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Abstract 

Sarcopenia is a geriatric syndrome characterised by low muscle mass and low muscle 

function, caused by an imbalance between muscle protein synthesis and degradation. It 

has a multifactorial aetiology, but primary causes include a sedentary lifestyle and poor 

nutrition. Sarcopenia is associated with an increased risk of disability and mortality. 

This project aimed to test the hypothesis that adulthood patterns of protein 

consumption influence physical capability in later life.  

 

Dietary and physical capability data were obtained from the MRC National Survey of 

Health and Development, a British birth cohort comprising ~5000 individuals born in 

1946. Dietary data were collected by 5d food diary in 1982, 1989 and 1999 when 

participants were 36, 43 and 53 y. Hand grip strength, chair rise time and timed up and 

go were measured in 2006/10 when participants were 60/64 y. Anthropometric, 

physical activity and socioeconomic variables were also provided. Using data for those 

participants who provided dietary information in all years, relationships between 

adulthood patterns of protein consumption and measures of physical performance were 

investigated using hierarchical linear regression.  

 

Concurrent measures of height, body composition and abdominal circumference were 

the strongest determinants of hand grip strength in males. In females, health status was 

also predictive. Health status, abdominal circumference and physical activity were 

predictive of chair rise time in males and females. In sensitivity analyses, low protein 

consumption in males was associated with a significantly poorer performance. Health 

status was the strongest determinant of timed up and go performance in males and 

females. In sensitivity analyses, low protein consumption in males was associated with a 

significantly poorer performance and socioeconomic position became significant.  

 

In this cohort, protein consumption was high. After excluding predicted misreporters, 

protein intakes averaged 1.2 g/kg/d. Meanwhile rates of obesity/abdominal 

circumference increased significantly, accompanied by declining levels of physical 

activity.  
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CHAPTER 1 

 

 

 

Introduction 

 

1.1 An ageing society 

1.1.1 Demography 

The term ‘demographic transition’ refers to the societal shift from high birth and death 

rates to low birth and death rates. In most Western societies, considerable and unique 

challenges are now posed by the consequence of this relatively recent transition – a 

rapidly ageing population. The term ‘second demographic transition’ explains the 

phenomenon of declining future fertility and Europe is the continent with the lowest 

total fertility rate (TFR). In England and Wales the average completed family size for 

women born in 1966 was 1.91 children per woman compared to 2.36 children per 

woman born in 1939. The TFR in 2011 was 1.93 children per woman [ONS]. 

 

In Biodemography of Human Ageing (Vaupel, 2010) observes that death is being 

delayed because people are entering older age in better health. Personal behaviour is 

crucial in achieving a long life (compared with one’s contemporaries) but the general 

level of population longevity is determined by medicine and prosperity. Postponement 

of senescence in the future will depend on improving the health of older and younger 

people.    
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An ageing population refers to both the increase in average age of the population and an 

increase in the number and proportion of older people in the population [ONS, 2012]. 

The average age of the UK population in 1985 was 35.4 years, in 2010 it was 39.7 y and 

by 2035 it is projected to be 42.2 years. However, in terms of the provision of health, 

pension and social care resources, it is the increase in the number and proportion of 

much older people in the population that will present the most considerable challenges 

to society. Those aged ≥ 65 y (the Young-Old) accounted for 15% of the total UK 

population in 1985, this increased to 17% in 2010 and by 2035 is projected to reach 23% 

of the total UK population. Similarly, those aged 85 y or older accounted for only 1% of 

the UK population in 1985, increasing to 2% in 2010. By 2035 this group – the oldest 

old – are projected to account for 5% of the total UK population, numbering ~3.5 

million. 

 

Drawing upon research in the Newcastle 85+ Study, a cohort of 800 individuals all born 

in the North East of England in 1921 (Collerton et al., 2007) projections for the next 20 y 

suggested substantial increases in the number requiring 24 h care due to population 

ageing and a proportionate increase in demand for care-home places (Jagger et al., 

2011). ‘Apocalyptic demography’ – the portrayal of population ageing as a financial 

burden – was found to be widespread in the Economist, an influential weekly magazine. 

The negative portrayal of older people as ‘frail non-contributors’ rather than as a 

benefit to society or scientific advance may negatively shape the attitudes of economic 

and political opinion formers (Martin et al., 2009). 

 

1.1.2 Reasons for population ageing 

Population ageing can explained by a combination of factors, including past declines in 

fertility rates, past improvements in mortality rates among children and young adults 

and continuing improvements in mortality rates at the oldest ages. Medical and social 

advancement, sanitation and immunisation have also greatly reduced the impact of 

most common communicable diseases reducing premature mortality. While antibiotic 

resistance may pose a serious health risk for the future, the greatest risk posed to the 

health of society today lie in chronic, non-communicable diseases the single most 

significant risk factor for which is age. 

 



3 

 

A rapidly ageing population presents considerable challenges to governments and 

society in terms of public spending and the provision of scarce resources. Pension and 

health care provision – both NHS and (long term) social care – have recently been 

amended and will undoubtedly face further necessary structural changes into the future. 

What was affordable in the past is now no longer seen as affordable and the allocation 

and provision of societal resources must reflect increasing longevity.  

 

One of the most significant challenges of population ageing is the increase in the 

number of people with health needs in later life as those over the age of 65 years 

account for the highest activity and spend across primary and secondary care. 

[http://www.nhs.uk/NHSEngland/NSF/Pages/Olderpeople.aspx][accessed 29 5 13] 

This is entirely to be expected as age is the single, greatest risk factor for many (if not all) 

common chronic diseases. In addition to population ageing, society has also experienced 

a rapid increase in rates of obesity and its associated conditions, driven by chronic 

overconsumption of energy and falling levels of physical activity. Diet and physical 

inactivity accounted for 14.3% of UK disability-adjusted life-years in 2010 (Murray et al., 

2013a) 
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1.1.3 Age-related chronic disease 

Over thirty years ago in 1980, James Fries observed (Fries, 1980) that chronic age-

related disease had already replaced acute illness and infection as the biggest health 

threats to society. This ‘epidemiologic transition’ was graphically depicted by (Jones et 

al., 2012):  

 

Figure 1.1 Top 10 causes of death, 1900 compared to 2010 

 

 

In the space of ~100 years, cancer and heart disease, which once accounted for 64 and 

137.4 deaths, respectively per 100,000 accounted for 186 and 193/100,000 in 2010. 

Influenza and pneumonia, once the leading causes of death in 1900 (accounting for 

202.0 per 100,000 death) were 9th in 2010, accounting for 16.2 per 100,000.     
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1.1.4 Healthy life expectancy 

The number and proportion of people living into very old age is increasing, but 

increasing life expectancy is not always accompanied by good health. In 2008/10, in the 

UK at birth, males and females could expect to spend more than 80% of their lives in 

good or very good health – this is termed healthy life expectancy (HLE)(ONS). For males 

and females, life expectancy (LE) – an estimate of average expected life span – was 78.1 

and 82.1 years, and healthy life expectancy 63.5 and 65.7 years, respectively. Males and 

females, therefore, on average could expect to spend 14.6 and 16.4 years of life in poor 

health, respectively.    

 

Table 1.1 Life Expectancy (LE) and Healthy Life Expectancy (HLE) in the UK at birth 

 2005/07 2008/10 

LE (y) HLE (y) 

HLE as a 

proportion 

of LE (%) 

LE (y) HLE (y) 

HLE as a 

proportion 

of LE (%) 

Males 77.2 61.4 79.6 78.1 63.5 81.4 

Females 81.5 62.9 77.2 82.1 65.7 80.0 

 

Notwithstanding that HLE as a proportion of LE increased significantly for males and 

females over the period 2005/07 – 2008/10, UK performance against comparable 

societies such as other European countries, Australia and Canada, is poor. In analysis 

undertaken at the Institute for Health Metrics and Evaluation (Murray et al., 2013a) the 

UK ranked 12th out of 19 countries of similar affluence (the EU15+). The UK performed 

significantly worse than the EU15+ for age-standardised death rates, years of life lost 

rates and life expectancy in 1990 and by 2010 its relative position had worsened. In 

2010 cf. the EU15+ the UK had significantly higher rates of age-standardised years of 

life lost from ischaemic heart disease, COPD, lower respiratory infections, breast cancer, 

other cardiovascular and circulatory disorders, oesophageal cancer, preterm birth 

complications, congenital anomalies and aortic aneurysm. The research concluded that 

as years lived with disability per person, by age and gender had not changed 

substantially from 1990 to 2010 but age-specific mortality had fallen, the importance of 

chronic disability was rising. 
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Major causes of years lived with disability in 2010 were musculoskeletal disorders 

(30.5% of years lived with disability) and mental/behavioural disorders (21.5%). 

Tobacco, increased blood pressure and a high BMI (kg/m2) were the leading risk factors 

for Disability-Adjusted Life-Years (DALYs). In the United States, poor diet and low levels 

of physical activity are the leading cause of DALYs with high BMI in third place followed 

by hypertension and high fasting plasma glucose (Murray, 2013) 

 

In 2008/10 average life expectancy at age 65 y for UK males and females was 17.8 and 

20.4 y, respectively. At age 65 y (around the age of retirement) males could expect to 

enjoy a further 10 years of life in good health and females 11.6 years; conversely, males 

and females could expect to spend 7.7 and 8.8 years of life in poor health, respectively. 

 

Table 1.2 Life Expectancy and Healthy Life Expectancy in the UK at 65 y 

 2005/07 2008/10 

LE (y) HLE (y) HLE as a 

proportion 

of LE (%) 

LE (y) HLE (y) HLE as a 

proportion 

of LE 

Males 17.2 9.9 57.5 17.8 10.1 56.8 

Females 19.9 10.9 55.0 20.4 11.6 56.8 

 

 

Figures suggest that the trend for HLE as a proportion of LE is different for males and 

females. Over the period 2005/07 – 2008/10 there was an (insignificant) decrease in 

HLE as a proportion of LE for males at 65 y whereas for females HLE as a proportion of 

LE increased significantly.   

 

Chronic age-related disease has replaced acute illness and infection as the major health 

threat to society and the importance of chronic disability is increasing, but what are the 

causes and origins of age-related chronic disease? 
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1.1.5 Lifecourse origins of age-related chronic disease 

As the word chronic suggests, the most common causes of death have a multifaceted 

and complex aetiology, characterised by the prolonged presence of multiple/coexisting 

risk factors and lifecourse insults. Chronic disease originates early in life and develops 

slowly and insidiously over decades, ultimately resulting in persistent illness, disability 

and mortality. ONS 2011 statistics confirm that cancers and cardiovascular diseases 

remain the most common cause of death in England and Wales. Of 484,367 registered 

deaths in England and Wales, the leading causes were: 

 

     Male    Female 

Heart diseases   1 (16.1% of deaths)  1 (10.7% of deaths) 

Lung cancer    2 (7.2%)   5 (5.3%) 

Stroke     3 (6.1%)   3 (8.7%) 

Chronic Resp. diseases  4 (5.8%)   - 

Dementia & Alzheimer's   5 (5.1%)   2 (10.3%) 

Flu & pneumonia   -    4 (6%) 

 

Cancers were responsible for 30% of all registered deaths (2,023 deaths per million in 

the male population) and 1,478 deaths per million (in the female population). 

Cardiovascular (circulatory) disease accounted for 29% of all deaths, respiratory 

diseases (e.g. pneumonia/ COPD) 14% of deaths and dementia/ Alzheimer's 5.1% of 

deaths in men and 10.3% in women. 

 

NHS Choices [accessed 21 5 13] 

http://www.nhs.uk/news/2012/11November/Pages/Changes-to-trends-in-disease-

related-deaths.aspx 

 

 

 

 

 

 

 



8 

 

Findings from the INTERHEART study suggest that nine modifiable risk factors explain 

most of the risk of myocardial infarction worldwide viz. hypertension, smoking, 

abdominal obesity, diet, physical activity, diabetes, alcohol intake, psychosocial factors 

and apolipoproteins (Anand et al., 2008). There is considerable commonality in 

significant risk factors for all stroke: a history of hypertension, current smoking, 

abdominal obesity/waist-to-hip ratio1, diet risk score2, 3, regular physical activity, 

diabetes mellitus, alcohol intake4, psychosocial stress and depression, cardiac causes 

and ratio of apolipoproteins B to A1. Collectively, these factors accounted for 88% of the 

population-attributable risks for all stroke (O'Donnell et al., 2010). 

 

Evidence such as this appears to suggest that lifestyle factors operating only in 

adulthood explain the increasing incidence and prevalence of age-related chronic 

disease. However, adverse environmental influences that operate in adult life to 

‘accelerate’ normal ageing processes, do not fully explain interindividual variability in 

longevity (Barker, 2012). In terms of the ‘new developmental model for the origins of 

chronic disease’, malnutrition and other adverse influences operating during foetal 

development alter gene expression and slow growth. Insufficient resources during 

developmental periods disproportionately affect organs lower down the hierarchy (e.g. 

kidney and lungs cf. the brain) resulting in reduced function. Ultimately, this confers a 

vulnerability to later life environmental insults and a programmed predisposition (or 

greater susceptibility) to age-related disease. 

 

In a systematic review of 18 observational studies including ~150,000 people, the 

strength and consistency of the observed relationship between birth weight and 

ischemic heart disease in later life was investigated (Huxley et al., 2007); a 1 kg increase 

in birth weight was associated with a 10 – 20% lower risk of later life IHD.  

 

 

 

                                                        
1 BMI was not associated with stroke 
2 Increased consumption of fruit and fish (but not vegetables) was associated with reduced risk 
3 Associated with increased risk, increased consumption of red meat, organ meats, eggs, fried foods, pizza, 

salty snacks and cooking with lard 
4 Alcohol intake has a J-shaped relation with ischaemic stroke but is associated with a graded increased 

risk of intracerebral haemorrhagic stroke 
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In a systematic review and meta-analysis of 57 studies published between 1989 – 2007 

(Xue and Michels, 2007) the intrauterine environment was held to contribute to female 

predisposition to breast cancer; increased risk was associated with increased birth 

weight and length and higher maternal and paternal age.  In a systematic review and 

meta-analysis (Risnes et al., 2011) a moderate inverse association of birthweight with 

adult all-cause mortality was found – a 6% lower risk per kilogram increase in 

birthweight, but there was a stronger inverse association with cardiovascular mortality 

(a 12% lower risk per kg increase in birth weight). Conversely, a strong association of 

higher birthweight with increased risk of cancer death was observed in males (13% 

increased risk per kilogram of birthweight); this association was weaker (4% per kg) 

for females.  

 

The lifecourse approach to chronic disease epidemiology is defined as the study of the 

long-term effects on chronic disease risk of physical and social exposures during 

gestation, childhood, adolescence, young adulthood and later adult life. Biological, social 

and socio-biological pathways between exposures, intermediaries, confounders and 

outcomes are temporally interlinked and interrelated; crucially, insults are accumulated 

across the lifecourse (Ben-Shlomo and Kuh, 2002). 

 

The World Health Organisation differentiates between four conceptual models of the 

life course [The implications for training of embracing A Life Course Approach to Health. 

World Health Organisation, 2000. WHO/NMH/HPS/00.2 (Accessed 22 November, 

2012)]:  

1. A critical period model 

2. A critical period model with later effect modifiers 

3. Accumulation of risk with independent and uncorrelated insults 

4. Accumulation of risk with correlated insults (clustering, chains or pathways of 

risk) 
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Intrauterine programming and/or environmental influences during intrauterine life 

were considered responsible for the significant and positive association between birth 

weight and DXA-determined adult whole body bone and lean mass in 143 Sheffield-

residents at 70 – 75 y. Associations between birth weight and whole body fat were 

weaker and insignificant – adult lifestyle factors appeared here to be more important 

(Gale et al., 2001) 

 

In the Hertfordshire Cohort Study, ~600 participants born 1931 – 1939, size at birth 

was found to be associated with measured forearm and calf muscle size (Sayer et al., 

2008a) and grip strength in men and women (Sayer et al., 2004) after adjustment for 

adult height and weight. However, adult lifestyle factors, particularly those affecting 

body weight were thought to be more important than developmental influences on 

most measures of physical performance and physical activity in this cohort (Martin HJ, 

2009). In ~2800 participants of the National Survey of Health and Development (the 

1946 British Birth Cohort) birth weight and prepubertal height gain were associated 

with midlife (53 y) grip strength (Kuh et al., 2006b). Early weight gain (before 7 y) in 

males only was positively related to their performance at standing balance and chair 

rise time at 53 y (Kuh et al., 2006a) independently of adult body size, social class, 

habitual physical activity and health status.  

 

1.2 The ageing individual 

1.2.1 The biology of ageing 

Multiple theories compete to explain and elucidate the processes underlying human 

ageing. In Understanding the Odd Science of Ageing, (Kirkwood, 2005) explains that 

part of the oddity is in dismantling common preconceptions about why ageing occurs, 

principally that it is a programmed event. Secondly, that ageing remains inherently 

complex notwithstanding recent scientific advancements in experimental investigative 

techniques.     
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Figure 1.2 Damage and ageing (Kirkwood, 2005) 

 

 

Ageing results from the accumulation of unrepaired cellular damage due to evolved 

limitations in somatic maintenance and repair – the disposable soma theory ((Kirkwood, 

1977). Damage is stochastic, but its rate of accumulation depends on the ability of the 

organism to eliminate and repair damage. As cellular damage accumulates (often 

accompanied by inflammation) this eventually manifests as age-related disease, 

disability and frailty  but the ageing process is plastic and amenable to modification – 

nutrition and lifestyle can either accelerate or slow the accumulation of cellular damage 

(Kirkwood, 2005).   

 

In DNA damage, aging and cancer the author (Hoeijmakers, 2009) describes how aging 

and cancer both result from DNA injury – whether by exogenous or endogenous sources.   

An elaborate genomic maintenance apparatus, comprising multiple repair systems, 

exists. Defective repair processes have been identified that result in specific (cancer and 

non-cancer) diseases. When repair processes fail, the result may be cancer or cell death 

(apoptosis) or senescence, a state of irreversible replicative quiescence. 

 

The cellular consequences of ageing, in particular the accumulation of damage in stem 

cells may play a critical role in ageing (Jones and Rando, 2011).  
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The free radical theory (Harman, 1956) describes how ageing and degenerative 

diseases are attributable to the attack of free radicals on cell constituents and 

connective tissues. The mitochondria is the cellular organelle responsible for the 

production of adenosine triphosphate (ATP) from dietary nutrients, a process known as 

oxidative phosphorylation. Throughout this process there is leakage of free electrons. 

Unbound and unstable, these reactive oxygen species (ROS) e.g. superoxide, hydrogen 

peroxide and the hydroxyl radical, indiscriminately cause damage to nearby cellular 

structures, e.g. lipid membranes, cellular proteins (and amino acids) and nuclear and 

mitochondrial DNA. Oxidative phosphorylation is responsible for the vast majority of 

ROS generated, but other sources include chronic inflammation/ infection and 

exposures to toxins such as cigarette smoke, drugs, alcohol and pollution. Health and 

lifestyle therefore operate to add to or diminish the oxidative load.  Where an imbalance 

persists between oxidant production and antioxidant activity – i.e. where there is 

persistent loss of redox homeostasis – damage inflicted at the cellular level accumulates, 

eventually affecting structure and function at a tissue and organ level and ultimately 

manifesting as morbidity.    

 

1.2.2 Antioxidant capacity 

Endogenous antioxidant mechanisms operate to minimise damage by ‘mopping up’ 

excessive ROS, e.g. superoxide dismutase (SOD). This enzyme catalyses the 

neutralisation/deactivation of superoxide. Other antioxidant enzymes are glutathione 

peroxidase and catalase. In addition to endogenous antioxidant capability, dietary 

nutrients may provide supplementary exogenous antioxidants – water and fat soluble 

vitamins, e.g. vitamins C and E, beta carotene and lycopene provide additional ROS 

scavenging capacity. Dietary micronutrients i.e. selenium, iron and zinc are required to 

provide essential cofactors for antioxidant enzymes. A diet, rich in fruit and vegetables 

may therefore enhance the body’s inherent antioxidant capacity, whereas a diet 

deficient in these vitamins would not. Similarly a diet lacking in essential 

micronutrients (e.g. selenium and manganese) may operate to impair enzymatic 

antioxidant processes (e.g. glutathione peroxidase and SOD). 
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There is an age-related decline in the processes that would ordinarily repair or 

eliminate oxidative damage (Langie et al., 2012) one consequence of which is that the 

elderly may need to consume more antioxidants in order to counteract increased 

oxidative stress and to compensate for a reduced enzymatic antioxidant defence (Pae, 

2012). Paradoxically, most studies which have attempted to boost antioxidant defences 

by supplements of ‘antioxidant’ micronutrients (e.g. selenium) have not shown health 

benefits whilst others have shown adverse effects (Bjelakovic G, 2008; Rees K, 2013).   

 

In 643 older (mean age 77.3 y) community dwelling female participants of the Women’s 

Health and Aging Study I, lowest quartile intakes of vitamins B6 B12 and selenium were 

predictive of incident disability in activities of daily living after 3 years of follow up 

(Bartali et al., 2006b). The role of low micronutrients (antioxidants and vitamins) as 

cross-sectional and longitudinal correlates of mobility disability was consistent with a 

growing number of studies showing that a diet rich in fruit and vegetables has a 

beneficial role in healthy ageing (Milaneschi Y, 2010).  

 

Weight loss, a reduction in total energy intake and a reduction in the intake of specific 

nutrients are associated with the age-related changes in body composition and physical 

function characteristic of the transition from independence to disability in older adults 

(Inzitari et al., 2011). Undernutrition in the elderly – low intakes of protein, certain 

vitamins, micronutrients and antioxidants – have all been associated with negative 

functional outcomes. Intervention studies using nutritional supplementation continue 

to show inconclusive results in the prevention of functional impairment and disability, 

however these results are complicated by several factors. Variability in dose, 

supplementation with mixed nutrients, compensatory reduction of dietary intake 

during supplementation and ultimately by the fact that people eat meals, not single 

nutrients or foods. Dietary patterns should be studied and randomised clinical trials 

should mimic ‘real world’ situations; objective measures of physical performance 

should be primary outcomes and not nutritional status or anthropometrics (which are 

intermediate outcomes) (Inzitari et al., 2011).      
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1.2.3 Immunosenescence and inflammation 

Innate and adaptive (T cell and B cell) systems comprise the human immune function 

and there are striking age-related defects and decline in T cell function. B cell-mediated 

humoral immune responses are also believed to be compromised during aging. Innate 

immune responses are diminished in ageing, while some are unchanged or elevated – 

the term ‘dysregulation’ fails to fully describe this phenomenon. While many aspects of 

immune function decline with aging some become overactive e.g. increased 

autoantibody production or an upregulated inflammation state. There is considerable 

heterogeneity in immunosenescence owing to the interaction of genetics, environment, 

lifestyle and nutrition (Pae, 2012). The age-related, chronically upregulated 

inflammation state, is often denoted by the term inflammaging; higher peripheral levels 

of inflammatory cytokines and acute-phase reaction proteins from the liver e.g. CRP cf. 

young subjects. This inflammation state has been implicated in the pathogenesis of 

several common and disabling diseases most of which have a clear connection to 

advancing age including CVD, type 2 diabetes, Alzheimer's, Parkinson's, osteoporosis 

and rheumatoid arthritis.  

 

Higher plasma concentrations of IL-6 and TNFα were associated with lower muscle 

mass and lower muscle strength in 3075 well-functioning older participants of the 

Health ABC Study. Total body fat (included as a potential confounder) was positively 

correlated with cytokine levels, especially in women (Visser et al., 2002b). Consistent 

associations between TNFα and 5 y decline in muscle mass and strength were explained 

in terms of increased muscle catabolism – by direct stimulation of protein loss and the 

alteration of muscle protein so as to reduce force production (Schaap et al., 2009). 

 

Higher circulating levels of IL-6 attributable to muscle atrophy and/or its role in disease, 

predicted disability onset in older persons (Ferrucci L, 1999) and higher circulating 

levels of IL-6 and CRP were associated with mortality in 1293 healthy nondisabled 

participants of the Iowa 65+ Rural Health Study, followed prospectively for a mean of 

4.6 y (Harris et al., 1999). Human aging was shown to be associated with heightened 

muscle inflammation susceptibility – a higher basal state of proinflammatory signalling; 

the authors (Merritt et al., 2013) suggest that this contributes to the impaired 

regenerative capacity of older skeletal muscle. 
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In the evolution of the human lifespan (Finch, 2010) observes that the human diet has 

shifted to increased consumption of animal tissue. These are linked to increased 

ingestion of trace metals, fat and pathogens and (when cooked), advanced glycation 

endproducts (AGEs) which are diabetogenic and proatherosclerotic. The apolipoprotein 

E alleles (ApoE) is proposed as a ‘meat-adaptive candidate gene’ with a range of 

pleiotropic effects, i.e. clearance of triglyceride-rich lipoproteins from the blood but 

accelerated degenerative changes in arteries and brain and greater risk of CHD and 

Alzheimer's disease – all of which are characterised by a heightened 

immune/inflammatory response. It is suggested that this extends the antagonistic 

pleiotropy theory of aging (Finch, 2010).         

 

1.2.4 Metabolic stress 

Ageing is associated with loss of metabolic homeostasis perhaps best illustrated by a 

description of the Metabolic Syndrome (MetS) – a cluster of metabolic/ biochemical 

processes exhibiting various degrees of dysregulation – the risk of which increases with 

AGE. The presence of three or more of the following warrants a diagnosis of metabolic 

syndrome: central obesity, elevated TAG (hypertriglyceridemia), reduced HDL 

cholesterol, hypertension, and elevated fasting glucose/insulin resistance 

(hyperglycaemia). This group of risk factors increases the risk of heart disease, diabetes 

and stroke. Chronic low-grade systemic inflammation is also believed to be implicated 

in the amplification of this condition.  

 

1.2.5 Epigenetics 

Epigenetics describes the modification of the genome without changing the underlying 

genetic DNA code – the modification and maintenance of gene activity states. The most 

studied epigenetic mechanisms are DNA methylation and histone modification both of 

which take place in the nucleus. DNA methylation describes the addition of a methyl 

group to the cytosine molecule of a cytosine-guanine (CG) dinucleotide. High 

concentrations of repeating CG dinucleotides are known as CpG islands. 

Hypermethylation of gene promoter areas silence gene transcription as methylation 

prevents transcription factor binding to the promoter, whereas hypomethylation is 

associated with gene transcription. 
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Aging is associated with gene specific hypermethylation (gene silencing) and global 

(organism-wide) hypomethylation which may cause genomic instability. Reversible 

histone (protein) modification can be by methylation, acetylation, phosphorylation or 

ubiquitination. These tags or motifs covalently attach to specific amino acids e.g. 

arginine methylation. The attachment of these motifs promotes an open chromatin 

structure which facilitates gene transcription whereas a closed chromatin structure 

presents a physical barrier to the enzymes and regulatory factors required replication, 

transcription and repair (Mendez-Acuna L, 2010). Epigenetic modification is plastic and 

amenable to change by nutrition in utero and throughout life. Aberrant epigenetic 

patterning may switch off genes that protect and repair the genome or switch on genes 

which operate to facilitate metabolic dysregulation or disease (Sawan and Herceg, 

2010). 

 

1.2.6 Healthy ageing 

What is apparent from the preceding discussion is that the ageing process is plastic and 

highly amenable to the influence of lifestyle factors, in particular nutrition and physical 

activity. What defines healthy ageing is arguably highly subjective, although 

commonality in factors does exist. It is generally thought of as the maintenance and 

preservation of functional independence (personal autonomy), vigour, mobility, 

cognition and social participation, and the absence of disease and disability. 

 

In a meta-analytic review (Holt-Lunstad et al., 2010) including data from 308,849 

individuals followed up for ~7.5 y, individuals with adequate social relationships had a 

50% greater likelihood of survival compared to those with inadequate or poor social 

relationships – the effect was comparable with smoking cessation and exceeded the 

more well-known risk factors for mortality of obesity and physical inactivity. Lowry 

(Lowry KA, 2012) describes successful ageing as a continuum of functional 

independence, a multidimensional construct that could be viewed as a continuum of 

achievement including aspects of mobility and social participation and not only the 

presence or absence of disease. 
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Recent physiologic studies on well-characterised groups of old people show the 

adaptive capacity of various organ-systems with age; along with physical ability, 

maintenance of cognitive function is considered a key component in the definition of 

successful ageing. Lifestyle can modify outcomes of ageing – nutrition improves immune 

status and physical activity, functional performance. Individuals surviving in very good 

health are not mere examples of passive survival but biological outcomes of the 

adaptive capacity these systems (Vallejo, 2012). 

 

1.2.7 Physical frailty 

As an individual ages, comorbidities may cluster and the individual may become frail. 

Frailty encompasses physical, physiological, social and psychological aspects previously 

defined as a clinical syndrome or ageing phenotype in which three or more of the 

following are present: unintentional weight loss, self-reported exhaustion, weakness (as 

evidenced by poor grip strength), slow walking speed and low physical activity. In 5317 

participants of the Cardiovascular Health Study aged ≥ 65 y, the frailty phenotype was 

predictive of falls, worsening mobility or ADL disability and death (Fried et al., 2001). 

 

Frailty is commonly characterised by the loss of physiological reserve which is 

analogous to organ reserve – defined as the ability of the stressed organism to restore 

homeostasis after perturbation (Fries, 1980). When organ reserve is lost and 

homeostasis cannot be restored, death is inevitable. Frailty is not a specific medical 

disease, but is evident over time through an excess vulnerability to stressors with a 

reduced ability to maintain or regain homeostasis after a destabilising event (Walston et 

al., 2006). In older adults there is a ‘spectrum of resilience’ from most frail (in the 

presence or absence of disease) to robust and highly independent.  

 

Frailty, affecting both musculoskeletal (sarcopenia and osteoporosis) and non-

musculoskeletal systems, results from reaching a threshold of decline across multiple 

organ systems. Purported contributory mechanisms include chronic low-grade 

inflammation (proinflammatory cytokines and CRP), increased biomarkers of 

coagulation and fibrinolysis, hormonal changes, vitamin D deficiency and obesity 

(Gielen et al., 2012). 
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Using data from the Newcastle 85+ Study the importance of inflammatory markers (IL-6, 

TNF-α and CRP) previously established in the younger-old were confirmed in the very 

old (Collerton et al., 2012).  

 

Moderate physical activity can be of substantial benefit to frail older people and regular 

leisure activities, such as walking and gardening can provide considerable benefits. 

Increasing physical activity can reduce systemic concentrations of proinflammatory 

biomarkers, improve sarcopenia, physical and cognitive function and mood (Landi et al., 

2010). In 802 participants (mean aged 74.1 y) of the InCHIANTI study (Bartali et al., 

2006a) low energy consumption was significantly associated with frailty. Low energy-

adjusted intakes of protein, vitamins D, E, C and folate were also significantly and 

independently associated with frailty, as defined by (Fried et al., 2001)    

 

1.3 Physical capability 

Physical capability refers to the muscle strength and functional capacity that enable us 

to perform the tasks of everyday living. It is a reflection of musculoskeletal and 

neuromuscular health. Bone health is beyond the ambit of this work and this 

dissertation focuses on physical capability as a reflection of muscular and 

neuromuscular structure and function. 

 

1.3.1 Muscle structure  

1.3.1.1 Muscle physiology 

Skeletal muscle is the largest organ in the human body (Pedersen and Febbraio, 2012). 

It is striated tissue which attaches to bone by tendons enabling body movement. The 

myofibre is the smallest ‘complete contractile system’ – a single multinucleated muscle 

cell. Myofibres comprise myofibrils – chains of proteins (actin and myosin myofilaments) 

whose shortening and lengthening movement produce force. Their lattice arrangement, 

within repeated sarcomere bands, produce the striations characteristic of skeletal 

muscle.  Skeletal muscle comprises bundles of myofibres enveloped first by fascicles 

into muscle fibres; these fibres are then formed into larger bundles by perimysium and 

finally into complete and distinct muscles by an outer wrapping (the epimysium) which 

assumes a variety of shape and size dictated by location and function.  
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Muscle fibres are classified as slow (type I) and fast (type II) by the type of myosin 

present and principal type of metabolism; slow (Type I) are characterised by long 

twitch times (slower contraction velocity), lower peak force and a higher resistance to 

fatigue. They are high in oxidative enzymes (high oxidative capacity5) but low in 

glycolytic6 markers. There are 3 types of fast (Type II) fibre; fatigue resistant; fast 

fatiguable and fast intermediate. Ageing is associated with a net conversion of type II 

fibres (which tend to be larger) to type I which are smaller – resulting in the observed 

age-related loss of muscle mass/ muscle CSA (Deschenes et al., 2010). 

 

Substantially smaller type II muscle fibre size in a group of elderly men (mean age 71 y) 

compared with their younger (mean age 23 y) counterparts, fully explained the group 

difference in quadriceps cross-sectional area. Prolonged, resistance type exercise over a 

period of 6 months resulted in an 24% increase in type II fibre size, in these elderly men 

(Nilwik et al., 2013).     

 

1.3.1.2 Neuromuscular structure 

The neuromuscular junction (NMJ) allows communication between motor neurons 

(neural cells) and muscle fibres – it is the site of the transduction of electrical stimuli 

generated by the nervous system to the muscle fibre, resulting in muscle action 

(Deschenes MR, 1994). Age-related denervation of myofibres at the NMJ were found to 

precede the fibre atrophy characteristic of sarcopenia and this could be delayed with 

high amounts of neuromuscular activity (Deschenes et al., 2010). Loss of muscle mass 

and strength is attributable to the progressive atrophy and loss of individual muscle 

fibres associated with the loss of motor units. This is accompanied by a reduction in 

muscle quality due to the infiltration of fat and other non-contractile material (Ryall et 

al., 2008). 

 

 

 

 

                                                        
5 Derives energy from fatty acids / dependent on oxygen 
6 Glycolytic – derives energy from glucose either anaerobically (in the cytoplasm) or aerobically (in the 

mitochondria)  
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1.3.1.3 Intramuscular lipid  

Skeletal muscle fat exists as extramyocellular lipid contained in adipocytes embedded 

between muscle fibres and intramyocellular lipid, droplets of triglyceride, formed on 

muscle cell membranes. Fatty infiltration of muscle (myosteatosis) was observed to 

increase with age and was associated with reduced muscle mass, muscle strength, 

physical performance (SPPB) and increased risk of hip fracture (Lang et al., 2010). Fat 

infiltration of muscle was predictive of clinical fracture in older adults (Schafer et al., 

2010). In the Health, Aging and Body Composition Study, lower extremity performance 

(LEP) in men and women (70 – 79 y) was measured by 6 m walk and chair stands. 

Smaller midthigh muscle area and greater muscle fat infiltration were associated with 

poorer physical performance. Reduced muscle attenuation (fat infiltration) was 

associated with poorer LEP independently of total body fat and muscle area (Visser et 

al., 2002a) and muscle attenuation and muscle strength independently predicted 

mobility limitation (Visser et al., 2005). 

 

1.3.2 Muscle function 

1.3.2.1 Metabolic function 

Skeletal muscle is the main target tissue of insulin and the age-associated loss of muscle 

mass (sarcopenia) is associated with adverse glucose metabolism (insulin resistance 

and susceptibility to diabetes) (Srikanthan et al., 2010). Many age-related diseases 

(metabolic syndrome, cancer, Alzheimer's and Parkinson’s disease) are associated with 

the functional status, metabolic demand and mass of skeletal muscle (Demontis et al., 

2013). Loss of contractile tissue is associated with increased risk of type 2 diabetes, 

osteoporosis and obesity (Deschenes et al., 2010) and fat infiltration of muscle was 

higher in those with diabetes or impaired glucose metabolism cf. those with normal 

glucose metabolism (Schafer et al., 2010).  

 

Skeletal muscle is an endocrine organ producing and releasing cytokines (referred to as 

myokines). In relation to exercise, IL-6 is the first cytokine present in the circulation, 

whereas the classical proinflammatory cytokines (TNF-α and IL-1β) generally do not 

increase with exercise. 
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Data suggested that exercise-induced IL-6 exerted inhibitory effects on TNF-α and IL-6 

and induced a delay in the increase in C-reactive protein (CRP). Exercise also provoked 

an increase in circulating levels of anti-inflammatory cytokines & cytokine inhibitors. 

The authors suggested that regular exercise may offer protection against 

atherosclerosis (characterised by inflammation), vascular and ultimately systemic low-

grade inflammation (Pedersen and Febbraio, 2008). 

 

1.3.2.2 Muscle performance 

Muscle strength is a composite term determined by muscle mass (volume, composition, 

fibre number and size) and structure (e.g. fibre type and pennation angle) which 

determine force-generating capacity and power. Muscle force is a measure of the load 

applied to bone, whereas power is a measure of function (Ward, 2012). Age-related 

effects in calf muscle cross-sectional area (measured by CT) and muscle force and 

power (by jumping mechanography) were studied in relation to sedentarism (Runge et 

al., 2004). The non-sedentary population exhibited a >50% peak force and power loss 

between the age of 20 – 80 without a reduction in calf muscle cross-sectional area.     

 

1.3.2.3 Measuring muscle function 

1.3.2.3.1 Composite measures 

Physical capability is defined as the muscle strength and functional capacity that 

enables the performance of Activities of Daily Living (ADL). ADL assessment is often 

self-reported and subjective, rendering such data problematic when comparisons are 

required within a research setting over time or across diverse study designs. As such, a 

need was identified for objective assessments. The National Institutes of Health (NIH) 

Toolbox is an example of a standardised set of measures (including cognitive, emotional, 

motor & sensory domains) that can be used across a variety of study designs providing 

comparability and thus facilitating the monitoring of function over time. Pertinent to 

this dissertation is motor function, defined as the ability to use and control muscles and 

movement including dexterity, strength, balance, locomotion and endurance. The motor 

function component strength, which refers to the muscle’s ability to generate force 

against a physical object, is assessed by the measure of hand grip strength, as this 

provides an approximation of overall muscle strength.  
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Another composite measure of physical performance and capability widely used in 

research settings is the Short Physical Performance Battery (SPPB). The battery is 

administered to assess lower extremity function in older people and usually comprises 

standing balance tests (side-by-side, semi-tandem and tandem positions), a test of gait 

speed and chair rise time (5 repetitions) (Guralnik JM, 1994). This research presented 

evidence that the SPPB provided information not available from self-reported items, in 

particular a gradient of risk for mortality and nursing home admission among those 

highly-functioning individuals who reported almost no disability.   

 

1.3.2.3.2 Individual objective measures – grip strength  

Individual objective measures of physical capability such as hand grip strength, gait 

speed, chair rise and standing balance time were predictive of all-cause mortality and 

subsequent health and in older community-dwelling populations  (Cooper et al., 2010; 

Cooper et al., 2011b). In a systematic review of prospective longitudinal studies 

assessing the predictive value of individual physical frailty indicators on ADL disability 

in those aged ≥ 65 y, indicators including grip strength were found to be predictive of 

ADL disability in community-dwelling elderly people. Slow gait speed and low physical 

activity had the greatest predictive power followed by weight loss, lower extremity 

function, balance and muscle strength (Vermeulen et al., 2011)  

 

Epidemiological studies have demonstrated that low hand grip strength in healthy 

adults predicts increased risk of functional limitation and disability in older age as well 

as all-cause mortality. As muscle function reacts early to nutritional deprivation, hand 

grip strength can also be used as a marker of nutritional status (Norman et al., 2011). 

 

In approximately 600 participants of the Hertfordshire Cohort Study (63 – 73 y) grip 

strength was found to be a good marker of physical performance (as tested by the 

SPPB). A 1 kg increase in grip strength was associated with a decrease in 6 m timed up 

and go, 3 m walk- and chair rise time in males and females. The authors observed that a 

single, simple measure of muscle strength was more feasible in a clinical setting than 

completing the short physical performance battery (Stevens et al., 2012). 
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Isokinetic dynamometry (the gold standard for testing muscle strength) was compared 

with hand-held dynamometry in a systematic review of 19 studies. Minimal differences 

between hand-held dynamometry and isokinetic testing were demonstrated and hand-

held devices were held to be reliable and valid instruments for the assessment of muscle 

strength in a clinical setting (Stark et al., 2011). Referring to the European Working 

Group on Sarcopenia in Older People’s endorsement of grip strength as a measure of 

muscle strength (Cruz-Jentoft et al., 2010) this review of highlighted variability in 

approach and in the reporting of grip strength and recommended a consistent, 

standardised approach to enable the better assessment of sarcopenia (Roberts et al., 

2011).  

 

In the Hertfordshire Cohort Study lower grip strength was associated with reduced 

health-related quality of life in older (59 – 73 y) men and women (Sayer et al., 2006) 

and in a random sample of ~800 individuals aged ≥ 65 y from across the United 

Kingdom, poorer grip strength was associated with increased all-cause mortality and 

cardiovascular and cancer mortality in men but not in women (Gale et al., 2007). In 119 

moderately to severely disabled women (mean age 78.3 y) of the Women’s Health and 

Aging Study, hand grip strength was a powerful predictor of mortality over 5 y 

(Rantanen et al., 2003). The presence of 17 chronic diseases, inflammation, poor 

nutritional status, disuse and depression did not explain this association. 
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1.3.2.3.3 Chair rise/Sit to stand 

Sit to stand requires the forward movement of the body’s centre of mass both in the 

anterior-posterior and vertical plane, push-off and stabilisation once standing is 

achieved (Herman T, 2011). Four phases are described by (Schenkman M, 1990): 

flexion-momentum, momentum-transfer, extension and stabilisation. Measures may be 

strongly influenced inter alia by seat height (a lower height associated with a more 

demanding test), chair type, use of arm and backrests and foot position (Janssen et al., 

2002b). In 669 community-dwelling older (mean age 78.9 y) men and women, 

quadriceps7 strength was the most important variable in explaining the variance in sit 

to stand time, however, other variables measures accounted for more than half the 

explained variability in performance. When measures of vision, peripheral sensation, 

reaction time, balance and health status were included, the final regression model 

explained ~35% of the variability in sit to stand performance (Lord et al., 2002).  

 

Leg power has been shown to be significantly associated with physical performance 

when measured by stair climb, chair stand and gait (tandem, habitual, maximal) tests 

and the SPPB (Bean et al., 2002) explaining between 12 and 45% of the variability in the 

outcome. The relationship between chair rise performance (time to rise from a chair 10 

times) and standing balance time were assessed against leg extensor power (LEP) as 

measured by a Nottingham Power Rig in a sub-sample of 174 NSHD participants (53 y). 

Chair rise performance should not be thought of as purely a proxy measure of leg power 

as it requires lower limb strength, good balance and coordination (Hardy R, 2010).    

 

1.3.2.3.4 Timed up and go 

The timed up and go test is a single, but composite measure of functional mobility 

including transfer tasks (standing up and sitting down), walking and turning; assessing 

the neuromuscular components of power, agility and balance. A poor performance has 

been associated with poor muscle strength, balance, slow gait, fear of falling, physical 

inactivity and ADL impairments (Schoene et al., 2013). The American and British 

Geriatrics Societies and the Society of Nordic Geriatricians recommend the TUG as a 

screening tool to test for fall risk (Herman T, 2011).  

                                                        
7 Group of 4 muscles located on the front of the thigh 
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In addition to the requirements of the sit to stand test described above (Janssen et al., 

2002b) the timed up and go test also demands appropriate initiation of stepping, once 

standing is stabilised, acceleration, deceleration and preparation to turn twice (Herman 

T, 2011). In assessing the properties of the timed up and go test (Herman T, 2011) 

concluded it was an appropriate tool for the assessment of functional ability even in 

healthy older adults (mean age 76.4 y). The (TUG) test was compared favourably to the 

Berg balance test and the Dynamic Gait Index as performance was related to executive 

function (planning, orientation in space and organisation) not properties of the simpler 

balance or gait tests. The authors speculated that it was the transferring and turning 

subtasks of the TUG that tested these cognitive resources.        

 

Performance at timed up and go was influenced not only by lower limb strength and 

balance, but by reaction time, vision and pain in 280 older (mean age 74.9 y) community 

dwelling individuals (Kwan MM, 2011). In a systematic review and meta-analysis 

(Schoene et al., 2013) timed up and go was shown not be predictive of falls in healthy 

high-functioning older people (≥ 60 y) and had a moderate predictive ability among less 

healthy, lower-functioning older people.          

 

1.3.3 Maintenance of muscle mass 

1.3.3.1 Muscle protein turnover 

Protein turnover in the whole body denotes the interconversions (in both directions) 

between amino acids and proteins. Measurement methods include the precursor 

method which measures the incorporation of labelled amino acids (typically leucine) 

into body protein and the end-product method, which measures the excretion of 15N 

labelled (typically glycine) in urea and ammonia. Whole body protein synthesis in 

normal adult men (estimated using the end-product average method and [15N]glycine) 

was ~ 4 g of protein, per kilogram body weight, per day (Waterlow, 1984). When 

considering individual tissues (in the rat), the fractional synthetic rate for skeletal 

muscle was 17% i.e. over a period of 6 days, all skeletal muscle was renewed. Skeletal 

muscle contributes ~25% to whole body protein synthesis, the liver 21%, skin 18% and 

the small intestine 15% (Waterlow, 1984).     
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Muscle protein breakdown is a biological process that contributes to the maintenance of 

intracellular amino acid levels, maintaining muscle protein quality by removing 

damaged proteins and allowing their constituent amino acids to be used for the 

synthesis of new functional muscle proteins (Churchward-Venne et al., 2012).    

 

1.3.3.2 Muscle protein synthesis 

Only in the postprandial state, when the substrates for muscle protein are available, can 

new muscle be made. Amino acids, in particular the essential amino acids, comprise the 

main anabolic signal (Volpi et al., 2003).  

