TwOo—COMPONENT BOSE-EINSTEIN CONDENSATES:
EQUILIBRIA AND DYNAMICS AT ZERO TEMPERATURE
AND BEYOND

ROBERT WILLIAM PATTINSON

Thesis submitted for the degree of
Doctor of Philosophy

Newcastle
+ University

School of Mathematics € Statistics
Newcastle University
Newcastle upon Tyne

United Kingdom

June 2014



To my parents, for their never ending love and support.



Acknowledgements

First of all, I would like to acknowledge my supervisors Nick Proukakis and Nick Parker
for their guidance, enthusiasm and availability over the past few years, making my PhD
interesting and enjoyable. My gratitude is extended to Danny McCarron, Simon Cornish,
Tom Billam and Simon Gardiner for details regarding their experimental setup. Further
to this, I would also like to acknowledge Gary Liu and Shih-Chuan Gou for collaborating
with us in trying to model the experiment.

I want to thank the other postgraduates within the school for making my PhD a fun
and enjoyable experience. In particular, I would like to mention Joy Allen, Matt Buckley,
Donatello Gallucci, Fred Gent, Sarah Jowett, George Stagg, Nathan Barker, David Cush-
ing, Tom Fisher, Holly Ainsworth, Jamie Owen, Nina Wilkinson, Kevin Wilson, Gavin
Whitaker and Sam James for all the fun memories. I am grateful to all the other members
of the Newcastle Superfluid group, namely Anthony Youd being my supervisor during my
MDMath project and for help with all things computing. I also want to mention friends from
back home, Adrien de la Tour, Mathieu Yeme, Antoine Haettel, Caroline Manna, Camille
Lapillonne, Yassin Belrhomari, Aude Guedeney, Ambroise Couissin, Elodie Marchat and
Floriane Bonte, for always being around.

I want to say a huge thank you to my parents for encouraging me to always pursue
my dreams and pointing me in the right direction. To my sister, Steph, for always being
there. Finally, I want to thank Lucy Norris for her endless patience and love, and always

suggesting takeaway pizza when it was called for!



Abstract

In this Thesis we study steady state solutions and dynamical evolutions of two—
component atomic Bose-Einstein Condensates. We initially investigate the equilibrium
properties of condensate mixtures in harmonic trapping potentials at zero temperature.
Subsequently we simulate the coupled growth of these condensates by inclusion of damp-
ing terms. Finally, we investigate the evolution of coupled Bose gases via the so-called
classical-field method.

A recent experiment [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]
achieved Bose-Einstein Condensation of a two-species 8’Rb-133Cs phase segregated mix-
ture in harmonic trapping potentials. Depending on relative atom numbers of the two
species, three distinct regimes of density distributions were observed. For these experimen-
tal parameters, we investigate the corresponding time—independent ground state solutions
through numerical simulations of the coupled Gross—Pitaevskii equations. By including
experimentally relevant shifts between the traps, we observe a range of structures includ-
ing ‘ball and shell’ formations and axially/radially separated states. These are found to
be very sensitive to the trap shifts. For all three experimental regimes, our numerical
simulations reveal good qualitative agreement.

The observed experimental profiles cannot be guaranteed to be fully equilibrated. This,
coupled with the rapid sympathetic cooling of the experimental system, leads to a situ-
ation where growth may play a determining factor in the density structures formed. To
investigate this further, we introduce phenomenological damping to describe the associ-
ated condensate growth/decay, revealing a range of transient structures. However, such a
model always predicts the predominance of one condensate species over longer evolution
times. Work undertaken by collaborators with the more elaborate Stochastic Projected
Gross—Pitaevskii equations, which can describe condensate formation by coupling to a heat
bath, predicts the spontaneous formation of dark—bright solitons. Motivated by this, we
show how the presence of solitons can affect the condensate distribution, thus highlighting
the overall dynamical role in the emerging patterns.

Finally, we use classical field methods to analyse the evolution of non trapped Bose
gases from strongly nonequilibrium initial distributions. The contrast between miscible
(overlapping) and immiscible (phase segregated) components gives rise to important dis-
tinctions for condensate fractions and the formation of domains and vortices. In addition,
splitting the particles of a single component thermalised state into two components is
investigated. We then study the effects of suddenly quenching the strength of the in-
terspecies interactions. Under suitable conditions, this quench generates isotropic vortex
tangles. While this tangle subsequently decays over time, we propose how a repeat se-
quence of quenches at regular intervals could be employed to drive the tangle, thereby

potentially providing a novel route to the generation of quantum turbulence.
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Chapter 1

Introduction

The theoretical prediction of Bose-Einstein condensation dates back to the early 1920’s
when Planck’s law for black—body radiation was re-derived by Satyendra Nath Bose from
first principles [1] by assuming photons were identical and counting their distribution over
energy states. Albert Einstein generalised these findings to massive particles, leading
him to a theory for a gas of non-interacting atoms [2]: the Bose-Einstein distribution
function was born. The distribution function for identical and indistinguishable particles
at temperature 7T is given by

1
Flev) = oopmr —1 (1.1)

where €, denotes the energy of each single—particle quantum state labelled by v, k is the
Boltzmann constant and y is the chemical potential of the system. The distribution gives

the mean occupation number NV, of the single—particle states, which is defined by

v
Nl, = f (El,) gy = m (12)

where g, is the degeneracy of the state v. At low temperatures, these particles enter the
same lowest energy quantum mechanical state; this is the Bose-Einstein condensate (BEC).
In 1938, London suggested the connection between the then unexplained superfluidity of
4He, by treating the strongly interacting liquid as a weakly interacting gas, and Bose-
Einstein condensation of weakly interacting particles [3, 4].

A dilute weakly interacting atomic condensate was created for the first time in 1995
in ultracold gases of Rubidium 3"Rb [5], Sodium **Na [6], followed by Lithium “Li [7, §]
through the use of laser cooling methods. In these experiments the use of laser cooling
alone was not sufficient in obtaining the low temperatures and high densities required
for condensation and was therefore followed by evaporative cooling where the more en-

ergetic atoms are removed from the system thus allowing the remaining atoms to cool
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through thermalising elastic binary collisions. This achievement was subsequently re-
warded with Nobel Prizes in 1997 to Steven Chu, Claude Cohen—Tannoudji (theory) and
William Phillips for laser cooling and trapping [9, 10, 11] and in 2001 to Carl Wieman,
Eric Cornell and Wolfgang Ketterle for the achievement of BEC [12, 13].

1.1 Superfluid ‘He

Many of the properties of quantum fluids were established during the study of superfluid
“He. The term superfluidity came into existence in 1938 when Kapitza [14] and Allen and
Misener [15] measured the flow of viscosity of “He. It turned out that below the critical
temperature 2.17K, *He becomes superfluid and has exceptional properties such as the
ability to flow persistently around a loop due to the absence of viscosity. This also allows
the liquid to flow through narrow channels. The idea of superfluidity only gained accep-
tance in 1941 with the introduction of the two-fluid model by Landau [16]. In this model,
the superfluid component with no viscosity exists alongside the normal liquid; the relative
ratio of their densities depending on temperature. At very low temperatures, the density
of the superfluid component approaches the total density of the liquid while the density of
the normal liquid vanishes. Due to the large interactions in the system, only about 10% of
the particles are condensed i.e. in the lowest energy state. To achieve experimental realisa-
tion of BEC, a search for weakly interaction collisions between particles was required such
that the system be easier to keep in gaseous form at very low temperatures. Close to the
critical temperature, the situation is reversed: the density of the normal liquid approaches

the density of the liquid while that of the superfluid tends to zero.

1.2 Bose—Einstein Condensation

In quantum mechanics, indistinguishable particles can be sorted into two classes depending
on the value of their spin, originally interpreted as the rotation of a particle around some
axis. There are fermions (half-integer spin) which follow Fermi-Dirac statistics and bosons
(integer spin) which follow Bose—Einstein statistics (see Equation (1.1)). Due to the Pauli—
exclusion principle, no more than one fermion can occupy a given quantum state. However,
the number of bosons in the same state is unrestricted. Bosons are particles that exhibit
symmetric states while fermions exhibit asymmetric ones. The two-particle wavefunctions

are

[w(xlaEa)¢(x2’Eb) +¢($2,Ea)¢($1,Eb)] (1'3)

[Y(21, Ea)p(22, Bp) — (22, Ea) (21, Ep)] (1.4)
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for bosons and fermions respectively where the two particles are at positions 1 and z2
with energies F, and Ej. If the particles have the same energy, i.e. F, = F}, the symmetric
wavefunction becomes /29 (z1, E, )1 (22, E,) showing that bosons can co-exist in the same
state while the asymmetric wavefunction vanishes. The asymmetric wavefunction is null
making it impossible for two fermions to occupy the same state. In fact, once a state is
occupied by a boson, the probability of additional bosons scattering into the same state
is increased.

The thermal de Broglie wavelength relates temperature to the mean interparticle spac-
ing (see Figure 1.1), of order n='/3 where n = N/V is the number density of a gas of N

particles of volume V. The thermal de Broglie wavelength is given by

2mh?

AT = mkT

(1.5)

where m is the atomic mass. We note that the wavelength is inversely proportional to
the square root of the temperature T. At high temperatures, the interparticle spacing
is much larger than the de Broglie wavelength (n!/® > A\r) such that classical particle
like behaviour dominates, obeying the Boltzmann distribution. When the temperature
is lowered, the wavelength increases and becomes comparable to the interparticle spacing
(nl/ 3 ~ Ar). The wave packets of the particles overlap and combine to form a giant matter
wave, consistent with the system entering a quantum degenerate regime.

The criterion for Bose—Einstein condensation for a gas of identical particles in a three
dimensional non-interacting uniform system is fulfilled when nA3. < ((3/2) [18] where
¢(3/2) =~ 2.612 is the Riemann zeta function. Related to this condition, the expression for

the critical temperature for which condensation occurs is

2 h? n 2/3
L= <<<3/2>> ‘ (16)

This critical temperature is the highest temperature at which the excited states become

saturated and a anomalously large number of particles are forced into the lowest possible
energy state (zero momentum). The collection of particles residing in the ground state is
the BEC. The BEC transition is characterised in momentum space when a finite fraction
of the particles occupy the zero momentum state and the occupancy of this momentum

state is given by the well known result

Wi (5)

where Ny is the number of particles in the condensate and N is the total number of

(1.7)

particles in the system. A pure condensate (Ny = N) results in the region near absolute
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Figure 1.1: Criterion for Bose-Einstein condensation. (a) At high temperatures, the particles
act like billiard balls in a weakly interacting gas where d is the interparticle spacing. (b) At low
temperatures, the wavelength (Agg) properties of the particles start to emerge. (¢) At the BEC
transition temperature, the de Broglie wavelength becomes comparable to the distance between
atoms and a Bose condensate forms. (d) When the temperature approaches absolute zero, all of
the wavelengths overlap forming a pure BEC. Figure taken from Reference [17] with minor editing,.
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zero (T = 0K), although interactions also lead to quantum depletion.
In typical experiments, the gas is confined to a three-dimensional (3D) trapping po-

tential which is harmonic

xT

1
Vir)= 3™ (wiz® + wiz? + w?2?) (1.8)

where w,, w, and w, are the harmonic oscillator frequencies in the z, y and z directions
respectively. When the gas is in such a potential, the transition temperature in the

abscence of interactions is given by

T.=—-
k

- (@

1/3
)) ~ 0.94hoN'/3 (1.9)

where @ = (wWywyw,)'/?

is the mean of the harmonic oscillator frequencies. In the next
section, we outline the typical methods used for creating Bose—Einstein condensates ex-
perimentally, highlighting the use of harmonic trapping potentials and evaporative cooling
in doing so.

From a theoretical point of view, the study of these dilute BECs is attractive due to
the weak interactions leading to a mean—field macroscopic order parameter characterising,
to first order, the wavefunction of the many—body system. A nonlinear Schrédinger type
equation known as the Gross—Pitaevskii equation will be introduced in the next chapter

which describes the macroscopic order parameter.

1.2.1 Experimental realisation

In order to avoid a gas turning to solid at ultra—low temperatures, a gas can become
long lived at these temperatures by making it extremely dilute. The densities required are
around 1013 — 10'5 particles per cm®, much lower than commonly experienced (around 10"
particles per cm®). Using these densities in the expression for the critical temperature for
condensation (1.6) predicts temperatures of under 10~K. At such very low temperatures,
scattering only occurs in the s-wave scattering channel (corresponding to the angular mo-
mentum [ = 0) with the high energy scattering channels (p—wave, d—wave...) suppressed.
The strength of scattering is determined by a characteristic parameter, as, known as the

s—wave scattering length. Diluteness in a three dimensional system is given by
aln < 1. (1.10)

The very low temperatures required in order to form a BEC were impossible prior to
the development of laser cooling and magnetic and optical trapping of atoms in the 1980’s
for which the 1997 Nobel Prize was awarded to Steven Chu, Claude Cohen Tannoudji and
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William Phillips. It was first believed that spin—polarised hydrogen atoms would make
the ideal candidate for BEC due to the weak interactions between atoms and prediction
to remain in gaseous form right down to absolute zero [19]. The work in attempting to
achieve BEC with this species proved instrumental in developing evaporative cooling, an
important technique used in the final steps during the creation of any BEC. Mainly for the
reasons which made spin—polarised hydrogen a good candidate for condensation, it was
not possible to create BEC at this time. Reducing the temperature enough to realise BEC
at experimentally workable densities with small scattering lengths was extremely difficult.
Several experiments were then initiated with heavier alkali metals. They turned out to be
more suitable for the realisation of BEC due to their weak s—wave scattering and due to
the presence of only one outer—electron in the s—orbital, which makes them ideal for laser
cooling and magnetic trapping.

It was not until 1995, some 70 years after BEC was first predicted, that the first
experimental observation of a pure BEC was seen in a cloud of rubidium (¥”Rb) atoms by
a team of scientists at JILA at the University of Colorado led by Professors Carl Wieman
and Eric Cornell [5]. This was soon followed with BEC realisation in sodium #*Na by
the group of W. Ketterle at the Massachusetts Institute of Technology (MIT) [6] and also
in "Li by the group of R. G. Hulet [7, 8] at Rice University. The Nobel Prize was later
awarded to Carl Wieman, Eric Cornell and Wolfgang Ketterle in 2001 for

the achievement of Bose-Finstein condensation in dilute gases of alkali atoms, and for

early fundamental studies of the properties of the condensates [20].

However it was not until 1998 that experimental realisation of BEC in spin—polarised
hydrogen atoms was achieved by the group of T. J. Greytak and D. Kleppner at MIT [21]
due to complications, such as a tendency of the atoms to spin flip and form molecules.

In typical experiments, around 10° atoms are cooled to velocities corresponding to
temperatures around 1K through a Zeeman slower: the atoms are slowed with laser beams
in the opposite direction to the flow of the atoms. The atoms are slowed by the radiative
force produced by the absorption of photons.

The vapour is then loaded into a Magneto—Optical Trap (MOT) and Doppler cooling is
employed to cool the atoms further (1K temperatures) with the use of counter propagating
lasers placed in each perpendicular direction: front and back, left and right, up and down.
Here, if we take the laser to be ‘red’ detuned, i.e. the frequency is less than the atomic
resonant frequency, then the atoms travelling in the opposite direction to a laser beam
will lose momentum equal to that of the photon by absorbing the photon. The atom, now
in an excited state, will spontaneously emit the photon in a random direction, increasing
the atom’s momentum in that given direction. However, this leads to a net decrease of

momentum along the axis of the laser. This overall process of absorption/emission cools
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the gas in all directions due to the six counter—propagating laser beams. Known as the
Doppler limit, there is a lower attainable bound on the temperature of the gas through
the use of MOTs; this occurs when heating created by the momentum gain through the
emission of photons equals that of the cooling from photon absorption.

Through use of a technique known as Sisyphus cooling, it is possible to lower the
temperature to a limit known as the recoil limit (1xK). As the atoms climb up the
polarisation gradient, created by the counter—propagating orthogonally—polarised laser
beams, they gain potential energy while losing kinetic energy. Once the atoms have
reached the top of this potential gradient, they are optically pumped into a state with
lower potential energy where the climb up the potential starts over. Each time the process
is repeated, the atoms lose kinetic energy, lowering the temperature of the system.

The low temperatures achieved thus far with laser cooling are not enough to achieve
Bose—Einstein condensation with typical densities, which are low in order to avoid loses
due to three-body collisions. Often, the final step in the process is to use evaporative
cooling to reduce the temperature of the system further. In this case, the walls of the
trapping potential are lowered slowly enough so that high energy atoms escape from the
trap and the remaining atoms re—thermalise to a new lower temperature. This essentially
truncates the tails of the thermal distribution. Experimentally, by flipping the higher
energy atoms they are no longer held by the trap and are expelled. To form a condensate,
this process must be done slowly so that the density remains high enough to form a
condensate without losing too many atoms from the trap. This process is continued until
temperatures reach the order of nano—Kelvin: that is low enough for condensation, with
Bose-Einstein condensates, in general, forming for temperatures < 107K at densities
10~ Bem 3.

In addition to the first experiments with 8’Rb [5], 2*Na [6] and 7Li [7, 8] mentioned
above, to date BEC has been achieved in many other atomic species such as 8Rb [22],
4K [23], “He [24], 1™YDb [25], 133Cs [26], 52Cr [27], ®4Sr [28, 29], 86Sr [30], ®8Sr [31],
40Ca [32], %Dy [33]. Figure 1.2 shows the velocitydistribution of a gas of expanding
rubidium atoms illustrating the discovery of BEC [20].

A period of rapid growth in ultra—cold atomic physics followed the first experimental
realisations of BEC. Due to this unprecedented experimental control, trapped quantum
gases provide the means to study many—body quantum physics. The weak interactions
between the atoms make experimental realisations a useful test—bed for direct comparison
between quantum theory and experiment.

Experimental advances have led to exotic trapping potentials allowing for a wealth
of geometries to be created with BECs. Firstly, by increasing the trap frequency in one
direction, it is possible to create a disk shaped condensate which is effectively 2D. The

dynamics are frozen out in one direction once the temperature and chemical potential are
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Figure 1.2: Velocity-distribution of a gas of expanding rubidium atoms at three different tem-
peratures (T' > T,, T ~ T. and T < T.), confirming the discovery of BEC. The figure shows
three—dimensional snapshots. From left to right the atoms condense from less dense red, yellow
and green areas to very dense blue and white areas. Figure from Reference [20].

small relative to the energy of the trap in this direction. For example, such a geometry is
useful in the context of studying quantum vortices, tiny whirlpools which are supported
in BECs. These will stay relatively straight in this 2D trap and is therefore regularly used
in vortex dynamics experiments [34, 35]. By increasing the trap frequency in a second
direction (quasi—1D trap), the system becomes effectively 1D as all but one direction has
its dynamics frozen. In sufficiently elongated geometries, microscopic excitations known
as solitons are stable. As solitons are of relevance to this thesis, these are introduced in
more detail later on. Other realisable trapping geometries are ring (toroidal) traps where
persistent flow in a BEC has been observed [36, 37, 38, 39, 40], optical lattices [36, 41, 42]
which are potential candidates for quantum computing [43] and are used to probe the
superfluid to Mott insulator transition [44], double-well geometries [45] in order to study
Josephson oscillations [46] and more recently uniform potentials [47] in order to ease the
difference between experimental realisation and “conventional” study of spatially uniform
many—body systems.

In this thesis, the study of two interacting BECs is performed in great detail. These
systems will now be introduced through an overview of important previous work that has

been done both theoretically and experimentally.
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1.2.2 Theoretical Modelling

At temperatures very close to absolute zero such that T' < T, a nonlinear Schrédinger—type
equation, known as the Gross—Pitaevskii equation (reviewed in the following Chapter), is
a very good description of BEC stationary solutions and dynamics such as dynamics under
expansion, shape oscillations, sound, interface effects (see [48] for review), dark solitary
waves [49, 50, 51, 52|, bright solitary waves [53, 54, 55, 56, 57, 58] and vortices [59, 60, 61].

Many theoretical approaches exist for finite temperature modelling where the conden-
sate mode coexists with occupied excited modes, known as the thermal cloud. The thermal
cloud should be taken into consideration as should its interactions with the condensate.
The models typically employed to describe such systems can be split into two main cat-
egories, depending on whether the thermal cloud is considered as static or dynamical (in
different levels of approximation). In the following Chapter, a number of the theories used

to describe the condensate, the thermal cloud and interactions between these are reviewed.

1.3 Condensate Mixtures

1.3.1 Experimental Studies

Experimental and theoretical work has advanced greatly since the first experimental real-
isation of a two—component BEC, or mixture, with two different hyperfine spin states of
87Rb [62]. These first overlapping condensates were created through sympathetic cooling
of one hyperfine state in contact with the other evaporatively cooled state. Mixtures have
been produced using two different hyperfine spin states of a single isotope [62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72], different isotopes of the same atomic species [73] and different
atomic species [74, 75, 76, 77]. A key feature of these systems is that they exhibit misci-
ble and immiscible behaviour depending on the strength of the inter—species interactions.
Miscibility, where the interactions favour an overlap between the two species, has been
observed [73, 76] as well as immiscibility, where repulsion between the species favours their
spatial separation [63, 70, 73, 77].

1.3.2 Theoretical Studies
Stationary Solutions

Since the first experimental realisation of a two—component BEC, many static and dy-
namical properties have been studied numerically and analytically in harmonic trapping
potentials. Ground state density profiles, where the obtained results correspond to the
lowest energy for the system, were first investigated by Ho and Shenoy in 1996 [78] (This
was done in the context of the Thomas—Fermi (TF) approximation, which gives an ap-

proximate analytical description of a condensate in a harmonic trap and shall be reviewed

10
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in the following Chapter). Due to the co—centred traps considered, a range of symmetric
miscible and immiscible structures were accessed by varying interaction strengths and par-
ticle numbers. These results were confirmed when two hyperfine states of the same atom
(equal masses) were considered [79] and for different atomic species (nonequal masses) [80].
The latter case was also the first to consider non co—centred trapping potentials and the
arising asymmetric ground state structures. All possible classes of stationary solutions
have been found within the Thomas—Fermi approximation in idealised one—dimensional
systems [81]. In addition, in one dimension (1D), coexisting or segregated phases with
strong interactions were exhibited depending on parameters [82]. The boundary between
inter-penetrating BECs has been studied in great detail [83]. Metastable states, which do
not correspond to the lowest energy for the system, have been obtained numerically [84].
Under external perturbation, there can be a macroscopic transition from metastable states
to the true ground state in symmetric trapping potentials. When immiscible condensates
are considered (phase—separated regime), studies on binary BECs revealed two distinct
steady state solutions [85]. The first, for weakly segregated condensates where each den-
sity profile does not take on the symmetric profile of the trap due to surface tension
however the sum of both profiles do. The second, for strongly segregated condensates
where the total density profile takes a different symmetry than that of the trap. Us-
ing Monte—Carlo simulations, Reference [86] found additional steady state solutions with
broken symmetry. The transition from symmetric to asymmetric ground states has been
investigated [87, 88, 89]. Spontaneous symmetry breaking has been observed where one
species has attractive self-interactions [90]. In addition, the ground state geometry can
undergo a smooth transition from planar to ellipsoidal to cylindrical geometry for phase
separated condensates [91]. Finally, the ground states for rotating two—component BECs
have been classified [92, 93].

Experimentally obtained steady state solutions can be skewed by gravity when consid-
ering different atomic species due to one component being affected more than the other.
This gravitational sag has been included in a few models. Ground state density profiles in
time averaged orbiting potentials, where gravity separates the centres of the two species,
have been numerically calculated [94, 95]. By tilting the eigenaxes of the trapping poten-
tial, non—trivial gravitational sag is included and symmetric and asymmetric ground state

density profiles emerge [96].

