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Abstract

Precise point positioning (PPP) is a technique for processing Global Navi-

gation Satellite Systems (GNSS) data, often using recursive estimation meth-

ods e.g. a Kalman Filter, that can achieve centimetric accuracies using a

single receiver. PPP is now the dominant real-time application in offshore

marine positioning industry. For high precision real-time applications it is

necessary to use high rate orbit and clock corrections in addition to high rate

observations. As Kalman filters require input of process and measurement

noise statistics, not precisely known in practice, the filter is non-optimal.

Geodetic quality control procedures as developed by Baarda in the 1960s

are well established and their extension to GNSS is mature. This methodology,

largely unchanged since the 1990s, is now being applied to processing tech-

niques that estimate more parameters and utilise many more observations at

higher rates. “Detection, Identification and Adaption” (DIA), developed from

an optimal filter perspective and utilising Baarda’s methodology, is a widely

adopted GNSS quality control procedure. DIA utilises various test statistics,

which require observation residuals and their variances. Correct derivation of

the local test statistic requires residuals at a given epoch to be uncorrelated

with those from previous epochs. It is shown that for a non-optimal filter

the autocorrelations between observations at successive epochs are non-zero

which has implications for proper application of DIA. Whilst less problematic

for longer data sampling periods, high rate data using real-time PPP results

in significant time correlations between residuals over short periods.

It is possible to model time correlations in the residuals as an autoregres-

sive process. Using the autoregressive parameters, the effect of time correla-

tion in the residuals can be removed, creating so-called whitened residuals and

their variances. Thus a whitened test statistic can be formed, that satisfies the

preferred assumption of uncorrelated residuals over time. The effectiveness of

this whitened test statistic and its impact on quality control is evaluated.
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Chapter 1

Introduction

1.1 Background

1.1.1 Development of GNSS processing

A great deal of positioning tasks in the offshore industry require precise Global

Navigation Satellite System (GNSS) positioning for both navigation and surveying.

Examples of its application include measuring the subsidence of oil rigs (Hofmann-

Wellenhof et al. 2008), as part of bathymetric surveying (Ernstsen et al. 2006) and

aiding the positioning of unmanned autonomous vehicles (Groves 2008).

Offshore survey companies have traditionally used differential GPS in order to

position vessels in real time. This involves a permanently mounted reference receiver

from which corrections to the pseudoranges obtained from code observations are

calculated and then transmitted via a terrestrial radio signal or more commonly a

satellite link to the vessels requiring positioning. These corrections are combined

with the observation data and used in a least squares estimation process to calculate

the position of the vessel. However the quality of correction decreases with distance

from the base station at a rate of 0.22 m for every 100 km from the broadcast site

(Monteiro et al. 2005). This situation can be mitigated to a certain extent by

creating a dense network of reference receivers, therefore minimising the distance to

the base stations. However, this is not a particularly feasible solution, as it is both

costly and in some cases impossible to implement where a vessel is in the middle of
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the ocean.

A development of this idea was the concept of global DGPS (GDGPS) pioneered

by the Jet Propulsion Laboratory (JPL) at the National Aeronautics and Space

Administration (NASA). Instead of creating a dense network of reference stations

as previously mentioned, a relatively sparse but well distributed network of receivers

using both code and carrier observations is used to calculate corrections to orbit and

clock parameters. These corrections are independent of distance from a particular

reference station and have the advantage that accuracy is homogeneous globally

(Lachapelle and Petovello 2006). This approach has been shown to have a root

mean square (RMS) vertical error of around 19 cm and a RMS horizontal error of

less than 10 cm (Muellerschoen et al. 2001).

The principle of GDGPS has been taken one step further by using both code and

carrier phase observations and estimating tropospheric and carrier phase ambiguity

parameters (Zumberge et al. 1997, Kouba and Héroux 2001). This method is known

as precise point positioning (PPP) and uses a recursive estimator, such as a Kalman

filter, which allows parameters which vary predictably over time to be modelled

by prediction and filtering. This has brought real-time kinematic positional 3D

accuracy to the order of 5 to 20 cm. In order to get an accurate position the

recursive estimator must first converge, a process known as initialization that can

typically take more than 20 minutes (Lachapelle and Petovello 2006).

1.1.2 Quality control

In a broad sense quality control is a process whereby the performance of a system

is evaluated, compared to a required goal and if necessary acted upon (Juran and

Godfrey 1999). In the context of GNSS processing quality control can be defined

as fitness for purpose with adequate precision and reliability (Teunissen 1998b). In

order to get the best possible result errors in the measurements must be correctly

detected and either removed or dealt with accordingly at the data processing stage

(Kim and Langley 2001).

No measurement can be said to be free of errors and GNSS processing is no excep-
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tion. Errors can either be classed random or biases. A random error is unpredictable

and as such independent of any other event. It is assumed for GNSS measurements

that these random errors are normally distributed (IMCA/OGP 2011). Conversely

biases cannot be statistically modelled. They take the form of either a gross or

systematic error. A gross error or blunder is one which occurs due to operator error,

such as an incorrect antenna height. A systematic error is repeatable, hence it can

be observed and then predicted from a known mathematical process. Using this

information it can either be eliminated or modelled.

Current procedures for offshore GNSS positioning are based on guidelines laid

down by the International Marine Contractors Association (IMCA) and Interna-

tional Association of Oil & Gas Producers (OGP) (IMCA/OGP 2011), although

the recommended quality control procedures are largely based on a report by the

UK Offshore Operators Association (UKOAA 1994). These procedures were drawn

up in the context of DGPS services which use a single-frequency code only baseline

approach. As previously mentioned, the DGPS method corrects the pseudorange

whereas the PPP method uses corrections to the orbit and clock parameters. A

greater number of parameters are estimated during PPP processing and both code

and carrier phase observations are utilised. As GNSS has developed the number of

systems and frequencies that are available has increased, which increases the com-

plexity of the processing algorithms. This also applies to DGPS, but to a lesser

extent.

1.1.3 Time correlation

In many GNSS processing applications it is assumed that the observations are uncor-

related, but in many cases this has been shown not to be true (Bona 2000). Making

such an assumption results in an incomplete stochastic model when estimating po-

sition and other parameters. There have been many studies into determining the

correlations between the observations using techniques such as variance-component

estimation (VCE) (Satirapod 2001, Bischoff et al. 2006, Amiri-Simkooei 2007).

Nowadays many real-time applications require high rate GNSS data and it is
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common for GNSS receivers to sample observations at 1 Hz up to rates up of 50 Hz

(Genrich and Bock 2006). For the purposes of this study the term ‘high rate’ will be

applied to datasets with sample rates of 1 Hz and higher. It has been observed that

sampling GNSS observations at higher rates can lead to time correlation and this is

more significant as the sampling rate is increased (Borre and Tiberius 2000). This

can be caused by receiver equipment hardware delays, such as tracking loop error,

and multipath (see Chapter 2). Some studies extend the estimation of covariances

by also taking into account temporal correlations (Wang et al. 2002, Wang et al.

2012).

When using a recursive estimator that employs filtering and prediction, such

as a Kalman filter, in addition to the correct specification of the stochastic model

for the observations, which may be correlated, the stochastic model of the dynamic

model must also be correct. An estimator that uses the ‘true’ values is said to

be optimal, but since in practice this very difficult this leads to a non-optimal

filter. It is possible to use the residuals from the recursive estimator to adjust the

observation and process noise, of which the adaptive Kalman filter is an example

(Mehra 1970, Mohamed and Schwarz 1999, Yang et al. 2001, Hu et al. 2003).

In addition to the correlations in the observations, it is also important to note

that PPP is heavily reliant on the orbit and clock corrections. The manner in

which these slowly time-varying errors are calculated results in them being time

correlated, as shown by Olynik (2002). Since these are given as known values in the

PPP measurement model they become another potential source for correlation in

the estimator.

1.2 Research motivation

Much work has been done to improve the accuracy of PPP through increasing redun-

dancy by adding GLONASS observations and recent advancements in PPP integer

ambiguity resolution. However, less emphasis has been placed on quality control.

Additionally, although much work has been done into the difficulties associated with

high rate data, much of this work has concentrated on relative positioning (El Ra-
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banny 1994, Bona 2000, Miller et al. 2011). PPP is an interesting combination

of the challenge of correctly specifying the stochastic model of the observations,

choosing the appropriate process noise for the dynamic model and the additional

complications that come with high rate orbit and clock corrections.

1.3 Aim and objectives

The overall aim of the research is to assess the extent to which time correlation is

a factor in PPP processing and establish a method of statistical testing that can

be performed in the presence of time correlation. To achieve this aim the following

objectives will be pursued:

1. Undertake a review of the PPP measurement model and the error sources that

must be modelled or removed.

2. Give an overview of the principal estimation methods that can be used in PPP.

3. Derive and explain the GNSS quality control procedures and how they are

applied in PPP.

4. Assess the level of time correlation in PPP residuals.

5. Investigate methods by which the time correlation in PPP residuals can be

reduced or removed.

6. Develop a modified statistical test by which time correlated residuals can be

tested.

7. Identify how any novel method can be implemented in real-time PPP software.

1.4 Thesis outline

The thesis has been ordered into eight chapters. Chapter 1 provides the background

to the research, including the historical context to PPP, the importance of quality

control and the importance of time correlation. The motivation for the research is

outlined along with the aim and the objectives of the project.
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The aim of Chapter 2 is to introduce PPP as a GNSS processing technique. The

measurement model for GNSS observations is introduced along with a brief overview

of the error sources in GNSS, how they are applicable to PPP and their contribution,

where appropriate, to time correlation. Precise orbits and clocks are also introduced

as a fundamental ingredient in PPP processing, as well as the issue of convergence

time. Recent developments in PPP methodology and the user requirements for PPP

in the offshore industry are also discussed.

In Chapter 3 least squares estimation is introduced, after which an overview

of the Kalman filter is given. A least squares derivation of the Kalman filter is

then presented, which gives context to the semi-recursive Kalman filter. This is

introduced as a recursive method whereby some parameters in the state vector are

predicted, whereas others are estimated at each step without any a priori values.

An overview of the quality control procedures for GNSS are given in Chapter 4.

This includes hypothesis testing, the T test statistic and measures of reliability. It

is shown that a fundamental assumption for a Kalman filter and recursive quality

control theory is that the residuals are not temporally correlated.

The concept of filter optimality is presented in Chapter 5, which shows that

when a recursive estimator is non-optimal the residuals may appear temporally

correlated. This is shown to be the case using the residuals obtained from processing

four datasets using the PPP software used in the study. Two methods for dealing

with the time correlation are then presented.

In Chapter 6 it is first shown that the residuals from our PPP software can be

modelled as a first order autoregressive (AR) process. The different AR estima-

tion methods are reviewed and using the methods in Chapter 5, it is shown that

the residual can be ‘whitened’ using the AR coefficients. The AR process is then

extended so that the order of the AR process can be automatically determined.

Since it is possible to generate ‘whitened’ residuals that are not temporally corre-

lated, a ‘whitened’ test statistic is derived in Chapter 7 that satisfies the assumption

that there is no time correlation in the residuals. This is then implemented into our

software and its ability to detect biases in the observations is assessed. Suggestions
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are made as to how the statistic may be practically implemented in production

software.

The thesis is concluded in Chapter 8 by summarising the key findings, identifying

how the research objectives have been met and suggesting how the research may be

continued.
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Chapter 2

GNSS precise point positioning

2.1 Introduction

It is assumed that the reader is already familiar with Global Navigation Satellite

Systems (GNSS) as a technology and as such the underlying principles of the tech-

nology will not be discussed here. A variety of text books are available that explain

the fundamentals of GNSS, such as Strang and Borre (1997), Leick (2004), Kaplan

and Hegarty (2006) and Hofmann-Wellenhof et al. (2008). It is also assumed that

the reader is aware of the evolution of GNSS processing prior to the introduction

of precise point positioning (PPP), including differential GNSS techniques. More

information on the evolution of GNSS processing is available in the aforementioned

texts.

Precise point positioning is a GNSS processing technique that uses code pseu-

dorange and carrier phase observations from a single receiver to determine position.

This is in contrast to other precise GNSS processing techniques which require at

least two receivers in order to compute a baseline solution. The technique, first im-

plemented by Zumberge et al. (1997), achieves a precise position through the high

precision of the carrier phase observations and by using precise satellite orbit and

clock values in place of those from the broadcast ephemeris.

In this chapter the positioning model for PPP will be presented and discussed.

As with all GNSS processing techniques the error sources in GNSS positioning must

be taken care of, however since much has been written about GNSS error sources
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(Strang and Borre 1997, Leick 2004, Kaplan and Hegarty 2006, Hofmann-Wellenhof

et al. 2008) in general only those significant to PPP estimation will be considered.

Where appropriate examples will be given to exemplify the magnitude of the error

and the effect on the solution. Since a fundamental feature of PPP is the use of

precise satellite orbits and clocks these will be considered, along with their extension

to real-time applications. The need to wait for the solution to converge and the

impacts of this will then be discussed.

2.2 Measurement model

As mentioned in the previous section, the PPP observation model consists of code

and carrier phase observations. These two measurement types have very different

precision, but each has a unique contribution. The carrier phase is the more precise

of the two observation types and is the key to the high precision attained in the PPP

technique. However, the initial unknown ambiguity of each carrier phase observation

must be estimated and hence this precision cannot be realised immediately. The code

observations are used to aid solving for these parameters during initialisation and

to ensure that the system of equations is regular.

The measurement model for a code observation at receiver r tracking satellite s

on frequency i at any given epoch, after Teunissen and Kleusberg (1998b), is given

as

psr,i = Rs
r + γiI

s
r,1 + T sr

+ c[δtr − δts]

+ ηr,i − ηsi

+ms
r,i,p + ekr

(2.1)

where psr,i is the pseudorange observable, Rs
r the geometric distance between the

receiver and the satellite, Isr,1 the delay due to the ionosphere on the first frequency

(e.g. L1 for GPS), T sr the delay due to the troposphere, c the speed of light through

a vacuum, δtr and δts are the receiver and satellite clock biases, ηr,i the delay at the
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receiver between the antenna and the signal correlator, ηsi the delay at the satellite

between the signal generator and antenna, ms
r,i,p the delay due to multipath, and ekr

the pseudorange measurement error resulting from additional parameters, such as

tracking error (see §2.2.7). The ionospheric delay term refers to the first frequency;

the effect on other frequencies is found through scaling by the constant γi = λ2i /λ
2
1,

where λi is the carrier wavelength corresponding to frequency i.

Similarly, the measurement model for a carrier phase observation at receiver r

tracking satellite s on frequency i at any given epoch, after Teunissen and Kleusberg

(1998b), is given by

φsr,i = Rs
r − γiIsr + T sr

+ c[δtr − δts]

+ µr,i − µsi

+ λi[ϕr − ϕs] + λiN
s
r,i

+ms
r,i,φ + εkr

(2.2)

where φsr,i is the carrier phase observable, µr,i the delay at the receiver between the

antenna and the signal correlator, µsi the delay at the satellite between the signal

generator and antenna, ϕr and ϕs the non-zero initial phases of the signals generated

at the receiver and satellite respectively, N s
r,i the integer carrier phase bias, ms

r,i,φ

the delay due to multipath, and εki the carrier phase measurement error resulting

from additional parameters, such as tracking error (see §2.2.7) and phase wind-up

(see §2.2.6). Some of these additional parameters, for example phase wind-up, can

be accounted for a priori, whereas others cannot.

Since the hardware delays and the non-zero initial phases of the carrier phase

bias cannot be separated Eq. (2.2) is often simplified to

φsr,i = Rs
r − γiIsr + T sr

+ c[δtr − δts]

+ µ′r,i − µ′
s
i + λiN

s
r

+ms
r,i,φ + εki

(2.3)
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where µ′r,i and µ′si contain both the hardware biases and the initial phases at the

receiver and satellite respectively.

The geometric distance Rs
r in Eq. (2.1) - (2.3) is given by

Rs
r =

√
(Xs −Xr)2 + (Y s − Yr)2 + (Zs − Zr)2 (2.4)

where (Xr, Yr, Zr) and (Xs, Y s, Zs) are the receiver and satellite coordinates respec-

tively. The estimated coordinates may need to be adjusted to take into account

the difference between the instantaneous and conventional coordinates, such as the

effect of solid earth tides (see §2.2.6).

For positioning applications it is the receiver position, contained within Eq. (2.4),

that is the unknown that is of primary interest. In the proceeding subsections each

of the remaining parameters given in Eq. (2.1) - (2.3) will be looked at in greater

detail.

2.2.1 Ionosphere

The ionosphere is a dispersive medium for GNSS signals and as such the delay varies

with frequency, hence the frequency dependency expressed in Eq. (2.1) - (2.2). From

these equations it can also be seen that carrier phase measurements are advanced

by the ionosphere, whereas pseudorange measurements are delayed (Langley 1998).

Since the effect of the ionosphere varies with frequency it is possible to eliminate

most of the delay by taking a linear combination of more than one frequency, which

results in the first-order terms cancelling out. This accounts for over 99% of the

ionospheric effect. It is most common to combine L1 and L2, referred to as LC. It

is also possible to make a linear combination of the carrier phase and pseudorange

measurements to remove the first-order ionospheric effects (Teunissen and Kleusberg

1998b). The remaining delay is made up of second- and third-order effects, which

are of centimetre and millimetre magnitude respectively (Elmas et al. 2011).

When calculating a baseline solution the effect of the ionosphere is removed

if the distance between the two stations is not long (Langley 1998). It is also

possible to model the ionospheric effect, such as that by Klobuchar (1987). However,
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ionospheric models are not sufficiently accurate enough for centimetre-level PPP

applications.

An alternative to forming a linear combination is to use an ionosphere float

solution, where the unknown ionospheric delays are explicitly estimated instead of

being eliminated (Teunissen 1997, Odijk 2000). The ionosphere float method is

typically done with L1 and L2 observations for GPS, although it can be done with

any two frequencies. It has been shown in Wells et al. (1987) that the ionosphere

free and ionosphere float processes are mathematically equivalent.
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Figure 2.1: Estimated ionospheric path delay between satellite G05 and a receiver
located in Perth, Australia on 5th August 2011 generated using the E-HP/PPP
software.

As there is a linear relationship between the first-order ionospheric effect on

differing frequencies it can be seen from Eq. (2.1) - (2.2) that only the L1 ionospheric

delay term is estimated for each satellite. Using the L1 ionospheric effect as a datum,

the scalar γi is used to transform this value to other frequencies. The variation in the

ionospheric delay for an arbitrary satellite pass is shown in Figure 2.1. It can be seen

that there is a clear link between the elevation of the satellite and the ionospheric
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delay. This is intuitive, since the GNSS signal must pass through more atmosphere

as the elevation decreases.

When estimating the ionospheric effect it is possible to treat the parameter as

one that either can be estimated at each epoch or one that can be propagated from

one epoch to the next in a recursive estimator such as a Kalman filter. Although

there are advantages in doing the latter, in areas of the world where the ionosphere

may be particularly changeable a bias could be easily introduced.

Irrespective of whether the ionosphere is estimated or eliminated, it is only the

first-order effects that are considered. Although the higher order effects do not have

as great an impact, when left unestimated they are lumped into the residual error

and may be temporally correlated.

2.2.2 Troposphere

Tropospheric refraction is divided into hydrostatic and non-hydrostatic components,

more commonly referred to as the dry and wet delay respectively. The former is

much easier to model as it follows the law of ideal gases and can be calculated using

pressure measurements taken at the receiver. The wet delay is very site-specific and

a function of temperature and partial pressure of water vapour (Hofmann-Wellenhof

et al. 2008). When calculating a baseline solution, if the distance between the two

receivers is not great the effect of the troposphere is removed as the signal is assumed

to have passed through the same part of the troposphere (Langley 1998). In the

case of PPP the dry delay can be modelled, but the wet delay is estimated as an

unknown parameter.

Models for tropospheric delay involve a model for the zenith delay, i.e. the delay

if the satellite were immediately above the receiver, and a mapping function for

elevation dependence, since as elevation decreases the signal must pass through

more atmosphere and hence the delay is increased. The simplest mapping function

is to multiply by the reciprocal of the sine of the elevation. Examples of mapping

functions include that by Marini (1972), the Neill Mapping Function by Neill (1996)

and the Vienna Mapping Function (Boehm et al. 2006).

13



The two main models for a priori calculation of the hydrostatic zenith delay

are those by Hopfield (1969) and Saastamoinen (1973). The latter is a function of

total ground pressure, latitude and receiver altitude, as well as a set of generalised

approximations.
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Figure 2.2: Estimated tropospheric zenith delay at a receiver located in Perth,
Australia on 5th August 2011 generated using the E-HP/PPP software.

An example of the tropospheric zenith delay over 23 hours for a station located

in Perth, Australia is shown in Figure 2.2. The delay has a range of 45 mm and is

the combination of the modelled dry component and the estimated wet component.

It is also possible to model the estimated troposphere as a gradient parameter.

This allows azimuthal variations of tropospheric refraction to be taken into account

(Meindl et al. 2004, Kleijer 2004). When estimating zenith delays it is important

to note that by not taking into account this azimuthal refraction leads to small

residual errors in the tropospheric estimate. As the troposphere is considered to

change slowly over time and is estimated as a common parameter in the recursive

estimator (see Chapter 3) these residual errors may be temporally correlated.
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2.2.3 Clock biases

As seen in Eq. (2.1) – (2.2) the clock biases consist of receiver and satellite compo-

nents.

The receiver clock varies unpredictably from one epoch to the next, although the

receiver clock drift varies very slowly (Petovello 2011). The receiver clock and its

drift are usually estimated as nuisance parameters. How the unpredictable part of

this variation compares with the accuracy requirements depends on the application

and therefore influences whether from an estimation point of view it is considered

to vary unpredictably from one epoch to the next or not. It is possible to eliminate

the receiver clock bias by forming a single difference between satellites or estimate it

as an unknown parameter. Leandro et al. (2011) state that the common approach

adopted in PPP software is to estimate the receiver clock bias. If more than one

satellite system is being used, such as GPS and GLONASS, a separate receiver clock

bias must be estimated for each system. This can also be estimated as an offset

by choosing a reference clock, since the difference between the two clock values is

relatively stable over time it can be constrained and propagated from one epoch to

the next.

A correction to the clock for each satellite is transmitted as a polynomial in the

broadcast ephemeris and the post-processed clock values generated by the IGS (see

§2.3) improve on these clock corrections. These corrections are treated as known

values in the PPP technique and is one of the major contributors to its high accuracy.

In real-time applications these clock values are predicted and supplied to the user

in real-time.

2.2.4 Hardware delays

There are a number of hardware delays that must be accounted for at both the

satellite and the receiver. In the case of the satellite, these include the thermal noise

that is associated with the electronics of the satellite itself as well as the transmitting

antenna. At the receiver there are delays associated with the receiving antenna, the

connecting cables and also within the hardware of the receiver itself. It is common
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for the ambiguity terms to be lumped with the hardware delays.

2.2.5 Multipath

It is generally assumed that the signal received at the GNSS antenna from a satellite

has followed an uninterrupted path. However, this is not always the case. In some

cases the antenna can receive additional indirect signals that are reflected off nearby

surfaces. This could be an adjacent building, the ground or even the GNSS antenna

itself. Reflections can also occur at the satellite at the time of transmission. This

phenomenon is known as multipath. In the case where only one signal is received,

but it is an indirect signal, this is known as non-line-of-sight (NLOS) reception.

Direct path

Indirect path

Figure 2.3: An illustration of the direct and indirect paths of a GNSS signal at the
antenna. The diagram is not to scale.

Multipath signals disturb the time correlation shape that is used for time delay

estimation in GNSS receivers due to the inseparability of direct and indirect signals

(Hofmann-Wellenhof et al. 2008, Sahmoudi and Landry 2008). The effect of this a

slowly varying error and hence can result in time correlated errors (Groves 2008).

In many offshore applications multipath can be prevalent due to the reflective

nature of the sea surface. Certain applications, such as mobile offshore drilling

units, are particularly affected as in addition to a number of tall structures, which

may cause multipath, any moving structures, such as cranes, will result in varying
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multipath conditions (IMCA/OGP 2011).

2.2.6 Additional parameters

Antenna offsets

The orbits in the GPS navigation message are relative to the satellite antenna phase

centre, whereas the orbit and clock products provided by the IGS are relative to the

satellite centre of mass. These offsets are expressed in a satellite-fixed coordinate

system and differ between satellite types. Each satellite has an individual frequency

dependent phase centre. Satellite specific z-offsets and block specific x- and y-

offsets are provided in an antenna calibration file published by the IGS (Schmid

et al. 2007). It is important to apply these offsets when undertaking positioning at

the centimetre level. It is also important to have the most recent values, since the

use of incorrect offset values may occur where the PRN of a satellite may change or

be reassigned when a satellite is decommissioned. Furthermore, it is important to

know the precise offsets of the phase centre of the receiving antenna. These are given

for each frequency the antenna is capable of receiving. If the antenna can receive

signals from more than one satellite system then these will also be given separately.

These values are also contained within the antenna calibration file published by the

IGS.

Antenna phase centre variation

The antenna reference point (ARP) describes the point to which all measurements

are made relative to an antenna. In theory all received signals are relative to the

electrical phase centre of the antenna. However, such a point does not exist in

reality as the electrical phase centre will vary for each satellite based on its azimuth,

elevation, signal intensity and frequency (Hofmann-Wellenhof et al. 2008). The

difference between the mean electrical antenna phase centre and each individual

measurement is expressed as a frequency-dependent phase centre offset (PCO) and

an azimuth- and elevation-dependent phase centre variation (PCV). These values are

either specified by the manufacturer of the antenna and found empirically through
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calibration. It is important to apply these values as part of the measurement model.

Phase wind-up corrections

The GPS signal is a right-hand circularly polarised L-band signal and as such when

a receiver changes direction relative to the satellite the phase that is recorded by

the tracking loop varies. This can occur both when the receiver is moving and

when it is static, since the satellite is always moving. This phenomenon is known as

carrier phase wind-up (Wu et al. 1993). The effect of phase wind-up is at the few

centimetre level and therefore for high precision applications such as PPP its effect

is significant. As the phase wind-up only affects the carrier phase measurements, the

application of corrections in PPP is particularly important as both pseudorange and

carrier phase observations form part of the measurement model. More information

on how to correct for phase wind-up can be found in Kouba (2009).

Solid earth tide

The gravitational attraction of the sun and moon that creates the ocean tides also

has an effect on the solid earth and is referred to as the solid earth tide. Its effect

is dependent on the latitude and longitude of the receiver and the frequency at

which the tide occurs (Kouba 2009). In the case of differential systems with short

baselines the effects of solid earth tides can largely be ignored, but for high precision

long baseline applications and PPP the effect must be modelled. The solid earth

tide displacement components for Perth, Australia, on 5th August 2011 are shown

in Figure 2.4. It is also important to note that these tidal displacement components

change with time and the pattern will be different each day.

The horizontal and vertical displacements are modelled using spherical harmonics

of degree m and order n and calculated using the Love number hnm and the Shida

number lnm (Kouba 2009). These are dimensionless numbers that represent the

rigidy of the Erath and its potential to react to tidal forces. The values in Figure

2.4 were calculated using software by Milbert (2012) according to the method set

out in Petit and Luzum (2010).
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Figure 2.4: Computed solid earth tide on 5th August 2011 for Perth, Australia.

Ocean tide loading

Ocean tide loading is the displacement effect caused by the redistribution of the

oceans’ weight on the seafloor. Its effect is smaller than solid earth tides and as

the effect is a function of distance from the ocean it is localised as a result (Kouba

2009). However, this displacement effect must be accounted for in sub-centimetre

level applications and as such must be corrected for in a PPP implementation where

high accuracy is required. It is is more critical to account for ocean tide loading at

sites where it has a much greater effect, such as those close to the coast.

There exist a number of models that can be used to correct for the displacement

caused by ocean tide loading (Ray 1999, Matsumoto et al. 2000, Lyard et al. 2006).

These provide the amplitude and phase of the signal for the major tidal constituents,

of which the greatest proportion of the effect comes from the 12-hour semi-diurnal

and 24-hour diurnal periods (e.g. Clarke and Penna (2010)). A web service provided

by Scherneck and Bos (2002) with eleven ocean loading models is a common source
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of tidal coefficients.

2.2.7 Tracking loop error

The GNSS receiver generates code and carrier phase observables by correlating the

signal that is received with a reference signal that is generated inside the receiver

itself. The two observation types are generated using two separate methods.

There are two main types of carrier tracking loop: a phase lock loop (PLL) and a

frequency lock loop (FLL). The PLL is more accurate, but more sensitive to dynamic

stress than the FLL. In each case the tracking loop may employ a Costas loop. These

must be used for data-modulated signals, such as the C/A and P(Y) codes. Since

there is a compromise to be made between the different types of tracking loop a

GNSS receiver often contains a combination of tracking loops that assist each other

(Ward et al. 2006).

In order to generate the carrier phase observable the GNSS receiver must create

two replicas of the reference carrier frequency that are 90 degrees phase shifted,

known as the in-phase and quadrature phase signals (Ward et al. 2006). These are

often referred to in the literature as the I/Q operations. The carrier loop filter anal-

yses the beat phase caused by the Doppler shift on the signal, extracts the remaining

frequency offset and the phase shift between the satellite signal and receiver in-phase

signal. A wide filter bandwidth is needed for high dynamics, but the downside to

this is that the noise level is increased (Hofmann-Wellenhof et al. 2008).

The predominant sources of error in a PLL carrier tracking loop are phase jitter

and dynamic stress error and for an FLL it is frequency jitter, as a result of thermal

noise, and dynamic stress error. The main source of jitter is a result of thermal

noise and is a function of the carrier-power-to-noise density. The error due to jitter

for a Costas PLL carrier tracking loop is given by Langley (1997) as

σPLL ≈

√
BP

c/n0

[
1 +

1

2 T c/n0

]
· λ

2π
(2.5)

where BP is the carrier loop noise bandwidth (Hz); c/n0 the carrier-power-to-noise

20



density ratio; T is the predetection integration time; and λ the carrier wavelength.

Note that when the carrier-power-to-noise density ratio is expressed in decibel form

the upper case equivalent, C/N0, is used (Groves 2008) where

C/N0 = 10 log10(c/n0) (2.6)

For signals of nominal strength this can be approximated as

σPLL ≈

√
BP

c/n0

· λ
2π

(2.7)

Taking C/N0 = 45 dB-Hz and BP = 2 Hz the error for GPS L1 carrier phase is 0.2

mm (Langley 1997).

The GNSS receiver uses a delay lock loop (DLL) in order to track the code that

is modulated on the carrier. Its thermal noise is much higher than the carrier loop

thermal noise (Ward et al. 2006). To generate the code observable the pseudo-

random code modulated onto the carrier phase is correlated against three internal

replica of the pseudorandom code. These are time shifted to give an early, prompt

and late correlation result (Hofmann-Wellenhof et al. 2008). By calculating the

transmit time from the satellite to the receiver it is possible to obtain a pseudorange

measurement.

Thermal noise range error jitter and dynamic stress error are the major sources

of code tracking loop error after the effects of interferences, such as multipath (see

§2.2.5) (Ward et al. 2006). The DLL jitter for an early/late one-chip spacing

correlator is given by Langley (1997) as

σDLL ≈

√
αBL

c/n0

[
1 +

2

T c/n0

]
· λc (2.8)

where α is the dimensionless DLL discriminator correlator factor; BL the equivalent

code loop noise bandwidth (Hz); and λc the wavelength of the pseudorandom code.
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This can be approximated for moderate to strong signals as

σDLL ≈

√
αBL

c/n0

· λc (2.9)

Taking α = 0.5, C/N0 = 45 dB-Hz and BL = 0.8 Hz the error for the GPS C/A

code is 1.04 m (Langley 1997).

For this study it is important to consider the impact that the tracking loop error

can have on time correlation in the observations (Abbott and Lillo 2003). Code-

tracking errors can become correlated with the Doppler shift, although this should be

at the millimetre level for high-accuracy geodetic receivers (Blewitt 1998). Carrier-

tracking errors induced by dynamics are typically proportional to the line-of-site

jerk.

For an introduction to the subject of receiver noise see Langley (1997) and for

a more comprehensive overview of signal acquisition and processing consult Ward

et al. (2006).

2.2.8 Code pseudorange smoothing

The pseudorange code measurement is inherently noisy, but by the use of code

pseudorange smoothing it is possible to reduce this effect (Hofmann-Wellenhof et al.

2008). The smoothed pseudorange code measurement for frequency i is found re-

cursively for an epoch k, where k = 1, 2, . . ., as (Groves 2008, de Jong 2013)

psm,i,k = Wp pi,k + (1−Wp)(psm,i,k−1 + φi,k − φi,k−1) (2.10)

where psm is the smoothed pseudorange code measurement and Wp is the code

weighting factor. When using dual-frequency data this combination limits code-

carrier divergence due to the ionosphere and the original structure of the code ob-

servations is preserved (de Jong 2013).

A variation of this algorithm is given by Hofmann-Wellenhof et al. (2008) that

uses a time-dependent weight factor to form the smoothed code observation. Full

weight is initially given to the code observation, but as time passes more weight is
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given to the carrier phase observation. If there is a sudden change in the ambiguity

of the carrier phase observation due to a cycle slip (see §4.2) the weight is reset.

An alternative method for code pseudorange smoothing is given by Teunissen

(1991) whereby the smoothed observations are obtained using a recursive least

squares estimator. This has the advantage of proper functional and stochastic mod-

elling. Le and Teunissen (2006) show that when applied to PPP it is shown to yield

a 30% improvement over traditional methods.

It is important to note that given the method used for smoothing the code

observations this will inevitably introduce time correlation into the PPP estimation

procedure and this should be taken into account when analysing the data.

2.3 Orbit and clock products

The International GNSS Service (IGS) provides post-processed tabulated values for

the satellite orbits and satellite clock biases. These are computed as a combination

of solutions from analysis centres around the world. The signal-in-space error for the

broadcast orbits and satellite clocks given by Heng et al. (2011) are shown in Table

2.1. This is compared to the most precise products produced by the IGS, which have

quoted accuracies of 2.5 cm for GPS orbits and 0.05 ns for satellite clocks (IERS

2011). The accuracies of the IGS products are summarised in Table 2.2.

Table 2.1: Standard deviation of signal-in-space (SIS) errors grouped by GPS satel-
lite block type. (Heng et al. 2011)

IIA IIR IIR-M
Radial (m) 0.243 0.130 0.145
Alongtrack (m) 1.258 0.921 1.000
Crosstrack (m) 0.675 0.575 0.594
Clock (m) 1.074 0.384 0.498

For post-processed PPP the IGS Final product yields the best results, although

if results are required quickly then the latency of this product may mean that the

Rapid or even Ultra-Rapid products must be used. Kouba and Héroux (2001) show

the positional accuracy of a static solution using either the IGS Rapid or IGS Final

both to be around the 2 cm level. It is noted that the IGS Rapid is of comparable
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Table 2.2: [

Summary of the quality of the IGS orbit and clock products at end of
2011.]Summary of the quality of the IGS orbit and clock products at end of 2011

(IERS 2011)

Product IGS Final IGS Rapid
IGS Ultra Rapid

Adjusted Predicted
Updates Weekly Daily Every 6 h Every 6 h
Delay ∼ 13 days 17 hours 3 hours Real-time
GPS orbits 2.0 cm 2.5 cm 3 cm 5 cm
GPS satellite clocks 0.05 ns 0.1 ns ∼ 0.2 ns ∼ 5 ns
Station clocks 0.05 ns 0.1 ns - -
GLONASS orbits ∼ 5 cm - - -

quality to the IGS Final product.
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Figure 2.5: Difference between broadcast and IGS Final orbits and clocks for GPS
SVN01 on 1st January 2012

Figure 2.5 shows the difference between the broadcast orbit and satellite clock

correction and the IGS Final product. Since the IGS precise clocks at 30 second

intervals have been used the broadcast clocks at 30 second intervals have been used.

Since the Keplerian elements that model the orbit are refreshed every two hours it

is possible to see jumps that occur whenever these values change. The difference
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between the clock values shows a high frequency oscillation and a second much lower

frequency noise, due to the unpredictability of satellite clock values.

In addition to the post-processed products, a number of institutions now produce

GPS orbit and clock corrections in real-time. One of the first providers of such a

service was NASA’s Jet Propulsion Laboratory (JPL) (Muellerschoen et al. 2001).

Gao and Chen (2004) report the positional accuracy of the JPL real-time product to

be at the centimetre level for static and kinematic positioning applications. Since the

launch of the JPL service a number of commercial companies undertake their own

orbit and clock estimation (Melgard et al. 2009), which also incorporate corrections

for GLONASS satellites. The IGS is also trialling a real-time orbit and clock service

providing corrections using standard communication methods through the internet.

2.4 Convergence of PPP solutions

PPP implementations can either use batch least squares estimation or recursive

estimation , such as the Kalman filter (see Chapter 3), to process the data. The batch

least squares method takes all epochs of data and treats the estimation procedure

as one single adjustment problem. In comparison, a recursive estimator processes

each epoch separately, using all available information up to that point.

Whereas both methods can be used when data is being post-processed, when

estimating in real-time only a recursive estimator is feasible as the batch solution

would only be available once all data has been collected. The estimation begins

using an initial value with a large a posteriori error. At the start of processing the

carrier phase ambiguities are unknown and code observations are required to be able

to separate them from the position and other parameters. As successive epochs are

processed the ambiguity can be estimated with greater certainty and the a posteriori

error decreases rapidly to a steady state. This period is known as the convergence

time. It is the convergence time that is most crucial in real-time applications of

PPP, since reliable positioning cannot begin before convergence has been reached.

GPS data from the IGS station ABPO, located on the island of Madagascar in the

Indian Ocean, recorded on 25th December 2009 was processed using the E-HP/PPP
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Figure 2.6: Difference between coordinates calculated using PPP in ‘kinematic
mode’ and the known coordinates during the convergence period for ABPO (lo-
cated on the island of Madagascar in the Indian Ocean) on 25th December 2009.

software (see §5.3.1) in kinematic mode, i.e. the position was allowed to change freely

from one epoch to the next. Figure 2.6 shows the difference in the local east, north

and up coordinates with respect to the known coordinates calculated using a static

PPP solution over 24 hours. It can be seen that the east, north and up components

of the coordinate settle to a steady value after approximately 30 minutes. Similarly,

the a posteriori error is high at first and then falls rapidly to a steady value, although

it can be seen that this cannot be used as an indicator of convergence.

2.5 Recent developments in PPP methodology

Since its inception there have been a number of developments in the PPP methodol-

ogy that have brought increased accuracy and availability. Bisnath and Gao (2008)

provide a comprehensive overview of the state of PPP and identify a number of

areas of potential. A further update is given by Rizos et al. (2012) questioning the
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continued need for differential positioning in light of advances in PPP methodology.

One such area is the reduction of the convergence time (see §2.4), which is an

important aspect in commercial applications of PPP. Karabatic et al. (2010) have

approached this problem by generating a regional set of satellite clocks, which takes

into account spatial and temporal correlations between stations. Another approach

has been to introduce additional navigation systems, although in much of the liter-

ature this does not appear to have brought significant improvements in convergence

time (Cai and Gao 2007, Hesselbarth and Wanninger 2008, Anquela et al. 2013).

Another approach by Elsobeiey and El-Rabbany (2012) is to compute the second-

order ionospheric effects and apply these as corrections in their PPP software along

with orbits and clock corrections calculated by taking into account second-order

ionospheric effects. A 15% improvement in convergence time is reported.

In the case of double differenced processing the carrier phase ambiguities are

integer, but in the case of standard PPP it is only possible to estimate carrier phase

ambiguities as a float number. By estimating the so-called uncalibrated phase delays

(UPDs) and providing these to the user it is possible to fix the ambiguities to integer

values (Wuebbena et al. 2005, Ge et al. 2008, Teunissen et al. 2010).

In most PPP implementations the effect of the ionosphere can largely be removed

by using a dual-frequency receiver and forming the ionosphere-free combination or

by using an ionosphere float model (see §2.2.1). However, to use a single-frequency

receiver, which is preferable in low-cost applications, the choice of ionosphere model

is crucial (Chen and Gao 2005). This has prompted research into improving the

accuracy of PPP using such receivers. Le et al. (2008) show that real-time regional

ionospheric maps can be applied to the single-frequency PPP measurement model to

improve the positional accuracy, although poor geographical coverage is a limitation.

With the increasing availability of GLONASS satellites much research has been

done into integrating GLONASS observations with those of GPS. It is also reliant on

precise orbit and clock products being available for GLONASS satellites. An early

study by Cai and Gao (2007) showed that there was no significant improvement

in the result achieved, mainly due to there not being sufficient additional satellites
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to have a noticeable impact. Ṕıriz et al. (2009) show that improvements in the

constellation allow the computation of a GLONASS only static solution to sub-

centimetre level, although the combined solution once again does not show significant

improvement. It is also noted that a GLONASS only solution is unreliable at times.

Melgard et al. (2009) show that the convergence time of kinematic results can be

improved by an average of 39%, where this is defined as the 3D position being

within 40 centimetres of the reference coordinates for more than 10 minutes. A

more recent study by Cai and Gao (2013) reports a 50% improvement in accuracy

for kinematic data and predicts further improvements with better GLONASS orbit

and clock products. It also concludes by stating that improvements in functional

and stochastic models will yield even better results.

2.6 User requirements

As the scope of this study is within the context of positioning for the offshore in-

dustry it is useful to consider the requirements of the user and how current PPP

algorithms meet these. Only real-time and kinematic situations will be considered,

as these requirements differ greatly from users requiring post-processed static solu-

tions.

