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Abstract 

 

The induction of senescence in response to persistent stress induces major 

phenotypic changes in senescent cells, including the secretion of a host of 

inflammatory factors and reactive oxygen species. Recent evidence has implicated 

senescent cells in the diseases of ageing and cancer; however, the mechanism by 

which this occurs is still unknown. This thesis uses a reporter cell line with cells 

expressing a fluorescent conjugate that allows real time live cell imaging of a sub set 

of cells within a co-culture, to provide the first evidence that senescent cells can 

induce a DNA damage response in healthy cells, and thus implicates a potential 

mechanism by which senescent cells could non-autonomously contribute to the 

ageing process. The use of specific inhibitors, stimulation, and targeted repression 

indicate that gap junctions, reactive oxygen species, p38, mTOR and NF-κB all play 

a key role in this observed bystander effect of senescent cells, and offer potential 

targets for therapies designed to reduce the damaging effects of senescent cells. 
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1 Introduction 

 

1.1 The Discovery of Cellular Senescence 

 

In 1961 a seminal study by Hayflick and Moorehead dismissed the old myth that 

cells in culture could continue replicating indefinitely. By culturing old and young 

cells together it was proved that the old cells ceased replicating before the 

young cells, demonstrating that it was not adverse culture conditions that had 

prevented continued replication, and that cells had an intrinsically limited 

capacity for producing progeny (Hayflick, 1965, Hayflick and Moorhead, 1961). 

Although some cells underwent more divisions than others, and there was a 

strong stochastic determinant, most cells would enter a state of replicative 

arrest after a similar number of population doublings and, once arrested, they 

would never re-enter the cell cycle (Hayflick, 1965, Hayflick and Moorhead, 

1961). This state of permanent arrest has since been termed cellular 

senescence (Goldstein, 1990), and the evidence that this process may have 

relevance to the ageing process is mounting.  

The focus of this project was to examine whether senescent cells have non-

autonomous effects that are detrimental to surrounding cells which could be 

abrogated by mechanistic intervention. To introduce the topic it is important to 

describe how cells become senescent and the importance of DNA damage, 

both in the initial stimulus and to maintain the signal. Then the senescent 

phenotype will be described along with its implications to bodily function in 

health and disease, to give insight to the relevance and importance of this work 

to medicine, gerontology and cancer biology. 

One important clarification for this thesis is that although the terms senescence 

and senescent can be used to describe the ageing of, and the state of being 

aged, in organisms respectively. In this text these words are used exclusively to 

describe cells. Further, a senescent cell is not simply an old cell, as it would be 

for an organism. Cellular senescence occurs as a result of replication; the 

length of time a cell spends quiescent in between divisions has little effect on 

when it will enter cellular senescence (Hayflick, 1965, Hayflick and Moorhead, 
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1961). Thus, old cells are not necessarily senescent if they have not been 

dividing, and old organisms need not necessarily accrue senescent cells.  

 

1.2 The Causes of Cellular Senescence 

 

1.2.1 Telomeres and Replicative Senescence 

 

Hayflick and Moorehead had discovered replicative senescence in 1961 

(Hayflick and Moorhead, 1961). However, it was not until 1972 when the DNA 

end replication problem was laid out in the context of linear phages, that a 

potential causal mechanism for replicative senescence was elucidated (Watson, 

1972). Whilst the leading strand can be replicated up to the end of the 

chromosome, the replication of the lagging strand from RNA primers ahead of 

the replicated region will leave the primer bound region and anything beyond it 

unreplicated (Olovnikov, 1973, Watson, 1972), causing the chromosome to 

shorten with each cell division. The potential implication of the end replication 

problem was such that it had to be circumvented to prevent the eventual 

extinction of all eukaryotic life from loss of DNA, as was exemplified by some 

mutant single celled organisms (Lundblad and Szostak, 1989, Yu et al., 1990). 

The discovery of telomerase enzyme which uses an RNA template to bind a 

specific telomeric repeat and lengthen the telomere 5’-3’ (Greider and 

Blackburn, 1985), demonstrated that the end replication problem could be 

overcome, and therefore did not need to induce replicative senescence, or 

eukaryotic extinction. However, it was found that in many somatic tissues 

telomerase is inactivated (Bacchetti and Counter, 1995, Kim et al., 1994), 

including human fibroblasts (Counter et al., 1992, Kim et al., 1994), and many 

organisms only retain telomerase expression in the germline (Kim et al., 1994, 

Tan et al., 2012), where telomere length must be, and is, maintained (Allsopp et 

al., 1992). Although some somatic tissues do have low level telomerase activity 

(Broccoli et al., 1995, Counter et al., 1995, Hiyama et al., 1995b), these cells 

still undergo telomeric loss with both donor age and passage number (Hastie et 

al., 1990, Kitada et al., 1995, Vaziri et al., 1994, Vaziri et al., 1993), indicating 
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that there is little difference between these and telomerase negative cells. 

Therefore, although organisms have mechanisms to lengthen telomeres and 

prevent the end replication problem, these are generally only active and 

effective in a very small number of cells, leaving the majority of the somatic cells 

to have a limited replicative capacity.  

In several studies using human fibroblasts, genomic DNA was digested to 

produce terminal fragments containing both telomeric and subtelomeric DNA 

called terminal restriction fragments (TRFs) (Brown, 1989, Cross et al., 1989), 

and it was found that replicative lifespan correlated with initial length of average 

TRF (Allshire et al., 1988, Counter et al., 1992, Cross et al., 1990, Harley et al., 

1990). Additionally, one study showed that regardless of what size the TRF was 

in proliferating cells when the cells reached senescence there was little 

difference in TRF length (Allsopp et al., 1992), indicating that senescence was 

associated with specific average telomere length. However, a later study 

showed that firstly the average telomere length at senescence was strain 

specific; secondly that it was highly variable at senescence; and thirdly that 

average telomere length at explantation did not significantly correlate with 

replicative lifespan (Serra and von Zglinicki, 2002). Notably, they also observed 

that the strain specific threshold at which telomere shortening would induce 

senescence was not affected by increasing oxidative stress (Serra and von 

Zglinicki, 2002), although addition of antioxidants had been previously shown to 

cause cells to senesce with longer telomeres (von Zglinicki et al., 2000).  

Early ideas about replicative senescence suggested that the loss of specific 

lengths of DNA with each cell division was a type of program, which was termed 

the mitotic clock, by which cells had a certain number of divisions before they 

entered the senescent state (Olovnikov, 1971, Olovnikov, 1973). However, 

there were several aspects of the senescence phenomenon that were 

inconsistent with such an idea. Firstly, there was large variance between TRF 

length at senescence: the average length of fragment was approximately 4kb 

which left 2kb of telomeric repeat DNA, but the variance was high enough so 

that some of the chromosomes could have little or no telomeric repeat DNA 

remaining (Levy et al., 1992). Secondly, the discovery that oxidative stress 

accelerated telomere shortening (von Zglinicki et al., 1995) added a strong 

stochastic mechanism to the process. Combined, the data suggested that 
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senescence was not as simple as an end replication problem, and other factors 

such as reactive oxygen species (ROS), exonuclease activity and unequal 

recombination could also play a role in telomere shortening (Makarov et al., 

1997). 

The first causal evidence that telomere loss was responsible for replicative 

senescence came from the immortalisation of human fibroblasts expressing 

telomerase (Bodnar et al., 1998, Vaziri and Benchimol, 1998). One study 

showed that these cells could reach 250-400PDs without significant change in 

growth rate when normal cells would senesce between 60-70PDs (Morales et 

al., 1999). Importantly, in this study the average TRF length reached as low as 

4Kb in the immortalised cells whilst the average in normal senescent cells was 

found to be 6-8Kb in this study. The immortal cells did not senesce because the 

variance between telomere lengths was much smaller than in senescent cells 

and stabilised at 4kb. Consistently, an earlier study showed much less telomeric 

variance in immortalised cells, but in this study the telomeres remained longer 

on average in immortalised cells than unimmortalised cells at senescence 

(Bodnar et al., 1998). This difference possibly results from increased loss of 

telomerase expression in the former study (Morales et al., 1999). It was 

suggested that senescence was prevented in these cells by a preferential 

activity of telomerase for short telomeres, which was later confirmed in a yeast 

study following a single telomere showing that telomeres switch from non-

extendable to extendable states when they become shorter (Teixeira et al., 

2004). Regardless, senescence is most likely induced by one or a few 

telomeres becoming critically short. 

The eukaryotic telomere is bound by a series of proteins which form the 

shleterin complex, including TRF1 which induces bending to assist the 

formation of the t-loop (Griffith et al., 1999), and TRF2 which facilitates the 

invasion of the 3’ overhang into an internal site in the double stranded telomeric 

DNA forming the D-loop (Griffith et al., 1999). Along with other proteins such as 

Pot1, which binds to single stranded DNA, the complex protects the telomere 

from enzymatic and signalling molecules that would otherwise bind. Several 

observations indicated the importance of this structure in replication: Its 

inhibition or deletion induced senescence (van Steensel et al., 1998, Denchi 

and de Lange, 2007); overexpression of TRF2 extended replicative lifespan 
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(Karlseder et al., 2002, Smogorzewska et al., 2000); and loss of the 3’ G-rich 

overhang induces senescence (Stewart et al., 2003). Importantly, these 

mechanisms were found to be independent of telomere length, as 

overexpression of TRF2 shortened telomere length (Karlseder et al., 2002, 

Smogorzewska et al., 2000), whilst its inhibition had no effect on telomere 

length (Denchi and de Lange, 2007, van Steensel et al., 1998). Although this 

might have suggested that uncapping and shortening induced senescence 

independently, the observation that shortening induced uncapping (Blackburn, 

2000), suggested that it was the telomere cap that was important, and telomeric 

shortening was just one mechanism by which the cap could be lost. Two recent 

studies have identified the presence of telomere associated foci, which were 

induced by damaging agents independently of telomerase expression, 

suggesting that they resulted from telomere uncapping without shortening, and 

were highly important in the induction of senescence (Fumagalli et al., 2012, 

Hewitt et al., 2012).  

When a telomere becomes uncapped by the loss of the shelterin complex, it 

becomes bound by factors associated with the DNA damage response (DDR) 

such as 53BP1, NBS1, MDC1, γ-H2AX and CHK2, which indicated that they 

were recognised as double strand breaks (d'Adda di Fagagna et al., 2003, 

Takai et al., 2003, Herbig et al., 2004), thus indicating that telomere uncapping 

induces replicative senescence through the induction of a DNA damage 

response. Because of the absence of telomerase the progressive telomere 

shortening eventually causes the loss of protective proteins and recognition as 

irreparable damage inducing a persistent DNA damage response. 

 

1.2.2 DNA Damage and Premature Senescence 

 

Non-telomeric damage can also induce cellular senescence if the source is 

sufficient to overwhelm the repair capacity of the cell. The more severe the 

damage, the more likely it is to induce senescence; thus, double strand breaks 

are potent inducers of cellular senescence (Di Leonardo et al., 1994). Base 

substitutions and alterations probably play a very minor role, if any. 

Monoadducts induced by low energy UVA do not induce senescence, however 
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higher energy UVB induces senescence through thymine dimers and 

interstrand crosslinks which generate single stranded (ss)DNA (Hovest et al., 

2006). ROS induced senescence is thought to occur mainly through the 

formation of single strand breaks (SSBs), as DSBs account for a much lower 

proportion of the damage (Land, 2002). Conversely, in ionising radiation 

induced senescence the main type of damage is DSBs. The non-homogeneous 

energy distribution causes clusters of complex lesions, even at lower doses 

(Nikjoo et al., 1999). These clusters are very difficult to repair; however, it is 

unlikely that they could arise under physiological conditions at appreciable 

levels. Low doses of these stressors reduce the replicative capacity of the cells 

so that they will senesce after fewer population doublings, whereas high doses 

can cause cells to undergo immediate senescence before they have reached 

their full replicative capacity (Toussaint et al., 2000). After a high dose of X-

irradiation around three quarters arrest within the first 1.5 hours, and <1% are 

still incorporating BrdU after 24 hours (Rodier et al., 2011), suggesting that it is 

cell cycle dependent, and very few cells undergo more than one round of 

division, whilst the majority arrest immediately. This is called premature 

senescence.  

A comparison between telomeric and non-telomeric foci showed that they share 

many of the same response elements inducing very similar DNA damage 

responses (d'Adda di Fagagna et al., 2003, Takai et al., 2003), and yeast with 

critically short telomeres and ones exposed to DNA damaging agents have 

significantly overlapping global gene expression profiles (Nautiyal et al., 2002). 

Importantly, the induction of replicative senescence was also found to involve 

non-telomeric foci, and cells exhibited a similar number of foci irrespective of 

their chromosomal location (Nakamura et al., 2008), indicating that all foci 

contributed equally to the senescence signal. Additionally, telomeres are 

particularly susceptible to exogenous stresses such as oxidative stress (von 

Zglinicki et al., 1995), and two recent studies have demonstrated the 

importance of telomeric damage in radiation and oxidative stress induced 

senescence. Whilst the non-telomeric foci are generally repaired, the telomeric 

foci persist for longer, and thus may be of particular importance in maintaining 

the DNA damage response in replicative and premature senescence (Hewitt et 

al., 2012, Fumagalli et al., 2012).  
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1.2.3 Oncogene Induced Senescence 

 

Chemical mutagens and radiation are forms of stress which induce DNA 

damage in cells, and result in cellular senescence. Another inducer of 

senescence is the aberrant expression of an oncogene, known as oncogenic 

stress. Most studies have focused on the RAS pathway, and ectopic activation 

of RAS, RAC1, RAF, MOS and MEK (Braig et al., 2005, Debidda et al., 2006, 

Lin et al., 1998, Michaloglou et al., 2005, Serrano et al., 1997, Zhu et al., 1998), 

and even endogenous levels of RAS or BRAF (Collado et al., 2005, Dankort et 

al., 2007, Guerra et al., 2003, Guerra et al., 2007, Michaloglou et al., 2005) all 

induce senescence, as does the inactivation of PTEN (Chen et al., 2005), which 

is an inhibitor of the same pathway. Additionally, ectopic expression of positive 

regulators of the cell cycle such as E2F transcription factors, MYC, CDC6 and 

cyclin E all induce senescence (Bartkova et al., 2006, Grandori et al., 2003, 

Johnson and Degregori, 2006, Lazzerini Denchi et al., 2005), as does ectopic 

IFN-β (Moiseeva et al., 2006) and TGF-β signalling (Katakura et al., 1999, 

Vijayachandra et al., 2003, Zhang and Cohen, 2004).  

Several oncogenes including RAS (Abulaiti et al., 2006, Di Micco et al., 2006, 

Mallette et al., 2007), MOS (Bartkova et al., 2006), and RAC (Debidda et al., 

2006), as well as several of the positive cell cycle regulators (Bartkova et al., 

2005, Bartkova et al., 2006, Vaziri et al., 2003), have been shown to induce the 

phosphorylation of H2AX and other factors associated with the DDR. More 

importantly, some oncogenes cannot induce senescence in the absence of the 

DDR (Bartkova et al., 2006, Di Micco et al., 2006, Mallette et al., 2007), and 

cells that have become fully senescent in response to RAS can re-enter the cell 

cycle upon DDR inactivation (Di Micco et al., 2006). 

RAS and BRAF (Dankort et al., 2007, Di Micco et al., 2006, Jones et al., 2000, 

Michaloglou et al., 2005, Sarkisian et al., 2007), as well as E2F and MYC 

(Grandori et al., 2003, Lazzerini Denchi et al., 2005, Dominguez-Sola et al., 

2007), have been shown to induce a state of hyperproliferation during which the 

cell begins to exhibit several markers of replication stress including regions of 

single stranded DNA (Bartkova et al., 2006), stalled and collapsed replication 
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forks (Bartkova et al., 2006, Di Micco et al., 2006), and loss of heteroygosity at 

fragile sites (Abulaiti et al., 2006, Di Micco et al., 2006, Jones et al., 2000, 

Mallette et al., 2007). Re-replication, where the cell initiates a second round of 

DNA replication before it has divided, can also occur in response to RAS, which 

increases the level of DNA damage (Blow and Dutta, 2005, Davidson et al., 

2006). Thus, similar to replicatively senescent and stress induced premature 

senescence, oncogene induced senescence also appears to occur mainly as a 

result of DNA damage initiating the DNA damage response.  

 

1.3 The Senescence Signalling Pathways 

 

1.3.1 The Formation and Dynamics of DNA Damage Foci 

 

Both telomeric and non-telomeric lesions induce senescence through a 

persistent DNA damage response activating two phosphatidyl 3-kinase related 

kinase (PIKK) family proteins; Ataxia Telangiectasia Mutated (ATM) and ATM-

Rad3 Related (ATR).  

DSBs can arise from diverse stimuli including ionising radiation (Rogakou et al., 

1998), other external damage (Rogakou et al., 1999, Paull et al., 2000), 

telomere uncapping (d'Adda di Fagagna et al., 2003, Takai et al., 2003) and 

replication fork collapse (Furuta et al., 2003, Ward and Chen, 2001). 

Canonically, the DSBs are initially sensed by PARP, which recruits the Mre11-

Rad50-Nbs1 (MRN) complex to bind and unwind the DNA (D'Amours and 

Jackson, 2002), allowing NBS1 to recruit ATM (Falck et al., 2005). ATM then 

autophosphorylates itself forming active monomers (Bakkenist and Kastan, 

2003), which then phosphorylate a host of factors including Mre11, BRCA1, 

MDC1, p53, Chk2, Smc1, FANC D2, 53BP1 and NBS1 (Banin et al., 1998, 

Cortez et al., 1999, Dong et al., 1999, Gatei et al., 2000, Goldberg et al., 2003, 

Kim et al., 2002, Matsuoka et al., 2000, Rappold et al., 2001, Taniguchi et al., 

2002), depending on what molecules are present at the focus. Importantly, ATM 

also phosphorylates histone H2AX forming γ-H2AX (Burma et al., 2001, 

Fernandez-Capetillo et al., 2002), and allowing the binding of MDC1 scaffold 
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protein (Stucki et al., 2005). Up until this point the binding of MRN to the DNA 

has been transient (Lukas et al., 2003), but when NBS1 binds the MRN 

complex it stabilises it at the DNA (Stucki and Jackson, 2006). This amplifies 

ATM activity, stimulating further MRN recruitment and the spread of γ-H2AX 

along the chromatin (Stucki and Jackson, 2006, Lukas et al., 2004, Bekker-

Jensen et al., 2006, Bekker-Jensen et al., 2005), as summarised in figure 1.1. 

The amount of phosphorylation spans for megabases around the DSB 

corresponding to thousands of nucleosomes (Rogakou et al., 1998), thus 

forming what have become known as nuclear foci (Rogakou et al., 1999). Γ-

H2AX foci are static in the genome (Siino et al., 2002), and have been found to 

have a 1:1 ratio with the number of DSBs (Sedelnikova et al., 2002), which has 

caused them to be described as the “gold standard to detect the presence of 

DSBs” (Fernandez-Capetillo et al., 2004). Although it is not responsible for the 

recruitment of DDR factors, γ-H2AX is required for these proteins to be 

maintained at the DSB in activated state (Celeste et al., 2002). Many of these 

factors form a positive feedback loop with ATM to maintain the foci.  

 

Figure 1.1| The activation of the DDR by agents inducing double strand 

breaks.  

 

Alternatively, RPA coated single stranded DNA caused by replication stress or 

UV irradiation causes ATR and its DNA-binding subunit ATRIP to bind the DNA 

which activates a less well defined feedback loop through the activation of the 

RAD9-HUS1-RAD1 (9-1-1) and RAD17-RFC complexes, as well as TOPBP1 

(d'Adda di Fagagna, 2008). Although recruited ATR alone can phosphorylate 
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most of its targets, it still requires RAD17 to assemble claspin at the site of 

damage in order to activate Chk1 (Kumagai and Dunphy, 2000, Wang et al., 

2006a). Similar to ATM, ATR stimulates phosphorylation of H2AX and the 

formation of DNA damage foci. Notably, end resection of DSBs also generates 

RPA coated ssDNA which activates ATR (Cortez et al., 2001, Zou and Elledge, 

2003). 

It has also been suggested that DSBs can cause the exposure of histone cores 

causing the direct association of 53BP1 to the site of damage (Huyen et al., 

2004). However, alternative evidence suggests that 53BP1 requires the histone 

H2A and H2AX ubiquitination activity of RNF8/RNF168/HERC2 (Stewart et al., 

2009) which helps expose the methyl groups of histones around broken DNA to 

allow 53BP1 binding (Wu et al., 2011). MDC1 may also allow 53BP1 binding 

through inducing similar histone methylation through MMSET histone 

methyltransferase (Pei et al., 2011).  

Like γ-H2AX, 53BP1 forms foci of sufficient size to be visualised using widefield 

microscopy, due to its ability to oligomerise whilst bound to DNA (Iwabuchi et 

al., 2003, Adams et al., 2005). Like many of the DDR proteins, 53BP1 is 

recruited to sites of damage by PARP (Celeste et al., 2002). Amongst the 

earliest elements recruited to these sites (Bekker-Jensen et al., 2005, Mochan 

et al., 2004), 53BP1 is hyperphosphorylated by ATM (Anderson et al., 2001, 

Rappold et al., 2001, Xia et al., 2001), and plays an important role in activating 

ATM substrates (Wang et al., 2002, DiTullio et al., 2002, Fernandez-Capetillo et 

al., 2002). Additionally, 53BP1 is involved in DNA repair by non-homologous 

end-joining (Nakamura et al., 2006), and inhibits homologous recombination by 

preventing DNA resection and formation of ssDNA through CtIP and BRCA1 

(Bunting et al., 2010, Bouwman et al., 2010). Notably, BRCA1, and 53BP1 

rarely co-localise at DNA damage foci (Mok and Henderson, 2010), due to their 

opposing functions in promoting and inhibiting homologous recombination 

respectively. This is regulated according to the stage of the cell cycle so that 

DNA resection occurs mainly in S and G2 phases where sister chromatids can 

be used for homologous recombination (You and Bailis, 2010). 

Once the damage is repaired the cell can re-enter cell cycle and enter mitosis. 

Although the processes of checkpoint recovery are not well understood, the 
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recovery of the G2 checkpoint is thought to involve β-TrcP adaptor protein, 

which targets claspin (Mailand et al., 2006), and Wee1 to the SCF ubiquitin 

ligase complex for labelling for proteasomal degradation (Watanabe et al., 

2004) to allow cell cycle progression. Conversely, during checkpoint activation 

β-TrcP has the recovery opposing role of targeting Chk1 phosphorylated CDK-

activating phosphatase Cdc25A to the same complex, inhibiting cell cycle. 

However, both processes are dependent on phosphorylation (Cardozo and 

Pagano, 2004), so that during checkpoint activation Chk1 promotes 

ubiquitylation of Cdc25A, and the stabilisation of claspin, whilst in recovery the 

re-activation of Plk1 causes the phosphorylation and targeting of claspin and 

Wee1 to SCF (van Vugt et al., 2004, Mailand et al., 2006). Additionally, the 

activation of Wip1 and PP2A phosphatases are thought to play a role in 

checkpoint recovery after DNA repair (Chowdhury et al., 2005, Keogh et al., 

2006, Lu et al., 2005, Shreeram et al., 2006).  

Many small foci are produced by low and high doses of irradiation. At low doses 

these foci are generally resolved and if the cells had become quiescent they re-

enter the cell cycle. At high doses, whilst the majority of these foci are still 

resolved, a small fraction of them become enlarged and persist for months 

(Rodier et al., 2011). In some cells the 53BP1 foci initially co-localise with 

RPA70 which suggests that the damage is being repaired by homologous 

recombination, suggesting that these cells were in S-phase. However, this co-

localisation did not persist for longer than 24 hours after the initial pulse, 

suggesting that either the damage was repaired or the cell continued through 

G2 anyway. The combined demonstration that all cells developed persistent 

foci, but not all incorporated BrdU suggested that S-phase and the associated 

replication stress was not essential for the generation of these foci (Rodier et 

al., 2011), as some cells have arrested in G1 without entering S phase. 

If the damage is not repaired and the foci persist, then the foci stimulate the 

activation of the tumour suppressor molecules and cell cycle arrest.  
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1.3.2 The DNA Damage Response (DDR) Signalling to Tumour Suppressor 

Proteins 

 

ATM can directly phosphorylate p53 at Serine (Ser) 15 (Banin et al., 1998, 

Canman et al., 1998), which stimulates the transactivating function of p53 

through binding of its coactivator p300, but does not affect the association of 

p53 with human double minute 2 (HDM2) (Dumaz and Meek, 1999). Despite a 

threefold increase in dissociation of p53 from HDM2 through combined Ser15 

and Ser18 phosphorylation, ATM mainly exerts its effects on p53 indirectly via 

Threonine (Thr) 68 phosphorylation of Chk2 (Ahn et al., 2000, Melchionna et al., 

2000); however, it may also directly modify HDM2 (Maya et al., 2001). Chk2 can 

also be phosphorylated by ATR (Wang et al., 2006b), which also 

phosphorylates and activates Chk1 (Jazayeri et al., 2006).  

Chk1 and Chk2 transiently localise at the DNA damage foci to be 

phosphorylated by ATR and ATM respectively, but once activated these 

proteins dissociate and freely diffuse throughout the nucleus (Smits et al., 2006, 

d'Adda di Fagagna, 2008), at least at early time points. Both kinases are 

involved in the S and G2 checkpoints, phosphorylating the Cdc25A 

phosphatase causing its ubiquitin dependent degradation, thus preventing 

formation of replication origins as well as entry into mitosis (Falck et al., 2001, 

Xiao et al., 2003). Chk1 also phosphorylates Cdc25C mitosis-promoting 

phosphatase, making it essential for G2 arrest (Liu et al., 2000). However, their 

main role in cellular senescence is considered to be through the activation of 

p53 (Chehab et al., 2000). 

In its inactive form p53 tumour suppressor protein is associated with HDM2, 

which functions doubly to inhibit transcriptional activity by binding the N-terminal 

transactivation domain, and also as an E3 ubiquitin ligase targeting both p53 

and itself for degradation (Li et al., 2003). However, signalling through the DDR 

causes the activation and stabilisation of p53, preventing HDM2 from binding. 

As a major transcriptional regulator, p53 has multiple downstream targets which 

inhibit the cycle, as well as several genes involved in negative feedback, such 

as HDM2 (Barak et al., 1993). This leads to pulses of p53 activation (Hunziker 

et al., 2010), where the mean number of pulses rather than the amplitude 
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corresponded to the dose of IR, and thus the fate of the cell (Lahav et al., 

2004). A persistent signal will induce senescence or apoptosis, whilst loss of 

p53 pulses will allow re-entry into the cell cycle. 

The main transcriptional target of p53 is p21Cip1 which also has multiple targets, 

amongst which it inhibits cyclin E/CDK2 complex function from phosphorylating 

pRb and its two paralogues p107 and p130, resulting in checkpoint activation 

(Resnitzky and Reed, 1995, Sherr, 1994, Weinberg, 1995). Notably, the effects 

of p21 are partially dependent on the cellular environment as p21 can also 

activate CDKs 4 and 6 (Sherr and Roberts, 1999), both of which induce 

phosphorylation of pRb, as well as sequestering p21, preventing it from 

repressing CDK2, thus stimulating further phosphorylation of pRb and entry into 

S-phase (Cheng et al., 1999). Similarly to p53, the dynamics of p21 are not 

straightforward; however, both function mainly as cell cycle inhibitors.  

When pRb is hypophosphorylated it becomes active and inhibits transcriptional 

activity of E2F transcription factors, which prevents the production of genes 

essential for cell cycle progression (Nevins, 1992, Weinberg, 1995). The 

pathway is summarised in figure 1.2. 

 

Figure 1.2| Activation of tumour suppressor proteins by the DDR. 

 

Thus, DNA damage in the form of telomere dysfunction or double strand breaks 

(DSBs) can induce cellular senescence by the activation of p53 and pRb tumour 

suppressor proteins through ATM, ATR, CHK1 and CHK2. However, 
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senescence does not result from a single pathway, but from many interacting 

factors which in combination decide the fate of the cell. The cell has multiple 

redundant pathways to ensure the induction of senescence even if the damage 

has knocked out others. Thus, the knockout or knockdown of any factor only 

increases the likelihood of cells escaping senescence, creating a 

heterogeneous population of arrested and cycling cells. For example, 

microinjection of dominant negative kinase dead mutants of ATM, ATR, CHK1 

and CHK2 combined allowed a few TRF2 knockout senescent cells to re-enter 

the cell cycle and incorporate BrdU (d'Adda di Fagagna et al., 2003). Equally, in 

RAS induced senescence individual knockdown of each of these factors 

allowed similar percentages to re-enter cell cycle (Di Micco et al., 2006), as has 

been shown in related studies using other cell types (Gire et al., 2004, Bartkova 

et al., 2006). Importantly, in some of these studies the cells still may arrest in 

G2 or M phase after replicating the DNA (d'Adda di Fagagna et al., 2003), 

because they only examined BrdU, whilst other studies clearly demonstrate that 

at least some cells do revert to cell cycle, allowing unrestrained growth at the 

same time as accumulating DNA damage.  

In human cells the level of redundancy is higher than in mice, as mouse 

embryonic fibroblasts require only the loss of either p53 or pRb signalling in 

order to allow some cells to bypass (Harvey et al., 1993)1 or escape (Dirac and 

Bernards, 2003) senescence, whereas in human fibroblasts the inactivation of 

both genes is necessary (Shay et al., 1991, Smogorzewska and de Lange, 

2002). Redundancy is also dependent on the senescence stimulus; p21 knock 

out mouse embryonic fibroblasts (MEFs) senesce in response to RAS (Pantoja 

and Serrano, 1999, Takeuchi et al., 2010), but not 20% oxygen (Takeuchi et al., 

2010), when both stimuli would induce senescence in wildtype MEFs, if much 

less stably in response to 20% O2 (Coppe et al., 2010). Importantly, these data 

indicate that there is a stochastic element to cellular senescence influenced 

partially by the presence of the milieu of inductive and preventative factors, but 

also by the nature of the damage, which is itself highly stochastic.  

 

                                                           
1
 Notably, although homozygotic p53 knockout mouse cells bypassed senescence, heterozygotic cells 

still senesced even if they lost their remaining wildtype allele, which suggests that mouse cells can 
senesce without p53, but it is more difficult, and may be dependent on the level of molecular damage, 
which is likely higher in the homozygotic cells. 
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1.3.3 The Independent Pathways of p53 and pRb in Senescence 

 

As described above, whilst p53 and pRb may fit into a linear pathway in mice, in 

humans they can induce senescence independently of each other. Independent 

of pRb, p53 directly induces transcription of 14-3-3σ (Hermeking et al., 1997), 

which sequesters Cdc25C phosphatase in the cytoplasm preventing it from 

activating cyclin B-Cdc2 causing stable G2/M arrest (Chan et al., 1999). 

Inhibition of 14-3-3σ results in immortalisation of human keratinocytes 

(Dellambra et al., 2000). Another possible pRb independent mechanism is the 

inhibition of PCNA by p21; however, whilst it has been shown to induce both G1 

and G2 arrest (Cayrol et al., 1998), p21 mutant cells lacking the ability to bind 

PCNA can still senesce (Macip et al., 2002). It has also been suggested that 

p21 could induce senescence through increasing ROS levels, independent of 

both PCNA binding, and cyclin/Cdk inhibition (Macip et al., 2002). 

pRb can be activated by p16INK4a, hereafter p16, independently of p53 (Alcorta 

et al., 1996). Upon activation, p16 is translocated to the nucleus from the 

perinuclear cytoplasm where it functions as a cyclin D/Cdk4,6 inhibitor (Serrano 

et al., 1993, Spallarossa et al., 2010), thus preventing the inhibitory 

phosphorylation of pRb (Resnitzky and Reed, 1995, Sherr, 1994, Weinberg, 

1995). In mice, one study showed that MEFs lacking p16 underwent 

senescence indistinguishably from wildtype cells in response to γ-irradiation, 

replication and oncogene activation (Krimpenfort et al., 2001). However, 

another study showed p16 knockout MEFs were more prone to immortalization 

(Sharpless et al., 2001). Importantly, when knockout of p16 was combined with 

p19ARF (p14ARF in humans), which is an important activator of p53 in mice, the 

absence of both pathways causes a marked increase in tumour formation over 

the lack of each individual factor (Krimpenfort et al., 2001), as is the case for 

double p16, p21 knockout MEFs (Takeuchi et al., 2010). Thus, in mice as in 

humans it appears that these pathways have some independence and therefore 

compensatory ability. In humans, p16 is not essential for most types of 

senescence. Different strains of human fibroblasts mutant for p16 proliferated 

for longer than wildtype cells, but still senesced at a later population doubling 

(Brookes et al., 2004). Equally, p16 is not essential for senescence induced by 

N-RAS, H-RAS and BRAFv600E (Denoyelle et al., 2006, Haferkamp et al., 2009, 
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Zhuang et al., 2008). However, this is also to be expected if the p16 and p53 

pathways can induce senescence independently. Importantly, when p53 was 

inactivated, the strains of fibroblast with low levels of p16 robustly resumed cell 

cycle (Beausejour et al., 2003), and additionally the overexpression of p16 

alone is sufficient to induce cellular senescence (Coppe et al., 2011, Kato et al., 

1998, McConnell et al., 1998, Pospelova et al., 2009).  

Interestingly, unlike p21 which accumulates at the initiation of senescence and 

declines after the cells become senescent, p16 accumulates gradually, with 

almost none present at the early stages, and then persists for at least two 

months after induction (Alcorta et al., 1996, Hara et al., 1996, Stein et al., 1999). 

The expression of p16 coincides with aspects of the senescent phenotype such 

as increased cell size and expression of senescence associated β- 

galactosidase (Alcorta et al., 1996, Hara et al., 1996, Stein et al., 1999), and 

may be responsible for the permanency of senescence (Beausejour et al., 

2003, Stein et al., 1999).   

p16 expression has been shown to increase as a result of oncogene induced 

senescence (Serrano et al., 1997), oxygen radicals (Chen et al., 2004, Ito et al., 

2004), radiation (Meng et al., 2003), and telomere dysfunction (Jacobs and de 

Lange, 2004). Although the exact mechanism of p16 activation is not completely 

understood, one possibility is that these DNA damage signals activate p38 

MAPK signalling (Bulavin et al., 2004, Ito et al., 2006, Iwasa et al., 2003), which 

then activates p16 (Spallarossa et al., 2010).   

 

1.3.4 MAPK Signalling in Cellular Senescence 

 

There are three main types of MAPK; c-Jun N-terminal Kinase (JNK), ERK and 

p38, all of which have been implicated in senescence. Inhibition of p38 and JNK 

by specific inhibitors significantly reduced the induction of cellular senescence. 

However, p38 was found to be the main inducer of senescence, whilst JNK was 

an inhibitor of apoptosis and actually suppressed p16 (Spallarossa et al., 2010). 

Equally, ERK overexpression induced senescence, but this resulted because 

ERK is a mild oncogene downstream of RAS signalling (Boucher et al., 2004), 
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and exclusion of p-ERK from the nucleus is part of the senescent phenotype 

(Mallette et al., 2004). Additionally, in one study inhibition of ERK only had a 

minor effect on senescence (Courtois-Cox et al., 2006), though in another study 

in slowly proliferating or quiescent cells ERK inhibition prevented senescence 

induction (Probin et al., 2006). Thus, p38 is the main MAPK involved in 

senescence signalling, being sufficient, although predictably not essential, for 

induction (Freund et al., 2011). 

DNA damage activates p21 which signals through GADD45A (Kearsey et al., 

1995), and can activate p38 either directly or through MAP3K4 and MAP2K3 

(Bulavin et al., 2003). However, the dynamics of p38 after X-irradiation closely 

follow those of p16, increasing only slightly in the first 24 hours, rising 

substantially between 2-4 days and peaking at 8-10 days (Freund et al., 2011), 

which is consistent with p38 inducing p16 expression, and inconsistent, though 

not incompatible, with activation by p21. Notably, another study demonstrated 

that the inhibition of p53 actually increased the activation of p38 (Freund et al., 

2011). However, these results should be viewed with caution as p53 has 

multiple different roles which at times can appear paradoxical (Demidenko et 

al., 2010). It is likely that in the cases of severe stress and telomere dysfunction 

that it is DNA damage which leads to the activation of p38, even if the exact 

mechanism and timeframe are unclear, though in oncogene induced 

senescence RAS can directly activate p38 (Chen et al., 2000a, Li et al., 2000). 

Importantly, the activation of p38 by constitutive MKK6/2E causes the complete 

abrogation of RAS stimulated proliferation (Deng et al., 2004). Thus RAS could 

potentially induce senescence through p38. Consistent with this model, RAS 

more potently activates the pro-survival and proliferation MAPKs, ERK and JNK 

than p38 (Chen et al., 2000a), so it could be speculated that normal levels of 

RAS may trigger proliferation, whilst high levels begin to induce senescence 

through the increased induction of p38.  

Importantly, this process could be independent of DNA damage. p38 can 

activate the senescence inducer p16, and can even phosphorylate p53 through 

the activation of p38-regulated protein kinase (PRAK), which is essential for the 

transcriptional activity of p53 in response to RAS, and the senescence response  

(Sun et al., 2007). However, it should be noted that activation of p38 to the 

endogenous levels induced by RAS was not sufficient to completely abrogate 
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the proliferative response, and it was only with higher levels of p38 through 

MKK6/2E that this was achieved. Thus, it is still likely that p38 requires 

additional stimulation from other signals, such as DNA damage, in order to 

induce cellular senescence under physiological conditions.  

Through the combined use of modelling and experimental work it has been 

shown that p38 can also be involved in a positive feedback loop to induce 

senescence by the induction of further DNA damage (Passos et al., 2010). This 

was based on previous studies that p38 induces TGF-β which caused an 

increase in ROS through mitochondrial and non-mitochondrial sources (Koli et 

al., 2008, Torres and Forman, 2003), both of which have been implicated in 

senescence (Davis et al., 2005, Debacq-Chainiaux et al., 2005). Passos et al. 

(2010) demonstrated that ROS generated from these pathways caused further 

DNA damage and cyclic activation of p53 through the replenishment of the 

short-lived damage foci (Passos et al., 2010). Then, as described above, DNA 

damage could activate p38 through the activation of p21 and GADD45A 

(Bulavin et al., 2003, Kearsey et al., 1995). However, contrary to this, further 

evidence suggested that neither p38 induction using MKK6/2E, nor p38 

inhibition using SB203580, had any effect on activation of the DDR or activation 

of p53 as it would be expected to do if p38 induced senescence via inducing 

DNA damage (Freund et al., 2011). Notably, this latter observation does not 

contradict that p38 can be activated by DNA damage, only that p38 does not 

induce further DNA damage, although as discussed above the inhibition of p38 

by p53 is not entirely conducive to this idea (Freund et al., 2011).  

One possible reason for the contradiction between these two studies is the 

different cellular environments. Passos et al. (2010) used irradiated cells, which 

will have large amounts of DNA damage and therefore an active DDR and p53 

signalling, whereas Freund et al. (2011) used MKK6/2E stimulated cells which 

would not necessarily involve such signalling (Freund et al., 2011, Passos et al., 

2010). Speculatively, it is possible that in order to sustain the feedback loop 

between p38 and p53, both pathways require some initial activating stimulus. 

For example, some essential component of the TGF-β signalling pathway could 

require phosphorylation at two different sites; one by a DDR or p53 regulated 

kinase, and one by a p38 regulated kinase in order to become sufficiently 

actived to produce the required ROS for positive feedback via the pathway 
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suggested by Passos et al. (2010). However, what is clear is that senescence 

can be induced independently of DNA damage.  

 

1.3.5 DNA Damage Independent Senescence and mTOR 

 

Combined with all the reports that oncogene induced senescence is dependent 

on DNA damage, there are also reports that this can be done independently, 

though still requiring p53 (Wolyniec et al., 2009). Equally, the knockout of PTEN 

tumour suppressor gene, which inhibits the PI3K/Akt pathway, triggers arrest 

independent of hyperproliferation or DNA damage, but still dependent on p53 

(Alimonti et al., 2010). 

Notably, the use of shRNA against EZH2 to inhibit the Polcomb protein Bmi1 

can directly activate p16 and induce senescence (Bracken et al., 2007), which 

could potentially induce senescence independently of damage, though notably 

they also observe that DNA damage does cause depletion of EZH2.  

The activation of p16 and p21 using an IPTG inducible system was shown to 

activate the DDR and induce senescence without significant DNA damage as 

determined by a COMET assay (Pospelova et al., 2009). As well as the HDAC 

inhibitor sodium butyrate, these stimuli caused an increase in γ-H2AX 

disproportionate to the amount of DNA damage, which they contrasted to the 

induction of senescence by irradiation (Pospelova et al., 2009). Interestingly, 

when the IPTG is washed out, many of the cells re-entered cell cycle (Leontieva 

et al., 2012), thus indicating artificially maintained p16 or p21 cannot in 

themselves induce a stable senescent phenotype and still require other stimuli 

such as DNA damage to reinforce arrest and make it permanent. It should also 

be noted that the situations in these experiments are artificial. Were cells to be 

subjected to high levels of p16, p21, oncogenes or HDAC inhibition in vivo, the 

most likely cause, if not the only one, would be the instigation of DNA damage 

resulting in either the de-regulation of an oncogene or the upregulation of a 

tumour suppressor.  

It is widely believed that oncogenes induce senescence by a system of negative 

feedback along with the induction of tumour suppressor proteins (Deng et al., 
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2004); however, another hypothesis is that it is the continued expression of 

oncogenes which is important (Blagosklonny, 2003). Via this theory, if the 

oncogenes were suppressed quickly enough then senescence would fail and 

the cells would re-enter cell cycle. Interestingly, radiation has been shown to 

induce mitogenic signalling such as RAS, Akt and Raf1 (Kasid et al., 1996, Liu 

et al., 1996, Shaulian et al., 2000), and p53 stimulates MAPK and Akt signalling 

(Fang et al., 2001, Ishii et al., 1995). Thus these mitogenic signals might be 

important in all forms of senescence. 

Compared to quiescence, where the cell reversibly arrests in the absence of 

growth factors and therefore have low levels of cyclin D1, senescent cells have 

high levels of cyclin D1. Quiescent cells respond to growth factors by 

upregulating cyclin D1 and activation of the cell cycle (Blagosklonny and 

Pardee, 2002), whilst senescent cells are arrested despite high levels of cyclins 

including A, B, D and E (Darzynkiewicz, 2002, Gong et al., 1995), and further 

stimulation does not result in proliferation. Although at high concentrations 

cyclin D1 can paradoxically inhibit CDKs (Atadja et al., 1995, Wong and 

Riabowol, 1996), combined with the observation that RAS stimulates 

proliferation in cells lacking p16 and pRb (Sherr, 2004), this suggests that the 

presence of tumour suppressors makes the cell unresponsive to the pro-cell 

cycle activities of RAS. Importantly, stimulation of cell cycle inducers 

downstream of pRb should therefore still cause cell cycle progression, as it has 

been suggested that they do (Blagosklonny, 2006b). 

Interestingly, the activation of physiological levels of p53 using nutlin-3a, which 

is an HDM2 antagonist, can induce senescence in some cells (Efeyan et al., 

2007, Van Maerken et al., 2006), but only quiescence in others (Cheok et al., 

2010, Huang et al., 2009, Korotchkina et al., 2009), and has been shown to 

suppress cellular senescence in cells already expressing high levels of p21 

(Demidenko et al., 2010). The growth promoting functions of p53 have been 

implicated to work through its inhibition of mTOR signalling. 

The serine/threonine kinase mTOR forms two complexes with different 

functions. Both complexes contain mLST8/GβL, and the inhibitory deptor 

subunit (Peterson et al., 2009), whilst mTORC1 contains Raptor and Rheb, and 

mTORC2 contains Rictor and mSIN1 (Frias et al., 2006). The mTORC1 
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complex responds to both amino acid levels and growth factors, whereas 

mTORC2 responds to only the latter. The presence of amino acids stimulates 

the Ragulator to translocate mTORC1 to the lysosomal surface (Sancak et al., 

2010), where it can bind Rags which allow it to associate with Rheb, and 

become sensitive to stimulation via insulin (Sancak et al., 2010, Drummond et 

al., 2008). The activation of insulin receptor substrate (IRS) binds 

phosphoinositide 3-kinase (PI3K) producing phosphatidylinositol (3,4,5)-

triphosphate (PI(3,4,5)P3), which then binds Akt and PDK1 (Polak and Hall, 

2009). Akt then destabilises the tuberous sclerosis complex (TSC1/TSC2) (Inoki 

et al., 2002), allowing the binding of GTP-bound Rheb to bind and activate 

mTORC1 at the lysosomal membrane (Huang and Manning, 2009).  

mTORC1 activates p70-S6K1 causing the phosphorylation of numerous 

substrates including S6 ribosomal protein (Heinonen et al., 2008), and the 

translation initiation factor eIF4B. Combined with additional inactivation of 4E-

BP1, freeing eIF4E (Dann and Thomas, 2006), this results in increased 

translation through the eIF4F complex. mTORC1 also regulates ribosomal 

biogenesis and inhibits autophagy, the latter through the inhibitory 

phosphorylation of ULK1 (Lee et al., 2010). 

The reason mTOR is thought to be important in senescence is that its inhibition 

promotes quiescence, whilst its stimulation promotes senescence (Demidenko 

et al., 2010). Consistently, there is some evidence that rapamycin can inhibit the 

induction of senescence, and even allow cell cycle re-entry (Korotchkina et al., 

2010, Leontieva et al., 2012, Pospelova et al., 2009). Contrary to this idea, the 

stimulation of autophagy, which is inhibited by mTOR, has been shown to be 

necessary for senescence (Young et al., 2009, Cho et al., 2013), although 

autophagy controls multiple processes and can also inhibit senescence under 

some conditions (unpublished).  

The mTOR pathway is activated by RAS signalling (Kennedy et al., 2011), and 

thus may reflect an additional mechanism by which oncogenes can contribute to 

senescence induction. It has also been suggested that mTOR may induce 

senescence by maintaining an atypical DDR which is not associated with DNA 

damage or many of the molecules that are exclusive to the typical DDR, such 

as 53BP1 (Pospelova et al., 2009). However, these irregular foci have only 
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been shown to exist in response to a few atypical forms of stress (Pospelova et 

al., 2009), whilst the majority stimuli still induce damage and foci containing 

53BP1 (Rodier et al., 2011). Thus, although speculatively mTOR may maintain 

an atypical DDR, this has little implication for the role of damage in senescence, 

which is the primary inducer in most cases. One final way that mTOR may 

contribute to senescence is via the activation of NF-κB and the inflammatory 

pathways (Dan et al., 2008, Madrid et al., 2001). 

 

1.3.6 Inflammation, NF-κB and Senescence 

 

A key regulator of the inflammatory response is the transcription factor NF-κB, 

which regulates and is regulated by a complex network of interacting factors. 

There are five members of the NF-κB family, p65, RelB, c-Rel, p105/p50 and 

p100/p52, all containing a conserved Rel homology domain that allows them to 

dimerise, and bind both DNA and the inhibitory IκB molecules. The IκB 

molecules prevent the dimers from entering the nucleus to initiate transcription. 

Additionally, both p105 and p100 have ankyrin repeat domains similar to the IκB 

molecules which also prevent nuclear translocation. These molecules need to 

be cleaved to p50 and p52 respectively to lose the ankyrin repeats and allow 

nuclear translocation.  

Canonical NF-κB signalling occurs in response to inflammatory cytokines such 

as IL-1 and TNF-α or products of bacterial infection such as lipopolysaccharide 

(LPS).  As a result the IKK complex consisting of the two catalytic subunits IKKα 

and IKKβ bound to multiple copies of the regulatory subunit NEMO is activated 

by phosphorylation of IKKβ (Perkins and Gilmore, 2006), which phosphorylates 

IκBα deactivating it and causing its ubiquitination by the Skp1/Cul1/F-box 

protein-β-TrCP ubiquitin ligase complex, and targeting it for degradation by the 

proteasome (Hayden and Ghosh, 2004). This induces the translocation of p65-

p50 heterodimers within minutes of the stimulus (Perkins and Gilmore, 2006), 

and can result in transcription of a host of different factors depending on activity 

of different co-factors. Its main targets include TNF-α/β, IL-1β, IL-2, IL-6, IL-8, 

IL-12 and IFN-β (Blackwell and Christman, 1997). Similar to p53, canonical NF-

κB signalling is oscillatory as it stimulates the transcription of IκBα which returns 
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NF-κB to the cytoplasm (Hayden and Ghosh, 2004), as well as multiple 

proinflammatory cytokines for positive feedback. However, additional inhibitors 

such as IκBβ and IκBε are not regulated by NF-κB (Perkins and Gilmore, 2006), 

and thus dampen the oscillatory profile (Hoffmann et al., 2002). 

Non-canonical signalling occurs via the activation of NIK, which activates IKKα 

causing the phosphorylation and proteolytic cleavage of p100 to p52 (Bonizzi 

and Karin, 2004, Hayden and Ghosh, 2004). Then p52 protein mostly 

associates with RelB (Bonizzi et al., 2004, Bonizzi and Karin, 2004), forming a 

heterodimer which translocates to the nucleus and targets promoters containing 

distinct κB elements (Bonizzi et al., 2004). The promoters of RelB, c-Rel, p100 

and p105 all contain κB elements, and are thus transcribed as a result of NF-κB 

activation (Hayden and Ghosh, 2004, Pahl, 1999), which results in changes in 

NF-κB signalling over time.  

Evidence for a role of inflammation in senescence was demonstrated by the 

prevention of both induction and maintenance of oncogene induced senescence 

by the inhibition of the inflammatory cytokines IL-6 and IL-8 (Kuilman et al., 

2008). In the same issue of Cell another study showed that the IL-8 receptor 

CXCR2 was important for both OIS and replicative senescence, and 

overexpression of CXCR2 could induce senescence dependent on p53 (Acosta 

et al., 2008). Importantly, they found that CXCR2 depletion inhibited ATM 

activation and DDR signalling, consistent with the idea that inflammation 

contributes to senescence via activation of the DDR.  

With regards to the role specifically of NF-κB, one study showed that senescent 

cells had increased active phospho-p65 (S536) (Rovillain et al., 2011), and 

others that p65 was noticeably more nuclear in senescent than proliferative 

cells with markedly increased DNA binding activity (Freund et al., 2011, Chien 

et al., 2011), although an earlier study showed the opposite effect, including 

decreased nuclear and increased cytoplasmic levels of p65 with reduced NF-κB 

binding to promoter regions (Helenius et al., 1996). Notably, repression of NF-

κB signalling can result in bypass of senescence (Rovillain et al., 2011), 

extends replicative lifespan in culture (Tilstra et al., 2012), and c-Rel 

overexpression can induce senescence (Bernard et al., 2004). Combined these 

data suggest that NF-κB is important for senescence. However, another group 
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found that constitutive activation of IKKβ delayed Ha-RasV12 oncogene 

induced senescence of primary human fibroblasts by suppressing the DDR 

(Batsi et al., 2009), although this may be down to NF-κB independent functions 

of IKKβ including the induction of autophagy (Criollo et al., 2010b, Criollo et al., 

2010a). 

Notably, in contrast to tumour suppressors such as p53 and p16, NF-κB is 

frequently overactive in cancer cells (Karin, 2009, Meylan et al., 2009, Pikarsky 

et al., 2004), and is thought to play a role in tumour promotion, though not 

initiation (Pikarsky et al., 2004). This is likely a result of the pro-survival 

pathways of NF-κB by the inhibition of apoptosis rather than specifically 

inducing proliferation (Barbie et al., 2009, Pikarsky et al., 2004), though it also 

has other relevant effects (Bennett, 2008, Karin, 2009). Indeed in vivo, both 

senescence associated-β-galactosidase (SA β-gal) and p16 expression are 

reduced by NF-κB inhibition (Adler et al., 2007), and its suppression is also 

associated with tumour development (Dajee et al., 2003, Maeda et al., 2005). 

Importantly, the high levels of chromosomal amplifications and translocations in 

p65 knockout cells has implicated a role in maintaining senescence of mouse 

and human immortalised cells through the maintenance of genomic stability by 

an undescribed mechanism of activating DNA repair (Wang et al., 2009b). 

