li-air batteries in organic solvents. This model can be used to 

describe the behaviour of Li-air batteries as well as to optimise the performance and 

structure of these battery electrodes. 

 

5.1 Introduction 

The advantages in using non-aqueous systems are to avoid the problem of H2 evolution 

due to the reaction of lithium with water and prevent lithium metal corrosion [1]. For 

the non-aqueous system, the desired reactions during discharge process for Li-air 

batteries is the formation of lithium peroxide (Li2O2) from the oxygen reduction 

reaction with lithium ions (Li
+
) from the oxidation reaction at the anode according to 

following reactions 

Anode                           (5-1) 

Cathode                                  (5-2) 

Previous studies have identified Li2O2 as the main reaction product in the pores of 

cathode after battery discharging, with the process being reversible on charge [2-6].  Up 

to now, there have been various proposed different mechanisms for oxygen reduction 

reaction (ORR) with Li
+
 electrolytes depending on the type of electrolyte, catalyst and 

battery operating conditions.  
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A recent in-situ spectroscopic study of oxygen reaction in non-aqueous electrolyte by 

Peng et al. reported strong evidence that lithium superoxide (LiO2) is indeed an 

intermediate species during oxygen reduction before disproportion to the final Li2O2 

product [7]. On charge the Li2O2 is directly oxidised into oxygen and Li
+
 without going 

through the intermediate LiO2 route. However, the reversibility of Li-air batteries is still 

far for being ideal for use as energy storages because of the formation of many non-

desired products in the porous cathode. It has been demonstrated that these different 

discharge products strongly depend on the kinetics of the oxygen reduction, which is 

affected by the presence of a catalyst as well [3, 8, 9], and also by the type of 

electrolytes and solvents used in the Li-air batteries [10-15]. Generally, the electrolytes 

frequently used in these Li-air batteries are based on organic carbonate-based solvent 

owing to their success in Li-ion batteries. 

 

Organic carbonate-based electrolytes (e.g., LiPF6 in propylene carbonate, (PC) or 

ethylene carbonate (EC)) have been widely used in Li-air batteries [3, 4, 6, 12, 16-18]. 

However, recently it has been demonstrated that the cycle life of Li-air battery using 

carbonate-based electrolyte is mainly limited by the electrolyte decomposition between 

oxygen and electrolyte. This mechanism forms irreversible organic and inorganic 

carbonate species, such as lithium alkylcarbonates and Li2CO3 during discharging, 

rather than the desired Li2O2 which can reversibly produce oxygen on charging [12, 15, 

19-22]. Different characterization techniques have supported identification of these 

discharge by-products formed by reduction of carbonate-based solvent molecules that 

react with superoxide radical anions (  
    generated from single-electron reduction of 

oxygen [12, 14]. Therefore, a more stable electrolyte that does not produce the 

irreversible by-product formation during the cell operation is required for a truly 

reversible Li-air battery. 

 

Ether-based electrolytes are now attractive for the Li-air battery because of this 

compatibility with lithium anodes, more stable to oxidation potentials than organic 

carbonate solvent, safe and low volatility [11, 14]. Bruce and co-workers investigated 

the ether-based Li-air battery and demonstrated that the Li2O2 formed on first discharge 

and disappeared after 5 cycles [11]. However, they also found that even ether 

electrolytes decompose to give a mixture of Li2CO3, lithium formate (HCO2Li), lithium 
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acetate (CH3CO2Li), CO2 and H2O, and these discharge by-products accumulate inside 

the electrode with further battery cycling. The stability test on the discharge products in 

Li-O2 battery using the different types of organic solvents (e.g. glyme-based ether, 

carbonates, sulfoxides, phosphates, nitriles and ionic liquid) has been reported by Xu et 

al. [14]. By using various analyzed techniques, a large amount of Li2O2 was found in 

the discharged air electrode in glyme-based electrolytes (glymes are generally known as 

poly(ethylene glycol)dimethyl ethers)); however, Li2CO3 was also clearly detected in all 

the electrodes during discharge from all electrolytes studied with different solvents [14].  

 

Moreover, a recent study by the same group [22] demonstrated that the formation of 

Li2CO3 on the active electrode surface cannot be reversed during the charging step up to 

4.5 V which is higher than the reported charging voltage for Li-air battery (normal 

charge voltage up to 4.0 V). Therefore, Li2CO3 may be formed inside the porous 

cathode, regardless of most solvents used to date, and deteriorate the battery efficiency 

and short battery cycle life (i.e. Li-air battery cannot fully rechargeable for long 

cyclability). 

 

In Chapter 4, a model of the cycling behaviour of Li-air batteries [23] did not take into 

account the electrolyte degradation behaviour. In this Chapter, a modified version for 

the Li-air model included the parasitic reactions, considering the irreversible Li2CO3 as 

the main by-product. The model predicted the time dependence of electrolyte 

concentration, non-uniform porosity and reaction rates. Although other by-products 

besides Li2CO3 are formed during electrolyte decomposition, their quantities may be 

considered as insignificant relative to the Li2CO3. During discharging, the desired Li2O2 

and irreversible Li2CO3 form and coexist on the active surface of carbon electrode. The 

results from gases analysis by mass spectrometry showed that CO2, which could be 

considered as the active material to cause the Li2CO3 formation, are generated on 

discharge for both carbonate and ether based solvents, as described by Bruce group [11, 

12]. The mechanisms for Li2CO3 formation are presented in the next section. 



                                                       Chapter 5: Modelling of Electrolyte Degradation and  

Cycling Behaviour in a Li-air Battery 

130 | P a g e  

 

 

Figure 5-1 Schematic computation domain of a Li-air battery during discharge 

operation. The inset demonstrates the discharge products formation of Li2O2 and 

Li2CO3 covering on the porous carbon surface. 

 

5.2 Theoretical Mechanism Analysis 

The Li-air battery as shown in Figure 5-1 contains a metallic lithium anode, a separator 

containing electrolyte, and a porous carbon or catalyst-loaded carbon air electrode filled 

with an organic electrolyte comprising a dissolve lithium salt in an aprotic solvent. The 

Li
+
 transport through the separator to the porous cathode. The produced electrons are 

conducted through the external circuit towards the active cathode, where the charge 

transfer reduction reaction takes place with the combination of Li
+
 and oxygen to form 

lithium oxides or Li-based compounds depending on the types of electrolyte used and 

the electrochemical reaction occurred in the Li-air system. As mentioned earlier, the 

battery electrolytes play an important role in defining whether the cathode can provide 

the desired electrochemical products. However, to simplify our model simulation, Li2O2 

is the main discharged product depositing inside the porous of Li-air battery following 

Eq. (5-2) when using several non-aqueous electrolytes, e.g. organic carbonate-based or 

ether-based solvent. Moreover, the Li2CO3 formation, formed during the electrolyte 

degradation, is also considered as the main by-product coexisting with Li2O2. 

 

The exact detail of the reaction routes at the cathode can be complicated due to the 

formation of intermediates. It has been identified that the nucleophilic attack of 
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superoxide on the O-alkyl carbon group of the electrolyte is a usual starting mechanism 

for decomposition of organic carbonates, alkyl carboxylates, and alkyl esters of 

moderately strong inorganic acids [24]. Hence, it is possible to propose a mechanism to 

describe the formation reaction of Li2CO3. This can be divided into two reaction 

mechanisms: (1) Li2CO3 formation  from the reaction of superoxide with carbon dioxide 

in mechanism 1, as described previously  [11, 25, 26]; (2) the Li2CO3 occurs from the 

electrochemical reduction of CO2, due to the electrolyte degradation with CO2 as shown 

in mechanism 2, which was similar to the proposed salts formation in the solid 

electrolyte interface (SEI) film in Li-ion batteries [27, 28] 

 

 Mechanism 1: 

         
   
→      

                (5-3) 

    
       

   
→      

      RDS (5-4) 

     
           

               (5-5) 

Overall              
                 (           ) (5-6) 

 

 Mechanism 2: 

        
   
→     

    (5-7) 

    
         

   
→        

  
 RDS (5-8) 

         
            (5-9) 

Overall                         (           ) (5-10) 

 

 Solvent degradation 

       
   
→     

                 (5-11) 

   
  [       ]  [       ]   (5-12) 

 [       ]                              (5-13) 

Overall     [       ]                             (5-14) 

 

Mechanism 1 commences with oxygen reduction in the porous cathode to form   
  in 

Eq. (5-3) which can either react with CO2 (produced from the solvent degradation with 
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O2 described below) to generate the peroxydicarbonate anion     
   and then Li2CO3 

(Eq. (5-4) and (5-5)) or may react directly with solvent in both carbonate and ether 

based electrolyte, in turn, leading to the intermediate species of peroxoradical and the 

ether peroxide (combined together as [       ]  in Eq. (5-12)), respectively [11, 12]. 

These intermediate species can readily undergo, in the presence O2, oxidative 

decomposition reactions (Eq. (5-13)), which are analogous to combustion reactions, 

leading to the formation of H2O and CO2 [29-31]. The oxidative decomposition also 

produces lithium formate and lithium acetate products (Eq. (5-14)) which are not 

considered here in the model.  

 

Mechanism 2 deals with the reduction of CO2 in non-aqueous solvents which has been 

extensively studied, because CO2 has a greater solubility in non-aqueous media than in 

water and is used as material feed to produce more valuable organic compounds, such 

as methane, ethane, ethylene, methanol etc., [32]. The CO2 reactant in this mechanism is 

also generated from the electrolyte degradation described above. There are many 

mechanism routes for reduction of CO2 depending on cathode metals and solvents used 

[32]. However, one of the main reaction products are    
   and CO as described in Eq. 

(5-8) which can be created from the reduction of     
  intermediate species [28, 32]. 

Hence, in the presence of Li
+
, the LiCO3 could be formed following the route in 

mechanism 2 which is considered in the model. 

 

With the use of organic solvent for electrolyte, both Li2O2 and Li2CO3 can be produced 

as discharged products and are usually insoluble in the cell electrolyte. As a result, the 

repeated depositing film of different lithium salts over the carbon surface after each 

discharge and charge step prevents species transport and the electrochemical reaction, 

and diminishes the electronic conductivity of the air electrode and electrolyte 

concentration leading to cell voltage loss [20]. 

 

5.3 Model Development 

5.3.1 Model description 

In this Chapter, a schematic computation domain for a prismatic single cell of a Li-air 

battery was the same as in Chapter 4 as shown in Figure 5-1, which consists of a thin 

lithium sheet negative electrode, an anode protective layer (APL), a separator, and a 

porous carbon oxygen cathode filled with an organic electrolyte. Current collectors are 
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placed at the back of each electrode. The electrolytic solution was considered as a 

concentrated binary electrolyte to describe the motion for of each species in the systems.  

 

The main difference in this model was the addition of electrolyte degradation effects to 

form Li2CO3 together with Li2O2 as the solid products inside the porous cathode. Hence, 

the governing equations and assumptions for the model in this Chapter are similar to 

that in Chapter 4 except the kinetic reactions and product formation. As in Chapter 3 the 

rate expression at the porous cathode was described only the formation of Li2O2, the 

kinetic expressions for the other reactions are explained in more details in section 5.3.5. 

 

5.3.2 Model assumption 

In the same way of the Li-air model in Chapter 4, in this particular model the following 

assumptions were used in this model 

i. The Li-air cell is operated under isothermal conditions so that the thermal effects 

are not considered 

ii. The lithium salts of Li2O2 and Li2CO3 are the main discharge products which 

only occur and deposit inside the porous cathode. 

iii. The electrolytes used in Li-air batteries are assumed a binary monovalent 

electrolyte which consists of a single salt in a homogeneous organic solvent 

mixture. 

iv. The electrolyte behaviour is based on concentrated solution theory to simulate 

the Li
+
 diffusion. 

v. The pores in the cathode are full of liquid phase electrolyte such as a solution of 

lithium hexafluorophosphate (LiPF6) in a non-aqueous solvent. 

vi. The oxygen is assumed to dissolve in the organic electrolyte with a saturated 

initial concentration. 

vii. Convection for mass transport is negligible inside the cell. 
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Table 5-1 Governing equations used in the micro-macro homogeneous model with 

electrolyte degradation. 

Equation description   

1. Transport of species   

Species material balance 
      

  
          (5-15) 

Molar flux for Li
+
                  

    
 

 (5-16) 

Molar flux for species               (5-17) 

2. Conservation of charge   

Solid-phase current density               (5-18) 

Liquid-phase current density              
       

 
      (  

    

      
)        (5-19) 

Charge conservation             (5-20) 

Charge transfer current density      ∑   
 

 
(5-21) 

3. Rate expression at cathode   

Butler-Volmer equation 

  
  

   (      
)   [

       

  
  ]

         
 (   

)   [
    

  
  ] 

 

(5-22) 

Mechanism 1, Mechanism 2 

and Solvent degradation  
Described in section 5.3.5  

4. Rate expression at anode   

Butler-Volmer equation      [   (
       

  
  )     (

    

  
  )] (5-23) 

 

5.3.3 Governing equations 

Having accounted for all assumptions the governing equations described in Chapter 3 

could be simplified as presented in Table 5-1. The definitions and expressions of all 

parameters can be referred to Chapter 3. It is worth noting that the molar flux for 

species was replaced in Eq. (5-17) instead of oxygen due to many species (O2,   
 , CO2) 
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reacted inside the air electrode. 

 

5.3.4 Boundary conditions 

As there are no changes of battery geometry and operating conditions, the boundary 

conditions for the model with electrolyte degradation are the same as in Chapter 4 and 

presented in Table 5-2. The boundary conditions discussed in this section are referred to 

position in Figure 5-1. Apart from the initial values and parameters summarised in 

Table 3-4, this Chapter requires the additional parameters to solve the governing 

equation as presented in Table 5-3. 

 

Table 5-2 Boundary conditions used in the micro-macro homogeneous model with 

electrolyte degradation. 

Conservation of species  

Boundary condition are imposed for Li
+
 and oxygen concentration, and for the 

solid and electrolyte current density       : 
 

   
    

         (5-24) 

      (5-25) 

     (5-26) 

     (5-27) 

Boundary condition           

     (5-28) 

Boundary condition       :  

   
   (5-29) 

               (5-30) 

The voltage of the cell is calculated by the difference between the electrode 

potential at cathode current collector and the electrolyte potential at the anode 

side 

 

                      (5-31) 
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Table 5-3 Additional parameters used in the Li-air model (SI unit) 

Parameter Value Unit symbol Ref. 

Electrolyte properties     

Superoxide diffusion coefficient 9 x 10
-10

 m
2
 s

-1
    

  [5] 

Carbon dioxide diffusion coefficient 1 x 10
-9

 m
2
 s

-1
     

 [26] 

Kinetic parameters     

Reaction rate coefficient for   
  formation 8.1 x 10

-15
 m s

-1
     Assumed 

Reaction rate coefficient for Li2CO3 

formation 

370 m
3
 s

-1
 

mol
-2

 

    [26] 

Reaction rate constant of CO2 reduction 1 x 10
-23

 m s
-1

    [28] 

Reaction rate constant of CO2 reduction 4.22 x 10
-

13
 

m s
-1

    [28] 

Reaction rate constant of CO2 formation 5.9 x 10
-15

 m s
-1

     [33] 

 

5.3.5 Rate expressions at cathode 

The actual reaction paths and mechanisms for the discharge products are not available 

and quite complex involving various intermediates.  Hence to describe the 

electrochemical kinetic expression for the porous cathode the model adopts the kinetic 

expression based on Eq. (5-2) for Li2O2 formation and on Eq. (5-6) and Eq. (5-10) for 

Li2CO3 formation.  

 

Li2O2 formation: 

For electrochemical reaction of Li2O2 at the cathode, a modified version of the Butler-

Volmer equation is applied in the model using two rate coefficients as described in 

Chapter 3. The reaction for Li2O2 formation presented in Eq. (4-2) also depends on the 

concentration of Li
+
 and oxygen for discharge and the concentration of Li2O2 during 

charge as in the following equation 

  
  

   (      
)   [

       

  
  ]         

 (   
)   [

    

  
  ] (5-32) 

                   
  (5-33) 

                  (5-34) 

where     and    are the anodic and cathodic rate constant, respectively,   is the 

symmetry factor equal to 0.5,    is surface or activated overpotential for individual 

reaction,  , at the cathode,        and       are the voltage drop and the electrical 
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resistivity across Li2O2 film formation, respectively,    is the volume fraction of solid 

formation of discharge products of Li2O2 and Li2CO3, and   
  is the theoretical open-

circuit potential for each reaction. In this Chapter,       is not constant as applied in 

Chapter 4 but the electrical resistivity of Li2O2 dynamically changed with Li2O2 growth 

instead (     =      [        ] in Eq. (3-48) in Chapter 3). 

 

Li2CO3 formation: 

As explained before, the Li2CO3 formation is one of the discharge by-products 

coexisting with Li2O2. Thus, the decomposition of electrolyte, which initially forms 

CO2 and finally generates Li2CO3 as described above, occurs during Li-air operation. 

Some of the elementary steps in the electrolyte degradation sequences that lead to these 

by-products may be irreversible and non-electrochemical, so that the overall kinetic 

expression is very complex. Therefore, we use the kinetics for Li2CO3 formation of both 

mechanism 1 and 2 above based on the published kinetic data. 