In the offshore industry PPP is often used as a replacement for traditional dif-

ferential GNSS services. Guidelines set out in IMO (2001) state that high accuracy

offshore applications are typically around 0.1 m (see Table 2.3). The accuracy of

real-time PPP given by IMCA/OGP (2011) is around 15 cm in the horizontal (2σ)

and 15-25 cm in the vertical (2σ). This suggests that for these type of applications

the accuracy requirements are not yet met. However, the recent advances in integer

ambiguity resolution for real-time PPP has shown that this can be reduced to 2.7

cm in the horizontal (Chen et al. 2011). This level of accuracy also opens up new

applications to PPP and has seen it applied in the agricultural industry for precision

farming (Bisnath and Gao 2008, van Bree and Tiberius 2012).

It is important to be able to measure the reliability of the test statistics used

to screen observations (see §4.7). As such, the reliability indicators should give
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Table 2.3: Summary of accuracy requirements in offshore positioning (IMO 2001).
All values represent a 95% confidence limit.

Accuracy
Horizontal (m) Vertical (m)

Automatic docking 0.1 -
Hydrography 1 - 2 0.1
Dredging 0.1 0.1
Cable and pipeline laying 1.0 -
Offshore construction 0.1 0.1

a realistic estimate of the size of error that can be detected. As the accuracy

of positioning improves the ability to detect smaller biases becomes increasingly

important. Current algorithms can meet this expectation, although as the accuracy

improves it is important to ensure that these measures are still relevant.

In many cases positioning systems are required at all times since much opera-

tional work is continuous. In some cases continuity may also be crucial, where loss

of lock may compromise safety. This is reflected in the availability and continuity

requirements set out in IMO (2001) (see Table 2.4). As such the system must al-

ways be available. For this reason two fully independent positioning systems are

recommended (IMCA/OGP 2011). Current technology allows this availability cri-

teria to be met. Since it is clear that availability is crucial in offshore applications

it is important to ensure that any statistical testing of the PPP solution does not

inadvertently result in a loss of positioning.

Consider the scenario where the minimum number of four satellites are being

tracked. Should the quality control procedure in place cause carrier phase data on

this satellite to be rejected then the system will not be solvable and a reset will

be triggered. If the lack of positioning halts work then this can prove very costly.

The chance of this scenario can be reduced with multi-constellation GNSS, as this

brings improved satellite availability. The procedures presented in Chapter 4 are

currently sufficient at doing this, although research into multiple outlier detection

(Wang and Wang 2007, Knight et al. 2009, Baselga 2011) show that with increased

redundancy comes the increased chance of more than one bias in the observations

at a single epoch. Yang et al. (2013) show that the existing procedures based on

the occurrence of a single outlier are not sufficient and that the theory should be
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extended to cover multiple hypotheses.

Table 2.4: Summary of availability and continuity requirements in offshore position-
ing. (IMO 2001)

Application
Availability Continuity

% over 30 days % over 3 hours
Automatic docking 99.8 99.97
Hydrography 99.8 -
Dredging 99.8 -
Cable and pipeline laying 99.8 -
Offshore construction 99.8 -

In real-time applications latency can have a significant impact on position and

is reported by Chen et al. (2013) to be one of the principle challenges in PPP at

present. It is shown in IMCA/OGP (2011) that as the age of corrections supplied

to the user increases, the accuracy decreases. The latency of corrections to the

user should be within one minute to ensure an accurate position can be achieved.

In addition to the latency experienced in providing the corrections to the user the

time taken to calculate a solution is crucial. As the sample rate of observation data

increases the speed at which a PPP algorithm performs is also extremely important.

Current algorithms are sufficient at providing low latency in computing position,

although with higher rate observation data a more powerful CPU may be required.

Any additional algorithms that complement the PPP procedure should similarly be

designed with latency in mind.

2.7 Summary

In this chapter the concept of PPP as a positioning technique was introduced. It

is a processing method that requires only one receiver and utilises precise orbits

and clock corrections in order to achieve decimetre accuracy. The measurement

model was presented, which consists of both pseudorange code and carrier phase

observations. It is through the combination of these two observation types that

the best results can be achieved, since the code observations are important for the

initialisation period.

There are a number of error sources that appear in the model equations. These
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must either be eliminated from the observation model by supplying known values

or by modelling them, whereas others must be estimated as an unknown parameter.

Some of the error sources, such as multipath and tracking noise, are known to cause

time correlation and this must be taken into account during data analysis.

Since it is the precise orbits and clocks that are a major contributor to the

accuracy of PPP these were considered, as well as the development of real-time

services. The limiting factor of convergence time was highlighted as a caveat to the

PPP technique. Finally, the requirements of users of PPP were considered and the

extent to which current PPP algorithms meet these.
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Chapter 3

The Kalman filter

3.1 Introduction

Geodetic problems have historically been solved using least squares adjustment the-

ory developed by Carl Friedrich Gauss in the 19th century. When confined to batch

solutions this is an adequate technique, but when processing data in real time, where

the parameters being estimated vary predictably over time, it is necessary to use a

recursive estimation technique.

k-1

k

k+1

A

B

C

Figure 3.1: Positions of a moving vessel over three consecutive epochs.

Consider the example in Fig. 3.1 of a moving vessel at positions A, B and C

at epochs k − 1, k and k + 1 respectively. At epoch k it is possible to estimate

the position of the vessel at epoch k + 1 using knowledge of the vessel’s dynamics.

This is known as prediction. Using an update in information at epoch k + 1 it is

possible to calculate an improvement on this predicted position. This is known as

filtering. Using the additional information obtained at epoch k+1 it is then possible
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to calculate corrected positions for the vessel at k, k − 1 and all previous epochs.

This is process is known as smoothing.

One method that employs prediction and filtering is the Kalman filter (Kalman

1960) and along with its derivatives is widely applied across many fields (Leondos

1970, Pearson and Stear 1974, Harvey 1994, Haykin 2002). It is particularly suited

to navigation systems as it utilises all data processed up to a particular epoch, but,

as it is recursive, does not suffer from data storage issues. An historical background

to the link between the Kalman filter equations and least squares adjustment theory

is presented in Sorenson (1970).

In this chapter a brief summary of least squares estimation will be given in §3.2

and then in §3.3 the fundamental Kalman filter equations will be presented. Since

most geodetic problems are nonlinear, §3.4 discusses the extension of the Kalman

filter to nonlinear systems. In §3.5 the Kalman filter equations will then be presented

as a derivation in terms of the least squares estimator. An alternative flavour of

the Kalman filter is then derived in §3.6 that modifies the state vector to include

parameters that cannot be predicted from one epoch to the next. Due to the nature

of this modified filter, the predicted residuals cannot be used for identifying model

errors. As such, the relationship between predicted and post-fit residuals is derived

in §3.7. All of the above is then brought into the context of PPP in §3.8, along with

a few notable implementation issues.

Since there are a number of forms of notation for Kalman filters, the style used

in this chapter will be continued throughout the thesis. Refer to Appendix A for

further explanation of the notation used.

3.2 Least squares estimation

Before looking at recursive estimation methods it is important to review least squares

estimation as the basis of position fixing in geodesy. In this section the model using

observation equations will be the focus, but the model of condition equations will

also be briefly covered. The Kalman filter and least squares estimation are closely

linked (Sorenson 1970) and it will be shown in §3.5 that the Kalman filter can
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be derived with respect to the least squares model using the model of observation

equations.

3.2.1 Model of observation equations

The standard least squares model using observation equations reads

E{y} = Ax̂ ; D{y} = Qy (3.1)

where y is an m× 1 random vector of observations, x̂ is an n× 1 vector of unknown

parameters and A is the m × n design matrix, which consists of coefficients that

form a linear transformation between the estimable parameters and observations. It

is assumed that the y is Gaussian. Eq. (3.1) is also known as the Gauss-Markov

model (Koch 1999).

The least squares estimator aims to provide the best linear unbiased estimate by

minimising the weighted sum of the squares of residuals, e (Cross 1994),

min
∑

êTQ−1y ê (3.2)

where the residual ê is the deviation of the observations from the estimator of their

expected values (Koch 1999). This is done by forming the normal equations, which

read

(ATQ−1y A)x̂ = ATQ−1y y (3.3)

From this, the estimator for the unknown parameters is formed, which reads

x̂ = (ATQ−1y A)−1ATQ−1y y (3.4)

with its variance-covariance matrix

Qx̂ = (ATQ−1y A)−1 (3.5)
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From Koch (1999) the vector of least squares residuals reads

ê = (I − A(ATQ−1y A)−1ATQ−1y )y (3.6)

which reduces to

ê = y − Ax̂ = y − ŷ (3.7)

and its variance-covariance matrix is given by

Qê = Qy − A(ATQ−1y A)−1AT (3.8)

So far only the case of a linear system has been shown. In many applications,

of which GNSS positioning is one, the observation equations are not linear. In this

case Eq. (3.1) becomes

E{y} = A(x) ; D{y} = Qy (3.9)

where A(x) is a non-linear function representing the relationship between the ob-

servations and the parameters. In order to make the system solvable linearisation is

necessary. It is possible to approximate the nonlinear model using a first order Tay-

lor series expansion (Cross 1994, de Jong et al. 2002) of the observation equations,

giving

y = A(x0) +
∂A
∂x

∣∣∣∣
x0

∆x (3.10)

with approximate values for the vector of parameters, x0, computed such that

x = x0 + ∆x (3.11)

where ∆x is a vector of small corrections to the provisional values. From Tiberius

(1998) the least squares model now becomes

E{∆y} = δxA(x0) ∆x ; D{∆y} = Qy (3.12)
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where

∆y = y −A(x0)

and δxA(x0) is a Jacobian matrix corresponding to the design matrix in the linear

model, A, with respect to the approximate vector of parameters, x0. The estimate

of the parameters becomes

x̂ = x0 + ∆̂x (3.13)

This solution may be iterated, with each successive estimate of x̂ used as the ap-

proximate value in the next iteration, until the estimated correction is sufficiently

small that the solution is considered to have converged.

Eq. (3.12) – (3.13) show a correction to the state vector (∆x) is estimated using

an a priori correction to the original observations (∆y). Using GNSS processing as

an example of a non-linear least squares problem, it is in fact corrections to an a

priori estimate of the observations that are used and not the original observations

themselves. For this reason y shall henceforth be referred to as the vector of observ-

ables to avoid confusion with the raw observations. More information on solving

non-linear problems can be found in Teunissen (1990b).

3.2.2 Model of condition equations

An alternative representation of the least squares problem is using the model of

condition equations. This is a function of only the observables and the unknown

parameters have been eliminated (de Jong et al. 2002).

The model with condition equations is given as

BTE{y} = 0 D{y} = Qy (3.14)

where y is an m× 1 random vector of observables and B is a m× (m−n) matrix of

condition coefficients (with n equal to the number of eliminated parameters). The

estimators for the observables and the residuals, along with their variance-covariance
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matrices, are given respectively by

ŷ = (I −QyB(BTQyB)−1BT )y Qŷ = (I −QyB(BTQyB)−1BT )Qy (3.15)

ê = QyB(BTQyB)−1)BTy Qê = QyB(BTQyB)−1)BTQy (3.16)

The model of observation equations and the model of condition are equations

are connected through the following relation (Salzmann 1993):

BTA = 0 (3.17)

Although the model of observation equations is not useful in GNSS process-

ing, since estimates of the unknown parameters are not made, it forms part of the

derivation of the relationship between the predicted and post-fit residuals given in

§3.7.

3.3 Kalman filter equations

The basic model consists of a vector of observables y and a vector of parameters x

that are to be estimated, known as the state vector. The measurement model at

epoch k, also known as the primary model, is given by

y
k

= Akxk + εk (3.18)

where the random measurement error is modelled by εk. At a given epoch k this

relates the mk×1 vector of observables, yk, to the n×1 state vector, xk, through the

mk ×n design matrix, Ak. This can also be expressed in terms of the mathematical

expectation and dispersion as

E{y
k
} = Akxk ; D{y

k
} = Qyk (3.19)
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The dynamic model, also known as the secondary model, is given by

xk = Φk,k−1xk−1 + wk (3.20)

where Φk,k−1 is the state transition matrix and wk is the vector of process noise.

The state transition matrix models how the state vector at a given epoch is related

to that at the next and the process noise vector is the random error in the dynamic

model.

There are two steps in the Kalman filter, namely prediction and filtering. Al-

though not part of the original Kalman filter, the procedure can also be extended

to a third smoothing step. There are a number of ways in which the Kalman filter

formulae can be derived. Detailed derviations of the Kalman filter equations from a

geodetic perspective can be found in Krakiwsky (1975), Salzmann (1993) and Cross

(1994).

Prediction

The first step, also referred to in the literature as the time update stage, is based on

the dynamic model which specifies how the state vector changes from one epoch to

the next, along with the process noise or uncertainty that is placed on this change.

The estimate for the predicted state vector follows from Eq. (3.20) and is given by

x̂k|k−1 = Φk,k−1x̂k−1|k−1 (3.21)

where Φk,k−1 is the transition matrix and x̂k−1|k−1 the state vector at the previous

epoch. Since E{wk} = 0 for all k and and E{wk, wTl } = 0 for k 6= l the wk term

vanishes (Kalman 1960, Salzmann 1993). The associated variance-covariance matrix

is given by

Qx̂k|k−1
= Φk,k−1Qx̂k−1|k−1

ΦT
k,k−1 +Qwk

(3.22)

where Qx̂k|k−1
is the variance-covariance matrix of the predicted state vector and

Qwk
the variance-covariance matrix representing the uncertainty in the noise in the

dynamic model.
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Filtering

The new observables at epoch k are now used to correct the predicted state vector

generated as part of the previous step. It is for this reason that the term mea-

surement update is also used in the literature. The updated state vector and its

variance-covariance matrix are given by

x̂k|k = x̂k|k−1 +Kk(yk − Akx̂k|k−1) (3.23)

Qx̂k|k = (I −KkAk)Qx̂k|k−1
(3.24)

with

Kk = Qx̂k|k−1
ATk (Qyk + AkQx̂k|k−1

ATk )
−1

(3.25)

where Kk is the so-called Kalman gain matrix. The term Kk in Eq. (3.23) controls

how much influence the observables have in comparison to the predicted state in the

updated state vector. This can be illustrated by taking the simplification Ak = I.

The updated state vector rearranges to

x̂k|k = Kkyk + (I −Kk)x̂k|k−1 (3.26)

and the Kalman gain matrix simplifies to

Kk = Qx̂k|k−1
(Qyk +Qx̂k|k−1

)−1 (3.27)

From Eq. (3.26) and (3.27) it can be seen more clearly how the Kalman gain matrix

is used to regulate the influence of the observables and the predicted state.

The vector of predicted residuals, also known as the innovation in the literature,

is an important tool in identfying model errors (Teunissen 1990c, Salzmann 1993,

Tiberius 1998, Teunissen 1998b). It is defined as

vk = y
k
− Akx̂k|k−1 (3.28)
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Its variance-covariance matrix is defined as

Qvk = Qyk + AkQxk|k−1
ATk (3.29)

In least squares estimation the post-fit residuals are used to identify model errors.

Although predicted residuals can be considered weaker than post-fit residuals, they

have the advantage that they can be be tested before the filtering stage. Hence any

outlying observables are removed before the state vector is updated. The relation-

ship between the predicted residuals and the post-fit residuals can be found in §3.7.

The use of the predicted residuals to identify model errors is covered in Chapter 4.

Smoothing

Although not part of the Kalman filter, as described in §3.1, it is possible to use

information from later epochs to provide a better estimate of those estimated earlier

on by smoothing. There are three types of smoothing problem (Brown and Hwang

1996): fixed-interval smoothing, fixed-point smoothing and fixed-lag smoothing.

A fixed interval smoother is one where the time interval between epochs is fixed.

The process consists of backward sweep that works sequentially from the last point

to the first. The smoothed state vector and its variance-covariance matrix, after

Meditch (1973), is estimated by

x̂k−1|k = x̂k−1|k−1 + Jk−1(x̂k|k − x̂k|k−1) (3.30)

Qx̂k−1|k = Qx̂k−1|k−1
+ Jk−1(x̂k|k − x̂k|k−1)JTk−1 (3.31)

with

Jk−1 = Qx̂k−1|k−1
ΦT
k,k−1Q

−1
x̂k|k−1

(3.32)

where J is the so-called smoothing gain.

The fixed point smoother is similar to the fixed interval problem except that only

one point in the past is of interest. As each filtered solution is obtained the fixed

point chosen is updated. An example would be to update the starting value at each

epoch as more data is obtained. The smoothing gain is replaced by the product of

40



all smoothing gain matrices seen in Eq. (3.32) up to the last epoch, hence

Jk−1 =

j=1∏
i=k

Qx̂k−1|k−1
ΦT
k,k−1Q

−1
x̂k|k−1

(3.33)

where k represents the epoch of the fixed point and j each successive epoch at which

a measurement is taken.

A fixed lag smoother estimates a smoothed solution at a set interval in the past.

An example could be a ship that estimates its position every second subsequently

smoothing its estimated position for one minute ago. This gives the advantage that

the position can be obtained without waiting too long, but equally being able to

benefit from the additional information from the one minute time lag. Brown and

Hwang (1996) show the simplest way in which to implement this is to apply the

fixed-interval smoother recursively up to and including the lag time, although a

more complex algorithm is given in Meditch (1973).

Since smoothing is not applicable to real-time estimation it is beyond the scope

of this thesis and as such it will therefore not be covered in further detail. It is

important to note that data collected in real-time can be smoothed for analysis

after the event.

Summary of the procedure

A flowchart summarising the Kalman filter process is shown in Fig. 3.2. In order

to start the prediction and filtering process an initial estimate at k = 0 of the state

vector (x0) and its variance-covariance matrix (Qx0) are required. This is typically a

standard least squares estimate. In some cases initial estimates may be required for

more than one epoch. For example, if the state vector contains position and velocity

parameters and only position observations are available then it is not possible to

make an initial estimate of velocity without at least two epochs of data. Eq.

(3.21) and (3.22) are then used to find the predicted state (x̂k|k−1) and its variance-

covariance matrix (Qx̂k|k−1
). At k = 0 an initial estimate of Qx̂k|k−1

is also required.

This should be set to values that reflect the accuracy of the initial estimates. The

predicted state and its variance-covariance matrix are then used in Eq. (3.25) along
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Figure 3.2: Flowchart showing the Kalman filter process
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with the variance-covariance matrix of the observed measurements (Qyk) and the

design matrix (Ak) to calculate the Kalman gain, which regulates the contribution

of the predicted state and the observed measurements to the updated state. The

updated state (x̂k|k) and its variance-covariance matrix (Qx̂k|k) are calculated using

Eq. (3.23) and (3.24) respectively.

This filtered solution of the parameters and its variance-covariance matrix be-

comes the reported solution for that epoch. The process then continues, using the

updated state vector and its variance-covariance matrix at the next epoch (k + 1).

3.4 Nonlinear filtering

The method outlined in §3.3 only applies to linear models and it has already been

mentioned in §3.2 that many estimation problems are non-linear. As with least

squares, one such solution to this problem is through linearisation. Where this

method is applied to the Kalman filter it is known as the extended Kalman filter.

In the case where the dynamic and measurement models are nonlinear it is shown

in Gibbs (2011) that Eqs. (3.20) and (3.19) become respectively

xk = ϕ(xk−1, wk) (3.34)

y
k

= a(xk, ek) (3.35)

where ϕ and a are non-linear functions of the arguments.

The linearised Kalman filter then utilises the same procedure as the standard

Kalman filter with the exception that the state transition matrix and design matrix

respectively are given by

Φk,k−1 =
∂ϕ(xk−1|k−1, wk)

∂x

∣∣∣∣
k−1

(3.36)

Ak =
∂a(xk|k−1)

∂x

∣∣∣∣
k

(3.37)

The iterated extended Kalman filter takes the above method and extends it in order

to address the problem of bias and divergence that is caused by the linearisation
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approximation. It is noteworthy to point that although linearisation is required

for the PPP observation equations, where parameters cannot be reliably predicted

from one epoch to the next the transition matrix is in fact taken to be the identity

matrix, i.e. Φk,k−1 = Ik, and hence is always linear. More information on the

extended Kalman filter can be found in Strang and Borre (1997) and Gibbs (2011).

Other methods of solving the problem of estimating a nonlinear system include the

unscented Kalman filter (Julier and Uhlmann 1997) and the particle filter (Carpenter

et al. 1999).

3.5 Least squares derivation of the Kalman filter

The quality control procedures outlined in Chapter 4 are based on the least squares

estimator. It is possible to derive the Kalman filter equations using the least squares

estimator. It will also be shown in §3.6 that the Kalman filter can be adapted so

that the state vector is partitioned into those that can be predicted and those that

cannot. This can be done using an extension of the equations that are derived in

this section.

Recalling Eq. (3.19), the standard least squares model reads

E{y
k
} = Akxk ; D{y

k
} = Qyk

In each case the y
k

vector is extended with additional information from the state vec-

tor. It is possible to solve this extended model using both the observation equations

and condition equations approaches to least squares estimation. Only the former

will be shown. Salzmann (1993) provides an in-depth derivation of the Kalman filter

equations for a model with condition equations. Following the observation equations

approach the extended model is solved by forming the normal equations, yielding

an estimator for x̂k|k−1 and x̂k|k at the filtering and prediction stages respectively.
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Prediction

In this least squares derivation the prediction step will be not be treated as a

least squares problem, but the predicted state vector and its associated variance-

covariance matrix, given by Eq. (3.21) and (3.22), are required in the filtering stage

as part of a least squares problem and must still be computed.

Filtering

The least squares model for the prediction step consists of two sets of observables,

namely the predicted state vector and the observables from the current epoch. As

such the predicted state vector can be thought of as being a set of ‘pseudo observ-

ables’ and the new measurements as ‘real observables’.

E{

 x̂k|k−1

y
k

} =

 I

Ak

xk ;

 Qx̂k|k−1

Qy
k

 (3.38)

Forming the normal equations and solving for x in the overall model yields

x̂k|k = (Q−1xk|k−1
+ ATkQ

−1
yk
Ak)

−1(Q−1xk|k−1
x̂k|k−1 + ATkQ

−1
yk
yk) (3.39)

which is mathematically equivalent to Eq. (3.23), as shown by Koch (1999). Simi-

larly, the variance-covariance matrix of the updated state vector is given by

Qx̂k|k = (Q−1xk|k−1
+ ATkQ

−1
yk
Ak)

−1 (3.40)

which is mathematically equivalent to (3.24), as shown by Koch (1999).

The post-fit residual vector hence contains parts corresponding to x̂k|k−1 and y
k

respectively.

êk|k =

 êxk|k−1

êyk

 =

 −Qx̂k|k
ATkQ

−1
yk
yk + (I −Qx̂k|k

Q−1xk|k−1
)xk|k−1

(I − AkQx̂k|k
ATkQ

−1
yk

)yk − AkQx̂k|k
Q−1xk|k−1

xk|k−1

 (3.41)
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Its variance-covariance matrix is given by

Qêk|k =

 Qxk|k−1
−Qx̂k|k

−Qx̂k|k
ATk

−AkQx̂k|k
Qyk − AkQx̂k|k

ATk

 (3.42)

A derivation of Eq. (3.41) and (3.42) is given in Appendix B.

3.6 Semi-recursive Kalman filter

In §3.3 the Kalman filter was presented as a recursive method for solving a linearised

system with a state vector that can vary predictably over time. In some cases as well

as containing parameters that can be reliably predicted from one epoch to the next,

it may contain those that are extremely difficult or in fact impossible to predict,

even if they do vary over time.

The semi-recursive Kalman filter is presented in de Jong (2008b). It is equivalent

to the estimation models presented in de Jonge (1998) and Kleijer (2004). Consider

the following modification to the n× 1 state vector

xk =

 xk,a

xk,b

 (3.43)

where xk,a is a na × 1 vector containing parameters which can be predicted at the

next epoch and a priori information is known and xk,b is a nb × 1 vector containing

parameters where no a priori information is known at each new epoch. These shall

be referred to as the common and epoch parameters respectively. The number

of common and epoch parameters should equal the total number of parameters,

i.e. n = na + nb.

3.6.1 Model equations

In this subsection the theoretical aspects of the semi-recursive Kalman filter will

be outlined following the procedure given in de Jong (2008b). Only the prediction

and filtering steps will be considered, although the method can be extended to

46



smoothing. The implications of the semi-recursive approach are covered in §3.6.2.

Prediction

The prediction step only applies to the parameters in xa, since in the filtering step no

a priori information about xb can be assumed. Therefore, using the same method-

ology as in §3.2 the predicted state vector becomes

x̂k|k−1,a = Φk,k−1x̂k−1|k−1,a (3.44)

where Φk,k−1 is the na × 1 state transition matrix.

It therefore follows that the variance-covariance matrix of the predicted state

vector is given by

Qx̂k|k−1,a
= Φk,k−1Qx̂k−1|k−1

ΦT
k,k−1 +Qwk

(3.45)

where Qwk
is the na × na variance-covariance matrix of process noise.

Filtering

The filtering step now includes the additional information from the observables,

but the vector of parameters to be estimated includes both common and epoch

parameters. As such, Eq. (3.38) becomes

E{

 x̂k|k−1,a

y
k

} =

 I 0

Ak Bk


 xk,a

xk,b

 ;

 Qx̂k|k−1,a

Qyk

 (3.46)

where the design matrix partitioned is into

(
Ak Bk

)T
, representing the common

and epoch parameters respectively. The estimator for the filtered state vector is

therefore given by

x̂k|k =

 Q−1xk|k−1,a
+ ATkQ

−1
yk
Ak ATkQ

−1
yk
Bk

BT
k Q
−1
yk
Ak BT

k Q
−1
yk
Bk


−1 Q−1xk|k−1,a

x̂k|k−1,a + ATkQ
−1
yk
y
k

BT
k Q
−1
yk
y
k


(3.47)
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and its associated variance-covariance matrix is given by

Qxk|k =

 Q−1xk|k−1,a
+ ATkQ

−1
yk
Ak ATkQ

−1
yk
Bk

BT
k Q
−1
yk
Ak BT

k Q
−1
yk
Bk


−1

(3.48)

Although only the common parameters have a priori information it can be seen by

the fact that there are off-diagonal elements in Q−1xk|k that the additional information

also has an influence on the epoch parameters. The full expansion of x̂k|k and Q−1xk|k

has not been derived but it does not add to the understanding of the method.

3.6.2 Notes on the semi-recursive Kalman filter

The predicted residual

Recalling Eq. (3.28), the predicted residual is given as

vk = y
k
− Akx̂k|k−1

For the semi-recursive Kalman filter the predicted state vector is constructed in

terms of x̂k|k−1,a, i.e. the common parameters, and can only be expressed in terms

of the partitioned design matrix relating to the common parameters, i.e. Ak. Since

this does not include the epoch parameters vk will not be a realistic estimate of

the predicted residual. As such model errors must be detected using the post-fit

residual. It is shown in §3.7 that the predicted and post-fit residuals are related.

Relationship to the standard Kalman filter

This theoretical derivation may appear complicated, but it can be significantly sim-

plified in practice by constructingQ−1xk|k−1
with common and epoch parameters, where

the latter take on zero values. This means that the design matrix no longer needs

to be partitioned, although parameters should be ordered such that common and

epoch parameters are separated. This in practice makes the estimation procedure

equivalent to the Kalman filter outlined in §3.3 where the process noise for epoch

parameters is said to be infinite.
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Non-linear applications

The method described in this section is of a linear filter. The same method outlined

in §3.4 may be used for the semi-recursive Kalman filter. Recalling Eq. (3.46), the

design matrix is partitioned into

(
Ak Bk

)T
. In this case both Ak and Bk must

be linearised.

3.7 Relating the predicted and post-fit residuals

The least squares residual given by Eq. (3.7) is

ê = y − Ax̂

When this is applied to the least squares model for the filtered state given by Eq.

(3.38),

êk|k =

 x̂k|k−1

y
k

−
 I

Ak

 x̂k|k (3.49)

=

 x̂k|k−1 − x̂k|k

y
k
− Akx̂k|k

 (3.50)

Following on from the work of de Jong (2008b) it follows that Eq. (3.23) can be

expanded as

êk|k =

 −Kk(yk − Akx̂k|k−1)

y
k
− Akx̂k|k

 (3.51)

This shows that the residual vector consists of two parts, namely the residuals related

to the predicted state vector (x̂k|k−1) and the residuals related to the observables

(y
k
).

It is possible to partition êk|k as

êk|k =

 êx̂k|k−1

êyk

 (3.52)
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and substitute Eq. (3.23) into êyk giving

êyk = y
k
− Ak(x̂k|k−1 +Kk(yk − Akx̂k|k−1))

= y
k
− Akx̂k|k−1 − AkKk(yk − Akx̂k|k−1)

= (I − AkKk)(yk − Akx̂k|k−1) (3.53)

With Eq. (3.28) and (3.51),

êk|k =

 −Kk(yk − Akx̂k|k−1)

(I − AkKk)(yk − Akx̂k|k−1)


=

 −Kkvk

(I − AkKk)vk

 (3.54)

It is also possible to derive the relationship between the predicted and post-fit

residuals by considering the least squares method in terms of condition equations

(de Jong et al. 2002), see §3.2.2. The model Eq. (3.14) now reads

(
−Ak I

)
E{

 x̂k|k−1

y
k

} = 0 (3.55)

Using Eq. (3.16) this yields

 êx̂k|k−1

êyk

 =

 −Qxk|k−1
ATk (Qyk + AkQxk|k−1

ATk )−1

Qyk(Qyk + AkQxk|k−1
ATk )−1

 (y
k
− Akx̂k|k−1) (3.56)

where êx and êy are estimators of the corrections to the model. Since,

 x̂k|k

ŷ
k

 =

 x̂k|k−1

y
k

+

 −êx̂k|k−1

−êyk

 (3.57)

and recalling Eq. (3.28) and (3.29),

vk = y
k
− Akx̂k|k−1 ; Qvk = Qyk + AkQxk|k−1

ATk
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it follows that  x̂k|k

ŷ
k

 =

 x̂k|k−1

y
k

+

 Qx̂k|k−1
ATkQ

−1
vk
vk

−QŷkQ
−1
vk
vk

 (3.58)

This leads to the following relationship:

êyk = y
k
− ŷ

k
= QykQ

−1
vk
vk (3.59)

It is therefore possible to obtain the post-fit residuals from the predicted residuals.

Since Qyk is invertible it is also possible to do the reverse and obtain the predicted

residuals the from post-fit residuals, i.e.

vk = QvkQ
−1
yk
eyk (3.60)

3.8 Applying the Kalman filter to Precise Point

Positioning

There exist many PPP implementations which differ in the estimation methods used

and the parameters estimated. Several utilise the extended Kalman filter model as

outlined in §3.3, such as Kjørsvik and Brøste (2009) and Salazar et al. (2010). The

PPP processing software used in this thesis follows the non-linear form of the model

given by de Jong (2008b) outlined in §3.6.
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State vector

The GNSS absolute positioning models for pseudorange and carrier phase observa-

tions are given by Eq. (2.1) - (2.4), which are repeated below for clarity.

psr,i = Rs
r + γiI

s
r,1 + T sr

+ c[δtr − δts]

+ ηr,i − ηsi

+ms
r,i,p + ekr

φsr,i = Rs
r − γiIsr + T sr

+ c[δtr − δts]

+ µ′r,i − µ′
s
i + λiN

s
r

+ms
r,i,φ + εki

with

Rs
r =

√
(Xs −Xr)2 + (Y s − Yr)2 + (Zs − Zr)2

In order to estimate the receiver coordinates a number of the variables can be

eliminated from the equations. As discussed in §2.2.1 it is possible to remove Isr by

eliminating the effect of the ionosphere using an ionosphere-free linear combination

(see §2.2.1). This is the approach taken in many PPP implementations (Kouba and

Héroux 2001). In the PPP processing software used in this thesis the ionosphere

is estimated as a parameter that changes from epoch-to-epoch, which is mathemat-

ically equivalent to the ionosphere free approach (Wells et al. 1987). In the case

where there are more than two frequencies available no choice needs to be made

about the type of ionospheric free linear combination that is to be used.

One of the signature features of PPP is that the precise orbit and satellite clock

values, as outlined in §2.3, are used to constrain the solution and hence provide

known values for (Xs, Y s, Zs) and δts. It is important to remember that these val-

ues are not perfect, even in the case of IGS Final products. It is therefore necessary

to consider residual orbit and clock biases in the estimation model, although the

effect of these can be partly absorbed by another parameter through reparameteri-

sation. The advantage of this is that it reduces the number of parameters that must

be solved, although this could be at the expense of a small bias in the estimated

parameters.

The remaining values are separated into those that can be reliably predicted from
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Table 3.1: Summary of estimated parameters in the state vector

Parameter Type Count
Position Epoch 3 (X, Y, Z)

Receiver clock Epoch 1 per system
Tropospheric delay Common 1
Ionospheric delay Epoch 1 per satellite

Code hardware delays Common 1 per satellite and frequency
Carrier phase hardware delays Common 1 per satellite and frequency

one epoch to the next and those where a new value is estimated at each epoch with

no a priori information, according to the model set out in §3.6. From Eq. (2.1) - (2.4)

the values that can be predicted from one epoch to the next are the tropospheric

delay, ionospheric delay, hardware delays and carrier ambiguities. As mentioned

earlier, the ionospheric delay is estimated on an epoch-by-epoch basis. If the data

is being treated as kinematic then it is not known how the receiver coordinates will

change from one epoch to the next. The receiver clock error is similarly unknown.

As such receiver position, receiver clock bias and ionosphere are treated as values

to be estimated at each epoch with no a priori information.

As the model stands in Eq. (2.1) - (2.4) all parameters are not estimable since the

model is not of full rank. This can be overcome through reparameterisation of the

model. In the case of in the case of PPP navigation it is the receiver position that is

of primary interest, hence parameters that are less important can be combined with

other parameters in order to reduce the number of unknowns in the equation and

remove any singularities. An alternative to this is the selection of a reference satellite

for a given parameter. Using this approach the parameter for the reference satellite is

subtracted from each observation equation. This therefore eliminates the parameter

for the reference satellite, whilst the parameter for each other satellite becomes

relative to the reference satellite. More on reparameterisation through selection of a

reference satellite, sometimes referred to as the ‘S-basis’, can be found in de Jonge

(1998). Using these two approaches it is possible to remove any singularities from

the design matrix, whilst still ensuring that the observation equations still hold

true. These reparameterisations can be unique to each implementation of the PPP

technique.
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Following a reparameterisation the state vector contains the parameters as laid

out in Table 3.1. Since the semi-recursive Kalman filter (see §3.6) is used the state

vector is partitioned into common and epoch parameters, as specified by the second

column of Table 3.1. The ambiguity parameter is contained within the carrier phase

hardware delays and is modelled as a float parameter, since zero-difference biases

are not integer (Blewitt 1989). It is possible to fix biases in PPP using uncalibrated

phase delays generated by a reference network, which form double-difference ambi-

guites and hence allow fixing to integers. A variety of methods of doing this can

be found in Wuebbena et al. (2005), Laurichesse and Mercier (2007) and Ge et al.

(2008). This method is not considered in this thesis.

Dynamic model

From §3.6 it is known that the dynamic model for the semi-recursive Kalman fil-

ter consists of a transition matrix, Φk,k−1, and a variance-covariance matrix of the

process noise, Qwk
, for the common parameters of the state vector. The transition

matrix in the software used in this study is given as

Φk,k−1,a = Ik (3.61)

and hence,

x̂k|k−1,a = x̂k−1|k−1,a (3.62)

Similarly, Qwk,a
is given as

Qwk,a
= diag

(
σ2
wk,a,1

, . . . , σ2
wk,a,n

)
(3.63)

where σ2
wk,a,n

= q ×∆t, with a spectral density of q and time difference ∆t between

epochs. In comparison with specifying the measurement noise, the covariance-matrix

of the process noise is relatively difficult as the process is not directly measurable.

It is often a case of giving enough uncertainty to the parameters to allow enough

room to move. The process of adjusting the spectral densities until the desired

result is achieved is commonly referred to as ‘tuning’. Extensive testing to find the
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optimum process noise values for offshore positioning scenarios was carried out prior

to this study. In some cases self-tuning Kalman filters have been developed where

knowledge about how the parameters change over time is not known (Hu et al.

2003, Mohamed and Schwarz 1999, Yang and Gao 2005).

Measurement model

As outlined in Eq. (3.19) the measurement model at epoch k consists of the vector of

observables, y
k
, its variance-covariance matrix Qyk and the design matrix, Ak. PPP

utilises both pseudorange and carrier phase observations, as discussed in §2.2. Since

the ionosphere is being estimated as a parameter all available frequencies are used.

In the case where L1 and L2 observations are available, the vector of observables

consists of four observations for each satellite, such that

y
k

=

(
p1r,1 φ1

r,1 p1r,2 φ1
r,2 . . . pnr,1 φnr,1 pnr,2 φnr,2

)T
(3.64)

where n is the number of satellites observed. Since the size of the vector of observ-

ables is dependent on the number of satellites observed, it can vary between epochs

as satellites come in and drop out of view of the receiver’s antenna.

The variance-covariance matrix contains the a priori variance of each observable.

The standard deviation of each observable is calculated using

σ(E) = A0 + A1 exp

(
−E
E0

)
(3.65)

where E is the elevation in degrees, {A0, A1} are coefficients measured in metres

and E0 is a coefficient measured in degrees (Xiang Jin and de Jong 1996). For

code measurements A0 ≈ 1.0m and carrier phase measurements A0 ≈ 0.004m. The

coefficients A1 and E0 are receiver and site specific, hence can vary between different

processing scenarios.

It is assumed that different observation types on different frequencies are un-

correlated, i.e. the variance-covariance matrix is diagonal. The assumption is also

made that the errors in the observables are uncorrelated in time. In reality neither
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of these assumptions are strictly true, but these assumptions are commonly made in

GNSS processing software. As correlations between observation types on different

frequencies are receiver dependent (Bona 2000) it is impractical to attempt to model

these covariances in the stochastic model.

As the design matrix is intrinsically linked to the vector of observables the size

of the matrix is dependent on the number of observables and hence, the number of

satellites in view. Similarly the number of parameters that will need to be estimated

will also be dependent on the number of satellites that are in view. Consequently the

overall dimensions of the design matrix are a product of the size of the observable

and state vectors, which are themselves a product of the number of satellites in view,

and therefore are also liable to change from one epoch to the next.

Notes on implementation

Since this thesis is not primarily concerned with the design of PPP processing soft-

ware the implementation aspects of such will not be covered in detail. More informa-

tion on the parameterisation used the structure of the design matrix can be found

in de Jong (2008a). However, a number of implementation aspects of particular

interest will be addressed below.

It has already been discussed in the previous section that the size of the state

vector is dependent on the number of observed satellites. Should a satellite come

into view then it is necessary to extend the state vector for the number of parameters

that this entails. As such, the parameters need to be accounted for in the predicted

state vector, x̂k|k−1, and its associated variance-covariance matrix, Qx̂k|k−1
, during

the prediction step. At the filtering step the vector of observables also contains

the additional observables from the new satellite and hence its variance-covariance

matrix, Qyk , must also be extended to include the additional observables. Finally,

the design matrix, Ak, must also be extended to account for both the additional

parameters in the state vector and the measurements in the vector of observables.

Similarly, should a satellite no longer be in view or an observable removed from the

model then the relevant parameters in the state vector and rows and columns in the
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design matrix and variance-covariance matrices should also be removed.

As mentioned at the beginning of this section, the GNSS measurement model is

non-linear. The design matrix must therefore be linearised, as described in §3.4.

3.9 Summary

The theory of the Kalman filter as a recursive estimator based on prediction and

filtering was introduced at the beginning of this chapter. It is ideal for PPP given

it can be used to provide the best estimate based on all information available whilst

still remaining computationally efficient. The model equations for each step were

presented and the least squares derivations for the steps relevant to real-time process-

ing were given. These derivations can be used to derive the semi-recursive Kalman

filter presented in de Jong (2008b), which separates those parameters that can be

predicted from one epoch to the next from those that must be estimated at each

epoch. The implication of such a system is that the predicted residuals can no longer

be used for hypothesis testing and as such the post-fit residuals must be used. It

was shown that the predicted and post-fit residuals are related and their relation-

ship derived. Although in the case where predicted residuals are available quality

control can be performed before the measurement update, post-fit residuals can also

be used for additional quality control. Finally, the more specific case of a recursive

filter for PPP processing was covered along with some of the implementation issues.
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Chapter 4

Quality control procedures for

GNSS

4.1 Introduction

In Chapter 3 the least squares estimator and Kalman filter were presented as two

methods of estimating a vector of unknown parameters from a set of observables.

Both of these models work providing the stochastic and observation models used

hold true. Should a model misspecification occur then this will lead to an error in

the estimated results. In the case of a recursive estimator, such as a Kalman filter,

should a model misspecification occur at one epoch then this will be carried on to

successive epochs. The residuals produced from the estimation procedure are used

with statistical testing to examine whether a model misspecification has occurred.

A bias in a GNSS observable results in a misspecification in the observation model,

which shall be referred to as a model error. Generally for code observations this is

in the form of an outlier, where the bias occurs at one epoch, and for a carrier phase

observation it is in the form of a slip, where the bias persists for all subsequent

epochs. The source of the model misspecification is found using the residuals and it

is removed. In parallel to this, it is also important to monitor the size of bias that

can be detected and the potential impact it can have on the estimated parameters.

Together these processes form the quality control procedure.

In this chapter hypothesis testing is introduced to investigate the observation
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model against outliers in the code observations and cycle slips in the carrier phase.

The T test statistic (Baarda 1968, Teunissen 1985) is presented as the general test

statistic used for testing for model errors, from which various forms can be derived.

These make up the detection, adaptation and identification (DIA) procedure first

presented by Baarda (1968). Since it has been shown in Chapter 3 that testing using

the Kalman filter can be undertaken using the predicted residual, but testing for

the semi-recursive Kalman filter presented in §3.6 must be done using the post-fit

residual, both the batch and recursive quality control procedures are considered.