Stability

The range for stability in a two—component system was first predicted for a sodium-—
rubidium mixture in a harmonic trap [97]. By finding the symmetric steady—state solutions
with different parameter regimes, the stability of these solutions has been investigated

when disturbed by an external force [98]. Similarly to a one species condensate, when
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attractive interactions are present, a system collapse has been observed [99, 100]. With
rotational symmetry, the Rayleigh—Taylor instability at the interface of the condensates
breaks the symmetry of the condensate interface when interaction strengths or harmonic

trap frequency is changed [101].

Dynamics at 7' =0

Many dynamical features of condensate mixtures have been looked at theoretically. Modu-
lation instability is a phenomenon in which weak spatial perturbations grow exponentially
into a train of localised waves and have been simulated for two colliding BECs [102, 103] or
by transferring half of the particles in a single species condensate into a different hyperfine
state [104, 105] following the experimental procedure at MIT [72]. Modulation insta-
bilities have also been studied in 1D [106] and quasi-1D [107] geometries. Dark-bright
solitons [108] have been studied in binary mixtures where the second component fills in
the gap left by the phase slip: these dynamical features are of relevance to this thesis and
shall be introduced in more detail later on. Vortices have also been extensively studied in
multicomponent condensates [67, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118].

Finite Temperature Models

In 1998, finite temperature theory where interactions with non—condensed atoms are con-
sidered (see [119] for review) was applied to two—component condensates when Hartree—
Fock models involving the collision of one condensate and one thermal atom were simulated
numerically [120, 121, 122, 123]. The steady states obtained can admit both symmetric
and asymmetric solutions. This was later expanded to the so—called Popov approxima-
tion [124], allowing for studies at high temperatures [125]. Asymmetric density profiles
have been studied from Monte—Carlo simulations at low—temperatures [126]. Investiga-
tion into the stability conditions for thermodynamic states were conducted [127]. Finally,
modulation instabilities with the inclusion of an additional growth term have been stud-
ied [128].

Non—Harmonic Trapping Potentials

Other trapping potentials have been considered with condensate mixtures. BECs in a
double well magnetic trap have been used to study the tunnelling between each well [129].
Two—component systems have also been examined in optical lattices [130], where the po-
tential has spatially periodic wells, and more recently in ring potentials where the fragility

of the system was found to depend on the speed of persistent currents [131].
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Other Quantum Gas Mixtures

Spinor condensates, which have at least three components with internal spin degrees of
freedom, are also generating much current interest (see [132] for a review).

Other varieties of ultracold atomic mixtures have been seen. These include Bose—Fermi
mixtures (studied experimentally [133, 134, 135, 136, 137] and theoretically [138, 139, 140,
141, 142, 143, 144, 145, 146, 147]).

1.4 Macroscopic Excitations — Solitons

There has been great interest in nonlinear properties of BECs [148] since their first ex-
perimental realisation. These include the manifestation of solitons in one and multiple

component systems, for which we will now give a detailed introduction.

1.4.1 Dark Solitons

A dark soliton is a stationary or propagating localised excitation which features a phase
slip in the ambient density and forms a density dip [149] (see Figure 1.3). Dark solitons are
supported for repulsive interactions [150]. First created in 1987 in nonlinear optics [151],
dark solitary waves have been created in atomic BECs in a controlled manner [49, 51,
152, 153, 154, 155] or through dynamical processes [156, 157, 158, 159] and are a topic of
intense research [160].

In [49, 51, 152, 153, 154, 155], phase imprinting was used by implementing a homo-
geneous potential, generated by a far detuned laser beam, which is applied to half of the
condensate for a given time such that the wave function acquires an additional phase fac-
tor. Changes to the density cause no significant perturbation leading to the formation of a
dark soliton [49, 152, 153]. Through use of this method, collisions of counter—propagating
dark solitons in atomic BECs were investigated verifying the concept of non-destructive
transmission, in agreement with numerical simulations [155]. In another experiment, a
pair of matter wave dark solitons was generated by merging two condensates initially pre-
pared in a double well potential [154]. Finally, dark solitons have been generated through
two—component BECs where the soliton exists in one component and is initially filled with
the second component. The second component is then selectively removed [51].

Various techniques have been used to create dark solitons through dynamical processes.
Firstly, via a slow light technique, a disk shaped region of atoms was suddenly removed
from the condensate generating counter propagating dark solitons [156]. In Reference [157]
dark solitons emerged when a barrier, formed by a beam, swept through the condensate at
intermediate speeds. For slow speeds, the fluid flow was steady while at fast speeds soliton

formation ceased and the absence of excitations was surprisingly once again observed.
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Figure 1.3: Densities of condensate containing a single dark soliton with 7 phase slip at z(I) = 3.5
(left) and z(I) = 0.0 (right) in 1D harmonic trapping potential.

For two of these experiments, the dark solitary wave decayed into vortex rings due to

their inherent instability to transverse excitations [51, 156].

1.4.2 Dark—Bright Solitons

Existing only in binary mixtures of BECs with strong repulsive interspecies interactions
such that the condensates are immiscible, the bright soliton exists here due to the coupling
with the dark soliton: the density dip left by the dark soliton in one component is filled
in with the bright soliton in the other component (see Figure 1.4). These macroscopic
excitations have recently been achieved experimentally using two different hyperfine states
of 8"Rb through counter flowing BECs [161, 162, 163] or a phase imprinting method [164].

Dark—bright solitons have also been studied analytically and numerically at zero—
temperature [106, 108, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176]. Re-
cently, work has been done on the non—ideal case of finite temperature for solitons in

mixtures [177].

1.5 Quantum Turbulence

Turbulence is a complex dynamical process that has been studied in many fields for cen-
turies. While eddies form the base for turbulence in a classical fluid, quantised vortices
are the topological defects appearing in BECs. Quantisation of circulation means that
the rotational motion is constrained to discrete vortices that all have the same core size.
See References [178, 179] for recent reviews on quantum turbulence in both superfluids
and atomic BECs. Relevant to this Thesis, here we introduce some of the recent de-
velopments on quantum turbulence in two component systems. Quantum turbulence in

binary mixtures was first generated numerically through couterflow instabilities [180], the
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Figure 1.4: Densities of condensates containing a single dark—bright soliton with 7 phase slip in
first component at z(I) = 5.0 in 1D harmonic trapping potential. Solid black curve — component
1; Dashed red curve — component 2.

two miscible BECs were counter propagated and quantised vortices are nucleated. Ref-
erence [181] generated quantum turbulence through the Rayleigh-Taylor instability in
immiscible condensates in harmonic trapping potentials. Other work has been carried out
for spinor condensates [182, 183, 184].

1.6 Thesis Outline

We wish to give a brief outline of this Thesis and highlight collaborative work, also noted
in relevant chapters. Divided into three main parts, the first part of this Thesis introduces

the notions used to generate results in Parts IT and III.

Part I — Introduction to Bose Gases

We begin, in Chapter 2, by providing the theoretical concepts required in order to under-
stand numerical models used in this thesis. We start, from the second order Hamiltonian,
by reviewing the Gross—Pitaevskii equation (GPE), a Schrodinger like equation widely
used in describing condensates at zero temperature. The GPE is then generalised into
coupled equations, one for each component considered in a mixture, where an additional
term is present taking into account interspecies interactions. Finally, we introduce differ-

ent theories used in describing condensate interaction with the thermal cloud, which can
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play an important role in analysing experimental results.

Part II — Bose—Einstein Condensate Mixtures in Harmonic Trapping Potentials

After showing our numerical procedure matches previously obtained numerical ground
state solutions of the coupled Gross—Pitaevskii equations [80], in Chapter 3 we qualitatively
reproduce the density profiles observed in a recent 8"Rb-!33Cs experiment [77]. To achieve
these results we take into account asymmetries in the harmonic trapping potentials via
additional linear potentials before imaginary time propagation (see Appendix B). The

work presented in this Chapter is an expansion of previously published work:

o Fquilibrium solutions for immiscible two-species Bose-FEinstein condensates in per-
turbed harmonic traps,
R. W. Pattinson, T. P. Billam, S. A. Gardiner, D. J. McCarron, H. W. Cho, S. L. Cor-
nish, N. G. Parker, and N. P. Proukakis,
Phys. Rev. A 87, 013625 (2013).

In Chapter 4, we expand on our studies investigated in Chapter 3 on condensate
mixtures to include growth dynamics while using the same experimental parameters. We
briefly discuss results obtained by our collaborators I. K. Liu et al. (Department of Physics,
National Changhua University of Education, Changhua 50058, Taiwan) with the coupled
Stochastic Projected Gross—Pitaevskii equations to motivate our work on dark—bright
solitons in mixtures when condensate growth is considered. The work presented in this

Chapter is partially an expansion of previously submitted work:

e A Phenomenological Model of the Growth of Two—Species Atomic Bose—Einstein
Condensates,
R. W. Pattinson, N. G. Parker, and N. P. Proukakis,
J. Phys.: Conf. Ser. 497 012029 (2014).

with results also to appear in a report comparing the simple dissipative model to the
more accurate coupled Stochastic Projected Gross—Pitaevskii equations modelled by our

collaborators.

Part III — Classical Field Methods for Non Trapped Bose Gases

In Chapter 5 we switch gears slightly and focus on non trapped gases via the classical fields
method. We outline the numerical procedure for solving a system with highly nonequilib-
rium initial conditions. Firstly, the evolution of a single component system is examined.
Similar simulations with two components, either coexisting in the same spatial domain or
phase segregated, are then studied. These two components are either both nonequilibrated

or obtained by splitting the particles of a thermally equilibrated single component state.
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We then investigate the effects of suddenly quenching the intercomponent interactions.
This work was undertaken thanks to the help of A. J. Youd.
In Chapter 6 we briefly review the main findings of this Thesis and discuss opportunities

for follow on work.
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Theoretical Framework

At zero—temperature, where the lowest energy level is macroscopically occupied and when
the gas is dilute enough such that particle interactions are weak, a common model to
describe Bose-Einstein condensates is a nonlinear Schidinger equation (NLSE) known
as the Gross—Pitaevskii equation (GPE). In order to describe condensate mixtures, this
model can be trivially generalised to two coupled Gross—Pitaevskii equations (CGPEs).
The GPE model has proven to be a good description for many static and dynamical
properties both for single condensate systems [18] and for condensate mixtures [164], even
though thermal contributions and quantum fluctuations are not taken into account. The
CGPEs form the basis for the numerical results presented in Part II of this thesis. In this
chapter, we introduce the GPE and its solutions followed by a ‘generalisation’ of these for
the CGPE.

To improve on the theoretical description, finite temperature effects can be added using
a range of different models. Such models are reviewed in the latter part of this Chapter,
with some emphasis on classical field methods which are then used in Part III of this

Thesis to simulate non trapped homogeneous finite temperature condensate mixtures.

2.1 Gross—Pitaevskii Equation: Origin and Explanation

A system formed from N interacting bosons can be described by an N-body wavefunction
VU (ry,..,ryN,t) where r; is the position of atom . This wavefunction obeys the well known
Schrodinger equation
ov h?
ih— = |—— (Vi+ V3+ ..+ Vi) + V (z1,29,...,zn) | L. (2.1)
ot 2m
where V; is the derivative with respect to r;. For a system of many particles, it is imprac-
tical to find a direct solution for the many—body wavefunction. The N-body wavefunction

is reduced into a more manageable form through use of a map into an occupation num-
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ber basis set. The system Hamiltonian can be written in terms of Bose field operators

U (r,t) (\ilT (r, t)) for annihilation (creation) of a particle at position r and time ¢ as

2
H= [ drd’ (r,t) —h—VQ + Vit (r, )| U (x, 1)
/ [ 2m (2.2)

+ % //drdr’\ifT (r,t) O (', )V (r—1) o (r',1) U (r,t)

where V (r — r’) is the two-body interatomic potential and Ve, (r,t) the external poten-

tial. The Bose field operators obey the following commutation relations

{\Tf (r,t), i (r',t)] =4 (r — r') , 2.3
[\iﬁ (r,t), W' (r’,t)} = [\i' (r,t),\i’(r’,t)} = 0. .

In a sufficiently dilute gas, the interatomic potential can be approximated by an effective

contact potential due to low—energy, s-wave collisions such that [119]
V(e—r)=gé(r—r), (2.4)

and the effective interaction strength is defined by

Arh?a
9= ) (2.5)
m

where a is the s—wave scattering length. It is important to note that for g > 0 the effective
interactions are repulsive while for g < 0 interactions are effectively attractive. The second

quantised Hamiltonian (2.2) evolves according to the Heisenberg equation of motion

o (r,t) -

ih— :[\Il(r,t),ﬁ]. (2.6)

Thus, by substituting (2.2) into (2.6), we obtain

T 2
TEAULISY [ t)] (e t) + ¥ (e )0 () U (). (27)

We can separate the Bose field operator into two parts via

~ ~

U (r,t) = ¢ (r,t) + 1 (r,t), (2.8)

where ngb(r, t) and " (r,t) correspond to a field operator for the condensate and the non—
condensate respectively. Under the symmetry breaking assumption, the operator é(]ﬁ'7 t)

is replaced by ¢ (r,t), known as the condensate wavefunction, whereby all field operator
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dependence is in 1 (r,t). This leads to the total number of condensed atoms not be-
ing conserved. However, it can be assumed that the addition or removal of an atom
does not affect the state of the system, N =1 ~ N for a condensate containing a
large number of atoms. We are, in essence, decomposing the bosonic field operator in
terms of a macroscopically populated mean field term defined as the ensemble average
¢ (r,t) = (U (r,t)) and a fluctuation term 1) (r,t). We can approximate the atom den-
sity into two contributions n (r,t) = (¥f (r,¢) U (r,t)) = n. (r,t) + ng (r, ) through use of
Equation (2.8). These are a condensate density n. (r,t) = |¢ (r,t)|* and a non-condensate
density n; (r,t) = (&f (r,8) 9 (r,)). Tt is thus common to identify n, (r,¢) as the density
of the thermal atoms and v (r,t) as the operator for the thermal cloud.

In the limit of zero—temperature, we assume the thermal depletion of the system is
negligible. In addition, in weakly interacting systems (¢ < A\gp) quantum fluctuations
may not play a large role and we can therefore neglect thermal contributions such that
¢ (r,t) = 0. Hence we set U (r,t) = ¢ (r,t). The Heisenberg equation of motion (2.7)
reduces to

0¢ (r,t) h?

ihiat = %Vz + Veat (1,8) 4+ g |6 (r,1)[*] ¢ (r, 1) . (2.9)

This is the Gross—Pitaevskii Equation (GPE). Introduced independently by Gross [185,
186, 187] and Pitaevskii [188, 189] in the early 1960’s to study vortex lines in an imperfect
Bose gas, the GPE [48] is of the form of a time-dependent Schrédinger equation with
the addition of a nonlinear term g |¢ (r,t)|> ¢ (r,t) arising from atomic interactions. The

wavefunction is normalised to the total number of particles

N:/|¢|2dr. (2.10)

For T <« T, where T, is the critical temperature for condensation, the GPE is a good
description of many features of BEC dynamics such as dynamics under expansion, shape
oscillations, sound, interface effects (see [48] for review), dark solitary waves [49, 50, 51, 52],
bright solitary waves [53, 54, 55, 56, 57, 58] and vortices [59, 60, 61].

2.2 Time-Independent Solutions

Stationary states can be found by eliminating the time dependence in the GPE through

the substitution

¢ (r,t) = ¢ (r) e /M, (2.11)

where 1 is the chemical potential of the system, characterising the energy required to

remove an atom from the system. From Equation (2.9), the resulting time-independent
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equation is
hQ

" 2m

o (x) = [ V4 Viar (1) + 9 160 <r>\2] b0 (x) . (2.12)

This can also be found by minimising, at fixed p, the quantity £ — uN [18] where E is the

energy functional of the system
h? 2 2 1 4
B@) = [dr [ V6@R+Ver 06 0P + 596!, (213)
and N the fixed total number of particles

N = /dr|¢(r)|2. (2.14)

2.3 Ground State Solutions in Harmonic Traps

In Figure 2.1, we show the time-independent solutions for attractive, repulsive and non
interacting condensates in a harmonic trapping potential in three dimensions. In the case
of a non—interacting condensate (g = 0), the ground state has a Gaussian density profile.
For an anisotropic trapping potential (nonequal trapping frequencies) the ground state

wavefunction is [18]

\/N —x2/212 —y? /212 —22/212
QS(] (I’) = We e ve s (215)

where the widths [; (i = x,y, z) of the wavefunction in each direction are given by

h
=/ —. 2.16
p— (2.16)

For effectively attractive interactions (g < 0), the ground state solution is narrower and

taller in comparison to the Gaussian solution for an ideal Bose gas. For repulsive interac-
tions (g > 0), the ground state density profile has an increased width and lower maximum,
approaching the form of an inverse parabola. Here, we introduce the interaction parameter

Na
X =" (2.17)

where [ is the harmonic oscillator length in an isotropic system (I =1, =1, =1;). x is a
measure of the effects of the interactions on the system. For small x(< 1), we are in the
weakly interacting regime, close to the ideal Bose gas limit x = 0. When y > 1, we are in
the strongly interacting regime. In this latter regime, the Thomas—Fermi (TF) limit is a

well known approximation for the ground state of the system and shall be introduced in
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Density/Potential

Position
Figure 2.1: Schematic of ground state density profiles with repulsive interactions (blue, dash), non—
interacting (black, solid), and attractive interactions (red, dash—dot) of the GPE for a harmonic
potential (orange). The wavefunctions are normalised to the same number of atoms i.e. equal in
all three cases.

the following subsection.

2.3.1 Thomas—Fermi Limit

In a harmonic trapping potential, the simplest solution to Equation (2.12) is obtained by
ignoring the kinetic energy term. This is a good approximation everywhere except the
trap edges provided we are in the limit of large N with large repulsive interactions (g > 0)
such that the ¢ (r)|* ¢ (r) term dominates [190] and x > 1. In this limit, the ground

state solution is approximated by

Vit = Vewt (v) /g, if pp > Vg (r) (2.18)

0, otherwise

¢ (r) =

which is known as the Thomas—Fermi (TF) solution for a condensate in a harmonic trap-

ping potential

1
Vet (r) = 3™ (wimQ + w5y2 + w§z2) , (2.19)

where w;,wy,w, are the trapping frequencies. The TF radius is given by
21

Ri=,|—=,1=2,9,2 (2.20)

mw;
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Density

Position
Figure 2.2: Schematic of Thomas—Fermi approximation (black, solid) and the ground state density
profile obtained numerically (red, dashed).

which characterises the spatial extent of the condensate. In this regime, the condensate
density distribution takes the shape of an inverted parabola but the approximation fails
close to the condensate edge r ~ R; where it abruptly vanishes rather than diminishing
gradually in comparison to the exact numerical solution (shown in Figure 2.2). This is due
to the kinetic energy contribution being significant at the condensate edge. As x increases,

this discrepancy at the edge decreases.

2.4 Solutions in a Homogeneous System

For a homogeneous condensate (Vez: = 0), the time-independent GPE becomes

h2

— V2o () + g[8 (1) 6 ) = o (). (2:21)

Initially we assume that (over the biggest spatial extent) the effect of the kinetic energy
contribution V2¢ (r) can be neglected to first approximation due to the behaviour of the

fluid being dominated by interactions. If g > 0, this becomes

gle () (r) = po (r) = glo (r)* = . (2.22)
Remembering that the condensate density is given by n. = |¢ (r)|?, we find

Ne = K — constant. (2.23)
9
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Density

Position
Figure 2.3: Healing at hard wall given by Equation (2.26) (black, solid) and the ground state
density profile obtained numerically (red, dashed).

The characteristic lengthscale £ corresponds to the spatial region needed by the condensate
to reach its equilibrium far from perturbations and is obtained by balancing the kinetic
energy term and the interaction term in Equation (2.21). We replace V26 (r) by 2¢ (r) /&2
where the spatial scale of variations is denoted by &, obtaining

h? 1

Eé_Q ZQW(T)‘Q = gn.(r). (2.24)

Hence the healing length, for repulsive interaction (g > 0), is given by

h
&= N (2.25)

In the presence of a hard—wall boundary, the fluid density is pinned to zero. Taking the

boundary at = = 0, the solution in the x—direction is given by

¢ () = \/nig tanh (g) . (2.26)

In Figure 2.3, we show the healing at a hard wall given by the solution (2.26) and compare
to the exact solution obtained numerically. These match up perfectly.

In the case of the non—interacting (¢ = 0) ideal Bose gas, the GPE reduces to the
Schrodinger equation. However for attractive interactions (g < 0), the condensate is no

longer stable in a homogeneous system.
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2.5 Hydrodynamic Equations

The wavefunction of the system ¢ (r, t) is a complex function and can be expanded in terms
of amplitude /n. and phase 6 (r,t) variables through the Madelung transformation [191]

¢ (r,t) = /ne (r, 1)@, (2.27)

where n. (r,t) = |<;5(r,t)|2 represents the density of the system. By plugging this into
the GPE (2.9), it can be shown that the imaginary terms lead to a conservation of mass

equation
one

ot
where the superfluid velocity is defined by its phase

+V-(nev) =0 (2.28)

h
v =—Vé. (2.29)
m
Similarly, equating the real terms with this substitution gives Euler’s equation

0 1
(E + v.V) ve=—-VP+F, (2.30)

with the addition of a quantum pressure term [192]

1 1
P= §gng — chv2 (Inng). (2.31)
The force term F = —VV arises in the case of trapped gases from the harmonic confining

potential.

2.6 Quantisation of Circulation

The Madelung transformation defines the superfluid velocity as the gradient of the phase
(see Equation (2.29)). Circulation is defined by

o — 7{ v . dr. (2.32)

Using Equation (2.29) we can write

K= EAH (2.33)
m

where A6 is the change of phase around a vortex. In order for the wavefunction to remain

single valued the change of phase around a vortex must be an integer multiple of 27. The
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circulation must be in integer value of 27h/m

2mh
=]— 2.34
il (234
where | = 0,+1,+2,... When the phase winds round in an anticlockwise direction, the

vortex is negatively charged while when it winds in a clockwise direction, it is positively
charged. Onsager [193] was the first to propose a description for quantisation of circulation.

Feynman independently proposed quantised vortex lines [194].

2.7 Harmonic Oscillator Units

For a harmonic trapping potential (2.19), the most commonly used scalings to make the
GPE (2.9) dimensionless are harmonic oscillator units. Length is expressed in units of
the non—interacting harmonic oscillator length [ = y/h/md, energy in terms of harmonic
oscillator energy hw and time in terms of W~ where @ = (wxwywz)l/ 8. such that

7 . .Yy _ oz ~ FE

t=tw, T=—-, ==, Z=-and £ = —, 2.35
where the tilde denotes the dimensionless quantity. In order to conserve the number of

particles in the system, we require

N:/\¢]2dr:/\¢]213df ::/‘&(Qdf. (2.36)

Hence
b (T, 1) = ¢ (r,t) 132 (2.37)

The GPE becomes

¢ (t,1

iM _ v2 + Vext ‘ {)‘ :| (2.38)

ot

where )

5 _ g

Veat (T) = 22(wx —i—wy —|—wz)andg:ﬁ. (2.39)

Similarly, the energy of the system is now given by

- Tles o 12 o e g2 1~ a4

E:/dr [§‘V¢(r,f)‘ Ve ®) [0 @[+ 23] (.0) ] (2.40)
and the chemical potential, in the time—independent case, is

(2.41)

§”|t

fi =
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We use this form of the GPE in Chapters 3 and 4 which consider condensate mixtures in

harmonic trapping potentials (although we then drop the tilde for simplicity).