Thus, the tumour promoting and inhibiting effects of NF-κB is context dependent 

(Jing et al., 2011), as NF-κB appears to prevent DNA damage, increase cell 

survival and contribute to clearance by the immune system by increasing 

inflammation. Notably, in cells with effective tumour suppressor mechanisms all 

these pathways will help the activation of cell senescence, but may have the 

opposite effects in cells with defective senescence machinery, although some 

studies are still contradictory (Batsi et al., 2009).  

How NF-κB is activated in senescence is still unclear. Genotoxic stress has 

been shown to activate NF-κB via a pathway involving PARP-1 and ATM which 

converge to monoubiquitinate NEMO and allow activation of the IKK complex by 

TAK1 (Hinz et al., 2010, Stilmann et al., 2009). In irradiation induced 

senescence, the DNA-binding of NF-κB had begun to rise 24hrs after irradiation 

and peaked 8-10 days later, which was decreased by inhibition of p38 (Freund 

et al., 2011).  Whilst constitutive activation of p38 was sufficient to stimulate the 

increased NF-κB DNA binding activity found in senescent cells, inhibition by 
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ATM also decreased NF-κB activity to the same level as p38 inhibition, and the 

effect of dual inhibition was synergistic suggesting that both affect NF-κB via 

different pathways (Freund et al., 2011). Consistently, supraphysiological but 

not endogenous p38 activation can induce IL-6 levels to those of senescent 

irradiated cells, suggesting that p38 requires co-operation with the DDR under 

physiological conditions (Freund et al., 2011). 

NF-κB is essential in the production of the SASP (Chien et al., 2011, Freund et 

al., 2011), and its inhibition by shRNA or the inhibitor Bay 11-7082 reduces both 

the inflammatory molecules as well as several matrix metalloproteinases, 

producing a similar effect to p38 inhibition, suggesting that the effect of p38 on 

the SASP results from its activation of NF-κB. Importantly, co-suppression of 

p65 and p53 allowed significant bypass of senescence and failure to 

accumulate p16 in IMR-90 fibroblasts in response to oncogenic Ras, where 

each individual suppression had very little effect. As BJ fibroblasts bypassed 

senescence with p65 inhibition alone, this suggests that these two hub 

molecules work in different but interconnected networks that co-operate to 

induce senescence dependent on cell type (Chien et al., 2011). 

Acting downstream of p38, which can under some circumstances have little 

effect on DNA damage levels (Freund et al., 2011), there may be DNA damage 

independent mechanisms by which NF-κB contributes to senescence. However, 

NF-κB is involved in several pathways which increase levels of ROS, and its 

inhibition has been shown to improve mitochondrial function and reduce 

oxidative stress (Mariappan et al., 2010), through which it might be expected to 

contribute to senescence via the instigation of DNA damage.  

 

1.3.7 Reactive Oxygen Species as Mediators of Senescence through DNA 

Damage 

 

Senescent cells have been shown to have significantly higher ROS levels 

(Hagen et al., 1997), and higher levels of oxidative DNA damage, but not 

protein carbonyls (Chen et al., 1995), than healthy replicating cells. However, 

other studies also suggest that high levels of protein oxidation and cross-linking 
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are features of senescent cells, which is consistent with the deterioration of 

proteasomal and lysosomal function (Sitte et al., 2000c, Sitte et al., 2000b). As 

ROS can either be produced as byproducts of metabolic processes or 

deliberately as part of signalling pathways, there are multiple sources by which 

ROS can be induced in senescent cells.  

Many of the ROS producing enzymes are regulated by NF-κB, including 5-

lipoxygenase enzyme (Chopra et al., 1992), the NADPH oxidase NOX2 

(Anrather et al., 2006), COX-2 (Deng et al., 2003, Inoue and Tanabe, 1998), 

and the reactive nitrogen species producing complex, iNOS (Kolyada et al., 

1996). However, NF-κB also upregulates many antioxidant enzymes including 

SOD2 (Djavaheri-Mergny et al., 2004, Jones et al., 1997), SOD1 (Rojo et al., 

2004), thioredoxins (Djavaheri-Mergny et al., 2004), glutathione S-transferase-

pi, and Gpx-1, the latter two in response to oxidative stress (Schreiber et al., 

2006, Xia et al., 1996). Thus, although NF-κB is involved in the production of 

ROS during inflammation, it is also involved in their clearance once ROS levels 

become too high and/or resolution is required. Whether NF-κB is essential for 

the ROS production in senescence is controversial. The induction of 

senescence by overexpression of c-Rel was dependent on oxidative damage 

(Bernard et al., 2004), and p65 knockout both reduced oxidative damage and 

delayed the onset of replicative senescence (Tilstra et al., 2012), but contrarily 

another study found no differences in endogenous hydrogen peroxide and 

oxidative DNA damage between p65-/- and p65+/+ MEFs (Wang et al., 2009b). 

Other mechanisms by which ROS could be induced in senescence include the 

activation of p66Shc by p53 (Trinei et al., 2002). p66Shc is upregulated in 

senescent cells (Zhang et al., 2010), but in contrast to its clear role in the 

induction of apoptosis (Trinei et al., 2002), there is currently little evidence for a 

causal relationship in cellular senescence. Notably p53 also promotes 

expression of several antioxidants (Olovnikov et al., 2009), which may help 

account for the dual role of p53 in suppressing senescence (Demidenko et al., 

2010). Another study showed that knockout of p21, but not p16, caused a 

reduction in ROS levels in RAS expressing cells, but the level was not reduced 

to that of controls (Takeuchi et al., 2010). Contrarily, p16 has been shown to 

increase ROS in some cells (Takahashi et al., 2006).  
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p21 could mediate ROS levels by the negative regulation of peroxiredoxins 

through the repression of sestrins (Kopnin et al., 2007), or the ROS generating  

5-lipoxygenase enzyme (Catalano et al., 2005). However, it is also consistent 

with the idea that ROS production may be induced by the activation of TGF-β 

via p38 (Passos et al., 2010), which can stimulate both mitochondrial and non-

mitochondrial sources of ROS (Koli et al., 2008, Torres and Forman, 2003).  

Mitochondria can also be a large source of ROS during senescence. 

Breakdown of mitochondrial membrane potential and increased ROS has been 

shown in senescent cells (Passos et al., 2007), as has impaired metabolism 

and low nucleotide triphosphate levels including ATP (Zwerschke et al., 2003).  

Importantly, treatment with antioxidant enzymes and hypoxia increases 

replicative lifespan (Chen et al., 1995), whilst hydrogen peroxide (Chen et al., 

1998), and hyperoxia (von Zglinicki et al., 1995) induce premature senescence. 

ROS are also essential for RAS induced senescence (Catalano et al., 2005, 

Lee and Paull, 2005, Nicke et al., 2005, Wu et al., 2004), p21 overexpression 

induced senescence (Macip et al., 2002), and the initiation, but not 

maintenance, of senescence induced by IR (Hong et al., 2010). Thus, there is 

strong evidence that ROS play a causal role in senescence. 

Mitochondria may play a prominent role in senescence. They have been 

implicated in replicative senescence through the production of ROS as a result 

of dysfunction (Passos et al., 2007, Passos and Von Zglinicki, 2006), and also 

in OIS in response to p53 or pRb activation (Moiseeva et al., 2009). Additionlly, 

the induction of mitochondrial dysfunction using antimycin A, oligomycin (Stockl 

et al., 2006), and the mitochondrial Rieske iron sulphur protein (RISP) 

(Moiseeva et al., 2009) is sufficient to induce senescence. The mitochondrial 

uncoupling agent DNP reduced ROS levels and increased yeast replicative 

lifespan (Barros et al., 2004), and fibroblast replicative lifespan (Passos et al., 

2007). Additionally, telomere dysfunction has been shown to induce 

mitochondrial compromise in mice (Sahin et al., 2011). Therefore, it is likely that 

mitochondrial function is an important factor in senescence. 

The overexpression of PGC1α has also been shown to accelerate senescence 

(Xu and Finkel, 2002), indicating biogenesis plays an important role. If this 

results from increased ROS production due to the higher numbers of 
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dysfunctional mitochondria, then this could also implicate mTOR in the induction 

of DNA damage through activation of PGC1α and ROS, as suggested by a 

recent study (Marques et al. unpublished).  

Exactly how ROS contribute to cellular senescence is still controversial. One 

possibility is that ROS are part of a positive feedback loop generating small 

short lived foci, which still account for about half of those present even in deep 

senescent cells. In this feedback loop, p38 stimulates ROS production through 

TGF-β, thus maintaining a continual DDR (Passos et al., 2010). Notably, the 

contrary study implicating a DDR-independent role for p38 in senescence did 

not examine whether p38 overactivation affected ROS levels (Freund et al., 

2011), whilst another study found that p38 did induce ROS production in 

chondrocyte senescence (Hong et al., 2010). Thus, p38 may induce 

senescence through the production of ROS. Interestingly, ROS signalling 

activates PKCδ-CF (Bey et al., 2004, Konishi et al., 1997, Talior et al., 2005), 

which is increased during replicative senescence in HDFs (Wheaton and 

Riabowol, 2004), though not in MEFs (Takahashi et al., 2006), and is known to 

stimulate NADPH oxidase, thus generating a positive feedback loop to increase 

ROS (Bey et al., 2004, Talior et al., 2005). As in the same cells inactivating p53 

and pRb function did not induce cell cycle unless ROS are also depleted, it was 

suggested that ROS may stimulate their own positive feedback loop maintaining 

senescence even independently of damage, possibly through the suppression 

of the cytokinesis initiator, WARTS (Takahashi et al., 2006); however, this 

would be specific to G2 arrest. Equally, ROS could stimulate positive feedback 

by inducing damage to mtDNA (Dumont et al., 2000b), reducing mitochondrial 

function and inducing further ROS production (Pitkanen and Robinson, 1996, 

Wong et al., 2002). 

Alternatively, several studies have suggested that ROS may contribute to 

senescence through the activation of p38 (Hong et al., 2010, Xiao et al., 2012). 

Equally, under multiple conditions ROS can activate NF-κB either through the 

degradation of IκBα (Schieven et al., 1993, Schoonbroodt et al., 2000, Takada 

et al., 2003), activation of the IKK complex (Kamata et al., 2002), or stabilisation 

of NIK (Li and Engelhardt, 2006). However, ROS can also inhibit NF-κB through 

the stabilisation of IκBα by inhibiting the proteasome (Wu et al., 2009) and the 

inactivation of the IKK complex (Panopoulos et al., 2005, Reynaert et al., 2006). 
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Whether ROS activate NF-κB in cellular senescence is currently unknown, but 

as they activate p38, which is in a positive feedback loop with NF-κB, it is likely 

that they do.  

 

1.3.8 Summary 

 

Cellular senescence is a stress response, which the current evidence suggests 

is instigated primarily by DNA damage. This induces an activation cascade 

known as the DNA damage response, which has several downstream effects. 

Most importantly it activates the tumour suppressor protein p53 which then 

activates the cyclin dependent kinase inhibitor p21, and further downstream 

pRb, to prohibit the cell cycle. However, senescence is not a linear process. It 

has multiple redundant and interacting pathways which help to regulate the 

cellular response to damage. At least partially independent of damage p38 can 

activate p16 to induce senescence, and the mTOR pathway may also play a 

role. 

In nearly all cases senescence is dependent on the presence of an active DDR. 

Thus, although some stimuli can induce senescence independently of the DDR, 

an important mechanism in the large majority of senescence induction and 

maintenance is ensuring that the DDR persists. Whilst some pathways exist that 

can activate the DDR without the induction of damage, there is a host of 

evidence suggesting that senescing or senescent cells reinforce the DDR with 

the stimulation of further DNA damage to prevent cell cycle re-entry.  

The result of inducing this system of positive feedback loops integrating 

molecular damage, induces radical changes in senescent cells, which helps to 

produce the resultant phenotype. The pathways are summarised in figure 1.3. 

 



 

30 
 

 

Figure 1.3| Network of factors interacting to induce senescence and 

inhibit the induction of apoptosis. 
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1.4 The Senescent Phenotype 

 

1.4.1 Apoptosis and Alternatives to Senescence 

 

If a cell is responding properly to stress in the form of damage or oncogenic 

activation it will inhibit proliferation. Minor damage results in quiescence whilst 

the damage is repaired; however, if the stress is more severe the cell must 

permanently stop cycling and either enter permanent senescence or induce one 

of the many pathways of cell death. It should be noted here that despite many 

early papers referring to senescence as “cell death”, that this is not the case. 

Senescent cells remain viable and metabolically active for as long as has been 

measured (Matsumura et al., 1979, Pignolo et al., 1994), and may be more 

resistant to cell death than proliferating cells (Wang et al., 1994).  

Despite its importance, senescence is only one possible fate of damaged cells. 

The mechanisms that inhibit cellular senescence and promote cell death are 

highly important in understanding the senescent phenotype and its implications 

The main programmed alternative to senescence is apoptosis, which is 

generally categorised by cell shrinkage, nuclear condensation and 

fragmentation, as well as membrane blebbing (Collins et al., 1992). Although a 

detailed description is beyond the scope of this thesis, apoptosis can be 

activated through intrinsic or extrinsic pathways, or through the absence of 

survival signals (Lowe et al., 2004), and, similarly to senescence, many of these 

pathways are regulated by p53 (Espinosa, 2008, Haupt et al., 2003) and redox 

signalling (Polyak et al., 1997). However, proteins such as Bax, bid puma and 

noxa, which are often downregulated in senescence are highly active in 

apoptosis (Vaseva and Moll, 2009), as well as the pro-apoptotic miRNA mi-34a 

(He et al., 2007, Hermeking, 2007), which inhibits mTOR-dependent PI3K-Akt 

signalling via the inhibition of Notch1 (Mungamuri et al., 2006). A possible 

determinant of cell fate is the localisation of p53 to mitochondria, which can 

trigger apoptosis independently of transcription (Marchenko et al., 2000, Mihara 

et al., 2003, Vaseva and Moll, 2009). 
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There are multiple factors that can influence cell fate decision. Whilst oncogenic 

RAS promotes senescence (Serrano et al., 1997), Myc preferentially induces 

apoptosis (Zindy et al., 1998). Equally fibroblasts and epithelial cells are 

resistant to apoptosis, whilst lymphocytes are intrinsically predisposed to it 

(Zuckerman et al., 2009). From an early study exposing fibroblasts to different 

concentrations of hydrogen peroxide, it would appear that the cell fate decision 

was partially dependent on the dosage. The lowest concentrations failed to 

induce permanent growth arrest, the medium concentrations induced 

senescence, and the higher concentrations induced apoptosis (Bladier et al., 

1997). However, there was still a stochastic determinant, and even at the 

highest concentration 6% of the cells managed to survive by becoming 

permanently arrested (Bladier et al., 1997). 

Current evidence suggests that cell fate is dependent on the conformation, 

localisation, activity and stability of p53, which is involved in both senescence 

and apoptotic responses. p38 phosphorylation of p53 at Ser46 promotes 

apoptosis (Bulavin et al., 1999), and the mitochondrial localisation of p53 was 

found to be associated with radiosensitive organs and cell cultures that 

preferentially underwent apoptosis (Erster et al., 2004). Additionally, severe 

damage can induce apoptosis through acetylation of p53 (Sykes et al., 2006, 

Tang et al., 2006), though it is site dependent as the acetylation of some loci 

can activate pro-senescence p21, as can monoubiquitination (Le Cam et al., 

2006). Importantly, the activation of p21 is not essential for p53 induced 

apoptosis (Deng et al., 1995), and can be protective against it (Bunz et al., 

1999, Mahyar-Roemer and Roemer, 2001).  

There are now several lines of evidence to suggest that cell fate is dependent, 

or directly related to, the level of p21 induced by p53. Doxorubicin induced 

apoptosis paralleled the downregulation of p21 (Martinez et al., 2002), and pro-

apoptotic proteins such as Myc silence the p21 promoter altering the outcome in 

response to damage in favour of apoptosis (Wu et al., 2003). p21 is also 

regulated at the epigenetic level by acetylation and methylation, both of which 

influence cell fate towards apoptosis or senescence (Rebbaa et al., 2006). 

Thus, although there are likely to be mechanisms independent of p53 and p21 

that regulate the cell decision to enter senescence rather than cell death, these 
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proteins are likely to be primary regulators, which are heavily influenced by the 

level of stress, most likely translated by the severity of the damage. 

 

1.4.2 Markers of Senescent Cells 

 

The induction of senescence is associated with the expression and activation of 

multiple genes. However, some of these changes are transient, difficult to 

detect, or highly unspecific, making them bad markers of senescence. Several 

persistent easily observable markers of senescent cells have now been 

identified. Firstly and most importantly, these cells are permanently arrested, 

incapable of responding to physiological signals with cell cycle re-entry, despite 

the presence of normal growth factor receptors (Goldstein and Shmookler Reis, 

1985). Replicative senescence is generally associated with the G1/S checkpoint 

just preceding DNA synthesis (Rittling et al., 1986, Pignolo et al., 1998), as is 

RAS induced senescence (Serrano et al., 1997); however, another study found 

that a significant fraction of RAS expressing cells arrested with partially 

replicated DNA (Mao et al., 2012), indicative of S-phase or G2 arrest. Indeed, 

ATM mutant cells induced G2 arrest (Herbig et al., 2004), and several studies 

have shown large fractions of cells arrested in G2 in some cell types (Campisi, 

1996, Mao et al., 2012). Thus, whilst cells most likely attempt to arrest before 

DNA synthesis, some if not many of them clearly fail, and still manage to 

permanently arrest before mitosis. 

Therefore, markers such as the absence of BrdU (Bromodeoxy-uridine) which 

shows whether the DNA has been replicated, and Ki67 and PCNA which are 

present in proliferating cells, are good markers to demonstrate that the cells are 

not proliferating, but do not necessarily indicate that the cells have become 

senescent. However, this does not mean that they cannot be used to validate 

other markers of senescence, for which they are frequently employed. 

Perhaps the easiest way to observe senescent cells is through their 

morphological changes. Senescent fibroblasts have an enlarged, flattened, and 

irregular morphology (Hayflick, 1965). One study found senescent cells can 

have around 10 times as much volume and can triple in diameter (Chen et al., 
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2000b). Although they found that actin protein was not increased in senescent 

cells there was a huge increase in the amount of stress fibrils, many of which, in 

contrast to proliferating cells, spanned right across the cell (Chen et al., 2000b). 

Additionally, the focal adhesion plaques, made up of proteins such as paxillin 

and vesiculin, which are normally found at the cell membrane connecting the 

cell to the ECM, are found sporadically in senescent cells (Chen et al., 2000b). 

Importantly, although morphological changes are a good marker for 

senescence, they are not essential for growth arrest (Chen et al., 2000b).  

Senescence is also accompanied by an increase in nuclear size (Narita, 2007), 

and an increase in the density of nuclear pore complexes (Maeshima et al., 

2006), which allow transport of macromolecules between the nucleus and 

cytoplasm. In addition to size, the nucleus undergoes a host of changes during 

cellular senescence, the most prominent of which is the formation of 

senescence-associated heterochromatic foci (SAHF), which have a strong 

correlation with the irreversibility of senescence arrest (Beausejour et al., 2003, 

Narita et al., 2003). Importantly, SAHF formation is significantly reduced by 

knockdown of p16 or pRb but not p53, whilst all knockdowns remain 

permanently arrested (Narita et al., 2003).  

The lamin proteins, which connect the nuclear envelope to the chromatin, also 

change during senescence. Both lamins A and B have been implicated in the 

senescence process (Varela et al., 2005, Liu et al., 2005, Dreesen et al., 2013); 

however, the overexpression of lamin B1 can either repress or induce 

senescence depending on the study (Dreesen et al., 2013, Shimi et al., 2011, 

Barascu et al., 2012). Lamin B1 levels are decreased in senescent cells, 

potentially contributing to the formation of SAHF which are repressed by the 

protein (Sadaie et al., 2013). Equally, lamin A repression activates the DDR and 

induces 53BP1 and γ-H2AX foci (Liu et al., 2005), which could potentially help 

to reinforce the senescent phenotype, if lamin A follows the same expression 

pattern as lamin B during senescence.  

The most commonly used marker of senescence is senescence associated-β-

galactosidase (SA-β-gal) (Dimri et al., 1995) activity. As a lysosomal enzyme, β-

galactosidase is most active in acidic conditions at pH4-4.5, with markedly 

reduced activity at pH 6 (Zhang et al., 1994). However, whilst β-galactosidase 
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activity can only be detected at low pH in proliferating cells, in senescent cells it 

is additionally detectable at pH 6, and this is thought to correspond to increased 

β-galactosidase activity (Kurz et al., 2000). It was suggested that due to the 

increase in size, and the number of the lysosomes in senescent cells (Robbins 

et al., 1970, Brunk et al., 1973, Lee et al., 2006), that β galactosidase activity 

surpasses a threshold causing observable activity at higher pH (Kurz et al., 

2000). Importantly, the GLB1 gene which encodes β-galactosidase, has 

increased expression in senescent cells and results in increased protein levels, 

though it is not necessary for senescence (Kurz et al., 2000). 

The implication of lysosomal expansion in senescent cells is that senescent 

cells are subject to large increases in molecular damage, which requires 

increased levels of degradation. Consistently, the increased numbers of 

dysfunctional mitochondria, which accumulate in senescent cells, produce high 

levels of reactive oxygen species (Passos et al., 2007), which cause oxidative 

damage to both nuclear and mitochondrial DNA (Passos et al., 2007), as well 

as proteins and lipids, forming oxidative modifications and carbonyls (Ahmed et 

al., 2010), and lipofuscin (Sitte et al., 2000a, Sitte et al., 2000c, Sitte et al., 

2000b, Sitte et al., 2001). Lipofuscin is the product of severe oxidative 

modifications leading to protein aggregation, and accumulates in most post-

mitotic cells (Jung et al., 2007), and causes autofluorescence of senescent cells 

making it a useful marker (Katz and Robison, 2002), although it can also 

accumulate in reversibly arrested proliferation-competent cells (Sitte et al., 

2001). Recently it has also been used to identify senescent cells in vivo, in 

samples which are unsuitable for SA-β gal staining (Georgakopoulou et al., 

2013).  

 

1.4.3 DNA Damage as a Marker of Senescence 

 

It has already been described that DNA damage is the primary inducer of 

senescence in the majority of cases, although some specific stimuli may be able 

to induce senescence independently. However, except in this minority of cases, 

the evidence suggests that inhibiting the DNA damage response does allow a 

certain percentage of cells to escape senescence (Bartkova et al., 2006, d'Adda 
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di Fagagna et al., 2003, Di Micco et al., 2006, Gire et al., 2004, Herbig et al., 

2004). It is likely that some cells also manage to maintain the senescent 

phenotype; however, this cannot be known for sure without using knockout 

rather than knockdown systems. Regardless, this still implies that maintenance 

of the DDR is an important part of the senescent phenotype.  

As described in section 1.3.1, the DNA damage is typically observed by either 

53BP1 or γ-H2AX foci, which result from the oligomerisation of these molecules 

at sites of DNA damage. If the lesions are repaired then the foci appear 

transient, and are thought generally not to persist for longer than 24 hours. In 

healthy replicating cells most foci disappear within five hours of arising (Passos 

et al., 2010). The induction of senescence is associated with the induction of 

irreparable damage which generates persistent foci leading to growth arrest 

(Beausejour et al., 2003, d'Adda di Fagagna et al., 2003, Herbig et al., 2004), 

although theoretically the individual foci do not need to persist as long as they 

are replaced by new foci to continue the signal for growth arrest. Consistently, 

the evidence suggests firstly that even in replicative senescence about half the 

foci persisted for less than 15 hours, and secondly that the generation of these 

short lived foci is equally important as the persistent foci in maintaining the 

growth arrest of senescent cells, at least for the first nine days after the initial 

stimulus (Passos et al., 2010).  

This suggests that even in replicatively senescent cells not all the foci are 

telomere associated (Nakamura et al., 2008, Passos et al., 2010, Wang et al., 

2009a), and therefore could be expected to be repaired if the break is not too 

complex. Consistently, after X-irradiation induced senescence about half the 

foci were associated with telomeres, and these accounted for all of the 

persistent foci. Thus even the highly complex breaks induced by 20Gy X-

irradiation can be repaired by the cell, except where they happen at a telomere 

(Hewitt et al., 2012), and recent evidence suggests that telomeric DNA and 

associated proteins, even when placed elsewhere in the genome, may inhibit 

repair (Fumagalli et al., 2012).  

Unlike the initial foci the persistent foci are not associated with repair proteins 

such as RAD51 and RPA70. It has been suggested that this results from 

changes at the focus, when the cell ceases attempting to repair them (Rodier et 
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al., 2011). However, they offer no evidence that these foci were ever associated 

with these proteins. Importantly, both proteins are involved in homologous 

recombination, and the recent evidence that all persistent foci are the result of 

telomeric damage suggests that these foci should not associate with these 

proteins, in order to prevent breakage fusion bridge cycles and genomic 

instability. Indeed, the telomeric foci of replicatively senescent cells share many 

of the same properties as the persistent foci after X-irradiation (Rodier et al., 

2011). 

The solubility of 53BP1 in persistent foci decreases compared to early foci 

(Rodier et al., 2011), which likely reflects the increased oligomerisation, that is 

observed by the increase in size of the focus. Additionally, although about 7-10 

days after the stimulus, the cells decrease p53 and p21 (Rodier et al., 2011), 

hypothetically because the importance of positive feedback to maintain 

senescence decreases (Passos et al., 2010), the foci begin to associate with 

p53 and Chk2 which are not present at early foci (Rodier et al., 2011). 

Potentially this localisation could help to maintain a persistent signal with greatly 

reduced protein levels, thus losing the requirement for positive feedback.  

PML (promyelocytic leukemia protein) bodies are dynamic, heterogeneous 

subnuclear domains that form in response to genotoxic stress (Bernardi and 

Pandolfi, 2007, Varadaraj et al., 2007), and are found at DNA damage foci 

(Carbone et al., 2002; Xu et al., 2003) where they facilitate the senescence 

growth arrest by the activation of p53 (Ferbeyre et al., 2000; Pearson et al., 

2000). Also absent at initial foci, PML bodies co-localise with persistent foci 

after X-irradiation and telomere associated foci in replicatively senescent cells 

(Rodier et al., 2011). Thus, persistent/telomeric foci are a good marker for cell 

senescence and can be indicated best by the presence of p53, Chk2 and PML, 

but focus size is also an indication. Although the evidence suggests that these 

foci would be insufficient in small numbers to induce senescence, which also 

depends on the induction of smaller short lived foci by ROS (Passos et al., 

2010), only the persistent ones are thought to be exclusive to senescent cells. 

Importantly, the DNA damage response is one of the most proximal phenotypes 

of senescent cells, and has been shown to be necessary for the induction and 

maintenance of growth arrest (d'Adda di Fagagna et al., 2003), as well as the 
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formation of the senescence associated secretory phenotype (Rodier et al., 

2009). Additionally, depletion of H2AX with shRNA, which destabilises foci, but 

does not affect formation (Celeste et al., 2003), also reduces the SASP at 2-3 

days when the phenotype begins, and at 9-10 days later when the phenotype is 

robust (Rodier et al., 2011). Thus, persistent foci were concluded to be 

necessary for multiple aspects of the senescent phenotype. However, it is likely 

that the shRNA also affected the lifespan and functionality of the short-lived foci, 

which still normally contain γ-H2AX.  

Another potential marker of senescence is the number of foci within a cell. The 

data in this thesis suggest that senescent MRC5 cells have around three foci on 

average, whereas young replicating cells have between 1-2 foci (figure 5.1). 

Another study showed that different cell lines had between 2-4 γ-H2AX foci at 

senescence, which was between 1-3 foci above the number found in the 

corresponding young cells, suggesting that the number of foci is cell type 

dependent, but always higher than that found in replicating cells (Sedelnikova et 

al., 2004), making it a good marker of senescence providing the cell type is 

taken into account.  Importantly, the same study demonstrated the almost 

complete co-localisation of γ-H2AX and 53BP1. However, as is observable 

within the above study and elsewhere, 53BP1 foci are generally larger and 

clearer. 

Unsurprisingly, as the agents inducing much of this damage, ROS are also 

upregulated in senescent cells, and provide a good marker of senescence 

(Correia-Melo et al., 2013, Lawless et al., 2012, Lawless et al., 2010, Passos et 

al., 2013). Though as none of these markers are infallible, most studies will 

analyse at least two in order to increase the likelihood that the observed 

phenotype is actually senescence.  

 

1.4.4 The Senescence Associated Secretory Phenotype 

 

In 2008 a study screened the secreted proteins of replicatively, irradiated and 

RAS induced senescent cells and compared them to each other as well as to 

replicating controls. Over 40 proteins from the array of 120 proteins were found 
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to be significantly increased in the secretions of senescent cells compared to 

young cells, which was therefore named the senescence activated secretory 

phenotype (SASP) (Coppe et al., 2008). The SASP included inflammatory 

cytokines such as IL-6, IL-7, and IL-8, TNF receptors, growth factors such as 

GRO, HGF and IGFBPs, shed cell surface molecules such as ICAMs, survival 

factors (Coppe et al., 2008), and matrix remodelling factors (Liu and Hornsby, 

2007, Parrinello et al., 2005, Coppe et al., 2010). Importantly, although these 

SASPs had differences between cell types and senescence stimuli, they were 

relatively conserved across both (Coppe et al., 2008). However, RAS induced 

senescence did stimulate increased production of many of the factors compared 

to irradiated or replicatively senescent cells. Equally, the SASP of irradiated 

senescent cells developed between 4-7 days after the dose, whereas RAS 

induced the SASP 2-4 days after oncogene expression. 

Importantly, if p53 was knocked down before the induction of senescence in 

irradiated cells then it produced a SASP quantitatively similar to that of RAS 

induced cells, although, RAS expression in p53 knockdown cells induced the 

most potent SASP (Coppe et al., 2008), so there is a combinatorial effect. If p53 

is knocked down after senescence induction then it has no significant effect on 

the SASP, and if it is knocked down in cell lines that do not express p16, then 

p53 abrogation induces reversion to cell cycle, but still does not abrogate the 

SASP (Coppe et al., 2008), suggesting the two are independent. 

Another study examining the SASPs of mouse cells found that when they 

senesced in response to irradiation, after being cultured at 3% oxygen, they 

produced human-like SASPs, but when they were cultured to replicative 

senescence at 20% oxygen they did not (Coppe et al., 2010). It should be noted 

that whilst the majority of these latter cells expressed SA-β-gal and arrested, a 

large minority were still undergoing DNA replication, despite no change in cell 

numbers.  

Whilst the irradiated cells were grown at 3% oxygen giving two variables that 

could have been responsible for the difference in phenotype (either the growth 

conditions or the irradiation stimulus), compared to the unirradiated cells grown 

at 20% O2, what is clear is that both arrest and SASP are at least partially 

dependent on the persistency of the DDR (Coppe et al., 2010). Exactly why 
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some stimuli do not produce a persistent DDR or SASP is not clear, and 

warrants further investigation, but these data clearly suggest that the SASP is a 

good marker of senescence. 

The function of the SASP in vivo has not been properly tested; however, a 

closer look at some of the SASP components can provide some insight.  

 

1.4.4.1 IL-6 

IL-6 is one of the most prominent members of the SASP. It binds to the 

membrane associated receptor IL-6R, which then forms a complex with two 

gp130 proteins, which then binds JAK1 and JAK2 (Lutticken et al., 1994). 

Without JAK1, IL-6 signalling is greatly impaired (Guschin et al., 1995). The 

phosphorylated JAKs remain associated with the receptor and activate STATs, 

most potently STAT3, but also to a minor extent STAT1 (Heinrich et al., 1998). 

The STATs dimerise allowing them to be actively translocated to the nucleus 

(Bromberg et al., 1999), where they induce the transcription of multiple genes 

including NF-κB family members providing positive feedback. Additionally, IL-6 

can activate the MAPK cascade through the recruitment of SHP2 (SH2-domain-

containing tyrosine phosphatase) (Schiemann et al., 1997) or Shc (SH2-and 

collagen-homology-domain-containing protein). These two proteins are 

phosphorylated by JAK1 (Schaper et al., 1998), and bind Grb2 which recruits 

SOS and activates Ras-Raf-ERK signalling (Hermanns et al., 2000). Both p38 

and JNK are also activated by IL-6, but by a less well defined mechanism (Bode 

et al., 2001b, Zauberman et al., 1999). Lastly, IL-6 can also induce the PI3K/Akt 

pathway resulting in the activation of mTOR and inhibition of Bad (Bcl2/Bcl-XL-

antagonist, causing cell death), contributing to cell survival and proliferation (Shi 

et al., 2002). Signalling is inhibited by protein tyrosine phosphatases (PTPs), 

including SHP2. PIAS3 also inhibits IL-6 induced activity of STAT3 (Chung et 

al., 1997), and SOCS1, 2 and 3 have been observed to be induced by IL-6 as a 

negative feedback mechanism to cease STAT signalling (Starr et al., 1997). 

 



 

41 
 

1.4.4.2 Other Important SASP Molecules 

 

IL-7 is another cytokine highly expressed within the SASP (Coppe et al., 2008). 

By binding the IL-7 receptor of B cells it stimulates development in the latter 

from the pre- and pro-B cell stages. In T cells IL-7 is important in the V(D)J 

rearrangement of the T cell receptor beta (Muegge et al., 1993), and knockout 

mice suggest that it is essential for development and survival of lymphoid cells 

(Maeurer and Lotze, 1998). 

Similar to IL-7, granulocyte macrophage-colony stimulating factor (GM-CSF) is 

involved in white blood cell development, but contrarily stimulates the innate 

immune response by inducing haematopoietic stem cells to develop into 

granulocytes and monocytes (Hamilton, 2002). GM-CSF has been implicated in 

several immune diseases including atherosclerosis (Fleetwood et al., 2005). 

GRO-alpha, encoded by the CXCL1 gene in humans, is structurally related to 

IL-8, both of which are highly secreted in the SASP (Coppe et al., 2008). Both 

are important inducers of neutrophil chemotaxis, intracellular calcium peaking, 

and respiratory burst, though IL-8 is more potent (Geiser et al., 1993). Equally 

both play key roles in angiogenesis (Lane et al., 2002). As a result both proteins 

are tumorigenic and contribute to cancer development and metastasis (Owen et 

al., 1997).  

ICAM-1 is an intercellular adhesion molecule which binds integrins, specifically 

the LFA-1 receptor found on leukocytes (Rothlein et al., 1986), which allows the 

immune cells to transmigrate into the tissues (Yang et al., 2005). 

TGF-β has also been identified as an important SASP protein (Coppe et al., 

2008), and can diverse and contrary roles depending on the cellular context 

(Ashcroft et al., 1999), including arrest and proliferation, in accordance with the 

level RAS signalling (Oft et al., 1996). When TGF-β binds its receptor it triggers 

phosphorylation of type I receptors by type II receptors which activates the 

kinase domain of type I receptors (Huse et al., 1999). This causes 

phosphorylation and activation of the R-Smads 2 and 3, which bind Co-Smad 4 

and translocate to the nucleus. Importantly, TGF-β has key tumour suppressor 

functions, both in suppressing the activity of c-Myc and the CDKs as well as 
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activating tumour suppressor genes such as p15 and p27 (Datto et al., 1995, 

Hannon and Beach, 1994, Polyak et al., 1994). However, in the absence of 

functional tumour suppressors TGF-β can also promote metastasis (Cui et al., 

1996), and even under some circumstances tumour growth (Levy and Hill, 

2006). Like many of the SASP factors it also plays a key role in the immune 

response, controlling the activation and survival of lymphocytes, and inhibiting 

the development of reactivity to self-antigens without compromising immunity to 

non-self (Li et al., 2006). 

 

1.4.4.3 TNF-α 

TNF-α is a potent inflammatory cytokine regulating the immune response, 

apoptosis, proliferation and differentiation. Interestingly, its importance in 

senescence is equivocal. An initial study suggested that TNF-α, was not a large 

factor in the SASP of most cell types (Coppe et al., 2008), whereas a later study 

suggested that it was upregulated at least at the transcriptional level (Acosta et 

al., 2013). It can bind two receptors: TNF-R1 which is ubiquitously expressed 

across all tissues and is responsible for the bulk of TNF-α induced signalling; 

and TNF-R2 which is only expressed in immune cells and is tightly regulated 

(Wajant et al., 2003). When TNF-α binds, it causes conformational change 

allowing receptor trimerisation (Chan et al., 2000) and release of the inhibitory 

Silence of Death Domain (SODD) protein. TNF Receptor-Associated Death 

Domain (TRADD) then binds to the membrane associated complex and binds 

Receptor interacting Protein (RIP) (Ting et al., 1996), localising it to the lipid 

rafts (Legler et al., 2003). RIP recruits NEMO (Zhang et al., 2000), and the 

MAP3Ks TGF-β activated kinase (TAK1) and mitogen activated protein kinase 

kinase kinase 3 (MEKK3) (Blonska et al., 2004), thus allowing them to 

phosphorylate IKKβ (Shinohara et al., 2005), and activating canoninical NF-κB 

signalling. TNF-R associated factor 2 (TRAF2), which is necessary for NF-κB 

activation by TNF-α (Tada et al., 2001), also plays a role in activation of p38 

and JNK, which may help activate AP-1 (Karin et al., 1997), an important co-

factor in the transcription of many NF-κB responsive genes.  

The additional binding of FADD and caspase 8 causes the cytoplasmic 

localisation of the TRADD-RIP complex, which activates the caspase cascade 
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to initiate apoptosis (Micheau and Tschopp, 2003). TNF-α is only weakly 

apoptotic because NF-κB causes the transcription of many anti-apoptotic 

genes. TNF-α signalling as  whole is mainly inhibited by two deubiquitinating 

enzymes A20/TNFAIP3 (Lee et al., 2000) and the tumour suppressor CYLD 

(Reiley et al., 2007), but protein phosphatase 2A (PP2A) enzymes may also 

play a role.  

It has already been discussed in the previous section how the cells induce a 

SASP and the mechanisms by which this process helps to reinforce 

senescence. In the next two sections, it will be discussed firstly how these 

phenotypes help senescent cells to carry out their functions, and secondly how 

these effects can also have detrimental consequences.  

 

1.5 The Functions of Cell Senescence  

 

1.5.1 Senescent Cells Function in Wound Healing and Immune Clearance 

 

Senescence is not an unavoidable by-product of cellular stress. It is a program 

orchestrated by the cell, and as such is likely to have some function. One 

possibility is that senescent cells are important in wound healing. Senescent 

fibroblasts adopt an active secretory phenotype similar to activated fibroblasts 

(Bernard et al., 2004), and one study showed that mice with defective p53 

and/or p16 had elevated levels of liver fibrosis (Krizhanovsky et al., 2008b). At 

sites of fibrosis some of the cells became senescent and produced the SASP 

(Krizhanovsky et al., 2008a), where they aided in the resolution of fibrosis by 

both inhibiting synthesis of matrix proteins and inducing their degradation, as 

well as reducing fibroblast numbers by ceasing replication and promoting 

clearance by natural killer cells (Krizhanovsky et al., 2008a, Xue et al., 2007). In 

apparent contradiction, fibrosis is increased in older individuals, as are the 

number of senescent cells. However, this is just a correlation, and despite the 

many potentially negative phenotypes of senescent cells, their increase in 

wounds could hypothetically be a compensatory mechanism to limit fibrosis in 

older people. Additionally the SASP may also contribute to immune surveillance 
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at the site of the wound (Krizhanovsky et al., 2008a, Krizhanovsky et al., 

2008b). In cutaneous wounds, cells are also induced to senesce at the later 

stages when they cease proliferation and upregulate matrix remodelling factors 

to induce an anti-fibrotic effect (Jun and Lau, 2010). Thus, whilst senescent 

cells are not required for wound healing (Jun and Lau, 2010, Krizhanovsky et 

al., 2008b), they play a role in reducing the level of fibrosis that was stimulated 

by their activated non-senescent predecessors.  

Contrarily, senescent cells have been implicated in chronic wounds (Telgenhoff 

and Shroot, 2005). Although senescent fibroblasts are present in high numbers 

at chronic wounds (Vande Berg and Robson, 2003), there is little evidence of a 

causal relationship as chronic wound fluid induces senescence at these sites 

(Vande Berg and Robson, 2003, Mendez et al., 1999). However, MMPs which 

are secreted by senescent cells, are increased in chronic wounds compared to 

healthy wounds (Lobmann et al., 2002), have been implicated in growth factor 

degradation (Yager and Nwomeh, 1999), and have been shown to be 

detrimental to the healing of chronic wounds (Ladwig et al., 2002). Therefore, it 

is likely that the same anti-fibrotic properties that make senescent useful in the 

healing of healthy wounds are detrimental in the healing of chronic wounds, 

possibly due to increased numbers of them induced by the increased 

inflammatory nature of the wound (Telgenhoff and Shroot, 2005), or through 

their interactions with other factors at these sites.  

 

1.5.2 Cellular Senescence in Development 

 

Importantly, there is growing evidence for senescent cells in embryonic 

development. Senescent cells have been identified at the apical ectodermal 

ridge and the closing neural tube, and it has been observed that p21 and p53 

mutants can have developmental abnormalities (Keyes, Serrano, unpublished). 

Therefore, at least in these circumstances, cell senescence is unlikely to be an 

unwanted byproduct of stress, but is instead a programme that the body 

institutes for specific functional goals. 
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1.5.3 Blocking Senescence Causes Crisis 

 

Currently the main function of senescence is thought to be as a tumour 

suppressor mechanism. In the case of aberrant oncogene expression the role 

for senescence is clear. As oncogenes generally have pro-cell cycle and pro-

survival functions, the result of letting the signal continue unrestrained would be 

the formation of a continually growing mass of cells, which would effectively be 

a benign tumour. Thus, the cell must inhibit the growth signal with negative 

feedback. In the case of RAS overexpression, cells have suppressed the signal 

within 30 minutes of induction which is maintained at 24 hours, indicating both 

short term and long term suppression (Courtois-Cox et al., 2006). Downstream 

PI3K signalling was inhibited; p53 and pRb were activated, and cells were 

induced to become senescent (Courtois-Cox et al., 2006). However, the 

negative feedback pathway is not quite that simple, and generally requires the 

induction of DNA damage (Bartkova et al., 2006). Thus, an interesting 

speculation would be that cells with mutant oncogene expression might be more 

susceptible to transformation if they have higher DNA repair capacity.  

In the case of replicative and irradiation induced senescence the reason for 

arrest is also mainly as a barrier to tumourigenesis. When cells become 

damaged either by telomere loss through replication or through damaging 

agents such as ROS or radiation, copying the DNA becomes more difficult due 

to the breaks and other lesions preventing the replication enzymes from 

carrying out their function. As a result, some parts may not be copied causing 

deletions, and others may be copied incorrectly causing mutations. Additionally, 

homologous recombination may cause duplications or transversions, and 

together these effects result in genomic instability. Therefore, when cells fail to 

enter senescence they enter a state of crisis called mitotic catastrophe, where 

the rate of cell death is approximately equal to the rate of proliferation (Shay et 

al., 1991), maintaining a relatively constant number of cells. 

When cells bypass replicative senescence they induce a specific type of 

genomic instability called breakage-fusion-bridge cycles. Once the chromosome 

replicates during S-phase the uncapped telomeres of the two sister chromatids 

are recognised as double strand breaks and joined together. Then when they 
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are pulled apart during metaphase they will break, but not necessarily at the site 

of fusion. Thus, the two daughter cells will inherit unequal chromosomes, which 

may be lethal to one or both of the cells (McClintock, 1941). 

As the cell population remains relatively constant the surviving cells are 

becoming increasingly damaged. Eventually some of the cells may acquire the 

correct mutations to transform into neoplastic cells and form tumours, which is 

highly detrimental to the organism. The reason that somatic cells have 

inactivated telomerase is likely to be in order to induce senescence in cells 

which are undergoing abnormal proliferation. Thus, cells which have acquired 

cancerous mutations must acquire further mutations to reactivate telomerase 

before they can immortalise (Kim et al., 1994, Hiyama et al., 1995a, Hiyama et 

al., 1995c). Consistently, telomerase expression enhances transformation in 

vitro (Hahn et al., 1999). 

These data, combined with the much faster formation of tumour formation in 

mice, which have fewer independent tumour suppressor mechanisms to prevent 

senescence bypass, is good evidence for the importance of senescence as a 

tumour suppressor mechanism. However, as was seen with the wound healing, 

senescence can have antagonistic effects. There are several lines of evidence 

to suggest that senescence might be detrimental to the ageing process. 

 

1.6 Senescence in the Promotion of Ageing, Cancer and Disease 

 

1.6.1 Cell Senescence in Ageing 

 

Simply because a phenomenon has function, does not mean that it will not also 

have unwanted or detrimental effects as well. The two main theories of ageing 

currently suggest that firstly if something is beneficial to fitness it does not 

necessarily mean that it is beneficial to organismal lifespan, and secondly that if 

something has benefit earlier in life, then such a trait would still undergo positive 

selection even if it was detrimental later in life when the selective forces are 

weaker. Thus, cell senescence could have both positive and negative 
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consequences, and the latter could be more severe as long as they happen 

later in life.  

Initially it was doubted whether the finite replicative lifespan of cells in culture 

would have any relevance to cells and organisms in vivo. However, several 

studies have since shown that not only are senescent cells present in vivo, but 

also that they accumulate with age (Dimri et al., 1995, Pendergrass et al., 1999, 

Mishima et al., 1999), and at sites of age-related pathology (Collado et al., 

2005, Dimri et al., 1995, Erusalimsky and Kurz, 2005, Jeyapalan et al., 2007, 

Price et al., 2002). There has been correlative evidence for a role of 

senescence in ageing as far back as the 1970s, when they showed that cells of 

older individuals senesced after fewer replications than cells of young 

individuals (Martin et al., 1970, Le Guilly et al., 1973), and cells from progeroid 

patients senesced after fewer divisions than cells from healthy individuals 

(Goldstein, 1978). However, recent studies using more stringent controls have 

contested some of these results (Cristofalo et al., 1998, Serra and von Zglinicki, 

2002). The first causal evidence that senescent cells contributed to the ageing 

process was demonstrated in 2011 by a group that used a construct combining 

a p16 promoter with an inducer of apoptosis, thus allowing the selective killing 

of p16 expressing cells in progeroid mice (Baker et al., 2011). The result was a 

significant delay in the onset of age related pathologies in the eye, muscle and 

adipose tissue, and, in the latter two cases, late-life clearance could attenuate 

these phenotypes in mice that had already started to develop them.  

 

1.6.2 The Cell Autonomous Hypothesis of Senescence in Ageing 

 

It is possible that senescent cells could contribute to ageing autonomously 

through the loss of normal tissue function. The main way that this has been 

suggested to occur is through the depletion of stem cell reserves. As 

differentiated cells have little or no replicative potential anyway, their 

senescence is unlikely to have significant autonomous effect on organ 

regeneration, whereas stem cells are responsible for producing large numbers 

of cells of many types to replace those that are damaged or lost. Theoretically, 
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therefore stem cell senescence could autonomously reduce organ function and 

induce ageing. 

One initial problem with this theory was the finding that some adult stem cells 

expressed telomerase, which was thought to immortalise them and prevent 

senescence. However, many adult stem cells either express telomerase at very 

low levels, or not at all, and in both cases have a finite replicative capacity in 

culture (Vaziri et al., 1994, Wagner et al., 2008). Additionally, haematopoietic 

stem cells from older individuals also had shorter telomeres (Vaziri et al., 1994), 

indicating that they also have a finite replicative lifespan in vivo. Consistently, 

there are signs of stem cell ageing; the stem cells of older mice were shown to 

be significantly less functional than those in younger individuals (Chen et al., 

1999, Morrison et al., 1996), and differentiation was skewed towards the 

myeloid lineage away from T and B cell production (Spangrude et al., 1995, 

Sudo et al., 2000).  

However, more importantly, the majority of data suggest that stem cell numbers 

increase with age rather than decrease (Morrison et al., 1996, Harrison et al., 

1989, de Haan et al., 1997), which is difficult to reconcile with the idea of 

autonomous stem cell loss due to senescence contributing to ageing. Indeed 

the progeny of a single transplanted haematopoietic stem cell can maintain 

haematopoiesis over the lifespan of a recipient mouse (Jordan and Lemischka, 

1990), and they can be serially passaged to recipients for up to five generations 

(Siminovitch et al., 1964).  In 2006 it was claimed that “no one common disease 

of ageing is directly caused by exhaustion of cell divisions” (Blagosklonny, 

2006a). Whilst this has by no means been proved, the increase in stem cells 

with ageing is entirely inconsistent with a depletion of stem cells through cell 

senescence contributing to ageing. There is good evidence that stem cells age, 

and this may contribute to ageing, but this is unlikely to reflect a decline in their 

replicative capacity due to stress induced senescence of the stem cell pool. 

Another possible mechanism by which senescent cells could autonomously 

induce ageing is based on the observation that some organs can accrue large 

numbers of senescent cells (Wang et al., 2009a, Wang et al., 2010, Jurk et al., 

2012). Aside from ROS and the SASP, senescent cells have >1000 genes 

differentially expressed compared to healthy replicating cells, and could 
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theoretically autonomously contribute to organ decline, if enough cells were 

behaving aberrantly. 

Alternatively senescent cells could contribute to ageing through inducing 

detrimental effects on the surrounding non-senescent cells, and even 

systemically. Although there has been suggestions that this might be the case 

(Rodier and Campisi, 2011, Coppe et al., 2008), the evidence to date is 

currently lacking. However, there is substantial evidence for paracrine effects of 

senescent cells in tumorigenesis.  

 

1.6.3 Cellular Senescence in Cancer and the Non-Autonomous Hypothesis 

 

The observation in 2001 that senescent cells could stimulate preneoplastic and 

neoplastic cells to form tumours (Krtolica et al., 2001), initially seemed to 

contradict the role of senescence as a tumour suppressor. However, the study 

clearly demonstrated that senescent cells stimulated the growth of four strains 

of preneoplastic immortalised cells harbouring p53 mutations more than pre-

senescent cells. Importantly, the same study found that normal keratinocytes 

grew similarly on senescent and pre-senescent cells, suggesting that the effect 

was unique to damaged cells. Both matrix deposition and secretion of soluble 

factors from senescent cells triggered preneoplastic cell growth, although it was 

not nearly as effective as direct cell contact. These cells would not ordinarily 

form tumours in immunocompromised mice, but the addition of pre-senescent 

fibroblasts to the xenograft induced some tumour formation, which was 

increased by the presence of senescent cells, as was the size of the tumours. In 

one cell line the tumours remained benign even when injected with senescent 

cells, whilst in another cell line senescent cells triggered progression to 

malignancy (Krtolica et al., 2001).  

A later study showed that at early stages of tumour xenograft the presence of 

senescent fibroblasts stimulated the induction of large fluid filled edema, 

indicative of tissue damage, which then regressed but resulted in much larger 

tumours (Liu and Hornsby, 2007). The use of a matrix metalloproteinase 

inhibitor reduced this fluid accumulation and slowed the growth rate of the 
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tumour, without directly affecting proliferation in culture. It is therefore possible 

that the proliferation of preneoplastic cells, which lack functional tumour 

suppressor mechanisms, might be induced to grow by some genotoxic stimulus, 

which is reinforced by the observation that healthy keratinocytes did not 

respond with increased growth. However, contradictory to this idea hepatocyte 

growth factor (HGF), which is upregulated in senescent cells was shown to 

have directly mitogenic effects (Liu and Hornsby, 2007). Secondly, another 

study examining prostate epithelial cells demonstrated that senescent 

fibroblasts could stimulate the proliferation of healthy cells, in a mechanism 

partially dependent on amphiregulin (AREG), and possibly FGF-7 and HGF 

(Bavik et al., 2006). Thus, it is likely that the pro-tumorigenic effect comes at 

least partially from the stimulation of proliferation. The induction of DNA damage 

by RAS stimulated hyperproliferation (Bartkova et al., 2006) is consistent with 

this idea. 

Despite the apparently paradoxical pro and anti-tumour effects of senescent 

cells, it should be noted that current cancer therapies such as radiotherapy are 

also thought to induce transformation or tumorigenicity of preneoplastic and 

neoplastic cells (Lagadec et al., 2012, Zhao et al., 2001, Toda et al., 2009). 

Similarly, it appears that the mechanisms the body uses to inhibit cancer initially 

can likewise promote it later on.  

