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Abstract 

Ageing describes the progressive functional decline of an organism over time, 

leading to an increase in susceptibility to age-related diseases and eventually to 

death, and it is a phenomenon observed across a wide range of organisms. 

Despite a vast repertoire of ageing studies performed over the past century, the 

exact causes of ageing remain unknown. For over 50 years it has been 

speculated that mitochondria play a key role in the ageing process, due mainly 

to correlative data showing an increase in mitochondrial dysfunction, 

mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with 

age. Therefore, a major aim of the current project was to assess mitochondrial 

dysfunction, in the form of complex II activity, in the skin cells of differently aged 

humans. Mitochondrial complex II of the electron transport chain (ETC) was 

chosen to be examined, as it has recently been implicated in the generation of 

ROS, as well as in the ageing process of lower organisms, and is the least 

studied complex of the ETC. Complex II activity was found in the present study 

to decline in an age-dependant manner in human skin fibroblast cells, which 

may have been partially related to an observed decrease in the expression of 

specific nuclear-encoded complex II subunits with age. Further investigations 

into the cause of the decrease in complex II activity with age revealed that the 

decline was specific to senescent cells, and was not present in non-senescent 

cells, which was determined following sorting into subpopulations via 

fluorescence-activated cell sorting (FACS). The decrease in activity with age 

was not reflected in another mitochondrial complex examined, complex IV, for 

which there was no alteration in activity with age for either unsorted, senescent, 

or non-senescent cells. This finding could suggest the specific targeting of 

complex II in senescent cells only for future age-related therapeutics. 

Interestingly, an age-dependant decrease in complex II activity was not 

observed for human skin keratinocytes, despite being observed in human skin 

fibroblasts. In the present study, it was also observed that different cell types 

undergo differing rates of maximal complex II activity, which could have 

important consequences in terms of the rate of ageing of specific cell types. 

 

In addition to the observed decrease in mitochondrial complex II activity with 

age, it was demonstrated in the present study that mtDNA damage is increased 

with age in the skin of both humans and a taxonomic group for which age-
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related changes have not been previously studied, the whales. It was confirmed 

that the T414G mutation, which is a general biomarker for mtDNA mutations, 

was higher in human skin fibroblasts from older individuals when compared to 

younger individuals. Furthermore, an increase in mtDNA damage with age was 

also found in multiple whale species, for which mtDNA damage was measured 

in the form of strand breaks within a large region of the mitochondrial genome, 

using novel primers designed and optimised through the present study. Whales 

from three distinct species were chosen to be examined based on their differing 

levels of UV exposure, as a model for different ages. It was found that the level 

of mtDNA damage increased with both natural age and increased UV exposure. 

The three whale species studied appeared to have developed alternative 

mechanisms of coping with UV-induced damage. MtDNA damage was found to 

be lowest in those whales with the highest expression of heat shock protein 70 

(Hsp70), suggesting that this UV-defensive mechanism may be useful in future 

studies for the prevention of age-related phenotypes. Overall, the present study 

provides important new insights into the potential role of mitochondria in ageing.  
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MRC5 Human foetal lung fibroblast cells 

MRC5/hTERT Human foetal lung fibroblast cells overexpressing 

telomerase  

mtDNA Mitochondrial DNA 

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-
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carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium 

mW Milliwatts 

NAC N-acetylcysteine 

NAD Nicotinamide adenine dinucleotide 

NADH Reduced nicotinamide adenine dinucleotide 

NARP Neuropathy, Ataxia, and Retinitis Pigmentosa 

NCBI National Centre for Biotechnology Information 

nDNA Nuclear DNA 

ng Nanograms 

nm Nanometres 

nmol Nanomoles 

O2
- Superoxide 

p16INK4a Cyclin-dependent kinase inhibitor 2A 

p21 Cyclin-dependent kinase inhibitor 1A   

p53 Tumor protein 53 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PGC-1α Peroxisome proliferator-activated receptor gamma co-

activator alpha  

PGC-1β Peroxisome proliferator-activated receptor gamma co-

activator beta  

Pm Physeter macrocephalus 

PPi Pyrophosphate 

pRB Retinoblastoma protein 

PS Penicillin-streptomycin 
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qPCR Real-time quantitative polymerase chain reaction 

RIPA Buffer Radio-Immunoprecipitation Assay Buffer 

RNA Ribonucleic acid 

RNAi RNA interference 

ROS Reactive oxygen species 

rpm Rotations per minute 

SASP Senescence-associated secretory phenotype 

SDHA Succinate dehydrogenase complex subunit A 

SDHB Succinate dehydrogenase complex subunit B 

SDHC Succinate dehydrogenase complex subunit C 

SDHD Succinate dehydrogenase complex subunit D 

SDS Sodium dodecyl sulphate 

SED Standard erythemal dose 

SEM Standard error of the mean 

SOD Superoxide dismutase 

SPF Sun-protection factor 

TAE Tris acetate ethylenediaminetetraacetic acid 

TBS Tris-buffered saline 

TE Trypsin ethylenediaminetetraacetic acid   

TGF-β1 Transforming growth factor beta 

TR Telomerase RNA template 

TUNEL Terminal deoxynucleotidyl transferase-mediated 

deoxyuridine triphosphate nick-end labelling  

U Units 

UPRmt Mitochondrial unfolded protein response 
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UV Ultraviolet radiation 

V Volts 

W Watts 

w/v Weight/volume 

X-gal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 

α-MSH Alpha-melanocyte stimulating hormone 

β-act Beta-actin 

β-gal Beta-galactosidase 

μg Micrograms 

μl Microlitres 

μm Micrometres 

μM Micromolar 
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1.1 Mitochondria 

Mitochondria are dynamic organelles found within the cytoplasm of eukaryotic 

cells, and are responsible for the production of the majority of cellular energy via 

oxidative phosphorylation, in the form of adenosine triphosphate (ATP) 

(Waterhouse, 2003; Birch-Machin, 2006). These organelles are thought to have 

originated from a symbiotic relationship which occurred several billion years ago 

between a proteobacteria and a host cell, during which a mutually beneficial 

relationship arose whereby the host benefitted from the additional energy-

producing mechanism, and the proteobacteria was provided with a supply of 

nutrients and a safe environment (Berg and Kurland, 2000; Searcy, 2003). 

There may be up to several thousand mitochondria within a single cell 

depending on the specific energy requirements of the tissue (Youle and van der 

Bliek, 2012), with energy production taking place at the inner mitochondrial 

membrane, where ATP is generated from adenosine diphosphate (ADP) and 

phosphate obtained from the diet (Wallace, 1992). ATP is used throughout the 

body to power multiple processes via its conversion back to ADP plus 

phosphate (Wallace, 1992). Other roles of the mitochondria include the 

generation of reduced electron (e-) carriers for use in the electron transport 

chain (ETC) (Wojtovich et al., 2013), and the synthesis of metabolic precursors 

such as amino acids (Berg et al., 2002), both of which take place at the citric 

acid cycle in the mitochondrial matrix. Other roles include apoptosis, or 

programmed cell death, which involves the release of cytochrome c from the 

degraded mitochondrial membrane, to induce the cellular death cascade (Paz 

et al., 2008).     

 

1.1.1 Mitochondrial structure 

The number and structure of mitochondria within a cell varies greatly between 

species and tissues, and is dependent upon energy requirements (Youle and 

van der Bliek, 2012). Mitochondria consist of an outer membrane, and an inner 

membrane folded into cristae to allow for a large surface area for oxidative 

phosphorylation, as the inner membrane contains the ETC complexes which 

generate ATP (Scheffler, 2007). The inner membrane contains many copies of 

each of the five ETC complexes used to generate cellular energy. The centre of 

a mitochondrion is known as the matrix, and it is here that the multiple copies of 

mitochondrial DNA (mtDNA) are attached to the inner membrane (Scheffler, 
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2007). Ribosomes for the translation of mtDNA-encoded mitochondrial subunits 

are also found in the matrix (O'Brien, 2003). The area between the two 

membranes is known as the intermembrane space, and this area is vital for 

mitochondrial respiration as it allows for the generation of a proton (H+) gradient 

across the inner membrane which is used in the production of ATP, as 

discussed in more detail below. The structure of a single mitochondrion is 

shown in Figure 1. However, as mitochondria are dynamic, they are constantly 

changing their shape as they undergo fission and fusion (the joining and 

separation of multiple mitochondria) (Youle and van der Bliek, 2012), or when 

they are required at a specific location within a cell and are transported via the 

cytoskeleton, with which they are able to interact (Boldogh and Pon, 2006). 

Therefore, mitochondria form networks rather than just isolated organelles, and 

their shapes change continuously when viewed in live cells (Youle and van der 

Bliek, 2012).  

 

Figure 1 

 

 

 

 

 

 

 

 

Figure 1. The structure of mitochondria. A single mitochondrion is shown, which consists of 
an inner membrane surrounded by an outer membrane. The inner membrane contains ETC 
units on folds called cristae, which increase the surface area of the inner membrane. The centre 
of the mitochondria is named the matrix, which contains the mtDNA attached to the inner 
membrane, as well as ribosomes responsible for translation of the mtDNA-encoded ETC 
subunits. Image from (Purves et al., 1994).    
 
 
 
 

1.1.2 Mitochondrial DNA 

Human mtDNA is a double-stranded circular genome of 16,569 base pairs (bp) 

(Figure 2) (NCBI, 2013), which was first discovered to be present in 

Mitochondria 
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mitochondria in 1963 (Nass and Nass, 1963). Unlike nuclear DNA (nDNA), 

multiple copies of the mitochondrial genome exist within each cell. There are 

usually 4-10 copies of this genome per mitochondrion, and therefore may be up 

to thousands of copies per cell (Krutmann, 2003). MtDNA is found attached to 

the mitochondrial inner membrane, which is also the location of the 

mitochondrial respiratory complexes. As the mitochondrial genome is found in 

close proximity to the ETC it is particularly vulnerable to the effects of oxidative 

stress, exacerbated further by the fact that mtDNA has limited repair 

mechanisms and lacks the protective histones of nDNA (Birch-Machin and 

Swalwell, 2010). Reactive oxygen species (ROS) generated via the process of 

respiration are able to cause multiple forms of mtDNA damage, including 

adducts such as 8-oxo-deoxyguanosine (8-oxo-dG), which if not repaired can 

induce DNA strand breaks and DNA base transversions, which may result in 

altered mtDNA transcription and dysfunctional protein production (Efrati et al., 

1999). The majority of ETC subunits (~90%) are encoded by the nucleus; 

however, the mitochondrial genome encodes 13 subunits of the ETC, plus the 

machinery required to assemble these subunits (2 ribosomal RNAs and 22 

transfer RNAs) (Birch-Machin and Swalwell, 2010). Therefore, alterations to 

mtDNA induced by ROS have the potential to alter ETC function and to 

decrease the efficiency of respiration and ATP production (Bandy and Davison, 

1990). The presence of multiple mtDNA copies per cell allows damage to be 

present in some of the mtDNA copies without altering the overall mitochondrial 

or cellular phenotype, which is only altered once a threshold of damage is 

reached (Rossignol et al., 2003), making mtDNA a common biomarker for 

cellular DNA damage (Birch-Machin and Swalwell, 2010). This mix of mutated 

and wild-type mtDNA within a cell is termed heteroplasmy; additionally, tissues 

may also be termed heteroplasmic if they contain both wild-type and 

phenotypically altered cells (such as senescent or apoptotic cells) (Rossignol et 

al., 2003). Cellular or tissue function may be compromised if the level of 

mutated mtDNA or the number of damaged cells becomes too high (Rossignol 

et al., 2003).  

 

Mitochondria are under semi-autonomous control, meaning that they are 

encoded by both nuclear and mitochondrial DNA (Birch-Machin, 2006). The 

proto-mitochondrial organelles in the initial endosymbiotic relationship between 
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a proteobacteria and a host cell would have contained its own genes to entirely 

encode its own subunits (Searcy, 2003). However, over evolutionary time these 

genes appear to have been transferred to the nucleus, possibly to reduce the 

mtDNA mutational load in mitochondria which reproduce asexually (Berg and 

Kurland, 2000). It is important that the interaction between the nuclear and 

mitochondrial-encoded proteins is precise, to allow accurate control of the ETC 

and therefore efficient energy production and low ROS leakage (Butow and 

Avadhani, 2004; Rodley et al., 2012). 

 

Figure 2  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2. Human mitochondrial DNA. Human mtDNA is a circular genome of 16,569 bp, 
found attached to the mitochondrial inner membrane, and multiple copies are found per 
mitochondrion. This genome encodes 13 mitochondrial ETC subunit proteins, as well as 2 
ribosomal RNAs and 22 transfer RNAs. MtDNA consists of a heavy and a light strand. The 
genes encoding the ETC subunit proteins are Cyt b (cytochrome b), ND1-6 (NADH 
dehydrogenase), COX1-3 (cytochrome c oxidase), and ATP6 and 8 (ATP synthase). Image 
from (Birch-Machin and Swalwell, 2010). 
 
 
 
 

1.1.3 Oxidative phosphorylation 

Human cells generate energy from fuel sources obtained from lipids, proteins, 

and carbohydrates from the diet (Da Poian et al., 2010). These fuel sources are 

metabolised by cells to produce the cellular energy currency, ATP (Waterhouse, 



31 
 

2003; Birch-Machin, 2006), either by glycolysis in the cytoplasm or oxidative 

phosphorylation at the mitochondrial inner membrane (Da Poian et al., 2010). 

Glycolysis involves the breakdown of glucose to pyruvate, and generates 2 ATP 

molecules per molecule of glucose (Berg et al., 2006). Pyruvate is used by the 

citric acid cycle in the matrix to produce precursors for oxidative 

phosphorylation, which are 8 molecules of reduced nicotinamide adenine 

dinucleotide (NADH) and 2 molecules of reduced flavin-adenine dinucleotide 

(FADH2) (Berg et al., 2006), which provide e- to the ETC. Oxidative 

phosphorylation generates approximately 26 ATP molecules via the ETC at the 

mitochondrial inner membrane (Berg et al., 2006), and is therefore responsible 

for the production of the majority of cellular energy.  

 

The ETC consists of 5 complexes (termed complexes I-V) which are involved in 

the transport of protons across the mitochondrial inner membrane from the 

matrix to the intermembrane space, to generate a proton gradient which is then 

utilised by complex V (the ATP synthase) to generate ATP (Elston et al., 1998; 

Berg et al., 2006; Birch-Machin, 2006; Scheffler, 2007; Tulah and Birch-Machin, 

2013). To create this proton gradient, e- obtained from NADH and FADH2 from 

the citric acid cycle are transferred along the ETC through complexes I to IV via 

a series of redox reactions, where e- are eventually accepted by oxygen to form 

water (Figure 3) (Berg et al., 2006; Birch-Machin, 2006). During this series of 

redox reactions, energy released is used to actively pump H+ from the 

mitochondrial matrix to the intermembrane space between the inner and outer 

membranes, against an electrochemical gradient (Berg et al., 2006; Tulah and 

Birch-Machin, 2013). The proton gradient generated acts as a reservoir of 

energy, with which the ATP synthase (complex V) is able to generate ATP, as 

the protons pass through the ATP synthase (Figure 3) (Elston et al., 1998; 

Scheffler, 2007). At the front of the ETC, complex I receives e- from NADH, and 

complex II from FADH2 (Tulah and Birch-Machin, 2013), and these complexes 

independently transfer e- to ubiquinone, an e- carrier which is not covalently 

bound to the ETC, which becomes reduced to form ubiquinol (Figure 3) (Tulah 

and Birch-Machin, 2013). Ubiquinol transfers e- to complex III, which then 

transfers e- to cytochrome c, another non-covalently bound protein (Figure 3). 

Reduced cytochrome c is oxidised by complex IV, after which e- are transferred 

to oxygen for safe removal (Tulah and Birch-Machin, 2013). Complexes I, III, 
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and IV are capable of pumping H+ from the matrix to the intermembrane space 

during this series of redox reactions, but complex II is not (Figure 3).  

 

Figure 3  

 

 

 

 

 

 

 
 
Figure 3. The mitochondrial electron transport chain. The mitochondrial inner membrane is 
shown in grey, which contains the 5 complexes of the ETC. The transfer of e

-
 occurs from 

complex I (CI) and complex II (CII) independently to ubiquinone (Q), which transfers e
-
 to 

complex III (CIII). CIII then transfers e
-
 to cytochrome c (C), and finally to complex IV (CIV). 

Electron transfer is shown by the red line. Complexes I, III, and IV are capable of pumping H+ 
across the inner membrane to the intermembrane space to form a proton gradient, and complex 
V (ATP synthase) is able to use this gradient to form ATP from ADP, as H+ re-enter the matrix 
down the electrochemical gradient. 
 
 
 
 

1.1.4 Electron transport chain 

The mitochondrial ETC consists of 5 complexes involved in the production of 

ATP as discussed above. Complexes I, III, IV, and V are encoded by both 

nuclear and mitochondrial DNA, and are therefore under dual control by both, 

whereas complex II is entirely nuclear-encoded (Smeitink et al., 1998; Birch-

Machin, 2006). Complex I (NADH-ubiquinone oxidoreductase) consists of 45 

subunits in mammals, 7 of which are mtDNA-encoded (Scheffler, 2007). This 

complex is able to oxidise the substrate NADH and reduce the e- carrier 

ubiquinone, to transfer e- to complex III. During this process, e- are transferred 

from NADH to a flavin mononucleotide on complex I, and then through a series 

of 7 iron-sulphur clusters to the e- carrier ubiquinone (Rouault, 2012). As this 

complex spans the inner membrane, it is also capable of pumping protons from 

the matrix to the intermembrane space to contribute to the proton gradient 

(Tulah and Birch-Machin, 2013).  

 

Intermembrane 

Space 

Matrix 
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Complex II (succinate-ubiquinone oxidoreductase) of the mitochondrial ETC is 

the only mitochondrial complex which is entirely nuclear-encoded, rather than 

under dual control by both mtDNA and nDNA as for the other four complexes 

(Smeitink et al., 1998; Birch-Machin, 2006). This complex is located on the 

matrix side of the inner mitochondrial membrane, and forms part of both the 

ETC chain for the production of ATP via electron transport, and the citric acid 

cycle in the matrix, which increases the ATP-producing ability of the ETC by 

providing reduced e- carriers (Wojtovich et al., 2013). Complex II consists of 4 

nuclear-encoded subunits (Figure 4); the flavoprotein subunit, succinate 

dehydrogenase complex subunit A (SDHA), the iron-sulphur subunit, SDHB, 

and 2 membrane anchor subunits, SDHC and SDHD. SDHA is responsible for 

catalysing the oxidation of succinate to fumarate as part of the citric acid cycle, 

via the transfer of e- to flavin-adenine dinucleotide (FAD), to generate reduced 

FAD (FADH2) (Wojtovich et al., 2013). The e- from FADH2 are then transferred 

through the iron-sulphur clusters of SDHB, to SDHC and SDHD which transfer 

e- to a ubiquinone pool, to continue the transport of e- to complex III and along 

the remainder of the ETC (Wojtovich et al., 2013). Complex II was the major 

complex studied in the present project, and its role in the ageing process is 

discussed in more detail in Chapter 3.  

 

Figure 4  

 

 

 

 

 

 

 

 
Figure 4. The subunits of mitochondrial complex II. The mitochondrial inner membrane is 
shown (in grey), with the individual subunits of complex II. Complex II is composed of 4 
subunits, which are a flavoprotein subunit (SDHA), an iron-sulphur cluster (SDHB), and 2 
membrane-anchor proteins (SDHC and SDHD). 
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Complex III (ubiquinone-cytochrome c oxidoreductase) has 1 out of 11 subunits 

encoded by mtDNA (Scheffler, 2007). This complex accepts e- from reduced 

ubiquinone, generated by both complexes I and II (Wojtovich et al., 2013). 

Reduced ubiquinone binds to complex III to transfer e- through an iron-sulphur 

cluster to result in the reduction of cytochrome c (Scheffler, 2007). During this 

process, protons are pumped from the matrix to the intermembrane space to 

contribute to the proton gradient for ATP production (Scheffler, 2007).  

 

Complex IV (cytochrome c oxidase) is the final e- acceptor of the respiratory 

chain, and consists of 13 subunits, of which the largest 3 are mtDNA-encoded 

(Scheffler, 2007). Reduced cytochrome c transfers e- to this complex, which are 

then transferred to oxygen to generate water (Berg et al., 2006; Birch-Machin, 

2006). Complex IV is also able to pump protons across the inner membrane to 

contribute to the proton gradient (Scheffler, 2007).  

 

The final complex of the ETC, complex V (ATP synthase), is composed of 2 

mitochondrial-encoded subunits and approximately 29-35 nuclear-encoded 

subunits (Jonckheere et al., 2012). This complex is not involved in e- transfer; 

however, this complex is able to utilise the proton gradient generated by the 

other complexes to produce ATP, as H+ pass from the intermembrane space 

back to the matrix. During this process, the upper section of complex V rotates 

as H+ enter, and this generates the energy required to produce ATP from 

inorganic phosphate and ADP (Elston et al., 1998; Scheffler, 2007).    

 

The organisation of the ETC complexes within the mitochondrial inner 

membrane has been debated previously (Barrientos and Ugalde, 2013), 

however, it is generally accepted that the complexes are able to move freely 

throughout the inner membrane (Hackenbrock et al., 1986; Dudkina et al., 

2008), as well as being able to form supercomplexes (Cruciat et al., 2000; 

Schagger and Pfeiffer, 2000; Barrientos and Ugalde, 2013). Complexes I, III, 

and IV (as well as ubiquinone and cytochrome c) have been shown to form 

different combinations of supercomplexes; however, the function of these 

supercomplexes has only recently begun to be elucidated (Barrientos and 

Ugalde, 2013). Lapuente-Brun et al., (2013) suggested that the formation of 

supercomplexes was dynamic and was used to optimise the available 
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substrates, by allowing multiple forms of the respiratory chain to exist 

simultaneously. For example, supercomplexes were suggested to be able to 

exist alongside free-ETC complexes (which would include complex II, as 

complex II is unable to form a supercomplex) (Lapuente-Brun et al., 2013). This 

would allow supercomplexes to utilise any available NADH via complex I 

respiration, and the free complexes to utilise available succinate via complex II 

respiration (Lapuente-Brun et al., 2013). An additional possible reason for 

supercomplex formation could be that they lower ROS formation at complex I by 

increasing its stability (Barrientos and Ugalde, 2013; Maranzana et al., 2013). 

 

1.1.5 Reactive oxygen species 

During the process of oxidative phosphorylation at the ETC, e- have been 

shown to leak from complexes I and III (Cadenas et al., 1977; Turrens et al., 

1985; Hirst et al., 2008; Murphy, 2009; Bleier and Dröse, 2013; Wojtovich et al., 

2013), and more recently from complex II (Guo and Lemire, 2003; Lemarie et 

al., 2011; Quinlan et al., 2012). Leaked e- are able to react with oxygen to form 

ROS, which are therefore generated as a by-product of respiration. As e- react 

with oxygen, they initially form the ROS known as superoxide (O2
-), which is 

highly reactive as it contains a single unpaired electron. It is therefore capable 

of oxidising surrounding cellular structures such as proteins, lipids, and nucleic 

acids, leading to potential structural and genetic damage and altered cell 

homeostasis (Brand et al., 2004; Cecarini et al., 2007; Krishnan et al., 2007).  

 

Under normal circumstances, cells are able to decrease the level of O2
- via the 

endogenous antioxidant manganese superoxide dismutase (MnSOD) found 

within the mitochondria (Scheffler, 2007). MnSOD causes the dismutation of O2
- 

to hydrogen peroxide (H2O2), which is then able to be converted to water by 

catalase or glutathione peroxidase (Figure 5) (Berg et al., 2006; Birch-Machin, 

2006). However, the conversion of H2O2 to water is not completely efficient, and 

H2O2 may undergo the Fenton reaction to generate the extremely reactive 

hydroxyl radical (.OH) (Hogg et al., 1992). Although H2O2 is not a free radical 

itself, it is able to pass through cellular membranes and can therefore cause 

damage throughout the cell where it may be converted to .OH (Bienert et al., 

2006). When ROS escape antioxidant defences they are able to cause damage 

to cellular biological structures, an accumulation of which is thought to 
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contribute to the ageing process (Harman, 1956). However, ROS are not 

always detrimental, as they may act as important signalling molecules during 

processes such as apoptosis (Desler et al., 2011; Fischer et al., 2012). 

 

Figure 5  

 

 

 

 

 

 
 
Figure 5. Mitochondrial ROS and antioxidant defences. Superoxide anions (O2

-
) generated 

by the mitochondria may be converted to hydrogen peroxide (H2O2) by superoxide dismutase 
within the mitochondria. H2O2 is able to pass through the mitochondrial membrane, and can be 
converted to water by the antioxidants glutathione peroxidase and catalase, to prevent it from 
undergoing the Fenton reaction to form the highly reactive hydroxyl radical (

.
OH). ROS are 

shown in red. 
 
 
 
 

1.1.6 Mitochondrial quality control systems 

Due to the damage inflicted upon mitochondrial macromolecules by ROS when 

antioxidants become overwhelmed, multiple quality control systems exist within 

the cell to counteract this damage, either by repair or removal. The major 

pathways which exist include the repair of mtDNA (Croteau et al., 1999; Gredilla 

et al., 2010; Fischer et al., 2012), the mitochondrial unfolded protein response 

(UPRmt) (Durieux et al., 2011; Fischer et al., 2012), fusion and fission (Twig et 

al., 2008; Youle and van der Bliek, 2012), lysosomal degradation of damaged 

mitochondrial proteins (Twig et al., 2008; Youle and van der Bliek, 2012), and 

the removal of entire mitochondria by mitophagy (Ashrafi and Schwarz, 2013). 

 

As mtDNA is in close proximity to ROS production from the ETC, it is especially 

susceptible to oxidative damage (Birch-Machin and Swalwell, 2010). Several 

DNA repair mechanisms exist to counteract this damage, which are base 

excision repair, and mismatch repair (Croteau et al., 1999; Gredilla et al., 2010; 

Fischer et al., 2012); however, nucleotide excision repair has not been detected 

in mitochondria (Fischer et al., 2012). Although these mtDNA repair 

Superoxide 
Dismutase 

O2
-
 H2O2 

Glutathione 
Peroxidase, 

Catalase 
Water 

.
OH 

Fenton 
Reaction 



37 
 

mechanisms are more limited than nDNA repair mechanisms, mtDNA exist in 

multiple copies within a cell and can therefore withstand high levels of damage, 

and therefore do not require as extensive repair mechanisms (Birch-Machin and 

Swalwell, 2010). Misfolded mitochondrial proteins are able to be repaired by 

chaperones such as the heat shock protein 70 (Hsp70) (De la Coba et al., 

2009). If the level of misfolded proteins becomes too great, pathways to 

decrease the levels of these damaged macromolecules become activated. 

These pathways are known as the UPRmt, and involve process such as the 

degradation of damaged proteins and ETC complexes via proteases, and the 

refolding of proteins where possible to prevent protein aggregation (Durieux et 

al., 2011; Fischer et al., 2012).  

 

Within a cell, mitochondria constantly undergo fusion and fission, which is the 

joining and separating of mitochondria to decrease the levels of damage within 

(Twig et al., 2008; Youle and van der Bliek, 2012). Fusion is the joining of a 

partially damaged mitochondrion with a healthy mitochondrion, via the binding 

of both the outer and inner membranes, during which the components of both 

mitochondria are mixed allowing the damage to be diluted. The healthy 

mitochondrial components therefore complement the damaged ones, allowing 

the function of the damaged mitochondria to be replenished; however, this only 

occurs when the damage is below 80-90% (Youle and van der Bliek, 2012). 

Fusion has been shown previously to result in effective redistribution of green 

fluorescent protein across cultured fibroblast cells (Youle and van der Bliek, 

2012), demonstrating the ability of the mitochondria to dilute damage. Fission is 

used to remove high levels of damage from mitochondria, during which 

damaged components bud-off and are degraded via autophagy. This process is 

also used to generate new mitochondria during cellular division (Twig et al., 

2008; Youle and van der Bliek, 2012). 

 

1.2 The Ageing Process 

Ageing describes the functional decline of an organism over time, which occurs 

across all tissues of the body, leading to an increase in susceptibility to age-

related diseases including cancer (Campisi, 2013), and eventually the death of 

the organism. It is a phenomenon observed across different organisms, with 

animals, plants, fungi, and even bacteria affected (Ackermann, 2008); however 
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the exact mechanism as to how and why we age remains unknown (Stefanatos 

and Sanz, 2011). In humans, average lifespan has increased dramatically over 

the last century due to advances in medicine, hygiene, and diet (Finch, 2012). 

The number of people over 60 years old is expected to increase globally from 

600 million in the year 2000 to 2 billion people in 2050 (World Health 

Organisation, 2011), so it is therefore highly important to understand the causes 

and mechanisms of ageing so that the elderly may maintain their health for as 

long as possible. Attempts to elucidate the mechanisms of ageing have been 

performed throughout the 20th century, and several of the more promising 

theories will be discussed in detail below. However, the ageing process is still 

not fully understood, and therefore more work is required before attempts to 

slow the ageing process can be carried out. The possible role of senescence in 

ageing is discussed in Chapter 4, and the role of mitochondria in ageing is 

discussed in a subsequent section (section 1.3). 

 

1.2.1 The wear and tear theory of ageing  

One of the first theories of ageing to be proposed came in 1882 by August 

Weismann (Weismann, 1882; Goldsmith, 2004), who suggested that organisms 

accumulate damage over time due to general use, which could be exacerbated 

by unhealthy diets (such as excessive alcohol and fat), or by other 

environmental factors such as ultraviolet radiation (UV) (Salvi et al., 2006). This 

was known as the ‘wear and tear theory of ageing’. Although it is likely that 

these environmental factors contribute to the ageing process in humans (Frosch 

et al., 2009; Voss et al., 2011), a simple wear and tear theory is not likely to be 

the overall cause of ageing (Aldwin and Gilmer, 2013). This is due to problems 

with the theory, such as the vastly different rates of ageing seen across animal 

species (Speakman, 2005); if ageing were only due to a gradual accumulation 

of damage it may be expected that all species would age at the same rate. 