The minimal detectable bias (MDB) and the minimal detectable effect (MDE)

are given as measures of reliability for GNSS. These convey the smallest possible er-

ror that can be detected by the test statistics in terms of observables and parameters

respectively. These will also be derived and their relationship to the test statistics

shown.

In this chapter a number of references to probability distributions are made.

A normal distribution with mean µ and variance σ2 is written as N(µ, σ), a non-

central χ2-distribution with d degrees of freedom and a non-centrality parameter of

λ is written as χ2(d, λ) and a non-central F-distribution with degrees of freedom

d1, d2 and non-centrality parameter λ is written as F (d1, d2, λ). In each the level

of significance which is being tested against is given as a subscript, e.g. Fαm−n(m−

n,∞, 0).

4.2 Hypothesis testing

4.2.1 What is hypothesis testing?

A key statistical tool, hypothesis testing is used to identify if a model error has

occurred. This is done by forming a null hypothesis, commonly referred to asH0, and

one or more alternative hypotheses, referred to collectively as HA. These hypotheses

refer to the population as a whole, but in practice testing can only be done on

a sample of the population and as such the process of hypothesis testing is not

infallible. Should an error occur these are divided into Type I and Type II errors,
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which are defined in Table 4.1.

Table 4.1: Types of error in hypothesis testing

H0 true H0 false
H0 accepted No error Type II error
H0 rejected Type I error No error

The probability of a Type I error occurring is defined by the false positive rate,

usually referred to as the level of significance, α. The probability of a Type II error

occurring is defined by the false negative rate, β, or more commonly by the power

of test, defined as γ = 1− β (Teunissen 1998a).

4.2.2 Modelling errors

A model error can be defined more accurately as an error in either the measurement

or stochastic model. Incorrectly modelling the relationship between the observables

and the parameters through the design matrix is an error in the measurement model.

For GNSS observations this can occur because of either an outlier in a code obser-

vation or a cycle slip in a carrier phase measurement. Both of these model errors

are biases, but they differ in character. When a slip occurs the bias that is intro-

duced persists for all of the proceeding epochs. An outlier may occur at one or more

epochs, but the bias by contrast is not maintained. In the case of a single-epoch

outlier the observables may be similar to those before the bias, whereas for a ramp

fault the bias may increase with size over time. Examples of an outlier and bias are

shown diagrammatically in Figure 4.1.
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Figure 4.1: Types of observation model error.
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The stochastic model relates the precision of the observables themselves. In

least squares estimation it is the inverse of the variance-covariance matrix of the

observables, Qy, which is used to weight the observables. For GNSS processing

the precision of the observations is fairly well known. Since PPP uses both code

and carrier phase observations it is important to get the correct ratio of precision

between the two observation types.

The model in Eq. (3.1) can be parameterised in the presence of an unknown

model error as

E{y} = Ax+∇ (4.1)

where ∇ represents the unmodelled error vector. Assuming there are m observables

and n parameters, the error can be parameterised as

∇ = Cy∇y (4.2)

where Cy is a known m × q matrix and ∇y an unknown q × 1 vector. Hence, Eq.

(4.1) becomes

E{y} =

(
A Cy

) x

∇y

 (4.3)

In order for there to be enough observables for the extra parameters, q+ n ≤ m. In

∇y there are q explanatory parameters to account for the model error. The number

q is known as the dimension of the test (Teunissen 1998b). It is also clear that the

matrix Cy must be specified beforehand. This comes from knowledge of the expected

errors, which for GNSS processing may be a bias in a code observation or a cycle

slip in a phase observation. A number of examples for matrix Cy can be found in

Teunissen (1998b).

4.2.3 Testing for model errors

When testing for model errors the null and alternative hypotheses must first be

specified. In this section only the model of observation equations will be considered,

since the model of condition equations cannot be used for parameter estimation.
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Recalling Eq. (3.1) and Eq. (4.3), the null and alternative hypotheses become:

H0 : E{y} = Ax HA : E{y} = Ax+ Cy∇y (4.4)

In order to better understand the concepts in testing for modelling errors it is helpful

to visualise the least squares model as a geometric problem. It is has been shown in

Chapter 3 that ŷ is an estimate of the random variable y using the design matrix A.

Teunissen (2006) shows that the estimate ŷ is an orthogonal projection of y on to

the range space of A, denoted as R(A). This is shown geometrically in Figure 4.2a,

where y is a vector representing the true observables and ŷ is a vector representing

(a) One estimate (ŷ) (b) Three estimates (ŷ0, ŷ1, ŷ3)

Figure 4.2: Geometric representation of least squares problem.

the estimated observables. On this diagram the distance between the true and

the estimated observables is in fact the least squares residual, ê. It is possible to

calculate any number of estimates for the observables, but there is only set of ‘true’

observables, as shown in Figure 4.2, where {ŷ0, ŷ1, ŷ3} are three different estimates

of the observables. However, it can be seen that the distance between the true and

estimated observables is different in each case. The least squares solution arises from

the case where this distance is the smallest.

Using this form of geometrical representation the null and alternative hypotheses

given by Eq. (4.4) are shown in Figure 4.3. In this case ŷA is the orthogonal

projection of y on to the range space of R(A
...Cy) (see Eq. 4.3), of which R(A) is a

linear subspace, as shown by Teunissen (2006). From this it can be seen that the

deviation of the alternative hypothesis from the null hypothesis is not only measured

by (ŷ0− ŷA), but also (‖ê0‖2−‖êA‖2)
1
2 . This is because of the right-angled triangle

that is made up by y, ŷ0 and ŷA.
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Figure 4.3: Geometric representation of least squares problem with null and alter-
native hypotheses.

If there is no model error present in the observables all elements of ∇y will be

zero and H0 will be coincident with HA. In the presence of a model error in the

observables the distance between ŷ0 and ŷA will increase proportionally to the size

of the error. The test statistic that arises therefore determines whether ŷA differs

significantly to ŷ0, rejecting H0 if this is the case.

The T test statistic is given by Teunissen (2006) as

T q = êTQ−1y Cy(C
T
y Q
−1
y QêQ

−1
y Cy)

−1CT
y Q
−1
y ê (4.5)

with the following distribution

H0 : T q ∼ χ2(q, 0)

HA : T q ∼ χ2(q, λ)

(4.6)

where q is the length of the vector ∇y and

λ = ∇TCT
y Q
−1
y QêQ

−1
y Cy∇ (4.7)

is the non-centrality parameter. A comprehensive derivation of the T test statistic

can be found in Teunissen (2006).
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4.3 Batch processing

Although the focus of this thesis is on real-time applications, an explanation of the

development of the T test statistic for batch processing naturally leads on to its

application in recursive processing. Two cases will be considered; the overall model

test and the slippage test.

The development of these two test statistics can be approached from opposing

directions. Baarda (1968) considers p alternative hypotheses, each of which can be

considered analogous to the local slippage test. This is then generalised so that all

alternative hypotheses can be considered simultaneously, which leads to the overall

model test. By contrast, Teunissen (1998b) starts with the general test statistic

given by Eq. (4.5) and derives both the overall model and slippage test accordingly.

4.3.1 Overall model test

Following the derivation by Teunissen (1998b), the dimension q of the test given by

Eq. (4.5) is set equal to the degrees of freedom in the model, which is defined by the

difference between the m observables and n parameters. The null and alternative

hypothesis are in terms of the vector of observables, y, and hence read

H0 : E{e} = 0

HA : E{e} ∈ Rmk

(4.8)

Teunissen (1998b) shows that as q = m − n the matrix

(
A

... Cy

)
is square it

follows that

T q =
eTQ−1y e

m− n
(4.9)

Since the number of alternative hypotheses is infinite these are left unspecified and

only the general case is considered. The test is passed where Tm−n < Fαm−n(m −

n,∞, 0). Note that the F-test is used in this case as the test statistic has been

divided through by (m−n) (Teunissen 1990a). Should the test pass then H0 can be

accepted over all HA. This can said to be the case as the multi-dimensional and one-

dimensional tests are coupled (Baarda 1968, Salzmann 1993). It is however reliant
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on the correct alternative hypothesis for the one-dimensional test being specified.

4.3.2 Slippage test

In the case where the overall model test fails then one of the alternative hypotheses

should be considered over H0. By considering only one alternative hypothesis at a

time the assumption is made that the model error is one-dimensional (Baarda 1968).

In this case the matrix Cy simplifies to a vector, c, and Eq. (4.5) simplifies to

w =
cTQ−1y ê√

cTQ−1y QêQ−1y c
(4.10)

where T q=1 = (w)2. This is often referred to as the w-test. The assumption that

there is only one bias at one given time is known as ‘data-snooping’ (Baarda 1968).

If the model error is considered to be an outlier in only one of the observables

the c vector becomes

c =

(
0 . . . 0 1 0 . . . 0

)T
(4.11)

where 1 coincides with the observable that is being tested. If the error is modelled

by Eq (4.11) and the observables are not correlated, i.e. Qy is diagonal, then the

test statistic for the ith observable is

wi =
êi
σêi

(4.12)

The null hypothesis that observable i is not the source of the model error is accepted

when

|wi| < N1−αmk
/2(0, 1) (4.13)

In practice, the observable where |wi| is the largest and |wi| ≥ N1−αmk
/2(0, 1) is

taken to be the observable containing the model error.

The methodology outlined above only deals with the case of a single bias in the

vector of observables. In the case of more than one bias it is assumed that the largest

bias will be detected. By repeating the process each outlier will be found in turn
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until the overall model test, and by design, the slippage test is passed (Teunissen

1998b). One approach taken has been to extend the existing theory to support

multiple outliers (Hewitson and Wang 2006, Baselga 2011). An alternative method

is to use robust estimation in place of least squares estimation (Wang and Wang

2007, Knight and Wang 2009). This considers biases at the time of adjustment

instead of performing the adjustment and then screening for biases. Therefore, in

the case of multiple outliers all biases are taken into account during the adjustment.

An in-depth discussion of robust estimation can be found in Rousseeuw and Leroy

(1987) and Huber (1981).

4.4 Recursive processing

It has been shown in Chapter 3 that the least squares technique can be extended

such that the state vector is propogated from one epoch to the next. The Kalman

filter was given as an example of this. Teunissen (1990b) presented the extension of

the methodology presented in §4.3 using the vector of predicted residuals, given by

Eq. (3.28), to identify model errors. The advantage of this over the post-fit residuals

is that a model error can be identified before the measurement update takes place.

The test statistic given in Eq. (4.5) can also be derived with respect to the

predicted residuals. It is possible to rearrange Eq. (3.60) to give

Q−1vk vk = Q−1yk êk vTkQ
−1
vk

= êTkQ
−1
yk

(4.14)

and taking the expectation of êk, using Eq. (3.59) and simplifying the notation of

êyk to êk,

E{êk, êTk } = QykQ
−1
vk
E{vk, vTk }Q−1vk Qyk

Qêk = QykQ
−1
vk
QvkQ

−1
vk
Qyk

= QykQ
−1
vk
Qyk (4.15)
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and hence

Q−1vk = Q−1yk QêkQ
−1
yk

(4.16)

Substituting Eq. (4.14) and (4.16) into Eq. (4.5) gives

T q = vTQ−1v C(CTQ−1v C)−1CTQ−1v v (4.17)

As shown in §5.2 one of the conditions of an optimal Kalman filter is that the

predicted residuals are not correlated in time, such that

E{vk, vTl } = 0 (4.18)

where k 6= l. Given this assumption, Qv becomes block diagonal and the test statistic

can now be extended to multiple epochs.

T q,∀i =

[
k∑
i=1

CT
vi
Q−1v vi

]T[ k∑
i=1

CT
vi
Q−1v Cvi

]−1 [ k∑
i=1

CT
vi
Q−1v vi

]
(4.19)

where the summation is performed over k epochs and the subscript ∀i shows this is

for all epochs up to k.

The very nature of recursive estimation means that more information about the

observables is available at each subsequent epoch. It is therefore possible to test

a subset of observables up to and including the epoch in question, referred to as a

global test. Considering all observables up to the current epoch can be considered

the ‘most global’ case. Testing only one epoch in question, which is usually taken

as the current epoch, is referred to as a local test. In some cases a global test is

appropriate in detecting a model error that may grow slowly over time. By contrast,

a local test can determine if a model error has been introduced at the current epoch

and, if necessary, action can be taken immediately.

4.4.1 Local testing

It is important to note that for local testing it is assumed that no model error has

occurred before the epoch that is being tested (Teunissen 1998b), which will be
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referred to as epoch k. If local testing is used at each successive epoch then the

assumption is made that any previous model error will have been detected by local

testing at the epoch at which it occurred and subsequently dealt with so that its

effect is not propagated to future epochs. This is a valid assumption providing that

the statistical testing is operating correctly. If the level of significance and power

of test chosen do not accurately reflect reality then this may not be the case and

model errors may not be detected.

Assuming that statistical testing is operating normally, taking Eq. (4.19) for

just one epoch gives

T q,k = vTkQ
−1
vk
Cvk(CT

vk
Q−1vk Cvk)−1CT

vk
Q−1vk vk (4.20)

The local overall model test utilises the predicted residuals to determine whether

a model error has occurred at epoch k, much in the same way as the overall model

test in §4.3. The null and alternative hypotheses (Teunissen 1998b) read

H0 : E{vk} = 0

HA : E{vk} ∈ Rmk

(4.21)

where mk is the number of observables at epoch k. Since H0 is formulated in terms

of vk the dimension of the test is now set as q = mk. The known error matrix Cvk

is square and regular as the redundancy is equal to the number of observables. The

local overall model test statistic therefore reads

T q,k =
vTkQ

−1
vk
vk

mk

(4.22)

The null hypothesis is accepted when T q,k < Fαmk
(mk,∞, 0). This is almost the

same critical value used for batch processing, except that the number of degrees of

freedom used for the F-test is set to mk.

As in §4.3 when the local overall model test is rejected a number of suitable

alternative hypotheses must be tested in order to identify the source of the model

error, through the known matrix Cvk . Similarly, this also reduces to a vector when
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a one-dimensional test is considered (i.e. q = 1), represented as ck. Since Qvk is

block diagonal for all epochs the local slippage test becomes

tk =
cTkQ

−1
vk
vk√

cTkQ
−1
vk
ck

(4.23)

The null hypothesis is accepted when |tq=1,k| < N1−αmk
/2(0, 1). It can be seen that

this closely resembles the slippage test used for batch processing given by Eq. (4.10).

4.4.2 Global testing

It is the block diagonal nature of Qv that forms the basis of global testing. It can

be seen in Eq. (4.19) that the test statistic can be shown as a summation of tests

over successive epochs. Testing observables for epochs between l and k, the null and

alternative hypotheses become

H0 : E{vl,k} = 0

HA : E{vl,k} = Cvl,k∇
(4.24)

where vl,k =

(
vTl · · · vTk

)T
.

In comparison to the local test, the dimension of the test for the global case is a

summation of all ml,k, i.e. q =
k∑
i=l

mi. Once again as the redundancy is equal to the

number observables, Cvl,k is square and therefore

T q,l,k =

k∑
i=l

vTi Q
−1
vi
vi

k∑
i=l

mi

(4.25)

As seen with the local overall model test statistic, the null hypothesis is accepted

when T q,l,k < Fα(
k∑
i=l

mi,∞, 0). It is clear when comparing Eq. (4.22) and (4.25) that

the latter is the summation over values {l, . . . , k} of the numerator and denominator

of the former. It is also interesting to note that if l = k then the global test reduces

to the local test.

In order to reach the one-dimensional global slippage test the matrix Cvl,k reduces

69



to the vector cl,k. Like the global overall model, based on the assumption that Qv

is block diagonal, the global slippage test becomes

tq=1,l,k =

k∑
i=l

cTi Q
−1
vi
vi√

k∑
i=l

cTi Q
−1
vi
ĉi

(4.26)

Similarly, the null hypothesis is accepted when |tq=1,k,l| < N1− 1
2
α(0, 1).

The advantage of using global testing is that any model error that may remain

undetected by the local tests may become apparent further on with the use of the

global tests. However, this comes at the cost of having to store historic information

on each observable. It is possible to overcome this problem to a certain extent

by recursively computing both the global overall model and global slippage test

statistics, more information on which can be found in Teunissen (1998b).

4.5 DIA procedure

The test statistics given in §4.3 and §4.4 are presented by Teunissen (1990c) as

a quality control procedure that can be readily implemented in GNSS processing

software. It consists of three stages: detection, identification and adaptation. For

this reason it is known as the DIA procedure and can be applied to both batch and

recursive solutions using the appropriate test statistics (Teunissen 1998a).

Detection. The detection stage uses the overall model test to determine whether

a model error has occurred. Eq. (4.9) is chosen if a batch solution is tested. For

a recursive solution either a local or global procedure must be chosen, using Eq.

(4.22) or Eq. (4.25) respectively. This is tested against the F-test using a chosen

level of significance.

Identification. If a model error is detected during the identification stage an

alternative hypothesis corresponding to each observable is formed that the bias is

contained in that observable. This is in accordance with Baarda’s data snooping

principle. The slippage test statistic is then used as a dimensionless measure to see

which alternative hypothesis is considered most likely. The observable that has the
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highest slippage value and exceeds the critical value is considered to contain the

model error. As Baarda (1968) makes the assumption that there is only one bias in

the data the observable with the highest test statistic value is taken and the process

is repeated until no more model errors are said to exist.

Adaptation. As an extension to the test statistics Teunissen (1998a) presents

the adaptation stage to make the quality control procedure complete. One approach

is to repeat the measurement that was in error, but in all types of GNSS processing

this is not possible since the observables can only be measured once. The method

proposed is to attempt to add an additional parameter that estimates the error in

the model. In the case of an outlier in a code observation the bias at the epoch of

the observable is estimated. A cycle slip in a carrier phase measurement results in

a bias that applies to all successive epochs. These two situations are resolved in the

software used in this study by removing the outlying observable for both code and

carrier phase observations. For the latter the assumption is made that this is a cycle

slip and the parameter containing the ambiguity is reset.

The general DIA procedure for batch processing is presented in Fig 4.4 and the

procedure for recursive solutions in Fig 4.5.

4.6 Application in PPP processing

As PPP processing requires a recursive estimator the procedure outlined in §4.4 nat-

urally lends itself to PPP processing. It can be seen that the recursive methodology

is a natural progression of the batch procedure with the main difference being that

the predicted residuals (vk) are used in place of the post-fit residuals (ê).

Cycle slips have a significant influence on the PPP solution and using the proce-

dure outlined in this chapter if such a bias is detected then the parameter must be

reset. This is recognised by Banville and Langley (2009), who propose an instanta-

neous cycle slip correction method. Another approach taken by Jokinen et al. (2012)

is to calculate a separate test statistic for the code and carrier phase observations

in addition to testing all observations at once.

Since the PPP processing software used in this study uses the semi-recursive
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Least squares adjustment

x̂ = (ATQ−1y A)−1ATQ−1y y

ê = y − Ax̂
Qê = Qy − A(ATQ−1y A)AT
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êTQ−1
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Does the test pass?
T q < Fαm−n(m− n,∞, 0)

Yes

No

?

Calculate the slippage test

wi =
êi
σêi

for observations i = 1 . . .m

?

Remove observation i where
arg max
0<i<m

|wi| and wi > N1− 1
2
α

-

�
�
�

�
�Accept solution

Figure 4.4: Quality control procedure for batch processing.
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Prediction
x̂k|k−1 = Φk,k−1x̂k−1|k−1

Qx̂k|k−1
= Φk,k−1Qx̂k−1|k−1

ΦT
k,k−1 +Qwk

?

Calculate predicted residual and
its variance-covariance matrix

v̂k = y
k
− Akx̂k|k−1

Qv̂k = Qyk + AkQxk|k−1
ATk

?

Calculate local overall model test

T q,k =
vTkQ

−1
v vk
mk

?
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H
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Does the test pass?
T q,k < Fαmk

(mk,∞, 0)
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No

?

Calculate the local slippage test

tq=1,k =
cTkQ

−1
vk
v̂k√

cTkQ
−1
vk
ck

for observations i = 1 . . .m

?

Remove observation i where
arg max
0<i<m

|ti| and |tq=1,k,l| > N1− 1
2
α(0, 1)

-

�

Filtering

Kk = Qx̂k|k−1
ATk (Qyk + AkQx̂k|k−1

ATk )−1

x̂k|k = x̂k|k−1 +Kk(yk − Akx̂k|k−1)
Qx̂k|k = (I −KkAk)Qx̂k|k−1

Figure 4.5: Quality control procedure for recursive processing.
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Kalman filter it is not possible to use the predicted residuals for hypothesis testing

(see §3.6). In this case the post-fit residual at epoch k must be used. It has been

shown in §3.7 that there is a linear relationship between êk and vk, therefore it follows

that the batch procedure can be used in recursive applications for local testing as

shown in Appendix B. Note the subscript in the former, denoting the post-fit residual

at epoch k. The main difference is that in using the recursive procedure the quality

control is performed prior to the measurement update vk, whereas using the batch

procedure it is performed afterwards using êk. Since the post-fit residual contains

the additional information that the updated state vector brings then the statistical

test can be seen as stronger. This is the approach that is recommended by Bisnath

and Gao (2008).

4.7 Reliability

Although the tests outlined in §4.3 and §4.4 aim to identify any model error that

occurs, the degree to which they can do this is limited by the accuracy of the tests

themselves. Just as the precision of the estimated parameters must be considered,

so must the reliability of the test statistics.

When quantifying the reliability of a test statistic the statistic can be given in

either observation space or parameter space. The former gives the size of the bias

that can just be detected given a certain power and level of significance and is known

as internal reliability. The effect of this can then be translated to show how the size

of the error impacts on the parameters themselves, which is described as external

reliability. This is especially important for navigation applications as it can give an

indication of the potential size of a model error on the position in addition to the

precision of the position itself.
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4.7.1 Internal reliability

For the batch processing case the alternative hypothesis given in Eq. (4.6) is char-

acterised by a non-central F-distribution, where this non-centrality is defined as

λ = ∇TCTQ−1y QêQ
−1
y C∇ (4.27)

It has already been shown in §4.2 that the probability of a Type II error occurring,

that is the null hypothesis being incorrectly accepted, is defined by the power of the

test, γ. In order to calculate a measure of reliability instead of requiring the prob-

ability of an error of a given magnitude occurring it is the inverse that is required,

namely to determine the size of an error at a given probability.

Since the non-centrality of the F-distribution is a product of the level of sig-

nificance α, the dimension of the test q and the power γ it can be expressed as

λ = λ(α, q, γ) and hence Eq. (4.27) becomes

λ(α, q, γ) = ∇TCTQ−1y QêQ
−1
y C∇ (4.28)

As it is ∇ that is of interest, it is shown in Teunissen (1998a) that when q = 1,

corresponding to the one-dimensional slippage test, then Eq. (4.28) rearranges to

give the minimal detectable bias (MDB),

|∇| =

√
λ(α, q, γ)

cTQ−1y QêQ−1y c
(4.29)

In some texts this is referred to as the marginally detectable error (Cross 1994).

The MDB is a measure of the smallest model misspecification error that the one-

dimensional T test statistic can measure. In much the same way that Eq. (4.10)

can be simplified when using Baarda’s data snooping method, the equivalent MDB

for each alternative hypothesis reduces to

|∇i| = σ2
yi

√
λ(α, q, γ)

σ2
ei

(4.30)
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where σ2
yi

is the a priori variance of the ith observable and σ2
ŷi

is the a posteriori

variance of the ith observable.

For recursive solutions the MDB is calculated with respect to vk and hence is

derived from Eq. (4.17). Taking this into account, the MDB corresponding to the

local slippage test at time k is defined as

|∇k| =

√
λ(α, q, γ)

cTvkQ
−1
vk
cvk

(4.31)

and the MDB corresponding to the global slippage test for the period {l, . . . , k} is

defined as

|∇l,k| =
√√√√√ λ(α, q, γ)

k∑
i=l

cTviQ
−1
vi
cvi

(4.32)

4.7.2 External reliability

As the MDB is a measure of the smallest possible model error in the observables that

the slippage test can detect for practical applications this can have little relevance.

For example, when navigating it is more useful to know what size such an error

would have on your position.

Recalling Eq. (4.2), the effect of ∇ on y is given by

∇ = Cy∇y

Tiberius (1998) describes the effect of this error on x̂ as

∇x̂ = (ATQ−1y A)−1ATQ−1y ∇y (4.33)

As ∇x̂ is a vector and there is such a vector for each alternative hypothesis this can

be difficult to interpret. One alternative is to consider the largest absolute value

of ∇x̂, termed the minimal detectable effect (MDE) by de Jong et al. (2002). The

minimal detectable effect, which is the effect of a bias on the estimated parameters,

should not be confused with the marginally detectable error, which is the estimated

size of the bias in an observable. Since both terms have the same acronym all further
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uses of MDE shall refer to the minimal detectable effect. It is important to note

that the largest MDB may not necessarily result in the largest MDE.

Another alternative is the bias-to-noise ratio (BNR), given by

λx =
√
∇T
x̂Q
−1
x̂ ∇x̂ (4.34)

This scalar is dimensionless and gives a measure of how the biases in the observables

influence the estimated parameters (Teunissen 1998b, de Jong et al. 2002).

4.8 Summary

In this chapter the theory of hypothesis testing was introduced as a method for

identifying model errors when processing GNSS observations. The T test statistic

(Teunissen 1985, Teunissen 1990c, Salzmann 1993, Tiberius 1998, Teunissen 1998b)

was presented as the basis of the statistical testing procedure, which itself was used

to derive the overall model test for testing the set of observables as a whole and the

slippage test for testing individual observables.

Approaches for both batch and recursive processing were presented, although it

is important to note that the recursive procedure is dependent on the condition of

the Kalman filter that predicted residuals at different epochs are not correlated since

the matrix Qv must be block diagonal in order to derive the local overall model and

local slippage test statistics. This assumption is further explored in Chapter 7.

The DIA procedure (Teunissen 1990c, Teunissen 1998b) was shown as a method

of forming the test statistics presented in §4.3 and §4.4 into a formal procedure that

can be easily followed. The detection step is based on the overall model test and the

adaptation stage on the slippage test. The identification step in its simplest form

involves the removal of the observable causing the model error.

Finally, the reliability measures for the test statistic were addressed. This con-

sists of internal reliability, quantified by the MDB, and external reliability, which

transforms the MDB from observation to parameter space yielding the MDE.
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Chapter 5

Time correlation in residuals

5.1 Introduction

It has been shown in Chapter 3 that the underlying assumption of the Kalman

filter is that the predicted residuals from one epoch are not correlated with those

at any other epoch. This extends to the semi-recursive Kalman filter presented in

§3.6. In Chapter 4 it was also demonstrated that the test statistic used for recursive

estimation can only be properly derived when the residuals from one epoch are not

correlated with those at any other epoch. This applies to both the predicted and

post-fit residuals.

This chapter builds on this concept by firstly outlining the concept of filter

optimality in §5.2. This is explained using the linear Kalman filter in terms of

the predicted residual, the preferred method in most literature. The theory can be

extended to the post-fit residuals, and hence to the semi-recursive Kalman filter,

given the linear relationship between vk and ek (see §3.7). It is shown that for an

optimal linear filter the predicted residuals are not correlated with those at any

other epoch, but for a non-optimal linear filter this is no longer the case.

Four high-rate GNSS datasets have been processed using the E-HP/PPP software

and the post-fit residuals are used as a basis of the analysis in §5.3 to determine

whether the filter can said to be optimal. A variety of methods are used to show

that the residuals exhibit varying degrees of time correlation, dependent on the

observation type and the environment in which it is collected.
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A number of approaches that can be taken to eliminate or reduce the time

correlation thereby achieving an optimal filter are discussed in §5.4. One alternative

is to determine the optimum process noise values for the prediction step of the

Kalman filter by choosing the value that results in the minimum correlation. A

second alternative is to estimate and remove the time correlation in the residuals.

5.2 Filter optimality

The Kalman filter was presented in Chapter 3 as a recursive estimator that uses

prediction and filtering to obtain an improved estimate over standard least squares

in dynamic systems. In order to achieve an optimum result using the Kalman filter

the variance-covariance matrices of the process noise, Qwk
, and the measurement

noise, Qyk must be known exactly (Mehra 1970). In practical terms these are usually

only an approximation and often are not known at all. In most cases these matrices

are adjusted or ‘tuned’ until the desired result is achieved. In the case of navigation

the tuning of these matrices may be dependent on where and when the filter is being

used.

It is assumed for a Kalman filter that E{vk, vTl } = 0 where k 6= l. In this

section it will be shown that for an optimal filter this is the case. This derivation

will closely follow that given by Salzmann (1993). Using the same approach it will

then be shown that for a non-optimal filter E{vk, vTl } 6= 0 where k 6= l. In the

following derivations the assumption that the observables are not time correlated

will be held, as this assumption is often made in GNSS processing software, although

this assumption in reality is not the case.

All of the derivations in this section done in terms of the predicted residual, vk,

may also be applied to the post-fit residual because of the relationship between the

predicted and post-fit residuals. Using Eq. (3.59),

E{ek, eTl } = QykQ
−1
vk
E{vk, vTl }Q−1vk Qyk (5.1)

From this it is clear that where E{vk, vTl } = 0 it follows that E{ek, eTl } = 0.
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In the interests of simplifying the notation the transition matrix Φk,k−1 will

henceforth be abbreviated to Φk.

5.2.1 Optimal linear filter

In this subsection a number of underlying assumptions will be made. The first

assumption is that at any given epoch the observables are not correlated with each

other. The second assumption is that the errors in the observables between any given

epochs are not correlated with each other. Whilst these two assumptions are not

entirely true for high-rate GNSS observations, they are often made when designing

GNSS processing software (see §3.8). Thirdly, it is assumed that the observables

are Gaussian. Finally, all derivations in this section are with respect to the linear

Kalman filter.

In the interests of clarity the observables will be represented by Y and the state

vector by X. For the linear Kalman filter Y ≡ y and X ≡ x. Where linearisation

has taken place Y ≡ ∆y and X ≡ ∆x, as modelled by Eq. (3.12). These are

small corrections to the a priori estimates of y and x which arise due to the linear

approximation of the design matrix (see §3.2.1).

An optimal filter displays a number of characteristics. Firstly, the predicted

residuals should have zero mean, such that

E{v} = 0 (5.2)

and should not be correlated in time, such that

E{vk, vTl } = 0 where k 6= l (5.3)

The characteristic of zero mean shows that there is no systematic bias that has been

unaccounted for during estimation and the characteristic of no correlation in time

shows the predicted residual at a given epoch is not influenced by those at any other

epoch.

The above conditions specify an optimum filter, as the noise QYk and Qwk
are
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both known. The predicted residual, given by Eq. (3.28), is

vk = Y k − AkX̂k|k−1

Consider the covariance of vk and vl, where l < k.

E{vk, vTl } = E{Y k − AkX̂k|k−1, Y
T
l − X̂

T

l|l−1A
T
l }

= E{Y k, Y
T
l } − Ak E{X̂k|k−1, Y

T
l } − E{Y k, X̂

T

l|l−1} ATl

+ Ak E{X̂k|k−1, X̂
T

l|l−1} ATl
(5.4)

Following Teunissen (1990a), E{Y k, Y
T
l } = 0, as it is assumed that observables at

epochs k and l are uncorrelated, and E{Y k, X̂
T

l|l−1} = 0, as the state vector at time

l is unaffected by observables at epoch k. Eq. (5.4) therefore simplifies to

E{vk, vTl } = −AkE{X̂k|k−1, Y
T
l }+ AkE{X̂k|k−1, X̂

T

l|l−1}ATl (5.5)

By further defining

QX̂k|k−1Yl
= E{X̂k|k−1, Y

T
l } (5.6)

QX̂k|k−1X̂l|l−1
= E{X̂k|k−1, X̂

T

l|l−1} (5.7)

then Eq. (5.5) can be written as

E{vk, vTl } = −AkQX̂k|k−1Yl
+ AkQX̂k|k−1X̂l|l−1

ATl (5.8)

as shown in Appendix A of Salzmann (1993).

Substituting the equation for the predicted state vector, given by Eq. (3.21),

into the updated state vector, given by Eq. (3.23), means that the predicted state
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vector can now be written as

X̂k|k−1 = ΦkX̂k−1|k−1

= Φk[X̂k−1|k−2 +Kk−1(Y k−1 − Ak−1X̂k−1|k−2)]

= Φk[I −Kk−1Ak−1]X̂k−1|k−2 + ΦkKk−1Y k−1 (5.9)

By then combining epochs l + 1 to k the predicted state vector then reads

X̂k|k−1 =
k−1∏
i=l

Φi+1(I−KiAi)X̂ l|l−1+
k−1∑
j=l

{
k−1∏
i=j+1

[Φi+1(I −KiAi)]

}
Φj+1KjY j (5.10)

From Eq. (5.10) it is possible to find QX̂k|k−1Yl
by taking expectations with respect

to Y l. Since E{X̂k|k−1, Y
T
l } = 0 and E{Y j, Y

T
l } = 0 where j 6= l this gives

QX̂k|k−1Yl
=

k−1∏
i=l+1

[Φi+1(I −KiAi)] Φl+1KlE{Y l, Y
T
l } (5.11)

Similarly, from Eq. (5.10) it is possible to find QX̂k|k−1X̂l|l−1
by taking expectations

with respect to X̂ l|l−1. Since E{Y j, X̂
T

l|l−1} = 0 where j 6= l, as the predicted state

vector cannot be affected by observables after the event, this gives

QX̂k|k−1X̂l|l−1
=

k−1∏
i=l

Φi+1(I −KiAi) E{X̂ l|l−1, X̂
T

l|l−1}

=
k−1∏
i=l+1

[
Φi+1(I −KiAi)

]
Φl+1(I −KlAl) E{X̂ l|l−1, X̂

T

l|l−1} (5.12)

By reformulating Eq. (5.8) as

E{vk, vTl } = −Ak[QX̂k|k−1Yl
−QX̂k|k−1X̂l|l−1

ATl ] (5.13)

it can be seen that for an optimal filter, i.e. one where E{vk, vTl } = 0, differencing
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the terms contained within the square brackets equals zero. By defining

QYl = E{Y l, Y
T
l } (5.14)

QX̂l|l−1
= E{X l|l−1, X

T
l|l−1} (5.15)

and using Eq. (5.12) and Eq. (5.11) the terms inside the square brackets become

QX̂k|k−1Yl
−QX̂k|k−1X̂l|l−1

ATl = KlQYl − Φl+1(I −KlAl)QX̂l|l−1
ATl (5.16)

From Eq. (3.25) it is known that

Kl = QX̂l|l−1
ATl (QYl + AlQX̂l|l−1

ATl )−1

and hence

KlQYl − (I −KlAl)QX̂l|l−1
ATl = 0 (5.17)

showing that E{vk, vTl } = 0 and therefore an optimal filter.

5.2.2 Non-optimal linear Filter

In the case where the filter is non-optimal the covariance matrices QYk and Qwk
are

not known and are approximated as Q∗Yk and Q∗wk
respectively. In this subsection

the work of Salzmann (1993) will be extended to consider the non-optimal case. In

all subsequent derivations subscript ∗ shall denote a non-optimal value and ∼ shall

denote the ‘true’ value as given by the expectation operator. As such the Kalman

gain matrix, given by Eq. (3.25), is also non-optimal and becomes

K∗l = Q∗Xl|l−1
ATl (Q∗Yl + AlQ

∗
Xl|l−1

ATl )−1 (5.18)
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The non-optimal formulations of Eq. (5.11) and (5.12) similarly become

Q∗
X̂k|k−1Yl

=
k−1∏
i=l+1

[Φi+1(I −K∗i Ai)] Φl+1K
∗
l E{Yl, Y T

l } (5.19)

Q∗
X̂k|k−1X̂l|l−1

=
k−1∏
i=l+1

[
Φi+1(I −K∗i Ai)

]
Φl+1(I −K∗l Al) E{X̂∗l|l−1, X̂∗Tl|l−1} (5.20)

Replacing the expectations in Eq. (5.19) and (5.20) with the variance-covariance

matrices given by Eq. (5.6) and (5.7) gives

Q∗
X̂k|k−1Yl

=
k−1∏
i=l+1

[Φi+1(I −K∗i Ai)] Φl+1K
∗
l QYl (5.21)

Q∗
X̂k|k−1X̂l|l−1

=
k−1∏
i=l+1

[
Φi+1(I −K∗i Ai)

]
Φl+1(I −K∗l Al) Q̃∗X̂l|l−1

(5.22)

Eq. (5.8) can now be written in its non-optimal form,

E{v∗k, v∗Tl } = −AkQ∗X̂k|k−1Yl
+ AkQ

∗
X̂k|k−1X̂l|l−1

ATl

= −Ak

[
k−1∏
i=l+1

Φi+1(I −K∗i Ai)

]
Φl+1[K

∗
l QYl − (I −K∗l Al)Q̃∗X̂l|l−1

ATl ]

(5.23)

where Q̃∗Yl|l−1
≡ E{Y l, Y

T
l−1} 6= Q∗Yl|l−1

; that is the true covariance differs from the

value derived from the filter. Since now K∗l Q
∗
Yl
− (I−K∗l Al)QX̂∗

l|l−1
ATl 6= 0 it follows

that E{v∗k, v∗Tl } 6= 0 for a non-optimal filter.

5.3 Measuring correlation

It has been shown in §5.2 that for a non-optimal filter E{v∗k, v∗Tl } 6= 0 when k 6= l.

The PPP software used in this study is known as E-HP/PPP, which is developed

by Fugro Intersite B.V. In this section the various components of the E-HP/PPP

software will be described along with the datasets that were chosen. A number

of statistical methods will then be used to show that the post-fit residuals from

the E-HP/PPP software exhibit time correlation. In the case of the lag plots in
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§5.3.4 the entire time series of residuals is considered, whereas for high rate data the

correlations over smaller time periods are of greater interest and therefore smaller

samples of the time series were considered.

The methodology for determining the most suitable sample size to be used is

given in §5.3.3. This is based on the mean and standard deviation of the lag 0

autocovariance. It is also important to consider that a sufficiently large sample is

required to determine whether the residuals are correlated, but not so long so that

the shorter term correlations are hidden within the data.

5.3.1 Software

The GNSS PPP processing software used in this thesis is developed by Fugro In-

tersite B.V. and known internally as E-HP/PPP. It uses the semi-recursive Kalman

filter given by de Jong (2008b) (see also §3.6) and implemented as outlined in §3.8.

The test statistics used in the software were implemented prior to this study, but use

the equations given in §4.3.1 and §4.3.2. All processing and subsequent development

is based upon a branch of the E-HP/PPP software taken on 30 November 2008. A

subsequent branch from the software was taken on 9 April 2010 with all previous

modifications merged into the new branch.

There are three stages to processing RINEX data using the E-HP/PPP software,

which are given in the proceeding three subsections.

combrine

The combrine software combines a RINEX observation file, which contains the ob-

servations recorded by a GNSS receiver, with the appropriate navigation file, which

contains the ephemerides used for determining the position, velocity, acceleration

and clock information for observed satellites, as well as auxiliary information such

as health and transmission time. This combined file is subsequently referred to as

an ON file.
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rinsp3

The rinsp3 software takes an SP3 file containing precise orbit and clock values and

merges these with the observations and navigation data contained within an ON file.

These are in the form of corrections to the orbit and satellite clocks as specified by

the navigation file. The same underlying library is utilised by the GNSS receivers

used by customers of Fugro Intersite B.V. These receive corrections in real-time to

the broadcast ephemeris over a satellite uplink. The reason for the rinsp3 software

generating corrections relative to the navigation message is in order to maintain

equivalency with this real-time application. This merged file is subsequently referred

to as an ONC file.

ppprin

The ppprin software is a front end to the E-HP/PPP software that can process an

ONC file using the PPP technique. Since this only requires a single station it requires

only one input file. The software is accompanied with an extensive configuration

file that allows a number of parameters to be adjusted, e.g. the processing mode, a

priori variances, spectral densities for common parameters, etc. All data is output

in a human readable form, although for this project the software has been tailored

to output the quality control statistics outlined in Chapter 4 that can subsequently

be analysed automatically by custom scripts written using the Python programming

language.

5.3.2 Datasets

Four datasets were chosen for the study and their locations are shown in Figure

5.1. Three of these were taken from IGS Continuously Operating Reference Station

(CORS) sites with a data interval of one second. This was the highest rate CORS

data that could be obtained and was only available from a subset of the entire

network. Since the data is collected from a static receiver, i.e. one that does not

move, they are referred to as the ‘static’ datasets. The sites that were chosen were

ABPO (located on the island of Madagascar in the Indian Ocean), FALK (located
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on the Falkland Islands in the South Atlantic) and GUAM (located on the island

of Guam in the Pacific Ocean). Their locations were selected such that there would

Figure 5.1: Locations of the ‘static’ sites chosen.

be an equal number of sites above and below the equator, at low (0◦ – 30◦) and

high (30◦ – 60◦) latitudes and approximately equally spaced in longitude. Metadata

examined on the IGS website was also used to ensure sites of high data quality.

For each site 24 hours of data from 25th December 2009 were downloaded from

the IGS website. The final orbits and 5-second interval satellite clocks from the

Center for Orbit Determination in Europe (CODE) for 24th, 25th and 26th Decem-

ber were obtained also from the IGS website. CODE orbits were chosen over the

IGS in order to get the highest possible rate of clock data, as the IGS only provides

clock data with an interval of 30 seconds. It is inconsistent to use orbits and clock

data from different sources, hence the corresponding orbit data from CODE was

also used.

The fourth dataset was collected on 22nd August 2008 at Albemarle Barracks in

Northumberland, United Kingdom. This dataset will use the abbreviation ALBM

throughout this study. The location of the site and the trajectory of the vehicle

is shown in Figure 5.2. A GNSS antenna and receiver was mounted on top of a
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Figure 5.2: Location of the ‘kinematic’ dataset at Albemarle Barracks in Northum-
berland, United Kingdom. The trajectory of the vehicle on which the GNSS antenna
was mounted is shown in red.