Importantly, a later study identified that the epithelial-mesenchymal transition in 

cancer cells induced by senescent cells was partially dependent on pro-

inflammatory IL-6 and IL-8 (Coppe et al., 2008). Interestingly, they showed that 

the SASPs of both RAS induced senescent cells and from cells lacking p53 

function prior to senescence were more potently transforming than the SASPs 

of irradiated or replicatively senescent cells with functional p53 (Coppe et al., 

2008). Although this contradicted the previous observation that RAS senescent 

cells were less potent transformers than both other types of senescent cell 

(Krtolica et al., 2001), the authors had noted problems with the RAS expressing 

cells which could explain this difference (Krtolica et al., 2001).  

Another study found that in three sets of mice given a carcinogen known to 

cause RAS mutation, both genetically obese mice and ones fed a high fat diet 

were more likely to develop liver cancer than lean controls. More interestingly, 
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they found firstly that treatment with siRNA against HSP27 (shown to reduce 

numbers of senescent/senescing liver cells (Sato et al., 2008)), significantly 

reduced liver cancer, and secondly that when IL-1β was knocked out, which is a 

prominent feature of the SASP, the number and size of the tumours was also 

significantly reduced (Yoshimoto et al., 2013). Mechanistically they suggested 

that toxins produced by the gut microbiota of mice on high fat diet including 

deoxycholic acid (DCA) induced both cell senescence and liver cancer 

(Yoshimoto et al., 2013).  

 

1.6.4 Summary 

 

Cellular senescence has important functions in tumour suppression and 

immune clearance. Despite these, senescent cells have detrimental effects on 

pre-neoplastic and tumour cells, stimulating transformation, malignancy and 

tumour growth. Senescent cells have also been implicated in the ageing 

process, and it is unlikely that they do so autonomously by the depletion of 

functional cells. However, despite the evidence that senescent cells have 

potential to induce damage associated with ageing to the surrounding tissue, 

there is currently little evidence on whether this occurs or the mechanisms 

involved.  

 

1.7  Previous Evidence of Bystander Effects 

 

Broadly the term bystander effect applies to any phenotypic change in cells, that 

occurs indirectly as a result of treatments applied elsewhere. In gene therapy 

and toxicology the term is used to describe the passage of gene products from 

transfected cells to their neighbours. More relevant to this thesis is the study of 

the effects of radiation which have mostly examined the bystander effect in the 

form of multiple species of DNA damage and cell death. For 50 years it has 

been known that medium from irradiated cells can induce DNA damage in 

unirradiated cells, but it was not until 1992 that it was demonstrated that cells hit 

by high-LET radiation (α-particles) could induce sister chromatid exchanges 
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(SCEs) in bystander cells (Nagasawa and Little, 1992). In this study using 

Chinese hamster ovary (CHO) cells, the same level of SCEs was produced in 

bystander cells as by 1-2Gy direct X-irradiation. At very low doses of α-particles 

the bystander effect is dose dependent; however, it quickly plateaus (Nagasawa 

and Little, 1992), which has been replicated in HFL1 human diploid fibroblasts 

(Deshpande et al., 1996). Since this time, the study of the irradiation induced 

bystander effect has been done either with the use of targeted α-particles or via 

the use of irradiated cell conditioned medium (ICM) transferred from γ or X-

irradiated cells.  

 

1.7.1 The Radiation Induced Bystander Effect (RIBE) 

 

Unlike the effect of α-particles, the initial study using ICM from irradiated 

fibroblasts failed to show any change in cell survival in fibroblasts at the dose of 

5Gy, whereas medium from keratinocytes significantly reduced survival of both 

keratinocytes and fibroblasts, indicating that it was the absence of signal rather 

than response that prevented the bystander effect in fibroblasts (Mothersill and 

Seymour, 1997). Another study analysing 53BP1 foci demonstrated a 2.5 fold 

increase in foci in bystander WI-38 fibroblasts receiving ICM (Sokolov et al., 

2005), and a later study showed the same was true of IMR-90 fibroblasts, 

showing a 4.5 fold increase in 53BP1 foci (Sokolov and Neumann, 2010), 

suggesting firstly that fibroblasts may still have received damage in the initial 

experiment (which did not significantly increase cell death), and secondly that 

even within fibroblast the magnitude of the effect was cell type specific.  

The types of foci in Hela cells appeared to differ between directly irradiated and 

bystander cells. A single α-particle to the nucleus induces a single large focus at 

the point where the particle hit and other foci localised around this area, whilst 

in bystander cells the foci were spread across the whole nucleus. When the α-

particle was targeted to the cytoplasm the hit cells showed the same focus 

pattern as the bystanders with similar numbers of cells having ≥4 foci (Tartier et 

al., 2007). Interestingly, the effects of cytoplasmic radiation are delayed for both 

directly irradiated and bystander cells compared to nuclear irradiation, and the 

percentage of directly hit cells showing ≥4 foci is halved. However, once the 
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effect appears, there is no difference in foci numbers of bystanders regardless 

of where the α-particles hit the inducer cells (Tartier et al., 2007).  

Human fibroblasts, carcinoma cells, and CHO cells all showed greater losses in 

clonogenic survival in response to ICM if they had some defect in DNA repair, 

and likewise induced increased damage in other bystanders compared to their 

repair proficient controls (Mothersill et al., 2004), suggesting that cells with less 

active repair induce a stronger bystander signal. Additionally, there is some 

evidence that these cells are more susceptible to the bystander signal than 

repair proficient cells. One repair deficient strain receiving ICM had increased 

cell death compared to the proficient control receiving the same medium, whilst 

the other strain showed no difference.  

In keratinocytes, the bystander effect of irradiated cell conditioned medium 

(ICM) depended on the number of cells irradiated, with the highest cell numbers 

producing a bystander effect similar to direct irradiation with 5Gy (Mothersill and 

Seymour, 1997). In another study by the same group using a different strain of 

human immortalised keratinocyte, the lowest dose used of 0.01Gy induced a 

similar reduction in survival compared to 5Gy, and direct irradiation of cells only 

started to reduce clonogenic survival above that of bystanders at 2.5Gy 

(Seymour and Mothersill, 2000). Additionally, in the progeny of these cells the 

clonogenic survival of the bystanders was consistently reduced from ICM of 

0.03Gy γ-irradiation, whereas the progeny of directly irradiated cells had no 

significant delayed effects (Seymour and Mothersill, 2000).  

The bystander dynamics using ICM suggest that there is little increased effect 

on leaving the medium on the irradiated cells for longer than 1 hour, and the 

effect is already apparent if the medium is removed 30 minutes after irradiation 

(Mothersill and Seymour, 1997). Importantly, if the medium was replaced 

immediately (30 seconds) after irradiation, and the new medium left for 1 hour 

as before, then the bystander effect was completely abrogated (Mothersill and 

Seymour, 1998). Additionally, removal of ICM from the bystander cells after 30 

minutes still induced full bystander effect in the recipient cells (Mothersill and 

Seymour, 1998).  

In a series of complicated experiments using combinations of direct dose and 

ICM, it was demonstrated that if directly irradiated cells were then exposed to 
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ICM from another culture of irradiated cells it had no additional bystander effect, 

suggesting that direct irradiation offers some protection from the bystander 

effect (Mothersill and Seymour, 2002). Perhaps more interestingly, if ICM which 

has been transferred onto irradiated cells is then transferred onto unirradiated 

cells, the bystander effect is also abrogated. Contrarily, if addition of ICM 

precedes irradiation it offers no benefit, and may be slightly worse than either 

treatment alone (Mothersill and Seymour, 2002), which suggests that the RIBE 

is not an adaptive response to protect cells from a future direct hit of radiation. 

Lastly, although fractionation of the dose to the directly irradiated cells was 

shown to have no effect on bystander cells, if instead the cells are irradiated 

twice with a change of medium in between, then the second ICM significantly 

increases the clonogenic survival of bystander cells over controls, suggesting a 

completely different cellular secretion from the second dose of irradiation 

(Mothersill and Seymour, 1998). 

 

1.7.2 Dynamics and Mechanisms of the RIBE 

 

In one study, the lowest dose of γ-irradiation from which ICM would significantly 

reduce clonogenic survival in keratinocytes was 3mGy, which was also the first 

dose to induce a calcium peak, suggesting that the radiation induced bystander 

effect (RIBE) is an all or nothing response (Liu et al., 2006b). Bystander cells 

induce a spike in intracellular calcium within 30 seconds of addition of ICM, 

which has dissipated again by 100 seconds. Chelation of extracellular calcium, 

or blockage of voltage-dependent calcium channels, prevents this spike, and 

reduces the levels of apoptosis to control levels (Lyng et al., 2006), 

demonstrating the importance of calcium signalling in the bystander effect.   

Within 1 hour of exposure to ICM there is a large increase in ROS, which has 

increased further by six hours and persists for at least 24 hours, and 

concomitantly mitochondrial membrane potential has decreased by six hours 

and remains low for at least 24 hours. Interestingly, the increase in ROS 

appears to precede the fall in mitochondrial membrane potential (Lyng et al., 

2000). By 48 hours some of the cells have apoptotic morphology; however, this 
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fraction does not fully account for all of the clonogenic cell death (Lyng et al., 

2000). 

ICM induces significant activation of both ERK and JNK at 30mins and 24hours 

of exposure, whereas p38 was not significantly activated at either timepoint. 

The use of specific inhibitors against the three MAP kinases showed that ERK 

inhibition increased apoptosis, JNK inhibition decreased levels of apoptosis and 

p38 had no effect in cells exposed to ICM (Lyng et al., 2006).   

The use of Bay 11-7082 to inhibit NF-κB activation significantly reduced the 

bystander effect, whilst having no effect on directly irradiated cells (Zhou et al., 

2008). The effect was greater in cells with functioning mitochondria, as po cells, 

which have no mtDNA, also have reduced basal and stimulated levels of p65-

p50 and p50-p50 dimers, suggesting both that mitochondria induce NF-kB 

activation in bystander cells, and NF-κB may induce mitochondrial ROS 

production, consistent with the idea of positive feedback being involved in the 

bystander effect. Additionally, the targets of NF-κB such as iNOS and COX2 are 

also increased in bystander cells, and the addition of anti-TNF-α into the 

medium reduced NF-κB and COX-2 levels, and increased survival of bystander 

cells (Zhou et al., 2008).  

Exactly how the damaged cells transmit the bystander signal is not completely 

clear. However, a role for gap junctions has accumulating evidence. These 

small channels allow the passage of molecules and ions smaller than 485 

daltons between cells. They play key roles in inter-cellular homeostasis and 

electrical signalling (Robertson, 1981a, Robertson, 1981b). Consistent with 

bystander transmission, they are thought to play a key role in calcium 

homeostasis (Charles et al., 1992). Each gap junction is made up of two 

molecules of connexin43 which bind to the same molecules in the neighbouring 

cell, thus forming a continuous channel connecting their cytoplasm. Addition of 

the gap junction inhibitors lindane and octanol, as well as the use of dominant 

negative connexin43 can completely abrogate the bystander effect (Azzam et 

al., 1998, Azzam et al., 2001, Zhou et al., 2000), whilst the overexpression of 

connexin43 enhances it (Zhou et al., 2001). Equally, the exposure of various 

cell types to radiation or hydrogen peroxide was found to increase the 

expression of connexin43 (Azzam et al., 2003), suggesting that the bystander 
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effect was an adaptive response, although this did contradict previous data 

suggesting that gap junctions were downregulated in response to stress 

(Chipman et al., 2003). 

 

1.7.3 Biological Significance of the RIBE  

 

When human urothelium from different subjects is exposed to γ-irradiation, 

there is significant inter-individual difference in the resultant phenotype, which 

can be separated into two main groups; group1 describes cells which undergo 

little cell death in response to 0.5Gy or 5Gy irradiation, whilst group 2 describes 

cells which undergo higher levels of apoptosis and necrosis to the same doses 

(Mothersill et al., 1999). Smokers and males were much more likely to be in 

group 1, and non-smokers and females, especially non-smoking females were 

more likely to be in group 2 (Mothersill et al., 1999). Using the ICM from the 

group 1 irradiated urothelium had a much smaller bystander effect on 

keratinocyte survival than group 2 urothelium, and this difference was also 

apparent after several cell generations (Mothersill et al., 2001). Notably, the 

bystander effect of ICM from irradiated tumour cells, or the normal tissue 

around the tumour cells has a tendency to increase cell survival (Mothersill et 

al., 2001).  

The same differences were observed between the more radioresistant CBA/H 

and the radiosensitive C57/BL6 mice. Following bone marrow irradiation the 

CBA/H mice showed delayed chromosomal instability in their cells which was 

not present in the C57/BL6 mice (Mothersill et al., 1999), which are less 

susceptible to epithelial cancers and radiogenic malignancies. Importantly, 

irradiated mouse urothelium from C57/BL6 mice induced a bystander effect, 

whilst medium from CBA/H urothelium did not, thus demonstrating that the 

bystander effect predisposes mice to better long term prospects with lower 

cellular transformation and thus higher organismal survival in response to stress 

(Mothersill et al., 2001). Another study showed that the radioresistant effects 

might result from increased expression of Bcl-2 and decreased expression of 

p53 and Bax (Mothersill et al., 2005). 
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Interestingly, a different study showed that anti-apoptotic Bcl-2 is only 

significantly increased in the bystanders exposed to the high dose ICM. 

Additionally, caspase-9 inhibition only increased survival from low dose and not 

high dose ICM (Maguire et al., 2005). This may be an indication that, whilst low 

and high doses have similar effects on clonogenic survival, they are inducing 

different mechanisms of clonogenic death. Speculatively, one possibility is that 

the low dose bystander effect induces apoptotic cell death, dependent on 

mitochondria and membrane permeabilisation, whilst high doses prevent 

apoptosis via inducing Bcl-2, and as a result enter mitochondria-independent 

cell death, such as necroptosis.  

It is clear that the radiation induced bystander effect is a complex phenomenon, 

reliant on several signalling pathways, ROS, gap junctions and intracellular 

calcium, and importantly it has tumour preventative properties. Importantly, it is 

likely that bystander phenomena where the outcome is molecular damage will 

share similar characteristics, making the research into the RIBE useful for the 

study of the senescent cell induced bystander effect, which is the work of this 

thesis.  
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2 Aims 

 

1. The primary aim of this study was to elucidate whether senescent cells 

could induce a DNA damage response and spread cellular senescence 

to healthy replicative cells, ie. to look for a bystander effect of senescent 

cells. 

2.  After the primary aim was completed, the secondary aim was to 

understand the mechanisms of this “bystander effect”, and investigate 

potential routes to inhibiting it.  
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3 Materials and Methods 

 

3.1 Chemicals 

 

All chemicals were purchased from Sigma unless stated otherwise. 

 

3.2 Cell Lines and Culture 

 

3.2.1 Mammalian Cell Lines 

 

MRC5 human embryonic lung fibroblasts (ECACC, Salisbury, UK), and HEK 

293FT lentiviral packaging cells (Invitrogen, Paisley, UK) were cultured ex vivo 

at 37oC in a humidified atmosphere of 95% air with 5% CO2 in Dulbecco’s 

modified eagle’s medium (DMEM) supplemented with 10% foetal bovine serum 

(BioSera, Ringmer, UK), 100 units/ml penicillin, 100 μgml-1 streptomycin and 2 

mM glutamine (complete medium).  

Medium was replaced on cells three times a week, and were split at roughly 

90% confluence using trypsin EDTA. Control inducer and young reporter cells 

ranged from PD 19-30. Cells were counted using a Fuchs-Rosenthal 

haemocytometer, and population doublings were calculated using the formula: 

ln(X/(X-1)/ln2, where X and X-1 are the current and previous counts 

respectively. Cells were defined as senescent after they had passed at least 38 

PD, had two consecutive weeks of negative growth, and had been left for a 

further two weeks.  

Cells were plated at a subconfluent density of 150,000 cells/35mm dish (IWAKI, 

NELS, Newton Aycliffe, UK). In co-culture 75,000 senescent cells were plated 

with 75,000 reporter cells (ratio of 1:1). Co-cultures were continued up to 21 

days, with measurements at 1, 2-4, 7, and 14 days depending on the 

experiment.   Medium was changed on the cells three times per week, providing 

fresh inhibitors if any were present at the concentrations shown in table 3.1. All 

inhibitors were dissolved in DMSO. 
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Inhibitor Target Concentration Manufacturer 

Bay 11-7082 IKK complex 1μM Calbiochem 

Octanol Gap Junctions 1μM Sigma 

Torin1 mTOR 10nM Tocris 

Biosciences 

UR-13756 P38 1μM Gift from 

Terrance Davis 

lab (Bagley et 

al., 2010) 

Table 3.1| Inhibitors added to co-culture, dissolved in DMSO. 

 

3.2.2 Prokaryotic Cell Lines 

 

Cell Line Manufacturer Plasmids used to transform cell line 

NEB10β NEB pENTR2B-53BP1, pENTR2B-mCherry-53BP1, 

pENTR2B-ΔIκBα-IRES-EGFP 

NEB5α NEB pLP1, pLP2, pLP/VSVG 

One Shot 

OmniMAXTM 

2T1 Phage-

Resistant Cells 

Invitrogen pLenti6-mCherry-53BP1, pLenti6-ΔIκBα-IRES-

EGFP 

Table 3.2| Prokaryotic Cell Lines. 

 

3.3 Solutions 

 

Solution Ingredients 

PBS Dulbecco’s phosphate buffered saline 10× (Sigma) 1 in 10 in RO 

H2O 
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PBS-Mg 5mM MgCl2 in PBS 

Iron Bru 100ml PBS-Mg, 2.11g (50mM) Potassium ferrocyanide, 1.65g 

(50mM) Potassium ferricyanide 

Staining 

Solution 

8.5ml PBS-Mg, 0.5ml pre-warmed X-gal, 1ml Iron Bru. pH 5.5-6 

TBS 24.2g Tris Base, 80g NaCl. Make up to 1litre and adjust to pH 

7.6 with HCl 

TBST TBS with 0.3% Triton (v/v) 

PFA Heat 400ml RO H2O to 62-64oC. Add 100μl 10N NaOH and 40g 

of paraformaldehyde to 980ml of PBS, then add to heated 400ml 

RO H2O. As temperature returns to 62-64oC the fixative will 

clear. Cool to room temperature and filter. Check pH is around 

7.3 

TAE 400ml RO H2O, 121g Tris Base, 28.55ml glacial acetic acid, 9.3g 

EDTA. Adjust to 500ml with RO H2O (50×). Then 1 in 50 in RO 

H2O for working solution 

LB 10g bacto-tryptone, 5g bacto-yeast extract, 10g NaCl made up 

to 1L RO H2O 

LB agar 

selection 

plates 

Add 15g agarose to 1L LB and autoclave. Once cool enough to 

hold, add 50µg/ml ampicillin or kanamycin selection agent, mix 

thoroughly and pour plates 

Table 3.3| Solutions used in experimental protocols.  

 

3.4 Creating Reporter Cells 

 

An initial reporter line of MRC5 fibroblasts had been transduced with a 

fluorescent reporterAcGFP-53BP1c, described previously (Nelson et al., 2009). 

Although this vector was used very successfully in the initial in depth analysis of 

small numbers of cells, the fraction of visibly fluorescent cells was too few for 
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large scale analysis. Due to the time consuming nature and low success rate of 

tracking cells for long periods of time it was deemed that larger numbers of 

reporter cells were required. Initially transducing cells with a higher MOI of GFP-

53BP1c was attempted; however, this produced equally few fluorescent cells. 

Analysis of the plasmid using restriction digests revealed several unexpected 

bands that were believed to be the result of recombination, although 

interpretation was difficult. It was therefore decided to construct a new plasmid 

by fusing mCherry to 53BP1c. 

 

3.4.1 53BP1-pENTR2B 

 

The pENTR2A vector containing 53BP1c constructed by Glyn Nelson had been 

recombined with pG-AcGFP vector to produce GFP-53BP1c fusion protein. This 

had then been inserted into pENTR2B and recombined into pLenti6 destination 

vector (Nelson et al., 2009). This produced the additional recombination sites in 

the pENTR2B and pLenti6 plasmids, which were believed to have caused the 

mixed population of plasmids described above. Therefore, it was decided to re-

insert 53BP1c into pENTR2B (Invitrogen), the latter of which is shown in figure 

3.1. 
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Figure 3.1| Plasmid map of pENTR2B with restriction sites in the multiple 

cloning site (MCS). Map is copied from product description (Invitrogen).   

 

3.4.1.1 Restriction Enzyme Digestion 

Both pG-AcGFP-53BP1c and pENTR2B were digested with a BamHI XhoI 

double digest. This had the advantage that none of the recombination sites 

were within the fragment to be inserted into pENTR2B. 1μl of each enzyme from 

the NEB stock solutions was added to 0.5μg plasmid DNA in the presence of 

1μl BamHI buffer and made up to 10μl with RO H2O. The digests were 

incubated at 37oC for 2-3 hours, due to the decreased efficiency of XhoI in 

BamHI buffer.  

The products were then run on a 0.8% agarose gel, next to a 1KB ladder (NEB). 

To construct the gel, 0.8% research grade agarose (SERVA) was added to TAE 
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and heated until completely melted with intermittent stirring. The liquid was then 

cooled and a 1 in 10000 dilution of SYBER SAFE (Invitrogen) was added and 

mixed thoroughly, before pouring the gel. The gel was run at 90V for 10 minutes 

and 110V thereafter. Bands were checked and imaged under UV illumination 

using an AlphaInnotech MultiImageTM Light Cabinet. 

BamHI XhoI digestion of pENTR2B produces 0.45Kb and 2.25Kb fragments, 

and the same digestion of pG-AcGFP-53BP1c produced a 2.77Kb fragment 

containing 53BP1c, and a 4.73Kb fragment. Therefore, the small fragment of 

pG-AcGFP-53BP1c, and the large fragment of pENTR2B were excised from the 

gel using a scalpel and a UV illuminator. They were cleaned using QIAquick gel 

extraction kit (Qiagen) as per manufacturer’s instructions, before eluting into 

50μl buffer EB. 

 

3.4.1.2 Ligation 

Concentration of DNA was determined with a nanodrop to calculate the 

quantities required for ligation. A 3:1 insert to vector ratio of molar ends were 

combined, using 50ng vector, in a PCR tube and incubated overnight at 16oC 

with 1U T4 DNA ligase and provided buffer. Volume of ligation mix was kept as 

low as possible, to increase the efficiency of bacterial transformation. 

 

3.4.1.3 Bacterial Transformation  

1-5μl of ligation mix was added to a 50µl vial of NEB10β highly competent E. 

coli (NEB) and incubated on ice for 30 minutes, before heat shocking at 42oC 

for 30 seconds. After another five minute incubation on ice, 450μl SOC medium 

(NEB) was added and cells were incubated at 37oC for 1 hour with shaking at 

250rpm. The cells were then spread on agar selection plates containing 

kanamycin, and incubated overnight. 

Colony formation was compared to bacteria transformed with vector only (no 

insert), and was found to be significantly higher indicating both ligation and 

transformation had been successful. Individual colonies were then grown 

overnight in 5ml selective LB. DNA was purified using the QIAprep Spin 

Miniprep kit (Qiagen) as described in the provided protocol.  
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3.4.1.4 Plasmid Analysis 

A BamHI digest was used to test potential mCherry-53BP1c bacterial clones. 

Restriction digests followed the same protocol as above, with 1μl Bam HI and 

0.5μg plasmid DNA in the presence of 1μl Bam HI buffer made up to 10μl with 

RO H2O. As shown in figure 3.2A, the digest produces a band between 5 and 

6Kb, and 53BP1-pENTR2B is 5.32Kb, whilst pENTR2B alone is only 2.7Kb, 

suggesting that 53BP1c had inserted. The plasmid map of 53BP1-pENTR2B is 

shown in figure 3.2B. 

 

 

 

A| 
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B| 

Figure 3.2| pENTR2B-53BP1c. (A) Plasmid cut with Bam HI restriction 

enzyme, which cuts once in the MCS prior to the 53BP1c insert yielding 

5.32Kbp band. As the bands are not clear on this gel white lines have 

been drawn next to them to better indicate their position. (B) Plasmid map 

of correct clones, created using PlasMapper Version 2.0: 

http://wishart.biology.ualberta.ca/PlasMapper/jsp/librarySeq.jsp?id=Clonte

ch15. 

 

3.4.2 pENTR2B-mCherry-53BP1c 

 

The next stage in the cloning process was to insert mCherry in front of 53BP1c. 

Because the restriction sites in the MCS of the pRSET B plasmid containing 

mCherry, donated by Roger Tsien, were largely unknown, it was decided that 

mCherry would be amplified using PCR. 

pENTR2B-

53BP1c 

http://wishart.biology.ualberta.ca/PlasMapper/jsp/librarySeq.jsp?id=Clontech15
http://wishart.biology.ualberta.ca/PlasMapper/jsp/librarySeq.jsp?id=Clontech15
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3.4.2.1 Primer Design and Amplification 

Primers were designed to add Sal I restriction sites either side of mCherry 

during amplification. Although this would allow mCherry to insert the wrong way 

around in some clones, there were no other restriction sites that were suitably 

placed without also cutting at unwanted locations. The forward primer started 

from 20 bases before the Kozak sequence within the pRSET B plasmid, and the 

reverse primer bound to the end of the mCherry gene minus the stop codon, as 

shown in figure 3.3. 

Forward Primer: 

5’ GTC GTCGAC T AGATCT CGCCACCATGGTGAGCA 3’ 

Reverse Primer:  

5’ ATC GTCGAC T CTG GTT TTG CTTGTACAGCTCGTCCATG 3’ 

Figure 3.3| Primers for amplifying mCherry. Blue highlight identifies bases 

added to the end to allow more efficient SalI enzyme binding. Yellow 

highlight shows SalI restriction sites. Red highlight identifies a base 

added to increase the melting temperature. Cyan highlight shows a BglII 

restriction site. Pink highlight identifies the linker region to allow correct 

protein translation and folding. Green highlight is the region 

complementary to the plasmid.  

 

BglII was added 5’ for analysis purposes described later. Additionally, three 

bases were added outside of the SalI sites to improve SalI enzyme binding PCR 

fragments, and an additional base was added to the front primer to increase the 

melting temperature. Lastly, a linker region of 10 bases was added to the 

reverse primer that would function to separate mCherry from 53BP1 by 

hydrophilic amino acids, thus allowing both proteins to adopt their normal 

conformations, and also to ensure that 53BP1 was in the correct frame after the 

addition of mCherry.  

Primer designs were checked using http://www.basic.northwestern.edu/ 

biotools/oligocalc.html. They contained no potential hairpins or self-

http://www.basic.northwestern.edu/%20biotools/oligocalc.html
http://www.basic.northwestern.edu/%20biotools/oligocalc.html
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complementarity, although there were two sites where the primers could bind to 

each other. Melting temperatures of the initial primer binding sites (the green 

highlighted region in figure 3.3), as well as the total primer were within 0.5oC 

difference of each other. 

PCR was carried out according to the guidelines of Pfu polymerase (Thermo 

Scientific): Add 5μl Buffer with MgSO4, 5μl dNTPs (0.2mM each), primers 

0.5μM each, 500pg template DNA, and 1.5U Pfu polymerase to a total volume 

50μl, made up with nuclease free water in a PCR tube. Initial denaturation was 

set at 95oC for 3 minutes, then amplification involved 25 cycles of 30s 

denaturation at 95oC, 30s annealing at 57oC, then a 120s extension at 72oC. 

The final extension was allowed to continue for seven minutes at 72oC, before 

the reaction was reduced to 4oC until products were removed.  

 

3.4.2.2 DNA Preparation 

The PCR product containing mCherry was cleaned using QIAquick gel 

extraction kit (Qiagen) and eluted into 50μl buffer EB, to which 6μl Sal I buffer, 

3μl Sal I enzyme, and 1μl water was added. This was incubated at 37oC for 24 

hours due to the markedly decreased efficiency of Sal I enzyme working within 

3 base pairs from the end of the fragment.  The 53BP1c pENTR2B plasmid was 

also digested with Sal I for 1 hour with 1μl  buffer, 1μl enzyme in a 10μl 

reaction. 

The PCR product and 53BP1c pENTR2B vector were run on 0.8% agarose gel, 

next to a 1KB ladder (NEB) as described above. The 500bp fragment from the 

mCherry digest and the 5.5Kbp band from the 53BP1c pENTR2B digest were 

both excised from the gel and cleaned using the QIAquick gel extraction kit 

(Qiagen). The sticky ends of the vector backbone were then dephosphorylated 

using calf intestinal alkaline phosphatase: 1.5μl enzyme, 6μl buffer made up to 

60μl with RO H2O for 30 minutes at 37oC. After dephosphorylation the vector 

DNA was cleaned and the two fragments were ligated as described above.   
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3.4.2.3 Plasmid Analysis 

After bacterial transformation, colony selection, and DNA purification using 

QIAprep Spin Miniprep kit as described above, the DNA was tested with a SalI 

digest to determine which clones contained the insert. As shown in figure 3.4A, 

clones 1-4 all have mCherry inserted and are the right size, with 5.5Kb and 

0.7Kb fragments. Secondly a BglII BamHI double digest was used to determine 

the orientation of the insert. The correctly inserted fragment yielded a 0.7Kb 

band whilst the other digest produced a non-detectable band of a few base 

pairs, as shown in figure 3.4B. The plasmid map is shown in figure 3.4C. 

 

 

A| 

 

B| 



 

70 
 

 

C| 

Figure 3.4| pENTR2B-mCherry-53BP1c. (A) Plasmid digest with BglII and 

SalI separately. BglII cuts once producing a 6Kb band, whilst SalI cuts 

twice excising mCherry producing 5.5Kb and 0.7Kb bands. (B) Double 

digest with BglII BamHI restriction enzymes shows that clones 2 and 4 

have mCherry inserted the correct way around as they both produce 

0.7Kb bands. Clones 1 and 3 do not produce a similar band as they have 

BglII and BamHI within a few bases of each other as mCherry has inserted 

the other way around. The ladder bars, as for all gels throughout this 

thesis, are 10000, 8000, 6000, 5000, 4000, the large band is 3000, then 

2000, 1500, 1000, 500bp. (C) Plasmid map of correct clones, created as 

described in figure 3.2. 

 

 

 

pENTR2B-

mCherry-

53BP1c 
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3.4.3 pLenti6-mCherry-53BP1c 

 

For lentiviral transduction pLenti6/UbC/V5-DEST (Invitrogen) was used. This 

drives ectopic expression of the inserted gene from a human promoter, as 

shown in figure 3.5. 

 

 

Figure 3.5| pLenti6/UbC/V5-DEST vector map, copied from product 

description (Invitrogen).  
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3.4.3.1 Recombination and Analysis 

Following the instructions provided with LR clonase II enzyme mix (Invitrogen), 

pENTR2B-mCherry-53BP1c was recombined with pLenti6/UbC/V5-DEST to 

create pLenti6-mCherry-53BP1c.  

Bacterial transformation, selection and DNA purification were carried out as 

described in section 3.4.1.3, except 50μg/ml ampicillin was added to the 

agarose plates for selection. As the empty pLenti6 vector contains the toxic 

ccdB gene, which inhibits topoisomerase II causing cell death (Bernard and 

Couturier, 1992), and pENTR2B containing E. coli are still susceptible to 

ampicillin, most of the colonies should contain recombinant DNA. However, 

some bacteria survived the ccdB toxicity but their colonies were generally 

smaller than those of recombinants. As shown in figure 3.6A, DNA was 

analysed using a Sal I digest, demonstrating that mCherry was present and 

recombination had taken place in all four of the selected clones. The plasmid 

map is shown in figure 3.6B. 

  

 

A| 
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B| 

Figure 3.6| pLenti6-mCherry-53BP1c. (A) Sal I digest produces a >10Kb 

band and a 0.7Kb band indicating the excision of mCherry. (B) Plasmid 

map of correct clones, created as described in figure 3.2.  

 

3.4.3.2 Sequencing 

Using a primer binding approximately 50bp away from the 3’ end of mCherry, 

the pLenti6-mCherry-53BP1c plasmid was sent for sequencing at Genevision 

http://www.genevision.co.uk/index.html. The results demonstrated that mCherry 

had inserted in the correct frame and place relative to 53BP1c. Although there 

is one missing base near the end of mCherry in sequence read 1, this is likely 

because of the low fidelity of polymerases in the first 30-50bases sequenced; in 

all other respects both reads were identical to the desired sequence, as shown 

in figure 3.7. 

pLenti6-

mCherry-

53BP1c 

http://www.genevision.co.uk/index.html


 

74 
 

Sequence Read 1: 

5’ AG CTG TAC AGC AAA ACC AGA GTC GAC TGG ATC CCC CCA CCA 

CAC CCA TCA GGG GG 3’ 

Sequence Read 2: 

5’ CA AGC AAA ACC AGA GTC GAC TGG ATC CCC CCA CCA CAC CCA 

TCA GGG GG 3’ 

Desired Sequence: 

5’ AGC TGT ACA AGC AAA ACC AGA GTC GAC TGG ATC CCC CCA CCA 

CAC CCA TCA GGG GG 3’ 

Figure 3.7| Two sequencing runs of pLenti6-mCherry-53BP1c from two 

different clones. Green highlight indicates bases are from mCherry, pink 

highlight represents the linker region, yellow highlight the SalI restriction 

site, cyan is the single base lying between the SalI site and BamHI site in 

the pENTR2B MCS, blue highlight is the Bam HI site, and red highlight is 

53BP1. 

 

3.4.3.3 Making Stocks 

Once DNA had been analysed and the colonies containing the correct plasmids 

identified, glycerol stocks were made of the bacteria by mixing 800μl LB 

containing the transformed bacteria with 200μl 80% glycerol, then flash freezing 

in liquid nitrogen, and storage at -80oC. 1ml of LB containing the correctly 

transformed bacteria was also grown overnight in 200-250ml LB containing 

ampicillin before purifying the DNA using the EndoFree Plasmid Maxi Kit 

(Qiagen) as per manufacturer’s protocol.  

 

3.5 Creating ΔIκBα Expressing Cells 

 

Glyn Nelson had already generated a mutant IκBα with a deleted N-terminus, 

which removed the IKKβ phosphorylation signal (S32 +S36). As a result the 
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ΔIκBα cannot be inactivated by IKKβ and is therefore not targeted to the 

proteasome, but instead remains constitutively active, inhibiting NF-κB as a 

result. The ΔIκBα gene lies upstream of an internal ribosome entry site (IRES) 

which causes the translation of GFP in a pIRES-EGFP plasmid (Clontech), 

shown in figure 3.8. However, in order to transduce human fibroblasts this had 

to be inserted into an entry vector and recombined into a destination vector, 

similar to the reporter construct described above.   

 

Figure 3.8| pIRES-EGFP Map, copied from product details provided 

(Clontech). 

 

As the location of the ΔIκBα gene inside the MCS was uncertain, several test 

digests were used to determine its position. ΔIκBα is 1064bp long and with the 

IRES and EGFP in a single fragment it makes 2.4Kb band. Without ΔIκBα the 

IRES-EGFP fragment is only 1.3Kb. Therefore, as NotI cuts downstream of 

EGFP a double digest containing NotI and another enzyme from the MCS will 

locate the ΔIκBα gene. As shown in figure 3.9, both BamHI and SalI cut 

downstream of ΔIκBα, whereas NheI cuts upstream. Therefore, a NheI NotI 

digest was selected. 
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Figure 3.9| Test digests of pΔIκBα-IRES-EGFP. A single cut produces a 

6.4Kb band; excising ΔIκBα-IRES-EGF from the backbone produces a 

2.4Kb band, and excising only IRES-EGFP produces a 1.3Kb band. 

Therefore, as expected all single digests tested cut the plasmid once, 

BamHI and SalI double digests with NotI excise IRES-EGFP, and NheI NotI 

double digest excises the full ΔIκBα-IRES-EGF fragment.  

 

As can be seen from figure 3.1, NheI does not digest pENTR2B in a suitable 

place, whereas NotI does. Therefore, digesting pΔIκBα-IRES-EGFP had to be 

done sequentially with a blunting step in between to allow ligation of the NheI 

site 5’ of ΔIκBα and the blunt EheI site chosen from pENTR2B. NheI digestion 

and cleanup were done as described in section 3.4.1.1. For blunting, 3μl T4 

DNA polymerase, 7μl buffer 2 + BSA (NEB), and 6μl NTPs, were added to the 

50µl elution, and made up to 70μl with RO H2O. This was again cleaned before 

a subsequent NotI digest. The pENTR2B vector was double digested with EheI 

and NotI. As EheI produces a blunt fragment a sequential digest was not 

necessary. Both digested plasmids were run on a gel and the smaller fragment 

was excised from the well containing pΔIκBα-IRES-EGFP, and the larger (and 



 

77 
 

only visible) fragment from pENTR2B. These were cleaned, ligated and used to 

transform NEB10β E. coli as described in section 3.4.1.1 and 3.4.1.2.  

The resultant purified DNA from selected colonies was analysed using AseI and 

BglII single digests, as shown in figure 3.10A. The 2.4Kb insert and 2.3Kb 

backbone produces a 4.7Kb band from a single cut. As both AseI and BglII cut 

once within the plasmid if the ligation has worked this should produce a 4.7Kb 

band. Clones 2,3,4 and 5 all have the correct sized bands. The plasmid map is 

shown in figure 3.10B. 

 

 

A| 
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B| 

Figure 3.10| pΔIκBα-IRES-EGFP-pENTR2B. (A) AseI and BglII digests 

reveals that clones 2,3,4 and 5 all have the correct band between 4-5Kb on 

the ladder, whilst clone 1 most likely results from the re-ligation of 

pENTR2B with itself. (B) Plasmid map, created as described in figure 3.2. 

 

ΔIκBα-IRES-EGFP-pENTR2B was then recombined with pLenti6/UbC/V5-DEST 

and the DNA was purified from selected colonies. The DNA was then analysed 

using a XhoI digest, as shown in figure 3.11A and B. XhoI cuts the correct 

plasmid four times; it cuts once in ΔIκBα, once in the MCS from pIRES2, once 

in the MCS transferred from pE2B and once in the pLenti6 backbone. However, 

because it cuts in the MCS of pIRES2 upstream of SalI, as shown in figure 9, it 

is unknown whether this lies before or after ΔIκBα. Therefore, there are two 

possible correct outcomes. If the XhoI site from the pIRES2 MCS lies upstream 

of ΔIκBα, then there will be a 7.8Kb band, a 2.2Kb band and two 0.1-0.2Kb 

bands. If it lies downstream of ΔIκBα, then the 2.2Kb band is split into a 1.3Kb 

and 0.9Kb band, and one of the small bands disappears.  

pENTR2B-

ΔIκBα-

IRES-EGFP 
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The results indicate firstly that some of the clones are correct, and secondly that 

they fit the former profile, producing a single band between 0.1-0.2Kb and a 

2.2Kb band rather than any bands around the 1Kb mark. The plasmid map is 

shown in figure 3.11C. 

 

 

A| 

 

B| 
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C| 

Figure 3.11| pLenti6-ΔIκBα-IRES-EGFP. (A) XhoI digest of four potential 

clones and ΔIκBα-IRES-EGFP-pENTR2B (pE2B), and pLenti6/UbC/V5-

DEST (pLenti6) controls. Clones 2, 3 and 4 all show the band between 2-

3Kb, and a band between 7-8Kb indicating that recombination has taken 

place. (B) An early image of the XhoI digest showing the 0.1-0.2Kb bands 

for clones 2, 3 and 4. (C) Plasmid map, constructed as described in figure 

3.2. 

 

3.5.1 Transfection and Transduction Protocols 

 

All lentiviral plasmid transfection and viral production was performed following 

class II safety procedures. 1.25×106 HEK293FT cells were incubated for two 

days in antiobiotic free medium in a 10cm dish to be at 90% confluency at time 

of transfection with 3μg of pLenti6 mCherry-53BP1c combined with either 9μg 

pLenti6-

ΔIκBα-IRES-

EGFP 
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ViraPowerTM Packaging Mix, or 3μg of each individual component (pLP1, pLP2, 

pLP/VSVG, Invitrogen).  

To separate the packaging mix, 1µl of DNA was added to NEB5α competent E. 

coli (NEB), which were then transformed as described above. The purified DNA 

from several colonies was analysed using a Bam HI digest. The pLP/VSVG 

plasmid is split into a 5Kb and 0.7Kb fragment, the pLP1 plasmid containing 

gag/pol is split into 8Kb and 0.8Kb fragments, and lastly the pLP2 plasmid 

containing Rev is cut once producing a 4.2Kb fragment. As shown in figure 

3.12, all plasmids were accounted for.  

 

 

Figure 3.12| Bam HI digest of viral gene plasmids produces distinct bands 

for each.   

 

One clone of each was purified using Maxi prep procedure described in section 

3.4.3.3, and combined in a 1:1:1 ratio during transfection, as determined by the 

three similar intensity bands produced by running the packaging mix on a gel, 

shown in figure 3.13. 
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Figure 3.13| ViraPowerTM Packaging Mix separates out into three similar 

size bands, indicating that each component is mixed in a 1:1:1 ratio.  

 

Transfection was achieved using lipofectamineTM 2000 as described in the 

ViraPower Lentiviral Expression systems user manual (Invitrogen).  

The day after transfection medium was removed and replaced with 10ml fresh 

medium without antibiotics. 48 hours after initial transfection, medium was 

collected and centrifuged at 4oC, before filtering through a 0.45μm pore PVDF 

filter. It was then added to MRC5 fibroblasts at 70-90% confluence. In young 

cells 10μg/ml polybrene was added, but this was avoided in the transduction of 

senescent cells due to its lethality.  

Blasticidin was added to cells at a final concentration of 4μg/ml for six days, as 

had been previously established (Nelson et al., 2009). After six days, the 

concentration was reduced to 2μg/ml to maintain selection.  
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3.6 Immunofluorescence and Imaging 

 

Cells were fixed with 4% PFA for 10 minutes at room temperature, then washed 

with TBS before the addition of 0.3% Triton Tris buffer saline (TBST) containing 

5% goat serum and a 1 hour incubation at room temperature with shaking. This 

was then removed and 100μl TBST solution containing primary NF-κB XP 

antibody (NEB) at 1:50 dilution was then added to the coverslip and incubated 

for two hours at room temperature under humid conditions. The coverslips were 

then washed three times with TBS for five minutes before addition of 1:1500 

secondary 633 goat anti-rabbit antibody (Invitrogen) in TBST, and incubation for 

one hour at room temperature in darkness. After three more five minute washes 

the coverslips were mounted in Prolong Gold antifade reagent with DAPI 

(Invitrogen) and imaged using a Leica DM5500B with 40×1.4 NA oil immersion 

objective, capturing fluorescent images with a DFC360FX camera, using 

LASAF software (Leica). To ensure consistency between slides the cells were 

selected randomly using the DAPI channel, and both the gain and exposure 

were kept constant. The settings were saved and used for subsequent 

experimental repeats with minor alterations for optimisation, but removing the 

requirement for normalisation. 

For live cell imaging, cells were plated on glass bottomed dishes (IWAKI, NELS, 

Newton Aycliffe, UK) at least 24 hours before imaging. Time lapse imaging was 

achieved using a Zeiss LSM 510 META confocal microscope with a 40×1.3NA 

phase contrast oil immersion objective, and LSM version 2.1 software (Zeiss, 

Germany). A 3×3 tile scan was used to follow cells over a wider area using z 

stacks across 4.5µm. Cells were imaged every ten minutes for up to 55 hours. 

Fixed time point live cell imaging was achieved using a Zeiss CSU-X1 spinning 

disk confocal microscope using a 40×1.3NA oil immersion objective, and 

captured using a QuantEM 5125C camera. Axiovision software (Zeiss) was 

used to capture cell images across a 11.9µm z stack, created from 7 images 

across the z plane. 
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3.7 Senescence Associated Β-galactosidase Staining 

 

Cells were washed twice with PBS-Mg before fixation with 2% PFA in PBS-Mg 

for five minutes at room temperature. Cells were then washed twice again with 

PBS-Mg before overnight incubation in staining solution at 37oC. The following 

day cells were washed four times with PBS-Mg before imaging, using the Leica 

DM5500B with 20× objective and a DFC420 camera using LAS AF software. 

 

3.8 Data Analysis 

 

Image analysis was performed using Image J (http://rsb.info.nih.gov/ij), and 

graph creation and statistical analysis were performed in Sigma Plot. Statistical 

tests include the Shapiro-Wilk test for normality of datasets, and ANOVA for 

normally distributed data, and Kruskal-Wallis ANOVA on ranks for non-normally 

distributed data. Holm-Sidak method for multiple comparisons vs control, and 

Dunn’s method were used for post hoc analysis. Gel images were annotated 

using GIMP 2.6 software (http://www.gimp.org).  

 

 

 

 

  

http://rsb.info.nih.gov/ij
http://www.gimp.org/
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4 The Bystander Effect of Senescent Cells 

 

It has already been shown that senescent cells can induce growth and 

transformation of pre-neoplastic cells (Bavik et al., 2006, Liu and Hornsby, 

2007, Krtolica et al., 2001). However, the same study showed that these effects 

did not occur in healthy cells. Therefore, the aim of this thesis was to elucidate 

whether senescent cells had any non-autonomous detrimental effects on 

healthy cells. The implications being that if senescent cells contributed to the 

decline of the surrounding cells, that this could potentially contribute to the 

ageing process via a non-autonomous mechanism, contrary to current 

hypotheses regarding the autonomous depletion of stem cell reserves.    

 

4.1 An Increase in DNA Damage Foci in Bystander Cells Co-cultured 

with Senescent Cells 

 

Due to the importance of a DNA damage response in senescence and the bulk 

of evidence implicating DNA damage in the ageing process, the primary 

examination focused on whether senescent cells induced a DNA damage 

response in healthy cells. Therefore, as described in the methods section, 

reporter genes were used where fluorescent mCherry or GFP was fused to 

53BP1 DNA damage response protein. These genes were transduced into cells 

to create a stably expressing cell line with fluorescent 53BP1 foci at sites of 

DNA damage. Thus, these cells will henceforth be referred to as reporter cells. 

The reporter cells could then be co-cultured with non-fluorescent senescent or 

control cells, which will henceforth be referred to as inducers. As the inducer 

cells did not have fluorescent foci, these could then be observed exclusively in 

the reporter cells (Figure 4.1). 
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Figure 4.1| Illustration of fluorescent reporter cells in co-culture with a 

non-fluorescent senescent cell.  

 

For the purpose of this thesis, cells in co-culture with senescent cells have been 

termed bystander cells. Although reporter cells in co-culture with replicating 

cells are technically still bystander cells, the focus of this thesis is whether there 

is a senescent cell induced bystander effect. Thus, for clarity this latter group is 

referred to as control cells. The non-reporter cells in the co-culture are inducer 

cells, be they senescent inducers or replicative control inducers. 

Although observing 53BP1 foci did not provide a direct measure of DNA 

damage as would a COMET assay or TUNEL assay, or measuring oxidative 

lesions with 8-OHdG, it offered several advantages over these protocols. Firstly, 

it allowed repeated unintrusive measurement in live cells. Secondly, the assay 

was considerably more sensitive than several of these protocols, and thirdly and 

most importantly, the reporter protein was ideally suited to the co-culture 

situation, because it prevented confusion between reporter and inducer cells 

that would be difficult to avoid in assays that involved lysates. However, a 

recent study suggested that many DNA damage response proteins that had 

been previously associated with sites of DNA damage, could also form foci 

independently of damage under some stimuli (Pospelova et al., 2009). Whilst 

these cells were notably still undergoing a stress response, importantly 53BP1 
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was not associated with these foci, indicating that at least under these 

conditions it is specific to sites of damage.  

Initially GFP-53BP1 reporter cells were added to a culture of senescent cells 

and incubated for two days. As described in section 3.2.1.1, cells were plated at 

1:1 ratio, with 75,000 of each type of cell in a 35mm dish. They were then 

imaged every ten minutes for 55 hours using time lapse imaging, which allowed 

a detailed analysis of focus dynamics, including formation, number of foci, and 

lifespan (Figure 4.2).  

 

 

A| 

 

B| 
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Figure 4.2| The nucleus of a control (A) and bystander (B) cell followed for 

a period of 110 minutes with an image taken every ten. The time points are 

shown in the bottom corner of each box. The arrows indicate the presence 

of foci, with each colour used to follow a single focus over time. 

 

As shown in figure 4.3, focus formation rate was significantly increased in 

bystander cells compared to controls, whereas focus lifespan and the number of 

foci per cell were not significantly different between the two groups.  

 

          A|          B|      C| 

Figure 4.3| Senescent cells induce a DDR in bystander cells. (A) 53BP1 

foci in bystander cells (BYS), compared to controls. (B) Rate of formation 

of 53BP1 foci in bystander and control cells.  (C) Average lifespan of foci 

in bystander and control cells. All results were obtained between 48-103 

hours after the start of co-cutlure. Box plots show median, upper and 

lower quartiles (boxes), centriles (whiskers), and outliers (dots). Only 

focus formation rate was significantly different between bystanders and 

controls, as determined by Kruskal-Wallis ANOVA on ranks with Dunn’s 

post hoc test, P<0.05). Data are n=1-2, with 20-25 cells per group per 

experiment. 
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This can be combined with data from Glyn Nelson collected independently to 

give n=3 experiments for each group, with similar results (See Appendix). The 

focus formation rate is increased, whilst the number of foci remains constant 

within the cell, as shown in figure 4.4.  
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A|    B| 

Figure 4.4| Combined data from this thesis with that, independently 

collected, from Glyn Nelson, showing significant increase in focus 

formation in bystander cells as determined by Kruskal-Wallis ANOVA on 

ranks with Dunn’s post hoc test, P<0.05). Data are n=3, with 20-25 cells 

per group per experiment. 

 

Data from Glyn Nelson indicated that the number of foci per cell did start to 

increase when co-culture was extended between 10-12 days (Appendix). A new 

reporter construct with mCherry fused to 53BP1 was used to analyse the 

numbers of foci in much larger numbers of cells at single time points. Although 

this did not allow measurement of focus formation rates, it was much faster and 

produced larger quantities of data. After 14 and 21 days of co-culture, the 
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numbers of foci significantly increased in bystander cells of both groups, as 

shown in figure 4.5. 
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Figure 4.5| Extended co-culture for 14 or 21 days causes the number of 

53BP1 foci to increase in bystander cells. At both time points bystander 

cells had significantly more foci on average compared to control cells, as 

determined by ANOVA with Dunn’s post hoc test. Data are mean ± SE 

(n=3-5), with approximately 100 cells per group.  

 

Whilst the number of foci was also significantly higher at 21 days than 14 days 

for both controls and bystander cells, at both time points there was a significant 

increase in the number of foci in bystander cells. The resultant conclusion was 

that senescent cells induce a DNA damage response in bystander cells, which 

after a delay causes the number of foci present to increase. 
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4.2 The Irradiation Induced Senescent Cell Bystander Effect 

 

Whilst the majority of this thesis concerns the bystander effect of replicatively 

senescent cells, it was also addressed whether this bystander effect was 

shared with cells that had become senescent under different stimuli.  

It has long been observed that a sufficiently high dose of irradiation can cause 

cells to senesce. Although the process takes a number of days, cells hit with 

high levels of X-rays generally do not undergo mitosis. Therefore, unlike 

replicative senescence, irradiation induced senescence is fairly homogeneous, 

with all the cells undergoing senescence at the same time. As a result, this 

system can be used to observe whether senescing as well as senescent cells 

induce a bystander effect.  

Here cells were irradiated with 20Gy which has been previously shown to be 

sufficient to induce senescence in MRC5 fibroblasts. Importantly, generally the 

data agree that the senescent phenotype matures by about day 9-10 (Passos et 

al., 2010, Rodier et al., 2009, Rodier et al., 2011), in most but not all cells. 

Another study indicated that although most cells were SA-β-gal positive by this 

time point, by 15 days the number had still increased (Nelson, unpublished). 

After irradiation cells were left for either seven, 14 or 21 days before starting the 

co-culture, which was then incubated for 14 and 21 days, as shown in figure 

4.6. 
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Figure 4.6| Diagram demonstrating mechanism of pre-incubation and co-

culture of irradiation induced senescent cells.  

 

If senescing cells were incubated for seven days before co-culture, then 14 

days was not sufficient to induce a bystander effect, whilst cells pre-incubated 

for 14 and 21 days induced a bystander effect after both 14 and 21 days. 