Athletes may also be expected to age at a faster rate due to higher usage of the 

body, but this is not the case (Paffenbarger et al., 1993; Aldwin and Gilmer, 

2013). Additionally, some organisms (such as the pacific salmon) show no signs 

of ageing before death (Morbey et al., 2005), and some organisms (such as the 

freshwater polyp Hydra) are thought to be immortal (Boehm et al., 2012). 
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1.2.2 The antagonistic pleiotropy theory of ageing   

The ‘antagonistic pleiotropy theory of ageing’ was conceived in 1957 by George 

Williams (Williams, 1957), who suggested that certain genetic traits may be 

beneficial in early life before reproductive capacity is reached, yet detrimental in 

later life, during which they are unable to be selected against by natural 

selection. A possible example of antagonistic pleiotropy is senescence (which is 

where cells cease to divide yet remain viable), which is thought to be beneficial 

in early life as it prevents the division of potentially cancerous cells, yet 

detrimental in later life for which an accumulation of senescent cells is thought 

to contribute to a decline in tissue function and the ageing process (Campisi, 

2005). One possible problematic observation with the antagonistic pleiotropy 

theory is that animals display different traits yet can show similar ageing 

phenotypes (Fabian and Flatt, 2011). It could be that aspects of antagonistic 

pleiotropy contribute to the ageing process; however, they are unlikely to be the 

overall cause of the ageing process, as differences within animals would have 

to occur with increasing chronological age in order for a beneficial trait to 

become detrimental. For example, senescence may be more detrimental with 

age due to a decline in antioxidant capacity (Micallef et al., 2007), allowing the 

beneficial cancer-removing senescent cells to accumulate to the point of being 

damaging. 

 

1.2.3 The disposable soma theory of ageing  

In 1977, Tom Kirkwood (Kirkwood, 1977) proposed that because the body has a 

limited supply of resources available from the environment, these are therefore 

distributed in priority towards reproduction rather than towards maintaining 

somatic cells for long periods of time. The body is thought to deteriorate over 

time due to damage accumulation in somatic cells, whilst the germ line cells 

remain undamaged (Kirkwood and Austad, 2000). This theory is known as the 

‘disposable soma theory of ageing’, and could be explained from an 

evolutionary perspective by the fact that resources are hard to come by in the 

wild. Since animals in the wild often do not live to old ages due to factors such 

as cold and predation, it would therefore be more beneficial for animals to put 

resources into reproduction rather than into attempting to maintain somatic 

cells, as the animals were likely to die early (Kirkwood and Austad, 2000). 

However this theory has been debated (Blagosklonny, 2010), as those animals 
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with abundant resources still age, and a higher food intake actually often results 

in a lower lifespan. Also, women still age after the menopause, even though 

after this point resources are no longer allocated to reproduction (Blagosklonny, 

2010). 

 

1.3 The Role of Mitochondria in Ageing 

Many theories as to why we age have been suggested previously, and a large 

number of these theories involve the mitochondria. For example, the ‘rate of 

living theory of ageing’ was proposed in 1928 by Raymond Pearl (Pearl, 1928), 

who presented the idea that the differing metabolic rates between animal 

species was a determining factor in maximum lifespan potential. This theory 

was taken further by Denham Harman in 1956 (Harman, 1956), who proposed 

the ‘free radical theory of ageing’, which suggested that the rate of production of 

free radicals such as ROS, rather than the rate of metabolic activity directly, 

affected the ageing process of the animal. Highly reactive oxygen radicals were 

proposed to cause damage to biological structures which was thought to 

accumulate over time, eventually leading to a loss of cellular function and 

ageing (Harman, 1956). In support of this theory, it has been observed that 

pigeons have approximately 9-fold longer maximal lifespans than rats, despite 

similar masses and metabolic rates; however, the rate of H2O2 production is 

significantly lower in pigeons (Ku and Sohal, 1993; Barja et al., 1994; Barja and 

Herrero, 1998). This could imply that animals which generate fewer free radicals 

have longer lifespans. Additionally, both mice and rats have different metabolic 

rates, yet a similar level of H2O2 production, and their maximal lifespans are the 

same (Herrero and Barja, 1998). Further evidence for a role of free radicals in 

lifespan determination is based on the observation that the level of oxidative 

mtDNA damage in heart tissue is lower in longer-lived mammals (Barja and 

Herrero, 2000; Barja, 2002). As mitochondria are responsible for the production 

of the majority of ROS within a cell (Berg et al., 2006), the free radical theory of 

ageing was later refined to the ‘mitochondrial theory of ageing’ in 1972 

(Harman, 1972). 

 

1.3.1 The mitochondrial theory of ageing 

The mitochondrial theory of ageing (Harman, 1972) suggested that 

mitochondria play a key role in the ageing process via the production of 
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damaging ROS molecules, and it is currently one of the most widely accepted 

theories of ageing (Hulbert et al., 2007; Barja, 2013). Within this theory, a 

mechanism of ageing has been proposed called the ‘vicious cycle theory of 

ageing’ (Bandy and Davison, 1990; Zdanov et al., 2006; Dlaskova et al., 2008), 

which suggests that ROS production from the mitochondrial respiratory chain is 

able to cause damage to mtDNA, and because mtDNA encodes subunits of the 

respiratory chain, this then leads to errors in gene expression and results in 

dysfunctional subunits. Dysfunctional mitochondria are then thought to 

contribute to further ROS leakage, in a continuous vicious cycle of damage 

accumulation (Figure 6). However, the vicious cycle theory of ageing is 

disputed, as evidence both for and against this theory has been presented 

previously (Sanz et al., 2006; Barja, 2013), which is discussed in more detail in 

the subsequent sections.    

 

Figure 6  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The vicious cycle theory of ageing. ROS generation during mitochondrial 
respiration is thought to cause damage to mtDNA (stage 1), which in turn is thought to result in 
the altered expression of ETC units (stage 2). This is thought to cause further ROS production 
(stage 3) in a continuing cycle of exponentially increasing damage (Bandy and Davison, 1990; 
Zdanov et al., 2006; Dlaskova et al., 2008). The mitochondrion is shown in pink. 
 
 
 
 

1.3.2 Stage one of the vicious cycle theory of ageing 

The first stage of the vicious cycle theory of ageing suggests that ROS 

generated predominantly by the ETC are capable of causing mtDNA damage. 

Evidence for this stage being able to occur comes from previous studies 
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demonstrating that oxidative damage (such as 8-oxo-dG lesions) is much higher 

in mtDNA than it is in nDNA (Richter et al., 1988; Mecocci et al., 1993; 

Shigenaga et al., 1994a; Yakes and Van Houten, 1997; Hamilton et al., 2001; 

Santos et al., 2002; Cui et al., 2012), due to the limited repair mechanisms of 

mtDNA, and especially due to its close proximity to the ETC (Birch-Machin and 

Swalwell, 2010). This suggests that ROS generated via respiration is able to 

cause damage to mtDNA. As this first stage of the vicious cycle has been 

demonstrated in many previous studies, it is therefore likely to be able to occur. 

 

1.3.3 Stage two of the vicious cycle theory of ageing  

The second stage of the vicious cycle theory of ageing proposes that mtDNA 

damage is able to lead to altered expression of ETC complex subunits and 

therefore result in dysfunctional mitochondria. Multiple studies have been 

presented in support of this stage; for example, Kwong et al. (2007) found that 

mtDNA mutations affecting complex V caused a decrease in the level of 

respiration in human osteosarcoma cells (mitochondrial dysfunction). This also 

led to an increase in ROS generation, which could link the second and third 

stages of the vicious cycle (Kwong et al., 2007). Additionally, various 

mitochondrial diseases such as schizophrenia and NARP (Neuropathy, Ataxia, 

and Retinitis Pigmentosa) are characterised by mtDNA mutations, and show 

reduced oxidative phosphorylation capacity (Lenaz et al., 2004; Wallace, 2010; 

Verge et al., 2011; Duno et al., 2013; Wu et al., 2013). Further evidence for 

mtDNA mutations causing mitochondrial dysfunction comes from studies using 

knock-in mice with mutated mtDNA polymerase subunits, to increase the rate of 

transcriptional errors (Kujoth et al., 2005; Trifunovic et al., 2005). These mice 

accumulate mtDNA mutations at a higher rate than wild-type mice, and have 

dysfunctional mitochondria in the form of decreased rates of respiration and 

ATP production (Kujoth et al., 2005; Trifunovic et al., 2005). However, these 

mice did not show increased levels of ROS (or of antioxidants to counteract 

ROS), which could provide evidence against the second stage of the cycle 

being able to result in the third stage. It could be speculated that not all mtDNA 

mutations result in an increased level of ROS, so damage may increase in a 

manner slower than expected (Sanz et al., 2006). 
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1.3.4 Stage three of the vicious cycle theory of ageing 

The third stage of the vicious cycle theory of ageing suggests that mitochondrial 

dysfunction can lead to an increase in ROS production (Bandy and Davison, 

1990). This stage has evidence against it, as demonstrated by the previously 

discussed studies for which mice with an accelerated accumulation of mtDNA 

mutations showed higher levels of mitochondrial dysfunction, yet no increase in 

ROS levels (Kujoth et al., 2005; Trifunovic et al., 2005). However, some 

evidence supporting this stage of the cycle comes from Esposito et al., (1999), 

who found that mice with mitochondrial dysfunction in the form of being unable 

to import ADP into the matrix (and therefore with inhibited oxidative 

phosphorylation), had significantly higher levels of H2O2 (Esposito et al., 1999). 

This suggested that some forms of mitochondrial dysfunction may result in 

increased ROS levels, whereas other forms may not. In the study by Esposito et 

al., (1999), there was also an increase in mtDNA damage observed in the heart 

tissue (which showed the lowest level of antioxidant defence), which could 

indicate that dysfunctional mitochondria are able to cause an increase in the 

level of ROS, as well as an increase in mtDNA damage if the antioxidant 

defence is not sufficient (Esposito et al., 1999). This demonstrates a link 

between the third and first stages of the vicious cycle theory of ageing. Lapointe 

et al., (2012) found that mice heterozygous for an enzyme involved in the 

synthesis of ubiquinone had lower levels of this enzyme at the mitochondrial 

inner membrane, and showed mitochondrial dysfunction in the form of 

decreased respiratory activity. These mice also had increased levels of 

mitochondrial oxidative stress (Lapointe et al., 2012), which is in accordance 

with the third stage of the vicious cycle theory of ageing. In humans, ROS levels 

have been shown to be higher in skin fibroblast cells from older individuals, 

accompanied by an increase in mitochondrial dysfunction (a decrease in 

mitochondrial membrane potential) (Koziel et al., 2011), which could suggest a 

link between the two factors. Therefore in conclusion, some forms of 

mitochondrial dysfunction may result in increased ROS production (Esposito et 

al., 1999; Lapointe et al., 2012), whereas others may not (Kujoth et al., 2005; 

Trifunovic et al., 2005). 
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1.3.5 MtDNA damage and ageing 

The three stages of the vicious cycle have been shown in previous studies to be 

able to occur independently. The three aspects of the cycle (increased ROS, 

mtDNA damage, and mitochondrial dysfunction) have also all been shown 

separately to be correlated with increased age. For example, Hayakawa et al., 

(1992) found that the level of mtDNA damage (8-oxo-dG lesions) was higher in 

the human heart muscle of older people compared to younger. In the study, 

mtDNA damage increased exponentially from 45 years and older (Hayakawa et 

al., 1992); this lends support to the exponential increase in damage which is 

thought to occur during the vicious cycle theory of ageing. Other studies have 

also shown an increase in oxidative mtDNA damage with age (Ames et al., 

1993; Mecocci et al., 1993; Hudson et al., 1998). Higher levels of mtDNA 

mutations have also been shown to be causative in terms of ageing 

phenotypes; Trifunovic et al., (2005) and Kujoth et al., (2005) found that mice 

with accelerated mtDNA mutation levels (via a mutated mtDNA polymerase) 

showed increased mitochondrial dysfunction, as well as reduced longevity and 

an accelerated onset of ageing phenotypes (Kujoth et al., 2005; Trifunovic et al., 

2005). Additionally, mtDNA mutations and deletions have been shown to 

correlate with the ageing process; for example, the 4977 bp common deletion 

which may be used as a biomarker for general mtDNA damage (Berneburg et 

al., 2004), has been shown to accumulate in certain human tissues with age 

(Arnheim and Cortopassi, 1992; Cooper et al., 1992; Meissner et al., 2008; Cui 

et al., 2012). The T414G mtDNA point mutation has also been shown to be 

higher in the skin of older individuals (Michikawa et al., 1999; Birket and Birch-

Machin, 2007). 

 

1.3.6 Mitochondrial dysfunction and ageing  

In terms of a relationship between mitochondrial dysfunction and age, past work 

has shown that the individual complexes of the ETC decline with age in some 

tissues from different species (Trounce et al., 1989; Boffoli et al., 1994; Hayashi 

et al., 1994; Rooyackers et al., 1996; Lenaz et al., 1997; Isobe et al., 1998; 

Lesnefsky et al., 2001; Sandhu and Kaur, 2003; Kumaran et al., 2004; Cocco et 

al., 2005; Balietti et al., 2009; Braidy et al., 2011; Tatarkova et al., 2011; 

Andreollo et al., 2012; Velarde et al., 2012), as discussed in more detail in 

Chapter 3. The mitochondrial membrane potential has also been shown to be 
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decreased with age in specific tissues (Hagen et al., 1997; Parihar and Brewer, 

2007; Koziel et al., 2011), as has the ATP-producing capability of mitochondria 

(Shigenaga et al., 1994b; Drew et al., 2003; Nair, 2005). However, Lapointe et 

al., (2012) demonstrated that not all forms of mitochondrial dysfunction are 

detrimental in terms of lifespan, as mice with lower levels of ubiquinone showed 

mitochondrial dysfunction in the form of decreased respiratory activity, as well 

as increased oxidative stress, but these mice actually had increased longevity 

compared to wild-type mice (Lapointe et al., 2012). The study suggested that 

mitochondrial dysfunction can result in ROS release, yet this ROS release may 

not necessarily contribute to a vicious cycle and a decrease in lifespan 

(Lapointe et al., 2012). This has also been observed for Caenorhabditis elegans 

(C. elegans), for which ETC activity was lowered during development using 

RNA interference (RNAi), which resulted in increased lifespans (Dillin et al., 

2002). These results suggest that the relationship between mitochondrial 

function and age is complicated. 

 

1.3.7 ROS and ageing  

Several studies have demonstrated a possible correlation between increasing 

ROS levels and age, whereas other studies have shown a lack of correlation. 

ROS production levels have been shown to be higher in human skin fibroblast 

cells (Koziel et al., 2011) and muscle cells (Capel et al., 2005) with increasing 

age, as well as in other species such as rats (Sawada and Carlson, 1987; 

Muscari et al., 1990; Sawada et al., 1992) and flies (Sohal and Sohal, 1991). 

ROS production has also been shown to be generally lower in long-lived 

species compared to short-lived species (Ku and Sohal, 1993; Barja et al., 

1994; Barja and Herrero, 1998; Lambert et al., 2007). Additionally, mice 

overexpressing mitochondrial catalase (and therefore having lower ROS levels) 

show an increased lifespan (Schriner et al., 2005). However, past work has 

shown that ROS levels are not increased in older human muscle cells (Hutter et 

al., 2007), and other studies have shown that increasing the expression of 

endogenous antioxidants such as MnSOD does not result in an increase in 

mouse lifespan, and decreasing these endogenous antioxidants does not cause 

a decrease in lifespan (Jang et al., 2009; Perez et al., 2009; Zhang et al., 2009).  
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In the studies using mtDNA-polymerase-mutator mice (Kujoth et al., 2005; 

Trifunovic et al., 2005), despite an acceleration of ageing and a decrease in 

lifespan due to increased mtDNA mutations and mitochondrial dysfunction, 

there was no increase in ROS detected. However, this does not necessarily 

imply that ROS are not involved in the natural ageing process, as multiple 

factors are thought to be involved in driving ageing. Therefore, if one factor is 

greatly increased (such as errors in polymerase function) ROS accumulation 

may play a negligible role, especially in the knock-in mice for which ageing was 

greatly accelerated by other means (Kujoth et al., 2005; Trifunovic et al., 2005). 

Additionally, this mouse model may not accurately represent natural ageing, 

and may just display some phenotypes similar to ageing, such as alopecia and 

osteoporosis (Kujoth et al., 2005; Trifunovic et al., 2005).  

 

As the three aspects of the vicious cycle (ROS, mtDNA damage, and 

mitochondrial dysfunction) are often studied separately (Sanz et al., 2006), it is 

difficult to reconcile the vicious cycle theory of ageing. Ageing phenotypes have 

been shown to occur without certain aspects of the cycle taking place (such as 

ROS production (Kujoth et al., 2005; Trifunovic et al., 2005; Hutter et al., 2007)), 

which could suggest that each stage of the vicious cycle is able to contribute 

separately to the ageing process, but this does not necessarily result in a 

continuing vicious cycle (Sanz et al., 2006). For example, it could be that not all 

mtDNA mutations causing mitochondrial dysfunction lead to the generation of 

ROS (Kujoth et al., 2005; Trifunovic et al., 2005); however, these mutations 

could still be damaging by other mechanisms, and may therefore still contribute 

to the ageing process without inducing a vicious cycle of damage. In 

accordance with this, mtDNA mutations have been shown to be capable of 

inducing age-related diseases independently from ROS production (Mott et al., 

2001; Cui et al., 2012). The exact link between the stages and whether the 

stages are causative or correlative in terms of the ageing process remains 

unknown, and so the vicious cycle theory remains disputed. However, the 

mitochondria are still extremely likely to play a role in the ageing process (Barja, 

2013), even if not necessarily via a vicious cycle of damage. 
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1.3.8 Mitochondria and telomeres in ageing  

Telomeres are nucleoprotein structures found at the ends of nuclear 

chromosomes to protect DNA from degradation via unwinding and from 

undergoing unnecessary strand repair mechanisms (Rodier et al., 2005; 

Campisi, 2013). Telomere length gradually decreases as a cell divides; if 

telomeres reach a critically short length they activate a process known as 

cellular senescence (Greider and Blackburn, 1985; Harley et al., 1990; Harley et 

al., 1992; Bodnar et al., 1998), which is discussed in more detail in Chapter 4. 

An accumulation of senescent cells has been shown previously to occur with 

age (Dimri et al., 1995; Mishima et al., 1999; Campisi, 2005; Herbig et al., 2006; 

Noppe et al., 2009; Naylor et al., 2013), and longer telomere lengths have been 

associated with increased longevity in humans, with a previous study 

demonstrating that the offspring of centenarians maintain longer telomere 

lengths with increasing age compared to controls, and have fewer age-related 

diseases (Atzmon et al., 2010). Telomere shortening may be seen as a 

separate contributor to the ageing process from the mitochondrial theory of 

ageing; however, recent studies have demonstrated a link between 

mitochondrial dysfunction and the telomeres. Studies have demonstrated that 

mice deficient in the catalytic subunit (TERT) of telomerase, the enzyme which 

maintains telomere length (Greider and Blackburn, 1985), show an accelerated 

telomere shortening and development of ageing phenotypes (Jaskelioff et al., 

2011), as well as impaired mitochondrial function and increased ROS 

production (Sahin et al., 2011). Sahin et al., (2011) found that TERT-deficient 

mice have a decreased expression of the peroxisome proliferator-activated 

receptor gamma co-activators α and β (PGC-1α and PGC-1β), which regulate 

mitochondrial biogenesis and metabolism, suggesting that telomerase and 

mitochondria are linked, and may both be involved in the ageing process. The 

p53-protein, which may be activated if telomeres become critically short 

(Campisi, 2013), was thought to link mitochondria and the telomeres, as it was 

shown to cause repression of PGC-1α and PGC-1β (Sahin et al., 2011). Other 

studies have shown that telomerase is translocated to the mitochondria during 

stressful conditions (Santos et al., 2004; Jakob and Haendeler, 2007; 

Haendeler et al., 2009), where it possibly binds to mtDNA to improve 

mitochondrial function (Haendeler et al., 2009). Improvements in the 



48 
 

mitochondrial ETC complex activities have also been observed when TERT is 

overexpressed (Haendeler et al., 2009; Indran et al., 2011). 

 

1.4 Ageing Treatments  

1.4.1 Caloric restriction and ageing 

It has been recognised for several centuries that a reduction in dietary intake 

can cause an increase in lifespan (Hursting et al., 2003). This is known as 

calorie restriction (CR), and is one of the few repeatable methods of successful 

lifespan extension in laboratory animals (Hursting et al., 2003). The first official 

studies into the effects of CR came at the start of the 20th century, when it was 

observed that a decrease in food intake in rodents improved their lifespan 

(Osborne et al., 1917; McCay et al., 1935). This lifespan-extending effect of CR 

has now also been observed in a variety of other organisms, such as yeast 

(Fabrizio et al., 2003), spiders (Austad, 1989), cows (Pinney et al., 1972), and 

dogs (Lawler et al., 2008). An on-going study has demonstrated that rhesus 

monkeys fed approximately 30% fewer calories than controls throughout their 

lives have fewer signs of ageing and age-related diseases (Kemnitz et al., 1993; 

Colman et al., 2009). The effects of CR on humans are not fully known; 

however, on the Japanese Island of Okinawa the average calorie intake is 

lower, and there are a higher than average number of centenarians and fewer 

cases of age-related diseases (Willcox et al., 2007). CR is thought to occur via 

AMP-activated protein kinase (AMPK), which is a metabolic regulator capable of 

detecting changes in cellular energy demand (Park et al., 2012). AMPK is able 

to cause the activation of sirtuins and therefore increase mitochondrial 

biogenesis and function (as well as activating other pathways such as those 

involved in stress resistance), resulting in an enhanced lifespan (Park et al., 

2012). 

 

1.4.2 Endogenous treatments of ageing  

Since mitochondria produce the majority of ROS within a cell (Berg et al., 2006), 

and since the proposal of the mitochondrial theory of ageing (Harman, 1972) 

and the observation that many age-related diseases are linked to oxidative 

stress (Khansari et al., 2009), there have been many attempts to modulate 

longevity using exogenous antioxidants from plant and food sources (Lebel et 

al., 2012). There are conflicting results regarding the supplementation of 
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antioxidants, including those received from studies involving vitamin E, which is 

found in wheat and other food sources. Navarro et al., (2005) found that mice 

supplemented with vitamin E had a ~40% increase in median lifespan and a 

~17% increase in maximum lifespan (Navarro et al., 2005). In the study, it was 

also observed that vitamin E partially decreased the higher oxidative damage 

usually observed in the aged mice (Navarro et al., 2005). This could suggest 

that vitamin E may decrease ROS levels and extend lifespan, which is in 

support of the mitochondrial theory of ageing. However, another study in mice 

undergoing lifelong vitamin E supplementation found that although longevity 

was enhanced, the level of oxidative damage was not altered, suggesting no 

change in ROS levels (Selman et al., 2008). Other conflicting results regarding 

vitamin E supplementation come from Morley and Trainor, (2000), who found 

that lifelong consumption of various vitamin E concentrations in mice, did not 

affect lifespan (Morley and Trainor, 2001). 

 

With regards to antioxidant supplementation, the contradictory results obtained 

could be because the antioxidant was unable to get to the site of ROS 

production in the mitochondria at a high enough level, due to the method of 

supplementation used (Morley and Trainor, 2001). The dose of the antioxidant 

is also likely to be important, as low levels of vitamin E were shown to increase 

the lifespan of Drosophila, yet high levels did not (Driver and Georgeou, 2003), 

implying possible toxicity at higher levels. Also, since ROS are important 

signalling molecules (Desler et al., 2011; Fischer et al., 2012), the dose and 

target of the administered antioxidant would have to be considered to prevent 

the alteration of cellular homeostasis. 

 

Other supplementations include the natural plant antibiotic found in the skin of 

red fruits, named resveratrol. Resveratrol has been shown to have benefits to 

age-related health in vitro and in animal models, such as providing protection 

against diabetes, inflammation, neurodegeneration, heart disease, and cancer 

(Jang et al., 1997; Baur and Sinclair, 2006; Li et al., 2012; Tome-Carneiro et al., 

2013). However, studies on the effects of resveratrol on human health are 

limited (Tome-Carneiro et al., 2013). In terms of lifespan extension, studies on 

yeast, flies, worms, and fish have shown that resveratrol is able to increase 

longevity (Howitz et al., 2003; Bass et al., 2007; Terzibasi et al., 2007; Marchal 
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et al., 2013). Resveratrol has also been shown to increase the lifespan of obese 

mice (Baur et al., 2006), but results are not conclusive in non-obese mammals 

(Pearson et al., 2008; Miller et al., 2011; Marchal et al., 2013; Strong et al., 

2013). Also, the effects of long-term supplementation on human lifespan are not 

known (Marchal et al., 2013). Resveratrol is thought to exert its effects via 

sirtuins, and is therefore thought to mimic CR (Park et al., 2012; Marchal et al., 

2013). Because CR is one of the most repeatable methods of lifespan extension 

(Hursting et al., 2003), it could be that resveratrol will be useful in the treatment 

of age-related diseases in future human studies.  

 

1.5 Ultra-Violet Radiation and the Skin 

1.5.1 The structure of the skin 

The skin is the largest organ of the body, and it acts as a barrier to external 

insults, such as UV, infection, toxicity, and mechanical stress (Haake et al., 

2001). The skin consists of three main layers; the epidermis, the dermis, and 

the hypodermis (Alberts et al., 2002), as shown in Figure 7. The epidermis is 

the outermost layer (Figure 7), responsible for protection from the environment, 

with the most abundant cell type in the epidermis being the keratinocyte (Haake 

et al., 2001). Keratinocytes generate keratin, which is a structural component 

allowing for toughness in the outer layer of the skin (Alberts et al., 2002). 

Keratinocytes are constantly renewed since they are under continuous insult 

from the environment, and they differentiate as they become closer to the 

surface of the skin (Alberts et al., 2002). The keratinocyte cells at the base are 

able to actively divide (the basal cells, where the keratinocyte stem cells are 

located) (Figure 7) (Alberts et al., 2002), and the cells gradually become more 

squamous as they move up through the skin to the surface (Alberts et al., 

2002). The top layer of the skin consists of dead cells known as the stratum 

corneum (Hornig-Do et al., 2007), which forms a waterproof barrier and is 

replaced on a regular basis (every 28 days (Haake et al., 2001)) due to normal 

skin turnover. Other cell types of the epidermis include melanocyte cells 

(responsible for skin pigmentation), Langerhans cells (which form part of the 

immune response), and Merkel cells (involved in touch responses) (Haake et 

al., 2001). Melanocytes generate melanin, which is transferred to keratinocyte 

cells for UV protection (Haake et al., 2001; Costin and Hearing, 2007), and are 
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found at higher levels in sun-exposed regions of the body such as the face 

(Haake et al., 2001). 

 

The dermis is found beneath the epidermis in the skin (Figure 7), and contains 

blood and lymph vessels, sweat glands, hair roots, connective tissues (such as 

collagen and elastin) and nerves (Haake et al., 2001; Alberts et al., 2002), and 

provides structural support for the skin (Haake et al., 2001). The most abundant 

cell type found in the dermis is the fibroblast cell, which generates collagen and 

elastin, as well as other components of the extracellular matrix (Alberts et al., 

2002). Other cell types include macrophages, lymphocytes, and mast cells, all 

of which are involved in the immune response (Alberts et al., 2002). The 

hypodermis is located below the dermis in the skin (Figure 7), and is composed 

of blood vessels and nerves, as well as adipose cells, fibroblasts, and 

macrophages (Haake et al., 2001; Alberts et al., 2002). Its function is to provide 

a layer of fat underneath the skin, which is involved in thermoregulation 

(Montagna et al., 1992). 

 

The symptoms of ageing in the skin include epidermal thinning, a decrease in 

dermal connective tissue resulting in wrinkles, and a general increase in skin 

fragility (Jenkins, 2002). The skin is often used to study human ageing, due to 

its easy accessibility, and the observation that the ageing process is able to be 

accelerated in this organ via environmental insults, such as UV (Kosmadaki and 

Gilchrest, 2004; Quan et al., 2006; Birket and Birch-Machin, 2007; Akase et al., 

2012).  
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Figure 7  

 

 
Figure 7. The structure of the skin. The skin is made up of three main layers, which are the 
epidermis, the dermis, and the hypodermis, shown in a simplified version in the upper image. 
The lower images depict close-ups of the skin layers, with the epidermis consisting of 
keratinocytes, melanocytes, and dendritic cells; the upper dermis consisting of loose connective 
tissue, with fibroblasts, mast cells, lymphocytes, and macrophages; and the lower dermis 
consisting of dense connective tissue and fibroblasts. Image from (Alberts et al., 2002). 
 
 
 
 

1.5.2 Ultraviolet radiation and skin damage 

UV makes up approximately 9% of the radiation emitted by the sun, and is of a 

longer wavelength than X-rays and a shorter wavelength that visible light on the 

electromagnetic spectrum (Diffey, 2002). Humans are able to utilise the UV 

absorbed by the skin to generate vitamin D; however, the effects of excessive 

UV on human skin are damaging, and there is a trade-off between adequate 
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vitamin D synthesis and UV-induced damage (Jablonski and Chaplin, 2012). UV 

from the sun is the main extrinsic influence of skin ageing (De la Coba et al., 

2009); excessive exposure to UV can lead to cellular, molecular, and genetic 

changes in the skin, which if unrepaired can have deleterious effects on cellular 

function (Ichihashi et al., 2003; Schuch and Menck, 2010). Sunburn is generally 

observed a few hours after acute exposure to UV; however, more serious 

effects of chronic UV exposure include immunosuppression, increased risk of 

skin cancer due to DNA mutations, and accelerated skin ageing (De la Coba et 

al., 2009). UV is able to cause damage to cells either by the production of ROS 

or via direct DNA damage (Schafer et al., 2010). Genetic damage to the skin 

from UV occurs because of the UV-absorbing properties of DNA, of which the 

most common genetic changes observed include pyrimidine dimers, pyrimidine 

monoadducts, and purine dimers (Tornaletti and Pfeifer, 1996; Sinha and 

Hader, 2002). If these are not repaired, they can result in DNA strand breaks 

and mutations, which may result in altered protein expression and reduced 

cellular function (Sinha and Hader, 2002), and potentially skin cancer. UV can 

also result in the production of ROS, which can cause oxidative damage to DNA 

via the formation of adducts such as 8-oxo-dG, which if not repaired can induce 

DNA strand breaks and base transversions (Efrati et al., 1999). ROS can also 

cause damage to other cellular components such as lipids and proteins (De 

Gruijl, 1997; Finkel and Holbrook, 2000; De la Coba et al., 2009). Due to this 

damage, UV is considered one of the largest environmental problems for 

human health (De la Coba et al., 2009).  