 

When protein is ingested, circulating plasma essential amino acids stimulate the 

expression of amino acids transporters (LAT1, SNAT2, CD98 and PAT1) which transport 

amino acids across the cellular membrane from the intestinal lumen and into the 

bloodstream (Drummond et al., 2010). Amino acid ‘sensors’, currently unknown, 

respond to the change in amino acid concentration and activate the protein kinase 

mTORC1 (mammalian target of rapamycin complex 1). Via the phosphorylation of 

downstream protein effectors such as p70S6k and 4E-BP1 (eukaryotic translation 

initiation factor 4E-binding protein 1) the translational initiation of muscle protein 

synthesis is affected according to the ‘central dogma’ of molecular biology viz. 

replication, transcription and translation. Protein synthesis in the cytoplasm is followed 

by post-translational modification and protein folding into secondary and tertiary 

structures. Mammalian target of rapamycin complex 1 activation is required for the 

stimulation of human skeletal muscle protein synthesis by essential amino acids 

(Dickinson et al., 2011). Leucine (a branched-chain (BCAA) amino acid) is a unique and 

key regulator of the translational initiation of muscle protein synthesis. Unlike the other 

BCAAs (isoleucine and valine) leucine potently increases the phosphorylation of mTOR 

and its downstream effectors p70S6k and 4E-BP1. The target of the p70S6 kinase is the 

S6 ribosomal protein. Phosphorylation induces protein synthesis (Deldicque et al., 

2005). Bed rest (inactivity) impairs skeletal muscle amino acid transporter expression, 

mTORC1 signalling and protein synthesis in response to essential amino acids in older 

adults. The authors speculated that inactivity contributes to muscle loss in older people 

(Drummond et al., 2012). 
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1.3.4 Age-related changes in body composition and muscle 

Age is associated with dramatic changes in body composition (Kohara, 2013) decreases 

in muscle mass are often accompanied by increases in fat mass, especially intra-

abdominal fat.    

 

1.3.4.1 Adiposity 

Ageing is associated with increasing adiposity. Computed tomography was used to 

investigate the age-related differences in body composition between middle-aged 

(mean age 43.6 y) and older men (mean age 69.4 y) (Borkan et al., 1983): in the older 

men, weight was significantly lower, driven by significantly less lean body weight (49.6 

kg cf. 56.2 kg). The older men also had significantly more internal abdominal fat and less 

upper leg, abdominal and upper arm lean tissue. Fat infiltration in leg muscle, latissimus 

dorsi and deep back muscle was significantly higher in older men compared to their 

younger counterparts.        

 

1.3.4.2 Sarcopenia 

A termed originally coined by Irwin Rosenberg in 1989 derived from the Greek, sarx & 

penia: poverty of flesh. There are currently two consensus documents that define 

sarcopenia; the European Working Group on Sarcopenia in Older People (Cruz-Jentoft et 

al., 2010) recommended the use of both low muscle mass and muscle function. Three 

stages were described: presarcopenia, sarcopenia and severe sarcopenia. The 

International Working Group on Sarcopenia (Fielding RA, 2011) uses gait speed and 

objectively measured low muscle mass. Dynapenia is the age-associated loss of muscle 

strength (Clark and Manini, 2012) which may not be as a direct result of age-associated 

declines in muscle mass.     

 

 

 

 

 

 

 



28 

 

1.3.4.3 Sarcopenic obesity 

As with sarcopenia, there is no standard definition of sarcopenic obesity (Kohara, 2013) 

and the phenotype describes more than just a combination of the two pathological 

conditions. Independently, sarcopenia and obesity have an additive, synergistic effect 

for the development of sarcopenic obesity. In a study of 2943 older (mean age 69 y) 

participants of the Korean National Health Examination and Nutrition Study (Chung et 

al., 2013), sarcopenia was defined as appendicular skeletal muscle mass / weight (%) of 

< 1 standard deviation below the sex-specific mean for young adults and obesity as a 

BMI ≥ 25 kg/m2.  42% of men and 42.7% of women were sarcopenic, 26.8% and 39% 

were obese and 18.4% and 25.8% were sarcopenic obese, respectively. This latter 

group was most strongly associated with insulin resistance, metabolic syndrome and 

cardiovascular risk factors than any other group.     

 

1.3.4.4 Anabolic resistance of ageing muscle 

Previously thought to be a reduction in basal muscle protein synthesis, it is now known 

that the nutrient stimulation of muscle protein anabolism is blunted with ageing (Breen 

and Phillips, 2011) and that this is a key factor in the loss of skeletal muscle mass with 

ageing (Koopman, 2011). 

 

In 2000 (Volpi et al., 2000) concluded that the response of muscle protein anabolism to 

combined hyperaminoacidemia and glucose-induced endogenous hyperinsulinemia was 

impaired in healthy elderly subjects due to the unresponsiveness of protein synthesis. 

Muscle protein synthesis shows less anabolic sensitivity to essential amino acids in the 

elderly and deficits in signalling proteins (mammalian target of rapamycin (mTOR), p70 

S6 kinase and eukaryotic initiation factor) underlie the amino acid resistance of aging 

muscle (Guillet et al., 2004; Cuthbertson D, 2005). The phosphorylation of mRNA 

translational signalling proteins (in particular mTOR and its downstream targets) in 

response to whey protein ingestion after a bout of resistance exercise were investigated 

in a group of healthy young and older (60 – 75 y) men. Post-training, signalling protein 

phosphorylation was reduced in older men compared to their younger counterparts 

indicating a lack of sensitivity to anabolic stimuli in this age group (Farnfield et al., 

2011).       
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Diminished accretion of muscle proteins after ingestion of a small bolus of essential 

amino acids (Katsanos et al., 2005) can be attenuated in the elderly with a higher 

proportion of leucine (Katsanos et al., 2006).  Postprandial muscle protein accretion 

was investigated in two groups of elderly (mean age 74.3 y) after ingestion of 20 g 

phenylalanine-labelled casein protein either with or without additional (2.5 g) 

crystalline leucine. Muscle-protein bound phenylalanine enrichments were significantly 

greater in the group ingesting additional leucine, 2 and 6 hours after ingestion; this 

equated to a 22% greater muscle protein synthetic rate over the whole postprandial 

period (Wall et al., 2013)      

 

In a similar experiment in 24 males (mean age 75 y) there were no differences in muscle 

protein-bound labelled phenylalanine enrichments 6 hours after casein protein 

ingestion, given with or without carbohydrate (Hamer et al., 2013). Protein co-ingestion 

with carbohydrate did not augment incorporation into muscle in this group of elderly 

men.     

 

In addition to muscle resistance to the anabolic stimuli of amino acids, elderly muscle 

may also exhibit resistance to the antiproteolytic effects of insulin. In research by 

(Wilkes et al., 2009) in groups of young and older (mean age 65 y) men, a low 

physiologic dose of insulin (equivalent to that expected following a low-glycemic meal) 

lowered leg protein breakdown by 12% in the older men compared to 47% in the 

younger group. When the activity of muscle Akt-protein kinase B (considered a proxy of 

insulin action) and phosphorylation of mTOR signalling proteins were measured, 

activity of Akt-PKB was diminished, potentially mediating the blunting of insulin 

inhibition of leg proteolysis.    

 

 

 

 

 

 

 

 



30 

 

1.4 Protein needs across the lifecourse  

1.4.1 Protein recommendations 

The first Food and Agriculture Organization of the United Nations (FAO) Expert 

Consultation on population protein requirements was in 1955. In 1963 protein was 

reviewed again, collaboratively with the World Health Organisation. Energy and protein 

requirements were considered together in 1971 by a Joint FAO/WHO Expert Committee 

and their report published in 1973. The WHO Technical Report Series No. 724 

(published in 1985) reported on the joint FAO/WHO/UNU Expert Consultation on 

energy and protein requirements held in 1981.  

 

In 2002 a joint WHO/FAO/UNU Expert Consultation on Protein and Amino Acid 

Requirements in Human Nutrition was held, culminating in the latest WHO Technical 

Report Series No. 935 (published in 2007). The (Rand et al., 2003) meta-analysis which 

indicated a median requirement of 105 mg nitrogen/kg per day or 0.66 g/ kg per day of 

protein, was accepted as the best estimate of a population average requirement (the 

Estimated Average Requirement (EAR)) for healthy adults. In the same report, 133 mg 

nitrogen/ kg per day, or 0.83 g per kg of bodyweight per day of protein was expected to 

meet the requirements of most (97.5%) of the healthy adult population (the Reference 

Nutrient Intake (RNI)).   

 

Although not applicable to NSHD participants who provided dietary data in 1982 - 1999, 

these requirements were used to determine whether participants met protein 

recommendations.  
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1.4.1.1 Protein needs in older adults  

In 2066 community dwelling black and white participants of the Health, Aging & Body 

Composition Study (mean age 74.5 y), changes in lean mass and appendicular lean mass 

(aLM) were assessed (by DEXA) at 3 y follow up in relation to energy-adjusted dietary 

protein intake (Houston et al., 2008). Female participants who reported energy intakes 

< 500 or > 3500 kcals/d and males reporting EI < 800 or > 4000 kcals/d, were excluded. 

Protein intake was associated with 3 y changes in lean and appendicular lean mass; 

participants in the highest quintile of protein intake lost ~40% less lean mass than 

those in the lowest quintile. After adjustment for potential confounders (e.g. age, gender, 

race, physical activity and health status) regression coefficients for changes in total lean 

mass and aLM per unit of energy-adjusted total protein intake were 6.38 (p=0.02) and 

4.10 (p=0.007) respectively. Adjusted regression coefficients remained significant for 

animal protein but not for vegetable protein. However, when participants were 

stratified by weight change status, and after adjustment for potential confounding, 

protein intake was associated changes in aLM in weight gainers and losers, but not in 

those who were weight stable (Houston et al., 2008).   

 

In a cohort of 740 non-institutionalised participants of the Tasmanian Older Cohort 

Study (mean age at baseline 62 y) DEXA-measured appendicular lean mass 2.6 y follow 

up; leg strength knee extension; physical activity by pedometers; those who failed to 

meet the Australian and New Zealand recommended dietary intake (RDI) for protein 

had significantly lower appendicular lean mass (aLM) at baseline (0.81 kg) and follow 

up (0.79 kg) after adjustment for energy intake, age, gender and physical activity (Scott 

et al., 2010). There was a significant positive association between aLM and energy-

protein and intakes were positively predictive of aLM change over 2.6 y. No associations 

were found between nutrients and muscle strength.    
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In 862 white Western Australian community-dwelling women (mean age 75 y) nutrient 

intake and anthropometric measures (e.g. BMI and upper arm muscle area (UAMA)) 

were taken at baseline. At 5 y follow up anthropometry and DXA-determined body 

composition were assessed (Meng et al., 2009). After adjusting for age, height, energy 

intake and physical activity, those in the upper tertile of protein intake (>87 g/d) had 

significantly higher whole body (5.3%) and appendicular lean mass (6.6%) than 

subjects in the other two groups.       

 

In participants of the InCHIANTI study (mean age 72.9 y) knee extension strength was 

measured at baseline and at 3 y follow up (using a hand-held dynamometer). The main 

effect of protein intake in muscle strength was insignificant, however, in persons with 

high levels of the inflammatory markers CRP, IL-6 and TNF-α lower protein intake was 

associated with a greater decline in muscle strength (Bartali et al., 2012). 

 

In a subset of 24,417 women of the Women’s Health Initiative observational study, (65 – 

79 y) with plausible self-reported energy intakes (600 – 5000 kcal/d), measurement 

error was corrected for by the use of an approach which calibrated energy and protein 

intake using recovery biomarkers. Estimates were used to investigate protein intake in 

relation to incident frailty. Frailty was assessed using criteria developed by (Fried et al., 

2001). Protein intakes were expressed in grams, as a percentage of total energy intake 

and as a ratio of grams per kilogram of body weight. A 20% increase in uncalibrated 

protein intake (as a percentage of total energy) was associated with a 12% lower risk of 

frailty whereas a 20% increase in calibrated protein intake was associated with a 32% 

lower risk of frailty (Beasley et al., 2010). Using uncalibrated intakes underestimated 

the strength of the association.  

 

The existence of a ‘leucine threshold’ was hypothesised by (Breen and Phillips, 2011) 

based upon observations by (Katsanos et al., 2006; Koopman et al., 2006; Rieu et al., 

2006; Norton et al., 2009; Atherton et al., 2010). 
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A recent position paper (Bauer et al., 2013) from the PROT-AGE (protein needs with 

aging) study group was entitled ‘Evidence-based recommendations for optimal dietary 

protein intake in older people’   

 

Figure 1.3 The age-related causes of protein shortfall – impairment of musculoskeletal 

and immune function (Bauer et al., 2013) 

 

 

The main points of the position paper were as follows:  

1. Older adults need more dietary protein than younger adults, average daily 

intakes are recommended to be between 1 – 1.2 g/kg/d. 

2. Age-related changes in protein metabolism include higher splanchnic extraction 

of amino acids and a declining anabolic response to ingested amino 

acids/anabolic resistance. 

3. Older adults may need more protein to offset inflammatory and catabolic 

conditions that accompany age-related chronic and acute disease. In these 

circumstances, recommended intakes are 1.2 – 1.5 g/kg/day. Severe kidney 

disease without dialysis is an exception to this rule and protein intakes should be 

restricted. 

4. Endurance exercise (30 minutes/d) and resistance exercise (2 – 3 times/week) 

is recommended. Higher protein intakes (≥ 1.2 g/kg/d) are recommended for 

those exercising and active. Protein or amino acid supplementation in close 

temporal proximity to exercise is also recommended.  
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1.4.2 Protein quality 

Protein quality is determined according to the Protein Digestibility Corrected Amino 

Acid Score (PDCAAS) – it is a means of evaluating protein quality by the determination 

of the protein amino acid profile. In the present research it was not possible to 

determine protein quality as amino acid data were not available. 

 

In (Beasley et al., 2010) quality of protein was summarised as the sum of essential 

amino acids, as defined by having a recommended intake assigned by the Joint 

FAO/WHO/UNU Expert Consultation (histidine, isoleucine, leucine, lysine, methionine, 

cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine). Joint 

FAO/WHO/UNU/EC Energy and Protein requirements Vol. 2008 1985 and the WHO 

Protein and amino acid requirements in human nutrition. Report of a FAO/WHO/UNU 

consultation. WHO Press; 2007. p. 150. WHO Technical Report Series 
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1.5 Analytical/research strategy 

The analytical model and research strategy for this project is depicted in Figure 1.4. In 

approaching and developing the analytical model, physical capability at 60 – 64 y was 

expected to be determined primarily by body composition and anthropometry, both of 

which were hypothesised to be associated with habitual diet and physical activity.   

 

 

 

Figure 1.4 Analytical model and Project research strategy 
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1.6 Hypothesis 

Adulthood patterns of protein consumption predict physical capability in older age 

 

1.7 Aims 

1. To test the hypothesis that low protein consumption throughout adulthood impairs 

physical capability in later life; 

2. To test the hypothesis that diurnal patterns of protein consumption throughout 

adulthood influence physical capability in later life 

 

1.8 Objectives 

1. To characterise and to quantify patterns of protein consumption (both mean daily 

intake and diurnal patterns of intake) in a cohort of individuals providing dietary 

data by 5 d food diary in 1982, 1989 and 1999 when aged 36 y, 43 y and 53 y    

 

2. To determine and to characterise physical capability at age 60 – 64 y using a range 

of techniques including hand grip strength, timed up and go and chair rise time 

 

3. To determine and to characterise other variables identified a priori as potentially 

mediating (or confounding) the relationship between protein consumption and 

physical capability. These variables include body composition and anthropometrics, 

habitual physical activity, socioeconomic status, health status and other related 

(meta)data 

 

4. To apply a range of statistical techniques, including hierarchical linear regression, to 

this dataset to determine which variables, including patterns of protein 

consumption during adulthood, predict physical performance at age 60 – 64 y   
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CHAPTER 2 

 

 

 

Methodology 

 

2.1 Introduction 

Birth cohorts – the prospective tracking of individuals from birth – represent the best 

way to study the ageing trajectory. This is especially so when circumstances of birth 

(including prenatal exposures) are known and there is information on childhood 

development and illness since these early life events and exposures may have long-term 

effects of health and wellbeing and on the ageing process (Hanson et al., 2011). Through 

repeated contacts/ monitoring, a myriad of exposures throughout childhood, early 

adulthood and adulthood into retirement and old age may be observed and recorded. 

Outcomes of choice such as impairments (disease/ disability (morbidity)) and mortality 

may be investigated in relation to known exposures, while adjusting for potential 

confounding factors, to provide robust evidence of causative relationships and 

significant interactions (Power et al., 2013).    

 

2.1.1 British birth cohorts 

There are currently four British birth cohort studies: i) the MRC National Survey of 

Health and Development, or 1946 British birth cohort, ii) the National Child 

Development Study (NCDS) or 1958  British birth cohort, iii) the 1970 British Cohort 

Study and iv) the Millennium cohort study, established in 2000. These latter 3 studies 

are managed by the Centre for Longitudinal Studies and funded by the Economic and 

Social Research Council (ESRC). 
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The National Child Development Study is a cohort of ~17000 individuals born in a 

single week in 1958. To date, participants have been followed up in eight ‘sweeps’ from 

age 7 – 50 y. In 1999 when cohort members were aged 45 y they participated in a 

biomedical survey in which objective measures of ill-health and biomedical risk factors 

were assessed. In 2013 cohort members will be contacted again, at age 55 y (Power and 

Elliott, 2006). The 1970 British birth cohort also follows the lives of ~17000 individuals 

all born in a single week in 1970 (Elliott and Shepherd, 2006). To date, this cohort have 

been followed up in seven sweeps from age 5 – 34 y in the latest sweep (2004), data 

were also collected from cohort members’ children. The Millennium cohort study was 

designed specifically to examine child wellbeing e.g. effects of breastfeeding, childhood 

activity, sleep characteristics, mental health and diabetes, the impact of television and 

electronic games. Groups living in disadvantaged circumstances, those from minority 

ethnic backgrounds and those in born outside of England were intentionally over-

sampled (http://www.cls.ioe.ac.uk).  

 

Health (including social inequalities and health-related behaviours), educational and 

social development, major life transitions – education into employment, dependent 

status within families of origin to independent homemakers and parenthood, lifetime 

employment to retirement – may be observed.  

 

2.1.2 Other British cohorts 

The Cohort and Longitudinal Studies Enhancement Resources (CLOSER) programme, 

launched in 2012, aims to exploit the value of the UK’s largest and longest-running 

longitudinal studies, creating a collaborative network which (currently) comprises nine 

participating studies: i) Avon Longitudinal Study of Parents and Children, ii) 1970 BCS, 

iii) Hertfordshire Cohort Study, iv) Life Study, v) Millennium Cohort Study, vi) 1958 

NCDS, vii) NSHD, viii) Southampton Women’s Study and ix) Understanding Society        

http://www.closerprogramme.co.uk/  
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2.1.3 National Survey of Health and Development  

The Medical Research Council’s (MRC) National Survey of Health and Development 

(NSHD) the oldest of the British birth cohorts, is a socially stratified sample of all single 

births in England, Scotland and Wales, in the week 3 – 9 March, 1946. Funded by the 

MRC since 1962, the NSHD is now part of the cross-cohort Healthy Ageing across the 

Lifecourse (HALCyon) programme led by the MRC Unit for Lifelong Health and Ageing 

(LHA). The HALCyon programme comprises nine cohort studies: Lothian 1921, The 

Hertfordshire Cohort (HCS) and Ageing (HAS) Studies, 1920 – 39, Boyd Orr 1925 – 37, 

Aberdeen 1936, The National Child Development Study (NCDS) 1958, The English 

Longitudinal Study of Ageing (ELSA) and the Caerphilly study 

[http://www.halcyon.ac.uk/ accessed 11 12 12]. 

 

The NSHD, initiated and originally led (for the first 33 years) by Dr James WB Douglas, 

was tasked to address the issue of falling national fertility and to examine the quality of 

existing maternity services, pre-NHS (founded in 1948). Health visitors interviewed the 

mothers of all babies born during one week in March, 1946 at their eight-week check-up 

(n=16,695). By June 1946, 13,687 mothers had been interviewed and results of this 

survey were published in 1947 as “Maternity in Great Britain” (Wadsworth et al., 2006). 

Observations of stark health inequalities led to the follow-up of 5,362 of the original 

maternity survey and this sample became the NSHD. The sample taken for follow-up 

comprised all single, legitimate births to wives of non-manual and agricultural workers 

and one in four of all such births to wives of manual workers (Braddon FE, 1988).  

 

NSHD participants have been followed-up extensively. This included; during pre-school 

and throughout school years, up to age 15 y, from 15 – 30 y and during their 30’s, 40’s, 

50’s and 60’s. Repeated measures of cognitive development, physical growth, physical 

and emotional functioning from early life and throughout adulthood have enabled the 

examination of lifelong development and, more recently, the ageing processes (Kuh et 

al., 2011).  
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2.1.4 The lifecourse approach 

The lifecourse approach to chronic disease epidemiology, defined as the study long-

term effects on chronic disease risk of physical and social exposures during gestation, 

childhood, adolescence, young adulthood and later life (Ben-Shlomo and Kuh, 2002) is 

applicable to wider notions of health and wellbeing. In the current context, longitudinal 

data enabled the study of the long-term effects of dietary and physical activity 

exposures throughout adulthood on the risk of poor physical capability in older age. 

Repeat measures of dietary and physical activity exposures enabled the characterisation 

of habitual patterns over a longer period – i.e. adulthood, rather than at a single time 

point – and this may be valuable in determining causality. The lifecourse approach is 

particularly valuable where intra individual exposures exhibit considerable temporal 

variability, such as diet or physical activity.      

 

Using self-reported leisure time physical activity data from NSHD participants collected 

at ages 36, 43 and 53 years (Cooper et al., 2011b) created a ‘lifetime physical activity 

score’ to examine the association between physical activity across adulthood and 

physical performance in midlife. Similarly, in the same cohort (Dodds et al., 2013) 

examined the effect of leisure time physical activity at ages 36, 43, 53 and 60 – 64 y on 

mid-life grip strength at 60 – 64 y using a ‘cumulative score’. This was done to examine 

whether there was a cumulative effect of physical activity across adulthood on mid-life 

grip strength. Also in the same cohort, (Murray et al., 2013b) examined the effect of area 

deprivation across the lifecourse (at 4, 26 and 53 y) and physical capability in midlife.     

 

Of a target sample of 3163, 84% (2661) responded to the latest invitation (from 2006 – 

2010) to attend one of six clinical research facilities (CRFs) across the UK. Manual social 

class, obesity, lower educational attainment, lower childhood cognition and lifelong 

smoking predicted a lower likelihood of overall response rate to this invitation and 

poorer CRF cooperation. Of 2661 NSHD participants contacted in the latest round, 79% 

had provided data at ages 26 y, 36 y, 43 y, 53 y and 60 – 64 y.  The occupational social 

class and unemployment profile of continuing participants appeared to be similar to the 

England Census, 2001, but participants appear somewhat more advantaged with 

respect to home ownership and limiting illness (Stafford M, 2013).  
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2.2 Physical capability data 

Physical capability at 53 y and at 60 – 64 y were considered in this project. At age 53 y 

3035 NSHD participants provided some physical capability data and of these 2984 were 

visited at home by a trained nurse (Kuh et al., 2005).  

 

2.2.1 NSHD participants at 53 y 

Height was measured with the head in the Frankfort plane and without shoes with a 

portable stadiometer (CMS, London) to the nearest 0.5 cm. Weight was measured to the 

nearest 0.5 kg using CMS scales, in light clothing and no shoes. Voluntary isometric hand 

grip strength was measured using an electronic handheld dynamometer while strong 

verbal encouragement was given. Two values for each hand were recorded. Chair rise 

time was measured using a stopwatch, and was taken as the minimum amount of time 

taken to rise from a sitting position to a standing position with straight back and legs 

and sit down again, ten times. An armless, straight-backed, hard chair was used (the 

seat ~46 cm from the floor) and participants wore no shoes. A leisure time physical 

activity questionnaire was completed at the same visit (Kuh et al., 2005). 

 

2.2.2 NSHD participants at 60 – 64 y 

A feasibility study was held at the Wellcome Trust Clinical Research Facility (CRF) in 

Manchester involving a randomly selected 10% sample of NSHD participants closest to 

this CRF. All traceable participants (n=3116) were then invited to attend one of six 

Clinical Research Facilities (CRFs) at Manchester, Edinburgh, Birmingham, Cardiff and 

two in London. One of the weaknesses of this data collection process was its duration, 

almost 5 y from the start of the feasibility study to the end of the main data collection 

(Kuh et al., 2011). Clinics were held and attended over a period of FOUR years – 2006 to 

2010 when participants were aged 60 – 64 y. For the purpose of the present project, 

data for this collection period were provided by the MRC as if collected at one time 

period (i.e. 2006/10) and details of participant actual age at the time of the collection of 

physical capability data were not known. Consequently, in the present project, all 

participants were treated as if they were the same age.  
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Those who were unwilling or unable to attend a Clinical Research Facility were offered 

a home visit with fewer assessments (e.g. no DEXA body composition). In addition to a 

postal questionnaire, self-reported health was confirmed by clinical tests and GP 

reports. Study members were asked to fast from 2000 hours the day preceding 

attendance. Throughout physical capability tests nurses were trained to give strong 

verbal encouragement to elicit the best possible performance from each individual. 

Individuals with severe cardiorespiratory disease, untreated hypertension (≥200 mmHg 

systolic or ≥ 102 mmHg diastolic), hip/ knee replacements, severe hip/ knee problems 

or those unable to stand, were excluded from these assessments (Kuh et al., 2011). 

 

Grip strength was measured isometrically using an electronic handgrip dynamometer, 

custom made by the Medical Physics and Clinical Engineering Department of Queen’s 

Medical Centre, Nottingham and calibrated using a back-loading rig. These 

dynamometers were accurate to ± 0.5 kg and were available in two sizes to 

accommodate different hand sizes. Two values were recorded for each hand (Kuh et al., 

2011). Chair rise time was measured as the time taken to rise from a sitting to a 

standing position and to sit down again, 10 times. Timed up-and-go measured the time 

taken for participants to rise from a chair, walk at a normal pace for 6 metres and sit 

back in the chair. 

 

Two measures of systolic and diastolic blood pressure were taken using an OMRON 

HEM-705 with participants sitting down. For the DEXA bone and body composition 

scans, all CRF sites used QDR 4500 Discovery scanners (Hologic Inc., Bedford, MA)(Kuh 

et al., 2011).  
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2.3 Dietary data  

Dietary data were collected by research nurses at the participants’ home on three 

occasions in 1982, 1989 and 1999. In 1982 and 1989 a 2 day dietary (retrospective) 

recall and 5 day food diary were completed. In 1999 there was no 2 day dietary recall. 

Two day dietary recalls (all consumption in the immediate past 2 days) were completed 

by the nurse and the participant while the 5 day food diary was left with the participant 

to be completed prospectively and returned by post to the MRC Human Nutrition 

Research unit at Cambridge. All food and drink consumed by participants was recorded, 

whether consumed at, or away from home. Portion sizes were estimated with reference 

to common household measures and guidance notes and photographs were provided 

(Prynne et al., 2005). As the present project used only those dietary intake data 

collected by 5 d estimated food diaries, there will be no further reference to the dietary 

intake data collected by 2 d dietary recall.    

 

2.3.1 Dietary assessment in 1982  

Of 3322 diaries issued, 73% (2424) were completed for 4 or more days and returned by 

post. 1284 diaries (39%) were completed fully. There were no statistically significant 

differences in gender, social class or education in those who had completed and 

returned a diary, and those who did not (Braddon FE, 1988). Diary information was 

manually converted into food codes and weights and the nutrient composition of foods 

determined with reference to McCance and Widdowson’s “The Composition of Foods”, 

in-house communications, manufacturers and individual recipes. Portion sizes were 

determined with reference to standard household measures and with average portions 

(with reference to a weighted intake survey conducted in a similar age group)(Braddon 

FE, 1988). 
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2.3.2 Dietary assessment in 1989 

In 1989, 3262 NSHD participants were contacted successfully and dietary intake data 

were collected as in 1982 (Price et al., 1997). Diaries were coded and checked using a 

bespoke direct entry computer programme, Diet In, Data Out (DIDO) which generated a 

food code and an associated weight/ portion size (g) for each item of food and drink 

recorded. The output file was exported to a suite of programs based upon McCance and 

Widdowson’s The Composition of Foods, for nutrient analysis (Price et al., 1997).   

 

2.3.3 Dietary assessment in 1999 

In 1999 3035 participants were contacted and of these 1776 returned 5 day food diaries. 

Diaries were coded using DIDO as before and nutrient analysis determined with 

reference to McCance and Widdowson’s The Composition of Foods fourth edition 

(Prynne et al., 2005).  

 

2.3.4 The dietary dataset used in the present project 

After the application to collaborate with the NSHD was approved by the MRC Unit for 

Lifelong Health and Ageing, a dietary data dataset (in IBM SPSS version 19.0 format) 

was received [HNR_030412.sav] comprising 241 813 cases; this included diary and 

recall data for 1982 (88092 cases), 1989 (100376 cases) and 1999 (53345 cases). The 

dietary data were organised by meal (or eating occasion) on each of the 5 days in the 

recording period (see Table 2.1 below, for an example). 
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Table 2.1 Example of an individual (NSHD_ID 2) 1982 diary entry 

StudyTitle DiaryDate Day Meal 
Energy 

(kcals) 

Protein 

(g) 

NSHD 82 

Diary 

18 Jun 

1982 
Friday 

Breakfast 179.75 3.40 

Mid-Morning 5.20 .52 

Lunch 307.19 9.39 

Tea 5.20 .52 

Evening Meal 858.51 39.51 

Late Evening 22.89 .00 

21 Jun 

1982 
Monday 

Breakfast 179.75 3.40 

Mid-Morning 2.60 .26 

Lunch 385.45 15.92 

Tea 130.78 1.43 

Evening Meal 635.40 19.51 

Late Evening 122.64 .89 

19 Jun 

1982 
Saturday 

Breakfast 179.75 3.40 

Mid-Morning 2.60 .26 

Lunch 984.49 26.24 

Evening Meal 786.77 20.97 

Late Evening 280.60 2.50 

20 Jun 

1982 
Sunday 

Breakfast 359.50 6.79 

Mid-Morning 1.90 .19 

Lunch 618.75 25.91 

Tea 2.60 .26 

Evening Meal 775.77 20.17 

Late Evening 163.20 .36 

17 Jun 

1982 
Thursday 

Breakfast 179.05 3.33 

Mid-Morning 2.60 .26 

Lunch 258.96 15.55 

Tea 205.27 2.47 

Evening Meal 635.43 41.43 

Late Evening 114.78 .62 

 

 

For each meal (where consumed), the nutrient data provided (where applicable) were 

energy (kcals) and protein (g) (as shown in Table 2.1 above). Also provided (but not 

investigated in the present project) were data on intakes of energy (kJ), fat (g), 

carbohydrate (g), calcium (mg), iron (mg) (haem (mg) and non haem (mg)), vitamin A 

retinol equivalents (ug), vitamin C (mg), alcohol (g), total NSP (g) and total weight of 

food consumed. 
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2.3.5 Preparing the dietary data for analysis 

Each year was labelled and copied into separate datasets e.g. data for 1982 to the 

dataset [1982.sav]. As 1982/1989 datasets contained 5 d food diary and 24 h recall data 

a numeric code was added to indicate whether dietary data were from a diary (1) or a 

recall (2) and each was copied into separate datasets.  

 

2.3.5.1 Calculating mean meal intakes (energy and protein) 

A numeric code was added to indicate meals, i.e. 1 = first thing; 2 = breakfast; 3 = mid-

morning; 4 = lunch; 5 = tea; 6 = evening meal; 7 = late evening and 8 = extras. Each meal 

was sequentially selected (i.e. meal 1, meal 2, meal 3) and data were aggregated by 

NSHD ID (i.e. the break variable = NSHD_ID). In summaries of variable(s) Energy_kcals 

& Protein_g were selected and the aggregate function/ summary statistic selected was 

Sum. Summaries of variables generated were Energy_kcals_sum & Protein_g_sum.  

 

Sequentially aggregated meal values were copied to a new dataset and renamed i.e. 

kcals_sum1, kcals_sum2… (for meal energy) and protein_sum1, protein_sum2... (for 

meal protein). All summed variables (kcals_sum and protein_sum) were divided by 5 to 

generate 5 d average values of meal energy (kcals) and meal protein (g) intakes for each 

individual as recorded by the 5 d food diary. The 5 d meal mean was derived from all 

meals consumed within that ‘meal slot’, regardless of how many occasions across the 5 

recording days a meal was consumed i.e. a given individual may have consumed a meal 

in that slot on 1 – 5 occasions. In the example above for a randomly-selected individual 

(Table 2.1) mean daily meal consumption was 216 kcals (at breakfast), 3 kcals (mid-

morning), 51 kcals (at lunch), 69 kcals (at tea), 738 kcals (at the evening meal) and 141 

kcals (late evening).  

 

2.3.5.2 Mean daily energy and protein 

To derive mean daily energy and protein intakes, summed meal values were summed 

and divided by 5. In the above example (Table 2.1) mean daily energy consumption was 

1677 kcals.  
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2.3.5.3 Meal energy and protein  

To calculate meal energy as a percentage of total daily energy, meal energy (kcals) was 

divided by total daily energy in the relevant year (calculated as described above) and 

multiplied by 100. To calculate meal protein as a percentage of total daily protein, meal 

protein (g) was divided by total daily protein in the relevant year (calculated as 

described above) and multiplied by 100. To calculate meal protein as a percentage of 

total daily energy, meal protein (g) was multiplied by 4, divided by total daily energy in 

the relevant year (calculated as described above) and multiplied by 100  

 

2.3.5.4 Identification of the subset of NSHD participants who provided 

dietary data in all years 

In the dataset which comprised NSHD participants who ever provided dietary data 

(n=3019), where energy data was provided in a particular year, a variable was created 

to reflect that fact, i.e. NutData(year) = 1. This process was repeated for all three years 

and the three variables summed to indicate the number of occasions each participant 

had provided dietary data. In 3 measurement years, 817 NSHD participants provided 

dietary data in only one year, 939 in two years and 1263 in all years. Individuals who 

provided dietary data in all years were selected and all data were copied into a new 

dataset.  
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2.4 Dietary subgroups 

Using dietary data collected on 3 reporting occasions (1982, 1989 and 1999) 3,019 

NSHD participants (out of approximately 5,362 in total) provided dietary data on at 

least one occasion, and dietary reporting was observed to fall over time. Of these 

individuals, 1,263 NSHD participants provided dietary data in all three reporting years 

and it is in this group that trends were examined and analyses undertaken. It must be 

noted that this group represents a rather ‘special,’ self-selected sample; lifestyle 

(including dietary), anthropometric and outcome characteristics (i.e. physical capability 

in older age) of this sample may differ from the NSHD cohort as a whole, and participant 

self-selection of this kind has implications for what the final analyses will show. For this 

reason, notwithstanding the overall representativeness of the NSHD cohort (n=5,362), 

results derived from smaller, self-selected subgroups may be incapable of being 

extrapolated to the entire cohort and to the general UK population.  

 

Table 2.2 Response rates for diaries, 1982 – 1999 in NSHD participants 

Year 

NSHD 

participants 

contacted 

(n) 

Dietary data 

provided (n) 

Response 

percentage 

(%) 

Male (n) Female (n) 

1982 3322 2428 73 1192 1236 

1989 3262 2280 70 1125 1155 

1999 3035 1776 58.5 827 949 

 

Of the ~3,000 – 3,300 NSHS participants contacted in each measurement sweep, the 

response rate fell from 73 – 58.5%.  
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Figure 2.1 Dietary subgroups (n) in the analyses 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The response rate for 5 d food diaries fell from 73% (n=2428) in 1982 to <60% in 1999 

(n=1776) (Figure 2.1). Providing dietary data on at least one occasion was a subset of 

3019 individuals. For the main regression analyses (see Chapter 6), a sub-cohort of 

individuals who provided dietary data in all years (n=1263) was used. For the two 

sensitivity analyses (see Chapter 6) the smallest sub-cohorts studied (n=602/n=603) 

comprised individuals who had provided dietary data in all years and were predicted 

never to have misreported their energy intake.   
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2.5 Diurnal patterns of dietary protein intake and calculation of the muscle 

protein synthesis score (MPSS) 

As this research project examined diurnal patterns of protein consumption specifically, 

it was first necessary to devise a method by which protein intakes across the day could 

be captured. This was achieved by the implementation of a novel protein scoring system 

(called here the muscle protein synthesis score (MPSS)) which scored protein 

consumption of ≥ 20 g at any of eight eating occasions across the day. The 

implementation and calculation of the score is described below (Section 2.4.4). What 

follows here (Section 2.4) is an explanation of the rationale underlying the choice of a 

20 g protein threshold. This is based on the hypothesis that this is the minimum amount 

of protein needed in a meal to maintain adequate levels of whole body protein synthesis 

(including in skeletal muscle) which is important in ensuring that older adults have 

sufficient physical strength to carry out activities of daily living. The latter is assessed by 

quantifying physical capability via hand grip strength, chair rise time and timed up and 

go in the present project.  
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2.5.1 Overview of evidence for impact of quantity of ingested protein per 

meal on muscle protein synthesis  

The research of Marie-Agnès Arnal (Arnal et al., 1999) was a particular impetus for the 

current research. In this study, 15 older women (mean age 68 y) were fed either a so-

called a “pulse” diet – 79 % of daily protein intake at 12 noon (n=8) – or a so-called 

“spread” diet in which daily protein intake was spread more evenly over 4 meals (n=7). 

Daily protein intake was calculated as 1.7 g per kg of fat free mass, per day. Protein 

accretion (N balance) and daily protein turnover (urinary excretion of [15N] and 

[15N]ammonia) were measured outcomes. A 15 d adaptive period was used to achieve 

similar protein status in all women which was equivalent to 0.74 g protein · kg body 

weight ·d. During the 14 d experimental period protein intake was increased to 1.05 g 

protein · kg body weight · d (70% animal-derived, 30% plant-derived). Nitrogen balance 

during the experimental period was 27 ± 6 (mg N· kg FFM · d) in the spread diet group 

compared with 54 ± 7 (mg N · kg FFM · d) in the pulse group (p<0.001). From the urea 

data, there was a significantly higher daily protein gain in the pulse diet group (0.61 cf. 

0.42 g · kg FFM · d) driven largely by a 19% higher rate of protein synthesis (4.48 cf. 

3.75 g · kg FFM · d). In addition, overall protein gain was significantly higher in the pulse 

group than in the spread diet group (0.92 cf. 0.60 g · kg FFM · 12 h). During the 14 d 

experimental period there was a slight decrease in FFM among women in the spread 

diet group whereas there was no detectable change in those on the pulse diet (Arnal et 

al., 1999). This study demonstrated that although the same quantity of protein was 

eaten daily, the pattern of intake across the day modulated protein accretion, daily 

protein turnover and body composition (FFM) in these older women. No effect of 

diurnal pattern of protein consumption on protein synthesis or protein accretion were 

observed when the study was repeated in younger (26 y) women (Arnal et al., 2000). 
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Essential amino acids are primarily responsible for the stimulation of muscle protein 

anabolism (Volpi et al., 2003) and there is evidence that muscle protein anabolism can 

be stimulated by increased amino acid availability in the elderly (71 y) (Volpi et al., 

1998). However, constant nutrient delivery by intravenous amino acids does not 

emulate the usual pattern of amino acid supply in meal-eating humans and eliminates 

the effects of discrete bouts of food ingestion followed by variable rates of gastric 

emptying and digestion. A more ‘meal-like’ bolus ingestion of 15 g of essential amino 

acids stimulated muscle protein synthesis acutely in young (34 y) and in elderly (67 y) 

subjects, notwithstanding age-related differences in the time course of plasma 

phenylalanine kinetics (Paddon-Jones et al., 2004).     

 

Rates of muscle protein synthesis in young (28 y) and elderly (mean age 70 ± 6 y) male 

subjects were compared after ingestion of 0, 2.5, 5, 10, 20 and (for the elderly only) 40 g 

of essential amino acids (EAA) (Cuthbertson D, 2005). In young men, 2.5 – 10 g EAA 

stimulated the myofibrillar protein fractional synthetic rate (FSR) in a dose-dependent 

manner, while 20 g failed to elicit any additional stimulation. In elderly men 40 g EAA 

failed to promote rates of muscle protein synthesis to those seen at 10 g in the young, 

and ingestion of 10 g EAA raised rates of muscle protein synthesis to the same extent as 

observed with 5 g in the young. The authors advised that elderly people should eat 

protein ‘effectively’ to raise their plasma EAA concentration to trigger the maximum 

anabolic response; and this could be achieved with 10 g EAA (equivalent to ~113 g of 

high quality protein) (Cuthbertson D, 2005). Symons (Symons et al., 2009) reported that 

a 113 g serving of lean beef (a protein rich food) contained sufficient amino acids (30 g 

in total, ~12 g essential) to increase muscle protein synthesis by 50% in both young and 

elderly males and females and that there was no further increase with a large serving of 

340 g of lean beef.  
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Whether ingestion of a small amount of essential amino acids (EAAs) affects muscle 

protein accretion differentially in elderly (68 y) compared with young (31 y) adults was 

examined by (Katsanos et al., 2005) in a study in which muscle protein accretion and 

synthesis were measured using the femoral arteriovenous phenylalanine net balance 

technique during a constant infusion of deuterated L-phenylalanine. After a bolus 

ingestion of ~7 g EAAs, mean net phenylalanine (Phe) uptake into protein was 

significantly less in the older participants and the mean rate of Phe disappearance 

(proportional to protein synthesis) was increased above basal levels only in the younger 

participants. Such findings were posited to indicate the important role of the amount of 

amino acids ingested in a single eating occasion in stimulating muscle protein synthesis 

and that smaller intakes spread over the day might fail to stimulate muscle protein 

synthesis adequately and contribute to age-associated muscle protein loss. The authors 

suggested that per-meal protein intake may be more important than total daily protein 

intake for individuals where total daily intake is spread over several meals. 

 

In (Bouillanne et al., 2013) a protein pulse feeding regime was implemented for 6 weeks 

in 29 older, malnourished/at risk patients, at an inpatient rehabilitation unit, in which 

72% of daily (1.31 g/kg) protein was consumed at 1 meal, at noon. DEXA body 

composition (lean mass, appendicular lean mass and body cell mass)), hand grip 

strength and ADL scores were determined at baseline and after 6 weeks. Results from 

patients on the pulse diet were compared to 34 other inpatients who had consumed 

(1.27 g/kg/d) protein, but in an evenly spread regime, over 4 meals.  Lean mass, 

appendicular skeletal muscle mass and body cell mass indices (kg/m2) increased 

significantly in the protein pulse fed group compared with those in the spread diet 

group. Hand grip strength and ADL scores were not significantly different between the 

groups. Median body weight in the 2 groups was 52 kg, and protein 67 g/d (providing 

~22 g essential amino acids (EAA)). At noon, the pulse diet had provided 16 g of EAA 

compared with 7 g provided in the spread diet. The optimal dose of EAA required to 

stimulate muscle protein synthesis (Katsanos et al., 2005) had been reached in the pulse 

group, but not in the spread group which explained the differences in body composition 

indices.                 
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2.5.2 Impact of protein quality and of specific amino acids on muscle 

protein synthesis in older people  

As noted above, a relatively small bolus dose of EAA (7g) based on the amino acid 

composition of whey protein did not stimulate muscle protein synthesis in older people 

(Katsanos et al., 2005). However, when the proportion of leucine in the EAA mixture 

was increased from 26% (representing the composition of whey protein) to 41% the 

attenuated response of muscle protein synthesis in older people was reversed i.e. the 

muscle protein fractional synthetic rate was increased significantly (Katsanos et al., 

2006). Mean leg phenylalanine net balance (a reflection of the balance between muscle 

protein synthesis and muscle protein degradation) was significantly improved in 

younger participants when given either the standard or the leucine-enriched EAA 

mixture, but net balance was increased in older participants only after ingestion of the 

41% leucine EAA mixture. The authors noted that the increase in plasma leucine 

concentration that resulted from ingestion of the 26% leucine mixture was equivalent 

to that expected following consumption of a meal of average protein content (∼15 g) 

(Katsanos et al., 2006). 
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In a 2009 review it was observed that muscle protein synthesis was blunted in the 

elderly when protein and carbohydrates were coingested or when the quantity of 

protein was less than ~20 g per meal (Paddon-Jones D, 2009). As a 20 g serving of most 

animal/ plant-based proteins contains 5 – 8 g of essential amino acids, and as ageing 

was associated with an inability of skeletal muscle to respond to low (~7.5 g) doses of 

essential amino acids (Katsanos et al., 2005), the authors recommended that  25 – 30 g 

of high quality protein (~10 g EAA) per meal would stimulate skeletal muscle mass 

maximally providing a useful strategy to help maintain muscle mass in older subjects 

and in reducing the risk of sarcopenia. The proposed relationship between protein 

ingestion per meal and the resultant anabolic response, was depicted as pictorial 

example (Figure 2.2).   

  

Figure 2.2 A concept diagram illustrating the theoretical impact of quantity and 

distribution of protein intake across the day on muscle protein synthesis 

(Paddon-Jones D, 2009) 
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The utility of the (Paddon-Jones D, 2009) recommendation of 25 – 30 g protein per meal 

was investigated in a cohort of older (68.7 y) Mexicans by (Ruiz Valenzuela RE, 2013). 

In a cross-sectional study design, the difference in DEXA-determined appendicular 

skeletal muscle mass was assessed in those who consumed < 25 g at any of 3 main 

meals with those who consumed > 25 g protein during at least one meal. After adjusting 

for body weight, gender and height, no significant differences in appendicular lean mass 

were reported. In reporting meal time protein consumption, the authors used the higher 

protein threshold of 30 g and reported that 81% and 86% of subjects consumed < 30 g 

of protein at breakfast and at the evening meal, respectively. At both meal times, protein 

‘under-consumption’ was most evident in females, an observation explained with 

reference to the significantly lower energy intakes among females compared with males.       

Physical activity or exercise is a well-recognised stimulus for skeletal muscle protein 

synthesis and there is good evidence of positive interactions between exercise and 

nutrient intake in promoting protein synthesis (see (Wackerhage and Rennie, 2006) for 

review). In a study to examine interactions between exercise and nutrition, 20 g of whey 

protein resulted in maximal stimulation of muscle protein synthesis in 30 older men 

(aged 71 ± 5 y) whereas < 20 g was insufficient to mount a robust increase in muscle 

protein synthesis compared with the fasted state (Yang et al., 2012a). 