  

For the mechanism 1, the superoxide radical anion that is initially formed (Eq. (5-3)) 

during Li-air discharge as evidenced in previous study [7], attacks CO2 which is 

generated from solvent decomposition (from Eq. (5-14)) to finally form Li2CO3 with the 

presence of Li
+
 as follow reaction 

         (   
) [    (

    

  
  )] (5-35) 

            
       

  (5-36) 

where     and     are the rate constant for the electrochemical reaction to form   
  and 

chemical reaction to generate Li2CO3, respectively. We use the Tafel form in Eq. (5-35) 

rather than the Butler-Volmer form because the large kinetic overpotential during cell 

discharge puts the reaction in the Tafel region and considers only discharge (irreversible 

for   
  formation. It has been demonstrated that the chemical reaction in Eq. (5-36) is 

found to be first-order with to respect to both   
  with CO2 reactants and is the rate 

determining step (RDS). Hence, the other reaction is considered as equilibrium and the 

formation of Li2CO3 can be predicted by using Eq. (5-35) and Eq. (5-36) together. 

 

For mechanism 2, the reduction of CO2 in non-aqueous solvent is considered for the 
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Li2CO3 formation. The kinetic for the reaction in mechanism 2 was systematically 

proposed by Welford and coworkers [28] and adopted for this simulation as summarised 

in the follow reaction 

              
  (5-37) 

in which 

      
  

    
   [

   

  
  ] (5-38) 

where 

    
  

  
   [

   

  
  ] (5-39) 

where    and    are the rate constant for the electrochemical reaction for the 

mechanism of the reduction of CO2 and   is the transfer coefficient which is given the 

value as 0.43 [28]. However, preliminary simulated results showed that the discharge 

product of Li2CO3 mostly comes from the electrochemical reaction in mechanism 1 

rather than from the reduction CO2 in mechanism 2, as demonstrated in Figure 5-2. 

Figure 5-2 compared the Li2CO3 formation between the two mechanisms in different 

state of battery discharge. From this data we can see that the Li2CO3 from the 

mechanism 2 (inset graph) is significantly lower (5 10
-5

 at 100% discharge state) than 

that produced from mechanism 1 (0.026 at the same discharge state) during the battery 

discharging. Hence, the main contribution for the build-up of Li2CO3 in this model was 

from the electrochemical reaction of mechanism 1. However, both mechanisms were 

included in this study. 

 

Solvent degradation: 

The CO2 generation can be created from the electrolyte degradation which is first 

attacked by the superoxide formation as described in Eq. (5-14). Apart from this 

decomposition, some reports demonstrate that side reactions to form CO2 were observed 

at the cathode and were attributed to carbon decomposition during charge process [14, 

34]. However, only the CO2 generated from electrolyte degradation will be considered 

here. Addressing this kinetic expression, because a detailed mechanism is not available, 

the CO2 formation based on the overall reaction in Eq. (5-14), which consider the 

solvent concentration as constant is 
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         (   
) [    (

    

  
  )] (5-40) 

where     is the rate constant for the electrochemical reaction to form CO2 and the 

others are the same as described above. 

 

Figure 5-2 Compared the Li2CO3 formation from the two mechanisms. The inset shows 

the Li2CO3 volume fraction from the mechanism 2 (dotted line). 

 

5.3.6 Solution technique 

The conservation equations and the boundary conditions described above were 

discretized using a finite element method and solved in one-dimensional battery system 

by commercial software package COMSOL multiphysics version 4.3. The COMSOL 

software is designed to solve a set of coupled differential and algebraic equations and 

the battery simulation model is performed on a 32 bit Windows platform with 4 GB 

RAM, and Intel Core 2 Duo 2.93 GHz processor. The different transport equations and 

the electrochemical reactions were solved as time dependent until the cell voltage 

reached the stop condition. The solution were considered as converged solution when 

the difference between two results was less than 10
-4

 (relative tolerance) for all 

variables. 
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5.4 Results and Discussion 

The one-dimensional Li-air cell model including parasitic reactions from electrolyte 

degradation was simulated and tested against the performance during battery cycling. 

As mentioned before, this model was based on previous work created in Chapter 4 and 

could be validated by using the experimental cycle performance obtained in our labs, 

due to sufficient rechargeable data. A comparison of the simulated and experimental Li-

air battery cycling behaviour is shown in the next section. As can be seen from Figure 

5-4, the discharge capacity from the experimental data and simulation results were in 

good agreement and the model predicted the typical trend of the Li2CO3 accumulation 

on cycling resulting in electrode passivation and capacity fading. 

 

5.4.1 Cycling performance 

To predict the variation of the capacity retention on cycling behaviour, the variation of 

voltage on discharge and charge curve for 10 cycles of a rechargeable Li-air battery in 1 

M LiPF6 dissolved in a non-aqueous solvent operating between 2.2 and 4.2 V vs Li/Li
+
 

at a rate of 0.1 mA cm
-2

 is shown in Figure 5-3. This cycling model was carried out at 

an operating temperature of 298.15 K in pure 1 atm of oxygen. It can be seen from the 

discharge and charge cycle that the cell potential began to fall steeply at the first 

discharge, from a voltage of 3.1 V to a plateau at around 2.7 V, and decreased 

continuously to 2.2 V at the end of discharge. The discharge potential during cycling 

was around 2.5-2.7 V which was the same as discharge voltage of Li-air batteries 

reported by previous research works for similar battery discharge in pure oxygen [9, 

35].  
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Figure 5-3 Variation of voltage-capacity curve in 10 cycles on discharge and then 

charge between 2.2 and 4.2 V versus Li/Li
+
 for a non-aqueous Li-air battery at a rate of 

0.1 mA cm
-2

. The electrolyte contains 1 M LiPF6 dissolved in acetronitrile under 1 atm 

of oxygen at operating temperature 298.15 Kelvin. The cathode electrode thickness is 

750 μm with porosity of 0.73. 

 

In contrast, the charge voltages increased with time around 4.0-4.25 V depending on a 

number of cycles. This increase in charging overpotential could be attributed to the loss 

of cathode active surface due to the repeated passivation from Li2CO3 occurred from the 

electrolyte degradation during discharge. It is apparent from Figure 5-3 that the 

reduction of capacity occurs mainly on charging, i.e. each cycle the charge capacity is 

lower than that during discharge step. This makes the charge/discharge efficiency less 

than 100% and causes the rapid capacity fading.  From the data in Figure 5-3, the charge 

potentials move to values approximately 100-200 mV higher on cycling, whereas the 

average discharge potentials slightly decrease. In summary, the Li-air cell model 

including the Li2CO3 formation from electrolyte degradation exhibits the cycling ability 

and the continuously battery capacity fading on cycling. 
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Figure 5-4 The cycle performance (discharge capacity and capacity retention against 

cycle number) of the 10-cycle rechargeable Li-air battery in the model that includes the 

Li2CO3 formation from the electrolyte degradation. Battery was cycled at a rate 0.1 mA 

cm
-2

. The capacity retention from the model and our group experiment is also plotted 

for comparison. The inset shows the model without the effect of electrolyte 

decomposition. The other parameters used in the model are the same as described in 

Figure 5-3. 

 

In practice, one of the most significant properties for battery other than its initial 

performance is stability which can be measured by retention of discharge capacity on 

cycling [2, 9, 18, 35]. Thus, for better clarity, the results obtained from the cycling 

behaviour of Figure 5-3 are presented in more details in term of the variation of specific 

capacity on discharge (capacities are expressed per gram of carbon in the electrode) and 

retention of capacity as shown in Figure 5-4. The discharge capacity on the first cycle 

using the parameters in Table 3-4 and Table 5-3 was about 700 mAh gcarbon
-1

, based on 

the weight of carbon alone. However, on continuous discharging, the rechargeable Li-

air battery is faced with performance deterioration on cycling.  

 

The capacity of the battery fell constantly to a low value of 468 mAh gcarbon
-1

 after 5 

cycles which can retain the capacity back to around 67%, corresponding to a capacity 
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retention of 13% per cycle. At the 10th cycle, the discharge capacity was even lower to 

352 mAh gcarbon
-1

 with a capacity retention of 5% per cycle. At the 10th cycle, the 

discharge capacity was even lower to 352 mAh gcarbon
-1

 with a capacity retention of 50% 

(5% per cycle). The data in Figure 5-4 were summarised in Table 5-4 for better clarity. 

For comparison, Figure 5-4 has an inset that demonstrates the performance of a 

rechargeable Li-air model without any parasitic reaction form the electrolyte 

degradation. It can be seen that, without the side reaction, the Li-air battery can 

maintain its performance during cycling, but this is the ideal case for the Li-air battery 

and the researchers are still developing the batteries which remain stability on operation. 

 

Table 5-4 The Li-air cycle performances on each cycle from the model including the 

electrolyte degradation. 

Cycle No. 
Specific capacity 

(mAh g
-1

) 

Capacity retention 

(%) 

Capacity retention 

per cycle (%) 

1 700.00 100 100 

2 558.27 79.79 40 

3 493.32 70.51 23.5 

4 487.26 69.64 17.5 

5 468.48 66.96 13.4 

6 435.79 62.28 10.4 

7 412.74 58.99 8.4 

8 389.02 55.60 7.0 

9 376.88 53.86 6.0 

10 352.04 50.31 5.0 

 

To see if the parasitic model gave the similar results with the experimental 

measurements [9], the battery performance data obtained in our group experiment were 

plotted and compared with the model results as also shown in Figure 5-4. Because of 

the difference on discharge capacities acquired from the variety of Li-air cell 

configuration and materials (electrolyte and carbon properties), the data from the 

experiment could be normalised in term of the capacity retention for use as a 

comparison. As can be seen from Figure 5-4, the experimental results from Li-air with 

catalyst are similar to those from the simulation model. Both results followed the 

decreasing trend of capacity retention during the battery cycling. The capacity retention 

of a rechargeable Li-air battery with carbon-supported Pt catalyst demonstrated a 
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slightly lower value than the model results, with a difference of around 5% of retention. 

The lower capacity retention from the experiment than the simulation results can be 

attributed to the electrocatalyst used in the prepared carbon electrode in non-aqueous 

solvent (Pt catalyst), which promotes the electrolyte solvent decomposition rather than 

the desired ORR at the cathode [36]. McCloskey et al. concluded that the electrolyte 

solvent decomposition rather than Li2O2 formation was being catalysed by the 

heterogeneous electrocatalysts (Au, Pt, MnO2) [36].  

 

Moreover, the catalytic battery was probably confronted by performance deterioration 

by other factors which include degradation of carbon cathode materials as well as 

formation of other soluble (and insoluble) products and intermediates, which gradually 

decreased with the same trend as in the model results. Overall, from this study, the 

model results and experimental data seem to be in good agreement or at least, this 

model showed more reliability in predicting the cycling behaviour than that which 

excludes Li2CO3 accumulation from electrolyte degradation (inset of Figure 5-4). The 

model is potentially a promising tool to identify the Li-air cell degradation mechanisms 

and forecast the cell performance for new cell designs and scale-up. 

 

5.4.2 Cathode Porosity change 

To investigate the effect of electrolyte degradation on the porous electrode, Figure 5-5 

compares the results for the porosity profiles inside the cathode obtained at the end of 

discharge in each battery cycle. The Li-air cell was cycled at a rate of 0.1 mA cm
-2

 

between a discharge and charge potential of 2.2 and 4.3 V which was the same detail as 

presented in Figure 5-3. During each cycle, the discharge products preferentially deposit 

near the oxygen feed side (at     in Figure 5-1) due to the slow diffusion and small 

solubility of oxygen preventing some of the active area of the cathode from taking part 

in the reaction. This behaviour is similar to that presented in Chapter 4.  

 

On cycling, it is apparent from the graph that the available porosity of the rechargeable 

battery especially near the far side of electrode (   ) continuously decreases at the 

end of each discharge cycle. The porosity in the cathode after the end of first cycle was 

about 0.28, cf. the initial value of 0.73. From this result, it is worth noting that the 

terminating discharge of Li-air battery was not the direct result of the clogging pore at 

the cathode surface being the limiting factor for discharge capacity, because there are 
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still some available pores for the access of reactant species. The termination of the cell 

discharge process could be attributed to the rapid build-up of the discharge products of 

both Li2O2 and Li2CO3 covering the active sites on the carbon active surface. This cell 

termination from product passivation is consistent with the conclusions from both the 

experimental work [37] and the Li-oxygen simulation model [33]. 

 

Figure 5-5 Local porosity profiles inside the Li-air cell collected at the end of each 

discharge cycles at a rate 0.1 mA cm
-2

. The parameters used in the model are the same 

as described in Figure 5-3. 

 

When the Li-air battery was repeatedly operated until the end of 10th cycle, the 

available porosity at the porous electrode/current collector interface fell to only 0.1 as 

shown in Figure 5-5. The result may be explained by the fact that the porosity of the 

discharge cathode is affected by the accumulation of Li2CO3 on cycling, formed during 

discharge [21]. Xu et al. studied the charging process of Li-O2 batteries with organic 

carbonate electrolyte and found that after the cell was discharged to 2.0 V in an oxygen 

atmosphere and then recharged to 4.6 V, CO2 was the dominant released gases from the 

oxidation of Li2CO3 [21]. Several studies have revealed the similar results for the 

oxidation of Li2CO3 during Li-air batteries charging [20, 34, 38]. These results confirm 

that Li2CO3 can be involved in oxidation reaction during the charging process only at 

high charging potential > 4.0 V, which is not considered in this simulation. As can be 
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seen in Figure 5-6, the volume fraction of Li2CO3 at electrode/current collector interface 

(   ) steadily increases and gradually deposits inside the cathode with repeated 

cycling of the Li-air cell, from a volume fraction percentage about 3.7% on the first 

cycle to 24% in the final cycle. 

 

Figure 5-6 Volume fraction of Li2CO3 formation inside the the Li-air cell at the end of 

each discharge cycle. The Li2CO3 volume fraction in percentage is also plotted. The 

parameters used in the model are the same as described in Figure 5-3. 

 

5.5 Conclusions 

In this study, our previous micro-macro homogeneous model for a rechargeable Li-air 

battery has been developed to include the practical feature of Li2CO3 formation which 

normally occurs from electrolyte degradation during battery cycling. The modified 

model can successfully predict the Li-air cell cycling behaviour which starts from the 

first discharge to the cell potential of 2.2 V and charges until 4.2 V in 10 cycles. The 

cycle performance deterioration measured in term of retention of discharge capacity on 

cycling was predicted from the developed model which includes the effect of 

irreversible Li2CO3 discharge product. As a result, we obtain a good agreement between 

this cell cycling simulation and porous-electrode experiment data, thus creating a more 

reliable model for a rechargeable Li-air battery in non-aqueous electrolyte.  
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Consequently, the charging voltage slightly increases in each cycle during the 

recharging process. This result is partly due to the repeated passivation of discharge 

products on the porous carbon, which leads to decrease in electrochemical active area. 

The termination of the cell discharge is not from pore blockage by the depositing 

discharge products as there are some available pores at the end of each discharge cycle. 

The cathode porosity decreases overtime during cycling while the volume fraction of 

Li2CO3 gradually increases in a number of cycles. The present model developed here 

considers only Li2O2 as the main discharge product and Li2CO3 as the by-product 

coexisting during battery discharge process. Thus, the main conclusions of our 

modelling work are only applicable when the Li-air cell follows the formation of Li2O2 

and Li2CO3 as the final discharge products. 
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Chapter 6: Modelling of Operation of a Lithium-air Battery with 

Ambient Air and Oxygen-Selective Membrane 

 

 

In this chapter, a macro-homogeneous model taken from the previous chapters has been 

developed to evaluate the impact of replacing pure oxygen with ambient air on the 

performance of a rechargeable non-aqueous Lithium-air (“Li-air”) battery. The 

operation of a Li-air battery in ambient air conditions is regarded as a critical problem to 

be solved before this battery can be used for practical application. All of the model 

features from the previous chapters (Li2O2 and Li2CO3 discharge products, cycling 

behaviour and electrolyte degradation) have been included in this chapter to investigate 

the relationship between Li-air battery and air conditions. In addition, the model was 

integrated with an oxygen-selective membrane to improve the Li-air battery’s 

performance in term of discharge capacity. This model can be used to describe the 

behaviour of Li-air batteries in ambient air conditions as well as to optimise the 

performance and structure of these batteries. 

 

6.1 Introduction 

The rechargeable Li-air, which has specific energy levels several times higher than Li-

ion batteries makes it a candidate for a new generation of energy storage devices [1-4]. 

Since the first report of a non-aqueous electrolyte Li-air battery in 1996 [5], especially 

after a breakthrough in the cycle life by Bruce’s group [6], the rechargeable Li-air 

battery has been investigated intensively [6-11]. However, many scientific and technical 

challenges have to be overcome to realise the potential of this cutting-edge technology. 

A key area is to gain an insight into chemical/electrochemical processes that take place 

inside the Li-air battery via an effective mathematical model.  

 

An aprotic Li-air battery contains a metal lithium anode, a solid separator and a porous 

air electrode filled with a non-aqueous Li
+
 electrolyte. The fundamental electrochemical 

reactions are shown below: 

Anode                           (6-1) 
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Cathode                                   (6-2) 

 

Here, Eq. (6-2) is an ideal electrochemical reaction, desired to make a truly rechargeable 

Li-air battery [6, 12, 13]. In practice, there are other side reactions, forming detrimental 

products, such as Li2CO3 [6, 12, 13].  