 

A possible mechanism as to how UV is able to accelerate the ageing process 

could be via its interaction with mitochondria, where it may contribute to a 

vicious cycle of increasing damage, which could potentially be involved in the 

ageing process (as discussed in section 1.3) (Bandy and Davison, 1990). In this 

scenario, UV may increase ROS levels, or cause mtDNA damage directly, 

which could result in an increase in mitochondrial dysfunction and a further 

production of ROS in a continuing vicious cycle (Figure 8) (Bandy and Davison, 

1990). Even if this vicious cycle is not occurring (Sanz et al., 2006), any 

damage to mtDNA or mitochondria directly by UV could still result in an 

increase in photo-ageing, as mitochondria are thought to play a prominent role 

in the ageing process (Birch-Machin, 2006). Many of the same symptoms and 
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mtDNA mutations found in photo-aged skin are also increased in 

chronologically aged skin; therefore, excessively UV-exposed skin may be used 

as a model for skin from older individuals. For example, the mtDNA 3895 bp 

and 4977 bp deletions, as well as the T414G mutation, are correlated more 

strongly with skin from sun-exposed regions and also in the skin of older 

individuals (Arnheim and Cortopassi, 1992; Cooper et al., 1992; Yang et al., 

1995; Birch-Machin et al., 1998; Michikawa et al., 1999; Barritt et al., 2000; 

Berneburg et al., 2004; Krishnan et al., 2004; Birket and Birch-Machin, 2007; 

Reimann et al., 2007; Meissner et al., 2008; Harbottle et al., 2010; Cui et al., 

2012; Kaneko et al., 2012). 

 

Figure 8  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. How UV may interact with the vicious cycle theory of ageing. UV from the sun 
(shown by the red arrows) is able to interact with and cause damage to mitochondria (shown in 
pink), either by causing direct mtDNA damage, or via an increase in ROS production. MtDNA 
damage may then cause an increase in mitochondrial dysfunction, and possibly a further 
increase of ROS, in a continuing vicious cycle resulting in accelerated ageing (Bandy and 
Davison, 1990). 
 
 
 
 

The ozone layer provides some protection from solar radiation by absorption of 

damaging solar rays, such as the very harmful UVC (100 – 280 nm) (Paz et al., 

2008). The ozone is also capable of screening out the majority of UVB (280 – 

315 nm); however, some UVB is still able to reach the earth’s surface and 

cause damage to the skin (Paz et al., 2008). UVB is only able to penetrate the 
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epidermal layer of the skin (Figure 9) (Birch-Machin and Swalwell, 2010), so is 

unable to cause damage to the deeper layers. The majority of UVA (315 – 400 

nm) is not absorbed by the ozone layer, and is capable of penetration into the 

epidermis and the dermis of the skin (Figure 9) (Paz et al., 2008; Birch-Machin 

and Swalwell, 2010); however, due to its longer wavelengths, it is less 

detrimental than UVB (Birch-Machin and Swalwell, 2010). Ozone depletion has 

accelerated over the last century due to man-made substances such as 

solvents, which contain chlorofluorocarbons and are capable of destructing the 

ozone layer by chemical reactions with ozone molecules (Dameris, 2010). 

Although the use of these man-made ozone-depleting substances was banned 

by the Montreal Protocol in 1987 (Dameris, 2010; Newman and McKenzie, 

2011; WMO-UNEP, 2011), substances released in the last century still continue 

to cause damage to the ozone due to their long atmospheric half-life (Solomon, 

2004). 

 

Figure 9  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. UV penetration of human skin. A section of human skin is shown, with the UV 
spectrum of light given above. The green arrows show the amount of penetration into the skin. 
The majority of UVB light is blocked by the ozone layer before it can reach the skin, and only 
penetrates the epidermis. UVA is not blocked by the ozone, and can penetrate through the 
epidermis into the dermis; however, UVA is less detrimental than UVB. UVC is completely 
blocked by the ozone. Image from (Birch-Machin and Swalwell, 2010).    
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1.5.3 Cellular defence mechanisms to counteract UV-induced damage 

As the skin provides a barrier for the body from the environment, it is vital that 

mechanisms have evolved for its protection, especially against the main 

extrinsic cause of damage, the sun. Melanin is the colouration found within the 

skin of humans, as well as a vast array of other animals (Costin and Hearing, 

2007), and is a major defensive tool against UV. Melanin is produced by 

melanocyte cells at the base of the epidermis, where it is transferred to the 

keratinocyte cells, for UV protection at the outer layer of the skin (Costin and 

Hearing, 2007). Melanocyte count is similar regardless of skin colour when 

looking at the same body region, but melanocytes from darker-skinned 

individuals are able to generate larger amounts of melanin with a different 

pattern of distribution (Haake et al., 2001), meaning that lighter-skinned 

individuals are at a higher risk of skin cancer (Yamaguchi et al., 2006). There 

are two types of melanin pigment found in human skin; pheomelanin which is 

associated with lighter skin and is red/yellow in colour (Maddodi et al., 2012), 

and eumelanin which is associated with darker skin and is black/brown in colour 

(Maddodi et al., 2012).  

 

The melanocortin-1 receptor (MC1R) is a G-protein-coupled receptor 

responsible for skin pigmentation (Rees, 2004). It binds to the α-melanocyte 

stimulating hormone (α-MSH) to regulate the ratio of eumelanin to pheomelanin 

in the skin (Kennedy et al., 2001). Polymorphisms in this receptor are 

associated with an increased risk of melanoma (Brudnik et al., 2009), and 

particular variants that cause an increase in pheomelanin are more commonly 

associated with families with red hair, pale skin, and an increased sensitivity to 

UV (Rees, 2004). Variants of this gene are also found to affect the fur colour of 

wildlife such as foxes (Vage et al., 1997), and some MC1R amino acid 

substitutions are associated with light-coloured animal coats such as the R67C 

substitution in beach-coloured mice, and some substitutions are associated with 

dark coats such as the Q233H substitution in melanic mice (Nachman et al., 

2003; Ayoub et al., 2009). MC1R variants in nature may have arisen through 

positive selection if they produce beneficial phenotypes (Ayoub et al., 2009). In 

humans, it is thought that as our early ancestors migrated out of Africa to cooler 

areas, they lost their darker skin colour to allow for more vitamin D to be 

absorbed from the sun in those areas with a lower UV index (Beleza et al., 
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2013), due to genetic polymorphisms in different pigmentation genes. In 

animals, skin colouration caused by melanin is more likely to be due to factors 

such as concealment from predators and breeding competition, rather than UV 

protection (Ayoub et al., 2009). However, the ability to tan has been observed in 

animals such as hammerhead sharks (Lowe and Goodman-Lowe, 1996) and 

seabream fish (Adachi et al., 2005) under high UV conditions, which could imply 

that UV has played some role in the colouration of animal skin and that melanin 

allows for UV protection in these animals. 

 

Cellular stress response mechanisms may also be activated to counteract UV. 

For example, antioxidants are able to remove UV-induced ROS. Additionally, 

the family of heat shock proteins known as Hsp70 are highly conserved proteins 

whose expression is induced in response to cellular stressors such as heat 

shock and infrared radiation (De la Coba et al., 2009), as well as being induced 

in the skin of humans and laboratory animals in response to UV (Muramatsu et 

al., 1992; Simon et al., 1995; Matsuda et al., 2010). These proteins are thought 

to be involved in cellular protection, by binding to damaged proteins to decrease 

the level of protein unfolding and potential aggregation (Hirsch et al., 2006; 

Lennikov et al., 2013; Morris et al., 2013), and to prevent the unnecessary 

removal of repairable proteins. 

 

Once UV damage has occurred, there are several defensive mechanisms which 

are capable of removing the damage, to prevent the likelihood of skin cancer. 

DNA repair mechanisms to resolve UV-induced genetic damage include 

excision repair mechanisms (base excision repair and nucleotide excision 

repair) to remove damaged DNA bases, as well as end joining (homologous 

and non-homologous) to repair double-strand breaks. Base excision repair is 

activated when a single base is damaged by UV or other toxic agents. During 

this process, the damaged strand is ligated, the base is cleaved and replaced 

using DNA polymerase, and the strand is re-sealed (Sinha and Hader, 2002). 

Nucleotide excision repair (which is absent in mitochondria) is activated to 

remove larger lesions such as pyrimidine and purine dimers. During this 

process, the DNA dimer is excised and the gap is filled by polymerase, after 

which the DNA strand is re-sealed (Sinha and Hader, 2002). If multiple single-

strand breaks occur in close proximity on opposite strands, this can result in 
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double-strand breaks. Double-strands are repaired by either homologous or 

non-homologous end joining. Homologous end joining involves the use of an 

undamaged chromosome as a template for the synthesis of lost bases, followed 

by strand ligation (Shuman and Glickman, 2007). Non-homologous end joining 

involves the processing and sealing of the broken strands by ligase (Shuman 

and Glickman, 2007). The p53 tumour suppressor gene can respond to UV-

induced DNA damage, causing the activation of downstream genes, and a cell 

cycle arrest may occur if it is possible to repair the DNA (Amundson et al., 2002; 

Yamaguchi et al., 2006). If the DNA damage is too vast, apoptosis 

(programmed cell death) can be initiated to prevent potentially carcinogenic 

mutations from being replicated (Yamaguchi et al., 2006; Schafer et al., 2010). 
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1.6 Hypotheses 

Mitochondria are thought to play a key role in the ageing process; however, the 

exact nature of this role is undetermined. Therefore, further work is required to 

provide insights into the changes in the mitochondria with age. As ageing is a 

very broad topic, multiple aspects of the mitochondria are expected to be 

involved in the ageing process and are required to be examined. 

 

The least studied mitochondrial ETC unit, complex II, has recently been 

implicated in the ageing process; therefore, this complex was selected to be 

examined in multiple areas of the study. The measurement of complex II activity 

in human skin from differently aged individuals has not been performed 

previously. It was hypothesised that there may be age-related differences in 

complex II activity in human skin, as well as in complex II subunit protein and 

expression levels. If this complex is found to be associated with age, this would 

provide insights into the role of complex II in human ageing. 

 

Senescent cells are thought to play a key role in the ageing process, whereby 

an accumulation reduces tissue function in older individuals. It is hypothesised 

that senescent cells from older individuals behave differently to senescent cells 

from younger individuals, which has not been assessed previously. Therefore, 

differences in mitochondrial complex II activity between senescent cells from 

the skin of younger and older individuals were examined, to provide information 

on the causes of mitochondrial differences with age. 

 

It was additionally hypothesised that differences in mitochondrial complex II 

activity exist between different cell types, which could have implications in terms 

of ageing rates of specific cell types. Complex II activity was therefore tested in 

a variety of human cell types derived from the skin, the lungs, and the liver. 

 

MtDNA deletions and mutations have been shown to increase with both age 

and UV exposure in human and animal skin. As many of the same phenotypes 

are present for both photo-aged and chronologically-aged skin, differently UV-

exposed skin may be used as a model for differently aged skin. In this context, it 

was hypothesised that skin under lower levels of UV (representing lower natural 

age) will have lower mtDNA damage, and that this damage will be decreased by 
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more effective cellular defensive mechanisms. MtDNA damage was therefore 

measured in an animal model exposed to varying levels of natural UV, as a 

model for different ages, to determine whether damage is increased with age in 

mtDNA, and to examine which aspects of cellular defence result in the lowest 

levels of mtDNA damage which could have possible implications for the 

treatment of human ageing. Whale skin was chosen for this purpose, as these 

animals face excessive natural UV exposure, they are long-lived so may 

accumulate UV damage over their lifetimes, and they lack UV protection from 

fur or feathers. Additionally, due to the high-levels of UV which whales are 

exposed to throughout their long lifetimes, it is likely that they will have strong 

defensive mechanisms to counteract this damage. Three whale species were 

chosen to be examined, as these species were likely to have undergone 

different levels of UV exposure, due to differences in pigmentation, apoptosis, 

micro-vesicles, migration patterns, dive times, and the level of Hsp70 

expression. 
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The general materials and methods described within this chapter were used 

throughout the project. More specific materials and methods sections are given 

at the beginning of each chapter, if a particular method was used only in that 

chapter. Green lines on graphs in results sections represent a significant 

correlation and show the line of best fit, and were added to graphs using the 

linear regression analysis feature of GraphPad Prism 6 (GraphPad Software 

Inc., USA).  

 

2.1 Acquiring Primary Tissue 

2.1.1 Primary cell culture from human skin samples 

Primary skin cells (fibroblasts and keratinocytes) were cultured from foreskin 

samples obtained from donors from the Urology department, Royal Victoria 

Infirmary (Newcastle upon Tyne, UK). Whole foreskin samples were transferred 

immediately to DMEM following excision, then transferred to 60.1 cm2 Petri 

dishes (Techno Plastic Products, Switzerland) containing 5 ml phosphate 

buffered saline (PBS) (Sigma-Aldrich, UK) supplemented with 5 U/ml penicillin 

and 5 µg/ml streptomycin (PS) (Invitrogen, UK), to wash the skin samples. 

Sterilised tweezers and scalpel were used to remove excess fat from the 

sample. The sample was then placed into a Universal tube (Greiner Bio One, 

UK) containing PBS plus 20 mg dispase (Roche, UK), and left for 16 hours at 

4°C, during which the dispase was able to separate the epidermis from the 

dermis. Following incubation, the sample was placed into a Petri dish and the 

epidermis peeled from the dermis using sterilised tweezers. Keratinocytes were 

cultured from the epidermis by placing the whole epidermis into a Universal 

tube containing 5 ml trypsin-ethylenediaminetetraacetic acid (TE) (Lonza, UK), 

followed by incubation at 37°C for 5 minutes with a vigorous shake midway 

through the incubation to assist in the removal of cells from the tissue. The 

activity of TE was neutralised by the addition of an equal volume of foetal calf 

serum (FCS) (Invitrogen, UK), and the sample was centrifuged at 1200 rotations 

per minute (rpm) for 5 minutes. The cell pellet containing the keratinocyte cells 

was resuspended in 15 ml Epilife Medium (Life Technologies, UK) containing 

10% FCS and PS (complete Epilife), after which the cell sample was transferred 

to a 75 cm2 Tissue Culture Flask (Corning Inc., USA), and maintained at 37°C 

in a humidified atmosphere with 5% carbon dioxide (CO2) until use. 

Keratinocytes were cultured from the epidermis by Professor Nick Reynolds’ 
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research group (Newcastle University). Fibroblasts were cultured from the 

dermis by scoring a Petri dish with a scalpel to allow adhesion of dermal 

sections to the dish, and the whole dermis was cut into sections of 2-5 mm2 and 

approximately 10 dermal sections were placed onto the scored regions of the 

dish. Sections were covered with FCS, and incubated at 37°C for 16 hours. 

Following incubation, 10 ml Dulbecco's Modified Eagle Medium with 4.5 g/L 

glucose and L-glutamine (DMEM) (Lonza, UK) containing 10% FCS and PS 

(complete DMEM) was added to the Petri dish, and the cells were grown for 

approximately 3 weeks with the media replaced every 5 days. As keratinocyte 

cells were able to be cultured in a much shorter time frame, these were either 

used before the fibroblast cells or stored at -80°C until use. Further information 

regarding the age, sex, race, and body site of each donor skin sample is given 

in the Appendix (Table 13 and Table 14). 

 

2.2 Cell Culture 

2.2.1 Primary fibroblast, HDFn, HaCaT, HepG2, a549 Parental, MRC5, and 

MRC5/hTERT cells 

Primary fibroblast cells, neonatal human dermal fibroblast cells (HDFn) 

(Invitrogen, UK), an immortalised human keratinocyte cell line (HaCaT) 

(Boukamp et al., 1988), a hepatocyte carcinoma cell line (HepG2), a human 

lung adenocarcinoma epithelial cell line (a549 Parental), a human foetal lung 

fibroblast cell line (MRC5), and a MRC5 cell line overexpressing a subunit of 

telomerase (MRC5/hTERT) were cultured in complete DMEM and maintained at 

37°C in a humidified atmosphere with 5% CO2. Cells were passaged 2-3 times 

a week by washing twice in PBS, then incubating with TE for 5 minutes at 37°C. 

Following incubation, an equal volume of complete DMEM was added to 

neutralise the TE, and cells were split into two new flasks with 15 ml complete 

DMEM. MRC5 and MRC5/hTERT cells were received from Dr Gabriele Saretzki 

(Newcastle University). Primary fibroblasts were used up to passage 6, HDFn 

cells up to passage 30, HaCaT cells up to passage 60, HepG2 cells up to 

passage 30, a549 Parental cells up to passage 30, MRC5 cells up to passage 

35, and MRC5/hTERT cells up to passage 140 (Lawless et al., 2012). 
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2.2.2 Primary keratinocyte cells 

Primary keratinocyte cells were cultured at 37°C in a humidified atmosphere 

containing 5% CO2, in complete Epilife supplemented with human keratinocyte 

growth supplement (HKGS) (Invitrogen, UK). Cells were passaged 1-2 times a 

week, and were not used past passage 2-3, after which cell differentiation may 

begin to occur. 

 

2.2.3 a549 Rho-zero cells 

The a549 Rho-zero cells were the same cell type as the a549 Parental cells, but 

were cultured in a low concentration of ethidium bromide to inhibit the synthesis 

of mtDNA (Hashiguchi and Zhang-Akiyama, 2009). This prevented the correct 

assembly of mitochondrial complexes encoded in part by mtDNA (complexes I, 

III, IV and V), resulting in a dysfunctional respiratory chain. Rho-zero cells were 

cultured in complete DMEM supplemented with 50 µM uridine (Sigma-Aldrich, 

UK), as these cells are unable to synthesis this amino acid (Hashiguchi and 

Zhang-Akiyama, 2009). Cells were obtained from Professor Ian Holt (University 

of Cambridge). 

 

2.2.4 Cell storage 

Cells which were not immediately required were frozen at -80°C, by washing 

cell culture flasks twice with PBS, then removing the cells from the flask using 

TE at 37°C for 5 minutes, followed by the addition of media to neutralise the TE. 

Cells were centrifuged at 1200 rpm for 5 minutes, and the pellet resuspended in 

1 ml FCS containing 10% dimethyl sulfoxide (DMSO) (Fisher Scientific, UK), 

and transferred to a 1.6 ml CryoPure Tube (Sarstedt, Germany), and stored at -

80°C. To use frozen cell samples, samples were rapidly thawed and added to 

20 ml appropriate media. Cells were kept at 37°C in a humidified atmosphere 

with 5% CO2, and the media replaced after 24 hours. 

 

2.3 Photometry 

Total cell count of cells to be examined photometrically was determined using a 

haemocytometer, with approximately 9 x 106 cells used for each sample in total, 

for the citrate synthase activity, the complex II activity, and the complex IV 

activity assays. To prepare cells for photometry, cell culture flasks were washed 

twice with PBS, and TE was added to detach cells from the flask, during a 
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5 minute incubation at 37°C. An equal amount of the appropriate media for each 

cell type was added to neutralise the TE, and cells were centrifuged at 

1200 rpm for 5 minutes. The supernatant was discarded and cells were 

resuspended in 2 ml PBS and centrifuged at 1200 rpm for 5 minutes to remove 

any remaining media. The supernatant was again discarded and cells were 

resuspended in 200 µl complex II buffer (25 mM potassium phosphate and 

5 mM magnesium chloride (Sigma-Aldrich, UK), in deionised water (dH20), 

pH 7.2). Samples were snap frozen 3 times in liquid nitrogen to break open the 

cell membranes, and stored at -80°C until use. HaCaT, HepG2, a549 Parental 

cells, and a549 Rho-zero cells were maintained by Dr Alasdair Anderson 

(Newcastle University) until preparation for photometry was performed. To 

perform the photometric assays (Birch-Machin and Turnbull, 2001; Kirby et al., 

2007), a Cary 300 Bio UV-Visible Spectrophotometer (Varian Inc., USA) was 

used, with the output viewed using Cary WinUV Kinetics Application (Varian, 

Inc.). 

  

2.3.1 Protein assay 

The concentration of samples examined via photometry was approximately 7 

mg/ml, as determined by a protein assay. During this process, standard protein 

concentrations were prepared at 2-fold dilutions from a 2 mg/ml bovine serum 

albumin (BSA) standard solution (Thermo Scientific, UK), to produce 

concentrations of 1.5 mg/ml, 0.75 mg/ml, 0.38 mg/ml, 0.19 mg/ml, 0.09 mg/ml, 

and 0.05 mg/ml. Cell samples were diluted either 5-fold or 2-fold. A Bio-Rad 

Detergent-Compatible Protein Assay (Bio-Rad, UK) was used. The alkaline 

copper tartrate solution (Reagent A and S at a ratio of 50:1) which reacts with 

the protein in the colorimetric assay, was added to each sample or standard at 

a ratio of 5:1, and the solution was added in triplicate to wells of a 96-Well Plate 

(Techno Plastic Products, Switzerland) with 30 µl per well. To each well, 200 µl 

Folin Reagent (Reagent B) was added to start the reaction and the plate was 

incubated for 15 minutes at 20°C, after which the absorbance was measured at 

750 nm using a SpectraMax 250 Microplate Reader (Molecular Devices, UK) 

with the results viewed using SoftMax Pro V3.1.1 (Molecular Devices, UK).  
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2.3.2 Citrate synthase activity assay 

Citrate synthase activity is measured to determine mitochondrial content per 

sample. Citrate synthase converts oxaloacetate and acetyl coenzyme A to 

citrate and coenzyme A respectively during the citric acid cycle (Wiegand and 

Remington, 1986). Photometry can be used to measure the amount of 

coenzyme A, and therefore the rate of the reaction, via the addition of 5,5'-

dithiobis-2-nitrobenzoate (DTNB), which reacts with coenzyme A to form the 5-

thio-2-nitrobenzoate ion (Itoh and Srere, 1970). The rate of citrate synthase 

activity can be determined by measuring the level of 5-thio-2-nitrobenzoate at 

412 nm, which should increase over time. To perform the citrate synthase 

assay, the following reagents were added to a 1 cm2 Plastic Cuvette (Fisher 

Scientific, UK): 100 µM DTNB (Sigma-Aldrich, UK), 1% w/v of the detergent 

Triton X (Sigma-Aldrich, UK) to break open cell membranes, 50 µM acetyl 

coenzyme A (Sigma-Aldrich, UK), and at least two different volumes of sample 

(with 20 µl used initially and either more or less used depending on the 

outcome) (Kwong and Sohal, 2000). This was made up to 1 ml with citrate 

synthase stock buffer (0.1 mM Tris-hydrochloride (Sigma-Aldrich, UK), in dH20, 

pH 8.0, 30°C). The cuvette was gently mixed and added to the 

spectrophotometer, after which the reaction was set to zero, and the run was 

started and left for 30 seconds to obtain a baseline measurement. Following this 

time period, 250 µM of the substrate oxaloacetate was added to begin the 

enzymatic reaction, and citrate synthase activity was measured at 412 nm for 2 

minutes. 

 

In order to calculate the citrate synthase activity in nanomoles of 5-thio-2-

nitrobenzoate produced per minute (nmol/min), the extinction coefficient of this 

ion had to be taken into account. This is the strength at which light is absorbed 

by the particular ion at the particular wavelength used, with the extension 

coefficient of 5-thio-2-nitrobenzoate being 13.6 mM-1/cm-1 (Eyer et al., 2003; 

Kirby et al., 2007). The sample volume and total volume also had to be taken 

into account. If for example a sample gave an absorbance per minute (abs/min) 

of 0.087, when 20 µl of sample was added to the reaction and the total reaction 

volume was 1000 µl, then the citrate synthase activity would be calculated by 

dividing the abs/min by the extinction coefficient and multiplying by the dilution 

factor (Kirby et al., 2007), as follows: 
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Citrate synthase activity = (abs/min ÷ 13.6) x (dilution factor) 

 = (0.087 ÷ 13.6) x (1000 ÷ 20) 

 = 0.32 nmol/min 

 

2.3.3 Complex II activity assay 

During the complex II activity assay, the other mitochondrial ETC complexes I, 

III, and IV were inhibited using rotenone (Sigma-Aldrich, UK), antimycin A 

(Sigma-Aldrich, UK), and potassium cyanide (Sigma-Aldrich, UK) respectively. 

The substrate sodium succinate and the e- acceptor ubiquinone were added in 

excess, and the artificial e- acceptor dichlorophenolindophenol (DCPIP) (Sigma-

Aldrich, UK) was added in its oxidised form to accept e- as ubiquinol (Sigma-

Aldrich, UK) was oxidised to ubiquinone (Kirby et al., 2007; Quinlan et al., 

2012). The decrease in oxidised DCPIP was measured at 600 nm to determine 

complex II activity. To perform the complex II activity assay, 20 mM sodium 

succinate (Sigma-Aldrich, UK), 1 ml complex II buffer (containing 3 mM 

potassium cyanide), and at least two different volumes of sample were added to 

a 1.5 ml Eppendorf tube, and incubated at 30°C for 10 minutes to activate 

complex II. Following incubation, the solution was added to a 1 cm2 plastic 

cuvette to which 50 µM DCPIP, 3.6 µM antimycin A, and 5 µM rotenone were 

added. The cuvette was gently mixed and added to the spectrophotometer, 

after which the reaction was set to zero, and the run was performed for 

30 seconds to obtain a baseline measurement. Following this time period, 

65 µM of ubiquinone was added to start the reaction, and the absorbance of 

light at 600 nm was measured for 4-5 minutes.  

 

In order to calculate complex II activity, in nanomoles of DCPIP reduced per 

minute (nmol/min), the extinction coefficient of DCPIP (19.1 mM-1/cm-1) was 

taken into account (Kirby et al., 2007; Quinlan et al., 2012), as well as the 

volume of sample added to the reaction and the total volume used. For 

example, if a sample gave an abs/min of 0.043, with 20 µl added to a 1000 µl 

reaction: 

 

Complex II activity = (abs/min ÷ 19.1) x (dilution factor) 

 = (0.043 ÷ 19.1) x (1000 ÷ 20) 

 = 0.11 nmol/min 
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Once complex II activity had been determined, it was then normalised to citrate 

synthase activity to allow complex II activity per mitochondrial unit to be 

determined (Birch-Machin and Turnbull, 2001). To do this, complex II activity 

per unit of citrate synthase activity (CII/CS) was calculated as follows (Kirby et 

al., 2007): 

CII/CS = Complex II activity ÷ citrate synthase activity 

 = 0.11 ÷ 0.32 

 = 0.34 nmol DCPIP reduced/min/citrate synthase unit 

 

2.3.4 Complex IV activity assay 

During the complex IV activity assay, n-dodecyl-β-D-maltoside (DDM) (Sigma-

Aldrich, UK) was used to solubilise the mitochondrial membrane (le Maire et al., 

2000), and the rate of complex IV was determined via the addition of the 

substrate reduced cytochrome c (Sigma-Aldrich, UK), which was oxidised by 

complex IV. The absorbance of reduced cytochrome c was measured at 

550 nm to determine complex IV activity, which should decrease over time. To 

perform the complex IV activity assay, the following reagents were added to a 

1 cm2 plastic cuvette: 345 µM DDM, 15 µM reduced cytochrome c, and complex 

IV buffer to a final volume of 1 ml (20 mM potassium phosphate (Sigma-Aldrich, 

UK), in dH20, pH 7.4, 30°C). The cuvette was gently mixed and added to the 

spectrophotometer with the reaction set to zero, and the run was then started 

for 30 seconds to obtain a baseline measurement. The mitochondrial sample 

was then added to the cuvette following the 30 seconds (for at least two 

different runs with two different volumes of sample), and the run was continued 

for 3.5 minutes. Following this time period, several grains of potassium 

ferricyanide (Sigma-Aldrich, UK) were added to fully oxidise the remaining 

cytochrome c, to allow the endpoint of the reaction to be obtained and the 

amount of cytochrome c which was available to be found. 

 

As the oxidisation of cytochrome c occurs at an exponential rate, it was 

inappropriate to measure just the initial reaction period, which would not be a 

linear rate. The rate of cytochrome c oxidisation was therefore expressed as a 

first-order rate constant (Kirby et al., 2007). To determine the activity of complex 

IV as a first-order rate constant (k/sec), the rate of the exponential phase of the 

reaction was determined. To do this, 6 time points (T0 to T5) were initially 

chosen during the exponential phase of the reaction, and the abs/min of each of 
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these time points (A0 to A5) were obtained (Figure 10). The overall abs/min 

change (X) from each time point to the end point was then determined, by 

subtracting the end point abs/min from each time point abs/min. For example: 

 

X0 = A0 – end point 

 = 0.3372 

X1 = A1 – end point 

 = 0.3281 

X2  = A2 – end point 

 = 0.3182 

X3 = A3 – end point 

 = 0.3100 

X4 = A4 – end point 

 = 0.2059 

X5 = A5 – end point 

 = 0.1993 

 

Each individual X value (X1 to X5) was then normalised to the overall 

absorbance change (X0) (e.g. X0 ÷ X1) to obtain the values N0 to N5, and were 

converted to log scale due to the exponentially changing absorbance (logN1 to 

logN5) (Kirby et al., 2007). To calculate complex IV activity as a first order rate 

constant (k/sec), if the time period was for example 72 seconds with 40 µl 

sample and 1000 µl total volume, using the above X0 to X5 values, the following 

equation would be used: 

 

Complex IV activity = ((logN5 – logN1) ÷ time period) x 2.303 x (dilution factor) 

 = (0.216 ÷ 72 seconds) x 2.303 x (1000 ÷ 40) 

 = 0.17 k/sec 

 

Once complex IV activity was determined, it was normalised to citrate synthase 

activity (CIV/CS) to determine complex IV activity per unit of mitochondria: 

 

CIV/CS = Complex IV activity ÷ citrate synthase activity 

 = 0.17 ÷ 0.32 

 = 0.53 k/sec/citrate synthase unit 
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Figure 10  

 
 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 10. Mitochondrial complex IV activity assay. The graph obtained during the complex 
IV activity assay using photometry. The reaction was started by the addition of the cell sample, 
and the exponential decrease in absorbance of reduced cytochrome c at 550 nm was 
measured. Time points T0 to T5 were chosen to express complex IV activity as a first-order rate 
constant. The end point was determined following the addition of potassium ferricyanide to fully 
oxidise the remaining cytochrome c.  
 