 

Changes in myofibrillar protein fractional synthetic rate (FSR) in the same 30 older men 

was compared after ingestion of 0 g, 20 g or 40 g of soy protein and results compared to 

those following ingestion of equivalent amounts of whey protein (Yang et al., 2012b). In 

contrast to whey protein, 20 g and 40 g soy failed to stimulate increased rates of 

myofibrillar FSR at rest, and only after a bout of resistance exercise did 40 g soy 

significantly increase myofibrillar FSR. The authors concluded that the relationship 

between protein intake and muscle protein synthesis was both dose and protein-source 

dependent with soy exhibiting a reduced ability to stimulate muscle protein synthesis 

due to its lower leucine content (~8% compared with ~12% in whey). Protein source-

dependent differences in rates of leucine oxidation were also observed; a greater 

proportion of amino acids from 20 g soy (compared to 20 g whey) were diverted 

towards oxidation and were thus unavailable for protein synthesis.        
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In 33 healthy older (73 ± 2y) men, graded intakes (10, 20 or 35 g) of labelled whey 

protein were administered and it was observed that only the highest dose (35 g) 

increased muscle protein synthesis significantly above basal levels (Pennings et al., 

2012). In an earlier study (Pennings et al., 2011) compared the effects of 20 g of whey 

with the same dose of a more slowly digestible protein (casein) and found that whey 

protein ingestion stimulated postprandial muscle protein accretion more effectively 

than casein or casein hydrolysate. This was explained in terms of the difference in 

digestion and absorption kinetics and amino acid composition (12.5% leucine cf. 8.5% 

in casein hydrolysate) of whey.       

 

 

2.5.3 Rationale for the derivation of the muscle protein synthesis score 

(MPSS) 

Since changes in protein accretion/ retention, daily protein turnover and body 

composition could be achieved by the modulation of protein feeding patterns alone 

(Arnal et al., 1999) the effects of diurnal patterns of protein consumption on physical 

capability deserves further examination. There is a paucity of information on diurnal 

patterns of protein consumption among populations and particularly in longitudinal 

studies which can address effects on health in later life. From the literature it was also 

established that in older people a small bolus ingestion of ~7 g of essential amino acids 

(equivalent to ~15 g of meal protein), was insufficient to stimulate muscle protein 

synthesis (Katsanos et al., 2005). A dose of 10 g essential amino acids (equivalent to 

~25 g of high quality protein) was shown to stimulate muscle protein synthesis in both 

elderly and young men (Cuthbertson D, 2005), but in comparison (Yang et al., 2012a) 

showed that doses of (isolated whey) protein < 20 g did not increase MPS above basal, 

fasting values in older (71 y) men. It has been proposed that the ingestion of 25 – 30 g of 

high quality protein per meal may be a useful strategy to overcome age-related anabolic 

deficiency (Paddon-Jones D, 2009). 
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Notwithstanding some studies were conducted exclusively in one gender (Arnal et al., 

1999) (Cuthbertson D, 2005) (Yang et al., 2012a) there was no indication that reported 

effects of protein quantity on muscle protein synthesis are gender-specific. For the 

present project, 20 g was chosen as the cut-off for protein intake because of the risk that 

a higher threshold would affect women disproportionately since daily energy (kcals) 

and protein intakes (g/d) are higher in males than in females. This latter point is well 

illustrated in the study by (Ruiz Valenzuela RE, 2013).   

 

2.5.4 Muscle protein synthesis score – implementation and calculation  

Where meal protein intake was ≥ 20 g at any of the eight eating occasions in 1982, 1989 

and 1999, this was scored one (1). Daily scores (the sum of eight eating occasions) were 

then calculated for each individual. Thus the lowest and highest possible scores were 0 

and 8 respectively in each year of measurement. These yearly variables were merged 

into the dataset that comprised NSHD participants who had provided dietary data in all 

years. An adulthood muscle protein synthesis score was calculated by summing the 3 

yearly muscle protein synthesis scores. This score was a reflection of the frequency with 

which protein ≥ 20 g had been consumed across the day during at three measurement 

periods, 1982 – 1999 and, therefore, the best estimate of potential for muscle protein 

synthesis across adulthood.  
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2.6 Identification of predicted under- and over-reporting 

Total energy expenditure (TEE) is presumed to be equivalent to total energy intake (TEI) 

in weight-stable individuals. TEE can be attributed to the sum of energy expended in 

basal metabolic rate (BMR), in physical activity and in thermogenesis (attributable inter 

alia to food consumption, shivering and drug (caffeine, nicotine and alcohol) intake). 

This equivalence between TEI and TEE in weight-stable adults provides a simple basis 

for predicting potential over- and under-reporters of dietary energy intake. On this 

basis, predicted under-reporters are those in whom reported energy intake is less than 

that which would be compatible with long-term weight maintenance with the converse 

for likely over-reporters. To predict TEI for the purposes of identifying predicted under-

reporters, TEE was estimated by calculated BMR multiplied by an estimated physical 

activity factor or level (Physical Activity Level).    

 

2.6.1 Identification of estimated under-reporting 

Schofield’s age-stratified equations (Schofield, 1985) for the prediction of BMR (from 

body weight) formed the basis of the equations published in the FAO/WHO/UNU 

document, Energy and Protein Requirements, 1985. Their universal validity and 

application was subsequently queried as 47% of the database used to develop the 

equations comprised Italian (predominantly military) subjects, with very few 

individuals from tropical regions. In 2005, new equations (now known as the “Oxford” 

equations) (Henry, 2005) for the estimation of BMR were developed using data from 

published and measured  values (~10500 BMR values) excluding Italian subjects and 

including many more from tropical regions (Henry, 2005). In the present study, these 

Henry/ Oxford equations were used to estimate BMR for the NSHD participants who 

provided dietary data in all years. As no significant advantage was afforded in 

predicting BMR with the inclusion of height (Henry, 2005), height was not used and the 

following gender-specific equations were employed: 

 

Males (30 – 60 years) BMR (kcal/ d) = 14.2W8 + 593 

Females (30 – 60 years) BMR (kcal/ d) = 9.74W + 694 

 

                                                        
8 Body weight in kg in the relevant year in which dietary intake was recorded 
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Once BMR was estimated, it was necessary to multiply the resultant energy expenditure 

by a physical activity level (PAL). The PAL chosen was the ‘Goldberg cut-off’ of 1.14 

(Goldberg GR, 1991) which is appropriate for methods purporting to measure habitual 

intake among individuals (n=1) as in the NSHD. Where reported EI was less than 1.14 * 

BMR such individuals were identified as predicted (or likely) under-reporters. The use 

of this cut-off value does not take into account the true TEE of each individual.  

 

Within the general population of the United Kingdom, the range of PAL values for 

individuals in energy balance and leading sustainable lifestyle is between 1.38 and 2.5 

(SACN, 2011). In determining dietary reference values for energy for the UK population 

in 2011, the Scientific Advisory Committee for Nutrition identified appropriate values 

for PAL for adults (19 – 65 y) from an analysis of available total energy expenditure 

(TEE) literature. PAL values for adults (the median, 25th and 75th centiles) were 

calculated directly from individual TEE values reported in the OPEN and Beltsville data 

sets. Where previously COMA (DH, 1991) had reported a PAL value 1.4 for adults, the 

median PAL value of a reference adult population like the UK, where ~60% are 

overweight or obese, was designated as 1.63 (SACN, 2011). By comparison, the use of 

‘Goldberg cut-off’ (a PAL 1.14) is designed to identify individuals who are reporting 

energy intakes that are unsustainable in the long term and inconsistent with long-term 

survival.   
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2.6.2 Implications of under-reporting energy vs. protein 

There is evidence that protein is better reported than total energy intake (Livingstone 

and Black, 2003); in double validations that employed doubly labelled water (DLW) and 

urinary nitrogen to validate energy intake (EI) (Black et al., 1995; Black, 1997; Black et 

al., 2000) the average reporting bias for protein was –2% compared with –14% for 

energy, and the proportion of individuals identified as under-reporting was greater by 

DLW than urinary nitrogen excretion. Macronutrients most likely to be under-reported 

are those deemed less socially desirable; obese men selectively under-reported fat 

intake in (Goris et al., 2000) and amongst 38 healthy women (34 overweight and 12 

obese) subjects tended to report their intake in a socially desirable way, by eating or 

reporting less frequently foods considered unhealthful or fattening, like sweets and 

fried foods (Scagliusi et al., 2003). 

 

In 36 034 subjects of the European Prospective Investigation into Cancer and Nutrition 

(aged 35 – 74 y), the degree of under-reporting was found to differ by nutrient. The 

study suggested that under-reporting was greater for fat and alcohol than for protein 

and carbohydrate intake (Ocke et al., 2009). By comparison, protein intakes reported by 

self-administered FFQ in the EPIC study (Kroke et al., 1999) were ~23% lower than 

estimates derived from urinary nitrogen and reported energy intakes 22% less (on 

average) than TEE measured by DLW.     
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2.6.3 Identification of estimated over-reporting 

The approach to the identification of over-reporters was as reported by (Johansson et 

al., 1998). In a sample of 3,020 Norwegian subjects (16 – 79 y) mean age 42.7 ± 16.1 

(males) and 41.6 ± 16.7 (females), estimates of BMR were calculated from standard 

equations based on weight, age and sex. EI:BMR was calculated for each individual and 

compared with cut-off values for EI:BMR of <1.14, 1.14 – 1.34 (under-reporters), 1.35 – 

2.39 (normal range) and ≥ 2.4 (over-reporters). Compared to those reporting a normal 

EI:BMR, over-reporters were younger, had lower BMIs, were more likely to be lean (a 

BMI < 20 kg/m2) and to want to increase their weight. In the present research project, 

Oxford predictive equations (Henry, 2005) were used to determine BMR and 

individuals were classified as likely over-reporters if their EI:BMR was greater than, or 

equal to 2.4. 
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In analysis of 574 measurements of TEE using doubly-labelled water, an EI:BMR above 

the range 2.0–2.4 was suggested as the maximum which was likely to be sustainable by 

(Black et al., 1996). When considering upper limits of human energy expenditure, it is 

important to distinguish between the maximum rate of energy expenditure which is 

achievable over a short period of time and the maximum sustainable as a long-term way 

of life. The maximum achieved over short periods, e.g. by competitors in the Tour de 

France or in polar exploration is suggested to be a PAL of 4.0. For serious athletes, the 

PAL range is 2 – 3.5 and for soldiers on active duty, lumberjacks and colliers an average 

PAL of ~2.4 is suggested.  Estimates of PAL > 2.4 were obtained during periods of 

rigorous training and are unlikely to be sustained over the long term (Shetty, 

2005)(Table 2.3). 

 

Table 2.3 Physical Activity Level (PAL) attributable to lifestyle and level of activity 

(Shetty, 2005) 

Lifestyle and level of activity PAL 

Chair/ bed-bound 1.2 

Seated work with no option of moving around and little or 

no strenuous leisure activity 

1.4 – 1.5 

Seated work with discretion and requirement to move 

around but little or no strenuous leisure activity 

1.6 – 1.7 

Standing work (e.g. housework, shop assistant) 1.8 – 1.9 

Significant amounts of sport or strenuous leisure activity 

(30 – 60 minutes, 4 – 5 times a week)  

+0.3 

Strenuous work or highly active leisure time 2.0 – 2.4  
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2.7 Identification of low protein consumers 

As a prerequisite for testing the hypothesis that relatively low protein intake across 

adulthood would predict poorer physical capability in middle age (60 – 64 years) – see 

Chapter 6 – it was necessary to define low protein intake. For this purpose, low protein 

consumers were identified in six ways: 

 

1. Those in quintile 1 of absolute mean protein intake across all 3 years of 

measurement (g/d); 

 

2. Those in quintile 1 of mean protein intake across all 3 years of measurement relative 

to body mass (g/kg/d); 

 

3. Those in quintile 1 of mean protein intake across all 3 years of measurement 

(expressed as a percentage of total daily energy intake (%TE));  

 

4. Those in quartile 1 of the muscle protein synthesis score (MPSS); 

 

5. Those in quintile 1 of absolute mean protein intake across all 3 years of 

measurement (g/d) excluding individuals predicted to have ever under- or over-

reported their energy intake throughout the period 1982 – 1999.  

 

6. Those in quintile 1 of mean protein intake across all 3 years of measurement relative 

to body mass (g/kg/d) excluding individuals predicted to have ever under- or over-

reported their energy intake throughout the period 1982 – 1999. 

 

These last two calculations (5 and 6 above) were undertaken as sensitivity analyses to 

determine the effect of predicted under- and over-reporting of energy intakes on the 

outcomes of hierarchical linear regression analyses used to test the hypothesis. 
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2.7.1 Quintile 1 of mean protein intake across all 3 years of measurement, 

relative to body mass (g/kg/d) 

To calculate protein intakes relative to body weight, individual body weights (kg) in 

1982, 1989 and 1999 were merged into the dietary dataset which comprised NSHD 

participants who had provided dietary data in all 3 years. 

 

Daily protein, per kg of body weight, per day was calculated in all 3 years, using the 

expression e.g. daily protein (g) in 1982/body weight (kg) in 1982. A 3 y mean of these 

values was calculated, split by gender and quintiles calculated separately for males and 

females. 

  

Table 2.4 Quintiles of mean protein intake across all 3 years of measurement relative to 

body mass (g/kg/d) in male NSHD participants who provided dietary data in all years 

Quintile 

Quintile cutpoints of mean protein 

intake across all 3 y of measurement 

(g/kg/d) 

Frequency (n) Percent 

1 ≤ 0.91 114 20.1 

2 0.92 – 1.03 113 19.9 

3 1.04 – 1.12 113 19.9 

4 1.13 – 1.26 113 19.9 

5 ≥ 1.27 114 20.1 

 

Using protein intakes collected over three measurement periods, 1982 – 1999, 114 

males in quintile 1 consumed, on average ≤ 0.91 g/kg/d (Table 2.4).  
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Table 2.5 Quintiles of mean protein intake across all 3 years of measurement relative to 

body mass (g/kg/d) in female NSHD participants who provided dietary data in all years 

Quintile 

Quintile cutpoints of mean protein 

intake across all 3 y of measurement 

(g/kg/d) 

Frequency (n) Percent 

1 ≤ 0.86 139 20 

2 0.87 – 0.99 139 20 

3 1.00 – 1.10 139 20 

4 1.11 – 1.24 139 20 

5 ≥ 1.25 139 20 

 

Using protein intakes collected over three measurement periods, 139 females in quintile 

1 consumed on average ≤ 0.86 g/kg/d (Table 2.5). 

 

A new categorical variable was created to identify males and females in quintile 1 (=1) 

and individuals in higher quintiles (=0). The use of this variable in regression analyses 

compared all individuals in quintile 1 of mean protein (n=253) with those in higher 

quintiles of mean protein (n=1009) across 3 years of measurement, relative to body 

mass (g/kg/d).  
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2.7.2 Quintile 1 of absolute mean protein intake across all 3 years of 

measurement (g/d) 

The 3 y mean of daily protein consumption (g) in 1982, 1989 and 1999 was calculated 

using all reported values provided by NSHD participants who provided dietary data in 

all 3 years (n=1263). The mean was split into male and female variables and quintiles 

calculated separately. 

 

Table 2.6 Quintiles of absolute mean protein intake across all 3 years of measurement 

(g/d) in male NSHD participants who provided dietary data in all years 

Quintile 
Quintile cutpoints of mean protein intake 

across all 3 y of measurement (g/d) 
Frequency (n) Percent 

1 ≤ 71.43 114 20.1 

2 71.44 – 79.68 114 20.1 

3 79.69 – 86.38 113 19.9 

4 86.39 – 95.89 113 19.9 

5 ≥ 95.9 114 20.1 

 

Using protein intakes collected over three measurement periods, 1982 – 1999, 114 

males in quintile 1 consumed on average ≤ 71.43 g/d (Table 2.6).  

 

Table 2.7 Quintiles of absolute mean protein intake across all 3 years of measurement 

(g/d) in female NSHD participants who provided dietary data in all years 

Quintile 
Quintile cutpoints of mean protein intake 

across all 3 y of measurement (g/d) 
Frequency (n) Percent 

1 ≤ 56.85 139 20 

2 56.86 – 63.46 139 20 

3 63.47 – 69.03 139 20 

4 69.04 – 76.78 139 20 

5 ≥ 76.79 139 20 

 

Using protein intakes collected at all 3 measurement periods, 139 females in quintile 1 

consumed on average ≤ 56.85 g/d (Table 2.7). 

 

A new categorical variable was created to identify males and females in quintile 1 (=1) 

and individuals in higher quintiles (=0). The use of this variable in regression analyses 

compared all individuals in quintile 1 of absolute mean protein (n=253) with those in 

higher quintiles of absolute mean protein (n=1010) across 3 years of measurement.  
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2.7.3 Quintile 1 of mean protein intake across all 3 years of measurement 

(expressed as a percentage of total daily energy intake)  

Daily protein as a percentage of daily energy was calculated in all 3 years using the 

expression e.g. ((daily protein (g) in 1982 * 4) / daily energy in 1982) * 100. A mean 

was calculated from 3 values, split by gender and quintiles calculated separately for 

males and females. 

 

Table 2.8 Quintiles of mean protein intake across all 3 years of measurement (expressed 

as a percentage of total daily energy intake) in male NSHD participants who provided 

dietary data in all years 

Quintile 

Quintile cutpoints of mean protein intake 

across all 3 y of measurement (expressed 

as a percentage of total daily energy) 

Frequency (n) Percent 

1 ≤ 13.14 113 19.9 

2 13.15 – 14.1 115 20.2 

3 14.11 – 14.94 113 19.9 

4 14.95 – 15.99 113 19.9 

5 ≥ 16.00 114 20.1 

 

Using protein intakes collected over three measurement periods, 1982 – 1999, 113 

males in quintile 1 consumed on average ≤ 13.14% of total daily energy, as protein 

(Table 2.8).   
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Table 2.9 Quintiles of mean protein intake across all 3 years of measurement (expressed 

as a percentage of total daily energy intake) in female NSHD participants who provided 

dietary data in all years 

Quintile 

Quintile cutpoints of mean protein intake 

across all 3 y of measurement (expressed 

as a percentage of total daily energy) 

Frequency (n) Percent 

1 ≤ 13.63 139 20 

2 13.64 – 14.76 139 20 

3 14.77 – 15.69 139 20 

4 15.70 – 17.20 139 20 

5 ≥ 17.21 139 20 

 

Using protein intakes collected at all 3 measurement periods, 139 females in quintile 1 

consumed on average ≤ 13.63% of total daily energy, as protein (Table 2.9). 

 

A new categorical variable was created to identify males and females in quintile 1 (=1) 

and individuals in higher quintiles (=0). The use of this variable compared all 

individuals in quintile 1 of mean protein (n=252) with those in higher quintiles of mean 

protein (n=1011) across 3 years of measurement (expressed as a percentage of total 

daily energy intake).  
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2.7.4 Quartile 1 of the adulthood muscle protein synthesis score  

In NSHD participants who had provided dietary data in all years, the adulthood muscle 

protein synthesis score was split by gender and quartiles calculated.  

 

Table 2.10 Quartiles of adulthood muscle protein synthesis score in NSHD participants 

who provided dietary data in all years 

Quartiles of Muscle 

Protein Synthesis Score 
Males (n=568) Females (n=695) 

1 ≤4 (n=153) (26.9%) ≤3 (n=261) (37.6%) 

2 5 (n=160) (28.2%) 4 (n=191) (27.5%) 

3 6 (n=180) (31.7%) 5 (n=157) (22.6%) 

4 7+ (n=75) (13.2%) 6+ (n=86) (12.4%) 

 

Using protein intakes collected at all 3 measurement periods, 1982 – 1999, 153 males 

and 261 females in quartile 1 had a muscle protein synthesis score ≤ 4 and ≤ 3, 

respectively (Table 2.10). A new categorical variable was created to identify individuals 

in MPSS score quartile 1 (=1) and individuals in higher quartiles (=0). The use of this 

variable in regression analyses compared all individuals in quartile 1 of MPSS (n=414) 

with those in higher quartiles of MPSS (n=849) across 3 years of measurement.  
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2.7.5 Quintile 1 of absolute mean protein intake across all 3 years of 

measurement (g/d) excluding predicted misreporters 

For the first sensitivity analysis, in NSHD participants who had provided dietary data in 

all years (n=1263), individuals predicted to have ever under- or over-reported their 

energy intake were identified (n=660) and their values for mean protein (g/d) excluded 

from the analysis. Gender specific quintiles were calculated as before.  

 

 

Table 2.11 Quintiles of absolute mean protein intake across all 3 years of measurement 

(g/d) in male NSHD participants who provided dietary data in all years, excluding 

predicted under- or over-reporters 

Quintile 

Quintile cutpoints of mean protein intake 

across all 3 y of measurement (g/d) 

excluding predicted under- and over-

reporters 

Frequency (n) Percent 

1 ≤ 80.00 57 20 

2 80.01 – 85.89 57 20 

3 85.90 – 92.78 57 20 

4 92.79 – 99.50 57 20 

5 ≥ 99.51 57 20 

 

After the exclusion of predicted under- or over-reporters and using protein intakes 

collected over three measurement periods, 57 males in quintile 1 consumed on average 

≤ 80 g/d (Table 2.11).  

 

 

 

 

 

 

 

 

 

 

 



72 

 

Table 2.12 Quintiles of absolute mean protein intake across all 3 years of measurement 

(g/d) in female NSHD participants who provided dietary data in all years, excluding 

predicted under- or over-reporters 

Quintile 

Quintile cutpoints of mean protein intake 

across all 3 y of measurement (g/d) 

excluding predicted under- and over-

reporters 

Frequency (n) Percent 

1 ≤ 63.49 64 20.1 

2 63.5 – 69.06 64 20.1 

3 69.07 – 74.1 62 19.5 

4 74.11 – 80.00 65 20.4 

5 ≥ 80.01 63 19.8 

 

After the exclusion of predicted under- or over-reporters and using protein intakes 

collected over three measurement periods, 64 females in quintile 1 consumed on 

average ≤ 63.49 g/d (Table 2.12). 

 

A new categorical variable was created to identify males and females in quintile 1 (=1) 

and individuals in higher quintiles (=0). The use of this variable compared all 

individuals in quintile 1 of absolute mean protein (n=121) with those in higher quintiles 

of absolute mean protein (n=482) across 3 years of measurement.  
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2.7.6 Quintile 1 of mean protein intake across all 3 years of measurement, 

relative to body mass (g/kg/d) excluding predicted misreporters 

For the second sensitivity analysis, in NSHD participants who had provided dietary data 

in all years (n=1263), individuals predicted to have ever under- or over-reported their 

energy intake were identified (n=660) and their values for mean protein, relative to 

body mass (g/kg/d) excluded from the analysis. Gender specific quintiles were 

calculated as before.  

 

 

Table 2.13 Quintiles of mean protein intake across all 3 years of measurement, relative 

to body mass (g/kg/d) in male NSHD participants who provided dietary data in all years, 

excluding predicted misreporters 

Quintile 

Quintile cutpoints of mean protein intake 

across all 3 y of measurement relative to 

body mass (g/kg/d) excluding predicted 

under- and over-reporters 

Frequency (n) Percent 

1 ≤ 1.05 57 20.1 

2 1.06 – 1.12 56 19.7 

3 1.13 – 1.21 58 20.4 

4 1.22 – 1.32 56 19.7 

5 ≥ 1.33 57 20.1 

 

After the exclusion of predicted misreporters and using protein intakes collected over 

three measurement periods, 1982 – 1999, 57 males in quintile 1 consumed ≤ 1.05 

g/kg/d (Table 2.13).  
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Table 2.14 Quintiles of mean protein intake across all 3 years of measurement relative 

to body mass (g/kg/d) in female NSHD participants who provided dietary data in all 

years, excluding predicted misreporters 

Quintile 

Quintile cutpoints of mean protein intake 

across all 3 y of measurement relative to 

body mass (g/kg/d) excluding predicted 

under- and over-reporters 

Frequency (n) Percent 

1 ≤ 1.02 63 19.8 

2 1.03 – 1.11 64 20.1 

3 1.12 – 1.22 63 19.8 

4 1.23 – 1.33 65 20.4 

5 ≥ 1.34 63 19.8 

 

After the exclusion of predicted under- and over-reporters and using protein intakes 

collected over three measurement periods, 63 females in quintile 1 consumed on 

average ≤ 1.02 g/kg/d (Table 2.14). 

 

A new categorical variable was created to identify males and females in quintile 1 (=1) 

and individuals in higher quintiles (=0). The use of this variable compared all 

individuals in quintile 1 of mean protein (n=120) with those in higher quintiles of mean 

protein (n=482) across 3 years of measurement, relative to body mass (g/kg/d).  
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2.8 Habitual Physical activity  

2.8.1 Habitual Physical Activity in 1982 

In 1982 when NSHD cohort members were 36 y they were visited at home by a trained 

nurse who questioned them on the frequency and duration of their participation in a 

range of leisure time activities in the preceding month. The questionnaire administered 

was based on the Minnesota leisure time physical activity questionnaire (Taylor et al., 

1978). As 90% of these interviews were conducted between the months of April and 

September seasonal influences were subsequently investigated. Significant seasonal 

fluctuations in the frequency of reported activities were identified (Kuh, 1992) and as 

such questionnaire responses are likely to overestimate average levels of physical 

activity over a whole year.  

 

Three main areas of activity were identified: cycling and walking, DIY/ heavy gardening 

and sports and recreational activities. In 1982 for each activity, participants were 

classified as: 

 

Inactive (reported no participation in the previous month); 

 

Moderately active (reported participation 1 – 4 times in the previous month) or;  

 

Most active (reported participation 5 or more times in the previous month). 

 

The criteria used to classify physical activity into these categories are summarised in 

(Table 2.15) below (Kuh, 1992). 
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Table 2.15 Classification of leisure time physical activity of NSHD participants in 1982 

(Kuh, 1992) 

Type of Physical 

Activity 

MOST active LESS active INACTIVE 

Cycling and walking Either 

1. Normally 

rides or 

walks to 

work for at 

least 0.5 h 

(round trip) 

or 

2. 12 rides/ 

walks of 0.5 h 

in leisure 

time in 

previous 

month 

Either 

1. Normally 

rides or 

walks to 

work for < 0.5 

h (round trip) 

or 

2. 1-11 rides/ 

walks of 0.5 h 

in leisure 

time in 

previous 

month 

Does not normally 

ride/ walk to work 

and no reports of 

riding/ walking in 

leisure time in 

previous month  

DIY/ Heavy 

gardening 

Five + times in the 

previous month 

1 – 4 times in the 

previous month 

No reported activity 

in the previous 

month 

Sports and 

recreational 

activities (27) 

Five + times in the 

previous month 

1 – 4 times in the 

previous month 

No reported activity 

in the previous 

month 

 

 

Heavy gardening comprised any of ten heavy gardening activities, e.g. digging earth, 

chopping wood, brick laying and moving heavy objects. Sports and recreational 

activities (from a list of 27 activities) included badminton, swimming, yoga, football, 

jogging, dancing and exercises at home e.g. press ups (Table 2.15). 
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Of the NSHD cohort contacted in 1982, 3299 individuals (1639 males and 1660 females) 

provided data on their participation in cycling and walking in the preceding month 

when aged 36 y. By the method described above (Table 2.15) they were allocated (by 

the MRC) to one of 3 categories: inactive (value = 0), less active (value = 1) or most 

active (value = 2); 23 individuals were classified as unknown and removed from the 

analysis (Table 2.16). 

 

Table 2.16 Participation in cycling and walking in 1982 by NSHD cohort members  

 Frequency (n) Percentage 

Inactive 727 22 

Less active 1495 45.3 

Most active 1077 32.6 

Total 3299 100 

 

 

 

In 1982 NSHD participants were asked about their participation in DIY activities and 

heavy gardening. As for cycling/walking, respondents (n=3309) were allocated to one of 

3 categories; inactive, less active or most active. Thirteen individuals were classified as 

unknown and removed from the analysis (Table 2.17).  

 

Table 2.17 Participation in DIY and heavy gardening in 1982 by NSHD cohort members  

 Frequency (n) Percentage 

Inactive 1520 45.9 

Less active 1121 33.9 

Most active 668 20.2 

Total 3309 100 
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Participation in a range of sporting and recreational activities was also recorded at 36 y 

and respondents (n=3309) classified as either inactive, less active or most active. 

Thirteen were classified as unknown and were removed from the analysis (Table 2.18). 

 

Table 2.18 Participation in a range of sport/ recreational activities in 1982 by NSHD 

cohort members 

 Frequency (n) Percentage 

Inactive 1219 36.8 

Less active 837 25.3 

Most active 1253 37.9 

Total 3309 100 

 

 

 

2.8.1.1 Creating a summary value for leisure time physical activity in 1982 

As the categorical values were consistent and comparable, i.e. inactive (=0), less active 

(=1) and most active (=2) across all three physical activity variables in 1982, the three 

values were added together for all individuals to produce a summary score for leisure 

time physical activity at age 36 y (Table 2.19).  

 

 Table 2.19 summary values for leisure time physical activity in 1982 for NSHD 

participants who provided data for all three activities 

Summary score for 

leisure time physical 

activity, 1982 

Frequency (n) Percentage 

0 191 5.8 

1 456 13.8 

2 722 21.9 

3 780 23.7 

4 667 20.2 

5 360 10.9 

6 121 3.7 

Total 3297 100 
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2.8.1.2 Classification of the 1982 summary value 

A summary value for all three physical activities examined in 1982 was available for 

3297 individuals (Table 2.19) and values ranged from 0 – 6; i.e. 191 individuals 

reported no participation (classified inactive) in all of the activities examined in 1982 

and 121 individuals were classified as most active in all three activities. 

 

Using the summary value created for 1982, participants were then classified as either 

inactive (0), moderately active (1) or most active (2); i.e. the classification used in 1989 

and 1999. 

 

Individuals with a summary value of 0 were classified as inactive (categorical value = 0) 

(n=191) and those with a summary value of 1 (n=456), 2 (n=722) or 3 (n=780) were 

classified as moderately active (categorical value = 1) (n=1958). See (Table 2.20) below. 

 

A summary value of 4 (n=667) could result from a combination of 1, 1, 2 (less active, 

less active, most active in 3 leisure time activities) or a combination of 2, 2, 0 (most 

active, most active, inactive in 3 leisure time activities). The former (1, 1, 2 combination) 

was valid for 388 individuals and the latter (2, 2, 0 combination) for 279 individuals.  

 

Individuals with a 1982 summary value of 4 who had been classified in 3 activities as 

less active, less active, most active (i.e. the 1, 1, 2 combination) (n=338) were classified 

as moderately active (categorical value = 1). Individuals with a 1982 summary value of 

4 who had been classified in 3 activities most active, most active, inactive (i.e. the 2, 2, 0 

combination) (n=279) were classified most active (categorical value = 2). See (Table 

2.20) below. 
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Individuals with a summary value of 5 (n=360) or 6 (n=121) were classified as most 

active (categorical value = 2) (n=481) (Table 2.20). 

 

Table 2.20 Classification of 1982 summary value 

Summary 

value 
Classification 

Categorical 

value 

Frequency 

(n) 

Category 

frequency 

(n) 

0 Inactive 0 191 191 

1 Moderately active 1 456 

2346 
2 Moderately active 1 722 

3 Moderately active 1 780 

4 (1,1,2) Moderately active 1 388 

4 (2,2,0) Most active 2 279 

760 5 Most active 2 360 

6 Most active 2 121 

 

In 1982, 3297 NSHD participants (aged 36 y) were classified by their participation in a 

range of leisure time physical activity pursuits into inactive (n=191) (5.8%), moderately 

active (n=2346) (71.2%) and most active (n=760) (23.1%). This summary variable was 

merged into the dataset which comprised NSHD participants who provided dietary data 

in all years.   
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2.8.2 Habitual Physical Activity in 1989 

In 1989 (at age 43 y) NSHD participants participation in sports, vigorous leisure 

activities or exercises, how many months in the year and the monthly frequency of each 

activity were reported (Cooper et al., 2011b).  

  

Table 2.21 Sports and recreational activity in 1989 in NSHD participants 

 Frequency (n) Percentage 

Inactive 1699 52.1 

Moderately active 753 23.1 

Most active 810 24.8 

Total 3262 100 

 

 

Where participation in any relevant sports/recreational activities was reported as none, 

individuals were classified as inactive (category value = 0); where participation was 

recorded as 1 – 4 times a month, individuals were classified as moderately active 

(categorical value = 1) and where participation was reported as 5 or more times a 

month, individuals were classified as most active (categorical value = 2), following 

methodology described by (Cooper et al., 2011b). Where individuals were classified as 

participation unknown (n=2100) these were removed from the analysis. These data 

were merged into the dataset which comprised NSHD participants who had provided 

dietary data in all years.  
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2.8.3 Habitual Physical Activity in 1999 

In 1999 (at age 53 years), leisure time participation in any sports, vigorous leisure 

activities or exercise, not including getting to and from work, in the past 4 weeks, and 

the number of occasions on which these activities were undertaken, was reported 

(Cooper et al., 2011b). Participants were categorised as inactive (reported no 

participation), moderately active (participated in relevant activities one to four times in 

the previous 4 weeks) or most active (participated in relevant activities five or more 

times in the previous 4 weeks). The variable generated in 1999 by the MRC specifically 

excluded activity involved in getting to and from work. In this respect it was not 

comparable with the 1982 summary variable (specifically the cycling and walking 

component) which differentiated, but included, both cycling and walking to/from work 

and during leisure time. This issue serves to highlight one of the difficulties in 

longitudinal cohort studies, namely that of collecting different, non-comparable data at 

different time points. 

 

A single physical activity variable was available at age 53 y (Table 2.22). Where 

participants were classified as participation unknown (n=2) or not interviewed 

(n=2374) these were removed from the analysis. This variable (available for 2986 

individuals) was merged into the dataset which comprised NSHD participants who had 

provided dietary data in all years. 

 

 

Table 2.22 Physical activity in 1999 in NSHD participants 

 Frequency (n) Percentage 

Inactive 1477 49.5 

Moderately active 518 17.3 

Most active 991 33.2 

Total 2986 100 
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2.8.4 Derivation of an adulthood physical activity score 

An adulthood leisure time physical activity score was calculated following methodology 

described by (Cooper et al., 2011b). Adulthood physical activity scores reflected 

habitual leisure time activity only as occupational activity was never measured 

throughout this period. 

 

Table 2.23 Adulthood leisure time physical activity scores for NSHD participants who 

provided physical activity data in 1982, 1989 and 1999 

Adulthood physical activity score Frequency (n) Percentage 

0 84 3.2 

1 676 26.1 

2 481 18.6 

3 493 19.0 

4 408 15.8 

5 307 11.9 

6 140 5.4 

 

Adulthood physical activity scores were available for 2589 individuals and ranged from 

0 (classified as inactive over 3 measurement periods) to 6 (classified as most active over 

3 measurement periods) (Table 2.23). Using these scores, and following methodology 

described by (Cooper et al., 2011b) individuals were classified as either inactive at all 3 

ages (those scoring 0) (n=84), more active (scoring 1 or 2) (n=1157), active (scoring 3 

or 4) (n=901) or most active at all 3 ages (scoring 5 or 6) (n=447) (Table 2.24). This 

categorical variable was merged into the dietary dataset which comprised NSHD 

participants who provided dietary data in all years.  

 

Table 2.24 Classification of adulthood physical activity scores for NSHD participants 

who provided physical activity data in 1982, 1989 and 1999 

Adulthood leisure time physical 

activity 
Frequency (n) Percentage 

Inactive 84 3.2 

More active 1157 44.7 

Active 901 34.8 

Most active 447 17.3 

Total 2589 100 
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2.9 Creation of dummy variables for categorical data  

In preparation for hierarchical linear regression analyses, dummy variables were 

created for the categorical variables: adulthood physical activity, self-reported health 

status at 60 – 64 y, participant’s socioeconomic position (SEP) at 53 y and participant’s 

SEP at 4 y (father’s SEP in 1950).  

 

2.9.1 Adulthood physical activity 

In NSHD participants who had provided dietary data in all 3 years, those classified as 

inactive at all 3 ages (n=34) and more active (n=517) were combined for the analysis 

into a new group, labelled ‘sedentary’. Sedentary was the reference group/category (=0) 

against which two dummy variables were compared: MoreActive and MostActive (Table 

2.25). 

 

 

Table 2.25 Adulthood physical activity. Creation of a reference category (sedentary) and 

2 dummy variables (MoreActive and MostActive) in NSHD participants who provided 

dietary data in all years 

 Frequency (n) Percentage 

Sedentary 551 43.8 

MoreActive 485 38.5 

MostActive 223 17.7 

Total 1259 100 
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2.9.2 Self-reported health status at 60 – 64 y  

Among NSHD participants who had provided dietary data in all 3 years, those with a 

self-reported health status of excellent (n=154) and very good (n=463) were combined 

into a new category: excellent/very good. This was the reference category (=0) against 

which three dummy variables, good, fair and poor, were compared (Table 2.26).  

 

Table 2.26 Self-reported health status at 60 – 64 y. Creation of a reference category 

(excellent/very good) and 3 dummy variables (good, fair and poor) in NSHD 

participants who provided dietary data in all years 

 Frequency (n) Percentage 

Excellent/Very good 617 54.9 

Good 370 32.9 

Fair 114 10.2 

Poor 22 2.0 

Total 1123 100 
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2.9.3 Participants’ socioeconomic position (SEP) at 53 y 

Among NSHD participants who had provided dietary data in all years, those classified as 

SEP I (professional) (n=97) and II (intermediate) (n=476) at 53 y were combined to 

create the reference category for participants’ SEP at 53 y (n=573) (Table 2.27). 

 

Table 2.27 SEP at 53 y. Creation of a reference category (Professional/Intermediate) 

and 4 dummy variables in NSHD participants who provided dietary data in all years 

 Frequency (n) Percentage 

I Professional 

/II Intermediate 
573 45.5 

IIINM Skilled (non-manual) 320 25.4 

IIIM Skilled (manual) 180 14.3 

IV Partly skilled 131 10.4 

V Unskilled 54 4.3 

Total 1258 100 

 

 

2.9.4 Father’s socioeconomic position (SEP) in 1950 

Among NSHD participants who had provided dietary data in all years, those classified as 

father’s SEP I (professional) (n=86) and father’s SEP II (intermediate) (n=231) were 

combined to create the reference category for father’s SEP when participant was aged 4 

y (n=317) (Table 2.28). 

 

Table 2.28 SEP at 53 y; creation of a reference category (Professional/Intermediate) and 

4 dummy variables in NSHD participants who provided dietary data in all years 

 Frequency (n) Percentage 

I Professional 

/II Intermediate 
317 27.0 

IIINM Skilled (non-manual) 256 21.8 

IIIM Skilled (manual) 309 26.3 

IV Partly skilled 235 20.0 

V Unskilled 57 4.9 

Total 1174 100 
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2.10 Hierarchical linear regression – methodology  

Hierarchical linear regression was used to test the hypothesis that relatively low 

protein intake across adulthood would predict poorer physical capability in middle age 

(60 – 64 y). In addition to considering the effect of measures of protein intake, this 

analysis considered anthropometric measures, adulthood physical activity, measures of 

self-reported health status and socioeconomic position (in 1950 and 1999) as potential 

predictors of physical capability. Models were split by gender as performance in the 

physical capability measures differed significantly for males and females. 

 

Four protein variables were created as described above i.e. NSHD participants who had 

provided dietary data in all 3 measurement years were identified as low protein 

consumers if they were in quintile 1 of 3 year mean daily protein consumption when 

expressed as absolute intake (g/d), as a percentage of daily energy intake and in grams 

per kilogram of body weight. Diurnal protein consumption was captured using the 

muscle protein synthesis score, and those in quartile 1 were identified as low protein 

consumers. Each of these protein variables was used in hierarchical linear regression 

modelling using the subset of individuals who provided dietary data in all years only. 

The protein variable was always pushed FIRST into the regression model (as 

independent variable 1) before determining the subsequent order of predictors. In 

addition two sensitivity analyses were conducted to determine the effect of under- and 

over-reporting on the outcomes of hierarchical linear regression modelling. Quintiles of 

3 y mean daily protein (g/d) and daily protein adjusted for body weight (g/kg/d) were 

recalculated after excluding all individuals who had ever been predicted to have under- 

or over-reported their energy intake. These new variables were also pushed first into 

the model prior to determining the subsequent order of predictors.     

 

Three dependent variables (of physical capability at 60 – 64 y) were examined in turn: 

1. Grip strength (in kg) at 60 – 64 y    

2. Chair rise time (in seconds) at 60 – 64 y   

3. Timed up and go time (seconds) at 60 – 64 y    
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After the protein variable was specified as independent variable 1, each of the variables 

shown in Table 2.29 were tested individually (except for the grouped dummy variables) 

to determine the order of their ability to predict the outcome (dependent variable):  

 

Table 2.29 Variables tested in hierarchical linear regression analyses 

Measures 

Height (m) at 60 – 64 y 

Weight (kg) at 60 – 64 y 

BMI (kg/m2) at 60 – 64 y 

Abdominal circumference at 60 – 64 y  

Whole body fat mass (kg) at 60 – 64 y 

Appendicular fat mass (kg) at 60 – 64 y 

Body fat percentage at 60 – 64 y 

Whole body lean mass (kg) at 60 – 64 y/height2 

Appendicular lean mass (kg) at 60 – 64 y/height2 

Adulthood habitual physical activity 

Reference category = Sedentary vs.  

_More active 

_Most active 

Self-reported health status at 60 – 64 years 

Reference category = Excellent/ very good vs.  

_Good 

_Fair 

_Poor 

Participant’s SEP (at 53 y) and father’s SEP (in 1950 (when participant 

was 4 y)) 

Reference category = Professional (SEP I)/Intermediate (SEPII) 

vs. 

_IIINM (Skilled, Non-manual) 

_IIIM (Skilled, Manual) 

_IV Partly skilled 

_V Unskilled 

 

Dummy (categorical) variables were always put into the regression model as a group, i.e. 

for self-reported health status at 60 – 64 years, the 3 dummy variables  _Good, _Fair and 

_Poor were entered into the independent(s) box together.     
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2.10.1 Hierarchical linear regression analysis – an example 

 

Table 2.30 Hierarchical linear regression – an example of methodology 

Variable Name 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm)  .450 

BMI (kg/m2)  .509 

Body fat percentage .023 .006 

Whole body lean mass (kg) adjusted for height2 .017 .017 

Whole body fat mass (kg)  .605 

Self-reported health status at 60 – 64 y .024 .020 

Adulthood physical activity  .107 

Height (m) .089* <.001 

Appendicular fat mass (kg)  .406 

Appendicular lean mass (kg) adjusted for height2 .034 .001 

Body weight (kg) .014 .013 

Participant’s SEP at 53 y  .123 

Father’s SEP (in 1950/when participant 4 y)  .087 

 

Each variable (or group of dummy variables) was tested in turn after the protein 

variable had been specified as the first independent variable. From the output 

generated, the Change Statistics were examined, specifically the Sig. F Change (p-value) 

and R Square Change associated with the inclusion of the new variable into the model 

(see Table 2.30 above). Where the F Change was significant, the probability statistic (p-

value) was emboldened. The variable selected as next in the hierarchy of predictors 

(independent variables) was marked with a (*) on the R2 Change statistic (see height, 

above). In this example, height would be selected as independent variable 2 and the 

process repeated to identify independent variable 3. 

 

The R2 Change and the significance of the F ratio (p-value) associated with adding each 

new variable to the model indicated the change in the model’s ability to predict the 

dependent variable. Where the F ratio was significant (p<0.001) for more than one 

variable, the variable associated with the greatest R2 Change was selected. Where the F 

ratio was significant (i.e. p<0.05) the Variance Inflation Factor was also noted in order 

to monitor multicollinearity; values in excess of 5 were not tolerated. 
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For reasons of multicollinearity, where whole body lean mass was included in the model, 

appendicular lean mass was not tested and where whole body fat mass was included in 

the model, appendicular fat mass was not tested. Where the addition of a new variable 

resulted in an insignificant F Change (p>0.05) the multicollinearity/ VIF was not quoted 

as this variable would never be included in the model. This methodology was repeated 

until all variables tested produced insignificant (p>0.050) F ratios, i.e. none of the tested 

variables produced a significant R2 change. 

 

2.10.2 Hierarchical linear regression – interpreting the coefficients 

All protein intake variables (with the exception of the muscle protein synthesis score) 

were devised and coded in the same way, i.e. quintile 1 was coded as (= 1) and higher 

quintiles as (= 0). The muscle protein synthesis score was split into quartiles and coded 

in the same way. 

 

Table 2.31 An example taken from Chapter 6. Predicting hand grip strength in females 

at 60 – 64 y using quintiles of protein consumption relative to body mass (g/kg/d) 

Model 

Unstandardized 

Coefficients  p-value 

B 

Quintiles of protein intake (g/kg/d) -.120 .900 

Height (m) 30.298 .000 

Self-reported health status  _Good -.529 .464 

_Fair -5.610 .000 

_Poor -10.597 .026 

Appendicular LEAN mass (kg)/ht2 2.586 .000 

Abdominal circumference (cm) -.158 .000 

 

In this example (Table 2.31) the protein variable compared females in quintile 1 with 

females in higher quintiles of mean protein, across all 3 years of measurement, relative 

to body mass (g/kg/d). Dummy variables for self-reported health status at 60 – 64 y 

were devised as described above i.e. the reference category was excellent/very good 

and dummy variables (_Good, _Fair and _Poor) were compared to this reference 

category. Height, appendicular lean mass/ht2 and abdominal circumference were 

continuous variables. For continuous variables, every 1 unit increase in their value was 

either positively (for height and appendicular lean mass) or negatively (for abdominal 

circumference) associated with the outcome (hand grip strength at 60 – 64 y). 
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When interpreting dummy variables, the coefficient (B value) attributable to the 

dummy variable is compared to the reference category. The beta value indicates the 

change in the dependent variable due to the dummy variable changing from 0 (the 

reference category excellent/very good) to 1, e.g. _Poor. The change in hand grip 

strength (kg) associated with the dummy variable changing from excellent/ very good 

(0) to poor (1) in this example was -10.6 kg (p=0.026).     
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CHAPTER 3 

 

 

 

Daily Protein and Energy Consumption 

 

 

 

3.1 Introduction 

NSHD participants, all born in the first week of March 1946, provided dietary data 

throughout adulthood at four measurement periods – when they were 36 y, 43 y, 53 y 

and 60 – 64 y. Anthropometric data was also collected at these measurement periods. 