 

However, almost all of the current studies on Li-air batteries are run in pure oxygen and 

controlled dried atmosphere in a glove box to minimise the contaminated substances 

from the ambient air. Thus, this battery can perform according to a high rate capability, 

owing to high oxygen concentration, and maintain a long-term operation. Our recent 

model studies also simulated the Li-air battery including the electrolyte degradation and 

operation in pure oxygen [14, 15]. To succeed in making a Li-air battery for use in 

practical applications, one critical problem to be solved is operating Li-air batteries in 

an ambient air environment [16, 17]. There are several challenges when Li-air batteries 

are applied to air conditions compared to those of pure oxygen feeding. The first is the 

unavoidable moisture (about 1% in volume) in the surrounding air, which may penetrate 

into the cell system together with oxygen. The presence of moisture can corrode the 

metallic lithium anode due to the hydrolysis reaction with highly reactive lithium as 

shown in reaction (6-3) [17]. This results in the fast battery failure and causes serious 

safety issues. 

                    (6-3) 

The second is the insufficient concentration of oxygen due to its low partial pressure in 

the atmosphere, leading to the limitation of Li-air batteries from high discharge rates 

because of the small oxygen solubility in the electrolyte. The third problem is that the 

small amount of carbon dioxide (CO2) from air feeding may react with superoxide 

anions formed during the initial oxygen reduction on discharge process, to generate 

carbonate species, leading to the deposition of these by-products on the cathode surface 

[12, 18, 19]. It is worth noting that CO2 could be considered as the active material to 

form the Li2CO3 and lithium alkyl carbonates instead of the desired produce Li2O2 [12, 

19, 20]. Furthermore, these side reactions lead to a continuous and irreversible 

consumption of electrolytes and thus the Li-air batteries cannot maintain their 

sustainable ability during charge/discharge cycles. 
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To minimise the battery problem when using air, Li-air batteries under current research 

are mainly operated in pure oxygen [5-7, 9]. There is a small volume of published 

works demonstrating the behaviour of Li-air batteries with air feeding [11, 16, 17, 21]. 

These studies solved the contaminated gases problems by using an oxygen-selective 

water barrier membrane covering the outer surface of the cathode to prevent moisture 

and to selectively permeate oxygen into the porous cathode at the same time. Zhang et 

al. (2010) developed an oxygen-selective immobilised liquid membrane for a non-

aqueous Li-air battery operated in ambient air with 20-30% relative humidity [17]. The 

membranes were easily prepared by soaking high viscosity silicone oil into porous 

metal or Teflon substrates. A Li-air battery integrated with these membranes can be 

operated in ambient air for 16.3 days with a specific capacity of 789 mAh g
-1

 and 

specific energy of 2,182 Wh kg
-1

 based on the weight of carbon. The same group also 

studied the hydrophobic zeolite membrane and polytetrafluoroethylene (PTFE) 

membrane as oxygen-selective water barriers [16]. The latter protected a Li-air cell 

against moisture and supplied oxygen for 21 days with a specific capacity of 1022 mAh 

g
-1

 and specific energy of 2,792 Wh kg
-1

 based on the weight of carbon. 

  

Zhang et al. (2010) investigated the ambient operation of non-aqueous Li-air batteries 

integrated with a heat-sealable polymer membrane to serve as both an oxygen-diffusion 

membrane and moisture barrier [11]. The membrane could also reduce the evaporation 

of electrolytes during battery operation. The Li-air battery with this membrane 

demonstrated the discharge capability in ambient air for more than one month with a 

specific energy of 362 Wh kg
-1

 based on the total weight of the battery including its 

packaging. However, all of the research  previously mentioned on ambient air only 

studied the performances of Li-air batteries on the discharge phase without showing 

those on the charging or cycling process, which could provide more important data for 

battery stability than only a single discharge. 

 

In this chapter, the previous Li-air battery model with electrolyte degradation is 

modified to operate the Li-air battery in an ambient air environment [14, 15], which 

severely damages Li-air performance and is still a critical problem to be solved before 

the Li-air battery can be used for practical application. The two species in air; oxygen 

and CO2 are considered in the model in air-feeding conditions with the exception of 

moisture or using dried air in the model. Although this model does not include all the 
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effects that could occur in the Li-air battery with an ambient air operation, the key 

mechanisms, covering the main impact of using air that directly affects the porous 

cathode behaviour during battery operation and leads to detrimental Li-air performance 

are considered. The effect of N2 reacting with Li species is not considered. 

 

Therefore, the mathematical model for a Li-air battery with air-feeding condition can be 

used to identify battery-limiting mechanisms and reduce the amount of time-consuming 

work compared to the experimental effort. Moreover, it also avoids the serious safety 

problems that could happen when the ingression of moisture reacts with the lithium 

metal anode. This model can be used to describe the behaviour of Li-air batteries in 

ambient air conditions as well as to optimise the performance and structure of these 

battery electrodes. 

 

Figure 6-1: Schematic computation domain of a Li-air battery during discharge 

operation. A Li-air battery operated with ambient air-feeding and the inset demonstrates 

the formation of Li2O2 and Li2CO3 as discharge products covering the porous carbon 

surface. 

 

6.2 Theoretical Mechanism Analysis 

A typical Li-air battery, shown in Figure 6-1, contains a lithium metal anode, a 

separator containing electrolytes, and a porous carbon or catalyst-loaded carbon air 
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electrode filled with an organic electrolyte comprising a dissolved lithium salt in an 

aprotic solvent. During discharge, the lithium metal anode oxidises to Li
+
 and electrons 

are conducted through the external circuit, while Li
+
 is transported towards the porous 

cathode. Oxygen is reduced at the active surface with Li
+
, thus leading to the desired 

discharge products of Li2O2 and the by-product of Li2CO3 or lithium alkyl carbonates 

resulting from the electrolyte decomposition [12, 13, 19]. These products influence the 

Li-air performance and cannot be completely removed during the battery cycling 

process. To simplify our simulation, the model assumed that Li2O2 was the main 

discharge product depositing inside the porous cathode (Eq. (6-2)) and the irreversible 

Li2CO3 by-product coexisting with Li2O2 when using non-aqueous electrolytes. This 

section describes the two main mechanisms that occur inside the Li-air battery and were 

applied to the model. 

 

6.2.1 Effect of using ambient air condition 

The critical problems when using air as a feeding reactant for Li-air batteries are the low 

oxygen solubility in the electrolyte and the CO2 gas diffusing into the battery with 

oxygen. Although the amount of CO2 in the atmosphere is small compared to oxygen, 

its solubility in non-aqueous solvents is much higher than oxygen, as shown in Table 

6-1. 

 

Table 6-1 Solubility of CO2 in various solvents at 25º C [22] 

Solvent 
CO2 concentration 

(mol dm
-3

) 

Oxygen concentration 

(mol dm
-3

) 

Water 0.033 0.00027 

Methanol 0.06 - 

Tetrahydrofuran (THF) 0.205 ± 0.008 - 

Acetonitrile (AN) 0.279 ± 0.008 0.00211 

Dimethylformamide (DMF) 0.199 ± 0.006 - 

Dimethylsulphoxide (DMSO) 0.138 ± 0.003 - 

 

To investigate these effects, the model was changed with the feed condition from pure 

oxygen to ambient air at the porous cathode entrance. Considering the amount of 

oxygen and CO2 content in the atmosphere [23] (78% N2, 21% O2, 0.035% CO2), the 

concentrations of oxygen and CO2 in the electrolyte can be determined in term of 

Henry’s law which states that: 

       ̅  (6-4) 
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where    is the concentration of gasses in the electrolyte,    is the Henry’s law constant 

which depends on the electrolyte and temperature used in the Li-air battery, and  ̅  is 

the partial pressure of the gas which depends on mole fraction of each species in the 

atmosphere. Henry’s law is correct to describe the solubility of gas for low 

concentrations and low partial pressures. The concentrations of oxygen and CO2 

calculated from Henry’s law (Eq. (6-4)) can be compared to each other in Table 6-2. 

These concentrations are applied in the Li-air model as initial conditions to represent the 

air-feeding, unless otherwise specified. It can be seen that, although the CO2 

composition in the atmosphere is not very high, its Henry’s law constant (4.59) is 

almost twice that of oxygen (2.95), i.e. the solubility of CO2 in non-aqueous solvents is 

higher than oxygen [22]. This high solubility of CO2 into the electrolyte could affect the 

Li-air performance due to the formation of Li2CO3. 

 

Hence, unlike the previous model in Chapters 4 and 5 which used only pure oxygen as 

feeding condition, the present model applied the air condition to the low solubility of 

oxygen and CO2 as contaminants. These concentrations in the porous cathode can affect 

the Li-air battery’s performance during battery cycling. Nitrogen is also able to gain 

access through the cathode but has little or no effect with a lithium-based electrolyte on 

the Li-air battery performance [24]. 

 

Table 6-2 Henry’s constant and calculated concentration in non-aqueous at 25º C 

Species 
Henry’s law constant  

(mol m
-3

 atm
-1

) 

Concentration 

 (mol m
-3

) 
Ref. 

O2 2.95 0.6182 calculated from [25] 

CO2 4.59 0.0043 [26] 

 

6.2.2 Electrolyte degradation 

In order to succeed in the application of non-aqueous Li-air batteries, the finding 

electrolytes with high stability during battery operation is a prerequisite for the long-

cycled life of Li-air batteries, especially in an oxygen-rich environment and under 

catalytic conditions [27]. Since the Li-air batteries have been currently developed, there 

is still no proper electrolyte that can meet all of these requirements: 1) high stability [12, 

18, 28, 29], 2) high boiling point (low evaporation), and 3) high oxygen solubility and 

diffusivity as well as less sensitive to moisture [30]. At present, various non-aqueous 

electrolytes have been widely examined and applied in Li-air batteries based on 
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different types of solvents, e.g. carbonates, ethers, sulfoxides, nitriles and ionic liquid 

[31]. However, Li2CO3 formation from the decomposition of electrolytes by Li-O2 

intermediates (  
 ) and products was also clearly detected inside the electrode during 

discharge from all electrolytes which were dissolved in different solvents [31]. The 

electrolyte degradation mechanisms proposed in Chapter 5 and in our previous work 

[15] are also included in the present model and reinstated as described below. It is worth 

noting that the Li2CO3 formation from mechanism 2 in Chapter 5 demonstrated no 

significant contribution compared to mechanism 1. Therefore this chapter considers 

only Li2CO3 from mechanism 1 to minimise the computation resource. 

 

Li2CO3 formation 

         
   
→      

              (6-5) 

    
       

   
→      

      RDS (6-6) 

     
           

               (6-7) 

Overall              
                 (         ) (6-8) 

 

Solvent degradation 

       
   
→     

               (6-9) 

   
  [       ]  [       ]   (6-10) 

 [       ]                              (6-11) 

Overall     [       ]                             (6-12) 

 

It is worth noting that the exact details of the reaction routes for the electrolyte 

degradation to form Li2CO3 can be complicated regarding several intermediates during 

cell operation. Then, the proposed mechanisms above are a possibility to describe the 

formation reaction of Li2CO3 as reported previously [19, 32, 33]. 

 

With the use of air-feeding conditions instead of pure oxygen for the porous carbon 

cathode, the CO2 in this model could be generated from two routes, one from solvent or 

electrolyte degradation (Eq. (6-12)) and the other from the atmospheric air. Both Li2O2 

and Li2CO3 can be produced as discharged products and are usually insolubly in the cell 
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electrolyte. As a result, the repeated depositing film of different lithium salts over the 

carbon surface after each discharge and charge step could affect the reaction 

mechanisms at the active area/electrolyte interfaces, and the transport of species inside 

the pores leading to battery deterioration [34]. 

 

6.3 Model Development 

6.3.1 Model description 

In this chapter, a schematic computation domain for a prismatic single cell of a Li-air 

battery is the same as in previous chapters as shown in Figure 6-1. All of the model 

features from previous chapters (Li2O2 and Li2CO3 discharge products, cycling 

behaviour and electrolyte degradation) remained the same in this chapter. The main 

difference was the set of feed conditions applied to the dry air through the porous 

cathode electrode.  

 

Hence, the governing equations and assumptions for the model in this chapter are 

similar to that in Chapter 5 excepting that the initial conditions are changed to the air 

condition. All the rate expressions at the porous cathode are the same as described in 

Chapter 3. 

 

6.3.2 Model assumption 

In addition to the general assumption discussed in Chapter 5, the following 

simplifications were adopted in this particular model:  

i. The fed air through the porous cathode is dry without moisture.  

ii. The air is dissolved into the electrolyte. 

iii. No gas phase is formed in the porous electrode. 

 

6.3.3 Governing equations 

The governing equations used in the air feeding Li-air model are listed in Table 6-3. The 

equations for the conservation of species and charges as well as the kinetic expressions 

are the same ones used in the electrolyte degradation model in Chapter 5. The boundary 

conditions are only the difference in this chapter. 
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Table 6-3 Governing equations used in the air feeding Li-air battery model. 

Equation description   

1. Transport of species   

Species material balance 
      

  
          (6-13) 

Molar flux for Li
+
                  

    
 

 (6-14) 

Molar flux for species               (6-15) 

2. Conservation of charge   

Solid-phase current density               (6-16) 

Liquid-phase current density              
       

 
      (  

    

      
)        (6-17) 

Charge conservation             (6-18) 

Charge transfer current density      ∑   
 

 (6-19) 

3. Rate expression at cathode   

Butler-Volmer equation 

  
  

   (      
)   [

       

  
  ]

         
 (   

)   [
    

  
  ] 

 

(6-20) 

Li2CO3 (Mechanism 1)         (   
) [    (

    

  
  )] (6-21) 

            
       

  (6-22) 

Solvent degradation         (   
) [    (

    

  
  )] (6-23) 

4. Rate expression at anode   

Butler-Volmer equation      [   (
       

  
  )     (

    

  
  )] (6-24) 

 

6.3.4 Boundary conditions 

To operate the model with air feeding, the boundary condition for the species at the 

cathode/current collector interface (   ) were applied in relation to the oxygen and 

CO2 concentrations following Table 6-2. The other boundary conditions were the same 

as in Table 5-2. 

 

6.3.5 Solution technique 

The conservation equations and the boundary conditions described above were 
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discretized using a finite element method and solved using a one-dimensional battery 

system by commercial software package COMSOL multiphysics (version 4.3). The 

COMSOL software is designed to solve a set of coupled differential and algebraic 

equations. The battery simulation model is performed on a 32 bit Windows platform 

with 4 GB RAM, and Intel Core 2 Duo 2.93 GHz processor. The different transport 

equations and the electrochemical reactions were solved as time dependent until the cell 

voltage reached the stop condition. The solution was considered as a converged solution 

when the difference between two results was less than 10
-4

 (relative tolerance) for all 

variables. 

 

6.4 Results and Discussion 

The one-dimensional Li-air battery implemented with the model equations as presented 

in the previous section have been simulated and solved to analyse the impact of using 

ambient air condition which has a severe effect on Li-air batteries compared to the case 

of pure oxygen. The model was based on the previous chapter and could be validated by 

using the experimental cycle performance obtained in our labs, due to sufficient 

rechargeable data. In this section, first, the Li-air battery is considered in terms of the 

effects of using dried air compared to the effects of those without electrolyte 

degradation to distinguish between these two mechanisms. Then, the model combined 

the two effects together to investigate the cell’s performance in term of discharge 

specific capacity and Li2CO3 accumulation on cycling resulting in electrode passivity 

and capacity fading. 

 

6.4.1 Li-air performance with air-feeding  

To compare the effect of using air in the Li-air battery, all parameters applied in the 

model are the same as in Chapters 4 and 5 (Table 3-3 and Table 5-3), and the oxygen 

and CO2 concentrations in dry air are applied by following the atmospheric condition 

with low partial pressure as presented in Table 6-2. This model section excludes the 

effects from electrolyte degradation and considers the effect from air-feeding only. The 

voltage-capacity results on the 1st cycle obtained from the Li-air cell at different 

discharge rates are presented in Figure 6-2.  It is apparent that, at the high discharge rate 

of 0.1 mA cm
-2

, there is a significant decrease in cell discharge capacity which provided 

only 117 mAh gcarbon
-1

 when using air as the active reactant unlike the cell’s 

performance in pure oxygen providing the first discharge capacity at around 722 mAh 
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gcarbon
-1

 at the same discharge rate. A large deterioration in discharge capacity can be 

attributed to the low oxygen solubility in electrolytes at partial pressure 0.21 atm (0.618 

mol m
-3 

compared to pure oxygen of 3.264 mol m
-3 

at 1 atm) and high discharge rate 

resulted in limited oxygen diffusion in the porous cathode. The CO2 concentration, 

which is even lower concentration than that of oxygen, could not much affect the cell 

capacity from Li2CO3 formation on the 1st cycle. 

 

 

Figure 6-2: Comparison of the voltage-capacity curve for a non-aqueous Li-air battery 

model in different feeding conditions between pure oxygen and ambient air at two 

operating rates of 0.05 and 0.1 mA cm
-2

. The electrolyte contains 1 M LiPF6 dissolved 

in non-aqueous solvent. The cathode electrode thickness is 750 μm with porosity of 

0.73. The cell cycle is simulated between 2.4 and 4.2 V versus Li/Li
+
 in at operating 

temperature 298.15 K. 