However, as would be expected, the seven day pre-incubation did induce a 

bystander effect after 21 days co-culture. These results suggest that senescent 

cells regardless of stimulus induce a bystander effect. However, senescing cells 

do not induce a bystander effect, as shown in figure 4.7. 

 

 

 

 

 

 



 

93 
 

 

Treatment

1 2 3 4 5

N
u

m
b

e
r 

o
f 

fo
c
i,
 p

e
r 

c
e

ll

0.0

0.5

1.0

1.5

2.0

2.5

3.0

14 day co-culture

21 day co-culture

 

Figure 4.7| Irradiated senescent, but not senescing cells induce a DDR in 

bystander cells. A pre-incubation of seven days (7D Post IR) was not long 

enough to significantly increase the number of foci in bystanders after 14 

days. However, 14 day and 21 day pre-incubations (14D Post IR; 21D Post 

IR respectively) were sufficient to increase number of foci after 14 day co-

culture. All lengths of pre-incubation senescing cells significantly 

increased foci in bystanders after 21 days of co-culture, as determined by 

ANOVA with the Holm-Sidak method for multiple comparisons vs. a 

control group, P<0.05. Data are mean ± SE of n=3 with approximately 100 

cells per experiment.  

 

4.3 Medium Transfer from Senescent Cells does not Induce a 

Bystander Effect 

 

To test whether the bystander effect could be transferred purely by long lived 

secreted factors we compared the effect of medium from senescent cells to that 

of replicating cells. Senescent cells were incubated for one day so as not to 

exhaust the nutrients provided in the FCS, before the medium was transferred 

to reporter cells through a 0.45μm pore filter. The reporters were incubated for a 
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further 48 hours before the medium was changed to new medium from 

senescent cells, at which point the cells were imaged for a further 55 hours. As 

shown in figure 4.8, there was no significant effect of senescent cell conditioned 

medium.  

 

 

Figure 4.8| Senescent medium (SEN MED) has no significant effect on 

53BP1 focus formation. Data and statistics are as in figure 4.3. 

 

Thus, it can be concluded that the senescent cell bystander effect cannot be 

transmitted exclusively by long lived secreted factors.  

 

4.4 Gap Junction Mediated Transfer Contributes to the Bystander Effect 

 

Gap junctions have been shown to be highly important in the RIBE, and their 

inhibition using lindane and octanol has been shown prevent the signal inducing 

damage and cell death in bystander cells (Azzam et al., 1998, Azzam et al., 

2001, Zhou et al., 2000). To determine whether gap junctions play a role in the 

senescent cell induced bystander effect, octanol, was added to the co-culture. 

During the first 2-4 days of co-culture 1μM octanol was added at day zero and 
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day two before imaging began. As shown in figure 4.9, the presence of octanol 

had a tendency to reduce the focus formation rate in bystander cells, but the 

effect was not significant. 
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Figure 4.9| Octanol inhibition of gap junction mediated transfer does not 

reduce the induction of DDR in bystander cells in short term co-culture. 

Cells in the presence of octanol (OCT) did not have significantly reduced 

focus formation rate compared to DMSO in either bystander or control 

cells. Only focus formation rate in bystander cells in the presence of 

DMSO was significantly different to controls, as determined by Kruskal-

Wallis ANOVA on ranks with Dunn’s post hoc test, P<0.05). Data are n=1-

2, with 20-25 cells per group. 

 

With extended co-cultures gap junctions begin to play more of a role. After 21 

days of co-culture in the presence of octanol the number of foci in bystander 

cells was reduced to that of controls, as shown in figure 4.10.   
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Figure 4.10| Octanol inhibition of gap junction mediated transfer does 

reduce number of foci in bystander cells in long term co-culture (21 days).  

Data are mean ± SE (n=3-5), with approximately 100 cells per group. As 

determined by ANOVA, the only group significantly different to control is 

the bystander cells in the presence of DMSO.  

 

4.5 Large and Long Lived Foci are Important in the Bystander Effect 

 

Whilst observing the DNA damage focus dynamics between 2-4 days of co-

culture, it was clear that some foci were substantially larger than others. 

Therefore, foci were divided into two groups, where foci ≤ 0.45μm2 were 

counted as small foci, and foci that persist above this size for at least two 

consecutive time points (20mins) were counted as large. Examining focus 

formation rate revealed that the difference between bystanders and controls 

was exclusively the result of the large foci, as shown in figure 4.11. 
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Figure 4.11| Large focus formation is significantly increased in bystander 

cells, whilst small focus formation is not significantly changed. Data are 

n=1-2, with 20-25 cells per group, analysed using two way ANOVA with 

Holm-Sidak method for multiple comparisons.  

 

Additionally, large foci persisted for significantly longer than small foci in both 

control and bystander cells, as shown in figure 4.12.  
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Figure 4.12| Large foci persist for significantly longer on average than 

small foci. Data are n=1-2, with 20-25 cells per group, analysed using two 

way ANOVA with Holm-Sidak method for multiple comparisons.  

 

Lastly, the literature suggests that in normal proliferating cells, most foci are 

cleared within five hours (Passos et al., 2010). Therefore, control and bystander 

groups were compared for the number of foci that persisted for longer than this 

length of time. Only cells that could be followed for at least ten hours were 

selected, so that if a cell did possess such a long lived focus, there was a 

reasonable chance that the cell would remain within the tile scan long enough 

for it to be correctly identified as such. The small number of cells that persisted 

for ten hours (10-20 in each group), made analysis difficult, but a two-tailed t-

test showed that the two groups were significantly different, as shown in figure 

4.13. 
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Figure 4.13| The number of foci that persist for longer than five hours is 

increased in bystander cells. Data are mean ± SD (n=1, 28 cells) and 

significance was determined by a two tailed t-test not assuming equal 

variance (p=0.038). 

 

Thus, bystander cells have an increase in large long lived foci, which can be 

indicative of the induction of cell senescence (Rodier et al., 2011). 

 

4.6 Senescent Cells Induce Senescence in Bystander Cells 

 

Consistent with previous studies (Passos et al., 2007), this thesis has found that 

senescent cells have more foci than healthy replicating cells (Figure 5.1.2). As 

discussed in sections 1.3.1 and 1.4.3, damage is important in both the induction 

and maintenance of senescence. Accounting for the fact that the main 

difference in bystander cells was due to large long-lived foci, which have also 

been shown to be associated with senescence (Rodier et al., 2011), it was 

hypothesised that senescent cells may induce senescence in bystander cells. 

The measure of senescence associated β-galactosidase (SA-β-gal) activity is 

the most widely accepted marker of senescent cells, both in vitro and to a lesser 
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extent in vivo. However, because the reporter cells were in co-culture, it was 

important to distinguish between senescence in the reporter and inducer cells. 

Because senescence is a permanent phenotype, there was no possibility that, 

after the removal of the inducer cells, the reporter cells would revert to 

proliferation. Therefore, it was possible to kill the inducer cells using blasticidin, 

for which the reporter cells carried a resistance gene (figure 4.14).  

 

 

Figure 4.14| Addition of blasticidin (Blast) after up to 20 days of co-culture 

is used to kill the senescent inducer cells leaving only the bystander cells 

to measure for induction of senescence. 

 

Reporter cells were co-cultured with senescent cells or replicating controls for 

up to 20 days.  Blasticidin was then added to the co-culture for at least six days, 

and until all senescent cells in an equally plated control dish had died. 

Blasticidin was then removed and the cells were re-plated onto coverslips. After 

a further four days the cells were fixed and stained for SA-β-gal activity as 

described in the methods. The results demonstrated that six day co-culture was 

not sufficient to induce senescence in bystander cells, whilst 15 and 20 day co-

cultures caused a small but significant increase in the induction of senescence 

(Figure 4.15). The lack of response after six days is perhaps not surprising as 
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after direct irradiation under half show SA-β-gal after 4 days, around three 

quarters after 9 days, and almost all cells after 15 days (Nelson, unpublished).  

 

Figure 4.15| Senescent cells induce senescence in bystander cells. After a 

six day co-culture the number of senescent cells was not significantly 

different between bystanders and controls. After 15 and 20 day co-

cultures the number of senescent cells was significantly increased in 

bystanders compared to controls (n=3, 100-250 cells per group within 

each experiment), as determined by ANOVA with Tukey HSD P=0.048 and 

0.008 respectively.  

 

Additionally data from Glyn Nelson, published alongside these data (see 

Appendix) provide further evidence of senescence inductrion. The proliferation 

marker Ki67 is significantly reduced in senescent cells, as shown in figure 4.16; 

as is the co-localisation of γ-H2AX with PML bodies, both of which are 

established markers of senescence (Rodier et al., 2009, Rodier et al., 2011). 
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Figure 4.16| Data collected by Glyn Nelson after 10 day co-culture with 

senescent or control inducer cells. (A) Bystander cells have significantly 

reduced Ki67 staining compared to controls, and (B) significantly 

increased co-localisation of γ-H2AX with PML bodies. Data are mean ± SE 

(n=3). Analysis was determined by a two tailed t-test, and Mann-Whitney 

U-test for (A) and (B) respectively.  
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4.7 Discussion 

 

Prior to this work, the detrimental paracrine effects of senescent cells on healthy 

cells had not been investigated. Two previous studies demonstrated that 

senescent cells could stimulate proliferation of preneoplastic cells, and this 

could result in production of benign tumours or malignant transformation 

depending on the cell line (Krtolica et al., 2001, Liu and Hornsby, 2007). 

Notably, although one of these studies tested whether healthy keratincoytes 

were also stimulated to proliferate in the presence of senescent cells, this was 

found not to be the case (Krtolica et al., 2001), although another study found 

that the opposite was true of prostate epithelial cells (Bavik et al., 2006) 

These data provide the first evidence of a genotoxic effect of senescent cells 

upon healthy proliferative cells. These effects include, but are not limited to, an 

increase in 53BP1 focus formation, the number of foci per nuclei, and the 

induction of senescence as determined by staining for SA-β-gal. The results 

were published in Aging Cell (Nelson et al., 2012), and are shown in the 

appendix. 

 

4.7.1 Implications of 53BP1 Foci Formation and Numbers 

 

As mentioned in the introduction, 53BP1 is an important member of the DNA 

damage response. It was cloned in 1994, shown to interact with DNA-binding 

domain of p53 (Iwabuchi et al., 1994), and increase p53-mediated transcription 

(Iwabuchi et al., 1998). It has a tandem BRCT (BRCA1 C terminus) domain, 

and significant sequence homology to BRCA1 (Callebaut and Mornon, 1997). 

Several studies identified that 53BP1 forms distinct foci within minutes of 

exposure to ionising radiation (Anderson et al., 2001, Rappold et al., 2001, 

Schultz et al., 2000, Xia et al., 2001), and co-localises with other proteins, such 

as γ-H2AX, BRCA1, RAD51 and the MRN complex, known to bind to DNA 

lesions (Anderson et al., 2001, Rappold et al., 2001, Schultz et al., 2000). 

Specifically 53BP1 was found to bind to DSBs (Mochan et al., 2003), dependent 
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on a domain containing two tandem tudor folds and a deep hydrophobic pocket 

(Iwabuchi et al., 2003, Ward et al., 2003a). The resultant implication that 53BP1 

would bind histones containing hydrophobic methylated lysine/arginine residues 

lead to the identification of lysine 79 methylation on histone H3 which correlated 

with 53BP1 binding (Huyen et al., 2004). However, lys79 methylation is not 

increased at sites of DNA damage (Huyen et al., 2004). Because lys79 is at the 

nucleosome core and therefore not exposed in normal chromatin (Dorigo et al., 

2004), it is likely that DSBs cause nucleosome unstacking and exposure of 

methylated lys79 (Zgheib et al., 2005).  

Therefore, although 53BP1 foci do not represent direct measurement of DNA 

damage, it is known to be associated with DNA damage, and specifically DSBs. 

Interestingly, one study found that in transformed rodent cells, treatment with 

the HDAC inhibitor sodium butyrate (NaB) induced H2AX phosphorylation, 

which did not co-localise with phospho-ATM, or correlate with high levels of 

DNA damage as determined by COMET assay (Pospelova et al., 2009). This 

indicated that γ-H2AX foci might be forming at sites of undamaged DNA. 

Importantly, 53BP1 was not associated with these damage-independent foci, so 

whilst there is some evidence that other members of the DDR do not always 

associate with DNA damage, there is no evidence this is true of 53BP1. 

Notably, although retention of 53BP1 at DSBs is dependent on γ-H2AX, its 

recruitment is not (Ward et al., 2003a, Celeste et al., 2003).  

In this study a truncated form of 53BP1 is used, by excision of the carboxyl-

terminal fragment using a Bam HI site. This was necessary in order to allow the 

gene to fit into the large destination vector for viral transduction. Although the 

loss of the N-terminal fragment may potentially alter the binding and signalling 

of the fragment, the 2.77Kb end terminus still contained all the functional 

domains including the TUDOR and two BRCT domains, and has been shown to 

co-localise with γ-H2AX (Nelson et al., 2009), indicating that it still binds to DNA 

damage similar to wildtype 53BP1. Additionally, the expression of the 53BP1 

fusion protein should not affect the expression of cellular 53BP1, although it will 

competitively inhibit binding to sites of damage. The UbC promoter used to 

express the reporter gene is a constitutive human promoter for ubiquitin C, and 

therefore induces much lower level of expression than viral promoters such as 

CMV; will not be subject to viral promoter silencing; and is less likely to induce 
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artefacts of overexpression. However, it cannot be ruled out that the reporter 

cells have some altered signalling process which changes their susceptibility to 

the bystander effect.  

The precise mechanisms and role of 53BP1 in the DDR are unknown. It does 

co-immunoprecipitate with Chk2 (Wang et al., 2002), and 53BP1-/- cells have 

defective Chk2 activation; however, the phenotypes of Chk2 and 53BP1 

knockdown have little in common. Chk2-/- mice are resistant to IR and their 

thymocytes are resistant to apoptosis (Hirao et al., 2002, Takai et al., 2002), 

whilst the opposite is true of 53BP1-/- mice (Ward et al., 2003b). This being the 

case, the primary effect of 53BP1 still appears to be the activation of ATM. 

Although it also binds p53 (Iwabuchi et al., 1994), and p53 activity is decreased 

in 53BP1 inhibited cells (Wang et al., 2002), it does not activate p53 

transcription, which is impossible whilst p53 still binds 53BP1 (Derbyshire et al., 

2002, Joo et al., 2002). Thus, increasing 53BP1 foci will primarily result in an 

increase in ATM signalling. 

As discussed in section 1.3.2, ATM is a potent inducer of p53 and therefore the 

senescence response. Consistently, these data demonstrate that senescent 

cells cause a significant increase in the induction of senescence, to be 

discussed later. Notably, ATM is a hub molecule and has multiple targets 

outside Chk2, including HDACs and the IKK complex, and therefore the 

bystander effect is not limited to the effects of activated p53. Many of these 

other targets may contribute to both the induction of senescence and the 

resultant phenotype.  

Interestingly these data indicate that although focus formation increases very 

quickly in bystander cells with 2-4 days of co-culture (Figure 4.3), initially these 

cells can tolerate the increase in damage induction and the number of foci per 

cell does not increase. However, after a longer period of time somewhere in 

between 4-10 days the average number of foci per cell begins to increase. 

Potentially, the longer cells spend in the presence of senescent cells, the more 

susceptible they become to damage, or the longer senescent cells are in the 

presence of proliferating cells the more damaging they become. Potentially, a 

more likely possibility is that some parts of the DNA are easier to repair than 

others, and therefore, because the sites of damage are random it is only a 
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matter of time until a difficult to repair site is hit, thus causing the damage to 

persist. Additionally, damage to sites concerned with repairing DNA could also 

cause foci to persist longer and contribute to the cells deteriorating ability to 

repair damage. 

It is well established that telomeric uncapping induces senescence because the 

cells find it difficult to repair telomeric lesions. Two recent papers have 

suggested that senescence is maintained partially by persistent foci at the 

telomeres irrespective of telomere shortening or senescence stimulus 

(Fumagalli et al., 2012, Hewitt et al., 2012). Thus, it is possible that the number 

of foci begins to increase in bystander cells as a result of a telomere becoming 

damaged. The longer cells remain in co-culture the more likely their telomeres 

will be damaged, especially as telomeres are particularly susceptible to 

oxidative stress (von Zglinicki et al., 1995). 

 

4.7.2 The Irradiated Senescent Cell Bystander Effect 

 

The bystander effect is not limited to replicatively senescent cells. Here, these 

data indicate that cells induced to senesce by 20Gy X-rays also induce a 

bystander effect (Figure 4.7). Importantly, preincubating irradiated cells for 

seven days before a 14 day co-culture was not sufficient to induce a bystander 

effect. This raises the possibility that the factor(s) responsible for the bystander 

effect take longer than seven days before they are sufficiently expressed. 

Additionally, because the bystander effect can be achieved after ten days of co-

culture, this would imply that the factor was not sufficiently present at 11 days 

after irradiation, by which time the majority of the literature suggests that 

irradiated cells have adopted the full senescent phenotype (Passos et al., 

2010).  

An alternative is that being present during the senescence process provides the 

bystander cells with a relative immunity to the bystander effect. Inconsistent 

with this idea, a study examining oncogene induced senescence demonstrated 

that bystander cells in co-culture with cells undergoing senescence undergo a 

substantial bystander effect (Acosta et al., 2013). It is also unlikely that this 
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reflects a difference in the two systems, as multiple studies have indicated that 

bystander cells in co-culture with cells hit with α particles, or cells exposed to 

ICM from recently irradiated cells all induce a bystander effect. Thus, the reason 

for the lack of bystander effect in seven day pre-incubated cells warrants further 

investigation.  

A recent study examined the irradiated senescent cell bystander effect in 

primary mouse adult ear fibroblasts (MAFs) and found that they had significantly 

increased foci after two days of co-culture, but this returned to control levels by 

days 7-8 (Jurk et al., unpublished). The early increase in DNA damage is likely 

to reflect that the study used mouse cells which are known to be more 

susceptible to damage. However, it may also be a result of the radiation 

induced bystander effect (RIBE).  

It is important to distinguish between the RIBE, which has been 

comprehensively studied, and the irradiated senescent and replicatively 

senescent cell induced bystander effect, which have both been described for 

the first time in these data (Nelson et al., 2012).  

Interestingly, experiments using irradiated cell conditioned medium 

demonstrated that, whilst keratinocytes and immortalised fibroblasts were prone 

to the bystander effect, that healthy fibroblasts were unaffected (Mothersill and 

Seymour, 1997), which parallels the predisposition of immortalised cells to the 

bystander effect induced by senescence (Krtolica et al., 2001). However, the 

RIBE does not require that the inducer cells are senescent, and the effect 

plateaus long before the doses required to induce senescence (Liu et al., 

2006b).  

 

4.7.3 Senescent Cell Secretions and the Bystander Effect 

 

In this system neither medium transfer, nor matrix from senescent cells induced 

a significant bystander effect (Figure 4.8, latter not shown). However, in other 

systems both these treatments have been shown to induce a bystander effect. 

In one study, the ECM produced by senescent cells encouraged a 3-4 fold 

increase in growth of immortalised untransformed cells (Krtolica et al., 2001).  
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Notably, although the senescence bystander effect has not been directly 

compared between fibroblasts and epithelial cells, studies into the radiation 

induced bystander effect, observed that epithelial cells are more susceptible to 

damage and cell death (Mothersill and Seymour, 1997). Equally there are some 

differences between the SASP of epithelial cells and fibroblasts, although they 

do have significant overlap and both contain many of the same inflammatory 

factors (Coppe et al., 2008). Importantly IL-1α, which was found to be unique to 

epithelial cells, is a stimulator of TNF-α induced NF-κB canonical signalling 

(Yard et al., 1992), and may therefore, make epithelial cells induce a more 

potent signal. Consistent with this idea, studies examining the RIBE using 

medium transfer identified that although irradiated fibroblasts did not induce a 

bystander effect, they were still capable of receiving the signal from cells that 

did (Mothersill and Seymour, 1997).  

Another study looking at the bystander effect of oncogene induced senescent 

cells, also found that medium transfer induced a significant bystander effect 

including a decrease in BrdU, and induction of senescence as indicated by an 

increase in SA-β-gal staining (Acosta et al., 2013). The implications of this study 

are that oncogene induced senescent cells clearly induce a more potent 

bystander effect than replicatively or irradiated senescent cells. Consistently, 

there are several observations that indicate that this may be the case. The 

SASP of oncogene induced senescent cells is qualitatively very similar to that of 

IR and replicatively senescent cells, but some factors were significantly 

upregulated in oncogene induced senescent cells, and were expressed from an 

earlier time point (Coppe et al., 2008). These factors include GM-CSF, IL-1β 

GRO-α and MIP-1α, which may therefore be key molecules in the bystander 

effect of oncogene induced senescent cells. However, it should be noted that 

although the SASPs of senescent cells correlate, they are not the same, and 

the difference in the bystander effect could result from qualitative differences in 

SASP factors. Additionally, the levels of ROS, other non-protein or non-secreted 

components have not been compared between the different senescent 

inducers.    

Interestingly, the study examining the bystander effect in preneoplastic epithelial 

cells also looked into oncogene induced senescence, and despite using similar 

co-culture times found that these cells actually induced a weaker bystander 
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effect than replicatively senescent cells (Krtolica et al., 2001). However, they 

indicated problems with their RAS expressing cells which may explain this 

difference. It is also possible that it reflects a difference between fibroblasts and 

epithelial cells. 

 

4.7.4 Gap Junction Mediated Transfer 

 

Here we demonstrate that the inhibition of gap junction mediated transfer by 

1μM octanol abrogates the bystander effect induced by senescent cells (Figure 

4.10). The mechanism by which octanol inhibits gap junction mediated transfer 

is not precisely known; however, several studies have identified this effect 

across multiple cell lines (Pappas et al., 1996, Abou Hashieh et al., 1996). 

Notably, octanol at 1mM (1000× higher than concentration used here) has also 

been demonstrated to inhibit the activity of Cx46 and Cx50 connexins similarly 

to gap junctions, enhance GABA and glycine receptor activity and inhibit NMDA 

and AMPA receptors amongst others (Dowling-Warriner and Trosko, 2000). 

However, none of these molecules should play a large role in the bystander 

effect, other than perhaps the other connexins which form gap junction-like 

channels.  

It should be noted that, as with the other inhibitors discussed later, the inhibition 

of gap junction mediated transfer via octanol is not specifically tested within the 

cells utilised here, which may respond to the compound differently to other cell 

lines in which octanol has been tested. Additionally, the potential induction of 

cell death was not quantitated and may have affected the level of damage in the 

surviving cells, and could also be a confounding variable if octanol affects cell 

death in bystander cells differently to controls. 

The results suggest that gap junction mediated transfer is not necessary for the 

early bystander effect, but becomes important later once the number of foci 

begin to increase in bystander cells. One possible explanation is that the early 

and late bystander effects are transmitted by different signals that are initially 

not transmitted through gap junctions, but latterly reliant on them. Alternatively, 

the signal could remain constant but the bystander cells could change the 
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mechanism or level at which they receive it.  This could result because of the 

increase in confluency of the bystanders at late time points, causing them to 

transmit more of their signals via gap junctions, and/or less of them via the 

membrane. 

Importantly, several studies in multiple cell types including HUVECs and 

fibroblasts have demonstrated that gap junctions decrease in replicatively 

senescent cells (Naus, 2002, Wilson et al., 2000, Kelley et al., 1979). Although 

some studies suggested it might not have occurred specifically as a result of 

growth arrest (Xie et al., 1992), the same downregulation in stress induced 

senescent cells exposed to cisplatin suggested that it was a result of 

senescence (Zhao et al., 2004). Immunofluorescent staining revealed that 

senescent cells expressed less connexin43, the main component of gap 

junctions (Zhao et al., 2004), and more slowly received label from neighbours 

(Kelley et al., 1979). Another study found that knocking down connexin43 

increased the number of cells that underwent senescence in response to high 

glucose, whilst overexpression reduced it (Zhang et al., 2006). 

Despite these observations, gap junctions play a clear role in the 

communication of cellular damage. It is long established that gap junctions play 

a crucial role in cell communication after damage induced by irradiation 

(Autsavapromporn et al., 2011). Interestingly, one study demonstrated that α- 

and γ-irradiation, as well as oxidative stress, were accompanied by increased 

connexin43 expression, stabilisation, and activation in multiple cell types 

(Azzam et al., 2003). Contrarily, other studies have demonstrated 

downregulation of gap junctional communication in response to ionising 

radiation and oxidative stress. Additionally, oncogenic activation and 

transformation has been shown to inhibit gap junctional communication (Azarnia 

et al., 1988, Bignami et al., 1988). 

The effects of gap junctional communication in response to irradiation are 

dependent on both cell type and stimulus. Notably, the confluency of cells can 

alleviate the damage in response to low-LET radiation such as X rays or γ-rays 

(Little, 1969), and increase cell killing in response to α-particles (Azzam et al., 

2000). Importantly, whilst gap junction inhibition did not affect the survival of γ-
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irradiated cells, it did reduce the decrease in survival in response to α-particles 

(Autsavapromporn et al., 2011). 

The evidence suggests that, in general, when a cell is stressed it downregulates 

gap junctional communication. This is most likely to prevent the spread of 

whatever signalling molecules are inducing the stress, as overexpression of 

connexin43 increases bystander mediated cell killing (Estin et al., 1999).  

Importantly, further downregulation of gap junction mediated transfer, in cells 

which have already tried to suppress their activity, using octanol or dominant 

negative connexin43 still further reduces the bystander effect of irradiated cells 

(Zhou et al., 2001, Azzam et al., 1998). Likely, the same principle applies to 

senescent cells. These data intriguingly suggest that the bystander effect could 

have no function, but instead result from a cell’s inability to properly suppress 

gap junction mediated transfer.  

It should also be considered that gap junctions in the bystander cells are still 

present and active in high numbers, allowing easy transmission between these 

cells. Perhaps, gap junctions do not play such a large role in signalling between 

senescent and bystander, but between the bystanders and their neighbours. 

Notably, another study using oncogene induced senescent cells demonstrated 

that bystander cells do also transmit a signal to their neighbours (Acosta et al., 

2013). 

 

4.7.5 Focus Size and Lifespan in the Bystander Effect 

 

In section 1.3.1 it was discussed how it is not only the number of foci that is 

important in deciding cell fate, but also their size and longevity. Here, the 

separation of foci into two groups based on their size, demonstrated firstly that 

large foci are longer lived than the small foci (Figure 4.12), and secondly that 

formation of large foci but not small foci was significantly increased in bystander 

cells (Figure 4.11), although there was a tendency for the increased formation 

of small foci. Therefore, they may play a small role in the bystander effect, but 

are likely in the majority to represent easily repaired lesions which are 

unaffected by bystander signalling. Notably, these foci persisted for at least 20 
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minutes and were captured in at least two subsequent time-lapse images so are 

unlikely to represent high background fluorescence. 

It has been previously demonstrated that persistent foci, which are associated 

with cell senescence, are enlarged (Rodier et al., 2011). However, although the 

large foci found here are significantly longer lived on average than the small 

foci, this does not necessarily make them persistent/telomeric foci. Importantly, 

the average focus lifespan remained unchanged between control and bystander 

cells, when examining total foci or big and small separately (Figure 4.3, 4.13), 

which could indicate that the majority of these cells are not being induced to 

senesce by bystander signalling. 

Another possibility is that, whilst the number of long lived foci was increasing in 

bystander cells, the number of shorter lived foci was also increasing. Supporting 

this idea, there is a tendency of the small foci to increase in the bystander cells, 

which are all very short lived. Additionally, the significant increase in large focus 

formation at 2-4 days without increasing the number of foci per cell, suggests 

that many of these foci are short lived, thus bringing down the average focus 

lifespan.  

Therefore, it was examined whether bystander cells also have increased 

numbers of the longest lived foci. Using the literature it was observed that most 

foci in healthy proliferating cells are cleared within five hours of their formation 

(Passos et al., 2010), and the preliminary data collected here indicate that 

bystander cells have increased numbers of foci that persist for longer than this 

time. Thus, it appears that bystander cells are struggling to effectively repair 

damage induced by senescent cells, which is consistent with the induction of 

senescence in a fraction of them.  

 

4.7.6 Senescence Induced Senescence 

 

Here we provide the first evidence that senescent cells induce senescence in 

bystander cells (Figure 4.15). After fifteen days of co-culture with senescent 

cells, there was a significant increase in SA-β-galactosidase expression at pH6, 

which has been used extensively in the literature as a marker of cellular 
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senescence (Dimri et al., 1995). The fraction of SA-β-gal positive cells was 

significantly increased in the bystander population. It should be noted firstly, that 

these results cannot completely rule out that senescent cells induced reversible 

growth arrest in the bystander cells, and as a result the non-senescent cells in 

the population were not as proliferative, thus allowing the senescent cells to 

occupy a higher fraction of them at the point of measurement. This issue could 

be addressed by counting the number of SA-β-gal positive cells within a certain 

area, or by waiting until all reversibly arrested cells are likely to have repaired 

their damage and re-entered cell cycle before splitting them. In this respect, the 

six day blasticidin treatment to kill the senescent cells, and the following four 

days after replating should have been sufficient for most if not all of the 

quiescent cells to do this. Secondly, although it is highly likely that this 

senescence induction results from the DNA damage foci observed in the 

bystander cells, this is just a correlation, and they may be independent 

processes.  

A second observation is that the number of senescent cells has a tendency to 

increase between six and fifteen days in the control group. This could simply 

result from cells autonomously reaching the end of their replicative lifespan, or 

alternatively from a paracrine induction of senescence from the small number of 

senescent cells that are present in all cultures. Notably, even at six days the 

fraction of SA-β-gal positive cells is about 0.27 in the control group. At early 

PDs WI-38 fibroblasts have almost no positive staining. This increases 

exponentially until all cells are replicatively senescent. By mid-late PDs around 

half the WI-38s have positive staining (Dimri et al., 1995). At PD X+28, when 

the reporter cells were used in the co-culture, they had completed 

approximately 70% of their replicative lifespan. Compared to the WI-38s 0.27 is 

not an unexpectedly high level of positive cells this far through their replicative 

lifespan. Contrarily, in MRC5s some data suggests that positive SA-β-gal 

staining should not reach above 10% until around PD 40 (Passos et al., 2007). 

In a comparison to this study, the SA-β-gal staining showed here is quite high, 

and may reflect suboptimal conditions during the co-culture, freezing or thawing 

processes, or the long time spent at confluence. What remains clear is that the 

addition of senescent cells increases the level of positive staining.  



 

114 
 

Notably, SA-β gal positive cells are not necessarily senescent. The increased 

enzymatic activity can be induced by other stimuli such as confluency or serum 

starvation (Dimri et al., 1995). Here cells were kept at confluency; however, 

these effects dissipate after two days and these cells had been non-confluent 

for 4-10 days. Additionally, no group has yet observed naturally occurring 

senescent cells that do not express the enzyme. Because there will always be 

exceptions, it is generally observed that a single infallible marker of senescence 

does not exist, and that to genuinely prove senescence that several markers 

must be used.  

This thesis has shown both the expression of SA-β-gal and the presence of 

large long lived foci that are indicative of cellular senescence. In the paper 

shown in the appendix (Nelson et al., 2012), we also showed a decrease in the 

marker Ki67, and co-localisation of PML and γ-H2AX, in bystander cells as 

additional markers of senescence. Further work could include examining p16 

and p21 levels in bystander cells; however, the combination of markers used 

here is good evidence that bystander cells are being induced to senesce by 

senescent cells. 

Another study, showed that oncogene induced senescent cells also induced 

senescence in bystander cells (Acosta et al., 2013). Importantly, as discussed 

previously, this phenomenon was considerably more potent than the bystander 

effect observed here. 

In this study the transfer of medium from senescent cells was sufficient to 

induce senescence in bystander cells, whereas here a significant increase in 

focus formation was not observed. However, medium from the secondarily 

senescent cells did not induce senescence in a tertiary group of bystanders, but 

it did slow the growth of these cells. Plausibly, this outcome results from the 

induction of DNA damage in this tertiary group, which causes the cell to become 

quiescent whilst the damage is repaired. 

Although our system was not sensitive enough to observe the increased 

damage from senescent cell medium, it is at least possible that the bystander 

effect that we observe from the replicatively senescent cells, is the same as the 

bystander effect observed by the secondarily senescent cells in the other study. 

Both cell types are likely to senesce from the induction of DNA damage without 
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the aberrant activation of an oncogene, and therefore the evidence suggests 

that, unless they have some other difference in the level of activation of p53, 

that they will have a similar SASP (Coppe et al., 2008). Interesting further work 

would be to co-culture these secondarily senescent cells with more bystanders 

under the conditions used in this study to examine whether damage or 

senescence is induced.   
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5 The Pathways Underlying the Bystander Effect 

 

Initially, several candidate pathways were identified using the literature which 

could potentially explain how senescent cells induce a DNA damage response 

in bystander cells. As described in the introduction, the hub molecules of these 

pathways are p38, NF-κB and mTOR. Therefore, to test the involvement of 

these molecules specific inhibitors were added to the co-culture. For mTOR the 

inhibitor torin-1 was used at 10nM, for NF-κB the inhibitor Bay11-7082 was 

used at 1µM, and for p38 the inhibitor UR-13756 was used at 1µM. All inhibitors 

were replenished every two days with a change of medium, and co-culture was 

continued for 21 days. As indicated in figure 5.1, all three inhibitors abrogated 

the bystander effect. Additionally, the presence of two inhibitors in the same co-

culture had no combinatorial effect. 
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Figure 5.1| Inhibition of TOR signalling through torin-1 (TOR), NF-κB 

signalling through Bay11-7082 (BAY), and p38 signalling through UR-

13756 (UR), or combinations of the same inhibitors (BAY TOR, BAY UR 

and TOR UR) all abrogate the increase in foci found in bystander cells. (A) 

Images of cells in presence of inhibitors. (B) Quantification of data. The 

use of dual inhibitors has no additional effect. Data are mean ± SE (n=3-5), 

with approximately 100 cells per group. As determined by ANOVA with 

Dunn’s post hoc test, only the bystander cells in the presence of DMSO or 

PBS (NOT) were significantly different to control cells in the presence of 

DMSO. All inhibitors are dissolved in DMSO and compared to DMSO alone 

(DMSO), which is not significantly different to the absence of DMSO 

(NOT).  

 

All three pathways are necessary for the bystander effect, making each one 

dependent on the presence of the other two, in order to induce the DDR. One 

possibility is that they all regulate the production of the same damaging agent or 

agents. As discussed in section 1.3.7, all three pathways stimulate the 

production of reactive oxygen species. 

* 
* 
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5.1 Reactive Oxygen Species Mediate the Bystander Effect 

 

To test the involvement of reactive oxygen species in the bystander effect, two 

antioxidant enzymes, superoxide dismutase and catalase were added to the co-

culture. Superoxide dismutase catalyses the conversion of the superoxide 

radical to hydrogen peroxide, and catalase converts hydrogen peroxide to water 

(Figure 5.2). 

 

 

Figure 5.2| Reactions catalysed by antioxidant enzymes. 

 

The addition of antioxidant enzymes completely abrogated the increase in focus 

formation between two and four days (Figure 5.3B), and foci per cell at 21 days 

(Figure 5.3C). Images of the nuclei under the different treatments are shown in 

figure 5.3A. 
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Figure 5.3| Antioxidant enzymes abrogate the bystander effect. (A) Focus 

formation during 2-4 days of co-culture in bystander cells in the presence 

of superoxide dismutase and catalase antioxidant enzymes (BYS ANTIOX) 

is completely abrogated. Control cells in the presence of these enzymes 

(ANTIOX) were not significantly affected. (B) The number of foci in cells in 

co-culture for 21 days was reduced to control levels by the presence of 

antioxidants. In (A) statistical analysis is determined by Kruskal-Wallis 

ANOVA on ranks with Dunn’s post hoc test, P<0.05). Data are n=1-2, with 

20-25 cells per group. In (B) data are mean ± SE (n=3-5), with 

approximately 100 cells per group. As determined by ANOVA with Dunn’s 

post hoc test, only bystander cells in the presence of DMSO were 

significantly different from controls in the presence of the same. 

 

In the previous chapter it was found that the difference in focus formation was 

mainly down to the large foci. ROS are considered to mainly be involved in the 

production of short lived reparable lesions (Passos et al., 2010). Therefore, it 

was examined whether antioxidants had affected large or small foci more 

significantly, and it was found that antioxidants had more of an effect on the 

large foci (Figure 5.4). 
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Figure 5.4| Antioxidant enzymes significantly reduce the formation of 

large foci in bystander cells. Data and statistics are as in figure 4.9. 

 

Notably, the presence of antioxidants significantly increased the average focus 

lifespan per cell in both control and bystander cells (Figure 5.5A), and again this 

was primarily down to its effects on large foci (Figure 5.5B).  
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Figure 5.5| Both bystander and control cells have longer lived foci in the 

presence of antioxidants. (A) Average lifespan of all foci. (B) Average 

lifespan of large and small foci separately. In (A) statistical analysis is 

determined by Kruskal-Wallis ANOVA on ranks with Dunn’s post hoc test, 

P<0.05). In (B) statistical analysis is determined by two way ANOVA with 

Holm-Sidak method for multiple comparisons. Data are n=1-2, with 20-25 

cells per group. 

* 

* 

* * * * 

* * 
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Due to their size, the antioxidant enzymes were not expected to be internalised 

in the cells, and thus would mainly function to remove ROS within the medium. 

Therefore, it was tested whether the presence of both antioxidant enzymes and 

an inhibitor against gap junctions had any combinatorial effect. As shown in 

figure 5.6, this was not the case.  
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Figure 5.6| The presence of both antioxidant enzymes and octanol  

(ANTIOX OCT) has no additional effect over the presence of either 

treatment alone on the number of foci in bystander cells at 21 days. Data 

are mean ± SE (n=3-5), with approximately 100 cells per group. As 

determined by ANOVA with Dunn’s post hoc test, only bystander cells in 

the presence of DMSO were significantly different from controls in the 

presence of the same. 
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5.2 NF-κB Regulates the Bystander Effect 

 

5.2.1 Nuclear p65 is Increased in Senescent but not Bystander Cells 

 

The use of inhibitors against mTOR, p38 and NF-κB clearly implicated all three 

signalling pathways in the increased foci found in bystander cells. Due to time 

constraints only the NF-κB pathway was selected for further analysis. As the 

inhibitors affect signalling in both the inducer and reporter cells, although the 

damage induced in bystander cells is clearly abrogated, the mechanism by 

which this occurs cannot be determined by this system.  

NF-κB could be involved in either the production of the signal in the inducer 

cells, or the recognition of the signal in the reporter cells, or both. In order to 

elucidate which of these pathways require NF-κB signalling, the pathway must 

be inhibited exclusively in either the inducer or reporter cells within the co-

culture.  

Staining for p65 in senescent, bystander and control cells demonstrated that, 

consistent with previous studies, nuclear p65 and the nuclear:cytoplasmic ratio 

is significantly increased in senescent but not bystander cells (Figure 5.7). 
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Figure 5.7| Senescent cells (SEN) as well as TNF-α stimulated controls 

(STIM) have significantly higher levels of nuclear p65 (A), and a higher 

nuclear:cytoplasmic ratio (B). Data are mean ± SE (n=3), with 50-100 cells 

per experiment, and statistics were ANOVA with Dunn’s post hoc test.  

 

The results suggested that NF-κB signalling via p65 was primarily driven in the 

inducer cells. To test this, a construct designed by Glyn Nelson was used, as 

described in the next section. 

 

5.2.2 ΔIκBα Expressing Senescent Cells Do Not Induce a Bystander Effect 

 

An N-terminal deletion in IκBα had been previously created by Glyn Nelson 

which removed the first 40 amino acids, including the two serine residues (32 

and 36) required for the induction of its degradation, thereby causing it to be 

constitutively active (ΔIκBα) in its repression of NF-κB. Recombined into a 

destination vector, it was transuced into senescent and replicating MRC5 

fibroblasts, as described in section 3.5.1. 

To test whether the ΔIκBα construct effectively repressed NF-κB signalling in 

transduced cells, young cells were stimulated with 10ng/ml TNF-α and 
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compared with control cells (transduced to express mCherry). As shown in 

figure 5.8, at the three time points tested the ΔIκBα expressing cells had 

significantly less nuclear p65 and a lower nuclear:cytoplasmic ratio than 

mCherry expressing cells.  
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Figure 5.8| Cells expressing ΔIκBα (IkBa) have reduced levels of nuclear 

p65 (A) and a reduced nuclear to cytoplasmic ratio (B) compared to 
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control cells expressing mCherry (mCherry), upon stimulation with TNFα. 

As determined by ANOVA with Dunn’s post hoc test, at all time points 

IκBα cells have significantly lower nuclear fluorescence (A) and 

fluorescence ratio (B). Data are mean ± SE (n=3), with approximately 100 

cells per experiment. 

 

In most normal cell types TNF-α is only weakly pro-apoptotic, but this results 

from the pro-survival effects of NF-κB (Van Antwerp et al., 1996). Consistently, 

because of the activation of TNF-α during embryonic development, 

homozygous p65 mutant mice are embryonic lethal due to the widespread 

apoptosis, which is rescued by the inhibition of TNF-α (Beg and Baltimore, 

1996, Beg et al., 1995, Doi et al., 1999).  Therefore, in cells expressing ΔIκBα, 

TNF-α should also induce apoptosis, which was evidenced by membrane 

blebbing of stimulated ΔIκBα cells (data not shown). Importantly, there was no 

evidence of apoptosis or membrane blebbing in the unstimulated ΔIκBα 

expressing cells, nor in the senescent cells expressing the construct.  

Therefore, the senescent ΔIκBα expressing cells were co-cultured with reporter 

cells and compared to senescent cells expressing mCherry. The results of a 14 

day co-culture demonstrated that ΔIκBα expressing cells did not induce a 

bystander effect in reporter cells compared to the mCherry expressing cells 

(Figure 5.9). 
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Figure 5.9| Senescent cells expressing ΔIκBα do not induce a bystander 

effect, whilst mCherry expressing senescent cells showed a normal 

bystander effect compared to other untransduced senescent cells (Figure 

4.4). As determined by ANOVA with Dunn’s post hoc test, only bystander 

cells cultured with senescent cells expressing mCherry were significantly 

different from controls. 

 

5.3 Stimulation of Canonical NF-κB Signalling Enhances the Bystander 

Effect 

 

To understand the effects of over-activating NF-κB on the bystander effect, 

senescent and replicating control cells were stimulated with TNF-α for one hour 

before washing the cells and replacing with normal medium. Reporter cells were 

then added to pre-stimulated cells and co-cultured for up to 20 days (Figure 

5.10).  
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Figure 5.10| Senescent cells were pre-stimulated with TNF-α, then washed 

before addition of the reporter cells 

 

For the initial time point, cells were imaged every 15 minutes for 12 hours 

between one and two days after inducer cell stimulation and subsequent 

addition of reporter cells. Then single measurements were made at seven and 

21 days. No significant effects of pre-stimulation or the presence of senescent 

cells were observed between 1-2 days, or at seven days (Figure 5.11A and B), 

though there was a clear tendency between 1-2 days for senescent cells to 

increase the average number of foci per cell, (Figure 5.11A), consistent with 

figure 4.3.  

Most interestingly, at 21 days there was a clear and significant increase in the 

number of foci in bystander cells cultured with senescent cells that had been 

pre-stimulated with TNF-α, over the normal bystander effect observed from 

unstimulated senescent cells (Figure 5.11B). At no time point was there any 

significant effect of pre-stimulating young replicating cells, though there was 

perhaps a tendency at seven days (Figure 5.11A and B). 
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Figure 5.11| Pre-stimulation of senescent cells (BYS TNF) increases the 

number of foci induced in bystander cells during co-culture compared to 

unstimulated (BYS UNSTIM) cells. (A) The average number of foci per cell 

over a 12 hour period within 1-2 days of co-culture. There is no difference 

between reporters co-cultured with senescent stimulated cells and 

unstimulated senescent controls, or young stimulated cells (CON TNF) 

and unstimulated young controls (CON UNSTIM). Data are n=1 with 
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approximately 20 cells per treatment. Statistics are determined by ANOVA 

with Dunn’s post hoc test. (B) Number of foci in control and bystander 

cells at the different time points of co-culture with stimulated and 

unstimulated cells. At seven days no treatment is significant, whilst at 21 

days there is a significant bystander effect of senescent cells, and a 

significant effect of stimulation on senescent cells, as determined by 

ANOVA with Dunn’s post hoc test. Data are n=3-4 with between 40-200 

cells counted for each treatment, with error bars showing standard error.  

 

To test whether TNF-α stimulation affects the focus frequencies in directly 

stimulated cells, both senescent and young replicating cells were stimulated 

with 10ng/ml TNF-α for one hour, washed three times and then cultured for the 

same periods of time as the co-cultures. Interestingly, a similar trend is followed 

by senescent and bystander cells, with senescent cells having more 53BP1 foci 

than controls. There is also a tendency for stimulation to increase the number of 

foci in both senescent and control cells at one day, and a clearer tendency to 

increase the number of foci in senescent cells at 21 days. However, it must be 

noted that none of these changes are significant (Figure 5.12).   
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Figure 5.12| Direct TNF-α stimulation of cells does not increase DNA 

damage foci in senescent cells (SEN TNF) up to 21 days after stimulation, 
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over unstimulated senescent cells (SEN UNSTIM). Neither was there a 

significant increase in number of foci in directly stimulated young cells 

(YOUNG TNF), over untimulated controls (YOUNG UNSTIM). Data are n=3 

with approximately 100 young cells and 20-40 senescent cells per 

experiment. Statistics are determined by ANOVA with Dunn’s post hoc 

test. Data are mean ± SE (n=3-5), with approximately 100 cells per group. 

Notably, using a two way ANOVA with Holm-Sidak method for multiple 

comparisons to compare the results across time points, day 1 is 

significantly different to days 7 and 21. 

 

Taking into account that at 21 days the incerased number of foci in pre-

stimulated senescent cells is bordering on significance (p=0.048), it is difficult to 

conclude whether direct stimulation induces DNA damage in senescent cells 

without further repeats. As the number of senescent cells is generally lower 

than the control cells, it might simply be a question of power.  

To examine whether the increased bystander effect resulting from pre-

stimulation is also dependent on reactive oxygen species, similar to previous 

experiments, SOD and catalase were added to the medium during the co-

culture. Thus, antioxidants were not added during the initial stimulation, but 

were present for the entirety of the co-culture as before (Figure 5.13). 

 

 

Figure 5.13| After stimulation with TNF-α and washing, both reporter cells 

and antioxidants were added together.  
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As shown in figure 5.14, the bystander effect of pre-stimulated senescent cells 

is completely abrogated by the presence of antioxidant enzymes, suggesting 

that the additional increase in damage is also dependent on ROS. 
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Figure 5.14| When antioxidant enzymes are present in the co-culture, they 

abrogate the additional bystander effect of senescent cells pre-stimulated 

with TNF-α (TNF ANTIOX). There was significant bystander effect of 

senescent cells, and a significant effect of stimulation on senescent cells, 

but this was abrogated in both cases by the presence of antioxidants, as 

determined by ANOVA with Dunn’s post hoc test. Data are n=3-4 with 

between 40-200 cells counted for each treatment, with error bars showing 

standard error. 

 

5.4 IL-6 Stimulation on the Bystander Effect 

 

The effects of TNF-α stimulation were surprisingly potent. However, TNF-α is 

not one of the most prominent secreted factors of the SASP. Therefore, positive 

feedback by this system, whereby senescent cells stimulate themselves in an 
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autocrine fashion with TNF-α to become increasingly damaging is unlikely to be 

dramatic. 

Therefore it was tested whether stimulation with IL-6, one of the most prominent 

members of the SASP, and a known pro-inflammatory cytokine, also had the 

same effect. Just as with TNF-α, cells were stimulated with 15ng/ml IL-6 for 1 

hour. However, unlike the DDR stimulating effects of TNF-α, IL-6 had the 

opposite effect. Senescent cells pre-stimulated with IL-6 had a tendency to 

reduce the bystander effect, although the effect was not significant (Figure 

5.15).   
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Figure 5.15| Pre-stimulation of cells with IL-6 (IL6) does not significantly 

affect the bystander effect of senescent cells or controls at 21 days of co-

culture, but does prevent significant increase between the two, as 

determined by ANOVA with Dunn’s post hoc test. Data are n=3-4 with 

between 40-200 cells counted for each treatment, with error bars showing 

standard error. 

 

To ascertain which of these signals was more predominant in the bystander 

response, IL-6 and TNF-α were added as co-stimulants. When added together 
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at the same doses as before, the bystander effect was reduced by IL-6, but not 

significantly (Figure 5.16), suggesting that TNF-α was mostly epistatic to IL-6.  
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Figure 5.16| Co-stimulation of cells with IL-6 and TNF-α (IL6 TNF) before a 

21 day co-culture induced a bystander effect that was not significantly 

different to that of unstimulated or TNF-α stimulated senescent cells, as 

determined by ANOVA with Dunn’s post hoc test. Data are n=3-4 with 

between 40-200 cells counted for each treatment, with error bars showing 

standard error. 

 

5.5 Discussion 

 

5.5.1 NF-κB, p38 and mTOR in the Bystander Effect 

 

As shown in figure 5.1, the inhibition of mTOR, NF-κB and p38 signalling using 

specific inhibitors all abrogated the bystander effect. 10nM Torin 1 inhibits both 

mTORC1 and mTORC2 signalling, but is otherwise thought to be very specific. 

UR-13756 was used at 1μM to inhibit p38 MAPK. Unlike SB203580, UR-13756 

is highly specific to p38 over c-Jun kinases, at the concentration used (Bagley 
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et al., 2010). However, as this inhibitor has not been widely tested it is possible 

that there are still some off-target effects yet to be discovered. Bay 11-7082 is 

also thought to be highly specific at concentrations five times higher than the 

1μM used in this experiment (Mori et al., 2002), although it can become non-

specific at higher doses (Koh et al., 2010). Notably, Bay 11-7082 is an IKK 

inhibitor poorly specific for IKKα or IKKβ, which both have targets other than 

NF-κB, and another study did identify toxic effects of the inhibitor independent 

of the prevention of IκBα phosphorylation (Rauert-Wunderlich et al., 2013). 

Another important limitation of this research is that these inhibitors were not 

tested to ensure that they induced the desired effect on their target molecule 

within MRC5 fibroblasts. Whilst Glyn Nelson has shown Torin1 reduces mTOR 

signalling in MRC5s (Dalle Pezze, Unpublished), and Bay 11-7082 has been 

used previously in this cell line by our lab (Nelson, Unpublished), UR-13756 has 

not been tested in these cell lines. This could be tested using antibodies against 

p65, phospho-S6 and MAPKAPK-2 or HSP-27 for Bay11-7082, Torin1 and p38 

respectively.   

Preliminary experiments revealed that 10µM Bay 11-7082 induced high levels of 

apoptosis in both senescent and young cells after extended culture, as defined 

by the appearance of floaters and excessive loss of attached cells. This was not 

the case with the other two inhibitors, nor with Bay 11-7082 at 1µM, indicating 

that cells were not undergoing cell death in these co-culture experiments. 

However, it should be noted that level of apoptosis was not quantitated, and low 

level cell death is potentially still a confounding variable in these experiments, 

especially when considering the increased stress undergoing bystander cells 

that may contribute to inducing cell death. Further analysis of cell death in 

control, senescent and bystander cells using an apoptosis assay caspase-Glo, 

TUNEL or Annexin V, is required. 

An additional factor for consideration when analysing this inhibitor data is that 

both inducer and bystander cells are affected. Notably, all three inhibitors had a 

tendency to reduce the number of foci below that of the control cells in the 

presence of DMSO, although the difference was not significant. This suggests 

that the inhibitors may be having other less potent effects reducing DNA 

damage in cells through mechanisms which are not specific to the bystander 
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effect. However, these did not produce significant effects, whilst the bystander 

effect was significantly and completely abrogated by the inhibitors, 

demonstrating that their targets are necessary for the induction of the DDR in 

bystander cells.  