 
 
 

2.4 MtDNA Analysis 

2.4.1 DNA extraction 

Total DNA (nuclear and mitochondrial) was extracted from cells using a 

QIAamp DNA Mini Kit (Qiagen, UK). For cells grown in culture flasks or dishes, 

cells were washed twice with PBS and the cells removed from the flask using 

TE, which was neutralised after 5 minutes incubation at 37°C using appropriate 

media. Cells were placed into a 1.5 ml Eppendorf tube and centrifuged at 8000 

rpm for 5 minutes, after which the supernatant was discarded. Cell pellets were 

resuspended in 200 µl PBS and 20 µl Proteinase K to degrade any proteins 

present, and 200 µl lysis buffer (Buffer AL) was added to samples. Samples 

were vortexed for 15 seconds and incubated at 56°C for 10 minutes, to lyse 

samples. Following the incubation, 200 µl ethanol was added to samples to 

assist in DNA purification, and the sample was vortexed for 15 seconds. The 
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solution was added to a QIAamp Spin Column and centrifuged at 8000 rpm for 

1 minute to allow DNA to adsorb to the spin column. The flow-through was 

discarded and 500 µl wash buffer (Buffer AW1) was added to wash the column, 

and the column was centrifuged at 8000 rpm for 1 minute. The flow-through was 

again discarded and 500 µl of another wash buffer (Buffer AW2) was added to 

wash the membrane further, and the column was centrifuged at 14,000 rpm for 

3 minutes. The flow-through was discarded and the column centrifuged for 

1 minute at 14,000 rpm to completely remove any remaining Buffer AW2. 50-

100 µl Buffer AE was added to the column, and samples were incubated at 

20°C for 5 minutes, and centrifuged for 1 minute at 8000 rpm to elute the DNA 

from the membrane into a 1.5 ml Eppendorf tube. This was repeated using the 

eluted flow-through to increase DNA yield. DNA concentrations were 

determined using an ND-1000 Nanodrop Spectrophotometer (Thermo Scientific, 

UK) at a wavelength of 260 nm, and DNA was stored at 4°C until use or at -

20°C for long term storage. 

 

2.4.2 Real-time quantitative polymerase chain reaction 

All real-time quantitative polymerase chain reaction (qPCR) assays for the 

analysis of either mtDNA damage or relative mtDNA amount were performed 

using a StepOnePlus Real-Time PCR System (Applied Biosystems, UK) with 

the results viewed using StepOne Software V2.1 (Applied Biosystems, UK), or 

using a Chromo4 Real-Time PCR Detection System (Biorad, UK) with the 

results viewed using MJ Opticon Monitor 3 Analysis Software (Biorad, UK). The 

StepOnePlus Real-Time PCR System was used unless stated otherwise in the 

results.  

 

To perform the qPCR reactions using the StepOnePlus Real-Time PCR 

System, the following components were assembled on ice to a final volume of 

20 µl to each well of a MicroAmp Fast Optical 96-Well Reaction Plate (Applied 

Biosystems, UK): dH20, 1x Phusion HF Buffer (Thermo Scientific, UK), 

0.1x Phusion DNA polymerase (Thermo Scientific, UK), 200 µM dNTP mix 

(Roche, UK), 0.5 µM each of forward and reverse primers (Eurofins MWG 

Operons, Germany), 0.1x SYBR Green dye (Sigma-Aldrich, UK), and 100 ng 

template DNA. For the UV-irradiated cells, a concentration of 30 ng was used 

based on the limited availability of DNA. The following conditions were used for 
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the qPCR run: 98°C for 30 seconds; 30 cycles of 98°C for 8 seconds, 60°C for 

20 seconds, and 72°C for 135 seconds; and a final stage of 72°C for 8 minutes. 

A melt curve was added immediately after the reaction with the conditions of: 

95°C for 15 seconds; 60°C for 1 minute, followed by a plate read at every 0.3°C 

temperature increase; ending at 95°C for 15 seconds. 

 

To perform the qPCR reactions using the Chromo4 Real-Time PCR Detection 

System, the same components as for the StepOnePlus machine were used, 

and added to a final volume of 20 µl to each well of 0.2 ml 8-Tube Strips 

(Biorad, UK) with Optical Flat 8-Cap Strips (Biorad, UK). The qPCR conditions 

used were: 98°C for 30 seconds; 30 cycles of 98°C for 8 seconds, 57°C for 

20 seconds (60°C for the 8.5 kb whale sections), and 72°C for 135 seconds (or 

230 seconds for the 8.5 kb whale sections); and a final stage of 72°C for 

8 minutes. A melt curve was added immediately after the reaction using the 

same conditions as above. 

 

KAPA HiFi DNA polymerase (KAPA Biosystems, UK) was tested for qPCR 

efficiency with the whale mtDNA samples using the Chromo4 machine. The 

components for the reaction were made up to a final volume of 25 µl and added 

to each well of 0.2 ml 8-Tube Strips with Optical Flat 8-Cap Strips: dH20, 

1x KAPAHiFi Buffer (KAPA Biosystems, UK), 0.5 U KAPA DNA polymerase 

(1 U/μl) (KAPA Biosystems, UK), 200 µM dNTP mix, 0.5 µM each of the forward 

and reverse primers, 0.08x SYBR Green dye, and 100 ng template DNA. The 

qPCR conditions used were: 95°C for 2 minutes; 30 cycles of 98°C for 20 

seconds, 57°C for 15 seconds, and 68°C for 135 seconds; and a final stage of 

68°C for 5 minutes. A melt curve was added after the reaction with the same 

conditions as above. 

  

Amplification of the short 83 bp (human) or 51 bp (whale) mtDNA sections was 

performed using a JumpStart SYBR Green Kit (Sigma-Aldrich, UK), with the 

following components assembled to a final volume of 25 µl, and added to a 

MicroAmp Fast Optical 96-Well Reaction Plate: dH20; 1x JumpStart SYBR 

Green (Sigma-Aldrich, UK); 0.5 µM each of forward and reverse primers; and 

50 ng template DNA. The cycling conditions used were: 94°C for 2 minutes; 

35 cycles of 94°C for 15 seconds, 60°C for 45 seconds, and 72°C for 
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45 seconds; and a final stage of 72°C for 2 minutes. A melt curve followed the 

reaction with the same conditions as above. 

 

2.4.3 Agarose gel electrophoresis 

To ensure mtDNA sections of the correct size were generated following DNA 

amplification by qPCR, DNA was separated by size using gel electrophoresis. 

During this technique, an electrical charge is applied to a gel, which causes 

DNA movement from the negative to the positive electrode (due to the negative 

charge of DNA), with the agarose gel providing a matrix through which the 

differently-sized DNA fragments pass at different rates (Lee et al., 2012). Larger 

fragments pass through this agarose matrix at a slower rate than shorter 

fragments. The agarose gel was produced using agarose at 1.5% w/v, 

dissolved in 50 ml 1x TAE buffer (40 mM Tris acetate (Fisher Scientific, UK), 

1 mM ethylenediaminetetraacetic acid (EDTA) (Fisher Scientific, UK), pH 8.3) 

with 1 µg/ml ethidium bromide. Gels were set in a template and added to an 

electrophoresis tank containing 1x TAE buffer. DNA Loading Buffer (Bioline, 

UK) was added to samples at a ratio of 1:6 and 10 µl of the sample/loading 

buffer was added to each gel well, with 5 µl Hyperladder 1 (Bioline, UK) used as 

a reference for DNA lengths. Reaction conditions were 120 volts (V) and 

56 milliamps (mA) for 40 minutes, and results were viewed using UV light from 

a FluorChem imaging system (Alpha Innotech, Germany) with AlphaEase 

FluorChem software (Alpha Innotech, Germany). 
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Chapter 3. Mitochondrial Complex II Activity 

in the Skin of Young and Old Human Donors  
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3.1 Introduction 

3.1.1 Complex II and the ageing process 

Previous studies have implicated a possible involvement of the mitochondrial 

ETC complexes in the ageing process, of which complex II will be focused on in 

the present study. Past work has demonstrated a potential role of complex II in 

the ageing process, by demonstrating that mutations in the SDHC subunit can 

cause an accelerated accumulation of ageing markers and a decreased lifespan 

compared to the wild-type in C. elegans (Hosokawa et al., 1994; Adachi et al., 

1998; Ishii et al., 1998; Pfeiffer et al., 2011). This decrease in lifespan was 

prevented when respiration through complex II was blocked (Pfeiffer et al., 

2011). A decreased lifespan caused by complex II defects in SDHC has also 

been seen in Drosophila (Tsuda et al., 2007). Mutations in another subunit, 

SDHB, were also found to generate a similar phenotype in terms of accelerated 

ageing in nematodes (Huang and Lemire, 2009; Wojtovich et al., 2013), 

suggesting that complex II is able to affect the ageing process. The reduction in 

lifespan observed was thought to be due to an increase in superoxide 

production (Ishii et al., 2004), causing free radical damage to cellular 

components, and accelerated ageing. Another study found that drosophila with 

mutated SDHB subunits had increased oxidative stress levels, accelerated 

ageing, and decreased lifespans, which were specific to complex II defects as 

none of the other complexes were affected (Walker et al., 2006).  

 

The exact role of complex II in terms of mammalian ageing remains unknown 

and has only recently begun to be elucidated. Complex II has been suggested 

to play a role in the ageing process of mammals (Velarde et al., 2012), as it was 

found that complex II was lower in the skin of naturally aged older mice 

compared to younger mice, suggesting that complex II activity decreased with 

age in mouse skin. It was also found that when the mitochondrial antioxidant 

SOD was knocked-out in mice, they showed impaired complex II activity, which 

has also been shown previously in this mouse-type (Li et al., 1995), as well as 

accelerated ageing, with increased senescence and nDNA damage (Velarde et 

al., 2012). Increased ROS production was also observed in the mice, which was 

thought to be contributing to senescence in vivo and therefore to the ageing 

process (Velarde et al., 2012); however, it is unknown whether the activity of 

complex II was causative or consequential in terms of natural mouse ageing. 
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Other studies have demonstrated that the activity of complex II is decreased 

with age in various rat tissues such as heart, liver, muscles, kidneys, lungs, 

brain, and lymphocytes (Sandhu and Kaur, 2003; Kumaran et al., 2004; Cocco 

et al., 2005; Balietti et al., 2009; Braidy et al., 2011); however, a lack of 

decrease in certain mouse tissues has also been observed (Kwong and Sohal, 

2000). Additionally, studies have demonstrated that mutations in the complex II 

subunit SDHC in hamster and mouse cell lines can result in an increased 

production of steady-state superoxide and hydrogen peroxide (Ishii et al., 2005; 

Slane et al., 2006), which could potentially accelerate the ageing process. 

 

Complex II ROS production could potentially be contributing to the ageing 

process. The majority of studies on ROS production by normal mitochondria 

have focussed on complexes I and III (Cadenas et al., 1977; Turrens et al., 

1985; Hirst et al., 2008; Murphy, 2009; Bleier and Dröse, 2013; Wojtovich et al., 

2013). However, other work has suggested a possible prominent role for 

complex II in terms of normal ROS production (Guo and Lemire, 2003; Lemarie 

et al., 2011; Quinlan et al., 2012), which could contribute to the ageing process 

via free radical damage (Harman, 1956). Quinlan et al., (2012) found that 

complex II was capable of producing ROS levels comparable to those of 

complexes I and III in mitochondria isolated from rat skeletal muscle. Complex II 

ROS production has also been shown to prevent cell cycle progression (Byun et 

al., 2008), which could indicate that increased complex II ROS production 

contributes to the senescent phenotype of cells seen with age.  

 

Further understanding of this important mitochondrial complex is vital to 

improve our knowledge of the ageing process, for which mitochondrial complex 

II could play a causative role. Further studies into the role of complex II in 

ageing are required to understand the exact role, preferentially in human 

tissues.  

 

3.1.2 The role of mitochondrial complexes I, III, and IV in ageing 

In terms of the other mitochondrial complexes in ageing (complexes I, III, and 

IV), previous studies have shown that complex I activity (Lenaz et al., 1997; 

Tatarkova et al., 2011), complex III activity (Lesnefsky et al., 2001; Kumaran et 

al., 2004; Tatarkova et al., 2011), and complex IV activity (Trounce et al., 1989; 
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Boffoli et al., 1994; Hayashi et al., 1994; Rooyackers et al., 1996; Isobe et al., 

1998; Sandhu and Kaur, 2003; Braidy et al., 2011; Andreollo et al., 2012) can 

decrease in an age-dependant manner in both human and animal tissues. 

However, some studies have shown conflicting results, with complexes III and 

IV shown not to be altered with age in human lymphocyte cells (Drouet et al., 

1999). In mice, the activity of the different complexes with age has been shown 

to be tissue-dependant, as complex I was shown not to change with age in the 

brain, heart, liver, kidneys, or skeletal muscle; complex III was decreased with 

age in the brain but did not change in the heart, liver, or kidneys and was 

increased in the skeletal muscle; and complex IV was decreased in the heart 

and kidneys, but did not change in the brain, liver, or skeletal muscle (Kwong 

and Sohal, 2000). Therefore, it is inconclusive as to the exact role of the 

mitochondrial complexes in terms of the ageing process.  
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3.2 Hypotheses 

The main reason for this area of my project was to further understand the role of 

complex II, the least studied complex of the mitochondrial respiratory chain, in 

human ageing. This was performed using human skin cells from differently aged 

donors, to allow for differences in natural age to be determined in a non-sun-

exposed region of the body. The specific hypotheses of this chapter were 1) 

differences in complex II activity exist with age in human skin cells; 2) 

differences also exist with age in the specific subunits of complex II; and 3) 

these differences in complex II activity with age are specific to complex II, and 

are not observable in another complex of the respiratory chain.  
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3.3 Materials and Methods 

The cell culture and photometric techniques used in this chapter are given in the 

general Materials and Methods (Chapter 2). 

 

3.3.1 RNA extraction from cells 

In order to study the expression of specific complex II subunit transcripts, RNA 

(which gives information on the level of DNA expression) had to be isolated. 

RNA was extracted from cell cultures using an RNeasy Mini Kit (Qiagen, UK), 

with approximately 1.5 x 106 cells used per sample. Cell culture flasks were 

washed twice with PBS, and cells were removed from the flask by incubating 

with TE for 5 minutes at 37°C, followed by TE neutralisation using appropriate 

media. Cells were centrifuged at 8000 rpm for 5 minutes, and the cell pellets 

resuspended in 350 µl lysis buffer (Buffer RLT). The lysate was homogenised 

by vortexing for 1 minute, and an equal volume of 70% ethanol was added to 

the sample to help purify the RNA. The sample was transferred to an RNeasy 

spin column containing a silica-based membrane to which RNA could bind, and 

the column was centrifuged at 10,000 rpm for 15 seconds. The flow-through 

was discarded and 700 µl wash buffer (Buffer RW1) added to wash the spin 

column and remove unwanted biomolecules, during centrifugation at 

10,000 rpm for 15 seconds. The flow-through was again discarded and 500 µl of 

a different wash buffer (Buffer RPE) was added to further wash the membrane, 

during centrifugation at 10,000 rpm for 15 seconds. The second wash was 

repeated, and the column centrifuged for 2 minutes at 10,000 rpm, to allow any 

ethanol in the wash buffer to be removed. The column was re-centrifuged at 

13,200 rpm for 1 minute to dry the membrane completely. Spin columns were 

placed in a 1.5 ml Eppendorf tube, and 30 µl RNase-free water was applied to 

the centre of the silica membrane, followed by centrifugation at 10,000 rpm for 

1 minute to elute the RNA from the membrane for collection. The concentration 

of RNA was determined using an ND-1000 Nanodrop Spectrophotometer at a 

wavelength of 260 nm. 

 

3.3.2 Reverse transcription of RNA 

To measure the relative expression of a transcript, the extracted RNA was used 

as a template to produce complementary DNA (cDNA) for use in qPCR. 

Reverse transcription was performed using a High Capacity cDNA Reverse 
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Transcription Kit (Applied Biosystems, UK). During this process, the following 

components were added to a final volume of 20 µl per well, to MicroAmp Fast 

Reaction Tubes with MicroAmp Optical 8-Cap Strips: dH20, 1x RT Buffer 

(Applied Biosystems, UK), 200 µM dNTP mix, 1x RT Random Primers (Applied 

Biosystems, UK), 50 U MultiScribe Reverse Transcriptase (Applied Biosystems, 

UK), 1 U RNase Inhibitor (Applied Biosystems, UK), and 500 ng template RNA. 

A GeneAmp PCR System 9700 (Applied Biosystems, UK) was used to perform 

the reverse transcription reaction, with the following conditions: 25°C for 

10 minutes, 37°C for 120 minutes, and 85°C for 5 minutes.  

 

3.3.3 Real-time qPCR to determine gene expression 

QPCR was performed on the cDNA to determine the relative expression levels 

of the complex II subunits SDHA, SDHB, and SDHC. In order to study the 

complex II subunits, primers to amplify a 70 bp region of the SDHA gene (on 

chromosome 5), a 77 bp region of the SDHB gene (on chromosome 1), and an 

86 bp region of the SDHC gene (on chromosome 1) were used (Applied 

Biosystems, UK). To perform the qPCR reaction, the following components 

were assembled to a final volume of 25 µl, and added to a MicroAmp Fast 

Optical 96-Well Reaction Plate: dH20, 1x TaqMan Gene Expression Master Mix 

(Applied Biosystems, UK), 1x TaqMan Gene Expression Assay primer/probe set 

(Applied Biosystems, UK), and 20 ng template cDNA. QPCR reactions were 

performed on a StepOnePlus Real-Time PCR System with the results viewed 

using StepOne Software V2.1. The following conditions were used for the 

reaction: 50°C for 2 minutes; 95°C for 10 minutes; and 40 cycles of 95°C for 15 

seconds and 60°C for 1 minute.  

  

In order to normalise the amount of SDHA, SDHB, or SDHC transcript to the 

overall amount of nDNA present, a housekeeping gene transcript at equal levels 

in all cell types was used. This transcript used as an internal control for 

normalisation was β-actin (β-act), which has been shown to be expressed at a 

constant level in skin fibroblasts (Li et al., 2011). QPCR was performed 

simultaneously for all transcripts. Relative expression levels were normalised to 

β-act as determined by the 2-ΔΔCt method (Livak and Schmittgen, 2001). The 2-

ΔΔCt method calculates the relative transcript level by finding the difference 

between the β-act and the target transcript cycle threshold values (Ct) for each 
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sample (the ΔCt). This value is then normalised to a chosen control sample, 

and expressed to the power of 2, as each 1 Ct represents a 2-fold difference in 

damage: 

2-ΔΔCt = 2^-(ΔCt of sample – ΔCt of control) 

 

3.3.4 Protein amount 

To determine the amount of complex II subunit proteins present, Western 

blotting was used. Prior to this, the amount of overall protein per sample was 

determined to allow the same amount of protein to be added per Western blot. 

To determine protein concentrations, a protein assay was performed. During 

this technique, approximately 9 x 106 cells grown in flasks were washed twice 

with PBS, and removed from the flasks via a 5 minute incubation with TE at 

37°C. TE was then neutralised using complete DMEM, and the sample was 

transferred to a 1.5 ml Eppendorf tube and centrifuged at 1200 rpm for 5 

minutes. The supernatant was discarded and the pellet resuspended in 1.5 ml 

PBS to wash any remaining media from the sample, after which the sample was 

centrifuged again at 1200 rpm for 5 minutes. The supernatant was removed, 

and the pellet resuspended in 200 µl Radio-Immunoprecipitation Assay Buffer 

(RIPA Buffer) (Sigma-Aldrich, UK) containing 1 Protease Inhibitor Cocktail 

Tablet (Roche, UK) per 50ml solution, to lyse the cells, and samples were 

sonicated for 10 seconds. A protein assay was then performed on samples as 

described in section 2.3.1. 

 

3.3.5 Western blotting 

To determine the relative levels of the complex II subunit proteins (SDHA and 

SDHB) within a sample, Western blotting was performed. Samples were diluted 

to the appropriate concentrations in dH20 to 10 µl, based on the results of the 

protein assay, and an equal volume of loading buffer was added (loading buffer 

final concentration: 62.5 mM Tris-hydrochloride (Fisher Scientific, UK), 2% 

sodium dodecyl sulphate (SDS) (Sigma-Aldrich, UK), 10% glycerol (Fisher 

Scientific, UK), and 0.002% bromophenol blue (Sigma-Aldrich, UK), in dH20, 

pH 6.8, with 10% β-mercaptoethanol (Fisher Scientific, UK)). Samples were 

kept at 95°C for 5 minutes to break the disulphide protein bonds. Novex 4-20% 

Tris-Glycine Mini Gels 1.0 mm 10 Well (Life Technologies, UK) were placed into 
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an XCell SureLock Mini-Cell Electrophoresis System (Life Technologies, UK), 

and running buffer (25 mM Tris base (Fisher Scientific, UK), 190 mM glycine 

(Fisher Scientific, UK), and 0.1% SDS, in dH20, pH 8.3) was added to the tank 

to cover the gel. 10 µl BenchMark Pre-Stained Protein Ladder (Life 

Technologies, UK) or 20 µl sample was then added to each well. Gel 

electrophoresis was performed for 90 minutes at 75 V, 40 mA, and 5 Watts (W), 

using a PowerEase 500 Power Supply (Life Technologies, UK). 

 

Following electrophoresis, gels were transferred to a Trans-Blot Turbo Transfer 

Pack Mini Format 0.2 µM Nitrocellulose membrane (Biorad, UK), and a Trans-

Blot Turbo Transfer System (Biorad, UK) was used to perform the transfer. The 

settings used were 25 V and 1.3 amps for 7 minutes. Membranes were then 

placed into a 50 ml Centrifuge Tube (Sarstedt, Germany) and washed using 

Tris-buffered saline with tween (TBS-tween) (25 mM Tris-Base, 150 mM sodium 

chloride (Fisher Scientific, UK), 0.1% Tween 20 (Fisher Scientific, UK), in dH20, 

pH 8.0) 3 times with gentle shaking. To block non-specific binding, 5% BSA 

(Sigma-Aldrich, UK) in TBS-tween was added to membranes for 1 hour with 

gentle shaking. Following blocking, the membrane was washed 3 times with 

TBS-tween, the primary antibody was added to the membrane at a 

concentration of 1 in 5000 in BSA, and the membrane was gently shaken for 

1 hour. The primary antibodies used were SDHA (mouse monoclonal, clone 

number 2E3GC12FB2AE2, catalogue number ab14715, Abcam, UK), SDHB 

(mouse monoclonal, clone number 21A11AE7, catalogue number ab14714, 

Abcam, UK), or the control β-act (mouse monoclonal, clone number mAbcam 

8226, catalogue number ab8226, Abcam, UK). Membranes were again washed 

3 times with TBS-tween. The secondary antibody, peroxidase-labelled anti-

mouse IgG (Vector Laboratories Inc., USA), was added at a concentration of 1 

in 5000 in BSA for SDHA and SDHB, and at 1 in 10,000 in milk solution (5% 

Skim Milk (Fisher Scientific, UK), 0.1% sodium azide (Sigma-Aldrich, UK), in 

TBS-tween) for β-act. Membranes were gently shaken for 1 hour and washed 3 

times in TBS-tween. Membranes were then removed from tubes and 0.75 ml 

SuperSignal West Dura Extended Duration Substrate (Thermo Scientific, UK) 

added for 5 minutes to allow later visualisation of the proteins. Membranes were 

placed in a Hypercassette (GE Healthcare, UK) and exposed to Hyperfilm ECL 

(GE Healthcare, UK) in the absence of light for varying lengths of time 
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depending on signal strength. Hyperfilm was placed in Developer and 

Replenisher (Kodak, UK) for 2 minutes, washed in water, placed in Fixer and 

Replenisher (Kodak, UK) for 1 minute, then washed in water and left to dry. 

Films were analysed using a FluorChem imaging system with reflective white 

light and results viewed using AlphaEase FluorChem software.  
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3.4 Results 

3.4.1 Mitochondrial amount per sample 

Different samples may contain different amounts of mitochondria. To ensure 

that any possible changes observed in mitochondrial respiratory chain activity 

were not confounded by differences in mitochondrial content, the activity of a 

common mitochondrial marker, citrate synthase (Birch-Machin and Turnbull, 

2001), was measured. Citrate synthase is an enzyme which plays a key role in 

the citric acid cycle, during which citrate synthase converts the substrates 

oxaloacetate and acetyl coenzyme A to citrate and coenzyme A respectively 

(Wiegand and Remington, 1986). A spectrophotometer was used to measure 

the amount of coenzyme A, and therefore the rate of the enzymatic reaction, 

following the addition of DTNB, which reacts with coenzyme A to form the 5-

thio-2-nitrobenzoate ion which is yellow in colour (Figure 11A) (Itoh and Srere, 

1970). The rate of citrate synthase activity was determined by the rate of 

absorbance of 5-thio-2-nitrobenzoate at 412 nm (Figure 11B), which increases 

as citrate synthase activity takes place. The absorbance of 5-thio-2-

nitrobenzoate did not change when no sample was added (Figure 11C). The 

citrate synthase activities of skin samples taken from a variety of differently 

aged donors were measured and later used to normalise the activities of 

complex II and complex IV (Birch-Machin and Turnball 2001). 
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Figure 11  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
Figure 11. Citrate synthase assay to determine mitochondrial content. A) During the citric 
acid cycle, acetyl coenzyme A is converted to coenzyme A by citrate synthase, which then 
reacts with DTNB, which is a colourless solution, to form the 5-thio-2-nitrobenzoate ion which is 
yellow in colour. The blue star shows the area of citrate synthase activity. B) The absorbance of 
light at 412 nm was measured to assess the amount of 5-thio-2-nitrobenzoate ion present, from 
0 to 2 minutes, with oxaloacetate added to start the reaction. C) The absorbance of light at 412 
nm remained constant when no sample was added to the reaction. 
 
 
 
 

3.4.2 Complex II activity in skin cells from differently aged donors 

The activity of complex II was studied in skin cells cultured from differently aged 

donors, in order to determine any possible differences in this complex with age. 

Photometry was used to measure differences in complex II activity (Kirby et al., 

2007). During this process, complexes I, III, and IV of the mitochondrial 
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respiratory chain were inhibited, using the inhibitors rotenone, antimycin A, and 

potassium cyanide respectively (Figure 12A), to allow the activity of complex II 

alone to be studied. The complex II substrate sodium succinate was added in 

excess to ensure a plentiful supply of e-, and the e- acceptor ubiquinone was 

added in excess to allow maximum e- transfer from complex II. The artificial e- 

acceptor, DCPIP, was added in its oxidised form to accept e- released as 

ubiquinol was oxidised to ubiquinone. As DCPIP was reduced it caused a 

measurable colour change from blue to colourless (Figure 12B). The 

absorbance of light was measured at 600 nm, the wavelength at which oxidised 

DCPIP absorbs light, and a decrease in the level of absorbance was observed 

as DCPIP was reduced (Figure 12C). The absorbance at 600 nm remained 

constant when no sample was added (Figure 12D). 

 

Complex II activity was determined in fibroblasts and keratinocytes grown from 

the skin of a total of 46 individuals, ranging in age from 6 years old to 80 years 

old, from a region of sun-protected skin. Complex II activity was normalised to 

citrate synthase activity to determine complex II activity per unit of mitochondria. 

Figure 13A shows the results for the 27 fibroblast cell samples used, which 

gave a significant inverse correlation between the age of the donor and complex 

II activity (P=0.0154, rho=-0.4614, non-parametric Spearman correlation). This 

suggested that older individuals have a lower complex II activity per 

mitochondrial unit in their fibroblast cells. Figure 13B shows the complex II 

activity results for the 19 keratinocyte cell samples tested; no significant 

correlation was found between donor age and complex II activity (P=0.7262, 

rho=-0.0860, non-parametric Spearman correlation).  
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Figure 12. Mitochondrial complex II activity assay. A) During the complex II activity assay, 
complexes I, III, and IV were inhibited using rotenone, antimycin A, and potassium cyanide 
respectively (shown by the arrows with crosses). Sodium succinate and ubiquinone (Q) were 
added in excess to allow maximum complex II activity to be measured. B) Oxidised DCPIP was 
also added, to react with e

-
 released from ubiquinol, to form reduced DCPIP, which caused a 

colour change from blue to colourless. C) The absorbance of light at 600 nm was measured to 
assess the amount of DCPIP present, from 0 to 4 minutes, with ubiquinone added to start the 
reaction. D) The absorbance of light at 600 nm remained constant when no sample was added 
to the reaction. 
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Figure 13. Complex II activity versus donor age in human skin cells. A) Complex II activity 
normalised to citrate synthase activity (CII/CS) of fibroblasts from 27 donors of varying ages 
compared to the age of the individual. Donor age correlated significantly and inversely with 
CII/CS activity (P=0.0154, rho=-0.4614, non-parametric Spearman correlation). The green line 
shows the line of best fit. B) The CII/CS activity of keratinocytes from 19 donors of varying ages 
compared to the age of the individual donor. Donor age did not correlate significantly with 
CII/CS activity (P=0.7262, rho=-0.0860, non-parametric Spearman correlation). The error bars 
show the standard error of the mean (SEM). Photometry was performed at least two times for 
the citrate synthase assay and at least two times for the complex II activity assay for each 
sample.  
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3.4.3 Complex II subunits and age: expression levels 

To investigate the cause of the observed decrease in complex II activity with 

age in the fibroblast cells, the individual subunits of complex II were 

investigated. The DNA expression levels of 3 out of the 4 complex II subunits 

(SDHA, SDHB, and SDHC) were measured by qPCR in the skin fibroblasts and 

keratinocytes of the differently aged donors. During the qPCR reaction, a 

section of the subunit mRNA transcript was amplified, and the relative transcript 

level determined by the number of cycles it took before the level of amplified 

product reached a certain threshold (the Ct value), with a fewer number of 

cycles indicating a higher expression as more DNA was available to be 

amplified. 

