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Abstract

In this Thesis we study steady state solutions and dynamical evolutions of two–

component atomic Bose–Einstein Condensates. We initially investigate the equilibrium

properties of condensate mixtures in harmonic trapping potentials at zero temperature.

Subsequently we simulate the coupled growth of these condensates by inclusion of damp-

ing terms. Finally, we investigate the evolution of coupled Bose gases via the so-called

classical–field method.

A recent experiment [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]

achieved Bose–Einstein Condensation of a two–species 87Rb–133Cs phase segregated mix-

ture in harmonic trapping potentials. Depending on relative atom numbers of the two

species, three distinct regimes of density distributions were observed. For these experimen-

tal parameters, we investigate the corresponding time–independent ground state solutions

through numerical simulations of the coupled Gross–Pitaevskii equations. By including

experimentally relevant shifts between the traps, we observe a range of structures includ-

ing ‘ball and shell’ formations and axially/radially separated states. These are found to

be very sensitive to the trap shifts. For all three experimental regimes, our numerical

simulations reveal good qualitative agreement.

The observed experimental profiles cannot be guaranteed to be fully equilibrated. This,

coupled with the rapid sympathetic cooling of the experimental system, leads to a situ-

ation where growth may play a determining factor in the density structures formed. To

investigate this further, we introduce phenomenological damping to describe the associ-

ated condensate growth/decay, revealing a range of transient structures. However, such a

model always predicts the predominance of one condensate species over longer evolution

times. Work undertaken by collaborators with the more elaborate Stochastic Projected

Gross–Pitaevskii equations, which can describe condensate formation by coupling to a heat

bath, predicts the spontaneous formation of dark–bright solitons. Motivated by this, we

show how the presence of solitons can affect the condensate distribution, thus highlighting

the overall dynamical role in the emerging patterns.

Finally, we use classical field methods to analyse the evolution of non trapped Bose

gases from strongly nonequilibrium initial distributions. The contrast between miscible

(overlapping) and immiscible (phase segregated) components gives rise to important dis-

tinctions for condensate fractions and the formation of domains and vortices. In addition,

splitting the particles of a single component thermalised state into two components is

investigated. We then study the effects of suddenly quenching the strength of the in-

terspecies interactions. Under suitable conditions, this quench generates isotropic vortex

tangles. While this tangle subsequently decays over time, we propose how a repeat se-

quence of quenches at regular intervals could be employed to drive the tangle, thereby

potentially providing a novel route to the generation of quantum turbulence.
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Chapter 1

Introduction

The theoretical prediction of Bose-Einstein condensation dates back to the early 1920’s

when Planck’s law for black–body radiation was re–derived by Satyendra Nath Bose from

first principles [1] by assuming photons were identical and counting their distribution over

energy states. Albert Einstein generalised these findings to massive particles, leading

him to a theory for a gas of non–interacting atoms [2]: the Bose-Einstein distribution

function was born. The distribution function for identical and indistinguishable particles

at temperature T is given by

f (ǫν) =
1

e(ǫν−µ)/kT − 1
(1.1)

where ǫν denotes the energy of each single–particle quantum state labelled by ν, k is the

Boltzmann constant and µ is the chemical potential of the system. The distribution gives

the mean occupation number Nν of the single–particle states, which is defined by

Nν = f (ǫν) gν =
gν

e(ǫν−µ)/kT − 1
(1.2)

where gν is the degeneracy of the state ν. At low temperatures, these particles enter the

same lowest energy quantum mechanical state; this is the Bose-Einstein condensate (BEC).

In 1938, London suggested the connection between the then unexplained superfluidity of
4He, by treating the strongly interacting liquid as a weakly interacting gas, and Bose-

Einstein condensation of weakly interacting particles [3, 4].

A dilute weakly interacting atomic condensate was created for the first time in 1995

in ultracold gases of Rubidium 87Rb [5], Sodium 23Na [6], followed by Lithium 7Li [7, 8]

through the use of laser cooling methods. In these experiments the use of laser cooling

alone was not sufficient in obtaining the low temperatures and high densities required

for condensation and was therefore followed by evaporative cooling where the more en-

ergetic atoms are removed from the system thus allowing the remaining atoms to cool
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Chapter 1. Introduction

through thermalising elastic binary collisions. This achievement was subsequently re-

warded with Nobel Prizes in 1997 to Steven Chu, Claude Cohen–Tannoudji (theory) and

William Phillips for laser cooling and trapping [9, 10, 11] and in 2001 to Carl Wieman,

Eric Cornell and Wolfgang Ketterle for the achievement of BEC [12, 13].

1.1 Superfluid 4He

Many of the properties of quantum fluids were established during the study of superfluid
4He. The term superfluidity came into existence in 1938 when Kapitza [14] and Allen and

Misener [15] measured the flow of viscosity of 4He. It turned out that below the critical

temperature 2.17K, 4He becomes superfluid and has exceptional properties such as the

ability to flow persistently around a loop due to the absence of viscosity. This also allows

the liquid to flow through narrow channels. The idea of superfluidity only gained accep-

tance in 1941 with the introduction of the two-fluid model by Landau [16]. In this model,

the superfluid component with no viscosity exists alongside the normal liquid; the relative

ratio of their densities depending on temperature. At very low temperatures, the density

of the superfluid component approaches the total density of the liquid while the density of

the normal liquid vanishes. Due to the large interactions in the system, only about 10% of

the particles are condensed i.e. in the lowest energy state. To achieve experimental realisa-

tion of BEC, a search for weakly interaction collisions between particles was required such

that the system be easier to keep in gaseous form at very low temperatures. Close to the

critical temperature, the situation is reversed: the density of the normal liquid approaches

the density of the liquid while that of the superfluid tends to zero.

1.2 Bose–Einstein Condensation

In quantum mechanics, indistinguishable particles can be sorted into two classes depending

on the value of their spin, originally interpreted as the rotation of a particle around some

axis. There are fermions (half-integer spin) which follow Fermi-Dirac statistics and bosons

(integer spin) which follow Bose–Einstein statistics (see Equation (1.1)). Due to the Pauli–

exclusion principle, no more than one fermion can occupy a given quantum state. However,

the number of bosons in the same state is unrestricted. Bosons are particles that exhibit

symmetric states while fermions exhibit asymmetric ones. The two-particle wavefunctions

are

Ψ =
1√
2
[ψ(x1, Ea)ψ(x2, Eb) + ψ(x2, Ea)ψ(x1, Eb)] (1.3)

Ψ =
1√
2
[ψ(x1, Ea)ψ(x2, Eb)− ψ(x2, Ea)ψ(x1, Eb)] (1.4)

3



Chapter 1. Introduction

for bosons and fermions respectively where the two particles are at positions x1 and x2

with energies Ea and Eb. If the particles have the same energy, i.e. Ea = Eb, the symmetric

wavefunction becomes
√
2ψ(x1, Ea)ψ(x2, Ea) showing that bosons can co-exist in the same

state while the asymmetric wavefunction vanishes. The asymmetric wavefunction is null

making it impossible for two fermions to occupy the same state. In fact, once a state is

occupied by a boson, the probability of additional bosons scattering into the same state

is increased.

The thermal de Broglie wavelength relates temperature to the mean interparticle spac-

ing (see Figure 1.1), of order n−1/3 where n = N/V is the number density of a gas of N

particles of volume V . The thermal de Broglie wavelength is given by

λT =

√

2π~2

mkT
(1.5)

where m is the atomic mass. We note that the wavelength is inversely proportional to

the square root of the temperature T . At high temperatures, the interparticle spacing

is much larger than the de Broglie wavelength (n1/3 ≫ λT ) such that classical particle

like behaviour dominates, obeying the Boltzmann distribution. When the temperature

is lowered, the wavelength increases and becomes comparable to the interparticle spacing

(n1/3 ≈ λT ). The wave packets of the particles overlap and combine to form a giant matter

wave, consistent with the system entering a quantum degenerate regime.

The criterion for Bose–Einstein condensation for a gas of identical particles in a three

dimensional non–interacting uniform system is fulfilled when nλ3T ≤ ζ(3/2) [18] where

ζ(3/2) ≈ 2.612 is the Riemann zeta function. Related to this condition, the expression for

the critical temperature for which condensation occurs is

Tc =
2π~2

mk

(

n

ζ (3/2)

)2/3

. (1.6)

This critical temperature is the highest temperature at which the excited states become

saturated and a anomalously large number of particles are forced into the lowest possible

energy state (zero momentum). The collection of particles residing in the ground state is

the BEC. The BEC transition is characterised in momentum space when a finite fraction

of the particles occupy the zero momentum state and the occupancy of this momentum

state is given by the well known result

N0 = N

[

1−
(

T

Tc

)3/2
]

(1.7)

where N0 is the number of particles in the condensate and N is the total number of

particles in the system. A pure condensate (N0 = N) results in the region near absolute
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Figure 1.1: Criterion for Bose–Einstein condensation. (a) At high temperatures, the particles
act like billiard balls in a weakly interacting gas where d is the interparticle spacing. (b) At low
temperatures, the wavelength (λdB) properties of the particles start to emerge. (c) At the BEC
transition temperature, the de Broglie wavelength becomes comparable to the distance between
atoms and a Bose condensate forms. (d) When the temperature approaches absolute zero, all of
the wavelengths overlap forming a pure BEC. Figure taken from Reference [17] with minor editing.
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zero (T = 0K), although interactions also lead to quantum depletion.

In typical experiments, the gas is confined to a three–dimensional (3D) trapping po-

tential which is harmonic

V (r) =
1

2
m

(

ω2
xx

2 + ω2
zz

2 + ω2
zz

2
)

(1.8)

where ωx, ωy and ωz are the harmonic oscillator frequencies in the x, y and z directions

respectively. When the gas is in such a potential, the transition temperature in the

abscence of interactions is given by

Tc =
~ω̄

k

(

N

ζ(3)

)1/3

≈ 0.94~ω̄N1/3 (1.9)

where ω̄ = (ωxωyωz)
1/3 is the mean of the harmonic oscillator frequencies. In the next

section, we outline the typical methods used for creating Bose–Einstein condensates ex-

perimentally, highlighting the use of harmonic trapping potentials and evaporative cooling

in doing so.

From a theoretical point of view, the study of these dilute BECs is attractive due to

the weak interactions leading to a mean–field macroscopic order parameter characterising,

to first order, the wavefunction of the many–body system. A nonlinear Schrödinger type

equation known as the Gross–Pitaevskii equation will be introduced in the next chapter

which describes the macroscopic order parameter.

1.2.1 Experimental realisation

In order to avoid a gas turning to solid at ultra–low temperatures, a gas can become

long lived at these temperatures by making it extremely dilute. The densities required are

around 1013 – 1015 particles per cm3, much lower than commonly experienced (around 1019

particles per cm3). Using these densities in the expression for the critical temperature for

condensation (1.6) predicts temperatures of under 10−6K. At such very low temperatures,

scattering only occurs in the s-wave scattering channel (corresponding to the angular mo-

mentum l = 0) with the high energy scattering channels (p–wave, d–wave...) suppressed.

The strength of scattering is determined by a characteristic parameter, as, known as the

s–wave scattering length. Diluteness in a three dimensional system is given by

a3sn≪ 1. (1.10)

The very low temperatures required in order to form a BEC were impossible prior to

the development of laser cooling and magnetic and optical trapping of atoms in the 1980’s

for which the 1997 Nobel Prize was awarded to Steven Chu, Claude Cohen Tannoudji and
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William Phillips. It was first believed that spin–polarised hydrogen atoms would make

the ideal candidate for BEC due to the weak interactions between atoms and prediction

to remain in gaseous form right down to absolute zero [19]. The work in attempting to

achieve BEC with this species proved instrumental in developing evaporative cooling, an

important technique used in the final steps during the creation of any BEC. Mainly for the

reasons which made spin–polarised hydrogen a good candidate for condensation, it was

not possible to create BEC at this time. Reducing the temperature enough to realise BEC

at experimentally workable densities with small scattering lengths was extremely difficult.

Several experiments were then initiated with heavier alkali metals. They turned out to be

more suitable for the realisation of BEC due to their weak s–wave scattering and due to

the presence of only one outer–electron in the s–orbital, which makes them ideal for laser

cooling and magnetic trapping.

It was not until 1995, some 70 years after BEC was first predicted, that the first

experimental observation of a pure BEC was seen in a cloud of rubidium (87Rb) atoms by

a team of scientists at JILA at the University of Colorado led by Professors Carl Wieman

and Eric Cornell [5]. This was soon followed with BEC realisation in sodium 23Na by

the group of W. Ketterle at the Massachusetts Institute of Technology (MIT) [6] and also

in 7Li by the group of R. G. Hulet [7, 8] at Rice University. The Nobel Prize was later

awarded to Carl Wieman, Eric Cornell and Wolfgang Ketterle in 2001 for

the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for

early fundamental studies of the properties of the condensates [20].

However it was not until 1998 that experimental realisation of BEC in spin–polarised

hydrogen atoms was achieved by the group of T. J. Greytak and D. Kleppner at MIT [21]

due to complications, such as a tendency of the atoms to spin flip and form molecules.

In typical experiments, around 109 atoms are cooled to velocities corresponding to

temperatures around 1K through a Zeeman slower: the atoms are slowed with laser beams

in the opposite direction to the flow of the atoms. The atoms are slowed by the radiative

force produced by the absorption of photons.

The vapour is then loaded into a Magneto–Optical Trap (MOT) and Doppler cooling is

employed to cool the atoms further (µK temperatures) with the use of counter propagating

lasers placed in each perpendicular direction: front and back, left and right, up and down.

Here, if we take the laser to be ‘red’ detuned, i.e. the frequency is less than the atomic

resonant frequency, then the atoms travelling in the opposite direction to a laser beam

will lose momentum equal to that of the photon by absorbing the photon. The atom, now

in an excited state, will spontaneously emit the photon in a random direction, increasing

the atom’s momentum in that given direction. However, this leads to a net decrease of

momentum along the axis of the laser. This overall process of absorption/emission cools

7
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the gas in all directions due to the six counter–propagating laser beams. Known as the

Doppler limit, there is a lower attainable bound on the temperature of the gas through

the use of MOTs; this occurs when heating created by the momentum gain through the

emission of photons equals that of the cooling from photon absorption.

Through use of a technique known as Sisyphus cooling, it is possible to lower the

temperature to a limit known as the recoil limit (1µK). As the atoms climb up the

polarisation gradient, created by the counter–propagating orthogonally–polarised laser

beams, they gain potential energy while losing kinetic energy. Once the atoms have

reached the top of this potential gradient, they are optically pumped into a state with

lower potential energy where the climb up the potential starts over. Each time the process

is repeated, the atoms lose kinetic energy, lowering the temperature of the system.

The low temperatures achieved thus far with laser cooling are not enough to achieve

Bose–Einstein condensation with typical densities, which are low in order to avoid loses

due to three–body collisions. Often, the final step in the process is to use evaporative

cooling to reduce the temperature of the system further. In this case, the walls of the

trapping potential are lowered slowly enough so that high energy atoms escape from the

trap and the remaining atoms re–thermalise to a new lower temperature. This essentially

truncates the tails of the thermal distribution. Experimentally, by flipping the higher

energy atoms they are no longer held by the trap and are expelled. To form a condensate,

this process must be done slowly so that the density remains high enough to form a

condensate without losing too many atoms from the trap. This process is continued until

temperatures reach the order of nano–Kelvin: that is low enough for condensation, with

Bose–Einstein condensates, in general, forming for temperatures < 10−6K at densities

10−13cm−3.

In addition to the first experiments with 87Rb [5], 23Na [6] and 7Li [7, 8] mentioned

above, to date BEC has been achieved in many other atomic species such as 85Rb [22],
41K [23], 4He [24], 174Yb [25], 133Cs [26], 52Cr [27], 84Sr [28, 29], 86Sr [30], 88Sr [31],
40Ca [32], 164Dy [33]. Figure 1.2 shows the velocity–distribution of a gas of expanding

rubidium atoms illustrating the discovery of BEC [20].

A period of rapid growth in ultra–cold atomic physics followed the first experimental

realisations of BEC. Due to this unprecedented experimental control, trapped quantum

gases provide the means to study many–body quantum physics. The weak interactions

between the atoms make experimental realisations a useful test–bed for direct comparison

between quantum theory and experiment.

Experimental advances have led to exotic trapping potentials allowing for a wealth

of geometries to be created with BECs. Firstly, by increasing the trap frequency in one

direction, it is possible to create a disk shaped condensate which is effectively 2D. The

dynamics are frozen out in one direction once the temperature and chemical potential are

8
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Figure 1.2: Velocity-distribution of a gas of expanding rubidium atoms at three different tem-
peratures (T > Tc, T ≈ Tc and T < Tc), confirming the discovery of BEC. The figure shows
three–dimensional snapshots. From left to right the atoms condense from less dense red, yellow
and green areas to very dense blue and white areas. Figure from Reference [20].

small relative to the energy of the trap in this direction. For example, such a geometry is

useful in the context of studying quantum vortices, tiny whirlpools which are supported

in BECs. These will stay relatively straight in this 2D trap and is therefore regularly used

in vortex dynamics experiments [34, 35]. By increasing the trap frequency in a second

direction (quasi–1D trap), the system becomes effectively 1D as all but one direction has

its dynamics frozen. In sufficiently elongated geometries, microscopic excitations known

as solitons are stable. As solitons are of relevance to this thesis, these are introduced in

more detail later on. Other realisable trapping geometries are ring (toroidal) traps where

persistent flow in a BEC has been observed [36, 37, 38, 39, 40], optical lattices [36, 41, 42]

which are potential candidates for quantum computing [43] and are used to probe the

superfluid to Mott insulator transition [44], double–well geometries [45] in order to study

Josephson oscillations [46] and more recently uniform potentials [47] in order to ease the

difference between experimental realisation and “conventional” study of spatially uniform

many–body systems.

In this thesis, the study of two interacting BECs is performed in great detail. These

systems will now be introduced through an overview of important previous work that has

been done both theoretically and experimentally.
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1.2.2 Theoretical Modelling

At temperatures very close to absolute zero such that T ≪ Tc a nonlinear Schrödinger–type

equation, known as the Gross–Pitaevskii equation (reviewed in the following Chapter), is

a very good description of BEC stationary solutions and dynamics such as dynamics under

expansion, shape oscillations, sound, interface effects (see [48] for review), dark solitary

waves [49, 50, 51, 52], bright solitary waves [53, 54, 55, 56, 57, 58] and vortices [59, 60, 61].

Many theoretical approaches exist for finite temperature modelling where the conden-

sate mode coexists with occupied excited modes, known as the thermal cloud. The thermal

cloud should be taken into consideration as should its interactions with the condensate.

The models typically employed to describe such systems can be split into two main cat-

egories, depending on whether the thermal cloud is considered as static or dynamical (in

different levels of approximation). In the following Chapter, a number of the theories used

to describe the condensate, the thermal cloud and interactions between these are reviewed.

1.3 Condensate Mixtures

1.3.1 Experimental Studies

Experimental and theoretical work has advanced greatly since the first experimental real-

isation of a two–component BEC, or mixture, with two different hyperfine spin states of
87Rb [62]. These first overlapping condensates were created through sympathetic cooling

of one hyperfine state in contact with the other evaporatively cooled state. Mixtures have

been produced using two different hyperfine spin states of a single isotope [62, 63, 64, 65,

66, 67, 68, 69, 70, 71, 72], different isotopes of the same atomic species [73] and different

atomic species [74, 75, 76, 77]. A key feature of these systems is that they exhibit misci-

ble and immiscible behaviour depending on the strength of the inter–species interactions.

Miscibility, where the interactions favour an overlap between the two species, has been

observed [73, 76] as well as immiscibility, where repulsion between the species favours their

spatial separation [63, 70, 73, 77].

1.3.2 Theoretical Studies

Stationary Solutions

Since the first experimental realisation of a two–component BEC, many static and dy-

namical properties have been studied numerically and analytically in harmonic trapping

potentials. Ground state density profiles, where the obtained results correspond to the

lowest energy for the system, were first investigated by Ho and Shenoy in 1996 [78] (This

was done in the context of the Thomas–Fermi (TF) approximation, which gives an ap-

proximate analytical description of a condensate in a harmonic trap and shall be reviewed
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in the following Chapter). Due to the co–centred traps considered, a range of symmetric

miscible and immiscible structures were accessed by varying interaction strengths and par-

ticle numbers. These results were confirmed when two hyperfine states of the same atom

(equal masses) were considered [79] and for different atomic species (nonequal masses) [80].

The latter case was also the first to consider non co–centred trapping potentials and the

arising asymmetric ground state structures. All possible classes of stationary solutions

have been found within the Thomas–Fermi approximation in idealised one–dimensional

systems [81]. In addition, in one dimension (1D), coexisting or segregated phases with

strong interactions were exhibited depending on parameters [82]. The boundary between

inter-penetrating BECs has been studied in great detail [83]. Metastable states, which do

not correspond to the lowest energy for the system, have been obtained numerically [84].

Under external perturbation, there can be a macroscopic transition from metastable states

to the true ground state in symmetric trapping potentials. When immiscible condensates

are considered (phase–separated regime), studies on binary BECs revealed two distinct

steady state solutions [85]. The first, for weakly segregated condensates where each den-

sity profile does not take on the symmetric profile of the trap due to surface tension

however the sum of both profiles do. The second, for strongly segregated condensates

where the total density profile takes a different symmetry than that of the trap. Us-

ing Monte–Carlo simulations, Reference [86] found additional steady state solutions with

broken symmetry. The transition from symmetric to asymmetric ground states has been

investigated [87, 88, 89]. Spontaneous symmetry breaking has been observed where one

species has attractive self–interactions [90]. In addition, the ground state geometry can

undergo a smooth transition from planar to ellipsoidal to cylindrical geometry for phase

separated condensates [91]. Finally, the ground states for rotating two–component BECs

have been classified [92, 93].

Experimentally obtained steady state solutions can be skewed by gravity when consid-

ering different atomic species due to one component being affected more than the other.

This gravitational sag has been included in a few models. Ground state density profiles in

time averaged orbiting potentials, where gravity separates the centres of the two species,

have been numerically calculated [94, 95]. By tilting the eigenaxes of the trapping poten-

tial, non–trivial gravitational sag is included and symmetric and asymmetric ground state

density profiles emerge [96].

Stability

The range for stability in a two–component system was first predicted for a sodium–

rubidium mixture in a harmonic trap [97]. By finding the symmetric steady–state solutions

with different parameter regimes, the stability of these solutions has been investigated

when disturbed by an external force [98]. Similarly to a one species condensate, when

11



Chapter 1. Introduction

attractive interactions are present, a system collapse has been observed [99, 100]. With

rotational symmetry, the Rayleigh–Taylor instability at the interface of the condensates

breaks the symmetry of the condensate interface when interaction strengths or harmonic

trap frequency is changed [101].

Dynamics at T = 0

Many dynamical features of condensate mixtures have been looked at theoretically. Modu-

lation instability is a phenomenon in which weak spatial perturbations grow exponentially

into a train of localised waves and have been simulated for two colliding BECs [102, 103] or

by transferring half of the particles in a single species condensate into a different hyperfine

state [104, 105] following the experimental procedure at MIT [72]. Modulation insta-

bilities have also been studied in 1D [106] and quasi–1D [107] geometries. Dark–bright

solitons [108] have been studied in binary mixtures where the second component fills in

the gap left by the phase slip: these dynamical features are of relevance to this thesis and

shall be introduced in more detail later on. Vortices have also been extensively studied in

multicomponent condensates [67, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118].

Finite Temperature Models

In 1998, finite temperature theory where interactions with non–condensed atoms are con-

sidered (see [119] for review) was applied to two–component condensates when Hartree–

Fock models involving the collision of one condensate and one thermal atom were simulated

numerically [120, 121, 122, 123]. The steady states obtained can admit both symmetric

and asymmetric solutions. This was later expanded to the so–called Popov approxima-

tion [124], allowing for studies at high temperatures [125]. Asymmetric density profiles

have been studied from Monte–Carlo simulations at low–temperatures [126]. Investiga-

tion into the stability conditions for thermodynamic states were conducted [127]. Finally,

modulation instabilities with the inclusion of an additional growth term have been stud-

ied [128].

Non–Harmonic Trapping Potentials

Other trapping potentials have been considered with condensate mixtures. BECs in a

double well magnetic trap have been used to study the tunnelling between each well [129].

Two–component systems have also been examined in optical lattices [130], where the po-

tential has spatially periodic wells, and more recently in ring potentials where the fragility

of the system was found to depend on the speed of persistent currents [131].
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Other Quantum Gas Mixtures

Spinor condensates, which have at least three components with internal spin degrees of

freedom, are also generating much current interest (see [132] for a review).

Other varieties of ultracold atomic mixtures have been seen. These include Bose–Fermi

mixtures (studied experimentally [133, 134, 135, 136, 137] and theoretically [138, 139, 140,

141, 142, 143, 144, 145, 146, 147]).

1.4 Macroscopic Excitations — Solitons

There has been great interest in nonlinear properties of BECs [148] since their first ex-

perimental realisation. These include the manifestation of solitons in one and multiple

component systems, for which we will now give a detailed introduction.

1.4.1 Dark Solitons

A dark soliton is a stationary or propagating localised excitation which features a phase

slip in the ambient density and forms a density dip [149] (see Figure 1.3). Dark solitons are

supported for repulsive interactions [150]. First created in 1987 in nonlinear optics [151],

dark solitary waves have been created in atomic BECs in a controlled manner [49, 51,

152, 153, 154, 155] or through dynamical processes [156, 157, 158, 159] and are a topic of

intense research [160].

In [49, 51, 152, 153, 154, 155], phase imprinting was used by implementing a homo-

geneous potential, generated by a far detuned laser beam, which is applied to half of the

condensate for a given time such that the wave function acquires an additional phase fac-

tor. Changes to the density cause no significant perturbation leading to the formation of a

dark soliton [49, 152, 153]. Through use of this method, collisions of counter–propagating

dark solitons in atomic BECs were investigated verifying the concept of non-destructive

transmission, in agreement with numerical simulations [155]. In another experiment, a

pair of matter wave dark solitons was generated by merging two condensates initially pre-

pared in a double well potential [154]. Finally, dark solitons have been generated through

two–component BECs where the soliton exists in one component and is initially filled with

the second component. The second component is then selectively removed [51].