Tests of physical capability were conducted at the latest clinical data collection in 2006 

– 10 when participants were aged 60 – 64 y (hand grip strength, chair rise time and 

timed up and go (see Figure 3.1 below). This project has examined whether patterns of 

protein consumption across adulthood (at 36, 43 and 53 y) can explain or predict 

physical capability at 60 – 64 y. This chapter examines total daily protein and energy 

consumption and anthropometry in each year of measurement. Trends are examined in 

the subset of NSHD participants who provided dietary data in all 3 years.       
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Figure 3.1 Collection of dietary and other data across adulthood by NSHD participants, 

1982 – 2006 
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3.2 Sample sizes 

The numbers of study participants for whom there was usable data on dietary intake, 

body mass and BMI at each of the measurement periods were identified (Table 3.1)  

 

Table 3.1 Samples sizes across the years, by variable 

 All Males Females 

Dietary intake (n) (n) (n) 

1982 2428 1192 1236 

1989 2280 1125 1155 

1999 1776 827 949 

Body weight    

 1982  2778 1383 1395 

 1989 2772 1372 1400 

 1999 2550 1252 1298 

2006-10 1981 950 1031 

BMI    

1982 2404 1179 1225 

1989 2264 1118 1146 

1999 1755 815 940 

2006-10 2219 1061 1158 

 

In 1982, when they were aged 36 y, 2428 NSHD participants provided dietary data by 5 

d estimated food diary, 1192 males and 1236 females. In 1989 this fell to 2280 and in 

1999 the sample size for those with dietary data was 1776. Similarly, sample sizes 

providing body mass and BMI data fell as the NSHD cohort members aged (Table 3.1). 

Dietary data were provided on at least one occasion by 3019 NSHD cohort members. Of 

this group, 817 participants (27.1%) provided dietary data on one occasion only; 939 

(31.1%) on two occasions only and 1263 (41.8%) on every occasion, i.e. in all 3 

measurement periods. Of the latter, 568 were males and 695 were females. 

 

Unless stated otherwise, all descriptive statistics were calculated from the dataset 

which included NSHD participants who provided dietary data on at least one occasion 

(n=3019).  Where trends over time are examined, this is with reference to the subgroup 

who provided dietary data in all years (n=1263) 
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3.3 Under- and over-reporting of dietary intake 

Under- and over-reporters were identified using the approach described in Chapter 2. 

To summarise, the Oxford equations (Henry, 2005) were used to determine BMR and 

under-reporters were defined as those with energy intakes less than BMR * 1.14 (the 

Goldberg cut-off for n=1 and 28 days (for methods purporting to measure habitual 

intake (Goldberg GR, 1991)). Over-reporters were identified using the methodology 

described by (Johansson et al., 1998) as outlined in Chapter 2 which is based on the 

principle that a ratio of EI:BMR > 2.4 is likely to be unsustainable in the long term. 

 

3.3.1 Under-reporting of dietary intake 

 

Table 3.2 Predicted under-reporting by those NSHD participants who provided dietary 

data on at least one occasion (n=3019) 

 1982 1989 1999 

n 2418 2269 1758 

Not under-reporters (n) 1531 1638 1181 

Predicted under-

reporters (n) 
887 631 577 

Predicted under-

reporters (%) 
36.7% 27.8% 32.8% 

 

In 1982 data were available to estimate the likely event of under-reporting by 2418 

individuals. Of these, 1531 individuals appeared not to under-report their energy intake 

(EI) but 887 individuals (36.7% of the 1982 cohort) reported an EI < BMI * 1.14 i.e. an 

implausible EI which is inconsistent with long term survival. Similarly, in 1989 and 

1999 the proportions of likely under-reporters were 27.8% and 32.8% respectively 

(Table 3.2).  
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Table 3.3 Estimates of likely dietary under-reporting by those who provided dietary 

data on at least one occasion (n=3019), by gender 

 1982 1989 1999 

 M F M F M F 

n 1187 1231 1118 1151 815 943 

Not under-

reporters (n) 
821 710 825 813 547 634 

Predicted under-

reporters (n) 
366 521 293 338 268 309 

Predicted under-

reporters (%) 
30.8 42.3 26.2 29.4 32.9 32.8 

 

In 1982 when aged 36 y, estimated under-reporting was much higher (37% greater) in 

females than in males. However, whilst the proportion of male under-reporters 

remained relatively constant across the 3 measurement years, the proportion of female 

under-reporters fell with time and by age of 53 (in 1999) was virtually identical to that 

of males (Table 3.3). In the smaller subset of 1263 NSHD participants who provided 

dietary data in all three measurement years, data were available in 1982 to estimate the 

likely extent of under-reporting by 1260 individuals (Table 3.4). 

 

Table 3.4 Predicted under-reporting by those NSHD participants who provided dietary 

data in all years (n=1263)  

 1982 1989 1999 

n 1260 1257 1252 

Not under-reporters (n) 875 962 894 

Predicted under-

reporters (n) 
385 295 358 

Predicted under-

reporters (%) 
30.6% 23.5% 28.6% 

 

In 1982 30.6% of this smaller subset reported an energy intake < BMI * 1.14. Similarly 

in 1989 and 1999, the proportions of likely under-reporters were 23.5% and 28.6% 

respectively (Table 3.4). The incidence of estimated under-reporting was lower in all 

years in the subset of individuals who provided dietary data in all years compared with 

those who reported intakes data in only some years. 
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Table 3.5 Estimates of likely dietary under-reporting by those NSHD participants who 

provided dietary data in all years (n=1263) by gender 

 1982 1989 1999 

 M F M F M F 

n 567 693 565 692 562 690 

Not under-

reporters (n) 
423 452 442 520 400 494 

Predicted under-

reporters (n) 
144 241 123 172 162 196 

Predicted under-

reporters (%) 
25.4 34.8 21.8 24.9 28.8 28.4 

 

Of the subset who provided dietary data in all years the incidence of likely under-

reporting was higher in females than in males in 1982/89 but in 1999 the proportion of 

female under-reporters had fallen to slightly below that of males (Table 3.5).  

 

 

3.3.2 Over-reporting of dietary intake 

 

Table 3.6 Predicted over-reporting by those NSHD participants who provided dietary 

data on at least one occasion (n=3019) 

 1982 1989 1999 

n 2418 2269 1758 

Not over-reporters (n) 2396 2241 1755 

Predicted over-reporters (n) 22 28 3 

Predicted over-reporters (%) 0.9 1.2 0.2 

 

Rates of over-reporting (identified by the ratio EI:BMR > 2.4) were very low in all years 

(Table 3.6). 
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3.4 Dietary intake and anthropometry in the 1982, 1989 and 1999 

reporting cohorts 

Gender-stratified anthropometry (weight, height and BMI (kg/m2)) in the 1982, 1989 

and 1999 reporting cohorts (at 36, 43 and 53 y, respectively) are contained in Tables 

3.23 – 3.28 in the appendices to this chapter. 

 

Gender-stratified energy (kcals) and protein consumption (expressed in g/d, g/kg/d 

and as a percentage of total energy) (including and excluding predicted misreporters), 

and energy consumption stratified by BMI class in the 1982, 1989 and 1999 reporting 

cohorts are contained in Tables 3.29 – 3.27 also in the appendices to this chapter.  
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3.5 Distribution of protein intake data 

Currently there is no gold standard method to test the normality of data (Kim, 2013); in 

large samples such as the NSHD dataset, the eyeball test is useful but formal tests such 

as Shapiro-Wilk and Kolmogorov-Smirnov can be unreliable producing results that are 

incompatible with the eyeball test. 

 

3.5.1 Using skewness and kurtosis to assess normality 

Skewness is a measure of the asymmetry of a variable and kurtosis is a measure of how 

peaked/flat the distribution appears. The skew and excess kurtosis9 (cf. proper kurtosis) 

of a normal, completely symmetrical distribution should both be zero. In determining 

substantial non-normality in sample sizes greater than n=300 (Kim, 2013) recommends 

reliance on the histogram and absolute values of skewness and kurtosis – i.e. for 

skewness a value > 2 and for kurtosis proper a value > 7 would indicate substantial non-

normality.  

  

Table 3.7 Assessing the normality of gender-specific protein intake distributions (g/d) 

using skewness and excess kurtosis 

 Skewness 

(SE)(n) 

Excess kurtosis 

(SE)(n) 

Cohort M F M F 

1982 
0.23 (.071) 

n=1192 

0.33 (.070) 

n=1236 

.59 (.142) 

n=1192 

2.4 (.139) 

n=1236 

1989 
0.44 (.073) 

n=1125 

0.28 (.072) 

n=1155 

2.7 (.146) 

n=1125 

1.1 (.144) 

n=1155 

1999 
0.35 (.085) 

n=827 

0.13 (.079) 

n=949 

0.9 (.170) 

n=827 

0.78 (.159) 

n=949 

 

By this criteria and using protein intake data from the 1982, 1989 and 1999 reporting 

cohorts, substantial non-normality did not exist, i.e. all values of skewness were < 2 and 

all values for kurtosis proper (calculated by adding 3 to the value provided by SPSS) 

were < 7 (Table 3.7). 

 

 

 

                                                        
9 SPSS provides a figure for ‘excess kurtosis’ which is calculated by subtracting 3 from kurtosis ‘proper’ 
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Table 3.8 Assessing the normality of gender-specific protein intake distributions (g/d) 

using skewness and excess kurtosis among NSHD participants who provided dietary 

data in all years (n=1263)  

 Skewness (SE) Excess kurtosis (SE) 

 M 

(n=568) 

F 

(n=695) 

M 

(n=568) 

F 

(n=695) 

1982 .229 (.103) .628 (.093) .826 (.205) 4.2 (.185) 

1989 1.12 (.103) .496 (.093) 4.7 (.205) 1.6 (.185) 

1999 .298 (.103) .105 (.093) .656 (.205) 1.1 (.185) 

3 y mean .685 (.103) .612 (.093) 2.0 (.205) 2.5 (.185) 

 

By the same criteria and using protein intake data from participants who provided 

dietary data in all years (n=1263) all values of skewness were < 2. Values for kurtosis 

proper (calculated by adding 3 to the value provided by SPSS) were < 7 in all years with 

the exception of males in 1989 (kurtosis proper = 7.7) and females in 1982 (kurtosis 

proper = 7.2) (Table 3.8).  
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3.5.2 Using Shapiro-Wilk and Kolmogorov-Smirnov to assess normality 

Tables 3.9 and 3.10 show the relevant statistic, significance (p-value) and degrees of 

freedom with gender as factor. Stem and leaf and Q – Q plots were also considered. 

 

Table 3.9 Assessing normality of gender-specific protein intake distributions (g/d) with 

Shapiro-Wilk and Kolmogorov-Smirnov  

Reporting 

cohort 

Males Females 

K-S  Shapiro-Wilk K-S Shapiro-Wilk 

1982 

.023 

p=.138 

(n=1192) 

.993  

p=.000 

(n=1192) 

.041 

p=.000 

(n=1236) 

.983 

p=.000 

(n=1236) 

1989 

.046 

p=.000 

(n=1125) 

.978  

p=.000 

(n=1125) 

.036 

p=.001 

(n=1155) 

.991 

p=.000 

(n=1155) 

1999 

.036 

p=.013 

(n=827) 

.988  

p=.000 

(n=827) 

.034 

p=.012 

(n=949) 

.993 

p=.000 

(n=949) 

 

 

Table 3.10 Assessing normality of gender-specific protein intake distributions (g/d) 

with Shapiro-Wilk and Kolmogorov-Smirnov among NSHD participants who provided 

dietary data in all years 

 Males 

(n=568) 

Females 

(n=695) 

K-S  Shapiro-Wilk K-S Shapiro-Wilk 

1982 
.037 

p=.059 

.991 

p=.002 

.035 

p=.045 

.970 

p=.000 

1989 
.081 

p=.000 

.946 

p=.000 

.046 

p=.001 

.983 

p=.000 

1999 
.031 

p=.200 

.990 

p=.001 

.042 

p=.005 

.989 

p=.000 

3 y mean 

protein intake 

.043 

p=.015 

.974 

p=.000 

.040 

p=.010 

.978 

p=.000 

 

Field (Field, 2011) suggests that the Shapiro-Wilk and Kolmogorov-Smirnov tests have 

limitations when applied to large datasets, as they can show significance even when 

data are only slightly different from a normal distribution. Field recommends that such 

results should be interpreted in conjunction with histograms, Q – Q plots and values of 

skew and kurtosis. 
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Consideration of ‘extremes’ (values and (n)) from stem and leaf plots. Daily reported 

protein intakes (g/d) with gender as factor.  

 

Table 3.11 Extreme values (from stem and leaf plots). Protein intake (g/d) among NSHD 

participants who provided dietary data in all years 

 Males (n=568) Females (n=695) 

Mean 

(±SD) 

Lower 

(g/d) 

Upper 

(g/d) 

Mean 

(±SD) 

Lower 

(g/d) 

Upper 

(g/d) 

1982 
78.6 

(20.6) 

≤27.0 

(n=3) 

≥131 

(n=8) 

61.2 

(15.9) 
None 

≥104 

(n=5) 

1989 
86.5 

(22.8) 

≤35 

(n=3) 

≥135 

(n=12) 

68.5 

(17.2) 

≤23 

(n=3) 

≥110 

(n=8) 

1999 
86.4 

(18.9) 

≤25 

(n=2) 

≥137 

(n=6) 

70.9 

(14.9) 

≤34 

(n=4) 

≥109 

(n=12) 

3 y mean 
83.9 

(15.7) 
None 

≥123 

(n=8) 

66.9 

(12.2) 

≤32 

(n=2) 

≥98 

(n=8) 

 

  

Of the sub-cohort who provided dietary data in all years, males (n=568) in 1989 

reported a mean protein intake of 86.5 g/d (SD ±22.8). Values for Kolmogorov-Smirnov 

and Shapiro-Wilk tests were both significant (p<0.001) (see Table 3.10). A 

consideration of the stem and leaf plot indicated that extreme values were reported by 

3 males who reported protein consumption of ≤ 35 g/d and 12 males who reported 

protein consumption of ≥ 135 g/d (Table 3.11).  
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In SPSS, ‘outliers’ can be requested using the Analyse/Descriptive statistics/Explore 

function. The output of this function is the 5 highest and lowest values by case number 

for males and females separately (where gender is specified as the factor). 

 

Table 3.12 Examination of male outliers (highest 5 values) in the reporting of daily 

protein intake (g/d) among NSHD participants who provided dietary data in all years 

Year 
Case 

number 

Protein intake 

(g/d) 

Energy intake 

(kcals/d) 

Protein intake as a % of 

total daily energy intake 

1982 

915 168.25 4488.28 15.0 

535 152.71 3194.81 19.1 

543 148.64 3563.51 16.7 

447 140.17 4796.82 11.7 

967 135.29 3440.98 15.7 

1989 

664 229.30 4554.08 20.1 

535 219.37 5442.43 16.1 

543 173.22 4462.19 15.5 

23 155.01 3316.32 18.7 

1007 154.78 4486.66 13.8 

1999 

1110 160.42 4242.11 15.1 

712 155.35 3223.13 19.3 

756 145.87 2853.45 20.4 

25 139.47 3767.16 14.8 

966 137.74 2707.15 20.4 
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Table 3.13 Examination of female outliers (highest 5 values) in the reporting of daily 

protein intake (g/d) among NSHD participants who provided dietary data in all years 

Year 
Case 

number 

Protein intake 

(g/d) 

Energy intake 

(kcals/d) 

Protein intake as a % of 

total daily energy intake 

1982 

1142 180.93 3833.18 18.9 

1055 112.66 3060.25 14.7 

1086 112.01 2958.41 15.1 

483 105.74 2201.63 19.2 

385 103.63 2912.30 14.2 

1989 

615 158.41 4030.94 15.7 

1142 143.84 4316.28 13.3 

181 126.74 3140.56 16.1 

1231 120.18 3203.71 15.0 

1245 117.38 2400.56 19.6 

1999 

466 125.36 1937.55 25.9* 

1119 122.03 2451.77 19.9 

141 115.53 1937.63 23.8* 

296 114.23 2390.19 19.1 

485 112.54 2495.81 18.0 

 

Female cases 466 and 141 warranted further investigation as absolute protein intakes 

(g) and protein intakes as a percentage of total daily energy intakes (kcal) were high. 

Diurnal protein intakes (g) across 8 meal slots were examined and BMI in 1999 (at 53 y) 

noted. In 1999, case number 466 had a BMI of 37.42 kg/m2 and case number 141 had a 

BMI of 32.22 kg/m2. All reported values appeared valid and were not excluded. 

 

Table 3.14 Examination of diurnal protein intakes (g) in 1999 for female case numbers 

466 and 141 

 Reported protein intake (g) at eight meals across the day in 1999 

 1 2 3 4 5 6 7 8 

Case 

466 
0.1 24.09 3.14 45.21 1.0 41.85 2.89 7.09 

Case 

141 
2.21 11.32 4.57 29.94 1.89 61.82 3.0 0.8 
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In conclusion, in large samples (e.g. > n=100) parametric tests (which assume a 

Gaussian/bell-shaped distribution) are ‘robust’ – the p-value will be substantially 

correct even if the population deviates from a Gaussian population, i.e. the assumption 

is somewhat violated (Marusteri, 2010). In the regression analyses, sample sizes were 

always > n=600 (including the sensitivity analyses). Small deviations from normality 

result in significant results (i.e. the distribution is non-normal) when Kolmogorov-

Smirnov and Shapiro-Wilk are used for large sample sizes, notwithstanding that the 

deviation will not affect the result of the parametric test (Ghasemi A., 2012).     
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3.6 Trends in dietary intake and anthropometry, 1982 – 1999  

Age-specific patterns of energy and protein consumption were investigated in the 

subset of NSHD participants who provided dietary data in all measurement years, 568 

males and 695 females. 

 

3.6.1 Adulthood energy consumption 

 

Table 3.15 Mean energy intake (kcals/d) in NSHD participants who provided dietary 

data in all 3 years  

 1982 1989 1999 
p-value 

 Mean (SEM) 

MALES 

Mean energy intake (n=568) 
2289 

(26.2) 

2451 

(27.4) 

2262 

(21.7) 
<0.001 

Mean energy intake  excluding 

predicted misreporters 

2528  

(21.5) 

(n=420) 

2647 

(23.3) 

(n=437) 

2479 

(19.0) 

(n=404) 

<0.001 

(n=285) 

FEMALES 

Mean energy intake (n=695) 
1662 

(18.4) 

1858 

(18.8) 

1778 

(14.4) 
<0.001 

Mean energy intake excluding 

predicted misreporters 

1907 

(15.4) 

(n=446) 

2027 

(15.4) 

(n=515) 

1942 

(13.1) 

(n=499) 

<0.001 

(n=318) 

 

In outcomes of General Linear Model (GLM) repeated measures analyses (with 

Bonferroni adjustment) mean daily energy intake in 1989 was significantly higher than 

in 1982 and in 1999 (p<0.001) in males, whereas daily energy consumption in 1999 did 

not differ significantly from that in 1982. In females, all reported energy intakes were 

significantly different between years (p<0.001).  

 

When predicted misreporters were excluded from the analyses, all energy intakes were 

significantly different between years in males (p<0.05). In females, mean daily intake in 

1989 was significantly higher than in 1982 and 1989 (p<0.001) but 1982 and 1999 

were not significantly different.  
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3.6.2 Trends in BMI (kg/m2) 

 

Table 3.16 Mean BMI (kg/m2) of NSHD participants who provided height and weight 

data at four measurement periods, 1982 – 2006/10   

 1982 1989 1999 2006/10 p-value 

Males (n=883) 24.5 25.5 27.2 27.8 <0.001 

Females (n=990) 23.3 24.8 27.3 28.1 <0.001 

 

BMI (kg/m2) data at all four measurement periods (1982, 1989, 1999 and 2006/10) 

were provided by 1873 NSHD participants. On average male BMI increased by 3.3 

kg/m2 and female BMI by 4.8 kg/m2 between the ages of 36 y and 60 – 64 years (Table 

3.16). On average males were overweight (BMI > 25 kg/m2) in 1989 at 43 y whereas 

females were overweight in 1999 at 53 y. In this subset of individuals, in outcomes of 

General Linear Model (GLM) repeated measures analyses (with Bonferroni adjustment) 

the increase in BMI was significant at every measurement period in males and females 

(p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 

 

3.6.3 Trends in daily protein consumption 

 

Table 3.17 Mean daily protein consumption in male NSHD participants who provided 

dietary data in all 3 measurement years 

MALES 
1982 1989 1999 

p-value 
3 y mean 

(SEM) Mean (SEM) 

Daily protein intake (g) 

(n=568) 

79 

(0.9) 

87 

(1.0) 

86 

(0.8) 
<0.001 84 (0.66) 

Daily protein intake 

(g/kg/d) 

1.06 

(0.01) 

(n=567) 

1.13 

(0.01) 

(n=565) 

1.07 

(0.01) 

(n=562) 

<0.001 

(n=561) 

1.09 

(0.01) 

(n=567) 

Daily protein intake as a 

percentage of total daily 

energy (%) (n=568) 

14.0 (0.1) 14.3 (0.1) 15.5 (0.1) <0.001 14.6 (0.1) 

 

Among males who provided dietary data in all years, absolute protein consumption 

averaged 84 g/d over the period 1982 – 1999. In outcomes of General Linear Model 

(GLM) repeated measures analyses (with Bonferroni adjustment) protein intakes (g/d) 

increased significantly in 1989 compared to 1982 (p<0.001) whereas consumption in 

1999 did not differ significantly from that reported in 1989. 

 

Protein intakes relative to body mass (g/kg/d) in 1989 were significantly higher than in 

1982 and 1999 (p=0.001) whereas consumption in 1999 did not differ significantly 

from that reported in 1982. Protein intakes expressed as a percentage of total daily 

energy increased significantly (p<0.001) in every reporting year in this subset of males.  
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Table 3.18 Average daily protein consumption in female NSHD participants who 

provided dietary data in all measurement years 

FEMALES 
1982 1989 1999 

p-value 
3 y mean 

(SEM) Mean (SEM) 

Daily protein intake (g) 

(n=695) 

61.2 

(0.6) 

69 

(0.7) 

71 

(0.6) 
<0.001 67 (0.5) 

Daily protein intake 

(g/kg/d) 

1.03 

(0.01) 

(n=693) 

1.1 

(0.01) 

(n=692) 

1.04 

(0.01) 

(n=690) 

<0.001 

(n=685) 

1.1 

(0.01) 

(n=695) 

Daily protein intake as a 

percentage of total daily 

energy (%) (n=695) 

15.2 

(0.13) 

15.1 

(0.1) 

16.2 

(0.1) 
<0.001 

15.5 

(0.1) 

 

Among female NSHD participants who provided dietary data in all 3 years, absolute 

protein intake averaged 67 g/d. In outcomes of General Linear Model (GLM) repeated 

measures analyses (with Bonferroni adjustment) there were significant increases in 

consumption (g/d) in each reporting year (p=0.001).  

 

Protein intakes relative to body mass (g/kg/d) in 1989 were significantly higher than 

those reported in 1982 and 1999 (p<0.001) whereas consumption in 1999 did not differ 

significantly from that reported in 1982. Protein expressed as a percentage of total daily 

energy fell insignificant in 1989 but was significantly higher in 1999 compared with 

1982 and 1989 (p<0.001).  
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3.7 Characterising low protein consumers  

To characterise ‘low protein consumers’, gender-specific quintiles of absolute daily 

protein consumption (g/d) were derived, using the mean protein intake across all 3 

years of measurement (g/d) as described in Chapter 2 (Section 2.6.2).  

 

Table 3.19 Gender-specific quintile cut points of absolute mean protein intake across 3 

years of measurement (g/d) for NSHD participants who provided dietary data in all 

years 

 Q1 Q2 Q3 Q4 Q5 

Males 

(n=568) 
≤71.43 71.44-79.68 79.69-86.39 86.40-95.89 95.9+ 

n 114 113 113 115 113 

Females 

(n=695) 
≤56.85 56.86-63.46 63.47-69.03 69.04-76.78 76.79+ 

n 139 139 139 139 139 

 

Males in quintile 1 (n=114) had mean protein intake ≤ 71.4 g/d whereas those in 

quintile 5 had a mean intake of ≥ 95.9 g/d. Females in quintile 1 (n=139) had a mean 

protein intake approximately 15 g/d less than men in the equivalent quintile whereas 

the gender difference was nearly 20 g/d for those in quintile 5 (Table 3.19). 

 

In characterising low protein consumers (those in quintile 1 of protein consumption vs. 

those in higher quintiles of consumption) differences between group means (for 

continuous variables) were tested using One-Way ANOVA. Differences between group 

membership (for categorical variables) were tested using crosstabs/the Chi-square test 

of association (Pearson Chi-Square) (2-sided) (adjustment for multiple testing was not 

possible (increased chance of a type 1 error)).  
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Table 3.20 Characteristics of male NSHD participants who provided dietary data in all 

years. Low protein consumers (quintile 1) vs. higher quintiles of absolute mean protein 

intake across 3 years of measurement (g/d)  

 Q1 

≤71.43 g/d 

Q2 – Q5 

71.44 – 95.9+ g/d  p-value 

 Mean (±SD) (n) 

3 y energy intake (kcal/d) 1775 (289)(114) 2475 (397)(454) <0.001 

3 y protein intake (g/d) 63.6 (6.24)(114) 89 (12.9)(454) <0.001 

3 y protein intake (g/kg/d)  0.84 (0.2)(114) 1.15 (0.2)(453) <0.001 

3 y daily protein intake (%TE) 14.7 (2.0)(114) 14.6 (1.7)(454) 0.578 

BMI (2006/10)(kg/m2) 27.6 (4.4)(91) 27.3 (3.8)(373) 0.562 

Weight (2006/10)(kg) 83.3 (13.6)(91) 84 (13.0)(373) 0.631 

Abdominal circumference 

(2006/10)(cm) 
101 (10.8)(90) 99.3 (11.0)(374) 0.357 

Appendicular fat (2006/10)(kg) 9.7 (2.9)(60) 10.1 (2.9)(289) 0.461 

Appendicular lean/ht2 

(2006/10)(kg) 
7.8 (1.0)(60) 8.0 (0.9)(289) 0.233 

Estimated misreporting (%):   <0.0011 

Never 10.5 60  

Once 25.4 29.6  

Twice 36.8 8.2  

All years 27.2 2.2  

Education (26y) (%):   0.548 

None 25.2 26.2  

Sub GCE 8.1 4.3  

O Level 17.1 15.5  

A Level 30.6 32.3  

Degree+ 18.9 21.6  

Smoking (%):   0.208 

Never 30.1 27.6  

Predominantly a non-

smoker 
47.8 40.1 

 

Predominantly a smoker 15 21.7  

Lifelong smoker  7.1 10.5  

Physical activity (%):   0.131 

Sedentary 45.6 39.8  

MoreActive 41.2 38.7  

MostActive 13.2 21.5  

Health Status (%):   0.057 

Excellent/very good 57 57.8  

Good 22 30.6  

Fair 17 8.8  

Poor 4 2.8  
1Chi-Square test for estimated misreporting: χ2 (3) = 177.5, p<0.001. No adjustment for multiple testing 
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3.7.1 Male low protein consumers    

Males in quintile 1 (Q1) (consuming ≤ 71.43 g/d) (Table 3.20) consumed on average 

63.6 g/d of protein over the three reporting periods, 25.4 g/d less than males in higher 

quintiles of protein consumption (p<0.001). Protein intake relative to body mass 

(g/kg/d) was also significantly less (0.31 g/kg/d) among males in quintile 1. Protein 

expressed as a percentage of total daily energy (PPTE %)) was not significantly different 

between the two groups. In terms of anthropometry (including body composition), 

highest educational attainment at 26 y, smoking behaviour (up to age 53 y), habitual 

physical activity and health status at 60 – 64 y, there were no significant differences 

between males in quintile 1 and those in the higher quintiles of protein intake. 
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Table 3.21 Characteristics of female NSHD participants who provided dietary data in all 

years. Low protein consumers (quintile 1) vs. higher quintiles of absolute mean protein 

intake across 3 years of measurement (g/d)  

 Q1 

≤56.85 g/d 

Q2 – Q5 

56.86 – 76.79+ g/d  p-value 

 Mean (±SD)(n) 

3 y energy intake (kcal/d) 1386 (236)(139) 1861 (322)(556) <0.001 

3 y protein intake (g/d) 51 (5.1)(139) 71 (1.0)(556) <0.001 

3 y protein intake (g/kg/d)  0.79 (0.2)(139) 1.1 (0.2)(556) <0.001 

3 y daily protein intake (%TE) 15.1 (2.3)(139) 15.6 (2.2)(556) 0.018 

BMI (2006/10)(kg/m2) 28 (5.0)(102) 27.0 (4.8)(472) 0.077 

Weight (2006/10)(kg) 72 (12.7)(102) 71 (13.0)(472) 0.614 

Abdominal circumference 

(2006/10)(cm) 
91.4 (13)(102) 90.4 (12)(472) 0.475 

Appendicular fat (2006/10)(kg) 14.6 (4.2)(67) 13.9 (4.1)(363) 0.178 

Appendicular lean/ht2 

(2006/10)(kg) 
6.2 (0.9)(67) 6.1 (0.8)(363) 0.404 

Estimated misreporting (%)   <0.0011 

Never 9.4 54.9  

Once 28.1 27.3  

Twice 32.4 14.2  

All years 30.2 3.6  

Education (26y) (%)   0.0092 

None 41 26.2  

Sub GCE 7.5 8.4  

O Level 23.9 29.8  

A Level 24.6 27.9  

Degree+ 3 7.7  

Smoking (%):   0.0233 

Never 29.7 39.3  

Predominantly a non-

smoker 
33.3 36 

 

Predominantly a smoker 21.7 16  

Lifelong smoker  15.2 8.8  

Physical activity (%):   0.361 

Sedentary 51.4 44.7  

MoreActive 34.1 38.9  

MostActive 14.5 16.4  

Health Status (%):   0.081 

Excellent/very good 50.8 53.3  

Good 36.7 36.1  

Fair 9.2 10.1  

Poor 3.3 0.6  
1Chi-Square test for estimated misreporting: χ2 (3) = 159, p<0.001; 2Chi-Square test for highest 

educational attainment at 26 y: χ2 (4) = 13.4, p<0.05; 3Chi-Square test for smoking: χ2 (3) = 9.5, p<0.05. No 

adjustment for multiple testing 
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3.7.2 Female low protein consumers  

Females in quintile 1 (consuming ≤ 56.85 g/d) (Table 3.21) consumed on average 51 

g/d over three reporting periods, 20 g less per day than females in higher quintiles of 

consumption. Protein intake relative to body mass (g/kg/d) and intake expressed as a 

percentage of total daily energy (PPTE %) were also significantly less among females in 

quintile 1. Anthropometric and body composition measures were not significantly 

different between the groups. In highest educational attainment at 26 y there were 

proportionately more females in quintile 1 without formal educational qualifications 

(41 vs. 26.2%) and proportionately less educated to degree level or above (3 vs. 7.7%). 

Differences in highest educational attainment between the two groups (quintile 1 

compared with higher quintiles) were significant (p=0.009). There were 

proportionately more females in quintile 1 who were lifelong smokers at 53 y (15.2 vs. 

8.8%) and less who were never smokers (29.7 vs. 39.3%) compared with females in the 

higher quintiles (p=0.023). 

 

In predicted misreporting, there were significantly higher levels amongst individuals in 

quintile 1 and differences in misreporting between the two groups were significant 

(p<0.001) in males and females. 
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3.8 Discussion  

This chapter examined the daily energy and protein consumption by NSHD participants 

who provided estimates of dietary intake by 5 day food diary in 1982, 1989 and 1999 

when aged 36 y, 43 y and 53 y, respectively. Trends across time in protein and energy 

consumption and in anthropometry were investigated using the smaller subset of 

individuals who provided dietary data in all 3 years (n=1263). 

 

3.8.1 Estimated under- and over-reporting 

Quantitative assessment of habitual dietary intake is challenging and it is well 

recognised that all dietary assessment methods, including the 5d food diary used in the 

NSHD, may deliver intake estimates for some individuals which are unlikely to be 

reliable (Bingham, 1991). The use of the 5d food diary in NSHD, and the Oxford 

equations (Henry, 2005) (for BMR) and (Goldberg GR, 1991) cut-off (PAL = 1.14) (for 

n=1 and 28 day) to identify individual under-reporters, have resulted in rates of 

estimated under-reporting in the current study that are difficult to compare to other 

studies.  

 

Black (Black, 2000) estimated TEE using Schofield equations (for those aged > 64 y) for 

BMR, and the WHO recommended PAL for light activity (1.55). The ratio EI:EE < 0.76 

was used to identify under-reporting using individual data from 21 studies (n=429)(18 

– 75+). 37.5% of women and 27.9% of men were identified as under-reporting their 

energy intake. In the age range 30 – 39 y the rate was 35.2% compared with 36.7% in 

the present study (at 36 y); and in the age range 40 – 64 y the rate was 40.7% compared 

with 27.8% (at 43 y) and 32.8% (at 53 y) in the present study. Notwithstanding 

methodological differences in the present study and less heterogeneity in subject age, 

rates of under-reporting in the present study were comparable at 36 y but less at 43 y 

and 53 y. The ratio EI:EE > 1.24 was used to identify over-reporting (Black, 2000). Over-

reporting in the age range 30 – 39 was 4.2% and in the age range 40 – 64 y was 3.5%. 

These rates were much higher than those seen in the present study, however in the 

present study the ratio EI:BMR > 2.4 was used.  
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In the Observing Protein and Energy Nutrition (OPEN) Study (Subar et al., 2003) 

assessed dietary measurement error in the food frequency questionnaire (FFQ) and 24 

h recall (5 pass method) against two unbiased biomarkers of protein and energy intake 

(urinary nitrogen and doubly labelled water) in 484 men and women aged 40 – 69 y. 

Although not directly comparable to the present study (which used a 5 d food diary) the 

percentage of respondents classified as under-reporters10 were 20.8% of men and 22.3% 

of women (using the 24 h recall) and 49.6% of men and 49% of women (using the FFQ). 

In the present study, rates were never as high as those seen when using the FFQ but 

were higher than those identified when using the 24 h recall. It is known that values 

reported via FFQ are subject to substantial error (Subar et al., 2003) and it was this that 

led to the use of more expensive assessment instruments, such as food records and a 

variety of 24 h recall instruments in large epidemiological studies. Under-reporting was 

highest in those with a BMI ≥ 30 kg/m2; using the 24 h recall, 33.3% of men and 35% of 

women; and 66.2% and 46.7% respectively, when the FFQ was used.  

 

Subsequent analysis of OPEN Study data compared the Goldberg method (PAL = 1.55) 

with a doubly labelled water (criterion method) in 451 men and women reporting 

dietary data via FFQ and 24 hour recall. TEE and cutpoints were calculated as above 

(Black, 2000). 10% of men and 13% of women underreported their EI on 24 h recalls 

and 52% of men and 51% of women on the FFQ (Tooze et al., 2012). 

 

(Huang et al., 2005) screened for implausible reports by comparing reported EI (from 2 

non-consecutive 24 h dietary recalls) directly with predicted or measured TEE in the 

USDA Continuing Survey of Food Intake by Individuals (CSFII) 1994 – 1996 (20 – 90 y) 

(n=6499); all subjects were assigned to a low activity category (a PAL between 1.4 and 

1.59). Using a ± 1 SD cut-off (the most stringent) the sample retained was 41% of total 

reports (n=2686). 

 

 

 

 

 

                                                        
10 Values below the 95% CI of the log ratio of reported intakes to biomarker measurements 
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The incidence of estimated under-reporting in the present study was lower in all years 

amongst the smaller subset who provided dietary data in all years. Estimated under-

reporting was always higher in female participants and tracked adiposity class in all 

years. This was consistent with the finding of others, e.g. (Johansson et al., 1998) and 

(Lissner et al., 2007). In this latter study, data was again provided by the OPEN Study 

(n=390) in which 27% of participants were obese. Obese men reported 84% and 69% of 

their biomarker energy requirement compared with 93% and 76% reported by leaner 

men, by 24 h recall and FFQ, respectively. Obese women reported 80% of their 

biomarker energy requirement compared with 92% reported by non-obese women 

using the 24 h recall and all intakes were significantly different by obesity status. With 

the FFQ however, obese women reported 71% of their biomarker energy requirement 

compared to 75% reported by their leaner counterparts and this difference was not 

statistically significant.     

 

In this project, observed estimated over-reporting was very low in all measurement 

years, only ever reaching 1.2% (in 1989). There was a tendency for estimated over-

reporting to be higher in males and this was expected based on the findings of 

(Johansson et al., 1998) (7% of men compared with 5% of women) and (Black, 2000) 

(4.9% of men compared to 3.8% of women). 

 

In the identification of estimated under- and over-reporters, it must be stated that these 

cut-off values do not take into account the true total energy expenditure (TEE) of each 

individual – variation in habitual physical activity and lifestyle behaviours such a 

smoking, are not accounted for in the use of predictive equations for TEE. Only 

biomarkers such as doubly (deuterium) labelled water (DLW) (Schoeller, 1988) and 

urinary nitrogen (Bingham and Cummings, 1985; Bingham, 2003)  provide an unbiased 

assessment of true total energy expenditure and protein intake. After deuterium is 

administered, the labelled hydrogen is eliminated as water and the oxygen isotope as 

water and carbon dioxide; these represent accurate measures of TEE which are 

assumed to equate to TEI (in energy balance)/amongst stable weight individuals. These 

biomarkers are non-invasive and non-restrictive and therefore ideal for free living 

subjects, however they are expensive to administer in large epidemiological studies.         
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DLW has dispelled the theories that advocated additional training in the recording of EI 

and ‘metabolic efficiency’ and shown that under-reporting is present amongst obese 

persons, obese adolescents, post-obese persons, athletes, soldiers allowed to eat ad 

libitum and high altitude explorers (Hill and Davies, 2001). In females (18 – 57 y) TEE 

was determined by doubly labelled water and EI estimated by 3 24 h recalls, a 3 d food 

diary and a FFQ. Frequent under-reporters had a greater BMI, social desirability and 

body dissatisfaction score and lower incomes (Scagliusi et al., 2009). Social desirability 

and social approval were found to distort estimates of EI in a manner that varied by 

educational status (Hebert et al., 2002) and under-reporting was linked to increased 

adiposity and body size, dietary restraint and socioeconomic status in (Hill and Davies, 

2001).   

 

In a systematic review by (Poslusna et al., 2009) 37 relevant studies of misreporting of 

dietary intake in adults were identified where EI was assessed by 24 h recall (16 studies) 

or estimated (11)/ weighed (11) food records. Methods most used to identify 

misreporting were Goldberg (45% studies) and DLW (24%). The percentage of under-

reporters across all studies averaged 30% which is consistent with present 

observations. 

 

In the NORKOST Study (Johansson et al., 1998) 3144 Norwegian men and women (16 – 

79 y) completed a self-administered FFQ. BMR was calculated from standard equations 

(Schofield, 1985) and the ratio EI:BMR < 1.14 (Goldberg GR, 1991) used to identify the 

lowest value for EI:BMR that could reflect actual EI over a given period (referred to as 

severe under-reporters). The range EI:BMR 1.14 – 1.34 was used to define under-

reporters and a ratio EI:BMR ≥ 2.4 identified over-reporters. Participant mean age and 

BMI was 42.7 y (24.6 kg/m2) in men and 41.6 y (23.4 kg/m2) in women. In the 

NORKOST study 20% of men and 25% of women reported an EI < BMR * 1.14 compared 

with the present study (at age 43 y) in which 21.8% of men and 24.9% of women were 

predicted to have under-reported their energy intake. Notwithstanding a similar 

methodology (the use of Schofield and not Henry/Oxford equations) the higher rates of 

under-reporting in the NSHD could be explained by higher BMIs at 43 y; 25.4 kg/m2 in 

men and 24.7 kg/m2 in women.       
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The covert inspection of thirty-three obese and non-obese females, restricted within a 

metabolic unit, found that energy, carbohydrates, added sugar and between-meal snack 

foods (foods ‘less central to the meal’) were statistically most likely to be under-

reported. Fat and alcohol intakes were under-reported but this was not statistically 

significant. Protein was slightly over-reported (100.9%); among non-obese, percentage 

reported protein was 95% and among obese females this was 105.9%. The author 

hypothesised that under-reporting was a consequence of poor memory as ‘healthy’ and 

‘unhealthy’ foods were both inaccurately reported (Poppitt SD, 1998). 

 

3.8.2 Overweight and obesity 

Among NSHD participants who provided BMI data in all four measurement years, the 

increase in BMI was significant in every year in males and females (Table 3.16).  

 

Table 3.22 Prevalence of overweight and obesity. A comparison of NSHD participants at 

53 and 60 – 64 y with participants of the Health Survey for England, 1999 and 2011 

 
HSE 1999 NSHD 1999 HSE 2011 

NSHD 

2006/10 

Age 45 – 54 y 53 y 55 – 64 y 60 – 64 y 

Overweight (%)     

Males 49 51 44 44 

Females 35 36 36 36 

Obese (%)     

Males 23 19 31 26 

Females 26 22 32 26 

 

The Health Survey for England (HSE) is an annual survey of the adult population (16 – 

≥75 y) comprising a representative sample of the general population living in private 

households in England. It began in 1991 and the latest report was published in 2011 

(n=8610) (Public Health England). When the HSE was carried out in 1999, among those 

aged 45 – 54 y, 49% of males and 35% of females were overweight. In NSHD cohort in 

1999 (when participants were 53 y) 51% of males and 36% of females were overweight 

(Table 3.22). Rates of overweight were therefore comparable between the two cohorts, 

at similar ages. 
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Rates of obesity at 45 -54 y were 4% higher in HSE survey participants compared with 

the NSHD cohort. In the latest HSE among those aged 55 – 64 y rates of overweight are 

identical to those the NSHD cohort at age 60 – 64 y. By comparison, rates of obesity 

among NSHD participants continue to be substantially (5 – 6%) less than in the HSE 

cohort.  

 

3.8.3 The National Diet and Nutrition Survey 

The National Diet and Nutrition Survey (NDNS) provides yearly data on the dietary 

habits and nutritional status of a representative sample of the UK population (1000 - 

1500 individuals), utilising an estimated (un-weighed) 4 d food diary to collect all 

consumption, both inside and outside the home. The NDNS became a rolling programme 

in 2008, and combined data is now available for the years 2008/09, 2009/10 and 

2010/11 (DoH and FSA). A total of 1491 adults (19 – 64 y) completed diaries from 

which mean daily intakes of energy and protein form the basis for this comparison. In 

order to assess the extent of under- and over-reporting, the DLW technique was used to 

measure TEE in a sub-sample of NDNS participants,  however results of these analyses 

will only be published at a later date.  

 

NDNS mean total energy intake for adults was 2151 kcal/d for males and 1614 kcal/d 

for females. Notwithstanding greater age heterogeneity in the NDNS, mean daily energy 

consumption in NSHD participants who provided dietary data in all years was always 

higher than in the NDNS sample in the equivalent age range (19 – 64 y).    

 

In the NDNS (2008/09 – 2010/11) mean adult protein consumption (g/d) was 86.5 g/d 

for males and 65 g/d for females. Protein as a percentage of total energy was 16.4% for 

males and 16.6% for females. Amongst NSHD participants, protein intake as a 

percentage of total energy was always less than in the NDNS. However, greater age 

heterogeneity, especially in the younger age groups may explain this observation.    

 

 

 

 

 



121 

 

3.9 Appendices 

3.9.1 Anthropometry in the 1982 cohort 

Of 2428 individuals who provided dietary data in 1982 (when they were 36 y), height 

and weight data were available to calculate BMI (kg/m2) for 2404 NSHD participants. 

The average male BMI was 24.7 kg/m2 and the average female BMI was 23.4 kg/m2 

(Table 3.23). 

  

Table 3.23 Anthropometry in NSHD participants who provided dietary data in 1982 

 Weight Height BMI (kg/m2) 

 Mean (SD) 

Males 
76.2 (11.2) 

(n=1187) 

1.76 (0.07) 

(n=1179) 

24.7 (3.17) 

(n=1179) 

Females 
61.7 (10.7) 

(n=1231) 

1.62 (0.06) 

(n=1229) 

23.4 (3.91) 

(n=1225) 

 

 

Table 3.24 Classification of BMI in NSHD participants who provided dietary data in 

1982 

 All Males Females 

 n (%) 

Underweight 55 (2.3) 12 (1) 43 (3.5) 

Normal range 1553 (64.6) 668 (56.7) 885 (72.2) 

Overweight 653 (27.2) 434 (36.8) 219 (17.9) 

Obese 143 (5.9) 65 (5.5) 78 (6.4) 

 

Among NSHD participants who provided dietary data in 1982, 2.3% were underweight, 

64.6% had a BMI in the normal range, 27.2% were overweight and 5.9% were obese at 

36 y. The majority of males and females (64.6%) had a BMI in the normal range 

although 42.3% of males and 24.3% of females were either overweight or obese. The 

proportion of males who were overweight was much higher (19% greater) than the 

proportion of overweight females at this age (Table 3.24). 
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3.9.2 Anthropometry in the 1989 cohort 

In 1989, 2280 NSHD participants provided dietary data, and of these 2264 provided 

anthropometric data. Mean male BMI was 25.4 kg/m2 which was overweight according 

to the WHO international classification and mean female BMI was 24.7 kg/m2 which 

was within the normal range (Table 3.25). 

 

 

Table 3.25 Anthropometry in NSHD participants who provided dietary data in 1989 

 Weight Height BMI (kg/m2) 

 Mean (SD) 

Males 
78.3 (11.6) 

(n=1118) 

1.75 (0.07) 

(n=1119) 

25.4 (3.3) 

(n=1118) 

Females 
65.2 (12.0) 

(n=1151) 

1.62 (0.06) 

(n=1148) 

24.7 (4.5) 

(n=1146) 

 

 

Table 3.26 Classification of BMI in NSHD participants who provided dietary data in 

1989 

 All Males Females 

 n (%) 

Underweight 24 (1.1) 7 (0.6) 17 (1.5) 

Normal range 1247 (55.1) 523 (46.8) 724 (63.2) 

Overweight 763 (33.7) 492 (44.0) 271 (23.6) 

Obese 230 (10.2) 96 (8.6) 134 (11.7) 

 

At age 43 y, the majority (55.1%) of NSHD participants had a BMI in the normal range, 

33.7% were overweight and 10.2% were obese. 52.6% of males and 35.3% of females 

were either overweight or obese (Table 3.26).  