2.8 Natural Units

In a homogeneous system, the natural unit of length to use in non—dimensionalising the
GPE (2.9) is the healing length . Energy F is rescaled in terms of the chemical potential
w and speed v is expressed in units of the speed of sound ¢ = y/gn./m [160] such that

. B
f=2 g=2 5-2 E=Zands=", (2.42)

eV e T i c

where the tilde once again denotes the dimensionless quantity. The wavefunction density

is expressed in units of the homogeneous density n. and becomes

¢

h = . 2.43
From these rescalings, it follows that time ¢ and frequency & are given by
t= fe and © = w_§ (2.44)
13 c
The GPE (2.9) reduces to the dimensionless form
D¢ 1 ~ ~12] -~
la_(f _ [—§v2 + Vo (1) + ‘qﬁ‘ ] 3, (2.45)

where ‘7%,5(1') = 0 in a homogeneous system but is included here for completeness. The

energy functional is now given by
- 1) - 2 . - 2 11- 4
B [ar [5 V6 (1) + Vet (1) & (1) + 5 [0 (2. ] (2.46)

We use this form of the GPE in Chapter 5 where condensates are considered in periodic

boxes.

2.9 Reduced Dimensionality

In a quasi-1D system in a harmonic trapping potential (assuming w, = w, and w; < w;),
the radial component tends towards the harmonic oscillator ground state. The reduced
dimensionality equations are derived by decoupling the wave function into the product of

a time—dependent axial component and a time—independent radial component. Therefore,
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Atom | m(10~2"kg | as(ao)

‘He 6.64 302 [195]
23Na 38.18 62 [196]
4K 68.06 78 [197]

8TRb 144.42 100 [198]
133Cs 220.78 280 [199]

Table 2.1: Table of mass m and s—wave scattering lengths a, for the most common atomic species
that have been condensed.

we take

(;5(1‘,75) = &(Z’t) o} (CE,y) ) (2'47)

b1 (x,y) _ /%efmexQ/QhefmeyQ/Qh. (248)
7

The prefactor is obtained from the normalisation condition [ dzdy|¢, (z, y)]2 = 1. These

where

approximations give rise to the following 1D GPE

7 2 9271 - ~
‘%é‘z”f) _ _;_m%+ [V(z)—i—U‘qﬁ‘Q—i-th] ¢ (2.49)

ih

where U = g/271%, V (2) = [ dadyVes (r) and, I; = y/h/mw is the transverse harmonic
oscillator length [200]. Substituting this approximation into the equation for the system

energy (2.13) and integrating out the dependence on z and y gives

Ez(t):/dz "

2m

2

LG . ‘gz;(z,t)‘Q—FV(Z)

0z

g
47Tli

‘ 4

- 2
gb(z,t)‘ +

6(z1)

(2.50)
For the time—independent case, the 1D chemical potential absorbs the additional Aw, term

such that a new chemical potential
pp = p—hwy (2.51)

can be defined.

2.10 Two—Component Condensates

In this section, we generalise part of the theory introduced in the current chapter for a two—
species BEC. In the time-dependent coupled Gross—Pitaevskii equations (CGPE), each

equation describes one condensate similar to the GPE with the addition of a new nonlinear
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interaction term in both equations in order to include the interspecies interactions. These

are given by

. O0¢q (1, t h?
in ¢13(t ) _ [— 5 V2 4+ Vi 4 g11 |¢1 (5, 8)]* + g12 | do (TJ)’Q] ¢1 (r,t),

S (5.0 h; (2.52)
. r,
ih—2 = |—=—V? + Vo + g2 ¢ (1, 8)]* + gu2 |61 (x,8)]| b2 (x, 1),

(975 2m2
where the subscripts 1,2 denote the different condensate components and
4rh3ag; 2mh?
Gii = 7; it for § = 1,2 and g12 (= g21) = mh” (ma + mQ)alQ, (2.53)
m; mimsa

are the intra—species and inter—species interaction strengths respectively. The full deriva-
tion for these equations is given in Appendix A. The time-independent equations are
obtained by using the substitution ¢; (r,t) = ¢o; (r) e~/ for each wavefunction in Equa-
tion (2.52) and give

2
p1dor (r) = [—Q—VQ + Vi (r) + g11 [po1 (£)] + g12 |bo2 (I‘)IQ] $o1 (r),
i (2.54)
h? '
podo (r) = [—%V2 + Va (r) + g2 [do2 ()7 + g12 | on (1“)|2] Poz (r) .
The energy of the system is given by
h? 1
B(or.60) = [ ar |5 1960 )+ (0 10n ()7 + S for 01|
+ [ [ 90w 412016 0 + Sl )1 (2.59)
2 2 2 2 2922 2

+ [ gl @F o2 @
and N7 and Ny, the condensate atom numbers in each species, are respectively given by
N = [ ario @, (2.56)

The CGPESs can be written in dimensionless form and in reduced dimensions in the same

fashion as shown for single species condensates through Equations (2.35) and (2.47).

2.10.1 Overlapping and Segregated Phases

In this Section, we derive the immiscibility criterion following the analysis of [85]. For

simplicity, we consider a homogeneous system where Vi(r) = Va(r) = 0 with hard wall
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barriers and neglect the kinetic energy terms in Equations (2.54), giving

2 _
| = M1,

g11 |<251|2 + g12 |2

(2.57)
g22 |<252|2 + 912 |1

|2 = H2-
If the condensates overlap the densities p; = ](MQ can be written as p; = N;/V where
V is the volume. Equations (2.57) become g11p1 + g12p2 = 1, g22p2 + g12p1 = pe and the

corresponding total energy is given by

1 NZ2 N2 N1Ny
Ep == 1 “2 49 2.58
o = 5 gi1 % + g22 % + 2912 % ( )

For small gj9, excitations are stable and any perturbation will increase the system energy
by a small amount. Hence in this regime, this is the ground state of the system. However,
if g1o is large, this is no longer true. We shall show that phase segregated states have a
lower total energy.

Consider phase segregated condensates where the two condensates occupy different
positions in space. We ignore any energy from the thickness of the interface between the
two condensates. Let V; be the volume occupied by condensate i. The densities are now

given by p; = N;/V;. Equations (2.57) are now g;;p; = p; and the total energy is

N } . (2.59)

1
Eseg = 5 |:911711 + 92272

We minimise E,, with respect to Vi and Va to give g1 N/ V2 = gaN3/V3. Using
V = V1 + V5, we obtain an expression for the volume occupied by each of the condensates

in terms of the total volume

Vi =

v
1+ \/g22/g11 (N2/N1)’ (2.60)

V :
1+ o1 /g22 (N1/Na)

The condensate densities are then written as

No\ N

g N1V (2.61)
_ g1 N1\ N2 '
pp=1+,/— | .
g2 N2 ) V
The total energy can now be written as
1 N? N3 N N:

Eyeg =3 [91171 + 922 % + 2v/g11022 i/ 2] . (2.62)
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Figure 2.4: Boundary between miscibility and immiscibility for g11 = 1.

The difference in energies between the overlapping and segregated states is

NN,

AE = Eoy — Eseqg = (912 — v/911922) v (2.63)

Thus, for large enough inter—species interactions

912 > /911922 (2.64)

the energy for the phase segregated state is lower and the system favours this layout. This
result is independent of the particle numbers and condensate size. This results has also
been found using stability analysis [18, 97].

We thus take the critical value of the interspecies interaction strength to be

952 = [V911922] - (2.65)

For g12 < —gf,, the condensates collapse due to the attractive interactions between each
species overwhelming the repulsive interactions within each species. For gja > g¢f,, the
mutual repulsion between the condensates dominates, forcing phase segregation between
them such that the condensates no longer overlap (immiscible). For —gfy < g12 < ¢{s,
the repulsion between particles of the same species dominates and the condensates overlap
(miscible). We note here, summing the density profiles of each component of a two—species
system in harmonic trapping potentials leads to an inverse parabola for the overall density
profile. Figure 2.4 shows the miscible and immiscible regions when g1; = 1. Typical values

for interspecies scattering are given in Table 2.2.
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Atoms as(ap) | Immiscibility Criteria
BNa-8"Rb | 73 [201] as > T8ag
4K-8Rb | 650 [197] as > 88ag
8TRb-133Cs | 206 [202] as > 167aq

Table 2.2: Table of s—wave interspecies scattering lengths as and immiscibility criteria for interac-
tions between different possible atomic species.

2.10.2 Thomas—Fermi Approximation in Two—Species System

Similarly to Section 2.3.1, we consider a two—species system in harmonic trapping poten-
tials and ignoring the kinetic energy term. In the limit of large N7 and Ny with large
repulsive self-interactions (g11 > 0, g22 > 0), the ground state solutions are approximated
by

)

b1 (r) = \/922 (1 = Vi (r) — g12 (u2 + Va (r))]

g11922 — 9%2 (2 66)

g11922 — 9%2

s (r) = \/911 (12 = Va (x) = g12 (ua + Vi (v))]

if gii [j — Vi (v) — g12 (i + Vi (1)) /(911922 — 9%2) > 0 or 0 otherwise. For large g12, the
results given by the TF approximation for a two—species condensate become unsatisfactory

in comparison to exact numerical results [80].

2.10.3 One-Dimensional Dark—Bright Solitons

Immiscible condensate mixtures can support nonlinear structures in the form of dark—
bright solitons. These are characterised by a gap in the density of the dark component
with a phase slip across its centre while the bright component occupies the space left due
to the required immiscibility between the two condensates. On a homogeneous background
(Vi = 0) with g;; = 1, the 1D dark-bright soliton solution for the dark soliton in component

one and the bright soliton in component two is given by [108]
1 = iy/py sin () + /g cos () tanh {k [z — q (t)]}

- (2.67)
Yo =4/ NTZ exp (i{29t) exp (izk tan («v)) sech {k [z — ¢ (¢)] }

where the soliton inverse length is k = /u; cos?(ar) + (N2/4)2 — Na/4, the bright com-
ponent frequency shift 2 = x2(1 — tan?()/2) + u1 — u2, the soliton position is g(t) =
q(0) + tr tan(a) and « the velocity—angle.

In the remainder of this section, we present numerical results of the CGPE with one
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Figure 2.5: Time evolution of a dark—bright soliton with initial phase slip at z(l) = —5 with
N7 = 15000 and N2 = 400. Left — dark component; right — bright component.

or two appropriately imprinted dark—bright solitons. For simplicity, we initially consider
a 1D system with harmonic trapping potentials where w; = ws, m; = mo and repulsive
interaction strengths such that the immiscibility criteria is satisfied, i.e. g%y > g11g02. Fig-
ure 2.5 shows the dynamical evolution over time of a dark—bright soliton initially chosen
to be off-centre. Similarly to a system with no bright component, the soliton oscillates
backwards and forwards in the harmonic trap with no dissipation while the bright com-
ponent follows the trajectory of this dark soliton. The amplitude is determined by the
distance from the centre of the trapping potential and the frequency of these oscillations
by the particle numbers [162]. If the soliton was initially positioned at the centre of the
trap z = 0, no oscillations would occur. The width of the dark soliton varies depending
on the number of bright particles in the system: if these increase, the width of the dark
soliton also increases as shown in Figure 2.6. The oscillation frequency of the dark—bright
soliton does not depend on the number of particles in the bright component. It is solely
dependent on the initial location of the phase slip. The height of the bright soliton is
determined by the location i.e. depth, of the dark soliton due to our numerical imprinting:
the closer it is located to the trap centre, the more the height of the bright component
increases, thus reducing its width (see Figure 2.7).

Interactions between two dark—bright solitons, first investigated in Reference [108],
have also been of recent interest. An example of such collisions is shown in Figure 2.8.
The initially static soliton at the centre of the trap z(I) = 0 is distorted by the quicker
moving soliton initially at z(l) = 5. This forces the central soliton to start oscillating with
increasing amplitude over time. The particle number in each bright component remains

constant, i.e. there is no exchange of particles between the solitons.
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Figure 2.6: Density profiles of dark component with dark-bright solitons at z(l) = —5 with Ny =
15000. (Solid) black curve — N = 400; (dashed) red curve — Ny = 1000; (dot—dashed) blue
curve — Ny = 1600.
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Figure 2.7: Density profiles of bright component with dark—bright solitons with N; = 15000 and
Ny = 400. (Solid) black curve — phase slip at z(I) = —5; (dashed) red curve — phase slip at
z(1) = 0; (dot—dashed) blue curve — phase slip at z(1) = 2.5.
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Figure 2.8: Time evolution of dark—bright soliton with initial phase slip at z = —5 and z = 0 with
N7 = 15000 and N2 = 400. Left — dark component; right — bright component.

2.11 Finite Temperature Approaches

At temperatures lower than the critical temperature for condensation (7' < T.) and above
absolute zero there will be macroscopic occupation of the condensate mode but also of
many of the low—energy excited modes. In fact, even at T" > T,., when the condensate
is not present many of these excited modes will be highly occupied. In this section we
review a number of the theories used to describe the condensate, the thermal cloud and
interactions between these. While some of these theories are used directly in obtaining
results presented in this Thesis, a broader range of theories are reviewed for context.
Namely in Subsection 2.11.4, a GPE with phenomenological damping is shown to arise

from a number of finite temperature approaches.

2.11.1 Static Thermal Cloud Models

The generalisation made to the GPE in coupling the condensate dynamics to the ther-
mal cloud shall now be described. Following this, a quantum—-Boltzmann equation (QBE)
shall be introduced for the evolution of the thermal cloud. We once again use the substi-
tution (2.8) in Equation (2.7). Taking an average gives

L 00 (r,t h2 . R .

n?200 | g v )o@ s gd ) E @), (268)
where, due to symmetry breaking, terms including the average of only one non—condensate

operator are considered to be zero i.e. (1)T) = (¢) = 0. Expanding the final term gives
() = ncp + me* + 2m0 + (P11), (2.69)
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where n (r,t) = |¢ (r,t) [ is the condensate density, ny (r,t) = (T (r,t) 4 (r,t)) is the
non-condensate density and m (r,t) = (¢ (r,t) ¢ (r,t)) is the anomalous average which
has an unequal number of annihilation and creation operators. The equation of motion
for the condensate thus becomes

. 09 (r,1) W o

h————=|—-——V"+ V. t)+2 t t

t ot om + Vet (v) + g (ne (r, 1) 4+ 2n (v,1)) | ¢ (r,) (2.70)

+gm (r,t) ¢* (r,8) + g (& (r,0) ¢ (v, ) & (r, 1))

If all the particles are in the condensate (ng, m, (¥T1)) — 0), we recover the GPE.

The Hartree—Fock Limit

In the Hartree-Fock (HF') limit, the anomalous average and triplet term
(1[1T (r,t)zﬁ (r,t)zﬁ (r,t)) are neglected, retaining only terms with one creation and one
annihilation term. In this limit the time-independent generalised GPE becomes

h2
—%W + Vewt () + gneo + 2g9nu0 | do = pdo (2.71)

where the subscript 0 denotes a static value. The additional term nyg is the equilibrium
thermal cloud. Conventionally, the excitation spectrum can be described semiclassically
using the momentum p and the local energy € of the thermal atoms as given by the HF
energies of the form

2
£(e0) = PL Ve (1) 4 20 o (1) o ()] (2.72)

The Hartree—Fock—Bogoliubov Limit

The Hartree-Fock—Bogoliubov (HFB) limit is a generalisation of the HF limit which in-
cludes all creation and annihilation quadratic terms i.e. the anomalous average and its
conjugate. However, this approximation has a fundamental limitation: prohibited for the
symmetry breaking theory, the homogeneous spectrum of elementary excitations does not
vanish in the limit of zero-momentum but rather leaves a gap.

The HF and HFB limits form a good basis for finite temperature theory, however they
neglect important information about particle collisions between condensate and thermal
cloud, mainly due to neglecting the triplet term (¢ (r,t)4 (r,t) % (r,t)). A higher order

theory is required to account for these collisions.
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2.11.2 Zaremba—Nikuni—Griffin (ZNG) model

In the ZNG approach, the anomalous average is neglected and the product of the three
non—condensate terms is found to be imaginary constituting a growth/decay term in a
generalised GPE [203, 204, 205]

9¢ (r, )
ot

. R _, 9 .
Pt | v @) g (0 0+ 20 ) — iR () 6 (r) 27

where iR (r, t) describes the exchange of particles between the condensate and the thermal

cloud

B h dp .
Rt = 5o / pCialf (5,001 (2.74)

The expression for the collisional integral between the condensate and the thermal cloud
Ci2lf, ¢] will be given at a later point in this section.

The Wigner distribution function f (p,r,t) is the phase space distribution function for
an atom of momentum p, at location r and at time ¢ and describes the non—condensate
particles by the relation n; (r,t) = [ (Qi—%gf (p,r,t).

Now that collisional particle exchange has been introduced into the condensate evo-
lution, the corresponding evolution for the thermal cloud is required in order to form
a closed system of equations which maintain total atom number. The formulation of
Zaremba, Nikuni and Griffin [206, 207, 208] is based on a Boltzmann-like equation for the

dynamics of the thermal cloud

% + % ' Vrf - (ereff) : (vpf) = Cl? [fa ¢] + C’22 [f] ’ (275)

where V, and V| are the gradients in position and momentum respectively. Firstly,
Ci2[f, ¢] describes the transfer of a particles from condensate to the thermal cloud and

vice—versa, defined as [203]

AT o e [ dp2 dps dp4
C12 [f7 (b] - h g ‘(b’ /(27Th)3 / (27Th)3 / (27Th)3
x (27h)* 6 (mve + P2 — Ps — Pa) 0 (€c + & — €3 — &) (2.76)

x (21h)* [5 (p — p2) — 6 (P — Ps) — 0 (p — Pu)]
X [(fo+1) fafa— fa(fz+1)(fa+1)],

where f; = f (pi,r,t) and & = |[p;|* /m+Via (r)+2¢ “qﬁ (ri,t)]? + ny (v, t) | is the Hartree—

Fock energy of the thermal atoms. Cas[f] describes collisions between two particles in the
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thermal cloud

_4m 5 [ _dp2 dps o
Caa [f] = ﬁg /(27771)3/(27Th)3/(277h)3

x (2771)° 6 (p + P2 — P3 — Pa) 8 (E+ & — &3 — &)
X[(f+1)(fo+1)fafa— ffa(fs+1)(fa+1)].

(2.77)

The é—function in Equations (2.76) and (2.77) represent the conservation of energy and
momentum during these scattering processes. The function f; is the statistical factor for a
particle to be destroyed in state ¢ and (f; + 1) for the creation in state i. Equations (2.73)
and (2.75) represent a closed system which self—consistently solve for the condensate in
the presence of a fully dynamical thermal cloud and are conventionally referred to as the
ZNG equations.

However this scheme is based on symmetry—breaking. Condensate formation from zero
initial seed can not be reproduced as the existence of a small condensate is assumed. In
addition, important fluctuations present near the initial region are not accounted for. To

model these aspects, the addition of stochastic effects into the system evolution is required.

2.11.3 Stochastic (Projected) Gross—Pitaevskii Equation (S(P)GPE)

First derived by Stoof [209, 210], the SGPE describes the ‘coherent’ region of low-lying
modes which encompasses the condensate and other highly-degenerate modes, with such
modes assumed to be in contact with the ‘incoherent’ region of higher lying modes, which
is assumed to be in thermal equilibrium.

Within this approximation, the evolution of the coherent region is given by the SGPE [209,
211, 212

0¢ (r,t)

. . m_,
ih 5 =[1—4R(r,t)] <—%V —i—V(r)—i—g\qﬁ(r,t)\—u)(b(r,t)—i—n(r,t)

o (2.78)
<= i )] (=5 V@) gl (0]~ ) o r0) + (.

where the noise term (n* (r,t)n (r',t')) = 27 (r,t) kgThd(r — r’)dt can provide a seed for
condensate growth and y(r,t) = i(3/4)hX% (r,t). Within this scheme, the strength of the
interactions between the coherent and incoherent regions is thus defined by the Keldysh

self-energy

K _ i [ dp2 dps dps
A= (x,1) = = dmig / (m)‘”’/ <2wh)3/ (2n)”

x (27h)* 8 (P2 — P3 — P1) 8 (ec + & — & — &)
X [fa(fs+1)(fa+1)+(fo+1)fafa].

(2.79)
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The iR(r,t) source term in this approach is similar to that in Equation (2.73) where it

describes the transfer of particles between the coherent and incoherent region and is given

by
B dpo dps dps
Rin1) _27T92/ (2rh)> / (2mh)? / (27h)?

x (27h)* 8 (P2 — P3 — Pa) 0 (€0 + & — & — &)
X[fo(fs+1)(fa+1)=(fo+1)f3fa].

(2.80)

The thermal energies are now defined as & = |p;|? /2m + Vgt + 29(|é(r, t)|?) and f; once
again represents the Wigner functions for the thermal cloud. It is possible to approximate

the source term iR (2.80) in term of the Keldysh self-energy

g

h2
iR(r,t) ~ —thk (r,t) —%W + Vet + glo)* — 1| . (2.81)

This defines a fluctuation—dissipation relation for this system.

Stochastic Projected Gross—Pitaevskii Equation (SPGPE)

A similar model, which includes the presence of a projector P, has been derived by Davis,
Gardiner and co—workers [213, 214]. The SPGPE is given by
00 (r,t ) h?
P =P 0 ) (g V) glo0] - k) o0+ Pl ],
(2.82)

Once again the approach is applicable for high temperatures where all coherent region

ih

modes are highly occupied in the energy cutoff. Without a projector, the numerical grid
imposes an implicit cutoff relative to the chosen grid spacing. The projector imposes an
explicit energy cutoff in order to restrict the coherent region to highly populated modes.
The addition of the explicit projector ensures superior numerical accuracy and a more
rigorous means of ensuring validity. The coupled SPGPEs(CSPGPEs) were used by our
collaborators I. K. Liu and S. C. Gou to investigate the formation of condensate mixtures.
These results are discussed in Chapter 4 in relation to work we have undertaken.

In the following Section the damped GPE(DGPE), used to obtain results presented in
this Thesis, is introduced. The DGPE is a particular sub—equation of the S(P)GPE (and
of ZNG).
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2.11.4 The Damped Gross—Pitaevskii Equation (DGPE)

By neglecting the noise term 7 in Equation (2.78), the condensate evolution can be cast
in the form
w200 iy [ v e g oen. @)
m
where v denotes the growth rate of the system depending in general on position and
time. First implemented to trapped Bose gases to discuss damping of excitations [215],
the addition of a phenomenological coefficient v into the GPE was originally suggested by
Pitaevskii [216, 217]. In this approach, v is taken to be constant and is chosen such that
it agrees qualitatively with experiments, although the values used have no microscopic
justification. Reference [218] used v ~ 4ama2kT /mh? and chose a = 3 to fit most growth
experiments.
This dissipative equation has been used in numerous contexts, including the studies of
vortex lattice growth [219, 220], dark soliton decay [221] and as a route to turbulence [222].
The DGPE (2.83) can be seen to arise as a special case of above theoretical models in
a number of different ways. For example, we can neglect the explicit projector in addition
to the noise term 7 in the SPGPE (2.82). Similar approximations can be made to the ZNG
formalism. The DGPE can also be obtained from the GPE (2.9) by setting t — (1 — iv) .
The coupled DGPEs(CDGPEs) are of relevance to the Thesis and are used to obtain
the numerical results in Chapter 4. In the following Section, we introduce classical field
methods where the dynamical evolution of ¢ is modelled with the GPE but now describes

a set of modes rather than a wavefunction.