Land Rover Defender and data collected whilst the vehicle drove continuously up

and down the entire length of a disused runway at the airfield. Since the receiver is

mounted on a moving platform it is referred to as the ‘kinematic’ dataset.

At the beginning of data collection the vehicle was driven at the slowest speed

that was possible from one end of the runway to the other. The vehicle then turned

around and was driven back again at an increased speed. This was repeated until

the vehicle reached a maximum speed of 80 miles per hour. In addition to this the

vehicle was also driven across the width of the runway, where it did a 180◦ turn and

travelled back again in a trajectory parallel the previous one. This was done at the

end of the runway and repeated to the other end of the runway.

The data period lasts for 6 h 39 m 30 s, is continuous and has a sample rate of

one observation per second. A second receiver was erected alongside the runway and

operated as a static reference station. This started collecting data before the vehicle
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data was collected and continued for a short time afterwards to ensure that the

data from both receivers would overlap. This was done so that a baseline solution

between the reference and moving receiver could be computed and serve as a ‘truth’

solution.

It can be seen from Figure 5.2 that the site is fairly open with the exception of

an area of trees on both sides of the north-east end of the runway and an area of

trees at the south-west end of the runway, although this is only on the south-west

facing side. All other areas of vegetation are far from the runway itself and buildings

located in Albemarle Barracks are low rise.

Information about the four datasets is summarised in Table 5.1. The three CORS

sites are all equipped with Ashtech UZ-12 receivers, whereas the data at Albemarle

Barracks was collected using a Leica GX1230 GG. Similarly, Ashtech 701945-NN

antennae with radomes are used at all three CORS sites used, although they vary in

revision code. The Albemarle Barracks data was collected using a Leica AX1202 GG

antenna with no radome. These differences in hardware used should be considered

during the analysis.

In all cases the observation data were post-processed using E-HP/PPP in kine-

matic mode, hence no constraint was placed on the position parameter. Both L1 and

L2 frequencies were treated as separate observations, instead of a linear combina-

tion being formed, and the ionosphere was included as a parameter in the estimation

process. The post-fit residuals for each satellite and observation type were logged

at each epoch. The analysis done here only includes the observations from GPS

satellites, although the methods used here can be applied to other systems, such as

GLONASS, Galileo and BeiDou.

Figures 5.3 - 5.6 each show an example of a residual time series from the four

datasets. In each case an arbitrary satellite with a timespan of more than 3 hours

has been chosen and each observation type plotted separately. Since there are four

observation types for each satellite (L1 Code, L2 Code, L1 Carrier and L2 Carrier)

they shall be referred to as a satellite and observation type pair.

Before performing any objective analysis of these residual time series it can be
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.3: Time series of residuals for GPS SVN05 at ABPO.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.4: Time series of residuals for GPS SVN05 at FALK.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.5: Time series of residuals for GPS SVN05 at GUAM.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.6: Time series of residuals for GPS SVN17 at ALBM.

92



0 100 200 300 400 5003
2
1
0
1
2
3
4

Figure 5.7: Normally distributed random noise.

seen that they do not characterise white noise. For comparison Figure 5.7 shows

a synthetic sample of normally distributed random noise. It can also be seen that

the residuals for L1 and L2 Carrier appear to be mirrored. A result of estimating a

float ionosphere parameter at each epoch is that the carrier phase residuals on L1

and L2 are scaled such that

êsφ2 ≈ −
(
f2
f1

)2

êsφ1 (5.24)

where êsφi is the post-fit residual of the carrier phase observation on frequency i for

satellite s and f1 and f2 are the frequencies of the L1 and L2 carrier phase. This

scalar is -1.64, hence the mirrored appearance. As a result in many cases the analysis

of carrier phase residuals is done on residuals regardless of frequency in the interests

of brevity.

One further observation is that the residual time series of code observations for

ALBM (see Figure 5.6) is much smoother than those seen at ABPO, FALK and

GUAM (see Figures 5.3 - 5.5). It has already been noted that the ALBM dataset

was collected using a Leica GNSS receiver, whereas the other datasets were collected

using Ashtech receivers (see Table 5.1). The different results for ALBM are likely

due to carrier-aided smoothing (see §2.2.8) of the code measurement by the Leica

receiver.

5.3.3 Determining sample size

The methods that will be presented in §5.3.6 and §5.3.7 require a sufficiently large

sample size of residuals in order to calculate an accurate estimate of the autocovari-

ance and cross-covariance, and by definition autocorrelation and cross-correlation.
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However, where the sample size is too large shorter term correlations may remain

hidden.

The estimate of the covariance for a stochastic process x(k), as shown later by

Eq. 5.30 in §5.3.6, is

R̂(s) =
1

N

N−s∑
t=1

(xk − x̄)(xk−s − x̄)

where s is the lag time, N is the sample size and x̄ is the mean of the stochastic

process. It is therefore intuitive that as the sample size increases both the estimate

of the mean and the autocovariance itself will improve. Similarly, the difference

between each successive estimate of the autocovariance will become increasingly

smaller. Therefore, by increasing the sample size sequentially it should be possible

to determine the optimum value by finding the point at which the difference in size

becomes negligible.

This was implemented by using a moving window to calculate the lag 0 autoco-

variance of all combinations of satellite, frequency and observation type over time.

This process was repeated for sample sizes between 5 and 900 seconds in steps of 5

seconds. For each sample size the mean and standard deviation of the time series

of lag 0 autocovariance values was recorded.

Figure 5.8 shows how the mean of the lag 0 autocovariance values for satellite

G09 of the ALBM dataset varies with sample size. It can be seen that the mean does
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Figure 5.8: Mean of the lag 0 autocovariance for satellite G09 of the ALBM dataset
with increasing sample size.

not change greatly after 240 seconds, as shown by the grey dashed line. Similarly,

the change in standard deviation for the same lag 0 autocovariance values against
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the change in sample size is shown in Figure 5.9b. Since the standard deviation
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Figure 5.9: Standard deviation of the lag 0 autocovariance for satellite G09 of the
ALBM dataset with increasing sample size.

will always decrease as more samples are added it is of interest to see the point at

which the rate of change slows to a steady value. This can be done by taking a first

difference of the standard deviation, as shown in Figure 5.9b. It can be seen that as

the sample size increases the rate of change converges to a steady value at around

240 seconds, one again indicated by the grey dashed line.

It can be seen from Figures 5.8 and 5.9 that a sample size of 240 seconds is

suitable for the analysis of the residuals. It is also important to consider the impact

of the sample size on the user requirements outlined in §2.6. The value of 240

seconds does not significantly impact on the required availability and continuity set

out in IMO (2001). Therefore the value of 240 seconds was chosen and will also be

used in the estimation of autoregression parameters in Chapters 6 and 7.

5.3.4 Lag plots

A simple method of testing whether a time series is exhibiting whiteness is to produce

a lag plot. This is a simple scatter plot where the values from the time series at two

different lag points are plotted on opposing axes (Ryan 2007, Stockwell 2007). If

the time series is random then the scatter plot will resemble a circular or elliptical

cloud, as shown in Figure 5.10a. If the time series is autocorrelated, that is values

at one epoch are in some way affected by another (see also Chapter 6) then the

values will be diagonal. The pattern shown in Figure 5.10b is indicative of weak
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Figure 5.10: Examples of lag plots for different noise types with the corresponding
time series shown below.

autocorrelation, whereas the much tighter diagonal form seen in Figure 5.10c shows

strong autocorrelation. Finally, if the values are periodic then the pattern will

appear circular, as shown in Figure 5.10d.

A time series of residuals was created for each satellite and observation type

where data was continuous, i.e. there were no data gaps greater than the sample

interval (1 second). From each time series a scatter plot was created with data at a

lag of 0 seconds plotted against a lag of 1 second, represented by the values in bold
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below,

k : e1 e2 e3 · · · eN−1 eN

k − 1 : e1 e2 · · · eN−2 eN−1 eN

where N is the length of the time series that is being analysed. In accordance with

the literature, the term lag 0, lag 1, etc. will be used to refer to a lag of zero epochs,

a lag of one epoch, etc., where an epoch is equal to the sample interval of 1 second.

Figures 5.11 - 5.14 show lag plots for the four observation types for a chosen

satellite from the ABPO, FALK, GUAM and ALBM datasets respectively. The

plots shown are considered representative of the lag plots for each dataset.

The lag plots of the code residuals of ABPO and GUAM (Figures 5.11a, 5.11b,

5.13a and 5.13b) resemble the random elliptical pattern of Figure 5.10a. The lag

plots for the code residuals of FALK have a much larger ellipse that suggest that

the dataset could be made up of a mixture of random and weakly correlated values.

These contrast greatly to the lag plots for the code residuals of the ALBM dataset

(Figures 5.14a and 5.14b), which have a very defined diagonal shape very similar to

Figure 5.10c that suggests the residuals are strongly correlated. In all datasets the

carrier phase residuals appear to show evidence of strong correlation. The elliptical

diagonal seen in the carrier phase residuals of ABPO (Figures 5.11c and 5.11d)

appears to be particularly elongated and hence indicative of strong correlation. The

ALBM dataset appears to be the only one that shows strong correlation for all

observation types. This reason for this is likely due to the probable carrier-aided

smoothing of the code observations by the Leica receiver, which in turn affects the

code residuals.

Although a general indicator of correlation, lag plots provide a useful method

of quickly determining if any time correlation exists in a time series. Since the

expectation is that the residuals should be random then any pattern other than the

one seen in Figure 5.10a should be cause for further investigation. It is clear that

the carrier phase residuals are strongly time correlated, as are the code observations

in the kinematic dataset. A quantitative analysis of the correlation is performed in
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.11: Lag plot for GPS SVN05 at ABPO.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.12: Lag plot for GPS SVN05 at FALK.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.13: Lag plot for GPS SVN05 at GUAM.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.14: Lag plot for GPS SVN17 at ALBM.
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the following section.

5.3.5 Durbin-Watson statistic

Durbin and Watson (1950) present a test criterion for determining whether the

residuals from a least squares estimate are serially correlated. It is assumed that the

error is distributed independently of the least squares parameters being estimated

and that this error has zero mean and variance. The criterion is built upon the

underlying assumption in least squares theory that the successive error terms in the

regression model are distributed independently of each other. If this is not the case

then the regression coefficients no longer have least variance and may lead to an

underestimate of the variance of the estimate, as the usual formula for variance no

longer applies.

Positive serial correlation is defined by Dougherty (2011) as a previous observable

influencing the next one, i.e. vk−1 affects the value of vk. This shows a tendency for

a system to remain in the same state from one epoch to the next. The definition

given for negative serial correlation is a previous observable being influenced by the

current one, i.e. vk effects the value of vk−1. Since this definition comes from the

field of econometrics it is difficult to transfer its definition when applied to physical

processes. In the context of econometrics the first difference of observables are often

used instead of the observables themselves and testing for negative serial correlation

can ensure that the observables have not been overcorrected (Durbin and Watson

1951). As it will be seen in Chapter 6, this can be applied to physical processes that

have been artificially altered, as is the case with whitening.

For the least squares model given by Eq. (3.1) the test statistic against positive

serial correlation given in Durbin and Watson (1950) reads

d =

N∑
i=2

(êi − êi−1)2

N∑
i=1

ê2i

(5.25)

where ê is the vector of residuals, given by Eq. (3.7), and N is the size of the sample
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of residuals used in the test.

It is not possible to calculate a single critical value that determines whether the

null hypothesis that no positive serial correlation exists can be accepted. Instead

a lower and upper bound are calculated, referred to as dL and dU respectively. If

d < dL then residuals are said to exhibit positive serial correlation and if d > dU

then they exhibit no serial correlation. For values where dL < d < dU the test is

deemed to be inconclusive. The values for dL and dU are tabulated for given given

levels of significance in Durbin and Watson (1951) as a function of the sample size

and the number of estimable parameters. As this is a one-tailed test, in order to

test against negative serial correlation d is subtracted from 4 and then treated in

the same manner as the test against positive serial correlation. This can be done as

0 < d < 4, where d = 2 indicates no serial correlation in the residuals. Conversely,

the critical values for testing against negative correlation can be calculated using

d−L = 4− d+U d−U = 4− d+L (5.26)

where d+L , d+U and d−L , d−U are the lower and upper bounds for testing against positive

and negative correlation respectively.

The tables published in Durbin and Watson (1951) are restricted to a sample of

100 observables. The number of observables that could be calculated was restricted

given the computational limitations at the time. Tables with sample sizes up to 200

were later published by Savin and White (1977). In the PPP estimation procedure

the number of parameters that are estimated at each epoch is dependent on the

number of satellites and as a consequence the total number estimable parameters

in most cases exceeds 20, the maximum number seen in Savin and White (1977).

The chosen sample size of 240 also exceeds the maximum number of sample sizes

tabulated. An algorithm by Farebrother (1980) allows for the computation of critical

values for larger sample sizes and a greater number of regressors. Critical values

calculated using this algorithm are published by Cummins (2012) and used as the

source of the chosen critical values; dL = 1.61128 and dU = 1.97055. This is based

on a sample size of 240 and 21 estimable parameters with a significance level of 5%.
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The standard d test was used to determine whether to accept the null hypoth-

esis that there is no positive or negative serial correlation in the post-fit residuals

from the least squares estimate performed at the measurement update of the semi-

recursive Kalman filter. A time series of residuals was created for each satellite

and observation type and the Durbin-Watson test statistic calculated for a mov-

ing window of 240 seconds. Since continuous data is required, any window of data

that contained a time gap greater than the sample frequency (1 second) was not

used. A histogram of these values was then created to indicate the spread of val-

ues. Figures 5.15 - 5.18 each show a histogram of the Durbin-Watson values for

a representative satellite in the four datasets. The critical values are not shown,

since the histograms are intended to be indicative of the general trend. The general

distribution of the Durbin-Watson values with respect to the critical values is shown

in Table 5.2. Values where d < d+L indicate positive serial correlation, d+U ≤ d ≤ d−L

indicate no serial correlation and d > d−U indicate negative serial correlation. Values

where d+L ≤ d ≤ d+U and d−L ≤ d ≤ d−U lie in the regions of inconclusivity.

Table 5.2: Distribution of Durbin-Watson values of residuals from all datasets with
respect to the critical values.

Dataset Observation type d < d+L d+L ≤ d ≤ d+U d+U < d < d−L d−L ≤ d ≤ d−U d > d−U
ABPO L1 Code 80.55% 16.47% 1.22% 1.71% 0.04%

L2 Code 74.19% 20.56% 1.92% 3.30% 0.03%
L1 & L2 Carrier 100.00% 0.00% 0.00% 0.00% 0.00%

FALK L1 Code 83.89% 13.50% 1.03% 1.58% 0.00%
L2 Code 83.22% 13.51% 1.18% 2.08% 0.01%

L1 & L2 Carrier 99.91% 0.09% 0.00% 0.00% 0.00%
GUAM L1 Code 77.20% 19.26% 1.38% 2.15% 0.01%

L2 Code 71.61% 22.92% 2.00% 3.46% 0.02%
L1 & L2 Carrier 100.00% 0.00% 0.00% 0.00% 0.00%

ALBM L1 Code 100.00% 0.00% 0.00% 0.00% 0.00%
L2 Code 100.00% 0.00% 0.00% 0.00% 0.00%

L1 & L2 Carrier 100.00% 0.00% 0.00% 0.00% 0.00%

From Figures 5.15 - 5.17 it appears that the L1 and L2 code observations are

distributed around d = 1.4. It can be seen by examining Table 5.2 that for these

datasets the majority of values are below d+L , and hence suggest that the alterna-

tive hypothesis that the residuals show positive serial correlation must be accepted.

Virtually no values for the ALBM dataset and very few in the ‘static’ datasets lie in

the region indicating negative correlation. However, for the static datasets between
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Figure 5.15: Histogram of Durbin-Watson values for ABPO.
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Figure 5.16: Histogram of Durbin-Watson values for FALK.
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Figure 5.17: Histogram of Durbin-Watson values for GUAM.
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Figure 5.18: Histogram of Durbin-Watson values for ALBM.
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15% and 26% of values for the code observations lie in the regions of inconclusiv-

ity. Despite this, there is a greater proportion of residuals that show positive serial

correlation than those that either show no serial correlation or lie in the region of

inconclusivity.

The carrier phase residuals for the static datasets show a greater proportion of

values that are below d+L when compared to the values for the code residuals. Not

many values lie in the region of inconclusivity, although a reasonably large proportion

accept the null hypothesis that the residuals are random. GUAM shows the highest

proportion of values (22.92%) that can be said to be random. Despite this, the

proportion of values that exhibit serial correlation (71.61%) is still far greater.

The values for the kinematic ALBM dataset in Table 5.2 along with Figure

5.18 contrast greatly with the three static datasets. Virtually none of the residuals

exceed d+U and very few are in the region of inconclusivity. By contrast, the code

residuals appear to be more correlated than the carrier phase. This can be seen in

the histogram, where the overwhelming majority of the code values are concentrated

in the first column. The carrier phase values are distributed between 0.0 and 1.0,

although skewed towards 0. As with the ‘static’ datasets, although to a lesser extent,

there is a small peak at 2.0 in the histogram for the ALBM carrier phase values.

It can therefore be concluded that both the code and carrier phase residuals on

L1 and L2 frequencies exhibit positive serial correlation. For the static datasets the

extent of time correlation is greater for the carrier phase residuals than for the code

residuals, whereas for the kinematic dataset the time correlation is very high for the

code observations.

5.3.6 Autocovariance and autocorrelation functions

Although the Durbin-Watson test statistic presented in §5.3.5 gives a good indication

of the level of correlation in a time series, it is only calculated for lag 1. For a process

x(k) the autocorrelation function is a dimensionless measure of correlation between

xk and xk−s as the lag time s increases (Priestley 1981).
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The autocovariance of xk and xk−s is defined as

R(s) = E{xk − E{x}, xk−s − E{x}} (5.27)

and the autocorrelation function is then given by

ρ(s) =
R(s)

R(0)
(5.28)

As s increases then the correlation between xk and xk−s is expected to decrease,

hence ρ(s) → 0 as s → ∞, although this may not be the case if the process is

periodic (see Figure 5.19d). For all autocovariance functions the following properties

apply (Box and Jenkins 1976, Priestley 1981):

1. R(0) = σ2
x, the variance of the process x(k), remains the same throughout,

i.e. it is a stationary process (see §6.2).

2. |R(s)| ≤ R(0) for all s.

3. R(−s) = R(s) for all s when x(k) is a real valued process.

Similarly, for all autocorrelation functions the following properties apply:

1. ρ(0) = 1, since R(0)
R(0)

= 1.

2. |ρ(s)| ≤ 1 for all s.

3. ρ(−s) = ρ(s) for all s when x(k) is a real valued process.

In practice, the best estimate of the sth lag of autocorrelation ρ(s) is calculated

by

ρ̂(s) =
R̂(s)

R̂(0)
(5.29)

where

R̂(s) =
1

N

N−s∑
t=1

(xk − x̄)(xk−s − x̄) (5.30)

is the estimate of autocovariance R(s) and x̄ is the mean of the time series (Box and

Jenkins 1976).
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Figure 5.19: Examples of autocorrelation plots for different noise types.

Figure 5.19 shows autocorrelation plots for the four time series given in Figure

5.10. Since for all lags (Box and Jenkins 1976)

var{ρ(s)} ≈ 1

N
(5.31)

the 95% confidence levels, c, are calculated as

c = ±
z1−α/2√
N

(5.32)

where z is the percent point function of the standard normal distribution, α is the

chosen level of significance and N is the sample size. In this case α = 0.05, N = 240

and z0.975 = 1.96. For each plot the 95% confidence levels are shown as dotted lines.

Any values contained within these bounds are said to exhibit no autocorrelation

with a confidence level of 95%.

It can be seen in Figure 5.19a that there is no discernible pattern in the auto-

correlation graphs. This dataset consists of normally distributed random numbers,
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where µ = 0 and σ = 1. Figures 5.19b and 5.19c are both examples of positive

autocorrelation, the latter showing a more pronounced autocorrelation. In the case

of a periodic pattern occurring in residuals a sequence such as Figure 5.19d will

occur. This represents a signal that is repeating at a fixed frequency. The lag plots

in Figure 5.19 use the same data that was used to create Figure 5.10.

A time series of residuals was generated from the data for each satellite and ob-

servation type where data was continuous, i.e. there were no data gaps greater than

the sample interval (1 second). Each time series was divided into 240 second blocks

and the autocorrelations for lags {1, . . . , 120} were calculated. The mean autocorre-

lation for each lag was calculated and these values used for the autocorrelation plot.

This approach was chosen to best portray the autocorrelations over a short period

of time instead of the whole satellite pass.

Figures 5.20 - 5.23 show the autocorrelation graphs for the ABPO, FALK, GUAM

and ALBM datasets. In each case a satellite has been chosen that is indicative of

the type of correlation seen at the site in question. The autocorrelation graphs for

all four observation types are shown.

In general the autocorrelation graphs for the ALBM dataset show more correla-

tion than those for ABPO, FALK and GUAM. For the latter three sites it is common

in all cases that the autocorrelations are higher and for longer lags for the carrier

phase residuals than for the code residuals. It is also noticeable that for the code

residuals there is a sharp drop in the autocorrelation at lag 1, whereas for the phase

residuals the decrease is more gradual.

The autocorrelation plots for both the code and carrier residuals of the ALBM

dataset are much different in character. In this case the code residuals show much

more correlation, with a gently decreasing curve. It is particularly interesting to note

that for the ALBM dataset the code observations appear to show more correlation

than the carrier phase observations, but for the three static sites the opposite is seen.

As noted previously this can be explained by the probable carrier-aided smoothing

of the code observations by the Leica receiver. By comparison the carrier phase

residuals drop more rapidly and have a more changeable pattern. This can be
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Figure 5.20: Autocorrelation plot for GPS SVN05 at ABPO.
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Figure 5.21: Autocorrelation plot for GPS SVN05 at FALK.
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Figure 5.22: Autocorrelation plot for GPS SVN05 at GUAM.
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Figure 5.23: Autocorrelation plot for GPS SVN17 at ALBM.
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attributed to the motion of the antenna.

The autocorrelation plots point to high correlations at shorter lag times which de-

cay as lag time increases. Confirming what was seen in the lag plots and the Durbin-

Watson values, the autocorrelations of the code residuals for the static datasets tail

off much quicker than those for the carrier phase. The opposite is seen for the kine-

matic dataset, where the code observations appear to be much more correlated than

the carrier phase ones.

Autocorrelations can only measure the correlation for the residuals of one satellite

and observation type pair and does not give any indication of how it is correlated

with any other lagged residual. This is addressed in the following section.

5.3.7 Cross-covariance and cross-correlation functions

In §5.3.6 the autocovariance function was presented, but only considered as a func-

tion of a residual time series for one satellite and observation type. By considering

the entire vector of residuals at one epoch with the same vector of residuals at a

lag epoch it is possible to determine not only the relationship between the residual

for one satellite and observation type pair between two epochs, but the relationship

between the residuals of two different satellite and observation type pairs at two

different epochs.

Given two time series x1(k) and x2(k) the cross-covariance between the two at

epochs k and k − s, where s is the lag time, is given by Priestley (1981) as

R1,2(s) = E{x1,k − E{x1}, x2,k−s − E{x2}} (5.33)

It can be seen that this closely resembles the equation for autocovariance, given by

Eq. (5.27). In practical terms the cross-covariance is calculated using

R1,2(s) =
1

N

N−s∑
k=1

(x1,k − x̄1)(x2,k−s − x̄2) (5.34)

where N is sample size. This can be extended to the case where there are i time

series, x1(k), . . . , xi(k). The cross-covariance matrix of lag s for i time series is
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defined as

R1,...,i(s) =



R1,1(s) R1,2(s) . . . R1,i(s)

R2,1(s) R2,2(s) . . . R2,i(s)

...
...

. . .
...

Ri,1(s) Ri,2(s) . . . Ri,i(s)


(5.35)

For the two time series x1(k) and x2(k) the cross-correlation function is given by

ρ1,2(s) =
R1,2(s)√

R1,1(0)R2,2(0)
(5.36)

and the cross-correlation matrix is similarly given by

ρ1,...,i(s) =



ρ1,1(s) ρ1,2(s) . . . ρ1,i(s)

ρ2,1(s) ρ2,2(s) . . . ρ2,i(s)

...
...

. . .
...

ρi,1(s) ρi,2(s) . . . ρi,i(s)


(5.37)

When calculating the cross-correlation of the least squares residuals each satellite

and observation type pair is considered to be made up of a time series of 240 values.

In the case of GNSS processing the length of the vector ê is liable to change as

satellites come in and out of view. If an observable has been rejected at a previous

epoch then this could also alter the vector ê. Therefore Eq. (5.34) is calculated

using all common satellite and observation type pairs.

Since the kinematic ALBM dataset shows a greater degree of correlation than

the static datasets it is of particular interest to see if this correlation extends into

the cross-correlations. For each cross-covariance matrix a reference epoch must be

chosen. To minimise the computational burden the end of the processing time is

chosen as the reference epoch, since this is the point at which the filter will have

sufficiently converged and be utilising the greatest amount of data.

For the reference epoch a vector of residuals was formed and a vector of residuals

for the lagged epoch was also formed. This was done for the previous 240 epochs,

referred to as the sample size. In the event that a satellite and observation type pair

did not exist for all epochs then it was discarded from the calculation.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.24: Lag 1 cross-correlation plot for ALBM dataset.

The cross-correlation plot at lag 1 is shown in Figure 5.24. It can be seen along

the leading diagonal of the matrix that the autocorrelations correspond with the

high autocorrelation values seen in §5.3.6. It is also of note that the off-diagonal

values where there is a satellite are also very high. The difference in magnitude of

the cross-correlations for the code residuals compared to the carrier phase residuals

supports what has already been seen for the Durbin-Watson values and the auto-

correlation plots. In some cases the cross-correlation between satellites is higher

for some satellite and observation type pairs compared to others. Since the obser-

vation types have been separated it is not possible from these figures to see the

cross-correlation between different observation types.

A numerical summary of values in Figures 5.24 - 5.28 is shown in Table 5.3. It

is clear from the minima and maxima that there is a very high degree of correlation

present in the residuals even at a lag time of 30 seconds. The mean values are

non-zero, but close to zero, which is to be expected as the cross-correlation matrices

are not symmetrical for lags greater than zero. The standard error is provided as
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.25: Lag 5 cross-correlation plot for ALBM dataset.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.26: Lag 10 cross-correlation plot for ALBM dataset.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.27: Lag 15 cross-correlation plot for ALBM dataset.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 5.28: Lag 30 cross-correlation plot for ALBM dataset.
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Table 5.3: Minimum, maximum, mean, standard error and standard deviation of
cross-correlation values for all satellites and observation types for ALBM dataset at
lags 1, 5, 10, 15 and 30.

Lag Observation type Min Max Mean St. err. St. dev.
1 L1 Code -0.9024 1.0000 0.0073 0.0201 0.6416

L2 Code -0.5898 0.9914 0.0229 0.0157 0.5008
L1 & L2 Carrier -0.9194 0.9494 0.0084 0.0159 0.5098
All observations -0.9494 1.0000 0.0021 0.0036 0.4647

5 L1 Code -0.9133 1.0000 0.0064 0.0196 0.6268
L2 Code -0.6491 0.9501 0.0200 0.0147 0.4695

L1 & L2 Carrier -0.8696 0.8670 0.0022 0.0134 0.4292
All observations -0.9133 1.0000 0.0018 0.0034 0.4340

10 L1 Code -0.9352 0.9994 0.0055 0.0191 0.6097
L2 Code -0.7190 0.8824 0.0175 0.0136 0.4348

L1 & L2 Carrier -0.8130 0.8086 0.0022 0.0121 0.3880
All observations -0.9352 0.9994 0.0016 0.0032 0.4138

15 L1 Code -0.9358 0.9613 0.0044 0.0187 0.5979
L2 Code -0.7406 0.7899 0.0146 0.0127 0.4065

L1 & L2 Carrier -0.7614 0.7526 0.0012 0.0113 0.3622
All observations -0.9358 0.9613 0.0012 0.0031 0.3994

30 L1 Code -0.8945 0.9593 0.0018 0.0178 0.5700
L2 Code -0.7634 0.6551 0.0086 0.0117 0.3737

L1 & L2 Carrier -0.6568 0.6853 0.0008 0.0097 0.3100
All observations -0.8945 0.9593 0.0003 0.0029 0.3761

a quality measure for the mean, showing the error margin to be relatively small.

The standard deviations show that the spread of values is quite large, although this

appears greater for the L1 code values compared to the L2 code and L1 & L2 carrier

phase values. In some cases a maximum value of 1.000 is given. This is an artefact

of numerical rounding and these values are likely to be very close, but not equal, to

unity.

It is expected that as the lag time increases the cross-correlation between satellite

and observation type pairs should decrease. Figures 5.25 - 5.28 show the cross-

correlation plots at lags 5, 10, 15 and 30 respectively. It can be seen that the cross-

correlation of carrier phase residuals is at a much lower level by lag 30. However,

this is not the case for the code observations. This appears to be particularly the

case for the L1 Code residuals.

The cross-correlation plots show that not only are the post-fit residuals correlated

with themselves, but there is a high degree of correlation between the residuals of

one satellite and observation type pair and a different one at a lagged epoch. This
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degree of correlation is hence contrary to the condition that E{ek, eTl } = 0 for k 6= l

that is required by the Kalman filter and the test statistic described in Chapter 4.

5.3.8 Discussion

In this section the different methods of measuring correlation have been in broad

agreement with each other. All datasets showed evidence of time correlation, al-

though some sites were more correlated than others. In general, more time correla-

tion is seen in the residuals from the ‘kinematic’ ALBM dataset than the three ‘static’

sites (ABPO, FALK and GUAM). However, whereas the carrier phase residuals are

more correlated than the code residuals for the ‘static’ datasets, the opposite is true

for the ‘kinematic’ dataset. There is insufficient data to determine whether in gen-

eral terms the correlations are greater for kinematic data than for static data. This

could be the case, since in a kinematic environment the environment is continually

changing.

One main distinction between the ‘static’ and ‘kinematic’ datasets is that the

former were all collected using Ashtech receivers (see Table 5.1), whereas the ALBM

dataset was collected using a Leica receiver. It is very likely that the difference in

results seen is related to the different equipment used. It is likely that the Leica re-

ceiver utilises carrier-aided smoothing of the code observations, which would explain

the greater degree of time correlation seen for ‘kinematic’ dataset. Time correlation

seen in the carrier phase residuals at all sites may be attributable to hardware, such

as tracking loop errors. Hence the use of the same receiver model will be important.

Bona (2000) has shown that correlations between observation types are receiver de-

pendent. In addition, the ‘static’ sites use variations on the same antenna model,

whereas the ‘kinematic’ dataset uses an antenna by a completely different manu-

facturer. These two factors combined will mean that similar behaviour should be

expected from the ‘static’ sites.

Examining the environment around the antennas, a further contributing factor is

that for the ‘kinematic’ dataset the antenna is mounted on the top of the metal roof

of a vehicle. This has an increased chance of multipath. By comparison the three
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‘static’ sites are IGS reference sites, where measures will be taken to minimise the

effects of multipath. As mentioned in §2.2.5 multipath can be significant contributor

to time correlation.

Additionally, the same precise orbits and satellite clocks were used to process the

three ‘static’ sites. Any time correlations that may occur in the orbits and clocks

will be applied to all three sites at the same time, provided the satellites are tracked

simultaneously. Although the ALBM dataset uses precise orbits and satellite clocks

from a different day the source is the same.

5.4 Methods for dealing with correlation

It is clear from §5.3 that the post-fit residuals from the PPP software are time

correlated, although to differing extents. In the case of the static datasets the code

observations appear to be much less correlated than those in the kinematic dataset.

In all datasets the carrier phase observations appear to be correlated, although to a

greater extent in the kinematic dataset.

It can therefore be said that the recursive estimator is non-optimal, since it is

a condition of the Kalman filter that E{vk, vTl } = 0 for k 6= l and similarly for the

semi-recursive Kalman filter that E{êk, êTl } = 0 for k 6= l. It was shown in Chapter 4

that the recursive quality control procedures are also derived on the assumption that

E{vk, vTl } = 0 for k 6= l. It can therefore be deduced that not only is the filter non-

optimal, but the quality control procedures being used can no longer be assumed to

be valid.

At first glance the obvious approach would be to re-examine the observational

model to ensure that the parameters being estimated are modelling the physical

properties correctly. In the case where a time dependent parameter is not being

estimated then this could be reflected in the residuals. However, it has been seen

in §3.8 that a reparameterisation is required in GNSS PPP processing as there are

already too many parameters in relation to the number of observables. It is therefore

simply impractical to extend the number of estimated parameters further.

It should also be noted that the precise orbits and clocks are themselves stochastic
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and, as mentioned in §7.5, small residual orbit and clock biases will result. Although

the effect of orbit and clock corrections will be different for each satellite, they will

be the same for all observation types of a given satellite. Any time correlations in

the orbit and clock corrections will therefore manifest themselves in the residuals

for observations from the same satellite.

Mehra (1970) shows that the correlation in the residuals can be caused by in-

correctly specifying the a priori variance-covariance matrix of the observables and

the variance-covariance matrix that controls the process noise during the prediction

stage of the Kalman filter, given by Qyk and Qwk
(see Chapter 3). Qyk is generally

set as a diagonal matrix, which implies that the observables are not correlated. This

has shown not to be the case in many GNSS receivers (Teunissen et al. 1998, Bona

2000, Schön and Brunner 2008, Amiri-Simkooei et al. 2009). It would seem that

one solution would be to specify these off-diagonal elements. This is not as easy as

it may first seem, since the cross-correlation of different observation types is receiver

specific. Since Qyk is inverted to form a weight matrix for least squares estimation

(and hence also in recursive filtering) this matrix must also be invertible.

The correct specification of Qwk
is a much more difficult process and in many

cases can be dependent on the application. For example, considering the common

parameters in the semi-recursive Kalman filter given in Table (3.1) the tropospheric

and hardware delays must both be specified in Qwk
as part of the prediction step of

the filter. The incorrect specification of either of these values will have the effect of

under or over constraining the solution. In the case of the troposphere, this value

can be site specific. By taking time correlation as a measure of optimality it is

possible to find the ‘best’ solution by minimising the correlation through varying

the process noise in the filter. This will be discussed in more detail in §5.4.1.

An alternative standpoint is to accept that the time correlation is present in the

residuals and that it is not possible to remove this through tuning of the Kalman

filter. This can be considered an acceptable solution, since it has already been

discussed that adding parameters to the state vector is often not practical and

in many cases a reparameterisation must be done in order to make the system
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solvable. This alternative is briefly introduced in §5.4.2 and then covered in detail

in Chapter 6.

5.4.1 Adjusting the process noise of common parameters

Taking the principle of an adaptive Kalman filter, such as the approach taken by

Mehra (1970) and Oussalah and Schutter (2001), it may be possible to reduce the

time correlation in the residuals by adapting the process noise in the Kalman filter

based on estimates of the time correlation. A study was done whereby Qyk was held

constant and the values used in Qwk
adjusted with the aim of investigating the effect

of time correlation on the post-fit residuals. In the E-HP/PPP software the values

in Qwk
correspond to the tropospheric delay and the hardware delays, which include

the ambiguities (see §3.8). The values in Qwk
are calculated based on the spectral

densities given for each parameter (see §3.8). The spectral density for the hardware

delays was varied and for the tropospheric delay held fixed. In §5.3.7 the cross-

correlation matrix was presented as a method of showing how the residuals between

different satellite and observation type pairs were correlated. These matrices are

used as a measure of the correlation in the set of residuals as a whole and hence

used to find the best spectral densities.

Since it is difficult to use a matrix in its entirety the matrix norm will be used

as a measure. Four types of matrix norm will be used in order to measure the

correlation (Fox 1964, Demmel 1997).

1-norm. This is defined as the largest column sum of absolute values, i.e.

‖A‖1 = max
j

m∑
i=1

|aij| (5.38)

where m is equal to the number of rows in matrix A.

Infinity norm. This is defined as the largest row sum of absolute values, i.e.

‖A‖∞ = max
i

n∑
j=1

|aij| (5.39)

where n is equal to the number of columns in matrix A.
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2-norm. This is defined given by

‖A‖2 =
√

max{Λ(ATA)} (5.40)

where Λ(ATA) denotes the set of eigenvalues of (ATA).

Frobenius norm. This entrywise norm flattens the matrix into a vector and then

uses a vector norm operation. It is calculated using

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 (5.41)

wherem and n are equal to the number of rows and columns in matrix A respectively.

The ALBM dataset was processed using spectral densities for the hardware delay

ranging from 1 × 10−11 m2s−1 to 1 × 10−8 m2s−1 in steps of 2 × 10−11 m2s−1. The

spectral densities for the tropospheric delay were held fixed. In each case a cross-

correlation matrix was calculated for lags {0, . . . , 15}. For each lag the four matrix

norms listed above were calculated for each process noise value and then plotted with

the minimum correlation along with the value of its corresponding process noise.

The matrix norms of the cross-correlation matrix for lag 1 are shown in Figure

5.29. The 1-norm and infinite norm place the optimal process noise to be 4.3 ×

10−10 m2s−1 and 3.7 × 10−10 m2s−1 respectively. These values are relatively close,

which is intuitive since the former is a column sum of the absolute values and

the latter is a row sum. For lag 0 the cross-correlation matrix is symmetrical,

i.e. ρ(a) = ρ(−a). As the lag increases the matrix no longer becomes symmetrical

as E{êsk,i, êsk−s,i} 6= E{êsk−s,i, êsk,i}. The minima of the 1-norm and infinite norm are

very well defined, both showing a distinctive ‘knife-edge’ shape.

The spectral densities given by the 2-norm and the Frobenius norm are similarly

in close agreement, giving values of 9.9×10−10 m2s−1 and 1.17×10−9 m2s−1 respec-

tively. With contrast to the 1-norm and infinite norm, the 2-norm and Frobenius

norm both have smoothed minima owing to the squaring operation that is present

in both methods. These values are very close to the default of 1× 10−9 m2s−1 used

by the E-HP/PPP software.
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Figure 5.29: Norm of the cross-correlation matrix for lag 1 for different spectral
densities. In each case the minimum norm is shown along with the equivalent
process noise value.

Figures 5.30 - 5.33 show the matrix norms of the cross-correlation matrices for

lags 5, 10, 15 and 30. As the lag time increases the 1-norm and infinite norm take

on very different shapes and the minima vary considerably. By contrast, the curves

for the 2-norm and Frobenius norm take the same shape and the minima are not

as changeable. The two norms also give very close values for the best process noise

and do not change by more than 1× 10−9 m2s−1.

By taking the optimum process noise value from lag 1 and computing the matrix

norm for every other lag the expectation is that the norm value should decrease as

the size of the lag increases. This is supported by Figure 5.34, which shows the

magnitude of cross-correlation as computed by the Frobenius norm decreases as the

lag time increases. In this case the Frobenius norm was chosen as Figures 5.30 -

5.33 show it gives the most consistent results.

From the results above it can be concluded that whilst it is possible to minimise

the correlation seen in the residuals by adjusting the process noise that is applied in

the prediction step of the filter it is not possible to remove it. Even by minimising
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Figure 5.30: Norm of the cross-correlation matrix for lag 5 for different spectral
densities. In each case the minimum norm is shown along with the equivalent
process noise value.

0.0 0.2 0.4 0.6 0.8 1.0
Spectral density (m2 s−1 ) 1e 8

No
rm

 v
al

ue

1.15×10−9

(a) 1-norm

0.0 0.2 0.4 0.6 0.8 1.0
Spectral density (m2 s−1 ) 1e 8

No
rm

 v
al

ue

5.5×10−10

(b) Infinite norm

0.0 0.2 0.4 0.6 0.8 1.0
Spectral density (m2 s−1 ) 1e 8

No
rm

 v
al

ue

1.17×10−9

(c) 2-norm

0.0 0.2 0.4 0.6 0.8 1.0
Spectral density (m2 s−1 ) 1e 8

No
rm

 v
al

ue

1.17×10−9

(d) Frobenius norm

Figure 5.31: Norm of the cross-correlation matrix for lag 10 for different spectral
densities. In each case the minimum norm is shown along with the equivalent process
noise value.
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Figure 5.32: Norm of the cross-correlation matrix for lag 15 for different spectral
densities. In each case the minimum norm is shown along with the equivalent process
noise value.
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Figure 5.33: Norm of the cross-correlation matrix for lag 30 for different spectral
densities. In each case the minimum norm is shown along with the equivalent process
noise value.
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Figure 5.34: Relationship between the magnitude of cross-correlation as computed
by the Frobenius norm and lag time.

the time correlation, the filter will still be non-optimal. Although this may not

influence the parameters, it will still have an impact on the residuals and hence

have a large impact on the validation of the data. It is therefore not feasible to

implement an adaptive Kalman filter based on temporal correlations. However, the

method used in this section can be used as an effective tool for determining the best

spectral densities to form Qwk
for use in a filter. It was also seen that the spectral

densities that were inferred from the minima of the 2-norms and Frobenius norms

closely matched the existing spectral densities that had been used in the software.

5.4.2 Autoregression

If it assumed that it is not possible to make any more adjustments to the filter that

result in a significant reduction in the correlation of the residuals then in order to test

for biases in the estimated parameters it is necessary to adapt the testing procedure

to reflect this. The tests outlined in Chapter 4 are conditional on the residuals

exhibiting no time correlation. It is possible to estimate the time correlation in

the residuals using an autoregressive model. This is introduced in Chapter 6. By

removing the correlations through a process known as whitening it is possible to

generate a whitened test statistic, which is shown in Chapter 7.
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5.5 Summary

In this chapter the mathematical difference between an optimal and non-optimal

filter was presented, showing that where a Kalman filter is non-optimal the predicted

residuals exhibit time correlation. Since it has already been shown in §3.7 that there

is a linear relationship between the predicted and post-fit residuals, this can be also

said to be the case for the post-fit residuals in a recursive estimator.