 

Because the cell’s performance provided the limited capacity at a high discharge rate 

and could not determine the cell cycling behaviour, the discharge rate in the model was 

changed to a lower value as 0.05 mA cm
-2

 to investigate the air effect compared to the 

pure oxygen at the same cycling rate as that presented in Figure 6-2. It is apparent from 

the graph that, although the battery capacity increases on changing the discharge rate 

(from 117 to 226 mAh gcarbon
-1

), there has been a clear reduction in the capacity from 
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1,240 (in pure oxygen) to 226 mAh gcarbon
-1

 when using ambient air as the feed. What is 

also interesting in this data is that the inlet air affected the cell’s capacity and also the 

discharge voltage decreasing from 2.75 V in pure oxygen to 2.55 V in air at the same 

discharge rate.  

 

The cell performance is poorer because of the lower oxygen diffusion and solubility 

further inside the porous structure when a Li-air battery is operated under ambient 

conditions. Moreover, the cycling profile of a Li-air battery in Figure 6-3 indicates that 

the discharge voltage slightly drops due to gradual Li2CO3 deposition when repeated 

cycles of the Li-air battery are conducted. Because the effect of electrolyte degradation 

is not included in this model section to clarify the effect of ambient air, the battery 

profile between the 2nd-8th cycles in Figure 6-3 shows a slight decrease in specific 

capacity due to Li2CO3 being generated from the low CO2 concentrations in the air. The 

combined effects of air and electrolyte degradation will present in the next section. 

 

 

Figure 6-3: Variation of voltage-capacity curve for a non-aqueous Li-air battery using 

ambient air in 8 cycles on discharge and then charge between 2.2 and 4.2 V compared to 

Li/Li
+
 at a rate of 0.05 mA cm

-2
. The other parameters used in the model are the same as 

described in Figure 6-2. 
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The capacity retention of Li-air at a rate of 0.05 mA cm
-2

 is presented in Figure 6-4, 

when the cell is operated using an air inlet. The graph shows that the capacity retention 

gradually falls from 100% in the 1st cycle (cell discharge capacity of 226 mAh gcarbon
-1

) 

to 65% in 2nd cycle and slightly decreases afterwards to 58% in the 8th cycle. The 

significant difference in capacity retention between the 1st and 2nd cycle is due to the 

incomplete reversible Li2O2 decomposition during the recharging cell after the 1st 

discharge. Thereafter, the cell is affected by the Li2CO3 formation (generated from Eq. 

(5-6)) and demonstrates a small decrease in the capacity retention during the cycling 

due to the fact that there is little contaminated CO2. As can be seen from Table 6-4, the 

volume fraction of Li2CO3 collected at the cathode/current collector interface at the end 

of each discharge cycle slightly increases and gradually deposits inside the cathode with 

the repeated cycles of the Li-air battery.  

 

 

Figure 6-4: The cycle performance in term of capacity retention of an 8-cycle 

rechargeable Li-air battery in ambient air feeding with a comparison between the cells 

with stabilised electrolytes and those with the effects of electrolyte degradation. The 

battery was cycled at a rate 0.05 mA cm
-2

. The other parameters used in the model are 

the same as described in Figure 6-2. 
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Table 6-4: Specific discharge capacity and Li2CO3 formation for a non-aqueous Li-air 

battery operated in ambient air in 8 cycles at a rate of 0.05 mA cm
-2

. The data was 

examined with comparison made between the cell with stabilised electrolytes and those 

with the effects of electrolyte degradation.  

cycle 

Discharge capacity 

(mAh        
  ) 

 
Capacity retention (%) 

 
Li2CO3 volume fraction 

Feeding air With ED 
a
  Feeding air With ED 

a
  Feeding air With ED 

a
 

1 226.65 250.47  100.00 100.00  0.0031 0.0431 

2 146.84 157.70  64.79 62.96  0.0072 0.0812 

3 143.44 120.10  63.29 47.95  0.0108 0.1095 

4 142.26 104.90  62.77 41.88  0.0143 0.1390 

5 138.74 93.02  61.21 37.14  0.0178 0.1674 

6 136.57 62.27  60.25 24.86  0.0212 0.1875 

7 133.63 58.35  58.96 23.30  0.0245 0.2078 

8 132.58 42.74  58.49 17.06  0.0277 0.2232 
a
 Li-air battery performance combining the effect of feeding air and electrolyte degradation 

 

This volume fraction is also plotted in Figure 6-5 but the value is unnoticeable due to 

the scale when compared to Li2CO3 formation from the Li-air model including 

electrolyte degradation effect, which will be described in the next section. Because the 

Li2CO3 formation tends to follow the straight line during the battery simulation of 8-

repeated cycle, estimation of the cell can be made in terms of how many cycles will be 

achieved until the Li2CO3 deposition shows a significant impact on the Li-air cycling. 

Figure 6-5 also provides the predicted Li2CO3 volume fraction extended to the 80th 

cycle, corresponding to the value of 0.28. In other words, when the Li-air battery is 

operated using ambient air with stabilised electrolytes or without electrolyte 

degradation, discharge and charge can be repeated to about 60-65 cycles before Li2CO3 

formation reaches the same value as a Li-air battery, compared to in Figure 6-5, which, 

when combined with electrolyte degradation, only gives 8 cycles.  

 

The evidence from this study indicates that the air-feed affects the Li-air  battery’s 

performance in term of decreasing the discharge capacity due to low diffusion and 

solubility of oxygen, but this ambient air operation does not impact too much for the 

Li2CO3 generation during short-term cycles (8 cycles) due to the limited CO2 
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contamination from the atmosphere. 

 

Figure 6-5: Volume fraction of Li2CO3 formation inside the the Li-air battery at the end 

of each discharge cycle compared to that between the cells with stabilised electrolytes 

and with electrolyte degradation effect. The parameters used in the model are the same 

as described in Figure 6-2. 

 

6.4.2 Comparing the Li-air model with the experiment using air-feed 

As the previous section demonstrates, the performance of the Li-air battery was 

explored at various discharge rates on ambient air-feeding, whereas the developed 

model in this section is now validated against our group’s experimental data on the Li-

air battery. The result of the 1st cycle obtained from the Li-air battery assembled in our 

lab is compared to the simulation as shown in Figure 6-6. The air electrode was 

prepared by loading 3.54 mg cm
-2

 of Super P (Timcal, surface area 61 m
2
 g

-1
) without 

using any catalyst. The electrolyte which was loaded in the electrochemical cell and 

applied to the simulation for this section was a 1 M lithium bis-trifluoromethansulfonyl 

imide (LiTFSI) in tetraethylene glycol dimethyl ether (TEGDME or tetraglyme).  
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Figure 6-6: Voltage-capacity curve for a non-aqueous Li-air battery operated in ambient 

air feeding on the 1st cycle was validated against our group experiment at a rate of 0.05 

mA cm
-2

. The electrolyte contains 1 M LiTFSI dissolved in TEGDME. The cell cycle is 

simulated between 2.4 and 4.2 V versus Li/Li
+
 and both results are tested at operating 

temperature 298.15 K. 

 

It can be seen from the graph that the cell voltage-capacity curve at a rate of 0.05 mA 

cm
-2

 from the model matches the experimental data well during cell operation in 1 atm 

of dry atmospheric air. During discharge, the cell’s potential fell steeply at the 

beginning, from a voltage of 3.1 V to a plateau at around 2.6 V which was well-matched 

to the Li-air test cell for a similar electrolyte and operating conditions. The Li-air model 

continuously discharged until reaching the cut-off voltage at 2.2 V corresponding to the 

discharge capacity based on the weight of carbon alone at 248 mAh gcarbon
-1

, whereas 

the real system provided the discharge performance at 242 mAh gcarbon
-1

. The validation 

of this study indicates that the developed Li-air model with the air feeding parameters 

can be used as a modelling tool to predict the Li-air battery performance in ambient 

conditions.  

 

Contrary to expectations, the charging profile for the Li-air model did not match the 

experiment cell closely at the commencement of the charging process as demonstrated 
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in Figure 6-6. The former started to charge at 4.0 V and maintained at this potential 

until the end of charging step, while the latter begin at 3.6 V and gradually increased to 

the same cut-off charging voltage at 4.3 V. The most likely cause of different in 

charging potential between the two results is that the Li2O2 formed on the first discharge 

of the Li-air battery with tetraglyme based solvent coexists with a mixture of Li2CO3, 

HCO2Li, CH3CO2Li, and esters, due to electrolyte decomposition [19]. These products 

were not included for charging process in the case of Li-air battery model which 

considered only the Li2O2 as the truly rechargeable product. Hence, the charging 

potential of experimental cell may vary according to the quantity of discharge products 

other than Li2O2. Moreover, the charge potential and capacity from both experiment and 

simulation were similar. This comparison confirms that the model results and 

experimental data show similarities and that the model is a promising tool to identify 

the Li-air battery mechanisms and forecast the cell’s performance in ambient air. 

 

6.4.3 Li-air performance combining the electrolyte degradation effect 

In the previous section, the model demonstrates only the effect which the air-feeding 

has and allows us to study the impact of using air on the Li-air battery’s performance. 

However, in practice, the challenge in non-aqueous electrolyte degradation still remains 

during the operation of the battery and the formation of Li2CO3 is unavoidable. Since 

the Li-air battery is still in its early development phase, there is no electrolyte that is 

perfectly compatible with the Li-air battery without some electrolyte degradation taking 

place. Hence, the model combines the effects of electrolyte degradation together with 

air operation.  

 

As summarised in Table 6-4, the key results obtained from cycling Li-air battery with 

electrolyte degradation are compared with the cell using air-feeding and also plotted in 

Figure 6-4 and Figure 6-5 in term of capacity retention and Li2CO3 formation, 

respectively. It is apparent that the discharge capacity decreases dramatically during cell 

cycling from 250 mAh gcarbon
-1

 in the 1st cycle to very low value of 43 in the 8th cycle 

due to the high amount of irreversible Li2CO3 deposition as present in Figure 6-5. This 

cell performance falls faster than the Li-air with stable electrolyte as the latter can 

maintain the discharge capacity to 132 mAh gcarbon
-1

 at the same cycle (see Table 6-4). 

The capacity retention (decreasing to 17% in the 8th cycle) from the cell with 

electrolyte decomposition also follows the same trend of discharge capacity as shown in 
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Figure 6-4. 

  

From this study, the electrolyte could be considered as a key component and one of the 

main issues which needs to be solved at present to sustain the rechargeability of non-

aqueous Li-air batteries. It needs to be stable both in terms of oxygen rich 

electrochemical condition during Li-air operation and intermediate-reduced species as 

well as the lithium oxides (LiOx) compounds which are formed on discharge. 

Fundamentally, the stable electrolyte determines a desired discharge product (Li2O2) 

and whether a truly rechargeable Li-air battery can be built or not, i.e., high coulombic 

efficiency during each cycle is close to 99% to maintain battery cycle life. It is worth 

noting that, although the electrolyte degradation in this model was not based on a 

detailed mechanism which includes complex elementary steps in the reaction sequence 

[12, 19], the generic Li2CO3 formation could be adequate to predict the Li-air 

deterioration during cycling. 

 

6.5 Li-air battery performance with an oxygen-selective membrane 

As the mechanism of Li2CO3 formation and the hydrolysis reaction with the metallic 

lithium anode results from the cathode exposed to CO2 and H2O respectively from 

ambient air, it is necessary to prevent these gases entering to the Li-air batteries. For 

example, the outer surface of the porous cathode could be covered with an oxygen 

diffusion membrane that may not only provide a much larger solubility of oxygen 

through the membrane but also block CO2 and moisture content from the atmosphere 

[16, 17]. Moreover, the membrane could also minimise the evaporation of electrolyte 

from the Li-air battery.  

 

In this section, the developed model considers the Li-air cell performance with the use 

of a membrane as an oxygen- selective medium to obtain a better discharge capacity and 

a CO2 barrier to decrease the Li2CO3 formation. As shown in Figure 6-7, the porous 

cathode of a Li-air battery is protected by the oxygen selective membrane facing the 

atmosphere. As seen in the previous section, the Li-air battery including electrolyte 

decomposition effect tends to have higher Li2CO3 formation than the cell with the 

impact of CO2 from the atmosphere alone. Hence, to distinguish these effects when the 

Li-air battery integrates a membrane barrier, the electrolyte degradation effect is 

excluded in this section.  



                                            Chapter 6: Modelling of Operation of a Li-air Battery with 

Ambient Air and Oxygen-Selective Membrane 

169 | P a g e  

 

 

Figure 6-7: Schematic computation domain of a Li-air battery protected by an oxygen-

selective membrane at the cathode. 

 

A membrane could be simply considered as an interphase barrier covering the Li-air 

porous cathode and used for the separation of ambient air into oxygen-enriching steam 

diffusing through the Li-air battery. The separation for each gas in membranes occurs 

due to different physical properties in terms of permeability and solubility of the species 

flowing through the membrane. In this section, the Li-air model will be integrated with 

the silicone oil as an oxygen-selective liquid membrane for improving cell performance 

which is operated in ambient air. As mentioned early, the immobilized silicone oil 

membrane loaded in the various porous support films has been conducted in the Li-air 

batteries enabling them to operate in ambient air with a better performance [17].  

 

To describe the mechanism of species in the membrane, a simplified development of the 

theory of gas transportation across a membrane is presented. For the single gas species, 

several assumptions will be made to simplify the model and the diffusion of gas through 

the membrane can be defined by Fick’s first law: 

           

   
  

 (6-25) 

where      is the diffusion flux of gas through the membrane,      is the diffusion 

coefficient in the membrane medium, and        is the concentration gradient of the 

gas across the membrane. If the diffusion flux does not change with time, a steady-state 
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condition exists. Hence, diffusion of gases exists through a membrane for which the 

concentrations of the diffusing species on both sides of a membrane are held constant. 

For a very thin membrane, if      is assumed to be constant, Eq. (6-25) can be 

rearranged to:  

          

         

 
 (6-26) 

where    and      are the concentrations of the gas on upstream (air side) and 

downstream (after pass membrane), respectively, and   is the thickness of the 

membrane. For the membrane characterisation, the air or species permeation can be 

measured using the following equation: 

    
 ̅ 

    ̅   
 

    

  ̅   
 (6-27) 

where  ̅  is the permeation flow rate of gas i (mol s
-1

),    is the membrane surface area 

(m
2
), and   ̅    is the partial pressure differential of gas i (Pa). By combining Eq. (6-26) 

and Eq. (6-27) together, we can determine the concentration of gases after passing the 

membrane.  

 

Table 6-5: The characterisation of the membrane and permeability of gases. 

Membrane properties 
a
 Value Ref. 

Thickness (m) 5 10
-5

 [17] 

Oxygen permeability (mol m
-2

 s
-1

 Pa
-1

) 2 10
-7

 [35] 

CO2 permeability (mol m
-2

 s
-1

 Pa
-1

) 1.08 10
-6

 [35] 

Oxygen diffusion coefficient in membrane (m
2
 s

-1
) 1.6 10

-9
 [35] 

CO2 diffusion coefficient in membrane (m
2
 s

-1
) 1.1 10

-9
 [35] 

Oxygen concentration after passing membrane (mol m
-3

) 2.18 Calculated 

CO2 concentration after passing membrane (mol m
-3

) 0.012 Calculated 
a
 the membrane used in the model consists of silicone oil as the main material. 

 

To date, various oxygen-selective membranes have been developed and laminated on 

the porous cathode to allow the unpressurised air to permeate through the membranes, 

i.e. no pressure is applied at the upstream side of the membrane. Several assumptions 

are made to simplify the calculation: 1) the different partial pressures of individual 

gases between the two side of the membrane covering the surface of the Li-air battery 

are not known unlike the membrane-testing cell that can be directly measured by the 
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pressure gauge; hence we assume that this value is as low as possible; 2) the diffusion 

coefficients of species in the thin membrane are assumed to be constant. The membrane 

characterisation and gases permeability for use in the Li-air battery with oxygen-

selective membrane model are summarised in Table 6-5. The calculated concentrations 

of oxygen and CO2 after passing the membrane are 2.18 and 0.012 mol m
-3

, 

respectively. 

 

Figure 6-8: Comparison of the voltage-capacity curve for a non-aqueous Li-air battery 

model operated in ambient air in the case with and without oxygen-selective membrane 

at a rate of 0.05 mA cm
-2

. The other parameters used in the model are the same as 

described in Figure 6-2. 

 

The Li-air performance obtained from the air-feeding cell integrated with the 50 µm 

thickness of silicone oil membrane is compared to the absence one in Figure 6-8. 

Although, the membrane can enrich the oxygen concentration from 0.62 mol m
-3

 in air 

to 2.18 mol m
-3

 after passing the membrane, this is still not enough to operate the Li-air 

battery at high discharge rate. Hence, the low discharge rate at 0.05 mA cm
-2

 was 

applied in this section. As shown in Figure 6-8, the silicone oil membrane with a 

relatively high oxygen permeability of 2×10
-7

 mol m
-2

 s
-1

 Pa
-1

 (oxygen concentration 

2.18 mol m
-3

) at room temperature enabled the Li-air batteries to operate in ambient air 

with a specific capacity of 796 mAh gcarbon
-1

, 3.5 times higher than the case without 
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using membrane due to higher oxygen concentration. This discharge capacity obtained 

from the model is similar to that obtained from the Li-air battery experiment using 

silicone oil liquid membrane for operation in ambient air, corresponding to a specific 

capacity of 789 mAh gcarbon
-1

 [17].  