 

The levels of SDHA, SDHB, and SDHC expression were studied in 25 fibroblast 

samples and 17 keratinocyte samples, relative to β-act controls for each 

sample. It was found in the fibroblast samples that SDHA showed a significant 

decrease in expression with age (Figure 14A) (P=0.0083, rho=-0.5158, non-

parametric Spearman correlation). The level of SDHB also showed a strongly 

significant decrease with age (Figure 14B) (P=0.0011, rho=-0.6128, non-

parametric Spearman correlation). No significant correlation was seen for the 

SDHC subunit (Figure 14C) (P=0.1195, rho=-0.3195, non-parametric Spearman 

correlation). In the keratinocyte samples studied, it was found that SDHA 

expression did not correlate significantly with age (Figure 14D) (P=0.0600, 

rho=-0.4650, non-parametric Spearman correlation). However, SDHB 

expression in the keratinocytes did correlate significantly and inversely with age 

(Figure 14E) (P=0.0328, rho=-0.5190, non-parametric Spearman correlation). 

SDHC expression did not correlate significantly with age (Figure 14F) 

(P=0.1141, rho=-0.3975, non-parametric Spearman correlation). 
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Figure 14. Complex II subunit transcript levels in skin cells from differently aged donors. 
A) The relative level of SDHA expression in fibroblasts compared to the age of the donor for 25 
samples, relative to the sample with the lowest transcript level. A significantly lower level of 
transcript expression was seen in older individuals (P=0.0083, rho=-0.5158, non-parametric 
Spearman correlation). B) The relative level of SDHB expression in fibroblasts compared to the 
age of the donor. A significant decrease in transcript level with age was observed (P=0.0011, 
rho=-0.6128, non-parametric Spearman correlation). C) The relative level of SDHC expression 
in fibroblasts compared to the age of the donor. There was no significant correlation between 
transcript level and age (P=0.1195, rho=-0.3195, non-parametric Spearman correlation). D) The 
relative level of SDHA expression in keratinocytes compared to the age of the donor for 17 
samples, relative to the sample with the lowest transcript level. There was no significant 
correlation between SDHA level and donor age (P=0.0600, rho=-0.4650, non-parametric 
Spearman correlation). E) The relative level of SDHB expression in keratinocytes compared to 
donor age. There was a significant decrease in SDHB transcript with age (P=0.0328, rho=-
0.5190, non-parametric Spearman correlation). F) The relative level of SDHC expression in 
keratinocytes compared to donor age. There was no significant correlation between SDHC 
transcript level and age (P=0.1141, rho=-0.3975, non-parametric Spearman correlation). The 
qPCR reactions were repeated twice for each sample, each in triplicate, for all 3 transcript types 
and the β-act control. The green lines show the lines of best fit. The error bars show the SEM. 
 
 
 
 

When comparing the activity of CII/CS for each sample with the level of subunit 

expression directly, it was found that there was a significant positive correlation 

between the level of CII/CS activity and the expression of SDHA for the 

fibroblasts (P=0.0397, rho=0.4138, non-parametric Spearman correlation), 

suggesting that complex II activity is higher when there is more SDHA 

expression. Although there was also a trend towards a correlation between the 

level of complex II activity and the level of SDHB expression, this was not 

significant (P=0.0792, rho=0.3577, non-parametric Spearman correlation). This 

was also not significant for SDHC expression (P=0.1827, rho=0.2754, non-

parametric Spearman correlation). For the keratinocyte cells it was found that 

there was no significant correlation between CII/CS activity for either SDHA 

(P=0.4262, rho=-0.2418, non-parametric Spearman correlation), SDHB 

(P=0.6415, rho=0.1429, non-parametric Spearman correlation), or SDHC 

(P=0.9432, rho=0.0220, non-parametric Spearman correlation) (results not 

shown).   

 

3.4.4 Complex II subunits and age: protein levels 

To further investigate the decrease in complex II activity seen with age, the 

protein levels of SDHA and SDHB were determined to see whether these also 

decreased with age, as measured by Western blot. The optimum protein 

concentration for use in the Western blots was chosen using two samples 

following protein quantification via protein assays. As can be seen in Figure 15, 
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values of higher than 20 µg appeared to show little difference in the level of 

protein quantified by Western blot for both samples tested, and only 

concentrations below 20 µg showed a linear relationship. Therefore, a value of 

10 µg was chosen for Western blot analysis. 
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Figure 15. Optimal sample concentrations for Western blotting. A) Raw Western blot result 
for a sample at concentrations of 5 µg, 10 µg, 20 µg, 40 µg, 60 µg and 80 µg, for the β-act 
protein. B) Quantification of the Western blot bands by densitometry, normalised to the lowest 
concentration. The purple line shows that the reaction was linear from 5 µg to 20 µg. C) Raw 
Western blot result for a different sample at concentrations of 6 µg, 12.5 µg, 20 µg, and 25 µg, 
for the β-act protein. D) Quantification of the Western blot by densitometry, normalised to the 
lowest concentration. The purple line shows the reaction was linear from 6 µg to 20 µg. Western 
blots were repeated twice for each sample.  
 
 
 
 

Due to the limited availability of keratinocytes, and since fibroblasts showed the 

strongest correlation between age and complex II activity, only the fibroblasts 

were examined in terms of subunit protein levels. It was found that in the 14 
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fibroblast samples tested, following normalisation to β-act, that there was a 

significantly lower level of the SDHA protein in older individuals (Figure 17A) 

(P=0.0006, rho=-0.8009, non-parametric Spearman correlation). This was also 

the case for the SDHB protein, which also decreased significantly with age 

(Figure 17B) (P=0.0049, rho=-0.7041, non-parametric Spearman correlation). 

Figure 16 shows the raw results for the differently aged samples. Unfortunately 

the level of SDHC protein with age was not able to be studied due to time 

constraints.  

 

Both the SDHA and SDHB protein levels appeared to be trending towards a 

correlation with the level of complex II activity in the fibroblasts, however these 

were not significant (P=0.0694, rho=0.4989 for the SDHA protein, P=0.0694, 

rho=0.4989 for the SDHB protein, non-parametric Spearman correlation). This 

suggests that there was not a direct link between subunit protein level and 

complex II activity. There was also no direct link between protein level and 

transcript expression for either SDHA or SDHB (P=0.7593, rho=0.0901 for 

SDHA, P=0.1854, rho=0.3758 for SDHB, non-parametric Spearman correlation) 

(results not shown). 

 

Figure 16  

 

 

 

 

 

 
 
Figure 16. Raw Western blot results of fibroblast cells from differently aged donors. The 
Western blot results of 14 fibroblast samples, with the ages of the donors (in years) given. 
Protein levels of the complex II subunits SDHA and SDHB are shown, as well as the control 
protein β-act. The weight of SDHA is 70 kDa; SDHB is 32 kDa; and β-act is 42 kDa. Two 
biological repeats (cells from the same donor grown separately), each with two Western blot 
repeats, were performed; only one repeat is shown. 
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Figure 17. Complex II subunit protein levels in skin fibroblast cells from differently aged 
donors. A) The relative SDHA protein level normalised to β-act in 14 fibroblast samples, as 
determined by Western blot, relative to a control sample for each blot. There was a significantly 
lower level of SDHA protein in older individuals (P=0.0006, rho=-0.8009, non-parametric 
Spearman correlation). B) The relative SDHB protein level in 14 fibroblast samples compared to 
the age of the donor. There was a significantly lower level of protein in the older individuals 
(P=0.0049, rho=-0.7041, non-parametric Spearman correlation). The green lines show the lines 
of best fit. The error bars show the SEM. Two biological repeats (cells from the same donor 
grown separately), each with two Western blot repeats, were performed.  
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3.4.5 Complex IV activity in skin cells from differently aged donors 

Complex IV is made up of 13 subunits, of which 3 are encoded by the mtDNA 

(Scheffler, 2007). The activity of mitochondrial complex IV was studied in skin 

cells from differently aged donors, to determine whether mitochondrial 

complexes other than complex II were decreasing with age in human skin. 

Photometry was used to measure differences in complex IV, by a similar 

method to the complex II measurement. Since complex IV is the only complex 

capable of oxidising the measured substrate (cytochrome c), it was not 

necessary to inhibit the other complexes (unlike for the complex II assay where 

e- from other complexes could interfere). During the photometric assay, DDM 

was added to samples, which is a detergent capable of solubilising the 

mitochondrial membrane proteins whilst retaining their activity (le Maire et al., 

2000). Reduced cytochrome c was also added (Figure 18A) which is red in 

colour, and is oxidised by complex IV to a colourless solution (Figure 18B). The 

absorbance at 550 nm was measured (the absorbance of reduced cytochrome 

c) (Figure 18C), which decreases as complex IV activity occurs. The 

absorbance did not decrease when no sample was added to the reaction 

(Figure 18D). 

 

Complex IV activity was measured in 18 fibroblast samples and 13 keratinocyte 

samples from the skin of individuals ranging in age from 6 to 79 years old. As 

can be seen in Figure 19A for the 18 fibroblast samples tested, there was no 

significant correlation between the age of the donor and complex IV activity 

(P=0.1478, rho=0.3554, non-parametric Spearman correlation). This was also 

the case for the 13 keratinocyte samples tested (Figure 19B) (P=0.8094, rho=-

0.0743, non-parametric Spearman correlation).  

 

It was observed that there was no significant correlation between CII/CS activity 

and CIV/CS activity for the individual fibroblast samples (P=0.4182, rho=-

0.2034, non-parametric Spearman correlation), which could be expected since 

CII/CS activity was shown to decrease with age and CIV/CS activity was not. 

This could suggest that these two complexes have independent activities, and 

that only complex II is associated with age. This could not be tested for in the 

keratinocyte samples due to lack of matching samples.  
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Figure 18. Mitochondrial complex IV activity assay. A) During the complex IV activity assay, 
reduced cytochrome c was added in excess to provide the substrate for complex IV. B) 
Complex IV activity was then measured by the oxidisation of cytochrome c from a red solution to 
a colourless solution as e

-
 were removed by complex IV. C) The absorbance of light at 550 nm 

was measured to assess the level of reduced cytochrome c present, which began to decrease 
at an exponential rate once the cell sample was added. Potassium ferricyanide was added to 
fully oxidise the remaining cytochrome c to determine the end point of the reaction. D) The 
absorbance of light at 550 nm remained constant and did not decrease when no sample was 
added to the reaction.  
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Figure 19. Complex IV activity versus donor age in human skin cells. A) The CIV/CS 
activities of fibroblasts from 18 donors of varying ages were compared to the age of the 
individual. Donor age did not correlate significantly with CIV/CS activity (P=0.1478, rho=0.3554, 
non-parametric Spearman correlation). B) The CIV/CS activities of keratinocytes from 13 donors 
of varying ages were compared to the age of the individual. Donor age did not correlate 
significantly with CIV/CS activity (P=0.8094, rho=-0.0743, non-parametric Spearman 
correlation). The error bars show the SEM. Photometry was performed at least two times for the 
citrate synthase assay and at least two times for the complex IV activity assay for each sample. 
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3.5 Discussion 

3.5.1 Complex II activity decreases with age in human skin fibroblast cells 

Photometry is a technique used in past studies to sensitively and reliably detect 

changes in mitochondrial complex activity (Birch-Machin et al., 1994; Kirby et 

al., 2007). Following photometry, sample complex activities were normalised to 

citrate synthase activities, which is a commonly used marker for mitochondrial 

content (Birch-Machin and Turnbull, 2001), and allows for the complex activity 

within the same amount of mitochondria to be determined. It was found in this 

project that complex II activity declined with age in human skin fibroblasts per 

unit of mitochondria, which to my knowledge has not been demonstrated 

previously. This suggested that older individuals have a lower level of complex 

II activity in their skin, which could be indicative of a broader complex II 

decrease throughout the whole body, and could potentially be causative in 

terms of ageing.  

 

The age-related decrease in complex II activity observed in this project is in 

accordance with some previous studies, which have shown that there is a 

decline in complex II activity in laboratory animals with age. For example, a 

study using rat heart and muscle cells (Kumaran et al., 2004), found that the 

activity of complex II (as well as complexes I, III, and IV) was significantly lower 

in older rats (aged the equivalent of 60 years and older in human terms) 

compared to younger rats (aged the equivalent of less than 18 years old in 

human terms (Andreollo et al., 2012)), when determined photometrically by the 

same method as used in this study. Complex II activity has also been shown to 

be decreased with age in rat liver, kidneys, lungs, brain, and lymphocytes 

(Sandhu and Kaur, 2003; Cocco et al., 2005; Braidy et al., 2011). Another study 

in rat heart muscle also showed that complex II activity decreased with age 

when tested photometrically (Tatarkova et al., 2011); however in the study, 

complex II activity did not show a significant decline until the mice were 

extremely old, at 26 months of age. This is equivalent to a human age of over 

70 years old (Wilson et al., 2010), which could explain why the correlation 

between age and complex II activity was not strongly significant in the present 

project, as there were only 2 human skin samples of over 70 years old 

available. Future studies could therefore include a higher number of samples 

from donors of over 70 years old, which could be expected to increase the 
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strength of the correlation between the two factors. There have been a limited 

number of studies performed on mitochondrial complex activity and age in 

terms of skin; however, a recent study on mouse skin did find that complex II 

activity was decreased in naturally aged mouse skin (Velarde et al., 2012). 

Additionally, in the study by Velarde et al., (2012), in mice with SOD knocked-

out, there was a decreased level of complex II activity and accelerated ageing; 

this could suggest a causative role for complex II in the ageing process. In 

terms of studies on human complex II activity there have been few performed. 

However, some previous studies on human muscle have found that complex II 

activity decreases with age (Trounce et al., 1989; Coggan et al., 1992; Boffoli et 

al., 1994; Short et al., 2005). These previous studies correlate with the results 

found in this project; however, studies in other human tissues are required to 

determine whether this is a phenomenon observed throughout the entire human 

body. 

 

Since complex II has recently been shown to play a prominent role in ROS 

production (Quinlan et al., 2012; Moreno-Sanchez et al., 2013; Siebels and 

Drose, 2013), it could be that the observed decrease in complex II activity with 

age is resulting in a higher ROS leakage, which has been shown to occur when 

this complex is blocked by inhibitors (Byun et al., 2008) or is at a lower activity 

level (Quinlan et al., 2012). This has also been shown to occur in mice in that 

when complex II activity is decreased, this complex generates a higher level of 

superoxide (Morten et al., 2006). Increased ROS with age caused by increased 

complex II dysfunction (lower activity) may be causing damage to mtDNA, 

lipids, and proteins in the mitochondria, resulting in a decreased production of 

ATP and of aerobic capacity, which has also been seen with age (Conley et al., 

2000; Petersen et al., 2003; Tonkonogi et al., 2003; Short et al., 2005). It could 

also be that the level of complex II activity is decreased with age as a 

consequence of an increase in ROS, as it has been shown in previous in vivo 

mice studies that a decrease in complex II activity occurs when mitochondrial 

SOD is knocked-out to cause an increase in ROS (Li et al., 1995; Melov et al., 

1999; Morten et al., 2006; Velarde et al., 2012). Increased ROS levels with age 

may increase mitochondrial dysfunction (as represented by a complex II activity 

decrease (Passos and Zglinicki, 2012)), which may be exacerbated further by a 

higher level of ROS leak by the dysfunctional mitochondria, as the vicious cycle 
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theory of ageing predicts. It has also been speculated that the reason for 

complex II being entirely nuclear-encoded (and therefore within the protection of 

the nuclear-repair mechanisms instead of the mtDNA which is under high ROS 

insult), is because complex II dysfunction is so detrimental that protective 

measures to prevent its dysfunction have been implemented by cells (Wojtovich 

et al., 2013). Further studies on ROS production with age are required to 

determine whether the decrease in complex II activity is causative or 

consequential in terms of the increase in ROS levels seen with age.  

 

The observed significant inverse correlation between age and complex II activity 

was not a direct 1:1 correlation, as determined by the Rho value (which 

measures the strength of the relationship between two factors (Royal 

Geographical Society, 2013)), which was not extremely close to 1 or -1 (it was -

0.4614). This indicates that other factors may be contributing to the ageing 

process other than complex II alone as could be expected since ageing is a 

multifactorial process. Also, it could be that other factors are having an effect on 

complex II activity. Variations in complex II activity observed in those people of 

similar ages could be due to differences in lifestyle between individual donors; 

for example, whether or not the individual is a smoker or the level of exercise 

which the donor partakes in. Smoking has been shown previously to decrease 

the activity of specific complexes of the ETC including complex II (Miro et al., 

1999; Alonso et al., 2004; Luo et al., 2013), and therefore could be causing 

some variation in complex II activity. Exercise has been shown to improve 

mitochondrial function in muscle across the whole ETC including complex II 

(Menshikova et al., 2006), as well as in lymphocytes and in other tissues 

(Cardellach et al., 2003; Bouhours-Nouet et al., 2005), and could therefore 

explain the slight variations in complex II activity seen among individuals of 

similar ages. However, a decrease in mitochondrial function has been shown to 

occur with age even in exercise-matched humans (Tonkonogi et al., 2003), so it 

is unlikely that the decline in complex II activity with age is only due to higher 

exercise levels in younger individuals. As all of the samples were taken from a 

non-UV-exposed region of the body, differences in UV were unlikely to be 

affecting the complex II activity in the present study, as UV has been 

demonstrated previously to decrease ETC activity (Djavaheri-Mergny et al., 

2001). 
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3.5.2 Complex II activity decreases with age in fibroblasts but not in 

keratinocytes 

Complex II activity was found to be decreased with age in skin fibroblasts, but 

not in skin keratinocytes. It was speculated that this was due to the epidermal 

cells in human skin being replaced on a regular basis (every 47 days (Iizuka, 

1994)) due to normal skin turnover, during which the keratinocytes are shed 

from the outer layer of the skin and replaced by new cells. Therefore, any 

damage may be unable to accumulate to cause a reduction in complex II 

activity, as keratinocytes are being continually replaced with ‘young’ cells. This 

method of damage removal by cellular turnover has been demonstrated 

previously in mice in vivo (Stout et al., 2005), whereby it was found that mice 

lacking nucleotide excision repair pathways (and therefore having increased 

levels of DNA damage), were able to remove this damage by turnover to 

prevent its accumulation. Other studies have found that the level of the age-

related mitochondrial 3895 bp deletion did not accumulate as readily in the 

epidermis (which is mostly keratinocyte cells) compared to the dermis (which is 

mostly fibroblast cells) (Krishnan et al., 2004; Harbottle and Birch-Machin, 

2006), and mtDNA damage generally accumulates more readily in cells which 

undergo slower turnover (Cortopassi et al., 1992; Harbottle and Birch-Machin, 

2006). Additionally, the epidermis has been shown to have a higher activity of 

certain antioxidants (such as glutathione peroxidase), compared to the dermis 

(Shindo et al., 1994; Harbottle and Birch-Machin, 2006; Hornig-Do et al., 2007), 

which could also be decreasing the possible damage to complex II with age. 

 

3.5.3 The decrease in complex II activity with age may be due to a 

decrease in complex II subunits 

In order to better understand the cause of the observed complex II activity 

decrease with age, the levels of the individual complex II subunits were 

examined. Possible reasons for the decrease in complex II activity seen with 

age could be that either the actual activity of complex II is lower in older 

individuals per unit of mitochondria, or the amount of complex II present per unit 

of mitochondria is decreased (Figure 20). 
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Figure 20  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 20. Possible causes of the higher complex II activity in young age. Two possible 
explanations as to why complex II activity was higher in the mitochondria of younger individuals. 
A) A simplified example of the complex II unit (shown in blue) on the mitochondria (in pink). B) A 
simplified example of more complex II being present per mitochondrial unit in a younger 
individual, which could be one of the explanations for a higher overall CII/CS activity seen with 
lower age. C) A simplified example of a younger individual having the same amount of complex 
II, but with each complex having a higher rate of activity. The red line around the complex 
indicates a higher level of activity. 
 
 
 
 

In order to test whether the decrease in complex II activity with age was due to 

a lower level of complex II units or a lower activity per unit, the level of individual 

complex II subunits were measured. It was found that the levels of SDHA and 

SDHB expression and their protein levels decreased in an age-related manner 

in the fibroblasts, suggesting that the amount of complex II was decreasing with 

age per mitochondrial content. Although SDHC expression did not show a 

reduction with age, the level of complex II activity was still likely to be affected 

by the decrease in SDHA and SDHB as all 4 subunits are required for complex 

II ETC activity (Morten et al., 2006). The decrease in these particular complex II 
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subunits has been shown to be associated with decreased complex II activity 

previously, when it was found that mice with SOD knocked-out had a reduction 

in both the SDHB subunit and the activity of complex II (Morten et al., 2006). 

This could imply that an increase in mitochondrial ROS (caused by the SOD 

knock-out) is able to cause a decrease in complex II subunit levels which is then 

causing a reduction in complex II activity, which could also be occurring 

naturally with age. Additionally, past work has shown that when the level of 

SDHB protein is low due to a decrease in iron-sulphur assembly, there is a 

reduction in complex II activity (Yoon et al., 2004), suggesting that the amount 

of SDHB can affect complex II activity. Increases in SDHB protein have also 

been associated with increased complex II activity (Dayal et al., 2009). 

 

The levels of both SDHA and SDHB were decreased with older age in the 

fibroblast cells; however, these subunits did not correlate directly with the level 

of complex II activity. This could possibly be because other factors were also 

contributing to the level of complex II activity, preventing a direct relationship 

between subunit amount and activity. For example, the amount of ROS present 

could be affecting complex II activity following expression and production of the 

complex II subunits, as ROS has been shown previously to directly target 

mitochondrial complexes including complex II (Kirkinezos and Moraes, 2001). A 

lack of direct link between SDHA expression and complex II activity has been 

observed previously, in which it was found that a particular protein (uncoupling 

protein-4) increased the activity of complex II; however, the expression of SDHA 

remained unchanged (Ho et al., 2012). So it is possible that the decrease in 

complex II SDHA and SDHB subunits with age were contributing to the 

decrease in activity of complex II, but this may not have been significant due to 

other in vivo factors also contributing to the alteration of complex II activity.  

 

The decrease in complex II subunits with age could have been caused by a 

general decrease in mitochondrial proteins and protein expression with age. 

Previous work has indicated that this can occur; Short et al., (2005) found that 

the abundance of 11 out of 13 mitochondrial proteins tested were decreased 

with age in human muscle. This included nuclear-encoded proteins, and was 

also shown in other studies (Rooyackers et al., 1996; Balagopal et al., 1997; 

Miller et al., 2012). In terms of gene expression, it has been shown previously 
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that mRNA expression of both nuclear and mitochondrial-encoded genes 

(COX3 and COX4 respectively) were decreased with age in human muscle 

(Short et al., 2005). However, to my knowledge there have been no other 

studies investigating the abundance of complex II subunits with age in human 

skin; therefore this project provides evidence of additional mitochondrial 

proteins which could be declining with age. Further work is required to 

determine the exact role of the decrease in SDHA and SDHB in terms of 

complex II activity; however, since previous studies have shown that defects in 

these subunits can affect the activity of complex II negatively (Hosokawa et al., 

1994; Adachi et al., 1998; Ishii et al., 1998; Tsuda et al., 2007; Huang and 

Lemire, 2009; Wojtovich et al., 2013), it is likely that they are having some effect 

on complex II activity rather than undergoing an independent decrease with 

age. Overexpression of SDHA/SDHB has also been shown to restore complex 

II activity in neuronal cells from the brains of Huntington's disease patients, 

which could suggest a possible future therapeutic potential for ageing 

(Benchoua et al., 2006).  

 

One possible reason as to why the level of mitochondrial subunit expression 

was decreased with age could be due to increased oxidative damage to both 

nDNA and mtDNA, as has been demonstrated previously to occur with age 

(Richter et al., 1988; Yakes and Van Houten, 1997; Best, 2009; Haigis et al., 

2012). This could be lowering the expression of functional proteins such as the 

complex II subunits, and therefore decreasing the overall activity of complex II. 

This could tie-in with the mitochondrial theory of ageing (Harman, 1972; Bandy 

and Davison, 1990), in that genetic damage is causing decreased functional 

protein expression, and therefore increased mitochondrial dysfunction. Whether 

or not this process is resulting in an increased production of ROS in a 

continuing vicious cycle would remain to be established (Figure 21). If this was 

the case, it could be that ROS production would then affect DNA as well as 

complex II activity directly, as ROS has been shown previously to affect the 

iron-sulphur clusters of complex II (Figure 21) (Wallace, 1999; Kumaran et al., 

2004). 

 

 

 



106 
 

Figure 21  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Potential interaction of nDNA with the vicious cycle theory of ageing. The 
vicious cycle theory of ageing proposes that mtDNA damage caused by ROS decreases the 
expression of functional mitochondrial units, resulting in an increase in ROS production in a 
continuing cycle (Harman, 1972; Bandy and Davison, 1990). However, it may be that 
mitochondrial proteins encoded by nDNA (including complex II) also contribute to the 
mitochondrial dysfunction observed with age. ROS production may cause damage to nDNA 
(shown in red) as these leak from the mitochondria (shown in pink) (Kirkinezos and Moraes, 
2001). This would extend the more traditional view of the vicious cycle theory. ROS are also 
thought to affect mitochondrial subunits directly (shown by the blue arrow) (Wallace, 1999; 
Kumaran et al., 2004), which could extend the theory further. 
 
 
 
 

3.5.4 Complex IV activity does not change with age in human skin 

Complex II, but not complex IV, showed an age-related decline in activity in 

human skin fibroblast cells. This could suggest that the age-related decline in 

mitochondrial complex activity is localised to complex II of the respiratory chain 

in human skin; however, previous studies suggest that this may not be the case, 

as both complex I activity (Lenaz et al., 1997; Tatarkova et al., 2011) and 

complex III activity (Lesnefsky et al., 2001; Kumaran et al., 2004; Tatarkova et 

al., 2011) have been shown to decrease with age. The observed decrease in 

activity of complex II but not complex IV is in accordance with a previous study 

on human lymphocyte cells, for which it was found that the activity level of 

complex II, but not complexes III or IV, was lower in human subjects over 50 

years old compared to those under 50 years old (Drouet et al., 1999). This 

could imply that complex II is playing a bigger role than complex IV in the 

ageing process. Additionally, a study on mouse skin found that when 
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mitochondrial SOD was knocked-out, there was an increase in ROS and a 

decrease in complex II activity, as well as accelerated ageing, but the level of 

complex IV was not altered (Velarde et al., 2012). This has also been shown in 

another mouse model with mitochondrial SOD knocked-out, which decreased 

the activity of complex II but not complex IV (Melov et al., 1999), and generally 

complex II is more severely affected than complex IV in mouse SOD knock-out 

models (Morten et al., 2006). However, other studies have shown opposite 

results regarding complex IV activity in ageing, by showing a decrease in 

activity in various rat organs (Sandhu and Kaur, 2003; Braidy et al., 2011; 

Andreollo et al., 2012), and human muscle (Trounce et al., 1989; Boffoli et al., 

1994; Rooyackers et al., 1996), and studies on complex IV activity in human 

skin fibroblasts with age have shown conflicting results (Hayashi et al., 1994; 

Allen et al., 1997; Isobe et al., 1998). The present study however suggests that 

complex II may have a higher responsibility than complex IV in determining the 

rate of ageing in the skin. The possible lack of correlation between complex IV 

and age in the present study could be due to a higher resistance of complex IV 

to oxidative damage compared to complex II (Marchi et al., 2012), and also due 

to this complex releasing the lowest levels of ROS (Kowaltowski et al., 2009). 

Additionally, it could be that the activities of the mitochondrial complexes differ 

depending on the tissue type from which the cells were obtained. For example, 

Kwong and Sohal, (2000) directly compared the complex activities of cells from 

different mouse tissues and demonstrated that the activity of complex IV 

decreased with age in the kidneys and heart, but did not change in the brain or 

liver. Additionally, complex II activity actually increased with age in the heart yet 

decreased in the brain and skeletal muscle, and did not change in the kidneys 

or liver. Skin was not however tested, and it could be that for this organ the 

activity of complex II is decreased and the activity of complex IV remains 

unchanged with age.   
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3.6 Summary 

In conclusion, the rate of complex II activity within human skin fibroblast cells 

was shown to be lower in older individuals in this study. This could have 

important consequences in terms of ageing, as it could implicate a role for 

complex II in the ageing process, and may lead to future studies investigating 

whether or not complex II plays a causative role in ageing. If so, therapeutic 

interventions to prevent complex II dysfunction with age could be important in 

lowering the rate of ageing. Complex IV activity was not decreased with age in 

human skin cells in this study, suggesting that the reduction in complex II 

activity was not just the result of a general decrease in overall ETC activity. The 

possible cause of complex II activity reduction with age could be because of a 

decreased expression of SDHA and SDHB subunits, resulting in a lower level of 

complex II per mitochondrial unit. Overall, this study provides important new 

insights into the potential role of complex II with ageing. 
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Chapter 4. Mitochondrial Differences in 

Senescent and Non-Senescent Cells from 

the Skin of Young and Old Human Donors  
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4.1 Introduction 

4.1.1 Cellular senescence 

Over 50 years ago it was recognised that cells growing in culture do not 

replicate indefinitely, and cease to proliferate after a certain number of 

population doublings, known as the ‘Hayflick’s limit’ (Hayflick and Moorhead, 

1961; Hayflick, 1965). This phenomenon is now acknowledged to be cellular 

senescence, and it describes the transformation of cells from a proliferating to a 

non-proliferating state, as a tumour suppressive mechanism to prevent cells 

with potentially cancerous DNA mutations from undergoing replication (Campisi 

and d'Adda di Fagagna, 2007). During senescence, cells lose the ability to 

divide yet remain viable, and are capable of releasing factors into their 

environment (Passos et al., 2010; Nelson et al., 2012). Senescence is activated 

by two main pathways, usually as a result of DNA damage; the p53/p21 

pathway and the p16INK4a/pRB pathway (Campisi, 2013), as shown in Figure 22. 