2.11.5 Classical Field Methods

In classical field methods, more commonly referred to as C—field methods, the GPE is
used for modelling all coherent modes (low-lying modes) of a finite temperature system
(reviewed in [223]). A common misconception is that the GPE can only simulate conden-
sates at absolute zero. These C—field methods consist of treating the low energy modes as
a classical object. To consider the evolution of this system, it is necessary to start with

strongly nonequilibrium initial conditions
kmaz

¢(r,t=0)= Y apexp(ik-r) (2.84)
k

where the phases of the complex amplitudes ay, are distributed randomly [224]. This initial
condition ensures that there is a high number of highly populated modes with momentum

less than a particular value k.. and ¢ describes a set of modes rather than the condensate
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wavefunction. We stress here that the standard GPE for an interacting condensate can
be recovered by starting with 100% occupation of the zero momentum k£ = 0 mode and
keeping only this mode in the model. We note that the condensate occupation is equal to
ng = |ao|>. Numerical simulations begin far from equilibrium (2.84) and are evolved over
a time period until equilibrium appears to have been reached. The dynamics conserve the

total particle number, N, and kinetic energy, F;,,

N=V / ng (t) dk, (2.85)

Erin =V / E2ny,(t)dk, (2.86)

where V' is the volume of the system.

The momentum cut-off used can be imposed through a projector, such as in the pro-
jected GPE (PGPE) and neglect any coupling between the coherent region to the effective
heat bath [225]. The PGPE was shown to describe the correct thermal behaviour of a
Bose gas as long as all relevant modes are highly occupied [226]. Although the projector
is recommended in harmonic trapping potentials in order to explicitly impose a energy
cutoff, a cutoff arises naturally in numerical simulations due to the discretisation of the
GPE equation and is not typically included in this model where periodic boxes are used.
Large numerical simulations of the GPE with strongly nonequilibrium initial state was
first used [224] to clarify and confirm the theoretical evolution of the system suggested
in [227, 228, 229]. Reference [224] also presented the first quasicondensate evolution of
vortices in numerical simulations. Quasicondensates are phase—fluctuating condensates in
which density fluctuations are largely suppressed [230]. Other finite temperature models
(ZNG, S(P)GPE...) can also be used to describe quasicondensates.

In cfield simulations, the condensate fraction (condensate number over total particle
number) tends to increase and finally converge over time [231, 232]. The temperature of
the system is not set directly but can be subsequently extracted through the condensate
fraction [233]. The evolution dynamics of vortex rings was considered in the context of
this classical fields approximation and it showed that the collisions with noncondensed
particles reduce the radius of a vortex ring until it completely disappears [233].

The evolution of two Bose gases has been considered starting from a strongly nonequi-
librium initial states [234]. In comparison to the case of no interaction between particles of
different gases, weak repulsive interactions (miscible) between both gases would increase
the condensate fraction for one gas and decrease for the other as they equilibrate to the
same temperature.

C—field methods are used to investigate non trapped systems and is used in Chapter 5
of this Thesis.
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In this Chapter, while stressing the importance of finite temperature effects, we intro-
duced theoretical approaches for describing BECs. Using the CGPEs, our initial focus in
Part II is to investigate steady state solutions of condensate mixtures at zero—temperature
in harmonic trapping potentials. We then include the growth term which leads to new
interesting dynamics. Part III focusses on C—field methods in two component quasicon-

densates.
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Bose—Einstein Condensate
Mixtures in Harmonic Trapping

Potentials
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Chapter 3

Steady State Solutions of Trapped
Two—Species Bose—Einstein

Condensates

In this Chapter, we study the equilibrium density structures that arise in a two-species
condensate under harmonic trapping.

As a first test of our numerical code, we reproduce the three-dimensional (3D) *Na-
87Rb results from Reference [80]. This also shows how varying the number of particles
and the interspecies interaction strengths gives different ground state solutions. We then
demonstrate the extreme sensitivity of the equilibrium density profiles on the initial con-
ditions used, in the context of a one-dimensional (1D) mixture. The main focus of the
Chapter is to investigate the extent to which the CGPEs reproduce experimental findings
of Reference [77] in a 8"Rb-133Cs two-species condensate, with and without an asymmet-
rically perturbed potential between the two species (imposed via the addition of linear
potentials). We show that these results qualitatively reproduce the density profiles ob-

served experimentally.

3.1 Reproducing the Results of H. Pu et al. [Phys. Rev.
Lett., 80, 1130 (1998)].

The first steady state solutions for mixtures of different atomic species were obtained
numerically in 1998 by Pu et al [80] who considered a mixture of 23Na and 8"Rb. In
this section we shall numerically reproduce these ground state density profiles by using
the TF approximation as initial condition for imaginary time propagation. Imaginary
time is implemented by making the substitution dt¢ — —idr and the wavefunction decays

towards the ground state of the system (see Appendix B). Similarly to Reference [80],
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we use the CGPEs written in terms of harmonic oscillator units. However we note here
a discrepancy in the dimensionless units used: an additional factor of 1/4/2 is present
in the scalings for length such that {()p, = \/m in Reference [80] in comparison
to our units presented in Section 2.7. For an exact comparison between the results of
Reference [80] and our numerical simulations, it is necessary to multiply our grid axes by
1/4/2 thus giving, for example in the x direction, # = 2/v/2] = x/lp,. Similar conversions
are required in the y and z directions. In addition, our condensate wavefunctions must
be rescaled by a factor of \/53/2 such that ¢; (r,t) = ¢; (r,t) l?{f\/ﬁgﬂ = ¢ (r,t) l?l/)QPu'
In our calculations, we take Rb as species 1 and Na as species 2. We have spherically
symmetric traps, as defined by Equation (1.8), where w()L = w1y, = 27 x 160Hz and
W)L = w), = 2m x 310Hz. The scattering length is taken to be a;; = 6nm for Rb
and age = 3nm for Na. The strength of the interactions in out harmonic oscillator units
are given by g;; = 47Thaii/m1W(1)J_lif (i = 1,2) and g12 = 2mhai2(my + mg)/mlmgwuﬂ_li{’.
Our numerical simulations were carried out with 642 grid points with spatial discretisation
A =0.3125 in all three directions.

Figure 3.1 shows our numerically obtained steady state solutions with these parameters
and g1o > 0. These are in excellent qualitative and quantitative agreement with Figure 1
from Reference [80]. Figures 3.1(a) correspond to weak interspecies interactions g2, <
g11922- The widths of both condensate density profiles are wider and have lower peaks
in comparison to the situation when no interspecies interactions are present, i.e. gio = 0
(Figure 3.1(c)). Considering large interspecies interactions g3, > g11g22 (Figure 3.1(b)),
Na occupies the outer regions of the trapping potential (peak density no longer in the
centre) forming a shell around the central Rb. The additional confinement from the outer
Na particles squeezes the Rb cloud in the trap centre and increases its peak density value.
The larger the number of Na condensate atoms is (Figure 3.1(b)(iii)), the more apparent
this phenomena becomes. Similarly, for large Rb atoms in the system, the Na condensate
is pushed further away from the trap centre (Figure 3.1(b)(i)).

We also considered negative (attractive) interspecies interactions g2 < 0 in Figure 3.2.
We found that the system would numerically collapse if the amplitude of these interactions
were large enough to satisfy the criterion g2, > g11g22. Therefore we only show the results
for weak attractive interactions g%, < gi11g22. In this case, both species want to occupy
the same space: the centre of the trapping potential. In comparison to the scenario of
no interspecies interactions (Figure 3.1(c)), the condensates are compressed in the trap
centre giving density profiles with smaller widths and higher peaks.

In this section, we have shown how changes in the condensate atom numbers and
interspecies interactions play a role on the condensate density profiles and a rich number
of steady state solutions are obtained. In addition, our results match both qualitatively

and quantitatively those seen in Reference [80] proving that our numerical code gives
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Figure 3.1: Ground state density profiles with a1; = 6nm (g11 = 0.45), age = 3nm (geo = 0.059)
and (a) weak interspecies interactions ajz = 1.8nm (g12 = 0.085 and g%, < g11922 — miscible), (b)
strong interspecies interactions a1z = 3.6nm (g12 = 0.17 and g2, > g11922 — immiscible) or (c) no
interspecies interactions a12 = 0 (g12 = 0 and g%Q < g11922 — miscible). In each of these cases,
three sets of atom numbers are considered: (i) N7 =2 x 10°, No = 2 x 103; (ii) N7 = Ny = 2 x 10%;
(iii) N; =2 x 103, No =2 x 10°. Red (solid) — Rb (species 1), Blue (dashed) — Na (species 2).
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Figure 3.2: Ground state density profiles with a;; = 6nm (g1 = 0.45), a2 = 3nm (g22 = 0.059)
and negative interspecies interactions a12 = —1.8nm (912 = —0.085 and g%Q < g11922 — miscible).

Three sets of atom numbers are considered: (i) N1 = 2x 10%, Ny = 2x 10%; (ii) Ny = Ny = 2x 10%;
(iii) N; =2 x 103, N2 =2 x 10°. Red (solid) — Rb (species 1), Blue (dashed) — Na (species 2).
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accurate results. In the next section, we shall talk about how the ground state density

profiles change depending on the initial conditions used in imaginary time propagation.

3.2 Sensitivity to Parameters

Instabilities often arise when solving equations numerically. Here, we show how these
can arise during convergence of the CGPE (i.e. during imaginary time propagation) for
various initial conditions. For simplicity we focus on a 1D two-species system. Similarly
to Section 2.9 for a one component system, the relation between the 1D and 3D mean-field
CGPEs are given by Uy = gn’/Qﬂ'l?J_, Uis = gi2/m (Z%J_ + Z%J_), Wi(1D) = Hi — hwi(%y) and
lir = \/h/miw;(z) is the transverse harmonic oscillator length. Similarly to [235] where
solutions within the TF approximation were considered, we use simple parameters for
immiscible condensates of equal condensate particle numbers N = N; = No, equal trap
frequencies wi = we, equal masses m; = mo and immiscible condensates with interactions
Uso = 1.01U71, Uyg = 1.52U71;.

We perform imaginary time propagation of the CGPEs subject to three different ini-
tial conditions. Convergence is decided when the fractional difference in energy between
consecutive time steps is lower than 107°. In dimensionless form, we take as the initial

state either of the following cases:

(i) the Gaussian ground state harmonic oscillator solution for each species ¢; =

e~wiz*/26* (in first instance we take ¢ = 1)

(ii) a Thomas-Fermi (TF) initial state for each species ¢; = \/(u; — V(2))/g: when
wi < Vi(z) or 0 otherwise

(iii) a homogeneous initial state (uniform density) ¢; = /N;/L where L is the length

of our numerical grid.

Each initial condition is suitably normalised to the desired N.

In Figure 3.3, we compare the steady state density profiles that emerge through each
of these initial conditions. The first row, Figure 3.3 (a), corresponds to the parameters
U =6 (7?/1;[3271'&) and N = 150. The oscillator length [ is given by \/m The
Gaussian initial condition gives rise to a steady state which features many corrugations in
the density profile obtained. The TF initial state gives rise to a central cloud of species 1
surrounded by species 2. This is consistent with previously obtained solutions [235]. For
the homogeneous initial state, we obtain a steady state which is similar to the TF result
but features additional small clouds of species 1 at the periphery.

The fractional difference in energies for each of these systems, given in Table 3.1, shows

that in all cases considered the ground states given by the TF initial conditions have the
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Figure 3.3: Ground state density profiles, with N = Ny = Ny, w1 = wa, m1 = mo and Uz =
1.01U11, Uy = 1.52U11, such that the immiscibility criterion is satisfied. Columns correspond

to Gaussian, TF and homogeneous initial conditions for imaginary time propagation. (a) Uyp =
6 (hwl32rly), N = 150. (b) Uy = 6 (hwl®2nly), N = 200. (c) Uy = 6 (hwl®2wlL), N = 2000.
(d) U =1 (h@l327rlJ_), N = 200. Solid blue curve — species 1; Dashed red curve — species 2.

smallest energies followed by the homogeneous initial condition and finally the Gaussian.
We thus identify the state derived from the TF initial condition to be the ground state
of the system. The difference in energies, however, is small and typically less than 2%.
The additional corrugations arising from the Gaussian and homogeneous initial conditions
are attributed to a modulational instability of the condensates early in the imaginary-time
propagation. This leads to the formation of density corrugations in the system. Imaginary
time propagation then converges to one of several metastable states with these corrugated
forms.

For a slightly increased atom number, N, Figure 3.3 (b), we find that the TF-based
solution becomes closer to the homogeneous-based solution, both featuring small clouds
of species 1 at the periphery. The Gaussian-based solution is essentially unchanged. For
a significantly larger atom number, Figure 3.3 (c), all profiles become wider due to the
increased repulsion in the system. The TF and homogeneous-based solutions maintain

the same structural form as above, albeit broader. However, the Gaussian-based solution
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Gaussian | Thomas—Fermi | Homogeneous
Ui =6, N =150 59.57 58.68 58.73
Ui =6, N =200 72.11 71.04 71.08
Ujp =6, N=2000 | 331.24 328.15 328.28
Uip =1, N=200 72.44 71.21 71.27

Table 3.1: Table of energy E(fiw) corresponding to plots in Figure 3.3.

features a much greater number of density corrugations. Finally, in Figure 3.3 (d), we
plot the results for when the interaction strengths between atoms are reduced compared
to Figure 3.3 (b). In this regime of weak interactions, all three initial conditions lead to
the same solution in which a cloud of species 1 is surrounded by species 2.

The Gaussian-based solution features the greatest sensitivity. In order to parametrise
these effects further we introduce the number of interfaces as a measure of the number of
corrugations in the system. Above, we employed the ground harmonic oscillator solution
corresponding to the Gaussian width ¢ = 1. Here we will vary { to assess its role on
the steady state solution obtained. In Figure 3.4(a) we plot the number of interfaces in
the steady state solution as a function of . As ( is increased (the Gaussian initial state
becomes wider), the number of interfaces decreases exponentially until the minimum is
reached, matching the number of interfaces in the ground state (which corresponds to
the TF and homogeneous-based solutions in Figure 3.3(c)). In Figure 3.4(b) and (c), we
show the initial conditions and ground state density profiles for two cases: (i) ( = 1 and
(ii) ¢ = 10 respectively. These results show firstly that a range of metastable states are
possible in the system, characterised by an increased number of density corrugations over
the ground state. Secondly, the results suggest that the size of the initial trial solution
relative to the ground state is key to determining which state is obtained via imaginary
time propagation.

The overall density profiles have the same inverted parabola profile independent of the
number of corrugations. This is due to the condensates being normalised to the same
number of particles irrespective of the initial condition i.e. the area under the curves are
the same. The examples we have chosen here are believed to greatly enhance the sensitivity
due to our oversimplified choice of Ny = Ny = N. In general, namely in 3D, the solutions
obtained are also sensitive to the initial conditions, although they were considerably less

sensitive than in 1D.
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Figure 3.4: Same parameters (w;, m;, Use and Ujz) as in Figure 3.3 (¢) with N = 2000, Uy, =
6 (hwl327rl J_). (a) Number of interfaces between species plotted against the width of the Gaussian
trial solution ¢. (b) Numerical initial conditions for points (i)(¢ = 1) and (ii)({ = 10) respectively.
(¢) Ground state density profiles for points (i) and (ii) respectively. Solid blue curve — species 1;

Dashed red curve — species 2.
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3.3 Matching the Experimental Results of D. J. McCar-
ron et al. [Phys. Rev. A, 84, 011603(R) (2011)].

A recent two-species experiment with 8"Rb-133Cs condensate mixtures [77] revealed dis-
tinct regimes of density distributions, depending on the relative numbers of 8”Rb and ?3Cs
atoms as shown in Figure 3.5. This experiment exploits efficient sympathetic cooling of
133Cs via elastic collisions with evaporatively cooled 8'Rb atoms, initially in a magnetic
quadrupole trap and subsequently in a levitated crossed dipole trap [236]. The large inter-
species background scattering length of a1 ~ 650 ag enables efficient sympathetic cooling
but also gives rise to large inelastic three body losses [237]. This presents an obstacle
to condensation at high densities which is overcome by fast evaporative cooling; this is
achieved by reducing the dipole trap beam powers followed by tilting the trap using an
applied magnetic field gradient. Dual species condensates are produced in the same trap-
ping potential containing up to ~ 2 x 10 atoms of each species. The optical dipole trap
exerts harmonic trapping on the condensates.

As shown in Figure 3.5 (a)—(b) the two-species BEC always forms one of three struc-
tures correlated to the atom number present in each condensate. Typical axial density
profiles from each region (after time of flight expansion) are shown in Figure 3.5 (b). For
Regions I and III, one of two possible loosely symmetric cases is obtained: the Rb sits
in the centre for Region I while the Rb is spatially split by the Cs in Region III. In Re-
gion II, the condensates adopt asymmetric density profiles, sitting side-by-side along the
weaker axial direction of the trap. A dramatic spatial separation reveals this mixture to
be immiscible as repulsive interspecies interactions dominate intraspecies interactions at
the magnetic bias field of 22.4 G used in the experiment. As we will see, these experimen-
tal profiles do not match the cylindrically-symmetric equilibrium solutions (presented in
Figure 3.5(c)).
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Figure 3.5: (a) Experimental data for a quantum degenerate S"Rb-'33Cs mixture (reproduced
from data in [D. J. McCarron et al., Phys. Rev. A, 84, 011603(R) (2011)]). Depending on atom
numbers, three distinct structures are observed represented here through triangles, squares and
circles (Regions I, IT and IIT). (b) Experimental integrated axial density profiles corresponding to
the filled symbols in (a), observed after time-of-flight expansion [H. W. Cho et al., The European
Physical Journal D, 65, 125 (2011)] and rescaled to the optical depth (OD) maximum. (c) Numer-
ically calculated cylindrically symmetric ground state density profiles corresponding to the atom
numbers for each of the filled points in (a) and the experimental density profiles shown in (b).
(Solid) red curve — Rb; (dashed) blue curve — Cs.
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3.3.1 System Parameters and Test Cases

Following the experiment of Reference [77] we consider a 8"Rb-133Cs BEC mixture. The
trap frequencies are taken to be wymp) = wymp) = 27 X 32.2 Hz, wycs) = wycs) =
21 x 40.2 Hz in the transverse directions and w,gy) = 27 x 3.89 Hz, w_(cs) = 27 x 4.55 Hz
in the axial direction. The intraspecies and interspecies scattering lengths are taken to
be agry, = 100 ag [198], acs = 280 ag [199] and arpcs = 650 ag [202]. These interaction
strengths satisfy the immiscibility criterion 912>\sz > grpbgcs and we expect phase separated
condensates.

Throughout the work on this two—species mixture, we adopt harmonic oscillator units
where time, length and energy are expressed in units of 1/wgy, = 10 ms, lgy, = \/m ~
0.54 pm and Awgy, respectively. The numerical methods used in obtaining the ground state
density profiles in this section are the same as described previously in Section 3.1.

The experiment of Reference [77] observed three regimes of density structure, depend-
ing on the atom number in each species. These three regimes correspond to the triangles
(Region I), squares (Region II) and circles (Region III) in Figure 3.5 (a). We focus on one

representative set of atom numbers from each structural regime:
(i) Nrp = 840 and N¢s = 8570
(ii) Ngp = 3680 and N¢g = 8510
(iii) Nrp = 15100 and N¢g = 6470

These particular test cases are indicated by the three filled symbols in Figure 3.5 (a) and
correspond to the experimental images presented in Figure 3.5 (b). We denote 8"Rb as
species 1 and 133Cs as species 2. In our numerical simulations, the spatial discretisation

is set to A = 0.2 in all three directions.

3.3.2 Symmetric Trapping Potentials

Here, we consider the two-species condensates to be confined by co-centred harmonic traps
and use centred initial conditions i.e. the trapping potentials for both species are centred
relative to each other and are perfectly harmonic. We thus anticipate symmetric density
profiles in all directions to emerge in our numerical mean—field simulations. Figure 3.5
(c) shows the corresponding numerically—obtained integrated axial density ground states
profiles. Our obtained states are all symmetric in space and phase-separated, as expected.
For all three cases considered we observe the same qualitative structure in that the Cs
cloud resides at the trap centre, with the Rb cloud surrounding it. This is the so-called
‘ball-and-shell’ formation [80]. As we move from Region I to Region III, the qualitative

structure does not change; only the relative amplitude of the condensates and location
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of condensate interfaces (change from Rb to Cs or vice-versa) change as Ngy, increases
and Ngg decreases. Note that the observed preference in our numerical results for Cs
to be centrally positioned is consistent in our previous Rb—Na theoretical studies where
the tendency is for the component with the higher atomic mass to reside centrally (see
Figure 3.1). This dynamical system has a substantial total parameter space, with even
a restriction to cylindrical symmetry leaving eight dimensionless parameters that can in
principle be independently varied (see Appendix A.1 for dimensional analysis done by
S. A. Gardiner, Durham University). Many of these parameters will, in practice, be
fixed in any given experimental configuration. Hence, for example, in the experimental
configuration described in Reference [77], it is not possible for the distributions of Rb and
Cs to be simply exchanged by changing the particle numbers (the most easily accessible
handle to change the systems location in parameter space). This means, for example that
the disagreement of Figures 3.5(b)(i) and 3.5(c)(i) is unlikely to be due to incorrect atom
counting.

Our results (Figure 3.5 (c)) agree qualitatively with the experimental observations
(Figure 3.5 (b)) only for Region III: both the experiment and our numerical results (Fig-
ure 3.5 (b) (iii) and (c) (iii)) show Cs to be in a central position, but not those obtained
for the other Regions. The experimental images include the presence of a broad thermal
cloud, which is often large, and have undergone time-of-flight expansion, and so our com-
parison of density profiles is limited to the qualitative structural form only. For Region I,
the location of the condensates is reversed: experimentally Rb occupies the centre of the
trap while numerically it is Cs. In the case of Region II, a symmetric steady state solution
emerged as was expected while experimentally the condensates sit side by side in an asym-
metric disposition in the z direction. This suggests that a form of asymmetry enters the
experimental set up. Theoretically, it has been shown that the symmetry in a two species
system can be broken in many different ways to give rise to two separated side—by—side
condensates [71, 91, 94, 235].

In the following Section, we shall discuss small shifts that are present between the
trapping potentials of the two species which introduce asymmetry into the system. We
will then start to investigate whether the introduction of these shifts and asymmetries may
dictate the density structures that form and may enable us to reconcile the differences with

the experimental results in Regions I and II.

3.3.3 Experimental Asymmetries

In the experiment of Reference [77] a magnetic tilt is applied to the otherwise harmonic
potential to enhance evaporative cooling. This tilt is applied in one of the transverse
directions, and results in a shift in relative trap centres by up to 3 microns. Additionally,

the small difference in magnetic moment—to—mass ratio for each species, coupled with
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Figure 3.6: Experimental harmonic oscillator trapping potentials in axial direction with no offset
a, = a; = 0 (black — solid) and offset in axial direction o, = 0.1(h@rp/Irp), @z = 0 (red —
dashed).

minute unavoidable misalignments of the dipole trap beams with respect to the magnetic
potential, may result in offsets between the trap centres of up to 2 um in all directions.
Further trap effects, such as differential gravitational sag, are also present. The combined
result is that the potentials experienced by the two species have a slight offset in space.
To incorporate the presence of such shifts in our simulations we add linear potentials in
the axial and one transverse direction to species 1 (Rb) such that its trapping potential
takes on the modified form

1
Vi = gmi (w20e” + Wiy’ +wln?) +aer + oz (3.1)

The gradients for the linear potentials are given by «, and «, in the transverse and axial
directions respectively. In Figure 3.6, we compare symmetric o, = 0 and asymmetric
a, # 0 harmonic trapping potentials. In changing the value of o, to be non—zero, the trap
minima moves in the axial direction in addition to being lowered. The distance between

the trap minima of Rb and Cs is given by

Qg

5z:a722and5$:

— (3.2)
mlwz(l) mlwi(l)

in the axial and transverse directions respectively. Our initial analysis in the previous
section focused on symmetric ground state density profiles, obtained in the limit «, =

a, = 0, for which the traps of each species are co-centred.
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3.3.4 Role of Shifted Trapping Potentials
Axial Linear Potential

We start by looking at how the addition of a linear potential in the axial direction influences
the ground state solutions. Results presented here are based on a linear potential of
gradient o, = 0.02 (hiwgp/lrp). This corresponds to an axial shift of §, = 0.9 pm in
the trap centres, which is well within the experimental bounds detailed in Section 3.3.3.
The value of the linear potential gradient employed here, and the value of the transverse
linear potential employed in the next section, are chosen such that their combined result,
presented in Section 3.3.4, gives the best agreement to experiments that mean field theory
can yield, while remaining within the bounds of the experimental uncertainties.