 

 

 

 

 

 

 

 



123 

 

3.9.3 Anthropometry in the 1999 cohort 

Of the 1776 NSHD cohort members who provided dietary data in 1999, anthropometric 

data were provided by 1755 individuals. The average male BMI was 27 kg/m2 and the 

average female BMI was 26.9 kg/m2. Both males and females were overweight in terms 

of the WHO international classification (Table 3.27). 

 

Table 3.27 Anthropometry in NSHD participants who provided dietary data in 1999 

 Weight Height BMI (kg/m2) 

 Mean (SD) 

Males 
82.8 (12.9) 

(n=815) 

1.75 (0.07) 

(n=815) 

27 (3.82) 

(n=815) 

Females 
70.5 (14.0) 

(n=943) 

1.62 (0.06) 

(n=946) 

26.9 (5.3) 

(n=940) 

 

 

Table 3.28 Classification of BMI in NSHD participants who provided dietary data in 

1999 

 All Males Females 

 n (%) 

n 1755 815 940 

Underweight 4 (0.2) 1 (0.1) 3 (0.3) 

Normal range 639 (36.4) 244 (29.9) 395 (42.0) 

Overweight 749 (42.7) 415 (50.9) 334 (35.5) 

Obese 363 (20.7) 155 (19.0) 208 (22.1) 

 

In 1999 the largest proportion (42.7%) of individuals were classified as overweight, 

36.4% had a BMI in the normal range and 20.7% were obese. At age 53 the majority of 

males (50.9%) were overweight and 70% of males and 57.6% of females were either 

overweight or obese (Table 3.28). 
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3.9.4 Energy and protein consumption in the 1982 cohort 

In 1982 when NSHD cohort members were aged 36 y, 2428 individuals provided 

estimates of protein and energy intake via a 5 d food diary.  

 

Table 3.29 Mean daily consumption of energy and protein by NSHD participants who 

provided dietary data in 1982 

 

Males 

Excluding 

predicted 

misreporters 

Females 

Excluding 

predicted 

misreporters  

 Mean (SD) 

 n=1192 n=810 n=1236 n=699 

Mean  energy 

intake (kcal/d) 

2241 

(665.6) 
2541 (459) 

1580 

(500.0) 
1891 (317) 

Mean protein 

intake (g/d) 
78 (22.0) 87 (16.6) 59.2 (16.4) 67 (11.6) 

Mean protein 

intake (g/kg/d) 

1.04 (0.32) 

(n=1187) 
1.2 (0.24) 

0.99 (0.31) 

(n=1231) 
1.2 (0.22) 

Mean protein 

intake as a 

percentage of total 

daily energy 

14.2% (2.4) 13.8% (2.0) 15.5% (3.6) 14.3% (2.1) 

 

Reported mean energy consumption was 2241 kcals/d for males and 1580 kcals/d for 

females. Mean reported protein consumption was 78 g/d for males and 59.2 g/d for 

females in those who provided dietary data in 1982. In males, protein consumption 

averaged 1.04 g/kg/d and in females, 0.99 g/kg/d. After excluding likely misreporters, 

mean protein consumption increased to 87 g/d and 67 g/d in males and females 

respectively, equivalent to 1.2g/kg/d (Table 3.29). 
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3.9.5 Energy consumption by BMI class in the 1982 cohort 

Table 3.30 Mean energy consumption (kcal/d) in male NSHD participants who provided 

dietary data in 1982, by BMI classification  

 Underweight Normal Overweight Obese 

 Mean (SD) 

Daily energy intake 
1750 (619.2) 

(n=12) 

2278 (657) 

(n=668) 

2229 (659) 

(n=434) 

2059 (711) 

(n=65) 

Daily energy intake  

excluding predicted 

misreporters 

2092 (421) 

(n=8) 

2510 (457) 

(n=496) 

2601 (449) 

(n=274) 

2690 (495) 

(n=26) 

 

In 1982 (when participants were 36 y) total daily reported energy intake by overweight 

and obese men was lower than that reported by normal weight men. However, when 

predicted misreporters were excluded from the analysis, this pattern was reversed and 

reported energy intakes increased across all four BMI groups (Table 3.30). 

 

 

Table 3.31 Mean energy consumption (kcal/d) in female NSHD participants who 

provided dietary data in 1982, by BMI classification  

 Underweight Normal Overweight Obese 

 Mean (SD) 

Daily energy intake  
1900 (492) 

(n=43) 

1627 (478) 

(n=885) 

1404 (500) 

(n=219) 

1365 (541) 

(n=78) 

Daily energy intake  

excluding predicted 

misreporters 

1866 (358) 

(n=35) 

1877 (309)  

(n=569) 

1965 (319) 

(n=74) 

2130 (385) 

(n=17) 

 

In females in 1982 females classified as underweight reported the highest mean daily 

energy intake and females classified as obese, the lowest. When estimated misreporters 

were excluded from the analysis, reported energy intake by females increased with 

increasing adiposity class (Table 3.31).  
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3.9.6 Energy and protein consumption in the 1989 cohort 

In 1989 when NSHD study members were aged 43 y, 2280 individuals provided 

estimates of protein and energy intake in a 5 day food diary.   

 

Table 3.32 Average daily consumption of energy and protein by NSHD participants who 

provided dietary data in 1989 

 

Males 

Excluding 

predicted 

misreporters 

Females 

Excluding 

predicted 

misreporters  

 Mean (SD) 

 n=1125 n=809 n=1155 n=801 

Mean  energy 

intake (kcal/d) 

2360 

(671.2) 
2609 (481) 

1793 

(510) 
2010 (342) 

Mean protein 

intake (g/d) 
84.3 (23.1) 91 (18.7) 67.1 (17.7) 72.8 (14.2) 

Mean protein 

intake (g/kg/d) 

1.1 (0.33) 

(n=1118) 
1.2 (0.3) 

1.06 (0.33) 

(n=1151) 
1.2 (0.25) 

Mean protein 

intake as a 

percentage of total 

daily energy 

14.5% (2.41) 14% (2.1) 15.3% (3.04) 14.6% (2.2) 

 

Amongst NSHD participants who provided dietary data in 1989, reported mean energy 

consumption was 2360 kcals/d for males and 1793 kcals/d for females. Mean protein 

consumption was 84.3 g/d for males and 67.1 g/d for females. After excluding predicted 

energy misreporters, mean protein consumption was 91 g/d for males and 73 g/d for 

females, which was equivalent to 1.2 g/kg/d (Table 3.32). 
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3.9.7 Energy consumption by BMI class in the 1989 cohort 

 

Table 3.33 Mean energy consumption (kcal/d) in male NSHD participants who provided 

dietary data in 1989, by BMI classification 

 Underweight Normal Overweight Obese 

 Mean (SD) 

Daily energy intake 
2293 (804) 

(n=7) 

2393 (612) 

(n=523) 

2347 (723) 

(n=492) 

2287 (681) 

(n=96) 

Daily energy intake  

excluding predicted 

misreporters 

2309 (552) 

(n=5) 

2549 (455) 

(n=424) 

2666 (502) 

(n=330) 

2774 (461) 

(n=50) 

 

When estimated misreporters were excluded from the analyses, energy intakes among 

NSHD males who reported dietary data in 1989 increased across all BMI groups (Table 

3.33). 

 

 

Table 3.34 Mean energy consumption (kcal/d) in female NSHD participants who 

provided dietary data in 1989, by BMI classification 

 Underweight Normal Overweight Obese 

 Mean (SD) 

Daily energy intake 
2223 (366) 

(n=17) 

1845 (499) 

(n=724) 

1726 (484) 

(n=271) 

1603 (551) 

(n=134) 

Daily energy intake  

excluding predicted 

misreporters 

2137 (292) 

(n=15) 

1997 (347) 

(n=572) 

2019 (338) 

(n=162) 

2101 (299) 

(n=48) 

 

In 1989 after predicted misreporters were excluded from the analyses, females 

classified as underweight still reported the highest energy intake (2137 kcals/d) (Table 

3.34). 
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3.9.8 Energy and protein consumption in the 1999 cohort 

In 1999 when NSHD study members were aged 53 y, 1776 individuals provided 

estimates of protein and energy intake via a 5 day food diary. 

 

Table 3.35 Mean daily consumption of energy and protein in NSHD participants who 

provided dietary data in 1999 

 

Males 

Excluding 

predicted 

misreporters 

Females 

Excluding 

predicted 

misreporters  

 Mean (SD) 

 n=827 n=544 n=949 n=634 

Mean  energy 

intake (kcal/d) 
 2235 (526) 2486 (372) 1748 (385) 1939 (291) 

Mean protein 

intake (g/d) 
 85.4 (19.1) 92 (16.7) 70.3 (14.9) 75.3 (13.3) 

Mean protein 

intake (g/kg/d) 

1.05 (0.3) 

(n=815) 
1.2 (0.2) 

1.03 (0.3) 

(n=943) 
1.13 (0.2) 

Mean protein 

intake as a 

percentage of total 

daily energy 

15.6% (2.6) 14.8% (2.2) 16.4% (2.8) 15.6% (2.4) 

 

Reported mean energy consumption in 1999 was 2235 kcals/d for males and 1748 

kcals/d for females. Mean reported protein consumption was 85.4 g/d for males and 

70.3 g/d for females. After excluding likely misreporters mean daily protein 

consumption was 92 g/d (1.2 g/kg/d) in males and 75.3 g/d (1.13 g/kg/d) in females 

(Table 3.35). 
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3.9.9 Energy consumption by BMI class in the 1999 cohort 

 

Table 3.36 Mean energy consumption (kcal/d) in male NSHD participants who provided 

dietary data in 1999, by BMI classification 

 Underweight Normal Overweight Obese 

 Mean (SD) 

Daily energy intake 2332 (n=1) 
2277 (508) 

(n=244) 

2226 (515) 

(n=415) 

2210 (574) 

(n=155) 

Daily energy intake  

excluding predicted 

misreporters 

2332 (n=1) 
2417 (362) 

(n=199) 

2474 (341) 

(n=283) 

2771 (414) 

(n=61) 

 

 

 

 

Table 3.37 Mean energy consumption (kcal/d) in female NSHD participants who 

provided dietary data in 1999, by BMI classification 

 Underweight Normal Overweight Obese 

 Mean (SD) 

Daily energy intake 
2003 (486) 

(n=3) 

1765 (359) 

(n=395) 

1729 (373) 

(n=334) 

1746 (445) 

(n=208) 

Daily energy intake  

excluding predicted 

misreporters 

2003 (486) 

(n=3) 

1888 (280) 

(n=315) 

1939 (269) 

(n=215) 

2108 (306) 

(n=99) 
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CHAPTER 4 

 

 

 

Diurnal Patterns of Energy and Protein Consumption 

 

 

4.1 Introduction 

Time of day and proportions of macronutrients consumed are related to total daily food 

intake (de Castro, 2007). High morning carbohydrate, fat and protein intake was 

associated with reduced daily carbohydrate, fat and protein intake respectively – the 

effect was macronutrient-specific. In comparison, high evening intake of either total 

food energy, carbohydrate or fat was associated with a higher overall daily energy 

intake. Consumption of low-density food in the morning and avoiding the consumption 

of high-density foods between 5 pm and the early hours of the morning was associated 

with a reduction in daily energy consumption (de Castro, 2009).   

 

There is a paucity of research on diurnal patterns of consumption, and in particular 

protein consumption. In 2012 (Tieland et al., 2012a) described protein intakes across 

the day in community-dwelling, frail and institutionalised elderly. In community-

dwelling individuals (two groups (65 – 74 y) and (75 – 97 y) protein intakes were 

particularly low (10 ± 10 g) at breakfast. In the frail and the institutionalised, protein 

intake at breakfast was 8 ± 5 g and 12 ± 6 g, respectively. Although daily protein intakes, 

relative to body mass (0.8 – 1.1 g/kg/d) were well above the recommendation (0.8 

g/kg/d) protein distribution throughout the day was uneven, and provided scope for 

improvement. The authors, referring to the research of (Paddon-Jones D, 2009) 

suggested that by increasing protein at breakfast (to at least 20 g) this may represent a 

dietary strategy for the postponement of sarcopenia in older people.  
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In a randomised double-blind, placebo-controlled trial (Tieland et al., 2012c) 65 frail 

(the (Fried et al., 2001) criteria) elderly (mean age 81 y and 78 y) subjects received 

either 15 g of protein after breakfast and lunch or a placebo, for 24 weeks. Primary 

outcome was DEXA-measured lean mass and secondary outcomes were muscle fibre 

CSA, strength (1 maximum repetition leg press), hand grip strength and short physical 

performance battery (SPPB) (balance, gait speed and chair rise). There was no 

significant time, treatment or treatment x time interaction effects on any of the body 

composition parameters; hand grip strength did not improve and leg press improved in 

both groups. The SPPB score increased significantly in the protein group only, the chair 

rise component showing the greatest improvement (13.7 ± 1.0 to 11.1 ± 1.1 seconds), 

the treatment x time interaction (p=0.055). Referring to the (Paddon-Jones D, 2009) 

protein recommendation of ≥ 20 g per meal, after supplementation the protein group 

consumed ≥ 25 g at each meal compared with the placebo group who consumed 11 ± 1 g 

at breakfast and 17 ± 2 g at lunch. In a second (related) randomised double-blind, 

placebo-controlled trial (Tieland et al., 2012b) two groups of frail, elderly subjects 

(mean age 79 (placebo) and 78 y (protein)) were further randomised to a 24 week 

resistance exercise (RE) training programme. Primary and secondary outcomes were as 

above. In sharp contrast to (Tieland et al., 2012c) there were significant increases in 

lean mass (1.3 kg) and appendicular lean mass (0.9 kg) in the protein group only; 

treatment x time interactions, p=0.006; p<0.001. Strength and physical performance 

improved in both groups with no significant treatment x time interaction effect. The 30 

g protein supplementation, which was a prerequisite for the gain muscle mass, 

increased daily intakes from 1.0 to 1.4 g/kg/d without reducing daily energy intake.   

 

In a cross-sectional pilot study, conducted in 78 older adults (mean age 68.7 y) diet was 

assessed by 3 non-consecutive 24 h recalls and appendicular skeletal muscle mass by 

dual-energy X-ray absorptiometry (Ruiz Valenzuela RE, 2013). Subjects were grouped 

by whether they had consumed > 25 g of protein during at least one (main meal) or not. 

Appendicular skeletal muscle mass differences between the groups became insignificant 

after adjusting for body weight, gender and height.    

 

 



132 

 

In 17 younger subjects (35 ± 3 y) and 17 older (68 ± 2 y) subjects, changes in muscle 

protein synthesis in response to 30 g (113 g of 90% lean beef) and 90 g (340 g) servings 

of protein were examined (Symons et al., 2009). Under resting conditions, protein 

synthesis after ingestion of both servings increased mixed muscle FSR values in both 

young and elderly subjects. The authors recommended multiple, moderate-sized 

servings of high quality protein throughout the day rather than a single large dose to 

optimise muscle growth.   

 

In 2012 (Volpi et al., 2013) specifically enquired – is the optimal level of protein intake 

for older adults greater than the current Recommended Dietary Allowance? In the 

United States this is currently 0.8 g/kg/d (Rand et al., 2003). As ageing is associated 

with a blunted anabolic response to dietary amino acids, a purported threshold dose of 

leucine for stimulation of muscle protein synthesis in older adults is suggested to be ~3 

g, corresponding to the per meal recommendation of 25 – 30 g by (Paddon-Jones D, 

2009). The authors infer that any meal containing < 3 g leucine would be less anabolic 

for skeletal muscle in older adults, leading to alternative utilisation of dietary protein – 

oxidation or lipogenesis. As NHANES III data indicate that older American adults have a 

mean daily intake of ~0.9 g/kg/d but consume ~50% of their daily protein at dinner, 

average weight individuals (70 kg) are stimulating muscle protein synthesis only at the 

evening meal.     

 

As discussed, many researchers (Arnal et al., 1999; Cuthbertson D, 2005; Katsanos et al., 

2005; Boirie, 2009; Paddon-Jones D, 2009; Symons et al., 2009; Breen and Phillips, 2011; 

Pennings et al., 2012; Tieland et al., 2012a; Bouillanne et al., 2013; Ruiz Valenzuela RE, 

2013; Volpi et al., 2013) have made reference to the fact that per meal protein intake 

may be more important than total daily protein intake, where this is spread out over 

several meals, especially in relation to the maintenance of muscle mass in older people 

and the prevention of sarcopenia. Specific protein feeding strategies, suggests (Bauer et 

al., 2013), represent advancing refinement in our understanding of muscle protein 

synthesis in older people. With a higher per-meal protein threshold for the stimulation 

of muscle protein anabolism, evidence suggests that a per meal protein consumption of 

25 – 30 g (containing 2.5 – 2.8 g of leucine) and an even distribution across the day may 

offer benefits.   
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This chapter will examine trends in diurnal patterns of protein and energy consumption 

as reported by estimated 5 d food diary by NSHD participants who provided dietary 

data in all years. The approach to meal identification was as reported by (Almoosawi et 

al., 2012). This is an examination of how participants consumed energy and protein 

across the day based upon consumption recorded in estimated 5 d food diaries. The two 

24 h recalls, completed by participants in 1982 and 1989, are not discussed here.  

 

4.2 Eating occasions 

Meal slots were labelled as follows: 

 

Table 4.1 Labelled meal slots in 5 d food diaries completed by NSHD participants in 3 

measurement years, 1982 - 1999 

 1 

Pre 

breakfast  

2 

Breakfast  

3 

Mid- 

Morning 

4 

Lunch 

5 

Tea 

6 

Evening Meal 

7 

Late 

Evening 

8 

Extras 

 

Extras was a slot provided for participants to record consumption not otherwise 

allocated to any other eating occasion. Meal slots were specifically labelled (Table 4.1) 

in the diaries, but eating occasions were subjectively interpreted by individuals 

completing the food diary. Times were not stated in the diary and were not required to 

be given by participants. 
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4.3 Diurnal energy consumption 

Energy consumption across the day was examined in order that protein density of 

mealtime energy could be determined.  

 

4.3.1 Meal energy (kcals) 

 

Table 4.2 Outcomes of GLM repeated measures analysis: Mean meal energy intakes 

(kcal) amongst NSHD participants who provided dietary data in all years 

 Males 

(n=568) p-value 

Females 

(n=695) p-value 

Meal 1982 1989 1999 1982 1989 1999 

1 23 25 29 0.226 15a 16a 18b 0.014 

2 316 332 316 0.095 245 244 255 0.066 

3 94a 110b 93a 0.010 63 69 66 0.127 

4 654a 699b 608c <0.001 461a 514b 481c <0.001 

5 101a 113 122b 0.004 84a 96b 104b <0.001 

6   932a 851b 798c <0.001 679 693a 662b 0.012 

7 169a 205b 189 0.004 115a 140b 124a <0.001 

8 0.1a 116b 107b <0.001 0.1a 86b 67c <0.001 
GLM Repeated measures analysis (time) with Bonferroni adjustment for multiple comparisons. Where 

Mauchly’s Test (of Sphericity) was significant (p<0.05) i.e. the assumption of sphericity was violated, the 

Greenhouse-Geisser corrected probability was reported. Where subscript letters are the same there was 

no significant difference between values, where subscript letters are different there was a significant 

difference between values. 

In the subset of NSHD participants who reported dietary data in all 3 years there was no 

significant change in mean energy consumption (kcals) at breakfast (meal 2). Energy 

consumption at lunch (meal 4) was significantly different in all years for males and 

females; in males increasing in 1989 and decreasing in 1999 to a level below that 

reported in 1982. In females, lunchtime consumption also increased in 1989 falling in 

1999 but to a level still higher than that reported in 1982. Mean energy consumption at 

tea (meal 5) increased significantly across the 3 measurement periods in males and 

females.  Mean energy consumption at the evening meal (meal 6) fell significantly across 

adulthood in males, whereas in females, consumption only fell between 1989 (at 43 y) 

and 1999 (at 53 y) (p=0.012) (Table 4.2). 
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4.3.2 Meal energy (as a percentage of total daily energy) 

 

Table 4.3 Outcomes of GLM repeated measures analysis: Mean meal energy intakes (as a 

percentage of total daily energy) amongst NSHD participants who provided dietary data 

in all years 

 Males 

(n=568) p-value 

Females 

(n=695) p-value 

Meal 1982 1989 1999 1982 1989 1999 

1 1 1 1 0.172 1 0.8a 1b 0.003 

2  14 13 14 0.052 15a 13b 14a <0.001 

3 4 4 4 0.040 4 4 4 0.827 

4 29a 29a 27b <0.001 28 28 27 0.078 

5 4a 5a 5b <0.001 5a 5a 6b 0.001 

6   41a 35b 36b <0.001 41a 38b 37b <0.001 

7 7 8 8 0.048 7 7 7 0.109 

8 0.005a 4b 5b <0.001 0.01a 4b 4c <0.001 
GLM Repeated measures analysis (time) with Bonferroni adjustment for multiple comparisons. Where 

Mauchly’s Test (of Sphericity) was significant the Greenhouse-Geisser probability was reported. Only 

where subscript letters are different was there a significant difference between values. 

 

In 1982/89 lunch (meal 4) consumption provided 29% of total daily energy intake (TE) 

in males; this fell significantly in 1999 to 27% of TE. The evening meal, which provided 

41% of TE in 1982 provided significantly less (35 – 36% of TE) in 1989/99. A similar 

pattern was seen in females (Table 4.3).  
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4.4 Diurnal protein consumption 

4.4.1 Meal protein (g) 

 

Table 4.4 Outcomes of GLM repeated measures analysis: Mean meal protein intakes (g) 

for NSHD participants who provided dietary data in all years 

 Males 

(n=568) p-value 

Females 

(n=695) p-value 

Meal 1982 1989 1999 1982 1989 1999 

1 0.6a 0.8b 1b <0.001 0.5a 0.7b 0.9c <0.001 

2  10a 11b 11b 0.001 8a 8a 9b <0.001 

3 2.6a 3.5b 3 0.001 1.7a 2b 2b 0.002 

4 25 26 25 0.064 19a 20b 20b <0.001 

5 2.5a 3 3.5b <0.001 2a 2.6b 3c <0.001 

6   35 36 37 0.052 28a 30b 31b <0.001 

7 2.6a 5b 5b <0.001 2a 4b 3.5c <0.001 

8 0.01a 1.5b 1.3b <0.001 0.01a 1b 1b <0.001 
GLM Repeated measures analysis (time) with Bonferroni adjustment for multiple comparisons. 

Greenhouse-Geisser probability was reported where the assumption of sphericity was violated. Only 

where letters are different was there is a significant difference between values. 

 

In female NSHD participants who provided dietary data in all years, meal protein 

consumption (g) at breakfast (meal 2) increased significantly to a mean of 9 g in 1999 

from a mean of 8 g reported in 1982/89. Protein consumption at lunch (meal 4) and at 

the evening meal (meal 6) increased in 1989 to a mean of 20 and 30 g from a mean of 19 

and 28 g reported in 1982, respectively. In males protein consumption at breakfast 

(meal 2) averaged 11 g in 1989/99 up from a mean of 10 g reported in 1982. Protein 

consumption at lunch (meal 4) and at the evening meal (meal 6) did not differ 

significantly across the 3 measurement periods in males, always averaging ≥ 25 g and 

≥35 g, respectively.   

 

In 1999 when NSHD participants were aged 53 y, at the 3 main eating occasions 

(breakfast, lunch and the evening meal) males were consuming on average 11 g, 25 g 

and 37 g of protein, respectively; whereas females were consuming on average 9 g, 20 g 

and 31 g at the 3 main meals across the day (Table 4.4). 
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4.4.2 Meal protein (as a percentage of meal energy) 

 

Table 4.5 Outcomes of GLM repeated measures analysis: Mean meal protein intake (as a 

percentage of meal energy) for NSHD participants who provided dietary data in all 

years 

 Males 

(n=568) p-value 

Females 

(n=695) p-value 

Meal 1982 1989 1999 1982 1989 1999 

1 8a 10b 12c <0.001 11a 14b 16c <0.001 

2  13a 13b 14c <0.001 13a 14a 14b <0.001 

3 13a 15b 15b 0.001 15 16 16 0.294 

4 16a 15b 16c <0.001 17a 16b 17a <0.001 

5 11a 13b 13b <0.001 12a 14b 14b 0.001 

6  16a 17b 19c <0.001 17a 18b 19c <0.001 

7 6a 11b 11b <0.001 7a 13b 12b <0.001 

8 3.4 3.6 3.6 0.750 4 4 3.8 0.595 
GLM Repeated measures analysis (time) with Bonferroni adjustment for multiple comparisons. 

Greenhouse-Geisser probability was reported where the assumption of sphericity was violated. Only 

where letters are different was there is a significant difference between values. 

 

Protein, as a percentage of meal energy (protein density) increased significantly at all 3 

main meals in all measurement years in males. In 1999, the protein density of breakfast, 

lunch and the evening meal was 14, 16 and 19%. In females, meal protein as a 

percentage of meal energy at breakfast, lunch and at the evening meal was 14, 17 and 

19% in 1999 when they were age 53 y (Table 4.5).    
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4.4.3 Meal protein (as a percentage of total daily protein) 

 

Table 4.6 Outcomes of GLM repeated measures analysis: Mean meal protein intake (as a 

percentage of total daily protein) for NSHD participants who reported dietary data in all 

years 

 Males 

(n=568) p-value 

Females 

(n=695) p-value 

Meal 1982 1989 1999 1982 1989 1999 

1 1a 1 1b 0.002 1a 1b 1c <0.001 

2  13 12 13 0.499 13a 12b 13a <0.001 

3 3a 4b 3a 0.002 3 3 3 0.961 

4 32a 30b 29c <0.001 30a 29b 28b <0.001 

5 3a 3a 4b 0.003 3a 4a 4b <0.001 

6   45a 41b 43b <0.001 46a 45b 44b <0.001 

7 3a 6b 5b <0.001 3a 6b 5c <0.001 

8 0.01a 2b 2b <0.001 0.01a 2b 1c <0.001 
Bonferroni adjustment for multiple comparisons. Where the assumption of sphericity was violated 

Greenhouse-Geisser probability was reported. Only where letters are different was there a significant 

difference between values. 

 

 

In 1999, when male and female NSHD participants were aged 53 y, they consumed 13% 

of their total daily protein at breakfast (meal 2), 29/28% at lunch (meal 4) and 43/44% 

at the evening meal (meal 6) (Table 4.6).   
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4.4.4 Meal Muscle Protein Synthesis Score  

Chapter 2 (Section 2.4) provides an overview of the evidence for the impact of quantity 

(and quality) of ingested protein per meal on muscle protein synthesis. A rationale for 

the derivation of the score, the use of a 20 g marker and an explanation of its 

implementation and calculation is given.    

 

Table 4.7 Number and percentage of NSHD participants, who reported dietary data in all 

years, who consumed as much as 20 g of protein at eight eating occasions across the day 

 Males (n=568) Females (n=695) 

1982 1989 1999 1982 1989 1999 

1 n=1 (0.2) 0 n=1 (0.2) 0 0 0 

2 

Breakfast  

n=36  

(6.3%) 

n=57 

 (10%) 

n=53 

 (9.3%) 

n=5 

 (0.7%) 

n=12 

(1.7%) 

n=8 

 (1.2%) 

3 8 (1.4) 15 (2.6) 5 (0.9) 0 0 0 

4 

Lunch 

n=390 

 (68.7%) 

n=417 

 (73.4%) 

n=385 

 (67.8%) 

n=287 

 (41.3%) 

n=325 

 (46.8%) 

n=325 

 (46.8%) 

5 6 (1.1) 6 (1.1) 10 (1.8) 0 1 (0.1) 7 (1) 

6 

Evening 

meal   

n=511 

 (90%) 

n=512 

 (90.1%) 

n=524  

(92.3%) 

n=551 

 (79.3%) 

n=599 

 (86.2%) 

n=617 

 (88.8%) 

7 6 (1.1) 23 (4) 11 (1.9) 2 (0.3) 6 (0.9) 4 (0.6) 

Extras 0 2 (0.4) 0 0 0 1 (0.1) 

 

In 1999, when NSHD participants were aged 53 y, ~9% of males consumed as much as 

20 g of protein at breakfast (meal 2), the percentage of females who consumed ≥ 20 g of 

protein at breakfast was 1.2%. At lunch (meal 4) ~68% of males consumed ≥ 20 g of 

protein, by comparison the equivalent percentage of females consuming this amount of 

protein was 47%. 

 

At the evening meal, across all 3 measurement years, ≥ 90% of males consumed as 

much as 20 g of protein. In females, the percentage consuming at least this amount of 

protein ranged from 79.3 – 88.8% across 3 measurement years (Table 4.7).    
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4.4.5 Daily MPSS 

The frequency with which ≥ 20 g of protein was consumed, at any of eight eating 

occasions (scored 1), was summed to provide daily muscle protein synthesis scores in 

each measurement year. Gender differences in group membership were tested using 

crosstabs/the Chi-square test of association (Pearson Chi-Square) (2-sided)(adjustment 

for multiple testing was not possible (increased chance of a type 1 error)). 

 

 

Table 4.8 Total daily muscle protein synthesis scores, 1982 – 1999, among NSHD 

participants who provided dietary data in all years  

 Males (n=568) Females (n=695) 

Muscle 

Protein 

Synthesis 

Score 

1982 1989 1999 19821 19892 19993 

0 28 (4.9) 15 (2.6) 8 (1.4) 93 (13.4) 59 (8.5) 43 (6.2) 

1 160 (28.2) 138 (24.3) 176 (31) 364 (52.4) 340 (48.9) 349 (50.2) 

2   343 (60.4) 357 (62.9) 340 (59.9) 233 (33.5) 285 (41) 296 (42.6) 

3 36 (6.3) 53 (9.3) 43 (7.6) 5 (0.7) 11(1.6) 7 (1) 

4 1 (0.2) 4 (0.7) 1 (0.2)    

5  1 (0.2)     
11982 Chi-Square test for estimated misreporting: χ2 (4) = 148.5, p<0.001; 21989 Chi-Square 

test for estimated misreporting: χ2 (5) = 140.8, p<0.001; 31999 Chi-Square test for estimated 

misreporting: χ2 (4) = 99.2, p<0.001. 

 

Across 3 measurement periods, the greatest proportion of males consistently consumed 

≥ 20 g of protein on 2 occasions across the day. In 1982 this was 60.4% increasing 

slightly to 62.9% in 1989. In 1999 the proportion of males consuming ≥ 20 g of protein 

on two occasions fell to < 60%. Concurrently, those consuming ≥ 20 g on 1 occasion in 

the day increased from 24.3% in 1989 to 31% in 1999. In 1982 when males were aged 

36 y, ~5% never consumed as much as 20 g of protein at any of eight eating occasions 

across the day. When they were 53 y, this proportion had fallen to 1.4% of males. In 

1982, 52.4% of females aged 36 y consumed ≥ 20 g of protein on 1 occasion in the day 

whereas 13.4% never consumed as much 20 g at any of eight eating occasions (Table 

4.8). 
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In 1989, when females were aged 43 y, the proportion never consuming as much as 20 g 

fell to 8.5% and 41% consumed ≥ 20 g on 2 occasions across the day. In 1999 (when 

aged 53 y) the proportion never consuming as much as 20 g at any eating occasion 

across the day had fallen to 6.2% and the proportion consuming at least 20 g on 2 

occasions, had increased to 42.6% (Table 4.8).      

 

4.4.6 Derivation of adulthood MPSS 

An adulthood muscle protein synthesis score was calculated as described in Chapter 2, 

i.e. daily scores for 1982 – 1999 were summed for individuals who had provided dietary 

data in all years (see Figure 4.1). These scores reflected the frequency with which ≥ 20 g 

protein had been consumed across the day throughout adulthood (36 – 53 y).  

 

 

Figure 4.1 Derivation of an adulthood muscle protein synthesis score in NSHD 

participants who provided dietary data in all 3 years 
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Table 4.9 The number and percentage of NSHD participants who provided dietary data 

in all years by adulthood muscle protein synthesis score 

Adulthood muscle 

protein synthesis 

score 

Males (n=568) Females (n=695) 

0  2 (0.3) 

1  15 (2.2) 

2 14 (2.5) 72 (10.4) 

3 41 (7.2) 172 (24.7) 

4 98 (17.3) 191 (27.5) 

5 160 (28.2) 157 (22.6) 

6 180 (31.7) 78 (11.2) 

7 51 (9) 6 (0.9) 

8 18 (3.2) 2 (0.3) 

9 5 (0.9)  

10 1 (0.2)  

 

 

The adulthood muscle protein synthesis score ranged from 2 to 10 in males and 0 to 8 in 

female NSHD participants who had provided dietary data in all years. The identification 

of low protein consumers using the adulthood muscle protein synthesis score is 

described in Chapter 2, i.e. those in the lowest gender-specific quartile of score. This is 

shaded for males and females in Table 4.9 above.     

 

Among males, 180 (31.7%) had an adulthood muscle protein synthesis score of 6, this 

equates to consumption of ≥ 20 g of protein on two occasions across the day in each 

measurement year; a pattern of protein consumption seen in 78 (11.2%) of females.    
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4.5 Discussion  

This chapter examined diurnal patterns of protein and energy consumption in NSHD 

participants, who provided dietary data via a 5 d food diary at all 3 measurement 

periods (1982, 1989 and 1999) when they were aged 36, 43 and 53 years, respectively. 

Diurnal eating occasions (meal slots) were labelled as described in (Table 4.1). The 

labelling of meals in this manner may have imposed a particular structure of diurnal 

consumption onto NSHD participants and introduced an element of subjectivity into the 

data collection.  

 

Protein intakes at all main meals (breakfast, lunch and the evening meal) and in all 

years, was higher in males compared with females. Male intakes were consistently 2 – 3 

g higher at breakfast, 5 – 6 g higher at lunch and 6 – 7 g higher at the evening meal. 

 

The research available on diurnal patterns of consumption, i.e. that of (Tieland et al., 

2012a) and (Ruiz Valenzuela RE, 2013) concerns older (≥ 65 y) subjects and as such is 

not directly comparable to the present cohort. Where comparisons are made with the 

(Tieland et al., 2012a) study these are with the younger community-dwelling group (65 

– 74 y) and not those aged 75 – 97 y. In the (Tieland et al., 2012a) study, protein intakes 

were not split by gender as in (Ruiz Valenzuela RE, 2013) which made comparisons 

with NSHD female intakes difficult. Difficulties also arose in relation to meal time 

nomenclature; lunch may often comprise the main protein-containing meal, especially 

in older cohorts whereas dinner may be a smaller meal, arguably more comparable to 

lunch among the NSHD cohort.    

 

In the NSHD cohort, protein intakes at breakfast were 8 – 11 g which was in accordance 

with the 10 g intakes observed by (Tieland et al., 2012a) among community-dwelling 

Dutch subjects, but much less than the 15 – 19 g intakes observed among Caucasian 

Mexican adults by (Ruiz Valenzuela RE, 2013); this may be explained by differences in 

habitual diet and the frequent consumption of protein from animal sources among this 

cohort.  
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Lunch time protein intakes among the NSHD cohort were 25 – 26 g in males and 19 – 20 

g in females. Average lunch time protein intakes among the Dutch community-dwelling 

subjects (Tieland et al., 2012a) were 27 ± 15 g; however, 70% of these subjects 

consumed a ‘bread containing meal’ which provided 19 ± 9 g. Where a hot meal was 

consumed, protein intakes averaged 39 ± 16 g. Protein provided by a bread-containing 

meal was consistent with intakes reported by female NSHD participants, but among 

males, protein consumption was more consistent with overall mean lunchtime intakes, 

which included those who consumed a hot meal. Among the Mexican cohort, the midday 

meal (lunch) was typically the main meal of the day and was arguably more comparable 

with the evening meal consumed by the NSHD cohort. Protein intakes at dinner in this 

cohort (comparable to lunch intakes in the NSHD) were 14 and 20 g among females and 

males, respectively. Comparing these intakes to lunchtime intakes among the NSHD 

cohort, females were consuming 5 – 6 g more and males 5 – 6 g more. 

 

At the evening meal protein intakes among the NSHD cohort were 35 – 37 g in males 

and 28 – 30 g in females. While increases in absolute protein intakes were insignificant 

(with the exception of 1982 – 1989 in females only), these meal intakes reflected a 

general decline in protein consumption, as a percentage of total daily protein 

consumption. In 1982 males and females consumed 45 – 46% of daily protein at the 

evening meal, this declined significantly in 1989 and remained unchanged in 1999.  

 

Among the community-dwelling Dutch cohort (Tieland et al., 2012a) average protein 

intake at the evening meal was ~32 g while among the Mexican cohort, protein intake at 

the main meal was 27 and 33 g in females and males, respectively. Among male NSHD 

participants, protein intakes at the evening meal were 2 – 5 g higher; whereas among 

NSHD females, protein intakes were 1 – 3 g higher than those seen in the Mexican 

cohort.      

 

 

 

 

 

 



145 

 

Drawing on observations provided by NHANES III data, (Volpi et al., 2013) observed 

that older Americans typically consume ~50% of daily protein at dinner. By comparison, 

the trend amongst NSHD participants was towards a lower percentage of total daily 

protein at the evening meal. As this cohort ages, this trend (accompanied by increasing 

protein intakes at lunch and maintenance of adequate daily intakes) may attenuate the 

age-related effects of anabolic resistance. 

  

In terms of the (Paddon-Jones D, 2009) 25 – 30 g per meal recommendation, NSHD 

males (at 53 y) met the recommendation at lunch and at dinner, whereas females met 

the recommendation only at the evening meal. However, it must be stated that these 

recommendations are primarily aimed at older subjects who exhibit protein anabolic 

resistance and higher splanchnic extraction of amino acids (altered protein metabolism) 

and may also have higher protein needs due to inadequate protein consumption, 

chronic and acute (inflammatory) diseases and greater inactivity/immobility (Bauer et 

al., 2013).        
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CHAPTER 5 

 

 

 

Physical Activity and Physical Capability 

 

5.1 Introduction 

5.1.1 Physical activity  

This aims of this chapter are to report adulthood habitual leisure time physical activity 

as measured in 1982 (at 36 y), 1989 (at 43 y) and 1999 (at 53 y) and various measures 

of physical capability and anthropometry (including body composition) at different 

measurement points. Secular trends and important relationships are statistically 

investigated. 

 

The particular value of longitudinal cohort studies are that they provide data on 

physical activity for the same individuals at several points in the lifecourse and changes 

in physical activity behaviour across adulthood may be investigated. The individual 

physical activity trajectory may be important – regardless of the level of physical 

activity in early adulthood, those who reduce their physical activity over time may fare 

differently from those who maintain physical activity across adulthood. Cross-sectional 

studies have the limitation of temporality – it is impossible to determine the time order 

of events and to impute causation, and randomised control studies (RCTs) may 

specifically investigate a particular types of activity which may not represent habitual 

physical activity in the general population.  

 

 

 

 



147 

 

Physical inactivity worldwide causes 6% of the burden of disease from CHD, 10% of 

breast and colon cancer and 9% of premature mortality (Lee et al., 2012). Physical 

inactivity is one of the major modifiable risk factors associated with myocardial 

infarction (Anand et al., 2008) and stroke (O'Donnell et al., 2010).    

 

The association between physical activity during the lifecourse and bone mineral 

content (BMC) in later life was evaluated in a systematic review (Bielemann et al., 2013). 

Pooled analyses were not possible due to the heterogeneity of the studies, mainly in the 

different instruments used to measure physical activity, but positive associations 

between physical activity and bone mass were found (more in males than in females).  

 

In a systematic review (Fogelholm, 2010) risk for all-cause and cardiovascular mortality 

was lower in individuals with good aerobic fitness notwithstanding a high BMI, 

compared with individuals with poor fitness and normal BMI. However, a high BMI was 

associated with a greater risk of type 2 diabetes (and the prevalence of cardiovascular 

and diabetes risk factors) notwithstanding higher physical activity compared with a 

normal BMI and low physical activity. These finding were consistent with a systematic 

review by Blair and Brodney (Blair SN, 1999) who concluded inter alia that physical 

activity attenuated the health risks associated with overweight and obesity; active 

obese individuals had lower morbidity and mortality than their sedentary, normal 

weight counterparts and inactivity and lower cardiorespiratory fitness were as 

important as adiposity in predicting mortality.    

 

A major determinant of cardiovascular fitness is habitual physical activity (a genetic 

component explains 25 – 40% of the variability in fitness) (Wei et al., 1999) and low 

cardiovascular fitness adds to overweight and obesity in adversely influencing mortality. 

The relative risk associated with low cardiovascular fitness was found to be comparable 

to those for diabetes, hypercholesterolemia, hypertension and smoking (Wei et al., 

1999).   
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In the Hertfordshire Cohort Study, 275 women (mean age 68.2 y) and 229 men (mean 

age 67.9 y) completed a 69 item physical activity questionnaire on the basis of which 

women were classified as either ‘keep fit’ or ‘indoors’ types and men, ‘keep fit’, ‘indoors’ 

or ‘less active’. Cluster analysis revealed that females classified as ‘keep fit’ had 

significantly better hand grip strength and performances at the 3 m walk and chair rise 

test compared with those classified as ‘indoors’. Between male physical activity clusters, 

there were no significant differences in muscle strength or physical performance. In 

describing gender differences, women had significant higher median total energy 

expenditure (TEE) than men – with walking & home activity driving the difference. 

Median-estimated monthly TEE was 665.3 MET.h/month in women and 482.7 

MET.h/month in men. The difference was shown not to be explained by the over-

reporting of physical activity in women (Martin et al., 2008). 

 

Predictors of midlife participation in sports and recreational activity were investigated 

in the NSHD. Those who took part in sports in at 36 y were a ‘selected group’ compared 

with the less active; they had fewer childhood health problems, were assessed as 

socially outgoing in adolescence, were above average at school games, well-educated 

with secondary-educated mothers. The observation that those who were active at work 

engaged in less leisure activity was consistent with evidence from other studies which 

also suggested that those who frequently engaged in sport/recreational activities were 

better educated and had non manual occupations (Kuh, 1992).       

 

In a systematic review and meta-analysis, older adults with chronic musculoskeletal 

pain were found to be less active than asymptomatic controls. The authors concluded 

that physical activity was integral for healthy aging and should be regarded as a central 

non-pharmacological strategy in the management of chronic pain (Stubbs B, 2013).    
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In a systematic review by (Sun et al., 2013) into global levels of physical activity in older 

people (≥ 60 y) 53 studies were included, 49 cross sectional and 4 longitudinal. Physical 

activity included that undertaken as leisure time (most often measured), occupational, 

household and transportation. Physical activity volume was calculated differently 

across studies. Most studies reported that 20 – 60% of their sample met the guideline of 

150 minutes/week (in 10 minute bouts). Only 6 studies used accelerometers (objective 

data) while 48 measured self-reported physical activity (subjective data). Two studies 

compared the subjective and objective data: in an American study (Tucker et al., 2011) 

(using NHANES data) the proportion classified as ‘sufficiently active’ when measured by 

accelerometry was 7.25% and 17.24% (using 2 different guidelines); however this 

increased to 54.2% when measured subjectively (by questionnaire). In a Swedish study 

(Hurtig-Wennlöf et al., 2010) the equivalent proportions were 87% and 72.2% 

respectively.  This latter (contradictory) finding was believed to result from a lower cut-

off point for moderate PA compared with other studies and the inclusion of exercise 

bouts of < 10 minutes duration. Gender differences in self-reported physical activity 

(reported by 22 studies) ranged from 0.8 – 21.4% but when physical activity was 

measured by accelerometry gender differences were 0.2 – 1.5%.  Two studies measured 

physical activity objectively and 18 subjectively across different age groups, and 

reported that the older old were more sedentary than the younger old. When divided 

into narrower bands (compared with dichotomising the data) physical activity 

decreased progressively with age in males and females. The authors observed that 

when investigating trends over time it was crucial that there was comparability in the 

methods; differences in instruments, definitions and physical activity domains posed a 

significant challenge. The authors concluded that more evidence of physical activity 

amongst older physical performance (using validated measurement instruments) was 

required to inform public health strategies.   
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In a prospective cohort study of 416 175 individuals, followed-up after 8 y, participants 

were categorised, based on self-administered physical activity questionnaire, into 5 

categories, inactive, low, medium, high or very high activity. Every 15 minutes of 

exercise (beyond the minimum amount of 15 minutes/d) was associated with a 4% 

reduction in all-cause mortality and a 1% reduction in all-cancer mortality (Wen et al., 

2011). Benefits of daily physical activity were applicable males and females in all age 

groups.   

 

5.1.2 Physical capability   

Age and gender differences in physical capability levels were examined using 

harmonised (cross-sectional) data from eight UK cohort studies including NSHD 

(Cooper R, 2011); physical capability was objectively measured HALCyon cohorts by 

hand grip, chair rise, walking speed and timed up and go. Higher levels were recorded 

by younger participants and males (hand grip strength, chair rise). Gender differences 

in hand grip strength (likely to be explained by differences in body composition) were 

found to diminish with age.  

 

Objective measures of physical capability – hand grip strength, walking speed, chair rise 

time and standing balance time – were found to be suggestive of subsequent health 

(Cooper et al., 2011a) and predictive of all-cause mortality in older populations in 

quantitative systematic reviews and meta-analyses (Cooper et al., 2010).  

 

Diet and its relationship with grip strength were examined in the Hertfordshire Cohort 

Study where muscle function (as measured by grip strength) was found to be positively 

influenced by a single dietary factor, namely fatty fish consumption. In this population, 

at this age, every one additional weekly portion of fatty fish was associated with a 0.43 

kg increase in hand grip strength (in males) and a 0.48 kg increase in women, 

independent of their height, age and birth weight (Robinson et al., 2008).   
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5.2 Leisure time physical activities in 1982 

In the NSHD, data on the nature, frequency and duration of leisure time physical activity 

were collected by questionnaire at ages 36 y (1982), 43 y (1989) and 53 y (1999) as 

described in Chapter 2. In 1982 NSHD participants were asked about their leisure time 

activity e.g. walking, cycling, gardening, DIY and a range of sporting/ recreational 

activities, and classified as either inactive, less active or most active as described in 

Chapter 2.     