These pathways result in altered gene expression and a permanent cellular 

growth arrest (Campisi, 2013).  

 

Figure 22  

 
 

 

 

 

 

 

 

 

 
 
Figure 22. The major DNA damage response pathways involved in cellular senescence. A 
simplified version of the two major pathways resulting in cellular senescence, which occur via 
activation of the tumour suppressor proteins p53 or p16

INK4a
, to activate the cell cycle inhibitors 

p21 or pRB respectively. This induces gene expression changes and a state of permanent 
growth arrest known as cellular senescence. Image was influenced by (Campisi, 2013). 
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4.1.2 Causes of cellular senescence 

One of the first causes of cellular senescence to be described was in the 1970s, 

when it was discovered that the protective DNA sequences found at the ends of 

chromosomal DNA (the telomeres) become progressively shorter with each 

cellular division, due to DNA polymerase being unable to fully synthesise up to 

the very end of one of the strands of DNA (Watson, 1972; Olovnikov, 1973). If 

telomeres reach a critically short length, they risk undergoing unnecessary 

repair mechanisms such as non-homologous end joining, which could 

potentially result in genomic instability in subsequent cell divisions if 

chromosomes become joined (Rodier et al., 2005; Campisi, 2013). To prevent 

this, cells were found to undergo senescence as a protective response when 

telomeres reach a critical length (Greider and Blackburn, 1985; Harley et al., 

1990; Harley et al., 1992; Bodnar et al., 1998). Additional causes of senescence 

are now known; for example, senescence can be activated by DNA damage 

either at the telomeres (Hewitt et al., 2012), or at areas of the genome other 

than the telomeres when damage is severe enough (Nakamura et al., 2008). 

Senescence can also be induced in response to oncogene activation in an 

attempt to reduce the risk of cancer (Serrano et al., 1997), and senescence can 

be induced in response to epigenetic changes such as histone alterations 

(Rebbaa et al., 2006). The mitochondrial production of ROS has also been 

shown to be increased prior to senescence (Moiseeva et al., 2009) suggesting a 

causal role, which could have consequences in terms of ageing for which ROS 

levels are increased (Rufini et al., 2013).  

 

4.1.3 Consequences of cellular senescence 

During senescence, cells maintain the ability to secrete a variety of factors, 

such as ROS (Passos et al., 2010), growth factors, and pro-inflammatory 

cytokines and chemokines (Nelson et al., 2012). This profile of released factors 

is known as the senescence-associated secretory phenotype (SASP), which 

may have both beneficial and detrimental consequences (Campisi, 2013). An 

example of a beneficial consequence is the recruitment of pro-inflammatory 

cytokines to the senescent cell, to remove not only the senescent cells 

themselves eventually, but also to remove the surrounding non-senescent cells 

which may have bypassed the senescent response and be potentially 

carcinogenic (Kang et al., 2011; Campisi, 2013). Examples of detrimental 
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consequences of the SASP include accelerated ageing, due to the release of 

damaging factors such as ROS and inflammatory factors (Nelson et al., 2012). 

Other consequences of senescence include its role in cancer. The process of 

senescence is thought to have evolved as a tumour-suppressive mechanism to 

prevent the incidence of cancerous cells (Campisi and d'Adda di Fagagna, 

2007). However, senescence may be a double-edged sword in terms of cancer, 

because it can also increase ROS levels and inflammatory cytokine release, 

which may cause genetic mutations in adjacent cells and potentially result in a 

malignant transformation (Krtolica and Campisi, 2002; Nelson et al., 2012; 

Rufini et al., 2013).  

 

4.1.4 Senescence and ageing 

Cellular senescence may be an example of a trait which has evolved due to its 

benefits in early life in terms of cancer suppression, but is detrimental in later 

life (due to an accumulation of senescent cells) for which natural selection is no 

longer effective (known as antagonistic pleiotropy) (Campisi, 2005). 

Senescence is thought to play a prominent role in ageing, and the mechanisms 

by which these cells may affect ageing include: 1) depletion of the stem cell 

pool as stem cells senesce, resulting in a decreased capacity for repair and 

renewal in older individuals (Rossi et al., 2008; Rufini et al., 2013); 2) depletion 

of somatic cells, resulting in a loss of tissue function (Rufini et al., 2013); and 3) 

the release of factors (the SASP) which can induce chronic inflammation and 

damage in surrounding cells (Nelson et al., 2012; Naylor et al., 2013). 

Senescent cells have been shown to be increased in an age-dependant manner 

in many tissues and organisms, including humans (Dimri et al., 1995; Mishima 

et al., 1999; Campisi, 2005; Herbig et al., 2006; Noppe et al., 2009; Naylor et 

al., 2013). The first causative role of senescence in ageing was demonstrated 

by Baker et al., (2011), who found that if senescent cells were eliminated by 

drug-administration in a prematurely aged mouse model, the progression of 

age-related disorders such as cataracts and dermal thinning was halted (Baker 

et al., 2011).  

  

Mitochondrial dysfunction is thought to play a role in the increased levels of 

senescent cells observed with age. Previous studies have shown that mice with 

knocked-down MnSOD have higher levels of mitochondrial ROS production, 
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and an increased number of senescent cells (Treiber et al., 2011; Velarde et al., 

2012), suggesting a causal role for mitochondrial ROS in senescence. These 

mice also showed accelerated ageing phenotypes and a reduced lifespan, 

implicating a role for both senescence and mitochondria in ageing. Other 

studies suggesting a causal role of mitochondria in senescence have been 

performed in human lung fibroblasts, for which it was found that a decrease in 

superoxide production by the mitochondria (via uncoupling) resulted in a 

decreased number of senescent cells (Passos et al., 2007a). ROS production 

by inhibition of complex I has also been shown to lead to senescence in human 

skin fibroblasts (Dekker et al., 2009), and mitochondrial complex III inhibition 

has been shown to induce senescence in a human lung fibroblast cell line 

(Moiseeva et al., 2009). 

 

In human lung fibroblast cells, it was found that p21 activation (which induces 

senescence) is able to induce mitochondrial dysfunction (decreased 

mitochondrial membrane potential) and increase ROS production (Passos et al., 

2010). This ROS production by the mitochondria following senescence was 

shown to be necessary for maintaining the senescent phenotype, by 

maintaining DNA damage and the DNA damage response (Passos et al., 2010). 

This could potentially imply that an increase in mitochondrial dysfunction and 

ROS production with age are both a cause and a consequence of increased 

senescence levels with age. This could extend the vicious cycle theory of 

ageing further (Bandy and Davison, 1990) by introducing an additional 

interacting factor to contribute to mitochondrial dysfunction and ROS, whilst also 

itself being affected by ROS (Figure 23). The role of mtDNA damage in 

senescence remains unclear, however it has been suggested that mtDNA 

damage contributes to the senescent phenotype by increasing mitochondrial 

dysfunction and ROS (Passos et al., 2007b), which ties-in with the vicious cycle 

theory of ageing (Figure 23). MtDNA damage has also been shown to be higher 

in senescent cells, by measuring the level of damage via qPCR within an 11 kb 

section of the mitochondrial genome (Passos et al., 2007a). However, not all 

cells in older organisms become senescent, as the induction of senescence is a 

stress response which only occurs in a minority of cells exposed to 

unfavourable conditions, or with mutations leading to oncogenic activation. 
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Figure 23  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Potential interaction of cellular senescence with the vicious cycle theory of 
ageing. The vicious cycle theory of ageing proposes that mtDNA damage caused by ROS 
results in mitochondrial dysfunctional and further ROS release in a continuing cycle of damage 
(Harman, 1972; Bandy and Davison, 1990). However, it may be that additional factors interact 
with this cycle, such as cellular senescence (shown in red). Senescence has been shown to 
cause mitochondrial dysfunction and ROS release, and has also been shown to be induced and 
maintained by ROS caused by mitochondrial dysfunction. The mitochondrion is shown in pink. 
 
 
 
 

4.1.5 Complex II and senescence 

A possible role for complex II in promoting cellular senescence comes from the 

observation that mice in vivo have decreased complex II activity when ROS 

levels are increased by SOD knock-out or by natural age (Li et al., 1995; Melov 

et al., 1999; Morten et al., 2006; Velarde et al., 2012), and an increase in 

senescent cells (Velarde et al., 2012). This could suggest a link between a 

decrease in complex II activity, an increase in ROS, and an increase in 

senescence; however, a causal role between complex II and senescence was 

not established. In humans, it has been shown that a decrease in iron in liver 

cells is able to cause a decrease in complexes I, II, and III (as these complexes 

contain iron), and also an increase in senescence (Yoon et al., 2003; Yoon et 

al., 2004). This could indicate a potential role for complex II (as well as 

complexes I and III) in senescence induction. As complex II has recently been 

shown to play a prominent role in ROS production (Quinlan et al., 2012), it is 

possible that any disruptions in this complex will have an effect on senescence 

in human skin. 
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4.1.6 Telomerase and ageing 

Telomeres are the repetitive DNA structures found at the ends of linear 

chromosomal DNA, responsible for preventing the unwinding and unnecessary 

repair of the DNA (Rodier et al., 2005; Campisi, 2013). Due to DNA polymerase 

being unable to fully synthesis one strand-end of DNA during replication 

(Watson, 1972; Olovnikov, 1973), telomeres become gradually shorter with age 

both in vitro and in vivo (Harley et al., 1990; Allsopp et al., 1995; Cawthon et al., 

2003), which can induce cellular senescence. To prevent this from occurring in 

certain cells, such as germ line cells (Kim et al., 1994), an enzyme called 

telomerase is present which adds DNA bases to the ends of the telomeres to 

decrease the rate of shortening and prevent senescence induction (Greider and 

Blackburn, 1985). However, telomerase is not present in the majority of somatic 

cells so is unable to protect these cells from senescence (Kim et al., 1994; 

Bacchetti and Counter, 1995).  

 

Telomerase is made up of 2 subunits, a catalytic unit (TERT), and an RNA 

template unit (TR) (Autexier and Lue, 2006). During telomerase activity, TERT 

is able to bind to the telomeres, and TR acts as a template for the addition of 

new bases for telomere extension (Greider and Blackburn, 1985). Previous 

studies have shown that TERT overexpression in cells in vitro is able to stably 

maintain the length of the telomeres, increase replicative lifespan, and reduce 

the number of senescent cells observed (Bodnar et al., 1998; Franco et al., 

2001; Daniels et al., 2010). In terms of in vivo studies, it has been found that 

mice lacking telomerase activity experience accelerated ageing and increased 

senescence, which was reversed when TERT was knocked-in (Jaskelioff et al., 

2011). It has also been found that treating normal mice with an adenovirus 

expressing TERT can cause a reduction in ageing biomarkers, and an 

increased lifespan (Tomás-Loba et al., 2008; Bernardes de Jesus et al., 2012). 

Due to the properties of TERT overexpression such as a decreased rate of 

telomere shortening, improved antioxidant defences, increased repair capacity, 

lower ROS levels, a higher number of population doublings, and lower 

senescence levels, cells overexpressing this catalytic unit can be used as a 

model for younger cells (Bodnar et al., 1998; Zhu et al., 2000; Franco et al., 

2001; Sharma et al., 2003; Armstrong et al., 2005; Masutomi et al., 2005; 

Mondello et al., 2006; Passos et al., 2007b; Ahmed et al., 2008; Saretzki, 2009; 
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Daniels et al., 2010; Indran et al., 2011; Bellot and Wang, 2013; Smith et al., 

2013). This technique was used in one area of the present chapter to confirm 

differences in mitochondrial complex II activity with age, in a synthetic model of 

ageing.  

 

4.1.7 Cell sorting into senescent and non-senescent populations 

In order to study differences between senescent and non-senescent cells, 

previous studies have sorted cells into senescent and non-senescent cell 

populations based on biomarkers of senescence, using fluorescence-activated 

cell sorting (FACS) (Martin-Ruiz et al., 2004; Passos et al., 2007a; Passos and 

von Zglinicki, 2007; Birket et al., 2009). FACS is a method used to separate 

cells based on certain physical properties (such as size, granularity, or 

fluorescence), and lipofuscin has been used previously in FACS to sort cells 

into senescent and non-senescent populations (Martin-Ruiz et al., 2004; Passos 

and von Zglinicki, 2007; Birket et al., 2009), as this pigment is higher with age. 

Previous work has shown that FACS-sorted senescent populations have higher 

ROS levels, higher levels of mitochondrial dysfunction (in the form of increased 

mitochondrial superoxide production and increased mtDNA damage), shorter 

telomeres, and higher telomeric DNA damage (Martin-Ruiz et al., 2004; Passos 

et al., 2007a), when compared to the non-senescent cells. However, the rate of 

mitochondrial complex II activity has not been investigated previously in these 

separated cell populations, and would be useful to investigate due to the 

potential role of complex II in the ageing process as shown in Chapter 3. 
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4.2 Hypotheses 

In the previous chapter (Chapter 3), it was found that complex II activity 

decreased with age in human skin fibroblasts. It could be hypothesised that 

senescent cells from older individuals are less efficient that those found in 

younger individuals, which has not been examined previously, resulting in a 

decrease in complex II activity in senescent cells with age. To address this 

hypothesis, fibroblasts from differently aged individuals were separated into 

senescent and non-senescent cell populations using FACS, with the 

hypotheses that 1) differences exist in complex II activity in senescent cells with 

age; 2) differences do not exist in complex II activity in non-senescent cells with 

age; and 3) senescent cells and non-senescent cells differ in terms of complex 

II activity. Additionally, further differences between senescent and non-

senescent cells were elucidated by examining the level of an age-related 

mitochondrial mutation (T414G) in the two populations, to see whether there are 

any differences in mutation level with age in the populations, in an attempt to 

provide a better understanding of differences in mtDNA damage in senescent 

and non-senescent cells with age.  

 

Complex II activity in a model of younger and older cells was also tested, in lung 

fibroblast cells either with (younger) or without (older) additional telomerase, to 

confirm whether the decrease in complex II activity observed in naturally aged 

cells (Chapter 3) is also observable in cell lines representing different ages, as it 

was hypothesised that complex II activity is decreased in this model of older 

cells. 
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4.3 Materials and Methods 

Cell culture techniques, photometric assays, DNA extractions, qPCR reactions, 

and gel electrophoresis assays used within this chapter are described in the 

general Materials and Methods chapter (Chapter 2). MRC5 and MRC5/hTERT 

cells were received from Dr Gabriele Saretzki, and the overexpression of 

human TERT (hTERT) was achieved previously using retroviral transfection 

(Saretzki et al., 2002; Ahmed et al., 2008). 

 

4.3.1 Fluorescence-activated cell sorting 

FACS was used to separate human skin fibroblast cells into senescent and non-

senescent populations. To perform FACS, cell culture flasks containing 

approximately 18 x 106 cells per sample were washed twice with PBS, and cells 

were detached from the flask using TE at 37°C for 5 minutes, followed by TE 

neutralisation using complete DMEM. Cell samples were placed into 15 ml 

Centrifuge tubes (Sarstedt, Germany) and centrifuged at 1200 rpm for 5 

minutes, followed by resuspension into 2 ml PBS to wash. Cells were re-

centrifuged at 1200 rpm for 5 minutes, and the pellet resuspended in 4 ml 

serum-free DMEM (Life Technologies, UK) with 1% FCS, and transferred to a 

15 ml tube for sorting. FACS was performed using a FACS Aria II Cell Sorter 

(BD Biosciences, UK), by Dr Ian Dimmick (Newcastle University) and Dr David 

McDonald (Newcastle University). During the FACS process (Figure 24), the 

cell sample was added to the sorting machine, and a laser was passed through 

a stream of the sample to multiple detectors set to measure lipofuscin 

autofluorescence from 515 nm to 545 nm (Birket et al., 2009). The excitation 

wavelength range of lipofuscin autofluorescence is 320 nm to 460 nm, and the 

emission wavelength range is 460 nm to 630 nm (Lois and Forrester, 2009). 

The stream of cells was separated into single cell droplets by vibrations, to 

which opposite electrical charges were applied to droplets based on the 

parameter of choice (lipofuscin autofluorescence) (Abcam, 2013). Cells in the 

lower 20% autofluorescence were given an opposite charge to those in the 

upper 20%, to separate non-senescent and senescent cells respectively. These 

percentages were chosen based on those used previously to separate human 

skin fibroblasts into senescent and non-senescent populations (Birket et al., 

2009). Following the assignment of a charge, cell droplets were passed through 

oppositely charged plates (Abcam, 2013) to be separated (Figure 24), ready for 
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Figure 24. Fluorescence-activated cell sorting. During the FACS process, a stream of cells 
(shown in grey) was passed through a laser (shown in pink) to multiple detectors able to 
determine differences between the cells. Cells were assigned a specific charge during droplet 
formation, and separated based on lipofuscin autofluorescence into the lower and upper 20% 
(shown in green and red respectively) using oppositely-charged plates. Those cells in the 
middle 60% (shown in blue) were not assigned a charge and were discarded. +, positive 
charge; -, negative charge. Image influenced by (Abcam, 2013). 
 
 
 
 

During the FACS sort, viable cells were initially selected based on the forward 

scatter (size) of the cells, due to cells below a certain size being non-viable or 

debris (Figure 25A) (Hughes et al., 2009). Viable cells were sorted further into 

single cells based on side scatter (granularity and size), as the height and area 

of a single cell are generally proportional (Figure 25B) (Hughes et al., 2009). 

Viable single cells were then sorted into senescent and non-senescent 

populations based on lipofuscin autofluorescence (515 nm to 545 nm) (Figure 

25C and Figure 25D) (Birket et al., 2009). Cells were collected into two separate 

15 ml tubes and centrifuged at 1200 rpm for 10 minutes. DNA was either 
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93% of viable cells are 
singlets

78% of total events 
measured are viable cells

93% of viable cells are 
singlets

78% of total events 
measured are viable cells

extracted from the pellet, or the pellet was resuspended in 200 µl complex II 

buffer, snap-frozen 3 times, and stored at -80°C until use in photometry. 

 

Figure 25   

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. FACS output graphs for the separation of cells into senescent and non-
senescent populations. A) Initially, viable cells were selected for based on their size (forward 
scatter), as shown by the black box. Those cells below a certain size were excluded from the 
analysis, and cells which were further sorted are shown in blue. Each dot represents a cell. B) 
Single cells were selected from the viable cells as shown by the black box. Side scatter-A 
represents cell area and side scatter-H represents cell height, which are generally proportional 
for single cells. C) Viable singlets were sorted into the upper and lower 20% lipofuscin 
autofluorescence, from 515-545 nm. Side scatter was not used to sort cells but is shown to give 
an approximation of the relative size of cells, which generally increases as senescence 
increases. The green dots show the lower 20% autofluorescence, the blue dots the middle 60% 
autofluorescence, and the red dots the upper 20% autofluorescence. D) The cells are shown 
again with a different y-axis parameter, with the lipofuscin autofluorescence wavelengths used 
(515-545 nm), compared to other fluorescence wavelengths of 562-588 nm. This second 
fluorescence was not used to sort cells, but it can be seen that cells with higher fluorescence for 
515-545 nm also show higher fluorescence for 562-588 nm, as these wavelengths are included 
in the emission range of lipofuscin autofluorescence (Lois and Forrester, 2009). The black 
boxes show the senescent and non-senescent cell populations. 
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4.3.2 Senescence-associated β-galactosidase staining 

To quantify the senescent and non-senescent cells in the sorted populations, 

senescence-associated β-galactosidase (β-gal) staining was performed using a 

Senescence Cells Histochemical Staining Kit (Sigma-Aldrich, UK), as β-gal has 

been shown to be present only in senescent cells (Dimri et al., 1995; Lee et al., 

2006; Itahana et al., 2007; Passos et al., 2007a). During the staining procedure, 

the added substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) 

is cleaved by β-gal to form galactose and 5-bromo-4-chloro-3-hydroxyindole 

(Norgen, 2010). The 5-bromo-4-chloro-3-hydroxyindole then forms 5,5'-

dibromo-4,4'-dichloro-indigo which is blue in colour and can be visualised 

(Norgen, 2010). Approximately 1 x 105 cells were seeded per well from FACS-

sorted populations into a 12-Well Plate (Corning Inc., USA). Cells were 

incubated at 37°C for 16 hours to allow adhesion to the plate, then washed 

twice with PBS, and 1.5 ml Fixation Buffer was added per well. The plate was 

incubated for 6 minutes at room temperature, after which cells were washed 3x 

with PBS, and 1 ml Staining Mixture (containing 1x Staining Solution, 12.5 µl 

Reagent B, 12.5 µl Reagent C, 25 µl X-Gal Solution, and 850 µl dH20) was 

added per well. Plates were incubated at 37°C for 16 hours in the absence of 

CO2 with Parafilm Laboratory Film (Bemis, USA), to allow staining to occur. 

Following incubation, the number of blue cells (senescent cells) and the number 

of non-blue cells (non-senescent cells) were counted under a light microscope 

out of 500-1000 cells (Birket et al., 2009), with the percentage of cells 

expressing the blue β-gal expressed as a percentage of the total number of 

cells.   

 

4.3.3 T414G sequence amplification 

In order to determine the level of the T414G mtDNA mutation within samples, 

DNA was extracted from approximately 1.5 x 106 cells. The mtDNA sequence of 

130 bp containing the T414G mutation was amplified using a GeneAmp PCR 

System 9700. One of the primers used for amplification was biotin-labelled, to 

generate a biotin-tagged DNA strand, and the primers were designed previously 

by Dr Emma Watson (Newcastle University) and produced by Eurofins MWG 

Operons, with the sequences shown in Table 1. To perform the PCR reaction, 

the following components were made up to a final volume of 25 µl per well, in 

MicroAmp Fast Reaction Tubes (Applied Biosystems, UK) with MicroAmp 
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Optical 8-Cap Strips (Applied Biosystems, UK): dH20, 1x Colourless GoTaq 

Flexi Reaction Buffer (Promega, UK), 200 µM dNTP mix, 6 mM magnesium 

chloride (Promega, UK), 0.5 µM each of forward and reverse primers, 

0.1x GoTaq Hot Start polymerase (Promega, UK), and 100 ng template DNA. 

The PCR conditions used were: 95°C for 10 minutes; 30 cycles of 94°C for 

30 seconds, 62°C for 30 seconds, and 72°C for 30 seconds; and a final stage of 

72°C for 10 minutes. Agarose gel electrophoresis was performed to confirm a 

product size of 130 bp. 

 
 

Table 1  
 

Primer Set Base Sequence (5’ to 3’) Length (bp) 
Nucleotide Numbers 

(bp) 

T414G 
Human 

F CCT AAC ACC AGC CTA ACC AGA TTT 
130 370-499 

R Bio-CGG GGG TTG TAT TGA TGA GAT TA 

 
 
Table 1. Primer sequences for the detection of the T414G mutation. The primer sequences 
to amplify the mtDNA region containing the T414G mutation are shown in a 5’ to 3’ direction, for 
the forward (F) and reverse (R) primers. The length of the sequence to be amplified and the 
nucleotide numbers showing the region of binding are given. The biotin-label (Bio) is shown on 
the reverse primer.  
 
 
 
 

4.3.4 Pyrosequencing 

Pyrosequencing to determine the percentage of a particular nucleotide at a 

particular position (T414G) was performed using a Pyromark Q24 Instrument 

(Qiagen, UK), with the 130 bp DNA as a single-stranded template. In order to 

separate single DNA strands from the PCR-amplified double-stranded DNA, 

15 µl DNA sample was placed into each well of a 24-Well PCR Plate (Starlab, 

UK), and made up to 80 µl with dH20, 40 µl PyroMark Binding Buffer (Qiagen, 

UK) and 2 µl Streptavidin Sepharose High Performance beads (GE Healthcare, 

UK), to allow the biotin-labelled DNA strand to bind to the sepharose beads and 

later become separated from the opposite DNA strand. Plates were shaken for 

10 minutes to allow DNA binding to sepharose beads, and a PyroMark Q24 

Workstation (Qiagen, UK) was used to separate the biotin-labelled DNA strand 

from the opposite strand. During this process, samples were taken-up by a 

vacuum pump tool, to which the sepharose beads adhered. Any impurities were 

then removed by placing the vacuum pump in 70% ethanol for 5 seconds with 
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the vacuum pump turned on. The vacuum pump was next placed into PyroMark 

Denaturation Solution (Qiagen, UK) for 5 seconds whilst turned on, to remove 

the opposite DNA strands and retain the required single-stranded DNA with the 

biotin-label. The vacuum pump was placed in PyroMark Wash Buffer (Qiagen, 

UK) for 10 seconds, after which the pump was switched off and placed into a 

24-Well PyroMark Q24 Plate (Qiagen, UK), with each well containing 0.75 µl 

PyroMark Sequencing Primers (Qiagen, UK) and 24.25 µl PyroMark Annealing 

Buffer (Qiagen, UK), to allow the single-stranded DNA to enter the mix. The 

plate was kept at 80°C for 2 minutes then cooled to 20°C to allow primer binding 

(Schock, 2012), and was added to the pyrosequencing instrument along with a 

cartridge containing 116 µl Pyromark Enzyme Mixture (Qiagen, UK) (containing 

DNA polymerase, ATP-sulfurylase, luciferase, and apyrase), 116 µl PyroMark 

Substrate Mixture (Qiagen, UK) (containing adenosine 5’ phosphosulfate and 

luciferin), and the 4 separate dNTPs (Qiagen, UK) (dATP, dTTP, dGTP, and 

dCTP). The reaction was performed, and the data analysed using PyroMark 

Q24 Software (Qiagen, UK). During the pyrosequencing reaction, each of the 4 

dNTPs were added sequentially to the reaction, to allow complementary bases 

to be incorporated onto the single-stranded DNA. The successful binding of a 

dNTP caused the release of pyrophosphate (PPi) (Figure 26A). This PPi was 

converted to ATP by sulfurylase (Schock, 2012), and then ATP converted the 

substrate luciferin to oxyluciferin causing an emission of visible light (Figure 

26A) (Schock, 2012). This light was represented in the form of a peak (Figure 

26B and Figure 26C), to provide information on the level of T and G present at 

the 414 nucleotide location. The non-incorporated dNTPs were degraded by 

apyrase to prevent interference with the addition of the next nucleotide in the 

sequence. The cycle was repeated for each dNTP type at each DNA-strand 

nucleotide. The positive and negative controls containing 100% G and 0% G 

are shown in Figure 26B and Figure 26C respectively. Samples which gave 

percentages of G of over 2% were assumed to have the mutation present 

(Birket and Birch-Machin, 2007). 
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Figure 26  

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 
  

 

 
 
 
Figure 26. Pyrosequencing principle. A) During pyrosequencing, single-stranded DNA is 
amplified by polymerase (represented by the blue circle), with the individual dNTPs (dATP, 
dTTP, dCTP, and dGTP) added sequentially, and degraded by apyrase before the addition of 
the subsequent dNTP. In the figure above, T is the next DNA base in the single-stranded DNA 
sequence, so the added nucleotide (dATP) is able to bind (shown in orange). If the dNTP is able 
to bind it will release PPi, which is converted to ATP by sulfurylase. ATP is used to convert 
luciferin to oxyluciferin, causing visible light to be emitted. T: thymine; A: adenine; G: guanine; 
and C: cytosine. B) The positive control containing 100% G and 0% T at position 414 gave the 
expected peaks. C) The negative control containing 0% G and 100% T gave the expected 
peaks. 
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4.4 Results 

4.4.1 Cell sorting into senescent and non-senescent populations 

In the previous chapter (Chapter 3), it was demonstrated that complex II activity 

decreased with age in human skin fibroblasts. To further investigate the reason 

behind this decrease in activity, fibroblast cell samples from the same differently 

aged donors as used in the previous chapter were separated into senescent 

and non-senescent populations using FACS. Following cell sorting, the 

senescent and non-senescent cell populations were stained with a marker of 

senescence to confirm that the cells in the lower 20% lipofuscin 

autofluorescence did in fact contain mostly non-senescent cells, and the cells in 

the upper 20% lipofuscin autofluorescence contained mostly senescent cells. 

The marker β-gal was used, as this is a previously validated marker of 

senescence as it is found only in senescent cells (Dimri et al., 1995; Lee et al., 

2006; Itahana et al., 2007; Passos et al., 2007a). Non-senescent cells appeared 

colourless, and senescent cells were blue in colour, as shown in Figure 27. As 

can be seen in Figure 28A, the cells in the lower 20% autofluorescence had 

significantly higher levels of non-blue cells (non-senescent cells) than blue cells 

(senescent cells) (P<0.0001, unpaired t-test). Cells in the upper 20% 

autofluorescence had significantly lower levels of non-senescent cells 

compared to senescent cells (Figure 28B) (P<0.0001, unpaired t-test). These 

significant differences confirmed successful sorting into senescent and non-

senescent cell populations (Birket et al., 2009). As the upper 20% lipofuscin 

autofluorescence had mostly senescent cells, and the lower 20% had mostly 

non-senescent cells, these populations are referred to senescent and non-

senescent populations respectively in future sections. 
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Figure 27. Senescence-associated β-gal staining. The presence of senescence in cells from 
FACS-sorted cell populations was examined using senescence-associated β-gal staining. β-gal 
activity has been shown previously to only be present in senescent cells (Dimri et al., 1995), 
and these cells were shown by a blue colour, an example of which is given by the black arrow. 
The non-senescent cells remained colourless. 
 