Various techniques have been used to create dark solitons through dynamical processes.

Firstly, via a slow light technique, a disk shaped region of atoms was suddenly removed

from the condensate generating counter propagating dark solitons [156]. In Reference [157]

dark solitons emerged when a barrier, formed by a beam, swept through the condensate at

intermediate speeds. For slow speeds, the fluid flow was steady while at fast speeds soliton

formation ceased and the absence of excitations was surprisingly once again observed.
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Figure 1.3: Densities of condensate containing a single dark soliton with π phase slip at z(l) = 3.5
(left) and z(l) = 0.0 (right) in 1D harmonic trapping potential.

For two of these experiments, the dark solitary wave decayed into vortex rings due to

their inherent instability to transverse excitations [51, 156].

1.4.2 Dark–Bright Solitons

Existing only in binary mixtures of BECs with strong repulsive interspecies interactions

such that the condensates are immiscible, the bright soliton exists here due to the coupling

with the dark soliton: the density dip left by the dark soliton in one component is filled

in with the bright soliton in the other component (see Figure 1.4). These macroscopic

excitations have recently been achieved experimentally using two different hyperfine states

of 87Rb through counter flowing BECs [161, 162, 163] or a phase imprinting method [164].

Dark–bright solitons have also been studied analytically and numerically at zero–

temperature [106, 108, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176]. Re-

cently, work has been done on the non–ideal case of finite temperature for solitons in

mixtures [177].

1.5 Quantum Turbulence

Turbulence is a complex dynamical process that has been studied in many fields for cen-

turies. While eddies form the base for turbulence in a classical fluid, quantised vortices

are the topological defects appearing in BECs. Quantisation of circulation means that

the rotational motion is constrained to discrete vortices that all have the same core size.

See References [178, 179] for recent reviews on quantum turbulence in both superfluids

and atomic BECs. Relevant to this Thesis, here we introduce some of the recent de-

velopments on quantum turbulence in two component systems. Quantum turbulence in

binary mixtures was first generated numerically through couterflow instabilities [180], the
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Figure 1.4: Densities of condensates containing a single dark–bright soliton with π phase slip in
first component at z(l) = 5.0 in 1D harmonic trapping potential. Solid black curve — component
1; Dashed red curve — component 2.

two miscible BECs were counter propagated and quantised vortices are nucleated. Ref-

erence [181] generated quantum turbulence through the Rayleigh–Taylor instability in

immiscible condensates in harmonic trapping potentials. Other work has been carried out

for spinor condensates [182, 183, 184].

1.6 Thesis Outline

We wish to give a brief outline of this Thesis and highlight collaborative work, also noted

in relevant chapters. Divided into three main parts, the first part of this Thesis introduces

the notions used to generate results in Parts II and III.

Part I – Introduction to Bose Gases

We begin, in Chapter 2, by providing the theoretical concepts required in order to under-

stand numerical models used in this thesis. We start, from the second order Hamiltonian,

by reviewing the Gross–Pitaevskii equation (GPE), a Schrödinger like equation widely

used in describing condensates at zero temperature. The GPE is then generalised into

coupled equations, one for each component considered in a mixture, where an additional

term is present taking into account interspecies interactions. Finally, we introduce differ-

ent theories used in describing condensate interaction with the thermal cloud, which can
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play an important role in analysing experimental results.

Part II – Bose–Einstein Condensate Mixtures in Harmonic Trapping Potentials

After showing our numerical procedure matches previously obtained numerical ground

state solutions of the coupled Gross–Pitaevskii equations [80], in Chapter 3 we qualitatively

reproduce the density profiles observed in a recent 87Rb–133Cs experiment [77]. To achieve

these results we take into account asymmetries in the harmonic trapping potentials via

additional linear potentials before imaginary time propagation (see Appendix B). The

work presented in this Chapter is an expansion of previously published work:

• Equilibrium solutions for immiscible two-species Bose-Einstein condensates in per-

turbed harmonic traps,

R. W. Pattinson, T. P. Billam, S. A. Gardiner, D. J. McCarron, H. W. Cho, S. L. Cor-

nish, N. G. Parker, and N. P. Proukakis,

Phys. Rev. A 87, 013625 (2013).

In Chapter 4, we expand on our studies investigated in Chapter 3 on condensate

mixtures to include growth dynamics while using the same experimental parameters. We

briefly discuss results obtained by our collaborators I. K. Liu et al. (Department of Physics,

National Changhua University of Education, Changhua 50058, Taiwan) with the coupled

Stochastic Projected Gross–Pitaevskii equations to motivate our work on dark–bright

solitons in mixtures when condensate growth is considered. The work presented in this

Chapter is partially an expansion of previously submitted work:

• A Phenomenological Model of the Growth of Two–Species Atomic Bose–Einstein

Condensates,

R. W. Pattinson, N. G. Parker, and N. P. Proukakis,

J. Phys.: Conf. Ser. 497 012029 (2014).

with results also to appear in a report comparing the simple dissipative model to the

more accurate coupled Stochastic Projected Gross–Pitaevskii equations modelled by our

collaborators.

Part III – Classical Field Methods for Non Trapped Bose Gases

In Chapter 5 we switch gears slightly and focus on non trapped gases via the classical fields

method. We outline the numerical procedure for solving a system with highly nonequilib-

rium initial conditions. Firstly, the evolution of a single component system is examined.

Similar simulations with two components, either coexisting in the same spatial domain or

phase segregated, are then studied. These two components are either both nonequilibrated

or obtained by splitting the particles of a thermally equilibrated single component state.

16



Chapter 1. Introduction

We then investigate the effects of suddenly quenching the intercomponent interactions.

This work was undertaken thanks to the help of A. J. Youd.

In Chapter 6 we briefly review the main findings of this Thesis and discuss opportunities

for follow on work.
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Chapter 2

Theoretical Framework

At zero–temperature, where the lowest energy level is macroscopically occupied and when

the gas is dilute enough such that particle interactions are weak, a common model to

describe Bose–Einstein condensates is a nonlinear Schödinger equation (NLSE) known

as the Gross–Pitaevskii equation (GPE). In order to describe condensate mixtures, this

model can be trivially generalised to two coupled Gross–Pitaevskii equations (CGPEs).

The GPE model has proven to be a good description for many static and dynamical

properties both for single condensate systems [18] and for condensate mixtures [164], even

though thermal contributions and quantum fluctuations are not taken into account. The

CGPEs form the basis for the numerical results presented in Part II of this thesis. In this

chapter, we introduce the GPE and its solutions followed by a ‘generalisation’ of these for

the CGPE.

To improve on the theoretical description, finite temperature effects can be added using

a range of different models. Such models are reviewed in the latter part of this Chapter,

with some emphasis on classical field methods which are then used in Part III of this

Thesis to simulate non trapped homogeneous finite temperature condensate mixtures.

2.1 Gross–Pitaevskii Equation: Origin and Explanation

A system formed from N interacting bosons can be described by an N–body wavefunction

Ψ (r1, .., rN , t) where ri is the position of atom i. This wavefunction obeys the well known

Schrödinger equation

i~
∂Ψ

∂t
=

[

− ~
2

2m

(

∇2
1 +∇2

2 + ...+∇2
N

)

+ V (x1, x2, ..., xN )

]

Ψ. (2.1)

where ∇i is the derivative with respect to ri. For a system of many particles, it is imprac-

tical to find a direct solution for the many–body wavefunction. The N–body wavefunction

is reduced into a more manageable form through use of a map into an occupation num-
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ber basis set. The system Hamiltonian can be written in terms of Bose field operators

Ψ̂ (r, t)
(

Ψ̂† (r, t)
)

for annihilation (creation) of a particle at position r and time t as

Ĥ =

∫

drΨ̂† (r, t)

[

− ~
2

2m
∇2 + Vext (r, t)

]

Ψ̂ (r, t)

+
1

2

∫ ∫

drdr′Ψ̂† (r, t) Ψ̂†
(

r′, t
)

V
(

r− r′
)

Ψ̂
(

r′, t
)

Ψ̂ (r, t)

(2.2)

where V (r− r′) is the two–body interatomic potential and Vext (r, t) the external poten-

tial. The Bose field operators obey the following commutation relations

[

Ψ̂ (r, t) , Ψ̂†
(

r′, t
)

]

= δ
(

r− r′
)

,
[

Ψ̂† (r, t) , Ψ̂†
(

r′, t
)

]

=
[

Ψ̂ (r, t) , Ψ̂
(

r′, t
)

]

= 0.
(2.3)

In a sufficiently dilute gas, the interatomic potential can be approximated by an effective

contact potential due to low–energy, s–wave collisions such that [119]

V
(

r− r′
)

= gδ
(

r− r′
)

, (2.4)

and the effective interaction strength is defined by

g =
4π~2a

m
, (2.5)

where a is the s–wave scattering length. It is important to note that for g > 0 the effective

interactions are repulsive while for g < 0 interactions are effectively attractive. The second

quantised Hamiltonian (2.2) evolves according to the Heisenberg equation of motion

i~
∂Ψ̂ (r, t)

∂t
=

[

Ψ̂ (r, t) , Ĥ
]

. (2.6)

Thus, by substituting (2.2) into (2.6), we obtain

i~
∂Ψ̂ (r, t)

∂t
=

[

− ~
2

2m
∇2 + Vext (r, t)

]

Ψ̂ (r, t) + gΨ̂† (r, t) Ψ̂ (r, t) Ψ̂ (r, t) . (2.7)

We can separate the Bose field operator into two parts via

Ψ̂ (r, t) = φ̂ (r, t) + ψ̂ (r, t) , (2.8)

where φ̂ (r, t) and ψ̂ (r, t) correspond to a field operator for the condensate and the non–

condensate respectively. Under the symmetry breaking assumption, the operator φ̂ (r, t)

is replaced by φ (r, t), known as the condensate wavefunction, whereby all field operator
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dependence is in ψ̂ (r, t). This leads to the total number of condensed atoms not be-

ing conserved. However, it can be assumed that the addition or removal of an atom

does not affect the state of the system, N ± 1 ≃ N for a condensate containing a

large number of atoms. We are, in essence, decomposing the bosonic field operator in

terms of a macroscopically populated mean field term defined as the ensemble average

φ (r, t) = 〈Ψ̂ (r, t)〉 and a fluctuation term ψ̂ (r, t). We can approximate the atom den-

sity into two contributions n (r, t) = 〈Ψ̂† (r, t) Ψ̂ (r, t)〉 = nc (r, t) + nt (r, t) through use of

Equation (2.8). These are a condensate density nc (r, t) = |φ (r, t)|2 and a non–condensate

density nt (r, t) = 〈ψ̂† (r, t) ψ̂ (r, t)〉. It is thus common to identify nt (r, t) as the density

of the thermal atoms and ψ̂ (r, t) as the operator for the thermal cloud.

In the limit of zero–temperature, we assume the thermal depletion of the system is

negligible. In addition, in weakly interacting systems (a≪ λdB) quantum fluctuations

may not play a large role and we can therefore neglect thermal contributions such that

ψ̂ (r, t) = 0. Hence we set Ψ̂ (r, t) = φ (r, t). The Heisenberg equation of motion (2.7)

reduces to

i~
∂φ (r, t)

∂t
=

[

− ~
2

2m
∇2 + Vext (r, t) + g |φ (r, t)|2

]

φ (r, t) . (2.9)

This is the Gross–Pitaevskii Equation (GPE). Introduced independently by Gross [185,

186, 187] and Pitaevskii [188, 189] in the early 1960’s to study vortex lines in an imperfect

Bose gas, the GPE [48] is of the form of a time–dependent Schrödinger equation with

the addition of a nonlinear term g |φ (r, t)|2 φ (r, t) arising from atomic interactions. The

wavefunction is normalised to the total number of particles

N =

∫

|φ|2 dr. (2.10)

For T ≪ Tc where Tc is the critical temperature for condensation, the GPE is a good

description of many features of BEC dynamics such as dynamics under expansion, shape

oscillations, sound, interface effects (see [48] for review), dark solitary waves [49, 50, 51, 52],

bright solitary waves [53, 54, 55, 56, 57, 58] and vortices [59, 60, 61].

2.2 Time–Independent Solutions

Stationary states can be found by eliminating the time dependence in the GPE through

the substitution

φ (r, t) = φ0 (r) e
−iµt/~, (2.11)

where µ is the chemical potential of the system, characterising the energy required to

remove an atom from the system. From Equation (2.9), the resulting time–independent
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equation is

µφ0 (r) =

[

− ~
2

2m
∇2 + Vext (r) + g |φ0 (r)|2

]

φ0 (r) . (2.12)

This can also be found by minimising, at fixed µ, the quantity E−µN [18] where E is the

energy functional of the system

E (φ) =

∫

dr

[

~
2

2m
|∇φ (r)|2 + Vext (r) |φ (r)|2 +

1

2
g |φ (r)|4

]

, (2.13)

and N the fixed total number of particles

N =

∫

dr |φ (r)|2 . (2.14)

2.3 Ground State Solutions in Harmonic Traps

In Figure 2.1, we show the time–independent solutions for attractive, repulsive and non

interacting condensates in a harmonic trapping potential in three dimensions. In the case

of a non–interacting condensate (g = 0), the ground state has a Gaussian density profile.

For an anisotropic trapping potential (nonequal trapping frequencies) the ground state

wavefunction is [18]

φ0 (r) =

√
N

π3/4 (lxlylz)
1/2

e−x2/2l2xe−y2/2l2ye−z2/2l2z , (2.15)

where the widths li (i = x, y, z) of the wavefunction in each direction are given by

li =

√

~

mωi
. (2.16)

For effectively attractive interactions (g < 0), the ground state solution is narrower and

taller in comparison to the Gaussian solution for an ideal Bose gas. For repulsive interac-

tions (g > 0), the ground state density profile has an increased width and lower maximum,

approaching the form of an inverse parabola. Here, we introduce the interaction parameter

χ =
Nas
l
, (2.17)

where l is the harmonic oscillator length in an isotropic system (l = lx = ly = lz). χ is a

measure of the effects of the interactions on the system. For small χ(≪ 1), we are in the

weakly interacting regime, close to the ideal Bose gas limit χ = 0. When χ≫ 1, we are in

the strongly interacting regime. In this latter regime, the Thomas–Fermi (TF) limit is a

well known approximation for the ground state of the system and shall be introduced in
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Figure 2.1: Schematic of ground state density profiles with repulsive interactions (blue, dash), non–
interacting (black, solid), and attractive interactions (red, dash–dot) of the GPE for a harmonic
potential (orange). The wavefunctions are normalised to the same number of atoms i.e. equal in
all three cases.

the following subsection.

2.3.1 Thomas–Fermi Limit

In a harmonic trapping potential, the simplest solution to Equation (2.12) is obtained by

ignoring the kinetic energy term. This is a good approximation everywhere except the

trap edges provided we are in the limit of large N with large repulsive interactions (g > 0)

such that the g |φ (r)|2 φ (r) term dominates [190] and χ ≫ 1. In this limit, the ground

state solution is approximated by

φ (r) =







√

µ− Vext (r) /g, if µ ≥ Vext (r)

0, otherwise
(2.18)

which is known as the Thomas–Fermi (TF) solution for a condensate in a harmonic trap-

ping potential

Vext (r) =
1

2
m

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (2.19)

where ωx, ωy, ωz are the trapping frequencies. The TF radius is given by

Ri =

√

2µ

mω2
i

, i = x, y, z (2.20)
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Figure 2.2: Schematic of Thomas–Fermi approximation (black, solid) and the ground state density
profile obtained numerically (red, dashed).

which characterises the spatial extent of the condensate. In this regime, the condensate

density distribution takes the shape of an inverted parabola but the approximation fails

close to the condensate edge r ≃ Ri where it abruptly vanishes rather than diminishing

gradually in comparison to the exact numerical solution (shown in Figure 2.2). This is due

to the kinetic energy contribution being significant at the condensate edge. As χ increases,

this discrepancy at the edge decreases.

2.4 Solutions in a Homogeneous System

For a homogeneous condensate (Vext = 0), the time–independent GPE becomes

− ~
2

2m
∇2φ (r) + g |φ (r)|2 φ (r) = µφ (r) . (2.21)

Initially we assume that (over the biggest spatial extent) the effect of the kinetic energy

contribution ∇2φ (r) can be neglected to first approximation due to the behaviour of the

fluid being dominated by interactions. If g > 0, this becomes

g |φ (r)|2 φ (r) = µφ (r) → g |φ (r)|2 = µ. (2.22)

Remembering that the condensate density is given by nc = |φ (r)|2, we find

nc =
µ

g
= constant. (2.23)
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Figure 2.3: Healing at hard wall given by Equation (2.26) (black, solid) and the ground state
density profile obtained numerically (red, dashed).

The characteristic lengthscale ξ corresponds to the spatial region needed by the condensate

to reach its equilibrium far from perturbations and is obtained by balancing the kinetic

energy term and the interaction term in Equation (2.21). We replace ∇2φ (r) by 2φ (r) /ξ2

where the spatial scale of variations is denoted by ξ, obtaining

~
2

m

1

ξ2
= g |φ (r)|2 = gnc (r) . (2.24)

Hence the healing length, for repulsive interaction (g > 0), is given by

ξ =
~√
mgnc

. (2.25)

In the presence of a hard–wall boundary, the fluid density is pinned to zero. Taking the

boundary at x = 0, the solution in the x–direction is given by

φ (x) =
√
nc tanh

(

x

ξ

)

. (2.26)

In Figure 2.3, we show the healing at a hard wall given by the solution (2.26) and compare

to the exact solution obtained numerically. These match up perfectly.

In the case of the non–interacting (g = 0) ideal Bose gas, the GPE reduces to the

Schrödinger equation. However for attractive interactions (g < 0), the condensate is no

longer stable in a homogeneous system.
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2.5 Hydrodynamic Equations

The wavefunction of the system φ (r, t) is a complex function and can be expanded in terms

of amplitude
√
nc and phase θ (r, t) variables through the Madelung transformation [191]

φ (r, t) =
√

nc (r, t)e
iθ(r,t), (2.27)

where nc (r, t) = |φ (r, t)|2 represents the density of the system. By plugging this into

the GPE (2.9), it can be shown that the imaginary terms lead to a conservation of mass

equation
∂nc
∂t

+∇ · (ncv) = 0 (2.28)

where the superfluid velocity is defined by its phase

v =
~

m
∇θ. (2.29)

Similarly, equating the real terms with this substitution gives Euler’s equation

(

∂

∂t
+ v.∇

)

v = − 1

nc
∇P + F, (2.30)

with the addition of a quantum pressure term [192]

P =
1

2
gn2c −

1

4
nc∇2 (lnnc) . (2.31)

The force term F = −∇V arises in the case of trapped gases from the harmonic confining

potential.

2.6 Quantisation of Circulation

The Madelung transformation defines the superfluid velocity as the gradient of the phase

(see Equation (2.29)). Circulation is defined by

κ =

∮

v · dr. (2.32)

Using Equation (2.29) we can write

κ =
~

m
∆θ (2.33)

where ∆θ is the change of phase around a vortex. In order for the wavefunction to remain

single valued the change of phase around a vortex must be an integer multiple of 2π. The
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circulation must be in integer value of 2π~/m

κ = l
2π~

m
(2.34)

where l = 0,±1,±2,... When the phase winds round in an anticlockwise direction, the

vortex is negatively charged while when it winds in a clockwise direction, it is positively

charged. Onsager [193] was the first to propose a description for quantisation of circulation.

Feynman independently proposed quantised vortex lines [194].

2.7 Harmonic Oscillator Units

For a harmonic trapping potential (2.19), the most commonly used scalings to make the

GPE (2.9) dimensionless are harmonic oscillator units. Length is expressed in units of

the non–interacting harmonic oscillator length l =
√

~/mω̄, energy in terms of harmonic

oscillator energy ~ω̄ and time in terms of ω̄−1 where ω̄ = (ωxωyωz)
1/3, such that

t̃ = tω̄, x̃ =
x

l
, ỹ =

y

l
, z̃ =

z

l
and Ẽ =

E

~ω̄
, (2.35)

where the tilde denotes the dimensionless quantity. In order to conserve the number of

particles in the system, we require

N =

∫

|φ|2 dr =
∫

|φ|2 l3dr̃ ==

∫

∣

∣

∣
φ̃
∣

∣

∣

2
dr̃. (2.36)

Hence

φ̃ (r̃, t) = φ (r, t) l3/2. (2.37)

The GPE becomes

i
∂φ̃

(

r̃, t̃
)

∂t̃
=

[

−1

2
∇̃2 + Ṽext (r̃) + g̃

∣

∣

∣
φ̃
(

r̃, t̃
)

∣

∣

∣

2
]

φ̃
(

r̃, t̃
)

, (2.38)

where

Ṽext (r̃) =
1

2ω̄2

(

ω2
xx̃

2 + ω2
y ỹ

2 + ω2
z z̃

2
)

and g̃ =
g

~ω̄l3
. (2.39)

Similarly, the energy of the system is now given by

Ẽ =

∫

dr̃

[

1

2

∣

∣

∣
∇̃φ̃

(

r̃, t̃
)

∣

∣

∣

2
+ Ṽext (r̃)

∣

∣

∣
φ̃
(

r̃, t̃
)

∣

∣

∣

2
+

1

2
g̃
∣

∣

∣
φ̃
(

r̃, t̃
)

∣

∣

∣

4
]

, (2.40)

and the chemical potential, in the time–independent case, is

µ̃ =
µ

~ω̄
. (2.41)
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We use this form of the GPE in Chapters 3 and 4 which consider condensate mixtures in

harmonic trapping potentials (although we then drop the tilde for simplicity).

2.8 Natural Units

In a homogeneous system, the natural unit of length to use in non–dimensionalising the

GPE (2.9) is the healing length ξ. Energy E is rescaled in terms of the chemical potential

µ and speed v is expressed in units of the speed of sound c =
√

gnc/m [160] such that

x̃ =
x

ξ
, ỹ =

y

ξ
, z̃ =

z

ξ
, Ẽ =

E

µ
and ṽ =

v

c
, (2.42)

where the tilde once again denotes the dimensionless quantity. The wavefunction density

is expressed in units of the homogeneous density nc and becomes

φ̃ =
φ√
nc
. (2.43)

From these rescalings, it follows that time t̃ and frequency ω̃ are given by

t̃ =
tc

ξ
and ω̃ =

ωξ

c
. (2.44)

The GPE (2.9) reduces to the dimensionless form

i
∂φ̃

∂t
=

[

−1

2
∇2 + Ṽext (r) +

∣

∣

∣
φ̃
∣

∣

∣

2
]

φ̃, (2.45)

where Ṽext(r) = 0 in a homogeneous system but is included here for completeness. The

energy functional is now given by

Ẽ =

∫

dr

[

1

2

∣

∣

∣
∇φ̃ (r, t)

∣

∣

∣

2
+ Ṽext (r)

∣

∣

∣
φ̃ (r, t)

∣

∣

∣

2
+

1

2

∣

∣

∣
φ̃ (r, t)

∣

∣

∣

4
]

. (2.46)

We use this form of the GPE in Chapter 5 where condensates are considered in periodic

boxes.

2.9 Reduced Dimensionality

In a quasi–1D system in a harmonic trapping potential (assuming ωx = ωy and ω⊥ ≪ ωz),

the radial component tends towards the harmonic oscillator ground state. The reduced

dimensionality equations are derived by decoupling the wave function into the product of

a time–dependent axial component and a time–independent radial component. Therefore,
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Atom m(10−27)kg as(a0)
4He 6.64 302 [195]
23Na 38.18 62 [196]
41K 68.06 78 [197]
87Rb 144.42 100 [198]
133Cs 220.78 280 [199]

Table 2.1: Table of mass m and s–wave scattering lengths as for the most common atomic species
that have been condensed.

we take

φ (r, t) = φ̃ (z, t)φ⊥ (x, y) , (2.47)

where

φ⊥ (x, y) =

√

mω⊥

~π
e−mω⊥x2/2~e−mω⊥y2/2~. (2.48)

The prefactor is obtained from the normalisation condition
∫

dxdy |φ⊥ (x, y)|2 = 1. These

approximations give rise to the following 1D GPE

i~
∂φ̃ (z, t)

∂t
= − ~

2

2m

∂2φ̃

∂z2
+

[

V (z) + U
∣

∣

∣
φ̃
∣

∣

∣

2
+ ~ω⊥

]

φ̃ (2.49)

where U = g/2πl2⊥, V (z) =
∫

dxdyVext (r) and, l⊥ =
√

~/mω⊥ is the transverse harmonic

oscillator length [200]. Substituting this approximation into the equation for the system

energy (2.13) and integrating out the dependence on x and y gives

Ez (t) =

∫

dz





~
2

2m

∣

∣

∣

∣

∣

∂φ̃ (z, t)

∂z

∣

∣

∣

∣

∣

2

+ ~ω⊥

∣

∣

∣
φ̃ (z, t)

∣

∣

∣

2
+ V (z)

∣

∣

∣
φ̃ (z, t)

∣

∣

∣

2
+

g

4πl2⊥

∣

∣

∣
φ̃ (z, t)

∣

∣

∣

4



 .

(2.50)

For the time–independent case, the 1D chemical potential absorbs the additional ~ω⊥ term

such that a new chemical potential

µ1D = µ− ~ω⊥ (2.51)

can be defined.