 

Table 5.1 NSHD cohort members’ participation in cycling and walking in 1982 

 Inactive Less active Most active 

Males n(%) 406 (24.8) 758 (46.2) 475 (29.0) 

Females n(%) 321 (19.3) 737 (44.0) 602 (36.3) 

 

When NSHD cohort members were 36 y their participation in cycling and walking was 

recorded and these data were available for 3299 individuals; 1639 males and 1660 

females. 22% (n=727) of all respondents reported no participation in this activity and 

were classified as inactive. 45.3% of all respondents were classified as less active and 

32.6% most active, i.e. reporting cycling and walking 5 or more times a month. Walking 

and cycling were reported more frequently by females than males at 36 y (Table 5.1). 

 

 

Table 5.2 NSHD cohort members’ participation in DIY and heavy gardening in 1982 

 Inactive Less active Most active 

Males n(%) 572 (34.8) 605 (36.8) 468 (28.4) 

Females n(%) 948 (57) 516 (31) 200 (12) 

 

Participation in Do It Yourself (DIY) activities (household maintenance/ repair and 

modification) and heavy gardening was recorded at age 36 y and such data were 

available for 3309 cohort members; 1645 males and 1664 females. 1520 individuals 

(45.9%) reported no participation in these activities in the previous month; 1121 

individuals (33.9%) were classified as less active and 668 individuals (20.2%) as most 

active. This activity was reported more frequently by males than females at 36 y (Table 

5.2).   
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Table 5.3 NSHD cohort members’ participation in sport and recreational activities in 

1982 

 Inactive Less active Most active 

Males n(%) 514 (31.2) 435 (26.4) 697 (42.3) 

Females n(%) 705 (42.4) 402 (24.2) 556 (33.4) 

 

Participation in a range of 27 sport and recreational activities was recorded at 36 y and 

this data was available for 3309 cohort members, 1646 males and 1663 females. Most 

frequently reported activities (reported by at least one in 10 men in the previous month) 

were swimming (23.3%), exercises at home (16%), golf (11.6%), jogging (11.1%), 

squash (10.9%), dancing (10%) and football (9.8%). Most frequently reported (by at 

least one in 10 women in the previous month): swimming (24.7%), exercises at home 

(18.2%), dancing (15.4) and movement to music (9.5%)(Kuh, 1992). Because they 

reported no participation in any of the listed leisure time sport/ recreational activities 

in the preceding month, 36.8% of all responders were classified as inactive; 25.3% of 

individuals were classified as less active and 37.9% as most active. The latter reported 

participation in these activities 5 or more times in the previous month. Sport and 

recreational activity was reported more frequently by males than females at 36 y (Table 

5.3). 
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5.2.1 Physical activity at 36 y 

As described in Chapter 2, a summary value for leisure time physical activity at 36 y was 

created and used to classify NSHD respondents as either inactive, moderately active or 

most active, across three investigated activities. These summary statistics are presented 

in Table 5.4  

 

Table 5.4 1982 leisure time physical activity in NSHD participants at 36 y 

 Inactive Moderately active Most active 

Males n(%) 77 (4.7) 1123 (68.6) 438 (26.7) 

Females n(%) 114 (6.9) 1223 (73.7) 322 (19.4) 

 

In 1982 when cohort members were 36 y data on three leisure time physical activities 

were available for 3297 individuals, 1638 males and 1659 females. Of the total cohort in 

1982, 5.8% were classified as inactive, 71.2% as moderately active and 23.1% as most 

active. In this group of individuals more females were inactive and less were most active 

at 36 y than among males. Females had reported more walking and cycling but less 

participation in DIY / heavy gardening and sports/ recreational activities than males at 

this age.   
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5.3 Physical activity at 43 y 

Leisure time physical activity data at 43 y was available for 3262 individuals; 1635 

males and 1627 females 

 

Table 5.5 1989 leisure time activity in NSHD participants at 43 y  

 Inactive Moderately active Most active 

Males n(%) 795 (48.6) 386 (23.6) 454 (27.8) 

Females n(%) 904 (55.6) 367 (22.6) 356 (21.9) 

 

At age 43 y 52.1% of NSHD participants were classified as inactive, 23.1% as moderately 

active and 24.8% as most active with the latter participating in sports, vigorous leisure 

activities or exercise five or more times a month.  

 

 

 

5.4 Physical activity at 53 y 

In 1999 at 53 y, leisure time physical activity data was available for 2986 NSHD 

participants; 1466 males and 1520 females 

 

 

Table 5.6 1999 leisure time activity in NSHD participants at 53 y  

 Inactive Moderately active Most active 

Males n(%) 705 (48.1) 273 (18.6) 488 (33.3) 

Females n(%) 772 (50.8) 245 (16.1) 503 (33.1) 

 

Of the NSHD participants who provided physical activity data in 1999 49.5% were 

classified as inactive, 17.3% as moderately active and 33.2% as most active. 
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5.5 Secular trends in physical activity  

Physical activity data were available in 1982 for 3297 NSHD participants (49.7% were 

male), in 1989 for 3262 (50% were male) and in 1999 for 2986 (49% were male). 

 

Figure 5.1 The proportion of NSHD participants classified as inactive, moderately active 

and most active in 1982 (aged 36 y), 1989 (aged 43 y) and 1999 (aged 53 y) 

 

 

In 1982 only 5.8% of all responders were classified as inactive, this increased 

dramatically to 52.1% in 1989 and falling slightly in 1999 to 49.5%. Conversely, those 

classified as moderately active fell from 71.2% of individuals in 1982 to 17.3% in 1999. 

In comparison, the proportion of individuals classified as most active increased steadily 

from 23.1% in 1982, to 24.8% in 1989 and 33.2% in 1999 (Figure 5.1).        
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Figure 5.2 Percentages of male NSHD participants classified as inactive, moderately 

active and most active in 3 measurement points, 1982 - 1999 

 

 

The proportion of males classified as inactive increased very markedly between 1982 

and 1989 – up from just under 5% to 48.6% in 1989 and then remained stables in 1999 

(48.1%). In contrast, those classified as most active increased steadily over this period 

from 26.7% at age 36 y, to 27.8% at age 43 y and 33.3% at 53 y (Figure 5.2). 
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Figure 5.3 Percentages of female NSHD participants classified as inactive, moderately 

active and most active in 3 measurement points, 1982 - 1999 

 

 

 

The temporal pattern of change in the proportion of women classified as inactive was 

similar to that in men (see Figure 5.2) although the proportion of females classified as 

inactive dropped by nearly 5% in 1999 to 50.8% (Figure 5.3). In all measurement years, 

the proportion of inactive females was higher than inactive males. As with males, the 

proportion of most active females increased steadily over the whole measurement 

period to reach 33.1% in 1999 which is very similar to the proportion of most active 

males in 1999 (33.3%). 
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5.6 The adulthood physical activity score 

A composite physical activity score (PA score), which reflected habitual, leisure-time 

physical activity over the measurement periods 1982 – 1999, was determined by the 

method described in Chapter 2. As described, this score was used to categorise 

individuals as inactive at all 3 ages, more active, active or most active at all 3 ages. The 

present analysis considers those NSHD participants who provided physical activity data 

in all 3 measurement years and such, repeated estimates of adulthood physical activity 

were available for 2589 individuals, 1252 males and 1337 females.    

  

 

Table 5.7 Adulthood physical activity in NSHD participants (n=2589) 

 Inactive 

at all 3 ages 
More active Active 

Most active 

at all 3 ages 

Males n(%) 30 (2.4) 529 (42.3) 448 (35.8) 245 (19.6) 

Females n(%) 54 (4.0) 628 (47.0) 453 (33.9) 202 (15.1) 

 

Pearson Chi-square analysis (without adjustment for multiple testing) revealed that 

there were significant gender differences in physical activity group membership (χ2 = 

16.7 (3) p=0.001). Averaged across all 3 measurement periods, it is apparent that a 

higher proportion of males reported being active or most active than did females (Table 

5.7). 
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5.6.1 Physical activity and BMI 

Physical activity is an important determinant of energy balance and influences the risk 

of obesity. The other major determinant is, of course, dietary energy intake. Conversely, 

those with higher BMI tend to undertake less leisure time physical activity. In addition, 

obesity is an important modulator of both cardiovascular and musculoskeletal health so, 

via the effects on BMI, physical activity may influence physical capability in later life.  

 

This analysis focussed on 1023 NSHD participants (459 males and 564 females) who 

provided dietary data at all three time points, BMI data at all four time points and 

adulthood physical activity data: 

 

Table 5.8 Adulthood physical activity in NSHD participants who provided BMI (kg/m2) 

data at all four time points (n=1021) 

 Inactive 

at all 3 ages 
More active Active 

Most active 

at all 3 ages 

Males n(%) 8 (1.7) 166 (36.2) 192 (41.8) 93 (20.3) 

Females n(%) 15 (2.7) 230 (40.9) 223 (39.7) 94 (16.7) 

 

In this subset of individuals, approximately 80% of participants were either ‘more 

active’ or ‘active’ at all 3 measurement periods. Just under 2% of males and nearly 3% of 

females were ‘inactive’ at all 3 ages, whereas 20.3 and 16.7% of males and females 

respectively were ‘most active’ at all ages (Table 5.8). Pearson Chi-square analysis 

(without adjustment for multiple testing) revealed there was no significant gender 

difference in physical activity group membership (χ2 = 4.45 (3) p=0.217). 
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5.6.1.1 Physical activity and 4 year mean BMI 

For both genders, 4 y mean BMI (mean BMI across 4 measurement points in adulthood 

i.e. 1928, 1989, 1999 and 2006 – 10) was highest for those participants who were 

inactive at all 3 time-points during adulthood and the overall mean BMI was very 

similar for males and females, i.e. 27.3 and 27.5 kg/m2 respectively. In contrast, those 

who were most active at all ages had the lowest 4 y mean BMI for both genders (Table 

5.9). 

 

 

Table 5.9 Four year mean BMI (kg/m2) in NSHD participants by adulthood physical 

activity group averaged across all 3 measurement points 

 Inactive 

at all 3 ages 
More active Active 

Most active 

at all 3 ages 

Males (n) 27.3 (8) 25.9 (166) 26.2 (192) 25.2 (93) 

Females (n) 27.5 (15) 25.6 (230) 24.9 (223) 24.3 (94) 

 

 

Linear regression analysis was used to investigate the relationship between adulthood 

physical activity score and 4 year mean BMI (kg/m2). For this purpose, a simple physical 

activity scoring system was derived which pooled physical activity measurements 

across 3 measurement time-points to produce a composite physical activity score which 

ranged from 0 – 6 (see Chapter 2 (Section 2.7.4) for details). Individual physical activity 

score was used as the independent variable in a linear regression analysis with 4 y 

mean BMI as the dependent variable. This analysis was undertaken separately for males 

and females. In females (n=562) adulthood physical activity score was a good predictor 

of 4 y mean BMI; a one unit increase in the physical activity score was associated with a 

0.45 kg/m2 fall in BMI (p<0.001). In males (n=459) adulthood physical activity score 

was not a good predictor of 4 y mean BMI (p=0.219). 
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5.6.1.2 Physical activity and mean BMI at 60 – 64 y 

As above, for both genders, mean BMI at age 60 – 64 y was highest for those 

participants who were inactive at all 3 time-points during adulthood and mean BMI was 

again very similar for males and females, i.e. 29.4 and 29.8 kg/m2 respectively. Those 

who were most active at all ages had the lowest mean BMI at 60 – 64 y (Table 5.10). 

 

Table 5.10 Mean BMI (kg/m2) at age 60 – 64 y in NSHD participants by adulthood 

physical activity group averaged across all 3 measurement points 

 Inactive 

at all 3 ages 
More active Active 

Most active 

at all 3 ages 

Males (n) 29.4 (8) 27.4 (166) 27.8 (192) 26.4 (93) 

Females (n) 29.8 (15) 27.8 (230) 26.9 (223) 26.1 (94) 

 

 

Linear regression analysis was used to investigate the relationship between adulthood 

physical activity score (the independent variable) and mean BMI (kg/m2) at age 60 – 64 

y (the dependent variable), separately for males and females. In females (n=562) a one 

unit increase in the physical activity score was associated with a 0.53 kg/m2 reduction 

in BMI at 60 – 64 y (p<0.001). In males (n=459) the relationship between adulthood 

physical activity score and BMI at 60 – 64 was not statistically significant (p=0.163).      
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5.6.2 Adulthood physical activity and abdominal circumference  

The distribution of stored body fat has an important effect on health outcomes, in 

particular, abdominal fat storage is associated with poorer health outcomes especially 

for metabolic disease including cardiovascular disease. Abdominal (or waist) 

circumference is a readily-measured surrogate for abdominal adiposity and was used as 

such in the present analysis.  

 

Table 5.11 Mean abdominal circumference at 60 – 64 y by adulthood physical activity in 

NSHD participants 

 Inactive 

at all 3 ages 
More active Active 

Most active 

at all 3 ages 

Males (n) 100.2 (8) 99.9 (166) 100.7 (191) 95.7 (92) 

Females (n) 98.7 (15) 91.8 (230) 90.4 (223) 86.7 (94) 

 

For females, there was a progressive reduction in abdominal circumference at age 60 – 

64 y with increasing physical activity across adulthood with the physically inactive 

women having, on average, 12 cm greater waist circumference than the most active 

women (Table 5.11). In contrast, there was very little difference in mean abdominal 

circumference for men in the inactive, more active and active groups (means ranged 

from 99.9 – 100.7 cm) whereas those in the most active group had a mean waist 

circumference which was 4 – 5 cm smaller. 

 

Using the same scoring system described above, linear regression analysis was used to 

investigate the relationship between adulthood physical activity score and abdominal 

circumference (cm) at 60 – 64 y. Adulthood physical activity score was a good predictor 

of abdominal circumference for both genders. In females (n=562) a one unit increase in 

adulthood physical activity score was associated with a 1.5 cm reduction in abdominal 

circumference at 60 – 64 y (p<0.001) whereas in males (n=457) it was associated with a 

0.95 cm reduction (p=0.004).      
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5.6.3 Adulthood physical activity and body weight at age 60 – 64 y 

Body weight data were available in 2006 – 10 for 2220 individuals, 1062 males and 

1158 females. 

 

 

Table 5.12 Mean body weight (kg) at age 60 – 64 y in NSHD participants by adulthood 

physical activity group averaged across all 3 measurement points 

 Inactive at all 3 

ages 
More active Active 

Most active 

at all 3 ages 

Males (n) 85.5 (17) 84.2 (341) 86.4 (348) 82.6 (185) 

Females (n) 80 (37) 74.9 (447) 72. 7 (361) 70.1 (166) 

 

As with abdominal circumference there was a progressive decline in body weight at age 

60 – 64 y with increasing physical activity across adulthood in females but little 

difference in mean weight for men in the less active groups; only in the most active 

group did males have a mean body weight which was approximately 3 kg less (Table 

5.12). 

     

Linear regression analysis was used to investigate the relationship between adulthood 

habitual physical activity and body weight at 60 – 64 y. In females (n=1011) a 1 unit 

increase in the adulthood physical activity score was associated with a 1.5 kg decrease 

in body weight at 60 – 64 y (p<0.001). In males (n=891) this relationship was not 

statistically significant (B = -0.162) (p=0.562). 
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5.6.4 Adulthood physical activity and body composition 

BMI and abdominal circumference are relatively crude measures of adiposity and e.g. 

cannot distinguish between lean and adipose tissue. The availability of data from DEXA 

scans (Hologic Inc., Bedford, MA) when NSHD participants were aged 60 – 64 y permits 

a more detailed investigation of body composition including consideration of the 

distributions of lean and fatty tissue. In the subset of NSHD participants for whom 

dietary data in all 3 measurement years and BMI data in four measurement years were 

available, DEXA-derived body composition data were available as follows: appendicular 

lean and fat mass (kg) for 768 individuals and whole body fat mass and lean mass (kg) 

for 739 individuals.  

 

Table 5.13 Mean body composition measures (kg) in NSHD participants at 60 – 64 y by 

category of adulthood physical activity 

 Inactive at 

all 3 ages 
More active Active 

Most active 

at all 3 ages 

Males 

Appendicular lean mass (n) 26.4 (4) 24.3 (116) 24.7 (147) 24.6 (79) 

Whole body lean mass (n) 54.6 (4) 53.1 (114) 53.7 (141) 52.8 (74) 

Appendicular fat mass (n) 11.3 (4) 9.9 (116) 10.3 (147) 9.5 (79) 

Whole body fat mass (n) 27.2 (4) 23.5 (114) 24.3 (141) 21.5 (74) 

Females 

Appendicular lean mass (n) 15.4 (8) 15.9 (162) 16.3 (173) 16.1 (78) 

Whole body lean mass (n)  36 (8) 36.7 (156) 37.4 (168) 36.8 (74) 

Appendicular fat mass (n) 16.1 (8) 14.2 (162) 14.0 (173) 13.5 (78) 

Whole body fat mass (n) 32.6 (8) 28.4 (156) 27.8 (168) 25.9 (74) 

 

Among men, appendicular lean mass (kg) at age 60 – 64 y appeared to be unaffected by 

physical activity level across adulthood (range 24.3 – 26.4 kg) whereas appendicular 

lean mass (kg) tended to increase as activity increased for women (Table 5.13). In both 

genders, both appendicular fat mass (kg) and whole body fat mass (kg) declined 

progressively with increasing activity across adulthood. The difference in mean whole 

body fat mass between inactive and most active groups was 5.7 and 6.7 kg for males and 

females respectively.  
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Using the scoring system for adulthood physical activity level as described in Chapter 2, 

linear regression analysis was used to investigate whether physical activity predicted 

body composition at 60 – 64 y. 

 

Table 5.14 Outcomes of linear regression analyses of relationships between adulthood 

PA score and measures of body composition (kg) at age 60 – 64 y 

Body composition measurement 
Number of 

participants 
B p-value 

Males 

Mean appendicular lean mass 348 0.090 0.438 

Mean whole body lean mass 335 0.054 0.829 

Mean appendicular fat mass 348 -0.054 0.593 

Mean whole body fat mass 335 -0.304 0.242 

Mean body fat percentage 335 -0.329 0.070 

Females 

Mean appendicular lean mass 429 0.009 0.901 

Mean whole body lean mass 414 -0.046 0.778 

Mean appendicular fat mass 429 -0.314 0.015* 

Mean whole body fat mass 414 -0.869 0.001* 

Mean body fat percentage 414 -0.723 <0.001* 

 

In females, the adulthood physical activity score predicted appendicular and whole 

body fat mass and body fat percentage at 60 – 64 y. A one unit increase in the physical 

activity score was associated with a 0.3 kg reduction in appendicular fat mass (p=0.015), 

a 0.9 kg reduction in whole body fat mass (p=0.001) and a 0.7% reduction in body fat 

percentage (p<0.001) (Table 5.14). There were no significant (p>0.05) relationships 

between adulthood physical score and body composition at 60 – 64 y in males.      
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5.6.5 Adulthood physical activity and physical capability at age 60 – 64 y 

Linear regression was used to test for relationships between adulthood leisure time 

physical activity (as measured by the lifetime physical activity score) and physical 

capability at 60 – 64 y in a subset of NSHD participants who provided dietary data in all 

3 years of measurement. 

  

Table 5.15 Outcomes of linear regression analyses of relationships between adulthood 

PA score and measures of physical capability at age 60 – 64 y 

Physical capability measurement  
Number of 

participants 
B p-value 

Males 

Chair rise time (s) (n) 433 -0.853 <0.001 

Timed up and go (s) (n) 421 -0.100 0.093 

Hand grip strength (kg) (n) 425 0.829 0.027 

Females 

Chair rise time (s) (n) 537 -1.002 <0.001 

Timed up and go (s) (n) 532 -0.258 <0.001 

Hand grip strength (kg) (n) 527 0.673 0.001 

 

Adulthood leisure time physical activity predicted performance in all three physical 

capability tests administered at 60 – 64 y in females; a 1 unit increase in the score 

(which ranged from 0 – 6) was associated with a 1 second decrease in chair rise time, a 

0.3 s decrease in timed up and go and a 0.7 kg increase in hand grip strength (Table 

5.15).     

 

In males, the relationship between physical activity score and physical activity were 

qualitatively similar to those observed in females. Adulthood physical activity was 

associated significantly with chair rise time and hand grip strength at 60 – 64 y where a 

1 unit increase in PA score was associated with a 0.8 s decrease in chair rise time (a 

better performance) (p<0.001) and a 0.8 kg increase in hand grip strength (p=0.03). For 

timed up and go a one unit increase in PA score was associated with better performance, 

but this effect was not statistically significant (p=0.093). 
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5.7 Physical capability at age 53 and 60 – 64 y 

NSHD cohort members provided various physical capability, anthropometric and 

metabolic measures during adulthood. Where these values were provided at 2 

measurement points, they are shown below. For analysis of variance (Paired-Samples T 

Test and GLM Repeated Measures (with Bonferroni adjustment)) values were compared 

when provided by the same individuals (Tables 5.16 and 5.17). For regression analyses, 

values were merged into the dietary dataset which comprised a smaller subset of NSHD 

participants who had provided dietary data at all 3 measurement points. 

 

Table 5.16 Chair rise time and hand grip strength in 1999 (at 53 y) and in 2006 – 10 (at 

60 – 64 y) in NSHD participants, by gender 

Physical capability 

measurement 

Mean value in 

1999 at 53 y11 

Mean value in 

2006 – 10 at 60 

– 64 y12 

p-value 

Males 

Chair rise time (s) (n) 21.5 (1357) 24.4 (988) <0.001 (893) 

Hand grip (kg) (n) 47.6 (1406) 45.9 (1005) <0.001 (908) 

Females 

Chair rise time (s) (n) 22.9 (1400) 25.7 (1074) <0.001 (992) 

Hand grip (kg) (n) 27.8 (1444) 26.8 (1064) <0.001 (988) 

 

For both genders, chair rise time increased (a poorer performance) and hand grip 

strength declined significantly between 1999, when they were aged 53 y, and 2006 – 10, 

when they were 60 – 64 y. The increases in chair rise time were much greater for 

women than for men (24.7 and 11.3% change for women and men respectively) 

whereas women showed a smaller loss of hand grip strength (2.7 and 3.6% change for 

women and men respectively) over this approximately 9 year period in mid-adulthood.   

 

 

 

 

 

 

 

                                                        
11 Dataset [munro-1.sav]; these individuals may not have provided dietary data  
12 Dataset [munro_nov12.sav]; these individuals may not have provided dietary data  
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5.8 Abdominal circumference at age 43 and 60 – 64 y 

 

Table 5.17 Mean abdominal circumference (cm) in 1989 (at 43 y) and 2006 – 10 (at 60 – 

64 y) in NSHD participants, by gender 

Anthropometric 

measurement 

Mean value in 

198913 at 43 y 

Mean value in 

2006 – 10 

at 60 – 64 y 

p-value 

Males 

Abdominal 

circumference (n) 
91.9 (1609) 100.9 (1061) <0.001 (987) 

Females 

Abdominal 

circumference (n) 
77.9 (1613) 92.4 (1156) <0.001 (1096) 

 

For both genders, abdominal circumference increased significantly between 1989 when 

they were 43 y and 2006 – 10 when they were 60 – 64 y (Table 5.17). Increases in 

abdominal circumference were much greater for females than for males (18.6% (14.5 

cm) and 9.8% (9 cm) change for women and men respectively) over this approximately 

20 y period.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
13 Dataset [munro-1.sav]; these individuals may not have provided dietary data 
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5.9 Discussion  

5.9.1 Physical activity  

This chapter examined adulthood habitual leisure time physical activity as measured in 

1982, 1989 and 1999 at age 36 y, 43 y and 53 y respectively. Also examined were 

various measures of physical capability, anthropometry (including body composition) 

and metabolic biomarkers in NSHD participants between the ages of 43 y and 60 – 64 y. 

Secular trends and relationships were investigated statistically.      

 

Habitual physical activity is a major determinant of cardiovascular fitness (Wei et al., 

1999) and low cardiovascular fitness in combination with overweight/ obesity operate 

synergistically to influence mortality adversely. Individuals who are more active have 

lower rates inter alia of all-cause mortality, CHD, hypertension, type 2 diabetes and 

metabolic syndrome and are more likely to maintain a healthy weight and body 

composition (WHO, 2011). 

 

In the Hertfordshire Cohort Study (Martin et al., 2008), higher levels of self-reported 

customary physical activity (over the previous 12 months) were associated with better 

muscle (hand grip) strength and physical performance (3 m walk and chair rise time) in 

female participants only (mean age 68.2 y). In contrast in NSHD participants, higher 

adulthood physical activity scores (derived from self-reported leisure activity at ages 36, 

43 and 53 y) were positively associated with all 3 tests of physical capability in females 

and with chair rise time and hand grip strength in males.  Methodological differences 

may explain this finding, including the use of longitudinal data in the present analysis 

and the fact that NSHD participants were slightly younger when physical capability tests 

were administered.    
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In the Age Gene/Environment Susceptibility (AGES) – Reykjavik Study (Chang et al., 

2013) regular leisure time physical activity in midlife was associated with better lower 

extremity function in later life (at 76 y) in men and women. Lower extremity function in 

that study was determined by performance at gait speed, timed up and go and knee 

extension. In the present study adulthood physical activity was also associated with a 

better timed up and go performance at age 60 – 64 y in females, but the association was 

not significant in males.       

 

Gender differences in health (and mortality) were investigated by (Oksuzyan A, 2013) 

and explained in terms of 1. biological endowment – the protective effect of oestrogen in 

women, the greater susceptibility of males to infection and genetic factors; 2. Lifestyle 

behaviours – risk taking behaviours (e.g. smoking, alcohol consumption) more 

commonly engaged in by men; and 3. Social roles and health behaviours – the reluctance 

of some men to report and seek help for illness and infection.      

 

To stay healthy, UK (NHS) physical activity guidelines for adults (19 – 64 y) recommend 

at least 150 minutes a week of moderately-intensive aerobic activity (fast walking or 

cycling) combined with muscle-strengthening activities, working all major muscle 

groups on 2 or more days a week (NHS Choices). This equates to an average of 30 

minutes of physical activity per day, 5 d/week. These recommendations are echoed in 

the WHO 2011 Global Recommendations on Physical Activity for Health for adults aged 

18 – 64 y.  Only those categorised as most active in terms of the adulthood physical 

activity score in the present study would have been meeting these recommendations.  

 

A limitation of the present study is that occupational physical activity was not taken into 

account and lack of data on this potentially important component of daily physical 

activity may obscure and confound some of the findings reported in the Chapter. For 

example, there is evidence that individuals with physically demanding occupations are 

less likely to engage in leisure time physical activity (Kuh, 1992). If this was applied in 

the NSHD cohort, such individuals would be categorised as inactive which would not be 

a true reflection of their overall level of habitual physical activity. 
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Domestic physical activity was also not measured or taken into account in the present 

study. In the Hertfordshire Cohort Study (Martin et al., 2008) walking and home activity 

drove the gender difference in higher females median total energy expenditure 

compared to that of males, i.e. 665.3 vs. 482.7 MET.h/month. When gender differences 

in subjectively (questionnaire) and objectively (accelerometry) reported physical 

activity were investigated by (Sun et al., 2013) the difference fell from 0.8 – 21.4% to 0.2 

– 1.5%.   

 

Questionnaires on habitual participation in structured leisure time sports and 

recreational activity, especially where travel to/ from work and occupational activity 

are excluded do not provide a true reflection of overall physical activity. The advent of 

new accelerometry technology will provide accurate, objective data on habitual physical 

activity which may assist in the clarification of relationships between physical activity 

and long term health.         

 

5.9.2 Physical capability  

Trajectories of hand grip strength after the age of 45 y were examined using cross 

sectional and longitudinal data in 8,342 Danes (46 – 102 y) (Frederiksen et al., 2006). 

Grip strength was found to decline throughout life and could be described by the 

formulae 24.38 + 0.38 * height (cm) – 0.59 * age (y) in males and 11.63 + 0.21 * height 

(cm) = 0.31 * age in females. Using these formulae, hand grip strength in the NSHD 

cohort at ages 53 and 62 years were predicted and compared with the observed values 

for hand grip strength (Table 5.18) below   
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Table 5.18 Mean hand grip strength observed in NSHD participants in 1999 and 2006 – 

10 compared with hand grip strength predicted by the (Frederiksen et al., 2006) 

formulae 

 At 53 y At 62 y 

Males Females Males Females 

Hand grip strength 

predicted by 

Frederiksen et al., 

(n) 

59.5 (1403) 29.2 (1437) 54.3 (1002) 26.4 (1063) 

Hand grip strength 

in NSHD 

participants (n) 

47.6 (1406) 27.8 (1444) 45.9 (1005) 26.8 (1064) 

 

When the (Frederiksen et al., 2006) formulae were applied to NSHD participants at ages 

53 y and 60 – 64 y (using median age 62 y), observed hand grip strength was less than 

predicted in males at both ages. In female NSHD participants, observed hand grip 

strength was less than predicted age 53 y but slightly more than predicted at 60 – 64 y 

(Table 5.18). The Danish study population comprised participants of 3 nationwide 

studies, the Study of Middle-Aged Twins, the Longitudinal Study of Aging Danish Twins 

and the Danish 1905 Cohort Study. The authors noted that the Danish population may 

not be completely comparable to other similar populations and the Smedley 

dynamometer in the Danish cohort was not used in the NSHD.      
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5.9.3 Abdominal circumference 

In the current study, the relationship between adulthood physical activity and 

abdominal circumference was strongest in females – a 1 unit increase in the PA Score 

was associated with a 1.5 cm reduction in abdominal circumference at 60 – 64 y. Waist 

circumference (WC) was highest in females classified as inactive at all 3 ages (98.7 cm) 

and mean waist circumference in all females at age 60 – 64 y was 92.4 cm. In terms of 

WHO Guidelines (Waist Circumference and Waist-Hip Ratio, Report of a WHO Expert 

Consultation) 2011, this places them at a very high disease risk relative to normal 

weight/ waist circumference. These postmenopausal women may have experienced a 

redistribution of fat to the abdominal area (menopause transition) and this is associated 

with increased risk of cardiovascular disease (Toth et al., 2000).   

 

In the Canada Heart Health Surveys (1986 – 1992) the use of waist circumference in 

overweight and obese women assisted in the identification of those at higher CVD risk 

(Ardern CI, 2003). Waist circumference was reported to be more predictive of coronary 

heart disease risk (CHD) in overweight (BMI 25 – 37 kg/m2) premenopausal women 

(aged 20 – 45 y) by (Lofgren et al., 2004) who also reported that waist circumference 

reflected levels of physical activity – a finding consistent with that in the present study 

where increasing adulthood physical activity was associated with a marked progressive 

reduction in abdominal circumference at age 60 – 64 y  in females. The pattern was 

much less clear in males. Adulthood physical activity was also significantly, and 

positively, associated with reductions in whole body and appendicular fat mass and 

body fat percentage in NSHD females, whereas these relationships were insignificant in 

males. 
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The use of waist circumference and BMI was found to be superior to their use as 

separate indices in predicting risk of cardiometabolic disorder and CVD in over 46,000 

Chinese participants (Hou X, 2013). This finding is consistent with that proposed by 

(Janssen et al., 2004) and (Janssen et al., 2002a). In the former study (of ~15 000 adult 

participants of the third National Health and Nutrition Examination Survey) waist 

circumference and not BMI, explained the obesity-related risk of the clustering of 

hypertension, diabetes, dyslipidaemia and the metabolic syndrome characteristic of 

abdominal obesity. 

 

In the present study the increase in chair rise time between 1999 (at 53 y) and 2006 – 

10 (at median age 62 y) was much greater in females than in males. This gender-

dependent slowing in ability to move from a seated to a standing position may be 

exacerbated by the greater increase in central adiposity, and therefore in mass to be 

raised, in females. Between the ages of 43 y and 62 y abdominal circumference 

increased by a mean of 14.5 cm in males compared with 9 cm in males. 
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CHAPTER 6 

 

 

 

Predictors of Physical Capability at 60 – 64 Years 

 

 

6.1 Introduction 

Midlife grip strength (Kuh et al., 2006b) and physical performance (Kuh et al., 2006a) 

have developmental origins. Birth weight (in 1946) was positively associated with adult 

grip strength in 2775 NSHD participants at age 53 y after adjustment for adulthood and 

childhood height and weight (Kuh et al., 2002), and in 2983 participants of the 

Hertfordshire Cohort Study (born 1931 – 1939) birth weight and height were positively 

related to grip strength, in males at age 65.7 y and females at age 66.6 y (Robinson et al., 

2008). In 4304 participants of the Northern Finland Birth Cohort 1966, birth weight 

was positively associated with muscle (hand grip) strength and aerobic fitness at age 31 

y, independently of adult body mass (p<0.001); whereas greater infant weight gain 

(between 0 – 1 y) was associated with poorer aerobic fitness (p=0.002)(Ridgway CL, 

2009). In a systematic review and meta-analysis of 19 studies, 17 showed a positive 

association between birth weight and muscle strength. The meta-analysis of 13 studies 

(Dodds et al., 2012) demonstrated that every additional 1 kg of birth weight was 

associated with a 0.86 kg increase in hand grip strength, after adjustment for gender 

and current age and height. 

 

Research in young (age 19 y) (Jensen et al., 2007) and older men (mean age 72.5 y) 

(Patel et al., 2012) have suggested that an adverse intrauterine environment may 

negatively influence (or programme) skeletal muscle morphology, contributing to the 

development of type 2 diabetes and sarcopenia in later life. 
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Postnatal factors were examined in 2850 participants of the 1946 British birth cohort in 

whom grip strength was measured at age 53 y; these included birth weight, height and 

weight “velocities” e.g. rate of weight change between 0 – 7 y, 7 – 15 y and 15 – 53 y, 

motor milestones (first standing/walking, timing of puberty) and childhood cognitive 

ability (at ages 8, 11 and 15 y) (Kuh et al., 2006b). After adjustment for potential 

confounders of midlife grip strength – lifetime social class, current physical activity and 

health status, birth weight was associated with grip strength at 53 y (p=0.009). Also, in 

males pubertal (7 – 15 y) weight gain was positively associated with grip strength at 53 

y (p<0.001) whereas in females pubertal height gain was most beneficial (p<0.001). 

Effects of the same postnatal factors were examined in relation to chair rise time 

(n=2757) and standing balance (n=2784) performance among NSHD participants when 

aged 53 y (Kuh et al., 2006a). Weight gain < 7 y was beneficial for balance and chair 

rising in males, hypothesised to reflect muscle growth whereas weight gain in early life 

(15 – 26 y) was detrimental to performance. In females, pubertal and adult weight gain 

were detrimental to performance in females – weight gain in adulthood representing 

gains in fat and not lean mass.  

 

Physical capability at 53 y was poorer among individuals living in disadvantaged 

socioeconomic conditions, with greater body weight, poorer health status and inactive 

lifestyles (Kuh et al., 2005). In 2956 NSHD participants, two measures of childhood 

socioeconomic position (SEP) (mother’s educational attainment and father’s 

occupational class) and adulthood socioeconomic position (head of household’s 

occupational) were positively associated with chair rise time but not grip strength at 

age 53 y (Strand et al., 2011). In a systematic review and meta-analysis of 19 studies, a 

lower childhood SEP was associated with reductions in grip strength and gait speed and 

poorer chair rise and standing balance time in adulthood (Birnie et al., 2011a). 

 

After adjustments for age, adulthood SEP and body size, only the association with gait 

speed (–0.02 m/s) (p=0.015) and chair rises time (+ 3%) (p=0.02) remained significant. 

SEP in adulthood was a better predictor of physical capability than childhood SEP. The 

authors hypothesised that growth & early life nutrition influenced the peak level of 

physical capability attained in early adulthood thereby affecting levels in later life. 
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Nutrition, motor development, physical activity and fitness in early life are 

socioeconomically graded and track into adulthood. In the NSHD, lifecourse area 

deprivation, individual socioeconomic position and physical capability at 53 y were 

examined (Murray et al., 2013b). Poorer standing-balance and chair rise time were most 

strongly associated with current deprivation, but deprivation in midlife was not related 

to grip strength. Higher area deprivation was associated with poorer dietary habits, less 

physical activity and higher rates of smoking. 

 

Socio-economic disadvantage over a lifetime (from childhood to adulthood) was 

significantly associated with gait speed (at 63 – 86 y) in the Boyd Orr and Caerphilly 

prospective cohorts (Birnie et al., 2011b). At timed up and go, increased educational 

attainment and duration (per extra year at school) were associated with a 2 – 4% faster 

gait speed. Lower adulthood SEP, smoking, a greater BMI and history of stroke and 

angina were associated with slower gait speed. Adjusting for health behaviours 

(smoking, alcohol and exercise) and diseases in adulthood attenuated the associations, 

but significance remained (p<0.001). Participants who moved from a low childhood SEP 

to a high adulthood SEP had a 3% slower gait speed whereas movement in the opposite 

direction was associated with 5% slower gait; those with low childhood and adulthood 

SEP had 10% slower gait speed.        

  

Habitual levels of physical activity across adulthood were not associated with grip 

strength in females (at age 53 y) and in males only physical activity at 53 y was 

associated with grip strength at 53 y (Cooper et al., 2011b). The joint associations of 

leisure-time physical activity and BMI on physical and mental capability at age 49.5 y 

were examined by (Lindholm et al., 2013). After adjustments for age and gender, 

overweight and physical inactivity jointly contributed to poor physical functioning 

although weight tended to dominate the association; those who were inactive and 

overweight were most strongly associated with poor physical functioning.  
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In 15 longitudinal studies included in a systematic review (Vincent et al., 2010) all 

except one study reported relationships between adiposity and declining mobility. Chair 

rise ability was found to be compromised with obesity with obese women at an 

increased risk for mobility impairment than men. BMI and waist circumference were 

seen to be emerging as the more consistent predictors of the onset or worsening of 

mobility disability. 

  

 

Figure 6.1 A lifecourse model of sarcopenia (Sayer et al., 2008b) 

 

 

Adult muscle mass and strength is significantly associated with birth weight and 

childhood/early adulthood growth, and these factors contribute to the peak attained in 

early adult life (Figure 6.1). However, it is also explained in terms of factors that operate 

across adulthood (e.g. diet and physical activity) which impact on the rate at which 

muscle mass and strength is lost (Sayer et al., 2008b).    
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In 1569 males (mean 65.7 y) and 1414 females (mean age 66.6 y) of the Hertfordshire 

Cohort Study, relationships between birth weight, diet in the preceding 3 months and 

grip strength were investigated (Robinson et al., 2008) Using Principal Components 

Analysis (PCA) a “prudent” diet was characterised and a prudent diet score attributed to 

each individual. Grip strength was positively related to the prudent diet score, higher 

scores were associated with higher grip strength. In males and females, the most 

important food in terms of its association with grip strength was fatty fish, each weekly 

portion was associated with an additional 0.43 kg and 0.48 kg hand grip strength in 

males and females, respectively. After selected nutrient intakes were energy-adjusted 

there were positive associations only with selenium and carotene in males. In females, 

all selected nutrients (with the exception of vitamin E) were related to grip strength 

(protein, vitamin C, carotene, selenium and vitamin D) and remained so after intakes 

were energy-adjusted.   

 

In the transition from independence to disability in older adults (Inzitari et al., 2011) 

muscle impairment appeared a relevant step in the pathway that linked poor nutrition 

with functional decline. As muscle quality shows an even greater deterioration than 

muscle mass, oxidative stress and inflammatory markers may mediate the relationship 

between nutrition and function in older people. No study has so far has assessed the 

impact of diet on physical performance decline in older adults, outcomes are often 

intermediate (e.g. changes in nutritional or anthropometric parameters) and not strong 

clinical events, e.g. disability. 

 

Among 10,308 participants of the UK Whitehall II Study (Stafford M, 1998) cigarette 

smoking, lower levels of physical activity and a higher BMI (kg/m2) were associated 

with poor physical functioning in males; whereas in females, lower levels of physical 

activity, an unhealthy or average diet (compared with a healthy diet) and a higher BMI 

(kg/m2) were associated with poor physical functioning. All associations were 

independent of current disease and physical functioning was assessed at 5 year follow 

up (median age 49 y) by the short-form 36 health survey, which questioned 10 items 

related to sports and activities of daily living.  
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The aims of this chapter are to present and explain the results of hierarchical linear 

regression to predict the determinants of objectively-measured physical capability at 60 

– 64 while specifically testing for the effects of adulthood protein intakes (daily and 

diurnal). 

 

6.1.1 Overview of methodology 

In the subset of NSHD participants who provided dietary data in all years, hierarchical 

linear regression analysis was used to determine the order (or hierarchy) of predictors 

of performance at three objectively measured physical capability tests; hand grip 

strength, chair rise and timed up and go at age 60 – 64 y. The variables tested were 

selected as they were believed a priori to be associated with physical capability in later 

life. Models were split by gender because of the significant gender differences in 

physical capability at 60 – 64 y: males performed significantly better at hand grip 

strength (p<0.001), chair rise time (p=0.021) and timed up and go (p=0.015) compared 

with females (see Table 6.1). The gender difference was most marked for hand grip 

strength where, on average, grip strength was 73% greater among males than females 

whereas chair rise time was only 4.5% faster in men. 

 

Table 6.1 Gender differences in physical capability test performance at 60 – 64 y in 

NSHD participants who provided dietary data in all years 

Physical capability test  
Mean (n) 

p-value 
Male Female 

Hand grip strength  (kg) 46.6 (426) 27 (528) <0.001 

Chair rise time (s) 24.15 (434) 25.3 (538) 0.021 

Timed up and go (s) 8.8 (422) 9.2 (533) 0.015 

 

In this subset of individuals, protein intake data were available at age 36, 43 and 53 y 

and were expressed as g/d, relative to body mass (g/kg/d) and adjusted for daily 

energy intake, i.e. protein intake as a percentage of total daily energy. Three year means 

and quintiles of consumption were calculated and three new variables were derived to 

facilitate comparison of those individuals in the lowest quintile (quintile 1) of mean 

daily protein consumption with those in the higher quintiles of protein consumption (as 

described in Chapter 2). 
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The potential impact of quantity of protein eaten at any meal (or snack) across the day 

was captured by a novel muscle protein synthesis score (MPSS) which scored 

consumption of ≥ 20 g protein at any of eight possible eating occasions across the day 

(see Chapter, Section 2.4 for details). An adulthood MPSS was calculated in those who 

had provided dietary data in all 3 years and a new variable derived to compare those in 

quartile 1 of MPSS with those in the higher quartiles of MPSS. 

 

6.1.2 Data transformations and adjustments 

DEXA-derived whole body lean mass (kg) and appendicular lean mass (kg) at 60 – 64 y 

were divided by (adjusted for) height (m) (at 60 – 64)2.   

 

Gender-specific chair rise time (CRT) and timed up and go (TUG) values were not 

normally distributed (skewed). They were logarithmically transformed and the e-base 

logarithm multiplied by 100. Coefficients in these models are therefore interpreted as 

percentages. Hand grip strength (HGS) values were normally distributed and thus not 

transformed. 

 

Table 6.2 Assessing the normality of gender-specific physical capability distributions 

using skewness and excess kurtosis among NSHD participants who provided dietary 

data in all years (n=1263) 

Physical capability 

variable 

Skewness (SE)(n) Excess kurtosis (SE)(n) 

M F M F 

Hand grip strength 
.14 (.118) 

n=426 

.30 (.106) 

n=528 

.27 (.236) 

n=426 

-.08 (.212) 

n=528 

Chair rise time 
 1.2 (.117) 

n=434 

2.7 (.105) 

n=538 

3.0 (.234) 

n=434 

15.4 (.210) 

n=538 

Transformed CRT 
.058 (.117) 

n=434 

.167 (.105) 

n=538 

 .628 (.234) 

n=434 

3.1 (.210) 

n=538 

Timed up and go 
.95 (.119) 

n=422 

3.6 (.106) 

n=533 

2.4 (.237) 

n=422 

24.5 (.211) 

n=533 

Transformed TUG 
 .16 (.119) 

n=422 

.83 (.106) 

n=533 

.24 (.237) 

n=422 

4.8 (.211) 

n=533 

 

After e-base logarithmic transformation, all values of skewness were < 2 and all values 

for kurtosis proper (calculated by adding 3 to the value provided by SPSS (above)) were 

< 7 (Table 6.2). 
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6.1.3 Sensitivity analyses 

Two sensitivity analyses were undertaken to determine the effect of predicted under- 

and over-reporting on outcomes of regression analyses. For this purpose, new quintiles 

of 3 y mean protein consumption (expressed as (g/d) and as (g/kg/d)) were calculated 

after excluding all individuals ever predicted to have under- or over-reported their 

energy intake. From this, two new variables were derived to compare individuals in 

quintile 1 with those in the higher quintiles of protein consumption. 

 

In this chapter, the process undertaken to select the order of predictors is described in 

detail for models 1.1 – 1.6 (sections 6.2.1 – 6.2.6) only. In subsequent models (2 – 6) 

outcomes of regression analysis only are described since the process of selection of 

predictors followed exactly the same approach as that described in the first set of 

models. The structure of this chapter and analytical strategy adopted is shown in Figure 

6.1.   
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Figure 6.2. Analytical strategy and structure of Chapter 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variables tested: 

1 Hand grip strength (kg) 

2 Chair rise time (seconds) 

3 Timed up and go (seconds) 

1. Quintiles 

of protein 

intake 

(g/d) 

2. Quintiles 

of protein 

intake  

(g/kg/d) 

3. Quintiles 

of protein 

intake  

(as a % of 

daily energy 

intake) 

4. Quartiles 

of Muscle 

Protein 

Synthesis 

Score 

5. and 6. 

Sensitivity 

Analyses 

Males Females 

Independent variable 1: 

Other tested predictors: 

 Anthropometry (height, weight, BMI (kg/m2)) at 60 – 64 y 

Body composition: whole body and appendicular lean mass (kg/ht2), 

whole body and appendicular fat mass (kg) and body fat % at 60 – 64 y  

Self-reported health status at 60 – 64 y 

Adulthood physical activity 

Participant’s socioeconomic position (SEP) at 53 y and father’s SEP in 

1950 (when participant 4y)  
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6.2 Derivation of predictors of physical capability in analysis of impact of 

quintiles of protein consumption (g/d) using hierarchical linear regression  

In the first set of models (6.2.1 – 6.2.6), the protein variable selected as independent 

variable 1 was quintile 1 versus the other quintiles of 3 y mean protein consumption 

(g/d). The outcome (dependent) variable first examined was hand grip strength (kg) as 

measured at 60 – 64 y.   