The numerically-obtained ground state solutions are presented in Figure 3.7 as both
integrated (a) axial density profiles and (b) 2D density profiles. First consider the profile
for Region IIT (Figure 3.7(iii)). The same structure remains from the symmetric system,
i.e. central Cs surrounded by Rb, albeit now skewed slightly due to the linear potential.
The profile for Region IT (Figure 3.7(ii)) now jumps to an asymmetric side-by-side state,
in qualitative agreement with the experimental profile for this region (Figure 3.5(b)(ii)).
For Region I (Figure 3.7(i)) the density profile also becomes asymmetric under the axial
linear potential, and as such it remains inconsistent with the corresponding experimental
observation (Figure 3.5(b)(i)).

Increasing the linear potential past a critical value of a, ~ 0.1 (higy,/lrp) gives axi-
ally asymmetric density profiles for all three regimes while decreasing the gradient below
another critical value of a, ~ 0.01 (hwrp/Ilrp) leads to the ball-in—shell structure for all

three cases, i.e. central Cs surrounded by Rb.

Transverse Linear Potential

Next we look at the influence of a additional linear potential in one transverse direction,
taken to be the x direction (no axial linear potential is applied here). We focus on a
gradient of o, = 1.5 (hwgy, /IRy ) which corresponds to an axial shift of §, = 1.0 um in the
trap centres. This is comfortably within the experimental bounds detailed in Section 3.3.3.
Figure 3.8 shows the corresponding integrated ground state density profiles.

The integrated axial density profiles for Region III (Figure 3.8(a)(iii)) is again a qual-
itative match to that obtained experimentally. However, the actual 3D structure is now
such that the Rb cloud lies offset transversely to the central Cs cloud, curving around
it in the positive x half-plane, as visible in the corresponding integrated 2D density plot
(Figure 3.8(b)(iii)). This is a subtly different structure to that observed in the previous
sections where the Rb cloud was split either side of the Cs cloud. The 1D density profile for

Region IT (Figure 3.8(a)(ii)) shows similar results to the symmetric case where the Cs sits
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Figure 3.7: Ground states under a linear axial potential o, = 0.02 (fiorp /Irp)- (a) Integrated axial
density profiles and (b) 2D deunsity profiles, for the three cases corresponding to the filled symbols

in Figure 3.5 (a). (Solid) red curve — Rb; (dashed) blue curve — Cs.

o7



Chapter 3. Steady State Solutions of Trapped Two—Species Bose—FEinstein Condensates

(@ 1500 (I|) ' ' '(i|i)' . T (”|I) -

0 1 'il/ m‘\1\ 1 1
-20 -10 0 10 20

({

Rb)

Figure 3.8: Ground states under a linear transverse potential o, = 1.5 (Awgp/Irp). Integrated (a)
axial density profiles and (b) 2D density profiles, for the three cases corresponding to the filled
symbols in Figure 3.5 (a). (Solid) red curve — Rb; (dashed) blue curve — Cs.

in the centre with Rb split axially into two distinct regions and thus not consistent with the
corresponding experimental profile. As visible in the 2D density plot (Figure 3.8(b)(ii)),
the outer Rb clouds become skewed towards the positive x direction, but not sufficiently to
become linked to one side of the Cs cloud forming one Rb cloud. Importantly, for Region
I, the integrated axial density profile (Figure 3.8(a)(i)) has undergone a marked change,
with both condensates apparently overlapping. This does not contradict the presence of
phase separation; as seen in the corresponding 2D density profiles (Figure 3.8(b)(i)), the
condensates phase separate transversely due to the transverse linear potential. Although
this result is still different from the corresponding experimental profile (Figure 3.5(b)(i)),
it is somewhat closer in that the Rb becomes positioned in the centre in the axial direction.

Increasing the linear potential past a critical value of a, ~ 3 (Awgy/Irp) gives trans-
verse asymmetric density profiles for all three regimes while decreasing the gradient to
values below approximately «, ~ 0.4 (hiwgy/lrp) gives rise to a split in the Rb to sur-
round the Cs positioned in the centre.

So far we have presented numerical results for symmetric trapping potentials and
linear potentials in either the axial direction or a transverse direction. Results obtained

for Region III qualitatively match those obtained experimentally. For Region II, we obtain
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a reasonable match through use of an additional axial linear potential. Through use of an
additional transverse linear potential we have captured some, but not all, of the features
from Region I. We will next explore the extent to which a combination of both axial and
transverse shifts, as likely to be relevant experimentally, enables a closer match to the

experimental profiles.

Combined Result: Axial and Transverse Linear Potential

We consider the three representative points in Section 3.3.1, one for each region, in turn
starting with Region I.

Region I: A summary of how different gradients of linear potentials in the axial and
transverse directions affect the ground state density profiles for Region I is shown in
Figure 3.9. We distinguish three distinct structures: a three peak profile in which the
Cs remains in the centre while the Rb is split axially into two distinct regions, an axi-
ally side-by-side structure, or a transversely side-by-side structure. Starting from the
symmetric three peaked distribution (bottom left in Figure 3.9), we see that a small
increase in «, gives rise to axially side-by-side density profiles: for a weak axial linear
potential a, = 0.01 (Awgrp/IRy), the ground state has switched to the axially side-by—
side formation. On the other hand, a, needs to be increased more drastically to observe
the switch of the ground state to a transversely side-by—side formation. This is due to
competing effect of the condensate repulsion and the strong transverse trapping. When
combining linear potentials in both axial and transverse directions, we see that for small
a, < 0.04 (hwgry/lrp) the condensates favour a transverse side-by-side formation while
this becomes an axial side-by-side formation for larger values. For a, = 0.04 (hwrp/IRrp)
and a, = 2.25 (hwgy/lrp), wWe see a combination of these side—by—side structures in that
the Rb cloud lies diagonally to the side of the Cs cloud. For intermediate values of o, and
ay, e.g. ay = 0.4 (hwrp/lry) and a, = 0.01 (hwrp/IRy), We see a transversely side-by—side
formation in which the Rb is particularly narrow and highly peaked, and the Cs features

a small central density dip.
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Figure 3.9: Integrated 2D density profiles of the ground state as a function of the linear potential
gradient in the axial (horizontal) and one transverse (vertical) direction applied to species 1(Rb).
Atom numbers correspond to point (i) in Figure 3.5 (a). Red (black) — Rb; Blue (grey) — Cs.

Region II: Now, we will consider the test case for Region II and a summary of how dif-
ferent gradients of linear potentials affect the ground state density profiles for Region II is
shown in Figure 3.10. We once again distinguish three different density profiles, similar to
Region I with the now larger number of Cs condensate atom numbers having an impact on
the gradient of additional linear potential required to go from a symmetric to asymmetric
ground state density profile. When «,, is increased, the two peaks of Rb move around the
central Cs in the transverse direction until they join and form a single condensate cloud
such as for o, = 2.25 (Awgy,/lrp). On the other hand, when «a, is non—zero, asymmetric
axial density profiles are observed firstly in the three peak formation where one Rb peak
is higher than the other. Further increasing the gradient in the axial direction leads to a
axially asymmetric side-by—side formation as seen experimentally. When combining lin-
ear potentials in both the axial and transverse directions, the condensates prefer a three
peak density profile for small «, < 2.25 (hwrp/lgp) and «, < 0.02 (hiwgy/lrp). This
changes to an axially asymmetric side-by—side formation for larger «, > 0.01 (hawrp/IRp).
Finally, the Rb cloud lies diagonally to the side of the central Cs condensate for large
ay > 1.5 (hwrp/IRy)-
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Figure 3.10: Integrated 2D density profiles of the ground state as a function of the linear potential
gradient in the axial (horizontal) and one transverse (vertical) direction applied to species 1(Rb).
Atom numbers correspond to point (ii) in Figure 3.5 (a). Red (black) — Rb; Blue (grey) — Cs.

Region I1II: Finally, we consider the test case for Region III and a summary of how
different gradients of linear potentials affect the ground state density profiles for Region
III is shown in Figure 3.11. It is clear from the obtained ground state density profiles, all
the experimentally relevant linear potentials lead to a three peak regime apart from «, >
1.5 (hwgry/lrp) where we find a transversely asymmetric densities. No axially asymmetric
profiles are observed for these linear potentials but can be observed by increasing c,
further. This region is the more robust of the three considered in terms of experimentally
relevant gradients for the additional linear potentials due to the large Ngy, particle number.

We will see next that these profiles now give good qualitative agreement with the

experimental observed condensates for all regions.

Matching of Experimental Profiles: Best Results of Mean Field Theory

We now combine our previous analyses to demonstrate the extent to which addition of
linear potentials in both the axial and one transverse direction matches the experimental
profiles for all three regimes for a given set of linear potentials. From Figure 3.9, we
can see that we require o, = 0.01 (Awgrp/Igp) or 0.02 (Awgry/Igy) and o, = 0.4, 1.5 or
2.25 (hiwgp/lrp) to match the results for Region I. After a similar analysis for Region II
and Region III from Figures 3.10 and 3.11, the experimentally relevant gradients of the
linear potentials required to match all three simultaneously are a, = 0.02 (hwgy,/Irp) and
ay = 1.5 (hwgy /lrp) (hence justifying the use of those values in previous Sections). These
linear potentials correspond to a displacement in the trap minima of §, = 0.9 ym and

6, = 1.0 pm, both of which are well within experimental bounds detailed in Section 3.3.3.
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Figure 3.11: Integrated 2D density profiles of the ground state as a function of the linear potential
gradient in the axial (horizontal) and one transverse (vertical) direction applied to species 1(Rb).
Atom numbers correspond to point (iii) in Figure 3.5 (a). Red (black) — Rb; Blue (grey) — Cs.

The numerical results for these gradients are shown in Figure 3.12 as both integrated axial
density profiles (Figure 3.12(a)) and 3D isosurface plots of density (Figure 3.12(b)). Our
ground state results are now in very good qualitative agreement with the experimental
profiles (Figure 3.5(b)) in all three regimes. For Region III, the ground state has the Rb
cloud divided into two parts positioned either side of the central Cs cloud. For Region II,
we obtain the side-by—side formation in which the Cs cloud sits to the right of Rb cloud.
For Region I, the ground state features the Rb cloud to be centrally located in the axial
direction, but shifted transversely, while the Cs has a small density dip at the centre.

The central density dip in the Cs profile for Region I is more pronounced in the
experimental observations, e.g. Figure 3.5(b)(i), than in our above results. An inherent
feature of solving the CGPEs for an immiscible two-species BEC is a sensitivity to the
initial trial wavefunction. All of our results presented so far have been based on TF
initial trial wavefunctions (for the quoted condensate atom numbers for each species), as
described in Section 2.10. By their nature, the TF profiles tend to be broadly distributed in
space, and this tends to favour a more broad distribution of condensates in the final static
solution obtained. We find that employing an initial distribution for the Rb cloud which
is tightly localised at the origin yields static solutions which feature a localised Rb cloud
and a slightly more prominent density dip in the adjacent Cs cloud, in closer agreement
with the experimental profiles for Region I. These numerical results are presented in a
Section 3.3.5.

We have also looked at introducing axial asymmetry (without permanent trap shifts)

through shifts in our numerical initial conditions. Specifically, the TF initial conditions
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Figure 3.12: Ground states under an axial linear potential ., = 0.02 (fiory, /lrp) and a transverse
linear potential o, = 1.5 (fiorp/lrb). (a) 1D density profiles and (b) 3D isosurface plots, each
corresponding to the filled symbols in Figure 3.5 (a). (Solid) red curve — Rb; (dashed) blue curve
— Cs.

for each species are initially offset along the z—axis. Similarly to the use of the linear
potential, this initial offset could be tailored to reproduce the experimental results to a
similar degree of accuracy. The asymmetries introduced via additional linear potentials are
likely to represent a better physical representation of the shifts present in the experimental

setup.

3.3.5 Changing Initial Conditions

Consider the test case in Region I and fully symmetric trapping (o, = a, = 0). Using
TF profiles as initial states we obtained the integrated axial density profile shown in
Figure 3.5(c)(i) in which the Rb sits either side of the central Cs cloud. By beginning
instead with a very narrow Gaussian profile for the Rb while retaining the TF profile
for Cs (assuming essentially here that the Cs condensate grew first) we can obtain a
metastable solution whose integrated axial profile features the Rb sitting in at the trap
centre and a small density dip in the ambient Cs cloud, in qualitative agreement with the
corresponding experimental profile (see Figure 3.13). These solutions have higher energy

than that of the solutions observed in Figure 3.5 (c) (i) and so therefore are not the ‘true’
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Figure 3.13: 1D ground states of Region I under an axial linear potential a, = 0.02 (fiorp/IRb)
and a transverse linear potential oy, = 1.5 (hwrp/Irp). Initial TF profile for Cs and (i) initial
narrow Gaussian for Rb, or (ii) initial TF profile for Rb. (Solid) red curve — Rb; (dashed) blue
curve — Cs.

ground states. However, in the presence of trap shifts (ay, o, # 0), we essentially regain
the true solution presented previously, i.e. the effect of the initial numerical state becomes
washed out. Given that we achieve essentially no improvement in our final comparison
to the experimental profiles by changing the initial states, we do not present any further
results on this.

Time of flight expansion of the static solutions following the sudden removal of all
trapping potentials has also been modelled numerically for this two—species system by
Tom Billam (Jack Dodd Centre for Quantum Technology, Department of Physics, Univer-
sity of Otago, Dunedin, 9016, New Zealand). This expansion is performed experimentally
prior to imaging. The analysis of these results showed that expansion does not affect the
structures formed. The overall phase separation features appeared to be captured very
well under the assumption made here that the profiles observed in the experiments are
the true equilibrium profiles and that these profiles are dominated by their respective con-
densate component, with thermal clouds simply modifying these profiles by the addition

of characteristic thermal tails.

3.4 Chapter Summary

In this Chapter, we have numerically simulated the ground state density profiles of two—
species BECs starting with a Na—Rb mixture studied in [80] and found matching results.
We then looked into an idealised 1D case with different initial conditions for the method of
steepest descent to find that the width of this initial state determined which final ground

state profile was obtained. In 1D, the steady state solutions are extremely sensitive to the
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initial conditions. Finally we qualitatively reproduced the three density profiles observed
in recent experimental results [77] with the simplest mean—field CGPEs where additional
linear potentials were included with the harmonic trapping potentials to account for small
asymmetries present in the experimental setup.

The density distributions are mainly determined by the underlying condensates as
their interactions are dominant over those of the respective thermal atoms, and so the
condensate features determine the relative picture. Advancing our studies into steady state
solutions with thermal clouds such as in Hartree-Fock (previously investigated in [120,
121, 122, 123] for two—components) is not likely to introduce any major novel features but
simply to extend the agreement of the observed profiles to the region of the thermal tails.

Thus, rather than undertaking such a study, in the following Chapter we chose to
look into the dynamical structures that can arise by including the thermal cloud into our
simulations. This was partly motived by the realisation that the rapid sympathetic cooling
of this experimental system may lead to a situation where growth plays a determining

factor in the final density structures formed.
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Chapter 4

Growth Dynamics in Trapped

Condensate Mixtures

In this Chapter, we explore the dynamics of growth in condensate mixtures using the
same experimental parameters as in Chapter 3. Starting with a short introduction to the
numerical methods used for solving the Coupled DGPEs (CDGPESs) where the damping
terms ; determine the rate of growth/decay of the system, we present a number of results
from numerical simulations. Following this, we briefly present the dynamical results of
condensate growth obtained with the SPGPEs performed through a collaboration with
I. K. Liu and S. C. Gou (Department of Physics, National Changhua University of Edu-
cation, Changhua 50058, Taiwan). The latter acts as motivation for our subsequent work
on the dynamics of dark-bright solitons in the framework of the CDGPEs also presented
in this Chapter.

4.1 Numerical Procedure

To simulate growth in a one component condensate, we begin our dynamical simulation
with an initial steady state solution obtained through imaginary time propagation with
low particle numbers N and chemical potential p. Using the DGPE (2.83), the chemical
potential is suddenly increased from the initial u = pg at t = 0, such that p > pg for
t > 0. Since p parametrises the number of atoms in the system, this increase in p drives
the growth of the condensate. At the same instant, the growth rate -y is set to be non—zero.
The growth saturates when the total energy of the system converges to a final value. In
Figure 4.1, a typical example of condensate particle growth (a) and integrated density
profiles (b) for a single species condensate are shown. As the system evolves over time,
the number of particles increases until it reaches an upper bound controlled by the new

chemical potential. Simultaneously, the peak density value and condensate width increase
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Figure 4.1: (a) Typical condensate particle growth curve against time for a single species condensate
using DGPE with initial atom number N = 2000 and v = 0.01. (b) Integrated, in 2 and y density,
profiles at (i) t = 0, (ii) ¢ = 50 and (iii) ¢ = 200(@).

in accordance with the number of particles.

4.2 Growth In Binary Condensates

To obtain the coupled DGPEs (CDGPEs), we use the substitution ¢ — (1 —iv;) t in each
of Equations (2.52), introducing phenomenological dissipation which implies that particle
numbers are no longer necessarily conserved. Here, ; determines the growth/decay rate
of each species of the system. As first mentioned in Section 2.11.4 for a one species
condensate, these growth rates may be estimated by fitting to experimental growth data.
The following CDGPEs are thus obtained

L 001 : [ 2 2
ih—=(1—iy) | —=—V*+Vi+g11|01|" + q12 |p2]” — 11 | &1

(975 2m1

hy . (4.1)
ih2 — (1 —iy2) [ —5—V2+ Vo + g2 [§2]* + g12 1] — a2 ) o

ot 2m2
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A similar numerical procedure to the one component system in Section 4.1 is used to sim-
ulate growth in the two component system. To achieve this, we choose to suddenly change
the chemical potentials of each species; however, we note that the chemical potentials p;
and uo are not independent of each other in the coupled equations due to the additional
nonlinear term describing interspecies interactions.

We now present numerical results of the CDGPEs (4.1) with parameters from Refer-
ence [77] as used previously in this Thesis; for simplicity and we take v1 = 7. Growth
data was not taken during those experimental realisations [238] and in fact the observed
profiles cannot therefore be guaranteed to be fully equilibrated. The aim of this Chapter is
to investigate whether starting with some initial density profiles in each of the three differ-
ent experimental regions (see Figure 3.5), it is possible to observe evolution sequences in
which the particle number growth curves pass from one region to another, demonstrating
a change in the density profiles. In all of the results presented here, the trap asymmetries
used for the best match between mean—field theory and experiments in Section 3.3.3 are

considered (6, = 0.9um, 6, = 1.0um).

4.2.1 Typical Growth Simulation

In Figure 4.2 (a) and (b), we show a typical evolution of the condensate particle numbers in
each species and the combined total particles against time based on our dissipative model
(Equations (4.1)). Here, we start with a large number of atoms for Cs in comparison to
Rb. Ngg decreases until it vanishes from the system while the growth of Ng}, continues
until a maximum is reached. The total number decreases drastically at the start but then
grows again slowly over time. This suggests that for an equal damping rate y; = 2 a low
number of Cs atoms is required before Rb can start to grow at a quicker pace. We also
present four corresponding density profiles at ¢ = 0, 16,40 and 80(w). The initial density
distribution is a symmetric density distribution where the Rb and Cs BECs sit side by
side in a transverse direction. As the condensate particle numbers evolve over time, the
condensate clouds become asymmetric until a side-by—side formation in the axial direction
emerges. Finally, a one species condensate forms for long times as no Cs particles remain

in the condensate (for the parameters chosen here).

4.2.2 Growth Trajectories Through Nc—Ng;, Plane

Figure 4.3 shows the trajectories of multiple condensate particle growth curves in the
Nrp—Ngs plane. The regions separated by the dotted black lines have been defined in
accordance to the experimental results in [77] where the structure of the density profiles
observed depend on condensate particle numbers.

The trajectory taken in each of these simulations is determined by the final chemical
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Figure 4.2: (a) Condensate particle numbers against time; Rb ((Solid) red curve), Cs ((Dashed)
blue curve) and Total particle number ((Dotted) green curve). (b) Growth curve in the Ng,—Ncs
plane. (c) Bottom: Density profiles at times ¢ = (i) 0, (ii) 16, (iii) 40, (iv) 80(w) for Rb ((Solid)
red curve) and Cs ((Dashed) blue curve).
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potentials rather than ~;. For constant values of v = 79, the order of magnitude of ~;
determines solely the timescale over which growth/decay occurs although as this is already
a sensitive competing dynamical growth process. Unequal ~;’s for the two species could
largely modify the dynamics. In our simulations, we first note that all of the growth curves
finish either on the horizontal or vertical axes, i.e. with a one component condensate where
the other condensate has vanished from the system. One component is always found to
vanish from the system as the growth rates do not change over time as would be the
case in an experimental setup: this feature is inherent in our purely dissipative model.
Physically, this represents all of the particles being in the thermal cloud for that component
(although this is only implicit within our simplified model). Nevertheless, this is still
broadly consistent with the experimental findings as there were numerous unpublished
results showing images where only one of the species was condensed [238]. The influence
of the final chemical potentials on the path taken is clear when comparing the green and
orange growth curves in Figure 4.3 respectively labelled by D and E which start from the
same steady state initial condition and evolve to different final single species condensates.
The nonlinear dynamics and competing processes do not give us a direct handle on the
precise trajectories in the Nr,—Ncs plane although extensive simulations have enabled us
to probe the most common types of trajectories, as discussed in detail below and shown
in Figure 4.3.

A number of our simulations (Figure 4.3, cases A, C and D) do not lead to any
structural changes in the integrated density profiles while growth/decay occurs and each
species occupies the same overall position until one vanishes (to the thermal cloud) leaving
a single species condensate. In case A, the initial density profile is asymmetric with Rb
and Cs sitting side-by—side in the axial direction. Once growth/decay begins, Rb vanishes
rapidly from the system leaving a condensate with only Cs present. The growth curve
for case B has similar initial particle numbers and similar density profile changes during
growth. In this case, Rb decays while Cs grows in the centre of the trapping potentials.
This growth of Cs splits the Rb into two distinct parts either side of Cs. Over longer time
evolutions, Rb vanishes leaving a Cs condensate. For case D, we start with a symmetric
density profile and Rb will decay over time. The asymmetric intermediate density profiles
in case D are due to the asymmetry present in the initial steady state solution where, as Rb
slowly decreases, the right peak of Rb vanishes before the left peak giving a side-by—side
density profile. We obtain a Cs only condensate over longer time scales. In case E, we start
with the same initial condition as case D but choose different final chemical potentials for
each of these simulations resulting in different growth curves. In the intermediate plot for
the green growth curve for case E, we observe a spontaneous dark—bright soliton (where
a dip in one component is filled by the other and oscillated in the axial direction) which

oscillates in the trapping potential until all the Cs bright component no longer exists in
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Figure 4.3: Condensate particle growth curves in N¢g (vertical) and Ngy, (horizontal) plane. Initial
(steady state), intermediate and final density distributions depicted by stars circles and crosses
respectively. The intermediate and final plots are not at the same time between A-E. Dotted lines
— boundaries of experimental regions. Each set of three density profiles corresponds to initial,
intermediate and final 1D integrated density profiles for Rb — (Solid) red curve and Cs — (Dashed)
blue curve.
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Figure 4.4: Time taken for black growth curve from Figure 4.2 to get to Ngp = 8000 and N¢s =
5400 against v = YrbL = YCs-

the system. Finally in case B, we observe similar density evolution to case D but over a
different growth path in the Ngp,—Ngg plane.