Using four high-rate datasets, of which three were collected from static receivers

and one from one that was kinematic, through the use of the Durbin-Watson test

statistic, lag plots, autocorrelation and cross-correlation plots it was shown that over

short periods the residuals experience a high degree of correlation. The extent of

the correlation was dependent on the observation type and varied between datasets.

This could be attributable to the different receivers used, site dependent factors such

as multipath or residual orbit and clock errors.

Following a discussion of the approaches that can be taken to eliminate or reduce

the correlation, and hence arrive at an optimal filter, two approaches were suggested.

The first involved empirical testing of the process noise values to minimise the

correlation and hence find an optimal value which can be used in the prediction

step of the recursive estimator. Although effective at reducing the correlation, not

to an extent to which the correlation was reduced to a small enough extent to have

no impact on the residuals. It would therefore not be effective to implement any

kind of adaptive Kalman filter to achieve an optimal filter. The best value that was

arrived at was also very close to the value that was used initially, hence showing that

the filter was already using process noise values that resulted in the least temporal

correlation.

Finally, the use of autoregression to remove the time correlation seen in the

residuals and hence form a test statistic that satisfies the conditions set out in

Chapter 4 was proposed. This is to be explored further in Chapters 6 and 7.
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Chapter 6

Modelling time correlated

residuals using autoregression

6.1 Introduction

From Chapter 3 it is known that one of the conditions of an optimal Kalman filter is

that the predicted residuals should not be correlated in time. Since there is a linear

relationship between the predicted and post-fit residual, as proved in §3.7, then it

follows that the post-fit residuals should also not be correlated in time. In addition

to this it is a requirement of the quality control theory presented in Chapter 4 that

the residuals are temporally uncorrelated. In Chapter 5 the post-fit residuals from

our PPP software were analysed and found to display signs of time correlation.

Two methods for dealing with time correlated residuals were suggested in §5.4.

The second of these methods was to model the residual time series as an autoregres-

sive (AR) process and then use the estimated coefficients to remove the correlation

from the residual. Contained within this chapter is an overview of stationarity in

§6.2, followed by the theory of autoregression in §6.3. An overview of the different

methods for estimating the AR coefficients is given in §6.4 and criteria by which

the model order can be chosen subsequently in §6.5. In §6.6 the theory relating to

non-optimal filters developed in the previous chapter is developed to show that it is

theoretically possible for the predicted and post-fit residuals to be modelled as an

AR process.
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Initially the post-fit residuals are modelled as an AR(1) process in §6.7, as this

is the simplest model to implement. This initial implementation is also used to

consider the different AR estimation methods that are available. The residuals are

‘whitened’ and then tested to see if they can be truly said to be random. This is

done using the methods of §5.3.

This implementation is then extended in §6.8 so that a higher model order can

be selected. A criterion from §6.5 is used to automatically determine the model

order that is most suitable. Once again the residuals are then whitened and then

tested to see if the whitening process has been successful. Model order selection is

then discussed in §6.9.

Since the two implementations in §6.7 and §6.8 use a univariate AR model,

the multivariate model is introduced in §6.10 and the implementation issues are

discussed.

6.2 Stationarity

A stochastic process is said to be wide sense stationary when the following conditions

are met (Box and Jenkins 1976, Priestley 1981, Broersen 2006, Dougherty 2011):

(i) The mean remains constant for the whole time period of the process, i.e.

E{x(k)} = µx, for all k (6.1)

where µx is the mean of x(k).

(ii) The variance remains constant for the whole time period of the process, i.e.

E{xk − µx, xk − µx} = σ2
x, for all k (6.2)

where σ2
x is variance of x(k).

(iii) The covariance between any two epochs is said to be dependent only on the
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lag time and not the epochs themselves, i.e.

E{xk − µx, xTk−s − µx} = R(s) = R(−s), for all k (6.3)

where R(s) is the autocovariance matrix for lag s (see §5.3.6).

A wide sense stationary process is also referred to as stationarity up to order two

(Broersen 2006). A process in a dynamic system generally reaches stationarity when

the system is said to be stable and has achieved a steady state.

In order to explore the concept of stationarity further it is helpful to look at

the linear filter model as defined by Box and Jenkins (1976). The model takes a

weighted sum of the random noise from previous epochs, such that for the process

x(k) at epoch k

xk = µx + εk + ψ1εk−1 + ψ2εk−2 + · · · (6.4)

where µx is the mean of the process if it is stationary (or a reference point for the

level of the process if it is not), ψ1, ψ2, . . . are a series of weights and εk, εk−1, εk−2, . . .

represent random process noise at previous epochs. Using the backward shift oper-

ator function, B, defined by

Bεk = εk−1 B2εk = εk−2 · · · Bpεk = εk−p (6.5)

and Eq. (6.1), the invariance of the mean with respect to k, the process x(k) can

be expressed as

xk = µx + εk + ψ1Bεk + ψ2B
2εk + · · · (6.6)

= µx + (1 + ψ1B + ψ2B
2 + · · · )εk (6.7)

By defining the transfer function

ψ(B) = 1 + ψ1B + ψ2B
2 + · · · (6.8)
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the equation can be expressed more concisely as

xk = µx + ψ(B)εk (6.9)

If the series ψ1, ψ2, . . . is finite, or infinitely summable such that
∞∑
j=0

|ψj| <∞, then

the filter can be said to be stationary and the process x(k) is stationary.

Since the mean of the stationary stochastic process is constant it is possible to

express x(k) as a function of deviations from the mean,

x̄(k) = x(k)− µk (6.10)

Eq. (6.4) becomes

x̄k = εk +
∞∑
j=1

ψjεk−j (6.11)

with Eq. (6.9) becoming

xk = ψ(B)εk (6.12)

It will now be shown that x̄k can also be expressed as a weighted sum of past values

and the random process noise at the current epoch. Assume

x̄k = π1x̄k−1 + π2x̄k−2 + · · ·+ εk (6.13)

=
k−1∑
j=1

πjx̄k−j + εk (6.14)

Once again, using the backward difference operator this can be expressed as

π(B)x̄k = εk (6.15)

where

π(B) = 1− π1B − π2B2 − · · · (6.16)

is known as the generating function of the π weights. On using Eq. (6.12) and Eq.

(6.15)

ψ(B)π(B) = 1 (6.17)
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and hence

π(B) = ψ−1(B) (6.18)

This relationship is important when considering the stationarity of an autoregressive

process (see §6.3). The coefficients in π(B) of Eq. (6.18) establish Eq. (6.13).

Using the autocovariance function, as given by Box and Jenkins (1976),

γs = σ2
ε

∞∑
j=0

ψjψj+s (6.19)

and setting s = 0 it follows that

γ0 = σ2
ε

∞∑
j=0

ψ2
j = σ2

x (6.20)

From this the condition that the series ψ1, ψ2, . . . is finite, or infinitely summable

such that
∞∑
j=0

|ψj| < ∞, also implies that the summation in Eq. (6.20) converges

and that the process has a finite variance.

In the derivations given by both Box and Jenkins (1976) and Priestley (1981)

the generating function, B, can take on complex values. For a complex number

z = x + yi an absolute value is the Euclidean distance of z to 0 in the complex

plane, i.e. |z| =
√
x2 + y2. All points in the complex plane where |z| = 1 form what

is known as the unit circle, as shown in Figure 6.1. It can be seen that all points on

the red line have a distance of 1 from the origin. In the case where |B| < 1, |B| = 1

and |B| > 1 the complex number B is said to lie inside, on or outside the unit circle

respectively.

The question arises whether the residual time series seen in Chapter 5 can be said

to be stationary. From Figure 5.3 - 5.6 it is clear that the residuals have a constant

mean, which is intuitive since E{êk} = 0. Since elevation dependent weighting

is used for the observables, the magnitude of the residuals is much higher at the

beginning and end of a satellite pass and so strictly speaking the variance of the

time series of residuals cannot be said to be constant. Broersen (2006) states that

even if a whole time series may appear nonstationary, over a small interval a time

series may appear stationary.
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Figure 6.1: Unit circle

This theory of stationarity over short time intervals is applied to the post-fit

residuals, in that the correlation seen at one epoch will be characterised by a sample

of the previous N epochs. This has already been applied in §5.3.5 for calculating the

Durbin-Watson test statistic, in §5.3.6 for plotting autocorrelation and in §5.3.7 for

creating cross-correlation matrices. For these applications a sample size of N = 240

was used (see §5.3.3). This value will also be used for the autoregressive parameter

estimation.

6.3 General autoregressive model

There are two equivalent models for the general autoregressive model given in the

literature and the references given in this chapter do not all use the same autore-

gressive model. For the purposes of this study the two models have therefore been

given the following names so that they can be readily distinguishable.

(i) Box-Jenkins model. This model is used by Box and Jenkins (1976).

(ii) Priestley model. This model is used by Priestley (1981) and Broersen (2006).
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Box-Jenkins model

An autoregressive (AR) process of order p, commonly referred to as an AR(p) pro-

cess, is given by Box and Jenkins (1976) as

x̄k = φ1x̄k−1 + · · ·+ φpx̄k−p + εk (6.21)

where x̄(k) is a stationary stochastic process with zero mean (i.e. µx = 0), φ1, · · · , φp

are a set of autoregressive parameters and εk is a purely random stationary process.

Using the backwards operator function (see Eq. 6.5) it is possible to write Eq.

(6.21) as

(1− φ1B − φ2B
2 − · · · − φpBp)x̄k = εk (6.22)

Taking the example of an AR(1) process,

(1− φ1B)x̄k = εk (6.23)

and hence

x̄k = (1− φ1B)−1εk =
∞∑
j=0

φj1εk−j (6.24)

For general εk, Eq. (6.24) will converge only if |φ1| < 1. Recalling Eq. (6.18) this

can be expressed in terms of ψ(B) giving

ψ(B) = (1− φ1B)−1 =
∞∑
j=0

φj1B
j (6.25)

As ψ(B) must converge for |Bφ1| < 1, the condition |φ1| < 1 implies |B| ≤ 1. Note

that the solution of 1− φ1B = 0, i.e. B = φ−11 , thus lies outside the unit circle.

For a general AR(p) process,

xk = Φ−1(B)εk (6.26)

with

Φ(B) = (1−G1B)(1−G2B) · · · (1−GpB) (6.27)
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where G−11 , . . . , G−1p are the solutions of Φ(B) = 0. In order for the AR(p) to be a

stationary process these solutions of Φ(B) = 0 must lie outside the unit circle.

Priestley model

The AR(p) process is given by Priestley (1981) and Broersen (2006) as

xk + a1xk−1 + · · ·+ apxk−p = εk (6.28)

where a1, · · · , ap are a set of autoregressive parameters.

The two methods presented above are equivalent as φj = −aj, but result in

autoregressive parameters of opposite sign.

Regardless of the model that is used an AR(p) process must have the following

properties (Box and Jenkins 1976, Priestley 1981, Broersen 2006):

(i) E{εk} = 0, i.e. zero mean.

(ii) cov(xk−q, εk) = 0 q ≥ 1

(iii) The time series must be stationary, i.e. σ2
ε is constant for all k.

(iv) E{εk, εk−q} = 0 where q ≥ 1.

All new derivations in this study will be expressed using the Box-Jenkins model

as this is more intuitive when considering the process of residual whitening given in

§6.7 and §6.8.

6.4 Estimation methods

In this section a variety of AR estimation methods are presented. In §6.4.1 the

equations presented by Yule (1927), commonly known as the Yule-Walker equations,

are given. These show the link between the autocovariances and the AR parameters.

Levinson-Durbin recursion is introduced in §6.4.2 as a recursive method of solving

the Yule-Walker equations. It is also possible to estimate the AR parameters using

the least squares method. The forwards and backwards least squares methods are
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described in §6.4.3. The final method presented in §6.4.4 is Burg’s method, which is

an extension of Levinson-Durbin recursion that also guarantees stationarity of the

AR parameters. This will be treated in more detail as it is the chosen method for

the AR estimation in this study.

6.4.1 Yule-Walker equations

For an AR process defined using the Box-Jenkins model (see Eq. 6.21) the Yule-

Walker equations are given as (Box and Jenkins 1976)

ρ(1) = φ1 + φ2ρ(1) + · · · + φpρ(p− 1)

ρ(2) = φ1ρ(1) + φ2 + · · · + φpρ(p− 2)

...
...

...
. . .

...

ρ(p) = φ1ρ(p− 1) + φ2ρ(p− 2) + · · · + φp

(6.29)

Expressed in matrix form the Yule-Walker equations become

ρ = Pφ (6.30)

where

ρ =



ρ(1)

ρ(2)

...

ρ(p)


P =



ρ(0) ρ(1) . . . ρ(p− 1)

ρ(1) ρ(0)
...

...
. . . ρ(1)

ρ(p− 1) . . . ρ(1) ρ(0)


φ =



φ1

φ2

...

φp


(6.31)

with ρ(s) the autocorrelation at lag s defined by Eq. (5.28). Note that the diagonal

elements of P are equal to 1, since ρ(0) = 1. An equivalent realisation of the

Yule-Walker equations can be made using the autocovariances.

Rφ = r (6.32)
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where

R =



R(0) R(1) . . . R(p− 1)

R(1) R(0)
...

...
. . . R(1)

R(p− 1) . . . R(1) R(0)


r =



R(1)

R(2)

...

R(p)


(6.33)

with R(s) the autocovariance at lag s as defined by Eq. (5.27). It can readily be

seen that Eq. (6.30) can be derived from Eq. (6.32) by diving through by R(0).

In reality since the true autocovariances are not known their estimates must be

used. Broersen (2006) gives the estimator for the covariance which guarantees the

property of positive-definite as

R̂(s) =
1

N

N−p∑
i=1

xixi+s (6.34)

where N is the number of elements in the stochastic process x(k).

From Eq. (6.32), and letting R = R̂, it follows that the estimate of φ is given by

φ̂ = R̂−1r̂ (6.35)

The equivalent The Yule-Walker equations using the Priestley model definition

of an AR process (see Eq. 6.28) are given by Priestley (1981). Using this model Eq.

(6.30) becomes

Pa = −ρ (6.36)

where

a =



a1

a2
...

ap


(6.37)

with the definition of P and a as given in Eq. (6.31). The equivalent realisation of
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the Yule-Walker equations using the autocovariances is given by

Ra = −r (6.38)

with R and r as given in Eq. (6.33). The solution for a is hence given by

a = −R−1r (6.39)

Once again it can be seen that all solutions result in a1, . . . , ap being of opposite

sign to φ1, . . . , φp.

The Yule-Walker equations give a one-step solution for the AR parameters, but

it is noted by Box and Jenkins (1976) that they can lead to poor coefficient estimates

when the roots of the AR process are close to the unit circle (see §6.2). It is also

shown by Broersen (2006) that using the Yule-Walker equations can result in an AR

estimate with a very large bias. It is for these reasons that the Yule-Walker method

is considered unsuitable for data with unknown characteristics and as such is not

recommended for automated processes.

6.4.2 Levinson-Durbin recursion

Solving the Yule-Walker equations by inverting the autocorrelation matrix or auto-

covariance matrix is typically not done in practice in preference of more numerically

stable algorithms (Broersen 2006). The Levinson-Durbin algorithm is a recursive

method that takes advantage of the partial autocorrelation function (Box and Jenk-

ins 1976).

Consider the stochastic process x(k). ρ(1) is defined as the autocorrelation be-

tween xk and xk−1 and ρ(2) as the autocorrelation between xk and xk−2. The partial

autocorrelation is described by Box and Jenkins (1976) and Priestley (1981) as the

additional contribution of an AR order to the autocorrelation. Hence the partial au-

tocorrelation between xk−1 and xk−2, which shall be denoted as ρ(k−1, k−2), is the

difference between ρ(2) (the autocorrelation between xk and xk−2) and the extrap-

olation of ρ(2) from ρ(1). More generally, the partial autocorrelation is described
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by Priestley (1981) as the correlation between random variables of the process x(k)

at two time points with the linear relationship of the intermediate random variables

removed.

This property of the partial autocorrelation function allows it to be used to de-

scribe the new contribution of AR order to the autocorrelation (Broersen 2006).

Levinson-Durbin recursion starts by estimating φ1, the AR(1) coefficient, and then

using the aforementioned property of the partial autocorrelation function to sequen-

tially calculate AR coefficients of increasing order.

To ensure it is clear for what order of AR process the coefficient signifies, φp,n

will be the nth coefficient of an AR(p) process. The method given here is based on

that of Broersen (2006), although it will be given in relation an AR process using

the Box-Jenkins model.

The recursion is initialised by calculating φ1 assuming an AR(1) process, which

can easily be calculated from the Yule-Walker equations (see §6.4.1) as

φ1,1 =
R̂(1)

s20
(6.40)

where

s20 = R̂(0) (6.41)

is the estimated variance of the stochastic process. The next step is to calculate φ2,1

and φ2,2. Priestley (1981) calculates the partial autocorrelation as

φ2,2 =
R̂(2) + R̂(1)φ1,1

R̂(0)
(6.42)

which directly yields φ2 for the AR(2) process. It is now possible to update φ1,1

with the partial autocorrelation to give φ2,1.

φ2,1 = φ1,1 + φ2,2φ1,1 (6.43)

For models p > 2 the method can be summarised by the following recursive formulae,

where n = 1, 2, . . . , p−1. It can be readily seen that the example given above can be
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obtained by substituting n = 2 into the recursive formulae that follow. To simplify

the presentation of the formulae the following vectors will be defined.

αn =

(
φn,1 φn,2 · · · φn,n

)T
α′n =

(
φn,n · · · φn,2 φn,1

)T
βn =

(
R̂(1) · · · R̂(n− 1) R̂(n− 1)

)T
β′n =

(
R̂(n) R̂(n− 1) · · · R̂(1)

)T
(6.44)

It can be seen that vector αn contains the AR coefficients up to order n, with

α′n being the same vector in reverse. Vector βn contains the autocovariances from

lag 1 to n, with β′n similarly being the the same vector in reverse.

The partial correlation coefficient for the next order is calculated by Broersen

(2006) using

φn+1,n+1 =
R̂(n+ 1) + β′Tnαn

s2n
(6.45)

The new AR coefficient for model order n + 1 is appended to the vector of AR

coefficients and the coefficients for orders 1, . . . , n are updated using

αn+1 =

 αn

φn+1,n+1

 =

 αn + φn+1,n+1 α
′
n

φn+1,n+1

 (6.46)

Expanding this equation can show more clearly how the AR coefficients are updated

using the partial correlation coefficient.



φn+1,1

φn+1,2

...

φn+1,n

. . . . . .

φn+1,n+1


=





φn,1

φn,2
...

φn,n


+ φn+1,n+1



φn,n
...

φn,2

φn,1


. . . . . . . . . . . . . . . . . . . . . .

φn+1,n+1


(6.47)

The estimated variance of the AR process for this order, n+ 1, is found using

s2n+1 = s2n(1− φ2
n+1,n+1) (6.48)
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An interesting by-product of this recursive algorithm is that the estimated variance

for each successive model order, s2n, can be used for choosing the AR model order.

More information on this is given in §6.5.

A summary of the Levinson-Durbin recursion algorithm is given below:

1. Begin with p = 1, i.e. an AR(1) process.

2. Calculate the autocovariance at lag 0 for the stochastic process, s20, using Eq.

(6.41)

3. Calculate the first partial correlation coefficient, φ1,1, using Eq. (6.40).

4. Calculate the estimated variance for the AR(1) process, s21 = s20(1− φ1,1).

5. Calculate the partial correlation coefficient φp+1,p+1 using Eq. (6.45).

6. Update all AR parameters using Eq. (6.46).

7. Calculate the estimated variance for AR order p+ 1 using Eq. (6.48)

8. Update the AR order, i.e. p = p + 1. If the desired AR has not been reached

repeat from Step 5.

It is important to note that the method that is given in Broersen (2006) is

based on the AR process using the Priestley model. The partial correlation coef-

ficient is therefore of opposite sign to the final AR coefficient of an AR(p) model,

i.e. ap = −φp,p. Broersen (2006) instead calculates the reflection coefficient, κp,

which is of opposite sign to the partial correlation coefficient, i.e. κp = −φp,p. There-

fore, for an AR process using the Priestley model the final AR coefficient is equal

to the reflection coefficient, i.e. κp = ap.

Since Levinson-Durbin recursion is a method for solving the Yule-Walker equa-

tions it also is susceptible to poor coefficient estimates when the AR process is

close to the unit circle and again is considered unsuitable for data with unknown

characteristics. It is therefore not considered suitable for this study.
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6.4.3 Least squares estimation

It is possible to estimate the AR parameters using the least squares estimator by

considering the ‘observables’ to be the samples from the stochastic process and the

‘parameters’ to be the AR coefficients that are to be estimated.

Consider a stochastic process x(k) from which N samples have been made. Char-

acterising this as an AR(1) process using the Box-Jenkins model gives

x2 = φ1x1 + ε2

x3 = φ1x2 + ε3

...

xN = φ1xN−1 + εN

(6.49)

Using the model of observation equations (see §3.2.1) the least squares model can

be expressed as

E



x2

x3
...

xN


=



x1

x2
...

xN−1


φ1 (6.50)

As E{εk} = 0 for all k it disappears from the equation. An unweighted solution is

computed, i.e. Qy = I, and the solution is readily found using Eq. (3.4).

For a general AR(p) solution the model becomes

E



xp+1

xp+2

xp+3

...

xN


=



xp xp−1 xp−2 · · · x1

xp+1 xp xp−1 · · · x2

xp+2 xp+1 xp · · · x3
...

...
...

. . .
...

xN−1 xN−2 xN−3 · · · xN−p





φ1

φ2

φ3

...

φp


(6.51)

This method, known more specifically as the forward least squares method (Broersen

2006), omits the first p measurements from the vector of observables.

It is also possible to reverse the measurements and calculate a least squares
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estimate of the AR parameters, known as the backward least squares method. The

general AR(p) model now becomes

E



x1

x2
...

xN−p


=



x2 x3 · · · xp+1

x3 x4 · · · xp+2

...
...

. . .
...

xN−p+1 xN−p+2 · · · xN





φ1

φ2

...

φp


(6.52)

The forward and backward least squares methods are equivalent, since both yield

equivalent theoretical autocovariances. Broersen (2006) also shows that it is possible

to minimise the sum of the forwards and backwards residuals.

Unfortunately all of the least squares methods mentioned cannot guarantee a

stationary model where the roots are close to the unit circle (see §6.2). Therefore,

as with the Yule-Walker equations and Levinson-Durbin recursion, this method is

not considered suitable for this study.

6.4.4 Burg’s method

It has already been seen that the Levinson-Durbin method estimates an AR(1)

process and uses the partial correlation coefficient to sequentially estimate increasing

AR orders. Burg’s method (Burg 1967) is based upon this principle, but uses a

different method for estimating the partial correlation coefficient.

The partial correlation coefficient at each stage is estimated using all available

information at the AR order at which it is calculated. This comes from the fact that

it utilises the forward and backward residuals, as seen in the least squares methods

(see §6.4.3).

Broersen (2006) provides an extensive explanation of Burg’s method and as such

forms the basis of the following derivations. It should be noted that the derivation

given in Broersen (2006) is based on the AR process using the Priestley model

and therefore is in terms of the reflection coefficient and not the partial correlation

coefficient. As this study prefers the AR process usung the Box-Jenkins model the

derivations may differ slightly as they use the partial correlation coefficient, but are
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nonetheless equivalent.

Let the forward residuals of orders 1, . . . , p be defined as

f0(k) = xk

f1(k) = xk + φ1,1xk−1

...

fp(k) = xk + φp,1xk−1 + · · ·+ φp,pxk−p

(6.53)

and the backward residuals of orders 1, . . . , p be defined as

b0(k) = xk

b1(k) = xk−1 + φ1,1xk

...

bp(k) = xk−p + φp,1xk−p+1 + · · ·+ φp,pxk

(6.54)

The forwards and backwards residuals can also be written as

fp(k) =

(
xk xk−1 · · · xk−p

)


1

φp,1
...

φp,p


(6.55)

bp(k) =

(
xk xk−1 · · · xk−p

)


φp,p
...

φp,1

1


(6.56)

What is interesting to note here is that the order of values from x(k) have been

reversed for bp(k), which in turn has reversed the order of the AR parameters.

This provides computational advantages in the implementation (Broersen 2006).

Recalling the definitions of αn and α′n given by Eq. (6.44) used in the Levinson-
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Durbin recursion algorithm the forward and backward residuals can be written as

fp(k) =

(
xk xk−1 · · · xk−p

) 1

αn

 (6.57)

bp(k) =

(
xk xk−1 · · · xk−p

) α′n

1

 (6.58)

Recalling the step in the Levinson-Durbin recursion that adjusts the AR values from

the previous order to the next order, given by Eq. (6.46),

αn+1 =

 αn + φn+1,n+1 α
′
n

φn+1,n+1


the forward and backward residuals are given by Broersen (2006) as

fp(k) = fp−1(k) + φp,p bp−1(k − 1) (6.59)

bp(k) = bp−1(k − 1) + φp,p fp−1(k) (6.60)

In the case of Burg’s method φp,p is estimated by minimising the sum of squares of

the forward and backward residuals, which results in (Broersen 2006)

φp,p = 2

N∑
k=p+1

fp−1(k) bp−1(k − 1)

N∑
k=p+1

f 2
p−1(k) + b2p−1(k − 1)

(6.61)

where N is the sample size of the stochastic process x(k), from which the forward

and backward residuals are derived. In §6.4.3 it was mentioned that it is possible to

estimate the AR parameters using the forward and backward least squares method.

Whereas that method estimates all AR parameters using the forward and backward

residuals in one single adjustment, Burg’s method estimates the AR parameters

using the forward and backward residuals from AR(1) to AR(p) at each successive

AR order.

An important property of the partial correlation coefficient, φp,p, that is esti-
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mated using Burg’s method is that it is always smaller that one in absolute value,

as shown in Broersen (2006), and hence guarantees that the AR process estimated

is stationary. This is because all the roots of the generating function are outside the

unit circle (assuming an AR process using the Box-Jenkins method, see §6.2).

Unlike for Levin-Durbin recursion, calculation of the partial correlation coeffi-

cient and the subsequent updating of the AR parameters does not require an estimate

of the residual variance of the AR process. However, this is still important as it can

be used for determining the AR model order (see §6.5). This can be achieved using

Eq. (6.48) of Levinson-Durbin recursion,

s2n+1 = s2n(1− φ2
n+1,n+1)

A summary of Burg’s method is given below:

1. Begin with p = 1, i.e. an AR(1) process.

2. Calculate the autocovariance at lag 0 for the stochastic process, s20, using Eq.

(6.41)

3. Calculate the first partial correlation coefficient, φ1,1, using Eq. (6.61).

4. Calculate the estimated variance for the AR(1) process, s21 = s20(1− φ1,1).

5. Calculate the partial correlation coefficient φp+1,p+1 using Eq. (6.61).

6. Update all AR parameters using Eq. (6.46).

7. Calculate the estimated variance for AR order p+ 1 using Eq. (6.48)

8. Update the AR order, i.e. p = p + 1. If the desired AR has not been reached

repeat from Step 5.

Burg’s method is the chosen method for estimating the AR parameters for the

post-fit residuals. The first reason for this is that the roots of the AR process are

guaranteed to lie outside the unit circle (see §6.2), hence resulting in a stationary

process. It is also a computationally efficient method, hence suitable for implemen-

tation in real-time PPP software.
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6.5 Determining the model order

A number of methods for estimating the coefficients of an AR process up to order

p were discussed in §6.4. Burg’s method was chosen to be the best method for

estimating the AR parameters from the residual time series. However, the question

of how to determine the correct value of p has not been addressed. In this section a

number of methods for determining the order of an AR process will be discussed.

6.5.1 Residual variance

It is shown in Broersen (2006) that for an AR(p) process

φi = 0 where i > p (6.62)

Hence the AR parameters have no influence beyond the true order of the model.

One method of determining model order uses this property by analysing the esti-

mated residual variance, for which Priestley (1981) gives the approximately unbiased

estimate as

σ̂2
ε =

N − p
N − 2p− 1

[R(0)− φ1R(1)− . . .− φpR(p)] (6.63)

If the model order is underdetermined then σ̂2
ε will be larger than the true residual

variance, σ2
ε , as the neglected parameters will account for the larger estimated vari-

ance. Where the model order is overdetermined, given the condition in Eq. (6.62),

any increase in the model order will not significantly reduce σ̂2
ε . The model order

is found by plotting σ̂2
ε for increasing values of p and then observing the point at

which σ̂2
ε does not significantly change.

6.5.2 Partial autocorrelation

It has already been demonstrated in §6.4.2 that the partial autocorrelation coefficient

can be used to describe the new contribution of an AR order to the autocorrelation.

From the condition in Eq. (6.62) it follows that if a model is truly an AR(p) process

then φi,i = 0 where i > p. As such, plotting φi,i for increasing values of i should
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give an indication of the true model order. For a large enough sample size N an

approximate measure for testing φi,i = 0 is to determine whether φi,i lies in the

range −2
√

1/N ≤ φi,i ≤ 2
√

1/N (Priestley 1981).

6.5.3 Final Prediction Error

Developing the residual variance concept presented in §6.5.1, Akaike (1970) takes

the approach of fitting models of increasing order p and for each computes the final

prediction error (FPE) criterion, given by

FPE(p) = σ̂2
ε

N + p

N − p
(6.64)

where N is the sample size and σ̂2
ε is the estimated residual variance. The order

that corresponds to the lowest FPE is chosen as the true AR order. An in depth

derivation for the FPE can be found in Priestley (1981) and Broersen (2006).

6.5.4 Akaike’s Information Criterion

Akaike (1974) introduced the order selection criterion known as Akaike’s Information

Criterion (AIC), defined as

AIC(p) = ln σ̂2
ε + 2

p

N
(6.65)

where N is the sample size and σ̂2
ε is the estimated residual variance. Although

developed in relation to the maximum likelihood of residual variance, it is commonly

applied to estimates of σ2
ε obtained through AR parameter estimation (Broersen

2006). As with the FPE, the order that yields the minimum AIC value is taken as

the most likely candidate.

It is interesting to note that when using a large sample size and taking ln(1+δ) ≈

δ,

AIC(p) ≈ ln[FPE(p)] (6.66)

The result of this is that FPE(p) and AIC(p) invariably yield the same estimated
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order (Priestley 1981, Broersen 2006).

Given its wide use, AIC is the chosen method for calculating model order in §6.8.

6.6 Modelling a non-optimal filter as an AR pro-

cess

In this section the derivations given in §5.2 will be further developed to show that

in certain cases a non-optimal filter can be modelled as an AR process.

6.6.1 Predicted residuals

It was shown in §5.2 that for an optimal filter E{vk, vTl } = 0 where k 6= l and that

for a non-optimal filter E{vk, vTl } 6= 0 where k 6= l. It will be shown that there

exists a condition where the predicted residuals can be modelled as an AR process.

The notation used in §5.2 will be continued in this section.

Recalling Eq. (5.23) the expectation of the vector of predicted residuals at epoch

k with those at epoch l, where l < k, is given by

E{v∗k, v∗Tl } = −Ak

{
k−1∏
i=l+1

Φi+1(I −K∗i Ai)

}
Φl+1

[
K∗l Qyl − (I −K∗l Al) Q∗xl|l−1

ATl

]
(6.67)

From Eq. (3.29) the non-optimal estimate for the variance-covariance matrix of the

vector of predicted residuals at epoch l is given by

E{v∗l , v∗Tl } = Qyl + AlQ
∗
xl|l−1

ATl (6.68)

Generalising Eq. (6.67) to expectation of the vector of predicted residuals at epoch

k with those at epoch k − p, where p ≥ 1, gives

E{v∗k, v∗Tk−p} = −Ak

{
k−1∏

i=k−p+1

Φi+1(I −K∗i Ai)

}

· Φk−p+1

[
K∗k−pQyk−p

− (I −K∗k−pAk−p) Q∗xk−p|k−p−1
ATk−p

] (6.69)
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For simplicity, denote

[ · ] = Φk−p+1

[
K∗k−pQyk−p

− (I −K∗k−pAk−p) Q∗xk−p|k−p−1
ATk−p

]
(6.70)

Expanding the product in Eq. (6.69) sequentially gives

E{v∗k, v∗Tk−p} = −AkΦk(I −K∗k−1Ak−1)

{
k−2∏

i=k−p+1

Φi+1(I −K∗i Ai)

}
[ · ]

= −AkΦk

{
k−2∏

i=k−p+1

Φi+1(I −K∗i Ai)

}
[ · ]

+ AkΦkK
∗
k−1Ak−1

{
k−2∏

i=k−p+1

Φi+1(I −K∗i Ai)

}
[ · ]

(6.71)

= −AkΦk

{
k−2∏

i=k−p+1

Φi+1(I −K∗i Ai)

}
[ · ]

− AkΦkK
∗
k−1E{v∗k−1, v∗Tk−p}

(6.72)

= −AkΦkΦk−1

{
k−3∏

i=k−p+1

Φi+1(I −K∗i Ai)

}
[ · ]

− AkΦkΦk−1K
∗
k−2E{v∗k−2, v∗Tk−p}

− AkΦkK
∗
k−1E{v∗k−1, v∗Tk−p}

(6.73)

= −AkΦkΦk−1 · · ·Φk−p+2[ · ]

− AkΦkK
∗
k−1E{v∗k−1, v∗Tk−p}

− AkΦkΦk−1K
∗
k−2E{v∗k−2, v∗Tk−p}

· · ·

− AkΦkΦk−1 · · ·Φk−p+1K
∗
k−p+1E{v∗k−p+1, v

∗T
k−p}

(6.74)

The term in Eq. (6.69) given by Eq. (6.70) is now expanded and Eq. (6.68)

substituted giving

[ · ] = Φk−p+1

[
K∗k−pQyk−p

− (I −K∗k−pAk−p) Q∗xk−p|k−p−1
ATk−p

]
= Φk−p+1

[
K∗k−pQyk−p

−Q∗xk−p|k−p−1
ATk−p +K∗k−pAk−pQ

∗
xk−p|k−p−1

ATk−p

]
= Φk−p+1

[
K∗k−pQyk−p

−Q∗xk−p|k−p−1
ATk−p +K∗k−p(E{v∗k−p, v∗Tk−p} −Qyk−p

)
]
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= Φk−p+1K
∗
k−pE{v∗k−p, v∗Tk−p} − Φk−p+1Q

∗
xk−p|k−p−1

ATk−p (6.75)

Substituting Eq. (6.75) into Eq. (6.74) gives

E{v∗k, v∗Tk−p} = −AkΦkK
∗
k−1E{v∗k−1, v∗Tk−p}

− AkΦkΦk−1K
∗
k−2E{v∗k−2, v∗Tk−p}

· · ·

− AkΦkΦk−1 · · ·Φk−p+2K
∗
k−p+1E{v∗k−p+1, v

∗T
k−p}

− AkΦkΦk−1 · · ·Φk−p+1K
∗
k−pE{v∗k−p, v∗Tk−p}

+ AkΦkΦk−1 · · ·Φk−p+1Qx̂k−p|k−p−1
ATk−p

(6.76)

This can be simplified to

E{v∗k, v∗Tk−p} = −

{
p∑
i=1

Ak

{
k−p+1∏
j=k

Φj

}
K∗k−iE{v∗k−i, v∗Tk−p}

}

+ Ak

{
k−p+1∏
j=k

Φj

}
Qx̂k−p|k−p−1

ATk−p

(6.77)

It has already been shown in §3.8 that Φk = Ik for PPP, therefore Eq. (6.77) can

be reduced to

E{v∗k, v∗Tk−p} = −

{
p∑
i=1

AkK
∗
k−iE{v∗k−i, v∗Tk−p}

}
+ AkQx̂k−p|k−p−1

ATk−p (6.78)

The final term of Eq. (6.78) can be written as

AkQx̂k−p|k−p−1
ATk−p = E{Akx̂k−p|k−p−1, [Ak−px̂k−p|k−p−1]T} (6.79)

This is the covariance between the linearised observables at epoch k − p with the

linearised observables at epoch k using the predicted solution at epoch k − p. For

both static and kinematic solutions it reasonable to assume that this term will be

zero for some p and hence Eq. (6.78) is a linear relationship between the expectations

E{v∗k−i, v∗Tk−p} where i = 1, . . . , p. This is also seen in an AR process, as shown by

the Yule-Walker equations (see §6.4.1).

150



Recalling Eq. (6.21), an AR(p) process for a stochastic process x(k) using the

Box-Jenkins model is given by

xk = φ1xk−1 + φ2xk−2 + · · ·+ φpxk−ps + εk

By considering that the vectors of predicted residuals are an AR(1) process where

the temporal correlation is only between observations from the same GNSS satellite

then this becomes

vk − φ1vk−1 = εk (6.80)

where εk is Gaussian noise and φ1 a diagonal matrix. It is later shown that the

post-fit residuals closely match an AR(p) process, with p = 1 often adequate. In

anticipation of this result a theoretical consideration is sought that will corroborate

this assumption. In the first instance consider the predicted residuals.

Eq. (6.80) can be rewritten as using Eq. (3.21), (3.26) and (3.28) as

vk − φ1vk−1 = (y
k
− Akx̂k|k−1)− φ1vk−1

= y
k
− AkΦkx̂k−1|k−1 − φ1vk−1

= y
k
− AkΦk[x̂k−1|k−2 +Kk−1vk−1]− φ1vk−1

= (y
k
− AkΦkx̂k−1|k−2)− (AkΦkKk−1 + φ1)vk−1 (6.81)

Now consider

y
k

= Akx̃k + ε̃k (6.82)

where x̃k is the ‘true’ solution and ε̃k is Gaussian noise. Inserting this into Eq. (6.81)

gives

vk − φ1vk−1 = (Akx̃k + ε̃k − AkΦkx̂k−1|k−2)− (AkΦkKk−1 + φ1)vk−1 (6.83)

From Eq. (3.28) it follows that the predicted residual at k − 1 is

vk−1 = y
k−1 − Ak−1x̂k−1|k−2 (6.84)
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This is used to remove vk−1 on the right hand side of Eq. (6.83) to give

vk − φ1vk−1 = (Akx̃k + ε̃k − AkΦkx̂k−1|k−2)

− (AkΦkKk−1 + φ1)(yk−1 − Ak−1x̂k−1|k−2)
(6.85)

By substituting

y
k−1 = Ak−1x̃k−1 + ε̃k−1 (6.86)

into Eq. (6.85) gives

vk − φ1vk−1 = (Akx̃k + ε̃k − AkΦkx̂k−1|k−2)

− (AkΦkKk−1 + φ1)(Ak−1x̃k−1 + ε̃k−1 − Ak−1x̂k−1|k−2)
(6.87)

By assuming that the dynamic model is correct, namely

x̃k = Φkx̃k−1 (6.88)

it is possible to remove x̃k such that Eq. (6.87) becomes

vk − φ1vk−1 = (AkΦkx̃k−1 + ε̃k − AkΦkx̂k−1|k−2)

− (AkΦkKk−1 + φ1)(Ak−1x̃k−1 + ε̃k−1 − Ak−1x̂k−1|k−2)
(6.89)

Through rearrangement and simplification Eq. (6.89) becomes

vk − φ1vk−1 = (AkΦk(I −Kk−1Ak−1)− φ1Ak−1)(x̃k−1 − x̂k−1|k−2)

− (AkΦkKk−1 + φ1)ε̃k−1 + ε̃k

(6.90)

In a non-optimal filter it cannot be assumed that (x̃k−1− x̂k−1|k−2) is Gaussian noise.

In order to simplify the notation this is defined as

∆xk−1 = x̃k−1 − x̂k−1|k−2 (6.91)
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Furthermore, the Gaussian noise from epochs k and k − 1 is defined as

ε̃k,k−1 = ε̃k − (AkΦkKk−1 + φ1)ε̃k−1 (6.92)

since the sum of two normal distributions is also a normal distribution. It is now

possible to rewrite Eq. (6.90) as

vk − φ1vk−1 = (AkΦk(I −Kk−1Ak−1)− φ1Ak−1)∆xk−1 + ε̃k,k−1 (6.93)

In order to show that vk−φ1vk−1 is random noise all terms that precede ε̃k,k−1 must

be shown to be white noise. In the following examples the operator
?
= is used, where

x
?
= y asks the question ‘Is x equal to y?’

For the right hand side of this equation to be random noise the following test

case is required:

(AkΦk(I −Kk−1Ak−1)− φ1Ak−1)∆xk−1
?
= ε̂k,k−1 (6.94)

where ε̂k,k−1 is Gaussian noise. Consider the left hand side of Eq. (6.94). In the

case of GNSS it can be assumed Φk ≡ I. For high rate data it can also be assumed

that Ak ≈ Ak−1, hence Ak can be replaced by Ak−1. This simplifies Eq. (6.94) to

Ak−1(I −Kk−1Ak−1)∆xk−1 − φ1Ak−1∆xk−1
?
= ε̂k,k−1 (6.95)

A further simplification can be made by defining

∆x̄k−1 = Ak−1∆xk−1 (6.96)

which results in Eq. (6.95) becoming

[(I − Ak−1Kk−1)− φ1] ∆x̄k−1
?
= ε̂k,k−1 (6.97)

The left hand side of Eq. (6.97) is equal to the right hand side if ∆x̃k−1 and φ1 are

the eigenvectors and eigenvalues of (I − Ak−1Kk−1).
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It is important to note that this is not intended to be a rigorous proof, rather

to illustrate that there exists conditions under which the predicted residuals can be

time correlated as in an AR(1) process.