All three pathways have been implicated in cellular senescence, as described in 

the introduction. Although their role in the bystander effect is still open to 

interpretation, the results suggest that they are dependent on each other, as 

each inhibitor completely abrogates the bystander effect, and there are no 

combinatorial effects. It is possible that lower drug doses might reduce the 

inhibition of the bystander effect shown by each drug and thus allow better 

observation of any combinatorial effects; however, the difference in number of 

foci between bystander and control cells is at best one focus per cell, 

suggesting that this system is not sensitive enough for observing smaller 

differences in bystander signalling. 

Alternatively, the dependency of the bystander effect on all three signalling 

pathways could result because the networks are interconnected, regulating the 

same inducer of damage. As described in the introduction, there are multiple 

different sources of damage. Firstly, there are various forms of mutagen that 

directly affect the structure or sequence of the chromatin and DNA. 

Alternatively, some agents can induce damage indirectly by stimulating rapid 

error prone synthesis of the DNA, or affecting the activity of a protein involved in 

accurate DNA synthesis or chromatin maintenance. Therefore, these molecules 

could induce damage by increasing the level of mutagens or by deregulating the 

processes that maintain and synthesise the chromatin, making it more 

susceptible to damage.  

The MAPK p38 is most commonly associated with the stress response 

pathways (Obata et al., 2000); however, it is also necessary for the stimulation 

of cell proliferation in response to various growth factors such as fibroblast 

growth factor (FGF), hepatocyte growth factor (HGF) (Maher, 1999, Awasthi 

and King, 2000), and cytokines such as granulocyte colony stimulated factor 

(GCSF) or IL-2 and IL-7 (Rausch and Marshall, 1999, Crawley et al., 1997), and 

can induce DNA synthesis and proliferation in response to GPCRs, through 

calcium mobilisation and PKC activation (Clerk et al., 1998, Dehez et al., 2001). 
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Therefore, p38 could induce DNA damage indirectly via cell cycle stimulation 

similar to RAS.  

Equally, mTOR is an inducer of cell growth, and responds to multiple growth 

factors. Short term glucose stimulation of rat islet cells induces DNA synthesis 

and cell proliferation (Kwon et al., 2004), indicating that mTOR may induce DNA 

damage via stimulating synthesis. Interestingly, chronic glucose stimulation 

induces increased DNA synthesis, but reduces the number of cells in G2/M 

phase, indicative of S-phase block (Kwon et al., 2006), which is highly 

consistent with the indirect induction of DNA damage through rapid synthesis. 

Whether this is also true in human fibroblasts remains to be seen.  

Lastly NF-κB is also implicated in cell cycle control. Importantly, p65 

overexpression stimulates increased cyclin D1 (Guttridge et al., 1999), and 

although the presence of a similar ΔIκBα super repressor used in this 

experiment was found not to affect a host of factors in serum stimulated MEFs, 

including cyclin E, cyclin D2, cyclin D3, CDK2, p15, p16, p27 and p21 (Guttridge 

et al., 1999), it did delay and reduce the expression of cyclin D1 (Hinz et al., 

1999). As a result, ΔIκBα inhibits pRb phosphorylation, entry into S-phase and 

DNA synthesis, and reduces cell growth and proliferation (Guttridge et al., 

1999). NF-κB also induces transcription of the proto-oncogene c-myc (La Rosa 

et al., 1994), suggesting that it could also induce DNA damage by stimulating 

cell cycle. 

Therefore, all three proteins could potentially induce DNA damage indirectly via 

stimulating synthesis. Additionally, all three proteins have another function 

which may also lead to an apparent increase in bystander damage, via the 

inhibition of apoptosis in damaged cells. The important role of NF-κB in cell 

survival has been discussed in the introduction. mTOR is also important in cell 

survival in response to stress (Hung et al., 2012), and growth factor withdrawal 

(Edinger and Thompson, 2002), whilst p38 is also important in survival of 

oxidative stress, and necessary for activation of the p70-S6K downstream of an 

mTOR related survival pathway (Gutierrez-Uzquiza et al., 2012). This latter 

observation is also an indication of the interconnectedness of these pathways, 

which may explain why they are all necessary for the bystander effect, and 

cannot induce it independently of each other.  
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Another study examining the bystander effect of oncogene induced senescent 

cells found that, whilst medium from these senescent cells was sufficient to 

induce the bystander effect, addition of Bay 11-7082 to the medium after it was 

removed from the senescent cells was not sufficient to reduce it (Acosta et al., 

2013). Consistent with the results shown here, this suggests that NF-κB 

signalling is not important in bystander cells, although this may reflect 

differences in cell type or stimulus. Also the study tested for BrdU incorporation 

rather than number of DNA damage foci, so potentially DNA damage could 

have been increased in these cells, but its anti-growth effects were offset by the 

pro-cell cycle effects of NF-κB, discussed previously in section 5.5.1 (Guttridge 

et al., 1999, Hinz et al., 1999, La Rosa et al., 1994). However, this seems 

unlikely given the high sensitivity of cell cycle arrest to DNA damage. Important 

further work will involve examining the bystander effect of oncogene induced 

senescence in MRC5 fibroblasts, and secondly co-transducing fibroblasts with 

ΔIκBα and mCherry-53BP1 to examine the importance of NF-κB in bystander 

cells in our system.  

Notably, the p38 inhibitor SB202190 also had very little effect on the bystander 

effect of oncogene induced senescent cells when added to the medium after 

being removed from senescent cells (Acosta et al., 2013), suggesting similar 

mechanism to that of NF-κB. However, in the Appendix data from Glyn Nelson 

showed a significant increase in phospho-p38 in bystander cells, indicating that 

it may also play a role in receiving and amplifying the bystander signal (Nelson 

et al., 2012). The mTORC1 inhibitor Rapamycin dramatically reduced the 

growth rate of bystander cells, but rapamycin is a potent cell cycle inhibitor 

(Fingar et al., 2004), and would therefore be expected to slow cell cycle 

regardless of the bystander effect. Further work, will involve specifically 

inhibiting NF-κB, p38 and mTOR specifically in the bystander cells (and 

senescent cells for the latter two) and examining whether this reduces the 

bystander effect.  

 

 

5.5.2 Reactive Oxygen Species in the Bystander Effect 
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Notably although the pro survival/proliferation roles of p38, NF-κB and mTOR 

may be important in the bystander effect, their pathways have also been 

implicated in the production of mutagens, specifically reactive oxygen species.  

Here, for the first time ROS are shown to be necessary for the senescent cell 

bystander effect, as the addition of superoxide dismutase and catalase 

antioxidant enzymes completely abrogates both the increase in focus formation 

and number of foci per nucleus at the time points measured. Neutralisation of 

ROS appears to have little effect on the small foci, which is not surprising when 

considering that the numbers of small foci are not significantly changed in 

bystander cells compared to controls, and therefore are unlikely to be affected 

by alterations in bystander signalling.  

A previous study demonstrated that ROS were important in maintaining the 

senescence growth arrest by producing short lived foci which would temporarily 

activate the DNA damage response until the damage was repaired, only to be 

replaced by another lesion elsewhere (Passos et al., 2010). This also indicates, 

as discussed previously, that the large foci are not all representative of 

telomeric persistent foci, which likely forms a small subgroup of these. Thus, it 

is also not surprising that antioxidants increased the average focus lifespan of 

foci, because ROS generate short lived foci, and removing these foci will 

therefore cause the average lifespan to increase. However, although these data 

indicate that this effect is occurring, there is also some evidence that 

antioxidants are actually increasing the lifespan of the longer lived foci. 

Importantly, there is evidence that cells regulate their DNA damage response 

and repair machinery according to the level of ROS within a cell independently 

of the induction of damage (Guo et al., 2010). Thus, although less damage may 

occur as a result of antioxidants, any unavoided damage is likely to persist for 

longer. 

It should be noted that all inhibitors were dissolved in DMSO which is a mild 

antioxidant. However, at the concentration used, DMSO did not alter the 

bystander effect (Figure 5.1). Unlike the antioxidant enzymes used, DMSO can 

cross cell membranes and has therefore more potential to neutralise ROS 

inside senescent cells; however, the high concentrations of the antioxidant 
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enzymes and the low concentration of DMSO used are more than sufficient to 

explain this discrepancy.    

These data provide a strong argument that ROS are necessary for the induction 

of the DDR in bystander cells. Notably, the results do not necessarily implicate 

that ROS are necessary to induce senescence in bystander cells, which could 

result from damage independent processes as described in the introduction, 

only that they are necessary to activate the DDR. However, there is also 

substantial evidence that ROS are involved in both the induction and 

maintenance of senescence (Passos et al., 2010). 

What these data describe is that ROS are necessary for senescent cells to 

induce a DDR in bystander cells. Notably the antioxidant enzymes are too large 

to be efficiently transported into the cells, and therefore cannot directly 

neutralise intracellular ROS. Similar to the use of the inhibitors discussed 

above, the antioxidant enzymes could be affecting the ROS levels in the 

senescent inducer cells, the bystander cells, both, or neither. It is known that 

hydrogen peroxide can cross cell membranes (Antunes and Cadenas, 2000). 

Therefore, it is possible that senescent cells produce it internally and the 

molecule crosses the membrane where it is detoxified by the antioxidants 

before it can affect the bystander cells. This short half-life of superoxide will 

generally prevent its externalisation, when produced internally. Alternatively, 

NADPH oxidase enzymes in the membranes of senescent cells could be 

generating superoxide, and therefore hydrogen peroxide, straight into the 

medium (Chen et al., 2009). Multiple studies have implicated a role for NADPH 

oxidases in accelerating replicative senescence (Lener et al., 2009), and 

inducing senescence in response to RAS (Weyemi et al., 2012, Kodama et al., 

2013), and other stimuli (Hannken et al., 1998, Shiose et al., 2001), including 

resveratrol (Schilder et al., 2009). However, there is little evidence that NADPH 

oxidase activity actually remains upregulated in senescent cells. One study in 

HUVECs found that the mRNA levels of several Nox genes, and the relative 

Nox4 activity, were reduced in senescent cells compared to proliferating 

controls (Lener et al., 2009). If this is also true in fibroblasts then it is unlikely 

that NADPH oxidase enzymes play a role in the bystander effect, which would 

indicate that the relevant ROS produced by senescent cells are mainly internal 

and result from the by-product of metabolism, particularly the mitochondrial 
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electron transport chain, which is known to be dysfunctional in senescent cells 

(Passos et al., 2006, Passos et al., 2007, Moiseeva et al., 2009, Passos et al., 

2010).  

Both superoxide dismutase and catalase antioxidant enzymes were added to 

the medium. However, it is unlikely that superoxide generated within senescent 

cells escapes into the medium due to the short half-life of the anion. The 

importance of SOD will therefore depend on the activity of membrane-bound 

NADPH oxidases in fibroblasts which is yet to be established. It would have 

been interesting to add each of the antioxidant enzymes separately and 

observe the changes to the bystander effect. Notably, the addition of SOD or 

catalase alone were both sufficient to inhibit the RIBE (Lyng et al., 2006), 

suggesting that both hydrogen peroxide and superoxide may be important, but 

this cannot rule out that superoxide is important due to its conversion into 

hydrogen peroxide. 

The detoxification of hydrogen peroxide by catalase is likely to be much more 

important in preventing the bystander effect. Potentially the ROS could cross 

the membranes of bystander cells and oxidise the DNA through the production 

of more reactive species generated by the Fenton reaction (Imlay et al., 1988). 

However, there is also evidence that membrane composition, particularly 

aquaporin (Bienert et al., 2007), and ergosterol (Bienert et al., 2006) levels 

affect the permeability of membranes to hydrogen peroxide. Thus potentially 

hydrogen peroxide could oxidise components of the membrane and induce 

bystander signalling from there.  

It is important to remember that although most early research into ROS 

regarded them exclusively as inducers of damage, further work has shown them 

to be highly important signalling molecules (D'Autreaux and Toledano, 2007). 

Thus, although NF-κB, p38 and mTOR may induce a DDR in bystander cells via 

the production of ROS, it is also possible that ROS induce a bystander effect via 

the induction of NF-κB, p38 and mTOR. 

One study demonstrated that hydrogen peroxide activated p38, which then 

induced expression of several antioxidant enzymes (Gutierrez-Uzquiza et al., 

2012). They suggested that this was a pro-survival mechanism, by which p38 

prevented apoptosis. Thus, p38 could then induce senescence as it does in 



 

143 
 

response to RAS, by inducing the p16-pRb pathway independent of damage 

(Brookes et al., 2002, Deng et al., 2004). It is more difficult to understand how 

this pathway might cause hydrogen peroxide to induce a DDR, as is described 

here. Notably, this phenomenon runs in stark contradiction to another study 

showing that p38 increases ROS levels and creates a positive feedback loop 

which includes activation of the DDR (Passos et al., 2010). Plausibly, the 

upregulation of antioxidant enzymes by p38 is a response to supraphysiological 

levels of hydrogen peroxide between 0.1-1mM, which induce abnormal 

responses. It should be noted that p38 is a hub molecule and likely has multiple 

different effects depending on the cellular milieu.  

There is also significant evidence that hydrogen peroxide can activate the 

PI3K/TOR pathway (Radisavljevic and Gonzalez-Flecha, 2004, Bae et al., 1999, 

Huang et al., 2002), as well as Akt in response to growth factor stimulation (Liu 

et al., 2006a). Additionally, mTOR regulates oxygen consumption and oxidative 

capacity of mitochondria (Schieke et al., 2006), and activating and inhibiting 

mTOR increases and decreases ROS levels respectively (Kim et al., 2005, 

Tunon et al., 2003). Thus, similar to p38 mTOR could also be involved in a 

positive feedback loop with reactive oxygen species.  

As described in the introduction, the relationship between NF-κB and reactive 

oxygen species is complex. Depending on conditions within the cell NF-κB can 

either inhibit (Djavaheri-Mergny et al., 2004, Jones et al., 1997, Rojo et al., 

2004, Schreiber et al., 2006, Xia et al., 1996), or induce (Chopra et al., 1992, 

Anrather et al., 2006, Deng et al., 2003, Inoue and Tanabe, 1998) ROS 

production, and equally ROS can both activate (Schieven et al., 1993, 

Schoonbroodt et al., 2000, Takada et al., 2003, Kamata et al., 2002, Li and 

Engelhardt, 2006), or inhibit NF-κB (Panopoulos et al., 2005, Reynaert et al., 

2006, Wu et al., 2009). 

Potentially p38, mTOR, NF-κB and ROS could all be involved in a network of 

positive feedback activating the DDR through a combination of direct induction 

of DNA damage through ROS, and inducing DNA replication through the other 

components. Notably, there is even evidence that ROS can increase the rate of 

DNA replication, indirectly contributing to DNA damage (Weyemi et al., 2012). 

 



 

144 
 

5.5.3 Gap Junctions, ROS and Inflammation 

 

The last factor that was shown to be necessary for the bystander effect was gap 

junction mediated transfer. When an inhibitor of gap junction mediated transfer 

is added alongside antioxidants, there is no combinatorial effect (Figure 5.5). 

Notably, both treatments were sufficient to abrogate the bystander effect alone, 

and therefore the lack of combinatorial effect demonstrates that both treatments 

are specifically inhibiting the bystander mechanism. Additionally, both pathways 

may be regulating the same processes. Octanol may reduce the transfer of 

ROS, or simply the production of ROS in senescent cells, possibly through the 

inhibition of the same signals via which the extracellular antioxidant enzymes 

worked. However, it should be noted with caution that despite the potent 

inhibition of increased number of foci at later timepoints (Figure 4.8), at early 

time points octanol did not abrogate the increase in focus formation (Figure 

4.7), whereas the extracellular antioxidants did, suggesting that the mechanism 

is not entirely the same, although this does not contradict a role of gap junction 

mediated transfer in regulating the levels of intracellular ROS in senescent cells.     

The importance of gap junctions only at later time points could reflect the 

increased confluency of the cells. Alternatively, the increase in foci found in 

bystander cells at later time points of co-culture may result from a threshold 

effect that requires both ROS secretion and passage through gap junctions. 

Potentially, the secreted pathway in sub-confluent conditions is enough to 

stimulate the increase in focus formation, but not enough to overwhelm the 

repair machinery and increase the number of foci per cell. At confluency the 

additional passage of ROS through gap junctions increases the level of damage 

and the number of foci begins to increase in bystander cells. This hypothesis 

could be tested at early time points by observing the rate of focus formation in 

bystander cells at confluency in the presence of octanol. If they are increased, it 

will suggest that bystander induced damage, like senescence itself, is a 

threshold effect. Speculatively, the oxidation of the cell membrane could induce 

death receptors, tyrosine kinases and transient receptor protein (TRP) 

channels, which could potentiate the ROS levels within the cell, and induce 

other cellular changes such as the activation of JNK and mitochondrial 
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dysfunction (Morgan et al., 2007), whilst gap junctions could allow a more direct 

passage of ROS from senescent to bystander cells. 

Similar to the response to oxidative stress or oncogenic activation, cells 

respond to inflammatory signals by closing gap junctions. IL-α, Il-1β, TNF-α and 

LPS all instigate the closure of gap junctions (Hu and Xie, 1994, van Rijen et al., 

1998), and the connexin43 promoter does contain a κB element (Echetebu et 

al., 1999). However, there is evidence that although senescent cells have fewer 

gap junctions, they do not downregulate them in response to stimuli such as 

EGF, as young cells do (Xie and Hu, 1994). Thus, senescent cells may be 

forced to transmit signals that healthy replicating cells would not.  

As described in the previous chapter, gap junctions not only propagate the 

inflammatory or oxidative signal; overexpression of connexins can protect 

against various forms of cellular stress (Lin et al., 2003), whilst their inhibition 

induces increased apoptosis and inflammation following ischemic brain injury in 

mice (Nakase et al., 2004). Thus, it should be noted that gap junctions do retain 

some function even under stressful and inflammatory conditions. 

Consistently, the RIBE is also dependent on gap junctions, without which the 

induction of damage and cell death did not occur in several studies (Azzam et 

al., 1998, Azzam et al., 2001). In both humans and mice, resistance to 

bystander induced damage does not correlate with a healthy phenome, which 

includes increased genomic instability and tumour formation (Mothersill et al., 

1999, Mothersill et al., 2001). Therefore, it is likely that the bystander effect 

exists for a reason rather than as a result of ineffective inhibition. The closure of 

gap junctions during senescence, inflammation and oxidative stress is then 

perhaps a mechanism to prevent a necessary signal from being too strong.  

 

5.5.4 Stimulating Senescent Cells with Inflammatory Cytokines Affects the 

Bystander Effect 

 

In this study senescent and control cells were stimulated with TNF-α, to observe 

if this had any effect on DNA damage, as predicted by the positive feedback 

loops described in the introduction. Notably, this is not the same as 
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overexpressing a subunit of NF-κB for two main reasons. Firstly, the stimulation, 

although at supraphysiological levels, is withdrawn; secondly TNF-α stimulation 

is a potent activator of canonical NF-κB signalling, but will still have effects 

outside the activation of this transcription factor, such as the activation of the 

inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) through p38 and JNK 

(Furusu et al., 2007).   

Interestingly, at the two early time points there was little tendency of TNF-α pre-

stimulation to have any effect on the number of foci in bystander cells. It was 

only at the latest time point, by which time it was initially hypothesised that any 

effect of stimulation would have dissipated, that the effect became observable 

(Figure 5.11), whereas it never occurred in stimulated controls. Thus, rather 

than a transient increase in damage from a temporary activation of NF-κB 

signalling, this suggests that TNF-α stimulation of senescent cells has a 

gradually occurring but permanent effect on senescent cells, much like the 

senescent phenotype itself. However, it cannot be ruled out that absence of any 

effect at the earliest time point was just a result of the level of noise, from the 

recent plating and decreased time for intercellular communication which helps 

produce a more homogenous population. Consistently, the number of cells 

examined at the earliest time point was lower than subsequent measurements, 

although each cell was examined in more detail over a period of twelve hours, 

rather than a single measurement per cell.  

It would be interesting to see if pre-stimulation increases the early induction of 

focus formation seen in bystander cells. Potentially, stimulation does increase 

focus formation early on, but similar to the unstimulated bystander effect, the 

cell tolerates it by increasing repair. Thus, stimulation could still instigate a 

transient effect on senescent cells, with a delayed manifestation once cells 

receive chance hits to easily damaged  genomic regions such as telomeres.  

The results shown here are too preliminary for a detailed discussion of how 

TNF-α might induce damage in bystander cells, except with an outlook to further 

research. The role of NF-κB in inducing DNA damage is still controversial, and 

is likely dependent on many factors. However, there are multiple mechanisms 

by which NF-κB could potentially induce DNA damage, and reciprocally DNA 
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damage induces NF-κB. Thus, the idea of a positive feedback loop between 

NF-κB and DNA damage is worth further investigation.  

Importantly, an early study demonstrated that repeated stimulation of fibroblasts 

with TNF-α or IL-1α accelerated the induction of replicative senescence in these 

cells in a process dependent on ROS (Dumont et al., 2000a). This is highly 

consistent with the idea that TNF-α stimulates the production of ROS through 

NF-κB, which then induces DNA damage and senescence. Equally, the 

additional bystander effect shown here was dependent on ROS, implicating a 

similar mechanism.  

If there is no positive feedback and the effect is not transient, then it might be 

worth investigating NF-κB oscillations in senescent cells. Potentially, IκBα, and 

the other inhibitors A20 and CYLD could be inhibited or deregulated preventing 

the normal dampening of oscillations and maintaining a higher level of NF-κB in 

senescent cells, as is shown here and elsewhere (Chien et al., 2011, Freund et 

al., 2011). 

It is still too early to know for sure whether TNF-α stimulation increases DNA 

damage in senescent cells, as the data were bordering on significance. If this is 

found not to be the case, then it is inconsistent with the proposed positive 

feedback loop which should also increase DNA damage in senescent cells. 

However, the senescent cells could be more resistant to DNA damage. 

Senescent cells have increased levels of heterochromatin (Narita et al., 2003, 

Braig and Schmitt, 2006), which can be resistant to damage (Yan et al., 2011). 

Alternatively, senescent cells could have a defective DDR, thus preventing foci 

from forming at sites of damage, which could also be the result of 

heterochromatisation (Kim et al., 2007, Karagiannis et al., 2007, Di Micco et al., 

2011). 

A recent study suggests that increased NF-κB related inflammatory signalling 

increases the level of DNA damage and ROS levels within senescent cells (Jurk 

et al., unpublished). They used p50 knockout mice, which increased 

inflammatory signalling by preventing the inhibitory function of p50 homodimers 

including the binding of HDAC1 (Elsharkawy et al., 2010, Oakley et al., 2005), 

although it also disrupts p65-p50 heterodimer induced canonical NF-κB 

signalling. Consistent with this study, the inhibition of p38 reduced ROS levels 
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in senescent cells, but had markedly reduced effect in p50 knockout cells, 

suggesting that p38 induces this function through NF-κB. Oppositely, inhibition 

of COX-2 reduced the levels of ROS and DDR only in the p50 knockdown cells, 

suggesting that it has little role in the normal senescent phenotype, but is likely 

to have a prominent role in the increased inflammatory phenotype of senescent 

cells with stimulated NF-κB signalling, and definitely merits further research to 

elucidate whether COX-2 inhibition would reduce the increased bystander effect 

of TNF-α stimulated senescent cells to either unstimulated senescent or control 

levels.  

Importantly, the same study uses irradiated cells to examine the bystander 

effect in primary mouse adult ear fibroblasts (MAFs) shows that p50 knockout 

senescent cells have an increased bystander effect compared to wildtype 

senescent cells, which is consistent with the idea shown here that upregulated 

NF-κB signalling can increase the bystander effect.  

Stimulation of senescent cells with IL-6 does not mimic the effects of TNF-α on 

bystander cells. This is not altogether surprising because, as described in the 

introduction TNF-α and IL-6 activate very different pathways. TNF-α potently 

activates canonical NF-κB signalling, whilst IL-6 activates mainly the JAK/STAT 

pathway as well Ras, ERK, JNK, p38 and PI3K/Akt. 

What is surprising is that pre-stimulation with IL-6 not only does not increase the 

bystander effect as does TNF-α, but also has a tendency to decrease it, 

although this is not significant (Figure 5.15). It cannot be ruled out that this was 

down to experimental error, as the repeats were not entirely consistent.  

IL-6 has been well established as a pro-inflammatory cytokine, and its role in 

lipid oxidation and lipolysis (Petersen et al., 2005) indicate its potential to induce 

damage. Additionally, STAT3 signalling inhibits apoptosis and activates cell 

cycle (Shi et al., 2002), activating a highly overlapping repertoire of genes with 

NF-κB (Grivennikov and Karin, 2010). Indeed, a recent study has identified the 

importance of STAT3 signalling in maintaining constitutively active NF-κB, 

through the hyperacetylation of p65 which inhibits the binding of IκB (Lee et al., 

2009). The study suggested that cancer cells would primarily activate NF-κB 

through the IKK complex mediated by cytokines such as TNF-α which induce 

canonical signalling, then NF-κB would upregulate IL-6 and activate STAT3, 
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which had been shown to induce cancer development (Naugler et al., 2007), 

causing NF-κB to become constitutively active. Thus, this study suggests that 

TNF-α and IL-6 should co-operate strongly to induce a more potent and long 

lasting inflammatory signal. Other studies reinforce this idea, suggesting that 

STAT3 can bind cytoplasmic NF-κB, displace IκB, and allow NF-κB to enter the 

nucleus in the absence of IKK signalling (Yang et al., 2007). 

However, there is accumulating evidence for an anti-inflammatory role of IL-6 as 

well. Some studies have suggested a role for IL-6 in the inhibition of TNF-α 

(Petersen and Pedersen, 2005), whilst others have shown that it stimulates 

production of both IL-1ra (IL-1 receptor antagonist) and IL-10 (Pedersen, 2007). 

The latter is a potent inhibitor of IL-1α, IL-1β and TNF-α as well as the 

chemokines IL-8 and macrophage inflammatory protein α (MIPα). Some studies 

have suggested that there are two types of IL-6 signalling: If IL-6 is bound to a 

secreted form of its receptor IL-6R which then binds membrane bound gp130 

proteins, then the resultant complex induces trans-signalling which is pro-

inflammatory. Inhibition of trans-signalling only reduces inflammation and 

autoimmune disease (Atreya et al., 2000, Nowell et al., 2003). Contrarily, if IL-6 

binds membrane bound IL-6R, this initiates classical signalling, which is thought 

to be mostly anti-inflammatory and regenerative (Becker et al., 2004, 

Barkhausen et al., 2011), although notably there are some inconsistencies 

(Malchow et al., 2011). Thus, as cells were only stimulated with IL-6, and not IL-

6R, it might explain why the result was anti-inflammatory. Interestingly, not all 

cell types express membrane bound IL-6R, which makes them incapable of 

classical signalling. Synovial fibroblasts did not respond to IL-6 alone (Mihara et 

al., 1995), but dermal fibroblasts had a slight but significant response (Mihara et 

al., 1996), although both cell types responded significantly more to IL-6 and IL-

6R combined. Notably, in the latter case trans-signalling also had anti-

inflammatory effects, repressing TNF-α and IL-1β (Mihara et al., 1996).  

Clearly, there is much about IL-6 which is still not understood, but this evidence 

does make a case for the slight non-significant decrease in the bystander effect 

observed in these data, through its repression of the pathways such as TNF-α 

which are shown to increase the bystander effect.  
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Interestingly, TNF-α stimulation also inhibits IL-6 mediated STAT3 activation, 

partially through synthesis of SOCS3 and activation of p38 MAPK (Bode et al., 

1999). Additionally, NF-κB may also inhibit STAT3 binding to some promoters, 

although it can also act as a co-activator (Bode et al., 2001a, Zhang and Fuller, 

1997). Therefore, it is likely that the bulk of IL-6 inhibition by TNF-α results from 

NF-κB independent pathways such as via SOCS3. This is consistent with the 

data shown here, that IL-6 has a tendency to reduce the effect of TNF-α, but the 

latter appears to be dominant over the former (Figure 5.16).  
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6 Discussion 

 

6.1 The Senescent Cell Bystander Effect and Signalling Pathways 

 

These results demonstrate for the first time that senescent cells are capable of 

emitting a signal which induces a DNA damage response in healthy replicating 

cells. Important previous studies have shown that senescent cells induce cell 

growth of preneoplastic cells, and indicate that this may have resulted from their 

transformation, and thus would most likely result from DNA damage (Bavik et 

al., 2006, Krtolica et al., 2001, Liu and Hornsby, 2007). However, they observed 

no similar effect in healthy cells. Notably, the amount of cell death induced by 

irradiated cells is much greater in immortalised pre-neoplastic cells than in 

normal cells. Experiments using medium from γ-irradiated cells often showed no 

effect on healthy fibroblasts (Mothersill et al., 2004), but significant cell death in 

immortalised cells. When our data are combined with these previous 

experiments it suggests that healthy cells are not immune to the induction of 

damage, but that they are better at responding to it.  

The data presented here suggest that although the induction of damage is 

increased in bystander cells after very short co-culture periods, these cells are 

repairing the damage very quickly and the number of foci per cell does not 

begin to increase until the length of co-culture is extended. Eventually however, 

the DNA becomes damaged in places that are difficult to repair. Recent 

evidence inserting telomeric DNA into the genome suggests that some feature 

of the sequence inhibits repair (Fumagalli et al., 2012), which would most likely 

have evolved to prevent chromosomal fusions in the event of uncapping. 

Therefore, it is possible that the increase in DNA damage foci in bystander cells 

reflects damage that has occurred at a telomere and cannot be removed, 

although it is also possible that this reflects a detiorating cellular phenotype due 

to increased levels of non-telomeric damage from extended co-culture.  

The results of this thesis suggest that the bystander effect is dependent on the 

production of reactive oxygen species, NF-κB, p38 and mTOR, which is highly 

consistent with previous research. The necessity of each of these molecules 

suggests that they are all dependent on each other, and therefore are likely to 



 

152 
 

all form part of an interacting network. A host of previous studies have 

suggested that NF-κB, p38 and mTOR are likely to positively regulate both each 

other and the production of reactive oxygen species. Importantly, ROS are not 

necessarily the end point of these pathways, and a host of evidence suggests 

that ROS function as signalling molecules which are also capable of activating 

p38, mTOR and NF-κB. Thus, the bystander effect could reflect a combination 

of the direct damage from ROS as well as the indirect effects of these other 

molecules which make the DNA more likely to be damaged, through replication 

or other independent pathways.  

Since the publication of our work into the bystander effect on replicatively 

senescent cells, there has been another much more detailed experiment 

demonstrating the bystander effect of oncogene induced senescent cells by 

Acosta et al. (2013). Although this has been referred to repeatedly throughout 

this thesis, it would not be complete without a more in depth discussion of 

similarities and differences between the two bystander phenotypes. 

Importantly, they found there was an increase in 8-oxoG in bystander cells, 

which is a marker of DNA oxidation, which suggests, as discussed previously 

that 53BP1 foci are representative of actual oxidative damage. Additionally, they 

demonstrate the induction of senescence in bystander cells using SA-β gal as 

well as the additional markers p21, p16 and IL-8. Thus, in these respects the 

two phenotypes appear very similar.  

The main difference is that the oncogene induced senescent cell bystander 

effect is much more potent than that produced by replicatively senescent cells. 

This may reflect that, in their work, the inducer cells were undergoing 

senescence, whilst the replicatively senescent cells used here had been 

senescent for months. However, the data shown here from cells undergoing 

irradiation induced senescence suggests that this should have little impact on 

the bystander effect, or even reduce it. Importantly, there are several 

differences between oncogene induced senescent cells and both replicatively 

and irradiated senescent cells, which may explain this difference: although the 

SASPs are qualitatively very similar, there are several factors which are 

expressed at significantly higher levels in oncogene induced cells. These 

include IL-7, GM-CSF, MIP-1α and GRO-α, which are all secreted in high levels 
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in replicatively senescent cells, and even higher levels in RAS induced 

senescent cells, suggesting that they may be important in the bystander effect, 

and potentially causal in amplifying the bystander signal from oncogene induced 

senescent cells. Interestingly IL-1β, which is not upregulated in response to 

radiation or replicative senescence, is highly upregulated in oncogene induced 

senescence, and is a potent inducer of NF-κB signalling.  

Fittingly, this suggests that IL-1β is not necessary for the bystander effect, but 

its stimulation and likely the subsequent activation of NF-κB might increase the 

bystander effect, which is concordant with the data described here suggesting 

that TNF-α stimulation can increase the bystander effect.  

It has been suggested that the reason oncogene induced cells induce a more 

potent SASP, might be at least partially due to repression of p53, as its 

inhibition prior to induction of senescence produced a SASP similar to that of 

RAS expressing cells. However, knockdown of p53 in cells prior to RAS 

expression produced the most potent SASP of all suggesting there are other 

factors involved. Thus far, no one has compared ROS levels between oncogene 

induced and replicatively senescent cells, which should be considered important 

further work.  

Using unbiased quantitative proteomics Acosta et al (2013) compared the 

secretory profiles between RAS expressing and non-expressing cells, and 

consistent with previous studies showed upregulation of IL-6 and IL-8 amongst 

others. Interestingly, they also identified TGF-β, which a previous study had 

shown to remain fairly constant after induction of senescence (Coppe et al., 

2008). Although Coppe et al. (2008) did not state at what point after oncogene 

induced senescence that they profiled the cells, it can be assumed that if they 

followed the same protocol as the irradiated cells that they allowed the cells to 

become fully senescent. Perhaps TGF-β is mainly involved in the induction of 

senescence, at which point it is downregulated again. If it is also specific to 

oncogene induced senescence it could help explain the difference in potency. 

The addition of inhibitors against TGF-β R1, and also VEGF-R2 to cells cultured 

in the medium from RAS expressing cells, caused a significant increase in 

growth of bystander cells over DMSO, whilst having little effect on RAS 

expressing cells (Acosta et al., 2013). This indicated that the arrest induced by 
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the medium had been inhibited, and thus implicated TGF-β and VEGF in the 

bystander effect. Notably, even the most successful inhibitors did not restore 

growth to control level suggesting that senescent cells can still induce a 

bystander effect in the absence of TGF-β, consistent with the idea that TGF-β 

might be partially responsible for the amplification of the bystander effect in 

RAS induced senescing cells.  

The fact that Acosta et al. (2013) found no effect when they added p38 and NF-

κB inhibitors to the medium after it had been removed from senescent cells is 

consistent with these data showing that NF-κB is mainly important in senescent 

cells, and suggests that the signal transmitted to the bystander cells will be the 

products of these pathways, principally the SASP and ROS. This is inconsistent 

with the idea that NF-κB acts within the bystander cells to induce damage by 

stimulating DNA replication and cell cycle, though this could still occur indirectly 

via the SASP, ROS or other NF-κB dependent signals from the senescent cells. 

However, the growth curves of bystander cells co-cultured with RAS expressing 

cells are not significantly faster than controls (Acosta et al., 2013), suggesting 

that if the pro-cell cycle signals of these molecules does play a role in the 

induction of damage and senescence, that it is minor.  

 

6.2 The Implications of the Bystander Effect 

 

Senescent cells have long been hypothesised to be involved in the ageing 

process, and recent studies have provided clear evidence that they play a 

causal role in age related diseases. However, prior to this work the main 

hypothesis as to the mechanism involved was through the autonomous 

depletion of functional cells. This had been thought to result from stem cell 

exhaustion as these cells are responsible for replacing large numbers of cells in 

multiple tissues, and their loss can be seriously detrimental to tissue function. 

However, there is little evidence that stem cells deplete with age. Whilst they 

decline in functionality and differentiation potential, this does not appear related 

to the autonomous depletion of stem cell numbers. In fact, there is a wealth of 

evidence that stem cell function is maintained at least partially non-

autonomously by the niche environment (Spradling et al., 2001).  
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Therefore, if senescence is to play a role in the ageing process it must happen 

through some other means. Consistent, with the various hypotheses that ageing 

is the result of DNA and molecular damage, the bystander effect shown here 

provides one possible mechanism by which senescent cells could contribute to 

ageing, via the spread of molecular damage. 

It has already been shown that the presence of senescent cells contributes to 

transformation of preneoplastic cells. Here is described both a mechanism by 

which this process could occur, through the induction of DNA damage in 

unstable cells, but also an underlying mechanism by which senescent cells 

could contribute to the ageing process and the accompanying increase in both 

preneoplastic and neoplastic cells that are responsible for the cancers of old 

age.  

Additionally, through the induction and spread of the senescent phenotype, 

senescent cells could contribute to ageing via the induction of chronic 

inflammation, consistent with more recent hypotheses on the ageing process, or 

potentially through the induction of mTOR, at least partially consistent with 

programmed based theories of ageing, although notably the primary stimuli 

would result from DNA damage, which is entirely inconsistent.  

Importantly, the potent bystander effect of oncogene induced senescence 

demonstrated by Acosta et al (2013) is diminishing. Although their neighbours 

receive a potent stimulus to senesce, cells >1mm away from the initial stimulus 

were unaffected. We have not tested whether this also true of the replicative 

senescence induced bystander effect; however, its reliance upon gap junction 

mediated transfer suggests that it will also have a limited range. More 

importantly, the medium from the bystander cells from the RAS induced 

senescent cells failed to induce senescence in a group of tertiary bystander 

cells, despite the fact that a large fraction of these secondary cells had become 

senescent. Therefore, although these cells could potentially have a prolongued 

non-autonomous effect on the cells within 1mm distance, because the effect 

dissipates, the RAS induced senescence stimulus has a limited potential to 

influence the ageing process non-autonomously. However, it is important to 

note that the medium from the secondarily senescent cells still slows the growth 

rate of tertiary bystanders, which is highly suggestive of reversible arrest 
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induced by damage. In these experiments, a significant effect on focus 

induction was not observed from medium alone, which suggests that the 

secondarily senescent cells observed by Acosta et al. (2013) still produce a 

relatively potent bystander effect. What remains to be elucidated is whether the 

bystander induced senescence shown here also dissipates. This will have 

important implications for the roles of both oncogene induced and replicatively 

senescent cells in the non-autonomous influence of the ageing process. 

Although speculative, it is unlikely that the bystander effect shown here 

dissipates similarly to that of RAS expressing cells. The secondarily senescent 

cells shown by Acosta et al. (2013) are likely to differ from the primary inducers 

through their reduced levels of RAS expression, which suggests that they were 

induced to senesce via DNA damage, and their SASPs will therefore be similar 

to the replicative and irradiation induced senescent cells studied in this thesis. 

Importantly, the SASP and ROS are necessary to maintain growth arrest, which 

prevents immortalisation and neoplasia. Therefore, it could be expected that the 

bystander effect at least per cell is unlikely to dissipate. However, the high 

numbers of senescent cells used in both these studies suggests that the 

bystander effect is highly likely to dissipate due to the decreasing number of 

senescent cells as you get further away from the initial inducers.  

The real test for the relevance of these in vitro studies, is whether the same 

phenomena also occur in vivo. The initial study by Krtolica et al. (2001), clearly 

identified that injection of preneoplastic cells in the presence of senescent cells 

was more likely to induce tumours in mice than in the presence of young 

replicating cells (Krtolica et al., 2001). In our study we used a 4-hydroxynonenal 

staining, which has been previously shown to be a good marker for in vivo 

senescence (Nelson et al., 2012), to demonstrate that senescent cells had a 

significant degree of clustering, indicative that senescence was not an 

autonomous process and could be spread to neighbouring cells. This was 

reaffirmed by Acosta et al. (2013) using p16 and p21 stainings, and they also 

showed that mouse papillomas and human sessile serrated adenomas had 

large numbers of senescent cells just outside the papilloma, which heavily 

indicated bystander induced senescence in vivo (Acosta et al., 2013).  

These data suggest that the bystander effect is a real phenomenon in vivo, and 

could therefore contribute to both cancer and ageing in living organisms. 
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7 Conclusion 

 

Here is shown for the first time that replicatively senescent cells induce a DNA 

damage response and senescence in bystander cells. It requires cell 

communication through gap junctions and cannot be transmitted by medium 

alone. It is also dependent on reactive oxygen species which may directly 

induce damage in bystander cells. Use of specific inhibitors suggests that 

mTOR, p38 and NF-κB form an interconnected network in which all three 

components are necessary to induce a DNA damage response in bystander 

cells. NF-κB is upregulated in senescent cells and not bystanders, and 

knockdown exclusively in bystander cells is sufficient to abrogate the bystander 

effect, suggesting its importance in signal production over response. Lastly NF-

κB stimulation can significantly increase the bystander effect in a process 

dependent on reactive oxygen species.  

  

  



 

159 
 

8 References 

 

ABOU HASHIEH, I., MATHIEU, S., BESSON, F. & GEROLAMI, A. 1996. Inhibition of gap junction 
intercellular communications of cultured rat hepatocytes by ethanol: role of ethanol 
metabolism. J Hepatol, 24, 360-7. 

ABULAITI, A., FIKARIS, A. J., TSYGANKOVA, O. M. & MEINKOTH, J. L. 2006. Ras induces 
chromosome instability and abrogation of the DNA damage response. Cancer Res, 66, 
10505-12. 

ACOSTA, J. C., BANITO, A., WUESTEFELD, T., GEORGILIS, A., JANICH, P., MORTON, J. P., 
ATHINEOS, D., KANG, T. W., LASITSCHKA, F., ANDRULIS, M., PASCUAL, G., MORRIS, K. 
J., KHAN, S., JIN, H., DHARMALINGAM, G., SNIJDERS, A. P., CARROLL, T., CAPPER, D., 
PRITCHARD, C., INMAN, G. J., LONGERICH, T., SANSOM, O. J., BENITAH, S. A., ZENDER, 
L. & GIL, J. 2013. A complex secretory program orchestrated by the inflammasome 
controls paracrine senescence. Nat Cell Biol. 

ACOSTA, J. C., O'LOGHLEN, A., BANITO, A., GUIJARRO, M. V., AUGERT, A., RAGUZ, S., 
FUMAGALLI, M., DA COSTA, M., BROWN, C., POPOV, N., TAKATSU, Y., MELAMED, J., 
D'ADDA DI FAGAGNA, F., BERNARD, D., HERNANDO, E. & GIL, J. 2008. Chemokine 
signaling via the CXCR2 receptor reinforces senescence. Cell, 133, 1006-18. 

ADAMS, M. M., WANG, B., XIA, Z., MORALES, J. C., LU, X., DONEHOWER, L. A., BOCHAR, D. A., 
ELLEDGE, S. J. & CARPENTER, P. B. 2005. 53BP1 oligomerization is independent of its 
methylation by PRMT1. Cell Cycle, 4, 1854-61. 

ADLER, A. S., SINHA, S., KAWAHARA, T. L., ZHANG, J. Y., SEGAL, E. & CHANG, H. Y. 2007. Motif 
module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev, 
21, 3244-57. 

AHMED, E. K., ROGOWSKA-WRZESINSKA, A., ROEPSTORFF, P., BULTEAU, A. L. & FRIGUET, B. 
2010. Protein modification and replicative senescence of WI-38 human embryonic 
fibroblasts. Aging Cell, 9, 252-72. 

AHN, J. Y., SCHWARZ, J. K., PIWNICA-WORMS, H. & CANMAN, C. E. 2000. Threonine 68 
phosphorylation by ataxia telangiectasia mutated is required for efficient activation of 
Chk2 in response to ionizing radiation. Cancer Res, 60, 5934-6. 

ALCORTA, D. A., XIONG, Y., PHELPS, D., HANNON, G., BEACH, D. & BARRETT, J. C. 1996. 
Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative 
senescence of normal human fibroblasts. Proc Natl Acad Sci U S A, 93, 13742-7. 

ALIMONTI, A., NARDELLA, C., CHEN, Z., CLOHESSY, J. G., CARRACEDO, A., TROTMAN, L. C., 
CHENG, K., VARMEH, S., KOZMA, S. C., THOMAS, G., ROSIVATZ, E., WOSCHOLSKI, R., 
COGNETTI, F., SCHER, H. I. & PANDOLFI, P. P. 2010. A novel type of cellular senescence 
that can be enhanced in mouse models and human tumor xenografts to suppress 
prostate tumorigenesis. J Clin Invest, 120, 681-93. 

ALLSHIRE, R. C., GOSDEN, J. R., CROSS, S. H., CRANSTON, G., ROUT, D., SUGAWARA, N., 
SZOSTAK, J. W., FANTES, P. A. & HASTIE, N. D. 1988. Telomeric repeat from T. 
thermophila cross hybridizes with human telomeres. Nature, 332, 656-9. 

ALLSOPP, R. C., VAZIRI, H., PATTERSON, C., GOLDSTEIN, S., YOUNGLAI, E. V., FUTCHER, A. B., 
GREIDER, C. W. & HARLEY, C. B. 1992. Telomere length predicts replicative capacity of 
human fibroblasts. Proc Natl Acad Sci U S A, 89, 10114-8. 

ANDERSON, L., HENDERSON, C. & ADACHI, Y. 2001. Phosphorylation and rapid relocalization of 
53BP1 to nuclear foci upon DNA damage. Mol Cell Biol, 21, 1719-29. 

ANRATHER, J., RACCHUMI, G. & IADECOLA, C. 2006. NF-kappaB regulates phagocytic NADPH 
oxidase by inducing the expression of gp91phox. J Biol Chem, 281, 5657-67. 

ANTUNES, F. & CADENAS, E. 2000. Estimation of H2O2 gradients across biomembranes. FEBS 
Lett, 475, 121-6. 



 

160 
 

ASHCROFT, G. S., YANG, X., GLICK, A. B., WEINSTEIN, M., LETTERIO, J. L., MIZEL, D. E., ANZANO, 
M., GREENWELL-WILD, T., WAHL, S. M., DENG, C. & ROBERTS, A. B. 1999. Mice lacking 
Smad3 show accelerated wound healing and an impaired local inflammatory response. 
Nature cell biology, 1, 260-6. 

ATADJA, P., WONG, H., VEILLETE, C. & RIABOWOL, K. 1995. Overexpression of cyclin D1 blocks 
proliferation of normal diploid fibroblasts. Exp Cell Res, 217, 205-16. 

ATREYA, R., MUDTER, J., FINOTTO, S., MULLBERG, J., JOSTOCK, T., WIRTZ, S., SCHUTZ, M., 
BARTSCH, B., HOLTMANN, M., BECKER, C., STRAND, D., CZAJA, J., SCHLAAK, J. F., LEHR, 
H. A., AUTSCHBACH, F., SCHURMANN, G., NISHIMOTO, N., YOSHIZAKI, K., ITO, H., 
KISHIMOTO, T., GALLE, P. R., ROSE-JOHN, S. & NEURATH, M. F. 2000. Blockade of 
interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic 
intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat 
Med, 6, 583-8. 

AUTSAVAPROMPORN, N., DE TOLEDO, S. M., LITTLE, J. B., JAY-GERIN, J. P., HARRIS, A. L. & 
AZZAM, E. I. 2011. The role of gap junction communication and oxidative stress in the 
propagation of toxic effects among high-dose alpha-particle-irradiated human cells. 
Radiat Res, 175, 347-57. 

AWASTHI, V. & KING, R. J. 2000. PKC, p42/p44 MAPK, and p38 MAPK are required for HGF-
induced proliferation of H441 cells. Am J Physiol Lung Cell Mol Physiol, 279, L942-9. 

AZARNIA, R., REDDY, S., KMIECIK, T. E., SHALLOWAY, D. & LOEWENSTEIN, W. R. 1988. The 
cellular src gene product regulates junctional cell-to-cell communication. Science, 239, 
398-401. 

AZZAM, E. I., DE TOLEDO, S. M., GOODING, T. & LITTLE, J. B. 1998. Intercellular communication 
is involved in the bystander regulation of gene expression in human cells exposed to 
very low fluences of alpha particles. Radiat Res, 150, 497-504. 

AZZAM, E. I., DE TOLEDO, S. M. & LITTLE, J. B. 2001. Direct evidence for the participation of gap 
junction-mediated intercellular communication in the transmission of damage signals 
from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A, 98, 473-
8. 

AZZAM, E. I., DE TOLEDO, S. M. & LITTLE, J. B. 2003. Expression of CONNEXIN43 is highly 
sensitive to ionizing radiation and other environmental stresses. Cancer Res, 63, 7128-
35. 

AZZAM, E. I., DE TOLEDO, S. M., WAKER, A. J. & LITTLE, J. B. 2000. High and low fluences of 
alpha-particles induce a G1 checkpoint in human diploid fibroblasts. Cancer Res, 60, 
2623-31. 

BACCHETTI, S. & COUNTER, C. 1995. Telomeres and telomerase in human cancer (review). Int J 
Oncol, 7, 423-32. 

BAE, G. U., SEO, D. W., KWON, H. K., LEE, H. Y., HONG, S., LEE, Z. W., HA, K. S., LEE, H. W. & 
HAN, J. W. 1999. Hydrogen peroxide activates p70(S6k) signaling pathway. J Biol Chem, 
274, 32596-602. 

BAGLEY, M. C., DAVIS, T., ROKICKI, M. J., WIDDOWSON, C. S. & KIPLING, D. 2010. Synthesis of 
the highly selective p38 MAPK inhibitor UR-13756 for possible therapeutic use in 
Werner syndrome. Future Med Chem, 2, 193-201. 

BAKER, D. J., WIJSHAKE, T., TCHKONIA, T., LEBRASSEUR, N. K., CHILDS, B. G., VAN DE SLUIS, B., 
KIRKLAND, J. L. & VAN DEURSEN, J. M. 2011. Clearance of p16Ink4a-positive senescent 
cells delays ageing-associated disorders. Nature, 479, 232-6. 

BAKKENIST, C. J. & KASTAN, M. B. 2003. DNA damage activates ATM through intermolecular 
autophosphorylation and dimer dissociation. Nature, 421, 499-506. 

BANIN, S., MOYAL, L., SHIEH, S., TAYA, Y., ANDERSON, C. W., CHESSA, L., SMORODINSKY, N. I., 
PRIVES, C., REISS, Y., SHILOH, Y. & ZIV, Y. 1998. Enhanced phosphorylation of p53 by 
ATM in response to DNA damage. Science, 281, 1674-7. 

BARAK, Y., JUVEN, T., HAFFNER, R. & OREN, M. 1993. mdm2 expression is induced by wild type 
p53 activity. EMBO J, 12, 461-8. 



 

161 
 

BARASCU, A., LE CHALONY, C., PENNARUN, G., GENET, D., IMAM, N., LOPEZ, B. & BERTRAND, P. 
2012. Oxidative stress induces an ATM-independent senescence pathway through p38 
MAPK-mediated lamin B1 accumulation. EMBO J, 31, 1080-94. 

BARBIE, D. A., TAMAYO, P., BOEHM, J. S., KIM, S. Y., MOODY, S. E., DUNN, I. F., SCHINZEL, A. C., 
SANDY, P., MEYLAN, E., SCHOLL, C., FROHLING, S., CHAN, E. M., SOS, M. L., MICHEL, K., 
MERMEL, C., SILVER, S. J., WEIR, B. A., REILING, J. H., SHENG, Q., GUPTA, P. B., 
WADLOW, R. C., LE, H., HOERSCH, S., WITTNER, B. S., RAMASWAMY, S., LIVINGSTON, 
D. M., SABATINI, D. M., MEYERSON, M., THOMAS, R. K., LANDER, E. S., MESIROV, J. P., 
ROOT, D. E., GILLILAND, D. G., JACKS, T. & HAHN, W. C. 2009. Systematic RNA 
interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462, 
108-12. 

BARKHAUSEN, T., TSCHERNIG, T., ROSENSTIEL, P., VAN GRIENSVEN, M., VONBERG, R. P., 
DORSCH, M., MUELLER-HEINE, A., CHALARIS, A., SCHELLER, J., ROSE-JOHN, S., 
SEEGERT, D., KRETTEK, C. & WAETZIG, G. H. 2011. Selective blockade of interleukin-6 
trans-signaling improves survival in a murine polymicrobial sepsis model. Crit Care 
Med, 39, 1407-13. 

BARROS, M. H., BANDY, B., TAHARA, E. B. & KOWALTOWSKI, A. J. 2004. Higher respiratory 
activity decreases mitochondrial reactive oxygen release and increases life span in 
Saccharomyces cerevisiae. J Biol Chem, 279, 49883-8. 

BARTKOVA, J., HOREJSI, Z., KOED, K., KRAMER, A., TORT, F., ZIEGER, K., GULDBERG, P., 
SEHESTED, M., NESLAND, J. M., LUKAS, C., ORNTOFT, T., LUKAS, J. & BARTEK, J. 2005. 
DNA damage response as a candidate anti-cancer barrier in early human 
tumorigenesis. Nature, 434, 864-70. 