The time taken for a two—species condensate mixture to grow/decay depends nonlin-
early on the value of the phenomenological growth rate chosen. To show this, we follow
the same procedure as for growth curve in Figure 4.2 while considering different values
of v = 9rp = Ycs- The dynamical evolution of the condensate clouds undergo the same
changes as in Figure 4.2 but over shorter/longer timescales. Numerical results in Fig-
ure 4.4, where the time taken to grow/decay to Ngp = 8000 and N¢gg = 5400 is from an
initial configuration of Ny = 10000 and N¢s = 2000 plotted against different values of
YRb = YC's, Shows the time dependence on 4Ry = Y5 is clearly nonlinear.

In this Section, we have looked at growth/decay in a two component system corre-
sponding to the experimental parameters used in [77] and found, in some minority cases,
the density profiles evolved through different experimental regions going from a symmet-
ric density profile to a side-by—side one. However, in the majority of cases, we have not
found the growth of the condensates to match those seen experimentally. Here, we note
the limits of this model such as the inability to start with thermal clouds and quench these
in order to form condensates to mimic the experimental protocol in more detail. In the
following Section, we will show results obtained by collaborators in Taiwan which directly
include the thermal cloud through the use of Coupled SPGPE (CSPGPE). These results
form the basis and are the main motivation for our subsequently presented work looking
at dark—bright solitons in the context of the CDGPE.
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Figure 4.5: Typical CSPGPE simulation. (a) Condensate (Penrose-Onsager) particle numbers.
Rb — (Solid) red curve; Cs — (Dashed) blue curve. (b) Two-dimensional surface densities for
Rb(top) and Cs(bottom). (c) Integrated column density. Rb — (Solid) red curve; Cs — (Dashed)
blue curve. Figure by I. K. Liu.

4.3 Coupled Stochastic Projected Gross—Pitaevskii Equa-

tions Results

In this Section, we present a brief overview of the work carried out by our collaborators
I. K. Liu and S. C. Gou. These results, which reveal the spontaneous emergence of dark—
bright solitons, form the basis for our motivation to investigate the role of such structures
during growth in condensate mixtures within our purely dissipative model.

Figure 4.5 shows a typical CSPGPE evolution of the Rb and Cs clouds when a dark—
bright soliton spontaneously emerges. In these simulations, additional linear potentials
are used in the harmonic traps in accordance with the best match results from mean—field
simulations to experiment covered in Chapter 3. Consistent with experimental observa-
tions [77], the Rb condensate grows first and sympathetically cools the Cs particles until
these also form a condensate. In this simulation, Cs grows in a dark solitonic structure
present in the Rb condensate. Oscillations of this now dark—bright soliton structure can
be seen in the integrated density profile. Other simulations, where dark—bright solitons
spontaneously formed, were carried out for this system. This is broadly consistent with
the Kibble-Zurek scenario, whereby defects (here in the form of dark or dark-bright soli-
tons) freeze into the density profile as the system acquires constant phase locally [239]. If
a dark-bright soliton grows rapidly, the density becomes pinned if the Cs in the dark-
bright soliton grows very rapidly, leading to mean—field potential pinning. On the other
hand, if the Cs particles do not form a condensate quickly no dark-bright solitons are
observed. This is due to the continued growth of Ngy, forcing the system into an axial
side-by—side structure when Cs forms a condensate over longer time scales. We note here
that similarly to results obtained for the CDGPE in Section 4.2, over long evolution times
one component vanishes from the system leaving us with a single species condensate.

The remainder of our work in this Chapter is motivated by the scenario when a dark—
bright solitonic structure has formed during growth and how the dark-bright soliton(s)
affect the growth of the system. We shall investigate this through the CDGPEs, a cleaner
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system where no noise is present in order to emphasise the role of a dark—bright soliton
on the density profiles. In our simulations such a structure is imprinted in a pure form
rather than the less pure stochastically generated structure arising in a real quench. In
the following section, we first look at dark—bright solitons at zero—temperature in three
dimensions through the CGPEs before introducing growth via CDGPEs in a subsequent

section.

4.4 Dark—Bright Solitons at Zero—Temperature

Here, we investigate the dynamical evolution of dark—bright solitons in three-dimensions
with the experimental parameters taken once again from [77]. The trapping potentials
are elongated in one axial direction (w; ~ 10w,), thus our system can be considered to
be quasi-1D (see Section 2.10.3 for a discussion on the 1D dark-bright soliton). The
best fit additional linear potentials to the harmonic traps between steady state mean—field
simulations and experimental results from Chapter 3 are considered. In Figure 4.6, plots
of the dynamical evolution for each atomic species are shown with one or two dark—bright
solitons. When only one soliton is present at the beginning of the evolution (Figure 4.6 (a)),
similar results to the 1D case (Figure 2.5) are observed due to cigar shaped harmonic trap,
i.e. suppressed dynamics in the transverse directions due to the quasi-1D configuration.
The soliton oscillates at regular intervals in the axial direction. For two initial solitons
(Figure 4.6 (b)), the two interact similarly to the 1D system at first (Figure 2.8): the size
of the oscillations increases due to the soliton cross overs. However after a few oscillations,
the two solitons merge to form one larger dark—bright soliton. This new soliton takes
up an asymmetric (non—central) position in the axial direction and has small oscillations.
Over long time scales, the oscillations cease due to the phase step no longer being present

once the solitons merge.
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Figure 4.6: Dynamical evolution of Rb (top) and Cs (bottom) with (a) one dark-bright soliton,
(b) two dark-bright solitons. Condensate particle numbers Ny, = 4000 and N¢g = 200.

4.5 Dark—Bright Solitons at Finite—Temperature

In this section we investigate the dynamical evolution of a dark—bright soliton in a two—
component BEC. Growth/decay is included through the means of phenomenological growth
(Equations (4.1)). Initially we consider systems with one dark—bright soliton. Then the
same system with multiple solitons, all imprinted numerically through a phase slip, is

examined.

4.5.1 One Dark—Bright Soliton

We present our results for different dynamical evolutions of a single dark—bright soliton in
the Rb—Cs immiscible condensate mixture and observe the same results as the CSPGPE
over long evolution times: one component vanishes leaving us with a one species con-
densate. We note here that the final chemical potentials for each species used for our
simulations are given by the final particle numbers rather than set directly. The initial
condition for dynamical evolution is obtained by imprinting the dark component with a m
phase step during imaginary time propagation. We now present our simulation and show
the effects of varying parameters.

In Figure 4.7 (a), where the final chemical potential ucs is large, the oscillations of

75



Chapter 4. Growth Dynamics in Trapped Condensate Mixtures

(@) (b) (©
20 3
15
E10 1.5
S T ——
0 0 10 0
Z(l5p)

Figure 4.7: Dynamical evolution of Rb (top) and Cs (bottom) with initial dark—bright soliton. (a)
7; = 0.01, initial condensate numbers Ng;, = 4000 and N¢cgs = 200, final chemical potentials given
by final particle numbers Ny, = 15000 and N¢s = 10000. (b) ; = 0.01, initial condensate numbers
Ngrp = 4000 and N¢gs = 200, final chemical potentials given by final particle numbers Ngp = 15000
and N¢s = 5000. (c) v; = 0.001, initial condensate numbers Nyp = 4000 and Ngs = 200, final
chemical potentials given by final particle numbers Ngp, = 15000 and N¢g = 10000.

the dark—bright soliton speedily come to a stop once the number of condensed Cs atoms
increase beyond a critical threshold, with Cs overwhelming in the centre of the trapping
potential. In time, all Rb condensate atoms vanish from the system, resulting in a single
species Cs BEC beyond the plotted timescale. Figure 4.7 (b) depicts the inverse scenario
where we have small ucs. The dark—bright soliton can be seen to oscillate, distorting
the Rb cloud until the Cs bright component dies out from the system resulting in a single
species Rb BEC. During the studies of this one dark—bright soliton system, we investigated
the role of the initial position of the soliton but found this had minimal impact on the
dynamical evolution. Similarly, the initial number of Cs particles can be increased (at least
three times larger) and has minimal qualitative impact on the dynamical evolution of both
condensate clouds. Figure 4.7 (c) shows the dark—bright soliton oscillating a number of
times over the plotted timescale. By comparing Figure 4.7 (a) and Figure 4.7 (c) where
the growth rate ; has been decreased by an order of magnitude, it is clear the solitonic
features are prolonged due to the longer time required for the number of Cs particles to

reach a critical value. After longer timescales both of these cases reach the same end
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result: a single component Cs BEC.

When increasing s only, shown in Figure 4.8 (a), the bright component increases
quicker than previously seen in Figure 4.7 (a) and less dark-bright soliton oscillations
are observed. Over longer timescales, all Rb atoms are no longer in the condensate. By
decreasing vycs only in comparison to Figure 4.7 (a), shown in Figure 4.8 (b),the bright Cs
component no longer dominates in the centre of the trapping potential but rather oscillates
over a long period of time until it is pushed out to one side due to the trap asymmetries
we considered in our model. Eventually, all the Cs condensate cloud will vanish from the

system.
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Figure 4.8: Dynamical evolution of Rb (top) and Cs (bottom) with initial dark—bright soliton.
Initial condensate numbers Ngp = 4000 and N¢s = 200, final chemical potentials given by final
particle numbers Nyp = 15000 and Ngg = 5000. (a) yrp = 0.01 and yos = 0.1, (b) yrp = 0.01 and
Yes = 0.001.

The difference in the dynamical evolution due to the impact of the additional linear
potentials to the harmonic trapping potential may not be extensive but the small changes
that these create are still clear as shown in Figure 4.9. The most significant change is
the time taken for the condensate clouds to grow/decay: when the trap asymmetries are
not present the dynamics evolve over a smaller timescale and single species BECs arise
sooner. A by product of this feature is the number of visible oscillations from the dark—
bright soliton is reduced.

When a single dark—bright soliton is present in the initial density profile and growth
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Figure 4.9: Dynamical evolution of Rb (left) and Cs (right) with initial dark—bright soliton with
no offset in harmonic trapping potential. ~; = 0.01, initial condensate numbers Ny, = 4000 and
N¢s = 200, final chemical potentials given by final particle numbers Ng;, = 15000 and N¢g = 10000.

is modelled through phenomenological damping, we have seen that even though there are
only two possible steady state outcomes (condensates of either Rb or Cs), many differ-
ent dynamical paths can be taken to reach these final density profiles. Experimentally,
growth ceases before time of flight expansion and any density profile during the dynamical

evolution can be imaged.

4.5.2 Multiple Dark—Bright solitons

In this section, we present numerical results for the dynamical evolution of a two—component
system with two initial dark—bright solitons. Once again, finite-temperature effects are
included through phenomenological growth via the CDGPEs.

In Figure 4.10, the results for three simulations are shown where only the position of
one soliton has been changed. In the axial direction z, the left—hand side soliton has the
same initial position (z(lgp) = —2.6) while the starting position of the right hand soliton
is varied. In all three simulations, the Cs condensate will continue to grow while the Rb
cloud will decay eventually leaving us with a one component Cs condensate only. This is
consistent with Figure 4.7 (a) as the same parameters are used, the sole difference being
the additional initial dark-bright soliton. In Figure 4.10 (a), the right hand soliton is
close to the centre of the trap in comparison to the left soliton (z(Igy,) = 1.2). When these
solitons begin to oscillate, they initially cross paths similarly to dark—bright solitons at zero
temperature (Figure 2.8). Once the solitons have interacted, one stabilises at the centre of
the trapping potential while the other is pushed to the outskirts of the trapping potential,
in accordance with the asymmetries present due to the additional linear potential. Over
longer time scales, the growth of the soliton in the centre of the system continues while
the other decays giving similar results to Figure 4.7 (a). In Figure 4.10 (b), the right hand
side soliton is placed further away from the centre of the trap (z(lgp) = 5.0). In this case,
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when the solitons meet due to their oscillations they merge to form a single dark—bright
soliton. After a few small oscillations the soliton is fixed at the centre of the trap resulting
in a comparable outcome to Figure 4.7 (a). Finally, Figure 4.10 (c) has initial dark-bright
solitons placed symmetrically either side of the trap centre (right hand side soliton at
z(lgp) = 2.6). In this case, we get a mixture of the previous two results. The solitons

initially cross paths and then merge into one larger dark—bright soliton.
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Figure 4.10: Dynamical evolution of Rb (top) and Cs (bottom) with initial dark—bright solitons
with +v; = 0.01, initial condensate numbers Ngp = 4000 and N¢g = 200, final chemical potentials
given by final particle numbers Ngp = 15000 and N¢g = 10000. Initial position (z(Igp) = —2.6)
of left soliton unchanged throughout. Right soliton (a) z(lgp) = 1.2, (b) z(lgp) = 5.0 and (c)

We attempted to add more solitons to the system but two would merge while using
imaginary time propagation giving us once again two initial solitons. However, from
Figure 4.10, we obtained the same qualitative dynamics once the solitons have merged or
one has decayed compared to the same system with one soliton when equivalent parameters
are used. This leads us to believe that a system with more solitons would have similar
results in which one central Cs condensate cloud would remain at the centre of the trapping
potential. Thus the dynamics over long time scales does not appear to depend on the
number of initial dark—bright solitons. However, the number of initial dark—bright solitons

does lead to a large amount of possible density profiles over short time scales.
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4.6 Chapter Summary

In this Chapter we simulated growth in a two—component system through phenomenolog-
ical growth in the CGPEs. We showed that over long time scales one condensate species
would always grow while the other would decay. This growth/decay is dependent on
the final chemical potentials used where each chemical potential affects the other species.
During the simulations, when the growth curve crossed through experimental regions [77],
changes in the density profiles were seen in agreement with experimental results despite
these happening in a minority of cases. Our collaborator I. K. Liu examined this system
through evolutions of the CSPGPE and observed spontaneous formation of dark—bright
solitons which turned out to be rather crucial in the short to intermediate timescales of rel-
evance to experiments. After introducing dark—bright solitons in two-species condensates
at zero temperature, we looked at the evolution of solitons when growth/decay is included
in the model. This system will also give a clearer picture of the impact of dark—bright
solitons only in comparison to the CSPGPE results. The oscillations of dark—bright soli-
tons die out when growth is included, and the time scale is dependent on the magnitude
of the growth rate. The deliberate inclusion of multiple dark—bright solitons leads to new
possible density profiles over short time scales, however over longer time scales the same

dynamical evolution as for one soliton is observed when using equivalent parameters.
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Chapter 5

Condensate Mixture Dynamics at

Non—Zero Temperatures

In this Chapter, we investigate finite temperature effects through strongly nonequilibrium
initial conditions as first introduced in Section 2.11.5. After providing a description of our
numerical procedure, we present typical results of our simulations obtained by dynamical
evolution of the dimensionless GPE. By first studying the evolution of a single species until
a thermalised state is reached, we compare miscible and immiscible two component systems
with nonequilibrium initial conditions. The coupled evolution is then investigated when
the particles from a single thermalised component are split into two components. Finally
the impact of quenching the interspecies interactions is studied. We then present the
outcome of repeated quenches at regular time intervals, with the intention of determining
the extent to which a vortex tangle can be sustained as this could provide a novel route

to quantum turbulence.

5.1 Exploring Single Component Results

In this Section, we describe the numerical procedure used to simulate the evolution of single
component systems from highly nonequilibrium initial conditions. We then qualitatively
reproduce the numerical results from References [224, 232] when exploring the evolution of
this system before generalising these findings to two component systems in the following

Section.
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5.1.1 Numerical Procedure

Our numerical simulations are conducted within a three dimensional periodic box starting

with strongly nonequilibrium initial conditions in the GPE. These are

kmaac

o(r,t=0)= Z akexp (tk - r) (5.1)
K

where the phases of the complex amplitudes ay are distributed randomly. The initial
wavefunction ¢ (r,t = 0) is renormalised to fix the particle and energy densities. The
condensed particle and occupation numbers are calculated over time using the Discrete
Fourier Transform, detailed in Appendix C. For all the simulations, we use the time
step dt = 0.01 with all physical quantities presented in this Chapter expressed in terms
of natural units. The initial state is propagated in time using the GPE (2.45) until
an equilibrium solution is reached where the condensate fraction ng/N is constant. To
determine the equilibrium properties of the system, we use the ergodic hypothesis such that
time averages on our simulations represent ensemble averages. Unlike the Penrose-Onsager
criterion for Bose—Einstein condensation where the condensate wavefunction corresponds
to the mode of the system which has the largest eigenvalue [119], the number of particles
in the condensate is identified here by the occupation number of the zero momentum mode
k = 0. In these calculations, an ultraviolet momentum cutoff, k., is introduced such that,
for k > k., nk(t) = 0. In natural systems, the cutoff manifests itself through viscosity
or diffusion effects [232]. In numerical simulations of the GPE equation, this cutoff arises
naturally due to spatial discretisation. The effect of varying the cutoff has been considered
by repeating simulations with more spatial points in each direction [240]. The results at
equilibrium were found to be independent, within statistical error, of the cutoff due to

spatial grid discretisation.

5.1.2 Quasicondensate Evolution

Starting with nonequilibrium initial conditions, we performed numerical simulations with
varying numbers of computational modes. We show the evolution of the condensate frac-
tions in Figure 5.1 for three numbers of modes (163, 323, 643). The condensate fraction
no/N increases during dynamical evolution of the system until it converges to some value
as the system approaches the some thermodynamic limit. Over long periods of time, the
condensate fraction is independent of the number of modes for equal particle and energy
densities. In other words, the number of modes only weakly affects the condensate atom
number fraction in the thermodynamic limit.

Now, we investigate the effect of increasing the total energy while keeping the particle

density N/V fixed. This is equivalent to increasing the kinetic energy in the system.
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Figure 5.1: Temporal evolution of condensate fraction ng/N with (E)/V =1, N/V =1/2. (Solid)
black curve — 163 computation modes; (dashed) red curve — 323 computation modes; (dot—
dashed) blue curve — 643 computation modes.

When the total energy is increased, the final condensate fraction in the system is expected
to decrease. Figure 5.2 shows the numerical results for simulations with different total
energy. The condensate fraction decreases as the total energy is increased. Similarly if the
particle density is increased (decreased) for fixed energy, the condensate fraction increases
(decreases) due to the energy per particle decreasing (increasing).

Figure 5.3 shows the distribution of particles Ny = 3/ <) ni where k = /k2 + k2 + k2.
The occupation of the condensate mode (k = 0) increases over time. This is consistent with
the increase of the condensate fraction (Figure 5.1). We note the presence of a “shoulder”,
i.e. sharp change in gradient of the curves, which becomes sharper for longer simulation
times as particles are redistributed. By definition of N, the number of quasiconden-
sate particles is equal to the height of the shoulder. This evolution of the distribution
of particles is in agreement with previous numerical simulations from Reference [224]. In
simulations with 64 computational modes, the quasicondensate part of the wavefunction
arises swiftly. The pronounced shoulder takes longer to appear for a higher number of
computational modes. In our units, each momentum mode, i.e. k = 0,1,2...(v/127/L),
where L is the half number of computational modes in each direction, represents one
energy level.

It is important to track the topological defects of the long—wavelength part of the
complex field ¢. To achieve this, we follow the approach in References [224, 234, 241] where
high-frequency momenta are suppressed by the transformation ay — ay*max{1—k?/k2,0}

for a cutoff wavenumber k.. In choosing the cutoff wavenumber k. to plot the evolution
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Figure 5.2: Condensate fraction ng/N against total energy density (E)/V (u/&3). Each simulation
has 643 modes with N/V = 0.5. Each point and error bars are averaged over 103 time units.
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Figure 5.3: Evolution of Ny = Y°,, ., ne for (E)/V =1, N/V = 1/2 with 64% computational
modes. -
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of topological defects, it is natural to take k. larger than the shoulder (see Figure 5.3) to
encompass the entirety of quasicondensate and remove the higher momentum part of the
wavefunction.

Figure 5.4 shows the results of visualising topological defects where the cut off wavenum-
ber is given by k. = 8(v/127/L). All of the Figures showing topological defects in this

Chapter use the isosurface ‘&‘2 = 0.05(‘55‘2) where ¢ is the long wavelength part of the
field ¢. With our chosen value for k., the eight lowest energy levels are included and it
is larger that the shoulder in Figure 5.3, therefore none of the quasicondensate modes are
neglected. The initial turbulent quasicondensate decays quickly due to thermalisation and
reconnections leading to a vortex tangle. The number of vortices continue to slowly decay
until only a few vortex rings are visible. At ¢ = 1200, 1400 and 1600(c/€) we see the last
topological defect of the turbulent decay: a single vortex ring. For longer times, the vortex
ring decays leaving no topological defects in our numerical box.

In order to encompass the quasicondensate part, we choose k., = 8 for the remainder
of this Chapter based on the positioning of the shoulder in Figure 5.3. However, there is
no exact cutoff and we found that all the results were largely independent for a range of
values. For the evolution shown in Figure 5.4, the results were independent for 6 < k. < 14.
In contrast to the phenomenological cutoff used in References [224, 234, 241], a constant
cutoff is preferable rather than a time dependent formula due to the nature of the work
in the following Sections of this Chapter. All results starting with highly nonequilibrium
initial conditions can follow a phenomenological cutoff but this is no longer valid if system
parameters are changed over the course of numerical simulations.

The exponential decay of the vortex linelength related to Figure 5.4 is shown in Fig-
ure 5.5. The vortex linelength decays faster(slower) for larger(smaller) energy densities.
The algorithm to calculate the vortex linelength was written by N. G. Berloff (Department
of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge,
United Kingdom) and updated by A. J. Youd (Joint Quantum Centre Durham-Newcastle,
School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1
7RU, United Kingdom). After the high—frequency momenta have been suppressed, the
algorithm checks for where the wavefunction is zero to find where the cores of the vortices
are located. We generalised this method for use with two components in the following
Section. One other possible method for calculating vortex linelength is to investigate the
location of 27 phase windings in the system. Figure 5.6 shows the location of the vortices
located by the algorithm corresponding to the isosurface at ¢ = 1400(c/{) in Figure 5.4.
To confirm the presence of a vortex ring, we take a slice through the ring in one direction
(x =20(£)) and plot the phase of the slice in Figure 5.7. A 27 phase winding is observed
at the locations where the vortex ring crosses the plane of the view. These wind in op-

posite directions due to the opposite rotation of the vortices at each point: clockwise and
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Figure 5.4: Evolution of topological defects given by the isosurfaces (b‘ = 0.05(‘¢‘ ) where ¢ is the
long wavelength part of the field ¢. The cutoff number is given by k. = 8 such that high—frequency

spatial waves are suppressed by the factor max{1 — k?/k2, 0}.
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anticlockwise respectively.
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Figure 5.5: The decay of vortex linelength over time corresponding to the evolution in Figure 5.4.
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Figure 5.6: Vortex ring located by linelength algorithm corresponding to isosurface plot at t = 1400
in Figure 5.4. Axis shown for to clarify location of 2D slice shown in Figure 5.7.

We presented in detail the dynamical quasicondensate evolution for a single component
starting with highly non—equilibrated initial conditions. The condensate fraction increases
over time until it reaches thermal equilibrium, determined by the particle and energy

densities. By visualising the topological defects, the decay of the initially turbulent vortices
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Figure 5.7: (Left) Isosurface slice in y — z plane at « = 20 from Figure 5.6. (Right) Phase of filtered
wavefunction in y — z plane at x = 20.

is visible and confirmed by the exponential decay of the total vortex linelength. In the
following Section, we study the role of a second additional component in the system and

investigate the importance of the immiscibility criteria.