6.6.2 Post-fit residuals

Now consider the vectors of post-fit residuals are an AR(1) process and we investigate

under what conditions

êk − φ1êk−1 = εk (6.98)

where εk is the true random noise and φ1 a diagonal matrix. Following a similar

procedure as to that done in the previous section this equation expands as

êk − φ1êk−1 = y
k
− Akx̂k|k − φ1êk−1

= y
k
− Ak[x̂k|k−1 +Kk(yk − Akx̂k|k−1)]− φ1êk−1

= (I − AkKk)(yk − AkΦkx̂k−1|k−1)− φ1êk−1 (6.99)

Substitute

y
k

= Akx̃k + ε̃k (6.100)

into Eq. (6.99) to give

êk − φ1êk−1 = (I − AkKk)(Akx̃k + ε̃k − AkΦkx̂k−1|k−1)− φ1êk−1 (6.101)

and substitute

x̃k = Φkx̃k−1 (6.102)

to give

êk − φ1êk−1 = (I − AkKk)(AkΦkx̃k−1 + ε̃k − AkΦkx̂k−1|k−1)− φ1êk−1 (6.103)

Reorder

êk − φ1êk−1 = (I − AkKk)(AkΦkx̃k−1 − AkΦkx̂k−1|k−1 + ε̃k)− φ1êk−1 (6.104)
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From Eq. (3.49) it follows that

êk−1 = y
k−1 − Ak−1x̂k−1|k−1 (6.105)

and substituting Eq. (6.100) gives

êk−1 = Ak−1x̃k−1 + ε̃k−1 − Ak−1x̂k−1|k−1 (6.106)

Substituting this into Eq. (6.104) gives

êk − φ1êk−1 = (I − AkKk)(AkΦkx̃k−1 − AkΦkx̂k−1|k−1 + ε̃k)

− φ1(Ak−1x̃k−1 + ε̃k−1 − Ak−1x̂k−1|k−1)
(6.107)

This can be simplified somewhat with the grouped terms [x̃k−1 − x̂k−1|k−1] to give

êk − φ1êk−1 = (I − AkKk)(AkΦk[x̃k−1 − x̂k−1|k−1] + ε̃k)

− φ1(Ak[x̃k−1 − x̂k−1|k−1] + ε̃k−1)

(6.108)

or

êk − φ1êk−1 = (I − AkKk)AkΦk[x̃k−1 − x̂k−1|k−1] + (I − AkKk)ε̃k

− φ1Ak[x̃k−1 − x̂k−1|k−1]− φ1ε̃k−1

(6.109)

Factorising [x̃k−1 − x̂k−1|k−1] once again gives

êk − φ1êk−1 = [(I − AkKk)AkΦk − φ1Ak−1][x̃k−1 − x̂k−1|k−1]

+ (I − AkKk)ε̃k − φ1ε̃k−1

(6.110)

Again assuming Φk ≡ I and Ak ≈ Ak−1 with

∆x̃k = Ak[x̃k−1 − x̂k−1|k−1] (6.111)

ε̃k,k−1 = (I − AkKk)ε̃k − φ1ε̃k−1 (6.112)
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the following test case results:

[(I − AkKk)− φ1] ∆x̃k = ε̃k,k−1 (6.113)

As for the predicted residuals the left hand side of Eq. (6.113) is equal to the

right hand side if ∆x̃k and φ1 are the eigenvectors and eigenvalues of (I − AkKk).

Thus as for the predicted residuals, it is feasible that the post-fit residuals can

be modelled as an AR(1) process. Once again this is not intended to be a rigorous

proof, but rather to demonstrate that there exists conditions under which the post-fit

residuals can be time correlated as in an AR(1) process.

6.7 Post-fit residuals as an AR(1) process

Analysis of the data in §5.3 and the subsequent theoretical derivations in §6.6 have

indicated that a time series of residuals for each satellite and observation type pair

can probably be characterised as an AR(1) process. Using the Box-Jenkins model

for an autoregressive process, given by Eq. (6.21), the post-fit residual at epoch k

expressed as an AR(1) process becomes (c.f. Eq. 6.98)

êk − φ1êk−1 = εk (6.114)

where εk is in fact the ‘true’ residual at epoch k, i.e. the residual with the effect of

time correlation removed. This will be called the whitened residual. Since Burg’s

method guarantees that φ1 > 0 then it can be seen that the whitened residual is

found by subtracting the weighted influence of the previous post-fit residual from

the post-fit residual at epoch k.

6.7.1 Estimation of the AR(1) coefficient

As part of an initial trial the post-fit residuals from the ALBM dataset were used

to estimate the AR coefficients using the forward least squares method (see §6.4.3).

The AR(1) coefficient, φ1, was firstly estimated as a constant value over the whole
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time series and subsequently as a moving window of 240 seconds. This was done in

order to see if the estimated values were stable enough to be considered constant

over a satellite pass. The sample size of 240 seconds was chosen to be consistent

with the data analysis performed in Chapter 5.
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Figure 6.2: Variation of the AR(1) coefficient estimated using the forwards least
squares method over a satellite pass (G9 L1 Code).

The results of this initial implementation are shown in Figure 6.2. They show

that the estimated coefficient is very close to unity but at some epochs greater than

1. These two facts point to an unstable estimator. It has already been discussed in

§6.4 that the least squares methods can be unstable where the AR process is close

to the unit circle. For this reason least squares estimation of the AR coefficient was

dropped in favour of Burg’s method, since this would guarantee a stationary model.
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Figure 6.3: Variation of the AR(1) coefficient estimated using Burg’s method over
a satellite pass (G9 L1 Code).

Following the implementation of Burg’s method as the chosen estimator of the

parameter, the results yielded coefficients that were all outside the unit circle (see
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§6.2), as anticipated. Figure 6.3 shows the variation in the AR(1) coefficient using

Burg’s method. By making a comparison between Figures 6.2 and 6.3 it can be

seen that whilst the general variation in the coefficient is the same, Burg’s method

satisfies the requirement for stationarity.

With a successful method for the estimating the AR(1) coefficients, the algorithm

was used to estimate the AR(1) coefficients for the three static sites described in

§5.3.2; ABPO, FALK and GUAM.

6.7.2 Whitening the residual

By taking a 240 second window for a specified satellite as an example, it is possible

to use the estimated coefficient to whiten the time series using

εk = êk − φ1êk−1 (6.115)

An example time series is shown in Figure 6.4, with a comparison between (a)

the original time series and (b) the whitened time series where an AR(1) process

has been assumed and the AR coefficient was estimated (φ1 = 0.995) using Burg’s

method.

The first noticeable feature is that the whitened time series appears to resemble

what would be expected for white noise. The amplitude of the signal is also much

smaller. This is not surprising as it was shown in §5.3.5 that the post-fit residuals

are displaying positive correlation and hence subsequent residuals are likely to be

of a similar value. Given the high values for φ1, which as seen in Figures 6.2 and

6.3 are in general close to 1, this will result in a residual that is much smaller in

magnitude.

Whereas the whitened residuals in Figure 6.4b are calculated by whitening each

value using a common value for all 240 second windows, the method is modified so

that each residual is whitened based on an AR(1) estimate of the previous 240 epochs

(see §5.3.3). This moving window method allows it to be used both automatically

and in real time. This also reflects the fact that the time correlation in the residuals

will vary over a satellite pass.
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(a) Original residuals
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(b) AR(1) whitened residuals (fixed, φ1 = 0.995)
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(c) AR(1) whitened residuals (variable coefficient determined by a 240 second moving window)
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(d) Difference in AR(1) residual determined using a fixed coefficient and variable coefficient de-
termined by a 240 second moving window

Figure 6.4: Time series of residuals for G9 L1 Code at ALBM over a 30 minute
period.

The method requires 240 seconds of data to calculate a reliable estimate of the

AR parameters, as determined in §5.3.3. If this requirement is to be held then the

first 240 epochs of a satellite pass cannot be whitened. It is also a requirement

that the data is continuous. If it is assumed that the AR parameter may change

unpredictably from one epoch to the next then any gap in the data breaks this

discontinuity. If this condition is strictly held a further 240 seconds will have to

elapse before the AR coefficient can be estimated once again. By relaxing this

assumption it can be assumed that over small periods of time the AR parameter

will not significantly change. This is discussed further in §7.5.

The time series in Figure 6.4a was whitened with an AR(1) process, where φ1 is
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determined using a moving window of 240 seconds, and the resulting time series is

shown in Figure 6.4c. It can be seen that residuals determined using these methods

are almost identical, but as is clear in Figure 6.4d the two time series do differ

slightly. It is important to note that even though the absolute differences may be

small, the amplitude of the signal is much smaller and so smaller differences can have

a much greater effect on the whitened test statistic that will be presented later in

the study. It will be shown in Chapter 7 that the variance of the whitened residual

is also much smaller than the variance of the unwhitened residual, therefore these

small differences have the possibility to be magnified when forming the whitened

test statistic.

6.7.3 Testing for whiteness

In order to determine whether the whitened residuals can actually said to be char-

acteristic of random noise the methods for measuring correlation used in §5.3 are

repeated in this section using the whitened residuals. Wherever possible the same

data will be used so that direct comparisons can be made. In all cases there will

be fewer whitened residuals than unwhitened residuals, as an initial 240 epochs are

required for estimating the AR(1) coefficients.

Lag plots

The method for calculating the autocorrelation function is given in §5.3.4. Figures

6.5 - 6.8 show a lag plot for the four observation types for a chosen satellite from

the ABPO, FALK, GUAM and ALBM datasets respectively.

In all cases the residuals now closely resemble the circular pattern seen in Figure

5.10a. Inspection of the axes in these plots shows that the amplitude of the residuals

has decreased, which is to be expected when the AR(1) coefficient is close to unity.

It is interesting to note the sparsely scattered values in the lower left and upper

right of Figures 6.7c and 6.7d which suggest that some of the correlation has not

been removed.

It can therefore be concluded from visual interpretation of the lag plots that the
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.5: Lag plot for the whitened residuals of GPS SVN05 at ABPO.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.6: Lag plot for the whitened residuals of GPS SVN05 at FALK.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.7: Lag plot for the whitened residuals of GPS SVN05 at GUAM.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.8: Lag plot for the whitened residuals of GPS SVN17 at ALBM.
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residuals have been successfully ‘whitened’, although their amplitude has changed.

Durbin-Watson test statistic

The method for calculating the Durbin-Watson test statistic is given in §5.3.5. A

time series of whitened residuals was created for each satellite and observation type.

Once again the Durbin-Watson test statistic was calculated for a moving window

of 240 seconds, where any time gap greater than the sample frequency (1 second)

was not used. Figures 6.9 - 6.12 show histograms of the Durbin-Watson values for

the whitened residuals for L1 code observations, L2 code observations, L1 and L2

carrier phase observations combined and all observations. The general distribution

of the Durbin-Watson values with respect to the critical values are shown in Table

6.1.

Table 6.1: Distribution of Durbin-Watson values of AR(1) whitened residuals from
all datasets with respect to the critical values.

Dataset Observation type d < d+L d+L ≤ d ≤ d+U d+U < d < d−L d−L ≤ d ≤ d−U d > d−U
ABPO L1 Code 1.59% 25.53% 10.60% 48.04% 14.23%

L2 Code 1.79% 28.86% 11.40% 45.81% 12.13%
L1 & L2 Carrier 0.42% 3.59% 7.71% 34.25% 53.07%

FALK L1 Code 2.61% 23.39% 10.54% 46.45% 17.00%
L2 Code 3.14% 23.38% 9.36% 44.86% 19.26%

L1 & L2 Carrier 0.51% 4.33% 14.78% 34.91% 44.33%
GUAM L1 Code 3.69% 29.50% 12.27% 45.48% 9.06%

L2 Code 4.46% 31.80% 11.69% 43.46% 8.58%
L1 & L2 Carrier 4.04% 10.48% 23.22% 40.78% 18.21%

ALBM L1 Code 3.42% 30.34% 9.96% 50.26% 6.01%
L2 Code 2.26% 31.69% 11.24% 50.73% 4.08%

L1 & L2 Carrier 4.91% 23.13% 10.40% 49.71% 11.85%

The effect of whitening the residuals has brought all histograms closer to 2.0.

In the case of the static datasets, the histograms are skewed from the central point

(2.0), with greater skewness seen for the carrier phase than code. This may be due

to the effect of ‘overwhitening’ as a result of the process being incorrectly modelled

as an AR(1) process when it should be a higher order. Underestimating the AR

order of a stochastic process, referred to as underfit, can result in a bias (Broersen

2006). In the case where an AR(p) process, where p > 1, is estimated as an AR(1)

process, the estimate of φ1 may be overestimated due to the unmodelled effect of

higher order lags. When applied to the whitening of residuals, this can result in
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Figure 6.9: Histogram of Durbin-Watson values for the whitened residuals of ABPO.
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Figure 6.10: Histogram of Durbin-Watson values for the whitened residuals of FALK.
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Figure 6.11: Histogram of Durbin-Watson values for the whitened residuals of
GUAM.
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Figure 6.12: Histogram of Durbin-Watson values for the whitened residuals of
ALBM.
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an overestimation of the weight assigned to êk−1 and therefore a greater proportion

of êk−1 is subtracted from êk. This can cause the whitened residual to become

negatively correlated at lag 1.

From Table 6.1 it can be seen that 53.07% of the carrier phase residuals in

the ABPO dataset lie above d−U , hence showing that these values are significantly

negatively correlated. This effect can also be seen in the carrier phase residuals for

the FALK dataset. In many of the histograms there appear to be two peaks, namely

one around 2.0 and a second at a higher value. This supports the idea that some

residuals have been ‘overwhitened’, whereas others have been sufficiently whitened.

The carrier phase residuals for the ALBM dataset appear to be less skewed, although

the peak of its histogram appears to be greater than 2.0.

By contrast, the code residuals for all datasets appear more centred around 2.0,

although the data in Table 6.1 shows a higher proportion of values in the region of

inconclusivity close to negative correlation (d−U < d < d−L) and once again suggests

that ‘overwhitening’ is occurring. A slightly lower proportion of values were in this

region for the original residuals (see Table 5.2), but in the case of the AR(1) whitened

code residuals these regions can be considered the tails of the overall distribution of

Durbin-Watson values.

What is significant is that a very small proportion of all Durbin-Watson values

are in the region that would indicate that the residuals are positively correlated. It

can therefore be concluded that the time correlation has been successfully removed,

although in some cases an AR(1) process does not appear to have been sufficient.

Autocorrelation function

The method for calculating the autocorrelation function is given in §5.3.6. Eq. (5.29)

was used to calculate the autocorrelation function for the whitened residuals of each

satellite and observation type pair. As before each time series was divided into 240

second blocks and the autocorrelations for lags {1, . . . , 120} were calculated. The

95% confidence region was calculated using Eq. (5.32).

Figures 6.13 - 6.16 show the autocorrelation graphs for the whitened residuals
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of the ABPO, FALK, GUAM and ALBM datasets. The same satellites chosen for

the lag plots in §5.3.6 have once again been used here so that comparisons can be

made.

In all cases the autocorrelation plots are much more in line with what is expected

for random noise (see Figure 5.19a for reference), but in the case of the static

datasets the autocorrelation values up to approximately lag 10 are outside the 95%

confidence region. Considering that the Durbin-Watson values for the same datasets

and observation types were shown to be slightly above 2.0 in §6.7.3 this could support

the theory that the AR(1) estimation may be due to over-whitening of the residuals

and that a higher order of AR model may be required (see §6.8). In the case of the

ALBM dataset the whitening appears to have the greatest effect, although it can be

seen from Figure 6.16 that the whitening does not appear to be incomplete as seen

with the static datasets.

With the exception of FALK, the carrier phase residuals all have autocorrelations

that are within the 95% confidence region for all lags. The L1 and L2 carrier phase

autocorrelations at lag 1 for FALK (see Figures 6.14c and 6.14d) are negative and

lie outside the 95% confidence region. In Figure 6.10 it can be seen that the highest

proportion of Durbin-Watson values lie above 2.0, matching what is seen in the

autocorrelation plot. Once again this could be due to incomplete whitening of the

residual as a result of an incorrect AR order.

Cross-correlation matrices

In §5.3.7 it was particularly noteworthy that, not only were residuals autocorre-

lated, but there were also high cross-correlations. This meant that the residual of

one satellite and observation type pair was correlated with the residual for a differ-

ent satellite and observation type pair at a lagged epoch. In this section the AR

coefficients have been determined by a univariate approach, i.e. using the autocorre-

lations and not the cross-correlation. It is important to validate that not only have

the correlations within a satellite and observation type pair been removed, or at the

very least reduced, but also that this has reduced the cross-correlations. Conversely,
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Figure 6.13: Autocorrelation plot for the whitened residuals of GPS SVN05 at
ABPO.
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Figure 6.14: Autocorrelation plot for the whitened residuals of GPS SVN05 at
FALK.
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Figure 6.15: Autocorrelation plot for the whitened residuals of GPS SVN05 at
GUAM.
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Figure 6.16: Autocorrelation plot for the whitened residuals of GPS SVN17 at
ALBM.
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it is also important to ensure that no cross-correlations have been introduced.

The cross-covariance and cross-correlation matrices are calculated as per the

method set out in §5.3.7 using Eq. (5.36) and (5.37). The same sample size of 240

seconds is used and only common satellite and observation type pairs are included.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.17: Lag 1 cross-correlation plot for ALBM dataset.

The cross-correlations for lags 1, 5, 10, 15 and 30 are shown in Figures 6.17 - 6.21.

It is immediately clear that the correlations are much smaller than seen previously.

The values in Table 6.2 support this, with mean values that are very close to zero,

along with a small standard error, and very little deviation from the mean. As the

lag time increases the range of values, as shown by the minimum and maximum

values in Table 6.2 decreases as expected. It is interesting to note that the mean

and standard deviations appear to be around the same value. However, using the

level of confidence given by Eq. (5.32), values where ρij(s) < 0.1061 are considered

insignificant.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.18: Lag 5 cross-correlation plot for ALBM dataset.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.19: Lag 10 cross-correlation plot for ALBM dataset.
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(c) L1 Carrier (d) L2 Carrier

Figure 6.20: Lag 15 cross-correlation plot for ALBM dataset.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.21: Lag 30 cross-correlation plot for ALBM dataset.
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Table 6.2: Minimum, maximum, mean, standard error and standard deviation of
cross-correlation values of AR(1) whitened residuals for all satellites and observation
types for ALBM dataset at lags 1, 5, 10, 15 and 30.

Lag Observation type Min Max Mean St. err. St. dev.
1 L1 Code -0.1922 0.1605 −2.438× 10−4 2.560× 10−3 0.0794

L2 Code -0.1435 0.1647 8.554× 10−4 2.604× 10−3 0.0807
L1 & L2 Carrier -0.2482 0.2704 −1.770× 10−4 3.769× 10−3 0.1168
All observations -0.2704 0.2704 5.829× 10−5 7.142× 10−4 0.0886

5 L1 Code -0.1792 0.1972 −7.454× 10−5 2.781× 10−3 0.0862
L2 Code -0.1362 0.2520 9.120× 10−4 2.534× 10−3 0.0786

L1 & L2 Carrier -0.1533 0.1256 4.621× 10−4 2.127× 10−3 0.0659
All observations -0.2471 0.2520 2.726× 10−5 5.785× 10−4 0.0717

10 L1 Code -0.2259 0.1808 2.721× 10−4 2.263× 10−3 0.0702
L2 Code -0.1617 0.1651 1.806× 10−3 2.339× 10−3 0.0725

L1 & L2 Carrier -0.1386 0.1512 6.505× 10−4 2.149× 10−3 0.0666
All observations -0.2259 0.2253 2.152× 10−4 5.790× 10−4 0.0718

15 L1 Code -0.1375 0.1079 7.122× 10−5 2.030× 10−3 0.0629
L2 Code -0.1157 0.1674 9.295× 10−5 2.344× 10−3 0.0727

L1 & L2 Carrier -0.2301 0.2150 4.040× 10−4 2.990× 10−3 0.0927
All observations -0.2301 0.2302 −2.057× 10−5 6.272× 10−4 0.0778

30 L1 Code -0.1587 0.1760 5.897× 10−6 2.520× 10−3 0.0781
L2 Code -0.1629 0.1182 2.011× 10−4 1.975× 10−3 0.0612

L1 & L2 Carrier -0.1776 0.1672 1.509× 10−4 2.304× 10−3 0.0714
All observations -0.2110 0.1778 2.042× 10−5 5.629× 10−4 0.0698

6.8 Post-fit residuals as an AR(p) model

Since it is possible to partially whiten the post-fit residual using an AR(1) model the

question arises as to whether a higher order model can improve the result. Using the

model in Eq. (6.21) the post-fit residual at epoch k expressed as an AR(p) process

becomes

êk − φ1êk−1 − · · · − φpêk−p = εk (6.116)

where εk is the ‘true’ or whitened residual at epoch k.

Instead of fixing the order of autocorrelation to one particular value it is going

to be assumed that the order can change with time. It is now important to correctly

identify the model order that characterises the residuals at each epoch. A number

of criteria for determining model order were discussed in §6.5. Given its wide use,

Akaike’s Information Criterion (AIC) has been chosen as the preferred method for

calculating model order (see §6.5.4).
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6.8.1 Estimation of the AR(p) coefficients

The implementation of the estimation routine described in §6.7 was extended to es-

timate the AR coefficients order p > 1. Since Burg’s method is built upon Levinson-

Durbin recursion (see §6.4.2) an AR(1) model is first estimated and with each iter-

ation the next order of model is estimated. In addition to the AR coefficients, the

residual variance for each model order is also calculated and this is used to determine

the best AR order (see §6.3). The AIC value for each model order was calculated

and the minimum value chosen to determine the model order. A sample size of

240 seconds was chosen to maintain consistency with the data analysis performed

in Chapter 5 and the AR(1) estimation in §6.7. Model orders up to p = 120 were

chosen.

Figures 6.22 - 6.25 show the frequency at which each AR model order has been

chosen using AIC for the ABPO, FALK, GUAM and ALBM datasets. For each

dataset values for all satellites are included, but separated by observation type. Due

to the scaling given by Eq. (5.24) the L1 and L2 carrier phase residuals are shown

together as one plot. In all cases for the carrier phase residuals an AR(1) process is

determined most frequently. This is the case for both both ‘static’ and ‘kinematic’

datasets, although for the latter the frequency with order 1 is much greater than

higher orders.

The code residuals for the ‘static’ datasets are mostly estimated as higher order

processes than the carrier phase residuals, with 4 ≤ p ≤ 6. This could be caused by

longer period multipath signals. The exception to this are the L2 code residuals for

GUAM. It is also interesting to note that for all ‘static’ datasets there are two peaks

for the code residuals, with one at p = 1 and a subsequent peak at 4 ≤ p ≤ 6. In

the case of the ‘kinematic’ ALBM dataset all code residuals are primarily estimated

as an AR(1) process.
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Figure 6.22: Histogram showing the frequency at which each AR order has been
chosen using AIC for ABPO dataset.
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Figure 6.23: Histogram showing the frequency at which each AR order has been
chosen using AIC for FALK dataset.
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Figure 6.24: Histogram showing the frequency at which each AR order has been
chosen using AIC for GUAM dataset.
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Figure 6.25: Histogram showing the frequency at which each AR order has been
chosen using AIC for ALBM dataset.
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6.8.2 Whitening the residual

As in §6.7.2 it is possible to use the coefficients estimated from an exemplar 240

second moving window to whiten the time series using

εk = êk − φ1êk−1 − · · · − φpêk−p (6.117)

Each residual is whitened based on an AR(p) estimate using the previous 240

epochs. Using the same methodology used in §6.7.2, if there is any gap in the data

then there will be a latency of 240 seconds before the AR coefficient can be estimated

again in order to ensure that continuous data is used.

6.8.3 Testing for whiteness

Consistent with §6.7.3, in order to determine whether the whitened residuals can

actually said to be characteristic of random noise the methods for measuring correla-

tion used in §5.3 are repeated in this section using the whitened residuals. Wherever

possible the same data will be used so that direct comparisons can be made.

AR model order

Figures 6.26 – 6.29 show the AR model orders, i.e. the values of p, chosen for the

results presented in this section. It can be seen that the AR models chosen are

generally of order 30 or below. By listing each successive AR order along with

the number of times that particular AR order was chosen it is possible to assess

the frequency at which each model order is chosen. By further calculating the

cumulative frequency it is possible to find the AR model which corresponds to the

68% and 95% percentile. This data is shown in Table 6.3. From this it can be seen

Table 6.3: Maximum AR model chosen for 68% (and 95%) of all epochs. The AR
model corresponding to 95% is shown in parentheses.

Site L1 Code L1 Carrier L2 Code L2 Carrier
ABPO 9 (26) 8 (27) 11 (40) 8 (27)
FALK 8 (33) 7 (30) 10 (26) 7 (28)
GUAM 8 (22) 6 (15) 8 (22) 6 (15)
ALBM 4 (25) 11 (38) 5 (26) 11 (38)

177



that 68% of epochs have an AR model that is 11 or less. Figures 6.26 – 6.29 also

show small clusters of epochs where the values are close to the maximum model

order of p = 120. This could suggest that the residuals at this point could be

better characterised by this model order or possibly higher. However, it may also be

the case that the automatic procedure for selecting the model order has incorrectly

identified such a high model order.

Lag plots

The method for generating the lag plots is given in §5.3.4. Figures 6.30 - 6.33 show

a lag plot for the four observation types for a chosen satellite from the ABPO,

FALK, GUAM and ALBM datasets respectively. The AR coefficients have been

estimated using an AR(p) model using the method described in §6.8.1 and the

residuals whitened as outlined in §6.8.2.

Figures 6.30 - 6.33 show a lag plot for the four observation types for the ABPO,

FALK, GUAM and ALBM datasets generated using the method outlined in §5.3.4.

The same satellites chosen for the lag plots in §5.3.4 have once again been used here

so that comparisons can be made.

The lag plots for the whitened residuals using an AR(1), shown in Figures 6.5 -

6.8, and an AR(p) model do not appear to differ greatly, since they both have the

elliptical shape expected for random noise. However, the slight negative trend seen

in the AR(1) plots, which makes the ellipse appear to be at a slight angle, is corrected

for in the AR(p) plots. This is especially the case for the ABPO and FALK datasets.

The sparsely scattered values in the lower left and upper right seen in the carrier

phase lag plots of the residuals for the GUAM dataset (see Figures 6.32c and 6.32d)

still appear to be present in the AR(p) residuals, as shown in Figures 6.7c and 6.7d.

This would suggest that either an AR process with a much higher order is needed

or that the time correlation cannot be removed by autoregression. This could be

possible if the time correlation could be characterised by a different model.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.26: AR order chosen using AIC for GPS SVN05 at ABPO.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.27: AR order chosen using AIC for GPS SVN05 at FALK.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.28: AR order chosen using AIC for GPS SVN05 at GUAM.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.29: AR order chosen using AIC for GPS SVN17 at ALBM.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.30: Lag plot for the AR(p) whitened residuals of GPS SVN05 at ABPO,
where p is determined automatically using AIC.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.31: Lag plot for the AR(p) whitened residuals of GPS SVN05 at FALK,
where p is determined automatically using AIC..
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.32: Lag plot for the AR(p) whitened residuals of GPS SVN05 at GUAM,
where p is determined automatically using AIC..

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.33: Lag plot for the AR(p) whitened residuals of GPS SVN17 at ALBM,
where p is determined automatically using AIC..
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Durbin-Watson test statistic

The method for calculating the Durbin-Watson test statistic is given in §5.3.5. A

time series of whitened residuals was created for each satellite and observation type.

Once again the Durbin-Watson test statistic was calculated for a moving window of

240 seconds, where any time gap greater than the sample frequency (1 second) was

not used. Figures 6.34 - 6.37 show histograms of the Durbin-Watson values for the

AR(p) whitened residuals. The general distribution of the Durbin-Watson values

with respect to the critical values are shown in Table 6.4.

Table 6.4: Distribution of Durbin-Watson values of AR(p) whitened residuals from
all datasets with respect to the critical values.

Dataset Observation type d < d+L d+L ≤ d ≤ d+U d+U < d < d−L d−L ≤ d ≤ d−U d > d−U
ABPO L1 Code 1.26% 39.40% 19.57% 39.29% 0.47%

L2 Code 1.28% 40.91% 19.09% 38.28% 0.43%
L1 & L2 Carrier 0.37% 24.83% 19.02% 49.19% 5.61%

FALK L1 Code 2.21% 38.83% 19.01% 38.65% 1.29%
L2 Code 2.71% 38.65% 18.72% 38.54% 1.38%

L1 & L2 Carrier 0.63% 24.12% 25.44% 44.45% 4.19%
GUAM L1 Code 3.54% 38.84% 18.31% 37.47% 1.83%

L2 Code 4.26% 39.36% 17.67% 36.58% 2.13%
L1 & L2 Carrier 0.62% 20.40% 29.12% 42.61% 3.94%

ALBM L1 Code 0.29% 33.10% 16.02% 48.58% 2.02%
L2 Code 0.64% 35.27% 15.52% 46.98% 1.60%

L1 & L2 Carrier 1.96% 40.04% 16.41% 39.90% 1.69%

Compared to the histograms for an AR(1) process (see Figures 6.9 - 6.12) those

for an AR(p) process are much more centred around 2.0 and have a much tighter

distribution. This is reflected in the data in Table 6.4, where far fewer values are in

the regions indicating significant positive correlation (d < d+L). It can also be seen

that there are fewer values in the region indicating significant negative correlation

(d > d−U), which justifies the use of a higher order model as the residuals are no longer

‘overwhitened’. Many values can still be found in the two regions of inconclusivity

(d+L ≤ d ≤ d+U and d−L ≤ d ≤ d−U).

The AR(p) whitened carrier phase residual histograms appear slightly skewed

towards negative correlation. This is supported by the data in Table 6.4, where there

are almost twice as many values in the region d+L ≤ d ≤ d+U as in d−L ≤ d ≤ d−U . This

could suggest that even higher order models may be required to completely whiten

the carrier phase residuals. As model orders up to 120 seconds were considered,
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Figure 6.34: Histogram of Durbin-Watson values for the whitened residuals of
ABPO.
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Figure 6.35: Histogram of Durbin-Watson values for the whitened residuals of FALK.
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Figure 6.36: Histogram of Durbin-Watson values for the whitened residuals of
GUAM.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Durbin-Watson test statistic

L1 Code

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Durbin-Watson test statistic

L2 Code

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Durbin-Watson test statistic

L1 & L2 Carrier

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Durbin-Watson test statistic

All observation types

Figure 6.37: Histogram of Durbin-Watson values for the whitened residuals of
ALBM.

185



this suggests very high order processes. If higher orders were to be estimated then

greater sample sizes would be required to ensure a stable estimate.

To conclude, the histograms and data in Table 6.4 show that the by estimating

the residuals as an AR(p) process results in less ‘overwhitening’ than for the AR(1)

whitened residuals. This appears particularly successful for the code residuals, al-

though the carrier phase residuals for the ‘static’ datasets may require even higher

order AR models.

Autocorrelation function

The method for calculating the autocorrelation function is given in §5.3.6. Eq. (5.29)

was used to calculate the autocorrelation function for the whitened residuals of each

satellite and observation type pair. As before each time series was divided into 240

second blocks and the autocorrelations for lags {1, . . . , 120} were calculated. The

95% confidence region was calculated using Eq. (5.32).

Figures 6.38 - 6.41 show the autocorrelation graphs for the AR(p) whitened

residuals of the ABPO, FALK, GUAM and ALBM datasets. In each case the same

satellite as used in §5.3.6 and §6.7.3 are used for comparison.

The autocorrelation plots show that in all cases for lags greater than zero the

autocorrelation lies with in the 95% confidence area, therefore showing that the

whitened residuals are not correlated with any other epoch within the same satellite

and observation type pair.

Cross-correlation matrices

Although in §6.7.3 the cross-correlations of the AR(1) whitened residuals were very

low, it is interesting to see if by estimating higher model orders these values can

be further minimised. The cross-covariance and cross-correlation matrices are cal-

culated as per the method set out in §5.3.7 using Eq. (5.36) and (5.37). The same

sample size of 240 seconds is used and only common satellite and observation type

pairs are included.

The cross-correlations for lags 1, 5, 10, 15 and 30 are shown in Figures 6.42 -

6.46 along with a numerical summary in Table 6.5. Once again the values are much
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Figure 6.38: Autocorrelation plot for the AR(p) whitened residuals of GPS SVN05
at ABPO.
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Figure 6.39: Autocorrelation plot for the AR(p) whitened residuals of GPS SVN05
at FALK.
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Figure 6.40: Autocorrelation plot for the AR(p) whitened residuals of GPS SVN05
at GUAM.
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Figure 6.41: Autocorrelation plot for the AR(p) whitened residuals of GPS SVN17
at ALBM.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.42: Lag 1 cross-correlation plot of AR(p) whitened residuals for ALBM
dataset.

smaller than those of the unwhitened residuals. In comparison with the AR(1) cross-

correlation matrices the values are of a similar magnitude, but in some cases the

range and standard deviation for the AR(p) cross-correlations are smaller and in

other cases it is the values in the AR(1) cross-correlations that are smaller. It must

not be forgotten that values where ρij(s) < 0.1061 are not statistically significant

(cf. Eq. 5.32) and therefore many of the values can be considered to be indicative

of random noise.

6.9 Discussion of AR(p) model order selection

From the results presented in this chapter it is clear that by not restricting the

autoregression to a first-order process the resulting adjusted residuals are closer to

white noise. The method chosen for dealing with higher orders, referred to as the

AR(p) model, handles this by automatically choosing the model order at each epoch.

An alternative method would be to fix the AR model order for each observation
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.43: Lag 5 cross-correlation plot of AR(p) whitened residuals for ALBM
dataset.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.44: Lag 10 cross-correlation plot of AR(p) whitened residuals for ALBM
dataset.
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(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.45: Lag 15 cross-correlation plot of AR(p) whitened residuals for ALBM
dataset.

(a) L1 Code (b) L2 Code

(c) L1 Carrier (d) L2 Carrier

Figure 6.46: Lag 30 cross-correlation plot of AR(p) whitened residuals for ALBM
dataset.
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Table 6.5: Minimum, maximum, mean, standard error and standard deviation of
cross-correlation values of AR(p) whitened residuals for all satellites and observation
types for ALBM dataset at lags 1, 5, 10, 15 and 30.

Lag Observation type Min Max Mean St. err. St. dev.
1 L1 Code -0.1835 0.1377 6.741× 10−4 2.464× 10−3 0.0764

L2 Code -0.1401 0.1664 2.016× 10−3 2.526× 10−3 0.0783
L1 & L2 Carrier -0.3068 0.3068 −3.431× 10−4 4.012× 10−3 0.1244
All observations -0.3068 0.3068 1.937× 10−4 7.291× 10−4 0.0904

5 L1 Code -0.1589 0.1662 7.243× 10−4 2.615× 10−3 0.0811
L2 Code -0.1235 0.2046 1.081× 10−3 2.252× 10−3 0.0698

L1 & L2 Carrier -0.1575 0.1540 −8.438× 10−4 2.293× 10−3 0.0711
All observations -0.2384 0.2394 1.035× 10−4 5.843× 10−4 0.0725

10 L1 Code -0.2283 0.1423 9.123× 10−5 2.171× 10−3 0.0673
L2 Code -0.1810 0.1399 2.796× 10−3 2.233× 10−3 0.0692

L1 & L2 Carrier -0.1711 0.1547 1.094× 10−3 2.111× 10−3 0.0654
All observations -0.2283 0.1908 2.488× 10−4 5.495× 10−4 0.0681

15 L1 Code -0.1815 0.0939 −9.734× 10−5 1.949× 10−3 0.0604
L2 Code -0.1366 0.1645 −3.531× 10−5 2.395× 10−3 0.0742

L1 & L2 Carrier -0.2155 0.2015 4.181× 10−4 2.859× 10−3 0.0886
All observations -0.2179 0.2179 7.633× 10−5 6.084× 10−4 0.0754

30 L1 Code -0.1594 0.1747 −5.385× 10−4 2.553× 10−3 0.0791
L2 Code -0.1567 0.1030 7.910× 10−4 1.874× 10−3 0.0581

L1 & L2 Carrier -0.1969 0.1700 −8.133× 10−6 2.392× 10−3 0.0742
All observations -0.1970 0.1970 1.938× 10−5 5.667× 10−4 0.0703

type, for example one value for the code and another for the carrier phase. If it

assumed that the source of the time correlation is a result of hardware (e.g. tracking

loop errors), site environment (e.g. multipath) and the application of corrections

(e.g. orbit and clock corrections), the AR model that would be specified a priori

would not only need to be determined on a site-by-site basis, but also may change

in time as the satellite constellation changes. For kinematic positioning the site

environment may also be continually changing.

It is also evident from 6.26 – 6.29 that the AR model order itself can vary within

very wide limits from epoch to epoch. It is reasonable to assume that the AR

model order would not change by such varying degrees. One possible method of

overcoming this is to adapt the model order selection by placing constraints based

on the previously calculated model orders. Since this is a complex procedure it has

not been employed in this study, but could be considered in future work.

Another aspect of the implementation described in §6.8 is that the AR parame-

ters are allowed to change unconstrained from one epoch to the next. The reason for

this is purely from an implementation standpoint, since this was more straightfor-
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ward to implement in the GNSS processing software. Even though it has previously

been stated that it is assumed that the AR parameters change over time, given the

probable sources of the error specified above it is safe to assume that these values

will vary slowly over time. It is therefore possible to use a Kalman-like filter to es-

timate the AR parameters. If the model order is allowed to change from one epoch

to the next then this poses obvious implementation issues, since it is not possible

to propagate an estimated parameter if the AR model order is changed. One so-

lution to this would be to implement parallel filters, although this will impact on

computational efficiency.

6.10 Estimating AR parameters as a multivariate

process

The estimation of the AR parameters has thus far been done separately for each

satellite and observation type pair. As seen in §5.3.7 the post-fit residuals are not

only autocorrelated, but cross-correlations between satellites and observation types

also exist. Therefore these should theoretically be included in the AR model.

The n-variate AR(p) model can be expressed as

xk = Φ1xk−1 + · · ·+ Φpxk−p = εk (6.118)

where

xk =


x1,k

...

xn,k

 , Φp =


φ11,p · · · φ1n,p

...
. . .

...

φn1,p · · · φnn,p

 , εk =


ε1,k

...

εn,k


From Eq. (6.118) it can be seen that the AR coefficients are now replaced by

p matrices with dimensions n × n, hence including the cross-correlations between

different time series.

If the multivariate process is assumed to be stationary it is possible to derive an
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analogous set of Yule-Walker equations (see §6.4.1). This is achieved by replacing

{R(0), . . . , R(p)} in Eq. (6.32) with the cross-covariances of the multivariate pro-

cesses, given by Eq. (5.35). Taking the AR(1) process as an example, its solution is

given by

R(0) Φ1 = R(1) (6.119)

However for higher order processes the model takes on a more complex structure,

as shown by Priestley (1981). If the process has values close to the unit circle (see

§6.2) then this will also cause the same problems for stability as outlined in §6.4.

Since the cross-covariance matrices have been created for analysis in §5.3.7 it was

possible to extend what had already been done to include multivariate estimation.

It has already been noted in §6.7 that the AR coefficients are very close to the unit

circle and the least squares methods, of which solving the Yule-Walker equations is

analogous, can lead to unstable estimates of the AR coefficients. In order to solve

Eq. (6.119) it is necessary to invert R0. This is the cross-covariance matrix at

lag 0, but also E{êk, êTk } and hence equivalent to Qêk . Since the latter cannot be

inverted when using a least squares derived method, since it has a rank equal to

the degrees of freedom (Krakiwsky et al. 1999), R(0) for the post-fit residuals is

also non-invertible. Experimentally this was confirmed with the estimate of R(0)

from the ALBM dataset. For this reason the estimation of AR coefficients using

post-fit residuals cannot be treated as a multivariate problem, as the semi-recursive

Kalman filter used in the E-HP/PPP processing software cannot calculate predicted

residuals.

6.11 Summary

In this chapter stationarity was introduced in §6.2 along with the concept of the

unit circle. Following discussion it was noted that even if a whole series is not itself

stationary over small time periods it can be.

Following this two equivalent models for an AR process were presented in §6.3,

namely the Box-Jenkins model and the Priestley model. The latter was chosen for

194



use in this study as it lends itself to the concepts developed in later chapters. The

properties of an AR process were also described.

Four methods for estimating an AR process were then described in §6.4. The

Yule-Walker method was presented as a group of equations that describe the AR

process in terms of autocovariances or autocorrelations. Levinson-Durbin recursion

was then introduced as a method for obtaining a more numerically stable solution,

but not considered suitable for automated processes. The least squares methods

were presented as an alternative method of estimating the AR process, althogh this

was also unsuitable for automated processes. Finally, Burg’s method presented the

best option for application in this study as it leverages the numerical efficiency of

Levinson-Durbin recursion with a comboination of forward and backward residuals

used in the least squares methods to ensure stationarity.

Since AR model orders greater than 1 were to be considered in the study an

overview of methods for determining model order were considered in §6.5. Aikake’s

Information Criterion was chosen as the desired method. This has the advantage

that it can easily be integrated into Burg’s method.

The theory of optimal and non-optimal filters presented in §5.2 was extended

in §6.6 to show that when a filter is non-optimal the predicted residuals can be

shown to be characterised by an AR(1) process. Through the connection between

the predicted and post-fit residuals derived in §3.7 this was shown also to be the

case for the post-fit residuals.

In §6.7 only an AR(1) process was considered as this is relatively straightforward

to implement and minimises the numerical expense of the process, which is an

important consideration for real-time applications. It was found that such a basic

model was sufficient for removing a large proportion of the correlation, although in

some cases, where the best model order would ideally be higher, the residual was

not sufficiently whitened. This was particularly noticeable in the Durbin-Watson

values. The cross-correlation plots showed that although modelled as a univariate

AR process, the cross-correlations had also been reduced and more importantly no

cross-correlations had been introduced.
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The whitening procedure was extended in §6.8 so that the residuals were mod-

elled as an AR(p) process, where AIC was the chosen criterion for choosing model

order. Whilst this yielded similar results to those seen for the AR(1) process, it did

reduce the number of instances where the number of residuals were ‘overwhitened’.