BARTKOVA, J., REZAEI, N., LIONTOS, M., KARAKAIDOS, P., KLETSAS, D., ISSAEVA, N., VASSILIOU, 
L. V., KOLETTAS, E., NIFOROU, K., ZOUMPOURLIS, V. C., TAKAOKA, M., NAKAGAWA, H., 
TORT, F., FUGGER, K., JOHANSSON, F., SEHESTED, M., ANDERSEN, C. L., DYRSKJOT, L., 
ORNTOFT, T., LUKAS, J., KITTAS, C., HELLEDAY, T., HALAZONETIS, T. D., BARTEK, J. & 
GORGOULIS, V. G. 2006. Oncogene-induced senescence is part of the tumorigenesis 
barrier imposed by DNA damage checkpoints. Nature, 444, 633-7. 

BATSI, C., MARKOPOULOU, S., VARTHOLOMATOS, G., GEORGIOU, I., KANAVAROS, P., 
GORGOULIS, V. G., MARCU, K. B. & KOLETTAS, E. 2009. Chronic NF-kappaB activation 
delays RasV12-induced premature senescence of human fibroblasts by suppressing the 
DNA damage checkpoint response. Mech Ageing Dev, 130, 409-19. 

BAVIK, C., COLEMAN, I., DEAN, J. P., KNUDSEN, B., PLYMATE, S. & NELSON, P. S. 2006. The gene 
expression program of prostate fibroblast senescence modulates neoplastic epithelial 
cell proliferation through paracrine mechanisms. Cancer Res, 66, 794-802. 

BEAUSEJOUR, C. M., KRTOLICA, A., GALIMI, F., NARITA, M., LOWE, S. W., YASWEN, P. & 
CAMPISI, J. 2003. Reversal of human cellular senescence: roles of the p53 and p16 
pathways. EMBO J, 22, 4212-22. 

BECKER, C., FANTINI, M. C., SCHRAMM, C., LEHR, H. A., WIRTZ, S., NIKOLAEV, A., BURG, J., 
STRAND, S., KIESSLICH, R., HUBER, S., ITO, H., NISHIMOTO, N., YOSHIZAKI, K., 
KISHIMOTO, T., GALLE, P. R., BLESSING, M., ROSE-JOHN, S. & NEURATH, M. F. 2004. 
TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-
signaling. Immunity, 21, 491-501. 

BEG, A. A. & BALTIMORE, D. 1996. An essential role for NF-kappaB in preventing TNF-alpha-
induced cell death. Science, 274, 782-4. 

BEG, A. A., SHA, W. C., BRONSON, R. T., GHOSH, S. & BALTIMORE, D. 1995. Embryonic lethality 
and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature, 
376, 167-70. 

BEKKER-JENSEN, S., LUKAS, C., KITAGAWA, R., MELANDER, F., KASTAN, M. B., BARTEK, J. & 
LUKAS, J. 2006. Spatial organization of the mammalian genome surveillance machinery 
in response to DNA strand breaks. J Cell Biol, 173, 195-206. 



 

162 
 

BEKKER-JENSEN, S., LUKAS, C., MELANDER, F., BARTEK, J. & LUKAS, J. 2005. Dynamic assembly 
and sustained retention of 53BP1 at the sites of DNA damage are controlled by 
Mdc1/NFBD1. J Cell Biol, 170, 201-11. 

BENNETT, D. C. 2008. How to make a melanoma: what do we know of the primary clonal 
events? Pigment Cell Melanoma Res, 21, 27-38. 

BERNARD, D., GOSSELIN, K., MONTE, D., VERCAMER, C., BOUALI, F., POURTIER, A., 
VANDENBUNDER, B. & ABBADIE, C. 2004. Involvement of Rel/nuclear factor-kappaB 
transcription factors in keratinocyte senescence. Cancer Res, 64, 472-81. 

BERNARD, P. & COUTURIER, M. 1992. Cell killing by the F plasmid CcdB protein involves 
poisoning of DNA-topoisomerase II complexes. J Mol Biol, 226, 735-45. 

BEY, E. A., XU, B., BHATTACHARJEE, A., OLDFIELD, C. M., ZHAO, X., LI, Q., SUBBULAKSHMI, V., 
FELDMAN, G. M., WIENTJES, F. B. & CATHCART, M. K. 2004. Protein kinase C delta is 
required for p47phox phosphorylation and translocation in activated human 
monocytes. J Immunol, 173, 5730-8. 

BIENERT, G. P., MOLLER, A. L., KRISTIANSEN, K. A., SCHULZ, A., MOLLER, I. M., SCHJOERRING, J. 
K. & JAHN, T. P. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide 
across membranes. J Biol Chem, 282, 1183-92. 

BIENERT, G. P., SCHJOERRING, J. K. & JAHN, T. P. 2006. Membrane transport of hydrogen 
peroxide. Biochim Biophys Acta, 1758, 994-1003. 

BIGNAMI, M., ROSA, S., FALCONE, G., TATO, F., KATOH, F. & YAMASAKI, H. 1988. Specific viral 
oncogenes cause differential effects on cell-to-cell communication, relevant to the 
suppression of the transformed phenotype by normal cells. Mol Carcinog, 1, 67-75. 

BLACKBURN, E. H. 2000. Telomere states and cell fates. Nature, 408, 53-6. 
BLACKWELL, T. S. & CHRISTMAN, J. W. 1997. The role of nuclear factor-kappa B in cytokine 

gene regulation. Am J Respir Cell Mol Biol, 17, 3-9. 
BLADIER, C., WOLVETANG, E. J., HUTCHINSON, P., DE HAAN, J. B. & KOLA, I. 1997. Response of 

a primary human fibroblast cell line to H2O2: senescence-like growth arrest or 
apoptosis? Cell Growth Differ, 8, 589-98. 

BLAGOSKLONNY, M. V. 2003. Cell senescence and hypermitogenic arrest. EMBO Rep, 4, 358-
62. 

BLAGOSKLONNY, M. V. 2006a. Aging and immortality: quasi-programmed senescence and its 
pharmacologic inhibition. Cell Cycle, 5, 2087-102. 

BLAGOSKLONNY, M. V. 2006b. Cell senescence: hypertrophic arrest beyond the restriction 
point. J Cell Physiol, 209, 592-7. 

BLAGOSKLONNY, M. V. & PARDEE, A. B. 2002. The restriction point of the cell cycle. Cell Cycle, 
1, 103-10. 

BLONSKA, M., YOU, Y., GELEZIUNAS, R. & LIN, X. 2004. Restoration of NF-kappaB activation by 
tumor necrosis factor alpha receptor complex-targeted MEKK3 in receptor-interacting 
protein-deficient cells. Mol Cell Biol, 24, 10757-65. 

BLOW, J. J. & DUTTA, A. 2005. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell 
Biol, 6, 476-86. 

BODE, J. G., FISCHER, R., HAUSSINGER, D., GRAEVE, L., HEINRICH, P. C. & SCHAPER, F. 2001a. 
The inhibitory effect of IL-1 beta on IL-6-induced alpha 2-macroglobulin expression is 
due to activation of NF-kappa B. J Immunol, 167, 1469-81. 

BODE, J. G., LUDWIG, S., FREITAS, C. A., SCHAPER, F., RUHL, M., MELMED, S., HEINRICH, P. C. & 
HAUSSINGER, D. 2001b. The MKK6/p38 mitogen-activated protein kinase pathway is 
capable of inducing SOCS3 gene expression and inhibits IL-6-induced transcription. Biol 
Chem, 382, 1447-53. 

BODE, J. G., NIMMESGERN, A., SCHMITZ, J., SCHAPER, F., SCHMITT, M., FRISCH, W., 
HAUSSINGER, D., HEINRICH, P. C. & GRAEVE, L. 1999. LPS and TNFalpha induce SOCS3 
mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett, 463, 
365-70. 



 

163 
 

BODNAR, A. G., OUELLETTE, M., FROLKIS, M., HOLT, S. E., CHIU, C. P., MORIN, G. B., HARLEY, C. 
B., SHAY, J. W., LICHTSTEINER, S. & WRIGHT, W. E. 1998. Extension of life-span by 
introduction of telomerase into normal human cells. Science, 279, 349-52. 

BONIZZI, G., BEBIEN, M., OTERO, D. C., JOHNSON-VROOM, K. E., CAO, Y., VU, D., JEGGA, A. G., 
ARONOW, B. J., GHOSH, G., RICKERT, R. C. & KARIN, M. 2004. Activation of IKKalpha 
target genes depends on recognition of specific kappaB binding sites by RelB:p52 
dimers. EMBO J, 23, 4202-10. 

BONIZZI, G. & KARIN, M. 2004. The two NF-kappaB activation pathways and their role in innate 
and adaptive immunity. Trends Immunol, 25, 280-8. 

BOUCHER, M. J., JEAN, D., VEZINA, A. & RIVARD, N. 2004. Dual role of MEK/ERK signaling in 
senescence and transformation of intestinal epithelial cells. Am J Physiol Gastrointest 
Liver Physiol, 286, G736-46. 

BOUWMAN, P., ALY, A., ESCANDELL, J. M., PIETERSE, M., BARTKOVA, J., VAN DER GULDEN, H., 
HIDDINGH, S., THANASOULA, M., KULKARNI, A., YANG, Q., HAFFTY, B. G., TOMMISKA, 
J., BLOMQVIST, C., DRAPKIN, R., ADAMS, D. J., NEVANLINNA, H., BARTEK, J., 
TARSOUNAS, M., GANESAN, S. & JONKERS, J. 2010. 53BP1 loss rescues BRCA1 
deficiency and is associated with triple-negative and BRCA-mutated breast cancers. 
Nat Struct Mol Biol, 17, 688-95. 

BRACKEN, A. P., KLEINE-KOHLBRECHER, D., DIETRICH, N., PASINI, D., GARGIULO, G., BEEKMAN, 
C., THEILGAARD-MONCH, K., MINUCCI, S., PORSE, B. T., MARINE, J. C., HANSEN, K. H. & 
HELIN, K. 2007. The Polycomb group proteins bind throughout the INK4A-ARF locus 
and are disassociated in senescent cells. Genes & development, 21, 525-30. 

BRAIG, M., LEE, S., LODDENKEMPER, C., RUDOLPH, C., PETERS, A. H., SCHLEGELBERGER, B., 
STEIN, H., DORKEN, B., JENUWEIN, T. & SCHMITT, C. A. 2005. Oncogene-induced 
senescence as an initial barrier in lymphoma development. Nature, 436, 660-5. 

BRAIG, M. & SCHMITT, C. A. 2006. Oncogene-induced senescence: putting the brakes on tumor 
development. Cancer Res, 66, 2881-4. 

BROCCOLI, D., YOUNG, J. W. & DE LANGE, T. 1995. Telomerase activity in normal and 
malignant hematopoietic cells. Proc Natl Acad Sci U S A, 92, 9082-6. 

BROMBERG, J. F., WRZESZCZYNSKA, M. H., DEVGAN, G., ZHAO, Y., PESTELL, R. G., ALBANESE, C. 
& DARNELL, J. E., JR. 1999. Stat3 as an oncogene. Cell, 98, 295-303. 

BROOKES, S., ROWE, J., GUTIERREZ DEL ARROYO, A., BOND, J. & PETERS, G. 2004. Contribution 
of p16(INK4a) to replicative senescence of human fibroblasts. Exp Cell Res, 298, 549-
59. 

BROOKES, S., ROWE, J., RUAS, M., LLANOS, S., CLARK, P. A., LOMAX, M., JAMES, M. C., 
VATCHEVA, R., BATES, S., VOUSDEN, K. H., PARRY, D., GRUIS, N., SMIT, N., BERGMAN, 
W. & PETERS, G. 2002. INK4a-deficient human diploid fibroblasts are resistant to RAS-
induced senescence. EMBO J, 21, 2936-45. 

BROWN, W. R. 1989. Molecular cloning of human telomeres in yeast. Nature, 338, 774-6. 
BRUNK, U., ERICSSON, J. L., PONTEN, J. & WESTERMARK, B. 1973. Residual bodies and "aging" 

in cultured human glia cells. Effect of entrance into phase 3 and prolonged periods of 
confluence. Exp Cell Res, 79, 1-14. 

BULAVIN, D. V., KOVALSKY, O., HOLLANDER, M. C. & FORNACE, A. J., JR. 2003. Loss of 
oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase 
activation by disruption of Gadd45a. Mol Cell Biol, 23, 3859-71. 

BULAVIN, D. V., PHILLIPS, C., NANNENGA, B., TIMOFEEV, O., DONEHOWER, L. A., ANDERSON, C. 
W., APPELLA, E. & FORNACE, A. J., JR. 2004. Inactivation of the Wip1 phosphatase 
inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the 
p16(Ink4a)-p19(Arf) pathway. Nat Genet, 36, 343-50. 

BULAVIN, D. V., SAITO, S., HOLLANDER, M. C., SAKAGUCHI, K., ANDERSON, C. W., APPELLA, E. & 
FORNACE, A. J., JR. 1999. Phosphorylation of human p53 by p38 kinase coordinates N-
terminal phosphorylation and apoptosis in response to UV radiation. EMBO J, 18, 
6845-54. 



 

164 
 

BUNTING, S. F., CALLEN, E., WONG, N., CHEN, H. T., POLATO, F., GUNN, A., BOTHMER, A., 
FELDHAHN, N., FERNANDEZ-CAPETILLO, O., CAO, L., XU, X., DENG, C. X., FINKEL, T., 
NUSSENZWEIG, M., STARK, J. M. & NUSSENZWEIG, A. 2010. 53BP1 inhibits 
homologous recombination in Brca1-deficient cells by blocking resection of DNA 
breaks. Cell, 141, 243-54. 

BUNZ, F., HWANG, P. M., TORRANCE, C., WALDMAN, T., ZHANG, Y., DILLEHAY, L., WILLIAMS, J., 
LENGAUER, C., KINZLER, K. W. & VOGELSTEIN, B. 1999. Disruption of p53 in human 
cancer cells alters the responses to therapeutic agents. J Clin Invest, 104, 263-9. 

BURMA, S., CHEN, B. P., MURPHY, M., KURIMASA, A. & CHEN, D. J. 2001. ATM phosphorylates 
histone H2AX in response to DNA double-strand breaks. J Biol Chem, 276, 42462-7. 

CALLEBAUT, I. & MORNON, J. P. 1997. From BRCA1 to RAP1: a widespread BRCT module 
closely associated with DNA repair. FEBS Lett, 400, 25-30. 

CAMPISI, J. 1996. Replicative senescence: an old lives' tale? Cell, 84, 497-500. 
CANMAN, C. E., LIM, D. S., CIMPRICH, K. A., TAYA, Y., TAMAI, K., SAKAGUCHI, K., APPELLA, E., 

KASTAN, M. B. & SILICIANO, J. D. 1998. Activation of the ATM kinase by ionizing 
radiation and phosphorylation of p53. Science, 281, 1677-9. 

CARDOZO, T. & PAGANO, M. 2004. The SCF ubiquitin ligase: insights into a molecular machine. 
Nat Rev Mol Cell Biol, 5, 739-51. 

CATALANO, A., RODILOSSI, S., CAPRARI, P., COPPOLA, V. & PROCOPIO, A. 2005. 5-Lipoxygenase 
regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. 
EMBO J, 24, 170-9. 

CAYROL, C., KNIBIEHLER, M. & DUCOMMUN, B. 1998. p21 binding to PCNA causes G1 and G2 
cell cycle arrest in p53-deficient cells. Oncogene, 16, 311-20. 

CELESTE, A., FERNANDEZ-CAPETILLO, O., KRUHLAK, M. J., PILCH, D. R., STAUDT, D. W., LEE, A., 
BONNER, R. F., BONNER, W. M. & NUSSENZWEIG, A. 2003. Histone H2AX 
phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol, 
5, 675-9. 

CELESTE, A., PETERSEN, S., ROMANIENKO, P. J., FERNANDEZ-CAPETILLO, O., CHEN, H. T., 
SEDELNIKOVA, O. A., REINA-SAN-MARTIN, B., COPPOLA, V., MEFFRE, E., 
DIFILIPPANTONIO, M. J., REDON, C., PILCH, D. R., OLARU, A., ECKHAUS, M., CAMERINI-
OTERO, R. D., TESSAROLLO, L., LIVAK, F., MANOVA, K., BONNER, W. M., NUSSENZWEIG, 
M. C. & NUSSENZWEIG, A. 2002. Genomic instability in mice lacking histone H2AX. 
Science, 296, 922-7. 

CHAN, F. K., CHUN, H. J., ZHENG, L., SIEGEL, R. M., BUI, K. L. & LENARDO, M. J. 2000. A domain 
in TNF receptors that mediates ligand-independent receptor assembly and signaling. 
Science, 288, 2351-4. 

CHAN, T. A., HERMEKING, H., LENGAUER, C., KINZLER, K. W. & VOGELSTEIN, B. 1999. 14-3-
3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature, 401, 
616-20. 

CHARLES, A. C., NAUS, C. C., ZHU, D., KIDDER, G. M., DIRKSEN, E. R. & SANDERSON, M. J. 1992. 
Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol, 118, 195-201. 

CHEHAB, N. H., MALIKZAY, A., APPEL, M. & HALAZONETIS, T. D. 2000. Chk2/hCds1 functions as 
a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev, 14, 278-88. 

CHEN, G., HITOMI, M., HAN, J. & STACEY, D. W. 2000a. The p38 pathway provides negative 
feedback for Ras proliferative signaling. J Biol Chem, 275, 38973-80. 

CHEN, J., ASTLE, C. M. & HARRISON, D. E. 1999. Development and aging of primitive 
hematopoietic stem cells in BALB/cBy mice. Exp Hematol, 27, 928-35. 

CHEN, J. H., STOEBER, K., KINGSBURY, S., OZANNE, S. E., WILLIAMS, G. H. & HALES, C. N. 2004. 
Loss of proliferative capacity and induction of senescence in oxidatively stressed 
human fibroblasts. J Biol Chem, 279, 49439-46. 

CHEN, K., CRAIGE, S. E. & KEANEY, J. F., JR. 2009. Downstream targets and intracellular 
compartmentalization in Nox signaling. Antioxid Redox Signal, 11, 2467-80. 



 

165 
 

CHEN, Q., FISCHER, A., REAGAN, J. D., YAN, L. J. & AMES, B. N. 1995. Oxidative DNA damage 
and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A, 92, 4337-
41. 

CHEN, Q. M., BARTHOLOMEW, J. C., CAMPISI, J., ACOSTA, M., REAGAN, J. D. & AMES, B. N. 
1998. Molecular analysis of H2O2-induced senescent-like growth arrest in normal 
human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J, 
332 ( Pt 1), 43-50. 

CHEN, Q. M., TU, V. C., CATANIA, J., BURTON, M., TOUSSAINT, O. & DILLEY, T. 2000b. 
Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in 
senescent morphogenesis induced by hydrogen peroxide. J Cell Sci, 113 ( Pt 22), 4087-
97. 

CHEN, Z., TROTMAN, L. C., SHAFFER, D., LIN, H. K., DOTAN, Z. A., NIKI, M., KOUTCHER, J. A., 
SCHER, H. I., LUDWIG, T., GERALD, W., CORDON-CARDO, C. & PANDOLFI, P. P. 2005. 
Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient 
tumorigenesis. Nature, 436, 725-30. 

CHENG, M., OLIVIER, P., DIEHL, J. A., FERO, M., ROUSSEL, M. F., ROBERTS, J. M. & SHERR, C. J. 
1999. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-
dependent kinases in murine fibroblasts. EMBO J, 18, 1571-83. 

CHEOK, C. F., KUA, N., KALDIS, P. & LANE, D. P. 2010. Combination of nutlin-3 and VX-680 
selectively targets p53 mutant cells with reversible effects on cells expressing wild-
type p53. Cell Death Differ, 17, 1486-500. 

CHIEN, Y., SCUOPPO, C., WANG, X., FANG, X., BALGLEY, B., BOLDEN, J. E., PREMSRIRUT, P., 
LUO, W., CHICAS, A., LEE, C. S., KOGAN, S. C. & LOWE, S. W. 2011. Control of the 
senescence-associated secretory phenotype by NF-kappaB promotes senescence and 
enhances chemosensitivity. Genes Dev, 25, 2125-36. 

CHIPMAN, J. K., MALLY, A. & EDWARDS, G. O. 2003. Disruption of gap junctions in toxicity and 
carcinogenicity. Toxicol Sci, 71, 146-53. 

CHO, Y. Y., KIM, D. J., LEE, H. S., JEONG, C. H., CHO, E. J., KIM, M. O., BYUN, S., LEE, K. Y., YAO, 
K., CARPER, A., LANGFALD, A., BODE, A. M. & DONG, Z. 2013. Autophagy and cellular 
senescence mediated by Sox2 suppress malignancy of cancer cells. PLoS One, 8, 
e57172. 

CHOPRA, A., FERREIRA-ALVES, D. L., SIROIS, P. & THIRION, J. P. 1992. Cloning of the guinea pig 
5-lipoxygenase gene and nucleotide sequence of its promoter. Biochem Biophys Res 
Commun, 185, 489-95. 

CHOWDHURY, D., KEOGH, M. C., ISHII, H., PETERSON, C. L., BURATOWSKI, S. & LIEBERMAN, J. 
2005. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA 
double-strand break repair. Mol Cell, 20, 801-9. 

CHUNG, C. D., LIAO, J., LIU, B., RAO, X., JAY, P., BERTA, P. & SHUAI, K. 1997. Specific inhibition 
of Stat3 signal transduction by PIAS3. Science, 278, 1803-5. 

CLERK, A., MICHAEL, A. & SUGDEN, P. H. 1998. Stimulation of the p38 mitogen-activated 
protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled 
receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte 
hypertrophy? J Cell Biol, 142, 523-35. 

COLLADO, M., GIL, J., EFEYAN, A., GUERRA, C., SCHUHMACHER, A. J., BARRADAS, M., 
BENGURIA, A., ZABALLOS, A., FLORES, J. M., BARBACID, M., BEACH, D. & SERRANO, M. 
2005. Tumour biology: senescence in premalignant tumours. Nature, 436, 642. 

COLLINS, R. J., HARMON, B. V., GOBE, G. C. & KERR, J. F. 1992. Internucleosomal DNA cleavage 
should not be the sole criterion for identifying apoptosis. Int J Radiat Biol, 61, 451-3. 

COPPE, J. P., PATIL, C. K., RODIER, F., KRTOLICA, A., BEAUSEJOUR, C. M., PARRINELLO, S., 
HODGSON, J. G., CHIN, K., DESPREZ, P. Y. & CAMPISI, J. 2010. A human-like 
senescence-associated secretory phenotype is conserved in mouse cells dependent on 
physiological oxygen. PLoS One, 5, e9188. 



 

166 
 

COPPE, J. P., PATIL, C. K., RODIER, F., SUN, Y., MUNOZ, D. P., GOLDSTEIN, J., NELSON, P. S., 
DESPREZ, P. Y. & CAMPISI, J. 2008. Senescence-associated secretory phenotypes reveal 
cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS 
Biol, 6, 2853-68. 

COPPE, J. P., RODIER, F., PATIL, C. K., FREUND, A., DESPREZ, P. Y. & CAMPISI, J. 2011. Tumor 
suppressor and aging biomarker p16(INK4a) induces cellular senescence without the 
associated inflammatory secretory phenotype. J Biol Chem, 286, 36396-403. 

CORREIA-MELO, C., JURK, D. & PASSOS, J. F. 2013. Robust multiparametric assessment of 
cellular senescence. Methods Mol Biol, 965, 409-19. 

CORTEZ, D., GUNTUKU, S., QIN, J. & ELLEDGE, S. J. 2001. ATR and ATRIP: partners in checkpoint 
signaling. Science, 294, 1713-6. 

CORTEZ, D., WANG, Y., QIN, J. & ELLEDGE, S. J. 1999. Requirement of ATM-dependent 
phosphorylation of brca1 in the DNA damage response to double-strand breaks. 
Science, 286, 1162-6. 

COUNTER, C. M., AVILION, A. A., LEFEUVRE, C. E., STEWART, N. G., GREIDER, C. W., HARLEY, C. 
B. & BACCHETTI, S. 1992. Telomere shortening associated with chromosome instability 
is arrested in immortal cells which express telomerase activity. EMBO J, 11, 1921-9. 

COUNTER, C. M., GUPTA, J., HARLEY, C. B., LEBER, B. & BACCHETTI, S. 1995. Telomerase activity 
in normal leukocytes and in hematologic malignancies. Blood, 85, 2315-20. 

COURTOIS-COX, S., GENTHER WILLIAMS, S. M., RECZEK, E. E., JOHNSON, B. W., MCGILLICUDDY, 
L. T., JOHANNESSEN, C. M., HOLLSTEIN, P. E., MACCOLLIN, M. & CICHOWSKI, K. 2006. A 
negative feedback signaling network underlies oncogene-induced senescence. Cancer 
Cell, 10, 459-72. 

CRAWLEY, J. B., RAWLINSON, L., LALI, F. V., PAGE, T. H., SAKLATVALA, J. & FOXWELL, B. M. 
1997. T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase 
activation. J Biol Chem, 272, 15023-7. 

CRIOLLO, A., SENOVILLA, L., AUTHIER, H., MAIURI, M. C., MORSELLI, E., VITALE, I., KEPP, O., 
TASDEMIR, E., GALLUZZI, L., SHEN, S., TAILLER, M., DELAHAYE, N., TESNIERE, A., DE 
STEFANO, D., YOUNES, A. B., HARPER, F., PIERRON, G., LAVANDERO, S., ZITVOGEL, L., 
ISRAEL, A., BAUD, V. & KROEMER, G. 2010a. The IKK complex contributes to the 
induction of autophagy. EMBO J, 29, 619-31. 

CRIOLLO, A., SENOVILLA, L., AUTHIER, H., MAIURI, M. C., MORSELLI, E., VITALE, I., KEPP, O., 
TASDEMIR, E., GALLUZZI, L., SHEN, S., TAILLER, M., DELAHAYE, N., TESNIERE, A., DE 
STEFANO, D., YOUNES, A. B., HARPER, F., PIERRON, G., LAVANDERO, S., ZITVOGEL, L., 
ISRAEL, A., BAUD, V. & KROEMER, G. 2010b. IKK connects autophagy to major stress 
pathways. Autophagy, 6, 189-91. 

CRISTOFALO, V. J., ALLEN, R. G., PIGNOLO, R. J., MARTIN, B. G. & BECK, J. C. 1998. Relationship 
between donor age and the replicative lifespan of human cells in culture: a 
reevaluation. Proc Natl Acad Sci U S A, 95, 10614-9. 

CROSS, S., LINDSEY, J., FANTES, J., MCKAY, S., MCGILL, N. & COOKE, H. 1990. The structure of a 
subterminal repeated sequence present on many human chromosomes. Nucleic Acids 
Res, 18, 6649-57. 

CROSS, S. H., ALLSHIRE, R. C., MCKAY, S. J., MCGILL, N. I. & COOKE, H. J. 1989. Cloning of 
human telomeres by complementation in yeast. Nature, 338, 771-4. 

CUI, W., FOWLIS, D. J., BRYSON, S., DUFFIE, E., IRELAND, H., BALMAIN, A. & AKHURST, R. J. 
1996. TGFbeta1 inhibits the formation of benign skin tumors, but enhances 
progression to invasive spindle carcinomas in transgenic mice. Cell, 86, 531-42. 

D'ADDA DI FAGAGNA, F. 2008. Living on a break: cellular senescence as a DNA-damage 
response. Nat Rev Cancer, 8, 512-22. 

D'ADDA DI FAGAGNA, F., REAPER, P. M., CLAY-FARRACE, L., FIEGLER, H., CARR, P., VON 
ZGLINICKI, T., SARETZKI, G., CARTER, N. P. & JACKSON, S. P. 2003. A DNA damage 
checkpoint response in telomere-initiated senescence. Nature, 426, 194-8. 



 

167 
 

D'AMOURS, D. & JACKSON, S. P. 2002. The Mre11 complex: at the crossroads of dna repair and 
checkpoint signalling. Nat Rev Mol Cell Biol, 3, 317-27. 

D'AUTREAUX, B. & TOLEDANO, M. B. 2007. ROS as signalling molecules: mechanisms that 
generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 8, 813-24. 

DAJEE, M., LAZAROV, M., ZHANG, J. Y., CAI, T., GREEN, C. L., RUSSELL, A. J., MARINKOVICH, M. 
P., TAO, S., LIN, Q., KUBO, Y. & KHAVARI, P. A. 2003. NF-kappaB blockade and 
oncogenic Ras trigger invasive human epidermal neoplasia. Nature, 421, 639-43. 

DAN, H. C., COOPER, M. J., COGSWELL, P. C., DUNCAN, J. A., TING, J. P. & BALDWIN, A. S. 2008. 
Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in 
association with IKK. Genes Dev, 22, 1490-500. 

DANKORT, D., FILENOVA, E., COLLADO, M., SERRANO, M., JONES, K. & MCMAHON, M. 2007. A 
new mouse model to explore the initiation, progression, and therapy of BRAFV600E-
induced lung tumors. Genes Dev, 21, 379-84. 

DANN, S. G. & THOMAS, G. 2006. The amino acid sensitive TOR pathway from yeast to 
mammals. FEBS Lett, 580, 2821-9. 

DARZYNKIEWICZ, Z. 2002. One more reason to get arrested (in G1). Cell Cycle, 1, 318-9. 
DATTO, M. B., LI, Y., PANUS, J. F., HOWE, D. J., XIONG, Y. & WANG, X. F. 1995. Transforming 

growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-
independent mechanism. Proceedings of the National Academy of Sciences of the 
United States of America, 92, 5545-9. 

DAVIDSON, I. F., LI, A. & BLOW, J. J. 2006. Deregulated replication licensing causes DNA 
fragmentation consistent with head-to-tail fork collision. Mol Cell, 24, 433-43. 

DAVIS, T., BAIRD, D. M., HAUGHTON, M. F., JONES, C. J. & KIPLING, D. 2005. Prevention of 
accelerated cell aging in Werner syndrome using a p38 mitogen-activated protein 
kinase inhibitor. J Gerontol A Biol Sci Med Sci, 60, 1386-93. 

DE HAAN, G., NIJHOF, W. & VAN ZANT, G. 1997. Mouse strain-dependent changes in frequency 
and proliferation of hematopoietic stem cells during aging: correlation between 
lifespan and cycling activity. Blood, 89, 1543-50. 

DEBACQ-CHAINIAUX, F., BORLON, C., PASCAL, T., ROYER, V., ELIAERS, F., NINANE, N., 
CARRARD, G., FRIGUET, B., DE LONGUEVILLE, F., BOFFE, S., REMACLE, J. & TOUSSAINT, 
O. 2005. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level 
triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci, 
118, 743-58. 

DEBIDDA, M., WILLIAMS, D. A. & ZHENG, Y. 2006. Rac1 GTPase regulates cell genomic stability 
and senescence. J Biol Chem, 281, 38519-28. 

DEHEZ, S., DAULHAC, L., KOWALSKI-CHAUVEL, A., FOURMY, D., PRADAYROL, L. & SEVA, C. 
2001. Gastrin-induced DNA synthesis requires p38-MAPK activation via PKC/Ca(2+) and 
Src-dependent mechanisms. FEBS Lett, 496, 25-30. 

DELLAMBRA, E., GOLISANO, O., BONDANZA, S., SIVIERO, E., LACAL, P., MOLINARI, M., D'ATRI, S. 
& DE LUCA, M. 2000. Downregulation of 14-3-3sigma prevents clonal evolution and 
leads to immortalization of primary human keratinocytes. J Cell Biol, 149, 1117-30. 

DEMIDENKO, Z. N., KOROTCHKINA, L. G., GUDKOV, A. V. & BLAGOSKLONNY, M. V. 2010. 
Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci U S A, 107, 
9660-4. 

DENCHI, E. L. & DE LANGE, T. 2007. Protection of telomeres through independent control of 
ATM and ATR by TRF2 and POT1. Nature, 448, 1068-71. 

DENG, C., ZHANG, P., HARPER, J. W., ELLEDGE, S. J. & LEDER, P. 1995. Mice lacking 
p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint 
control. Cell, 82, 675-84. 

DENG, Q., LIAO, R., WU, B. L. & SUN, P. 2004. High intensity ras signaling induces premature 
senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem, 279, 
1050-9. 



 

168 
 

DENG, W. G., ZHU, Y. & WU, K. K. 2003. Up-regulation of p300 binding and p50 acetylation in 
tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation. J Biol 
Chem, 278, 4770-7. 

DENOYELLE, C., ABOU-RJAILY, G., BEZROOKOVE, V., VERHAEGEN, M., JOHNSON, T. M., FULLEN, 
D. R., POINTER, J. N., GRUBER, S. B., SU, L. D., NIKIFOROV, M. A., KAUFMAN, R. J., 
BASTIAN, B. C. & SOENGAS, M. S. 2006. Anti-oncogenic role of the endoplasmic 
reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol, 8, 
1053-63. 

DERBYSHIRE, D. J., BASU, B. P., SERPELL, L. C., JOO, W. S., DATE, T., IWABUCHI, K. & DOHERTY, 
A. J. 2002. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour 
suppressor. EMBO J, 21, 3863-72. 

DESHPANDE, A., GOODWIN, E. H., BAILEY, S. M., MARRONE, B. L. & LEHNERT, B. E. 1996. 
Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: 
evidence for an extranuclear target. Radiat Res, 145, 260-7. 

DI LEONARDO, A., LINKE, S. P., CLARKIN, K. & WAHL, G. M. 1994. DNA damage triggers a 
prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human 
fibroblasts. Genes Dev, 8, 2540-51. 

DI MICCO, R., FUMAGALLI, M., CICALESE, A., PICCININ, S., GASPARINI, P., LUISE, C., SCHURRA, 
C., GARRE, M., NUCIFORO, P. G., BENSIMON, A., MAESTRO, R., PELICCI, P. G. & D'ADDA 
DI FAGAGNA, F. 2006. Oncogene-induced senescence is a DNA damage response 
triggered by DNA hyper-replication. Nature, 444, 638-42. 

DI MICCO, R., SULLI, G., DOBREVA, M., LIONTOS, M., BOTRUGNO, O. A., GARGIULO, G., DAL 
ZUFFO, R., MATTI, V., D'ARIO, G., MONTANI, E., MERCURIO, C., HAHN, W. C., 
GORGOULIS, V., MINUCCI, S. & D'ADDA DI FAGAGNA, F. 2011. Interplay between 
oncogene-induced DNA damage response and heterochromatin in senescence and 
cancer. Nat Cell Biol, 13, 292-302. 

DIMRI, G. P., LEE, X., BASILE, G., ACOSTA, M., SCOTT, G., ROSKELLEY, C., MEDRANO, E. E., 
LINSKENS, M., RUBELJ, I., PEREIRA-SMITH, O. & ET AL. 1995. A biomarker that identifies 
senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 92, 
9363-7. 

DIRAC, A. M. & BERNARDS, R. 2003. Reversal of senescence in mouse fibroblasts through 
lentiviral suppression of p53. J Biol Chem, 278, 11731-4. 

DITULLIO, R. A., JR., MOCHAN, T. A., VENERE, M., BARTKOVA, J., SEHESTED, M., BARTEK, J. & 
HALAZONETIS, T. D. 2002. 53BP1 functions in an ATM-dependent checkpoint pathway 
that is constitutively activated in human cancer. Nat Cell Biol, 4, 998-1002. 

DJAVAHERI-MERGNY, M., JAVELAUD, D., WIETZERBIN, J. & BESANCON, F. 2004. NF-kappaB 
activation prevents apoptotic oxidative stress via an increase of both thioredoxin and 
MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett, 578, 111-5. 

DOI, T. S., MARINO, M. W., TAKAHASHI, T., YOSHIDA, T., SAKAKURA, T., OLD, L. J. & OBATA, Y. 
1999. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic 
lethality. Proc Natl Acad Sci U S A, 96, 2994-9. 

DOMINGUEZ-SOLA, D., YING, C. Y., GRANDORI, C., RUGGIERO, L., CHEN, B., LI, M., GALLOWAY, 
D. A., GU, W., GAUTIER, J. & DALLA-FAVERA, R. 2007. Non-transcriptional control of 
DNA replication by c-Myc. Nature, 448, 445-51. 

DONG, Z., ZHONG, Q. & CHEN, P. L. 1999. The Nijmegen breakage syndrome protein is 
essential for Mre11 phosphorylation upon DNA damage. J Biol Chem, 274, 19513-6. 

DORIGO, B., SCHALCH, T., KULANGARA, A., DUDA, S., SCHROEDER, R. R. & RICHMOND, T. J. 
2004. Nucleosome arrays reveal the two-start organization of the chromatin fiber. 
Science, 306, 1571-3. 

DOWLING-WARRINER, C. V. & TROSKO, J. E. 2000. Induction of gap junctional intercellular 
communication, connexin43 expression, and subsequent differentiation in human fetal 
neuronal cells by stimulation of the cyclic AMP pathway. Neuroscience, 95, 859-68. 



 

169 
 

DREESEN, O., CHOJNOWSKI, A., ONG, P. F., ZHAO, T. Y., COMMON, J. E., LUNNY, D., LANE, E. B., 
LEE, S. J., VARDY, L. A., STEWART, C. L. & COLMAN, A. 2013. Lamin B1 fluctuations have 
differential effects on cellular proliferation and senescence. J Cell Biol, 200, 605-17. 

DRUMMOND, M. J., BELL, J. A., FUJITA, S., DREYER, H. C., GLYNN, E. L., VOLPI, E. & 
RASMUSSEN, B. B. 2008. Amino acids are necessary for the insulin-induced activation 
of mTOR/S6K1 signaling and protein synthesis in healthy and insulin resistant human 
skeletal muscle. Clin Nutr, 27, 447-56. 

DUMAZ, N. & MEEK, D. W. 1999. Serine15 phosphorylation stimulates p53 transactivation but 
does not directly influence interaction with HDM2. EMBO J, 18, 7002-10. 

DUMONT, P., BALBEUR, L., REMACLE, J. & TOUSSAINT, O. 2000a. Appearance of biomarkers of 
in vitro ageing after successive stimulation of WI-38 fibroblasts with IL-1alpha and TNF-
alpha: senescence associated beta-galactosidase activity and morphotype transition. J 
Anat, 197 Pt 4, 529-37. 

DUMONT, P., BURTON, M., CHEN, Q. M., GONOS, E. S., FRIPPIAT, C., MAZARATI, J. B., ELIAERS, 
F., REMACLE, J. & TOUSSAINT, O. 2000b. Induction of replicative senescence 
biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol 
Med, 28, 361-73. 

ECHETEBU, C. O., ALI, M., IZBAN, M. G., MACKAY, L. & GARFIELD, R. E. 1999. Localization of 
regulatory protein binding sites in the proximal region of human myometrial connexin 
43 gene. Mol Hum Reprod, 5, 757-66. 

EDINGER, A. L. & THOMPSON, C. B. 2002. Akt maintains cell size and survival by increasing 
mTOR-dependent nutrient uptake. Mol Biol Cell, 13, 2276-88. 

EFEYAN, A., ORTEGA-MOLINA, A., VELASCO-MIGUEL, S., HERRANZ, D., VASSILEV, L. T. & 
SERRANO, M. 2007. Induction of p53-dependent senescence by the MDM2 antagonist 
nutlin-3a in mouse cells of fibroblast origin. Cancer Res, 67, 7350-7. 

ELSHARKAWY, A. M., OAKLEY, F., LIN, F., PACKHAM, G., MANN, D. A. & MANN, J. 2010. The NF-
kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of 
multiple pro-inflammatory genes. J Hepatol, 53, 519-27. 

ERSTER, S., MIHARA, M., KIM, R. H., PETRENKO, O. & MOLL, U. M. 2004. In vivo mitochondrial 
p53 translocation triggers a rapid first wave of cell death in response to DNA damage 
that can precede p53 target gene activation. Mol Cell Biol, 24, 6728-41. 

ERUSALIMSKY, J. D. & KURZ, D. J. 2005. Cellular senescence in vivo: its relevance in ageing and 
cardiovascular disease. Exp Gerontol, 40, 634-42. 

ESPINOSA, J. M. 2008. Mechanisms of regulatory diversity within the p53 transcriptional 
network. Oncogene, 27, 4013-23. 

ESTIN, D., LI, M., SPRAY, D. & WU, J. K. 1999. Connexins are expressed in primary brain tumors 
and enhance the bystander effect in gene therapy. Neurosurgery, 44, 361-8; discussion 
368-9. 

FALCK, J., COATES, J. & JACKSON, S. P. 2005. Conserved modes of recruitment of ATM, ATR and 
DNA-PKcs to sites of DNA damage. Nature, 434, 605-11. 

FALCK, J., MAILAND, N., SYLJUASEN, R. G., BARTEK, J. & LUKAS, J. 2001. The ATM-Chk2-Cdc25A 
checkpoint pathway guards against radioresistant DNA synthesis. Nature, 410, 842-7. 

FANG, L., LI, G., LIU, G., LEE, S. W. & AARONSON, S. A. 2001. p53 induction of heparin-binding 
EGF-like growth factor counteracts p53 growth suppression through activation of 
MAPK and PI3K/Akt signaling cascades. EMBO J, 20, 1931-9. 

FERNANDEZ-CAPETILLO, O., CHEN, H. T., CELESTE, A., WARD, I., ROMANIENKO, P. J., MORALES, 
J. C., NAKA, K., XIA, Z., CAMERINI-OTERO, R. D., MOTOYAMA, N., CARPENTER, P. B., 
BONNER, W. M., CHEN, J. & NUSSENZWEIG, A. 2002. DNA damage-induced G2-M 
checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 4, 993-7. 

FERNANDEZ-CAPETILLO, O., LEE, A., NUSSENZWEIG, M. & NUSSENZWEIG, A. 2004. H2AX: the 
histone guardian of the genome. DNA Repair (Amst), 3, 959-67. 



 

170 
 

FINGAR, D. C., RICHARDSON, C. J., TEE, A. R., CHEATHAM, L., TSOU, C. & BLENIS, J. 2004. mTOR 
controls cell cycle progression through its cell growth effectors S6K1 and 4E-
BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol, 24, 200-16. 

FLEETWOOD, A. J., COOK, A. D. & HAMILTON, J. A. 2005. Functions of granulocyte-macrophage 
colony-stimulating factor. Critical reviews in immunology, 25, 405-28. 

FREUND, A., PATIL, C. K. & CAMPISI, J. 2011. p38MAPK is a novel DNA damage response-
independent regulator of the senescence-associated secretory phenotype. EMBO J, 30, 
1536-48. 

FRIAS, M. A., THOREEN, C. C., JAFFE, J. D., SCHRODER, W., SCULLEY, T., CARR, S. A. & SABATINI, 
D. M. 2006. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define 
three distinct mTORC2s. Curr Biol, 16, 1865-70. 

FUMAGALLI, M., ROSSIELLO, F., CLERICI, M., BAROZZI, S., CITTARO, D., KAPLUNOV, J. M., 
BUCCI, G., DOBREVA, M., MATTI, V., BEAUSEJOUR, C. M., HERBIG, U., LONGHESE, M. P. 
& D'ADDA DI FAGAGNA, F. 2012. Telomeric DNA damage is irreparable and causes 
persistent DNA-damage-response activation. Nat Cell Biol, 14, 355-65. 

FURUSU, A., NAKAYAMA, K., XU, Q., KONTA, T. & KITAMURA, M. 2007. MAP kinase-dependent, 
NF-kappaB-independent regulation of inhibitor of apoptosis protein genes by TNF-
alpha. J Cell Physiol, 210, 703-10. 

FURUTA, T., TAKEMURA, H., LIAO, Z. Y., AUNE, G. J., REDON, C., SEDELNIKOVA, O. A., PILCH, D. 
R., ROGAKOU, E. P., CELESTE, A., CHEN, H. T., NUSSENZWEIG, A., ALADJEM, M. I., 
BONNER, W. M. & POMMIER, Y. 2003. Phosphorylation of histone H2AX and activation 
of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand 
breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem, 
278, 20303-12. 

GATEI, M., YOUNG, D., CEROSALETTI, K. M., DESAI-MEHTA, A., SPRING, K., KOZLOV, S., LAVIN, 
M. F., GATTI, R. A., CONCANNON, P. & KHANNA, K. 2000. ATM-dependent 
phosphorylation of nibrin in response to radiation exposure. Nat Genet, 25, 115-9. 

GEISER, T., DEWALD, B., EHRENGRUBER, M. U., CLARK-LEWIS, I. & BAGGIOLINI, M. 1993. The 
interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma 
activate human neutrophil and basophil leukocytes. The Journal of biological 
chemistry, 268, 15419-24. 

GEORGAKOPOULOU, E. A., TSIMARATOU, K., EVANGELOU, K., FERNANDEZ MARCOS, P. J., 
ZOUMPOURLIS, V., TROUGAKOS, I. P., KLETSAS, D., BARTEK, J., SERRANO, M. & 
GORGOULIS, V. G. 2013. Specific lipofuscin staining as a novel biomarker to detect 
replicative and stress-induced senescence. A method applicable in cryo-preserved and 
archival tissues. Aging (Albany NY), 5, 37-50. 

GIRE, V., ROUX, P., WYNFORD-THOMAS, D., BRONDELLO, J. M. & DULIC, V. 2004. DNA damage 
checkpoint kinase Chk2 triggers replicative senescence. EMBO J, 23, 2554-63. 

GOLDBERG, M., STUCKI, M., FALCK, J., D'AMOURS, D., RAHMAN, D., PAPPIN, D., BARTEK, J. & 
JACKSON, S. P. 2003. MDC1 is required for the intra-S-phase DNA damage checkpoint. 
Nature, 421, 952-6. 

GOLDSTEIN, S. 1978. Human genetic disorders that feature  premature onset and accelerated 
progression of biological aging. In: SCHNEIDER, E. L. (ed.) The Genetics of Aging. New 
York: Plenum  Press. 

GOLDSTEIN, S. 1990. Replicative senescence: the human fibroblast comes of age. Science, 249, 
1129-33. 

GOLDSTEIN, S. & SHMOOKLER REIS, R. J. 1985. Methylation patterns in the gene for the alpha 
subunit of chorionic gonadotropin are inherited with variable fidelity in clonal lineages 
of human fibroblasts. Nucleic Acids Res, 13, 7055-65. 

GONG, J., TRAGANOS, F. & DARZYNKIEWICZ, Z. 1995. Growth imbalance and altered expression 
of cyclins B1, A, E, and D3 in MOLT-4 cells synchronized in the cell cycle by inhibitors of 
DNA replication. Cell Growth Differ, 6, 1485-93. 



 

171 
 

GRANDORI, C., WU, K. J., FERNANDEZ, P., NGOUENET, C., GRIM, J., CLURMAN, B. E., MOSER, 
M. J., OSHIMA, J., RUSSELL, D. W., SWISSHELM, K., FRANK, S., AMATI, B., DALLA-
FAVERA, R. & MONNAT, R. J., JR. 2003. Werner syndrome protein limits MYC-induced 
cellular senescence. Genes Dev, 17, 1569-74. 

GREIDER, C. W. & BLACKBURN, E. H. 1985. Identification of a specific telomere terminal 
transferase activity in Tetrahymena extracts. Cell, 43, 405-13. 

GRIFFITH, J. D., COMEAU, L., ROSENFIELD, S., STANSEL, R. M., BIANCHI, A., MOSS, H. & DE 
LANGE, T. 1999. Mammalian telomeres end in a large duplex loop. Cell, 97, 503-14. 

GRIVENNIKOV, S. I. & KARIN, M. 2010. Dangerous liaisons: STAT3 and NF-kappaB collaboration 
and crosstalk in cancer. Cytokine Growth Factor Rev, 21, 11-9. 

GUERRA, C., MIJIMOLLE, N., DHAWAHIR, A., DUBUS, P., BARRADAS, M., SERRANO, M., 
CAMPUZANO, V. & BARBACID, M. 2003. Tumor induction by an endogenous K-ras 
oncogene is highly dependent on cellular context. Cancer Cell, 4, 111-20. 

GUERRA, C., SCHUHMACHER, A. J., CANAMERO, M., GRIPPO, P. J., VERDAGUER, L., PEREZ-
GALLEGO, L., DUBUS, P., SANDGREN, E. P. & BARBACID, M. 2007. Chronic pancreatitis 
is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in 
adult mice. Cancer Cell, 11, 291-302. 

GUO, Z., KOZLOV, S., LAVIN, M. F., PERSON, M. D. & PAULL, T. T. 2010. ATM activation by 
oxidative stress. Science, 330, 517-21. 

GUSCHIN, D., ROGERS, N., BRISCOE, J., WITTHUHN, B., WATLING, D., HORN, F., PELLEGRINI, S., 
YASUKAWA, K., HEINRICH, P., STARK, G. R. & ET AL. 1995. A major role for the protein 
tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to 
interleukin-6. EMBO J, 14, 1421-9. 

GUTIERREZ-UZQUIZA, A., ARECHEDERRA, M., BRAGADO, P., AGUIRRE-GHISO, J. A. & PORRAS, 
A. 2012. p38alpha mediates cell survival in response to oxidative stress via induction of 
antioxidant genes: effect on the p70S6K pathway. J Biol Chem, 287, 2632-42. 

GUTTRIDGE, D. C., ALBANESE, C., REUTHER, J. Y., PESTELL, R. G. & BALDWIN, A. S., JR. 1999. NF-
kappaB controls cell growth and differentiation through transcriptional regulation of 
cyclin D1. Mol Cell Biol, 19, 5785-99. 

HAFERKAMP, S., SCURR, L. L., BECKER, T. M., FRAUSTO, M., KEFFORD, R. F. & RIZOS, H. 2009. 
Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma 
tumor suppressors. J Invest Dermatol, 129, 1983-91. 

HAGEN, T. M., YOWE, D. L., BARTHOLOMEW, J. C., WEHR, C. M., DO, K. L., PARK, J. Y. & AMES, 
B. N. 1997. Mitochondrial decay in hepatocytes from old rats: membrane potential 
declines, heterogeneity and oxidants increase. Proc Natl Acad Sci U S A, 94, 3064-9. 

HAHN, W. C., COUNTER, C. M., LUNDBERG, A. S., BEIJERSBERGEN, R. L., BROOKS, M. W. & 
WEINBERG, R. A. 1999. Creation of human tumour cells with defined genetic elements. 
Nature, 400, 464-8. 

HAMILTON, J. A. 2002. GM-CSF in inflammation and autoimmunity. Trends Immunol, 23, 403-8. 
HANNKEN, T., SCHROEDER, R., STAHL, R. A. & WOLF, G. 1998. Angiotensin II-mediated 

expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells 
depend on the generation of oxygen radicals. Kidney Int, 54, 1923-33. 

HANNON, G. J. & BEACH, D. 1994. p15INK4B is a potential effector of TGF-beta-induced cell 
cycle arrest. Nature, 371, 257-61. 

HARA, E., SMITH, R., PARRY, D., TAHARA, H., STONE, S. & PETERS, G. 1996. Regulation of 
p16CDKN2 expression and its implications for cell immortalization and senescence. 
Mol Cell Biol, 16, 859-67. 

HARLEY, C. B., FUTCHER, A. B. & GREIDER, C. W. 1990. Telomeres shorten during ageing of 
human fibroblasts. Nature, 345, 458-60. 

HARRISON, D. E., ASTLE, C. M. & STONE, M. 1989. Numbers and functions of transplantable 
primitive immunohematopoietic stem cells. Effects of age. J Immunol, 142, 3833-40. 

HARVEY, M., SANDS, A. T., WEISS, R. S., HEGI, M. E., WISEMAN, R. W., PANTAZIS, P., 
GIOVANELLA, B. C., TAINSKY, M. A., BRADLEY, A. & DONEHOWER, L. A. 1993. In vitro 



 

172 
 

growth characteristics of embryo fibroblasts isolated from p53-deficient mice. 
Oncogene, 8, 2457-67. 

HASTIE, N. D., DEMPSTER, M., DUNLOP, M. G., THOMPSON, A. M., GREEN, D. K. & ALLSHIRE, R. 
C. 1990. Telomere reduction in human colorectal carcinoma and with ageing. Nature, 
346, 866-8. 