5.2 Mixtures

Having introduced and tested our numerical scheme and method against existing results,
we now tackle the two component problem where the main differences with a single com-
ponent are caused by the addition of the interspecies interaction strength now present in
the model. We first look at two components and initiate both of these with nonequilibrium
initial conditions. This has been previously studied in the case of miscible quasiconden-
sates only [234, 241]. Then, starting with an equilibrated single species wavefunction, we
split the particles between components and dynamically evolve this new system. This pro-
cedure is experimentally relevant when two hyperfine states of the same atom are used as
the two components. Finally, we consider the impact of quenching the interspecies inter-
actions strength on the condensate fractions and vortex linelengths. Throughout all of the
results presented in this Section, we take m; = mo which is consistent with experiments

where two hyperfine states of the same atomic species are considered.

5.2.1 Nonequilibrium Initial Conditions

Similarly to our initial conditions for a single component in Section 5.1.2, we first consider
each component to have different highly nonequilibrium initial conditions. Simulations

for weak interspecies interactions with nonequal particle and energy densities have been
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carried out and our results are in excellent agreement with References [234, 241]. The
main aim for these numerical simulations is to investigate the consequences of varying
the strength of the interspecies interaction to encompass both miscible and immiscible
regimes.

First we investigate miscible condensates for which the evolution of the topological
defects are presented in Figure 5.8 where we have used a constant cutoff k. and equal
particle and energy densities. We stress here that a range of cutoffs were once again
examined and no changes were observed in the isosurface density plots. The observed
vortex decay is similar to that seen in Figure 5.4 where the vortex tangle decreases with
time. The first component (shown in red) vanishes first. A single vortex ring is observed
at t = 1400 and ¢t = 1600. The radius of this vortex ring decays over time until vanishing
leaving no topological defects.

Figure 5.9 shows the topological defects for an immiscible system. Contrary to the
miscible case, the initial vortex tangle does not decay. We now observe the boundaries of
the phase segregated domains. The components quickly separate into two domains: one for
each quasicondensate. The filtered isosurfaces no longer depicts the vortices in the system
but the interface between the components, i.e. the boundary of each quasicondensate.
Unlike miscible quasicondensates, these topological defects never vanish from the system
as the condensates constantly interact with each other. For an immiscible system, a
measure of vortex linelengths is required to determine the dynamics inside each of the
spatially separated domains.

The evolution of the condensate fractions starting from highly nonequilibrium initial
conditions for a range of values for g;2 are shown in Figure 5.10. Due to each component
starting with the same particles and energy densities the thermalised condensate fraction
values are the same for each component. As the interspecies interaction strength is in-
creased, we see the condensate fraction decreases due to the additional energy present in
the system from the stronger interspecies interaction terms in each of the CGPEs. This
feature is enhanced when the immiscibility criteria is satisfied.

The vortex linelengths corresponding to the condensate fractions of Figure 5.10 are
shown in Figure 5.11. For the miscible condensates, the vortex linelengths decay in a
similar manner as seen for a single component. We note that, even though the condensates
are miscible in both cases (blue and green curves), the larger the interspecies interaction
strength the quicker they decay. We have seen complimentary results in a single component
to correlate this finding: by increasing the intraspecies interactions, the decay of the vortex
linelength occurs more quickly. For immiscible condensates, the vortex linelength does
not drop to zero but rather decreases to a steady limit. A typical example of the vortices
counted by the linelength algorithm are shown in Figure 5.12 showing the presence of

vortices in each of the spatially separated quasicondensate domains. By taking a slice at
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Figure 5.8: Asin Figure 5.4, evolution of topological defects of two components with g1 = g22 = 1.0
and g12 = 0.5 (miscible). Both wavefunctions share the same initial energy and particle densities
for nonequilibrium initial conditions. First component — red; Second component — blue.
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t=1600

Figure 5.9: As in Figure 5.8 but with g11 = g2o = 1.0 and g12 = 1.5 (immiscible). First component
— red; Second component — blue.
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Figure 5.10: Condensate fraction ng;/N; evolution for two components starting from nonequi-
librium initial conditions with same energy and particle densities with g1 = 1.5 (black curves),
g12 = 1.05 (red curves), g1 = 0.5 (blue curves) and g2 = 0.1 (green curves). In all curves
g11 = goo = 1.0. First component — solid curves; Second component — dashed curves.

x = 0 for each component (see Figures 5.13 and 5.14) and plotting their corresponding
phase portraits, 27 phase windings confirm the presence of vortices. Higher numbers of
vortices are present in each domain for larger immiscible interspecies interactions.
Different thermalised condensate fractions are obtained depending on the initial kinetic
energy and number of particles in each component. Figure 5.15 shows the evolution of
the condensate fractions for three simulations with equal particle and kinetic energies in
each component. The additional total energy is due solely to the increase in interspecies
interaction strength. For miscible condensates, the condensate fraction of one component
increases while the other decreases in comparison to zero interspecies interactions. This
is due to both components equilibrating to the same temperature. The added energy for

immiscible components decreases the condensate fraction for both components.
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Figure 5.11: Vortex linelengths over time with g1 = goo = 1.0 for g12 = 1.5 (black curves),

g12 = 1.05 (red curves), g12 = 0.5 (blue curves) and g1z = 0.1 (green curves). First component —
solid curve; Second component — dashed curve.

Figure 5.12: Vortices included by linelength algorithm corresponding to isosurface plot at ¢ = 800
in Figure 5.9. The cutoff number is given by k. = 8 such that high—frequency spatial waves are
suppressed by the factor max{1 — k2/k2,0}. First component — red; Second component — blue.
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Figure 5.13: (Left) Isosurface slice in y — z plane at & = 0 of the first component from Figure 5.12.
(Right) Phase of filtered wavefunction in y — z plane at x = 0.
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Figure 5.14: (Left) Isosurface Slice in y—z plane at = 0 of the second component from Figure 5.12.
(Right) Phase of filtered wavefunction in y — z plane at x = 0.
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Figure 5.15: Condensate fractions for g11 = g22, N1/V = 0.5 and N2/V = 0.25. Solid and dashed
curve are component one and two respectively. Black curves: g1 = 0, (E)/V = 0.37; Red curves:
g12 = 0.5, (E)/V = 0.42; Blue curves: g2 = 1.5, (E)/V = 0.57.

5.2.2 Splitting from One to Two Components

We now examine the dynamics of taking a thermalised single species condensate, where no
topological defects are visible, and splitting it into two components. Experimentally this
is equivalent to flipping a number of the particles into a second new hyperfine state of the
same atomic species where both hyperfine states now interact together. When performing

this split numerically we set

100 — «
o1 = W¢old
(5.2)
(0]
o = m¢old

where ¢1q is the thermalised single component wavefunction and « the percentage of atoms
flipped into the second component. This split conserves the total number of particles in
the system. In addition, some small extra noise (maximum +5% particles) is added to each
wavefunction once the split is performed taking into account experimental uncertainty and
such that when oo = 50, both components are not exactly equal (¢1 # ¢2). The condensate
fraction of the single species used in this Section is ~ 0.8.

Figures 5.16 and 5.17 show the thermalised condensate fractions of each component
relative to splitting percentages and strength of the interspecies interactions for both equal
and unequal intraspecies interactions. We first observe that for g9 = 0, the condensate

fractions of each component are close (but not equal due to the noise) to that of the initial
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Figure 5.16: Thermalised condensate fractions for the first (left) and second (right) component
for a range of flip percentages, i.e. the percentage of the single species wavefunction in the second
component, and interspecies interactions with equal intraspecies interactions g11 = g22 = 1.0. Each
condensate fraction is averaged over 103 time units.

one component wavefunction. For miscible (attractive or repulsive g12) the condensate
fractions remain high until the majority (> 85%) of the particles are in one component at
which point the smaller component no longer forms a condensate. At the barrier between
miscibility and immiscibility (g12 = 1 in Figure 5.16), the condensate fraction is once
again high for « # 0 and « # 100. For immiscible condensates, the additional energy from
domain boundaries plays an important role with one component often overpowering for
nonequal splits. In Figure 5.17 where the intraspecies interactions are not equal, the onset
of immiscibility is no longer abrupt and a new miscible regime arises: g11 < g12 < ¢922.
This has a small impact on ¢; only and the condensate fraction is reduced in places. The
second component is unaffected.

When splitting to a miscible mixture, no topological defects arise in the system, i.e. no
vortices form. In the case of immiscible condensates, the evolution of topological defects
is shown in Figure 5.18. The method used for determining the initial wavefunctions for
each component leads to initially overlapping densities. As these separate quickly due
to the strong interspecies interactions, domains form. These are seen throughout in the
isosurface plots. Similarly to the numerical results in Figure 5.9 for longer evolution
times, each component forms one well defined domain. Unlike previous results, the vortex
linelength does not decay during this dynamical evolution but rather increases from its
initially zero value to a maximum around which it thermalises. The final outcome is very
similar to that in the previous Section for the linelength of immiscible condensates. The
increase in linelength observed here demonstrates that vortices are formed in this two
component system due to the immiscibility criteria being satisfied. The vortex linelength

for miscible components, once split, remains zero throughout.
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Figure 5.17: Thermalised condensate fractions for the first (left) and second (right) component
for a range of flip percentages, i.e. the percentage of the single species wavefunction in the second
component, and interspecies interactions with non—equal intraspecies interactions g;; = 1.0 #
g22 = 1.2. Bach condensate fraction is averaged over 10 time units.

We have studied the experimentally relevant splitting of one component into two and
seen the effects on the quasicondensate fractions depending on how each component is
populated and the strength of the interspecies interactions. When splitting into an im-
miscible mixture, vortices are formed in each domain due to the kinetic energy driven into

the components by the repulsive dynamics following the split.
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t=1400

Figure 5.18: As in Figure 5.8 with g11 = g2 = 1.0 and g12 = 1.5 (immiscible). At ¢ = 0, single
species thermalised wavefunction is split (50%) into two components. First component — red;
Second component — blue.
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Figure 5.19: Vortex linelength over time corresponding to the evolution in Figure 5.18 where at ¢t =
0 single species thermalised wavefunction flipped (50%) into second species where g11 = goo = 1.0
and g12 = 1.5 (immiscible). First component — solid curve; Second component — dashed curve.

5.2.3 Quenching the Interspecies Interaction Strength

Here, instead of starting with one component, we initially start with two miscible or
immiscible thermalised quasicondensates and quench the interspecies interaction strength
in order to investigate the possible generation of topological defects. We also stress the
importance of the immiscibility criteria in vortex formation. For a quench from miscible to
immiscible, we expect similar results to those observed in the previous Section where one
component is split into an immiscible mixture. However when quenching from immiscible
to miscible, decay of vortex linelength is anticipated.

Figure 5.20 shows the topological defects when quenching the strength of the inter-
species interactions such that the components go from immiscible to miscible. After a very
short period of time, the domains vanish and a vortex tangle can be seen. The contrast
between miscible and immiscible quasicondensates is clearly observed. The number of vor-
tices in the system then decays over time until all of these vanish. As vortices are present
in each domain, this quench leads to a mixing of the components and the vortex tangles
mix. The quench from miscible to immiscible is comparable to that seen in Figure 5.18
where the domains are quickly formed. The impact of quenching on the condensate frac-
tions is shown in Figure 5.21. Quenching from miscible to immiscible leads to a decrease in
the condensate fractions due to the additional energy from the strength of the interspecies
interactions. The decrease takes place rapidly due to the immiscibility criteria driving the
system. The quench from immiscible to miscible increases the condensate fractions. The

thermalisation of this process takes longer due to the components only slowly mixing, a
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process which is not forced. The thermalised condensate fraction is marginally lower due
to a surplus of energy remaining from the large interspecies interactions in comparison to
a system which is not quenched. Finally in Figure 5.22 we show the evolution of the vor-
tex linelengths when quenching the system. When quenching from immiscible to miscible
the linelength quickly decreases then slowly decays until no vortices remain. Quenching
from miscible to immiscible increases the total vortex linelength until a maximum value
is reached.

In this Section we investigated the consequence of suddenly changing the strength of the
interspecies interactions such that the system is driven through the miscibility /immiscibility
barrier. Similarities were seen with results from the previous Section where the system
was flipped from one to two components, specifically when quenching from miscible to
immiscible. However when quenching from immiscible to miscible, the mixing of the two
condensates leads to a decay of vortices. If the system was not quenched through the
miscibility /immiscibility barrier the transition would not drive the system. Quenching
between two miscible interaction strengths does not qualitatively change the system. The
only effects are a modified condensate fraction: no vortices are driven into the system.
When quenching between two immiscible interaction strengths, the total vortex linelength

decreases (increases) when the interspecies interactions are decreased (increased).
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Figure 5.20: As in Figure 5.8 with g11 = ¢g22 = 1.0. At ¢ = 0, interspecies interactions strength
quenched from g2 = 1,5 (immiscible) to g12 = 0,5 (miscible). First component — red; Second
component — blue.
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Figure 5.21: Condensate fraction ng;/N; evolution for two components with interspecies inter-
actions quench from immiscible (g12 = 1.5) to miscible (g12 = 0.5)(black curves) and miscible

(912 = 0.5) to immiscible (g12 = 1.5) (red curves) at t = 0. g11 = go2 = 1.0. First component —
solid curves; Second component — dashed curves.
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Figure 5.22: Vortex linelength for two components with interspecies interactions quench from
immiscible (g12 = 1.5) to miscible (g12 = 0.5)(black curves) and miscible (g2 = 0.5) to immiscible

(g12 = 1.5) (red curves) at t = 0. g11 = ga2 = 1.0. First component — solid curves; Second
component — dashed curves.
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5.2.4 Repeated Interspecies Interactions Strength Quenches

In this Section we investigate the impact of continually quenching the system through the
miscibility /immiscibility criteria to drive the vortex tangle, with the intention of exploring
where this could provide a novel route to the generation of quantum turbulence. Quantum
turbulence was introduced in Section 1.5 and recent developments in this area for binary
mixtures were discussed.

In Figure 5.23, the system is quenched every 250 time units. The initial state before the
first quench at ¢t = 0 is immiscible. The topological defects swap from mixed vortex tangles
to segregated domains, i.e. phase segregated vortex tangles after each quench. Some vortex
decay occurs during the miscible phase but the vortices are always present when the next
quench is performed. If the system is not quenched through the miscibility /immiscibility
barrier the mixed vortex tangles are not driven into the system. The condensate fractions
(see Figure 5.24) do not reach a thermodynamic equilibrium. These never reach zero
and condensates are always present. The vortex linelengths (see Figure 5.25) interchange

between a maximum and lower values for an immiscible and a miscible system respectively.
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Figure 5.23: As in Figure 5.8 with g11 = g2o = 1.0. Interspecies interactions strength quenched
between g2 = 1,5 (immiscible) and g2 = 0,5 (miscible) every 250 time units. At ¢ = 0 the system
is miscible after the initial flip (50%)from one equilibrated component. First component — red;
Second component — blue.
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Figure 5.24: Condensate fraction ng;/N; evolution for two components for interspecies interactions
quenched between immiscible (gi12 = 1.5) to miscible (gi12 = 0.5) every 250 time units. At ¢ = 0 the
system is miscible and single species thermalised wavefunction flipped (50%) into second species.
g11 = goo. First component — solid curve; Second component — dashed curve.
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Figure 5.25: Vortex linelength over time corresponding to the evolution in Figure 5.23 where at
t = 0 single species thermalised wavefunction split (50%) into two components where g1 = gag =
1.0 and g12 = 0.5 (miscible). Interspecies interactions quench between immiscible (g2 = 1.5) and

miscible (g12 = 0.5) every 250 time units. First component — solid curve; Second component —
dashed curve.
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5.3 Chapter Summary

In this Chapter, we have numerically simulated quasicondensates in periodic boxes. By
first considering a single component system starting with highly nonequilibrium initial
conditions, the turbulent state decays as the number of vortices decay due to rethermali-
sation of the particles and reconnections of the topological defects. All vortices eventually
vanish from the system while the condensate fraction reaches a thermodynamic limit. The
final condensate fraction depends on the initial particle and energy densities.

When a two component system from initial nonequilibrium conditions is considered,
two distinct evolutions arise. For miscible components, the vortex tangle decays similarly
to the one component system. Phase segregated domains form when immiscibility between
components is satisfied. Vortices are present in each domain. Thus we have a phase
segregated vortex tangle. We then considered a system where the two components are
formed by splitting a thermalised single species system. No novel features were seen for
miscible quasicondensates. For immiscible components, domains form once again and the
vortex linelength increases. Condensate fraction decreases due to the additional energy
from the strong interspecies interactions.

Finally we considered quenching the interspecies interactions in thermalised two com-
ponents. If the quench does not drive the system through the miscibility /immiscibility
barrier, no major changes were seen. When quenching from miscible to immiscible, do-
mains form and the vortex linelength increases. The condensate fraction decreases due
to this quench. Isotropic vortex tangles emerge for quenching from immiscible to misci-
ble due to the vortices from each domain mixing. The vortices subsequently decay. The
condensate fraction increases to a steady equilibrium. When repeating a quench at reg-
ular intervals, vortices never vanish and the system is driven between mixed and phase
segregated vortex tangles. As such, this method provides a potential novel route to the

generation of quantum turbulence.
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Chapter 6

Conclusions and Possible Future
Work

In this final Chapter, we summarise the main results of this Thesis followed by possibilities

for future investigations.

6.1 Conclusions

In this Thesis, we have explored two—species mixtures of Bose gases. More specifically,
we have studied a Rb—Cs condensate mixture in relation to a recent experiment [77].
Initially investigating steady—states of this system at zero—temperature with the simplest
mean—field model, we were able to qualitatively reproduce the three particle-dependent
density profiles observed experimentally. Then, through the addition of phenomenological
growth/decay and dark—bright solitons, different density profiles were seen during the
dynamical growth of the coupled condensates. We then moved on to consider the evolution
of Bose gases using the so—called classical-field methods in periodic boxes with no trapping
potentials, studying how the miscibility /immiscibility of the system changed the thermal

dynamics and equilibrium state.

6.1.1 Two—Species Condensates at Zero Temperature

Condensate mixtures have been a topic of intense research since the first experimental re-
alisations of BEC. From the coupled Gross—Pitaevskii equations, we obtained the ground
state (lowest energy) density profiles of trapped condensate mixtures, firstly with Rb—Na
reproducing the results obtained in [80]. This not only demonstrated that our numeri-
cal methods were accurate but that by simply varying condensate particle numbers and

interspecies interaction strengths a wealth of density distributions are found.
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In 1D, by varying the width of the initial conditions used for imaginary time prop-
agation, the number of interfaces between each species can vary greatly depending on
interaction strengths and particles numbers. This showed the sensitivity of the steady
state solutions on the initial conditions used. As the width of the initial condition is in-
creased, the number of interfaces is reduced. The distribution with the lowest possible
number of interfaces had the lowest total energy and is therefore the true ground state.
In 3D the solutions obtained are sensitive to initial conditions although considerably less
than in 1D.

The main target of the work on ground state solutions at zero temperature was focused
on qualitatively reproducing the experimental results of Reference [77] by means of the
simplest possible zero-temperature mean—field theory consisting of two CGPEs. The
three different condensate mixture density profiles achieved experimentally depend on the
number of condensed Rb and Cs atoms respectively. In perfectly symmetric traps, where
the centres of both trapping potential have the same spatial positions, the density profiles
obtained were found not to match the experimental results. After a more thorough analysis
of the experiment, we offset the trap centres for the two species to account for anticipated
experimental offsets (of around 1 pm) via the addition of weak linear potentials in the
axial and one transverse direction. We stressed that the asymmetries caused by harmonic
trap offsets between the two trap centres in the axial and transverse directions are small
relative to the size of the condensate clouds. This explains why asymmetric density profiles
can be observed in two—species experiments with different atomic species as two magnetic
traps are required which are extremely hard to align perfectly. Dramatic differences in the
density profiles arose with the addition of weak linear potentials. Importantly, this allowed
us to obtain the observed asymmetric profiles. We found a qualitative match between the
structural regimes seen experimentally and our simulations by tailoring the gradients of
linear potentials. Note that our match was limited to the qualitative structure of the
profiles only and disregarded the thermal tails in the experimental profiles (which are not
included in the zero temperature model).

Although good qualitative agreement with the experimentally reported profiles was
obtained by changing the initial conditions of the simulations, for example one of the
components being more tightly localised in the centre, we found that this could affect the
final equilibrated profiles. Numerous metastable states (of comparable, but not identical,
energies) exist for each configuration. In the early stages of coupled growth under the
same parameter regimes, such a situation could arise. The analysis presented in this
work was based on equilibrium density profiles. In the experiments, as the two species
were sympathetically cooled, the initial number of condensate atoms within each species
(or the sequence by which growth proceeded) was not accurately known. Moreover, the

density profiles were typically measured after a variable hold time, without necessarily
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guaranteeing that the structures observed were indeed true equilibrium states (as opposed

to some long-lived metastable steady-states).

6.1.2 Dynamical Studies of Two—Component Mixtures at Finite Tem-
perature

We investigated the role of growth in a two component immiscible system modelled via
phenomenologically damped CGPEs. Starting with a range of steady state density dis-
tributions, the addition of a non—zero damping term can be used to simulate growth.
Perturbing the chemical potential of each condensate induces competing dynamical evolu-
tion between the species which eventually causes one of the species to vanish entirely, thus
leaving only a single species condensate. In a few cases, we have seen the density profiles
change from a symmetric density profile to an asymmetric one during growth provided
additional linear potentials are present (which enables the condensates to shift relative to
each other in a transverse direction).

By looking at the simulations performed by our collaborators 1. K. Liu et al. with
the CSPGPEs using the parameters from [77], spontaneous dark—bright solitons emerged.
This prompted the investigation into dynamical evolution of dark—bright solitons with and
without phenomenological growth. At zero temperature, single solitons oscillate back and
forth in the axial direction while two solitons merge after a short period of time. With some
finite temperature effects included phenomenologically, the extra damping factor plays an
important role on the dynamics. Similarly to a system with no solitons, one condensate
always vanishes entirely. Soliton oscillations can always be seen in the dynamics before
damping overwhelms the condensate evolution. By varying the magnitude of the growth
rate, we were able to identify many variations in the number of oscillations by the dark—
bright soliton(s). In addition, the impact of the small offsets due to the additional linear
potentials to the trap was clear. The offsets gave rise to more soliton oscillations before the
growth /decay of the condensates took over. When two dark—bright solitons were present,
three cases were recognised: a passing of the solitons with full segregation, immediate
merging on first contact and merging after few oscillations.

Our work showed a large number of distinct density profiles are possible during the
coupled condensates dynamics. When comparing to a recent two—species experiment [77]
on which our parameters are based, we observed some qualitative agreement between
condensate density profiles while considering growth. However not only is the model used
here a toy model with static growth, as there is no explicit consideration of the thermal
cloud dynamics. Moreover the coupled experimental results available did not analyse the

nonequilibrium structures in detail to be able to investigate a more detailed comparison.
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6.1.3 Classical Field Methods

We first considered the evolution of a single component starting with strongly nonequi-
librated initial conditions. By considering the quasicondensate part of the wavefunction,
we observed the presence of a turbulent state of vortices in the early stages of the evo-
lution. This state decayed due to vortex reconnections, with the total vortex linelength
decreasing over time. The system rethermalised as particles enter lower momentum modes
and the condensate fraction (ratio of particles in the condensate to the total number of
particles) increased. A vortex ring is the final observable defect. A fully thermalised state
is obtained when the vortex ring vanished and the condensate fraction reached the ther-
modynamic limit. The effect of considering varying numbers of computational modes was
shown not to change the final thermalised state but simply to change the time taken to
reach this state for the same particle and energy densities. The final condensate fraction
was determined solely by the initial particle and energy densities.

A system with two components was then considered, both of these starting from
nonequilibrated initial conditions. The differences between choosing miscible or immisci-
ble interaction strength was clear. The miscible quasicondensates thermalised similarly
to a single component system. The vortex tangle decayed until no topological defects
were present and the condensate fractions increased to a thermodynamic limit. However
for strong interspecies interactions, the components quickly phase segregated and the do-
mains were seen in the topological defects. The total vortex linelength did not decay to
zero but rather reached a minimum value: the stronger the interspecies interactions the
more vortices remain. By viewing the phase, we showed that vortex tangles were present
in each domain. In addition, immiscible condensates had lower condensate fractions due
to the additional energy from the large interspecies interactions. Changing the initial par-
ticle and energy densities for each component separately influenced the final condensate
fractions.