2.10 Two–Component Condensates

In this section, we generalise part of the theory introduced in the current chapter for a two–

species BEC. In the time–dependent coupled Gross–Pitaevskii equations (CGPE), each

equation describes one condensate similar to the GPE with the addition of a new nonlinear
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interaction term in both equations in order to include the interspecies interactions. These

are given by

i~
∂φ1 (r, t)

∂t
=

[

− ~
2

2m1
∇2 + V1 + g11 |φ1 (r, t)|2 + g12 |φ2 (r, t)|2

]

φ1 (r, t) ,

i~
∂φ2 (r, t)

∂t
=

[

− ~
2

2m2
∇2 + V2 + g22 |φ2 (r, t)|2 + g12 |φ1 (r, t)|2

]

φ2 (r, t) ,

(2.52)

where the subscripts 1, 2 denote the different condensate components and

gii =
4π~2aii
2mi

for i = 1, 2 and g12 (= g21) =
2π~2 (m1 +m2) a12

m1m2
, (2.53)

are the intra–species and inter–species interaction strengths respectively. The full deriva-

tion for these equations is given in Appendix A. The time–independent equations are

obtained by using the substitution φi (r, t) = φ0i (r) e
−iµit/~ for each wavefunction in Equa-

tion (2.52) and give

µ1φ01 (r) =

[

− ~
2

2m1
∇2 + V1 (r) + g11 |φ01 (r)|2 + g12 |φ02 (r)|2

]

φ01 (r) ,

µ2φ02 (r) =

[

− ~
2

2m2
∇2 + V2 (r) + g22 |φ02 (r)|2 + g12 |φ01 (r)|2

]

φ02 (r) .

(2.54)

The energy of the system is given by

E (φ1, φ2) =

∫

dr

[

~
2

2m1
|∇φ1 (r)|2 + V1 (r) |φ1 (r)|2 +

1

2
g11 |φ1 (r)|4

]

+

∫

dr

[

~
2

2m2
|∇φ2 (r)|2 + V2 (r) |φ2 (r)|2 +

1

2
g22 |φ2 (r)|4

]

+

∫

dr
[

g12 |φ1 (r)|2 |φ2 (r)|2
]

,

(2.55)

and N1 and N2, the condensate atom numbers in each species, are respectively given by

Ni =

∫

dr |φi (r)|2 . (2.56)

The CGPEs can be written in dimensionless form and in reduced dimensions in the same

fashion as shown for single species condensates through Equations (2.35) and (2.47).

2.10.1 Overlapping and Segregated Phases

In this Section, we derive the immiscibility criterion following the analysis of [85]. For

simplicity, we consider a homogeneous system where V1(r) = V2(r) = 0 with hard wall
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barriers and neglect the kinetic energy terms in Equations (2.54), giving

g11 |φ1|2 + g12 |φ2|2 = µ1,

g22 |φ2|2 + g12 |φ1|2 = µ2.
(2.57)

If the condensates overlap the densities ρi = |φi|2 can be written as ρi = Ni/V where

V is the volume. Equations (2.57) become g11ρ1 + g12ρ2 = µ1, g22ρ2+ g12ρ1 = µ2 and the

corresponding total energy is given by

Eov =
1

2

[

g11
N2

1

V
+ g22

N2
2

V
+ 2g12

N1N2

V

]

. (2.58)

For small g12, excitations are stable and any perturbation will increase the system energy

by a small amount. Hence in this regime, this is the ground state of the system. However,

if g12 is large, this is no longer true. We shall show that phase segregated states have a

lower total energy.

Consider phase segregated condensates where the two condensates occupy different

positions in space. We ignore any energy from the thickness of the interface between the

two condensates. Let Vi be the volume occupied by condensate i. The densities are now

given by ρi = Ni/Vi. Equations (2.57) are now giiρi = µi and the total energy is

Eseg =
1

2

[

g11
N2

1

V1
+ g22

N2
2

V2

]

. (2.59)

We minimise Eseg with respect to V1 and V2 to give g11N
2
1 /V

2
1 = g22N

2
2 /V

2
2 . Using

V = V1 + V2, we obtain an expression for the volume occupied by each of the condensates

in terms of the total volume

V1 =
V

1 +
√

g22/g11 (N2/N1)
,

V2 =
V

1 +
√

g11/g22 (N1/N2)
.

(2.60)

The condensate densities are then written as

ρ1 =

(

1 +

√

g22
g11

N2

N1

)

N1

V
,

ρ2 =

(

1 +

√

g11
g22

N1

N2

)

N2

V
.

(2.61)

The total energy can now be written as

Eseg =
1

2

[

g11
N2

1

V
+ g22

N2
2

V
+ 2

√
g11g22

N1N2

V

]

. (2.62)

30



Chapter 2. Theoretical Framework

Figure 2.4: Boundary between miscibility and immiscibility for g11 = 1.

The difference in energies between the overlapping and segregated states is

∆E = Eov − Eseg = (g12 −
√
g11g22)

N1N2

V
. (2.63)

Thus, for large enough inter–species interactions

g12 >
√
g11g22 (2.64)

the energy for the phase segregated state is lower and the system favours this layout. This

result is independent of the particle numbers and condensate size. This results has also

been found using stability analysis [18, 97].

We thus take the critical value of the interspecies interaction strength to be

gc12 = |√g11g22| . (2.65)

For g12 < −gc12, the condensates collapse due to the attractive interactions between each

species overwhelming the repulsive interactions within each species. For g12 > gc12, the

mutual repulsion between the condensates dominates, forcing phase segregation between

them such that the condensates no longer overlap (immiscible). For −gc12 < g12 < gc12,

the repulsion between particles of the same species dominates and the condensates overlap

(miscible). We note here, summing the density profiles of each component of a two–species

system in harmonic trapping potentials leads to an inverse parabola for the overall density

profile. Figure 2.4 shows the miscible and immiscible regions when g11 = 1. Typical values

for interspecies scattering are given in Table 2.2.
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Atoms as(a0) Immiscibility Criteria
23Na–87Rb 73 [201] as > 78a0
41K–87Rb 650 [197] as > 88a0
87Rb–133Cs 206 [202] as > 167a0

Table 2.2: Table of s–wave interspecies scattering lengths as and immiscibility criteria for interac-
tions between different possible atomic species.

2.10.2 Thomas–Fermi Approximation in Two–Species System

Similarly to Section 2.3.1, we consider a two–species system in harmonic trapping poten-

tials and ignoring the kinetic energy term. In the limit of large N1 and N2 with large

repulsive self–interactions (g11 > 0, g22 > 0), the ground state solutions are approximated

by

φ1 (r) =

√

g22 [µ1 − V1 (r)− g12 (µ2 + V2 (r))]

g11g22 − g212
,

φ2 (r) =

√

g11 [µ2 − V2 (r)− g12 (µ1 + V1 (r))]

g11g22 − g212
.

(2.66)

if gii [µj − Vj (r)− g12 (µi + Vi (r))] /(g11g22 − g212) > 0 or 0 otherwise. For large g12, the

results given by the TF approximation for a two–species condensate become unsatisfactory

in comparison to exact numerical results [80].

2.10.3 One–Dimensional Dark–Bright Solitons

Immiscible condensate mixtures can support nonlinear structures in the form of dark–

bright solitons. These are characterised by a gap in the density of the dark component

with a phase slip across its centre while the bright component occupies the space left due

to the required immiscibility between the two condensates. On a homogeneous background

(Vi = 0) with gij = 1, the 1D dark–bright soliton solution for the dark soliton in component

one and the bright soliton in component two is given by [108]

ψ1 = i
√
µ1 sin (α) +

√
µ1 cos (α) tanh {κ [z − q (t)]}

ψ2 =

√

N2κ

2
exp (iΩ2t) exp (izκ tan (α)) sech {κ [z − q (t)]}

(2.67)

where the soliton inverse length is κ =
√

µ1 cos2(α) + (N2/4)2 − N2/4, the bright com-

ponent frequency shift Ω2 = κ2(1 − tan2(α)/2) + µ1 − µ2, the soliton position is q(t) =

q(0) + tκ tan(α) and α the velocity–angle.

In the remainder of this section, we present numerical results of the CGPE with one
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Figure 2.5: Time evolution of a dark–bright soliton with initial phase slip at z(l) = −5 with
N1 = 15000 and N2 = 400. Left — dark component; right — bright component.

or two appropriately imprinted dark–bright solitons. For simplicity, we initially consider

a 1D system with harmonic trapping potentials where ω1 = ω2, m1 = m2 and repulsive

interaction strengths such that the immiscibility criteria is satisfied, i.e. g212 > g11g22. Fig-

ure 2.5 shows the dynamical evolution over time of a dark–bright soliton initially chosen

to be off–centre. Similarly to a system with no bright component, the soliton oscillates

backwards and forwards in the harmonic trap with no dissipation while the bright com-

ponent follows the trajectory of this dark soliton. The amplitude is determined by the

distance from the centre of the trapping potential and the frequency of these oscillations

by the particle numbers [162]. If the soliton was initially positioned at the centre of the

trap z = 0, no oscillations would occur. The width of the dark soliton varies depending

on the number of bright particles in the system: if these increase, the width of the dark

soliton also increases as shown in Figure 2.6. The oscillation frequency of the dark–bright

soliton does not depend on the number of particles in the bright component. It is solely

dependent on the initial location of the phase slip. The height of the bright soliton is

determined by the location i.e. depth, of the dark soliton due to our numerical imprinting:

the closer it is located to the trap centre, the more the height of the bright component

increases, thus reducing its width (see Figure 2.7).

Interactions between two dark–bright solitons, first investigated in Reference [108],

have also been of recent interest. An example of such collisions is shown in Figure 2.8.

The initially static soliton at the centre of the trap z(l) = 0 is distorted by the quicker

moving soliton initially at z(l) = 5. This forces the central soliton to start oscillating with

increasing amplitude over time. The particle number in each bright component remains

constant, i.e. there is no exchange of particles between the solitons.
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Figure 2.6: Density profiles of dark component with dark–bright solitons at z(l) = −5 with N1 =
15000. (Solid) black curve — N2 = 400; (dashed) red curve — N2 = 1000; (dot–dashed) blue
curve — N2 = 1600.
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Figure 2.7: Density profiles of bright component with dark–bright solitons with N1 = 15000 and
N2 = 400. (Solid) black curve — phase slip at z(l) = −5; (dashed) red curve — phase slip at
z(l) = 0; (dot–dashed) blue curve — phase slip at z(l) = 2.5.
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Figure 2.8: Time evolution of dark–bright soliton with initial phase slip at z = −5 and z = 0 with
N1 = 15000 and N2 = 400. Left — dark component; right — bright component.

2.11 Finite Temperature Approaches

At temperatures lower than the critical temperature for condensation (T ≤ Tc) and above

absolute zero there will be macroscopic occupation of the condensate mode but also of

many of the low–energy excited modes. In fact, even at T ≥ Tc, when the condensate

is not present many of these excited modes will be highly occupied. In this section we

review a number of the theories used to describe the condensate, the thermal cloud and

interactions between these. While some of these theories are used directly in obtaining

results presented in this Thesis, a broader range of theories are reviewed for context.

Namely in Subsection 2.11.4, a GPE with phenomenological damping is shown to arise

from a number of finite temperature approaches.

2.11.1 Static Thermal Cloud Models

The generalisation made to the GPE in coupling the condensate dynamics to the ther-

mal cloud shall now be described. Following this, a quantum–Boltzmann equation (QBE)

shall be introduced for the evolution of the thermal cloud. We once again use the substi-

tution (2.8) in Equation (2.7). Taking an average gives

i~
∂φ (r, t)

∂t
=

[

− ~
2

2m
∇2 + Vext (r)

]

φ (r, t) + g〈Ψ̂† (r, t) Ψ̂ (r, t) Ψ̂ (r, t)〉, (2.68)

where, due to symmetry breaking, terms including the average of only one non–condensate

operator are considered to be zero i.e. 〈ψ̂†〉 = 〈ψ̂〉 = 0. Expanding the final term gives

〈Ψ̂†Ψ̂Ψ̂〉 = ncφ+mφ⋆ + 2ntφ+ 〈ψ̂†ψ̂ψ̂〉, (2.69)
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where nc (r, t) = |φ (r, t) |2 is the condensate density, nt (r, t) = 〈ψ̂† (r, t) ψ̂ (r, t)〉 is the

non–condensate density and m (r, t) = 〈ψ̂ (r, t) ψ̂ (r, t)〉 is the anomalous average which

has an unequal number of annihilation and creation operators. The equation of motion

for the condensate thus becomes

i~
∂φ (r, t)

∂t
=

[

− ~
2

2m
∇2 + Vext (r) + g (nc (r, t) + 2nt (r, t))

]

φ (r, t)

+ gm (r, t)φ⋆ (r, t) + g〈ψ̂† (r, t) ψ̂ (r, t) ψ̂ (r, t)〉.
(2.70)

If all the particles are in the condensate (nt,m, 〈ψ̂†ψ̂ψ̂〉 → 0), we recover the GPE.

The Hartree–Fock Limit

In the Hartree–Fock (HF) limit, the anomalous average and triplet term

〈ψ̂† (r, t) ψ̂ (r, t) ψ̂ (r, t)〉 are neglected, retaining only terms with one creation and one

annihilation term. In this limit the time–independent generalised GPE becomes

[

− ~
2

2m
∇2 + Vext (r) + gnc0 + 2gnt0

]

φ0 = µφ0 (2.71)

where the subscript 0 denotes a static value. The additional term nt0 is the equilibrium

thermal cloud. Conventionally, the excitation spectrum can be described semiclassically

using the momentum p and the local energy ǫ̃ of the thermal atoms as given by the HF

energies of the form

ǫ̃ (r,p) =
|p|2
m

+ Vext (r) + 2g [nc0 (r) + nt0 (r)] . (2.72)

The Hartree–Fock–Bogoliubov Limit

The Hartree–Fock–Bogoliubov (HFB) limit is a generalisation of the HF limit which in-

cludes all creation and annihilation quadratic terms i.e. the anomalous average and its

conjugate. However, this approximation has a fundamental limitation: prohibited for the

symmetry breaking theory, the homogeneous spectrum of elementary excitations does not

vanish in the limit of zero–momentum but rather leaves a gap.

The HF and HFB limits form a good basis for finite temperature theory, however they

neglect important information about particle collisions between condensate and thermal

cloud, mainly due to neglecting the triplet term 〈ψ† (r, t)ψ (r, t)ψ (r, t)〉. A higher order

theory is required to account for these collisions.
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2.11.2 Zaremba–Nikuni–Griffin (ZNG) model

In the ZNG approach, the anomalous average is neglected and the product of the three

non–condensate terms is found to be imaginary constituting a growth/decay term in a

generalised GPE [203, 204, 205]

i~
∂φ (r, t)

∂t
=

[

− ~
2

2m
∇2 + V (r) + g

(

|φ (r, t)|2 + 2nt (r, t)
)

− iR (r, t)

]

φ (r, t) , (2.73)

where iR (r, t) describes the exchange of particles between the condensate and the thermal

cloud

R (r, t) =
~

2 |φ (r, t)|2
∫

dp

(2π~)3
C12 [f (p, r, t) , φ] . (2.74)

The expression for the collisional integral between the condensate and the thermal cloud

C12[f, φ] will be given at a later point in this section.

The Wigner distribution function f (p, r, t) is the phase space distribution function for

an atom of momentum p, at location r and at time t and describes the non–condensate

particles by the relation nt (r, t) =
∫ dp

(2π~)3
f (p, r, t).

Now that collisional particle exchange has been introduced into the condensate evo-

lution, the corresponding evolution for the thermal cloud is required in order to form

a closed system of equations which maintain total atom number. The formulation of

Zaremba, Nikuni and Griffin [206, 207, 208] is based on a Boltzmann–like equation for the

dynamics of the thermal cloud

∂f

∂t
+

p

m
· ∇rf − (∇rUeff) · (∇pf) = C12 [f, φ] + C22 [f ] , (2.75)

where ∇r and ∇p are the gradients in position and momentum respectively. Firstly,

C12[f, φ] describes the transfer of a particles from condensate to the thermal cloud and

vice–versa, defined as [203]

C12 [f, φ] =
4π

~
g2 |φ|2

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3 δ (mvc + p2 − p3 − p4) δ (ǫc + ǫ̃2 − ǫ̃3 − ǫ̃4)

× (2π~)3 [δ (p− p2)− δ (p− p3)− δ (p− p4)]

× [(f2 + 1) f3f4 − f2 (f3 + 1) (f4 + 1)] ,

(2.76)

where fi = f (pi, r, t) and ǫ̃i = |pi|2 /m+Vext (r)+2g
[

|φ (ri, t)|2 + nt (ri, t)
]

is the Hartree–

Fock energy of the thermal atoms. C22[f ] describes collisions between two particles in the
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thermal cloud

C22 [f ] =
4π

~
g2

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3 δ (p+ p2 − p3 − p4) δ (ǫ̃+ ǫ̃2 − ǫ̃3 − ǫ̃4)

× [(f + 1) (f2 + 1) f3f4 − ff2 (f3 + 1) (f4 + 1)] .

(2.77)

The δ–function in Equations (2.76) and (2.77) represent the conservation of energy and

momentum during these scattering processes. The function fi is the statistical factor for a

particle to be destroyed in state i and (fi+1) for the creation in state i. Equations (2.73)

and (2.75) represent a closed system which self–consistently solve for the condensate in

the presence of a fully dynamical thermal cloud and are conventionally referred to as the

ZNG equations.

However this scheme is based on symmetry–breaking. Condensate formation from zero

initial seed can not be reproduced as the existence of a small condensate is assumed. In

addition, important fluctuations present near the initial region are not accounted for. To

model these aspects, the addition of stochastic effects into the system evolution is required.

2.11.3 Stochastic (Projected) Gross–Pitaevskii Equation (S(P)GPE)

First derived by Stoof [209, 210], the SGPE describes the ‘coherent’ region of low-lying

modes which encompasses the condensate and other highly-degenerate modes, with such

modes assumed to be in contact with the ‘incoherent’ region of higher lying modes, which

is assumed to be in thermal equilibrium.

Within this approximation, the evolution of the coherent region is given by the SGPE [209,

211, 212]

i~
∂φ (r, t)

∂t
= [1− iR (r, t)]

(

− ~
2

2m
∇2 + V (r) + g |φ (r, t)| − µ

)

φ (r, t) + η (r, t)

≈ [1− iγ (r, t)]

(

− ~
2

2m
∇2 + V (r) + g |φ (r, t)| − µ

)

φ (r, t) + η (r, t)

(2.78)

where the noise term 〈η⋆ (r, t) η (r′, t′)〉 = 2γ (r, t) kBT~δ(r − r′)dt can provide a seed for

condensate growth and γ(r, t) = i(β/4)~ΣK (r, t). Within this scheme, the strength of the

interactions between the coherent and incoherent regions is thus defined by the Keldysh

self–energy

~ΣK (r, t) =− 4πig2
∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3 δ (p2 − p3 − p4) δ (ǫc + ǫ̃2 − ǫ̃3 − ǫ̃4)

× [f2 (f3 + 1) (f4 + 1) + (f2 + 1) f3f4] .

(2.79)
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The iR(r, t) source term in this approach is similar to that in Equation (2.73) where it

describes the transfer of particles between the coherent and incoherent region and is given

by

R (r, t) =2πg2
∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3 δ (p2 − p3 − p4) δ (ǫc + ǫ̃2 − ǫ̃3 − ǫ̃4)

× [f2 (f3 + 1) (f4 + 1)− (f2 + 1) f3f4] .

(2.80)

The thermal energies are now defined as ǫ̃i = |pi|2 /2m+ Vext + 2g〈|φ(r, t)|2〉 and fi once
again represents the Wigner functions for the thermal cloud. It is possible to approximate

the source term iR (2.80) in term of the Keldysh self–energy

iR (r, t) ≈ −β
4
~Σk (r, t)

[

− ~
2

2m
∇2 + Vext + g |φ|2 − µ

]

. (2.81)

This defines a fluctuation–dissipation relation for this system.

Stochastic Projected Gross–Pitaevskii Equation (SPGPE)

A similar model, which includes the presence of a projector P, has been derived by Davis,

Gardiner and co–workers [213, 214]. The SPGPE is given by

i~
∂φ (r, t)

∂t
= P

[

(1− iγ (r, t))

(

− ~
2

2m
∇2 + V (r) + g |φ (r, t)| − µ

)

φ (r, t)

]

+ P [η (r, t)] .

(2.82)

Once again the approach is applicable for high temperatures where all coherent region

modes are highly occupied in the energy cutoff. Without a projector, the numerical grid

imposes an implicit cutoff relative to the chosen grid spacing. The projector imposes an

explicit energy cutoff in order to restrict the coherent region to highly populated modes.

The addition of the explicit projector ensures superior numerical accuracy and a more

rigorous means of ensuring validity. The coupled SPGPEs(CSPGPEs) were used by our

collaborators I. K. Liu and S. C. Gou to investigate the formation of condensate mixtures.

These results are discussed in Chapter 4 in relation to work we have undertaken.

In the following Section the damped GPE(DGPE), used to obtain results presented in

this Thesis, is introduced. The DGPE is a particular sub–equation of the S(P)GPE (and

of ZNG).
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2.11.4 The Damped Gross–Pitaevskii Equation (DGPE)

By neglecting the noise term η in Equation (2.78), the condensate evolution can be cast

in the form

i~
∂φ (r, t)

∂t
= (1− iγ)

[

− ~
2

2m
∇2 + Vext (r, t) + g |φ (r, t)|2

]

φ (r, t) . (2.83)

where γ denotes the growth rate of the system depending in general on position and

time. First implemented to trapped Bose gases to discuss damping of excitations [215],

the addition of a phenomenological coefficient γ into the GPE was originally suggested by

Pitaevskii [216, 217]. In this approach, γ is taken to be constant and is chosen such that

it agrees qualitatively with experiments, although the values used have no microscopic

justification. Reference [218] used γ ≈ 4αma2skT/π~
2 and chose α ≈ 3 to fit most growth

experiments.

This dissipative equation has been used in numerous contexts, including the studies of

vortex lattice growth [219, 220], dark soliton decay [221] and as a route to turbulence [222].

The DGPE (2.83) can be seen to arise as a special case of above theoretical models in

a number of different ways. For example, we can neglect the explicit projector in addition

to the noise term η in the SPGPE (2.82). Similar approximations can be made to the ZNG

formalism. The DGPE can also be obtained from the GPE (2.9) by setting t→ (1− iγ) t.

The coupled DGPEs(CDGPEs) are of relevance to the Thesis and are used to obtain

the numerical results in Chapter 4. In the following Section, we introduce classical field

methods where the dynamical evolution of φ is modelled with the GPE but now describes

a set of modes rather than a wavefunction.

2.11.5 Classical Field Methods

In classical field methods, more commonly referred to as C–field methods, the GPE is

used for modelling all coherent modes (low–lying modes) of a finite temperature system

(reviewed in [223]). A common misconception is that the GPE can only simulate conden-

sates at absolute zero. These C–field methods consist of treating the low energy modes as

a classical object. To consider the evolution of this system, it is necessary to start with

strongly nonequilibrium initial conditions

φ (r, t = 0) =

kmax
∑

k

ak exp (ik · r) (2.84)

where the phases of the complex amplitudes ak are distributed randomly [224]. This initial

condition ensures that there is a high number of highly populated modes with momentum

less than a particular value kmax and φ describes a set of modes rather than the condensate
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wavefunction. We stress here that the standard GPE for an interacting condensate can

be recovered by starting with 100% occupation of the zero momentum k = 0 mode and

keeping only this mode in the model. We note that the condensate occupation is equal to

n0 = |a0|2. Numerical simulations begin far from equilibrium (2.84) and are evolved over

a time period until equilibrium appears to have been reached. The dynamics conserve the

total particle number, N , and kinetic energy, Ekin,

N = V

∫

nk (t) dk, (2.85)

Ekin = V

∫

k2nk(t)dk, (2.86)

where V is the volume of the system.

The momentum cut-off used can be imposed through a projector, such as in the pro-

jected GPE (PGPE) and neglect any coupling between the coherent region to the effective

heat bath [225]. The PGPE was shown to describe the correct thermal behaviour of a

Bose gas as long as all relevant modes are highly occupied [226]. Although the projector

is recommended in harmonic trapping potentials in order to explicitly impose a energy

cutoff, a cutoff arises naturally in numerical simulations due to the discretisation of the

GPE equation and is not typically included in this model where periodic boxes are used.

Large numerical simulations of the GPE with strongly nonequilibrium initial state was

first used [224] to clarify and confirm the theoretical evolution of the system suggested

in [227, 228, 229]. Reference [224] also presented the first quasicondensate evolution of

vortices in numerical simulations. Quasicondensates are phase–fluctuating condensates in

which density fluctuations are largely suppressed [230]. Other finite temperature models

(ZNG, S(P)GPE...) can also be used to describe quasicondensates.

In c–field simulations, the condensate fraction (condensate number over total particle

number) tends to increase and finally converge over time [231, 232]. The temperature of

the system is not set directly but can be subsequently extracted through the condensate

fraction [233]. The evolution dynamics of vortex rings was considered in the context of

this classical fields approximation and it showed that the collisions with noncondensed

particles reduce the radius of a vortex ring until it completely disappears [233].

The evolution of two Bose gases has been considered starting from a strongly nonequi-

librium initial states [234]. In comparison to the case of no interaction between particles of

different gases, weak repulsive interactions (miscible) between both gases would increase

the condensate fraction for one gas and decrease for the other as they equilibrate to the

same temperature.

C–field methods are used to investigate non trapped systems and is used in Chapter 5

of this Thesis.
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In this Chapter, while stressing the importance of finite temperature effects, we intro-

duced theoretical approaches for describing BECs. Using the CGPEs, our initial focus in

Part II is to investigate steady state solutions of condensate mixtures at zero–temperature

in harmonic trapping potentials. We then include the growth term which leads to new

interesting dynamics. Part III focusses on C–field methods in two component quasicon-

densates.
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Part II

Bose–Einstein Condensate

Mixtures in Harmonic Trapping

Potentials
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Chapter 3

Steady State Solutions of Trapped

Two–Species Bose–Einstein

Condensates

In this Chapter, we study the equilibrium density structures that arise in a two-species

condensate under harmonic trapping.