This was once again reflected in the Durbin-Watson values.

Issues regarding the AR(p) model order selection were discussed in §6.9. Al-

though it is possible to predetermine the AR order for given observation types since

this is receiver and site dependent the conclusion is that this is not always practical.

Additionally if the AR parameters were to propogated from one epoch to the next

using a recursive estimator changing model order between epochs would be complex.

As the residuals were modelled as a univariate process, i.e. the coefficients for

each satellite and observation type pair were modelled separately, it is important

to consider a multivariate AR process and this was discussed in §6.10. Given that

the autocovariance matrix at lag 0 is not invertible for the post-fit residuals from a

least squares method this was not an option with the software that was available.

It is also important to note that estimating the AR parameters as a multivariate

problem is much more complex, especially when different satellite and observation

type pairs may simultaneously be characterised by different model orders.

In conclusion, a reliable method was established for whitening the post-fit resid-

uals from the PPP software with the AR model being automatically determined

during processing. These were whitened post-fit residuals shown to be typical of

random noise. An AR(p) process was best suited to whitening the residuals, al-

though in many cases an approximation as an AR(1) process was sufficient. The

use of these residuals in a modified test statistic is presented in Chapter 7.
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Chapter 7

The whitened test statistic

7.1 Introduction

It has been shown in Chapter 6 that it is possible to model the time correlation in

the residual time series as an autoregressive process. A number of autoregressive

methods were presented and Burg’s method (Burg 1967) was chosen as the most

suitable. It was then shown in §6.7 and §6.8 that by estimating the AR coefficients

the post-fit residuals from our PPP software could be whitened resulting in residuals

that closely resemble white noise.

Since the quality control procedures outlined in Chapter 4 are based upon the

assumption that the residuals are not correlated in time, the T test statistic given

in §4.2 will be modified for use with the whitened residuals. The quality control

procedures are briefly revisited in §7.2, which identify the variance of the whitened

residual as a requirement for forming a whitened test statistic. The method for

calculating this is derived in §7.3 and estimated for the four datasets used previously.

The formulae for the whitened residual and its variance are brought together in §7.4

to give the whitened test statistic for the predicted and post-fit residuals. Since

there are a number of constraints on using the whitened test statistic, a number of

implementation issues are discussed in §7.5.

The whitened test statistic is firstly analysed as a time series in §7.6, where

it is compared alongside the unwhitened test statistic. For specific satellite and

observation types the behaviour of the whitened test statistic is then analysed in §7.7
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on an epoch by epoch basis, comparing values for different satellite and observation

types. A comparison of different scenarios is made.

The subject of reliability covered in §4.7 is revisited in §7.8 and the implications

of using the variance of the whitened residual to calculate the MDB are discussed.

Sample time series of MDB values for the four datasets are also presented. Finally,

the improved power of the whitened test statistic and whitened MDB are discussed in

§7.9, including the implications of the 240 second time period required for estimating

the AR parameters.

7.2 Quality control procedures revisited

In Chapter 4 the quality control procedures for a recursive estimator were derived

using the predicted residual, vk. It was subsequently shown that it is also possible

to use the post-fit residual, ek, given the linear relationship described in §3.7. Since

it has been shown in Chapter 6 that the time correlated residual can be whitened

using autoregression, it should be possible to form a test statistic using this value.

In this section the quality control procedures are revisited in order to determine

what values are required for a whitened test statistic.

7.2.1 Predicted residual

For the predicted residuals the test statistic is given by Eq. (4.17), repeated again

here for clarity,

T = vTQ−1v C(CTQ−1v C)−1CTQ−1v v

From this it can be seen that v and Qv are the two calculable quantities that are

required in order to determine the test statistic. It has already been established

that v would be replaced by the whitened residual, ṽ, using the method outlined

in Chapter 6. The variance-covariance of the predicted residual, Qv, must now be

replaced by Qṽ, since the former is calculated on the assumption of an optimum

filter using Qyk and Qwk
, which are now replaced with Q∗yk and Q∗wk

.
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7.2.2 Post-fit residual

In the case of the post-fit residuals the test statistic is given by Eq. (4.5), again

repeated here for clarity.

T = êTkQ
−1
yk
Cyk(CT

yk
Q−1yk QêkQ

−1
yk
Cyk)−1CT

yk
Q−1yk êk

There are three main constituents of this test statistic that are calculable, namely

(i) êk, the post-fit residuals,

(ii) Qyk , the variance-covariance matrix of the observables, and

(iii) Qêk , the variance-covariance matrix of the post-fit residuals.

As for the predicted residuals, ê and Qê can be replaced with their whitened equiv-

alents. The inclusion of Qyk in this model poses a problem, as it is coupled with

Qêk . Recalling Eq. (3.42),

Qêk = Qyk + AkQx̂k|kA
T
k

it can be seen that Qyk appears implicitly in the test statistic as part of Qêk as well

as explicitly in the test statistic itself. It will be shown in §7.3 that the variance

of the whitened residual is found by scaling Qêk . In the standard case a change

in Qêk will be coupled with a change in Qyk , but in the whitened case the implicit

instance of Qyk will be scaled whereas the explicit one will not. The solution to this

discrepancy is to make an adjustment to the explicit instance of Qyk , which shall be

referred to as Q̃yk , which will be defined in §7.4. This is not a problem for the case

using predicted residuals, as Qyk only appears implicitly in Qvk .

7.3 Variance of the whitened residual

There are two approaches that can be taken in order to determine the variance of

the whitened residual. In Chapter 6 the whitened residual was derived as εk, the

white noise process that results from an AR estimation. It can be shown using

199



autoregression theory that the variance of this white noise process, σ2
εk

, is calculable

as a function of the original estimate of the AR process.

A second approach is to take the theory already developed that shows the pre-

dicted and post-fit residuals can be modelled as an AR process and then extend this

to derive the expression for the variance-covariance matrix of the whitened residual.

Whilst all the analysis done has been based on a univariate process, it is theoret-

ically possible to model the entire problem as a multivariate AR process. Although

this is not done in practice, due to the problems described in §6.10, it is important

to address the theoretical consequences of this.

7.3.1 Autoregression theory

Using the approach taken by Box and Jenkins (1976) the AR(p) process

xk = φ1xk−1 + · · ·+ φpxk−p + εk

is multiplied by xk−s, for s ≥ 0, giving

xk−sxk = φ1xk−sxk−1 + · · ·+ φpxk−sxk−p + xk−sεk (7.1)

Taking the expectations of Eq. (7.1) gives

R(s) = φ1R(1) + · · ·+ φpR(p) (7.2)

where s > 0. It can be seen that the term that includes εk vanishes from the

equation, as E{xk−sεk} = 0 where k > 0. However, taking k = 0 the equation now

becomes

R(0) = φ1R(1) + φ2R(2) + · · ·+ φpR(p) + σ2
ε (7.3)

This is because for s = 0 the term E{xk−s, εk} = E{εk, εk} = σ2
ε . Since R(s) =

R(0)ρ(s) and R(0) = σ2
x,

σ2
x =

σ2
ε

1− φ1ρ(1)− φ2ρ(2)− · · · − φpρ(p)
(7.4)
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which can be rearranged and simplified to give

σ2
ε = σ2

x(1−
p∑
i=1

φiρ(i)) (7.5)

The approach taken by Broersen (2006) is in terms of the reflection coefficient,

defined in §6.4.4, and forms part of Burg’s method. The variance of the AR process

is given as

σ2
x =

σ2
ε

p∏
i=1

(1− κ2i )
(7.6)

where κ is the reflection coefficient. Recall from §6.4.4 that this of opposite sign to

the partial autocorrelation. It can be seen that for an AR(1) process this resembles

the formula given by Box and Jenkins (1976).

Priestley (1981) gives an estimator for σ2
ε , which is said to be an approximately

unbiased estimate.

σ̂2
ε =

N − p
N − 2p− 1

[R(0)− φ1R(1)− . . .− φpR(p)] (7.7)

The first notable difference between the Box and Jenkins (1976) method, given by

Eq. (7.5), and that by Priestley (1981), given by Eq. (7.7), is the multiplying factor

that is used to inflate the estimate depending on the sample size N and AR order

p. However, it can be seen that for low-order AR processes that use a large sample

size N the factor is almost unity. The second difference is that this equation uses

the autocovariance (R(s)) and not the autocorrelation (ρ(s)). However, by recalling

that dividing R(s) by R(0) gives ρ(s) and that R(0) ≡ σ2
x

R(0)− φ1R(0)− · · · − φpR(p) = σ2
x(1− φ1ρ(1)− φ2ρ(2)− · · · − φpρ(p)) (7.8)

In all of the above cases the variance of the residual, σ2
ε , is expressed in terms of

the variance of the time series, σ2
x. When whitening the predicted or post-fit residual

from the filter the stochastic process x(k) is replaced by vk or êk respectively. It

was shown in §6.7 that εk of Eq. (6.116) is the whitened residual and it therefore

follows that σ2
ε is equivalent to the variance of the whitened predicted residual, σ2

ṽk
,
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or the whitened post-fit residual, σ2
ẽk

, depending on which residual is being used.

7.3.2 Non-optimal Kalman filter theory

By taking the expectation of ẽk it is possible to find an expression for E{ẽk, ẽTk }.

Similarly, taking the expectation of ṽk yields E{ṽk, ṽTk }. These are equivalent to

Qẽk and Qṽk respectively. The derivation below is for the post-fit residual, but the

derivation is identical for the predicted residual and it is possible to directly replace

references to ẽk with ṽk.

The vector of whitened post-fit residuals for an AR(1) process reads

ẽk = êk − Φ1êk−1 (7.9)

where Φ1 is an m×m matrix containing the AR(1) coefficients. If the AR coefficients

are estimated using a univariate model then this matrix will be diagonal.

Taking expectations,

E{ẽk, ẽTk } = E{êk − Φ1êk−1, ê
T
k − êTk−1ΦT

1 }

= E{êk, êTk } − Φ1E{êk−1, êTk } − E{êTk , êTk−1}ΦT
1 + Φ1E{êk−1, êTk−1}ΦT

1

(7.10)

The expectations can be replaced by the covariance matrices

R(0) = E{êk, êTk } R(1) = E{êk, êTk−1} (7.11)

Using this Eq. (7.10) can be expressed as

E{ẽk, ẽTk } = R(0)− Φ1R(1)T −R(1)ΦT
1 + Φ1R(0)ΦT

1 (7.12)

Recalling the Yule-Walker equations, given by Eq. (6.30), the relationship between

the covariances matrices, R(0) and R(1), and Φ1 can be given by

R(0) Φ1 = R(1) (7.13)
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and substituting into Eq. (7.12) gives

E{ẽk, ẽTk } = R(0)− Φ1Φ
T
1R(0)−R(0)Φ1Φ

T
1 + Φ1R(0)ΦT

1 (7.14)

So far the solution is for a multivariate approach. By considering the ith post-fit

residual Eq. (7.14) reduces to

E{ẽk,i, ẽk,i} = Rii(0)− φ2
1Rii(0)−Rii(0)φ2

1 + φ1Rii(0)φ1

= Rii(0)
[
1− φ2

1

]
(7.15)

It can be seen that Eq. (7.15) is in agreement with the approaches by Eq. (7.5),

(7.6) and (7.7), when an AR(1) process is considered.

7.3.3 Discussion of the non-optimality of the unwhitened

residual variance

In §7.3.1 and §7.3.2 the whitened variance of the predicted residual, Qṽk , and the

whitened variance of the post-fit residual, Qẽk , are calculated by scaling R(0). Box

and Jenkins (1976) and Priestley (1981) express this scaling factor as a function

of the AR coefficients and the autocorrelation functions, whereas the method by

Broersen (2006) uses the reflection coefficients. Since the latter are calculated as

part of Burg’s method, this is the method chosen for implementation.

It is known that R(0) = E{vk, vTk } (predicted residuals) and R(0) = E{êk, êTk }

(post-fit residuals), with both estimated using a sample of the residuals from the

previous 240 seconds when estimating the AR coefficients. Since this is the average

covariance over 240 seconds it is impractical to use this in a test statistic, since it is

not indicative of the variance at the epoch in question.

From §4.4 it is known that Qvk = E{vk, vTk } and from §4.3 that Qêk = E{êk, êTk },

hence Qvk ≡ R(0) (predicted residuals) and Qêk ≡ R(0) (post-fit residuals). The

variance of the predicted residuals are computed using Eq. (3.29),

Qvk = Qyk + AkQxk|k−1
ATk

203



and the variance of the post-fit residuals using Eq. (3.42),

Qêk = Qyk + AkQxk|kA
T
k

The main disadvantage to using this estimate of E{vk, vTk } and E{êk, êTk } is that

in an optimal filter they are computed using Qyk and Qwk
, but in a non-optimal

filter using Q∗yk and Q∗wk
. The result is that Qvk 6= E{v∗k, v∗Tk } (using Eq. 3.29) and

Qek 6= E{e∗k, e∗Tk } (using Eq. 3.42) and are likely to be underestimates. However,

for the purposes of this study this difference will be assumed to be negligible enough

so that Qvk and Qêk computed using the non-optimal filter are sufficient.

7.3.4 Estimates of whitened post-fit residual variance

The variances of the AR(1) and AR(p) whitened post-fit residuals were calculated

using the method of Broersen (2006), using Eq. (7.6), for ABPO, FALK, GUAM

and ALBM and are shown in Figures 7.1 - 7.4. The AR model order was determined

using the model order that corresponded to the minimum AIC value (see §6.5.4 and

§6.8.1). Since |κ| < 1, and hence the partial autocorrelation also less than 1, the

scaling factor
p∏
i=1

(1−κ2i ) will always be less than one. The variance of the whitened

residual will therefore always be smaller than that of the unwhitened residual. This

is evident in Figures 7.1 - 7.4. Where the magnitude of time correlation is small

the variance of the unwhitened and whitened residual is expected to be very close,

since
p∏
i=1

(1 − κ2i ) → 1 as |κi| → 0. Given the ratio between the L1 and L2 carrier

phase residuals (see §5.3.2), only the whitened L1 carrier phase residuals are shown

in Figures 7.2 - 7.4.

Since the variance of the unwhitened residual does not include any of the observ-

ables, but is calculated using only a priori values, its variation is a function of the

a priori variance of the observables, the process noise added to the parameters in

the Kalman filter state vector (or the common parameters in the case of the semi-

recursive Kalman filter, see §3.6), and the design matrix. This therefore leads to

a smooth variation in the MDB, with jumps in the case where a satellite enters or

leaves view. This latter effect is due to a change in the redundancy and geometry.
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Figure 7.1: Variances of the whitened post-fit residuals for GPS SVN05 ABPO
dataset.
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Figure 7.2: Variances of the whitened post-fit residuals for GPS SVN05 FALK
dataset.
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Figure 7.3: Variances of the whitened post-fit residuals for GPS SVN05 GUAM
dataset.
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Figure 7.4: Variances of the whitened post-fit residuals for GPS SVN17 ALBM
dataset.
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For all datasets it is clear that the variance of the whitened residual is very closely

influenced by the estimated reflection coefficients, which themselves are a function

of the AR coefficients. When this is shown as a time series the variances are much

less smooth than those for the unwhitened residual.

The variances for the code residuals when estimated using an AR(1) process

are, in general, higher than those estimated using an AR(p) process for the ABPO,

FALK and GUAM datasets. For the GUAM dataset the variances of the whitened

code residuals are close until around 07:30 and then begin to diverge, indicating

that the higher model orders for the AR(p) whitened residuals are being chosen

after this point. In the case of the ALBM dataset the variances of the whitened

code residuals estimated as an AR(1) and AR(p) process do not differ greatly. It is

also noteworthy that the variances of the whitened code residuals are much smaller

in magnitude than those for ABPO, FALK and GUAM. This is a result of estimates

of the AR coefficients that are closer to 1, therefore causing the estimated variance

of the unwhitened residual to be scaled to a smaller value.

By contrast, the variances of the unwhitened carrier phase residuals are not as

smooth as those seen for the unwhitened code and carrier phase residuals, which is

attributable to the higher weight placed on them in the a priori variance-covariance

matrix of observables. As seen with the variances of the whitened code phase resid-

uals, the estimated AR coefficients have a great influence on the estimated variances

of the whitened carrier phase residuals. The highly variable pattern is once again

present and the distinct changes in variance seen in the variance of the unwhitened

residual, in Figures 7.4e and 7.4f for example, are no longer visible.

Making a comparison between the AR(1) and AR(p) estimates, with reference

also to Figures 6.26 – 6.29 showing the AR orders that were selected, a number

of spikes are visible in the latter that are directly attributable to the AR order

selection. The variance of the AR(p) whitened post-fit residual for GPS SVN05

from the FALK dataset is shown in Figure 7.5 along with the corresponding AR

model order chosen. It is clear that the spikes are a result of a much higher AR

order being selected. This has caused a slight jump in the scaling factor in Eq. (7.6),
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Figure 7.5: Variance of the AR(p) whitened post-fit residuals for GPS SVN05 FALK
dataset with the chosen AR order for the same period.

which in turn has caused a jump in the estimated variance of the AR(p) whitened

residual. This effect is particularly noticeable in Figures 7.1b and 7.1d.

7.4 Forming the whitened test statistic

The formula for the whitened predicted residuals were given in §6.8.2 and in §7.2.

It was found that the variance-covariance matrices of the predicted and post-fit

residuals were required in order to form a whitened test statistic. The formulae

for these were derived in §7.3 using both autoregression theory and by deriving the

expectation of the post-fit residual. In this section these are brought together to

form the whitened test statistic using predicted residuals, for use in a Kalman filter,

and the whitened test statistic using post-fit residuals, which is required for the

semi-recursive Kalman filter.

7.4.1 Predicted residual

The formula for the whitened predicted residuals, adapted from Eq. (6.114), is given

by

ṽk = vk −
p∑
i=1

φivk−i (7.16)
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where p is the order of the AR process. The variance of the predicted residual for

an AR(1) process, derived in §7.3, is given by

Qṽk = Qvk − Φ1Φ
T
1Qvk −QvkΦ1Φ

T
1 + Φ1QvkΦT

1 (7.17)

where Φ1 is a diagonal matrix of AR(1) coefficients. The solution for higher order

processes is more complex and can be derived by taking the expectations of ṽk as

given by Eq. (7.16) (see Priestley (1981) for more information). Using ṽk and Qṽk ,

Eq. (4.17) can now be modified to give the whitened test statistic,

T̃ q = ṽTQ−1ṽ C(CTQ−1ṽ C)−1CTQ−1ṽ ṽ (7.18)

In §6.6 it was shown that by whitening the predicted residual E{ṽk, ṽTl } = 0 where

k 6= l. It is now possible to express the above equation as (cf. Eq. 4.19)

T̃ =

[
k∑
i=1

CT
ṽi
Q−1ṽ ṽi

]T[ k∑
i=1

CT
ṽi
Q−1ṽ Cṽi

]−1 [ k∑
i=1

CT
ṽi
Q−1ṽ ṽi

]
(7.19)

As shown in §4.4 this leads to the whitened local overall model test statistic,

T̃ q,k =
ṽTkQ

−1
ṽ ṽk
mk

(7.20)

where mk is the number of observables at epoch k, and the whitened local slippage

test statistic (cf. §4.4),

t̃q=1,k =
cTkQ

−1
ṽk
ṽk√

cTkQ
−1
ṽk
ck

(7.21)

7.4.2 Post-fit residual

The formula for the whitened post-fit residuals is given by (cf. Eq. 6.114)

ẽk = êk −
p∑
i=1

φiêk−i (7.22)

The coupling of Qêk and Qyk was discussed in §7.2. Since Qyk is present inside

the test statistic as well as Qêk itself an adjustment to Qyk is required, which is
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denoted as Q̃yk . The variance-covariance matrix of the whitened AR(1) residuals

can be defined as

Qẽk = Qêk − Φ1Φ
T
1Qêk −QêkΦ1Φ

T
1 + Φ1QêkΦT

1 (7.23)

where Φ1 is a diagonal matrix of AR(1) coefficients. Once again, the solution for

higher order processes is more complex and can be derived by taking the expectations

of ẽk as given by Eq. (7.22) (see Priestley (1981) for more information). Where only

the diagonal elements of Qẽk are required then the variance of the ith residual can

be found using

σ2
ẽk,i

= σ2
êk,i

p∏
i=1

(1− κ2i ) (7.24)

where p is the order of the AR process and κi is the reflection coefficient of order

i. This has the advantage that it allows higher order models to be easily estimated.

Recalling Eq. (3.42),

Qêk = Qyk + AkQx̂k|kA
T
k

it can be seen that it is possible to separate Qyk from part that corresponds to the

updated state vector. By considering the transformation in Eq. (7.23), it is possible

to define

Q̃yk = Qyk − Φ1Φ
T
1Qyk −QykΦ1Φ

T
1 + Φ1QykΦT

1 (7.25)

and since Qyk is assumed diagonal here, as stated in §5.2,

σ̃2
yk,i

= σ2
yk,i

p∏
i=1

(1− κ2i ) (7.26)

Therefore, it is possible to modify Eq. (4.5) with Eq. (7.25) to give the whitened

test statistic,

T̃ q = ẽT Q̃−1y Cy(C
T
y Q̃
−1
y Q̃ẽQ̃

−1
y Cy)

−1CT
y Q̃
−1
y ẽ (7.27)

Using the same methodology applied in §4.3, this leads to the whitened overall

model test statistic, given by

T̃q,k =
ẽTk Q̃

−1
y ẽk

mk − nk
(7.28)

210



where mk and nk are the number of observables and parameters at epoch k respec-

tively.

The whitened slippage test statistic given by

w̃k =
cTk Q̃

−1
yk
ẽk√

cTk Q̃
−1
yk
QẽkQ̃

−1
yk
ck

(7.29)

and since Q̃yk is diagonal this simplifies to

w̃k,i =
ẽk,i
σẽk,i

(7.30)

for the ith observable, where σẽk,i is derived from Eq. (7.24).

7.5 Implementation

The E-HP/PPP processing software (see §5.3.1) was modified so that the whitened

local overall model (LOM) and local slippage (LS) test statistics could be calculated

alongside the existing test statistics outlined in Chapter 4. In the rest of this section

the issues that must be considered when implementing the whitened test statistic

in GNSS PPP software will be considered in turn. Strategies for overcoming these

issue and compromises, where necessary, will be given.

7.5.1 Sample size

From Chapter 6 it is known that in order to estimate the AR coefficients an estimate

of the autocovariances at the lags corresponding to the AR order being estimated is

required. In order to do this a sufficiently large sample is required. A method for

determining sample size was presented in §5.3.3 and an interval of 240 seconds was

chosen. The implication of having to estimate the AR coefficients based on a set

sample size is that in GNSS processing the residuals of the observables in the first

240 seconds of a dataset cannot be whitened. Additionally, where a new satellite

comes into view then the residuals for this satellite cannot be whitened until 240

seconds have elapsed.
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For real-time processing this situation is unavoidable, since there is no additional

data to aid in the estimation of the AR coefficients. One possible approach would be

to use a smaller sample size until the point at which 240 seconds data are available.

The disadvantage of this, as previously discussed, would be poorer estimates of the

AR coefficients early on. Referring to the user requirements, as detailed in §2.6,

this could have a significant impact on the reliability of the solution. However, the

existing unwhitened test statistic could be used whilst waiting for sufficient data to

estimate the autocorrelations. Additionally, this would ensure that the availability

requirements of the user can be met.

In post-processing the situation is more flexible, as it is possible to use future

residuals to estimate the AR coefficients for epochs where there is not a long enough

history of residuals. Consider Figures 6.4b and 6.4c, where in the former the data

was whitened using one value calculated for the 240 second window and in the

latter a moving window of 240 seconds was used. In this case the whitened residuals

do not differ greatly and therefore over such a short period using one value is not

unreasonable. This would be advantageous over using a shorter sample period to

estimate the AR coefficients, as suggested for real-time operation, for the same

reason as given earlier.

As the E-HP/PPP processing software is written to process data to simulate

real-time behaviour, the requirement to wait 240 seconds at the start of processing

still holds in this implementation.

7.5.2 Gaps in the data

As mentioned earlier, if a satellite drops out of view then the moving window of

240 seconds is reset. In some cases data from a satellite is missing for just a short

period of time, e.g. 5 seconds. In a kinematic environment this is entirely plausible,

since there may be obstructions between the receiver and satellite as the receiver is

moving. Similarly, in a static environment this may occur where an object such as

a crane periodically obstructs the receiver’s view of the sky.

With reference to the user requirements, as stated in §2.6, the reliability of a
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solution is very important. As such, if the whitened test statistic were to be used as

the sole quality control method this would lead to a degradation in the availability

of the solution. In the case of small data gaps, which shall here be defined as

5 seconds or less, it can be assumed that the behaviour of the residual will not

change greatly and as such the residuals that have already been stored as part of

the moving window can continue to be used to estimate the AR coefficients. Thus,

in the implementation, gaps of 5 seconds or less do not result in a reset of the moving

window.

7.5.3 Mixing unwhitened and whitened test statistics

From the above it has been established that there will be cases where there is suffi-

cient information in order to whiten the residual for some satellites and not others.

In the situation where there is a mixture of unwhitened and whitened residuals the

two different test statistics should not be compared against each other, since they

are not equivalent.

In a post-processed scenario, if the assumption made above that the residuals

with insufficient data can be whitened by the first available estimate, then this

problem can be overcome. However, this will firstly require the AR coefficients

to be estimated for all the data before the quality control can then take place. A

secondary problem with this is that the AR estimates could potentially be estimated

on a model error. If the assumption is made that over a 240 second period the

number of model errors will be low, then the effect of one model error should not

significantly affect AR estimation.

In a real-time scenario this approach is not possible. To consider only those

observables that have a whitened test statistic available is also not possible as the

model error could exist in one of the observables without a whitened test statis-

tic. Hence in this implementation where all observables cannot be whitened the

unwhitened test statistic is used.
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7.6 Time series of the whitened test statistic

In this section the local overall model (LOM) test statistic values and the local slip-

page (LS) test statistic values were calculated using the whitened post-fit residuals,

ẽk, the variance of the whitened residuals, Qẽk , and the modified variance of the

observables, Q̃yk given in §7.4.2.

Local overall model test statistic

The whitened LOM test statistic was calculated using Eq. (7.28) for the ABPO,

FALK, GUAM and ALBM datasets. Since the whitened test statistic cannot be

calculated at every epoch and the LOM can only be calculated where all residuals

are whitened example time series of the test statistic values are shown in Figures 7.6

– 7.9. The critical value F is variable as it is calculated at each epoch as a function

of redundancy (see §4.3.1), therefore the minimum critical values are specified in the

figure. A summary of the whitened LOM test statistic values is shown in Table 7.1.
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Figure 7.6: Example time series of local overall model test statistic values calculated
using post-fit residuals for ABPO, where minimum Fαm−k

= 1.171
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Figure 7.7: Example time series of local overall model test statistic values calculated
using post-fit residuals for FALK, where minimum Fαm−k

= 1.171
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Figure 7.8: Example time series of local overall model test statistic values calculated
using post-fit residuals for GUAM, where minimum Fαm−k

= 1.277
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Figure 7.9: Example time series of local overall model test statistic values calculated
using post-fit residuals for ALBM, where minimum Fαm−k

= 1.326

Table 7.1: Minimum, maximum, mean, standard error and standard deviation of
example unwhitened, AR(1) and AR(p) whitened local overall model test statistic
time series for ABPO, FALK, GUAM and ALBM datasets.

Dataset Solution Min Max Mean St. err. St. dev.
ABPO Unwhitened 0.0175 0.3603 0.0956 2.138× 10−5 0.0430

AR(1) 0.0177 0.4411 0.0978 2.341× 10−5 0.0471
AR(p) 0.0169 0.5782 0.1024 2.471× 10−5 0.0497

FALK Unwhitened 0.0404 0.5197 0.1781 3.624× 10−5 0.0668
AR(1) 0.0383 0.4908 0.1772 3.796× 10−5 0.0699
AR(p) 0.0397 0.5690 0.1874 4.162× 10−5 0.0767

GUAM Unwhitened 0.0304 0.5392 0.1788 3.512× 10−5 0.0764
AR(1) 0.0265 0.5471 0.1803 3.588× 10−5 0.0781
AR(p) 0.0260 0.6172 0.1873 3.749× 10−5 0.0816

ALBM Unwhitened 0.0044 0.0763 0.0209 3.497× 10−6 0.0095
AR(1) 0.0027 0.1335 0.0209 4.280× 10−6 0.0116
AR(p) 0.0032 0.1283 0.0216 4.453× 10−6 0.0120
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In each case the AR(1) and AR(p) whitened LOM test statistic values are of a

similar magnitude to the unwhitened LOM test statistic values, which can be seen

both in the plots and in Table 7.1. In the cases of ABPO, GUAM and ALBM the

mean LOM test statistic values are lowest for the unwhitened LOM test statistic

values and highest for the AR(p) whitened LOM test statistic values. In the case of

standard deviations, all datasets show the unwhitened and AR(p) whitened LOM

test statistic values as the lowest and highest respectively. It can also be seen

in the plots that the unwhitened LOM test statistic values show time correlation

characteristics, which are less noticeable for the AR(1) and AR(p) whitened LOM

test statistic values. Another example time series from the ALBM dataset, shown

in Figure 7.9, is a good example of this. It can also be seen that there is very close

agreement between the AR(1) and AR(p) whitened LOM test statistic values.

Local slippage test statistic

The whitened LS test statistic was calculated using Eq. (7.30), which is based on the

whitened post-fit residuals, for the ABPO, FALK, GUAM and ALBM datasets and

time series of the test statistic values are shown in Figures 7.10 - 7.13. A summary

of the mean, standard error and standard deviations of the LS test statistic values

is shown in Table 7.2. The critical value for the LS test statistic is calculated using

Eq. (4.13) with αmk
= 0.99, the value recommended in IMCA/OGP (2011), which

gives a critical value of 2.576.

In §5.3.4 the code residuals for ABPO, FALK and GUAM did not display a high

degree of time correlation (see Figures 5.15, 5.16 and 5.17, for example). As such

the time series for the whitened LS test statistic does not look too dissimilar to

that of the unwhitened test statistic. The last 15 minutes of the FALK dataset is

one exception to this, where the test statistic appears highly correlated. However,

despite this it has been successfully whitened. During this period there is an epoch

where the whitened test statistic exceeds the critical value and would therefore

be identified as an outlier, whereas this is not the case for the unwhitened test

statistic. From Table 7.2 it can be seen that the mean of the AR(1) whitened
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(a) L1 Code - unwhitened (b) L2 Code - unwhitened

(c) L1 Code - whitened, AR(1) (d) L2 Code - whitened, AR(1)

(e) L1 Code - whitened, AR(p) (f) L2 Code - whitened, AR(p)

(g) L1 Carrier - unwhitened (h) L2 Carrier - unwhitened

(i) L1 Carrier - whitened, AR(1) (j) L2 Carrier - whitened, AR(1)

(k) L1 Carrier - whitened, AR(p) (l) L2 Carrier - whitened, AR(p)

Figure 7.10: Whitened and unwhitened local slippage test statistic computed using
post-fit residuals for GPS SVN05 at ABPO.
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(a) L1 Code - unwhitened (b) L2 Code - unwhitened

(c) L1 Code - whitened, AR(1) (d) L2 Code - whitened, AR(1)

(e) L1 Code - whitened, AR(p) (f) L2 Code - whitened, AR(p)

(g) L1 Carrier - unwhitened (h) L2 Carrier - unwhitened

(i) L1 Carrier - whitened, AR(1) (j) L2 Carrier - whitened, AR(1)

(k) L1 Carrier - whitened, AR(p) (l) L2 Carrier - whitened, AR(p)

Figure 7.11: Whitened and unwhitened local slippage test statistic computed using
post-fit residuals for GPS SVN05 at FALK.
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(a) L1 Code - unwhitened (b) L2 Code - unwhitened

(c) L1 Code - whitened, AR(1) (d) L2 Code - whitened, AR(1)

(e) L1 Code - whitened, AR(p) (f) L2 Code - whitened, AR(p)

(g) L1 Carrier - unwhitened (h) L2 Carrier - unwhitened

(i) L1 Carrier - whitened, AR(1) (j) L2 Carrier - whitened, AR(1)

(k) L1 Carrier - whitened, AR(p) (l) L2 Carrier - whitened, AR(p)

Figure 7.12: Whitened and unwhitened local slippage test statistic computed using
post-fit residuals for GPS SVN05 at GUAM.

220



(a) L1 Code - unwhitened (b) L2 Code - unwhitened

(c) L1 Code - whitened, AR(1) (d) L2 Code - whitened, AR(1)

(e) L1 Code - whitened, AR(p) (f) L2 Code - whitened, AR(p)

(g) L1 Carrier - unwhitened (h) L2 Carrier - unwhitened

(i) L1 Carrier - whitened, AR(1) (j) L2 Carrier - whitened, AR(1)

(k) L1 Carrier - whitened, AR(p) (l) L2 Carrier - whitened, AR(p)

Figure 7.13: Whitened and unwhitened local slippage test statistic computed using
post-fit residuals for GPS SVN17 at ALBM.

221



Table 7.2: Mean, standard error and standard deviation of the unwhitened, AR(1)
and AR(p) whitened local slippage test statistic for ABPO, FALK, GUAM and
ALBM datasets.

Dataset Observation type Solution Mean St. err. St. dev.
ABPO G05 L1 Code Unwhitened -0.0291 0.0023 0.3399

AR(1) -0.0157 0.0023 0.3393
AR(p) -0.0067 0.0025 0.3618

G05 L1 Carrier Unwhitened -0.0003 0.0024 0.3481
AR(1) -0.0010 0.0024 0.3533
AR(p) -0.0018 0.0026 0.3822

G05 L2 Code Unwhitened 0.0321 0.0024 0.3518
AR(1) 0.0234 0.0025 0.3563
AR(p) 0.0081 0.0027 0.3900

G05 L2 Carrier Unwhitened 0.0005 0.0024 0.3479
AR(1) 0.0011 0.0024 0.3531
AR(p) 0.0014 0.0026 0.3816

FALK G05 L1 Code Unwhitened -0.0196 0.0031 0.4673
AR(1) -0.0148 0.0032 0.4717
AR(p) -0.0079 0.0035 0.5078

G05 L1 Carrier Unwhitened -0.0297 0.0026 0.3887
AR(1) -0.0050 0.0027 0.3883
AR(p) -0.0035 0.0028 0.4079

G05 L2 Code Unwhitened -0.0119 0.0036 0.5307
AR(1) -0.0054 0.0037 0.5337
AR(p) -0.0032 0.0039 0.5703

G05 L2 Carrier Unwhitened 0.0294 0.0026 0.3890
AR(1) 0.0050 0.0027 0.3885
AR(p) 0.0032 0.0028 0.4071

GUAM G05 L1 Code Unwhitened 0.0017 0.0030 0.4506
AR(1) -0.0013 0.0031 0.4567
AR(p) -0.0019 0.0033 0.4862

G05 L1 Carrier Unwhitened -0.0142 0.0025 0.3703
AR(1) 0.0004 0.0025 0.3722
AR(p) 0.0007 0.0026 0.3887

G05 L2 Code Unwhitened 0.0108 0.0030 0.4510
AR(1) 0.0055 0.0031 0.4580
AR(p) 0.0010 0.0033 0.4886

G05 L2 Carrier Unwhitened 0.0144 0.0025 0.3701
AR(1) -0.0004 0.0025 0.3721
AR(p) -0.0008 0.0026 0.3878

ALBM G17 L1 Code Unwhitened -0.0030 0.0007 0.0794
AR(1) 0.0003 0.0007 0.0797
AR(p) -0.0004 0.0008 0.0906

G17 L1 Carrier Unwhitened 0.0258 0.0040 0.4431
AR(1) 0.0074 0.0041 0.4452
AR(p) 0.0015 0.0045 0.4917

G17 L2 Code Unwhitened -0.0014 0.0008 0.0940
AR(1) 0.0005 0.0008 0.0891
AR(p) 0.0008 0.0010 0.1058

G17 L2 Carrier Unwhitened -0.0256 0.0040 0.4421
AR(1) -0.0073 0.0041 0.4443
AR(p) -0.0016 0.0045 0.4907
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test statistic is closer to 0 than the mean of the unwhitened test statistic. The

AR(p) whitened test statistic is even closer to 0. Since E{wk} = 0 (see §4.3.2),

this shows that whitening the residuals results in a test statistic that is closer to its

expected value. The unwhitened code residuals for the ALBM dataset by contrast

are highly correlated (see Figure 5.18, for example) and this is reflected in the time

series for the unwhitened test statistic. The magnitude of the unwhitened test

statistic is also much smaller, resulting in a smaller amplitude of the time series.

The magnitude of the whitened code test statistic is also small, when compared to

the carrier phase test statistic. Once again Table 7.2 shows the means of the AR(1)

and AR(p) whitened test statistics are closer to the theoretical mean value of zero

than the unwhitened test statistic. Looking at the standard deviations of the local

slippage test values for the code observations in most cases the standard deviations

of the whitened test statistics are greater than those of the unwhitened ones. The

exceptions to this are the standard deviations of the AR(1) whitened test statistic

using L1 code observations at ABPO and the L2 code observations at ALBM. The

standard deviations of the AR(p) whitened test statistic values for code observations

are greater than for the unwhitened and AR(1) whitened test statistics in all cases.

As previously noted, both the unwhitened and whitened carrier phase test statis-

tic values for the ALBM dataset are much larger in magnitude than those for the

code observations. From Table 7.2 it can be seen that the standard deviations of

the carrier phase test statistic values for the three solutions are very similar. The

whitened carrier phase test statistic values for ABPO, FALK and GUAM show sim-

ilar behaviour to those at the ALBM dataset, in that a greater number of peaks

are seen in comparison to the unwhitened dataset. The whitened values also show

a similar magnitude to the unwhitened ones, although once again the characteristic

pattern seen with time correlation is no longer present. The mean values of the

AR(1) and AR(p) whitened test statistics for carrier phase observations shown in

Table 7.2 for FALK and GUAM follow what has been seen previously, being closer

the theoretical mean of zero than for the unwhitened test statistic. ABPO is an

exception to this, with mean values increasing. In the cases of ABPO, GUAM and
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ALBM the standard deviations of the whitened test statistic values of carrier phase

observations are greater than that of the unwhitened test statistic. FALK is an

exception to this, where the standard deviation of AR(1) whitened test statistic

values for both L1 and L2 carrier phase observations are smaller than those for the

unwhitened observations. However, since the differences in both cases are less than

1× 10−3 they can be considered negligible. In the case of the AR(p) whitened test

statistic the standard deviations are larger for all carrier phase observations.

In conclusion, the whitened test statistic values are of a similar magnitude to the

unwhitened values. As seen with the post-fit residuals themselves, when plotted as a

time series the residuals have lost the characteristic pattern of time correlation and

closer resemble what would be expected from white noise. It is important to note

that despite the fact that the whitened residuals have a much smaller amplitude,

due to the correlation being so high, the effect of the smaller variance yields test

statistics that are of similar magnitude, but without the time correlation present. In

some cases the whitened test statistic contains small spikes that exceed the critical

value that were not seen before whitening. However, it is important to keep in mind

with the chosen level of significance (αmk
= 0.99), it is expected that 1% will be

false rejections.

7.7 Detection of observation biases

The general behaviour of the whitened test statistic was shown in §7.6 to have a more

consistent mean around zero and have a shape more like white noise. When detecting

biases in the observables it is not a time series for one satellite and observation type

that is used, rather a range of test statistic values for the different observation types

at a single epoch that are compared against each other in order to determine the

source of any model error (see §4.2).

It has already been discussed in §7.5 that unwhitened and whitened test statistics

cannot be directly compared. However, it can be seen that where an outlier occurs

at a given epoch both the unwhitened and whitened test statistic values have a

similar relative magnitude.
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Figure 7.14: Local slippage test statistic values computed using post-fit residuals at
09:10:56 for ALBM dataset. In each case the absolute values are taken, i.e. negative
values are now positive.

Figure 7.14 shows the test statistic at an epoch where a cycle slip in the L1

carrier phase for satellite G09 has occurred. At this particular epoch there is not

enough data to estimate the AR coefficients for satellite G09 and as such does not

appear in the subfigures for the whitened local slippage test statistic in Figure 7.14.

However, despite this it is evident that all other values take on similar relative values.

If the observables are placed in order of their test statistic values, from highest to

lowest, then with the exception of satellite G09 the sequence of observation types
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is the same, as verified by Table 7.3. By comparing the y-axes of the plots showing

the unwhitened and whitened local slippage test statistics in Figure 7.14 it is also

evident that the types of test statistic are of a different scale. Since the two test

statistics are calculated using different residuals, i.e. unwhitened and whitened, it

does not make sense to combine the unwhitened and whitened statistics when there

is insufficient data to calculate a whitened test statistic for each observable.
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Figure 7.15: Local slippage test statistic values computed using post-fit residuals at
23:48:03 for FALK dataset. In each case the absolute values are taken, i.e. negative
values are now positive.

Another example of an epoch containing a cycle slip is shown in Figure 7.15.
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In this case the observable containing a cycle slip, G09 L1 Carrier, is detected by

the whitened test statistic as there is sufficient data to estimate the AR coefficients.

There is also sufficient data to compute the whitened test statistic for all satellite

and observation types, showing that in this case the whitened test statistic could

be used over the original test statistic. From Table 7.4 it can also be seen that in

addition to correctly identifying the cycle slip the order of the first 15 test statistic

values is identical.
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Figure 7.16: Local slippage test statistic values computed using post-fit residuals at
23:59:59 for FALK dataset. In each case the absolute values are taken, i.e. negative
values are now positive.
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By comparison, the values shown in Figure 7.16 are for an epoch that contains

no observational biases. It can be seen that in this case there is no common pattern

between the original and whitened test statistic values, although they are of a similar

magnitude.