 

Moreover, it is apparent from the graph that the discharge cell voltages also increased, 

from ca. 2.60 V to 2.75 V with the high oxygen concentration in the Li-air cell protected 

with membrane but the charging voltage was not affected much due to the constant 

Li2O2 concentration which is assumed as the main product during battery charging. The 

CO2 concentration also increased after permeation through the membrane owing to the 

higher permeability of CO2 (1.08 10
-6

 mol m
-2

 s
-1

 Pa
-1

) in silicone oil than oxygen 

(2 10
-7

 mol m
-2

 s
-1

 Pa
-1

 Table 6-5). However, the Li2CO3 generated from this increasing 

CO2 did not notably influence the Li-air performance on the 1st cycle compared to the 

significant enhancement of specific capacity. 

 

6.5.1 Membrane with high oxygen permeability 

One of the most significant properties of the membrane for attainment in superior Li-air 

performance in term of high capacity and discharge rate is the high oxygen 

permeability. In this section, the effect of oxygen permeability at various ranges on 

maximum discharge capacity at different rates is presented for a 50μm thick membrane. 

The data was calculated using the equations as derived in the previous section. This 

assumes that the air window on the membrane and the cathode electrode have equal 

geometric areas.  

 

The maximum specific discharge capacity at different rates for a Li-air battery obtained 

from an oxygen-selective membrane of any permeability can be compared in Figure 

6-9. It is apparent from the graphs that the specific capacity enhances high oxygen 

permeability and it becomes smaller at higher discharge currents due to the limitation of 

the oxygen’s ability to diffuse inside the cathode. However, even with the high oxygen-

permeable membrane, the maximum discharge current to perform a Li-air battery is 

only 0.5 mA cm
-2

 with discharge capacity below 300 mAh gcarbon
-1

. The results of this 

study indicate that, although the specific capacity of Li-air batteries is about two times 

higher than in conventional Li-ion batteries (150 mAh gcarbon
-1

), the operating discharge 

currents are still not high enough for use in heavy-duty power devices or electric 
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vehicles which require higher discharge rate (> 2 mA cm
-2

) [36]. 

 

Figure 6-9: Effect of oxygen permeability on maximum specific discharge capacity at 

different discharge rates of a non-aqueous Li-air battery protected with a 50 μm thick 

oxygen-selective membrane. The other parameters used in the model are the same as 

described in Figure 6-2. 

 

For CO2 transport through most oxygen-selective membranes, its permeability is often 

comparable to oxygen, i.e. ratios of    
    

⁄  are generally less than unity [24]. CO2 

from atmosphere can react with the desired Li2O2 discharge product or electrolytes to 

form Li2CO3. The Li2O2 can be reversibly converted to evolve oxygen at about 4.0-4.5 

V lower than the Li2CO3 which requires high potential more than 4.5 V to recharge [12, 

37]. Hence, if the membrane is being used for a rechargeable Li-air battery, it must 

effectively separate the CO2 from the air inlet for maintaining a long-life cycle of Li-air 

battery. This is a challenge because materials with high oxygen permeability also have 

high CO2 permeability [35, 38]. However, the CO2 impurity is not the problem in 

primary Li-air batteries due to the absence of charging process so the final discharge 

product does not matter. A recent study of a novel non-aqueous Na-air battery by Das et 

al. (2013) reported that a gas mixture of CO2 (63%) and oxygen (37%) can increase the 

discharge capacity of Na-air battery in tetraglyme-based electrolyte from 1,390 in pure 
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oxygen to 2,882 mAh gcarbon
-1

, an increase of 2.1 times [39]. Therefore, without any 

recharging, CO2 can help the primary battery to increase the performance. 

 

Nitrogen is an inert gas and has little or no effect with lithium-based electrolyte on the 

Li-air battery’s performance [24]. Published studies exist which describe lithium nitride 

(Li3N) formation generated from the direct reaction of nitrogen with lithium in Li-ion 

batteries at room temperature during charge-discharge cycles [40, 41]. The same 

behaviour could possibly occur on the surface of metallic lithium in Li-air battery. 

However, in this work, we focus on the porous cathode which contributes to the main 

part of Li-air battery. Moreover, the permeability ratios between oxygen and nitrogen 

(   
   

⁄ ) are normally higher than the unity, thus increasing the relative content of 

oxygen over nitrogen in the feeding steam. 

 

6.6 Conclusions 

A macro-homogeneous model was developed and used to analyse the capacity and 

cycling behaviour of the rechargeable Li-air battery operated under ambient air 

conditions. The model uses a set of governing equations which describe species 

transport, charge and reaction kinetics within the battery, taking into consideration of 

by-product formation, electrolyte decomposition and changes in surface area and 

porosity. The model can accurately predict the capacity feature and the detrimental 

effect of electrolyte decomposition and Li2CO3 formation on the capacity retention. The 

model forecasts a significant influence of using an oxygen-selective membrane, which 

could lead to an increment in specific capacity of up to 4 times. The simulated results 

are in a good agreement with the experimental data. 
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Chapter 7: Modelling of Na-air Battery with Porous Gas 

Diffusion Electrode 

 

 

In this chapter, a macro-homogeneous model to evaluate the impact of replacing a 

conventional flooded electrode with a gas diffusion electrode on the performance of a 

non-aqueous Na-air battery is presented. The Na-air batteries have recently been 

considered by researchers as an advanced rechargeable battery which replaces the 

lithium anode with cheap and abundant sodium metal for environmental and sustainable 

development. This novel battery should provide the similar performance to Li-air 

batteries to fulfil the growing energy storage demands for the electrical vehicles and 

stationary applications. This model used the micro-macro homogeneous system as 

discussed in Chapter 4 and the electrolyte degradation effect in Chapter 5. The biggest 

difference is that the cathode structure was applied a gas diffusion electrode instead of 

being flooded. Moreover, the loss of electrolyte volume fraction due to the degradation 

during battery cycling was also considered. 

 

7.1 Introduction 

Over recent decades many studies have devoted much effort to rechargeable lithium-

oxygen/air batteries (Li-air) for advanced energy storage and new electrochemical 

technology with high theoretical specific energy [1-3]. In contrast to commercial 

lithium-ion battery systems, the Li-air battery merges the advantage of fuel cells and 

batteries in that one of the active materials (oxygen) comes from the atmospheric air. 

Assuming lithium peroxide (Li2O2) as a solid product, the cell system ideally operates at 

up to a potential of 2.96 V and exhibits a theoretical specific energy of 11,640 Wh kg
-1

, 

several times higher than that of conventional lithium-ion batteries generally applied in 

commercial electronic devices and electric vehicles. However, a major problem with 

this kind of application is the large overpotentials in practical cells, on discharge (      

300 mV) and on charge (     > 1000 mV), resulting in low round-trip efficiency during 

battery cycling. Therefore, effort has been made to search for suitable catalysts to 

increase Li-air performance.  

 

Despite the Li-air batteries safety and efficiency issues, some early results reveal more 
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complex cell reactions [4-6]. There is strong evidence that the non-aqueous electrolytes 

applied in Li-air batteries using both carbonate and ether-based solvents tended to react 

with the intermediate reactive superoxide radical product and decompose irreversibly 

during battery discharge and charge cycles [7-9]. Recent research found that the Li-air 

operated in ether-based electrolyte can form the desired discharge product of Li2O2, but 

it still suffers from electrolyte degradation and results in large overpotentials [10-12]. 

Moreover, there is increasing concern that the cost of lithium may rise as demand for 

battery materials increases [13]. Hence, substitution of lithium by sodium metal, which 

provides very suitable redox potential almost as high as lithium (         
        

compared to          
        versus standard hydrogen electrode (SHE)), may offer 

promising rechargeable metal-air batteries for energy storage application. 

 

Figure 7-1 Schematic computation domain of a Na-air battery with gas diffusion 

electrode during discharge operation. The inset demonstrates the discharge products 

formation of Na2O2 covering on the porous carbon surface. 

 

The Na-oxygen/air cell has a high specific energy depending on the discharge products, 

i.e. Na2O2 provides 1,605 Wh kg
-1

 with a standard cell potential          . 

Furthermore, sodium is placed right below lithium in the periodic table and it is 

expected that their chemical properties could be similar. The working principle of both 
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lithium and sodium oxygen battery systems is similar in concept as shown in Figure 7-1. 

For a non-aqueous electrolyte system, the possible cell reactions during discharge 

process for Na-air battery are the formation of different sodium oxide products by the 

reduction reaction with oxygen according to following reactions 

Cathode                                      (7-1) 

                                         (7-2) 

                                         (7-3) 

There are several studies of Na-air batteries. The different types of discharge products 

(sodium oxides) have been reported depending on the solvent used in the system as 

summarised in the Table 7-1. 

 

Table 7-1 Different discharge products from the studies of Na-air batteries. 

Cathode Electrolyte Reactant Main product Ref. 

GNS 0.25M NaPF6/DME Dried air Na2O2 [14] 

GNS 0.25M NaClO4/DME Dried air Na2O2 [14] 

Thin film carbon 0.25M NaPF6/DME Dried air Na2O2 [14] 

Carbon-fibre 0.25M NaPF6/DME Dried air Na2O2 [14] 

Diamond-like 

carbon (DLC) 
1M NaPF6/EC:DMC Dried air Na2O2/ Na2CO3 [15] 

Super P/PVDF 
0.75 M 

NaCF3SO3/ionic liquid 
Pure O2 Na2C2O4 [16] 

Super P/PVDF 1M NaClO4/TEGDME Pure O2 Na2CO3 [16] 

Carbon-fibre gas 

diffusion layer 

0.5M 

NaCF3SO3/DEGDME 
Pure O2 NaO2 [17] 

Ketjet Black/NMP 1M NaClO4/PC Pure O2 Na2CO3 [18] 

Ketjet Black/NMP 1M NaClO4/TEGDME Pure O2 Na2O2 [18] 

GNS = Graphene nano sheet, NMP= N-methyl-2-pyrrolidone (binder) 

 

Na-air batteries are also regarded as another promising alternative energy storage 

system and several attempts have been made to build Na-air batteries [13, 19]. The 

feasibility of a liquid-sodium-oxygen cell with polymer electrolytes has been reported 

and operated at high temperature up to 100 ºC to eliminate the sodium dendrite 

formation at the anode [20]. However, liquid sodium is well known as highly corrosive 

and the high operating temperatures are challenging for practical applications. 
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Sun et al. have investigated a rechargeable Na-air battery working at room temperature 

with a carbonate-based electrolyte using dry-air and found that both crystallised sodium 

peroxide (Na2O2) and amorphous sodium carbonate (Na2CO3) coexist as the discharge 

products but disappear during charging [15]. The thin film electrode based on the 

weight of carbon film provided an initial discharge capacity of 1884 mAh gcarbon
-1

 at a 

discharge voltage plateau of 2.3 V. For the initial charge process, this thin film air 

electrode had sluggish diffusion and reaction kinetics during charging with a starting 

charging potential of 3.5 V, ending at 3.9 V [15]. Thus, this system also suffers from 

similar high overpotential and low energy efficiencies to the Li-air battery with a 

carbonate-based electrolyte.  

 

Hartmann et al. have recently studied a reversible Na-O2 cell using an ether-based 

electrolyte showing that the main discharge product was sodium superoxide (NaO2) 

deposited on a carbon-fibre gas diffusion layer.  The cell performance gave a very low 

overpotential during the discharge/charge cycle (< 200 mV) at current densities of 0.2 

mA cm
-2

 [17]. The charging process at low current densities (0.12 mA cm
-2

) showed a 

voltage plateau between 2.3 and 2.4 V, which is close to the potential for the 

decomposition of NaO2 (Eq. (7-1)) to form Na
+
 and oxygen [17]. 

 

Recently, Kim et al. investigated the electrochemical reaction mechanisms of Na-O2 

batteries in alkyl-carbonated and ether based electrolytes showing a clear distinction 

between discharge products with the two types of electrolytes [18]. It was found that the 

rechargeable cell with carbonate-based electrolyte was based on the formation and 

decomposition of sodium carbonate (Na2CO3), while the ether-based cell was cycled 

from the main product of hydrated sodium peroxides (Na2O2.H2O).  

 

Overall the report literature has shown the feasibility of Na-air batteries as candidates 

for a new energy storage device. However, little attention has been paid to the Na-air 

battery modelling. Unlike the previous Li-air models, which considered the cathode as a 

flooded porous electrode [21, 22], this model studied the cycling behaviour of a Na-air 

battery based on macro homogeneous model using a gas diffusion electrode (GDE) in 

contact with a liquid electrolyte. This model accounts for mass transfer in the gas 

diffusion layer and active layer with the set of equations for material balances and 

electrochemical kinetics. The model also included the electrolyte degradation effect to 
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form Na2CO3 by-product and predicts the time dependence of species concentrations, 

non-uniform porosity and cell performance in different discharging rates and initial 

parameters. The gradual loss of electrolyte from the electrolyte decomposition was 

considered in this chapter. Although other byproducts besides Na2CO3 are formed 

during electrolyte decomposition, their quantities may be considered as insignificant 

relative to both the main discharge products of Na2O2 and Na2CO3, which are 

considered in this study. This model can be used to describe the behaviour of Na-air 

batteries as well as to optimise the performance and structure of these battery electrodes. 

 

7.2 Theoretical mechanism analysis 

GDE, which consist of a very complicated structure of small porosity, are the key 

feature in fuel cells and batteries. Recently, they have been increasingly applied in 

metal-air battery systems to enhance their performance [2, 17]. The mathematical model 

of Na-air presented in this study was one-dimensional and considered the battery as 

consisting of a gas diffusion layer (GDL), a cathode active layer comprising partially 

dissolved sodium salt in an aprotic solvent and a separator containing electrolyte, as 

presented in Figure 7-1. During discharge, the oxidation reaction of sodium metal 

occurs at the sodium-electrolyte interface is as follows 

Anode                                          (7-4) 

 

There are three phases in GDE: the gas phase of the reactants (oxygen or air), the solid 

phase of electrically conductive material (carbon and catalyst), and the liquid phase of 

electrolyte solution. The transport and electrochemical processes taking place in GDE 

are as follow 

i. The reactant gas (oxygen or air) transports from the atmosphere to the surface of 

GDE. 

ii. The reactant diffuses through the porous GDL, which contains conductive 

material. 

iii. The reactant gas dissolves at the gas-liquid interphase into the porous active 

layer. 

iv. The reactant in the liquid phase transports to the active site via liquid phase 

diffusion. 
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v. The ionic reactant (Na
+
) is generated by the oxidation reaction at the anode and 

transports by diffusion and migration through the separator and the active layer. 

vi. At the partially-wetted pore formed by liquid electrolyte in active layer, there 

takes place the electrochemical reaction between oxygen and Na
+
. 

vii. The electrons are transported in the solid matrix by electrical conduction to or 

from the current collector and conducted towards the active area, where the 

charge transfer reduction takes place between Na
+
 and oxygen to form the 

sodium oxide products depends on the types of electrolytes used and  

electrochemical reaction. 

 

Due to reaction at the Na-air cathode involving oxygen reduction in non-aqueous 

electrolytes containing sodium salts, it is believed that, like Li-air battery systems, the 

discharge product of Na2O2 could be formed in Na-air batteries [15], and this reaction 

includes a two-step reaction consisting of the electrochemical formation of sodium 

superoxide (NaO2) and then chemical decomposition of NaO2 to form Na2O2 [23, 24]. 

As this battery system is analogous to the Li-air battery model [21, 22], the mechanisms 

considered in this Na-air model are the reduction reaction of oxygen to form the desired 

product of Na2O2 during battery discharging and by-product Na2CO3 generated from the 

electrolyte solvent degradation [18]. 
 

7.2.1 Electrolyte degradation 

Analogous to the Li-air battery, finding suitable electrolytes with high stability during 

cell operation is a key to obtaining long-term Na-air battery cyclability, especially in an 

oxygen-rich environment and catalytic conditions [25]. Since Na-air batteries have been 

developed, various non-aqueous electrolytes have been examined. Kim et al. proposed 

the reaction mechanism for Na-air batteries with both alkyl-carbonate and ether based 

electrolytes and found that these two electrolytes also decomposed during the battery 

discharging and charging processes [18]. Hence, the electrolyte degradation 

mechanisms proposed in chapter 6 were also included in this model as described below 

 

Na2CO3 formation 

         
   
→      

                (7-5) 

    
       

   
→      

      RDS (7-6) 
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               (7-7) 

Overall              
                 (           ) (7-8) 

 

Solvent degradation 

       
   
→     

                 (7-9) 

   
  [       ]  [       ]   (7-10) 

 [       ]                              (7-11) 

Overall     [       ]                             (7-12) 

 

It is worth noting that the exact detail of the reaction routes for the electrolyte 

degradation to form Na2CO3 are complicated involving several intermediates during cell 

operation. Moreover, the loss of electrolyte volume by degradation during the battery 

operation is considered and explained in the model section. 

 

7.2.2 Charging process 

For the Na-air battery, different discharged products have been reported during the 

battery operation as mentioned previously and summarised in Table 7-1. The model 

assumes that Na2O2, which is the desired product, is oxidised to Na
+
 and oxygen during 

charging (reverse of Eq. (7-2)). Therefore, the charging process for Na-air battery 

applied in this model is similar to the Li-air battery model described in chapter 3. 