As a first test of our numerical code, we reproduce the three–dimensional (3D) 23Na–
87Rb results from Reference [80]. This also shows how varying the number of particles

and the interspecies interaction strengths gives different ground state solutions. We then

demonstrate the extreme sensitivity of the equilibrium density profiles on the initial con-

ditions used, in the context of a one–dimensional (1D) mixture. The main focus of the

Chapter is to investigate the extent to which the CGPEs reproduce experimental findings

of Reference [77] in a 87Rb–133Cs two-species condensate, with and without an asymmet-

rically perturbed potential between the two species (imposed via the addition of linear

potentials). We show that these results qualitatively reproduce the density profiles ob-

served experimentally.

3.1 Reproducing the Results of H. Pu et al. [Phys. Rev.

Lett., 80, 1130 (1998)].

The first steady state solutions for mixtures of different atomic species were obtained

numerically in 1998 by Pu et al [80] who considered a mixture of 23Na and 87Rb. In

this section we shall numerically reproduce these ground state density profiles by using

the TF approximation as initial condition for imaginary time propagation. Imaginary

time is implemented by making the substitution dt→ −idτ and the wavefunction decays

towards the ground state of the system (see Appendix B). Similarly to Reference [80],
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we use the CGPEs written in terms of harmonic oscillator units. However we note here

a discrepancy in the dimensionless units used: an additional factor of 1/
√
2 is present

in the scalings for length such that l(1)Pu =
√

~/2mω̄ in Reference [80] in comparison

to our units presented in Section 2.7. For an exact comparison between the results of

Reference [80] and our numerical simulations, it is necessary to multiply our grid axes by

1/
√
2 thus giving, for example in the x direction, x̃ = x/

√
2l = x/lPu. Similar conversions

are required in the y and z directions. In addition, our condensate wavefunctions must

be rescaled by a factor of
√
2
3/2

such that φ̃i (r, t) = φi (r, t) l
3/2
(1)

√
2
3/2

= φi (r, t) l
3/2
(1)Pu.

In our calculations, we take Rb as species 1 and Na as species 2. We have spherically

symmetric traps, as defined by Equation (1.8), where ω(1)⊥ = ω(1)z = 2π × 160Hz and

ω(2)⊥ = ω(2)z = 2π × 310Hz. The scattering length is taken to be a11 = 6nm for Rb

and a22 = 3nm for Na. The strength of the interactions in out harmonic oscillator units

are given by gii = 4π~aii/m1ω(1)⊥l
3
1 (i = 1, 2) and g12 = 2π~a12(m1 +m2)/m1m2ω(1)⊥l

3
1.

Our numerical simulations were carried out with 643 grid points with spatial discretisation

∆ = 0.3125 in all three directions.

Figure 3.1 shows our numerically obtained steady state solutions with these parameters

and g12 > 0. These are in excellent qualitative and quantitative agreement with Figure 1

from Reference [80]. Figures 3.1(a) correspond to weak interspecies interactions g212 <

g11g22. The widths of both condensate density profiles are wider and have lower peaks

in comparison to the situation when no interspecies interactions are present, i.e. g12 = 0

(Figure 3.1(c)). Considering large interspecies interactions g212 > g11g22 (Figure 3.1(b)),

Na occupies the outer regions of the trapping potential (peak density no longer in the

centre) forming a shell around the central Rb. The additional confinement from the outer

Na particles squeezes the Rb cloud in the trap centre and increases its peak density value.

The larger the number of Na condensate atoms is (Figure 3.1(b)(iii)), the more apparent

this phenomena becomes. Similarly, for large Rb atoms in the system, the Na condensate

is pushed further away from the trap centre (Figure 3.1(b)(i)).

We also considered negative (attractive) interspecies interactions g12 < 0 in Figure 3.2.

We found that the system would numerically collapse if the amplitude of these interactions

were large enough to satisfy the criterion g212 > g11g22. Therefore we only show the results

for weak attractive interactions g212 < g11g22. In this case, both species want to occupy

the same space: the centre of the trapping potential. In comparison to the scenario of

no interspecies interactions (Figure 3.1(c)), the condensates are compressed in the trap

centre giving density profiles with smaller widths and higher peaks.

In this section, we have shown how changes in the condensate atom numbers and

interspecies interactions play a role on the condensate density profiles and a rich number

of steady state solutions are obtained. In addition, our results match both qualitatively

and quantitatively those seen in Reference [80] proving that our numerical code gives
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Figure 3.1: Ground state density profiles with a11 = 6nm (g11 = 0.45), a22 = 3nm (g22 = 0.059)
and (a) weak interspecies interactions a12 = 1.8nm (g12 = 0.085 and g212 < g11g22 – miscible), (b)
strong interspecies interactions a12 = 3.6nm (g12 = 0.17 and g212 > g11g22 – immiscible) or (c) no
interspecies interactions a12 = 0 (g12 = 0 and g212 < g11g22 – miscible). In each of these cases,
three sets of atom numbers are considered: (i) N1 = 2×105, N2 = 2×103; (ii) N1 = N2 = 2×104;
(iii) N1 = 2× 103, N2 = 2× 105. Red (solid) — Rb (species 1), Blue (dashed) — Na (species 2).
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Figure 3.2: Ground state density profiles with a11 = 6nm (g11 = 0.45), a22 = 3nm (g22 = 0.059)
and negative interspecies interactions a12 = −1.8nm (g12 = −0.085 and g212 < g11g22 – miscible).
Three sets of atom numbers are considered: (i) N1 = 2×105, N2 = 2×103; (ii) N1 = N2 = 2×104;
(iii) N1 = 2× 103, N2 = 2× 105. Red (solid) — Rb (species 1), Blue (dashed) — Na (species 2).
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accurate results. In the next section, we shall talk about how the ground state density

profiles change depending on the initial conditions used in imaginary time propagation.

3.2 Sensitivity to Parameters

Instabilities often arise when solving equations numerically. Here, we show how these

can arise during convergence of the CGPE (i.e. during imaginary time propagation) for

various initial conditions. For simplicity we focus on a 1D two-species system. Similarly

to Section 2.9 for a one component system, the relation between the 1D and 3D mean-field

CGPEs are given by Uii = gii/2πl
2
i⊥, U12 = g12/π

(

l21⊥ + l22⊥
)

, µi(1D) = µi − ~ωi(x,y) and

li⊥ =
√

~/miωi(x,y) is the transverse harmonic oscillator length. Similarly to [235] where

solutions within the TF approximation were considered, we use simple parameters for

immiscible condensates of equal condensate particle numbers N = N1 = N2, equal trap

frequencies ω1 = ω2, equal masses m1 = m2 and immiscible condensates with interactions

U22 = 1.01U11, U12 = 1.52U11.

We perform imaginary time propagation of the CGPEs subject to three different ini-

tial conditions. Convergence is decided when the fractional difference in energy between

consecutive time steps is lower than 10−9. In dimensionless form, we take as the initial

state either of the following cases:

(i) the Gaussian ground state harmonic oscillator solution for each species φi =

e−ωiz2/2ζ2 (in first instance we take ζ = 1)

(ii) a Thomas-Fermi (TF) initial state for each species φi =
√

(µi − V (z))/gii when

µi ≤ Vi(z) or 0 otherwise

(iii) a homogeneous initial state (uniform density) φi =
√
Ni/L where L is the length

of our numerical grid.

Each initial condition is suitably normalised to the desired N .

In Figure 3.3, we compare the steady state density profiles that emerge through each

of these initial conditions. The first row, Figure 3.3 (a), corresponds to the parameters

U11 = 6
(

~ω̄l32πl⊥
)

and N = 150. The oscillator length l is given by
√

~/m1ω1. The

Gaussian initial condition gives rise to a steady state which features many corrugations in

the density profile obtained. The TF initial state gives rise to a central cloud of species 1

surrounded by species 2. This is consistent with previously obtained solutions [235]. For

the homogeneous initial state, we obtain a steady state which is similar to the TF result

but features additional small clouds of species 1 at the periphery.

The fractional difference in energies for each of these systems, given in Table 3.1, shows

that in all cases considered the ground states given by the TF initial conditions have the
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Figure 3.3: Ground state density profiles, with N = N1 = N2, ω1 = ω2, m1 = m2 and U22 =
1.01U11, U12 = 1.52U11, such that the immiscibility criterion is satisfied. Columns correspond
to Gaussian, TF and homogeneous initial conditions for imaginary time propagation. (a) U11 =
6
(
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, N = 150. (b) U11 = 6
(
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(
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)

, N = 2000.

(d) U11 = 1
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~ω̄l32πl⊥
)

, N = 200. Solid blue curve – species 1; Dashed red curve – species 2.

smallest energies followed by the homogeneous initial condition and finally the Gaussian.

We thus identify the state derived from the TF initial condition to be the ground state

of the system. The difference in energies, however, is small and typically less than 2%.

The additional corrugations arising from the Gaussian and homogeneous initial conditions

are attributed to a modulational instability of the condensates early in the imaginary-time

propagation. This leads to the formation of density corrugations in the system. Imaginary

time propagation then converges to one of several metastable states with these corrugated

forms.

For a slightly increased atom number, N , Figure 3.3 (b), we find that the TF-based

solution becomes closer to the homogeneous-based solution, both featuring small clouds

of species 1 at the periphery. The Gaussian-based solution is essentially unchanged. For

a significantly larger atom number, Figure 3.3 (c), all profiles become wider due to the

increased repulsion in the system. The TF and homogeneous-based solutions maintain

the same structural form as above, albeit broader. However, the Gaussian-based solution
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E(~ω)
Gaussian Thomas–Fermi Homogeneous

U11 = 6, N = 150 59.57 58.68 58.73

U11 = 6, N = 200 72.11 71.04 71.08

U11 = 6, N = 2000 331.24 328.15 328.28

U11 = 1, N = 200 72.44 71.21 71.27

Table 3.1: Table of energy E(~ω) corresponding to plots in Figure 3.3.

features a much greater number of density corrugations. Finally, in Figure 3.3 (d), we

plot the results for when the interaction strengths between atoms are reduced compared

to Figure 3.3 (b). In this regime of weak interactions, all three initial conditions lead to

the same solution in which a cloud of species 1 is surrounded by species 2.

The Gaussian-based solution features the greatest sensitivity. In order to parametrise

these effects further we introduce the number of interfaces as a measure of the number of

corrugations in the system. Above, we employed the ground harmonic oscillator solution

corresponding to the Gaussian width ζ = 1. Here we will vary ζ to assess its role on

the steady state solution obtained. In Figure 3.4(a) we plot the number of interfaces in

the steady state solution as a function of ζ. As ζ is increased (the Gaussian initial state

becomes wider), the number of interfaces decreases exponentially until the minimum is

reached, matching the number of interfaces in the ground state (which corresponds to

the TF and homogeneous-based solutions in Figure 3.3(c)). In Figure 3.4(b) and (c), we

show the initial conditions and ground state density profiles for two cases: (i) ζ = 1 and

(ii) ζ = 10 respectively. These results show firstly that a range of metastable states are

possible in the system, characterised by an increased number of density corrugations over

the ground state. Secondly, the results suggest that the size of the initial trial solution

relative to the ground state is key to determining which state is obtained via imaginary

time propagation.

The overall density profiles have the same inverted parabola profile independent of the

number of corrugations. This is due to the condensates being normalised to the same

number of particles irrespective of the initial condition i.e. the area under the curves are

the same. The examples we have chosen here are believed to greatly enhance the sensitivity

due to our oversimplified choice of N1 = N2 = N . In general, namely in 3D, the solutions

obtained are also sensitive to the initial conditions, although they were considerably less

sensitive than in 1D.
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3.3 Matching the Experimental Results of D. J. McCar-

ron et al. [Phys. Rev. A, 84, 011603(R) (2011)].

A recent two-species experiment with 87Rb–133Cs condensate mixtures [77] revealed dis-

tinct regimes of density distributions, depending on the relative numbers of 87Rb and 133Cs

atoms as shown in Figure 3.5. This experiment exploits efficient sympathetic cooling of
133Cs via elastic collisions with evaporatively cooled 87Rb atoms, initially in a magnetic

quadrupole trap and subsequently in a levitated crossed dipole trap [236]. The large inter-

species background scattering length of a12 ≃ 650 a0 enables efficient sympathetic cooling

but also gives rise to large inelastic three body losses [237]. This presents an obstacle

to condensation at high densities which is overcome by fast evaporative cooling; this is

achieved by reducing the dipole trap beam powers followed by tilting the trap using an

applied magnetic field gradient. Dual species condensates are produced in the same trap-

ping potential containing up to ∼ 2 × 104 atoms of each species. The optical dipole trap

exerts harmonic trapping on the condensates.

As shown in Figure 3.5 (a)–(b) the two-species BEC always forms one of three struc-

tures correlated to the atom number present in each condensate. Typical axial density

profiles from each region (after time of flight expansion) are shown in Figure 3.5 (b). For

Regions I and III, one of two possible loosely symmetric cases is obtained: the Rb sits

in the centre for Region I while the Rb is spatially split by the Cs in Region III. In Re-

gion II, the condensates adopt asymmetric density profiles, sitting side-by-side along the

weaker axial direction of the trap. A dramatic spatial separation reveals this mixture to

be immiscible as repulsive interspecies interactions dominate intraspecies interactions at

the magnetic bias field of 22.4 G used in the experiment. As we will see, these experimen-

tal profiles do not match the cylindrically-symmetric equilibrium solutions (presented in

Figure 3.5(c)).
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Figure 3.5: (a) Experimental data for a quantum degenerate 87Rb–133Cs mixture (reproduced
from data in [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]). Depending on atom
numbers, three distinct structures are observed represented here through triangles, squares and
circles (Regions I, II and III). (b) Experimental integrated axial density profiles corresponding to
the filled symbols in (a), observed after time-of-flight expansion [H. W. Cho et al., The European
Physical Journal D, 65, 125 (2011)] and rescaled to the optical depth (OD) maximum. (c) Numer-
ically calculated cylindrically symmetric ground state density profiles corresponding to the atom
numbers for each of the filled points in (a) and the experimental density profiles shown in (b).
(Solid) red curve — Rb; (dashed) blue curve — Cs.
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3.3.1 System Parameters and Test Cases

Following the experiment of Reference [77] we consider a 87Rb–133Cs BEC mixture. The

trap frequencies are taken to be ωx(Rb) = ωy(Rb) = 2π × 32.2 Hz, ωx(Cs) = ωy(Cs) =

2π×40.2 Hz in the transverse directions and ωz(Rb) = 2π×3.89 Hz, ωz(Cs) = 2π×4.55 Hz

in the axial direction. The intraspecies and interspecies scattering lengths are taken to

be aRb = 100 a0 [198], aCs = 280 a0 [199] and aRbCs = 650 a0 [202]. These interaction

strengths satisfy the immiscibility criterion g2RbCs > gRbgCs and we expect phase separated

condensates.

Throughout the work on this two–species mixture, we adopt harmonic oscillator units

where time, length and energy are expressed in units of 1/ω̄Rb = 10 ms, lRb =
√

~/mRbω̄Rb ≃
0.54 µm and ~ω̄Rb, respectively. The numerical methods used in obtaining the ground state

density profiles in this section are the same as described previously in Section 3.1.

The experiment of Reference [77] observed three regimes of density structure, depend-

ing on the atom number in each species. These three regimes correspond to the triangles

(Region I), squares (Region II) and circles (Region III) in Figure 3.5 (a). We focus on one

representative set of atom numbers from each structural regime:

(i) NRb = 840 and NCs = 8570

(ii) NRb = 3680 and NCs = 8510

(iii) NRb = 15100 and NCs = 6470

These particular test cases are indicated by the three filled symbols in Figure 3.5 (a) and

correspond to the experimental images presented in Figure 3.5 (b). We denote 87Rb as

species 1 and 133Cs as species 2. In our numerical simulations, the spatial discretisation

is set to ∆ = 0.2 in all three directions.

3.3.2 Symmetric Trapping Potentials

Here, we consider the two-species condensates to be confined by co-centred harmonic traps

and use centred initial conditions i.e. the trapping potentials for both species are centred

relative to each other and are perfectly harmonic. We thus anticipate symmetric density

profiles in all directions to emerge in our numerical mean–field simulations. Figure 3.5

(c) shows the corresponding numerically–obtained integrated axial density ground states

profiles. Our obtained states are all symmetric in space and phase-separated, as expected.

For all three cases considered we observe the same qualitative structure in that the Cs

cloud resides at the trap centre, with the Rb cloud surrounding it. This is the so-called

‘ball-and-shell’ formation [80]. As we move from Region I to Region III, the qualitative

structure does not change; only the relative amplitude of the condensates and location
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of condensate interfaces (change from Rb to Cs or vice-versa) change as NRb increases

and NCs decreases. Note that the observed preference in our numerical results for Cs

to be centrally positioned is consistent in our previous Rb–Na theoretical studies where

the tendency is for the component with the higher atomic mass to reside centrally (see

Figure 3.1). This dynamical system has a substantial total parameter space, with even

a restriction to cylindrical symmetry leaving eight dimensionless parameters that can in

principle be independently varied (see Appendix A.1 for dimensional analysis done by

S. A. Gardiner, Durham University). Many of these parameters will, in practice, be

fixed in any given experimental configuration. Hence, for example, in the experimental

configuration described in Reference [77], it is not possible for the distributions of Rb and

Cs to be simply exchanged by changing the particle numbers (the most easily accessible

handle to change the systems location in parameter space). This means, for example that

the disagreement of Figures 3.5(b)(i) and 3.5(c)(i) is unlikely to be due to incorrect atom

counting.

Our results (Figure 3.5 (c)) agree qualitatively with the experimental observations

(Figure 3.5 (b)) only for Region III: both the experiment and our numerical results (Fig-

ure 3.5 (b) (iii) and (c) (iii)) show Cs to be in a central position, but not those obtained

for the other Regions. The experimental images include the presence of a broad thermal

cloud, which is often large, and have undergone time-of-flight expansion, and so our com-

parison of density profiles is limited to the qualitative structural form only. For Region I,

the location of the condensates is reversed: experimentally Rb occupies the centre of the

trap while numerically it is Cs. In the case of Region II, a symmetric steady state solution

emerged as was expected while experimentally the condensates sit side by side in an asym-

metric disposition in the z direction. This suggests that a form of asymmetry enters the

experimental set up. Theoretically, it has been shown that the symmetry in a two species

system can be broken in many different ways to give rise to two separated side–by–side

condensates [71, 91, 94, 235].

In the following Section, we shall discuss small shifts that are present between the

trapping potentials of the two species which introduce asymmetry into the system. We

will then start to investigate whether the introduction of these shifts and asymmetries may

dictate the density structures that form and may enable us to reconcile the differences with

the experimental results in Regions I and II.

3.3.3 Experimental Asymmetries

In the experiment of Reference [77] a magnetic tilt is applied to the otherwise harmonic

potential to enhance evaporative cooling. This tilt is applied in one of the transverse

directions, and results in a shift in relative trap centres by up to 3 microns. Additionally,

the small difference in magnetic moment–to–mass ratio for each species, coupled with

54



Chapter 3. Steady State Solutions of Trapped Two–Species Bose–Einstein Condensates

-20 -10 0 10 20
z(l

Rb
)

0

5

10

15

Po
te

nt
ia

l
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αz = αx = 0 (black – solid) and offset in axial direction αz = 0.1(~ω̄Rb/lRb), αx = 0 (red –
dashed).

minute unavoidable misalignments of the dipole trap beams with respect to the magnetic

potential, may result in offsets between the trap centres of up to 2 µm in all directions.

Further trap effects, such as differential gravitational sag, are also present. The combined

result is that the potentials experienced by the two species have a slight offset in space.

To incorporate the presence of such shifts in our simulations we add linear potentials in

the axial and one transverse direction to species 1 (Rb) such that its trapping potential

takes on the modified form

V1 =
1

2
m1

(

ω2
x(1)x

2 + ω2
y(1)y

2 + ω2
z(1)z

2
)

+ αxx+ αzz. (3.1)

The gradients for the linear potentials are given by αx and αz in the transverse and axial

directions respectively. In Figure 3.6, we compare symmetric αz = 0 and asymmetric

αz 6= 0 harmonic trapping potentials. In changing the value of αz to be non–zero, the trap

minima moves in the axial direction in addition to being lowered. The distance between

the trap minima of Rb and Cs is given by

δz =
αz

m1ω
2
z(1)

and δx =
αx

m1ω
2
x(1)

(3.2)

in the axial and transverse directions respectively. Our initial analysis in the previous

section focused on symmetric ground state density profiles, obtained in the limit αx =

αz = 0, for which the traps of each species are co-centred.
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3.3.4 Role of Shifted Trapping Potentials

Axial Linear Potential

We start by looking at how the addition of a linear potential in the axial direction influences

the ground state solutions. Results presented here are based on a linear potential of

gradient αz = 0.02 (~ω̄Rb/lRb). This corresponds to an axial shift of δz = 0.9 µm in

the trap centres, which is well within the experimental bounds detailed in Section 3.3.3.

The value of the linear potential gradient employed here, and the value of the transverse

linear potential employed in the next section, are chosen such that their combined result,

presented in Section 3.3.4, gives the best agreement to experiments that mean field theory

can yield, while remaining within the bounds of the experimental uncertainties.

The numerically–obtained ground state solutions are presented in Figure 3.7 as both

integrated (a) axial density profiles and (b) 2D density profiles. First consider the profile

for Region III (Figure 3.7(iii)). The same structure remains from the symmetric system,

i.e. central Cs surrounded by Rb, albeit now skewed slightly due to the linear potential.

The profile for Region II (Figure 3.7(ii)) now jumps to an asymmetric side-by-side state,

in qualitative agreement with the experimental profile for this region (Figure 3.5(b)(ii)).

For Region I (Figure 3.7(i)) the density profile also becomes asymmetric under the axial

linear potential, and as such it remains inconsistent with the corresponding experimental

observation (Figure 3.5(b)(i)).

Increasing the linear potential past a critical value of αz ≃ 0.1 (~ω̄Rb/lRb) gives axi-

ally asymmetric density profiles for all three regimes while decreasing the gradient below

another critical value of αz ≃ 0.01 (~ω̄Rb/lRb) leads to the ball–in–shell structure for all

three cases, i.e. central Cs surrounded by Rb.

Transverse Linear Potential

Next we look at the influence of a additional linear potential in one transverse direction,

taken to be the x direction (no axial linear potential is applied here). We focus on a

gradient of αx = 1.5 (~ω̄Rb/lRb) which corresponds to an axial shift of δx = 1.0 µm in the

trap centres. This is comfortably within the experimental bounds detailed in Section 3.3.3.

Figure 3.8 shows the corresponding integrated ground state density profiles.

The integrated axial density profiles for Region III (Figure 3.8(a)(iii)) is again a qual-

itative match to that obtained experimentally. However, the actual 3D structure is now

such that the Rb cloud lies offset transversely to the central Cs cloud, curving around

it in the positive x half-plane, as visible in the corresponding integrated 2D density plot

(Figure 3.8(b)(iii)). This is a subtly different structure to that observed in the previous

sections where the Rb cloud was split either side of the Cs cloud. The 1D density profile for

Region II (Figure 3.8(a)(ii)) shows similar results to the symmetric case where the Cs sits
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Figure 3.7: Ground states under a linear axial potential αz = 0.02 (~ω̄Rb/lRb). (a) Integrated axial
density profiles and (b) 2D density profiles, for the three cases corresponding to the filled symbols
in Figure 3.5 (a). (Solid) red curve — Rb; (dashed) blue curve — Cs.
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Figure 3.8: Ground states under a linear transverse potential αx = 1.5 (~ω̄Rb/lRb). Integrated (a)
axial density profiles and (b) 2D density profiles, for the three cases corresponding to the filled
symbols in Figure 3.5 (a). (Solid) red curve — Rb; (dashed) blue curve — Cs.

in the centre with Rb split axially into two distinct regions and thus not consistent with the

corresponding experimental profile. As visible in the 2D density plot (Figure 3.8(b)(ii)),

the outer Rb clouds become skewed towards the positive x direction, but not sufficiently to

become linked to one side of the Cs cloud forming one Rb cloud. Importantly, for Region

I, the integrated axial density profile (Figure 3.8(a)(i)) has undergone a marked change,

with both condensates apparently overlapping. This does not contradict the presence of

phase separation; as seen in the corresponding 2D density profiles (Figure 3.8(b)(i)), the

condensates phase separate transversely due to the transverse linear potential. Although

this result is still different from the corresponding experimental profile (Figure 3.5(b)(i)),

it is somewhat closer in that the Rb becomes positioned in the centre in the axial direction.

Increasing the linear potential past a critical value of αx ≃ 3 (~ω̄Rb/lRb) gives trans-

verse asymmetric density profiles for all three regimes while decreasing the gradient to

values below approximately αx ≃ 0.4 (~ω̄Rb/lRb) gives rise to a split in the Rb to sur-

round the Cs positioned in the centre.

So far we have presented numerical results for symmetric trapping potentials and

linear potentials in either the axial direction or a transverse direction. Results obtained

for Region III qualitatively match those obtained experimentally. For Region II, we obtain
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a reasonable match through use of an additional axial linear potential. Through use of an

additional transverse linear potential we have captured some, but not all, of the features

from Region I. We will next explore the extent to which a combination of both axial and

transverse shifts, as likely to be relevant experimentally, enables a closer match to the

experimental profiles.

Combined Result: Axial and Transverse Linear Potential

We consider the three representative points in Section 3.3.1, one for each region, in turn

starting with Region I.