It is clear that although the values are different for epochs where there is no

observational bias, when a cycle slip occurs the whitened test statistic follows a

similar pattern to that seen by the unwhitened test statistic. In the case where all

observables have not been whitened, such as Figure 7.14, the order is still preserved,

although in this particular example it is the unwhitened value that contains the bias.

Changes in the geometry of the solution

Until now it has been assumed that following convergence the recursive filter is in

a relatively steady state and as a result it is possible to model the residuals as an

AR process. However, when an outlying observable is rejected this causes a sudden

change in structure of the observables that make up the solution. Consider the

case where there is a bias in a carrier phase observation at epoch k and that this

has been successfully identified using the whitened test statistic. The carrier phase

observation is removed from the solution. Given that carrier phase observations

have a much higher weight, and therefore a greater impact on the solution, this

will cause a change to the geometry of the solution at this epoch. In some cases

this could result in a ‘jump’ in the time series of residuals for a given satellite and

observation type. Such a ‘jump’ is shown in Figure 7.17a. The effect of this jump

on the AR(1) whitened residual can be seen in 7.17b. The estimate of the whitened

residual at the next epoch is influenced by the relatively large gap between the two

values and therefore results in the spike that is marked by the vertical red line.

The local slippage test statistics that correspond to the residuals shown in Figure

7.17 are shown in Figure 7.18. Whereas the impact of the jump in the unwhitened

residuals on its corresponding test statistic is minimal, the jump seen in the un-

whitened AR(1) residual also results in a prominent jump in the whitened local

slippage test statistic. Depending on the level of significance chosen it could result
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(b) Whitened post-fit residual, AR(1)

Figure 7.17: ‘Jump’ in time series of post-fit residuals statistic caused by a change
in the geometry of the least squares solution.
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(b) Whitened test statistic, AR(1)

Figure 7.18: Effect on the local slippage test statistic of a ‘jump’ in time series of
post-fit residuals statistic caused by a change in the geometry of the least squares
solution.

in a Type I error (see 4.2).

As mentioned in §4.6, removing a carrier phase parameter means that the am-

biguity for the satellite and frequency in question must be reset, as a model error

detected in a carrier phase measurement could be the result of a cycle slip and hence
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the previous ambiguity will no longer be valid. In contrast to the sudden change in

geometry caused by the parameter reset, the geometry of the solution will be very

similar at the epoch immediately after the cycle slip and will change gradually as

the a posteriori error of the ambiguity decreases. Therefore, this slowly changing

geometry does not cause the kind of jump in the test statistic seen here.

It was seen in Chapter 6 that for an AR(1) process the estimate for φ1 is typically

close to 1. As φ1 → 1 the process can be said to approximate the first difference of

the residuals. Should a ‘jump’ occur in the residual time series then this would be

seen as a spike in the first difference solution. Considering this, when φ1 is close to 1,

it is likely that such a jump would be seen in the AR(1) whitened residuals. Figure

7.17b shows the AR1(1) whitened residual for Figure 7.17a. The red line indicates

the point at which a cycle slip has been identified, but for a different observable. Not

only is the effect of this jump increased as the amplitude of the whitened residual

is much smaller, but as the variance of the whitened residual is not likely to change

much over such a short time period this observable will be scaled much higher when

the whitened test statistic is calculated. It will therefore be identified as containing

a bias.

In order to overcome this problem it is ideal to have an estimate of the residual

with the new geometry, i.e. using the same set of observables, at the epochs that are

to be used to whiten the residual. For an AR(1) process this would only be êk−1,

but in the case of an AR(p) process this would include residuals {êk−1, . . . , êk−p}.

In order to do this the design matrix and state vector at previous states must be

stored. For high order models this can add considerable complexity.

For the purposes of this study, adapting the software to do this would require a

radical rewrite and given this complexity could not be achieved in a timely manner.

As such, a compromise was made whereby the unwhitened test statistic was used

once one bias had been identified and at the subsequent epoch. This was done

so that any jump in the unwhitened residual would not cause observables to be

erroneously identified as containing a bias.

The ABPO, FALK, GUAM and ALBM datasets were processed using the mod-
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Unwhitened AR(1) AR(p)
East Mean (m) 0.0146 0.0045 0.0081

St. dev. (m) 0.0712 0.0746 0.0738
North Mean (m) -0.0074 -0.0116 -0.0116

St. dev. (m) 0.0294 0.0324 0.0312
Up Mean (m) 0.0210 0.0313 0.0288

St. dev. (m) 0.0409 0.0455 0.0452

Figure 7.19: Local ENU positions for ABPO using the unwhitened local slippage test
statistic, AR(1) whitened local slippage test statistic and AR(p) local slippage test
statistic with the level of significance set at 99%. In all cases the post-fit residuals
were used to calculate the test statistics. The mean and standard deviation for each
plot are shown in the table below.

ified software with both an AR(1) and AR(p) whitened test statistic used for de-

tecting biases in the observables. The data was also processed using the unwhitened

test statistic for detecting biases. In all cases the critical value for the slippage test

was calculated with a level of significance of 99%. Figure 7.19 shows the estimated

local east, north and up (ENU) positions for the entire 24 hour period of the ABPO

dataset when processed using the unwhitened test statistic, the AR(1) whitened

test statistic and AR(p) whitened test statistic. The values are all relative to a com-

mon mean east, north and up coordinate. In addition to the positions the satellite
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Unwhitened AR(1) AR(p)
East Mean (m) -0.0038 -0.0034 -0.0031

St. dev. (m) 0.0343 0.1051 0.1059
North Mean (m) 0.0017 -0.0025 -0.0021

St. dev. (m) 0.0631 0.0946 0.0950
Up Mean (m) 0.0032 0.0081 0.0083

St. dev. (m) 0.0717 0.0892 0.0895

Figure 7.20: Local ENU positions for FALK using the unwhitened local slippage test
statistic, AR(1) whitened local slippage test statistic and AR(p) local slippage test
statistic with the level of significance set at 99%. In all cases the post-fit residuals
were used to calculate the test statistics. The mean and standard deviation for each
plot are shown in the table below.

availability at each epoch is shown in grey.

The convergence period can be seen at the beginning of the dataset. The three

solutions are generally coincident with the exception of two periods: between 12:00

and 14:00 and at the end of the dataset. For the entirety of the first of these periods

the positions calculated with bias detection using the AR(1) and AR(p) whitened

test statistic give the same solution. However, for the latter period all three methods

give different solutions. The mean and standard deviation of the time series were

calculated using data after 02:00 to allow for convergence of the solution and are
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Unwhitened AR(1) AR(p)
East Mean (m) 0.0191 0.0161 0.0123

St. dev. (m) 0.2523 0.2293 0.2294
North Mean (m) 0.0116 0.0114 0.0125

St. dev. (m) 0.1056 0.0934 0.0933
Up Mean (m) -0.0186 -0.0118 -0.0129

St. dev. (m) 0.1544 0.1494 0.1492

Figure 7.21: Local ENU positions for GUAM using the unwhitened local slippage
test statistic, AR(1) whitened local slippage test statistic and AR(p) local slippage
test statistic with the level of significance set at 99%. In all cases the post-fit
residuals were used to calculate the test statistics. The mean and standard deviation
for each plot are shown in the table below.

shown in the table in Figure 7.19. It can be seen that whilst the AR(1) solution has

a mean closest to zero for the east component, the unwhitened solution is closest

to zero for the north and up components. In each case the standard deviation is

smallest for the unwhitened solution and greatest for the AR(p) solution, although

the difference is at the millimetre level.

The local ENU positions for the FALK dataset are shown in Figure 7.20. It is

immediately clear from this plot that the whitened test statistic does not perform as

well as the unwhitened test statistic. Although the AR(1) and AR(p) solutions are
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Unwhitened AR(1) AR(p)
East Mean -0.0013 -0.0012 -0.0005

St. dev. 0.0130 0.0135 0.0135
North Mean -0.0096 -0.0096 -0.0057

St. dev. 0.0323 0.0324 0.0313
Up Mean 0.0272 0.0259 0.0266

St. dev. 0.0374 0.0377 0.0412

Figure 7.22: Difference in local ENU positions relative to the double-difference
‘truth’ solution for ALBM using the unwhitened local slippage test statistic, AR(1)
whitened local slippage test statistic and AR(p) local slippage test statistic with the
level of significance set at 99%. In all cases the post-fit residuals were used to cal-
culate the test statistics. The mean and standard deviation for each plot are shown
in the table below.

both coincident for the entire dataset there are many points at which the solution

deviates from the unwhitened solution. The most drastic of these can be seen at

around 17:00, where the two solutions using the whitened test statistic break down

completely. Examining the satellite availability, also shown on Figure 7.20, it is clear

that this period coincides with the point at which the number of satellites drops to

4. By inspecting the behaviour of the whitened test statistic it is apparent that a

number of observables have been identified as containing biases at this particular

moment where the number of satellites required is at its minimum. This explains
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the cause for the severe degradation of the solution and the comparatively high

standard deviations of the AR(1) and AR(p) solutions.

Another noticeable deviation in the solutions occurs at around 03:00. Once again

referring to the satellite availability reveals that this deviation occurs at the point

at which the number of available satellites changes. Recalling the problem seen in

Figure 7.17 whereby the change in the geometry of the least squares solution results

in a ‘jump’ in the residual time series, it would appear that a similar phenomenon

is occuring at these points where the number of satellites in the solution changes.

When a satellite rises or sets its elevation dependent weighting results in a gradual

change to the geometry. However, where a satellite comes in and out of view for

other reasons, perhaps because it is obscured, then this will cause a sudden change

in geometry. As such the problem seen in Figure 7.17 can be used to explain these

deviations in the solution and the solution given earlier can also be used to rectify

this problem.

The local ENU positions for the GUAM dataset are shown in Figure 7.21. In

this dataset the whitened test statistic also contains a number of spikes that are

the result of the ‘jump’ in the residual time series caused by a change in the least

squares geometry. These can be seen around 05:00, 06:00 and just before 15:00.

The solution also breaks down significantly between 18:00 and 19:00, although this

occurs for the solutions using the original test statistic as well as the AR(1) and

AR(p) test statistics. This suggests that there is a problem in the dataset and this

is not a result of using a whitened test statistic. However, it is noticeable that for all

coordinate components the whitened test statistic has a smaller standard deviation

compared to the unwhitened test statistic. The AR(1) and AR(p) solutions also

appear to stabilise at 02:00 quicker than the unwhitened solution. Excepting the

very end of the dataset, the AR(1) and AR(p) solutions appear to be coincident.

In order to make positional comparisons for the ALBM dataset a difference was

made between the east, north and up components for the three PPP solutions and

those from a baseline solution, which was taken as ‘truth’. The local ENU differences

for the ALBM dataset are shown in Figure 7.22. It can be seen that this dataset
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is the most stable of the four datasets for the AR(1) and AR(p) unwhitened test

statistics. For all coordinate components the mean values for the solutions computed

using the whitened test statistics are closer to zero than those using the unwhitened

test statistic. There appears to be disagreement between the AR(1) and AR(p)

solutions at around 09:30 and a small jump in the AR(1) solution at 11:30. Despite

the mean values being closer to zero, the standard deviation of the result is higher

for the AR(1) and AR(p) solutions in most cases.

7.8 Effect on reliability measures

In §4.7 the MDB was given as a measure of internal reliability. Recalling Eq. (4.31),

the MDB using predicted residuals is given by

|∇k| =

√
λ(α, q, γ)

cTvkQ
−1
vk
cvk

Since the MDB is a function of the variance-covariance matrix of predicted residuals,

when using whitened residuals it follows that

|∇̃k| =

√
λ(α, q, γ)

cTṽkQ
−1
ṽk
cṽk

(7.31)

where the variance-covariance matrix of whitened predicted residuals Qṽk is used.

The variance of the AR(1) whitened predicted residual was shown in §7.3 to be

Qṽk = Qvk − Φ1Φ
T
1Qvk −QvkΦ1Φ

T
1 + Φ1QvkΦT

1 (7.32)

where Φ1 is a diagonal matrix of AR(1) coefficients. By taking cvk as a vector of

null values with a 1 in the place corresponding to the ith observable,

σ2
ṽk,i

= σ2
v̂k,i

(1− φ2
1,i) (7.33)
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and the MDB for the ith observable when assuming an AR(1) process is given by

|∇̃k,i| =

√
λ(α, q, γ)

[Q−1ṽk ]ii
(7.34)

Therefore as φ1,i → 1 then |∇̃i| → 0, hence the MDB will decrease as the AR(1)

coefficient gets closer to unity.

Similarly, the MDB using post-fit residuals, given by Eq. (4.29), reads

|∇k| =

√
λ(α, q, γ)

cTQ−1yk QêkQ
−1
yk
c

In this case Qẽk and Q̃yk are inserted to give

|∇̃k| =
√

λ(α, q, γ)

cT Q̃ykQẽkQ̃ykc
(7.35)

with

Qẽk = Qêk − Φ1Φ
T
1Qêk −QêkΦ1Φ

T
1 + Φ1QêkΦT

1 (7.36)

Q̃yk = Qyk − Φ1Φ
T
1Qyk −QykΦ1Φ

T
1 + Φ1QykΦT

1 (7.37)

for an AR(1) process.

By taking c as a vector of null values with a 1 in the place corresponding to the

ith observable, the MDB for the ith observable when assuming an AR(1) process is

given by (cf. Eq. 4.30)

|∇̃k,i| = σ̃2
yk,i

√
λ(α, q, γ)

σ2
ẽk,i

(7.38)

= (1− φ2
1,i)σ

2
yk,i

√
λ(α, q, γ)

(1− φ2
1,i)σ

2
êk,i

(7.39)

=
√

(1− φ2
1,i)σ

2
yk,i

√
λ(α, q, γ)

σ2
êk,i

(7.40)
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with

σ2
ẽk,i

= σ2
êk,i

(1− φ2
1,i) (7.41)

σ̃2
yk,i

= σ2
yk,i

(1− φ2
1,i) (7.42)

Once again it is evident that as φ1,i → 1 then |∇̃k,i| → 0, hence the MDB will

decrease as the AR(1) coefficient gets closer to unity.

The AR(1) and AR(p) whitened MDBs were calculated for the ABPO, FALK,

GUAM and ALBM datasets and are shown in Figures 7.23 - 7.27. In each case

the unwhitened MDB is shown alongside for comparison. Given the relationship

between the L1 and L2 carrier phase residuals (see §5.3.2) only the L1 carrier phase

MDBs are shown.

It can be seen from the difference plots in Figure 7.23 that the whitened MDB

is smaller than the unwhitened MDB, for the reasons outlined earlier, and its values

also no longer change smoothly over time as seen with the unwhitened MDB. The

changeability of the AR coefficients have a high influence on the whitened variance

of the post-fit residual.

There is a marked difference in the shape of the whitened MDBs compared with

their unwhitened equivalents, see for example Figures 7.23h and 7.23g. From this

it can be seen that where the residuals are more correlated, not only is the size of

the whitened MDB smaller, but the effect of the variability in the AR coefficients is

also greater.

Comparing the AR(1) and AR(p) whitened MDB values similar observations to

those made in §7.3.4 can be made. A greater number of spikes can be seen in the

AR(p) time series in Figure 7.1b compared to the AR(1) time series. This can be

explained by the variation in the AR order selected, as shown by Figure 7.24. The

vertical axis for AR order has been reversed to highlight the jumps seen in both the

AR order and the AR(p) MDB values. Since this variation has caused the variance

of the whitened residual to be smaller, the size of the whitened MDB is likewise

smaller.

In conclusion, by calculating a whitened MDB based on the variance of the
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Figure 7.24: Comparison of AR(1) and AR(p) whitened MDB values for GPS SVN05
at ABPO with respect to the AR order chosen.

whitened post-fit residual results in smaller MDBs. This suggests that in a non-

optimal filter where the residuals can be modelled as an AR(p) process, whether

p = 1 or determined using the AIC criterion, the resulting non-optimal MDB that

is calculated may be an overestimate of the true value. It is important to note,

as discussed in §4.7, that the MDB is an indication of the internal reliability and

therefore does not give any measure relative to the estimated parameters. This can

be achieved by calculating the minimal detectable effect (see §4.7).

7.9 Discussion

In this section the implementation of the whitened test statistic and the whitened

MDB will be discussed with respect to the user requirements outlined in §2.6 and

the extent to which the improved power of the whitened test statistic has been

demonstrated.

When presenting the whitened test statistic as an improved method of statisti-

cally testing GNSS observations it was not the intention that the accuracy would

be improved. However, effective quality control of GNSS observations can ensure

that accuracy is not degraded by model errors. It was mentioned in §2.6 that in the

offshore industry developments in the positioning technology leads to the opening

up of new applications. As such, any improvements in accuracy could potentially

lead to new markets being exploited.

The reliability of a solution is very important in offshore survey, as remarked

upon in §2.6. It has been seen that using the whitened residual variance to cal-

culate the MDB results in smaller values, therefore suggesting that the whitening

procedure allows smaller biases masked by time correlation to be detected. For off-
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shore positioning this allows extra assurance to be given to the client that a reliable

position can be achieved.

One problem that has been addressed when calculating the whitened test statistic

is that a sufficiently large sample size of historical residuals is required in order to

calculate a reliable estimate of the time correlation. The time period used in this

study was 240 seconds, as determined in §5.3.3. This can have a potentially negative

impact on the availability of positioning if there are any missing observations and

may result in the 99.8% availability over 30 days not being achieved. The problem

can be partially overcome using a bridging method, as discussed in §7.5.2. If this

method is applied then any availability problem is confined to when a satellite is

first tracked.

Additionally, it may be possible to use a shorter period of time to estimate the

AR coefficients when there is insufficient data. While the advantage of this is that

the period of time to wait before the whitened test statistic can be used is reduced,

it may result in a poor estimate of the autocorrelation. Further work would be

required to find the shortest possible time whereby the whitened test statistic still

performs adequately.

If the whitened test statistic was to be implemented in a real-time system the

time correlation would be estimated at the receiver. In this sense the latency issues

that affect the orbit and clock corrections supplied to the user would not apply. Any

time correlation caused by the latency of the received corrections would manifest

themselves in the residuals, and hence still be corrected for.

The results in this chapter show that by using the whitened residual and the

variance of the whitened residual, both calculated by modelling the time correlated

residuals as an AR process, it is possible to form the whitened test statistic. The

magnitude of the whitened test statistic values was shown to be of the same order

as the unwhitened test statistic, but displayed less evidence of time correlation. A

number of implementation issues were encountered, such as problems caused by gaps

in the data and changes in the geometry of the least squares solution (see §7.5.2 and

§7.7). Despite this it was shown that the whitened test statistic was effective at
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detecting outliers in the dataset.

Some of the implementation issues meant that the effectiveness of the whitened

test statistic at detecting outliers could not be fully realised. If these could be

overcome it would useful to be able to test the algorithm using a variety of datasets,

including challenging datasets obtained in the field as well as data with synthetic

outliers.

It was also evident from §7.8 that removal of the time correlation in the residuals

resulted in a smaller MDB, suggesting that smaller biases in the observables could

be detected. This seems an intuitive assumption to make, since time correlation

can lead to over-estimates of the variance and can potentially mask any outlying

observables.

Any future work should evaluate the size of bias that can estimated when taking

into account time correlation in the residuals. An investigation using synthetic

GNSS data could be performed, whereby outliers of varying size in both the code

and carrier observations can be inserted. It is also possible to artificially introduce

time correlation into the data that is used during processing. Not only could this

applied to the data itself, for example by modelling multipath, but also in the orbit

and clock corrections.

7.10 Summary

The whitened test statistic, based on the T test statistic given in Chapter 4, was

derived in §7.4 using the whitened residuals introduced in Chapter 6 and the variance

of the whitened residuals, derivations for which were given in §7.3. The test statistic

for the predicted and post-fit residuals were given, although only analysis of the test

statistic calculated using post-fit residuals was provided in §7.6 and §7.7 since the

use of the semi-recursive Kalman filter in the E-HP/PPP processing software means

that only post-fit residuals can be calculated (see §3.6).

From the time series analysis in §7.6 it could be seen that the whitened test

statistic was more consistently centred around zero and was more characteristic of

white noise than the unwhitened residual, although the magnitude in some case was
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greater and there were more frequent spikes. In some cases the estimated whitened

test statistic values exceeded the critical value threshold where the unwhitened test

statistic did not. In §7.7 individual epochs were considered, in contrast to viewing

the test statistic as a time series. This showed that where a large observation bias

occurred the two test statistics yielded the same candidates as outliers, although

this could only be reliably done where every observable was whitened.

A result of the AR estimation method is that a sample of 240 seconds of con-

tinuous residuals is required in order to estimate the AR coefficients. This was

highlighted in §7.5, along with other implementation issues. To overcome the prob-

lem of gaps in the data, a relaxation of the requirement for continuous data was

made whereby gaps of 5 seconds or less could be bridged by assuming continu-

ity. The most important implementation issue was the case where a whitened test

statistic cannot be calculated for all observables. It is not possible to use a mixture

of unwhitened and whitened test statistic values as this may result in the wrong

observable being identified as containing a bias where a model error has occurred.

Using the aforementioned assumptions the whitened test statistic was imple-

mented in the software to see how it would perform in production software. This

highlighted a number of issues that would require complex changes to the way in

which the software was programmed. It was found that the removal of a biased

observable could have a significant influence on the geometry of the least squares

solution and hence result in a jump in the residual time series. This gap resulted

in the whitened residual to be incorrectly calculated at epoch k, since the residual

at epoch k − 1 now included a bias. This problem was also seen where there was

an unexpected change in the number of available satellites, such as when a satellite

was rising or setting as its influence was limited by elevation dependent weighting.

This problem can be overcome by re-estimating the residuals at the epochs required

for whitening and using these values to generate the whitened residual.

The effect of the whitened test statistic on the measurement of reliability was

also considered. Since the whitened test statistic is calculated using the variance

of the whitened residual, it is important to see the effect of this variance on the
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MDB. The whitened MDB of the whitened test statistic using both predicted and

post-fit residuals was derived using their respective variances. The effect of the

AR coefficients in both was shown to be that the size of the whitened MDB was

influenced by the magnitude of correlation. It could also be seen that if the AR

coefficients were zero then this gave the unwhitened MDB. The effect of the AR

coefficients on the whitened MDB was to make the values much less smooth than

that of the unwhitened MDB, depending on the variability of the AR coefficients

themselves.
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Chapter 8

Conclusions and future directions

8.1 Introduction

This study set out to determine the extent of time correlation in the residuals from

PPP processing and establish a statistical test for identifying biases in the observ-

ables that can be performed when the residuals are time correlated. This was done

using the E-HP/PPP processing software, which uses the semi-recursive Kalman

filter described in §3.6. Pre-existing software was chosen over developing PPP pro-

cessing software from scratch as this can be very time consuming and would limit

the extent of research that could be done in the time frame of the project. Since

using the semi-recursive Kalman filter results in a state vector that contains com-

mon and epoch parameters, for which the latter no a priori information is assumed,

all analysis was done using the post-fit residual. In Chapter 4 the quality control

procedures for both the predicted and post-fit residual in relation to the so-called

DIA method were given. Since the E-HP/PPP processing software uses the post-fit

residual all statistical testing of observables is done using the post-fit residual and

hence use the formulae given in §4.3. Despite this, the linear relationship between

the predicted and post-fit residual given in §3.7 means that it is possible to replicate

all the analyses given in Chapters 5, 6 and 7 using the predicted residual where an

extended Kalman filter is employed.
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8.2 Time correlation in the post-fit residuals

An objective of the research was to establish to what extent time correlation was

present in the PPP technique. The theoretical derivations in Chapter 5 showed that,

when it is assumed the observables are not correlated in time, whereas in an optimal

Kalman filter the predicted and post-fit residuals are not temporally correlated, for

a non-optimal Kalman filter this may not be the case. By processing data from

four datasets using the E-HP/PPP processing software it was shown that there was

strong time correlation in both the code and carrier phase residuals. In addition

to this the cross-correlation between satellites and observation types was also high.

The level of correlation appeared to be dependent on the satellite, observation type

and dataset. In the case of the latter this could be dependent on the site location

or receiver type.

An optimal filter assumes that the measurement noise and the process noise are

correctly specified and not correlated in time. The stochastic model of the observ-

ables is well-known, although it is often assumed there is no correlation between the

different observation types and frequencies. As this is commonly implemented in

GNSS software packages this assumption was held for this study. It is less trivial to

determine the process noise that should be applied to the parameters as part of the

time update stage of the filter. Another potential source of correlation is unmod-

elled parameters. As discussed in §3.8 the measurement model for PPP processing

is reparameterised in order to make the system solvable, therefore it is not always

possible to model all parameters. Attempts were made in §5.4 to see if the corre-

lation could be reduced by adjusting the process noise. Although the correlation

could not be significantly reduced, this method was successful in finding the best

value for the process noise that minimised the time correlation. This was found to

be in agreement with the default value used in the E-HP/PPP software and hence

validated the process noise that was being applied.

Since the AR process is an estimation it was important to establish the best

sample size to use in order to achieve this. From an implementation point of view

it is necessary to have a large enough sample size to get a true representation of
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the AR process, whilst minimising the time that must elapse before an estimate can

be made. As implementation of any developed procedure was one of the research

objectives, the storage of data to make such an estimate was also a consideration.

The sample size of 240 seconds was found to be the point at which there was no

extra gain in increasing sample size.

8.3 Modelling post-fit residuals as an AR process

As a step towards achieving the objective of finding a method for removing the time

correlation present, the post-fit residuals were modelled as an autoregressive (AR)

process in Chapter 6. Following a review of AR estimation methods, Burg’s method

was chosen to estimate the AR coefficients. This was chosen so that the process

could be guaranteed to be stationary, since it had been found that the AR process

was close to the unit circle (see §6.2). To not choose such a method could have

resulted in an AR process with an exponentially growing error.

From a theoretical standpoint it was shown in §6.6 that an AR(1) process was

possible. The time correlation was therefore initially estimated as an AR(1) process

and the coefficients were used to obtain ‘whitened’ estimates. It was shown that an

AR(1) process was effective at removing a large proportion of the time correlation

from the residuals, resulting in a residual that was random. However, in some cases

‘overwhitening’ was found to have taken place. By using a higher order AR process,

referred to in the thesis as an AR(p) process, it was possible to obtain an improved

whitened residual that was closer to random noise.

8.4 Development of the whitened test statistic

In working towards a test statistic that could be used for time correlated residuals,

the quality control procedures for GNSS processing that were presented earlier in

the thesis were revisited in Chapter 7. Since the T test statistic is formed on the

assumption that the residuals are not correlated in time, the whitened residual

was considered a good basis by which observation biases could be tested. It was
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found that by estimating the variance of the whitened residual it was possible to

form a whitened T test statistic that satisfied the requirement of the residual to be

uncorrelated in time. Viewing this whitened test statistic as a time series resulted

in values that were of a comparable magnitude to the unwhitened test statistic, but

more characteristic of white noise.

8.5 Implementation of the whitened test statistic

A further objective of the research was to address the implementation of such a

test statistic in the E-HP/PPP processing software. From this arose the problem

that using time lagged estimates of the post-fit residual to form the whitened post-fit

residual resulted in incorrect estimates when the geometry of the estimation changed.

This occurred when an observable was suddenly added to or removed from the vector

of observables. In the case where a satellite rises or sets, the elevation dependent

stochastic model limited the impact of the additional observables. However, in the

case where an observable with a high weight is introduced or removed, for example

due to being obscured or removed due to an observation bias, the geometry of

estimation changes and the residual time series is no longer continuous. Using pre-

existing software meant that adapting the PPP processing software to recalculate

previous residual estimates, as suggested in §7.7, proved too complex to be able to

implement in the given time frame.

8.6 Effect on reliability measures

In addition to detecting any biases in the observable it is also important to consider

the reliability of the test statistic being used. The minimal detectable bias (MDB)

is a function of the variance of the predicted residual. As it was shown in §7.3 the

variance of the whitened residual is found by scaling the estimated variance of the

unwhitened residual. As such, when using the whitened test statistic it follows that

the whitened MDB should be used as a result. It was shown, both theoretically and

in practice, that the whitened MDB decreased as the temporal correlation in the
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residuals increased. By considering that time correlation in the residuals has the

potential to mask outliers from detection then this is not unexpected. As the tem-

poral correlation in the residuals decreases then the whitened MDB tends towards

the unwhitened MDB.

8.7 Future directions

One of the objectives of this research was to investigate the implementation of any

developed test statistic in production software. This was partially achieved, although

it was clear that for the test statistic to be robustly implemented would require a

significant re-write of the existing software. If a PPP processing software package

was to be written from scratch then the experiences of implementation in this study

could be used in the design of any future software so that the whitened test statistic

could be much easily integrated.

In this study an AR process was estimated for each satellite and observation

type. As such, the cross-correlations between different satellites and observation

types were not taken into account in the estimation of the AR coefficients. The

reason for this was that the use of the post-fit residuals resulted in a covariance

matrix at lag 0 that could not be inverted. Should the procedures outlined in this

thesis be applied to PPP processing software that uses a conventional Kalman filter

then it is theoretically possible to use a multivariate AR process to estimate the

AR coefficients. This would bring added complications, since the AR order would

have to be fixed for all satellites and observation types. Since the AR processes

seen in this thesis are very close to the unit circle, an AR estimation method that

guarantees stationarity would also be required. Multivariate AR processes become

increasingly complex as the order increases, therefore this could be a limiting factor.

As seen in Chapter 6 the estimate of the AR coefficient maintains a fairly constant

mean over longer periods of time, but over shorter periods of time can be quite

noisy. This has a direct impact on the estimates for the whitened residual and

its variance. Whilst this does not have a significant impact on the whitened test

statistic, since it is a ratio and is itself characterised by random noise, it results in

253



a noisy estimate of the variance of the whitened residual. This has a direct impact

on the estimates of the whitened MDB, which in §7.8 is seen to be much noisier

than the unwhitened MDB. By making the assumption that the AR coefficients do

not change significantly from one epoch to the next, the AR coefficients could be

determined using a recursive estimator, such as a Kalman filter. This would have

the additional benefit that where there is a significant gap in data from a satellite

the previous estimates of AR values could be used to forecast any time correlation

until there is enough data to generate a reliable estimate. However, this would be

challenging to implement if the AR order was allowed to change between epochs.

The effects of the precise orbits and clocks on time correlation in PPP processing

requires further study. Since they are treated as known in the PPP measurement

model it is important to model their residual effects. One area of further study

would be to treat the precise orbits and clocks stochastically. It is also important

to note that corrections for one satellite are applied equally over all observation

types. This will inevitably result in time correlation and additional cross-correlation

between observation types and is in need of further study. With the addition of

other satellite systems, such as GLONASS, Galileo and BeiDou, the possibility of

inter-system correlation is something that should also be investigated.

For the purposes of this study the assumption that GNSS observables are un-

correlated was held, since this is a practical decision commonly made in GNSS

processing software. Many studies have shown this not to be the case. Any future

work could integrate the estimates of correlations in observables into the a priori

variance-covariance matrix of the observables. This can be done using variance-

component estimation aided with estimates of time correlation (Satirapod 2001).

Alternatively it has been shown by Wang et al. (2012) that it is possible to estimate

the correlation in the observables as part of the state vector. Due to the importance

of orbit and clock corrections in PPP and the issues associated with non-optimal

filters demonstrated in this thesis it is still likely that time correlations would be

present, but reduced.

Finally, there have been many advances in the estimation of integer ambiguities

254



in PPP with the use of uncalibrated phase delays (UPDs) (Laurichesse and Mercier

2007, Ge et al. 2008, Geng et al. 2010). As seen with orbit and clock corrections, the

stochastic nature of the UPDs should be considered. Depending on the method by

which the UPDs are applied, this may result in another source of time correlation.

With such high rate of data being used this may exacerbate the effect of any temporal

correlation.
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Appendix A

Summary of mathematical

notation

Introduction

The mathematical notation in this thesis is derived from both estimation theory,

closely following the style of Salzmann (1993) and Teunissen (1998b), and from

time series analysis, mixing notation by Box and Jenkins (1976), Priestley (1981)

and Broersen (2006). As such, this appendix gives a reference to the notation used

grouped by subject area.

Time

In some cases various vectors and matrices are time-dependent. A particular epoch

will be denoted in subscript by the letters k and l. For example, y
k

refers to the

vector of observables at time k. The previous epoch would similarly be denoted as

k − 1, i.e. y
k−1.

Vectors and matrices

In general, vectors are represented in lower-case and matrices are represented in

upper-case. In the case of a diagonal matrix for the sake of clarity off-diagonal zero
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elements will not be shown, e.g.


a 0 0

0 b 0

0 0 c

⇒


a

b

c


In some cases this may be further generalised to

diag (a, b, c)

GNSS observation models

p pseudorange code observation.

φ carrier phase observation.

R geometric distance between the receiver and satellite.

δt clock biases.

T tropospheric delay.

I ionospheric delay.

η code hardware delay.

µ carrier phase hardware delay.

λ carrier wavelength.

N carrier phase ambiguity, integer part.

ϕ carrier phase ambiguity, decimal part.

Statistical theory

D{·} mathematical dispersion operator, which represents the theoretical

variance of the variable contained within the parentheses.

E{·} mathematical expectation operator, which represents the theoretical

mean of the variable contained within the parentheses.
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Estimation theory

A random variable, whose definition can be found in Koch (1999), is denoted by

an underline, e.g. y and a hat is used to denote an estimated value, e.g. x̂k is the

estimate of the random variable x at epoch k. It is often the case that a value at

one epoch is dependent on a value from a different epoch. This is denoted by a

vertical line, e.g. xk|k−1 indicates vector x at epoch k based on the solution from

epoch k − 1.

y random vector of m observables.

Qy an m×m a priori variance-covariance matrix of the observables.

x vector of n unknown parameters.

x̂ estimate of n unknown parameters.

Qx an n× n a posterior variance-covariance matrix of the estimated pa-

rameters.

A an m× n design matrix.

ê a vector of m least squares residuals.

B an m× (m− 1) matrix of condition coefficients.

Recursive estimation theory

Φk,k−1 the state transition matrix from epoch k to k − 1.

w a vector of process noise.

v a vector of predicted residuals.

Qv an a posterior variance-covariance matrix of predicted residuals.

K the Kalman gain matrix.

Hypothesis testing

α the level of significance
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β the power of test

H0 the null hypothesis

HA the alternative hypothesis

Cq a matrix of model errors with q dimensions.

∇ a vector of unknown model errors or explanatory parameters.

λ the non-centrality parameter.

T the general form of the test statistic

t the one-dimensional form of the test statistic

w the scalar one-dimensional slippage test statistic, often called the w-

test.

|∇| the minimal detectable bias (MDB).

Time series analysis

d the Durbin-Watson test statistic.

d+U , d
+
L the upper and lower bound for the Durbin-Watson test against posi-

tive correlation.

d−U , d
−
L the upper and lower bound for the Durbin-Watson test against nega-

tive correlation.

R(s) the autocovariance of a stochastic process at lag s.

ρ(s) the autocorrelation of a stochastic process at lag s.

Rij(s) the cross-covariance of a stochastic process at lag s.

ρij(s) the cross-correlation of a stochastic process at lag s.

Autoregression

a1, . . . , ap the autoregressive (AR) coefficients up to order p for the AR process

as defined by Priestley (1981) and Broersen (2006).
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φ1, . . . , φp the AR coefficients up to order p for the AR process as defined by

Box and Jenkins (1976). This is the notation used in this study.

ε the random noise in an AR process.

π(s) the partial autocorrelation function at lag s.

κ the reflection coefficient.

ṽk the whitened predicted residual at epoch k.

ẽk the whitened post-fit residual at epoch k.

Qṽk the variance-covariance matrix of the whitened predicted residual at

epoch k.

Qẽk the variance-covariance matrix of the whitened post-fit residual at

epoch k.

T̃ the general form of the whitened test statistic.

t̃ the one-dimensional form of the whitened test statistic

w̃ the scalar one-dimensional whitened slippage test statistic.

|∇̃| the whitened MDB.
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Appendix B

Derivation of the test statistic for

the post-fit residual in a recursive

estimator

B.1 Introduction

By following the least squares derivation of the Kalman filter given in §3.5 it is

possible to show that the post-fit residuals may be used for hypothesis testing of

the observation using the method presented in §4.3. The least squares model for the

filtering step is given by

E{

 x̂k|k−1

y
k

} =

 I

Ak

xk ;

 Qx̂k|k−1

Qy
k

 (B.1)

where x̂k|k−1 and Qx̂k|k−1
have been computed in the prediction step (see §3.5).

It will be shown here that the local test statistic at epoch k is equivalent to the

test statistic used in batch processing.
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B.2 Residuals and corresponding variances

The general forms of ê and Qê are

ê = P⊥A y Qê = P⊥AQy (B.2)

where

P⊥A = I − A(ATQ−1y A)−1ATQ−1y (B.3)

is the orthogonal projector of the matrix A (Teunissen 2006). As P⊥A is present in

both equations it is best to first substitute into this values from the extended model.

P⊥A = I −

 I

Ak

Qx̂kk

(
I ATk

) Q−1xk|k−1

Q−1yk


=

 I −Qx̂k|k
Q−1xk|k−1

−Qx̂k|k
ATkQ

−1
yk

−AkQx̂k|k
Q−1xk|k−1

I − AkQx̂k|k
ATkQ

−1
yk

 (B.4)

It is possible to expand êk|k using Eq. (B.4) giving

êk|k =

 I −Qx̂k|k
Q−1xk|k−1

−Qx̂k|k
ATkQ

−1
yk

−AkQx̂k|k
Q−1xk|k−1

I − AkQx̂k|k
ATkQ

−1
yk


 xk|k−1

yk


=

 −Qx̂k|k
ATkQ

−1
yk
yk + (I −Qx̂k|k

Q−1xk|k−1
)xk|k−1

(I − AkQx̂k|k
ATkQ

−1
yk

)yk − AkQx̂k|k
Q−1xk|k−1

xk|k−1

 (B.5)

Based on the assumption that

êk|k =

 êxk|k−1

êyk

 (B.6)

then

êxk|k−1
= −Qx̂k|k

ATkQ
−1
yk
yk + (I −Qx̂k|k

Q−1xk|k−1
)xk|k−1 (B.7)

êyk = (I − AkQx̂k|k
ATkQ

−1
yk

)yk − AkQx̂k|k
Q−1xk|k−1

xk|k−1 (B.8)
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Similarly it is possible to expand Qêk|k using Eq. (B.4) giving

Qêk|k =

 I −Qx̂k|k
Q−1xk|k−1

−Qx̂k|k
ATkQ

−1
yk

−AkQx̂k|k
Q−1xk|k−1

I − AkQx̂k|k
ATkQ

−1
yk


 Qxk|k−1

Qyk


=

 Qxk|k−1
−Qx̂k|k

−Qx̂k|k
ATk

−AkQx̂k|k
Qyk − AkQx̂k|k

ATk

 (B.9)

B.3 Local overall model test

The overall model test statistic is given in §4.3.1 as

Tm−n =
êTQ−1y ê

m− n
(B.10)

By using the partition of êk|k in Eq. (B.6) the local overall model test using the

post-fit residuals becomes

Tm−n =
1

m− n

(
êTxk|k−1

êTyk

) Qxk|k−1

Qyk


 êxk|k−1

êyk


=
êTxk|k−1

Qxk|k−1
êxk|k−1

m− n
+
êTykQyk êyk
m− n

(B.11)

Since the assumption is that a model misspecification is caused by one of the obser-

vations, i.e. an element in y
k
, and that any model errors at the previous epoch have

already been identified and removed, Eq. (B.11) can be simplified to

Tm−n =
êTykQyk êyk
m− n

(B.12)

B.4 Local slippage test

The slippage test statistic is given by Eq. (4.10) as

w =
cTQ−1y ê√

cTQ−1y QêQ−1y c
(B.13)

278



By partitioning c into those parts relating to y
k

and x̂k|k−1 as per Eq. (B.6) as

c =

 cxk|k−1

cyk

 (B.14)

and using the partition of êk|k in Eq. (B.6) the local slippage test statistic using the

post-fit residuals becomes

wk =

(
cTxk|k−1

cTyk

)
Q−1xk|k−1

Q−1yk



êxk|k−1

êyk


√√√√√√√√√
(
cTxk|k−1

cTyk

)
Q−1x̂k|k−1

Q−1yk



Qxk|k−1

−Qx̂k|k
−Qx̂k|k

ATk

−AkQx̂k|k
Qyk − AkQx̂k|k

ATk



Q−1x̂k|k−1

Q−1yk



cxk|k−1

cyk



which reduces to

wk =
cTxk|k−1

Q−1xk|k−1
êxk|k−1

+ cTykQ
−1
yk
êyk√

a+ b
(B.15)

where

a = cTxk|k−1
Q−1x̂k|k−1

(Qxk|k−1
−Qx̂k|k

)Q−1x̂k|k−1
cxk|k−1

+ cTxk|k−1
Q−1x̂k|k−1

Qx̂k|kA
T
kQ
−1
yk
cyk

(B.16)

b = cTykQ
−1
yk

(Qyk − AkQx̂k|k
ATk )Q−1yk cyk + cTykQ

−1
yk
AkQx̂k|kQ

−1
x̂k|k−1

cxk|k−1
(B.17)

Since the assumption is that a model misspecification is caused by one of the

observations, i.e. an element in y
k
, and that any model errors at the previous epoch

have already been identified and removed, cxk|k−1
= 0 and hence

wk =
cTykQ

−1
yk
êyk√

cTyk(Q−1yk −Q−1yk AkQx̂k|k
ATkQ

−1
yk

)cyk

(B.18)

B.5 Summary

In the derivation above it was shown that using the post-fit residuals that relate to

the observations (êyk) it can be seen that Eq. (4.9) and Eq. (B.12) are equivalent.

It has further been shown that Eq. (4.12) and Eq. (B.18) are also equivalent.
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