  

6.2.1 Predictors of hand grip strength in NSHD males 

 

Table 6.3 Determining the hierarchy of predictors of hand grip strength in NSHD males. 

Selection of independent variable 2 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm)  AbCirc_06  .450 

BMI (kg/m2) aBMI_06  .509 

Body fat percentage aFat_Perc .023 .006 

Whole body lean mass (kg) 

adjusted for height2 

Adj_LEAN 
.017 .017 

Whole body fat mass (kg) aFM_kg  .605 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.024 .020 

Adulthood physical activity 
_MoreActive 

_MostActive 
 .107 

Height (m) ahtn09 .089* <.001 

Appendicular fat mass (kg) AppFAT_kg  .406 

Appendicular lean mass (kg) 

adjusted for height2 

Adj_AppLEAN 
.034 .001 

Weight (kg) aWeight2006 .014 .013 

Participant’s SEP at 53 y 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .123 

Father’s SEP (in 1950 when 

participant 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .087 
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The sequential addition of each new predictor gave rise to a R Square (R2) Change 

statistic (see Table 6.3 above) which quantified the amount of change in the dependent 

variable (hand grip strength) that could be explained by the model by the addition of 

the new predictor. The significance of this R2 change was calculated using an F-ratio (F = 

(N – k – 1)R2/ k(1 – R2)) where N is the number of participants and k the number of 

predictors in the model. In Table 6.3 the significance of this change is shown as a p-

value. New variables (predictors) that resulted in a significant F change (p<0.05) were 

considered first. Of these, only one variable gave rise to a significant (p<0.001) F change 

viz. height (m). Since height resulted in the greatest R2 Change (8.9%), this predictor 

was selected as the second independent variable (after the protein variable).   

 

Table 6.4 Determining the hierarchy of predictors of hand grip strength in NSHD males. 

Selection of independent variable 3 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm)  AbCirc_06  .075 

BMI (kg/m2) aBMI_06  .989 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN .032* .001 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN .020 .007 

Body fat % aFat_Perc .018 .012 

Whole body fat mass (kg) aFM_kg  .204 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .154 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

 .051 

Adulthood PA 
_MoreActive 

_MostActive 
 .128 

Appendicular fat mass (kg) AppFAT_kg  .057 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .298 

Weight (kg) aWeight2006  .958 
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After the protein variable and height had been included in the regression model, three 

variables produced significant (p<0.05) F changes. Since adjusted appendicular lean 

mass (kg/ht2) gave rise to the greatest R2 change (3.2%), this was selected as the third 

variable (Table 6.4). 

 

Table 6.5 Determining the hierarchy of predictors of hand grip strength in NSHD males. 

Selection of independent variable 4 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm)  AbCirc_06 .054* <.001 

BMI (kg/m2) aBMI_06 .039 <.001 

Body fat % aFat_Perc .032 .001 

Whole body fat mass (kg) aFM_kg .034 <.001 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .160 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

 .056 

Adulthood PA 
_MoreActive 

_MostActive 
 .241 

Appendicular fat mass (kg) AppFAT_kg .036 <.001 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .062 

Weight (kg) aWeight2006 .037 <.001 

 

After the protein variable, height and adjusted appendicular lean mass had been 

included in the regression model, five variables produced significant (p<0.001) F 

changes; since abdominal circumference gave rise to the greatest R2 change (5.4%) this 

was selected as the fourth and final independent variable (Table 6.5). After abdominal 

circumference had been included in the model, no other tested variable produced a 

significant (p<0.05) F change.  
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When there is a strong correlation between two or more predictors in a regression 

model, this is known as multicollinearity. The Variance Inflation Factor (VIF) indicates 

when a predictor has a strong linear relationship with another predictor. Field (Field, 

2011) suggested that a value of 10 was cause for concern. Variance Inflation Factors 

were continually monitored for signs of multicollinearity.      

 

Table 6.6 Outcomes of hierarchical linear regression analysis to predict hand grip 

strength (kg) in NSHD males (n=337) at 60 – 64 y (Model 1.1) 

 B Beta p-value VIF 

Quintiles of protein intake 

(g/d) 
.807 .027 .589 1.012 

Height (m) 53.373 .308 <.001 1.028 

Adjusted appendicular lean 

mass (kg/ht2) at 60 – 64 y 
4.620 .376 <.001 1.695 

Abdominal circumference 

(cm) at 60 – 64 y   
-0.313 -0.305 <.001 1.714 

 

In NSHD males, height and adjusted appendicular lean mass (kg/ht2) were positively 

associated with hand grip strength at 60 – 64 y; each additional 1 kg in appendicular 

lean mass was associated with an additional 4.6 kg of hand grip strength (p<0.001). In 

contrast, abdominal circumference (cm) was negatively associated with grip strength; 

each additional 1 cm in circumference was associated with 0.3 kg less hand grip 

strength (p<0.001). Quintiles of protein consumption (g/d) across adulthood were not 

significantly associated with hand grip strength in males (Table 6.6). This model (with 

four predictors) explained 16.4% of the variability in hand grip strength at 60 – 64 y in 

NSHD males who provided dietary data in all years of measurement.  
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6.2.2 Predictors of hand grip strength in NSHD females 

  

Table 6.7 Determining the hierarchy of predictors of hand grip strength in NSHD 

females. Selection of independent variable 2 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06  .996 

BMI (kg/m2) aBMI_06  .758 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN .017 .008 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .065 

Body fat % aFat_Perc .012 .025 

Whole body fat mass (kg) aFM_kg  .761 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .479 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.025 .005 

Adulthood PA 
_MoreActive 

_MostActive 
.024 .002 

Height (m) ahtn09 .065* <.001 

Appendicular fat mass (kg) AppFAT_kg  .909 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .072 

Weight (kg) aWeight2006 .013 .008 

 

In females, only height gave rise to a significant (p<0.001) F change and as height gave 

rise to the greatest R2 change (6.5%), it was selected as the second independent variable 

(after the protein variable) (Table 6.7).  
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Table 6.8 Determining the hierarchy of predictors of hand grip strength in NSHD 

females. Selection of independent variable 3 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm)  AbCirc_06  .546 

BMI (kg/m2) aBMI_06  .321 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN .018 .005 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN .011 .028 

Body fat % aFat_Perc  .075 

Whole body fat mass (kg) aFM_kg  .489 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .535 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.026* .002 

Adulthood PA 
_MoreActive 

_MostActive 
.017 .008 

Appendicular fat mass (kg) AppFAT_kg  .446 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .106 

Weight (kg) aWeight2006  .295 

 

After the protein variable and height had been included in the model, four variables 

produced significant (p<0.05) F changes; adjusted appendicular and whole body lean 

mass (kg/ht2), self-reported health status at 60 – 64 y and adulthood physical activity 

(Table 6.8). As self-reported health status gave rise to the greatest R2 change (2.6%) it 

was selected as the third independent variable.  
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Table 6.9 Determining the hierarchy of predictors of hand grip strength in NSHD 

females Selection of independent variable 4  

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm)  AbCirc_06  .876 

BMI (kg/m2) aBMI_06  .163 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN .016* .008 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN .011 .031 

Body fat % aFat_Perc  .136 

Whole body fat mass (kg) aFM_kg  .710 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .516 

Adulthood PA 
_MoreActive 

_MostActive 
.012 .036 

Appendicular fat mass (kg) AppFAT_kg  .652 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .114 

Weight (kg) aWeight2006  .143 

 

After the protein variable, height and self-reported health status at 60 – 64 y had been 

included in the model, three tested variables produced significant F changes (p<0.05); 

adjusted appendicular and whole body lean mass (kg/ht2) and adulthood physical 

activity (Table 6.9). Since adjusted appendicular lean mass gave rise to the greatest R2 

change (1.6%) it was selected as the fourth independent variable.  
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Table 6.10 Determining the hierarchy of predictors of hand grip strength in NSHD 

females Selection of independent variable 5 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .031* <.001 

BMI (kg/m2) aBMI_06 .014 .012 

Body fat % aFat_Perc .015 .010 

Whole body fat mass (kg) aFM_kg .016 .008 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .429 

Adulthood PA 
_MoreActive 

_MostActive 
 .153 

Appendicular fat mass (kg) AppFAT_kg .015 .010 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .489 

Weight (kg) aWeight2006 .013 .015 

 

After the protein variable, height, self-reported health status at 60 – 64 y and adjusted 

appendicular lean mass (kg/ht2) had been included in the model, only abdominal 

circumference (cm) resulted in a significant change in the F ratio (p< 0.001); with an R2 

change of 3.1% abdominal circumference was selected as the fifth and final independent 

variable (Table 6.10).  
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Table 6.11 Outcomes of hierarchical linear regression analysis to predict hand grip 

strength (kg) in NSHD females at 60 – 64 y (Model 1.2) 

 B Beta p-value VIF 

Quintiles of protein intake 

(g/d) 
-0.817 -.041 .373 1.016 

Height (m) 29.745 .240 <.001 1.028 

Self-reported health status 

at 60 – 64 y     _Good 
-0.531 -.035 .461 1.073 

_Fair -5.630 -.206 <.001 1.061 

_Poor -10.377 -.101 .029 1.016 

Adjusted appendicular lean 

mass (kg/ht2) 
2.570 .300 <.001 1.985 

Abdominal circumference 

(cm)  
-0.157 -.251 <.001 2.032 

 

This model (with 5 predictors) explained 16.1% of the variability in hand grip strength 

in NSHD females (n=405) at 60 – 64 y.  A fair health status at 60 – 64 y compared with a 

self-reported health status of excellent/ very good (the reference category) was 

associated with 5.6 kg less hand grip strength (p<0.001), while a poor health status was 

associated with 10.4 kg less hand grip strength (p=0.029). Each additional 1 kg of 

appendicular lean mass was associated with an additional 2.6 kg of hand grip strength 

whereas each additional 1 cm of abdominal circumference was associated with 0.2 kg 

less hand grip strength (p<0.001) (Table 6.11).  

 

Females in quintile 1 of mean protein consumption (g/d) across adulthood had 

approximately 1 kg less hand grip strength compared to those in the higher quintiles of 

consumption but this difference was not statistically significance (p>0.05). 
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6.2.3 Predictors of chair rise time in males  

The second outcome (dependent) variable examined was performance at the chair rise 

test (s) at 60 – 64 y. The protein variable selected as the first independent variable was 

quintile 1 versus all higher quintiles of 3 y mean protein consumption (g/d). 

 

Table 6.12 Determining the hierarchy of predictors of chair rise time in NSHD males. 

Selection of independent variable 2 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .059 <.001 

BMI (kg/m2) aBMI_06 .027 .001 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .341 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN .015 .028 

Body fat % aFat_Perc .014 .036 

Whole body fat mass (kg) aFM_kg .021 .009 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

.024 .046 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.106* <.001 

Adulthood PA 
_MoreActive 

_MostActive 
.042 <.001 

Height (m) ahtn09  .703 

Appendicular fat mass (kg) AppFAT_kg .029 .002 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

.029 .012 

Weight (kg) aWeight2006 .027 .001 

 

In the prediction of chair rise time in males at 60 – 64 y, three variables resulted in a R2 

change which, when tested by F ratio, were significant (p<0.001); abdominal 

circumference (cm), self-reported health status and adulthood physical activity (Table 

6.12). Since health status resulted in the greatest R2 change (10.6%) it was selected as 

the second independent variable.       
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Table 6.13 Determining the hierarchy of predictors of chair rise time in NSHD males. 

Selection of independent variable 3 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .034* <.001 

BMI (kg/m2) aBMI_06 .014 .012 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .452 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .069 

Body fat % aFat_Perc  .199 

Whole body fat mass (kg) aFM_kg  .062 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .110 

Adulthood PA 
_MoreActive 

_MostActive 
.024 .004 

Height (m) ahtn09  .657 

Appendicular fat mass (kg) AppFAT_kg .013 .032 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .057 

Weight (kg) aWeight2006 .015 .008 

 

After the protein variable and self-reported health status had been included in the 

model, only abdominal circumference (cm) produced a significant (p<0.001) R2 change 

(3.4%) and was selected as the third independent variable in the model (Table 6.13).  
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Table 6.14 Determining the hierarchy of predictors of chair rise time in NSHD males – 

selection of variable 4 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

BMI (kg/m2) aBMI_06 .009 .036 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .076 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .613 

Body fat % aFat_Perc  .261 

Whole body fat mass (kg) aFM_kg  .127 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .113 

Adulthood PA 
_MoreActive 

_MostActive 
.019* .010 

Height (m) ahtn09  .781 

Appendicular fat mass (kg) AppFAT_kg  .517 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .076 

Weight (kg) aWeight2006 .009 .042 

 

After abdominal circumference had been included in the model, BMI (kg/m2), adulthood 

physical activity and body weight (kg) produced significant F changes (p<0.05) (Table 

6.14). As adulthood PA produced the greatest R2 change (1.9%), it was selected as the 

fourth and final independent variable. After physical activity had been included in the 

model, no other tested variable produced a significant (p<0.05) F change.  
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Table 6.15 Outcomes of hierarchical linear regression analysis to predict chair rise time 

in NSHD males at 60 – 64 y (Model 1.3) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) 
-1.511 -.023 .620 1.023 

_Good 4.719 .083 .078 1.075 

_Fair 22.417 .239 <.001 1.090 

_Poor 34.208 .159 .001 1.019 

Abdominal circumference 

(cm) 
.422 .177 <.001 1.071 

_MoreActive -5.503 -.106 .039 1.255 

_MostActive -9.440 -.149 .004 1.262 

 

This model (with 4 predictors) explained 15.9% of the variability in chair rise time in 

males at 60 – 64 y. Compared with a self-reported health status of excellent/ very good, 

fair health was associated with a 4.7% poorer performance at chair rise (p<0.001) while 

poor health was associated with a 34% poorer performance (p=0.001). Increasing 

abdominal circumference (cm) was also associated with a poorer performance 

(p<0.001). Adulthood physical activity was positively associated with chair rise time – 

being ‘more active’ compared with sedentary was associated with a 5.5% improvement 

(p=0.039) while being ‘most active’ was associated with a 9.4% improvement in chair 

rise performance (p=0.004) (Table 6.15). Quintiles of 3 y mean protein consumption (g/ 

d) were not significantly predictive of chair rise time in males at 60 – 64 y.  
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6.2.4 Predictors of chair rise time in females  

 

Table 6.16 Determining the hierarchy of predictors of chair rise time in NSHD females. 

Selection of independent variable 2 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .050 <.001 

BMI (kg/m2) aBMI_06 .023 <.001 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .052 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .051 

Body fat % aFat_Perc .012 .028 

Whole body fat mass (kg) aFM_kg .018 .008 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .110 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.099* <.001 

Adulthood PA 
_MoreActive 

_MostActive 
.032 <.001 

Height (m) ahtn09  .053 

Appendicular fat mass (kg) AppFAT_kg .017 .008 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .417 

Weight (kg) aWeight2006 .034 <.001 

 

In the prediction of chair rise time in females at 60 – 64 y, abdominal circumference 

(cm), BMI (kg/m2), self-reported health status and adulthood physical activity resulted 

in significant R2 changes (p<0.001) (Table 6.16). Self-reported health status resulted in 

the greatest R2 change (9.9%) and was selected as the second independent variable 

(after the protein variable).       
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Table 6.17 Determining the hierarchy of predictors of chair rise time in NSHD females. 

Selection of independent variable 3 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .036* <.001 

BMI (kg/m2) aBMI_06  .002 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .015 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .048 

Body fat % aFat_Perc  .039 

Whole body fat mass (kg) aFM_kg  .011 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .184 

Adulthood PA 
_MoreActive 

_MostActive 
 .010 

Height (m) ahtn09  .046 

Appendicular fat mass (kg) AppFAT_kg  .004 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .671 

Weight (kg) aWeight2006 .027 <.001 

 

After the protein variable and self-reported health status at 60 – 64 y had been included 

in the model, only abdominal circumference (cm) and body weight (kg) at 60 – 64 y 

produced significant (p<0.001) R2 changes. The former was included as the third and 

final independent variable with an R2 change of 3.6% (Table 6.17). After abdominal 

circumference was included in the regression model, no other tested variable produced 

a significant (p<0.05) F change.  
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Table 6.18 Outcomes of hierarchical linear regression analysis to predict chair rise time 

in NSHD females at 60 – 64 y (Model 1.4) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) 
-4.165 -.055 .184 1.007 

_Good 12.224 .204 <.001 1.069 

_Fair 19.249 .178 <.001 1.057 

_Poor 54.300 .166 <.001 1.021 

Abdominal circumference 

(cm)  
0.465 .192 <.001 1.031 

 

 

In females, this model (with 3 predictors) explained 13.6% of the variability in chair rise 

time at 60 – 64 y. Declining self-reported health status was significantly associated with 

a poorer performance in a progressive manner. Compared with individuals who 

reported being in excellent/very good health, those who reported that their health 

status was good, fair or poor took significantly longer to complete the chair rise test by 

12.2%, 19.2% and 54.3% respectively (p<0.001). Abdominal circumference (cm) was 

also negatively associated with chair rise time performance (p<0.001) (Table 6.18). 

Quintiles of 3 y mean protein consumption (g/d) were not significantly associated with 

chair rise performance in females at 60 – 64 y.  
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6.2.5 Predictors of timed up and go in males 

The third outcome (dependent) variable examined was performance at timed up and go 

at 60 – 64 y. The protein variable selected as the first independent variable was quintile 

1 versus the other quintiles of 3 y mean protein consumption (g/d). 

 

Table 6.19 Determining the hierarchy of predictors of timed up and go in NSHD males. 

Selection of independent variable 2 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06  .622 

BMI (kg/m2) aBMI_06  .555 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .343 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .828 

Body fat % aFat_Perc  .173 

Whole body fat mass (kg) aFM_kg  .277 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .157 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.065* <.001 

Adulthood physical activity 
_MoreActive 

_MostActive 
 .177 

Height (m) ahtn09  .129 

Appendicular fat mass (kg) AppFAT_kg  .092 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

.033 .008 

Weight (kg) aWeight2006  .889 

 

In the prediction of timed up and go performance in NSHD males only self-reported 

health status at 60 – 64 y produced a significant (p<0.001) F change (Table 6.19). After 

health status had been included in the model, no other tested variable produced a 

significant (p<0.05) F change.  
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Table 6.20 Outcome of hierarchical linear regression analysis to predict timed up and go 

in NSHD males at 60 – 64 y (Model 1.5) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) 
-2.977 -.056 .251 1.009 

_Good 5.649 .124 .012 1.051 

_Fair 16.367 .220 <.001 1.048 

_Poor 24.154 .128 .009 1.012 

 

In NSHD males (n=407) a health status of good was associated with a 5.6% poorer 

performance (p=0.012) when compared to those who had reported a health status of 

excellent/very good (the reference category). Fair health was associated with a 16.3% 

(p<0.001) and poor health a 24.2% poorer timed up and go performance (p=0.009) 

(Table 6.20). This model (with two predictors) explained only 6.7% of the variability in 

timed up and go in NSHD males at 60 – 64 y.   
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6.2.6 Predictors of timed up and go in females 

 

Table 6.21 Determining the hierarchy of predictors of timed up and go in NSHD females. 

Selection of independent variable 2 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .054 <.001 

BMI (kg/m2) aBMI_06 .039 <.001 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .442 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .256 

Body fat % aFat_Perc .040 <.001 

Whole body fat mass (kg) aFM_kg .032 <.001 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .018 

Self-reported health status at 

60 – 64 y 

_Good 

_Fair 

_Poor 

.105* <.001 

Adulthood physical activity 
_MoreActive 

_MostActive 
 .001 

Height (m) ahtn09  .374 

Appendicular fat mass (kg) AppFAT_kg  .001 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .016 

Weight (kg) aWeight2006 .032 <.001 

 

In the prediction of timed up and go performance in females, six variables produced a 

significant (p<0.001) F change; abdominal circumference (cm), BMI (kg/m2), body fat 

percentage, whole body fat mass (kg), self-reported health status and body weight (kg) 

(Table 6.21). Self-reported health status resulted in the greatest R2 change (10.5%) and 

was selected as the second independent variable.    
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Table 6.22 Determining the hierarchy of predictors of timed up and go in NSHD females. 

Selection of independent variable 3 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

Abdominal circumference (cm) AbCirc_06 .032* <.001 

BMI (kg/m2) aBMI_06 .024 <.001 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .681 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN  .582 

Body fat % aFat_Perc .028 <.001 

Whole body fat mass (kg) aFM_kg  .004 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .042 

Adulthood physical activity 
_MoreActive 

_MostActive 
 .008 

Height (m) ahtn09  .445 

Appendicular fat mass (kg) AppFAT_kg  .006 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .110 

Weight (kg) aWeight2006  .001 

 

After the protein variable and self-reported health status at 60 – 64 y were included in 

the regression model, three variables produced a significant (p<0.001) F change; 

abdominal circumference (cm) at 60 – 64 y, BMI (kg/m2) at 60 – 64 y and body fat 

percentage at 60 – 64 y (Table 6.22). Of these three, abdominal circumference produced 

the greatest R2 change (3.2%) and was selected as the third independent variable. 
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Table 6.23 Determining the hierarchy of predictors of timed up and go in NSHD females. 

Selection of independent variable 4 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

BMI (kg/m2) aBMI_06  .876 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN .016 .005 

Whole body lean mass (kg) 

adjusted for height2 
Adj_LEAN .018* .004 

Body fat % aFat_Perc  .079 

Whole body fat mass (kg) aFM_kg  .942 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .062 

Adulthood physical activity 
_MoreActive 

_MostActive 
 .033 

Height (m) ahtn09  .262 

Appendicular fat mass (kg) AppFAT_kg  .613 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .167 

Weight (kg) aWeight2006  .504 

 

In selecting the fourth independent variable, there was very little to differentiate 

between adjusted whole body lean mass (kg/ht2) and appendicular lean mass (kg/ht2) 

in females (Table 6.23). Adjusted whole body lean mass was selected as the fourth 

independent variable as it resulted in the greatest R2 change (p=0.004).  
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Table 6.24 Determining the hierarchy of predictors of timed up and go in NSHD females. 

Selection of independent variable 5 

Variable Name Variable code 

Model Summary 

Change Statistics 

R2 Change p-value 

BMI (kg/m2) aBMI_06  .695 

Appendicular lean mass (kg) 

adjusted for height2 
Adj_AppLEAN  .628 

Body fat % aFat_Perc  .310 

Whole body fat mass (kg) aFM_kg  .700 

Father’s SEP (at 4 y) 

FSC_IIINM 

FSC_IIIM 

FSC_Partly 

FSC_Unskilled 

 .292 

Adulthood physical activity 
_MoreActive 

_MostActive 
.018* .015 

Height (m) ahtn09  .242 

Appendicular fat mass (kg) AppFAT_kg  .382 

SEP (at 53 y) 

SEP_IIINM 

SEP_IIIM 

SEP_Partly 

SEP_Unskilled 

 .131 

Weight (kg) aWeight2006  .529 

 

After the protein variable (quintiles of protein intake (g/d)), self-reported health status, 

abdominal circumference (cm) and adjusted whole body lean mass (kg/ht2) at 60 – 64 y 

had been included in the regression model, only adulthood physical activity produced a 

significant (p<0.05) F change (Table 6.24). Once this variable was included in the 

regression model, no other tested variable produced a significant F change. 
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Table 6.25 Outcomes of hierarchical linear regression analysis to predict timed up and 

go in NSHD females at 60 – 64 y (Model 1.6) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) 
6.177 .107 .021 1.024 

_Good 3.699 .084 .077 1.079 

_Fair 22.090 .277 <.001 1.069 

_Poor 24.702 .103 .027 1.042 

Abdominal circumference 

(cm) 
.526 .295 <.001 2.328 

Adjusted whole body lean 

mass (kg/ht2) 
-2.227 -.190 .006 2.228 

_MoreActive -5.881 -.139 .006 1.217 

_MostActive -5.297 -.099 .051 1.235 

 

This model (with 5 predictors) explained 19.2% of the inter-individual variation in 

timed up and go performance in NSHD females (n=397) at 60 – 64 y. For this measure of 

physical capability, quintiles of protein consumption (g/d) were predictive of 

performance (p=0.021). On average, those in quintile 1 of mean protein consumption 

(g/d) across adulthood took 6.2% longer to complete the task (Table 6.25). 

 

A declining self-reported health status was associated with a poorer performance, 

females who declared themselves to be in poor health took 24.7% longer to complete 

the task compared with females in excellent/very good health (p=0.027). Increasing 

abdominal circumference (cm) was negatively associated with performance (p<0.001) 

while increasing appendicular lean mass (kg/ht2) and adulthood physical activity were 

positively (p=0.006) associated with timed up and go performance at 60 – 64 y.       
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6.3 Summary of all model outcomes 

All regression models tested the same three dependent variables, i.e. hand grip strength, 

chair rise time and timed up and go at 60 – 64 y. The difference between the models was 

the first independent variable, the protein variable, which compared those in quintile 1 

(or quartile 1 for the muscle protein synthesis score) of mean protein consumption 

across adulthood with those in higher quintiles (or quartiles) of consumption. Protein 

intake across adulthood i.e. quantified in 1982, 1989 and 1999 was expressed in several 

ways, detailed in Table 6.26  

 

Table 6.26 Models and first independent variable (the protein variable) 

Models First independent variable and how it was determined  

1.1 – 1.6 
Quintile 1 of 3 y mean protein consumption compared with 

higher quintiles of consumption (g/d)  

2.1 – 2.6 
Quintile 1 of 3 y mean protein consumption compared with 

higher quintiles of consumption (g/kg/d) 

3.1 – 3.6 

Quintile 1 of 3 y mean protein consumption compared with 

higher quintiles of consumption, daily protein as a percentage of 

total energy (%TE) 

4.1 – 4.6 
Quartile 1 of muscle protein synthesis score compared with 

higher quartiles of MPSS  

5.1 – 5.6 

Sensitivity analysis 1: Quintile 1 of 3 y mean protein consumption 

compared with higher quintiles of consumption (g/d) excluding 

predicted misreporters 

6.1 – 6.6 

Sensitivity analysis 2: Quintile 1 of 3 y mean protein consumption 

compared with higher quintiles of consumption (g/kg/d) 

excluding predicted misreporters 

  

There was considerable homogeneity in the outcomes of the regression analyses for all 

6 modes of expression of protein intake for any one of the 3 dependent variables (hand 

grip strength, chair rise time and timed up and go). To facilitate comparisons between 

effects of measures of protein intake, the results for each of the 3 measures of physical 

capability are presented separately in Tables 6.27 – 6.32, by gender. Only significant 

coefficients are reported. All outcomes of hierarchical linear regression analyses (all 

models) are in the appendices to this Chapter (Tables 6.33 – 6.62).    
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6.3.1 Predictors of hand grip strength in males – all models 

 

Table 6.27 Predictors of hand grip strength (kg) at 60 – 64 y in NSHD males who 

provided dietary data in all years. Outcomes of hierarchical linear regression analyses 

investigating different measures of protein intake 

Model and first 

independent variable 
Hierarchy of Predictors B p-value 

Model 

R2 

1.1 Quintiles of protein 

intake (g/d) 

Height (m) 53.4 <.001 

16.4% 
Adjusted appendicular lean 

mass (kg/ht2) 
4.6 <.001 

Abdominal circumference (cm) -0.3 <.001 

2.1 Quintiles of protein 

intake (g/kg/d) 

Height (m) 53.2 <.001 

16.7% 
Adjusted appendicular lean 

mass (kg/ht2) 
4.6 <.001 

Abdominal circumference (cm) -0.3 <.001 

3.1 Quintiles of protein 

intake (as a proportion 

of daily energy intake) 

Height (m) 53.0 <.001 

16.4% 
Adjusted appendicular lean 

mass (kg/ht2) 
4.6 <.001 

Abdominal circumference (cm) -0.3 <.001 

4.1 Quartiles of diurnal 

protein intake (MPSS) 

Height (m) 53.2 <.001 

16.4% 
Adjusted appendicular lean 

mass (kg/ht2) 
4.6 <.001 

Abdominal circumference (cm) -0.3 <.001 

5.1 Quintiles of protein 

intake (g/d) excluding 

predicted misreporters 

Height (m) 66.5 <.001 

24% 
Adjusted whole body lean mass 

(kg/ht2) 
2.8 <.001 

Abdominal circumference (cm) -0.3 <.001 

6.1 Quintiles of protein 

intake (g/kg/d) 

excluding predicted 

misreporters 

Height (m) 64.0 <.001 

23.2% 
Adjusted whole body lean mass 

(kg/ht2) 
2.7 <.001 

Abdominal circumference (cm) -0.3 .003 

 

Regardless of how protein intake was expressed, there was no evidence that protein 

consumption across adulthood was a significant predictor of hand grip strength in 

males at age 60 – 64 y (Table 6.27). Height was consistently the most predictive of hand 

grip strength in all regression models. Also common to all models was abdominal 

circumference – each additional 1 cm was consistently associated with 0.3 kg less hand 

grip strength at 60 – 64 y. 
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In models 1.1 – 4.1 (excluding the sensitivity analyses) adjusted appendicular lean mass 

(kg/ht2) was consistently predictive of hand grip strength at 60 – 64 y; each additional 1 

kg was associated with an additional 4.6 kg (p=0.001). These first four models explained 

16.4 – 16.7% of the variability in hand grip strength in NSHD males at 60 – 64 y.  

 

The sensitivity analyses (models 5.1 and 6.1) were conducted in 174 men who provided 

apparently reliable dietary data in all years of measurement and who were predicted 

never to have under- or over-reported their energy intakes. In this subset of males, 

adjusted whole body lean mass (kg) and not appendicular lean mass (kg) was predictive 

of hand grip strength (after height); each additional 1 kg was associated with an 

additional 2.7/2.8 kg hand grip strength (p<0.001). Increases in adjusted whole body 

lean mass, predictive of performance in the sensitivity analyses, were associated with a 

smaller increase in hand grip strength (2.7/2.8 kg) than those associated with increases 

in adjusted appendicular lean mass (4.6 kg) in models 1.1 – 4.1. Models conducted as 

sensitivity analyses explained more of the variability (23.2/24%) in hand grip strength 

than any of the other analyses (which included all males who provided dietary data in 

all measurement years).      
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6.3.2 Predictors of hand grip strength in females – all models 

 

Table 6.28 Predictors of hand grip strength (kg) at 60 – 64 y in NSHD females who 

provided dietary data in all years. Outcomes of hierarchical linear regression analyses 

investigating different measures of protein intake 

Model and first 

independent variable  
Hierarchy of predictors B p-value 

Model 

R2 

1.2 Quintiles of protein 

intake (g/d) 

Height (m) 29.7 <.001 

16.1% 

Fair health status  -5.6 <.001 

Poor health status -10.4 .029 

Adjusted appendicular lean 

mass (kg/ht2) 
2.6 <.001 

Abdominal circumference (cm) -0.2 <.001 

2.2 Quintiles of protein 

intake (g/kg/d) 

Height (m) 30.0 <.001 

15.9% 

Fair health status -5.6 <.001 

Poor health status -10.6 .026 

Adjusted appendicular lean 

mass (kg/ht2) 
2.6 <.001 

Abdominal circumference (cm) -0.2 <.001 

3.2 Quintiles of protein 

intake (as a proportion 

of daily energy) 

Height (m) 30.2 <.001 

16.2% 

Fair health status -5.5 <.001 

Poor health status -11.0 .021 

Adjusted appendicular lean 

mass (kg/ht2) 
2.6 <.001 

Abdominal circumference (cm) -0.2 <.001 

4.2 Quartiles of diurnal 

protein intake (MPSS) 

Height (m) 31.0 <.001 

16.5% 

Fair health status -5.6 <.001 

Poor health status -11.3 .017 

Adjusted appendicular lean 

mass (kg/ht2) 
2.6 <.001 

Abdominal circumference (cm) -0.2 <.001 

5.2 Quintiles of protein 

intake (g/d) excluding 

predicted misreporters 

Height (m) 38.0 <.001 

17.2% 
Adjusted appendicular lean 

mass (kg/ht2) 
3.7 <.001 

Abdominal circumference (cm)  -0.2 <.001 

6.2 Quintiles of protein 

intake (g/kg/d) 

excluding predicted 

misreporters 

Height (m) 37.0 <.001 

17.5% 
Adjusted appendicular lean 

mass (kg/ht2) 
3.5 <.001 

Abdominal circumference (cm) -0.2 <.001 

 

 

 

 



211 

 

As with males, height was consistently and significantly the most predictive of hand grip 

strength in females (Table 6.28). Abdominal circumference was consistently negatively 

associated with performance at 60 – 64 y, each additional 1 cm of circumference was 

associated with 0.2 kg less hand grip strength (p<.001). 

 

After height (in models 1.2 – 4.2 only, excluding the sensitivity analyses) a ‘fair’ self-

reported health status (compared with a health status of excellent/very good) was 

consistently associated with 5.5/5.6 kg less hand grip strength (p<0.001) and ‘poor’ 

health with 10.4 – 11.3 kg less hand grip strength (p<0.05). 

 

Adjusted appendicular lean mass (kg/ht2) was common to all regression models in 

NSHD females. In models 1.2 – 4.2 each additional 1 kg/ht2 was associated with 2.6 kg 

greater hand grip strength (p<.001) whereas in the sensitivity analyses (models 5.2 and 

6.2) each additional 1 kg/ht2 of appendicular lean mass was associated with 3.7 kg and 

3.5 kg greater hand grip strength, respectively (p<.001).   

 

The sensitivity analyses (models 5.2 and 6.2) were each conducted in 209 females who 

provided apparently reliable dietary data in all years of measurement and who were 

predicted never to have under- or over-reported their energy intakes. In these models 

self-reported health status at 60 – 64 y was not predictive of hand grip strength.      
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6.3.3 Predictors of chair rise time in males – all models 

 

Table 6.29 Predictors of chair rise time at 60 – 64 y in NSHD males who provided 

dietary data in all years. Outcomes of hierarchical linear regression analyses 

investigating different measures of protein intake 

Model and first 

independent variable 
Hierarchy of Predictors B (%) p-value 

Model 

R2 

1.3 Quintiles of protein 

intake (g/d) 

Fair health status 22.4 <.001 

15.9% 

Poor health status 34.2 .001 

Abdominal circumference (cm) 0.4 <.001 

Adulthood PA_MoreActive -5.5 .039 

Adulthood PA_MostActive -9.4 .004 

2.3 Quintiles of protein 

intake (g/kg/d) 

Quintiles of protein intake 

(g/kg/d) 
-6.6 .033 

16.7% 

Fair health status 22.2 <.001 

Poor health status 35.5 <.001 

Abdominal circumference (cm) 0.5 <.001 

Adulthood PA_MoreActive -5.3 .043 

Adulthood PA_MostActive -9.7 .003 

3.3 Quintiles of protein 

intake (as a proportion 

of daily energy) 

Fair health status 22.4 <.001 

15.8% 

Poor health status 34.0 .001 

Abdominal circumference (cm) 0.4 <.001 

Adulthood PA_MoreActive -5.5 .039 

Adulthood PA_MostActive -9.5 .004 

4.3 Quartiles of diurnal 

protein intake (MPSS) 

Fair health status 22.3 <.001 

15.8% 

Poor health status 34.0 .001 

Abdominal circumference (cm) 0.4 <.001 

Adulthood PA_MoreActive -5.6 .036 

Adulthood PA_MostActive -9.4 .004 

5.3 Quintiles of protein 

intake (g/d) excluding 

predicted misreporters 

Fair health status 17.1 .016 

11.6% Adulthood PA_MoreActive -9.7 .013 

Abdominal circumference (cm) 0.4 .039 

6.3 Quintiles of protein 

intake (g/kg/d) 

excluding predicted 

misreporters 

Quintiles of protein intake 

(g/kg/d) 
9.8 .019 

8.0% 
Fair health status 21.0 .004 

Poor health status 37.0 .038 
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Quintiles of protein intake when expressed relative to body mass (model 2.3) were 

significantly predictive of chair rise performance in males at 60 – 64 y; however, 

quintile 1 of mean protein consumption (g/kg/d) was associated with a better (6.6% 

faster) chair rise time (p=0.033). After excluding predicted energy misreporters (model 

6.3) the direction of the association changed from being negative to positive i.e. quintile 

1 of protein consumption (g/kg/d) was associated with a 9.8% poorer performance at 

this test (p=0.019) (Table 6.29).   

 

In the first four regression models (1.3 – 4.3) a ‘fair’ health status (compared with 

excellent/very good) was consistently associated with a 22.2 – 22.4% poorer 

performance at chair rising (p<0.001) and ‘poor’ health with a 34.0 – 35.5% poorer 

performance (p=0.001). In the first sensitivity analysis (model 5.3) only a ‘fair’ health 

status was predictive of a poorer (17.1%) performance. In the second sensitivity 

analysis, in which protein was expressed relative to body mass (g/kg/d) and predicted 

energy misreporters were excluded, a fair and a poor self-reported health status were 

both predictive of a poorer chair rise performance – poor health cf. excellent/very good 

was associated with a 37% poorer performance (p=0.038) in males.    

 

With the exception of model 6.3, increasing abdominal circumference was consistently 

associated with a poorer chair rise performance, each additional 1 cm of circumference 

was associated with an additional 0.4/0.5% chair rise time (p<0.001). 

 

In models 1.3 – 4.3 (excluding the sensitivity analyses) adulthood physical activity was 

positively associated with chair rising; compared to those who were ‘sedentary’ 

throughout adulthood, being ‘more active’ was consistently associated with a 5.3 – 5.6% 

better performance, whereas being ‘most active’ was associated with a 9.4 – 9.7% better 

performance (p<0.05). In the first sensitivity analysis (model 5.3), conducted in 215 

males who provided apparently reliable dietary data the effect of being ‘more active’ 

compared with being sedentary, was associated with a 9.7% better chair rise time 

(p=0.013). In the second sensitivity analysis (model 6.3) conducted in 216 males who 

provided apparently reliable data, only quintiles of protein consumption (g/kg/d) and 

self-reported health status were predictive of chair rise time in males. 
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6.3.4 Predictors of chair rise time in females – all models 

 

Table 6.30 Predictors of chair rise time at 60 – 64 y in NSHD females who provided 

dietary data in all years. Outcomes of hierarchical linear regression analyses 

investigating different measures of protein intake 

Model and first 

independent variable 
Hierarchy of Predictors B (%) p-value 

Model 

R2 

1.4 Protein quintiles 

(g/d) 

Good health status 12.2 <.001 

13.6% 
Fair health status 19.2 <.001 

Poor health status 54.3 <.001 

Abdominal circumference (cm) 0.5 <.001 

2.4 Protein quintiles 

(g/kg/d) 

Good health status 11.0 <.001 

15.1% 

Fair health status 19.0 <.001 

Poor health status 52.0 <.001 

Abdominal circumference (cm) 0.4 <.001 

Height (m) 46.8 .021 

Adulthood PA_MostActive -8.7 .012 

3.4 Protein quintiles 

(as a proportion of 

daily energy) 

Good health status 11.0 <.001 

15.2% 

Fair health status 19.0 <.001 

Poor health status 51.0 <.001 

Abdominal circumference (cm) 0.4 <.001 

Height (m) 46.0 .022 

Adulthood PA_MostActive -8.8 .011 

3.4 Quartiles of MPSS 

Good health status 11.0 <.001 

15.1% 

Fair health status 19.0 <.001 

Poor health status 52.2 <.001 

Abdominal circumference (cm) 0.4 <.001 

Height (m) 46.0 .023 

Adulthood PA_MostActive -8.7 .012 

5.4 Protein quintiles 

(g/d) excluding 

predicted misreporters 

Abdominal circumference (cm) 0.7 <.001 

11.5% 
Fair health status 21.6 .004 

6.4 Protein quintiles 

(g/kg/d) excluding 

predicted misreporters 

Abdominal circumference (cm) 0.7 <.001 

11.2% 
Fair health status 22.1 .004 

 

In regression models 1.4 – 3.4 (excluding the sensitivity analyses) self-reported health 

status at 60 – 64 y was most predictive of chair rise time in females at 60 – 64 y and a 

declining health was consistently associated with a poorer performance (Table 6.30). 
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Compared to those declaring themselves in excellent/very good health, females 

declaring their health to be ‘good’, ‘fair’ or ‘poor’ took significantly longer to complete 

the task; i.e. 11 – 12%, 19% and 51 – 54.3% longer (p<0.001), respectively. 

 

Increasing abdominal circumference (cm) was consistently negatively associated with 

chair rise performance, each additional 1 cm of circumference was associated with a 

0.4/0.5% poorer performance (p<0.001).  These first four regression models explained 

13.6 – 15.1% of the variability in chair rise time in NSHD females at 60 – 64 y. 

 

The sensitivity analyses (models 5.4 and 6.4) were each conducted in 258 females who 

provided apparently reliable dietary data in all years of measurement. In these models, 

increasing abdominal circumference (each additional 1 cm) was most predictive of chair 

rise time; each additional 1 cm of circumference was associated with a 0.7% poorer 

performance (compared with 0.4/0.5% in the first four models, unadjusted for 

predicted misreporters) (p<0.001). Only a ‘fair’ health status, compared with 

excellent/very good, was predictive of performance and was associated with a 

21.6/22.1% poorer performance (p=.004) in females. There was no significant 

difference in chair rise time between those who reported excellent/very good health 

and those who reported ‘good’ or ‘poor’ health. When predicted misreporters were 

excluded from the analyses, regression models explained less (11.2 – 11.5%) of the 

variability in chair rise time in females at 60 – 64 y.   
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6.3.5 Predictors of timed up and go in males – all models 

 

Table 6.31 Predictors of timed up and go performance (s) at 60 – 64 y in NSHD males 

who provided dietary data in all years. Outcomes of hierarchical linear regression 

analyses investigating different measures of protein intake 

Model and first 

independent variable 
Hierarchy of Predictors B (%) p-value 

Model 

R2 

1.5 Quintiles of protein 

intake (g/d) 

Good health status 5.6 .012 

6.7% Fair health status 16.4 <.001 

Poor health status 24.2 .009 

2.5 Quintiles of protein 

(g/kg/d) 

Good health status 5.8 .010 

6.8% Fair health status 16.4 <.001 

Poor health status 24.3 .008 

3.5 Quintiles of protein 

intake (as a proportion 

of daily energy) 

Good health status 5.7 .011 

6.4% Fair health status 16.1 <.001 

Poor health status 23.5 .011 

4.5 Quartiles of diurnal 

protein intake (MPSS) 

Good health status 5.8 .010 

6.5% Fair health status 16.8 <.001 

Poor health status 24.2 .009 

5.5 Quintiles of protein 

intake (g/d) excluding 

predicted misreporters 

SEP IV (at 53 y) (partly skilled) 14.4 .010 5% 

6.5 Quintiles of protein 

intake (g/kg/d) 

excluding predicted 

misreporters 

Quintiles of protein intake 

(g/kg/d) 
7.4 .035 

6.5% 
Father’s SEP V (when 

participant 4 y) (unskilled) 
13.4 .040 

 

In the first four regression analyses (models 1.5 – 4.5) only self-reported health status 

was predictive of timed up and go performance in males at 60 – 64 y (Table 6.31). 

Compared to those in excellent/very good health, males declaring their health to be 

good took ~6% longer to complete the task. A fair health status was associated with a 

16 – 16.8% poorer performance (p<0.001) and poor health, a 24% poorer performance. 

These four models explained 6.4 – 6.8% of the variability in timed up and go in males at 

60 – 64 y. 
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In the first of the sensitivity analyses (model 5.5) conducted in 213 males who provided 

apparently reliable dietary data in all years of measurement, only socioeconomic 

position at 53 y was predictive of performance at time up and go at 60 – 64 y. Compared 

with SEP I/II (professional/intermediate), SEP IV (partly unskilled) was associated with 

a 14.4% poorer performance (p=0.010). In the second sensitivity analysis, also 

conducted in (n=213) males, quintiles of protein consumption when expressed relative 

to body mass (g/kg/d) were significantly associated with timed up and go performance 

at 60 – 64 y. Compared with those reporting higher intakes of protein, quintile 1 was 

associated with a 7.4% poorer performance (p=0.035). Also predictive of performance 

was father’s SEP (when participant was 4 y). Compared with father’s SEP I/II 

(professional/intermediate), father’s SEP V (unskilled) was associated with a 13.4% 

poorer performance (p=0.040) in male participants at 60 – 64 y.   
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6.3.6 Predictors of timed up and go in females – all models 

 

Table 6.32 Predictors of timed up and go performance (s) at 60 – 64 y in NSHD females 

who provided dietary data in all years. Outcomes of hierarchical linear regression 

analyses investigating different measures of protein intake 

Model and first 

independent variable 
Hierarchy of Predictors B (%) p-value 

Model 

R2 

1.6 Quintiles of protein 

intake (g/d) 

Quintiles of protein intake 

(g/d) 
6.2 .021 

19.2% 

Fair health status 22.0 <.001 

Poor health status 25.0 .027 

Abdominal circumference (cm) 0.5 <.001 

Whole body lean mass (kg/ht2) -2.2 .006 

Adulthood PA_MoreActive -6.0 .006 

2.6 Quintiles of protein 

intake (g/kg/d) 

Good health status 4.6 .030 

16.7% 

Fair health status 23.3 <.001 

Poor health status 28.0 .013 

Body fat percentage (%) 0.6 .002 

Adulthood PA_MoreActive -5.8 .008 

Adulthood PA_MostActive -5.7 .038 

3.6 Quintiles of protein 

intake (as a proportion 

of daily energy) 

Fair health status 22.2 <.001 

18.7% 

Poor health status 26.0 .023 

Abdominal circumference (cm) 0.5 <.001 

Whole body lean mass (kg/ht2) -2.2 .007 

Adulthood PA_MoreActive -6.0 .006 

Adulthood PA_MostActive -5.9 .031 

4.6 Quartiles of diurnal 

protein intake (MPSS) 

Fair health status 22.0 <.001 

18.1% 

Poor health status 27.0 .016 

Abdominal circumference (cm) 0.5 <.001 

Whole body lean mass (kg/ht2) -2.3 .005 

Adulthood PA_MoreActive -6.2 .004 

Adulthood PA_MostActive -5.6 .038 

5.6 Quintiles of protein 

intake (g/d) excluding 

predicted misreporters 

Fair health status 16.5 .012 

15.4% Body fat percentage (%) 0.9 .001 

SEP V at 53 y (Unskilled) 28.0 .002 

6.6 Quintiles of protein 

intake (g/kg/d) 

excluding predicted 

misreporters 

Fair health status 16.5 .011 

16.1% 
Body fat percentage (%) 1.0 <.001 

SEP V at 53 y (Unskilled) 29.0 .002 

 

There was heterogeneity in the outcomes of regression analyses to predict timed up and 

go at 60 – 64 y in females (Table 6.32). 
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In model 1.6, quintile 1 of absolute mean protein consumption (g/d) was associated 

with a 6.2% poorer performance compared with those in higher quintiles of protein 

consumption (p=0.021). However, after the exclusion of predicted misreporters (model 

5.6) this association disappeared. 