Using a fully thermalised single component (constant condensate fraction and zero
vortex linelength), we investigated splitting this state into two components for different
intra and interspecies interaction strengths and number of particles in each component.
A clear difference can be seen not only between miscible and immiscible quasicondensates
but also high and low percentages of total particle numbers in each component. Further-
more, strong interspecies interactions lead to phase segregated vortex tangles due to the
formation of domains.

Finally, we investigated the impact of suddenly quenching the strength of the in-
terspecies interactions. If the quench did not drive the system through the miscibil-
ity /immiscibility barrier, no qualitative changes occurred to the presence of the topologi-
cal defects. Quenching in miscible systems did not lead to the generation of vortices and

for immiscible systems the vortex linelength changed in relation to the strength of the in-
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terspecies interactions. Quenching from miscible to immiscible gave rise to similar results
as splitting one component into two immiscible components: domains formed with phase
segregated vortex tangles and condensate fractions decrease. Quenching the interactions
from immiscible to miscible lead to an isotropic vortex tangle as the components slowly
mix and subsequently decay. Repeating the quench at regular intervals drove the vortex

tangle thereby providing a possible novel route to the generation of quantum turbulence.

6.2 Further Work

6.2.1 Two Species In Harmonic Traps

A number of other more accurate models for finite-temperature nonequilibrium Bose gases
exist [242]. I. K. Liu et al. are currently continuing collaborative simulations using the
SPGPE in 3D with the parameters from Reference [77] and the best match trap asym-
metries obtained in Chapter 3 of this Thesis. Other efforts for modelling multicomponent
condensates with the ZNG formalism are being undertaken [243].

Correlated to the work done in periodic boxes, we wish to investigate if macroscopic
excitations arise when quenching the interspecies interactions in harmonic traps. For
counterflow in two trapped immiscible condensates spontaneous solitons appeared due to
the quasi-1D nature of the system [244]. Solitons and vortices may appear depending
on the dimensionality of the system. It would be interesting to investigate these features
both at zero—temperature and at finite temperature with the PGPE. The projector is
recommended in harmonic trapping potentials in order to explicitly impose an energy
cutoff.

6.2.2 Object Motion Through Non Trapped Quasicondensates

The critical velocity has been shown to depend on the condensate fraction [240] when
moving a penetrable sphere through a thermalised system. We have conducted preliminary
studies to investigate a system with a moving impenetrable cylinder.

In a homogeneous system, vortex nucleation due to a cylinder has been observed and
studied in great detail for classical viscous fluids [245, 246] and quantum fluids [192, 247,
248]. For our simulations, we solve the GPE in the moving frame with speed v along the
x direction. To avoid transient excitations associated with suddenly moving the cylinder,

its speed is increased according to
v = vtanh (0.1t) (6.1)

where v is the amplitude of the velocity. The potential is chosen to be zero everywhere
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Figure 6.1: Slice of flow past a cylinder from right to left with initial uniform density.

apart from a localised repulsive cylinder which represents the obstacle
V (z,2) = Vipaz €Xp <(m —z0)* 4 z2> (6.2)

where Vi, is the potential associated with the cylinder and x(y the position in the x
direction in the moving frame. In our simulations we take V., = 10 and zg = 20.
Figure 6.1 shows a typical vortex nucleation due to a moving impenetrable cylinder with
uniform density.

When considering a thermalised wavefunction, taking a slice in the y direction does not
lead to direct observation of vortices due to the ambient random fluctuations. One expects
that the vortex lines produced by the cylinder will tend to align in the direction of the
cylinder (y). Visualisation of the vortex lines is then aided by averaging the density along
the direction of the cylinder. In these averaged 2D density plots (see Figure 6.2), regions
of low density downstream of the cylinder indicate the positions of the vortices. Note that
the averaged vortex density does not decrease to zero since the vortex lines will actually
be curved and sinuous in the averaged direction (due to Kelvin waves and the effect of
the excited background condensate). Starting from a thermalised state with ng/N =~ 0.77,
vortex nucleation is evidenced when the vortex linelength measured by the system becomes
non—zero and occurs for velocities above the critical speed v. = 0.31. The evolution of
the condensate fraction for velocities above and below the critical velocity is shown in

Figure 6.3. For small v, the condensate fraction remains fixed. When this critical speed
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Figure 6.2: (Left) Slice of flow past a cylinder from right to left with initial thermalised state.

(Right) Average over all slices in y direction of flow past a cylinder from right to left with initial
thermalised state.

is exceeded, the condensate fraction decreases until reaching zero. Once the condensate
fraction reaches zero, no more vortices are created. By plotting the topological defects in
Figure 6.4 the creation of paired vortex lines at the cylinder can be seen. Immediately
after forming, these vortex lines become curved and reconnect at several points along .
These reconnections then lead to the formation of vortex rings.

Having confirmed the nucleation of vortices by the flow of a thermalised state past a
impenetrable cylinder, we wish to investigate the dependence of the critical velocity on the
initial condensate fraction and width of the cylinder. The length of the cylinder shall also
be altered. This is not believed to cause significant changes to the dynamical evolution.
Due to the size of our numerical grid and periodic boundary conditions, the vortices quickly
pass through the bounds of our box and interfere with any future dynamics. To avoid this,
we intend on repeating these simulations with more computational modes to investigate
the longer term evolution of vortices. Finally, we shall extend this work to miscible two

component condensates.
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Figure 6.3: Condensate fractions against time for v = 0.2 (black — solid), v = 0.31 (red — dashed)
and v = 0.4 (blue — dot—dashed).
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Figure 6.4: Evolution of topological defects given by the isosurfaces (b‘ = 0.05(‘¢‘ ) where ¢ is the

long wavelength part of the field ¢. The cutoff number is given by k. = 8 such that high—frequency
spatial waves are suppressed by the factor max{1 — k?/k2 0}. Flow is in the x direction.
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Appendix A

Coupled Gross—Pitaevskii

Equations

In this Appendix, we show a detailed derivation of the time-dependent Coupled Gross—
Pitaevskii equations. The second order quantized Hamiltonian for condensate mixtures is
written in terms of the Bose field operators W¥; (r,t) (\ifj (r,t)) for creation (annihilation)

of particle in species i at position r and time ¢ by [121]

+ / drl (v, 1) ho U (r, 1) (A1)

/dr/dr \IIJr (r',1) ( ) Vig (r—1') Wy (r,t) Uy (r', 1)

where V1, V5 and V7o are the contact interactions acting between the bosons of species one,
species two and between each species respectively. ill = (h2 / Qmi) V24 Ve (r) is the single
particle Hamiltonian where m; is the mass and V;) (r) the external potential acting on

each species. As stated in Section 2.1, we can approximate the contact interactions to

1%} (r — r’) = g110 (r — r’)
%) (r — r’) = ¢990 (r - r’) (A.2)
Via (r - r’) = g120 (r - r’)
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where ) )
4mh (077 4mh a12Mm11Mm9

gii:Ti, 912:m

The Bose field operators obey the following commutation relations [121]

(A.3)

(A.4)

Inserting the contact interaction assumption into Equation (A.1) and integrating out the

dependence on r’ leads to
ﬁ:/@ﬂuﬁm%@ﬁ

+%3/@¢anihnw@anWMnﬂ

118

(A.5)



Appendix A. Coupled Gross—Pitaevskii Equations

The Heisenberg equation of motion for species 1 becomes

8\111 (I‘/, t)

i%
RV

=91 (,) . A

®) (A.6)
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Taking the terms labelled by an A in Equation (A.6) gives

0, (r',1) \i/J{ (r,t) — \TJJ{ (r,t) ¥, (r/,t)> h Wy (x,t) (A.7)

as \ﬂ (', t) Wy (r,t) = Uy (r,t) \ﬂ (r',t) from [\1'1 (r,t), ¥, (r’,t)] = 0, the fields are the

operators and the potential and kinetic energy are complex coefficients and [\ifl (r',t), \i’]i (r, t)] =
d(r' —r).

Similarly taking the terms labelled by a B in Equation (A.6)

/dr (\ifl (r',1) Ul (e,t) — Wl (r,8) Oy (r',t)) hoWs (r, t)

=0

as [@1 (v, ¢), ¥} (r,t)] = 0.
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Taking the terms labelled by C in 2.7

g% dri, (r',1) \TJJ{ (r,t) \i/J{ (r,t) WUy (r,t) ¥y (r,t)

-5 / dr@] (r,6) U (r,0) U (r,0) W1 (r,1) U1 (', 0)

=0 [ [ (.0 8 008 0081 (00 00

(A.10)
Similarly terms labelled by D in Equation (A.6) give
g22 b o1 ; ;
== [ dr Uy (2 8), Ul (r,t) U) (r,t)| Yo (r,t) Us (r,1)
=0
as
[@1 (/1) , Wb (x, 1) W) (r,t)] =0 (A.12)
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The final terms labelled E in Equation (A.6) give

A A

5 [/ drdry (¢, 6) U (r,) Uh (v, ) U (r, ) W (

=
~
~

(A.14)
Combining these leads to
oWy (vt PO . . . . . .
lh% = bWy (r,8) + g (r,8) Uy (r,8) Uy (r,8) + %\y; (r,) Uy (v, ¢) ¥y (r, 1)
(A.15)
Similarly, it can be shown for species 2 that
Oy (v, t PO . . . . . .
lh% = hoWy (r,8) + g2 Wl (1,8) Uy (x,8) Uy (r, 1) + %qf} (r,t) Wy (v, 1) Uy (r, 1)
(A.16)

We now decompose the Bose field operator 'z (r,t) in terms of a macroscopically—
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populated mean field term ¢; (r,#) = (¥; (r,)) and a fluctuation term 4 (r,t) and get
fl:/dr 67 +0]) b (61 + 1)
+ 20 Lar (61 +4f) (61 +01) (1+91) (61 + )
+ / ar (93 + 0) ha (0 + ) (A.17)
+ 22 [ar (5 +db) (05 + ) (02 +2) (00 +102)

- % dr (<b’{ + ﬂ) <¢§ + @) (¢1 + 1/31) <¢2 T ¢2>

Rearranging leads to

H Z/dw’{fh% + haty + ﬁ{fmbl + J{Bﬂﬁl

+ 28 [ ar (¢161 +2010] + 910]) (63 + 26101 + i )
+ [ dwoshasn + o3haia + Bihada + iliade (A18)

+ 22 [ ar (6305 + 2059 + Do) (63 + 2020 + dads
- gﬁ dr <¢T¢§ + @5l + oyl + TZJITPD (¢1¢2 + pothr + P19 + 1[)1?[)2)

The Hamiltonian is separated into parts according to the dependence on 1[%, H = Hy+
]:I1 + ﬁQ + flg + fl4 where the contributions are

Ho = /dr¢1h1¢1 + L |oul" + @hags + 22 ool + L2 61 ol (A.19)

Hy Z/drtb’fﬁﬂ/ﬁ + i hdy + g11¢% |61 [ by + g1l |6 |2 o]
+ / drghaths + Ohhags + g22¢% |ba|* o + 92269 | da|* O} (A.20)

+ 82 [ drgi (ol b1 + 63 |61 v + 61 [0l O] + 62 || )

H, Z/drﬂhlw + = Ju <(¢T)2 Yripy + ¢%ﬂﬂ> + 2911 |<251|2 7/311;1
/ driibhats + 22 ((65)? dotbe + 630501 ) + 2922 |62l il
L2 / dr i ydrs + b10al0E + |6 Dl + o150 da + 16117 Dl + it

(A.21)
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Hjy =g1 /dwlﬂﬂ% + ¢l
+ 922 / drgo§ i + ¢3iian (A.22)
gy [ drasilda + 07dlinda + o0l + 020105

gi2 -

= / ar TGl + P20 + L2 g il (A.23)

All the atoms are assumed to be in the condensate 1[1Z = 0 and the Hamiltonian is then
given solely by Hy. When substituted into the Heisenberg equation of motion (A.6),
Equations (A.15) and (A.16) result in the CGPEs which accurately describes systems at

zero temperature

hQ
ih@qﬁla(tr,t) = [2 V2 4+ Vi + 11|61 (r,0) % + g12 | (r,t)|2} b1 (r,1)
9¢2 (r,1) h? (A.24)
r7
i 2(% = [2m2 V2 4+ Vo + goz |61 (r,0)]” + g12 |¢n (r,t)]ﬂ o (r,1)

A.1 Dimensionless Analysis

We show how the CGPEs can be reduced to a dimensionless form. This analysis was done
in collaboration with S. A. Gardiner (Joint Quantum Centre (JQC) Durham—Newcastle,
Department of Physics, Durham University) Here we outline this reduction and highlight
some key features that emerge. We start from the CGPEs (2.52), where the trap is
provided by cylindrically symmetric harmonic trapping potentials with common minima
ie.

v, = {W(Qz‘)L (2® + %) + w(Qi)zzZ} . (A.25)

Let \; = w(QZ.) 1 /w(QZ.)Z be the trap aspect ratios of component 1 and 2 respectively. The

coupled GPEs can then be rewritten as

at

0 h? MaW(2),
h% = [——Vg + % (A2 (2% + %) + 22} + ga2 |Pa|* + g12 |¢1|2] ®2

a h? miw(),
091 [ —i—% (M (22 +92) + 2] +gll\¢1!2+g12\¢2!2] ¢1

(A.26)

where g;; and g1o are given in Section 2.10. We choose a set of symmetrized harmonic
units, codified as h = \/m = /W1):w2): = 1. This means we have time, length, and
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energy units of

s 1 (A.27)

VIR )z
0= vh . (A.28)
(mamaw()w):)

€ =h, /w(l)zu.J(Q)Z. (A.29)

Rescaled renderings of the coupled GPEs (where we also normalize the wavefunctions

and 1o to 1, in order to make the dependence on the particle numbers N and Ny of the
two species more explicit), expressed in terms of a minimal number of parameters, are
then

.01 Y 1 2 (Y H1 2
i~ = [—EVQ + By (M (2 + %) + 2°] 4+ youn ¢ + 5, ) ne |p2|” | ¢1
_O0¢a . 1 _o Ky 9 9 9 ")/2 + 1\ ag 9 012 9
= |V G e @)+ () R kel + 22l
(A.30)
where
N =2 (A.31)
my
=2 (A.32)

| No
A.
n Ny’ (A.33)

oy =Am (“—;) VNN (A.34)

Using the total particle number N = N+ N, the interaction coefficients can alternatively

be phrased as

ail N
an =4 (7> T (A.35)
aq niN
Q12 =47 (_£ > 772 T 1, (A.36)
2
ago n N
Q99 =47 (7> W, (A37)

which is a particularly natural description if the two species are simply different internal
states of the same atom (in which case 7 = 1, simplifying the system of equations further).
We therefore have eight independent dimensionless parameters (including A; and A2). In

1D, there are six independent parameters as Ay = Ay = 1.
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Numerical Methods

The work presented in this thesis is based on numerical simulations of the dimensionless
CGPEs using fourth—order Runge-Kutta in time and second or fourth—order finite order
finite difference discretisation in space [249]. These numerical methods are outlined in
Sections B.1 and B.2, derived using Taylor series expansions obtained by expanding an
n—-times differentiable function f(z)
! h2 1" hn

fx+h)=f(x)+hf (x)+ ﬁf () + ...+ mf"(x)—i—... (B.1)

where h is a small step. Additionally, we present how ground state density profiles are

obtained through use of imaginary time propagation.

B.1 Runge-Kutta Method

For some function u(t), consider the differential equation

d /

d—z = = g(t,u). (B.2)
We take t,, = nAt where At is the small time step and w,, = u(¢,) be the function u(t)
after n iterations. The sought out solution is u,11 = u(t, + At). The formula for Euler’s

method is
Unt1 = Up + Atg (tn, un) + O (AtZ) (B.3)

which advances u,, to u,+; and is derived from Equation (B.1) by neglecting terms with
second order or higher derivatives. For practical use, this method is not recommended due
to the lack of accuracy compare to other methods and it is not very stable. In addition, the
formula is unsymmetrical: it uses derivative information at the beginning of the interval

only.
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We now consider the taylor expansion of v with the second order derivative term

/ At2 12 3
Upt1 = Up = Atu, + —5 Un + 0 (At ) (B.4)

where u,, is obtained from Equation (B.2) such that

no 0g (ty, up g (ty, unp
Uy = J (875 “ ) + J (auu )g (tnaun) = 0t (tmun) + 9u (tmun)g (tnaun) . (B-5)

By substitution we obtain
At? 5
Up+1 = Up + Atg (tn7 un) + Tgt (tna un) + Gu (tna un) g (tru un) +0 (At )
At At ,
= un + 79 (tn, un) + 7 [g (tna un) + At (gt (tna un) + Gu (tn, un) g (tna un))] +0 (At ) .

(B.6)

Now consider the Taylor expansion for g (¢, u)
gt +hu+k)=g(t,u)+ hg (t,u) + kg, (t,u) + ... (B.7)
Taking h = At and k = Atg gives
g(t+ At,u+ Atg) = g (t,u) + Atg: (t,u) + Atg (t,u) gy (t,u) + ... (B.8)

Substitute into Equation (B.6) to give

At At
Un+1 = Uun + 59+ =g (t + At u+ Atg) + O (A%). (B.9)

This is known as the midpoint method or second—order Runge-Kutta method and is more
commonly written as

kl - g (tn7 un)

ko=g (tn + At, u, + Atkl) (B.lO)

At

Unt1 = tn + —= (k1 +k2) + O (A).
Unlike Euler’s method, a step at the midpoint of the interval is used to calculate the step
across the whole interval. It also has a higher order error. In fact, higher order methods

often give better accuracy, even though this is not always the case. Such a derivation

can be generalized to obtain the fourth—-order Runge-Kutta method, used to obtain the
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numerical results presented in this Thesis, and is given by
n+1 n 1 1 1 1 5
U =u" + At Ekl + §k2 + gk)g + 6k4 + 0 (At ) (B.11)

where
kl = f (tna un)

A 1
ko = f <tn + {aun + §Atk1>
Y 1 (B.12)
k3:f tn‘i’?a”n"’gAth

ki = f (tn + At,up + Atks) .

Similarly to the second—order method, three intermediate points are now used to calculate

the step across the whole interval.

B.2 Discretisation of Spatial Derivatives

In order to numerically solve the GPE equation, we must calculate the Hamiltonian using
finite difference where the wavefunction is discretised on a spatial grid with spacing Ax.
In this Section, we introduce the finite difference schemes for a function u(z) in one and

two dimensions.

One—Dimensional System

In one dimension, our function u(x) is discretised on a linear grid with u; = u(x;) where
1 =0,1,...,L. To derive the central difference schemes, we first write down the Taylor

series for u;—1 and ;41

’ A.%'Q 7 )
Ui—1 = u; — Azu,; + — Ui + 0 (Aa: ) (B.13)

2

/ A 1"
w1 = u; + Azu,; + Txuz +0 (AxQ) . (B.14)

To obtain the first order derivative, we look at —u;—1 + w41

—ui_1 + Uy 1 = 2Azu; + O (Az?) (B.15)
and rearrange to obtain
du;  —ui—1 + Uit 9
=— 40 (A . B.16
dz YR (B-16)

128



Appendix B. Numerical Methods

Similarly to obtain the second order derivative we look at u;_; —2u;+u;11 and rearranging
gives
dQui R 2u; + Uiy
da? 2Ax2

Equations (B.16) and (B.17) are the second order central difference approximations. In

+0 (A2?). (B.17)

a similar fashion, the fourth order approximations which are used in this Thesis can be

derived and are given by

dui  uwi—g — 8ui—1 + Buipr —uj +2
dr 12Az

+0 (Az") (B.18)

dzui —u;_2 + 16u;—1 — 30u; + 16u;41 — ut + 2 1
= oA B.19
da? 12422 +0(4r) (B-19)

which have superior precision to the second order approximations.

Two—Dimensional System

We now consider the two-dimensional function w(z,y). It is discretised in a box in the x
and y directions with spatial separation Az and Ay respectively where u; ; = u(x;,y;).
The second order central finite difference approximations for x derivatives, derived in the
same manner as for one dimension, are given by

duij _ —Ui-1,j + Uit

— 2
o oA + O (Az®) (B.20)

dQui 7 U;—1 j 2u,~ 7 + Ui4-1 Vi
o — : ’ L 10 (A2?). B.21
dz? 2417 +0(ar) (B.21)

Similarly derivatives in the y direction can be found. We can now write down the expres-

sion for the two—dimensional Laplacian

2
d ui,j
da?

2
i Uio1j = 2Ui5 + Uit
dz? 2Az2

Ui j—1 — 2Ui5 + Ui 1

2
+ 0 (Az?) + 2 A

+0 (AyQ) .
(B.22)

+

Extension to three—dimensions is straight forward.

B.2.1 Boundary Conditions

In this Thesis, two different boundary conditions are used: hard wall and periodic. For
hard wall boundary conditions, the point(s) at the extremities of the spatial grid are set
to zero after every time-step. Simulating the GPE in a homogeneous system with this
condition gives rise to density profiles as shown in Figure 2.3 at the edge of the grid.

These boundary conditions are used for all simulations in Part II of this Thesis. Periodic
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boundary conditions are applied by setting (in a one-dimensional case)
ug = ur—1 and uyr, = uy (B.23)

such that when the wavefunction passes through one boundary it reappears on the opposite
face. Extra boundary points need to be used when considering fourth order or higher finite

difference schemes. Periodic boundaries are used in Part III.

B.3 Imaginary Time Propagation

Propagating in imaginary time is an easily implemented method to obtain a ground state of
a system. This is implemented by making the substitution d¢ — —id7. By starting with a
rough trial wavefunction, ideally close to the exact solution, and by renormalising to a fixed
norm and/or chemical potential during imaginary time propagation, the wavefunction
decays towards the ground state of the system. For imaginary time propagation to work,
obtaining a fully converged solution is necessary as, if not, the equilibrium state of the

system is unknown or incorrect.
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Discrete Fourier Transforms

In this appendix, we show the derivation for going from a continuous Fourier transform
to a discrete Fourier transform.

Consider f(z), a continuous function of position and its Fourier transform is given by
Foy=Fl @) = [ fix)etda (1)

Now take f(z) with a discrete representation with spacing A, on a spatial grid x = [0, ]

and denote each point by j

f(z) = f(zj) = fj,x=jA, (C.2)

where j exists in the range [0, N,]. Now that f(x) has a discrete representation, the
Fourier transform acts only at the grid points. It is thus possible to replace the integral

with a summation of trapezia of height f; and width A,

F (k) = / f (@) e *edy
0

= {fod® + fre Ak e PRy p ekl A, (C)

j:Nw

J=0

A spatial grid of length L = N, A, and with interval A, corresponds to a momentum grid
with length 27/A, and momentum interval Ay = 27w/L = 27 /N, A,. Thus the possible

momentum values can be mAy where m exists over the range [0, N|]. The momentum
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variable in Equation (C.3) by k — ky, = mA, = 2rm /N, A, giving

J=Ngz

Flhm) =2y Y fe2mim/Ne (C.4)

Jj=0
This gives the standard definition of the discrete Fourier transform of the sequence f;

J=Ngz

DET [f] (k) = > fre 2riim/Ne, (C.5)
=0

In this definition, the spacing is taken to be unity hence to relate the continuous Fourier

transform we have

f(km) = AmDFT [fj] (km) . (CG)

This result is valid for 1D. The equivalent 3D discrete Fourier transform is

Fkas by, k) = A AyADET [f;] (ks Komoys Ko ) - (C.7)
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