 
 
 

Figure 28  
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 28. The percentage of senescent and non-senescent cells in the lower and upper 
20% of lipofuscin autofluorescence. Senescence was determined by β-gal staining following 
FACS. A) The percentage of non-senescent cells (grey bar) and senescent cells (blue bar) in 
the lower 20% lipofuscin population for 5 donor samples. There was a significantly higher 
percentage of non-senescent than senescent cells (P<0.0001***, unpaired t-test). B) The 
percentage of non-senescent and senescent cells from the upper 20% lipofuscin population for 
5 donor samples. There was a significantly higher percentage of senescent cells than non-
senescent cells (P<0.0001***, unpaired t-test). The error bars show the SEM. The β-gal stain 
was performed at least in duplicate for each donor sample for each cell status (senescent and 
non-senescent), for 5 samples in total for each of the upper and lower lipofuscin groups.  
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4.4.2 β-gal staining in senescent and non-senescent populations from 

older and younger donors   

Older individuals have been shown in previous studies to have a higher number 

of senescent cells than younger individuals (Dimri et al., 1995; Noppe et al., 

2009). Therefore, it was speculated that the FACS-sorted upper 20% 

autofluorescence population (the senescent population) from the older 

individuals may possibly contain a higher number of senescent cells than the 

upper 20% from younger individuals, which could affect later results. To ensure 

that this was not the case, β-gal was used to stain the FACS-sorted cells, and it 

was found that both the older (>50 years old) and the younger (<50 years old) 

donor samples did not have significantly different percentages of senescent 

cells present in either the lower 20% autofluorescence (Figure 29A) (P=0.1434, 

unpaired t-test), or the upper 20% autofluorescence (Figure 29B) (P=0.8845, 

unpaired t-test). The age parameter used (younger or older than 50 years old) 

was chosen based on previous work (Chretien et al., 1994; Micallef et al., 2007; 

Williams et al., 2010; Geng et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 
 

Y
ou

ng
 (<

50
 y
ea

rs
)

O
ld
 (>

50
 y
ea

rs
)

0

20

40

60

80

100

Y
ou

ng
 (<

50
 y
ea

rs
)

O
ld
 (>

50
 y
ea

rs
)

0

20

40

60

80

100

Figure 29 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 29. Percentage of senescent cells in the lower and upper 20% lipofuscin for older 
and younger individuals. Senescence was determined by β-gal staining following FACS. A) 
Percentage of blue cells in the lower 20% lipofuscin populations for young (<50 years old) and 
old (>50 years old) individuals, for 5 donors. There was no significant difference between age 
groups (P=0.1434, unpaired t-test). B) Percentage of blue cells for the upper 20% lipofuscin 
populations, for 5 young and old donors. There was no significant difference between age 
groups (P=0.8845, unpaired t-test). The error bars show the SEM. The β-gal stain was 
performed at least in duplicate for each sample for both the upper and lower lipofuscin 
populations. 
 
 
 
 

4.4.3 Complex II activity in senescent and non-senescent cells from 

differently aged donors 

Skin fibroblast samples from 15 donors aged from 6 to 71 years old were sorted 

via FACS into senescent and non-senescent populations, to determine the level 

of complex II activity within these two populations for each individual. It was 

found that within the non-senescent cells alone, there was no correlation 

between CII/CS activity and age (Figure 30A) (P=0.5366, rho=-0.1734, non-

parametric Spearman correlation). However, within the senescent cell 

population, there was a significant decrease in CII/CS activity with age (Figure 

30B) (P=0.0289, rho=-0.5630, non-parametric Spearman correlation).  

 

When the CII/CS activities of the 15 senescent and 15 non-senescent cell 

populations were compared, it was found that complex II activity was 
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unexpectedly higher in the senescent cells (Figure 31A) (P=0.0086, unpaired t-

test). This may seem unusual as older people are thought to have a higher 

number of senescent cells (Dimri et al., 1995; Noppe et al., 2009), yet the 

complex II activity for the older individuals was not higher than for the younger 

individuals (Chapter 3). However, it was found that senescent cells from older 

individuals have a lower complex II activity than senescent cells from younger 

individuals (Figure 30B), which could explain the overall lower CII/CS activity 

with age (Chapter 3). Upon further investigation, it was found that the non-

senescent cells from younger individuals showed no difference in CII/CS activity 

compared to the senescent cells from older individuals (Figure 31B) (P=0.5470, 

unpaired t-test), indicating that the senescent cells from older individuals would 

not be likely to cause a higher CII/CS activity in overall cell samples. 

Additionally, younger individuals showed significantly higher levels of CII/CS 

activity in their senescent cells compared to their non-senescent cells (Figure 

31C) (P=0.0311, unpaired t-test), whereas although a trend was present, there 

was no significant difference in CII/CS activity between the senescent and non-

senescent cells of the older individuals (Figure 31D) (P=0.0708, unpaired t-

test). 
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Figure 30. Complex II activity compared to donor age for non-senescent and senescent 
human skin fibroblasts. A) CII/CS activity for the FACS-sorted non-senescent populations of 
fibroblasts from 15 donors was compared to the age of each donor. There was no significant 
correlation between CII/CS activity and age for the non-senescent cells (P=0.5366, rho=-
0.1734, non-parametric Spearman correlation). B) CII/CS activity for the FACS-sorted 
senescent populations of fibroblasts from 15 donors, compared to the age of each donor. There 
was a significant decrease in CII/CS activity with age for the senescent cells (P=0.0289, rho=-
0.5630, non-parametric Spearman correlation). The green line shows the line of best fit. The 
error bars show the SEM. Photometry was performed at least twice for the citrate synthase 
assay and at least twice for the complex II activity assay for each cell population of each 
sample. 
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Figure 31. Complex II activity in senescent and non-senescent cell populations. A) CII/CS 
activity of fibroblasts from 15 donors was determined following FACS, in senescent and non-
senescent cell populations. CII/CS activity was significantly higher in senescent cells than in 
non-senescent cells (P=0.0086**, unpaired t-test). B) CII/CS activity was not significantly 
different in non-senescent cells from younger donors (<50 years old) compared to senescent 
cells from older donors (>50 years old) (P=0.5470, unpaired t-test). C) Younger donors had 
significantly higher levels of CII/CS activity in their senescent cells compared to their non-
senescent cells (P=0.0311*, unpaired t-test). D) Older donors had no significant difference in 
CII/CS activity between their senescent and non-senescent cells (P=0.0708, unpaired t-test). 
The error bars show the SEM. Photometry was performed at least twice for the citrate synthase 
assay and at least twice for the complex II activity assay for each cell population of each 
sample, and the average value was used for each sample. 
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4.4.4 Complex IV activity in senescent and non-senescent cells from 

differently aged donors 

To determine whether the decrease in complex II activity seen in senescent 

cells with age was also occurring in other mitochondrial complexes, the level of 

complex IV activity was measured in the FACS-sorted cell populations. It was 

found that there was no significant correlation in CIV/CS activity with age for the 

non-senescent population (Figure 32A) (P=0.5560, rho=-0.2857, non-

parametric Spearman correlation) or for the senescent population (Figure 32B) 

(P=0.4976, rho=0.3214, non-parametric Spearman correlation). This suggested 

that complex II activity, but not complex IV activity, decreases with age in 

senescent cells. It also suggested that neither complex is affected by age in the 

non-senescent cell population. Despite fewer samples available for complex IV 

activity analysis, there did not appear to be any trend present between complex 

IV activity and age in either the senescent or the non-senescent populations. 

There was also no correlation between complex IV activity and age in unsorted 

cells (Chapter 3), which suggested that the rate of complex IV activity does not 

decrease with age. 

 

There was no significant difference in complex IV activity between the 

senescent and non-senescent cells when directly compared (Figure 33) 

(P=0.8175, unpaired t-test).  
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Figure 32. Complex IV activity compared to donor age for non-senescent and senescent 
human skin fibroblasts. A) CIV/CS activity for the FACS-sorted non-senescent populations of 
fibroblasts from 7 donors, compared to the age of each donor. There was no significant 
correlation between CIV/CS activity and age (P=0.5560, rho=-0.2857, non-parametric 
Spearman correlation). B) CIV/CS activity for the FACS-sorted senescent populations of 
fibroblasts from 7 donors, compared to the age of each donor. There was no significant 
correlation between CIV/CS activity and age (P=0.4976, rho=0.3214, non-parametric Spearman 
correlation). The error bars show the SEM. Photometry was performed at least twice for the 
citrate synthase assay and at least twice for the complex IV activity assay for each cell 
population of each sample. 
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Figure 33. Complex IV activity in non-senescent and senescent cell populations. CIV/CS 
activity of fibroblasts from 7 donors was determined following FACS. There was no significant 
difference in CIV/CS activity between the non-senescent and senescent cell populations 
(P=0.8175, unpaired t-test). The error bars show the SEM. Photometry was performed at least 
twice for the citrate synthase assay and at least twice for the complex IV activity assay for each 
population of each sample, and the average value was used for each sample.  
 
 
 
 

4.4.5 T414G mutation level in senescent and non-senescent cells from 

differently aged donors 

To further understand the possible differences between senescent and non-

senescent cells with age, the level of an age-related mtDNA mutation, T414G 

(Birket and Birch-Machin, 2007), was measured using pyrosequencing. Initially, 

to confirm an age-related increase in this mutation, unsorted fibroblast samples 

from 21 individuals aged between 6 and 72 years old were tested. It was found 

that the T414G mutation was detectable in 9 of the 21 samples, and a 

significant increase in the level of mutation was observed with age (Figure 34) 

(P=0.0291, rho=0.4762, non-parametric Spearman correlation). However, this 

was not the case for the FACS-sorted cells, for which the T414G mutation was 

not detected in any of the 13 senescent or 13 non-senescent sample 

populations tested (despite being present in 5 of the same unsorted samples) 

(results not shown). This could imply that the mutation was present only in 

those cells which were discarded (the middle 60% lipofuscin autofluorescence), 

or that the mutation was present throughout the cell sample regardless of 
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senescence status, and was therefore not detectable when only the upper or 

lower 20% of the sample was examined due to its dilution to low levels. 

Additionally, it is worth noting that the T414G mutation was not able to be 

detected in primary unsorted keratinocyte cells which were also tested.  

 

Figure 34  
 

 

 

 

 

 

 

 

 

 

 

Figure 34. The level of T414G mutation compared to the age of the donor in unsorted 
fibroblast cells. A) The percentage of T414G mutation in 21 unsorted fibroblast samples 
compared to the age of the donor. There was a significantly higher level of mutation with age 
(P=0.0291, rho=0.4762, non-parametric Spearman correlation). The green line shows the line of 
best fit. The error bars show the SEM. Results were obtained from two pyrosequencing repeats 
for 21 samples.    
 
 
 
 

4.4.6 Mitochondrial activity in a model of younger and older cells 

Finally, to further confirm the decrease in complex II activity observed with age 

in human skin fibroblasts (Chapter 3), a model for older and younger cells was 

used. The model used was human lung fibroblast cells (MRC5 cells), and 

human lung fibroblast cells with increased expression of the catalytic subunit of 

telomerase (MRC5/hTERT cells). The cells overexpressing hTERT were used 

to represent the younger cells, as the additional telomerase activity should 

result in similar phenotypes to those found in cells from younger individuals. To 

demonstrate the reliability of hTERT overexpression in preventing cellular 

senescence, the MRC5/hTERT and the MRC5 cells were tested for β-gal 
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activity. It was found that the MRC5/hTERT cells had a significantly lower level 

of senescent cells than the MRC5 cells (Figure 35) (P=0.0026, unpaired t-test), 

as expected.   

 

Complex II activity was measured in the MRC5 and MRC5/hTERT cells, and it 

was found that the MRC5/hTERT cells had a significantly higher level of activity 

than the MRC5 cells (Figure 36) (P=0.0012, unpaired t-test). This correlated 

with the work using differently aged skin fibroblasts where it was found that the 

younger individuals had faster complex II activity than the older individuals 

(Chapter 3). Contradictory to the complex IV activity results found in the 

naturally aged human skin (Chapter 3) for which there was no difference with 

age, the MRC5/hTERT cells overexpressing telomerase showed a significantly 

higher level of complex IV activity than the MRC5 cells (Figure 37) (P=0.0209, 

unpaired t-test). This suggested that in the lung cells, the level of complex IV 

activity is higher in cells with additional telomerase. 

 

Figure 35  

 
 

 

 

 

 

 

 

 

 
 
 
 
Figure 35. The percentage of senescent cells for MRC5 and MRC5/hTERT cells. The 
percentage of senescent cells for the MRC5 and MRC5/hTERT cells as determined by β-gal 
staining. The level of β-gal-stained cells was significantly higher in the MRC5 cells than in the 
MRC5/hTERT cells (P=0.0026**, unpaired t-test). The error bars show the SEM. The β-gal 
staining was performed at least in triplicate for each cell type. 
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Figure 36  

 
 

 

 

 

 

 

 

 

 
 
 
Figure 36. Complex II activity in MRC5 and MRC5/hTERT cells. CII/CS activity of MRC5 and 
MRC5/hTERT cells as determined by photometry. CII/CS activity was significantly higher in the 
MRC5/hTERT cells than in the MRC5 cells (P=0.0012**, unpaired t-test). The error bars show 
the SEM. Photometry was performed at least twice for the citrate synthase assay and at least 
four times for the complex II activity assay. 
 
 
 

Figure 37  

 
 

 

 

 

 

 

 

 

 

 
 
Figure 37. Complex IV activity in MRC5 and MRC5/hTERT cells. CIV/CS activity of MRC5 
and MRC5/hTERT cells as determined by photometry. CIV/CS activity was significantly higher 
in the MRC5/hTERT cells than in the MRC5 cells (P=0.0209*, unpaired t-test). The error bars 
show the SEM. Photometry was performed at least twice for the citrate synthase assay and at 
least twice for the complex IV activity assay. 
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4.5 Discussion 

4.5.1 Cells were successfully sorted into senescent and non-senescent 

populations 

Cells from differently aged donors were successfully sorted into senescent and 

non-senescent populations using FACS, as confirmed by the previously well-

established biomarkers of senescence, lipofuscin autofluorescence (Martin-Ruiz 

et al., 2004; Passos et al., 2007a; Passos and von Zglinicki, 2007; Birket et al., 

2009) and β-gal staining (Dimri et al., 1995; Lee et al., 2006; Itahana et al., 

2007; Passos et al., 2007a). 

 

Following FACS sorting, it was initially speculated that the upper 20% 

autofluorescence for the older individuals may contain a higher number of 

senescent cells than the upper 20% autofluorescence for the younger 

individuals, since senescence has been shown to increase with age, both in 

vivo and in culture (Dimri et al., 1995; Mishima et al., 1999; Campisi, 2005; 

Herbig et al., 2006; Noppe et al., 2009; Naylor et al., 2013). If this was the case, 

it would have been difficult to decipher whether any changes observed in 

complex II activity with age were due differences in senescent cell numbers or 

in senescent cell activity. However, this was not the case, because β-gal 

staining of the senescent and non-senescent cell populations of older and 

younger individuals (over and under 50 years old respectively, based on 

previous work (Drouet et al., 1999; Micallef et al., 2007; Williams et al., 2010; 

Geng et al., 2011)) revealed no differences in the levels of β-gal-stained cells.  

 

4.5.2 Complex II activity declines with age in senescent but not in non-

senescent cells 

Based on the observations made in the previous chapter (Chapter 3), and 

observed previously in the literature (Coggan et al., 1992; Boffoli et al., 1994; 

Sandhu and Kaur, 2003; Kumaran et al., 2004; Cocco et al., 2005; Short et al., 

2005; Braidy et al., 2011; Tatarkova et al., 2011; Velarde et al., 2012), complex 

II activity appears to decrease in an age-dependant manner in various 

organisms and tissues. To further understand the reasons behind this decrease 

with age, the level of complex II activity was examined in senescent and non-

senescent skin fibroblast cell populations, as senescent cells are thought to play 

a prominent role in the ageing process, potentially via mitochondrial dysfunction 
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(Passos et al., 2007a; Dekker et al., 2009; Moiseeva et al., 2009; Passos et al., 

2010; Treiber et al., 2011; Velarde et al., 2012). It was found in the present 

study that the activity of complex II decreased in an age-dependant manner in 

senescent cells, but not in non-senescent cells. This could suggest that the 

overall decrease in complex II activity observed in Chapter 3 was due to the 

senescent cells only. The Rho value (measuring the strength of the relationship 

between two factors) observed in Chapter 3 for the age versus the complex II 

activity of donors was -0.4614. For the senescent cell populations only, the 

strength of the relationship was -0.5630. This demonstrates a slightly stronger 

relationship between age and complex II activity for the senescent cells alone, 

possibly due to the removal of the non-senescent cells. However, as the Rho 

value was still not close to -1, it suggested that factors other than ageing may 

also be affecting complex II activity in the senescent cells, such as differences 

between the lifestyles of individuals and the interactions of the other 

mitochondrial complexes, as discussed in Chapter 3 section 3.5.1. However, it 

did appear that senescent cells had a higher influence than non-senescent cells 

in determining complex II activity with age.  

 

To my knowledge, no previous studies have been performed comparing the 

differences in mitochondrial complex activity between senescent cells from 

older and senescent cells from younger individuals. Therefore, this study 

provides the first evidence that senescent cells from older individuals are less 

efficient in terms of mitochondrial complex II activity than senescent cells from 

younger individuals, which could have important implications in terms of 

deciphering the causes of the overall decrease in cellular efficiency observed 

with age (Lopez-Lluch et al., 2006; Gómez and Hagen, 2012). Reasons behind 

this decrease in complex II activity in senescent cells with age remain unknown. 

Future studies measuring complex II subunit levels in these cells could be 

performed, as it was found in Chapter 3 that the expression and protein levels 

of both SDHA and SDHB were decreased with age, which could be potentially 

causative in terms of the decrease in complex II activity. It is therefore possible 

that these subunits were decreased only in the senescent cells with age and not 

in the non-senescent cells; however, this would need to be verified. A possible 

cause of the decrease in complex II activity (and potentially the complex II 

subunit levels) with age in senescent cells, could be due to senescent cells 
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having higher levels of ROS production than non-senescent cells (Passos et al., 

2007a), resulting in an increase in mtDNA/nDNA damage and mitochondrial 

dysfunction (Passos et al., 2007a), which could result in a decrease in complex 

II activity if the damage is high enough. ROS leakage from senescent cells 

(Nelson et al., 2012) could exacerbate the decrease in complex II activity with 

age by causing damage to surrounding cells. This damage may be higher in the 

senescent cells of older individuals due to the lower levels of antioxidants found 

with age (Micallef et al., 2007), and the decline in senescence removal systems 

such as the immune system (Krizhanovsky et al., 2008; Rodier and Campisi, 

2011) and the autophagy/lysosomal pathway (Dutta et al., 2012; Baker and 

Sedivy, 2013; Viiri et al., 2013). This could result in a lower complex II activity in 

the senescent cells of older individuals. However, to confirm whether other 

aspects of senescent cells are less efficient with increasing age, other features 

of the senescent cells would need to be studied, such as the activity of 

complexes I and III, as well as DNA damage and ROS production changes in 

senescent cells with age. 

 

4.5.3 Complex II activity is higher in senescent cells than in non-

senescent cells in younger individuals 

Complex II activity was found to be significantly higher overall in the senescent 

cells compared to the non-senescent cells. Therefore, it might have been 

expected that older individuals would have a higher level of complex II activity 

due to the higher number of senescent cells present in these individuals (Dimri 

et al., 1995); however, this was found not to be the case in the previous chapter 

(Chapter 3). The level of complex II activity was found to be significantly higher 

in the senescent cells of younger compared to the senescent cells of older 

individuals. This could suggest that the higher number of senescent cells 

present in the older donors (Dimri et al., 1995) would not result in a higher 

complex II activity compared to the younger donors. In addition to this, it was 

found that the complex II activity in senescent cells from older individuals was 

not significantly different from the activity in non-senescent cells from younger 

individuals, and senescent and non-senescent cells from the older donors alone 

showed no significant difference in activity, suggesting that a higher number of 

senescent cells in older donors would not be sufficient to increase complex II 

activity. 
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Younger individuals showed a higher complex II activity in their senescent cells 

compared to their non-senescent cells. However, the reason for this higher 

complex II activity in the senescent cells (which could then decrease with age 

due to an accumulation of unrepaired damage) was not tested. It could be 

speculated that senescent cells increase their complex II activity compared to 

non-senescent cells as a compensatory mechanism, due to the increase in 

mitochondrial dysfunction in senescence (Passos et al., 2010). Compensatory 

mechanisms similar to this have been shown to occur previously in the blood 

cells of patients with Leber's hereditary optic neuropathy (an inherited 

degenerative disease of the retinal cells), for which complex I is dysfunctional 

due to mtDNA point mutations, and complex II activity is increased to 

compensate (Yen et al., 1996; Baracca et al., 2005). Other work has shown a 

compensatory increase in complex III activity when complex IV is decreased in 

a model of Alzheimer’s disease (Rhein et al., 2009), and alterations in ATP 

levels can cause changes in mitochondrial complex activities (Ostojic et al., 

2013). Additionally, it has been demonstrated that in mouse heart tissue there is 

a decrease in complex IV activity with age, yet an increase in complex II activity, 

which could be an age-related compensatory mechanism (Kwong and Sohal, 

2000). Alternatively, it could be that complex II activity is increased in senescent 

cells in an attempt to maintain ROS levels and therefore DNA damage and the 

senescent phenotype (Passos et al., 2010). This ROS production could be more 

damaging in older individuals, due to a lower efficiency of cellular defences 

(Micallef et al., 2007; Rodier and Campisi, 2011; Dutta et al., 2012; Viiri et al., 

2013), resulting in damage to complex II and eventually a lower complex II 

activity, potentially with ROS release. This may seem paradoxical, however, 

increased ROS production has been correlated with both a higher (Redout et 

al., 2007; Seidlmayer et al., 2011; Dröse, 2013; Moreno-Sanchez et al., 2013; 

Siebels and Drose, 2013) and a lower (Li et al., 1995; Melov et al., 1999; Ishii et 

al., 2005; Morten et al., 2006; Byun et al., 2008; Quinlan et al., 2012; Velarde et 

al., 2012; Dröse, 2013; Luo et al., 2013) level of complex II activity. Future 

studies investigating the levels of ROS in senescent cells from older and 

younger individuals would be required to confirm this theory, however ROS has 

been shown to be higher in senescent cells than in non-senescent cells (Passos 

et al., 2007a; Birket et al., 2009; Nelson et al., 2012). 
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4.5.4 Complex IV activity is not associated with age in senescent or non-

senescent cells 

As observed in the previous chapter (Chapter 3), the level of complex IV activity 

was not associated with the age of the individual in human skin cells. However, 

to ensure that a change in complex IV activity with age was not masked in 

senescent cells by the presence of non-senescent cells, complex IV activity was 

measured in FACS-sorted cells. No correlation was found between complex IV 

activity and age in either the senescent or the non-senescent cell populations. 

This is in accordance with the results found in Chapter 3, as the overall activity 

of complex IV did not decrease with age. These results suggested that 

mitochondrial dysfunction occurs at complex II but not at complex IV in 

senescent cells with age; however, to confirm whether the decrease in activity 

at the ETC in senescent cells with age was localised to complex II, the activities 

of complexes I and III in senescent cells from differently aged individuals would 

also need to be studied. 

 

The present study demonstrated a lack of difference in complex IV activity 

between senescent and non-senescent cells. Previous work is somewhat 

contradictory in terms of complex IV activity in senescent cells, with some 

studies showing increased and some showing decreased complex IV activity. In 

a recently published study, senescent late-passage human lung fibroblasts and 

early-passage lung fibroblasts induced to senescence by a component of 

cigarette smoke (as confirmed by β-gal and other senescence markers), were 

compared to early-passage non-senescent fibroblasts (Luo et al., 2013). It was 

found that the senescent cells had decreased expression of complexes I, II, III, 

and V, but an increase in complex IV expression (Luo et al., 2013). However, 

other previous studies have shown lower complex IV activity in senescent cells 

compared to non-senescent cells; for example, complex IV has been shown to 

be lower in mink lung epithelial cells induced to senescence by transforming 

growth factor β (TGF-β1), for which ROS levels were increased (Yoon et al., 

2005). Also, complex IV has been shown to be lower in porcine pulmonary 

artery cells following serial culture to senescence (Zhang et al., 2002). It could 

be speculated that these differences in complex IV activity are due to different 

mechanisms of ROS production in senescent cells, required to maintain the 

senescent cell phenotype (Passos et al., 2010). For example, if complex IV 
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activity is increased in senescence to increase ROS levels, it could be that high 

activities of complexes I, II, and III are not required for ROS generation to 

maintain senescence. In the present study, it could be that sufficient ROS levels 

were generated by the higher complex II activity in senescent skin fibroblasts, 

so interaction from complex IV was not necessary. 

 

In conclusion, the role of complex IV in senescence is not fully understood, and 

could show differences depending on the cell type. However, the results of the 

present study suggest that complex IV does not decrease with age in either the 

non-senescent or the senescent cells in human skin fibroblasts, and does not 

show a senescence-associated change in activity. 

 

4.5.5 The T414G mutation increases with age in unsorted samples but not 

in sorted samples 

Senescent cells have been shown in previous studies to have high ROS levels 

(Passos et al., 2007a; Birket et al., 2009; Nelson et al., 2012); therefore, it was 

thought that these cells may accumulate higher levels of mtDNA mutations, and 

that these may be at a higher or lower level depending on the age of the donor 

from which the senescent cells were derived. The level of T414G mutation was 

measured in unsorted skin fibroblast cell samples as well as in senescent and 

non-senescent FACS-sorted fibroblast populations. The results obtained in the 

present study are in accordance with previous work (Michikawa et al., 1999; 

Birket and Birch-Machin, 2007), in that the T414G mutation was present in a 

higher proportion of skin cell samples from older individuals than from younger 

individuals. This increase in T414G mtDNA mutation could have implications for 

the ageing process, as despite this mutation not thought to contribute to the 

ageing process directly, due to it not being selected either for or against in 

culture (Michikawa et al., 1999; Seibel et al., 2008; Birket et al., 2009), it has 

been shown to be associated with mutations that are bioenergetically damaging 

(Birket and Birch-Machin, 2007; Seibel et al., 2008). 

 

Previous work has shown that mtDNA damage in the form of strand breaks is 

higher in senescent cells compared to non-senescent cells (Passos et al., 

2007a; Birket et al., 2009); however, this was not the case for the T414G 

mutation in the present study, which was not detectable in either the senescent 
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or the non-senescent cell populations. This is somewhat in accordance with the 

only previous study on the T414G mutation in senescent and non-senescent 

cells, for which this mutation was not associated more strongly with either 

senescence or non-senescence (Birket et al., 2009). However, in the previous 

study, the mutation was still detected in several of the sorted samples. The 

ability to detect this mutation in the past study may have been due to all of the 

samples being from very old individuals (with an average age of 81 years old for 

the five samples tested) (Birket et al., 2009), which was not the case for the 

present study. In conclusion, the T414G mutation does not appear to be 

associated with senescence, possibly due to its lack of correlation with ROS as 

shown previously (Birket et al., 2009). 

 

4.5.6 Complex II activity and complex IV activity are higher in a model of 

younger cells 

In order to further confirm the decrease in complex II activity observed with age 

in the fibroblast samples from older and younger donors (Chapter 3), a model 

for older and younger cells was used. This model was based on the observation 

that overexpression of the telomerase catalytic unit in cells allows for a 

decreased rate of telomere shortening, improved antioxidant defences, 

increased repair capacity, lower ROS levels, a higher number of population 

doublings, and lower senescence levels (Bodnar et al., 1998; Zhu et al., 2000; 

Franco et al., 2001; Sharma et al., 2003; Armstrong et al., 2005; Masutomi et 

al., 2005; Mondello et al., 2006; Passos et al., 2007b; Ahmed et al., 2008; 

Saretzki, 2009; Daniels et al., 2010; Indran et al., 2011; Bellot and Wang, 2013; 

Smith et al., 2013). These are features also present in younger individuals 

(Harley et al., 1990; Allsopp et al., 1995; Dimri et al., 1995; Mishima et al., 1999; 

Cawthon et al., 2003; Campisi, 2005; Herbig et al., 2006; Micallef et al., 2007; 

Noppe et al., 2009; Naylor et al., 2013; Shi et al., 2013), allowing for the 

hTERT-overexpressing cells to be used as a model for young age. 

 

It was found in the present study that the activities of both complexes II and IV 

were higher in the MRC5/hTERT cells than in the MRC5 cells. This was in 

accordance with the results obtained in Chapter 3 for complex II activity, in that 

cells representing younger individuals (MRC5/hTERT) had higher complex II 

activity, as did the cells from younger donors. This provided further evidence 
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that a decrease in complex II activity is occurring with age, and could also 

indicate that this phenomenon occurs across different tissue types (lung and 

skin, although future tests on naturally aged lungs would be required to confirm 

this). To my knowledge, the present study provides the first evidence that a 

higher level of complex II activity is occurring in cells with increased expression 

of hTERT compared to those without. Previous studies have shown increased 

activity in complex I when hTERT is overexpressed (Haendeler et al., 2009), 

and in complex IV (Indran et al., 2011), as well as overall increases in ETC 

respiration (Haendeler et al., 2009), which could suggest that complex II is also 

increased. This would be in accordance with the present study. 