 

7.3 Model Development 

7.3.1 Model description 

This chapter investigated the various parameters on the performance of Na-air battery 

by using a macroscopic one-dimensional model of a gas diffusion electrode in contact 

with a non-aqueous electrolyte. The mathematical model for a prismatic single cell of a 

Na-air battery consists of three domain regions, which are: a separator, an active layer 

and a GDL, as shown in Figure 7-1. The reaction in the cathode and anode were 

followed Eq. (7-2) and Eq. (7-4), respectively and also included the electrolyte 

degradation as described above.  
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7.3.2 Model assumption 

As the Na-air battery system is complex with the various reactions and mass transport 

species into two phases (gas and liquid), the build-up of Na2O2 and Na2CO3, the 

electrolyte loss by degradation, and the dynamic change of porosity and interfacial 

surface area, several model assumptions were adopted to support the calculation as 

follow 

viii. The Na-air battery is operated in isothermal conditions so that the thermal 

effects are not considered. 

ix. Ideal gas behaviour is applied in the cell due to low operating pressure. 

x. The solid salts of Na2O2 and Na2CO3 are the main discharge products which 

only occur and deposit inside the active layer of GDE. 

xi. The electrolytes used in Na-air batteries are assumed a binary monovalent 

electrolyte which consists of a single salt in a homogeneous organic solvent 

mixture. 

xii. The pores in the active layer consist of a three-phase system: gas from the 

reactant species, liquid from the non-aqueous electrolyte, and solid from active 

carbon and discharge products. 

xiii. The separator is impermeable to oxygen gas. 

 

The model of the Na-air battery using GDE as the cathode electrode is similar to that of 

fuel cell systems excepting that there is no flow channel in the former (reactant gas is 

packed inside the battery system), then the boundary conditions between the bulk 

reactant gas and GDL are taken as the feed gas compositions. 

 

7.3.3 Mass transport for reactant gas 

In the Na-air battery, the oxidant (air or pure oxygen) flows from the gas reservoir (bulk 

gas) through porous gas diffusion media, in which no electrolyte is present, and moves 

through the porous active layer, which is partially wetted with non-aqueous electrolyte 

to form a 3-phase interfacial area, before dissolving and transporting in electrolyte to 

react with Na
+
 at the reaction surface of active carbon. To achieve a high efficiency of 

GDE, a continuous supply of reactant gas has to reach the thin electrolyte film covering 

on the surface of the porous active layer. In this model, only transport processes for 

reactant gas in the porous media were considered with two transport phenomena of 

diffusion and convection.  



                 Chapter 7: Modelling of Na-air Battery with Porous Gas Diffusion Electrode 

187 | P a g e  

 

 

For the dynamic one-dimensional Na-air battery model, the conservation of mass of gas 

can be expressed as 

  
   

  
                  (7-13) 

where    is the mass fraction of species  ,   is the density of the gas mixture, and       

is the mass source term from any reactions. The total mass flux         for the transport 

of gas species i, due to diffusion and convection, is given by 

                 (7-14) 

where    is  the diffusion flux and       is the convective flux, i.e. the product of 

density and velocity.  

  

As the models were developed to cover the variety of feeding reactant gases (i.e. oxygen 

or air mixture), the Stefan-Maxwell equation and Darcy’s law were adopted to model 

the mass transport processes in the gas channel of the GDE. The Stefan-Maxwell 

equation was used to account for the effect of interactions between species during mass 

transport and the velocity of species inside the porous media was calculated from 

Darcy’s law (defined in Eq. (7-22)). To include the Stefan-Maxwell equation for mass 

transport, the mass balance in Eq. (7-13) can be modified in the following form 

 
   

  
   [         ∑ ̃  {           

  

 
}

 

]        (7-15) 

where    is the mole fraction of species  ,    is the pressure inlet to the system, and  ̃   

are the binary symmetric diffusivities of the species pair  - . The second term       is 

the convection term. The velocity vector u can be calculated from Darcy’s law. The 

third term in the form of Stefan-Maxwell equation describes the effect of diffusion. 

  

The binary symmetric diffusivities in Eq. (7-15) take into account molecular 

interactions in the gas mixture. These values depend on species concentration and 

diffusivity for a binary mixture, and can be calculated from the effective Stefan-

Maxwell diffusivities 
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(7-17) 

The Stefan-Maxwell binary diffusivities     are determined from an equation based on 

the kinetics of monoatomic gases theory at low density [26] 

     
            

    
   

   
   

  
[
 

  
 

 

  
]

   

 (7-18) 

where    are the molar diffusion volume for each component as summarised in Table 

7-2,    is the molar mass of species  , and   is the system temperature, respectively. 

 

Table 7-2 Molar diffusion volume for each component 

 H2 O2 N2 H2O He CO CO2 

   6.12 16.3 18.5 13.1 2.67 18.0 26.9 

 

Due to the gas transport passing through a porous structure of GDE, the diffusion 

coefficient of gas species is accounted for the tortuosity of the pore following a 

Bruggeman correlation [27] 

    
   

      
    (7-19) 

where    
   

 is the effective Stefan-Maxwell diffusivity and   , is the porosity or void 

fraction (defined as the ratio of the void pore volume to the total sample volume). The 

subscription   means the porosity in different layers, e.g. separator, active layer, and 

GDL.  

  

The expression described in Eq. (7-19) is not valid if the layer consists of two phase 

components, just like water production in the porous cathode of fuel cells. For a Na-air 

battery with GDE, the two-phase components occur in the active layer where the 
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amount of liquid electrolyte presents in the void space of gas diffusion pathway. 

Consequently, the effective Stefan-Maxwell diffusivity accounting for two-phase 

components should be modified as 

    
   

      
            (7-20) 

where   is the liquid electrolyte fraction remaining inside the porous of active layer 

(defined as the ratio of liquid electrolyte volume to the total pore volume). 

  

The source terms in Eq. (7-13) are coupled with the reactions at the porous active layer 

of GDE and only the oxygen reactant is involved given by 

       

{
 

 
        

      

   
                  

                             

 (7-21) 

where       is the stoichiometric number of oxygen and       is the volumetric current 

density (A m
-3

) of electrochemical reaction   occurred at the active layer of cathode. 

  

Darcy’s law is applied to model the convection within the porous media by relating the 

velocity vector with the pressure gradient, the fluid viscosity, and the permeability of 

porous structure, as described in following expression 

    
 ̃

  
   (7-22) 

where  ̃ is the permeability of the porous media, and    is the pore-fluid viscosity of gas 

  in GDE. The Darcy’s and Stefan-Maxwell equations are coupled via the velocity 

vector   and gas mixture density,  , which is calculated from 

   
     

  
  (7-23) 

The viscosity of the cathode gas for air      is given by [26] 

                      ⁄       (7-24) 

The viscosity of the cathode gas for oxygen    
 is given by the Chapman-Enskog 

theory of a pure monatomic gas [28] 

     
                          (7-25) 
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7.3.4 Transport of oxygen through thin film electrolyte 

The macro-homogeneous model for the active layer, which consists of three phases 

together, assumes that the active layer is a ‘volume average’ of the solid electrode and 

the electrolyte. Thus, the effective conductance of the active layer is the weighted 

volume average of respective conductance to account for the tortuosity of the porous 

electrode. The diffusion coefficients and film thickness are similarly averaged in the 

active layer.  

 

Figure 7-2 Schematic diagram of oxygen from the gas phase transporting through thin 

electrolyte film in the active layer. 

 

Oxygen transport from the porous media to the active surface area occurs through a thin 

film of a non-aqueous electrolyte covering the carbon active material as presented in 

Figure 7-2. The film provides ion conductive paths from the separator to the active site. 

The average film thickness    can be estimated using the following equation [22, 29] 

    [(
     

  
)
   

  ]    (7-26) 

where    and    are the volume fraction of liquid electrolyte and active material of 

cathode electrode (active carbon and binder), and    refers to the particle radius in the 

electrode. 
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It is worth noting that in this time-dependent model the electrolyte degradation is 

considered during battery cycling. Hence,    continuously falls from the pore due to the 

effect of Na2CO3 formation. 

 

To determine the oxygen concentration at the active surface (     ), Fick’s law for 

diffusion is used and coupled with the electrochemical reaction in which oxygen species 

is consumed at the active electrode surface as follow 

  
   
  

   
            

       

  
 (7-27) 

where         is the effective diffusion coefficient of oxygen across the electrolyte film, 

   is the local transfer current density at active layer that relates to the oxygen species, 

   
 is the dissolved oxygen concentration at gas/electrolyte interface, which can be 

determined by using Henry’s law for solubility 

    
    

 ̅  
 (7-28) 

where    
 is the Henry’s law constant of oxygen which depends on the electrolyte and 

temperature used in the Na-air battery (   
  2.95 mol m

-3
 atm

-1
 as same as Chapter 6), 

and  ̅  
 is the partial pressure of oxygen which can be defined by Darcy’s law [30]. 

 

7.3.5 Transport of species in electrolyte 

As the previous section described the gas transport in the GDE which covered only the 

two domains of active and gas diffusion layer, this section provides the governing 

equations which describe conservation of species transport through the liquid electrolyte 

phase in the active layer and separator domains to clarify the mechanism inside the Na-

air battery mentioned above. 

 

The model used in this study is based on the macroscopic theory of porous electrode, 

which considers the electrolyte solution and solid matrix as a superimposed continuum 

[31, 32]. Then, a material balance equation for species   transport in the Na-air 

electrolyte can be expressed as  

 
      

  
          (7-29) 

where     is the bulk concentration of species   in the solution phase which is averaged 
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over the volume of the solution in the pores,   is electrolyte fraction in the porosity of 

the electrode as defined in Eq. (7-48),    is the molar flux of species   in the porous 

solution averaged over the cross sectional area of the electrode, and    is the volumetric 

production rate of species   from the solid phase (electrode material) to solution phase 

(partial electrolyte in the porous) within the porous electrode. 

 

The concentration of sodium salt electrolyte is the same as concentration of Na
+
 due to 

the binary electrolyte assumption. Only the diffusion and migration transport of species 

are considered in liquid electrolyte without convection. Due to the ion movement, the 

flux equation for mass transport of Na
+
 includes both migration and diffusion, and other 

species involve only the latter transport in porous cathode 

                  
    
 

 (7-30) 

               (7-31) 

where    is the transference number of Na
+
,   is Faraday’s constant which is equal to 

96,485 C mol
-1

, and    is the current density in the solution phase or electrolyte current 

density. The effective diffusion coefficient of species (      ) needs to be corrected to 

account for the effect of porosity and electrolyte volume fraction in the active layer, 

based on the Bruggeman correction 

                   (7-32) 

where    is the diffusion coefficient for each species in bulk electrolyte. 

 

7.3.6 Conservation of charge 

For the porous electrode theory, the charge conservation for the electrode matrix and 

solution phases would require the divergence of the total current density to be zero 

defined by 

              (7-33) 

This expression is used to relate the current density in the conductive solid phase 

(carbon) to the current in the electrolyte phase in the active layer. In the one-

dimensional description this equation derives as 

          (7-34) 
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where   is the operating current density and is given to be negative during operation at a 

cathode in a Na-air battery.  

 

7.3.7 Current density in electrode phase 

In the Na-air battery, there are two regions containing carbon materials: active layer and 

GDL. Then, the movement of electrons in the solid matrix phase is governed by Ohm’s 

law, which evaluates the electric potential variation or potential of electron,   , as 

follows 

               (7-35) 

where      is the effective conductivity of the electron for each material region. This 

parameter is affected by the volume fraction of solid electrode inside the porous 

cathode. 

 

7.3.8 Current density in electrolyte phase 

In the active layer the current density in the solution phase or electrolyte current density 

which can be defined by the gradient of the potential in a 1:1 binary concentrated 

electrolyte solution as [32, 33] 

             
       

 
      (  

    

      
)        (7-36) 

where      is the effective conductivity of the electrolyte,    is the electrolyte potential 

(electric potential of Na
+
),   is the universal gas constant which is equal to 8.3143 J 

mol
-1

 K
-1

,   is the cell temperature in Kelvin, and   is the activity coefficient of NaPF6 

salt. In this equation, Bruggeman’s correlation was also used to calculate the ionic 

conductivity 

                (7-37) 

 

7.3.9 Charge transfer reaction 

During discharge or charge, the electrochemical reactions occurring at the 

electrode/electrolyte interface (charges transfer reaction) are expressed for individual 

reactions according to the conventionally general formula of the form 

      
       (7-38) 
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The charge transfer from solid phase to electrolyte phase per unit volume of electrode 

(    ) is related to the individual average transfer current density occurred at the 

cathode given by 

      ∑   
 

 
(7-39) 

This equation states that the transfer current per unit electrode volume is equivalent to 

the electrode chemical reaction rate where the    is a species symbol participating in 

the electrochemical reaction,    and    are the charge number and the stoichiometric 

coefficient of the species  ,   is the number of electron transferred in the reaction,   is 

the specific interfacial area of the pore per unit volume of the total electrode as 

described in chapter 3, and    is local transfer current density between electrode and 

electrolyte interface of each reaction at the cathode. The value of   ,   , and   can be 

defined by matching with an individual electrode reaction using the general form of Eq. 

(7-38), for example, the value of    ,    , and   of Na
+
 from Eq. (7-2) are -2, 1, and 2, 

respectively. 

 

In practical Na-air batteries, the precise reaction routes can be complicated regarding 

several intermediates as proposed in the previous reports [18]. Hence, both 

electrochemical reactions of Na2O2 and Na2CO3 formation inside porous electrode are 

considered in the present work. The superficial production rate of each species (referred 

to Eq. (7-29)) from solid phase to pore solution in the individual reactions m is given by 

Faraday’s law 

     ∑
    
  

  
 

 
(7-40) 

 

7.3.10 Kinetic expressions at cathode 

Since there is no report on the details of kinetic reaction for Na-air battery, the 

electrochemical reactions inside the active layer are analogous to that used in Li-air 

battery from previous chapters. The actual reaction paths and mechanisms for the 

discharge products are not available and quite complex involving various intermediate 

species. Hence to describe the electrochemical kinetic expressions in the porous active 

layer the model adopts the kinetic expression based on Eq. (7-2) for Na2O2 formation 

and on Eq. (7-8) and Eq. (7-12) for Na2CO3 formation.  
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Na2O2 formation 

For electrochemical reaction of Na2O2 at the cathode, a modified version of the Butler-

Volmer equation is applied in the model using two rate coefficients as the same kinetic 

equation for Li2O2 formation described in chapter 3 due to the similarity between these 

two discharge products. The reaction for Na2O2 formation depends on the concentration 

of Na
+
 and oxygen for discharge and the concentration of Na2O2 during charge as in the 

following equation  

  
  

    (      
)   [

       

  
  ]          

 (     )   [
    

  
  ] (7-41) 

                   
  (7-42) 

                  (7-43) 

where     and    are the anodic and cathodic rate constant, respectively,   is the 

symmetry factor equal to 0.5,    is surface or activated overpotential for individual 

reaction,  , at the cathode,        and       are the voltage drop and the electrical 

resistivity across Na2O2 film formation, respectively,    is the volume fraction of solid 

formation of discharge products of Na2O2 and Na2CO3, and   
  is the theoretical open-

circuit potential for each reaction. As the reaction takes place in liquid electrolyte, the 

kinetics account for the amount of electrolyte (volume fraction,  ) in the active layer. 

 

Na2CO3 formation 

As the Na-air battery used the same organic electrolyte like the case of Li-air battery, 

the formation of carbonate product could form in the same reaction of electrode 

degradation as presented in chapter 5. Hence, the Na2CO3 formation used the same 

kinetic equations as Li2CO3 formation due to the similarity in electrolyte used in both 

the Na-air and Li-air systems. 

 

As explained before, the Na2CO3 formation is one of the discharge by-products 

coexisting with Na2O2. Thus, the decomposition of electrolyte, which initially forms 

CO2 and finally generates Na2CO3 as described above, occurs during Na-air operation. 

Some of the elementary steps in the electrolyte degradation sequences that lead to these 

by-products may be irreversible and non-electrochemical, so that the overall kinetic 

expression is very complex. Therefore, we use the kinetics for Na2CO3 formation on Eq. 
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(7-8) above based on the published kinetic data. 

 

First the superoxide radical anion that is initially formed (Eq. (7-5)) during Na-air 

discharge as evidenced in previous study [24], attacks CO2 which is generated from 

solvent decomposition (from Eq. (7-12)) to finally form Na2CO3 with the presence of 

Na
+
 as in the following reaction 

         (   
) [    (

    

  
  )] (7-44) 

            
       

  (7-45) 

where     and     are the rate constant for the electrochemical reaction to form   
  and 

chemical reaction to generate Na2CO3, respectively. We use the Tafel form in Eq. (7-44) 

rather than the Butler-Volmer form because the large kinetic overpotential during cell 

discharge puts the reaction in the Tafel region and considers only discharge (irreversible 

for   
  formation. It has been demonstrated that the chemical reaction in Eq. (7-45) is 

found to be first-order with to respect to both   
  with CO2 reactants and is the rate 

determining step (RDS) [24]. Hence, the other reaction is considered as equilibrium and 

the formation of Na2CO3 can be predicted by using Eq. (7-44) and Eq. (7-45) together. 

 

Solvent degradation 

The solvent degradation reaction uses the same expression as described in chapter 5 and 

is presented as follows 

         (   
) [    (

    

  
  )] (7-46) 

where     is the rate constant for the electrochemical reaction to form CO2 and the 

others are the same as described above. 