HAUPT, S., BERGER, M., GOLDBERG, Z. & HAUPT, Y. 2003. Apoptosis - the p53 network. J Cell 
Sci, 116, 4077-85. 

HAYDEN, M. S. & GHOSH, S. 2004. Signaling to NF-kappaB. Genes Dev, 18, 2195-224. 
HAYFLICK, L. 1965. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 37, 

614-36. 
HAYFLICK, L. & MOORHEAD, P. S. 1961. The serial cultivation of human diploid cell strains. Exp 

Cell Res, 25, 585-621. 
HE, L., HE, X., LOWE, S. W. & HANNON, G. J. 2007. microRNAs join the p53 network--another 

piece in the tumour-suppression puzzle. Nat Rev Cancer, 7, 819-22. 
HEINONEN, H., NIEMINEN, A., SAARELA, M., KALLIONIEMI, A., KLEFSTROM, J., HAUTANIEMI, S. 

& MONNI, O. 2008. Deciphering downstream gene targets of PI3K/mTOR/p70S6K 
pathway in breast cancer. BMC Genomics, 9, 348. 

HEINRICH, P. C., BEHRMANN, I., MULLER-NEWEN, G., SCHAPER, F. & GRAEVE, L. 1998. 
Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J, 
334 ( Pt 2), 297-314. 

HELENIUS, M., HANNINEN, M., LEHTINEN, S. K. & SALMINEN, A. 1996. Changes associated with 
aging and replicative senescence in the regulation of transcription factor nuclear 
factor-kappa B. Biochem J, 318 ( Pt 2), 603-8. 

HERBIG, U., JOBLING, W. A., CHEN, B. P., CHEN, D. J. & SEDIVY, J. M. 2004. Telomere shortening 
triggers senescence of human cells through a pathway involving ATM, p53, and 
p21(CIP1), but not p16(INK4a). Mol Cell, 14, 501-13. 

HERMANNS, H. M., RADTKE, S., SCHAPER, F., HEINRICH, P. C. & BEHRMANN, I. 2000. Non-
redundant signal transduction of interleukin-6-type cytokines. The adapter protein Shc 
is specifically recruited to rhe oncostatin M receptor. J Biol Chem, 275, 40742-8. 

HERMEKING, H. 2007. p53 enters the microRNA world. Cancer Cell, 12, 414-8. 
HERMEKING, H., LENGAUER, C., POLYAK, K., HE, T. C., ZHANG, L., THIAGALINGAM, S., KINZLER, 

K. W. & VOGELSTEIN, B. 1997. 14-3-3 sigma is a p53-regulated inhibitor of G2/M 
progression. Mol Cell, 1, 3-11. 

HEWITT, G., JURK, D., MARQUES, F. D., CORREIA-MELO, C., HARDY, T., GACKOWSKA, A., 
ANDERSON, R., TASCHUK, M., MANN, J. & PASSOS, J. F. 2012. Telomeres are favoured 
targets of a persistent DNA damage response in ageing and stress-induced senescence. 
Nat Commun, 3, 708. 

HINZ, M., KRAPPMANN, D., EICHTEN, A., HEDER, A., SCHEIDEREIT, C. & STRAUSS, M. 1999. NF-
kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-
phase transition. Mol Cell Biol, 19, 2690-8. 

HINZ, M., STILMANN, M., ARSLAN, S. C., KHANNA, K. K., DITTMAR, G. & SCHEIDEREIT, C. 2010. 
A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to 
ubiquitin-mediated NF-kappaB activation. Mol Cell, 40, 63-74. 

HIRAO, A., CHEUNG, A., DUNCAN, G., GIRARD, P. M., ELIA, A. J., WAKEHAM, A., OKADA, H., 
SARKISSIAN, T., WONG, J. A., SAKAI, T., DE STANCHINA, E., BRISTOW, R. G., SUDA, T., 
LOWE, S. W., JEGGO, P. A., ELLEDGE, S. J. & MAK, T. W. 2002. Chk2 is a tumor 
suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-
dependent and an ATM-independent manner. Mol Cell Biol, 22, 6521-32. 

HIYAMA, E., HIYAMA, K., YOKOYAMA, T., MATSUURA, Y., PIATYSZEK, M. A. & SHAY, J. W. 
1995a. Correlating telomerase activity levels with human neuroblastoma outcomes. 
Nat Med, 1, 249-55. 



 

173 
 

HIYAMA, K., HIRAI, Y., KYOIZUMI, S., AKIYAMA, M., HIYAMA, E., PIATYSZEK, M. A., SHAY, J. W., 
ISHIOKA, S. & YAMAKIDO, M. 1995b. Activation of telomerase in human lymphocytes 
and hematopoietic progenitor cells. J Immunol, 155, 3711-5. 

HIYAMA, K., HIYAMA, E., ISHIOKA, S., YAMAKIDO, M., INAI, K., GAZDAR, A. F., PIATYSZEK, M. A. 
& SHAY, J. W. 1995c. Telomerase activity in small-cell and non-small-cell lung cancers. J 
Natl Cancer Inst, 87, 895-902. 

HOFFMANN, A., LEVCHENKO, A., SCOTT, M. L. & BALTIMORE, D. 2002. The IkappaB-NF-kappaB 
signaling module: temporal control and selective gene activation. Science, 298, 1241-5. 

HONG, E. H., LEE, S. J., KIM, J. S., LEE, K. H., UM, H. D., KIM, J. H., KIM, S. J., KIM, J. I. & HWANG, 
S. G. 2010. Ionizing radiation induces cellular senescence of articular chondrocytes via 
negative regulation of SIRT1 by p38 kinase. J Biol Chem, 285, 1283-95. 

HOVEST, M. G., BRUGGENOLTE, N., HOSSEINI, K. S., KRIEG, T. & HERRMANN, G. 2006. 
Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR 
kinase and persistent DNA damage foci at telomeres. Mol Biol Cell, 17, 1758-67. 

HU, V. W. & XIE, H. Q. 1994. Interleukin-1 alpha suppresses gap junction-mediated intercellular 
communication in human endothelial cells. Exp Cell Res, 213, 218-23. 

HUANG, B., DEO, D., XIA, M. & VASSILEV, L. T. 2009. Pharmacologic p53 activation blocks cell 
cycle progression but fails to induce senescence in epithelial cancer cells. Mol Cancer 
Res, 7, 1497-509. 

HUANG, C., LI, J., KE, Q., LEONARD, S. S., JIANG, B. H., ZHONG, X. S., COSTA, M., CASTRANOVA, 
V. & SHI, X. 2002. Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and 
Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin 
but not Akt and atypical protein kinase C. Cancer Res, 62, 5689-97. 

HUANG, J. & MANNING, B. D. 2009. A complex interplay between Akt, TSC2 and the two mTOR 
complexes. Biochem Soc Trans, 37, 217-22. 

HUNG, C. M., GARCIA-HARO, L., SPARKS, C. A. & GUERTIN, D. A. 2012. mTOR-dependent cell 
survival mechanisms. Cold Spring Harb Perspect Biol, 4. 

HUNZIKER, A., JENSEN, M. H. & KRISHNA, S. 2010. Stress-specific response of the p53-Mdm2 
feedback loop. BMC Syst Biol, 4, 94. 

HUSE, M., CHEN, Y. G., MASSAGUE, J. & KURIYAN, J. 1999. Crystal structure of the cytoplasmic 
domain of the type I TGF beta receptor in complex with FKBP12. Cell, 96, 425-36. 

HUYEN, Y., ZGHEIB, O., DITULLIO, R. A., JR., GORGOULIS, V. G., ZACHARATOS, P., PETTY, T. J., 
SHESTON, E. A., MELLERT, H. S., STAVRIDI, E. S. & HALAZONETIS, T. D. 2004. 
Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. 
Nature, 432, 406-11. 

IMLAY, J. A., CHIN, S. M. & LINN, S. 1988. Toxic DNA damage by hydrogen peroxide through the 
Fenton reaction in vivo and in vitro. Science, 240, 640-2. 

INOKI, K., LI, Y., ZHU, T., WU, J. & GUAN, K. L. 2002. TSC2 is phosphorylated and inhibited by 
Akt and suppresses mTOR signalling. Nat Cell Biol, 4, 648-57. 

INOUE, H. & TANABE, T. 1998. Transcriptional role of the nuclear factor kappa B site in the 
induction by lipopolysaccharide and suppression by dexamethasone of 
cyclooxygenase-2 in U937 cells. Biochem Biophys Res Commun, 244, 143-8. 

ISHII, K., YAMAOKA, K., HOSOI, Y., ONO, T. & SAKAMOTO, K. 1995. Enhanced mitogen-induced 
proliferation of rat splenocytes by low-dose whole-body X-irradiation. Physiol Chem 
Phys Med NMR, 27, 17-23. 

ITO, K., HIRAO, A., ARAI, F., MATSUOKA, S., TAKUBO, K., HAMAGUCHI, I., NOMIYAMA, K., 
HOSOKAWA, K., SAKURADA, K., NAKAGATA, N., IKEDA, Y., MAK, T. W. & SUDA, T. 2004. 
Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic 
stem cells. Nature, 431, 997-1002. 

ITO, K., HIRAO, A., ARAI, F., TAKUBO, K., MATSUOKA, S., MIYAMOTO, K., OHMURA, M., NAKA, 
K., HOSOKAWA, K., IKEDA, Y. & SUDA, T. 2006. Reactive oxygen species act through 
p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med, 12, 446-51. 



 

174 
 

IWABUCHI, K., BARTEL, P. L., LI, B., MARRACCINO, R. & FIELDS, S. 1994. Two cellular proteins 
that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A, 91, 6098-102. 

IWABUCHI, K., BASU, B. P., KYSELA, B., KURIHARA, T., SHIBATA, M., GUAN, D., CAO, Y., 
HAMADA, T., IMAMURA, K., JEGGO, P. A., DATE, T. & DOHERTY, A. J. 2003. Potential 
role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J Biol 
Chem, 278, 36487-95. 

IWABUCHI, K., LI, B., MASSA, H. F., TRASK, B. J., DATE, T. & FIELDS, S. 1998. Stimulation of p53-
mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J 
Biol Chem, 273, 26061-8. 

IWASA, H., HAN, J. & ISHIKAWA, F. 2003. Mitogen-activated protein kinase p38 defines the 
common senescence-signalling pathway. Genes Cells, 8, 131-44. 

JACOBS, J. J. & DE LANGE, T. 2004. Significant role for p16INK4a in p53-independent telomere-
directed senescence. Curr Biol, 14, 2302-8. 

JAZAYERI, A., FALCK, J., LUKAS, C., BARTEK, J., SMITH, G. C., LUKAS, J. & JACKSON, S. P. 2006. 
ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand 
breaks. Nat Cell Biol, 8, 37-45. 

JEYAPALAN, J. C., FERREIRA, M., SEDIVY, J. M. & HERBIG, U. 2007. Accumulation of senescent 
cells in mitotic tissue of aging primates. Mech Ageing Dev, 128, 36-44. 

JING, H., KASE, J., DORR, J. R., MILANOVIC, M., LENZE, D., GRAU, M., BEUSTER, G., JI, S., 
REIMANN, M., LENZ, P., HUMMEL, M., DORKEN, B., LENZ, G., SCHEIDEREIT, C., 
SCHMITT, C. A. & LEE, S. 2011. Opposing roles of NF-kappaB in anti-cancer treatment 
outcome unveiled by cross-species investigations. Genes Dev, 25, 2137-46. 

JOHNSON, D. G. & DEGREGORI, J. 2006. Putting the Oncogenic and Tumor Suppressive 
Activities of E2F into Context. Curr Mol Med, 6, 731-8. 

JONES, C. J., KIPLING, D., MORRIS, M., HEPBURN, P., SKINNER, J., BOUNACER, A., WYLLIE, F. S., 
IVAN, M., BARTEK, J., WYNFORD-THOMAS, D. & BOND, J. A. 2000. Evidence for a 
telomere-independent "clock" limiting RAS oncogene-driven proliferation of human 
thyroid epithelial cells. Mol Cell Biol, 20, 5690-9. 

JONES, P. L., PING, D. & BOSS, J. M. 1997. Tumor necrosis factor alpha and interleukin-1beta 
regulate the murine manganese superoxide dismutase gene through a complex 
intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol, 17, 6970-81. 

JOO, W. S., JEFFREY, P. D., CANTOR, S. B., FINNIN, M. S., LIVINGSTON, D. M. & PAVLETICH, N. P. 
2002. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the 
Brca1 BRCT structure. Genes Dev, 16, 583-93. 

JORDAN, C. T. & LEMISCHKA, I. R. 1990. Clonal and systemic analysis of long-term 
hematopoiesis in the mouse. Genes Dev, 4, 220-32. 

JUN, J. I. & LAU, L. F. 2010. The matricellular protein CCN1 induces fibroblast senescence and 
restricts fibrosis in cutaneous wound healing. Nat Cell Biol, 12, 676-85. 

JUNG, T., BADER, N. & GRUNE, T. 2007. Lipofuscin: formation, distribution, and metabolic 
consequences. Ann N Y Acad Sci, 1119, 97-111. 

JURK, D., WANG, C., MIWA, S., MADDICK, M., KOROLCHUK, V., TSOLOU, A., GONOS, E. S., 
THRASIVOULOU, C., SAFFREY, M. J., CAMERON, K. & VON ZGLINICKI, T. 2012. 
Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a 
DNA damage response. Aging Cell, 11, 996-1004. 

KAMATA, H., MANABE, T., OKA, S., KAMATA, K. & HIRATA, H. 2002. Hydrogen peroxide 
activates IkappaB kinases through phosphorylation of serine residues in the activation 
loops. FEBS Lett, 519, 231-7. 

KARAGIANNIS, T. C., HARIKRISHNAN, K. N. & EL-OSTA, A. 2007. Disparity of histone deacetylase 
inhibition on repair of radiation-induced DNA damage on euchromatin and 
constitutive heterochromatin compartments. Oncogene, 26, 3963-71. 

KARIN, M. 2009. NF-kappaB as a critical link between inflammation and cancer. Cold Spring 
Harb Perspect Biol, 1, a000141. 

KARIN, M., LIU, Z. & ZANDI, E. 1997. AP-1 function and regulation. Curr Opin Cell Biol, 9, 240-6. 



 

175 
 

KARLSEDER, J., SMOGORZEWSKA, A. & DE LANGE, T. 2002. Senescence induced by altered 
telomere state, not telomere loss. Science, 295, 2446-9. 

KASID, U., SUY, S., DENT, P., RAY, S., WHITESIDE, T. L. & STURGILL, T. W. 1996. Activation of Raf 
by ionizing radiation. Nature, 382, 813-6. 

KATAKURA, Y., NAKATA, E., MIURA, T. & SHIRAHATA, S. 1999. Transforming growth factor beta 
triggers two independent-senescence programs in cancer cells. Biochem Biophys Res 
Commun, 255, 110-5. 

KATO, D., MIYAZAWA, K., RUAS, M., STARBORG, M., WADA, I., OKA, T., SAKAI, T., PETERS, G. & 
HARA, E. 1998. Features of replicative senescence induced by direct addition of 
antennapedia-p16INK4A fusion protein to human diploid fibroblasts. FEBS Lett, 427, 
203-8. 

KATZ, M. L. & ROBISON, W. G., JR. 2002. What is lipofuscin? Defining characteristics and 
differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol 
Geriatr, 34, 169-84. 

KEARSEY, J. M., COATES, P. J., PRESCOTT, A. R., WARBRICK, E. & HALL, P. A. 1995. Gadd45 is a 
nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene, 11, 1675-
83. 

KELLEY, R. O., VOGEL, K. G., CRISSMAN, H. A., LUJAN, C. J. & SKIPPER, B. E. 1979. Development 
of the aging cell surface. Reduction of gap junction-mediated metabolic cooperation 
with progressive subcultivation of human embryo fibroblasts (IMR-90). Exp Cell Res, 
119, 127-43. 

KENNEDY, A. L., ADAMS, P. D. & MORTON, J. P. 2011. Ras, PI3K/Akt and senescence: Paradoxes 
provide clues for pancreatic cancer therapy. Small GTPases, 2, 264-267. 

KEOGH, M. C., KIM, J. A., DOWNEY, M., FILLINGHAM, J., CHOWDHURY, D., HARRISON, J. C., 
ONISHI, M., DATTA, N., GALICIA, S., EMILI, A., LIEBERMAN, J., SHEN, X., BURATOWSKI, 
S., HABER, J. E., DUROCHER, D., GREENBLATT, J. F. & KROGAN, N. J. 2006. A 
phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage 
checkpoint recovery. Nature, 439, 497-501. 

KIM, J. A., KRUHLAK, M., DOTIWALA, F., NUSSENZWEIG, A. & HABER, J. E. 2007. 
Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J 
Cell Biol, 178, 209-18. 

KIM, J. H., CHU, S. C., GRAMLICH, J. L., PRIDE, Y. B., BABENDREIER, E., CHAUHAN, D., SALGIA, R., 
PODAR, K., GRIFFIN, J. D. & SATTLER, M. 2005. Activation of the PI3K/mTOR pathway 
by BCR-ABL contributes to increased production of reactive oxygen species. Blood, 
105, 1717-23. 

KIM, N. W., PIATYSZEK, M. A., PROWSE, K. R., HARLEY, C. B., WEST, M. D., HO, P. L., COVIELLO, 
G. M., WRIGHT, W. E., WEINRICH, S. L. & SHAY, J. W. 1994. Specific association of 
human telomerase activity with immortal cells and cancer. Science, 266, 2011-5. 

KIM, S. T., XU, B. & KASTAN, M. B. 2002. Involvement of the cohesin protein, Smc1, in Atm-
dependent and independent responses to DNA damage. Genes Dev, 16, 560-70. 

KITADA, T., SEKI, S., KAWAKITA, N., KUROKI, T. & MONNA, T. 1995. Telomere shortening in 
chronic liver diseases. Biochem Biophys Res Commun, 211, 33-9. 

KODAMA, R., KATO, M., FURUTA, S., UENO, S., ZHANG, Y., MATSUNO, K., YABE-NISHIMURA, C., 
TANAKA, E. & KAMATA, T. 2013. ROS-generating oxidases Nox1 and Nox4 contribute to 
oncogenic Ras-induced premature senescence. Genes Cells, 18, 32-41. 

KOH, Y. H., TAMIZHSELVI, R. & BHATIA, M. 2010. Extracellular signal-regulated kinase 1/2 and 
c-Jun NH2-terminal kinase, through nuclear factor-kappaB and activator protein-1, 
contribute to caerulein-induced expression of substance P and neurokinin-1 receptors 
in pancreatic acinar cells. J Pharmacol Exp Ther, 332, 940-8. 

KOLI, K., MYLLARNIEMI, M., KESKI-OJA, J. & KINNULA, V. L. 2008. Transforming growth factor-
beta activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid 
Redox Signal, 10, 333-42. 



 

176 
 

KOLYADA, A. Y., SAVIKOVSKY, N. & MADIAS, N. E. 1996. Transcriptional regulation of the 
human iNOS gene in vascular-smooth-muscle cells and macrophages: evidence for 
tissue specificity. Biochem Biophys Res Commun, 220, 600-5. 

KONISHI, H., TANAKA, M., TAKEMURA, Y., MATSUZAKI, H., ONO, Y., KIKKAWA, U. & NISHIZUKA, 
Y. 1997. Activation of protein kinase C by tyrosine phosphorylation in response to 
H2O2. Proc Natl Acad Sci U S A, 94, 11233-7. 

KOPNIN, P. B., AGAPOVA, L. S., KOPNIN, B. P. & CHUMAKOV, P. M. 2007. Repression of sestrin 
family genes contributes to oncogenic Ras-induced reactive oxygen species up-
regulation and genetic instability. Cancer Res, 67, 4671-8. 

KOROTCHKINA, L. G., DEMIDENKO, Z. N., GUDKOV, A. V. & BLAGOSKLONNY, M. V. 2009. 
Cellular quiescence caused by the Mdm2 inhibitor nutlin-3A. Cell Cycle, 8, 3777-81. 

KOROTCHKINA, L. G., LEONTIEVA, O. V., BUKREEVA, E. I., DEMIDENKO, Z. N., GUDKOV, A. V. & 
BLAGOSKLONNY, M. V. 2010. The choice between p53-induced senescence and 
quiescence is determined in part by the mTOR pathway. Aging (Albany NY), 2, 344-52. 

KRIMPENFORT, P., QUON, K. C., MOOI, W. J., LOONSTRA, A. & BERNS, A. 2001. Loss of 
p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature, 413, 83-6. 

KRIZHANOVSKY, V., XUE, W., ZENDER, L., YON, M., HERNANDO, E. & LOWE, S. W. 2008a. 
Implications of cellular senescence in tissue damage response, tumor suppression, and 
stem cell biology. Cold Spring Harb Symp Quant Biol, 73, 513-22. 

KRIZHANOVSKY, V., YON, M., DICKINS, R. A., HEARN, S., SIMON, J., MIETHING, C., YEE, H., 
ZENDER, L. & LOWE, S. W. 2008b. Senescence of activated stellate cells limits liver 
fibrosis. Cell, 134, 657-67. 

KRTOLICA, A., PARRINELLO, S., LOCKETT, S., DESPREZ, P. Y. & CAMPISI, J. 2001. Senescent 
fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer 
and aging. Proc Natl Acad Sci U S A, 98, 12072-7. 

KUILMAN, T., MICHALOGLOU, C., VREDEVELD, L. C., DOUMA, S., VAN DOORN, R., DESMET, C. 
J., AARDEN, L. A., MOOI, W. J. & PEEPER, D. S. 2008. Oncogene-induced senescence 
relayed by an interleukin-dependent inflammatory network. Cell, 133, 1019-31. 

KUMAGAI, A. & DUNPHY, W. G. 2000. Claspin, a novel protein required for the activation of 
Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell, 
6, 839-49. 

KURZ, D. J., DECARY, S., HONG, Y. & ERUSALIMSKY, J. D. 2000. Senescence-associated (beta)-
galactosidase reflects an increase in lysosomal mass during replicative ageing of 
human endothelial cells. J Cell Sci, 113 ( Pt 20), 3613-22. 

KWON, G., MARSHALL, C. A., LIU, H., PAPPAN, K. L., REMEDI, M. S. & MCDANIEL, M. L. 2006. 
Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is 
regulated by KATP channels: effects on cell cycle progression in rodent islets. J Biol 
Chem, 281, 3261-7. 

KWON, G., MARSHALL, C. A., PAPPAN, K. L., REMEDI, M. S. & MCDANIEL, M. L. 2004. Signaling 
elements involved in the metabolic regulation of mTOR by nutrients, incretins, and 
growth factors in islets. Diabetes, 53 Suppl 3, S225-32. 

LA ROSA, F. A., PIERCE, J. W. & SONENSHEIN, G. E. 1994. Differential regulation of the c-myc 
oncogene promoter by the NF-kappa B rel family of transcription factors. Mol Cell Biol, 
14, 1039-44. 

LADWIG, G. P., ROBSON, M. C., LIU, R., KUHN, M. A., MUIR, D. F. & SCHULTZ, G. S. 2002. Ratios 
of activated matrix metalloproteinase-9 to tissue inhibitor of matrix 
metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure 
ulcers. Wound Repair Regen, 10, 26-37. 

LAGADEC, C., VLASHI, E., DELLA DONNA, L., DEKMEZIAN, C. & PAJONK, F. 2012. Radiation-
induced reprogramming of breast cancer cells. Stem Cells, 30, 833-44. 

LAHAV, G., ROSENFELD, N., SIGAL, A., GEVA-ZATORSKY, N., LEVINE, A. J., ELOWITZ, M. B. & 
ALON, U. 2004. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat 
Genet, 36, 147-50. 



 

177 
 

LAND, C. E. 2002. Uncertainty, low-dose extrapolation and the threshold hypothesis. J Radiol 
Prot, 22, A129-35. 

LANE, B. R., LIU, J., BOCK, P. J., SCHOLS, D., COFFEY, M. J., STRIETER, R. M., POLVERINI, P. J. & 
MARKOVITZ, D. M. 2002. Interleukin-8 and growth-regulated oncogene alpha mediate 
angiogenesis in Kaposi's sarcoma. J Virol, 76, 11570-83. 

LAWLESS, C., JURK, D., GILLESPIE, C. S., SHANLEY, D., SARETZKI, G., VON ZGLINICKI, T. & 
PASSOS, J. F. 2012. A stochastic step model of replicative senescence explains ROS 
production rate in ageing cell populations. PLoS One, 7, e32117. 

LAWLESS, C., WANG, C., JURK, D., MERZ, A., ZGLINICKI, T. & PASSOS, J. F. 2010. Quantitative 
assessment of markers for cell senescence. Exp Gerontol, 45, 772-8. 

LAZZERINI DENCHI, E., ATTWOOLL, C., PASINI, D. & HELIN, K. 2005. Deregulated E2F activity 
induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol 
Cell Biol, 25, 2660-72. 

LE CAM, L., LINARES, L. K., PAUL, C., JULIEN, E., LACROIX, M., HATCHI, E., TRIBOULET, R., 
BOSSIS, G., SHMUELI, A., RODRIGUEZ, M. S., COUX, O. & SARDET, C. 2006. E4F1 is an 
atypical ubiquitin ligase that modulates p53 effector functions independently of 
degradation. Cell, 127, 775-88. 

LE GUILLY, Y., SIMON, M., LENOIR, P. & BOUREL, M. 1973. Long-term culture of human adult 
liver cells: morphological changes related to in vitro senescence and effect of donor's 
age on growth potential. Gerontologia, 19, 303-13. 

LEE, B. Y., HAN, J. A., IM, J. S., MORRONE, A., JOHUNG, K., GOODWIN, E. C., KLEIJER, W. J., 
DIMAIO, D. & HWANG, E. S. 2006. Senescence-associated beta-galactosidase is 
lysosomal beta-galactosidase. Aging Cell, 5, 187-95. 

LEE, E. G., BOONE, D. L., CHAI, S., LIBBY, S. L., CHIEN, M., LODOLCE, J. P. & MA, A. 2000. Failure 
to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. 
Science, 289, 2350-4. 

LEE, H., HERRMANN, A., DENG, J. H., KUJAWSKI, M., NIU, G., LI, Z., FORMAN, S., JOVE, R., 
PARDOLL, D. M. & YU, H. 2009. Persistently activated Stat3 maintains constitutive NF-
kappaB activity in tumors. Cancer Cell, 15, 283-93. 

LEE, J. H. & PAULL, T. T. 2005. ATM activation by DNA double-strand breaks through the 
Mre11-Rad50-Nbs1 complex. Science, 308, 551-4. 

LEE, J. W., PARK, S., TAKAHASHI, Y. & WANG, H. G. 2010. The association of AMPK with ULK1 
regulates autophagy. PLoS One, 5, e15394. 

LEGLER, D. F., MICHEAU, O., DOUCEY, M. A., TSCHOPP, J. & BRON, C. 2003. Recruitment of TNF 
receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. 
Immunity, 18, 655-64. 

LENER, B., KOZIEL, R., PIRCHER, H., HUTTER, E., GREUSSING, R., HERNDLER-BRANDSTETTER, D., 
HERMANN, M., UNTERLUGGAUER, H. & JANSEN-DURR, P. 2009. The NADPH oxidase 
Nox4 restricts the replicative lifespan of human endothelial cells. Biochem J, 423, 363-
74. 

LEONTIEVA, O. V., LENZO, F., DEMIDENKO, Z. N. & BLAGOSKLONNY, M. V. 2012. Hyper-
mitogenic drive coexists with mitotic incompetence in senescent cells. Cell Cycle, 11, 
4642-9. 

LEVY, L. & HILL, C. S. 2006. Alterations in components of the TGF-beta superfamily signaling 
pathways in human cancer. Cytokine Growth Factor Rev, 17, 41-58. 

LEVY, M. Z., ALLSOPP, R. C., FUTCHER, A. B., GREIDER, C. W. & HARLEY, C. B. 1992. Telomere 
end-replication problem and cell aging. J Mol Biol, 225, 951-60. 

LI, C., HU, Y., STURM, G., WICK, G. & XU, Q. 2000. Ras/Rac-Dependent activation of p38 
mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain 
stress. Arterioscler Thromb Vasc Biol, 20, E1-9. 

LI, M., BROOKS, C. L., WU-BAER, F., CHEN, D., BAER, R. & GU, W. 2003. Mono- versus 
polyubiquitination: differential control of p53 fate by Mdm2. Science, 302, 1972-5. 



 

178 
 

LI, M. O., WAN, Y. Y., SANJABI, S., ROBERTSON, A. K. & FLAVELL, R. A. 2006. Transforming 
growth factor-beta regulation of immune responses. Annual review of immunology, 
24, 99-146. 

LI, Q. & ENGELHARDT, J. F. 2006. Interleukin-1beta induction of NFkappaB is partially regulated 
by H2O2-mediated activation of NFkappaB-inducing kinase. J Biol Chem, 281, 1495-
505. 

LIN, A. W., BARRADAS, M., STONE, J. C., VAN AELST, L., SERRANO, M. & LOWE, S. W. 1998. 
Premature senescence involving p53 and p16 is activated in response to constitutive 
MEK/MAPK mitogenic signaling. Genes Dev, 12, 3008-19. 

LIN, J. H., YANG, J., LIU, S., TAKANO, T., WANG, X., GAO, Q., WILLECKE, K. & NEDERGAARD, M. 
2003. Connexin mediates gap junction-independent resistance to cellular injury. J 
Neurosci, 23, 430-41. 

LITTLE, J. B. 1969. Repair of sub-lethal and potentially lethal radiation damage in plateau phase 
cultures of human cells. Nature, 224, 804-6. 

LIU, B., WANG, J., CHAN, K. M., TJIA, W. M., DENG, W., GUAN, X., HUANG, J. D., LI, K. M., CHAU, 
P. Y., CHEN, D. J., PEI, D., PENDAS, A. M., CADINANOS, J., LOPEZ-OTIN, C., TSE, H. F., 
HUTCHISON, C., CHEN, J., CAO, Y., CHEAH, K. S., TRYGGVASON, K. & ZHOU, Z. 2005. 
Genomic instability in laminopathy-based premature aging. Nat Med, 11, 780-5. 

LIU, D. & HORNSBY, P. J. 2007. Senescent human fibroblasts increase the early growth of 
xenograft tumors via matrix metalloproteinase secretion. Cancer Res, 67, 3117-26. 

LIU, L. Z., HU, X. W., XIA, C., HE, J., ZHOU, Q., SHI, X., FANG, J. & JIANG, B. H. 2006a. Reactive 
oxygen species regulate epidermal growth factor-induced vascular endothelial growth 
factor and hypoxia-inducible factor-1alpha expression through activation of AKT and 
P70S6K1 in human ovarian cancer cells. Free Radic Biol Med, 41, 1521-33. 

LIU, Q., GUNTUKU, S., CUI, X. S., MATSUOKA, S., CORTEZ, D., TAMAI, K., LUO, G., CARATTINI-
RIVERA, S., DEMAYO, F., BRADLEY, A., DONEHOWER, L. A. & ELLEDGE, S. J. 2000. Chk1 
is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage 
checkpoint. Genes Dev, 14, 1448-59. 

LIU, Z., MOTHERSILL, C. E., MCNEILL, F. E., LYNG, F. M., BYUN, S. H., SEYMOUR, C. B. & 
PRESTWICH, W. V. 2006b. A dose threshold for a medium transfer bystander effect for 
a human skin cell line. Radiat Res, 166, 19-23. 

LIU, Z. G., BASKARAN, R., LEA-CHOU, E. T., WOOD, L. D., CHEN, Y., KARIN, M. & WANG, J. Y. 
1996. Three distinct signalling responses by murine fibroblasts to genotoxic stress. 
Nature, 384, 273-6. 

LOBMANN, R., AMBROSCH, A., SCHULTZ, G., WALDMANN, K., SCHIWECK, S. & LEHNERT, H. 
2002. Expression of matrix-metalloproteinases and their inhibitors in the wounds of 
diabetic and non-diabetic patients. Diabetologia, 45, 1011-6. 

LOWE, S. W., CEPERO, E. & EVAN, G. 2004. Intrinsic tumour suppression. Nature, 432, 307-15. 
LU, X., NANNENGA, B. & DONEHOWER, L. A. 2005. PPM1D dephosphorylates Chk1 and p53 

and abrogates cell cycle checkpoints. Genes Dev, 19, 1162-74. 
LUKAS, C., FALCK, J., BARTKOVA, J., BARTEK, J. & LUKAS, J. 2003. Distinct spatiotemporal 

dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol, 
5, 255-60. 

LUKAS, C., MELANDER, F., STUCKI, M., FALCK, J., BEKKER-JENSEN, S., GOLDBERG, M., 
LERENTHAL, Y., JACKSON, S. P., BARTEK, J. & LUKAS, J. 2004. Mdc1 couples DNA 
double-strand break recognition by Nbs1 with its H2AX-dependent chromatin 
retention. EMBO J, 23, 2674-83. 

LUNDBLAD, V. & SZOSTAK, J. W. 1989. A mutant with a defect in telomere elongation leads to 
senescence in yeast. Cell, 57, 633-43. 

LUTTICKEN, C., WEGENKA, U. M., YUAN, J., BUSCHMANN, J., SCHINDLER, C., ZIEMIECKI, A., 
HARPUR, A. G., WILKS, A. F., YASUKAWA, K., TAGA, T. & ET AL. 1994. Association of 
transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal 
transducer gp130. Science, 263, 89-92. 



 

179 
 

LYNG, F. M., MAGUIRE, P., MCCLEAN, B., SEYMOUR, C. & MOTHERSILL, C. 2006. The 
involvement of calcium and MAP kinase signaling pathways in the production of 
radiation-induced bystander effects. Radiat Res, 165, 400-9. 

LYNG, F. M., SEYMOUR, C. B. & MOTHERSILL, C. 2000. Production of a signal by irradiated cells 
which leads to a response in unirradiated cells characteristic of initiation of apoptosis. 
Br J Cancer, 83, 1223-30. 

MACIP, S., IGARASHI, M., FANG, L., CHEN, A., PAN, Z. Q., LEE, S. W. & AARONSON, S. A. 2002. 
Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. 
EMBO J, 21, 2180-8. 

MADRID, L. V., MAYO, M. W., REUTHER, J. Y. & BALDWIN, A. S., JR. 2001. Akt stimulates the 
transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of 
the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol 
Chem, 276, 18934-40. 

MAEDA, S., KAMATA, H., LUO, J. L., LEFFERT, H. & KARIN, M. 2005. IKKbeta couples hepatocyte 
death to cytokine-driven compensatory proliferation that promotes chemical 
hepatocarcinogenesis. Cell, 121, 977-90. 

MAESHIMA, K., YAHATA, K., SASAKI, Y., NAKATOMI, R., TACHIBANA, T., HASHIKAWA, T., 
IMAMOTO, F. & IMAMOTO, N. 2006. Cell-cycle-dependent dynamics of nuclear pores: 
pore-free islands and lamins. J Cell Sci, 119, 4442-51. 

MAEURER, M. J. & LOTZE, M. T. 1998. Interleukin-7 (IL-7) knockout mice. Implications for 
lymphopoiesis and organ-specific immunity. International reviews of immunology, 16, 
309-22. 

MAGUIRE, P., MOTHERSILL, C., SEYMOUR, C. & LYNG, F. M. 2005. Medium from irradiated cells 
induces dose-dependent mitochondrial changes and BCL2 responses in unirradiated 
human keratinocytes. Radiat Res, 163, 384-90. 

MAHER, P. 1999. p38 mitogen-activated protein kinase activation is required for fibroblast 
growth factor-2-stimulated cell proliferation but not differentiation. J Biol Chem, 274, 
17491-8. 

MAHYAR-ROEMER, M. & ROEMER, K. 2001. p21 Waf1/Cip1 can protect human colon 
carcinoma cells against p53-dependent and p53-independent apoptosis induced by 
natural chemopreventive and therapeutic agents. Oncogene, 20, 3387-98. 

MAILAND, N., BEKKER-JENSEN, S., BARTEK, J. & LUKAS, J. 2006. Destruction of Claspin by 
SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. 
Mol Cell, 23, 307-18. 

MAKAROV, V. L., HIROSE, Y. & LANGMORE, J. P. 1997. Long G tails at both ends of human 
chromosomes suggest a C strand degradation mechanism for telomere shortening. 
Cell, 88, 657-66. 

MALCHOW, S., THAISS, W., JANNER, N., WAETZIG, G. H., GEWIESE-RABSCH, J., GARBERS, C., 
YAMAMOTO, K., ROSE-JOHN, S. & SCHELLER, J. 2011. Essential role of neutrophil 
mobilization in concanavalin A-induced hepatitis is based on classic IL-6 signaling but 
not on IL-6 trans-signaling. Biochim Biophys Acta, 1812, 290-301. 

MALLETTE, F. A., GAUMONT-LECLERC, M. F. & FERBEYRE, G. 2007. The DNA damage signaling 
pathway is a critical mediator of oncogene-induced senescence. Genes Dev, 21, 43-8. 

MALLETTE, F. A., GOUMARD, S., GAUMONT-LECLERC, M. F., MOISEEVA, O. & FERBEYRE, G. 
2004. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for 
PML-induced senescence. Oncogene, 23, 91-9. 

MAO, Z., KE, Z., GORBUNOVA, V. & SELUANOV, A. 2012. Replicatively senescent cells are 
arrested in G1 and G2 phases. Aging (Albany NY), 4, 431-5. 

MARCHENKO, N. D., ZAIKA, A. & MOLL, U. M. 2000. Death signal-induced localization of p53 
protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem, 275, 
16202-12. 



 

180 
 

MARIAPPAN, N., ELKS, C. M., SRIRAMULA, S., GUGGILAM, A., LIU, Z., BORKHSENIOUS, O. & 
FRANCIS, J. 2010. NF-kappaB-induced oxidative stress contributes to mitochondrial 
and cardiac dysfunction in type II diabetes. Cardiovasc Res, 85, 473-83. 

MARTIN, G. M., SPRAGUE, C. A. & EPSTEIN, C. J. 1970. Replicative life-span of cultivated human 
cells. Effects of donor's age, tissue, and genotype. Lab Invest, 23, 86-92. 

MARTINEZ, L. A., YANG, J., VAZQUEZ, E. S., RODRIGUEZ-VARGAS MDEL, C., OLIVE, M., HSIEH, J. 
T., LOGOTHETIS, C. J. & NAVONE, N. M. 2002. p21 modulates threshold of apoptosis 
induced by DNA-damage and growth factor withdrawal in prostate cancer cells. 
Carcinogenesis, 23, 1289-96. 

MATSUMURA, T., ZERRUDO, Z. & HAYFLICK, L. 1979. Senescent human diploid cells in culture: 
survival, DNA synthesis and morphology. J Gerontol, 34, 328-34. 

MATSUOKA, S., ROTMAN, G., OGAWA, A., SHILOH, Y., TAMAI, K. & ELLEDGE, S. J. 2000. Ataxia 
telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S 
A, 97, 10389-94. 

MAYA, R., BALASS, M., KIM, S. T., SHKEDY, D., LEAL, J. F., SHIFMAN, O., MOAS, M., 
BUSCHMANN, T., RONAI, Z., SHILOH, Y., KASTAN, M. B., KATZIR, E. & OREN, M. 2001. 
ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by 
DNA damage. Genes Dev, 15, 1067-77. 

MCCLINTOCK, B. 1941. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics, 
26, 234-82. 

MCCONNELL, B. B., STARBORG, M., BROOKES, S. & PETERS, G. 1998. Inhibitors of cyclin-
dependent kinases induce features of replicative senescence in early passage human 
diploid fibroblasts. Curr Biol, 8, 351-4. 

MELCHIONNA, R., CHEN, X. B., BLASINA, A. & MCGOWAN, C. H. 2000. Threonine 68 is required 
for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol, 2, 762-5. 

MENDEZ, M. V., RAFFETTO, J. D., PHILLIPS, T., MENZOIAN, J. O. & PARK, H. Y. 1999. The 
proliferative capacity of neonatal skin fibroblasts is reduced after exposure to venous 
ulcer wound fluid: A potential mechanism for senescence in venous ulcers. J Vasc Surg, 
30, 734-43. 

MENG, A., WANG, Y., VAN ZANT, G. & ZHOU, D. 2003. Ionizing radiation and busulfan induce 
premature senescence in murine bone marrow hematopoietic cells. Cancer Res, 63, 
5414-9. 

MEYLAN, E., DOOLEY, A. L., FELDSER, D. M., SHEN, L., TURK, E., OUYANG, C. & JACKS, T. 2009. 
Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. 
Nature, 462, 104-7. 

MICHALOGLOU, C., VREDEVELD, L. C., SOENGAS, M. S., DENOYELLE, C., KUILMAN, T., VAN DER 
HORST, C. M., MAJOOR, D. M., SHAY, J. W., MOOI, W. J. & PEEPER, D. S. 2005. 
BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436, 
720-4. 

MICHEAU, O. & TSCHOPP, J. 2003. Induction of TNF receptor I-mediated apoptosis via two 
sequential signaling complexes. Cell, 114, 181-90. 

MIHARA, M., ERSTER, S., ZAIKA, A., PETRENKO, O., CHITTENDEN, T., PANCOSKA, P. & MOLL, U. 
M. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol Cell, 11, 577-90. 

MIHARA, M., MORIYA, Y., KISHIMOTO, T. & OHSUGI, Y. 1995. Interleukin-6 (IL-6) induces the 
proliferation of synovial fibroblastic cells in the presence of soluble IL-6 receptor. Br J 
Rheumatol, 34, 321-5. 

MIHARA, M., MORIYA, Y. & OHSUGI, Y. 1996. IL-6-soluble IL-6 receptor complex inhibits the 
proliferation of dermal fibroblasts. Int J Immunopharmacol, 18, 89-94. 

MISHIMA, K., HANDA, J. T., AOTAKI-KEEN, A., LUTTY, G. A., MORSE, L. S. & HJELMELAND, L. M. 
1999. Senescence-associated beta-galactosidase histochemistry for the primate eye. 
Invest Ophthalmol Vis Sci, 40, 1590-3. 



 

181 
 

MOCHAN, T. A., VENERE, M., DITULLIO, R. A., JR. & HALAZONETIS, T. D. 2003. 53BP1 and 
NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-
telangiectasia mutated (ATM) in response to DNA damage. Cancer Res, 63, 8586-91. 

MOCHAN, T. A., VENERE, M., DITULLIO, R. A., JR. & HALAZONETIS, T. D. 2004. 53BP1, an 
activator of ATM in response to DNA damage. DNA Repair (Amst), 3, 945-52. 

MOISEEVA, O., BOURDEAU, V., ROUX, A., DESCHENES-SIMARD, X. & FERBEYRE, G. 2009. 
Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol, 
29, 4495-507. 

MOISEEVA, O., MALLETTE, F. A., MUKHOPADHYAY, U. K., MOORES, A. & FERBEYRE, G. 2006. 
DNA damage signaling and p53-dependent senescence after prolonged beta-interferon 
stimulation. Mol Biol Cell, 17, 1583-92. 

MOK, M. T. & HENDERSON, B. R. 2010. A comparison of BRCA1 nuclear localization with 14 
DNA damage response proteins and domains: identification of specific differences 
between BRCA1 and 53BP1 at DNA damage-induced foci. Cell Signal, 22, 47-56. 

MORALES, C. P., HOLT, S. E., OUELLETTE, M., KAUR, K. J., YAN, Y., WILSON, K. S., WHITE, M. A., 
WRIGHT, W. E. & SHAY, J. W. 1999. Absence of cancer-associated changes in human 
fibroblasts immortalized with telomerase. Nat Genet, 21, 115-8. 

MORGAN, M. J., KIM, Y. S. & LIU, Z. 2007. Lipid rafts and oxidative stress-induced cell death. 
Antioxid Redox Signal, 9, 1471-83. 

MORI, N., YAMADA, Y., IKEDA, S., YAMASAKI, Y., TSUKASAKI, K., TANAKA, Y., TOMONAGA, M., 
YAMAMOTO, N. & FUJII, M. 2002. Bay 11-7082 inhibits transcription factor NF-kappaB 
and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia 
cells. Blood, 100, 1828-34. 

MORRISON, S. J., WANDYCZ, A. M., AKASHI, K., GLOBERSON, A. & WEISSMAN, I. L. 1996. The 
aging of hematopoietic stem cells. Nat Med, 2, 1011-6. 

MOTHERSILL, C., LYNG, F., SEYMOUR, C., MAGUIRE, P., LORIMORE, S. & WRIGHT, E. 2005. 
Genetic factors influencing bystander signaling in murine bladder epithelium after low-
dose irradiation in vivo. Radiat Res, 163, 391-9. 

MOTHERSILL, C., REA, D., WRIGHT, E. G., LORIMORE, S. A., MURPHY, D., SEYMOUR, C. B. & 
O'MALLEY, K. 2001. Individual variation in the production of a 'bystander signal' 
following irradiation of primary cultures of normal human urothelium. Carcinogenesis, 
22, 1465-71. 

MOTHERSILL, C. & SEYMOUR, C. 1997. Medium from irradiated human epithelial cells but not 
human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat 
Biol, 71, 421-7. 

MOTHERSILL, C. & SEYMOUR, C. B. 1998. Cell-cell contact during gamma irradiation is not 
required to induce a bystander effect in normal human keratinocytes: evidence for 
release during irradiation of a signal controlling survival into the medium. Radiat Res, 
149, 256-62. 

MOTHERSILL, C. & SEYMOUR, C. B. 2002. Bystander and delayed effects after fractionated 
radiation exposure. Radiat Res, 158, 626-33. 

MOTHERSILL, C., SEYMOUR, R. J. & SEYMOUR, C. B. 2004. Bystander effects in repair-deficient 
cell lines. Radiat Res, 161, 256-63. 

MOTHERSILL, C. E., O'MALLEY, K. J., MURPHY, D. M., SEYMOUR, C. B., LORIMORE, S. A. & 
WRIGHT, E. G. 1999. Identification and characterization of three subtypes of radiation 
response in normal human urothelial cultures exposed to ionizing radiation. 
Carcinogenesis, 20, 2273-8. 

MUEGGE, K., VILA, M. P. & DURUM, S. K. 1993. Interleukin-7: a cofactor for V(D)J 
rearrangement of the T cell receptor beta gene. Science, 261, 93-5. 

MUNGAMURI, S. K., YANG, X., THOR, A. D. & SOMASUNDARAM, K. 2006. Survival signaling by 
Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer 
Res, 66, 4715-24. 



 

182 
 

NAGASAWA, H. & LITTLE, J. B. 1992. Induction of sister chromatid exchanges by extremely low 
doses of alpha-particles. Cancer Res, 52, 6394-6. 

NAKAMURA, A. J., CHIANG, Y. J., HATHCOCK, K. S., HORIKAWA, I., SEDELNIKOVA, O. A., HODES, 
R. J. & BONNER, W. M. 2008. Both telomeric and non-telomeric DNA damage are 
determinants of mammalian cellular senescence. Epigenetics Chromatin, 1, 6. 

NAKAMURA, K., SAKAI, W., KAWAMOTO, T., BREE, R. T., LOWNDES, N. F., TAKEDA, S. & 
TANIGUCHI, Y. 2006. Genetic dissection of vertebrate 53BP1: a major role in non-
homologous end joining of DNA double strand breaks. DNA Repair (Amst), 5, 741-9. 

NAKASE, T., SOHL, G., THEIS, M., WILLECKE, K. & NAUS, C. C. 2004. Increased apoptosis and 
inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J 
Pathol, 164, 2067-75. 

NARITA, M. 2007. Cellular senescence and chromatin organisation. Br J Cancer, 96, 686-91. 
NARITA, M., NUNEZ, S., HEARD, E., LIN, A. W., HEARN, S. A., SPECTOR, D. L., HANNON, G. J. & 

LOWE, S. W. 2003. Rb-mediated heterochromatin formation and silencing of E2F 
target genes during cellular senescence. Cell, 113, 703-16. 

NAUGLER, W. E., SAKURAI, T., KIM, S., MAEDA, S., KIM, K., ELSHARKAWY, A. M. & KARIN, M. 
2007. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 
production. Science, 317, 121-4. 

NAUS, C. C. 2002. Gap junctions and tumour progression. Can J Physiol Pharmacol, 80, 136-41. 
NAUTIYAL, S., DERISI, J. L. & BLACKBURN, E. H. 2002. The genome-wide expression response to 

telomerase deletion in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 99, 9316-
21. 

NELSON, G., BUHMANN, M. & VON ZGLINICKI, T. 2009. DNA damage foci in mitosis are devoid 
of 53BP1. Cell Cycle, 8, 3379-83. 

NELSON, G., WORDSWORTH, J., WANG, C., JURK, D., LAWLESS, C., MARTIN-RUIZ, C. & VON 
ZGLINICKI, T. 2012. A senescent cell bystander effect: senescence-induced senescence. 
Aging Cell, 11, 345-9. 

NEVINS, J. R. 1992. E2F: a link between the Rb tumor suppressor protein and viral 
oncoproteins. Science, 258, 424-9. 

NICKE, B., BASTIEN, J., KHANNA, S. J., WARNE, P. H., COWLING, V., COOK, S. J., PETERS, G., 
DELPUECH, O., SCHULZE, A., BERNS, K., MULLENDERS, J., BEIJERSBERGEN, R. L., 
BERNARDS, R., GANESAN, T. S., DOWNWARD, J. & HANCOCK, D. C. 2005. Involvement 
of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human 
ovarian surface epithelial cells. Mol Cell, 20, 673-85. 

NIKJOO, H., MUNSON, R. J. & BRIDGES, B. A. 1999. RBE-LET relationships in mutagenesis by 
ionizing radiation. J Radiat Res (Tokyo), 40 Suppl, 85-105. 

NOWELL, M. A., RICHARDS, P. J., HORIUCHI, S., YAMAMOTO, N., ROSE-JOHN, S., TOPLEY, N., 
WILLIAMS, A. S. & JONES, S. A. 2003. Soluble IL-6 receptor governs IL-6 activity in 
experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J 
Immunol, 171, 3202-9. 

OAKLEY, F., MANN, J., NAILARD, S., SMART, D. E., MUNGALSINGH, N., CONSTANDINOU, C., ALI, 
S., WILSON, S. J., MILLWARD-SADLER, H., IREDALE, J. P. & MANN, D. A. 2005. Nuclear 
factor-kappaB1 (p50) limits the inflammatory and fibrogenic responses to chronic 
injury. Am J Pathol, 166, 695-708. 

OBATA, T., BROWN, G. E. & YAFFE, M. B. 2000. MAP kinase pathways activated by stress: the 
p38 MAPK pathway. Crit Care Med, 28, N67-77. 

OFT, M., PELI, J., RUDAZ, C., SCHWARZ, H., BEUG, H. & REICHMANN, E. 1996. TGF-beta1 and 
Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of 
epithelial tumor cells. Genes & development, 10, 2462-77. 

OLOVNIKOV, A. M. 1971. [Principle of marginotomy in template synthesis of polynucleotides]. 
Dokl Akad Nauk SSSR, 201, 1496-9. 



 

183 
 

OLOVNIKOV, A. M. 1973. A theory of marginotomy. The incomplete copying of template 
margin in enzymic synthesis of polynucleotides and biological significance of the 
phenomenon. J Theor Biol, 41, 181-90. 

OLOVNIKOV, I. A., KRAVCHENKO, J. E. & CHUMAKOV, P. M. 2009. Homeostatic functions of the 
p53 tumor suppressor: regulation of energy metabolism and antioxidant defense. 
Semin Cancer Biol, 19, 32-41. 

OWEN, J. D., STRIETER, R., BURDICK, M., HAGHNEGAHDAR, H., NANNEY, L., SHATTUCK-
BRANDT, R. & RICHMOND, A. 1997. Enhanced tumor-forming capacity for 
immortalized melanocytes expressing melanoma growth stimulatory activity/growth-
regulated cytokine beta and gamma proteins. International journal of cancer. Journal 
international du cancer, 73, 94-103. 

PAHL, H. L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. 
Oncogene, 18, 6853-66. 

PANOPOULOS, A., HARRAZ, M., ENGELHARDT, J. F. & ZANDI, E. 2005. Iron-mediated H2O2 
production as a mechanism for cell type-specific inhibition of tumor necrosis factor 
alpha-induced but not interleukin-1beta-induced IkappaB kinase complex/nuclear 
factor-kappaB activation. J Biol Chem, 280, 2912-23. 