Region I: A summary of how different gradients of linear potentials in the axial and

transverse directions affect the ground state density profiles for Region I is shown in

Figure 3.9. We distinguish three distinct structures: a three peak profile in which the

Cs remains in the centre while the Rb is split axially into two distinct regions, an axi-

ally side–by–side structure, or a transversely side–by–side structure. Starting from the

symmetric three peaked distribution (bottom left in Figure 3.9), we see that a small

increase in αz gives rise to axially side-by-side density profiles: for a weak axial linear

potential αz = 0.01 (~ω̄Rb/lRb), the ground state has switched to the axially side–by–

side formation. On the other hand, αx needs to be increased more drastically to observe

the switch of the ground state to a transversely side–by–side formation. This is due to

competing effect of the condensate repulsion and the strong transverse trapping. When

combining linear potentials in both axial and transverse directions, we see that for small

αz < 0.04 (~ω̄Rb/lRb) the condensates favour a transverse side–by–side formation while

this becomes an axial side–by–side formation for larger values. For αz = 0.04 (~ω̄Rb/lRb)

and αx = 2.25 (~ω̄Rb/lRb), we see a combination of these side–by–side structures in that

the Rb cloud lies diagonally to the side of the Cs cloud. For intermediate values of αx and

αz, e.g. αx = 0.4 (~ω̄Rb/lRb) and αz = 0.01 (~ω̄Rb/lRb), we see a transversely side–by–side

formation in which the Rb is particularly narrow and highly peaked, and the Cs features

a small central density dip.
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Figure 3.9: Integrated 2D density profiles of the ground state as a function of the linear potential
gradient in the axial (horizontal) and one transverse (vertical) direction applied to species 1(Rb).
Atom numbers correspond to point (i) in Figure 3.5 (a). Red (black) — Rb; Blue (grey) — Cs.

Region II: Now, we will consider the test case for Region II and a summary of how dif-

ferent gradients of linear potentials affect the ground state density profiles for Region II is

shown in Figure 3.10. We once again distinguish three different density profiles, similar to

Region I with the now larger number of Cs condensate atom numbers having an impact on

the gradient of additional linear potential required to go from a symmetric to asymmetric

ground state density profile. When αx is increased, the two peaks of Rb move around the

central Cs in the transverse direction until they join and form a single condensate cloud

such as for αx = 2.25 (~ω̄Rb/lRb). On the other hand, when αz is non–zero, asymmetric

axial density profiles are observed firstly in the three peak formation where one Rb peak

is higher than the other. Further increasing the gradient in the axial direction leads to a

axially asymmetric side–by–side formation as seen experimentally. When combining lin-

ear potentials in both the axial and transverse directions, the condensates prefer a three

peak density profile for small αx < 2.25 (~ω̄Rb/lRb) and αz < 0.02 (~ω̄Rb/lRb). This

changes to an axially asymmetric side–by–side formation for larger αz > 0.01 (~ω̄Rb/lRb).

Finally, the Rb cloud lies diagonally to the side of the central Cs condensate for large

αx > 1.5 (~ω̄Rb/lRb).

60



Chapter 3. Steady State Solutions of Trapped Two–Species Bose–Einstein Condensates

Figure 3.10: Integrated 2D density profiles of the ground state as a function of the linear potential
gradient in the axial (horizontal) and one transverse (vertical) direction applied to species 1(Rb).
Atom numbers correspond to point (ii) in Figure 3.5 (a). Red (black) — Rb; Blue (grey) — Cs.

Region III: Finally, we consider the test case for Region III and a summary of how

different gradients of linear potentials affect the ground state density profiles for Region

III is shown in Figure 3.11. It is clear from the obtained ground state density profiles, all

the experimentally relevant linear potentials lead to a three peak regime apart from αx >

1.5 (~ω̄Rb/lRb) where we find a transversely asymmetric densities. No axially asymmetric

profiles are observed for these linear potentials but can be observed by increasing αz

further. This region is the more robust of the three considered in terms of experimentally

relevant gradients for the additional linear potentials due to the large NRb particle number.

We will see next that these profiles now give good qualitative agreement with the

experimental observed condensates for all regions.

Matching of Experimental Profiles: Best Results of Mean Field Theory

We now combine our previous analyses to demonstrate the extent to which addition of

linear potentials in both the axial and one transverse direction matches the experimental

profiles for all three regimes for a given set of linear potentials. From Figure 3.9, we

can see that we require αz = 0.01 (~ω̄Rb/lRb) or 0.02 (~ω̄Rb/lRb) and αx = 0.4, 1.5 or

2.25 (~ω̄Rb/lRb) to match the results for Region I. After a similar analysis for Region II

and Region III from Figures 3.10 and 3.11, the experimentally relevant gradients of the

linear potentials required to match all three simultaneously are αz = 0.02 (~ω̄Rb/lRb) and

αx = 1.5 (~ω̄Rb/lRb) (hence justifying the use of those values in previous Sections). These

linear potentials correspond to a displacement in the trap minima of δz = 0.9 µm and

δx = 1.0 µm, both of which are well within experimental bounds detailed in Section 3.3.3.
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Figure 3.11: Integrated 2D density profiles of the ground state as a function of the linear potential
gradient in the axial (horizontal) and one transverse (vertical) direction applied to species 1(Rb).
Atom numbers correspond to point (iii) in Figure 3.5 (a). Red (black) — Rb; Blue (grey) — Cs.

The numerical results for these gradients are shown in Figure 3.12 as both integrated axial

density profiles (Figure 3.12(a)) and 3D isosurface plots of density (Figure 3.12(b)). Our

ground state results are now in very good qualitative agreement with the experimental

profiles (Figure 3.5(b)) in all three regimes. For Region III, the ground state has the Rb

cloud divided into two parts positioned either side of the central Cs cloud. For Region II,

we obtain the side–by–side formation in which the Cs cloud sits to the right of Rb cloud.

For Region I, the ground state features the Rb cloud to be centrally located in the axial

direction, but shifted transversely, while the Cs has a small density dip at the centre.

The central density dip in the Cs profile for Region I is more pronounced in the

experimental observations, e.g. Figure 3.5(b)(i), than in our above results. An inherent

feature of solving the CGPEs for an immiscible two-species BEC is a sensitivity to the

initial trial wavefunction. All of our results presented so far have been based on TF

initial trial wavefunctions (for the quoted condensate atom numbers for each species), as

described in Section 2.10. By their nature, the TF profiles tend to be broadly distributed in

space, and this tends to favour a more broad distribution of condensates in the final static

solution obtained. We find that employing an initial distribution for the Rb cloud which

is tightly localised at the origin yields static solutions which feature a localised Rb cloud

and a slightly more prominent density dip in the adjacent Cs cloud, in closer agreement

with the experimental profiles for Region I. These numerical results are presented in a

Section 3.3.5.

We have also looked at introducing axial asymmetry (without permanent trap shifts)

through shifts in our numerical initial conditions. Specifically, the TF initial conditions
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Figure 3.12: Ground states under an axial linear potential αz = 0.02 (~ω̄Rb/lRb) and a transverse
linear potential αx = 1.5 (~ω̄Rb/lRb). (a) 1D density profiles and (b) 3D isosurface plots, each
corresponding to the filled symbols in Figure 3.5 (a). (Solid) red curve — Rb; (dashed) blue curve
— Cs.

for each species are initially offset along the z–axis. Similarly to the use of the linear

potential, this initial offset could be tailored to reproduce the experimental results to a

similar degree of accuracy. The asymmetries introduced via additional linear potentials are

likely to represent a better physical representation of the shifts present in the experimental

setup.

3.3.5 Changing Initial Conditions

Consider the test case in Region I and fully symmetric trapping (αx = αz = 0). Using

TF profiles as initial states we obtained the integrated axial density profile shown in

Figure 3.5(c)(i) in which the Rb sits either side of the central Cs cloud. By beginning

instead with a very narrow Gaussian profile for the Rb while retaining the TF profile

for Cs (assuming essentially here that the Cs condensate grew first) we can obtain a

metastable solution whose integrated axial profile features the Rb sitting in at the trap

centre and a small density dip in the ambient Cs cloud, in qualitative agreement with the

corresponding experimental profile (see Figure 3.13). These solutions have higher energy

than that of the solutions observed in Figure 3.5 (c) (i) and so therefore are not the ‘true’
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Figure 3.13: 1D ground states of Region I under an axial linear potential αz = 0.02 (~ω̄Rb/lRb)
and a transverse linear potential αx = 1.5 (~ω̄Rb/lRb). Initial TF profile for Cs and (i) initial
narrow Gaussian for Rb, or (ii) initial TF profile for Rb. (Solid) red curve — Rb; (dashed) blue
curve — Cs.

ground states. However, in the presence of trap shifts (αx, αz 6= 0), we essentially regain

the true solution presented previously, i.e. the effect of the initial numerical state becomes

washed out. Given that we achieve essentially no improvement in our final comparison

to the experimental profiles by changing the initial states, we do not present any further

results on this.

Time of flight expansion of the static solutions following the sudden removal of all

trapping potentials has also been modelled numerically for this two–species system by

Tom Billam (Jack Dodd Centre for Quantum Technology, Department of Physics, Univer-

sity of Otago, Dunedin, 9016, New Zealand). This expansion is performed experimentally

prior to imaging. The analysis of these results showed that expansion does not affect the

structures formed. The overall phase separation features appeared to be captured very

well under the assumption made here that the profiles observed in the experiments are

the true equilibrium profiles and that these profiles are dominated by their respective con-

densate component, with thermal clouds simply modifying these profiles by the addition

of characteristic thermal tails.

3.4 Chapter Summary

In this Chapter, we have numerically simulated the ground state density profiles of two–

species BECs starting with a Na–Rb mixture studied in [80] and found matching results.

We then looked into an idealised 1D case with different initial conditions for the method of

steepest descent to find that the width of this initial state determined which final ground

state profile was obtained. In 1D, the steady state solutions are extremely sensitive to the
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initial conditions. Finally we qualitatively reproduced the three density profiles observed

in recent experimental results [77] with the simplest mean–field CGPEs where additional

linear potentials were included with the harmonic trapping potentials to account for small

asymmetries present in the experimental setup.

The density distributions are mainly determined by the underlying condensates as

their interactions are dominant over those of the respective thermal atoms, and so the

condensate features determine the relative picture. Advancing our studies into steady state

solutions with thermal clouds such as in Hartree–Fock (previously investigated in [120,

121, 122, 123] for two–components) is not likely to introduce any major novel features but

simply to extend the agreement of the observed profiles to the region of the thermal tails.

Thus, rather than undertaking such a study, in the following Chapter we chose to

look into the dynamical structures that can arise by including the thermal cloud into our

simulations. This was partly motived by the realisation that the rapid sympathetic cooling

of this experimental system may lead to a situation where growth plays a determining

factor in the final density structures formed.
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Chapter 4

Growth Dynamics in Trapped

Condensate Mixtures

In this Chapter, we explore the dynamics of growth in condensate mixtures using the

same experimental parameters as in Chapter 3. Starting with a short introduction to the

numerical methods used for solving the Coupled DGPEs (CDGPEs) where the damping

terms γi determine the rate of growth/decay of the system, we present a number of results

from numerical simulations. Following this, we briefly present the dynamical results of

condensate growth obtained with the SPGPEs performed through a collaboration with

I. K. Liu and S. C. Gou (Department of Physics, National Changhua University of Edu-

cation, Changhua 50058, Taiwan). The latter acts as motivation for our subsequent work

on the dynamics of dark–bright solitons in the framework of the CDGPEs also presented

in this Chapter.

4.1 Numerical Procedure

To simulate growth in a one component condensate, we begin our dynamical simulation

with an initial steady state solution obtained through imaginary time propagation with

low particle numbers N and chemical potential µ. Using the DGPE (2.83), the chemical

potential is suddenly increased from the initial µ = µ0 at t = 0, such that µ ≥ µ0 for

t > 0. Since µ parametrises the number of atoms in the system, this increase in µ drives

the growth of the condensate. At the same instant, the growth rate γ is set to be non–zero.

The growth saturates when the total energy of the system converges to a final value. In

Figure 4.1, a typical example of condensate particle growth (a) and integrated density

profiles (b) for a single species condensate are shown. As the system evolves over time,

the number of particles increases until it reaches an upper bound controlled by the new

chemical potential. Simultaneously, the peak density value and condensate width increase
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Figure 4.1: (a) Typical condensate particle growth curve against time for a single species condensate
using DGPE with initial atom number N = 2000 and γ = 0.01. (b) Integrated, in x and y density,
profiles at (i) t = 0, (ii) t = 50 and (iii) t = 200(ω̄).

in accordance with the number of particles.

4.2 Growth In Binary Condensates

To obtain the coupled DGPEs (CDGPEs), we use the substitution t→ (1− iγi) t in each

of Equations (2.52), introducing phenomenological dissipation which implies that particle

numbers are no longer necessarily conserved. Here, γi determines the growth/decay rate

of each species of the system. As first mentioned in Section 2.11.4 for a one species

condensate, these growth rates may be estimated by fitting to experimental growth data.

The following CDGPEs are thus obtained

i~
∂φ1
∂t

= (1− iγ1)

(

− ~
2

2m1
∇2 + V1 + g11 |φ1|2 + g12 |φ2|2 − µ1

)

φ1

i~
∂φ2
∂t

= (1− iγ2)

(

− ~
2

2m2
∇2 + V2 + g22 |φ2|2 + g12 |φ1|2 − µ2

)

φ2.

(4.1)
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A similar numerical procedure to the one component system in Section 4.1 is used to sim-

ulate growth in the two component system. To achieve this, we choose to suddenly change

the chemical potentials of each species; however, we note that the chemical potentials µ1

and µ2 are not independent of each other in the coupled equations due to the additional

nonlinear term describing interspecies interactions.

We now present numerical results of the CDGPEs (4.1) with parameters from Refer-

ence [77] as used previously in this Thesis; for simplicity and we take γ1 = γ2. Growth

data was not taken during those experimental realisations [238] and in fact the observed

profiles cannot therefore be guaranteed to be fully equilibrated. The aim of this Chapter is

to investigate whether starting with some initial density profiles in each of the three differ-

ent experimental regions (see Figure 3.5), it is possible to observe evolution sequences in

which the particle number growth curves pass from one region to another, demonstrating

a change in the density profiles. In all of the results presented here, the trap asymmetries

used for the best match between mean–field theory and experiments in Section 3.3.3 are

considered (δz = 0.9µm, δx = 1.0µm).

4.2.1 Typical Growth Simulation

In Figure 4.2 (a) and (b), we show a typical evolution of the condensate particle numbers in

each species and the combined total particles against time based on our dissipative model

(Equations (4.1)). Here, we start with a large number of atoms for Cs in comparison to

Rb. NCs decreases until it vanishes from the system while the growth of NRb continues

until a maximum is reached. The total number decreases drastically at the start but then

grows again slowly over time. This suggests that for an equal damping rate γ1 = γ2 a low

number of Cs atoms is required before Rb can start to grow at a quicker pace. We also

present four corresponding density profiles at t = 0, 16, 40 and 80(ω̄). The initial density

distribution is a symmetric density distribution where the Rb and Cs BECs sit side by

side in a transverse direction. As the condensate particle numbers evolve over time, the

condensate clouds become asymmetric until a side–by–side formation in the axial direction

emerges. Finally, a one species condensate forms for long times as no Cs particles remain

in the condensate (for the parameters chosen here).

4.2.2 Growth Trajectories Through NCs–NRb Plane

Figure 4.3 shows the trajectories of multiple condensate particle growth curves in the

NRb–NCs plane. The regions separated by the dotted black lines have been defined in

accordance to the experimental results in [77] where the structure of the density profiles

observed depend on condensate particle numbers.

The trajectory taken in each of these simulations is determined by the final chemical
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Figure 4.2: (a) Condensate particle numbers against time; Rb ((Solid) red curve), Cs ((Dashed)
blue curve) and Total particle number ((Dotted) green curve). (b) Growth curve in the NRb—NCs

plane. (c) Bottom: Density profiles at times t = (i) 0, (ii) 16, (iii) 40, (iv) 80(ω̄) for Rb ((Solid)
red curve) and Cs ((Dashed) blue curve).
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potentials rather than γi. For constant values of γ1 = γ2, the order of magnitude of γi

determines solely the timescale over which growth/decay occurs although as this is already

a sensitive competing dynamical growth process. Unequal γi’s for the two species could

largely modify the dynamics. In our simulations, we first note that all of the growth curves

finish either on the horizontal or vertical axes, i.e. with a one component condensate where

the other condensate has vanished from the system. One component is always found to

vanish from the system as the growth rates do not change over time as would be the

case in an experimental setup: this feature is inherent in our purely dissipative model.

Physically, this represents all of the particles being in the thermal cloud for that component

(although this is only implicit within our simplified model). Nevertheless, this is still

broadly consistent with the experimental findings as there were numerous unpublished

results showing images where only one of the species was condensed [238]. The influence

of the final chemical potentials on the path taken is clear when comparing the green and

orange growth curves in Figure 4.3 respectively labelled by D and E which start from the

same steady state initial condition and evolve to different final single species condensates.

The nonlinear dynamics and competing processes do not give us a direct handle on the

precise trajectories in the NRb–NCs plane although extensive simulations have enabled us

to probe the most common types of trajectories, as discussed in detail below and shown

in Figure 4.3.

A number of our simulations (Figure 4.3, cases A, C and D) do not lead to any

structural changes in the integrated density profiles while growth/decay occurs and each

species occupies the same overall position until one vanishes (to the thermal cloud) leaving

a single species condensate. In case A, the initial density profile is asymmetric with Rb

and Cs sitting side–by–side in the axial direction. Once growth/decay begins, Rb vanishes

rapidly from the system leaving a condensate with only Cs present. The growth curve

for case B has similar initial particle numbers and similar density profile changes during

growth. In this case, Rb decays while Cs grows in the centre of the trapping potentials.

This growth of Cs splits the Rb into two distinct parts either side of Cs. Over longer time

evolutions, Rb vanishes leaving a Cs condensate. For case D, we start with a symmetric

density profile and Rb will decay over time. The asymmetric intermediate density profiles

in case D are due to the asymmetry present in the initial steady state solution where, as Rb

slowly decreases, the right peak of Rb vanishes before the left peak giving a side–by–side

density profile. We obtain a Cs only condensate over longer time scales. In case E, we start

with the same initial condition as case D but choose different final chemical potentials for

each of these simulations resulting in different growth curves. In the intermediate plot for

the green growth curve for case E, we observe a spontaneous dark–bright soliton (where

a dip in one component is filled by the other and oscillated in the axial direction) which

oscillates in the trapping potential until all the Cs bright component no longer exists in
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Figure 4.3: Condensate particle growth curves in NCs (vertical) and NRb (horizontal) plane. Initial
(steady state), intermediate and final density distributions depicted by stars circles and crosses
respectively. The intermediate and final plots are not at the same time between A-E. Dotted lines
— boundaries of experimental regions. Each set of three density profiles corresponds to initial,
intermediate and final 1D integrated density profiles for Rb — (Solid) red curve and Cs — (Dashed)
blue curve.
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Figure 4.4: Time taken for black growth curve from Figure 4.2 to get to NRb = 8000 and NCs =
5400 against γ = γRb = γCs.

the system. Finally in case B, we observe similar density evolution to case D but over a

different growth path in the NRb–NCs plane.

The time taken for a two–species condensate mixture to grow/decay depends nonlin-

early on the value of the phenomenological growth rate chosen. To show this, we follow

the same procedure as for growth curve in Figure 4.2 while considering different values

of γ = γRb = γCs. The dynamical evolution of the condensate clouds undergo the same

changes as in Figure 4.2 but over shorter/longer timescales. Numerical results in Fig-

ure 4.4, where the time taken to grow/decay to NRb = 8000 and NCs = 5400 is from an

initial configuration of NRb = 10000 and NCs = 2000 plotted against different values of

γRb = γCs, shows the time dependence on γRb = γCs is clearly nonlinear.

In this Section, we have looked at growth/decay in a two component system corre-

sponding to the experimental parameters used in [77] and found, in some minority cases,

the density profiles evolved through different experimental regions going from a symmet-

ric density profile to a side–by–side one. However, in the majority of cases, we have not

found the growth of the condensates to match those seen experimentally. Here, we note

the limits of this model such as the inability to start with thermal clouds and quench these

in order to form condensates to mimic the experimental protocol in more detail. In the

following Section, we will show results obtained by collaborators in Taiwan which directly

include the thermal cloud through the use of Coupled SPGPE (CSPGPE). These results

form the basis and are the main motivation for our subsequently presented work looking

at dark–bright solitons in the context of the CDGPE.
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Figure 4.5: Typical CSPGPE simulation. (a) Condensate (Penrose–Onsager) particle numbers.
Rb — (Solid) red curve; Cs — (Dashed) blue curve. (b) Two–dimensional surface densities for
Rb(top) and Cs(bottom). (c) Integrated column density. Rb — (Solid) red curve; Cs — (Dashed)
blue curve. Figure by I. K. Liu.

4.3 Coupled Stochastic Projected Gross–Pitaevskii Equa-

tions Results

In this Section, we present a brief overview of the work carried out by our collaborators

I. K. Liu and S. C. Gou. These results, which reveal the spontaneous emergence of dark–

bright solitons, form the basis for our motivation to investigate the role of such structures

during growth in condensate mixtures within our purely dissipative model.

Figure 4.5 shows a typical CSPGPE evolution of the Rb and Cs clouds when a dark–

bright soliton spontaneously emerges. In these simulations, additional linear potentials

are used in the harmonic traps in accordance with the best match results from mean–field

simulations to experiment covered in Chapter 3. Consistent with experimental observa-

tions [77], the Rb condensate grows first and sympathetically cools the Cs particles until

these also form a condensate. In this simulation, Cs grows in a dark solitonic structure

present in the Rb condensate. Oscillations of this now dark–bright soliton structure can

be seen in the integrated density profile. Other simulations, where dark–bright solitons

spontaneously formed, were carried out for this system. This is broadly consistent with

the Kibble–Zurek scenario, whereby defects (here in the form of dark or dark-bright soli-

tons) freeze into the density profile as the system acquires constant phase locally [239]. If

a dark–bright soliton grows rapidly, the density becomes pinned if the Cs in the dark–

bright soliton grows very rapidly, leading to mean–field potential pinning. On the other

hand, if the Cs particles do not form a condensate quickly no dark–bright solitons are

observed. This is due to the continued growth of NRb forcing the system into an axial

side–by–side structure when Cs forms a condensate over longer time scales. We note here

that similarly to results obtained for the CDGPE in Section 4.2, over long evolution times

one component vanishes from the system leaving us with a single species condensate.

The remainder of our work in this Chapter is motivated by the scenario when a dark–

bright solitonic structure has formed during growth and how the dark–bright soliton(s)

affect the growth of the system. We shall investigate this through the CDGPEs, a cleaner
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system where no noise is present in order to emphasise the role of a dark–bright soliton

on the density profiles. In our simulations such a structure is imprinted in a pure form

rather than the less pure stochastically generated structure arising in a real quench. In

the following section, we first look at dark–bright solitons at zero–temperature in three

dimensions through the CGPEs before introducing growth via CDGPEs in a subsequent

section.

4.4 Dark–Bright Solitons at Zero–Temperature

Here, we investigate the dynamical evolution of dark–bright solitons in three–dimensions

with the experimental parameters taken once again from [77]. The trapping potentials

are elongated in one axial direction (ω⊥ ≃ 10ωz), thus our system can be considered to

be quasi–1D (see Section 2.10.3 for a discussion on the 1D dark–bright soliton). The

best fit additional linear potentials to the harmonic traps between steady state mean–field

simulations and experimental results from Chapter 3 are considered. In Figure 4.6, plots

of the dynamical evolution for each atomic species are shown with one or two dark–bright

solitons. When only one soliton is present at the beginning of the evolution (Figure 4.6 (a)),

similar results to the 1D case (Figure 2.5) are observed due to cigar shaped harmonic trap,

i.e. suppressed dynamics in the transverse directions due to the quasi-1D configuration.

The soliton oscillates at regular intervals in the axial direction. For two initial solitons

(Figure 4.6 (b)), the two interact similarly to the 1D system at first (Figure 2.8): the size

of the oscillations increases due to the soliton cross overs. However after a few oscillations,

the two solitons merge to form one larger dark–bright soliton. This new soliton takes

up an asymmetric (non–central) position in the axial direction and has small oscillations.

Over long time scales, the oscillations cease due to the phase step no longer being present

once the solitons merge.
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Figure 4.6: Dynamical evolution of Rb (top) and Cs (bottom) with (a) one dark–bright soliton,
(b) two dark–bright solitons. Condensate particle numbers NRb = 4000 and NCs = 200.

4.5 Dark–Bright Solitons at Finite–Temperature

In this section we investigate the dynamical evolution of a dark–bright soliton in a two–

component BEC. Growth/decay is included through the means of phenomenological growth

(Equations (4.1)). Initially we consider systems with one dark–bright soliton. Then the

same system with multiple solitons, all imprinted numerically through a phase slip, is

examined.

4.5.1 One Dark–Bright Soliton

We present our results for different dynamical evolutions of a single dark–bright soliton in

the Rb–Cs immiscible condensate mixture and observe the same results as the CSPGPE

over long evolution times: one component vanishes leaving us with a one species con-

densate. We note here that the final chemical potentials for each species used for our

simulations are given by the final particle numbers rather than set directly. The initial

condition for dynamical evolution is obtained by imprinting the dark component with a π

phase step during imaginary time propagation. We now present our simulation and show

the effects of varying parameters.

In Figure 4.7 (a), where the final chemical potential µCs is large, the oscillations of
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Figure 4.7: Dynamical evolution of Rb (top) and Cs (bottom) with initial dark–bright soliton. (a)
γi = 0.01, initial condensate numbers NRb = 4000 and NCs = 200, final chemical potentials given
by final particle numbers NRb = 15000 and NCs = 10000. (b) γi = 0.01, initial condensate numbers
NRb = 4000 and NCs = 200, final chemical potentials given by final particle numbers NRb = 15000
and NCs = 5000. (c) γi = 0.001, initial condensate numbers NRb = 4000 and NCs = 200, final
chemical potentials given by final particle numbers NRb = 15000 and NCs = 10000.

the dark–bright soliton speedily come to a stop once the number of condensed Cs atoms

increase beyond a critical threshold, with Cs overwhelming in the centre of the trapping

potential. In time, all Rb condensate atoms vanish from the system, resulting in a single

species Cs BEC beyond the plotted timescale. Figure 4.7 (b) depicts the inverse scenario

where we have small µCs. The dark–bright soliton can be seen to oscillate, distorting

the Rb cloud until the Cs bright component dies out from the system resulting in a single

species Rb BEC. During the studies of this one dark–bright soliton system, we investigated

the role of the initial position of the soliton but found this had minimal impact on the

dynamical evolution. Similarly, the initial number of Cs particles can be increased (at least

three times larger) and has minimal qualitative impact on the dynamical evolution of both

condensate clouds. Figure 4.7 (c) shows the dark–bright soliton oscillating a number of

times over the plotted timescale. By comparing Figure 4.7 (a) and Figure 4.7 (c) where

the growth rate γi has been decreased by an order of magnitude, it is clear the solitonic

features are prolonged due to the longer time required for the number of Cs particles to

reach a critical value. After longer timescales both of these cases reach the same end
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result: a single component Cs BEC.