 

In all regression models, self-reported health status at 60 – 64 y was most predictive of 

timed up and go performance in females. In models 1.6 – 4.6, compared with a self-

reported health status of excellent/very good, a fair health status was associated with a 

22.0 – 23% poorer performance (p<0.001). In the sensitivity analyses (models 5.6 and 

6.6) excluding predicted misreporters, a fair health status was associated with a 16.5% 

poorer performance (p<0.05) at timed up and go. 

 

In models 1.6 – 4.6 adulthood physical activity was predictive of TUG performance. 

Compared with being sedentary throughout adulthood, being ‘more active’ or ‘most 

active’ was associated with a 6% better performance.    

 

Only in models 2.6, where protein intake was expressed relative to body mass (g/kg/d) 

and in the sensitivity analyses (models 5.6 and 6.6) was body fat percentage (and not 

abdominal circumference) predictive of timed up and go performance in females. Each 

additional 1% of body fat was associated with a 0.6 – 1.0% poorer performance. 

Abdominal circumference (and not body fat percentage) was predictive of performance 

in models 1.6, 3.6 and 4.6; each additional 1 cm was associated with a 0.5% poorer 

performance (p<0.001). When abdominal circumference was predictive of TUG 

performance, whole body lean mass (kg/ht2) was also predictive of performance; each 

additional 1 kg associated with a 2% better performance. 

 

The sensitivity analyses (models 5.6 and 6.6) were each conducted in 201 females who 

provided apparently reliable dietary data in all years of measurement and who were 

predicted never to have under- or over-reported their energy intakes. In these subsets 

of females, socioeconomic position at 53 y was also predictive of TUG performance. 

Compared with SEP I/II (professional/intermediate) SEP V (unskilled) was associated 

with a 28 – 29% poorer performance at 60 – 64 y (p=0.002).     
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6.4 Discussion 

6.4.1 Overview of hypothesis and analytical approach 

This project aimed to test the hypothesis that relatively low protein intake across 

adulthood would predict poorer physical capability in middle age (60 – 64 y). For this 

purpose, the analysis was restricted to those NSHD participants who provided dietary 

data in all years of measurement (1982, 1989 and 1999) and intakes across all 

measurement years were aggregated to provide summary measures which were the 

best available evidence for adult protein intakes. Protein intake was expressed in four 

different ways i.e. as absolute amounts eaten (g/d), as quantities per day scaled to body 

mass (g/kg/d) and as a percentage of total energy intake (PPTE). Diurnal protein 

intakes ≥ 20 g were expressed as a muscle protein synthesis score (MPSS). In addition, 3 

measures of physical capability were examined viz. hand grip strength, chair rise time 

and timed up and go. All analyses were undertaken using hierarchical linear regression 

analysis which, in addition to considering measures of protein intake, considered 

anthropometric measures, adulthood leisure-time physical activity, measures of self-

reported health and socioeconomic status as potential predictors of physical capability. 

Finally, to assess the possible impact of dietary misreporting, the analyses were 

repeated (for protein intake in g/d and as g/kg/d) restricted to the subset of NSHD 

participants who appeared to report ‘valid’ energy intakes on all 3 measurement 

occasions (please see Chapter 2 for details of assessment of misreporting). These were 

referred to as sensitivity analyses in this chapter. Given the significant differences 

between men and women in all 3 measures of physical capability, all analyses were 

undertaken for males and females separately.      

 

The analyses provided little support for the hypothesis that relatively low protein 

intake across adulthood would predict poorer physical capability at 60 – 64 y. This was 

true regardless of how protein intake was expressed and which physical capability 

measure was considered. Only in males, after excluding those predicted to have 

misreported their EI, were quintiles of protein consumption, expressed relative to body 

mass (g/kg/d) associated with poorer outcomes at chair rise time and timed up and go. 
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Longitudinal changes in DEXA-determined skeletal muscle mass after age 60 y were 

examined by (Gallagher et al., 2000). Mean age at baseline and follow up was 73 y and 

78 y in males (n=24) and 70 y and 75 y in females (n=54). In males, loss of total 

appendicular skeletal muscle was 0.8 kg (0.7 kg in leg and 0.2 kg in arm skeletal muscle) 

and the annual rate of change was – 0.2 ± 0.5 kg/ y. There were also significant losses in 

fat free body mass and increases in fat mass. In females, loss of total appendicular 

skeletal muscle mass was 0.4 kg (0.3 kg in legs and 0.1 kg in arms) and the annual rate 

of change was – 0.1 ± 0.4 kg/ y, half the rate of change seen in males. There were 

insignificant increases in fat free body mass and decreases in fat mass in females. The 

authors concluded inter alia that musculoskeletal relationships in males and females 

could be expected to develop very differently, with important implications for mobility 

and physical function in later life (Gallagher et al., 2000).  

 

Among the eight UK cohort studies which comprise the HALCyon programme (including 

the NSHD at 53 y), and using cross sectional data, a higher BMI (kg/m2) was associated 

with a poorer performance at the chair rise test and a better performance at hand grip 

strength (in males) (Hardy et al., 2013). In the present study (at 60 – 64 y) BMI was 

never predictive of performance at any of the objectively measured physical capability 

tests. However, increasing abdominal circumference (cm) was predictive of a poorer 

performance at chair rise in males and females. In females the association was 

significant in all models, even after the exclusion of predicted misreporters whereas in 

males the association was lost after protein intake was adjusted for body weight and the 

model adjusted for misreported energy intakes. Increasing abdominal circumference 

and body fat percentage were also predictive of a poorer performance at timed up and 

go in females. High body fatness but not low fat free mass (assessed by bioelectrical 

impedance) was predictive of self-reported, mobility-related disability (walking and 

stair climbing) in older (≥ 65 y) men and women (Visser et al., 1998b). DEXA-

determined total body and lower extremity muscle mass were not associated with self-

reported physical disability among 753 participants of the Framingham Heart Study (72 

– 95 y). However, there was a strong positive association between body fat percentage 

and disability. 
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Compared to those in the lowest tertile of body fat percentage, the odds ratio for 

disability among those in the highest tertile was 2.69 in females and 3.08 in males 

(Visser et al., 1998a). Self-reported disability was assessed by nine physical function 

questions i.e. stooping, crouching and kneeling, standing, walking, arm reach above 

shoulder height, handling a small/lifting a large object, getting in and out of a car and 

putting on socks/ stockings. In addition, hand grip strength (by dynamometer) and fat 

distribution (waist circumference and the waist-hip ratio) were determined and 

physical activity and self-reported health status included as potential confounders. Grip 

strength was positively correlated with whole body skeletal muscle mass in males (r 

= .50) and females (r = .46) an observation consistent with the current study.  

 

Physical (and mobility-related) disability were positively associated with percent body 

fat but not with the distribution of body fat in (Visser et al., 1998a), a finding not 

observed in the current study. Body fat percentage was significantly associated with a 

poorer performance at timed up and go, but only in females. By comparison, in 

sensitivity analyses (using reliable dietary data), abdominal circumference, a measure 

of central adiposity, was predictive of poorer hand grip strength and chair rise time in 

females. In males, abdominal circumference was predictive of poorer hand grip strength 

and chair rise time (where protein was expressed in absolute intakes). 

 

Gender differences in the anthropometric predictors of physical performance in older 

adults were examined by (Fragala et al., 2012) as males have more absolute and relative 

lean mass and less fat mass than females.  In 470 older men and women (mean age 73 y) 

body composition was determined by DEXA, leg strength/power by a leg press and 

mobility performance/functional strength by gait speed and chair rise. After accounting 

for age, BMI (kg/m2) was associated with poorer chair rise (0.4) (p<0.001) in females 

but not in males (p=0.146). In the present study BMI was not predictive of chair rise 

performance and there was considerable overlap in gender models. Factors common to 

both were a ‘fair’ self-reported health status (associated with a 17 – 22% poorer 

performance in males and a 19 – 22% poorer performance in females) and abdominal 

circumference (associated with a 0.4 – 0.5% poorer performance in males and a 0.4 – 

0.7% poorer performance in females). Increasing adulthood physical activity predicted 

a better performance at chair rise time, but only in males.    
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In a systematic review by (Vincent et al., 2010) it was reported that maintaining 

mobility was more challenging for women than men. In longitudinal studies that 

examined chair rise time, weight gain and increased BMI contributed to the decline in 

body transfer ability and multiple comorbidities increased the susceptibility to mobility 

loss.  In a systematic review by (Shin et al., 2011) studies suggested that adiposity was a 

stronger determinant of physical performance than muscle mass in older community 

dwelling adults. However, the positive relationship between muscle mass and physical 

performance was clearly shown when functionality was assessed by hand grip strength. 

These observations were consistent with the findings in the current study.    

 

In the English Longitudinal Study of Ageing (age at baseline 72.3 y in males and 73.2 y in 

females), higher BMI was associated with impaired physical function at 5 y follow up 

but not mortality. Physical function was assessed by activities of daily living and the 

Short Physical Performance Battery (Lang et al., 2008). As those who were 

overweight/obese were more likely to become disabled but not more likely to die, this 

suggested long periods of living with a disability.  

 

In 2876 participants of the Health, Aging and Body Composition Study the joint effects 

of adiposity (BMI, body fat percentage, waist circumference) and physical activity on 

incident mobility limitation in older adults were examined (Koster et al., 2008). BMI 

(kg/m2) was categorised into 3 groups (<25, 25 – 29.9 and ≥30) and total body fat into 

sex-specific quartiles, high(est) (>31.3% (males) and >43.7% (females)), and low(est) 

(<24.7% (males) and <35.8% (females). A high waist circumference was ≥ 102 cm (in 

males) and 88 cm (in females). Physical activity was divided into quartiles, high physical 

activity (> 106.5 kcal/ kg per week) and low physical activity (< 38.4 kcal.kg per week). 

Second and third quartiles were combined for medium. Incident mobility limitation was 

defined as self-reported difficulty walking ¼ mile or climbing 10 steps at 2 consecutive 

assessments. Self-rated health status was classified as in the present study i.e. excellent 

– poor, and depressed mood assessed by a MMMSE score. Cox proportional hazard 

regression models were stratified by gender and race. 
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In (white) males, the highest combined risk of mobility limitation (HR = 2.52, 95% CI = 

1.48 – 4.28) was in those with a high BMI and medium levels of physical activity. In 

(white) females, it was in those with a high total body fat percentage and low physical 

activity (HR = 3.53, 95% CI = 1.91 – 6.52) (Koster et al., 2008). This study highlights 

how gender differences in body composition differentially impact on mobility limitation 

at follow up. In the present study, body fat percentage was only predictive of physical 

capability in females; in models adjusted and unadjusted for predicted misreporters, 

each additional 1% was associated with 0.1 s at timed up and go (p<0.05).   
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6.5 Appendices 

6.5.1 Predictors of hand grip strength in NSHD males at 60 – 64 y (Models 

2.1 – 6.1) 

 

Table 6.33 Model 2.1 Predicting HGS in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/kg/d) 

 B Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) 
-1.610 -.057 .277 1.104 

Height (m) 53.247 .307 <.001 1.022 

Adjusted appendicular lean 

mass (kg/ht2) 
4.619 .376 <.001 1.688 

Abdominal circumference 

(cm)  
-.295 -.288 <.001 1.796 

 

Table 6.34 Model 3.1 Predicting HGS in NSHD males at 60 – 64 y using quintiles of 

protein intake (as a percentage of total daily energy) 

 B Beta p-value VIF 

Quintiles of protein intake 

(%TE) 
.320 .012 .818 1.017 

Height (m) 52.907 .306 <.001 1.022 

Adjusted appendicular lean 

mass (kg/ht2) 
4.6 .374 <.001 1.692 

Abdominal circumference 

(cm) 
-.311 -.303 <.001 1.717 

 

Table 6.35 Model 4.1 Predicting HGS in NSHD males at 60 – 64 y using quartiles of 

diurnal protein intake (MPSS) 

 B Beta p-value VIF 

Quartiles of diurnal protein 

intake (MPSS) 
.228 .009 .866 1.022 

Height (m) 53.195 .307 <.001 1.043 

Adjusted appendicular lean 

mass (kg/ht2) 
4.595 .374 <.001 1.689 

Abdominal circumference 

(cm) 
-.312 -.304 <.001 1.716 
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Table 6.36 Model 5.1 Predicting HGS in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/d) excluding predicted misreporters (sensitivity analysis 1) 

 B Beta p-value VIF 

Quintiles of protein intake 

(g/d) excluding predicted 

misreporters (SA 1) 

2.552 .095 .175 1.075 

Height (m) 66.517 .397 <.001 1.100 

Adjusted whole body lean 

mass (kg/ht2) 
2.833 .489 <.001 2.026 

Abdominal circumference 

(cm)  
-.334 -.298 .003 2.092 

 

 

Table 6.37 Model 6.1 Predicting HGS in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/kg/d) excluding predicted misreporters (sensitivity analysis 2) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) excluding 

predicted misreporters 

(SA 2) 

.133 .005 .945 1.143 

Height (m) 64.015 .382 <.001 1.088 

Adjusted whole body lean 

mass (kg/ht2) 
2.729 .471 <.001 2.002 

Abdominal circumference 

(cm)  
-.338 -.301 .003 2.156 
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6.5.2 Predictors of chair rise time in NSHD males at 60 – 64 y (Models 2.3 – 

6.3) 

Table 6.38 Model 2.3 Predicting CRT in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/kg/d) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) 
-6.643 -.103 .033 1.142 

Self-reported health status 

_Good 
4.472 .079 .093 1.074 

_Fair 22.191 .236 <.001 1.085 

_Poor 35.450 .164 <.001 1.022 

Abdominal circumference 

(cm)  
.501 .211 <.001 1.193 

Adulthood PA 

_MoreActive 
-5.345 -.102 .043 1.252 

_MostActive -9.662 -.152 .003 1.263 

 

 

Table 6.39 Model 3.3 Predicting CRT in NSHD males at 60 – 64 y using quintiles of 

protein intake (as a percentage of total daily energy) 

  B (%) Beta p-value VIF 

Quintiles of protein intake 

(%TE) 
-1.321 -.021 .654 1.028 

Self-reported health status 

_Good 
4.818 .085 .071 1.070 

_Fair 22.429 .239 <.001 1.092 

_Poor 33.996 .158 .001 1.017 

Abdominal circumference 

(cm) 
.416 .175 <.001 1.083 

Adulthood PA 

_MoreActive 
-5.500 -.105 .039 1.257 

_MostActive -9.486 -.149 .004 1.264 
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Table 6.40 Model 4.3 Predicting CRT in NSHD males at 60 – 64 y using quartiles of 

diurnal protein intake (MPSS) 

 B (%) Beta p-value VIF 

Quartiles of diurnal protein 

intake (MPSS) 
-.038 -.001 .989 1.048 

Self-reported health status 

_Good 
4.810 .085 .072 1.070 

_Fair 22.274 .237 <.001 1.125 

_Poor 34.005 .158 .001 1.024 

Abdominal circumference 

(cm) 
.421 .177 <.001 1.071 

Adulthood PA 

_MoreActive 
-5.593 -.107 .036 1.249 

_MostActive -9.413 -.148 .004 1.264 

 

 

Table 6.41 Model 5.3 Predicting CRT in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 1) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) excluding predicted 

misreporters (SA 1) 

-6.752 -.103 .128 1.058 

Self-reported health status 

_Good 
3.395 .059 .381 1.053 

_Fair 17.071 .163 .016 1.055 

_Poor 34.435 .128 .053 1.013 

Adulthood PA 

_MoreActive 
-9.740 -.186 .013 1.271 

_MostActive -4.268 -.069 .350 1.280 

Abdominal circumference 

(cm) 
.370 .140 .039 1.065 
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Table 6.42 Model 6.3 Predicting CRT in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/kg/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 2) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) excluding 

predicted misreporters 

(SA 2) 

9.770 .156 .019 1.005 

Self-reported health status 

_Good 
4.672 .081 .228 1.034 

_Fair 20.567 .196 .004 1.029 

_Poor 37.321 .139 .038 1.007 
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6.5.3 Predictors of timed up and go in NSHD males at 60 – 64 y (Models 2.5 

– 6.5)  

Table 6.43 Model 2.5 Predicting TUG in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/kg/d) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) 
-3.6 -.069 .154 1.005 

Self-reported health status  

_Good 
5.774 .127 .010 1.050 

_Fair 16.410 .221 <.001 1.047 

_Poor 24.286 .128 .008 1.011 

 

 

Table 6.44 Model 3.5 Predicting TUG in NSHD males at 60 – 64 y using quintiles of 

protein intake (as a percentage of total daily energy) 

  B (%) Beta p-value VIF 

Quintiles of protein intake 

(%TE) 
1.261 .025 .608 1.001 

Self-reported health status 

_Good 
5.747 .127 .011 1.050 

_Fair 16.102 .217 <.001 1.046 

_Poor 23.536 .124 .011 1.008 

 

 

Table 6.45 Model 4.5 Predicting TUG in NSHD males at 60 – 64 y using quartiles of 

diurnal protein intake (MPSS) 

 B (%) Beta p-value VIF 

Quartiles of diurnal protein 

intake (MPSS) 
-1.856 -.039 .428 1.050 

Self-reported health status 

_Good 
5.807 .128 .010 1.051 

_Fair 16.759 .225 <.001 1.089 

_Poor 24.228 .128 .009 1.017 
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Table 6.46 Model 5.5 Predicting TUG in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 1) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) excluding predicted 

misreporters (SA 1) 

1.312 .026 .701 1.013 

Socioeconomic status 

SEP_IIINM 
2.884 .043 .533 1.052 

SEP_IIIM 6.896 .130 .060 1.061 

SEP_Partly 14.404 .176 .010 1.040 

SEP_Unskilled -10.452 -.075 .263 1.013 

 

 

Table 6.47 Model 6.5 Predicting TUG in NSHD males at 60 – 64 y using quintiles of 

protein intake (g/kg/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 2) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) excluding 

predicted misreporters 

(SA 2) 

7.368 .146 .035 1.017 

Father’s SEP 

FSC_IIINM 
-5.749 -.115 .160 1.420 

FSC_IIIM -.940 -.020 .809 1.451 

FSC_Partly 3.584 .065 .412 1.347 

FSC_Unskilled 13.431 .151 .040 1.143 
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6.5.4 Predictors of hand grip strength in NSHD females at 60 – 64 y (Models 

2.2 – 6.2)  

 

Table 6.48 Model 2.2. Predicting HGS in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/kg/d) 

 B Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) 
-.120 -.006 .900 1.161 

Height (m) 30.298 .254 <.001 1.029 

Self-reported health status 

_Good 
-.529 -.035 .464 1.073 

_Fair -5.610 -.205 <.001 1.062 

_Poor -10.597 -.104 .026 1.017 

Adjusted appendicular lean 

mass (kg/ht2) 
2.586 .302 <.001 2.027 

Abdominal circumference 

(cm)  
-.158 -.253 <.001 2.070 

 

 

Table 6.49 Model 3.2. Predicting HGS in NSHD females at 60 – 64 y using quintiles of 

protein intake (as a percentage of total daily energy) 

  B Beta p-value VIF 

Quintiles of protein intake 

(%TE) 
.903 .050 .280 1.016 

Height (m) 30.185 .244 <.001 1.019 

Self-reported health status 

_Good 
-.583 -.039 .420 1.078 

_Fair -5.536 -.202 <.001 1.063 

_Poor -10.934 -.107 .021 1.016 

Adjusted appendicular lean 

mass (kg/ht2) 
2.582 .302 <.001 1.985 

Abdominal circumference 

(cm) 
-.157 -.251 <.001 2.030 
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Table 6.50 Model 4.2 Predicting HGS in NSHD females at 60 – 64 y using quartiles of 

diurnal protein intake (MPSS) 

 B Beta p-value VIF 

Quartiles of diurnal protein 

intake (MPSS) 
1.099 .074 .112 1.019 

Height (m) 30.865 .249 <.001 1.024 

Self-reported health status 

_Good 
-.519 -.034 .471 1.073 

_Fair -5.577 -.204 <.001 1.061 

_Poor -11.345 -.111 .017 1.022 

Adjusted appendicular lean 

mass (kg/ht2) 
2.574 .301 <.001 1.984 

Abdominal circumference 

(cm) 
-.155 -.249 <.001 2.032 

 

Table 6.51 Model 5.2 Predicting HGS in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 1) 

 B Beta p-value VIF 

Quintiles of protein intake 

(g/d) excluding predicted 

misreporters (SA 1) 

.745 .039 .542 1.016 

Height (m) 37.852 .296 <.001 1.009 

Adjusted appendicular lean 

mass (kg/ht2) 
3.707 .388 <.001 1.654 

Abdominal circumference 

(cm)  
-.209 -.301 <.001 1.649 

 

Table 6.52 Model 6.2 Predicting HGS in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/kg/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 2) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) excluding 

predicted misreporters 

(SA 2) 

1.329 .075 .270 1.137 

Height (m) 36.634 .287 <.001 1.011 

Adjusted appendicular lean 

mass (kg/ht2) 
3.548 .372 <.001 1.687 

Abdominal circumference 

(cm)  
-.220 -.317 <.001 1.689 
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6.5.5 Predictors of chair rise time in NSHD females at 60 – 64 y 

(Models 2.4 – 6.4) 

 

Table 6.53 Model 2.4 Predicting CRT in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/kg/d) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) 
.545 .007 .871 1.166 

Self-reported health status 

_Good 
11.088 .185 <.001 1.103 

_Fair 18.727 .173 <.001 1.066 

_Poor 51.832 .159 <.001 1.019 

Abdominal circumference 

(cm) 
.409 .169 <.001 1.211 

Height (m) 46.782 .096 .021 1.036 

Adulthood PA 

_MoreActive 
-3.879 -.067 .140 1.221 

_MostActive -8.709 -.114 .012 1.222 

 

 

Table 6.54 Model 3.4 Predicting CRT in NSHD females at 60 – 64 y using quintiles of 

protein intake (as a percentage of total daily energy) 

  B (%) Beta p-value VIF 

Quintiles of protein intake 

(%TE) 
2.100 .030 .465 1.016 

Self-reported health status 

_Good 
10.974 .183 <.001 1.107 

_Fair 18.775 .173 <.001 1.066 

_Poor 51.223 .157 <.001 1.022 

Abdominal circumference 

(cm) 
.418 .173 <.001 1.061 

Height (m) 46.438 .096 .022 1.035 

Adulthood PA 

_MoreActive 
-3.808 -.065 .147 1.222 

_MostActive -8.778 -.115 .011 1.221 
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Table 6.55 Model 4.4 Predicting CRT in NSHD females at 60 – 64 y using quartiles of 

diurnal protein intake (MPSS) 

 B (%) Beta p-value VIF 

Quartiles of diurnal protein 

intake (MPSS) 
-.636 -.011 .795 1.028 

Self-reported health status 

_Good 
11.077 .185 <.001 1.103 

_Fair 18.706 .173 <.001 1.066 

_Poor 52.205 .160 <.001 1.023 

Abdominal circumference 

(cm) 
.412 .171 <.001 1.067 

Height (m) 46.339 .095 .023 1.046 

Adulthood PA 

_MoreActive 
-3.889 -.067 .139 1.219 

_MostActive -8.709 -.114 .012 1.221 

 

 

Table 6.56 Model 5.4 Predicting CRT in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 1) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) excluding predicted 

misreporters (SA 1) 

4.842 .069 .253 1.024 

Abdominal circumference 

(cm)  
.675 .257 <.001 1.062 

Self-reported health status 

_Good 
4.559 .077 .208 1.059 

_Fair 21.637 .175 .004 1.052 

_Poor 6.700 .021 .728 1.032 
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Table 6.57 Model 6.4 Predicting CRT in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/kg/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 2) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) excluding 

predicted misreporters 

(SA 2) 

-3.100 -.045 .465 1.071 

Abdominal circumference 

(cm)  
.682 .259 <.001 1.112 

Self-reported health status 

_Good 
4.948 .084 .171 1.054 

_Fair 22.087 .178 .004 1.051 

_Poor 7.585 .024 .694 1.030 
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6.5.6 Predictors of timed up and go at 60 – 64 y in NSHD females (Models 

2.6 – 6.6)  

 

Table 6.58 Model 2.6 Predicting TUG in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/kg/d) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) 
1.240 .022 .645 1.087 

Self-reported health status  

_Good 
4.568 .104 .030 1.061 

_Fair 23.346 .293 <.001 1.050 

_Poor 28.059 .117 .013 1.037 

Body fat% .568 .156 .002 1.113 

Adulthood PA 

_MoreActive 
-5.792 -.137 .008 1.220 

_MostActive -5.710 -.107 .038 1.243 

 

 

Table 6.59 Model 3.6 Predicting TUG in NSHD females at 60 – 64 y using quintiles of 

protein intake (as a percentage of total daily energy) 

  B (%) Beta p-value VIF 

Quintiles of protein intake 

(%TE) 
4.177 .081 .083 1.039 

Self-reported health status 

_Good 
3.286 .075 .118 1.085 

_Fair 22.196 .278 <.001 1.071 

_Poor 25.535 .107 .023 1.040 

Abdominal circumference 

(cm)  
.536 .301 <.001 2.325 

Adjusted whole body lean 

mass (kg/ht2) 
-2.190 -.187 .007 2.233 

Adulthood PA 

_MoreActive 
-5.934 -.140 .006 1.218 

_MostActive -5.872 -.110 .031 1.234 
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Table 6.60 Model 4.6 Predicting TUG in NSHD females at 60 – 64 y using quartiles of 

diurnal protein intake (MPSS) 

 B (%) Beta p-value VIF 

Quartiles of diurnal protein 

intake (MPSS) 
.533 .012 .791 1.023 

Self-reported health status 

_Good 
3.579 .081 .089 1.079 

_Fair 21.895 .275 <.001 1.068 

_Poor 27.185 .113 .016 1.044 

Abdominal circumference 

(cm)  
.537 .302 <.001 2.328 

Adjusted whole body lean 

mass (kg/ht2) 
-2.250 -.192 .005 2.229 

Adulthood PA 

_MoreActive 
-6.194 -.147 .004 1.212 

_MostActive -5.648 -.106 .038 1.232 

 

 

Table 6.61 Model 5.6 Predicting TUG in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 1) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/d) excluding predicted 

misreporters (SA 1) 

.762 .014 .837 1.045 

Self-reported health status 

_Good 
3.513 .080 .240 1.049 

_Fair 16.521 .174 .012 1.053 

_Poor 10.736 .037 .592 1.049 

Body fat % .914 .236 .001 1.036 

Socioeconomic status 

SEP_IIINM 
-3.439 -.080 .267 1.163 

SEP_IIIM -3.795 -.045 .515 1.084 

SEP_Partly 1.000 .013 .848 1.108 

SEP_Unskilled 28.051 .212 .002 1.042 
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Table 6.62 Model 6.6 Predicting TUG in NSHD females at 60 – 64 y using quintiles of 

protein intake (g/kg/d) excluding those ever predicted to have misreported their EI 

(sensitivity analysis 2) 

 B (%) Beta p-value VIF 

Quintiles of protein intake 

(g/kg/d) excluding 

predicted misreporters 

(SA 2) 

-4.328 -.086 .216 1.093 

Self-reported health status 

_Good 
3.608 .082 .226 1.050 

_Fair 16.515 .174 .011 1.047 

_Poor 9.920 .034 .615 1.029 

Body fat % .999 .258 <.001 1.108 

SEP at 53 y 

SEP IIINM 
-3.591 -.083 .244 1.162 

SEP IIIM -3.218 -.038 .580 1.091 

SEP Partly 1.217 .016 .813 1.094 

SEP Unskilled 28.932 .218 .002 1.047 
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CHAPTER 7 

 

 

 

General Discussion and Future work 

 

7.1 Overview 

This project aimed to test the hypotheses that low protein consumption throughout 

adulthood would impair physical capability in later life and that diurnal patterns of 

protein consumption throughout adulthood would influence physical capability in later 

life. Energy consumption was considered in order that protein density of daily and 

mealtime energy (protein as a % of total energy) could be determined. Daily energy 

intakes were also used to identify predicted under- and over-reporters and selected 

analyses were repeated without these individuals to determine the influence of 

misreporting on relationships between dietary protein and physical capability. A 

previous study has shown that associations between diet and physical capability 

outcomes can be distorted by measurement error and that by excluding individuals who 

appear to have misreported their intakes, associations may be strengthened (Beasley et 

al., 2010). 

 

There is evidence that diurnal patterns of protein consumption influence short term 

protein retention and body composition (Arnal et al., 1999; Bouillanne et al., 2013) and 

that protein intakes are associated with long term change in body composition 

(Houston et al., 2008; Meng et al., 2009; Scott et al., 2010). In addition, low nutrient 

intakes (including protein) are associated with incident disability in older women 

(Bartali et al., 2006b), frailty (Bartali et al., 2006a; Beasley et al., 2010) and muscle 

strength (Bartali et al., 2012) although the direction of causality, if any, in such studies is 

often problematical. 
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Resistance exercise, when combined with adequate dietary protein, preserves muscle in 

middle aged individuals (Morris and Jacques, 2013) compared with general aerobic 

activities with adequate protein intakes which did not offset age-related loss of skeletal 

muscle mass (Starling et al., 1999). In addition, there is experimental evidence 

demonstrating that, in both older and younger adults, protein supplementation can 

enhance the effect of exercise training on measures of physical capability (Cermak et al., 

2012). 

 

There is a paucity of research on effects of diurnal patterns of protein consumption 

(Tieland et al., 2012a), only one in relation to changes in body composition (Ruiz 

Valenzuela RE, 2013) and none in relation to objectively determined measures of 

physical capability. Using longitudinal data from the MRC National Survey of Health and 

Development, a large British cohort of community living adults, this study aimed to 

address this research gap.   

 

7.2 Analytical model and research strategy  

The analytical model and research strategy for this project are depicted in Figure 7.1. A 

priori, daily energy and protein intakes throughout adulthood were expected to 

influence anthropometry, body composition and levels of habitual physical activity. 

Adulthood patterns of protein consumption (whether daily (protein intakes expressed 

in various ways) or diurnal) were hypothesised to be particularly associated with 

measures of body composition in later life, via their association with muscle protein 

synthesis, protein degradation and net protein balance.    

 

 

 

 

 

 

 

 

 

 



242 

 

Figure 7.1 Analytical model and research strategy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anthropometry and body composition (including measures of lean and fat mass) were 

hypothesised to influence performance at objectively measured tests of strength and 

physical capability. Absolute amounts of lean mass were expected to be predictive of 

grip strength whereas higher adiposity was expected to be associated with poorer 

measures of physical capability (here tested by chair rise time and timed up and go). 

Since habitual physical activity (PA) is a major determinant of diet, energy balance, 

anthropometry and body composition, it was hypothesised that habitual PA would 

impact on performance in all tests of physical capability and, as such, should be 

quantified and included in statistical modelling.        
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7.3 Project aims 

This project aimed: 

 

1. To characterise and to quantify patterns of protein consumption (both mean 

daily intake and diurnal patterns of intake) in a cohort of individuals providing 

dietary data by 5 d food diary in 1982, 1989 and 1999 when aged 36 y, 43 y and 

53 y, respectively.    

 

2. To determine and to characterise physical capability at age 60 – 64 y using a 

range of techniques including hand grip strength, timed up and go and chair rise 

time. 

 

3. To determine and to characterise other variables identified a priori as potentially 

mediating (or confounding) the relationship between protein consumption and 

physical capability. These variables included body composition and 

anthropometrics, habitual physical activity, socioeconomic status, health status 

and other related (meta)data. 

 

4. To apply a range of statistical techniques, including hierarchical linear regression, 

to this dataset to determine which variables, including patterns of protein 

consumption during adulthood, predict physical performance at age 60 – 64 y.   
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7.4 Interpretation of findings 

The extent to which body composition and anthropometry were predictive of physical 

capability at 60 – 64 y was the subject of the main hierarchical linear regression 

analyses. As models were split by gender they are discussed separately below, although 

there was extensive commonality in the outcomes of these analyses. 

 

7.4.1 Females 

In females, in models unadjusted for predicted misreporters, hand grip strength at age 

60 – 64 y was predicted by height, self-reported health status, appendicular lean mass 

(kg/ht2) and abdominal circumference. In the sensitivity analyses (using reliable dietary 

data) grip strength was predicted only by height, appendicular lean mass (kg/ht2) and 

abdominal circumference. Appendicular (and whole body) lean mass was predicted by 

absolute intakes of protein (and energy-adjusted protein intakes) throughout adulthood. 

These findings suggest that diet, and in particular protein consumption, is operating via 

body composition in the maintenance of muscle mass and strength into later life. 

Conversely, the low levels of physical activity observed in females throughout 

adulthood may have resulted in increased abdominal circumference which affected 

muscle strength adversely.       

 

In female models, adjusted for predicted misreporters, chair rise time was predicted 

by self-reported health status and abdominal circumference at 60 – 64 y only, whereas 

timed up and go was predicted by health status, body fat percentage and 

socioeconomic position (at 53 y). As adulthood energy intakes were not predictive of 

body fat percentage in females, it may be surmised that higher levels of body fat 

percentage (and abdominal circumference) resulted from increasing sedentarism. In 

simple linear regression, adulthood physical activity was significantly and positively 

associated with reductions in whole body and appendicular fat mass and body fat 

percentage in females (but not in males). 
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A fair health status compared to excellent/very good health (the reference category) 

was consistently associated with a poorer performance at chair rise and timed up and 

go. There was insufficient differentiation between the reference category and ‘good’ 

health and it may be inferred that when health status is subjectively interpreted as ‘fair’, 

this is the point at which health status begins to impact on this aspect of physical 

capability. A self-reported health status of ‘poor’ was also associated with an increase in 

time to complete the task (a poorer performance) but this did not reach statistical 

significance.                

 

As central adiposity, quantified as abdominal circumference, is strongly associated with 

age-related chronic disease (CHD, diabetes, CVD and cancer) and all-cause mortality 

(Taylor et al., 2010; Donini et al., 2012; Staiano et al., 2012), it may be hypothesised that 

increasing abdominal circumference is a major contributory factor in the self-reported 

decline in health status. In NSHD females, between the ages of 43 y and 60 – 64 y, 

abdominal circumference increased on average by 14.5 cm whereas in males, the 

increase was 9 cm.  

 

Low levels of adulthood habitual physical activity may affect indices of physical 

capability by increasing adiposity. Greater adiposity would be expected to affect 

negatively the movements required in these tests (Bohannon RW, 2005; Vincent et al., 

2010; Shin et al., 2011). For example, in chair rising (also an element of timed up and go) 

higher body weight would carry a penalty as the mass to be lifted is greater (Hardy R, 

2010). 

 

Other prerequisites of a good performance at these tests are lower limb strength, good 

balance, agility and coordination (Hardy R, 2010; Schoene et al., 2013), all likely affected 

by higher levels of central adiposity. It may also be argued that higher levels of central 

and whole body adiposity may impair muscle function via their operation on muscle 

quality (Goodpaster et al., 1997; Goodpaster et al., 2001).   
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7.4.2 Males 

In males, in models unadjusted and adjusted for predicted misreporters, hand grip 

strength at 60 – 64 y was predicted by height, measures of lean mass and abdominal 

circumference. In the sensitivity analyses (using reliable dietary data), grip strength 

was predicted by height, whole body lean mass (kg/ht2) and abdominal circumference. 

Whole body lean mass was significantly and positively associated with absolute intakes 

of protein and energy-adjusted protein intakes throughout adulthood in males. Physical 

activity in males also predicted hand grip strength and this, together with protein intake, 

may explain these results. Abdominal circumference was also predicted by physical 

activity, and where this was low throughout adulthood, such inactivity would have 

resulted in an increasing waist circumference, influencing negatively, muscle strength at 

60 – 64 y. In NSHD males, physical inactivity (a lower adulthood physical activity score) 

was associated with a 0.95 cm increase in abdominal circumference (p=0.004).   

 

Exceptionally, a low protein intake relative to body mass (g/kg/d) (unadjusted for 

predicted misreporters) was significantly predictive of a better performance at chair 

rise time. However, after adjusting for predicted misreporters, this association became 

significantly negative i.e. a low protein intake (quintile 1) predicted a poorer 

performance at chair rise time. It may be hypothesised that as this was not a measure of 

absolute protein intake (g/d) but a measure of protein adequacy relative to body mass, 

it would ultimately be a reflection of muscle mass in older subjects. As ageing is 

accompanied by alterations in protein metabolism, including higher splanchnic 

extraction of amino acids and protein anabolic resistance (Bauer et al., 2013), low 

protein intakes relative to body mass might manifest as reduced muscle quantity and 

quality with concomitant effects on whole body metabolism and strength. In this cohort, 

at these ages (≤ 55 y) the age-related changes in protein metabolism may not have 

occurred and the possible adverse effect of a low protein intake relative to body mass, 

may not yet have manifested. It this arguments holds, then the effect of low protein 

intakes relative to body mass would be observed in tests of muscle strength in adults 

older than those investigated in the present study.  
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Chair rise time in male regression models adjusted and unadjusted for predicted 

misreporters (and excluding the effect of protein) was predicted by health status, 

abdominal circumference and habitual physical activity. As already discussed for 

females, abdominal circumference and health status are causally interrelated. As was 

hypothesised a priori, habitual physical activity positively influenced physical capability. 

This result was consistent with those of (Cooper et al., 2011b) who reported, in the 

same cohort, that leisure-time physical activity at 36 and 43 y was positively associated 

with chair rise performance at age 53 y after adjusting for covariates (but not hand grip 

strength). In simple linear regression analysis, adulthood PA was significantly, and 

positively associated with chair rise time and hand grip strength in males at 60 – 64 y 

(but not with timed up and go). These findings suggest that the cumulative benefits of 

physical activity across adulthood on physical capability continue to operate into older 

ages (60 – 64 y). The fact that the effects of physical activity were observed only in 

males may be due to the fact that among female NSHD participants, reported levels of 

habitual physical activity were relatively low. Across all 3 measurement periods, a 

higher proportion of males reported being active or most active than did females and 

gender differences in physical activity group membership were significant. 

 

In male regression models unadjusted for predicted misreporters, timed up and go was 

predicted by self-reported, current health status only. This may be because health status 

impacted on all the requirements of this test i.e. agility, balance, gait and the 

transferring and turning subtasks (Herman T, 2011) to the exclusion of all other 

potential predictors. In the sensitivity analyses, predictors of timed up and go were 

completely different from models in which predicted misreporters were not excluded; 

i.e. low protein intake and a lower socioeconomic position (at 4 y and 53 y) predicted a 

poorer performance.    
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7.5 Strengths and limitations of current study  

7.5.1 Protein intakes relative to current recommendations  

It is noted that protein intakes among NSHD participants who provided dietary data in 

all years were high relative to current recommendations (the Reference Nutrient Intake 

for protein of 0.83 g/kg/d (Rand et al., 2003)). Among those who provided dietary data 

in all years, the percentage of participants who met this protein intake recommendation 

in 1982, 1989 and 1999 was 76.1, 81.2 and 80.2% respectively. In this sub-cohort of 

NSHD participants (n=1263) only 71 individuals (24 males and 47 females) reported a 

protein intake < 0.83g/kg/d in every measurement years.   

 

It is further noted that the diurnal protein score (here referred to as the Muscle Protein 

Synthesis Score (MPSS)) was set at consumption of ≥ 20 g of protein at any eating 

occasion across the day. The use of a higher or lower threshold of protein intake may 

have impacted upon the results of the analyses.     

 

7.5.2 Hierarchical linear regression   

The use of hierarchical linear regression has potential limitations, specifically that the 

strict stepwise procedure may allow the data ‘to drive the theory.’ Variables may no 

longer contribute to the regression model because of the other variables in the model, 

even if they did contribute at an earlier point in time. Hierarchical linear regression 

analysis may be viewed as a strict, procedural method, in which direction and control of 

the analyses may be abdicated or ‘given over’ to the methodology. In mitigation, 

considerable care was given to the choice of all variables tested in the analyses.     

 

7.5.3 Contemporary dietary variables   

Dietary variables collected at 60 – 64 y (at the time physical capability was assessed) 

were not available and thus not used in regression analyses. Their inclusion may have 

had two broad effects; a reduction in sample size (when selecting participants who 

reported dietary data on all occasions) and in terms of the outcomes of regression 

analyses.  
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7.5.4 Participant subgroups   

For the purposes of the analyses, only NSHD participants who provided dietary data in 

all years were used (n=1263). It should be noted that these individuals represent a 

special, self-selected group. The anthropometric characteristics, traits and lifestyle 

behaviours of participants of longitudinal cohort studies who consistently report 

dietary intake and anthropometric data in all measurement years may differ 

considerably from those who do not report in all years. Conclusions drawn from this 

group may not be generally applicable to all NSHD participants and not capable of 

extrapolation to the general UK population. In addition, sensitivity analyses were 

undertaken to determine the influence of misreporting on relationships between 

dietary protein and physical capability, in participants predicted never to have 

misreported their energy intake at all 3 measurement occasions. In these analyses, 

gender-specific sample sizes ranged from n=284 to n=318. In some instances, outcomes 

of hierarchical linear regression analyses in these subgroups were substantially 

different from outcomes of analyses which included all participants. Outcomes in these 

subgroups may reflect the greater reliability/validity of dietary intakes, alternatively 

they may reflect the underlying characteristics of the smaller subgroup under 

investigation.   

 

7.5.5 Measurement of habitual physical activity  

In the present study, habitual physical activity was self-reported by questionnaire and 

was restricted to assessment of leisure time physical activity only. As such, this was 

subject to two significant limitations i.e. physical activity in non-leisure time activities 

was not measured and quantification of physical activity by questionnaire may lack the 

required objectivity and precision. Although much of the inter-individual variation in 

energy expenditure among UK adults appears to relate to non-occupational activities, 

occupation-related physical activity may be more important for some especially those in 

manual occupations and those which require the individuals to spend much of the day 

standing and walking. There are strong arguments for using tools such as pedometers 

and accelerometers when assessing physical activity (Corder K, 2007) and such, 

objective measures are now widely used in epidemiological studies.  
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Where the physical activity assessment is restricted to self-report, recent 

recommendations on improving the accuracy of such approaches may be of benefit 

(Ainsworth BE, 2012). The present study found that leisure time physical activity was 

much higher in males than in females. However, this did not take into account 

occupational activity, getting to or from work or household duties/childcare 

responsibilities. The physical activity questionnaires investigated specific, structured 

activities (gardening, cycling, sports and recreation). Arguably household 

duties/childcare responsibilities may have precluded female participation in more 

structured activities, particularly in 1982/89 and the physical activity associated with 

household duties/childcare responsibilities would not have been reflected in the 

physical activity score. In the Hertfordshire cohort study (Martin et al., 2008) walking 

and home activity drove the considerable difference in median total energy expenditure, 

and in (Sun et al., 2013) gender differences fell to 0.2 – 1.5% when assessed objectively 

by accelerometry. It is notable that participation in sports/recreational activities did 

increase in females in 1999. As a consequence, associations between physical activity 

and diet, anthropometry/body composition and physical capability in females (and also 

in some males) may have been weakened or obscured by the lack of information on 

total physical activity.  

 

7.5.6 Measurement of habitual dietary intake  

Predicted under-reporting was extensive and the use of such data may 

obscure/confound associations between diet/dietary components and outcome 

measures of muscle strength and physical capability. After adjusting for predicted 

misreporting (in the sensitivity analyses) associations were observed to strengthen and 

alter. The identification of predicted misreporting was by the application of appropriate 

formulae to total daily energy intakes. However, dietary misreporting is macronutrient 

specific and evidence indicates that protein may be better reported than total energy 

intake. By excluding predicted energy misreporters, in sensitivity analyses, it is possible 

that individuals who correctly reported their protein intake were excluded.         
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In (Beasley et al., 2010) protein and energy intakes were statistically corrected for 

measurement error using biomarkers (biomarker-calibrated intakes). A 20% increase 

in uncalibrated protein intake was associated with a 12% lower risk of frailty compared 

with a 32% lower risk associated with a 20% increase in calibrated intakes.      

 

7.6 Future work 

Dietary protein intakes in NSHD participants were investigated when cohort members 

were aged between 36 y – 53 y and physical capability outcomes assessed at 60 – 64 y. 

The overall lack of effect of total daily and diurnal protein intakes on outcomes of 

physical capability in this cohort may be explained by the fact that the cohort members 

were too young for the hypothesised effect to be seen. Indeed, most of the research 

indicating an effect of diurnal protein ingestion on physical capability and body 

composition has been in much older, frail, hospitalised, institutionalised or at risk 

subjects. Also in this cohort (Mulla et al., 2013) found modest positive associations 

between energy intakes at 36 and 43 y and hand grip strength at 53 y and some 

indication of  a relationship between protein intake, grip strength and standing balance 

time. The use of hierarchical linear regression analyses which included measures of 

DEXA-derived lean mass, self-reported health status and anthropometrics at 60 – 64 y,  

may explain, in part, the lack of any such association between protein intakes and grip 

strength at 60 – 64 y. Future work should examine dietary protein intakes (daily and 

diurnal patterns) in relation to physical capability at older ages, ideally by continuing to 

track this cohort or by the investigation of these effects in a much older cohort e.g. the 

Newcastle 85+ Study.  
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