 

7.3.11 Rate expressions at anode and specific surface area 

The electrochemical reaction rate for the anode includes the oxidation of sodium metal 

to soluble Na
+
. It is described by a general Butler-Volmer equation as follow 

      [   (
       

  
  )     (

    

  
  )] (7-47) 

where    is exchange current density for anode,    is surface or activated overpotential 

for reaction at anode, and the other parameter are as described above. 



                 Chapter 7: Modelling of Na-air Battery with Porous Gas Diffusion Electrode 

197 | P a g e  

 

 

7.3.12 Porosity change and electrolyte degradation 

In this model, the porosity of GDL is composed of a single phase of reactant gas 

diffusing through the void space, whereas the porous media in the active layer is 

occupied by two phases of electrolyte and reactant gas. The bulk porosity ( ) in this 

layer, which is dynamically changed during charge and discharge, is divided between 

the liquid electrolyte (  ) and gas (  ) volume fractions. The liquid electrolyte ( ) is the 

volume occupied by the liquid    divided by the open pore volume  . The phase balance 

can be depicted in Eq. (7-48) 

 

           

        

  
  
 

 

(7-48) 

The porosity volume change of the active layer will be decreased due to the formation 

of insoluble solid products covering the active particles as described in Eq. (7-49). The 

void space for gas transport is replaced by these solid particles. Thus, the effective 

diffusivity for gas species inside the active layer is used to describe how the pores are 

influenced by Na2O2 and Na2CO3 formation; this can be described by the Bruggeman 

relationship (referred to Eq. (7-19) and Eq. (7-20)). Because the solid distributions in 

the model are Na2O2 and Na2CO3, we use the properties of these solids for all of the 

discharge products formed 

 
  

  
  ∑    

  

    
             

 
(7-49) 

During battery cycling, the electrolyte is consumed or degraded by the Na2CO3 

formation reaction as described in Eq. (7-12). Consequently, the electrolyte volume 

fraction also follows the same manner of porosity change in Eq. (7-50) and decreases 

following the charge transfer reaction of electrolyte degradation (   ) as 

 
   
  

      
  

    
 (7-50) 

The volume fraction of the discharge solid formation can be determined from the 

cathode volume balance as 
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           (7-51) 

where   ,    and   ,    are the molecular weight and the mass density of solid 

discharge products and electrolyte, respectively. 

 

7.3.13  Boundary conditions 

From Figure 7-1, a schematic view of the model cell consists of four boundaries and 

three domain regions. The boundary dimensions discussed in this section are referred to 

in this figure. 

 

Table 7-3 Boundary conditions used in Na-air battery with gas diffusion electrode 

Conservation of species  

As the pure oxygen gas was continuously supplied from the bulk reservoir, the 

specie mass fraction was set for cathode: 
 

   
= 1 at     (7-52) 

As the separator was assumed impermeable to oxygen gas, the oxygen flux 

was zero. The flux of electrolyte was also zero at GDL/active layer interface: 
 

   
   at      (7-53) 

      at      (7-54) 

At the inlet the operation pressure was set:  

  = 1 atm  (7-55) 

Conservation of charge  

For conservation of charge the current density in the solid phase was set equal 

to the applied current density on gas diffusion layer. At the GDE/separator 

interface the current density in the solid phase was zero: 

 

     and      at     (7-56) 

     and      at      (7-57) 

The cell voltage was calculated by the difference between the electrode 

potential at cathode current collector and the electrolyte potential at the anode 

side: 

 

                      (7-58) 

 

7.3.14 Solution technique 

The conservation equations and the boundary conditions described above were 

discretized using a finite element method and solved in one-dimensional battery system 

by commercial software package COMSOL multiphysics version 4.3. The COMSOL 

software is designed to solve a set of coupled differential and algebraic equations and 

the battery simulation model is performed on a 32 bit Windows platform with 4 GB 
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RAM, and Intel Core 2 Duo 2.93 GHz processor. The different transport equations and 

the electrochemical reactions were solved as time dependent until the cell voltage 

reached the stop condition during discharge and charge. The solutions were considered 

as converged solutions when the difference between two results was less than 10
-4

 

(relative tolerance) for all variables. 

 

Table 7-4 Parameters used in the Na-air with gas diffusion electrode (SI unit) 

Parameters Value Unit Symbol Ref. 

Cell properties     

Thickness of separator 5 10
-5

 m LA [34] 

Thickness of active layer 1.1 10
-4

 m LC [17] 

Thickness of gas diffusion layer 1  10
-4

 m L [17] 

Porosity 0.80 -    [17] 

Specific interfacial area of cathode 3.75 10
6
 m

2
 m

-3
   Calculated 

Electrical resistivity of Na2O2 formation Eq. (3-48) Ω m
2
       [29] 

Electrolyte properties     

Electrolyte concentration 1000 mol m
-3

       [15] 

Pure gas of oxygen 100% -        

Henry’s constant for oxygen in 

electrolyte 
2.95 mol m

-3
 atm

-1
  [35] 

Solubility limit of Na2O2 in electrolyte 0.09 mol m
-3

      [36] 

Liquid electrolyte fraction 0.3 - S  

Kinetic parameters     

Rate constant for anodic current 1.3 10
-6

 m s
-1

    Assumed 

Rate constant for cathodic current 4.5 10
-15

 m
7
 s

-1
 mol

-2
    Assumed 

Rate constant for   
  formation 8.1 10

-15
 m s

-1
     Assumed 

Rate constant for Na2CO3 formation 370 m
3
 s

-1
     [37] 

Rate constant of CO2 formation 5.9 10
-15

 m s
-1

     [29] 

Exchange current density for anode 1 A m
-2

    Assumed 

General parameters     

Mass density of Sodium peroxide 

(Na2O2) 
2800 kg m

-3
 

      
 

[38] 

Mass density of Sodium carbonate 

(Na2CO3) 
2540 kg m

-3
 

       
 

[38] 

Operating temperature 298.15 K T  

 

7.3.15 Summarised parameters 

The parameters described in this chapter are summarised in Table 7-4. The electrolyte 

properties are the same as that used in Li-air battery model due to the lack of 
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information for NaPF6 in non-aqueous electrolyte and referred to Table 3-4 in chapter 3. 

These basic parameters are applied in the Na-air model with gas diffusion electrode.  

 

7.4 Results and Discussion 

The dynamic one-dimensional Na-air battery model including parasitic reactions from 

electrolyte degradation was simulated and tested against the performance during battery 

cycling. The air cathode structure of the GDE replaced the flooded battery electrode 

used in the Li-air battery models [21, 22]. The GDE model was also considered the 

electrolyte volume loss from the reaction with intermediate species,   
 , to form 

Na2CO3 by-product as described in Eq. (7-8) and Eq. (7-12). Our cell simulation 

comprised a metallic sodium anode, a separator soaked with a 1 M solution of NaPF6 in 

carbonate-based solvent, and a porous carbon gas diffusion electrode as the air cathode. 

Hartmann et al. fabricated the GDE with the thickness of 210 μm and no catalyst was 

used [17]. The porosity of the material (a binder-free GDL Freundenberg H2315, 

Quintech) was estimated to be around 80% [17]. These parameters were applied to our 

Na-air battery model with the GDE. 

 

7.4.1 Battery performance 

The performances of the rechargeable Na-air batteries with the GDE and the flooded 

electrode structure were compared. Both electrodes were considered the solid Na2O2 

formation as the major discharged product with         V (Eq. (7-2)). To predict the 

battery performances on 1st cycling behaviour for both types of electrode, the voltage-

capacity profiles on discharge and charge operating between 1.8 and 3 V (vs Na/Na
+
 as 

the reference electrode) at a discharge/charge rate of 0.1 mA cm
-2

 are compared as 

shown in Figure 7-3. Excepting the cathode structure, both GDE and flooded electrode 

structures of Na-air model were simulated with the same physical parameters, e.g. 

thickness, kinetic reactions, diffusivities and conductivities, and at an operating 

temperature of 298.15 K in pure oxygen. As can be seen from the voltage-capacity 

profile in Figure 7-3, the GDE shows a significant improvement in discharge capacity 

characteristics which provides a 47% increase in initial discharge capacity (over 1551 

mAh gcarbon
-1

 at a rate of 0.1 mA cm
-2
). It is worthwhile to note that the unit of “mAh 

gcarbon
-1
” was chosen to report the battery capacity because, in most cases, the battery 

performances (capacity and energy) are directly related to amount of carbon as active 

material in porous cathode. Here the unit of “gcarbon” includes all carbon materials of 
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cathode, i.e. carbon in both active layer and GDL for GDE or carbon in porous cathode 

for flooded electrode.  

 

It can be seen from the discharge and charge cycle that the cell potential of GDE began 

to fall steeply at the first discharge, from a voltage of 2.4 V to a plateau at around 2.2 V, 

and decreased continuously to 1.8 V. The discharge characteristic of Na-air with the 

GDE is comparable, but slightly lower than that of the lithium-air battery, giving around 

2.6-2.7 V [2, 21]. The voltage difference correlates well to the difference in the standard 

electrode potentials between lithium (         
        V) and sodium (         

  

      V) [38]. At a low current density of 0.1 mA cm
-2

, a wide voltage plateau of about 

2.2 V, corresponding to discharge overpotential (      < 100 mV, is observed for the 

GDE, which is lower than the case of Li-air batteries (     > 300 mV). The discharge 

capacities remain constant with the increase of the discharge rates, i.e. the discharge 

capacity is around 1551 mAh gcarbon
-1

 for 0.2 and 0.5 mA cm
-2

. This behaviour is 

different from the case of the flooded electrode in that the capacity decreases with the 

high discharging rates due to the oxygen mass transport limitation as shown in chapter 

4. In contrast, the oxygen supply in the case of GDE, is not limited by mass transport 

but the cell limitation is due to the solid product deposition inside the pores. Moreover, 

the discharge voltage for the GDE continuously decreases with the high current 

densities (2.13 V for 0.2 mA cm
-2

 and 2.01 V for 0.5 mA cm
-2

) due to expected kinetic 

limitation at high currents with large overpotential. 
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Figure 7-3 The Na-air performances on 1st cycle are compared between GDE and 

flooded electrode structure at room temperature 298.15 K. The cathode electrode 

thickness is 210 μm with porosity of 0.80. Both electrodes were operated between 1.8 

and 3 V vs Na/Na
+
 as reference electrode at a discharge/charge rate of 0.1 mA cm

-2
 

under 1 atm of oxygen in 1 M NaPF6 dissolved in carbonate-based solvent. 

 

During the subsequent charge process at the low current density (0.1 mA cm
-2

), the 

charge performance for GDE showed a voltage plateau between 2.4-2.5 V, which is 

close to the potential for the decomposition of Na2O2 to form Na and oxygen (   

      ). In contrast to the case of GDE, the flooded electrode not only demonstrates 

limited discharge capacity (1051 mAh gcarbon
-1

) but also provides a slightly lower 

discharge voltage plateau < 2.2 V and a higher charge voltage  than the case of the GDE 

(  2.51 V cf. 2.42 V in GDE). These results clearly demonstrated the advantage of the 

GDE over the flooded electrode in term of battery performance on the 1st cycle. 
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Figure 7-4 The comparison of oxygen profile inside the porous cathode of Na-air 

battery at a discharge rate 0.1 mA cm
-2

 on different discharge stages (100% means the 

end of discharge) between two cathode structures: (a) oxygen profile in active layer of 

GDE, (b) flooded electrode. 

 

It is well known that the cathode structure of GDE has been widely used in Metals-air 

and fuel cell systems due to its unique functional porous structure. The high battery 

performance from the GDE battery could be attributed to an efficient 3-phase interface 

and porous structure (Figure 7-2), which not only enable a highly accessible 

electrochemical reaction, but also a large path for the reactant mass transport. Figure 7-4 

compares the oxygen concentration profile along the cathode thickness during the 1st 

0-75% Discharge stage 
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battery discharge at various discharge states (current density 0.1 mA cm
-2

) between the 

GDE and flooded electrode. The oxygen profile in GDE slightly decreased from the 

initial concentration of 2.95 mol m
-3

 to 2.50 mol m
-3

 at the end of the 1st discharge. 

Moreover, the oxygen concentrations were relatively uniform throughout the active 

layer of GDE at all discharge states. The nearly constant concentration results from the 

pore structure of GDE, which provides good gas-diffusion in the electrode. 

 

A recent study from our group [2] also studied the GDE a more open structure and 

larger total pore volume than the conventional electrode used in Li-air batteries. Thus, 

the GDE as the cathode is not limited by mass transfer of the reactive species as long as 

there are pores available for the gas phase to move inside the GDE structure. In contrast, 

the oxygen concentration profile for the flooded electrode (as shown in Figure 7-4b) 

continuously decreases from the pore entrance (gas feeding) inside the electrode due to 

the accumulation of discharge products reducing the pore space. The solubility of 

oxygen in non-aqueous liquid electrolytes is normally very low. Hence, the kinetics of 

electrochemical reaction of a gas in a completely flooded or immersed electrode is 

limited by the mass transfer rate of reactant gas to the reaction site. 

 

Another reason for the GDE giving high battery capacity could be the uniform 

depositing of discharge products covering the active surface and replacing the void 

space of the electrode. As shown in Figure 7-5, both electrodes show a steady decrease 

of void space in each discharge state but in a different manners. In GDE the decreasing 

trend of porosity is uniform throughout the entire active layer (Figure 7-5a) whereas the 

porosity reduces noticeably only at the oxygen feed side in the case of the flooded 

electrode (Figure 7-5b). However, these results are not surprising because the 

decreasing porosity resulting from the discharge products corresponded well with the 

oxygen concentration pattern in Figure 7-4.  
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Figure 7-5 The comparison of porosity profile inside the porous cathode of Na-air 

battery at a discharge rate 0.1 mA cm
-2

 on different discharge stages (100% means the 

end of discharge) between two cathode structures: (a) porosity profile in active layer of 

GDE, (b) flooded electrode. 

 

All of the results from the study indicate that the GDE shows better cathode 

performances for a rechargeable Na-air battery than that of the flooded electrode, 

delivering larger discharge capacities and higher discharge potential. The unique 

structure of the GDE plays a key role in promoting the formation of 3-phase contact, 
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resulting in a shorter diffusion distance for reactive species, as well as better discharge 

products distribution inside the active layer. Thus, the GDE could be a promising air 

cathode to replace the flooded-type electrode which is currently used in both lithium 

and sodium air batteries. 

 

7.4.2 Cycling behaviour with electrolyte degradation 

In practice, the battery stability, which can be measured by retention of discharge 

capacity during battery discharge/charge cycles, is more significant than its first 

discharge cycle. This issue of maintaining battery capacity is also the most challenging 

problem for Li-air batteries [39-42]. Hence, Na-air batteries could meet with the same 

problem. In this section, the cycling performance including electrolyte degradation to 

form Na2CO3 in Na-air battery using GDE is investigated.  

 

Figure 7-6 Variation of voltage-capacity curve in 6 cycles on discharge and then charge 

between 1.8 and 3 V versus Na/Na
+
 for a non-aqueous Na-air battery using GDE at a 

rate of 0.1 mA cm
-2

. The electrolyte contains 1 M NaPF6 dissolved in carbonate-based 

solvent under 1 atm of oxygen at operating temperature 278.15 K. The other parameters 

used in the model are the same as described in Figure 7-3. 

 

To predict the capacity retention on cycling, the variation of voltage on discharge and 

charge for 6 cycles of a rechargeable Na-air battery operating between 1.8 and 3.0 V at 
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a rate of 0.1 mA cm
-2

 is shown in Figure 7-6. This cycling was carried out at an 

operating temperature of 298.15 K in pure 1 atmosphere of oxygen gas. It can be seen 

from the discharge and charge cycle that the cell potential falls steeply at the first 

discharge, from a voltage of 2.4 V to a plateau at around 2.2 V, and decreases 

continuously to a final discharge potential at 1.8 V. At a low current density of 0.1 mA 

cm
-2

, a wide voltage potential plateau for discharge during cycling was around 2.1-2.2 

V, which was the same as the discharge voltage of Na-air batteries reported by previous 

research work for similar batteries operating in pure oxygen [17, 18]. The discharge 

voltage corresponded to an overpotential (    ) < 130 mV for the case of Na2O2 as the 

possible reaction product. This overpotential is lower than that of the Li-air batteries in 

chapter 4 and our published works with flooded electrode [21], demonstrating a 

discharge overpotential (    ) for Li-air batteries about 300 mV.  

 

On charging for the Na-air battery (Figure 7-6), the voltage slightly rose to around 2.40-

2.45 V (       100 mV), which is close to the equilibrium potential (        V) for 

the decomposition of Na2O2 to from Na
+
 and oxygen as presented in Eq. (7-2). After the 

Na-air battery had continuously cycled, the charge voltage gradually increased overtime 

between 2.40-2.50 V depending on the number of cycles. This increase in charging 

overpotential could be attributed to the loss of cathode active surface due to the repeated 

deposition of Na2CO3 resulting from the electrolyte degradation during discharge as 

shown in Figure 7-7. It can be seen that Na2CO3 formation in the active layer is uniform 

following the oxygen concentration for the GDE (Figure 7-4a) and gradually 

accumulates with continuous cycling. The cycling performances and volume fractions 

of Na2CO3 at the end of each discharge cycle are also summarised in Table 7-5. This 

solid Na2CO3 requires a high charging potential (> 4 V) to be completely removed it 

from the electrode [18] and accumulates inside the active layer. Moreover, it is apparent 

from the Figure 7-6 that the reduction of battery capacity occurs mainly on charging, i.e. 

in each cycle the charge capacity is lower than that during the discharge step. This 

makes the charge/discharge efficiency less than 100% and causes rapid capacity fading. 