When increasing γCs only, shown in Figure 4.8 (a), the bright component increases

quicker than previously seen in Figure 4.7 (a) and less dark–bright soliton oscillations

are observed. Over longer timescales, all Rb atoms are no longer in the condensate. By

decreasing γCs only in comparison to Figure 4.7 (a), shown in Figure 4.8 (b),the bright Cs

component no longer dominates in the centre of the trapping potential but rather oscillates

over a long period of time until it is pushed out to one side due to the trap asymmetries

we considered in our model. Eventually, all the Cs condensate cloud will vanish from the

system.

Figure 4.8: Dynamical evolution of Rb (top) and Cs (bottom) with initial dark–bright soliton.
Initial condensate numbers NRb = 4000 and NCs = 200, final chemical potentials given by final
particle numbers NRb = 15000 and NCs = 5000. (a) γRb = 0.01 and γCs = 0.1, (b) γRb = 0.01 and
γCs = 0.001.

The difference in the dynamical evolution due to the impact of the additional linear

potentials to the harmonic trapping potential may not be extensive but the small changes

that these create are still clear as shown in Figure 4.9. The most significant change is

the time taken for the condensate clouds to grow/decay: when the trap asymmetries are

not present the dynamics evolve over a smaller timescale and single species BECs arise

sooner. A by product of this feature is the number of visible oscillations from the dark–

bright soliton is reduced.

When a single dark–bright soliton is present in the initial density profile and growth
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Figure 4.9: Dynamical evolution of Rb (left) and Cs (right) with initial dark–bright soliton with
no offset in harmonic trapping potential. γi = 0.01, initial condensate numbers NRb = 4000 and
NCs = 200, final chemical potentials given by final particle numbersNRb = 15000 andNCs = 10000.

is modelled through phenomenological damping, we have seen that even though there are

only two possible steady state outcomes (condensates of either Rb or Cs), many differ-

ent dynamical paths can be taken to reach these final density profiles. Experimentally,

growth ceases before time of flight expansion and any density profile during the dynamical

evolution can be imaged.

4.5.2 Multiple Dark–Bright solitons

In this section, we present numerical results for the dynamical evolution of a two–component

system with two initial dark–bright solitons. Once again, finite–temperature effects are

included through phenomenological growth via the CDGPEs.

In Figure 4.10, the results for three simulations are shown where only the position of

one soliton has been changed. In the axial direction z, the left–hand side soliton has the

same initial position (z(lRb) = −2.6) while the starting position of the right hand soliton

is varied. In all three simulations, the Cs condensate will continue to grow while the Rb

cloud will decay eventually leaving us with a one component Cs condensate only. This is

consistent with Figure 4.7 (a) as the same parameters are used, the sole difference being

the additional initial dark-bright soliton. In Figure 4.10 (a), the right hand soliton is

close to the centre of the trap in comparison to the left soliton (z(lRb) = 1.2). When these

solitons begin to oscillate, they initially cross paths similarly to dark–bright solitons at zero

temperature (Figure 2.8). Once the solitons have interacted, one stabilises at the centre of

the trapping potential while the other is pushed to the outskirts of the trapping potential,

in accordance with the asymmetries present due to the additional linear potential. Over

longer time scales, the growth of the soliton in the centre of the system continues while

the other decays giving similar results to Figure 4.7 (a). In Figure 4.10 (b), the right hand

side soliton is placed further away from the centre of the trap (z(lRb) = 5.0). In this case,
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when the solitons meet due to their oscillations they merge to form a single dark–bright

soliton. After a few small oscillations the soliton is fixed at the centre of the trap resulting

in a comparable outcome to Figure 4.7 (a). Finally, Figure 4.10 (c) has initial dark–bright

solitons placed symmetrically either side of the trap centre (right hand side soliton at

z(lRb) = 2.6). In this case, we get a mixture of the previous two results. The solitons

initially cross paths and then merge into one larger dark–bright soliton.

Figure 4.10: Dynamical evolution of Rb (top) and Cs (bottom) with initial dark–bright solitons
with γi = 0.01, initial condensate numbers NRb = 4000 and NCs = 200, final chemical potentials
given by final particle numbers NRb = 15000 and NCs = 10000. Initial position (z(lRb) = −2.6)
of left soliton unchanged throughout. Right soliton (a) z(lRb) = 1.2, (b) z(lRb) = 5.0 and (c)
z(lRb) = 2.6.

We attempted to add more solitons to the system but two would merge while using

imaginary time propagation giving us once again two initial solitons. However, from

Figure 4.10, we obtained the same qualitative dynamics once the solitons have merged or

one has decayed compared to the same system with one soliton when equivalent parameters

are used. This leads us to believe that a system with more solitons would have similar

results in which one central Cs condensate cloud would remain at the centre of the trapping

potential. Thus the dynamics over long time scales does not appear to depend on the

number of initial dark–bright solitons. However, the number of initial dark–bright solitons

does lead to a large amount of possible density profiles over short time scales.
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4.6 Chapter Summary

In this Chapter we simulated growth in a two–component system through phenomenolog-

ical growth in the CGPEs. We showed that over long time scales one condensate species

would always grow while the other would decay. This growth/decay is dependent on

the final chemical potentials used where each chemical potential affects the other species.

During the simulations, when the growth curve crossed through experimental regions [77],

changes in the density profiles were seen in agreement with experimental results despite

these happening in a minority of cases. Our collaborator I. K. Liu examined this system

through evolutions of the CSPGPE and observed spontaneous formation of dark–bright

solitons which turned out to be rather crucial in the short to intermediate timescales of rel-

evance to experiments. After introducing dark–bright solitons in two–species condensates

at zero temperature, we looked at the evolution of solitons when growth/decay is included

in the model. This system will also give a clearer picture of the impact of dark–bright

solitons only in comparison to the CSPGPE results. The oscillations of dark–bright soli-

tons die out when growth is included, and the time scale is dependent on the magnitude

of the growth rate. The deliberate inclusion of multiple dark–bright solitons leads to new

possible density profiles over short time scales, however over longer time scales the same

dynamical evolution as for one soliton is observed when using equivalent parameters.
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Chapter 5

Condensate Mixture Dynamics at

Non–Zero Temperatures

In this Chapter, we investigate finite temperature effects through strongly nonequilibrium

initial conditions as first introduced in Section 2.11.5. After providing a description of our

numerical procedure, we present typical results of our simulations obtained by dynamical

evolution of the dimensionless GPE. By first studying the evolution of a single species until

a thermalised state is reached, we compare miscible and immiscible two component systems

with nonequilibrium initial conditions. The coupled evolution is then investigated when

the particles from a single thermalised component are split into two components. Finally

the impact of quenching the interspecies interactions is studied. We then present the

outcome of repeated quenches at regular time intervals, with the intention of determining

the extent to which a vortex tangle can be sustained as this could provide a novel route

to quantum turbulence.

5.1 Exploring Single Component Results

In this Section, we describe the numerical procedure used to simulate the evolution of single

component systems from highly nonequilibrium initial conditions. We then qualitatively

reproduce the numerical results from References [224, 232] when exploring the evolution of

this system before generalising these findings to two component systems in the following

Section.
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5.1.1 Numerical Procedure

Our numerical simulations are conducted within a three dimensional periodic box starting

with strongly nonequilibrium initial conditions in the GPE. These are

φ (r, t = 0) =

kmax
∑

k

ak exp (ik · r) (5.1)

where the phases of the complex amplitudes ak are distributed randomly. The initial

wavefunction φ (r, t = 0) is renormalised to fix the particle and energy densities. The

condensed particle and occupation numbers are calculated over time using the Discrete

Fourier Transform, detailed in Appendix C. For all the simulations, we use the time

step dt = 0.01 with all physical quantities presented in this Chapter expressed in terms

of natural units. The initial state is propagated in time using the GPE (2.45) until

an equilibrium solution is reached where the condensate fraction n0/N is constant. To

determine the equilibrium properties of the system, we use the ergodic hypothesis such that

time averages on our simulations represent ensemble averages. Unlike the Penrose–Onsager

criterion for Bose–Einstein condensation where the condensate wavefunction corresponds

to the mode of the system which has the largest eigenvalue [119], the number of particles

in the condensate is identified here by the occupation number of the zero momentum mode

k = 0. In these calculations, an ultraviolet momentum cutoff, kc, is introduced such that,

for k > kc, nk(t) = 0. In natural systems, the cutoff manifests itself through viscosity

or diffusion effects [232]. In numerical simulations of the GPE equation, this cutoff arises

naturally due to spatial discretisation. The effect of varying the cutoff has been considered

by repeating simulations with more spatial points in each direction [240]. The results at

equilibrium were found to be independent, within statistical error, of the cutoff due to

spatial grid discretisation.

5.1.2 Quasicondensate Evolution

Starting with nonequilibrium initial conditions, we performed numerical simulations with

varying numbers of computational modes. We show the evolution of the condensate frac-

tions in Figure 5.1 for three numbers of modes (163, 323, 643). The condensate fraction

n0/N increases during dynamical evolution of the system until it converges to some value

as the system approaches the some thermodynamic limit. Over long periods of time, the

condensate fraction is independent of the number of modes for equal particle and energy

densities. In other words, the number of modes only weakly affects the condensate atom

number fraction in the thermodynamic limit.

Now, we investigate the effect of increasing the total energy while keeping the particle

density N/V fixed. This is equivalent to increasing the kinetic energy in the system.
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Figure 5.1: Temporal evolution of condensate fraction n0/N with 〈E〉/V = 1, N/V = 1/2. (Solid)
black curve — 163 computation modes; (dashed) red curve — 323 computation modes; (dot–
dashed) blue curve — 643 computation modes.

When the total energy is increased, the final condensate fraction in the system is expected

to decrease. Figure 5.2 shows the numerical results for simulations with different total

energy. The condensate fraction decreases as the total energy is increased. Similarly if the

particle density is increased (decreased) for fixed energy, the condensate fraction increases

(decreases) due to the energy per particle decreasing (increasing).

Figure 5.3 shows the distribution of particlesNk =
∑

k′≤k nk′ where k =
√

k2x + k2y + k2z .

The occupation of the condensate mode (k = 0) increases over time. This is consistent with

the increase of the condensate fraction (Figure 5.1). We note the presence of a “shoulder”,

i.e. sharp change in gradient of the curves, which becomes sharper for longer simulation

times as particles are redistributed. By definition of Nk, the number of quasiconden-

sate particles is equal to the height of the shoulder. This evolution of the distribution

of particles is in agreement with previous numerical simulations from Reference [224]. In

simulations with 643 computational modes, the quasicondensate part of the wavefunction

arises swiftly. The pronounced shoulder takes longer to appear for a higher number of

computational modes. In our units, each momentum mode, i.e. k = 0, 1, 2...(
√
12π/L),

where L is the half number of computational modes in each direction, represents one

energy level.

It is important to track the topological defects of the long–wavelength part of the

complex field φ. To achieve this, we follow the approach in References [224, 234, 241] where

high–frequency momenta are suppressed by the transformation ak → ak∗max{1−k2/k2c , 0}
for a cutoff wavenumber kc. In choosing the cutoff wavenumber kc to plot the evolution
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Figure 5.2: Condensate fraction n0/N against total energy density 〈E〉/V (µ/ξ3). Each simulation
has 643 modes with N/V = 0.5. Each point and error bars are averaged over 103 time units.
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Figure 5.3: Evolution of Nk =
∑

k′≤k
nk′ for 〈E〉/V = 1, N/V = 1/2 with 643 computational

modes.
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of topological defects, it is natural to take kc larger than the shoulder (see Figure 5.3) to

encompass the entirety of quasicondensate and remove the higher momentum part of the

wavefunction.

Figure 5.4 shows the results of visualising topological defects where the cut off wavenum-

ber is given by kc = 8(
√
12π/L). All of the Figures showing topological defects in this

Chapter use the isosurface
∣

∣

∣
φ̃
∣

∣

∣

2
= 0.05〈

∣

∣

∣
φ̃
∣

∣

∣

2
〉 where φ̃ is the long wavelength part of the

field φ. With our chosen value for kc, the eight lowest energy levels are included and it

is larger that the shoulder in Figure 5.3, therefore none of the quasicondensate modes are

neglected. The initial turbulent quasicondensate decays quickly due to thermalisation and

reconnections leading to a vortex tangle. The number of vortices continue to slowly decay

until only a few vortex rings are visible. At t = 1200, 1400 and 1600(c/ξ) we see the last

topological defect of the turbulent decay: a single vortex ring. For longer times, the vortex

ring decays leaving no topological defects in our numerical box.

In order to encompass the quasicondensate part, we choose kc = 8 for the remainder

of this Chapter based on the positioning of the shoulder in Figure 5.3. However, there is

no exact cutoff and we found that all the results were largely independent for a range of

values. For the evolution shown in Figure 5.4, the results were independent for 6 ≤ kc ≤ 14.

In contrast to the phenomenological cutoff used in References [224, 234, 241], a constant

cutoff is preferable rather than a time dependent formula due to the nature of the work

in the following Sections of this Chapter. All results starting with highly nonequilibrium

initial conditions can follow a phenomenological cutoff but this is no longer valid if system

parameters are changed over the course of numerical simulations.

The exponential decay of the vortex linelength related to Figure 5.4 is shown in Fig-

ure 5.5. The vortex linelength decays faster(slower) for larger(smaller) energy densities.

The algorithm to calculate the vortex linelength was written by N. G. Berloff (Department

of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge,

United Kingdom) and updated by A. J. Youd (Joint Quantum Centre Durham-Newcastle,

School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1

7RU, United Kingdom). After the high–frequency momenta have been suppressed, the

algorithm checks for where the wavefunction is zero to find where the cores of the vortices

are located. We generalised this method for use with two components in the following

Section. One other possible method for calculating vortex linelength is to investigate the

location of 2π phase windings in the system. Figure 5.6 shows the location of the vortices

located by the algorithm corresponding to the isosurface at t = 1400(c/ξ) in Figure 5.4.

To confirm the presence of a vortex ring, we take a slice through the ring in one direction

(x = 20(ξ)) and plot the phase of the slice in Figure 5.7. A 2π phase winding is observed

at the locations where the vortex ring crosses the plane of the view. These wind in op-

posite directions due to the opposite rotation of the vortices at each point: clockwise and
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Figure 5.4: Evolution of topological defects given by the isosurfaces
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〉 where φ̃ is the

long wavelength part of the field φ. The cutoff number is given by kc = 8 such that high–frequency
spatial waves are suppressed by the factor max{1− k2/k2

c
, 0}.
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anticlockwise respectively.
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Figure 5.5: The decay of vortex linelength over time corresponding to the evolution in Figure 5.4.

Figure 5.6: Vortex ring located by linelength algorithm corresponding to isosurface plot at t = 1400
in Figure 5.4. Axis shown for to clarify location of 2D slice shown in Figure 5.7.

We presented in detail the dynamical quasicondensate evolution for a single component

starting with highly non–equilibrated initial conditions. The condensate fraction increases

over time until it reaches thermal equilibrium, determined by the particle and energy

densities. By visualising the topological defects, the decay of the initially turbulent vortices
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Figure 5.7: (Left) Isosurface slice in y−z plane at x = 20 from Figure 5.6. (Right) Phase of filtered
wavefunction in y − z plane at x = 20.

is visible and confirmed by the exponential decay of the total vortex linelength. In the

following Section, we study the role of a second additional component in the system and

investigate the importance of the immiscibility criteria.

5.2 Mixtures

Having introduced and tested our numerical scheme and method against existing results,

we now tackle the two component problem where the main differences with a single com-

ponent are caused by the addition of the interspecies interaction strength now present in

the model. We first look at two components and initiate both of these with nonequilibrium

initial conditions. This has been previously studied in the case of miscible quasiconden-

sates only [234, 241]. Then, starting with an equilibrated single species wavefunction, we

split the particles between components and dynamically evolve this new system. This pro-

cedure is experimentally relevant when two hyperfine states of the same atom are used as

the two components. Finally, we consider the impact of quenching the interspecies inter-

actions strength on the condensate fractions and vortex linelengths. Throughout all of the

results presented in this Section, we take m1 = m2 which is consistent with experiments

where two hyperfine states of the same atomic species are considered.

5.2.1 Nonequilibrium Initial Conditions

Similarly to our initial conditions for a single component in Section 5.1.2, we first consider

each component to have different highly nonequilibrium initial conditions. Simulations

for weak interspecies interactions with nonequal particle and energy densities have been
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carried out and our results are in excellent agreement with References [234, 241]. The

main aim for these numerical simulations is to investigate the consequences of varying

the strength of the interspecies interaction to encompass both miscible and immiscible

regimes.

First we investigate miscible condensates for which the evolution of the topological

defects are presented in Figure 5.8 where we have used a constant cutoff kc and equal

particle and energy densities. We stress here that a range of cutoffs were once again

examined and no changes were observed in the isosurface density plots. The observed

vortex decay is similar to that seen in Figure 5.4 where the vortex tangle decreases with

time. The first component (shown in red) vanishes first. A single vortex ring is observed

at t = 1400 and t = 1600. The radius of this vortex ring decays over time until vanishing

leaving no topological defects.

Figure 5.9 shows the topological defects for an immiscible system. Contrary to the

miscible case, the initial vortex tangle does not decay. We now observe the boundaries of

the phase segregated domains. The components quickly separate into two domains: one for

each quasicondensate. The filtered isosurfaces no longer depicts the vortices in the system

but the interface between the components, i.e. the boundary of each quasicondensate.

Unlike miscible quasicondensates, these topological defects never vanish from the system

as the condensates constantly interact with each other. For an immiscible system, a

measure of vortex linelengths is required to determine the dynamics inside each of the

spatially separated domains.

The evolution of the condensate fractions starting from highly nonequilibrium initial

conditions for a range of values for g12 are shown in Figure 5.10. Due to each component

starting with the same particles and energy densities the thermalised condensate fraction

values are the same for each component. As the interspecies interaction strength is in-

creased, we see the condensate fraction decreases due to the additional energy present in

the system from the stronger interspecies interaction terms in each of the CGPEs. This

feature is enhanced when the immiscibility criteria is satisfied.

The vortex linelengths corresponding to the condensate fractions of Figure 5.10 are

shown in Figure 5.11. For the miscible condensates, the vortex linelengths decay in a

similar manner as seen for a single component. We note that, even though the condensates

are miscible in both cases (blue and green curves), the larger the interspecies interaction

strength the quicker they decay. We have seen complimentary results in a single component

to correlate this finding: by increasing the intraspecies interactions, the decay of the vortex

linelength occurs more quickly. For immiscible condensates, the vortex linelength does

not drop to zero but rather decreases to a steady limit. A typical example of the vortices

counted by the linelength algorithm are shown in Figure 5.12 showing the presence of

vortices in each of the spatially separated quasicondensate domains. By taking a slice at
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Figure 5.8: As in Figure 5.4, evolution of topological defects of two components with g11 = g22 = 1.0
and g12 = 0.5 (miscible). Both wavefunctions share the same initial energy and particle densities
for nonequilibrium initial conditions. First component — red; Second component — blue.
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Figure 5.9: As in Figure 5.8 but with g11 = g22 = 1.0 and g12 = 1.5 (immiscible). First component
— red; Second component — blue.
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Figure 5.10: Condensate fraction n0i/Ni evolution for two components starting from nonequi-
librium initial conditions with same energy and particle densities with g12 = 1.5 (black curves),
g12 = 1.05 (red curves), g12 = 0.5 (blue curves) and g12 = 0.1 (green curves). In all curves
g11 = g22 = 1.0. First component — solid curves; Second component — dashed curves.

x = 0 for each component (see Figures 5.13 and 5.14) and plotting their corresponding

phase portraits, 2π phase windings confirm the presence of vortices. Higher numbers of

vortices are present in each domain for larger immiscible interspecies interactions.

Different thermalised condensate fractions are obtained depending on the initial kinetic

energy and number of particles in each component. Figure 5.15 shows the evolution of

the condensate fractions for three simulations with equal particle and kinetic energies in

each component. The additional total energy is due solely to the increase in interspecies

interaction strength. For miscible condensates, the condensate fraction of one component

increases while the other decreases in comparison to zero interspecies interactions. This

is due to both components equilibrating to the same temperature. The added energy for

immiscible components decreases the condensate fraction for both components.
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Figure 5.11: Vortex linelengths over time with g11 = g22 = 1.0 for g12 = 1.5 (black curves),
g12 = 1.05 (red curves), g12 = 0.5 (blue curves) and g12 = 0.1 (green curves). First component —
solid curve; Second component — dashed curve.

Figure 5.12: Vortices included by linelength algorithm corresponding to isosurface plot at t = 800
in Figure 5.9. The cutoff number is given by kc = 8 such that high–frequency spatial waves are
suppressed by the factor max{1− k2/k2c , 0}. First component — red; Second component — blue.
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Figure 5.13: (Left) Isosurface slice in y− z plane at x = 0 of the first component from Figure 5.12.
(Right) Phase of filtered wavefunction in y − z plane at x = 0.

Figure 5.14: (Left) Isosurface Slice in y−z plane at x = 0 of the second component from Figure 5.12.
(Right) Phase of filtered wavefunction in y − z plane at x = 0.
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Figure 5.15: Condensate fractions for g11 = g22, N1/V = 0.5 and N2/V = 0.25. Solid and dashed
curve are component one and two respectively. Black curves: g12 = 0, 〈E〉/V = 0.37; Red curves:
g12 = 0.5, 〈E〉/V = 0.42; Blue curves: g12 = 1.5, 〈E〉/V = 0.57.

5.2.2 Splitting from One to Two Components

We now examine the dynamics of taking a thermalised single species condensate, where no

topological defects are visible, and splitting it into two components. Experimentally this

is equivalent to flipping a number of the particles into a second new hyperfine state of the

same atomic species where both hyperfine states now interact together. When performing

this split numerically we set

φ1 =

√

100 − α

100
φold

φ2 =

√

α

100
φold

(5.2)

where φold is the thermalised single component wavefunction and α the percentage of atoms

flipped into the second component. This split conserves the total number of particles in

the system. In addition, some small extra noise (maximum ±5% particles) is added to each

wavefunction once the split is performed taking into account experimental uncertainty and

such that when α = 50, both components are not exactly equal (φ1 6= φ2). The condensate

fraction of the single species used in this Section is ≈ 0.8.

Figures 5.16 and 5.17 show the thermalised condensate fractions of each component

relative to splitting percentages and strength of the interspecies interactions for both equal

and unequal intraspecies interactions. We first observe that for g12 = 0, the condensate

fractions of each component are close (but not equal due to the noise) to that of the initial
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Figure 5.16: Thermalised condensate fractions for the first (left) and second (right) component
for a range of flip percentages, i.e. the percentage of the single species wavefunction in the second
component, and interspecies interactions with equal intraspecies interactions g11 = g22 = 1.0. Each
condensate fraction is averaged over 103 time units.

one component wavefunction. For miscible (attractive or repulsive g12) the condensate

fractions remain high until the majority (> 85%) of the particles are in one component at

which point the smaller component no longer forms a condensate. At the barrier between

miscibility and immiscibility (g12 = 1 in Figure 5.16), the condensate fraction is once

again high for α 6= 0 and α 6= 100. For immiscible condensates, the additional energy from

domain boundaries plays an important role with one component often overpowering for

nonequal splits. In Figure 5.17 where the intraspecies interactions are not equal, the onset

of immiscibility is no longer abrupt and a new miscible regime arises: g11 < g12 < g22.

This has a small impact on φ1 only and the condensate fraction is reduced in places. The

second component is unaffected.

When splitting to a miscible mixture, no topological defects arise in the system, i.e. no

vortices form. In the case of immiscible condensates, the evolution of topological defects

is shown in Figure 5.18. The method used for determining the initial wavefunctions for

each component leads to initially overlapping densities. As these separate quickly due

to the strong interspecies interactions, domains form. These are seen throughout in the

isosurface plots. Similarly to the numerical results in Figure 5.9 for longer evolution

times, each component forms one well defined domain. Unlike previous results, the vortex

linelength does not decay during this dynamical evolution but rather increases from its

initially zero value to a maximum around which it thermalises. The final outcome is very

similar to that in the previous Section for the linelength of immiscible condensates. The

increase in linelength observed here demonstrates that vortices are formed in this two

component system due to the immiscibility criteria being satisfied. The vortex linelength

for miscible components, once split, remains zero throughout.
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Figure 5.17: Thermalised condensate fractions for the first (left) and second (right) component
for a range of flip percentages, i.e. the percentage of the single species wavefunction in the second
component, and interspecies interactions with non–equal intraspecies interactions g11 = 1.0 6=
g22 = 1.2. Each condensate fraction is averaged over 103 time units.

We have studied the experimentally relevant splitting of one component into two and

seen the effects on the quasicondensate fractions depending on how each component is

populated and the strength of the interspecies interactions. When splitting into an im-

miscible mixture, vortices are formed in each domain due to the kinetic energy driven into

the components by the repulsive dynamics following the split.
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Figure 5.18: As in Figure 5.8 with g11 = g22 = 1.0 and g12 = 1.5 (immiscible). At t = 0, single
species thermalised wavefunction is split (50%) into two components. First component — red;
Second component — blue.
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Figure 5.19: Vortex linelength over time corresponding to the evolution in Figure 5.18 where at t =
0 single species thermalised wavefunction flipped (50%) into second species where g11 = g22 = 1.0
and g12 = 1.5 (immiscible). First component — solid curve; Second component — dashed curve.