PANTOJA, C. & SERRANO, M. 1999. Murine fibroblasts lacking p21 undergo senescence and are 
resistant to transformation by oncogenic Ras. Oncogene, 18, 4974-82. 

PAPPAS, C. A., RIOULT, M. G. & RANSOM, B. R. 1996. Octanol, a gap junction uncoupling agent, 
changes intracellular [H+] in rat astrocytes. Glia, 16, 7-15. 

PARRINELLO, S., COPPE, J. P., KRTOLICA, A. & CAMPISI, J. 2005. Stromal-epithelial interactions 
in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci, 
118, 485-96. 

PASSOS, J. F., MIWA, S. & VON ZGLINICKI, T. 2013. Measuring reactive oxygen species in 
senescent cells. Methods Mol Biol, 965, 253-63. 

PASSOS, J. F., NELSON, G., WANG, C., RICHTER, T., SIMILLION, C., PROCTOR, C. J., MIWA, S., 
OLIJSLAGERS, S., HALLINAN, J., WIPAT, A., SARETZKI, G., RUDOLPH, K. L., KIRKWOOD, T. 
B. & VON ZGLINICKI, T. 2010. Feedback between p21 and reactive oxygen production is 
necessary for cell senescence. Mol Syst Biol, 6, 347. 

PASSOS, J. F., SARETZKI, G., AHMED, S., NELSON, G., RICHTER, T., PETERS, H., WAPPLER, I., 
BIRKET, M. J., HAROLD, G., SCHAEUBLE, K., BIRCH-MACHIN, M. A., KIRKWOOD, T. B. & 
VON ZGLINICKI, T. 2007. Mitochondrial dysfunction accounts for the stochastic 
heterogeneity in telomere-dependent senescence. PLoS Biol, 5, e110. 

PASSOS, J. F. & VON ZGLINICKI, T. 2006. Oxygen free radicals in cell senescence: are they signal 
transducers? Free Radic Res, 40, 1277-83. 

PASSOS, J. F., VON ZGLINICKI, T. & SARETZKI, G. 2006. Mitochondrial dysfunction and cell 
senescence: cause or consequence? Rejuvenation Res, 9, 64-8. 

PAULL, T. T., ROGAKOU, E. P., YAMAZAKI, V., KIRCHGESSNER, C. U., GELLERT, M. & BONNER, W. 
M. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci 
after DNA damage. Curr Biol, 10, 886-95. 

PEDERSEN, B. K. 2007. IL-6 signalling in exercise and disease. Biochem Soc Trans, 35, 1295-7. 
PEI, H., ZHANG, L., LUO, K., QIN, Y., CHESI, M., FEI, F., BERGSAGEL, P. L., WANG, L., YOU, Z. & 

LOU, Z. 2011. MMSET regulates histone H4K20 methylation and 53BP1 accumulation 
at DNA damage sites. Nature, 470, 124-8. 

PENDERGRASS, W. R., LANE, M. A., BODKIN, N. L., HANSEN, B. C., INGRAM, D. K., ROTH, G. S., 
YI, L., BIN, H. & WOLF, N. S. 1999. Cellular proliferation potential during aging and 
caloric restriction in rhesus monkeys (Macaca mulatta). J Cell Physiol, 180, 123-30. 

PERKINS, N. D. & GILMORE, T. D. 2006. Good cop, bad cop: the different faces of NF-kappaB. 
Cell Death Differ, 13, 759-72. 

PETERSEN, A. M. & PEDERSEN, B. K. 2005. The anti-inflammatory effect of exercise. J Appl 
Physiol, 98, 1154-62. 



 

184 
 

PETERSEN, E. W., CAREY, A. L., SACCHETTI, M., STEINBERG, G. R., MACAULAY, S. L., FEBBRAIO, 
M. A. & PEDERSEN, B. K. 2005. Acute IL-6 treatment increases fatty acid turnover in 
elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab, 
288, E155-62. 

PETERSON, T. R., LAPLANTE, M., THOREEN, C. C., SANCAK, Y., KANG, S. A., KUEHL, W. M., GRAY, 
N. S. & SABATINI, D. M. 2009. DEPTOR is an mTOR inhibitor frequently overexpressed 
in multiple myeloma cells and required for their survival. Cell, 137, 873-86. 

PIGNOLO, R. J., MARTIN, B. G., HORTON, J. H., KALBACH, A. N. & CRISTOFALO, V. J. 1998. The 
pathway of cell senescence: WI-38 cells arrest in late G1 and are unable to traverse the 
cell cycle from a true G0 state. Exp Gerontol, 33, 67-80. 

PIGNOLO, R. J., ROTENBERG, M. O. & CRISTOFALO, V. J. 1994. Alterations in contact and 
density-dependent arrest state in senescent WI-38 cells. In Vitro Cell Dev Biol Anim, 
30A, 471-6. 

PIKARSKY, E., PORAT, R. M., STEIN, I., ABRAMOVITCH, R., AMIT, S., KASEM, S., GUTKOVICH-
PYEST, E., URIELI-SHOVAL, S., GALUN, E. & BEN-NERIAH, Y. 2004. NF-kappaB functions 
as a tumour promoter in inflammation-associated cancer. Nature, 431, 461-6. 

PITKANEN, S. & ROBINSON, B. H. 1996. Mitochondrial complex I deficiency leads to increased 
production of superoxide radicals and induction of superoxide dismutase. J Clin Invest, 
98, 345-51. 

POLAK, P. & HALL, M. N. 2009. mTOR and the control of whole body metabolism. Curr Opin Cell 
Biol, 21, 209-18. 

POLYAK, K., KATO, J. Y., SOLOMON, M. J., SHERR, C. J., MASSAGUE, J., ROBERTS, J. M. & KOFF, 
A. 1994. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and 
contact inhibition to cell cycle arrest. Genes & development, 8, 9-22. 

POLYAK, K., XIA, Y., ZWEIER, J. L., KINZLER, K. W. & VOGELSTEIN, B. 1997. A model for p53-
induced apoptosis. Nature, 389, 300-5. 

POSPELOVA, T. V., DEMIDENKO, Z. N., BUKREEVA, E. I., POSPELOV, V. A., GUDKOV, A. V. & 
BLAGOSKLONNY, M. V. 2009. Pseudo-DNA damage response in senescent cells. Cell 
Cycle, 8, 4112-8. 

PRICE, J. S., WATERS, J. G., DARRAH, C., PENNINGTON, C., EDWARDS, D. R., DONELL, S. T. & 
CLARK, I. M. 2002. The role of chondrocyte senescence in osteoarthritis. Aging Cell, 1, 
57-65. 

PROBIN, V., WANG, Y., BAI, A. & ZHOU, D. 2006. Busulfan selectively induces cellular 
senescence but not apoptosis in WI38 fibroblasts via a p53-independent but 
extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent 
mechanism. J Pharmacol Exp Ther, 319, 551-60. 

RADISAVLJEVIC, Z. M. & GONZALEZ-FLECHA, B. 2004. TOR kinase and Ran are downstream 
from PI3K/Akt in H2O2-induced mitosis. J Cell Biochem, 91, 1293-300. 

RAPPOLD, I., IWABUCHI, K., DATE, T. & CHEN, J. 2001. Tumor suppressor p53 binding protein 1 
(53BP1) is involved in DNA damage-signaling pathways. J Cell Biol, 153, 613-20. 

RAUERT-WUNDERLICH, H., SIEGMUND, D., MAIER, E., GINER, T., BARGOU, R. C., WAJANT, H. & 
STUHMER, T. 2013. The IKK inhibitor Bay 11-7082 induces cell death independent from 
inhibition of activation of NFkappaB transcription factors. PLoS One, 8, e59292. 

RAUSCH, O. & MARSHALL, C. J. 1999. Cooperation of p38 and extracellular signal-regulated 
kinase mitogen-activated protein kinase pathways during granulocyte colony-
stimulating factor-induced hemopoietic cell proliferation. J Biol Chem, 274, 4096-105. 

REBBAA, A., ZHENG, X., CHU, F. & MIRKIN, B. L. 2006. The role of histone acetylation versus 
DNA damage in drug-induced senescence and apoptosis. Cell Death Differ, 13, 1960-7. 

REILEY, W. W., JIN, W., LEE, A. J., WRIGHT, A., WU, X., TEWALT, E. F., LEONARD, T. O., 
NORBURY, C. C., FITZPATRICK, L., ZHANG, M. & SUN, S. C. 2007. Deubiquitinating 
enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents 
abnormal T cell responses. J Exp Med, 204, 1475-85. 



 

185 
 

RESNITZKY, D. & REED, S. I. 1995. Different roles for cyclins D1 and E in regulation of the G1-to-
S transition. Mol Cell Biol, 15, 3463-9. 

REYNAERT, N. L., VAN DER VLIET, A., GUALA, A. S., MCGOVERN, T., HRISTOVA, M., PANTANO, 
C., HEINTZ, N. H., HEIM, J., HO, Y. S., MATTHEWS, D. E., WOUTERS, E. F. & JANSSEN-
HEININGER, Y. M. 2006. Dynamic redox control of NF-kappaB through glutaredoxin-
regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S 
A, 103, 13086-91. 

RITTLING, S. R., BROOKS, K. M., CRISTOFALO, V. J. & BASERGA, R. 1986. Expression of cell cycle-
dependent genes in young and senescent WI-38 fibroblasts. Proc Natl Acad Sci U S A, 
83, 3316-20. 

ROBBINS, E., LEVINE, E. M. & EAGLE, H. 1970. Morphologic changes accompanying senescence 
of cultured human diploid cells. J Exp Med, 131, 1211-22. 

ROBERTSON, J. D. 1981a. Membrane structure. J Cell Biol, 91, 189s-204s. 
ROBERTSON, J. D. 1981b. A review of membrane structure with perspectives on certain 

transmembrane channels. Adv Neurol, 31, 419-77. 
RODIER, F. & CAMPISI, J. 2011. Four faces of cellular senescence. J Cell Biol, 192, 547-56. 
RODIER, F., COPPE, J. P., PATIL, C. K., HOEIJMAKERS, W. A., MUNOZ, D. P., RAZA, S. R., FREUND, 

A., CAMPEAU, E., DAVALOS, A. R. & CAMPISI, J. 2009. Persistent DNA damage signalling 
triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol, 11, 973-
9. 

RODIER, F., MUNOZ, D. P., TEACHENOR, R., CHU, V., LE, O., BHAUMIK, D., COPPE, J. P., 
CAMPEAU, E., BEAUSEJOUR, C. M., KIM, S. H., DAVALOS, A. R. & CAMPISI, J. 2011. 
DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence 
growth arrest and inflammatory cytokine secretion. J Cell Sci, 124, 68-81. 

ROGAKOU, E. P., BOON, C., REDON, C. & BONNER, W. M. 1999. Megabase chromatin domains 
involved in DNA double-strand breaks in vivo. J Cell Biol, 146, 905-16. 

ROGAKOU, E. P., PILCH, D. R., ORR, A. H., IVANOVA, V. S. & BONNER, W. M. 1998. DNA double-
stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 273, 
5858-68. 

ROJO, A. I., SALINAS, M., MARTIN, D., PERONA, R. & CUADRADO, A. 2004. Regulation of Cu/Zn-
superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway 
and nuclear factor-kappaB. J Neurosci, 24, 7324-34. 

ROTHLEIN, R., DUSTIN, M. L., MARLIN, S. D. & SPRINGER, T. A. 1986. A human intercellular 
adhesion molecule (ICAM-1) distinct from LFA-1. Journal of immunology, 137, 1270-4. 

ROVILLAIN, E., MANSFIELD, L., CAETANO, C., ALVAREZ-FERNANDEZ, M., CABALLERO, O. L., 
MEDEMA, R. H., HUMMERICH, H. & JAT, P. S. 2011. Activation of nuclear factor-kappa 
B signalling promotes cellular senescence. Oncogene, 30, 2356-66. 

SADAIE, M., SALAMA, R., CARROLL, T., TOMIMATSU, K., CHANDRA, T., YOUNG, A. R., NARITA, 
M., PEREZ-MANCERA, P. A., BENNETT, D. C., CHONG, H. & KIMURA, H. 2013. 
Redistribution of the Lamin B1 genomic binding profile affects rearrangement of 
heterochromatic domains and SAHF formation during senescence. Genes Dev, 27, 
1800-8. 

SAHIN, E., COLLA, S., LIESA, M., MOSLEHI, J., MULLER, F. L., GUO, M., COOPER, M., KOTTON, D., 
FABIAN, A. J., WALKEY, C., MASER, R. S., TONON, G., FOERSTER, F., XIONG, R., WANG, 
Y. A., SHUKLA, S. A., JASKELIOFF, M., MARTIN, E. S., HEFFERNAN, T. P., PROTOPOPOV, 
A., IVANOVA, E., MAHONEY, J. E., KOST-ALIMOVA, M., PERRY, S. R., BRONSON, R., 
LIAO, R., MULLIGAN, R., SHIRIHAI, O. S., CHIN, L. & DEPINHO, R. A. 2011. Telomere 
dysfunction induces metabolic and mitochondrial compromise. Nature, 470, 359-65. 

SANCAK, Y., BAR-PELED, L., ZONCU, R., MARKHARD, A. L., NADA, S. & SABATINI, D. M. 2010. 
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for 
its activation by amino acids. Cell, 141, 290-303. 



 

186 
 

SARKISIAN, C. J., KEISTER, B. A., STAIRS, D. B., BOXER, R. B., MOODY, S. E. & CHODOSH, L. A. 
2007. Dose-dependent oncogene-induced senescence in vivo and its evasion during 
mammary tumorigenesis. Nat Cell Biol, 9, 493-505. 

SATO, Y., MURASE, K., KATO, J., KOBUNE, M., SATO, T., KAWANO, Y., TAKIMOTO, R., TAKADA, 
K., MIYANISHI, K., MATSUNAGA, T., TAKAYAMA, T. & NIITSU, Y. 2008. Resolution of 
liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-
specific chaperone. Nat Biotechnol, 26, 431-42. 

SCHAPER, F., GENDO, C., ECK, M., SCHMITZ, J., GRIMM, C., ANHUF, D., KERR, I. M. & HEINRICH, 
P. C. 1998. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 
signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits 
acute-phase protein expression. Biochem J, 335 ( Pt 3), 557-65. 

SCHIEKE, S. M., PHILLIPS, D., MCCOY, J. P., JR., APONTE, A. M., SHEN, R. F., BALABAN, R. S. & 
FINKEL, T. 2006. The mammalian target of rapamycin (mTOR) pathway regulates 
mitochondrial oxygen consumption and oxidative capacity. J Biol Chem, 281, 27643-52. 

SCHIEMANN, W. P., BARTOE, J. L. & NATHANSON, N. M. 1997. Box 3-independent signaling 
mechanisms are involved in leukemia inhibitory factor receptor alpha- and gp130-
mediated stimulation of mitogen-activated protein kinase. Evidence for participation 
of multiple signaling pathways which converge at Ras. J Biol Chem, 272, 16631-6. 

SCHIEVEN, G. L., KIRIHARA, J. M., MYERS, D. E., LEDBETTER, J. A. & UCKUN, F. M. 1993. Reactive 
oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism 
and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in 
human lymphocytes. Blood, 82, 1212-20. 

SCHILDER, Y. D., HEISS, E. H., SCHACHNER, D., ZIEGLER, J., REZNICEK, G., SORESCU, D. & 
DIRSCH, V. M. 2009. NADPH oxidases 1 and 4 mediate cellular senescence induced by 
resveratrol in human endothelial cells. Free Radic Biol Med, 46, 1598-606. 

SCHOONBROODT, S., FERREIRA, V., BEST-BELPOMME, M., BOELAERT, J. R., LEGRAND-POELS, S., 
KORNER, M. & PIETTE, J. 2000. Crucial role of the amino-terminal tyrosine residue 42 
and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by 
an oxidative stress. J Immunol, 164, 4292-300. 

SCHREIBER, J., JENNER, R. G., MURRAY, H. L., GERBER, G. K., GIFFORD, D. K. & YOUNG, R. A. 
2006. Coordinated binding of NF-kappaB family members in the response of human 
cells to lipopolysaccharide. Proc Natl Acad Sci U S A, 103, 5899-904. 

SCHULTZ, L. B., CHEHAB, N. H., MALIKZAY, A. & HALAZONETIS, T. D. 2000. p53 binding protein 
1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. 
J Cell Biol, 151, 1381-90. 

SEDELNIKOVA, O. A., HORIKAWA, I., ZIMONJIC, D. B., POPESCU, N. C., BONNER, W. M. & 
BARRETT, J. C. 2004. Senescing human cells and ageing mice accumulate DNA lesions 
with unrepairable double-strand breaks. Nat Cell Biol, 6, 168-70. 

SEDELNIKOVA, O. A., ROGAKOU, E. P., PANYUTIN, I. G. & BONNER, W. M. 2002. Quantitative 
detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. 
Radiat Res, 158, 486-92. 

SERRA, V. & VON ZGLINICKI, T. 2002. Human fibroblasts in vitro senesce with a donor-specific 
telomere length. FEBS Lett, 516, 71-4. 

SERRANO, M., HANNON, G. J. & BEACH, D. 1993. A new regulatory motif in cell-cycle control 
causing specific inhibition of cyclin D/CDK4. Nature, 366, 704-7. 

SERRANO, M., LIN, A. W., MCCURRACH, M. E., BEACH, D. & LOWE, S. W. 1997. Oncogenic ras 
provokes premature cell senescence associated with accumulation of p53 and 
p16INK4a. Cell, 88, 593-602. 

SEYMOUR, C. B. & MOTHERSILL, C. 2000. Relative contribution of bystander and targeted cell 
killing to the low-dose region of the radiation dose-response curve. Radiat Res, 153, 
508-11. 



 

187 
 

SHARPLESS, N. E., BARDEESY, N., LEE, K. H., CARRASCO, D., CASTRILLON, D. H., AGUIRRE, A. J., 
WU, E. A., HORNER, J. W. & DEPINHO, R. A. 2001. Loss of p16Ink4a with retention of 
p19Arf predisposes mice to tumorigenesis. Nature, 413, 86-91. 

SHAULIAN, E., SCHREIBER, M., PIU, F., BEECHE, M., WAGNER, E. F. & KARIN, M. 2000. The 
mammalian UV response: c-Jun induction is required for exit from p53-imposed 
growth arrest. Cell, 103, 897-907. 

SHAY, J. W., PEREIRA-SMITH, O. M. & WRIGHT, W. E. 1991. A role for both RB and p53 in the 
regulation of human cellular senescence. Exp Cell Res, 196, 33-9. 

SHERR, C. J. 1994. G1 phase progression: cycling on cue. Cell, 79, 551-5. 
SHERR, C. J. 2004. Principles of tumor suppression. Cell, 116, 235-46. 
SHERR, C. J. & ROBERTS, J. M. 1999. CDK inhibitors: positive and negative regulators of G1-

phase progression. Genes Dev, 13, 1501-12. 
SHI, Y., HSU, J. H., HU, L., GERA, J. & LICHTENSTEIN, A. 2002. Signal pathways involved in 

activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple 
myeloma tumor cells to interleukin-6. J Biol Chem, 277, 15712-20. 

SHIMI, T., BUTIN-ISRAELI, V., ADAM, S. A., HAMANAKA, R. B., GOLDMAN, A. E., LUCAS, C. A., 
SHUMAKER, D. K., KOSAK, S. T., CHANDEL, N. S. & GOLDMAN, R. D. 2011. The role of 
nuclear lamin B1 in cell proliferation and senescence. Genes Dev, 25, 2579-93. 

SHINOHARA, H., YASUDA, T., AIBA, Y., SANJO, H., HAMADATE, M., WATARAI, H., SAKURAI, H. & 
KUROSAKI, T. 2005. PKC beta regulates BCR-mediated IKK activation by facilitating the 
interaction between TAK1 and CARMA1. J Exp Med, 202, 1423-31. 

SHIOSE, A., KURODA, J., TSURUYA, K., HIRAI, M., HIRAKATA, H., NAITO, S., HATTORI, M., 
SAKAKI, Y. & SUMIMOTO, H. 2001. A novel superoxide-producing NAD(P)H oxidase in 
kidney. J Biol Chem, 276, 1417-23. 

SHREERAM, S., DEMIDOV, O. N., HEE, W. K., YAMAGUCHI, H., ONISHI, N., KEK, C., TIMOFEEV, O. 
N., DUDGEON, C., FORNACE, A. J., ANDERSON, C. W., MINAMI, Y., APPELLA, E. & 
BULAVIN, D. V. 2006. Wip1 phosphatase modulates ATM-dependent signaling 
pathways. Mol Cell, 23, 757-64. 

SIINO, J. S., NAZAROV, I. B., SVETLOVA, M. P., SOLOVJEVA, L. V., ADAMSON, R. H., ZALENSKAYA, 
I. A., YAU, P. M., BRADBURY, E. M. & TOMILIN, N. V. 2002. Photobleaching of GFP-
labeled H2AX in chromatin: H2AX has low diffusional mobility in the nucleus. Biochem 
Biophys Res Commun, 297, 1318-23. 

SIMINOVITCH, L., TILL, J. E. & MCCULLOCH, E. A. 1964. Decline in Colony-Forming Ability of 
Marrow Cells Subjected to Serial Transplantation into Irradiated Mice. J Cell Physiol, 
64, 23-31. 

SITTE, N., MERKER, K., GRUNE, T. & VON ZGLINICKI, T. 2001. Lipofuscin accumulation in 
proliferating fibroblasts in vitro: an indicator of oxidative stress. Exp Gerontol, 36, 475-
86. 

SITTE, N., MERKER, K., VON ZGLINICKI, T., DAVIES, K. J. & GRUNE, T. 2000a. Protein oxidation 
and degradation during cellular senescence of human BJ fibroblasts: part II--aging of 
nondividing cells. FASEB J, 14, 2503-10. 

SITTE, N., MERKER, K., VON ZGLINICKI, T. & GRUNE, T. 2000b. Protein oxidation and 
degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic 
Biol Med, 28, 701-8. 

SITTE, N., MERKER, K., VON ZGLINICKI, T., GRUNE, T. & DAVIES, K. J. 2000c. Protein oxidation 
and degradation during cellular senescence of human BJ fibroblasts: part I--effects of 
proliferative senescence. FASEB J, 14, 2495-502. 

SMITS, V. A., REAPER, P. M. & JACKSON, S. P. 2006. Rapid PIKK-dependent release of Chk1 from 
chromatin promotes the DNA-damage checkpoint response. Curr Biol, 16, 150-9. 

SMOGORZEWSKA, A. & DE LANGE, T. 2002. Different telomere damage signaling pathways in 
human and mouse cells. EMBO J, 21, 4338-48. 



 

188 
 

SMOGORZEWSKA, A., VAN STEENSEL, B., BIANCHI, A., OELMANN, S., SCHAEFER, M. R., 
SCHNAPP, G. & DE LANGE, T. 2000. Control of human telomere length by TRF1 and 
TRF2. Mol Cell Biol, 20, 1659-68. 

SOKOLOV, M. V. & NEUMANN, R. D. 2010. Radiation-induced bystander effects in cultured 
human stem cells. PLoS One, 5, e14195. 

SOKOLOV, M. V., SMILENOV, L. B., HALL, E. J., PANYUTIN, I. G., BONNER, W. M. & 
SEDELNIKOVA, O. A. 2005. Ionizing radiation induces DNA double-strand breaks in 
bystander primary human fibroblasts. Oncogene, 24, 7257-65. 

SPALLAROSSA, P., ALTIERI, P., BARISIONE, C., PASSALACQUA, M., ALOI, C., FUGAZZA, G., 
FRASSONI, F., PODESTA, M., CANEPA, M., GHIGLIOTTI, G. & BRUNELLI, C. 2010. p38 
MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A 
expression in doxorubicin-treated endothelial progenitor cells. PLoS One, 5, e15583. 

SPANGRUDE, G. J., BROOKS, D. M. & TUMAS, D. B. 1995. Long-term repopulation of irradiated 
mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of 
stem cell phenotype but not function. Blood, 85, 1006-16. 

SPRADLING, A., DRUMMOND-BARBOSA, D. & KAI, T. 2001. Stem cells find their niche. Nature, 
414, 98-104. 

STARR, R., WILLSON, T. A., VINEY, E. M., MURRAY, L. J., RAYNER, J. R., JENKINS, B. J., GONDA, T. 
J., ALEXANDER, W. S., METCALF, D., NICOLA, N. A. & HILTON, D. J. 1997. A family of 
cytokine-inducible inhibitors of signalling. Nature, 387, 917-21. 

STEIN, G. H., DRULLINGER, L. F., SOULARD, A. & DULIC, V. 1999. Differential roles for cyclin-
dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and 
differentiation in human fibroblasts. Mol Cell Biol, 19, 2109-17. 

STEWART, G. S., PANIER, S., TOWNSEND, K., AL-HAKIM, A. K., KOLAS, N. K., MILLER, E. S., 
NAKADA, S., YLANKO, J., OLIVARIUS, S., MENDEZ, M., OLDREIVE, C., WILDENHAIN, J., 
TAGLIAFERRO, A., PELLETIER, L., TAUBENHEIM, N., DURANDY, A., BYRD, P. J., 
STANKOVIC, T., TAYLOR, A. M. & DUROCHER, D. 2009. The RIDDLE syndrome protein 
mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell, 136, 
420-34. 

STEWART, S. A., BEN-PORATH, I., CAREY, V. J., O'CONNOR, B. F., HAHN, W. C. & WEINBERG, R. 
A. 2003. Erosion of the telomeric single-strand overhang at replicative senescence. Nat 
Genet, 33, 492-6. 

STILMANN, M., HINZ, M., ARSLAN, S. C., ZIMMER, A., SCHREIBER, V. & SCHEIDEREIT, C. 2009. A 
nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced 
IkappaB kinase activation. Mol Cell, 36, 365-78. 

STOCKL, P., HUTTER, E., ZWERSCHKE, W. & JANSEN-DURR, P. 2006. Sustained inhibition of 
oxidative phosphorylation impairs cell proliferation and induces premature senescence 
in human fibroblasts. Exp Gerontol, 41, 674-82. 

STUCKI, M., CLAPPERTON, J. A., MOHAMMAD, D., YAFFE, M. B., SMERDON, S. J. & JACKSON, S. 
P. 2005. MDC1 directly binds phosphorylated histone H2AX to regulate cellular 
responses to DNA double-strand breaks. Cell, 123, 1213-26. 

STUCKI, M. & JACKSON, S. P. 2006. gammaH2AX and MDC1: anchoring the DNA-damage-
response machinery to broken chromosomes. DNA Repair (Amst), 5, 534-43. 

SUDO, K., EMA, H., MORITA, Y. & NAKAUCHI, H. 2000. Age-associated characteristics of murine 
hematopoietic stem cells. J Exp Med, 192, 1273-80. 

SUN, P., YOSHIZUKA, N., NEW, L., MOSER, B. A., LI, Y., LIAO, R., XIE, C., CHEN, J., DENG, Q., 
YAMOUT, M., DONG, M. Q., FRANGOU, C. G., YATES, J. R., 3RD, WRIGHT, P. E. & HAN, 
J. 2007. PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128, 
295-308. 

SYKES, S. M., MELLERT, H. S., HOLBERT, M. A., LI, K., MARMORSTEIN, R., LANE, W. S. & 
MCMAHON, S. B. 2006. Acetylation of the p53 DNA-binding domain regulates 
apoptosis induction. Mol Cell, 24, 841-51. 



 

189 
 

TADA, K., OKAZAKI, T., SAKON, S., KOBARAI, T., KUROSAWA, K., YAMAOKA, S., HASHIMOTO, H., 
MAK, T. W., YAGITA, H., OKUMURA, K., YEH, W. C. & NAKANO, H. 2001. Critical roles of 
TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and 
protection from cell death. J Biol Chem, 276, 36530-4. 

TAKADA, Y., MUKHOPADHYAY, A., KUNDU, G. C., MAHABELESHWAR, G. H., SINGH, S. & 
AGGARWAL, B. B. 2003. Hydrogen peroxide activates NF-kappa B through tyrosine 
phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for 
the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem, 
278, 24233-41. 

TAKAHASHI, A., OHTANI, N., YAMAKOSHI, K., IIDA, S., TAHARA, H., NAKAYAMA, K., NAKAYAMA, 
K. I., IDE, T., SAYA, H. & HARA, E. 2006. Mitogenic signalling and the p16INK4a-Rb 
pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol, 8, 1291-7. 

TAKAI, H., NAKA, K., OKADA, Y., WATANABE, M., HARADA, N., SAITO, S., ANDERSON, C. W., 
APPELLA, E., NAKANISHI, M., SUZUKI, H., NAGASHIMA, K., SAWA, H., IKEDA, K. & 
MOTOYAMA, N. 2002. Chk2-deficient mice exhibit radioresistance and defective p53-
mediated transcription. EMBO J, 21, 5195-205. 

TAKAI, H., SMOGORZEWSKA, A. & DE LANGE, T. 2003. DNA damage foci at dysfunctional 
telomeres. Curr Biol, 13, 1549-56. 

TAKEUCHI, S., TAKAHASHI, A., MOTOI, N., YOSHIMOTO, S., TAJIMA, T., YAMAKOSHI, K., HIRAO, 
A., YANAGI, S., FUKAMI, K., ISHIKAWA, Y., SONE, S., HARA, E. & OHTANI, N. 2010. 
Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular 
senescence and tumor suppression in vivo. Cancer Res, 70, 9381-90. 

TALIOR, I., TENNENBAUM, T., KUROKI, T. & ELDAR-FINKELMAN, H. 2005. PKC-delta-dependent 
activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for 
NADPH oxidase. Am J Physiol Endocrinol Metab, 288, E405-11. 

TAN, T. C., RAHMAN, R., JABER-HIJAZI, F., FELIX, D. A., CHEN, C., LOUIS, E. J. & ABOOBAKER, A. 
2012. Telomere maintenance and telomerase activity are differentially regulated in 
asexual and sexual worms. Proc Natl Acad Sci U S A, 109, 4209-14. 

TANG, Y., LUO, J., ZHANG, W. & GU, W. 2006. Tip60-dependent acetylation of p53 modulates 
the decision between cell-cycle arrest and apoptosis. Mol Cell, 24, 827-39. 

TANIGUCHI, T., GARCIA-HIGUERA, I., XU, B., ANDREASSEN, P. R., GREGORY, R. C., KIM, S. T., 
LANE, W. S., KASTAN, M. B. & D'ANDREA, A. D. 2002. Convergence of the fanconi 
anemia and ataxia telangiectasia signaling pathways. Cell, 109, 459-72. 

TARTIER, L., GILCHRIST, S., BURDAK-ROTHKAMM, S., FOLKARD, M. & PRISE, K. M. 2007. 
Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization 
in irradiated and bystander cells. Cancer Res, 67, 5872-9. 

TEIXEIRA, M. T., ARNERIC, M., SPERISEN, P. & LINGNER, J. 2004. Telomere length homeostasis 
is achieved via a switch between telomerase- extendible and -nonextendible states. 
Cell, 117, 323-35. 

TELGENHOFF, D. & SHROOT, B. 2005. Cellular senescence mechanisms in chronic wound 
healing. Cell Death Differ, 12, 695-8. 

TILSTRA, J. S., ROBINSON, A. R., WANG, J., GREGG, S. Q., CLAUSON, C. L., REAY, D. P., NASTO, L. 
A., ST CROIX, C. M., USAS, A., VO, N., HUARD, J., CLEMENS, P. R., STOLZ, D. B., 
GUTTRIDGE, D. C., WATKINS, S. C., GARINIS, G. A., WANG, Y., NIEDERNHOFER, L. J. & 
ROBBINS, P. D. 2012. NF-kappaB inhibition delays DNA damage-induced senescence 
and aging in mice. J Clin Invest, 122, 2601-12. 

TING, A. T., PIMENTEL-MUINOS, F. X. & SEED, B. 1996. RIP mediates tumor necrosis factor 
receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J, 15, 
6189-96. 

TODA, K., SHIBUYA, H., HAYASHI, K. & AYUKAWA, F. 2009. Radiation-induced cancer after 
radiotherapy for non-Hodgkin's lymphoma of the head and neck: a retrospective 
study. Radiat Oncol, 4, 21. 



 

190 
 

TORRES, M. & FORMAN, H. J. 2003. Redox signaling and the MAP kinase pathways. Biofactors, 
17, 287-96. 

TOUSSAINT, O., MEDRANO, E. E. & VON ZGLINICKI, T. 2000. Cellular and molecular 
mechanisms of stress-induced premature senescence (SIPS) of human diploid 
fibroblasts and melanocytes. Exp Gerontol, 35, 927-45. 

TRINEI, M., GIORGIO, M., CICALESE, A., BAROZZI, S., VENTURA, A., MIGLIACCIO, E., MILIA, E., 
PADURA, I. M., RAKER, V. A., MACCARANA, M., PETRONILLI, V., MINUCCI, S., 
BERNARDI, P., LANFRANCONE, L. & PELICCI, P. G. 2002. A p53-p66Shc signalling 
pathway controls intracellular redox status, levels of oxidation-damaged DNA and 
oxidative stress-induced apoptosis. Oncogene, 21, 3872-8. 

TUNON, M. J., SANCHEZ-CAMPOS, S., GUTIERREZ, B., CULEBRAS, J. M. & GONZALEZ-GALLEGO, 
J. 2003. Effects of FK506 and rapamycin on generation of reactive oxygen species, 
nitric oxide production and nuclear factor kappa B activation in rat hepatocytes. 
Biochem Pharmacol, 66, 439-45. 

VAN ANTWERP, D. J., MARTIN, S. J., KAFRI, T., GREEN, D. R. & VERMA, I. M. 1996. Suppression 
of TNF-alpha-induced apoptosis by NF-kappaB. Science, 274, 787-9. 

VAN MAERKEN, T., SPELEMAN, F., VERMEULEN, J., LAMBERTZ, I., DE CLERCQ, S., DE SMET, E., 
YIGIT, N., COPPENS, V., PHILIPPE, J., DE PAEPE, A., MARINE, J. C. & VANDESOMPELE, J. 
2006. Small-molecule MDM2 antagonists as a new therapy concept for 
neuroblastoma. Cancer Res, 66, 9646-55. 

VAN RIJEN, H. V., VAN KEMPEN, M. J., POSTMA, S. & JONGSMA, H. J. 1998. Tumour necrosis 
factor alpha alters the expression of connexin43, connexin40, and connexin37 in 
human umbilical vein endothelial cells. Cytokine, 10, 258-64. 

VAN STEENSEL, B., SMOGORZEWSKA, A. & DE LANGE, T. 1998. TRF2 protects human telomeres 
from end-to-end fusions. Cell, 92, 401-13. 

VAN VUGT, M. A., BRAS, A. & MEDEMA, R. H. 2004. Polo-like kinase-1 controls recovery from a 
G2 DNA damage-induced arrest in mammalian cells. Mol Cell, 15, 799-811. 

VANDE BERG, J. S. & ROBSON, M. C. 2003. Arresting cell cycles and the effect on wound 
healing. Surg Clin North Am, 83, 509-20. 

VARELA, I., CADINANOS, J., PENDAS, A. M., GUTIERREZ-FERNANDEZ, A., FOLGUERAS, A. R., 
SANCHEZ, L. M., ZHOU, Z., RODRIGUEZ, F. J., STEWART, C. L., VEGA, J. A., 
TRYGGVASON, K., FREIJE, J. M. & LOPEZ-OTIN, C. 2005. Accelerated ageing in mice 
deficient in Zmpste24 protease is linked to p53 signalling activation. Nature, 437, 564-
8. 

VASEVA, A. V. & MOLL, U. M. 2009. The mitochondrial p53 pathway. Biochim Biophys Acta, 
1787, 414-20. 

VAZIRI, C., SAXENA, S., JEON, Y., LEE, C., MURATA, K., MACHIDA, Y., WAGLE, N., HWANG, D. S. 
& DUTTA, A. 2003. A p53-dependent checkpoint pathway prevents rereplication. Mol 
Cell, 11, 997-1008. 

VAZIRI, H. & BENCHIMOL, S. 1998. Reconstitution of telomerase activity in normal human cells 
leads to elongation of telomeres and extended replicative life span. Curr Biol, 8, 279-
82. 

VAZIRI, H., DRAGOWSKA, W., ALLSOPP, R. C., THOMAS, T. E., HARLEY, C. B. & LANSDORP, P. M. 
1994. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric 
DNA with age. Proc Natl Acad Sci U S A, 91, 9857-60. 

VAZIRI, H., SCHACHTER, F., UCHIDA, I., WEI, L., ZHU, X., EFFROS, R., COHEN, D. & HARLEY, C. B. 
1993. Loss of telomeric DNA during aging of normal and trisomy 21 human 
lymphocytes. Am J Hum Genet, 52, 661-7. 

VIJAYACHANDRA, K., LEE, J. & GLICK, A. B. 2003. Smad3 regulates senescence and malignant 
conversion in a mouse multistage skin carcinogenesis model. Cancer Res, 63, 3447-52. 

VON ZGLINICKI, T., PILGER, R. & SITTE, N. 2000. Accumulation of single-strand breaks is the 
major cause of telomere shortening in human fibroblasts. Free Radic Biol Med, 28, 64-
74. 



 

191 
 

VON ZGLINICKI, T., SARETZKI, G., DOCKE, W. & LOTZE, C. 1995. Mild hyperoxia shortens 
telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell 
Res, 220, 186-93. 

WAGNER, W., HORN, P., CASTOLDI, M., DIEHLMANN, A., BORK, S., SAFFRICH, R., BENES, V., 
BLAKE, J., PFISTER, S., ECKSTEIN, V. & HO, A. D. 2008. Replicative senescence of 
mesenchymal stem cells: a continuous and organized process. PLoS One, 3, e2213. 

WAJANT, H., PFIZENMAIER, K. & SCHEURICH, P. 2003. Tumor necrosis factor signaling. Cell 
Death Differ, 10, 45-65. 

WANG, B., MATSUOKA, S., CARPENTER, P. B. & ELLEDGE, S. J. 2002. 53BP1, a mediator of the 
DNA damage checkpoint. Science, 298, 1435-8. 

WANG, C., JURK, D., MADDICK, M., NELSON, G., MARTIN-RUIZ, C. & VON ZGLINICKI, T. 2009a. 
DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 8, 
311-23. 

WANG, C., MADDICK, M., MIWA, S., JURK, D., CZAPIEWSKI, R., SARETZKI, G., LANGIE, S. A., 
GODSCHALK, R. W., CAMERON, K. & VON ZGLINICKI, T. 2010. Adult-onset, short-term 
dietary restriction reduces cell senescence in mice. Aging (Albany NY), 2, 555-66. 

WANG, E., LEE, M. J. & PANDEY, S. 1994. Control of fibroblast senescence and activation of 
programmed cell death. J Cell Biochem, 54, 432-9. 

WANG, J., JACOB, N. K., LADNER, K. J., BEG, A., PERKO, J. D., TANNER, S. M., LIYANARACHCHI, 
S., FISHEL, R. & GUTTRIDGE, D. C. 2009b. RelA/p65 functions to maintain cellular 
senescence by regulating genomic stability and DNA repair. EMBO Rep, 10, 1272-8. 

WANG, X., ZOU, L., LU, T., BAO, S., HUROV, K. E., HITTELMAN, W. N., ELLEDGE, S. J. & LI, L. 
2006a. Rad17 phosphorylation is required for claspin recruitment and Chk1 activation 
in response to replication stress. Mol Cell, 23, 331-41. 

WANG, X. Q., REDPATH, J. L., FAN, S. T. & STANBRIDGE, E. J. 2006b. ATR dependent activation 
of Chk2. J Cell Physiol, 208, 613-9. 

WARD, I. M. & CHEN, J. 2001. Histone H2AX is phosphorylated in an ATR-dependent manner in 
response to replicational stress. J Biol Chem, 276, 47759-62. 

WARD, I. M., MINN, K., JORDA, K. G. & CHEN, J. 2003a. Accumulation of checkpoint protein 
53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem, 
278, 19579-82. 

WARD, I. M., MINN, K., VAN DEURSEN, J. & CHEN, J. 2003b. p53 Binding protein 53BP1 is 
required for DNA damage responses and tumor suppression in mice. Mol Cell Biol, 23, 
2556-63. 

WATANABE, N., ARAI, H., NISHIHARA, Y., TANIGUCHI, M., HUNTER, T. & OSADA, H. 2004. M-
phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-
TrCP. Proc Natl Acad Sci U S A, 101, 4419-24. 

WATSON, J. D. 1972. Origin of concatemeric T7 DNA. Nat New Biol, 239, 197-201. 
WEINBERG, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell, 81, 323-30. 
WEYEMI, U., LAGENTE-CHEVALLIER, O., BOUFRAQECH, M., PRENOIS, F., COURTIN, F., CAILLOU, 

B., TALBOT, M., DARDALHON, M., AL GHUZLAN, A., BIDART, J. M., SCHLUMBERGER, M. 
& DUPUY, C. 2012. ROS-generating NADPH oxidase NOX4 is a critical mediator in 
oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene, 31, 
1117-29. 

WHEATON, K. & RIABOWOL, K. 2004. Protein kinase C delta blocks immediate-early gene 
expression in senescent cells by inactivating serum response factor. Mol Cell Biol, 24, 
7298-311. 

WILSON, M. R., CLOSE, T. W. & TROSKO, J. E. 2000. Cell population dynamics (apoptosis, 
mitosis, and cell-cell communication) during disruption of homeostasis. Exp Cell Res, 
254, 257-68. 

WOLYNIEC, K., WOTTON, S., KILBEY, A., JENKINS, A., TERRY, A., PETERS, G., STOCKING, C., 
CAMERON, E. & NEIL, J. C. 2009. RUNX1 and its fusion oncoprotein derivative, RUNX1-



 

192 
 

ETO, induce senescence-like growth arrest independently of replicative stress. 
Oncogene, 28, 2502-12. 

WONG, A., CAVELIER, L., COLLINS-SCHRAMM, H. E., SELDIN, M. F., MCGROGAN, M., 
SAVONTAUS, M. L. & CORTOPASSI, G. A. 2002. Differentiation-specific effects of LHON 
mutations introduced into neuronal NT2 cells. Hum Mol Genet, 11, 431-8. 

WONG, H. & RIABOWOL, K. 1996. Differential CDK-inhibitor gene expression in aging human 
diploid fibroblasts. Exp Gerontol, 31, 311-25. 

WU, C., MILOSLAVSKAYA, I., DEMONTIS, S., MAESTRO, R. & GALAKTIONOV, K. 2004. Regulation 
of cellular response to oncogenic and oxidative stress by Seladin-1. Nature, 432, 640-5. 

WU, J., CHEN, Y., LU, L. Y., WU, Y., PAULSEN, M. T., LJUNGMAN, M., FERGUSON, D. O. & YU, X. 
2011. Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol, 18, 
761-8. 

WU, M., BIAN, Q., LIU, Y., FERNANDES, A. F., TAYLOR, A., PEREIRA, P. & SHANG, F. 2009. 
Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the 
proteasome. Free Radic Biol Med, 46, 62-9. 

WU, S., CETINKAYA, C., MUNOZ-ALONSO, M. J., VON DER LEHR, N., BAHRAM, F., BEUGER, V., 
EILERS, M., LEON, J. & LARSSON, L. G. 2003. Myc represses differentiation-induced 
p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. 
Oncogene, 22, 351-60. 

XIA, C., HU, J., KETTERER, B. & TAYLOR, J. B. 1996. The organization of the human GSTP1-1 
gene promoter and its response to retinoic acid and cellular redox status. Biochem J, 
313 ( Pt 1), 155-61. 

XIA, Z., MORALES, J. C., DUNPHY, W. G. & CARPENTER, P. B. 2001. Negative cell cycle regulation 
and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J Biol Chem, 
276, 2708-18. 

XIAO, Y., ZOU, P., WANG, J., SONG, H., ZOU, J. & LIU, L. 2012. Lower phosphorylation of p38 
MAPK blocks the oxidative stress-induced senescence in myeloid leukemic 
CD34(+)CD38 (-) cells. J Huazhong Univ Sci Technolog Med Sci, 32, 328-33. 

XIAO, Z., CHEN, Z., GUNASEKERA, A. H., SOWIN, T. J., ROSENBERG, S. H., FESIK, S. & ZHANG, H. 
2003. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to 
DNA-damaging agents. J Biol Chem, 278, 21767-73. 

XIE, H. Q. & HU, V. W. 1994. Modulation of gap junctions in senescent endothelial cells. Exp 
Cell Res, 214, 172-6. 

XIE, H. Q., HUANG, R. & HU, V. W. 1992. Intercellular communication through gap junctions is 
reduced in senescent cells. Biophys J, 62, 45-7. 

XU, D. & FINKEL, T. 2002. A role for mitochondria as potential regulators of cellular life span. 
Biochem Biophys Res Commun, 294, 245-8. 

XUE, W., ZENDER, L., MIETHING, C., DICKINS, R. A., HERNANDO, E., KRIZHANOVSKY, V., 
CORDON-CARDO, C. & LOWE, S. W. 2007. Senescence and tumour clearance is 
triggered by p53 restoration in murine liver carcinomas. Nature, 445, 656-60. 

YAGER, D. R. & NWOMEH, B. C. 1999. The proteolytic environment of chronic wounds. Wound 
Repair Regen, 7, 433-41. 

YAN, S. J., LIM, S. J., SHI, S., DUTTA, P. & LI, W. X. 2011. Unphosphorylated STAT and 
heterochromatin protect genome stability. FASEB J, 25, 232-41. 

YANG, J., LIAO, X., AGARWAL, M. K., BARNES, L., AURON, P. E. & STARK, G. R. 2007. 
Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription 
by binding to NFkappaB. Genes Dev, 21, 1396-408. 

YANG, L., FROIO, R. M., SCIUTO, T. E., DVORAK, A. M., ALON, R. & LUSCINSKAS, F. W. 2005. 
ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-
activated vascular endothelium under flow. Blood, 106, 584-92. 

YARD, B. A., DAHA, M. R., KOOYMANS-COUTHINO, M., BRUIJN, J. A., PAAPE, M. E., SCHRAMA, 
E., VAN ES, L. A. & VAN DER WOUDE, F. J. 1992. IL-1 alpha stimulated TNF alpha 
production by cultured human proximal tubular epithelial cells. Kidney Int, 42, 383-9. 



 

193 
 

YOSHIMOTO, S., LOO, T. M., ATARASHI, K., KANDA, H., SATO, S., OYADOMARI, S., IWAKURA, Y., 
OSHIMA, K., MORITA, H., HATTORI, M., HONDA, K., ISHIKAWA, Y., HARA, E. & OHTANI, 
N. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through 
senescence secretome. Nature, 499, 97-101. 

YOU, Z. & BAILIS, J. M. 2010. DNA damage and decisions: CtIP coordinates DNA repair and cell 
cycle checkpoints. Trends Cell Biol, 20, 402-9. 

YOUNG, A. R., NARITA, M., FERREIRA, M., KIRSCHNER, K., SADAIE, M., DAROT, J. F., TAVARE, S., 
ARAKAWA, S., SHIMIZU, S. & WATT, F. M. 2009. Autophagy mediates the mitotic 
senescence transition. Genes Dev, 23, 798-803. 

YU, G. L., BRADLEY, J. D., ATTARDI, L. D. & BLACKBURN, E. H. 1990. In vivo alteration of 
telomere sequences and senescence caused by mutated Tetrahymena telomerase 
RNAs. Nature, 344, 126-32. 

ZAUBERMAN, A., ZIPORI, D., KRUPSKY, M. & BEN-LEVY, R. 1999. Stress activated protein kinase 
p38 is involved in IL-6 induced transcriptional activation of STAT3. Oncogene, 18, 3886-
93. 

ZGHEIB, O., HUYEN, Y., DITULLIO, R. A., JR., SNYDER, A., VENERE, M., STAVRIDI, E. S. & 
HALAZONETIS, T. D. 2005. ATM signaling and 53BP1. Radiother Oncol, 76, 119-22. 

ZHANG, H. & COHEN, S. N. 2004. Smurf2 up-regulation activates telomere-dependent 
senescence. Genes Dev, 18, 3028-40. 

ZHANG, S., MCCARTER, J. D., OKAMURA-OHO, Y., YAGHI, F., HINEK, A., WITHERS, S. G. & 
CALLAHAN, J. W. 1994. Kinetic mechanism and characterization of human beta-
galactosidase precursor secreted by permanently transfected Chinese hamster ovary 
cells. Biochem J, 304 ( Pt 1), 281-8. 

ZHANG, S. Q., KOVALENKO, A., CANTARELLA, G. & WALLACH, D. 2000. Recruitment of the IKK 
signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon 
receptor stimulation. Immunity, 12, 301-11. 

ZHANG, W., JI, W., YANG, L., XU, Y., YANG, J. & ZHUANG, Z. 2010. Epigenetic enhancement of 
p66Shc during cellular replicative or premature senescence. Toxicology, 278, 189-94. 

ZHANG, X., CHEN, X., WU, D., LIU, W., WANG, J., FENG, Z., CAI, G., FU, B., HONG, Q. & DU, J. 
2006. Downregulation of connexin 43 expression by high glucose induces senescence 
in glomerular mesangial cells. J Am Soc Nephrol, 17, 1532-42. 

ZHANG, Z. & FULLER, G. M. 1997. The competitive binding of STAT3 and NF-kappaB on an 
overlapping DNA binding site. Biochem Biophys Res Commun, 237, 90-4. 

ZHAO, W., LIN, Z. X. & ZHANG, Z. Q. 2004. Cisplatin-induced premature senescence with 
concomitant reduction of gap junctions in human fibroblasts. Cell Res, 14, 60-6. 

ZHAO, Y. L., PIAO, C. Q., HALL, E. J. & HEI, T. K. 2001. Mechanisms of radiation-induced 
neoplastic transformation of human bronchial epithelial cells. Radiat Res, 155, 230-
234. 

ZHOU, H., IVANOV, V. N., LIEN, Y. C., DAVIDSON, M. & HEI, T. K. 2008. Mitochondrial function 
and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. 
Cancer Res, 68, 2233-40. 

ZHOU, H., RANDERS-PEHRSON, G., WALDREN, C. A., VANNAIS, D., HALL, E. J. & HEI, T. K. 2000. 
Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc 
Natl Acad Sci U S A, 97, 2099-104. 

ZHOU, H., SUZUKI, M., RANDERS-PEHRSON, G., VANNAIS, D., CHEN, G., TROSKO, J. E., 
WALDREN, C. A. & HEI, T. K. 2001. Radiation risk to low fluences of alpha particles may 
be greater than we thought. Proc Natl Acad Sci U S A, 98, 14410-5. 

ZHU, J., WOODS, D., MCMAHON, M. & BISHOP, J. M. 1998. Senescence of human fibroblasts 
induced by oncogenic Raf. Genes Dev, 12, 2997-3007. 

ZHUANG, D., MANNAVA, S., GRACHTCHOUK, V., TANG, W. H., PATIL, S., WAWRZYNIAK, J. A., 
BERMAN, A. E., GIORDANO, T. J., PROCHOWNIK, E. V., SOENGAS, M. S. & NIKIFOROV, 
M. A. 2008. C-MYC overexpression is required for continuous suppression of 
oncogene-induced senescence in melanoma cells. Oncogene, 27, 6623-34. 



 

194 
 

ZINDY, F., EISCHEN, C. M., RANDLE, D. H., KAMIJO, T., CLEVELAND, J. L., SHERR, C. J. & 
ROUSSEL, M. F. 1998. Myc signaling via the ARF tumor suppressor regulates p53-
dependent apoptosis and immortalization. Genes Dev, 12, 2424-33. 

ZOU, L. & ELLEDGE, S. J. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA 
complexes. Science, 300, 1542-8. 

ZUCKERMAN, V., WOLYNIEC, K., SIONOV, R. V., HAUPT, S. & HAUPT, Y. 2009. Tumour 
suppression by p53: the importance of apoptosis and cellular senescence. J Pathol, 
219, 3-15. 

ZWERSCHKE, W., MAZUREK, S., STOCKL, P., HUTTER, E., EIGENBRODT, E. & JANSEN-DURR, P. 
2003. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in 
cellular senescence. Biochem J, 376, 403-11. 

 

  



 

195 
 

9 Appendix 