 

As mentioned above, the most significant property for a battery is the stability to 

maintain the discharge capacity during battery cycling. Thus, for better clarity, the 

results obtained from the battery cycling in Figure 7-6 are presented in more detail in 

terms of the specific capacity (capacities are expressed per gram of carbon in the 

electrode) and retention of capacity on each discharge cycle as compared in Table 7-5. 
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The discharge capacity on the first cycle was about 1150 mAh gcarbon
-1

, based on the 

weight of carbon alone. For the following cycles, the performance of a rechargeable Na-

air battery deteriorated by the Na2CO3 from electrolyte degradation on cycling. The 

battery capacity gradually decreased to a value of 922 mAh gcarbon
-1

 after 3 cycles which 

corresponds to a capacity retention of 27% per cycle. At the final cycle, the discharge 

capacity was even lower to 829 mAh gcarbon
-1

 with a capacity retention of 72% (12% per 

cycle).  

 

In summary, the Na-air battery model using GDE as the cathode for reactant gas 

transport exhibits a better battery performance than the flooded electrode normally used 

in metal-air batteries. However, the Na-air batteries with non-aqueous electrolyte still 

suffers from solid by-product Na2CO3 formation accumulating during battery cycling, 

just like the Li-air batteries. 

 

Figure 7-7 The volume fraction of Na2CO3 formation inside the active layer of the Na-

air battery at the end of each discharge cycle. The parameters used in the model are the 

same as described in Figure 7-6. This of course assumes Na2CO3 is not oxidised to Na
+
 

and CO2 
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Table 7-5 Specific discharge capacity and Na2CO3 formation for a nonaqueous Na-air 

battery using GDE operated in pure oxygen in 6 cycles at a rate of 0.1 mA cm
-2

. 

Cycle 
Discharge capacity 

 (mAh g
 -1

) 

Capacity 

retention (%) 

Capacity retention 

per cycle (%) 

Na2CO3 volume 

fraction 

1 1149.47 100.00 100.00 0.038 

2 959.04 83.43 41.71 0.061 

3 922.14 80.22 26.74 0.083 

4 887.65 77.22 19.30 0.103 

5 856.11 74.48 15.00 0.121 

6 829.63 72.17 12.03 0.137 

 

7.4.3 Electrolyte loss during battery cycling 

Figure 7-8 shows the electrolyte volume fraction ( ) profile inside the active layer of 

GDE at the end of the battery discharging step in each cycle. It is apparent that the 

electrolyte volume fraction continuously decreased from the initial value of 0.30 in the 

1st cycle to 0.21 in the 6th cycle. The loss of electrolyte occurred in a uniform pattern 

due to the uniform distribution of oxygen through the gas pores of the GDE, i.e. the 

electrolyte consumption took place whenever oxygen exists during discharge, and 

corresponded well with the Na2CO3 formation as shown in Figure 7-7.  

 

Electrolyte depletion could affect the Na-air performance, mainly by the following 

aspects: (i) the reaction zones for the reduction of oxygen are decreased due to the loss 

of gas-electrolyte-carbon three-phase-interface. (ii) The active layer of electrode which 

is partially “dried” of electrolyte could not be utilised to accommodate discharge 

products. (iii) The ionic conductivity of Na
+
 and the diffusion of oxygen and species in 

the electrolyte phase could be reduced following a Bruggeman correlation for the 

diffusion coefficient (Eq. (7-32)) and the conductivity (Eq. (7-37)), respectively. Thus, 

the overall battery performance on cycling of the Na-air battery could suffer from both 

irreversible Na2CO3 depositing on the active area of electrode and electrolyte depletion 

on repeated battery cycles. However, the former could affect deterioration in the 

discharge capacity more than the latter, as shown in previous sections of battery cycling 

behaviour. 
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Figure 7-8 Volume fraction of electrolyte inside the active layer of the Na-air battery at 

the end of each discharge cycle. The parameters used in the model are the same as 

described in Figure 7-6. 

 

7.4.4 Effect of electrolyte volume fraction 

In the electrochemical reaction zones of a battery system, the introduction of liquid 

electrolyte as an ionic bridge between the active carbon particles is an important factor 

in achieving satisfactory battery performance. The ionic and electron conductivities in 

the active layer of GDE were influenced by the volume fractions of electrolyte in the 

pores of the electrode and active carbon particles formed on the electrode structure, 

respectively. As the ionic conductivity in a non-aqueous electrolyte (  0.4-0.9 S m
-1

) is 

two or three order of magnitude lower than the electronic conductivity (  10-100 S m
-1

) 

depending on the types of electrolytes and carbon materials [43], this factor is important 

on the Na-air performance. Therefore, the electrolyte volume fraction ( ) was varied to 

investigate the 1st cycle of Na-air battery performance. This parameter influences the 

ionic conductivity and diffusivity of species dissolved in electrolyte as well as the 

effective surface for electrochemical reactions, i.e. the electrolyte/carbon interface. 

However, it will not affect the other volume fractions, such as carbon and porosity 

inside the active layer, because the definition of   is the ratio of electrolyte-filled 

volume to the total pore volume, i.e. the percentage of electrolyte to fully fill the pore 
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space (referred to Eq. (7-48)). Hence, the other volume fractions other than electrolyte 

were considered as constant values. 

 

Figure 7-9 Voltage-capacity curve on the 1st cycle at the rate 0.1 mA cm
-2

 under 1 atm 

of oxygen for a non-aqueous Na-air battery at the different initial volume fraction of 

electrolyte in the active layer of GDE. The other parameters used in the model are the 

same as described in Figure 7-3. 

 

Figure 7-9 shows the effect of electrolyte volume fraction on the 1st cycle of Na-air 

battery voltages and discharge capacities. It is apparent from the graphs that the highest 

discharge potential and lowest charge potential curve were achieved with the electrolyte 

volume fraction of 80% (  = 0.8), i.e. the highest roundtrip efficiency on the 1st battery 

cycle was obtained at 80% electrolyte loading. Because the main battery cycling results 

show no difference on the high cell voltage scale (in y-axis), Figure 7-9 also presents as 

insets the enlarged discharge and charge potentials ranges for better clarity. The battery 

discharge potential, when operated at a current density 0.1 mA cm
-2

, increases from 

2.15 V at the low electrolyte fraction of 30% to a marginal improvement of 2.17 V at 

the highest 80% electrolyte loading. The charging behaviour also showed a similar 

behaviour as discharge process, with the lowest charge voltage (2.38 V) at a 80% 

electrolyte volume fraction. However, there were no significant differences between the 

discharge capacities with the loading of electrolyte volume fractions. At high electrolyte 
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volume fraction, the battery system benefits from the mass transport of oxygen and the 

increasing reaction zones, where the oxygen gas-carbon-electrolyte interfaces co-exist, 

thus leading to higher performance especially for charge and discharge potentials. 

 

Therefore, the amount of electrolyte inside the electrode affects the battery performance 

in term of discharge and charge potentials (the higher electrolyte volume fraction the 

better discharge and charge potentials). Of course, this high loading of electrolyte 

increased the electrolyte film thickness for dissolving oxygen diffusion to the active 

surface of carbon. However, this effect was counteracted by the greater reaction zones 

and better mass transport due to the increasing liquid electrolyte volume. Thus, the 

model provided a means of predicting electrolyte loading for Na-air performance in a 

particular set of operating conditions. 

 

7.5 Conclusions 

A macro-homogeneous model for gas diffusion electrode was developed and used to 

analyse the capacity and cycling behaviour of a rechargeable Na-air battery operated 

with pure oxygen. The model uses a set of governing equations which describe species 

transport, charge and reaction kinetics within the battery, taking into consideration the 

battery main features of by-product formation, electrolyte decomposition and loss 

during cycling, and changes in surface area and porosity. The gas diffusion electrode 

model predicted better cathode performances for a rechargeable Na-air battery than the 

batteries using a flooded electrode, delivering larger discharge capacities and higher 

discharge potentials. The model can accurately predict the capacity feature and the 

detrimental effect of electrolyte decomposition and Na2CO3 formation on the capacity 

retention. The model can be potentially used to optimise electrode structure and 

electrolyte loading in the active layer, leading to improved battery performances. 
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Chapter 8: Conclusions and Future Work 

 

 

8.1 Conclusions 

Although non-aqueous electrolyte Li-air batteries demonstrate great promise in high 

performance and much progress has been made, significant problems still remain for 

their practical applications; such as poor solubility and diffusion of oxygen, sluggish 

electrochemical kinetics, electrolyte degradation and insoluble discharge products 

covering on the surface of porous cathode as well as probably block the pathway of the 

reactive species. All of above problems are mostly due to the interfacial reactions of 

oxygen and the pore structure in the cathode electrode.  

 

Following this research a computational model was developed to simulate the behaviour 

of non-aqueous electrolyte Li-air battery. This mathematical model of Li-air battery 

could be used as an important tool during battery design and development.  

 

The developed model was a mechanistic system, i.e. all phenomena in the Li-air battery 

were described by differential and algebraic equations which were based on the physical 

and chemical behaviours of the species and battery processes. In order to solve these 

equations a commercial PDE solver software package, “COMSOL Multiphysics”, was 

used to analyse the battery system through the finite element method. All the transport 

processes were taken into account in the Li-air battery porous cathode. As a result of 

these features, the model could be used to perform several tests at different operation 

conditions and could be also used to describe the behaviour of Li-air batteries as well as 

to optimise the performance and structure of these battery electrodes. In this study, four 

different versions of the one-dimensional model were developed. Each version included 

more complicated mechanisms occurring in the Li-air batteries to create a model that 

was closer to a practical battery system. 

 

A micro-macro homogeneous mathematical model was developed for a non-aqueous 

rechargeable Li-air battery using a concentrated binary electrolyte theory. The model 

was able to predict the voltage-capacity profile (polarization performance) for 

discharging around 2.50-2.70 V and charging at around 4 V, and it showed a good 



                                                                           Chapter 8: Conclusions and Future Work 

218 | P a g e  

 

agreement with experimental data for the particular operating condition considered in 

this work. The model successfully predicted the effects of applied current density, 

solubility limits for both oxygen and Li2O2, high degree of Li2O2 accumulation and the 

influence of the cathode structure. The main features of this model were the 

considerations of the time and space dependence of the battery system during charge 

and discharge process, the microscopic behaviours of the local mass transport through 

the discharge products (Li2O2) layers and the potential loss from the resistivity of 

lithium oxides film, and the dynamic change of the active surface area and the porosity 

with the Li2O2 growth. The influence of solid products formed during the battery 

discharging was demonstrated to significantly affect the mass transport resistance inside 

the porous cathode electrode. As the continuous growth of these products, the oxygen 

species from the atmosphere steeply decreased near the oxygen feeding side of the 

cathode and the concentration was limited deep further inside the electrode. The active 

surface area for the electrochemical reaction site also reduced from the passivation of 

the discharge products. 

 

The model was also used to evaluate the effect of active species concentrations. 

Increasing the solubility limit of oxygen enhanced the discharge capacity and also 

increased the cell discharge potential, but does not affect the charge potential. 

Improving the solubility of Li2O2 in the electrolyte can decrease the charging voltage 

but showed little effect on the cell capacity. Moreover, the promising structure of Li-air 

flow battery demonstrated the continuous discharge capacity from the inexhaustible 

oxygen supplied from the external electrolyte recycling unit. 

 

A micro-macro homogeneous model for a rechargeable Li-air battery was further 

developed to include the practical feature of Li2CO3 formation which normally occurs 

from electrolyte degradation during battery cycling. The modified model successfully 

predicted the Li-air battery cycling behaviour which starts from the first discharge to the 

cell potential of 2.2 V and charges until 4.2 V in 10 cycles. The cycle performance 

deterioration measured in term of retention of discharge capacity on cycling was 

predicted from the developed model which includes the effect of irreversible Li2CO3 

discharge product. As a result, the model showed a good agreement between this cell 

cycling simulation and porous-electrode experiment data, thus creating a more reliable 

model for a rechargeable Li-air battery in non-aqueous electrolyte. Consequently, the 

charging voltage slightly increased in each cycle during the recharging process. This 
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result was partly due to the repeated passivation of discharge products on the porous 

carbon, which lead to decrease in electrochemical active area. 

 

It was observed that the termination of the cell discharge is not from pore blockage by 

the depositing discharge products as there are some available pores at the end of each 

discharge cycle. The battery termination was due to the electronic resistivity of the 

discharge products (both Li2O2 and Li2CO3) passivation on the active surface of porous 

cathode. The cathode porosity decreases overtime during cycling while the volume 

fraction of Li2CO3 gradually increases in a number of cycles. 

 

A macro-homogeneous model was developed and used to analyse the capacity and 

cycling behaviour of the rechargeable Li-air battery operated under ambient air 

conditions which severely damages Li-air performance and is still a critical problem to 

be solved before the Li-air battery can be used for practical application. This model was 

based on the macro-homogeneous model with electrolyte degradation behaviour 

developed previously, but accounted for the air feeding effect. The model can accurately 

predict the capacity feature and the detrimental effect of electrolyte decomposition and 

Li2CO3 formation on the capacity retention. The simulating results were in a good 

agreement with the experimental data. 

 

The performance of Li-air battery with air feeding significantly decreased in discharge 

capacity and this battery was limited to operate at very low discharge current density 

less than 0.05 mA cm
-2

. Moreover, the cycling profile of Li-air battery indicated that the 

discharge voltage slightly drops due to gradual Li2CO3 deposition when repeatedly 

cycles the Li-air battery. This Li2CO3 was generated from the low CO2 concentration 

accessing from the atmosphere. When the developed model included both the 

electrolyte degradation and air feeding effects, the Li-air performance indicated a 

dramatic decrease of discharge capacity. This result showed that the electrolyte could be 

considered as a key component and one of the main issues to be solved at present to 

sustain the rechargeability of non-aqueous Li-air batteries. 

 

It was observed that when the Li-air battery was integrated with an oxygen-selective 

membrane, the model forecasted a significant influence of using this membrane, which 

could lead to up to 4 time increment in specific capacity higher than the case of Li-air 

battery without using membrane.  
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A macro-homogeneous model for gas diffusion electrode was developed and used to 

analyse the capacity and cycling behaviour of the rechargeable Na-air battery operated 

under pure gas of oxygen. Na-air battery, which is analogous to Li-air battery, still 

maintain an energy storage system with a high specific energy depending on the 

discharge products but the anode electrode is replaced by abundant and inexpensive 

sodium metal. The same principles of macro-homogeneous model were applied to 

analyse the Na-air battery. This confirmed that the model developed in this study can be 

used as the simulation tool in any metal-air batteries which demonstrates the similar 

physical and chemical mechanisms. 

 

The gas-diffusion electrode in contact with liquid electrolytes was developed to account 

for mass transport in the gas layer and in the flooded layer with a set of model equations 

for material balances and electrochemical kinetics. The oxygen concentration profile in 

the gas diffusion electrode demonstrated a constant distribution due to the continuously-

supplying oxygen from the gas channel. As this result, the gas diffusion electrode model 

showed the better cathode performance for a rechargeable Na-air battery than the 

conventional flooded electrode, delivering large discharge capacities and higher 

discharge potential. This model also included the continuous loss of electrolyte volume 

fraction due to the electrolyte degradation during the battery cycling.  

 

8.2 Recommendations for future work 

In summary, this thesis contributed to a better understanding of the major physical and 

electrochemical phenomena which occurred within a rechargeable Li-air battery (or 

other similar metal-air battery) in a non-aqueous electrolyte. The model proved to be 

potentially useful tools to predict the battery performance and all transport processes, 

and can be used to optimise the electrode structure as well. With this thesis a gap in Li-

air battery modelling was filled; however, further work could be done in several areas 

such as; 

 

1. The air cathode could be improved as asymmetric structure in which the porosity is 

not uniform distribution. With this feature the diffusion of species could depend on 

the space inside the porous cathode, i.e. diffusion coefficients are the function of x-

axis.  
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2. The model could include carbon corrosion as presented in reaction (8-1). The CO2 

generated from the carbon corrosion during battery charging could contribute in the 

Li2CO3 formation, leading to the battery deterioration. 

                                       (8-1) 

3. As the Li-air flow battery model presented previously in Chapter 4 was simulated 

based on the simplistic assumptions, the full details of a new design structure for 

Li-air flow battery model, such as anode thickness and fluid flow dynamics, could 

be worth tracking next due to its high discharge capacity from the continuous 

reduction of inexhaustible oxygen supplied from the recycling unit. However, to 

perform this kind of simulations the computational resource must be substantially 

increased. 

4. A non-isothermal model, which predicts the changing battery temperatures during 

charging and discharging, should be addressed. This behaviour could affect many 

physical and chemical parameters for the non-aqueous electrolyte as well as the 

battery performance. 

5. A two-dimensional model can be further developed by considering a cylindrical 

cell (instead of 1D prismatic cell) in order to improve the surface area of 

electrochemical reaction as well as the battery performance. 

6. The Na2CO3 discharge product in Na-air battery with carbonate-based electrolyte 

should be included on charge to decompose to CO2 and Na
+
. Further improvements 

include the more details of degradation kinetics on both electrolyte and electrode. 
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