5.2.3 Quenching the Interspecies Interaction Strength

Here, instead of starting with one component, we initially start with two miscible or

immiscible thermalised quasicondensates and quench the interspecies interaction strength

in order to investigate the possible generation of topological defects. We also stress the

importance of the immiscibility criteria in vortex formation. For a quench from miscible to

immiscible, we expect similar results to those observed in the previous Section where one

component is split into an immiscible mixture. However when quenching from immiscible

to miscible, decay of vortex linelength is anticipated.

Figure 5.20 shows the topological defects when quenching the strength of the inter-

species interactions such that the components go from immiscible to miscible. After a very

short period of time, the domains vanish and a vortex tangle can be seen. The contrast

between miscible and immiscible quasicondensates is clearly observed. The number of vor-

tices in the system then decays over time until all of these vanish. As vortices are present

in each domain, this quench leads to a mixing of the components and the vortex tangles

mix. The quench from miscible to immiscible is comparable to that seen in Figure 5.18

where the domains are quickly formed. The impact of quenching on the condensate frac-

tions is shown in Figure 5.21. Quenching from miscible to immiscible leads to a decrease in

the condensate fractions due to the additional energy from the strength of the interspecies

interactions. The decrease takes place rapidly due to the immiscibility criteria driving the

system. The quench from immiscible to miscible increases the condensate fractions. The

thermalisation of this process takes longer due to the components only slowly mixing, a
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process which is not forced. The thermalised condensate fraction is marginally lower due

to a surplus of energy remaining from the large interspecies interactions in comparison to

a system which is not quenched. Finally in Figure 5.22 we show the evolution of the vor-

tex linelengths when quenching the system. When quenching from immiscible to miscible

the linelength quickly decreases then slowly decays until no vortices remain. Quenching

from miscible to immiscible increases the total vortex linelength until a maximum value

is reached.

In this Section we investigated the consequence of suddenly changing the strength of the

interspecies interactions such that the system is driven through the miscibility/immiscibility

barrier. Similarities were seen with results from the previous Section where the system

was flipped from one to two components, specifically when quenching from miscible to

immiscible. However when quenching from immiscible to miscible, the mixing of the two

condensates leads to a decay of vortices. If the system was not quenched through the

miscibility/immiscibility barrier the transition would not drive the system. Quenching

between two miscible interaction strengths does not qualitatively change the system. The

only effects are a modified condensate fraction: no vortices are driven into the system.

When quenching between two immiscible interaction strengths, the total vortex linelength

decreases (increases) when the interspecies interactions are decreased (increased).
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Figure 5.20: As in Figure 5.8 with g11 = g22 = 1.0. At t = 0, interspecies interactions strength
quenched from g12 = 1, 5 (immiscible) to g12 = 0, 5 (miscible). First component — red; Second
component — blue.
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Figure 5.21: Condensate fraction n0i/Ni evolution for two components with interspecies inter-
actions quench from immiscible (g12 = 1.5) to miscible (g12 = 0.5)(black curves) and miscible
(g12 = 0.5) to immiscible (g12 = 1.5) (red curves) at t = 0. g11 = g22 = 1.0. First component —
solid curves; Second component — dashed curves.
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Figure 5.22: Vortex linelength for two components with interspecies interactions quench from
immiscible (g12 = 1.5) to miscible (g12 = 0.5)(black curves) and miscible (g12 = 0.5) to immiscible
(g12 = 1.5) (red curves) at t = 0. g11 = g22 = 1.0. First component — solid curves; Second
component — dashed curves.
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5.2.4 Repeated Interspecies Interactions Strength Quenches

In this Section we investigate the impact of continually quenching the system through the

miscibility/immiscibility criteria to drive the vortex tangle, with the intention of exploring

where this could provide a novel route to the generation of quantum turbulence. Quantum

turbulence was introduced in Section 1.5 and recent developments in this area for binary

mixtures were discussed.

In Figure 5.23, the system is quenched every 250 time units. The initial state before the

first quench at t = 0 is immiscible. The topological defects swap from mixed vortex tangles

to segregated domains, i.e. phase segregated vortex tangles after each quench. Some vortex

decay occurs during the miscible phase but the vortices are always present when the next

quench is performed. If the system is not quenched through the miscibility/immiscibility

barrier the mixed vortex tangles are not driven into the system. The condensate fractions

(see Figure 5.24) do not reach a thermodynamic equilibrium. These never reach zero

and condensates are always present. The vortex linelengths (see Figure 5.25) interchange

between a maximum and lower values for an immiscible and a miscible system respectively.
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Figure 5.23: As in Figure 5.8 with g11 = g22 = 1.0. Interspecies interactions strength quenched
between g12 = 1, 5 (immiscible) and g12 = 0, 5 (miscible) every 250 time units. At t = 0 the system
is miscible after the initial flip (50%)from one equilibrated component. First component — red;
Second component — blue.
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Figure 5.24: Condensate fraction n0i/Ni evolution for two components for interspecies interactions
quenched between immiscible (g12 = 1.5) to miscible (g12 = 0.5) every 250 time units. At t = 0 the
system is miscible and single species thermalised wavefunction flipped (50%) into second species.
g11 = g22. First component — solid curve; Second component — dashed curve.

0 500 1000 1500 2000 2500
t(c/ξ)

0

500

1000

1500

2000

L
in

el
en

gt
h(

ξ)

Figure 5.25: Vortex linelength over time corresponding to the evolution in Figure 5.23 where at
t = 0 single species thermalised wavefunction split (50%) into two components where g11 = g22 =
1.0 and g12 = 0.5 (miscible). Interspecies interactions quench between immiscible (g12 = 1.5) and
miscible (g12 = 0.5) every 250 time units. First component — solid curve; Second component —
dashed curve.
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5.3 Chapter Summary

In this Chapter, we have numerically simulated quasicondensates in periodic boxes. By

first considering a single component system starting with highly nonequilibrium initial

conditions, the turbulent state decays as the number of vortices decay due to rethermali-

sation of the particles and reconnections of the topological defects. All vortices eventually

vanish from the system while the condensate fraction reaches a thermodynamic limit. The

final condensate fraction depends on the initial particle and energy densities.

When a two component system from initial nonequilibrium conditions is considered,

two distinct evolutions arise. For miscible components, the vortex tangle decays similarly

to the one component system. Phase segregated domains form when immiscibility between

components is satisfied. Vortices are present in each domain. Thus we have a phase

segregated vortex tangle. We then considered a system where the two components are

formed by splitting a thermalised single species system. No novel features were seen for

miscible quasicondensates. For immiscible components, domains form once again and the

vortex linelength increases. Condensate fraction decreases due to the additional energy

from the strong interspecies interactions.

Finally we considered quenching the interspecies interactions in thermalised two com-

ponents. If the quench does not drive the system through the miscibility/immiscibility

barrier, no major changes were seen. When quenching from miscible to immiscible, do-

mains form and the vortex linelength increases. The condensate fraction decreases due

to this quench. Isotropic vortex tangles emerge for quenching from immiscible to misci-

ble due to the vortices from each domain mixing. The vortices subsequently decay. The

condensate fraction increases to a steady equilibrium. When repeating a quench at reg-

ular intervals, vortices never vanish and the system is driven between mixed and phase

segregated vortex tangles. As such, this method provides a potential novel route to the

generation of quantum turbulence.
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Chapter 6

Conclusions and Possible Future

Work

In this final Chapter, we summarise the main results of this Thesis followed by possibilities

for future investigations.

6.1 Conclusions

In this Thesis, we have explored two–species mixtures of Bose gases. More specifically,

we have studied a Rb–Cs condensate mixture in relation to a recent experiment [77].

Initially investigating steady–states of this system at zero–temperature with the simplest

mean–field model, we were able to qualitatively reproduce the three particle–dependent

density profiles observed experimentally. Then, through the addition of phenomenological

growth/decay and dark–bright solitons, different density profiles were seen during the

dynamical growth of the coupled condensates. We then moved on to consider the evolution

of Bose gases using the so–called classical–field methods in periodic boxes with no trapping

potentials, studying how the miscibility/immiscibility of the system changed the thermal

dynamics and equilibrium state.

6.1.1 Two–Species Condensates at Zero Temperature

Condensate mixtures have been a topic of intense research since the first experimental re-

alisations of BEC. From the coupled Gross–Pitaevskii equations, we obtained the ground

state (lowest energy) density profiles of trapped condensate mixtures, firstly with Rb–Na

reproducing the results obtained in [80]. This not only demonstrated that our numeri-

cal methods were accurate but that by simply varying condensate particle numbers and

interspecies interaction strengths a wealth of density distributions are found.
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In 1D, by varying the width of the initial conditions used for imaginary time prop-

agation, the number of interfaces between each species can vary greatly depending on

interaction strengths and particles numbers. This showed the sensitivity of the steady

state solutions on the initial conditions used. As the width of the initial condition is in-

creased, the number of interfaces is reduced. The distribution with the lowest possible

number of interfaces had the lowest total energy and is therefore the true ground state.

In 3D the solutions obtained are sensitive to initial conditions although considerably less

than in 1D.

The main target of the work on ground state solutions at zero temperature was focused

on qualitatively reproducing the experimental results of Reference [77] by means of the

simplest possible zero–temperature mean–field theory consisting of two CGPEs. The

three different condensate mixture density profiles achieved experimentally depend on the

number of condensed Rb and Cs atoms respectively. In perfectly symmetric traps, where

the centres of both trapping potential have the same spatial positions, the density profiles

obtained were found not to match the experimental results. After a more thorough analysis

of the experiment, we offset the trap centres for the two species to account for anticipated

experimental offsets (of around 1 µm) via the addition of weak linear potentials in the

axial and one transverse direction. We stressed that the asymmetries caused by harmonic

trap offsets between the two trap centres in the axial and transverse directions are small

relative to the size of the condensate clouds. This explains why asymmetric density profiles

can be observed in two–species experiments with different atomic species as two magnetic

traps are required which are extremely hard to align perfectly. Dramatic differences in the

density profiles arose with the addition of weak linear potentials. Importantly, this allowed

us to obtain the observed asymmetric profiles. We found a qualitative match between the

structural regimes seen experimentally and our simulations by tailoring the gradients of

linear potentials. Note that our match was limited to the qualitative structure of the

profiles only and disregarded the thermal tails in the experimental profiles (which are not

included in the zero temperature model).

Although good qualitative agreement with the experimentally reported profiles was

obtained by changing the initial conditions of the simulations, for example one of the

components being more tightly localised in the centre, we found that this could affect the

final equilibrated profiles. Numerous metastable states (of comparable, but not identical,

energies) exist for each configuration. In the early stages of coupled growth under the

same parameter regimes, such a situation could arise. The analysis presented in this

work was based on equilibrium density profiles. In the experiments, as the two species

were sympathetically cooled, the initial number of condensate atoms within each species

(or the sequence by which growth proceeded) was not accurately known. Moreover, the

density profiles were typically measured after a variable hold time, without necessarily
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guaranteeing that the structures observed were indeed true equilibrium states (as opposed

to some long-lived metastable steady-states).

6.1.2 Dynamical Studies of Two–Component Mixtures at Finite Tem-

perature

We investigated the role of growth in a two component immiscible system modelled via

phenomenologically damped CGPEs. Starting with a range of steady state density dis-

tributions, the addition of a non–zero damping term can be used to simulate growth.

Perturbing the chemical potential of each condensate induces competing dynamical evolu-

tion between the species which eventually causes one of the species to vanish entirely, thus

leaving only a single species condensate. In a few cases, we have seen the density profiles

change from a symmetric density profile to an asymmetric one during growth provided

additional linear potentials are present (which enables the condensates to shift relative to

each other in a transverse direction).

By looking at the simulations performed by our collaborators I. K. Liu et al. with

the CSPGPEs using the parameters from [77], spontaneous dark–bright solitons emerged.

This prompted the investigation into dynamical evolution of dark–bright solitons with and

without phenomenological growth. At zero temperature, single solitons oscillate back and

forth in the axial direction while two solitons merge after a short period of time. With some

finite temperature effects included phenomenologically, the extra damping factor plays an

important role on the dynamics. Similarly to a system with no solitons, one condensate

always vanishes entirely. Soliton oscillations can always be seen in the dynamics before

damping overwhelms the condensate evolution. By varying the magnitude of the growth

rate, we were able to identify many variations in the number of oscillations by the dark–

bright soliton(s). In addition, the impact of the small offsets due to the additional linear

potentials to the trap was clear. The offsets gave rise to more soliton oscillations before the

growth/decay of the condensates took over. When two dark–bright solitons were present,

three cases were recognised: a passing of the solitons with full segregation, immediate

merging on first contact and merging after few oscillations.

Our work showed a large number of distinct density profiles are possible during the

coupled condensates dynamics. When comparing to a recent two–species experiment [77]

on which our parameters are based, we observed some qualitative agreement between

condensate density profiles while considering growth. However not only is the model used

here a toy model with static growth, as there is no explicit consideration of the thermal

cloud dynamics. Moreover the coupled experimental results available did not analyse the

nonequilibrium structures in detail to be able to investigate a more detailed comparison.
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6.1.3 Classical Field Methods

We first considered the evolution of a single component starting with strongly nonequi-

librated initial conditions. By considering the quasicondensate part of the wavefunction,

we observed the presence of a turbulent state of vortices in the early stages of the evo-

lution. This state decayed due to vortex reconnections, with the total vortex linelength

decreasing over time. The system rethermalised as particles enter lower momentum modes

and the condensate fraction (ratio of particles in the condensate to the total number of

particles) increased. A vortex ring is the final observable defect. A fully thermalised state

is obtained when the vortex ring vanished and the condensate fraction reached the ther-

modynamic limit. The effect of considering varying numbers of computational modes was

shown not to change the final thermalised state but simply to change the time taken to

reach this state for the same particle and energy densities. The final condensate fraction

was determined solely by the initial particle and energy densities.

A system with two components was then considered, both of these starting from

nonequilibrated initial conditions. The differences between choosing miscible or immisci-

ble interaction strength was clear. The miscible quasicondensates thermalised similarly

to a single component system. The vortex tangle decayed until no topological defects

were present and the condensate fractions increased to a thermodynamic limit. However

for strong interspecies interactions, the components quickly phase segregated and the do-

mains were seen in the topological defects. The total vortex linelength did not decay to

zero but rather reached a minimum value: the stronger the interspecies interactions the

more vortices remain. By viewing the phase, we showed that vortex tangles were present

in each domain. In addition, immiscible condensates had lower condensate fractions due

to the additional energy from the large interspecies interactions. Changing the initial par-

ticle and energy densities for each component separately influenced the final condensate

fractions.

Using a fully thermalised single component (constant condensate fraction and zero

vortex linelength), we investigated splitting this state into two components for different

intra and interspecies interaction strengths and number of particles in each component.

A clear difference can be seen not only between miscible and immiscible quasicondensates

but also high and low percentages of total particle numbers in each component. Further-

more, strong interspecies interactions lead to phase segregated vortex tangles due to the

formation of domains.

Finally, we investigated the impact of suddenly quenching the strength of the in-

terspecies interactions. If the quench did not drive the system through the miscibil-

ity/immiscibility barrier, no qualitative changes occurred to the presence of the topologi-

cal defects. Quenching in miscible systems did not lead to the generation of vortices and

for immiscible systems the vortex linelength changed in relation to the strength of the in-
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terspecies interactions. Quenching from miscible to immiscible gave rise to similar results

as splitting one component into two immiscible components: domains formed with phase

segregated vortex tangles and condensate fractions decrease. Quenching the interactions

from immiscible to miscible lead to an isotropic vortex tangle as the components slowly

mix and subsequently decay. Repeating the quench at regular intervals drove the vortex

tangle thereby providing a possible novel route to the generation of quantum turbulence.

6.2 Further Work

6.2.1 Two Species In Harmonic Traps

A number of other more accurate models for finite–temperature nonequilibrium Bose gases

exist [242]. I. K. Liu et al. are currently continuing collaborative simulations using the

SPGPE in 3D with the parameters from Reference [77] and the best match trap asym-

metries obtained in Chapter 3 of this Thesis. Other efforts for modelling multicomponent

condensates with the ZNG formalism are being undertaken [243].

Correlated to the work done in periodic boxes, we wish to investigate if macroscopic

excitations arise when quenching the interspecies interactions in harmonic traps. For

counterflow in two trapped immiscible condensates spontaneous solitons appeared due to

the quasi–1D nature of the system [244]. Solitons and vortices may appear depending

on the dimensionality of the system. It would be interesting to investigate these features

both at zero–temperature and at finite temperature with the PGPE. The projector is

recommended in harmonic trapping potentials in order to explicitly impose an energy

cutoff.

6.2.2 Object Motion Through Non Trapped Quasicondensates

The critical velocity has been shown to depend on the condensate fraction [240] when

moving a penetrable sphere through a thermalised system. We have conducted preliminary

studies to investigate a system with a moving impenetrable cylinder.

In a homogeneous system, vortex nucleation due to a cylinder has been observed and

studied in great detail for classical viscous fluids [245, 246] and quantum fluids [192, 247,

248]. For our simulations, we solve the GPE in the moving frame with speed v along the

x direction. To avoid transient excitations associated with suddenly moving the cylinder,

its speed is increased according to

v = ν tanh (0.1t) (6.1)

where ν is the amplitude of the velocity. The potential is chosen to be zero everywhere
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Figure 6.1: Slice of flow past a cylinder from right to left with initial uniform density.

apart from a localised repulsive cylinder which represents the obstacle

V (x, z) = Vmax exp
(

(x− x0)
2 + z2

)

(6.2)

where Vmax is the potential associated with the cylinder and x0 the position in the x

direction in the moving frame. In our simulations we take Vmax = 10 and x0 = 20.

Figure 6.1 shows a typical vortex nucleation due to a moving impenetrable cylinder with

uniform density.

When considering a thermalised wavefunction, taking a slice in the y direction does not

lead to direct observation of vortices due to the ambient random fluctuations. One expects

that the vortex lines produced by the cylinder will tend to align in the direction of the

cylinder (y). Visualisation of the vortex lines is then aided by averaging the density along

the direction of the cylinder. In these averaged 2D density plots (see Figure 6.2), regions

of low density downstream of the cylinder indicate the positions of the vortices. Note that

the averaged vortex density does not decrease to zero since the vortex lines will actually

be curved and sinuous in the averaged direction (due to Kelvin waves and the effect of

the excited background condensate). Starting from a thermalised state with n0/N ≈ 0.77,

vortex nucleation is evidenced when the vortex linelength measured by the system becomes

non–zero and occurs for velocities above the critical speed vc = 0.31. The evolution of

the condensate fraction for velocities above and below the critical velocity is shown in

Figure 6.3. For small v, the condensate fraction remains fixed. When this critical speed
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Figure 6.2: (Left) Slice of flow past a cylinder from right to left with initial thermalised state.
(Right) Average over all slices in y direction of flow past a cylinder from right to left with initial
thermalised state.

is exceeded, the condensate fraction decreases until reaching zero. Once the condensate

fraction reaches zero, no more vortices are created. By plotting the topological defects in

Figure 6.4 the creation of paired vortex lines at the cylinder can be seen. Immediately

after forming, these vortex lines become curved and reconnect at several points along y.

These reconnections then lead to the formation of vortex rings.

Having confirmed the nucleation of vortices by the flow of a thermalised state past a

impenetrable cylinder, we wish to investigate the dependence of the critical velocity on the

initial condensate fraction and width of the cylinder. The length of the cylinder shall also

be altered. This is not believed to cause significant changes to the dynamical evolution.

Due to the size of our numerical grid and periodic boundary conditions, the vortices quickly

pass through the bounds of our box and interfere with any future dynamics. To avoid this,

we intend on repeating these simulations with more computational modes to investigate

the longer term evolution of vortices. Finally, we shall extend this work to miscible two

component condensates.
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Figure 6.3: Condensate fractions against time for v = 0.2 (black — solid), v = 0.31 (red — dashed)
and v = 0.4 (blue — dot–dashed).
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Figure 6.4: Evolution of topological defects given by the isosurfaces
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Appendix A

Coupled Gross–Pitaevskii

Equations

In this Appendix, we show a detailed derivation of the time–dependent Coupled Gross–

Pitaevskii equations. The second order quantized Hamiltonian for condensate mixtures is

written in terms of the Bose field operators Ψ̂i (r, t) (Ψ̂
†
i (r, t)) for creation (annihilation)

of particle in species i at position r and time t by [121]

Ĥ =

∫

drΨ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)

+
1

2

∫

dr

∫

dr′Ψ̂†
1

(

r′, t
)

Ψ̂†
1 (r, t)V1

(

r− r′
)

Ψ̂1 (r, t) Ψ̂1

(

r′, t
)

+

∫

drΨ̂†
2 (r, t) ĥ2Ψ̂2 (r, t)

+
1

2

∫

dr

∫

dr′Ψ̂†
2

(

r′, t
)

Ψ̂†
2 (r, t)V2

(

r− r′
)

Ψ̂2 (r, t) Ψ̂2

(

r′, t
)

+
1

2

∫

dr

∫

dr′Ψ̂†
1

(

r′, t
)

Ψ̂†
2 (r, t)V12

(

r− r′
)

Ψ̂1 (r, t) Ψ̂2

(

r′, t
)

(A.1)

where V1, V2 and V12 are the contact interactions acting between the bosons of species one,

species two and between each species respectively. ĥi =
(

~
2/2mi

)

∇2+Vexti (r) is the single

particle Hamiltonian where mi is the mass and Vext(i) (r) the external potential acting on

each species. As stated in Section 2.1, we can approximate the contact interactions to

V1
(

r− r′
)

= g11δ
(

r− r′
)

V2
(

r− r′
)

= g22δ
(

r− r′
)

V12
(

r− r′
)

= g12δ
(

r− r′
)

(A.2)
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where

gii =
4π~2aii
mi

, g12 =
4π~2a12m1m2

(m1 +m2)
. (A.3)

The Bose field operators obey the following commutation relations [121]

[

Ψ̂i (r, t) , Ψ̂
†
i

(

r′, t
)

]

= δ
(

r− r′
)

,
[

Ψ̂i (r, t) , Ψ̂i

(

r′, t
)

]

=
[

Ψ̂†
i (r, t) , Ψ̂

†
i

(

r′, t
)

]

= 0,
[

Ψ̂i (r, t) , Ψ̂
†
j

(

r′, t
)

]

=
[

Ψ̂i (r, t) , Ψ̂j

(

r′, t
)

]

=
[

Ψ̂†
i (r, t) , Ψ̂

†
j

(

r′, t
)

]

= 0.

(A.4)

Inserting the contact interaction assumption into Equation (A.1) and integrating out the

dependence on r′ leads to

Ĥ =

∫

drΨ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)

+
g11
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t)

+

∫

drΨ̂†
2 (r, t) ĥ2Ψ̂2 (r, t)

+
g22
2

∫

drΨ̂†
2 (r, t) Ψ̂

†
2 (r, t) Ψ̂2 (r, t) Ψ̂2 (r, t)

+
g12
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t) .

(A.5)
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The Heisenberg equation of motion for species 1 becomes

i~
∂Ψ̂1 (r

′, t)

∂t
=
[

Ψ̂1

(

r′, t
)

, Ĥ
]

=Ψ̂1

(

r′, t
)







∫

drΨ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)

A

+
g11
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t)

C

+

∫

drΨ̂†
2 (r, t) ĥ2Ψ̂2 (r, t)

B

+
g22
2

∫

drΨ̂†
2 (r, t) Ψ̂

†
2 (r, t) Ψ̂2 (r, t) Ψ̂2 (r, t)

D

+
g12
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t)

E







−







∫

drΨ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)

A

+
g11
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t)

C

+

∫

drΨ̂†
2 (r, t) ĥ2Ψ̂2 (r, t)

B

+
g22
2

∫

drΨ̂†
2 (r, t) Ψ̂

†
2 (r, t) Ψ̂2 (r, t) Ψ̂2 (r, t)

D

+
g12
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t)

E






Ψ̂1

(

r′, t
)

(A.6)
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Taking the terms labelled by an A in Equation (A.6) gives

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)− Ψ̂†

1 (r, t) ĥ1Ψ̂1 (r, t) Ψ̂1

(

r′, t
)

)

=

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)− Ψ̂†

1 (r, t) ĥ1Ψ̂1

(

r′, t
)

Ψ̂1 (r, t)
)

=

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
1 (r, t) ĥ1Ψ̂1 (r, t)− Ψ̂†

1 (r, t) Ψ̂1

(

r′, t
)

ĥ1Ψ̂1 (r, t)
)

=

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
1 (r, t)− Ψ̂†

1 (r, t) Ψ̂1

(

r′, t
)

)

ĥ1Ψ̂1 (r, t)

=

∫

drδ
(

r′ − r
)

ĥ1Ψ̂1 (r, t)

=

∫

drĥ1Ψ̂1

(

r′, t
)

= ĥ1Ψ̂1

(

r′, t
)

(A.7)

as Ψ̂†
1 (r

′, t) Ψ̂1 (r, t) = Ψ̂1 (r, t) Ψ̂
†
1 (r

′, t) from
[

Ψ̂1 (r, t) , Ψ̂1 (r
′, t)

]

= 0, the fields are the

operators and the potential and kinetic energy are complex coefficients and
[

Ψ̂1 (r
′, t) , Ψ̂†

1 (r, t)
]

=

δ (r′ − r).

Similarly taking the terms labelled by a B in Equation (A.6)

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
2 (r, t)− Ψ̂†

2 (r, t) Ψ̂1

(

r′, t
)

)

ĥ2Ψ̂2 (r, t)

= 0

(A.8)

as
[

Ψ̂1 (r
′, t) , Ψ̂†

2 (r, t)
]

= 0.
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Taking the terms labelled by C in 2.7

g11
2

∫

drΨ̂1

(

r′, t
)

Ψ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t)

− g11
2

∫

drΨ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t) Ψ̂1

(

r′, t
)

=
g11
2

[
∫

drΨ̂1

(

r′, t
)

Ψ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t)

−
∫

drΨ̂†
1 (r, t) Ψ̂

†
1 (r, t) Ψ̂1

(

r′, t
)

Ψ̂1 (r, t) Ψ̂1 (r, t)

]

=
g11
2

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
1 (r, t) Ψ̂

†
1 (r, t)− Ψ̂†

1 (r, t) Ψ̂
†
1 (r, t) Ψ̂1

(

r′, t
)

)

Ψ̂1 (r, t) Ψ̂1 (r, t)

= g11

∫

drΨ̂†
1

(

r′, t
)

Ψ̂1

(

r′, t
)

Ψ̂1

(

r′, t
)

= g11Ψ̂
†
1

(

r′, t
)

Ψ̂1

(

r′, t
)

Ψ̂1

(

r′, t
)

(A.9)

as
[

Ψ̂1 (r, t) , Ψ̂1 (r
′, t)

]

= 0 and

[

Ψ̂1

(

r′, t
)

, Ψ̂†
1 (r, t) Ψ̂

†
1 (r, t)

]

=
[

Ψ̂1

(

r′, t
)

, Ψ̂†
1 (r, t)

]

Ψ̂†
1 (r, t) + Ψ̂†

1 (r, t)
[

[Ψ̂1

(

r′, t
)

, Ψ̂†
1 (r, t)

]

= δ
(

r′ − r
)

Ψ̂†
1 (r, t) + Ψ̂†

1 (r, t) δ
(

r′ − r
)

= 2δ
(

r′ − r
)

Ψ̂†
1 (r, t) .

(A.10)

Similarly terms labelled by D in Equation (A.6) give

g22
2

∫

dr
[

Ψ̂1

(

r′, t
)

, Ψ̂†
2 (r, t) Ψ̂

†
2 (r, t)

]

Ψ̂2 (r, t) Ψ̂2 (r, t)

= 0

(A.11)

as
[

Ψ̂1

(

r′, t
)

, Ψ̂†
2 (r, t) Ψ̂

†
2 (r, t)

]

= 0 (A.12)
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The final terms labelled E in Equation (A.6) give

g12
2

[
∫

drΨ̂1

(

r′, t
)

Ψ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t)

−
∫

drΨ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t) Ψ̂1

(

r′, t
)

]

=
g12
2

[
∫

drΨ̂1

(

r′, t
)

Ψ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t)

−
∫

drΨ̂†
1 (r, t) Ψ̂

†
2 (r, t) Ψ̂1

(

r′, t
)

Ψ̂1 (r, t) Ψ̂2 (r, t)

]

=
g12
2

∫

dr
(

Ψ̂1

(

r′, t
)

Ψ̂†
1 (r, t) Ψ̂

†
2 (r, t)− Ψ̂†

1 (r, t) Ψ̂
†
2 (r, t) Ψ̂1

(

r′, t
)

)

Ψ̂1 (r, t) Ψ̂2 (r, t)

=
g12
2

∫

dr
[

Ψ̂1

(

r′, t
)

, Ψ̂†
1 (r, t) Ψ̂

†
2 (r, t)

]

Ψ̂1 (r, t) Ψ̂2 (r, t)

=
g12
2

∫

drδ
(

r′ − r
)

Ψ̂†
2 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t)

=
g12
2

∫

drΨ̂†
2

(

r′, t
)

Ψ̂2

(

r′, t
)

Ψ̂1

(

r′, t
)

=
g12
2

Ψ̂†
2

(

r′, t
)

Ψ̂2

(

r′, t
)

Ψ̂1

(

r′, t
)

(A.13)

as

[

Ψ̂1

(

r′, t
)

, Ψ̂†
1 (r, t) Ψ̂

†
2 (r, t)

]

=
[

Ψ̂1

(

r′, t
)

, Ψ̂†
1 (r, t)

]

Ψ̂†
2 (r, t) + Ψ̂†

1 (r, t)
[

Ψ̂1

(

r′, t
)

, Ψ̂†
2 (r, t)

]

= δ
(

r′ − r
)

Ψ̂†
2 (r, t)

(A.14)

Combining these leads to

i~
∂Ψ̂1 (r, t)

∂t
= ĥ1Ψ̂1 (r, t) + g11Ψ̂

†
1 (r, t) Ψ̂1 (r, t) Ψ̂1 (r, t) +

g12
2

Ψ̂†
2 (r, t) Ψ̂2 (r, t) Ψ̂1 (r, t)

(A.15)

Similarly, it can be shown for species 2 that

i~
∂Ψ̂2 (r, t)

∂t
= ĥ2Ψ̂2 (r, t) + g22Ψ̂

†
2 (r, t) Ψ̂2 (r, t) Ψ̂2 (r, t) +

g12
2

Ψ̂†
1 (r, t) Ψ̂1 (r, t) Ψ̂2 (r, t)

(A.16)

We now decompose the Bose field operator Ψ̂i (r, t) in terms of a macroscopically–
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populated mean field term φi (r, t) = 〈Ψ̂i (r, t)〉 and a fluctuation term ψ̂i (r, t) and get

Ĥ =

∫

dr
(

φ∗1 + ψ̂†
1

)

ĥ1

(

φ1 + ψ̂1

)

+
g11
2

∫

dr
(

φ∗1 + ψ̂†
1

)(

φ∗1 + ψ̂†
1

)(

φ1 + ψ̂1

)(

φ1 + ψ̂1

)

+

∫

dr
(

φ∗2 + ψ̂†
2

)

ĥ2

(

φ2 + ψ̂2

)

+
g22
2

∫

dr
(

φ∗2 + ψ̂†
2

)(

φ∗2 + ψ̂†
2

)(

φ2 + ψ̂2

)(

φ2 + ψ̂2

)

+
g12
2

∫

dr
(

φ∗1 + ψ̂†
1

)(

φ∗2 + ψ̂†
2

)(

φ1 + ψ̂1

)(

φ2 + ψ̂2

)

(A.17)

Rearranging leads to

Ĥ =

∫

drφ∗1ĥ1φ1 + φ∗1ĥ1ψ̂1 + ψ̂†
1ĥ1φ1 + ψ̂†

1ĥ1ψ̂1

+
g11
2

∫

dr
(

φ∗1φ
∗
1 + 2φ∗1ψ̂

†
1 + ψ̂†

1ψ̂
†
1

)(

φ21 + 2φ1ψ̂1 + ψ̂1ψ̂1

)

+

∫

drφ∗2ĥ2φ2 + φ∗2ĥ2ψ̂2 + ψ̂†
2ĥ2φ2 + ψ̂†

2ĥ2ψ̂2

+
g22
2

∫

dr
(

φ∗2φ
∗
2 + 2φ∗2ψ̂

†
2 + ψ̂†

2ψ̂
†
2

)(

φ22 + 2φ2ψ̂2 + ψ̂2ψ̂2

)

+
g12
2

∫

dr
(

φ∗1φ
∗
2 + φ∗2ψ̂

†
1 + φ∗1ψ̂

†
2 + ψ̂†

1ψ̂
†
2

)(

φ1φ2 + φ2ψ̂1 + φ1ψ̂2 + ψ̂1ψ̂2

)

(A.18)

The Hamiltonian is separated into parts according to the dependence on ψ̂i, Ĥ = Ĥ0 +

Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 where the contributions are

Ĥ0 =

∫

drφ∗1ĥ1φ1 +
g11
2

|φ1|4 + φ∗2ĥ2φ2 +
g22
2

|φ2|4 +
g12
2

|φ1|2 |φ2|2 (A.19)

Ĥ1 =

∫

drφ∗1ĥ1ψ̂1 + ψ̂†
1ĥ1φ1 + g11φ∗1 |φ1|2 ψ̂1 + g11φ1 |φ1|2 ψ̂†

1

+

∫

drφ∗2ĥ2ψ̂2 + ψ̂†
2ĥ2φ2 + g22φ∗2 |φ2|2 ψ̂2 + g22φ2 |φ2|2 ψ̂†

2

+
g12
2

∫

drφ∗1 |φ2|2 ψ̂1 + φ∗2 |φ1|2 ψ̂2 + φ1 |φ2|2 ψ̂†
1 + φ2 |φ1|2 ψ̂†

2

(A.20)

Ĥ2 =

∫

drψ̂†
1ĥ1ψ̂1 +

g11
2

(

(φ∗1)
2 ψ̂1ψ̂1 + φ21ψ̂

†
1ψ̂

†
1

)

+ 2g11 |φ1|2 ψ̂†
1ψ̂1

+

∫

drψ̂†
2ĥ2ψ̂2 +

g22
2

(

(φ∗2)
2 ψ̂2ψ̂2 + φ22ψ̂

†
2ψ̂

†
2

)

+ 2g22 |φ2|2 ψ̂†
2ψ̂2

+
g12
2

∫

drφ∗1φ
∗
2ψ̂1ψ̂2 + φ1φ2ψ̂

†
1ψ̂

†
2 + |φ2|2 ψ̂†

1ψ̂1 + φ1φ
∗
2ψ̂

†
1ψ̂2 + |φ1|2 ψ̂†

2ψ̂2 + φ∗1φ2ψ̂
†
2ψ̂1

(A.21)
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Ĥ3 =g11

∫

drφ1ψ̂
†
1ψ̂

†
1ψ̂1 + φ∗1ψ̂

†
1ψ̂1ψ̂1

+ g22

∫

drφ2ψ̂
†
2ψ̂

†
2ψ̂2 + φ∗2ψ̂

†
2ψ̂2ψ̂2

+ g12

∫

drφ∗2ψ̂
†
1ψ̂1ψ̂2 + φ∗1ψ̂

†
2ψ̂1ψ̂2 + φ2ψ̂

†
1ψ̂

†
2ψ̂1 + φ1ψ̂

†
1ψ̂

†
2ψ̂2

(A.22)

Ĥ4 =

∫

dr
g11
2
ψ̂†
1ψ̂

†
1ψ̂1ψ̂1 +

g22
2
ψ̂†
2ψ̂

†
2ψ̂2ψ̂2 +

g12
2
ψ̂†
1ψ̂

†
2ψ̂1ψ̂2 (A.23)

All the atoms are assumed to be in the condensate ψ̂i = 0 and the Hamiltonian is then

given solely by Ĥ0. When substituted into the Heisenberg equation of motion (A.6),

Equations (A.15) and (A.16) result in the CGPEs which accurately describes systems at

zero temperature

i~
∂φ1 (r, t)

∂t
=

[

~
2

2m1
∇2 + V1 + g11 |φ1 (r, t)|2 + g12 |φ2 (r, t)|2

]

φ1 (r, t)

i~
∂φ2 (r, t)

∂t
=

[

~
2

2m2
∇2 + V2 + g22 |φ1 (r, t)|2 + g12 |φ1 (r, t)|2

]

φ2 (r, t)

(A.24)

A.1 Dimensionless Analysis

We show how the CGPEs can be reduced to a dimensionless form. This analysis was done

in collaboration with S. A. Gardiner (Joint Quantum Centre (JQC) Durham–Newcastle,

Department of Physics, Durham University) Here we outline this reduction and highlight

some key features that emerge. We start from the CGPEs (2.52), where the trap is

provided by cylindrically symmetric harmonic trapping potentials with common minima

i.e.

Vi =
mi

2

[

ω2
(i)⊥

(

x2 + y2
)

+ ω2
(i)zz

2
]

. (A.25)

Let λi = ω2
(i)⊥/ω

2
(i)z be the trap aspect ratios of component 1 and 2 respectively. The

coupled GPEs can then be rewritten as

i~
∂φ1
∂t

=

[

− ~
2

2m1
∇2 +

m1ω(1)z

2

[

λ1
(

x2 + y2
)

+ z2
]

+ g11 |φ1|2 + g12 |φ2|2
]

φ1

i~
∂φ2
∂t

=

[

− ~
2

2m2
∇2 +

m2ω(2)z

2

[

λ2
(

x2 + y2
)

+ z2
]

+ g22 |φ2|2 + g12 |φ1|2
]

φ2

(A.26)

where gii and g12 are given in Section 2.10. We choose a set of symmetrized harmonic

units, codified as ~ =
√
m1m2 =

√
ω(1)zω(2)z = 1. This means we have time, length, and
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energy units of

τ =
1

√
ω(1)zω(2)z

, (A.27)

ℓ =

√
~

(

m1m2ω(1)zω(2)z

)1/4
, (A.28)

ǫ =~
√

ω(1)zω(2)z. (A.29)

Rescaled renderings of the coupled GPEs (where we also normalize the wavefunctions ψ1

and ψ2 to 1, in order to make the dependence on the particle numbers N1 and N2 of the

two species more explicit), expressed in terms of a minimal number of parameters, are

then

i
∂φ1
∂t

=

[

−γ
2
∇2 +

1

2κγ

[

λ1
(

x2 + y2
)

+ z2
]

+ γα11 |φ1|2 +
(

γ2 + 1

2γ

)

ηα12 |φ2|2
]

φ1

i
∂φ2
∂t

=

[

− 1

2γ
∇2 +

κγ

2

[

λ2
(

x2 + y2
)

+ z2
]

+

(

γ2 + 1

2γ

)

α22

η
|φ2|2 +

α12

γ
|φ1|2

]

φ2

(A.30)

where

γ =

√

m2

m1
, (A.31)

κ =
ω2

ω1
, (A.32)

η =

√

N2

N1
, (A.33)

αij =4π
(aij
ℓ

)

√

NiNj . (A.34)

Using the total particle number N = N1+N2, the interaction coefficients can alternatively

be phrased as

α11 =4π
(a11
ℓ

) N

η2 + 1
, (A.35)

α12 =4π
(a12
ℓ

) ηN

η2 + 1
, (A.36)

α22 =4π
(a22
ℓ

) η2N

η2 + 1
, (A.37)

which is a particularly natural description if the two species are simply different internal

states of the same atom (in which case γ = 1, simplifying the system of equations further).

We therefore have eight independent dimensionless parameters (including λ1 and λ2). In

1D, there are six independent parameters as λ1 = λ2 = 1.
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Appendix B

Numerical Methods

The work presented in this thesis is based on numerical simulations of the dimensionless

CGPEs using fourth–order Runge–Kutta in time and second or fourth–order finite order

finite difference discretisation in space [249]. These numerical methods are outlined in

Sections B.1 and B.2, derived using Taylor series expansions obtained by expanding an

n–times differentiable function f(x)

f (x+ h) = f (x) + hf
′

(x) +
h2

2!
f

′′

(x) + ...+
hn

n!
fn (x) + ... (B.1)

where h is a small step. Additionally, we present how ground state density profiles are

obtained through use of imaginary time propagation.

B.1 Runge–Kutta Method

For some function u(t), consider the differential equation

du

dt
= u

′

= g(t, u). (B.2)

We take tn = n∆t where ∆t is the small time step and un = u(tn) be the function u(t)

after n iterations. The sought out solution is un+1 = u(tn +∆t). The formula for Euler’s

method is

un+1 = un +∆tg (tn, un) +O
(

∆t2
)

(B.3)

which advances un to un+1 and is derived from Equation (B.1) by neglecting terms with

second order or higher derivatives. For practical use, this method is not recommended due

to the lack of accuracy compare to other methods and it is not very stable. In addition, the

formula is unsymmetrical: it uses derivative information at the beginning of the interval

only.
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We now consider the taylor expansion of u with the second order derivative term

un+1 = un = ∆tu
′

n +
∆t2

2
u

′′

n +O
(

∆t3
)

(B.4)

where u
′′

n is obtained from Equation (B.2) such that

u
′′

n =
∂g (tn, un)

∂t
+
∂g (tn, un)

∂u
g (tn, un) = gt (tn, un) + gu (tn, un) g (tn, un) . (B.5)

By substitution we obtain

un+1 = un +∆tg (tn, un) +
∆t2

2
gt (tn, un) + gu (tn, un) g (tn, un) +O

(

∆t3
)

= un +
∆t

2
g (tn, un) +

∆t

2
[g (tn, un) +∆t (gt (tn, un) + gu (tn, un) g (tn, un))] +O

(

∆t3
)

.

(B.6)

Now consider the Taylor expansion for g (t, u)

g (t+ h, u+ k) = g (t, u) + hgt (t, u) + kgu (t, u) + ... (B.7)

Taking h = ∆t and k = ∆tg gives

g (t+∆t, u+∆tg) = g (t, u) +∆tgt (t, u) +∆tg (t, u) gu (t, u) + ... (B.8)

Substitute into Equation (B.6) to give

un+1 = un +
∆t

2
g +

∆t

2
g (t+∆t, u+∆tg) +O

(

∆t3
)

. (B.9)

This is known as the midpoint method or second–order Runge–Kutta method and is more

commonly written as

k1 = g (tn, un)

k2 = g (tn +∆t, un +∆tk1)

un+1 = un +
∆t

2
(k1 + k2) +O

(

∆t3
)

.

(B.10)

Unlike Euler’s method, a step at the midpoint of the interval is used to calculate the step

across the whole interval. It also has a higher order error. In fact, higher order methods

often give better accuracy, even though this is not always the case. Such a derivation

can be generalized to obtain the fourth–order Runge-Kutta method, used to obtain the
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numerical results presented in this Thesis, and is given by

un+1 = un +∆t

[

1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

]

+O
(

∆t5
)

(B.11)

where

k1 = f (tn, un)

k2 = f

(

tn +
∆t

2
, un +

1

2
∆tk1

)

k3 = f

(

tn +
∆t

2
, un +

1

2
∆tk2

)

k4 = f (tn +∆t, un +∆tk3) .

(B.12)

Similarly to the second–order method, three intermediate points are now used to calculate

the step across the whole interval.

B.2 Discretisation of Spatial Derivatives

In order to numerically solve the GPE equation, we must calculate the Hamiltonian using

finite difference where the wavefunction is discretised on a spatial grid with spacing ∆x.

In this Section, we introduce the finite difference schemes for a function u(x) in one and

two dimensions.

One–Dimensional System

In one dimension, our function u(x) is discretised on a linear grid with ui = u(xi) where

i = 0, 1, ..., L. To derive the central difference schemes, we first write down the Taylor

series for ui−1 and ui+1

ui−1 = ui −∆xu
′

i +
∆x2

2
u

′′

i +O
(

∆x2
)

(B.13)

ui+1 = ui +∆xu
′

i +
∆x2

2
u

′′

i +O
(

∆x2
)

. (B.14)

To obtain the first order derivative, we look at −ui−1 + ui+1

−ui−1 + ui+1 = 2∆xu
′

i +O
(

∆x2
)

(B.15)

and rearrange to obtain

dui
dx

=
−ui−1 + ui+1

2∆x
+O

(

∆x2
)

. (B.16)

128



Appendix B. Numerical Methods

Similarly to obtain the second order derivative we look at ui−1−2ui+ui+1 and rearranging

gives
d2ui
dx2

=
ui−1 − 2ui + ui+1

2∆x2
+O

(

∆x2
)

. (B.17)

Equations (B.16) and (B.17) are the second order central difference approximations. In

a similar fashion, the fourth order approximations which are used in this Thesis can be

derived and are given by

dui
dx

=
ui−2 − 8ui−1 + 8ui+1 − uj + 2

12∆x
+O

(

∆x4
)

(B.18)

d2ui
dx2

=
−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+ 2

12∆x2
+O

(

∆x4
)

(B.19)

which have superior precision to the second order approximations.

Two–Dimensional System

We now consider the two–dimensional function u(x, y). It is discretised in a box in the x

and y directions with spatial separation ∆x and ∆y respectively where ui,j = u(xi, yj).

The second order central finite difference approximations for x derivatives, derived in the

same manner as for one dimension, are given by

dui,j
dx

=
−ui−1,j + ui+1,j

2∆x
+O

(

∆x2
)

(B.20)

d2ui,j
dx2

=
ui−1,j − 2ui,j + ui+1,j

2∆x2
+O

(

∆x2
)

. (B.21)

Similarly derivatives in the y direction can be found. We can now write down the expres-

sion for the two–dimensional Laplacian

d2ui,j
dx2

+
d2ui,j
dx2

=
ui−1,j − 2ui,j + ui+1,j

2∆x2
+O

(

∆x2
)

+
ui,j−1 − 2ui,j + ui,j+1

2∆y2
+O

(

∆y2
)

.

(B.22)

Extension to three–dimensions is straight forward.

B.2.1 Boundary Conditions

In this Thesis, two different boundary conditions are used: hard wall and periodic. For

hard wall boundary conditions, the point(s) at the extremities of the spatial grid are set

to zero after every time–step. Simulating the GPE in a homogeneous system with this

condition gives rise to density profiles as shown in Figure 2.3 at the edge of the grid.

These boundary conditions are used for all simulations in Part II of this Thesis. Periodic
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boundary conditions are applied by setting (in a one–dimensional case)

u0 = uL−1 and uL = u1 (B.23)

such that when the wavefunction passes through one boundary it reappears on the opposite

face. Extra boundary points need to be used when considering fourth order or higher finite

difference schemes. Periodic boundaries are used in Part III.

B.3 Imaginary Time Propagation

Propagating in imaginary time is an easily implemented method to obtain a ground state of

a system. This is implemented by making the substitution dt→ −idτ . By starting with a

rough trial wavefunction, ideally close to the exact solution, and by renormalising to a fixed

norm and/or chemical potential during imaginary time propagation, the wavefunction

decays towards the ground state of the system. For imaginary time propagation to work,

obtaining a fully converged solution is necessary as, if not, the equilibrium state of the

system is unknown or incorrect.
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Discrete Fourier Transforms

In this appendix, we show the derivation for going from a continuous Fourier transform

to a discrete Fourier transform.

Consider f(x), a continuous function of position and its Fourier transform is given by

f̃ (k) = F [f (x)] =

∞
∫

−∞

f (x) e−ikxdx. (C.1)

Now take f(x) with a discrete representation with spacing ∆x on a spatial grid x = [0, L]

and denote each point by j

f (x) → f (xj) = fj, x = j∆x (C.2)

where j exists in the range [0, Nx]. Now that f(x) has a discrete representation, the

Fourier transform acts only at the grid points. It is thus possible to replace the integral

with a summation of trapezia of height fj and width ∆x

f̃ (k) =

Nx
∫

0

f (x) e−ikxdx

=
{

f0e
0 + f1e

−ik∆x + ...+ fje
−jik∆x + ...+ fNx

e(Nx)ik∆x

}

∆x

= ∆x

j=Nx
∑

j=0

fje
−jik∆x.

(C.3)

A spatial grid of length L = Nx∆x and with interval ∆x corresponds to a momentum grid

with length 2π/∆x and momentum interval ∆k = 2π/L = 2π/Nx∆x. Thus the possible

momentum values can be m∆k where m exists over the range [0, Nx]. The momentum
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variable in Equation (C.3) by k → km = m∆k = 2πm/Nx∆x giving

f̃ (km) = ∆x

j=Nx
∑

j=0

fje
−2πijm/Nx (C.4)

This gives the standard definition of the discrete Fourier transform of the sequence fj

DFT [fj] (km) =

j=Nx
∑

j=0

fje
−2πijm/Nx . (C.5)

In this definition, the spacing is taken to be unity hence to relate the continuous Fourier

transform we have

f̃ (km) = ∆xDFT [fj] (km) . (C.6)

This result is valid for 1D. The equivalent 3D discrete Fourier transform is

f̃ (kx, ky, kz) = ∆x∆y∆zDFT [fj] (km,x, km,y , km,z) . (C.7)
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[39] C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D. Phillips,

Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap

Phys. Rev. Lett. 99, 260401 (2007).

135



Bibliography

[40] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,

K. Helmerson, W. D. Phillips, and G. K. Campbell, Superflow in a Toroidal Bose-

Einstein Condensate: An Atom Circuit with a Tunable Weak Link Phys. Rev. Lett.

106, 130401 (2011).

[41] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch Oscillations

of Atoms in an Optical Potential Phys. Rev. Lett. 76, 4508 (1996).

[42] O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, Bloch Oscil-

lations and Mean-Field Effects of Bose-Einstein Condensates in 1D Optical Lattices

Phys. Rev. Lett. 87, 140402 (2001).

[43] H. T. C. Stoof, Bose-Einstein condensation: Breaking up a superfluid Nature 415,

25 (2002).

[44] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Quantum phase

transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature

415, 39 (2002).

[45] T. G. Tiecke, M. Kemmann, C. Buggle, I. Shvarchuck, W. von Klitzing, and J. T. M.

Walraven, BoseEinstein condensation in a magnetic double-well potential Journal of

Optics B: Quantum and Semiclassical Optics 5, S119 (2003).
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[112] P. Öhberg and L. Santos, Vortex-vortex interaction in two-component Bose-Einstein

condensates Phys. Rev. A 66, 013616 (2002).

[113] Q.-H. Park and J. H. Eberly, Nontopological vortex in a two-component Bose-

Einstein condensate Phys. Rev. A 70, 021602 (2004).

[114] S. J. Woo, S. Choi, L. O. Baksmaty, and N. P. Bigelow, Dynamics of vortex matter

in rotating two-species Bose-Einstein condensates Phys. Rev. A 75, 031604 (2007).

[115] K. Kasamatsu and M. Tsubota, Vortex sheet in rotating two-component Bose-

Einstein condensates Phys. Rev. A 79, 023606 (2009).

[116] G. Catelani and E. A. Yuzbashyan, Coreless vorticity in multicomponent Bose and

Fermi superfluids Phys. Rev. A 81, 033629 (2010).

141



Bibliography

[117] K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Stable Vortex˘Bright-Soliton

Structures in Two-Component Bose-Einstein Condensates Phys. Rev. Lett. 105,

160405 (2010).
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J. Kronjäger, K. Bongs, and K. Sengstock, Oscillations and interactions of dark and

dark-bright solitons in Bose-Einstein condensates Nature Physics 4, 9 (2008).

[165] H. E. Nistazakis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and
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