 

The higher complex IV activity in MRC5/hTERT cells found in the present study 

is in accordance with previous work showing higher complex IV activity in this 

cell type (Indran et al., 2011). However, this higher activity of complex IV in the 

‘younger’ MRC5/hTERT cells compared to the ‘older’ MRC5 cells is different to 

the results received in Chapter 3 in naturally aged cells, which showed no 

difference in complex IV activity with age. A possible reason for this could be 

due to hTERT translocation to the mitochondrial matrix under stressful 

conditions (Santos et al., 2004; Jakob and Haendeler, 2007; Haendeler et al., 

2009), after which hTERT has been proposed to bind to mtDNA to improve its 

function (Haendeler et al., 2009). In the study by Haendeler et al., (2009), 

hTERT was found to bind to the mtDNA coding regions of complex I (ND1 and 

ND2), which resulted in a higher complex I activity. This could potentially also 

be the case for complex IV, which is partially encoded by mtDNA; however this 

has not been tested. Since complex II is entirely nuclear-encoded, it could be 

that this complex in the MRC5/hTERT cells is more representative of complex II 

in natural cells, unlike complex IV which could be affected by hTERT at the 

mtDNA. Overall, the use of MRC5/hTERT cells and MRC5 cells as a model for 

different ages may be effective in confirming some aspects of natural ageing, 

but not others. 
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4.6 Summary 

In conclusion, it was found that the level of complex II activity decreased with 

age in senescent cells but not in non-senescent cells, suggesting that 

senescent cells are more influential than non-senescent cells in determining the 

overall complex II activity with age. This decrease could have been partially due 

to a reduction in complex II subunit expression with age as observed in the 

previous chapter, which may have been the result of a lower antioxidant and 

repair capacity with age (Micallef et al., 2007; Rodier and Campisi, 2011; Dutta 

et al., 2012; Viiri et al., 2013); however, any changes in complex II subunits 

would need to be examined in future studies. The level of complex IV activity 

did not change with age in senescent or in non-senescent cells, which is in 

accordance with results in the previous chapter.  

 

The mtDNA T414G mutation was found in the present study to be more 

prevalent in older individuals than in younger, but was not detected in 

senescent or in non-senescent populations, suggesting that this mutation 

accumulates with age due to factors independent of senescence. 

 

The model used to represent older and younger cells, the MRC5 and 

MRC5/hTERT cells respectively, showed higher activity for both complexes II 

and IV in the cells overexpressing telomerase. As complex II activity was lower 

in both the model for older cells and the naturally older cells, it possibly further 

confirms that complex II activity does in fact decrease with age or with 

phenotypes of age such as higher ROS levels. The reason for the higher 

complex IV activity in the MRC5/hTERT cells but not in the cells from young 

donors could be due to the hTERT in the MRC5/hTERT cells translocating to 

the mtDNA to enhance the expression of mtDNA-encoded complex IV subunits, 

which has been shown to happen previously for complex I (Haendeler et al., 

2009).     
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Chapter 5. Mitochondrial Complex II Activity 

in Different Human Cell Types 
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5.1 Introduction  

5.1.1 Mitochondrial activity in different cell types 

Cells from different tissues of the body undergo different rates of respiration 

depending on the energy demand of the specific tissue; for example, heart and 

brain cells require higher levels of ATP production than the cells of the spleen 

and kidneys, and are therefore capable of increased rates of mitochondrial 

respiration (Weber and Piersma, 1996; Goffart et al., 2004; Benard et al., 2006; 

Scheffler, 2007; Fernández-Vizarra et al., 2011). This higher rate of respiration 

is generated either by an increased number of mitochondria, or an increased 

surface area and altered composition of the mitochondrial inner membrane 

(Scheffler, 2007; Fernández-Vizarra et al., 2011). Evidence for differences in 

the ETC complexes between tissues comes from observations that tissue-

specific phenotypes can result from general mitochondrial defects. For example, 

this is the case for patients with Leber's hereditary optic neuropathy, for which 

complex I is impaired systemically (Yen et al., 1996; Baracca et al., 2005), yet 

the disorder involves the specific degeneration of retinal cells only (Kunz, 2003). 

Cells from different tissues of the body have also been shown to respond 

differently to mitochondrial complex substrates and inhibitors, providing further 

evidence for tissue-specific differences in mitochondria. For example, Kwong 

and Sohal, (1998) demonstrated that cells from mice hearts generate high 

levels of ROS in the presence of the complex III inhibitor antimycin, whereas the 

mice brains generate high ROS levels in the presence of the complex I inhibitor 

rotenone (Kwong and Sohal, 1998). This could suggest that different 

mitochondrial complexes are of more importance in different tissues in terms of 

ROS generation, and illustrates the differences in the mitochondrial ETC 

between tissues. 

 

Previous studies have demonstrated directly that the activity of the individual 

mitochondrial ETC complexes can differ depending on the tissue-type (Chretien 

et al., 1994; Kwong and Sohal, 2000; Benard et al., 2006; Fernández-Vizarra et 

al., 2011). Kwong and Sohal, (2000) observed that the rate of activity of 

complexes I, II, III, and IV varied depending upon the tissue type in mice, when 

measured photometrically and normalised to citrate synthase activity. It was 

found that the activity of complex II was highest in the mouse heart cells 

compared to liver, kidneys, brain, and skeletal muscle cells, whereas complexes 
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I, III, and IV were highest in the brain and skeletal muscle. All 4 complexes were 

shown to have the lowest activity in the liver and kidneys, and differences were 

also observed in the ratio of complexes within the different tissues (Kwong and 

Sohal, 2000). However, a study by Fernandez-Vizarra et al., (2011) found 

contradicting results to Kwong and Sohal, (2000) in rat tissue, for which it was 

observed that the activity of complex IV (normalised to citrate synthase activity) 

was highest in the liver yet lowest in the brain. Benard et al., (2006) found 

similar results in rat tissue, by demonstrating that complexes II, III, and IV 

activities were higher in the liver and kidneys than in the heart and skeletal 

muscle. However, it was found in that particular study that the actual protein 

levels of the complexes were lowest in the liver and kidneys and highest in the 

heart and skeletal muscle (Benard et al., 2006), which suggests that heart and 

skeletal muscle show an overall higher ATP generation due to the higher 

number of ETC units present, and would therefore be able to accommodate for 

their high bioenergetics requirements via this mechanism. Therefore, those 

tissues with high energy demands may show either high rates of complex 

activity (Kwong and Sohal, 2000) or increased complex amount (Benard et al., 

2006). 

 

In humans, previous work has demonstrated that per total cellular protein 

amount (rather than mitochondrial amount as determined by citrate synthase 

activity), there was a higher activity of complexes II and IV in the heart 

compared to skin fibroblasts and lymphocytes (Chretien et al., 1994), possibly 

due to the high energetic demands of the heart. For complex IV (which was the 

only complex normalised to citrate synthase activity), the activity was highest in 

the skeletal muscle and liver, and lowest in the heart, lymphocytes, and skin 

fibroblasts (Chretien et al., 1994). Differences in mitochondrial complex activity 

have also been observed in various cell lines (Dayal et al., 2009; Zheng, 2012; 

Claus et al., 2013); however, the specific cell lines used in the present study 

have not been directly compared previously. 

 

5.1.2 Age-related changes in mitochondrial activity in different cell types 

Ageing is a process which takes place across all tissues of the body, for which 

decreases in mitochondrial complex activities have been observed in a variety 

of tissues from human and laboratory animals (Coggan et al., 1992; Boffoli et 
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al., 1994; Sandhu and Kaur, 2003; Kumaran et al., 2004; Cocco et al., 2005; 

Short et al., 2005; Balietti et al., 2009; Braidy et al., 2011; Tatarkova et al., 

2011; Velarde et al., 2012). The rate of ageing may occur at different rates 

depending on the tissue type, as cells with slower rates of respiration have been 

shown to accumulate damage more readily than cells with higher rates (Kwong 

and Sohal, 2000). For example, the age-related 4977 bp mtDNA common 

deletion, which is a potential biomarker of general mtDNA damage (Berneburg 

et al., 2004), has been shown to accumulate more readily with age in the high-

energy-demanding post-mitotic heart and brain tissues of humans than in other 

tissues including the liver, kidneys, lungs, and skin (Arnheim and Cortopassi, 

1992; Cooper et al., 1992; Meissner et al., 2008; Cui et al., 2012). Kwong and 

Sohal, (2000) measured the activities of mitochondrial complexes I, II, III, IV, 

and V in various mouse tissues in differently aged mice, and found that 

differences existed between the different tissues directly, as well as in the 

changes in the complexes in different tissues with age. For example, a 

decrease in complex II activity (normalised to citrate synthase activity) was 

observed with age in the brain of the mice, but not in the liver or kidneys 

(Kwong and Sohal, 2000). Complex I showed no difference with age in any of 

the tissues (kidneys, liver, heart, brain, skeletal muscle), yet complex III 

decreased in the brain and increased in the skeletal muscle, and complex IV 

decreased in the kidneys (Kwong and Sohal, 2000). In general in the previous 

study by Kwong and Sohal, (2000), those tissues with higher overall ETC 

activity also had a higher overall number of complexes which were decreased 

with age (Kwong and Sohal, 2000). Choksi et al., (2011) measured 

mitochondrial complex activity in two mouse muscle types: the pectoralis 

(aerobic with lots of mitochondria), and the quadriceps (anaerobic with few 

mitochondria). They found that complex II (as well as complexes I, III, IV, and V) 

decreased in an age-dependent manner in the aerobic muscle with high ETC 

activity, but only complexes I and II decreased with age in the anaerobic tissue 

with low ETC activity (Choksi et al., 2011). The results could suggest that 

generally, those tissues with higher ETC activity are more affected during 

ageing in terms of complex activity.  
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5.2 Hypotheses 

As complex II activity was shown to decrease in an age-dependant manner in 

human skin fibroblasts but not in skin keratinocytes earlier in the project 

(Chapter 3), and as differences in mitochondrial complex activities have been 

observed between cell types in previous studies, it was hypothesised that 

differences in mitochondrial complex II activity may exist between a variety of 

human cell types. These differences could potentially correlate with or directly 

affect the rate of ageing of the specific cell type. Differences in mitochondrial 

complex activities have been detected previously between cell types in humans 

and laboratory animals (Chretien et al., 1994; Kwong and Sohal, 2000; Benard 

et al., 2006; Fernández-Vizarra et al., 2011), and tissue-specific differences in 

complex activities have been observed with ageing in laboratory animals 

(Kwong and Sohal, 2000; Choksi et al., 2011). Since complex II is thought to 

play a prominent role in ROS production (Quinlan et al., 2012), it could be 

speculated that differences in complex II activity between different cell types 

could potentially affect the rate of tissue-specific ageing. Therefore, in this area 

of the project differences in complex II activity were examined in a range of 

human cell lines not previously directly compared; cells derived from the skin 

(HDFn, HaCaT, primary fibroblast, and primary keratinocyte cells), the liver 

(HepG2 cells), and the lungs (a549 Parental and a549 Rho-zero cells). In 

addition, differences in complex II activity between primary keratinocytes and 

primary fibroblasts were examined further by directly comparing activity in 

epidermal and dermal tissue sections, as well as in cell samples. Some work in 

this chapter was performed in collaboration with Dr Alasdair Anderson. 

 

 

 

 

 

 

 

 

 

 

 



152 
 

5.3 Materials and Methods 

Primary fibroblast cells, primary keratinocyte cells, HDFn cells (a neonatal 

human dermal fibroblast cell line), HaCaT cells (a spontaneously immortalised 

keratinocyte cell line) (Boukamp et al., 1988), HepG2 cells (a liver carcinoma 

cell line), a549 Parental cells (a lung adenocarcinoma epithelial cell line), a549 

Rho-zero cells (a lung adenocarcinoma epithelial cell line with the synthesis of 

mtDNA inhibited), MRC5 cells (a lung fibroblast cell line), and MRC5/hTERT 

cells (a lung fibroblast cell line overexpressing telomerase) were cultured as 

described in the general Materials and Methods chapter (Chapter 2). 

Photometric assays are also described in Chapter 2. The HDFn, HaCaT, 

HepG2, a549 Parental and a549 Rho-zero cells were cultured and prepared for 

photometry in collaboration with Dr Alasdair Anderson. Further details on the 

cell lines used are given in the Appendix in Table 15. 

 

5.3.1 Preparation of skin tissue sections for photometry 

In order to measure complex II activity and citrate synthase activity in epidermal 

and dermal skin tissue sections via photometry, to confirm complex II activity 

differences between fibroblasts and keratinocytes, the epidermis and dermis 

were initially separated as described in Chapter 2 section 2.1.1. The separated 

skin sections were then sliced into sections of approximately 3 mm2 using a 

scalpel and each tissue-type was prepared separately by freezing with liquid 

nitrogen in a mortar, and grinding to a fine powder using a pestle. To this 

powder, 200 µl complex II buffer was added, and the solution was transferred to 

a 1.5 ml Eppendorf tube and centrifuged for 5 minutes at 8000 rpm. The pellet 

containing the insoluble matter was discarded, and the supernatant containing 

the mitochondria was snap-frozen in liquid nitrogen 3 times, and stored at -80°C 

until use.  
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5.4 Results 

5.4.1 Complex II activity in different human cell types 

The activity of complex II was determined photometrically in various human cell 

types, then normalised to citrate synthase activity for each cell type to allow the 

activity of complex II per mitochondrial unit to be determined (Birch-Machin and 

Turnbull, 2001). The cell types used were primary fibroblast cells, primary 

keratinocyte cells, HDFn cells, HaCaT cells, HepG2 cells, a549 Parental cells, 

a549 Rho-zero cells, MRC5 cells, and MRC5/hTERT cells. The results for the 

primary fibroblasts, keratinocytes, MRC5 cells, and MRC5/hTERT cells were 

obtained in previous chapters (Chapter 3 and Chapter 4), and used in the 

present chapter for further comparison between cell types.  

 

The CII/CS activity results for the different cell types are shown in Figure 38. As 

can be seen, the primary fibroblasts showed a significantly higher CII/CS 

activity than the other cell lines, except for the MRC5/hTERT cells (P<0.0001 for 

the keratinocyte, HDFn, HaCaT, HepG2, a549 Parental, a549 Rho-zero, and 

MRC5 cells, one-way analysis of variance, ANOVA, with Bonferroni correction 

to compare all columns). This activity was approximately 2-fold higher than that 

of the primary keratinocytes. The CII/CS activity of the primary keratinocyte 

cells was also significantly lower than the HaCaT, a549 Rho-zero, MRC5, and 

MRC5/hTERT cells (P<0.01 for the HaCat, a549 Rho-zero, and MRC5 cells, 

and P<0.0001 for the MRC5/hTERT cells, one-way ANOVA with Bonferroni 

correction). As for the other two cell lines from the skin, both the HDFn and the 

HaCaT cells had a significantly higher CII/CS activity than the HepG2 and the 

a549 Parental cells (P<0.0001 for the HepG2 cells, and P<0.01 for the a549 

Parental cells, one-way ANOVA with Bonferroni correction), and a significantly 

lower activity than the skin fibroblasts and the MRC5/hTERT cells (P<0.05 for 

the MRC5/hTERT cells, P<0.0001 for the skin fibroblasts, one-way ANOVA with 

Bonferroni correction). The HepG2 liver cells had significantly lower CII/CS 

activity than all of the cell lines except for the primary keratinocytes and the 

a549 Parental cells (P<0.0001, one-way ANOVA with Bonferroni correction). 

The a549 Parental lung cells also had a lower CII/CS activity than the other cell 

types except for the keratinocytes and the HepG2 cells (P<0.0001 for the 

primary fibroblast, MRC5, and MRC5/hTERT cells, and P<0.01 for the HDFn, 

HaCaT, and a549 Rho-zero cells, one-way ANOVA with Bonferroni correction). 
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Therefore, when mtDNA was absent (a549 Rho-zero cells) the activity of 

complex II was higher. The MRC5/hTERT cells had a high CII/CS activity 

similar to the primary fibroblast cells, which was significantly higher than most of 

the other cell lines (P<0.0001 for the primary keratinocyte, HepG2, and a549 

Parental cells, and P<0.05 for the HDFn and HaCaT cells, one-way ANOVA 

with Bonferroni correction). 

 

Figure 38  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Complex II activity in a range of cell types. The level of complex II activity was 
normalised to citrate synthase activity for each cell type. The cell types used were primary 
fibroblast cells (a), primary keratinocyte cells (b), HDFn cells (c), HaCaT cells (d), HepG2 cells 
(e), a549 Parental cells (f), a549 Rho-zero cells (g), MRC5 cells (h), and MRC5/hTERT cells (i). 
The letters above the bars indicate significant differences from the cell type represented by that 
letter. The error bars show the SEM. Photometry was performed at least two times for the citrate 
synthase assay and at least four times for the complex II activity assay for each cell type. For 
the primary fibroblasts 27 donors were used, and for the primary keratinocytes 19 donors were 
used. 
 
 
 
 

5.4.2 Complex II activity within skin tissues 

As demonstrated in the section above, the CII/CS activity of the primary skin 

fibroblasts was approximately twice as fast as the CII/CS activity of the primary 
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skin keratinocytes. To ensure that this difference was not due to variations in 

the particular donors used, since the majority of fibroblast samples were from 

different donors to the keratinocyte samples, the activities of primary fibroblasts 

and keratinocytes from the same individuals were compared. As can be seen in 

Figure 39A, the fibroblasts still showed a significantly higher level of activity in 

the 5 fibroblast samples and 5 keratinocyte samples, taken from the same 5 

donors (P=0.0001, unpaired t-test). To further confirm that this difference in 

activity between the primary skin cells was genuine, and not just an artefact of 

the different media in which the two cell types were cultured, the complex II 

activity in epidermal and dermal tissue sections directly was investigated. The 

epidermis is mostly made up of keratinocyte cells (Lulevich et al., 2010), and 

the fibroblasts are the most numerous cell type within the dermis (Chen et al., 

2007). As can be seen in Figure 39B, the dermis showed an approximately 2-

fold higher CII/CS activity than the epidermis, which was significantly different 

(P=0.0006, unpaired t-test), and confirms the difference observed between the 

cultured fibroblast and keratinocyte cells in the previous section. These results 

suggested that the keratinocytes do indeed have a much lower complex II 

activity per unit of mitochondria than the fibroblasts. 

 

Due to time limitations, the activity of complex IV was not able to be measured 

in the various cell types used in the above section; however, complex IV was 

measured in Chapter 3 in both fibroblasts and keratinocytes from donors of 

different ages. Therefore, the activity of complex IV was able to be compared in 

these two skin cell types. As can be seen in Figure 39C, the CIV/CS activity 

was over twice as fast for the fibroblasts as for the keratinocytes (P<0.0001, 

unpaired t-test), in a similar manner to the CII/CS activity. 
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Figure 39  

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
 
Figure 39. Mitochondrial complex activities in different skin cells and tissues. A) Complex 
II activity normalised to citrate synthase activity for primary fibroblasts and primary 
keratinocytes, with cell samples obtained from the same 5 donors. There was a significantly 
higher activity in the fibroblasts than the keratinocytes (P=0.0001***, unpaired t-test). B) CII/CS 
activity for dermal and epidermal tissue sections from 5 donors. The dermis showed a 
significantly higher level of activity than the epidermis (P=0.0006***, unpaired t-test). C) 
Complex IV activity normalised to citrate synthase activity for 18 fibroblast samples and 13 
keratinocyte samples. CIV/CS activity was significantly higher in the fibroblasts compared to the 
keratinocytes (P<0.0001***, unpaired t-test). The error bars show the SEM. Photometry was 
performed at least two times for the citrate synthase assay and at least two times for the 
complex II activity assay for each cell sample or tissue type, and the average value was used 
for each sample. 
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5.5 Discussion 

5.5.1 The rate of complex II activity varies depending on cell type 

The rate of complex II activity was found in the present study to vary depending 

on the cell line as well as the tissue from which the cells were obtained, which is 

in accordance with previous studies demonstrating a difference in complex II 

activity between tissues and cell lines (Chretien et al., 1994; Kwong and Sohal, 

2000; Benard et al., 2006; Dayal et al., 2009; Fernández-Vizarra et al., 2011; 

Zheng, 2012; Claus et al., 2013). In the present study, for the non-immortal cell 

lines of the different tissues (the primary fibroblast, primary keratinocyte, HDFn, 

and MRC5 cells), the lung MRC5 cells had a significantly lower complex II 

activity than the skin fibroblasts, and a significantly higher activity than the skin 

keratinocytes, yet no difference in activity from the skin HDFn cells. This 

demonstrated that variations in complex II activity exist both between and within 

organ types. Since different tissues and cell types undergo different rates of 

respiration (Weber and Piersma, 1996; Goffart et al., 2004; Benard et al., 2006; 

Scheffler, 2007; Fernández-Vizarra et al., 2011), it may be expected that they 

would show variations in complex II activity, as was seen. 

 

The immortal cell lines used in this study (the HaCaT, HepG2, a549 Parental, 

and MRC5/hTERT cells) did not consistently correlate with either a higher or a 

lower complex II activity compared to the non-immortal cell types. The 

MRC5/hTERT cells showed a very high rate of complex II activity, the HaCaT 

cells an intermediate rate of activity, and the HepG2 and a549 Parental cells 

showed a low rate of activity. This is in accordance with previous work which 

has demonstrated that cancer cells can have either high or low mitochondrial 

complex activity. For example, human breast cancer epithelial cells have been 

shown to have a higher rate of complex II and complex IV activity than adjacent 

non-cancerous cells (Whitaker-Menezes et al., 2011) in order to generate high 

ATP levels, yet other cancers such as gastrointestinal stromal tumours have 

been shown to have low complex II activity (Janeway et al., 2011), as cancer 

cells can generate high energy levels via aerobic glycolysis (Vander Heiden et 

al., 2009; Levine and Puzio-Kuter, 2010; Whitaker-Menezes et al., 2011). These 

past studies suggest that immortal cell lines are not necessarily faster or slower 

in terms of complex II activity, which is in accordance with the present study. 
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The level of complex II activity per overall cellular protein amount was not 

studied in the present study. It could be that despite differences in complex II 

activity per mitochondrial amount in different cell types, certain cell types may 

have higher overall levels of mitochondria per cell (Benard et al., 2006), which 

could be explored in future studies. 

 

5.5.2 Complex II activity in the liver-derived cell line  

The present project demonstrated that complex II activity in the cell line derived 

from the liver (the HepG2 cells) was the lowest of the cell lines tested. Primary 

fibroblasts from the skin have been compared previously to cells from the liver 

in humans, for which it was shown that complex IV activity was higher in liver 

cells than in skin fibroblasts (complex II activity was not tested) (Chretien et al., 

1994). It could be speculated that because the activity of complex IV may be 

higher in liver cells (Chretien et al., 1994), that the activity of complex II is lower 

in this cell type due to a reduced demand for this complex. This potential 

compensatory mechanism has been demonstrated previously, whereby a 

decrease in activity in one complex has led to an increase in another (Yen et al., 

1996; Kwong and Sohal, 2000; Baracca et al., 2005; Rhein et al., 2009; Ostojic 

et al., 2013). Kwong and Sohal, (2000) also showed that when comparing the 

ratio between complexes II and IV in mice, the kidneys and heart showed a 

decrease in the complex IV activity ratio with age, and the liver and skeletal 

muscle showed an increase, suggesting that as one complex decreases the 

other increases and vice versa. However, it has to be taken into account that 

the HepG2 cells used in the present study are an immortal cell line, which could 

show different results to the primary liver cells used previously (Chretien et al., 

1994). Additionally, only one cell line derived from the liver was tested, so it 

remains unknown whether liver cells in general have a lower complex II activity. 

Variations in ETC activity have been shown to occur even within the same 

organ type, as shown in the present project within the skin and the lungs, as 

well as in adipose tissue in a previous study (Kraunsoe et al., 2010). 

 

5.5.3 Complex II activity in the lung-derived cell lines 

The level of complex II activity observed in the lung cells (the a549 Parental, 

a549 Rho-zero, MRC5, and MRC5/hTERT cells) varied depending on the 

specific cell type. The immortal cell lines showed opposite effects to one 
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another in terms of complex II activity, with the MRC5/hTERT cells showing a 

high activity and the a549 Parental cells showing a low activity. 

 

To further investigate differences in complex II activity between different cells, 

two cell types with differences in their mitochondrial ETC were tested. The a549 

Parental cells have a fully functional ETC, whereas the a549 Rho-zero cells 

were cultured in a low level of ethidium bromide and therefore lack mtDNA and 

have a dysfunctional ETC (Hashiguchi and Zhang-Akiyama, 2009). Since the 

ETC complexes, except complex II, are under dual control from both nDNA and 

mtDNA, these cells still undergo oxidative phosphorylation, yet at an altered 

rate (Hashiguchi and Zhang-Akiyama, 2009). When comparing the a549 

Parental cells to the a549 Rho-zero cells, it was observed that the activity of 

complex II was approximately twice as high in the Rho-zero cells. The structure 

of complex II should be the same in each of these two cell types as it is nuclear-

encoded; however, it is possible that the activity of complex II in the Rho-zero 

cells was faster due to dysfunction in the other mitochondrial complexes which 

are partially mtDNA-encoded, and therefore have a lower activity resulting in a 

lower ATP generation. Complex II activity may be increased in an attempt to 

compensate for the lower activity in the other complexes. 

 

5.5.4 Complex II activity in the skin-derived cell lines 

For the skin-derived cell types (the primary fibroblast, primary keratinocyte, 

HDFn, and HaCaT cells), the fibroblasts showed a high complex II activity, the 

keratinocytes a low, and the two non-primary cell lines showed an intermediate 

activity level. This again demonstrated differences in activity between cell types 

from the same organ.  

 

The levels of activity of both complexes II and IV were significantly higher in the 

primary fibroblasts than in the primary keratinocytes. Keratinocytes have been 

shown to accumulate damage less readily than fibroblasts; for example the 

3895 bp deletion accumulates less readily in the epidermis than the dermis 

(Krishnan et al., 2004; Harbottle and Birch-Machin, 2006), and the T414G 

mutation was not detected in the keratinocytes in this project but was in the 

fibroblasts (Chapter 4). It was therefore initially thought before testing that the 

keratinocytes may show a faster rate of complex II activity due to the lower 
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levels of damage, yet this was not the case. However, previous work is in 

accordance with the present study; Hornig-Do et al., (2007) found that the 

maximal activity of complexes II, III, and IV were significantly higher in 

fibroblasts than in keratinocytes, despite the same rate of respiration in both cell 

types. This suggested that in vivo both cell types respire at the same rate, as 

there were found to be similar levels of mitochondria per overall cellular protein, 

but the fibroblasts have the potential for faster respiration (Hornig-Do et al., 

2007). The authors of the previous study also measured the level of superoxide 

and found this to be much higher in the keratinocytes, due to lower levels of 

SOD (Hornig-Do et al., 2007). It was suggested that these superoxide anions 

are required for differentiation of the keratinocytes into the stratum corneum 

which occurs in vivo in the skin (Hornig-Do et al., 2007). This could explain why 

the maximal activities of the complexes were lower in the keratinocytes, as they 

are likely to lack the reserve functional capacity for increased ETC activity when 

ATP generation is necessary, as they are required to use the ETC for both 

energy production and superoxide anion accumulation (Hornig-Do et al., 2007). 

It is worth noting that antioxidants to counteract H2O2 such as glutathione 

peroxidase were higher in the keratinocytes than the fibroblasts, to protect the 

cells against the necessarily higher ROS levels, and from the accumulation of 

oxidative damage caused by H2O2 and .OH (Hornig-Do et al., 2007). This could 

explain why the accumulation of mtDNA damage does not occur as readily in 

this cell type (Krishnan et al., 2004; Harbottle and Birch-Machin, 2006). An 

additional reason as to the lower activity of the complexes in the keratinocytes 

could be because keratinocytes also generate energy via glycolysis (Ronquist 

et al., 2003). The present study further demonstrated the differences between 

the keratinocytes and fibroblasts as compared to previous studies, by 

comparing the complex II activity in epidermal and dermal tissue directly, to 

remove any possible artefacts induced by cell culture of keratinocytes and 

fibroblasts in different media. It was found that the same results were obtained 

using these tissue samples. Additionally, the lifestyles of individual donors can 

differ, and factors such as smoking and exercise have been shown to affect 

complex II activity (Miro et al., 1999; Cardellach et al., 2003; Alonso et al., 2004; 

Bouhours-Nouet et al., 2005; Menshikova et al., 2006; Luo et al., 2013); 

therefore, fibroblasts and keratinocytes obtained from the same donors were 
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compared and the same results were found, suggesting that the difference was 

not due to variations in lifestyle between donors.  

 

In the previous chapter (Chapter 3) it was shown that the activity of complex II 

decreased with age in the fibroblasts but not in the keratinocytes. It could be 

suggested that those cell types with faster complex II activity show noticeable 

decreases in complex II activity with age. Similar results were seen in a 

previous study which showed that tissues with overall higher ETC complex 

activities had the highest number of complexes which decreased in activity with 

age (Kwong and Sohal, 2000). Additionally, aerobic tissue has been shown 

previously to have more complexes decreased with age than anaerobic tissue 

(Choksi et al., 2011). Therefore, the measurement of complex II activity could 

be predictive in terms of the rate of ageing of different cell types, but the 

activities of the other complexes as well as any changes in activity with age in 

the different cell types would also have to be studied for further information.  
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5.6 Summary 

In conclusion, it was found that cell types from various tissues undergo different 

rates of complex II activity; however, further work would be required to establish 

the physiological relevance of these differences, especially in relation to the rate 

of ageing between tissues and cell types. These differences in mitochondrial 

complex activity between cell types are in accordance with previous work 

(Chretien et al., 1994; Kwong and Sohal, 2000; Benard et al., 2006; Choksi et 

al., 2011; Fernández-Vizarra et al., 2011), however the specific cell lines used 

in the present study have not been directly compared previously, and therefore 

allow further insights into the differences between different cells, including 

between immortal and non-immortal cells. Differences within tissues were also 

observed, in skin and lung cell lines. 

 

It was found in the present study that immortal cell types were neither 

consistency higher or lower in terms of complex II activity compared to the non-

immortal cell types. This is in accordance with previous work, for which cancer 

cells have been shown to have higher ETC activity to generate increased ATP 

levels (Whitaker-Menezes et al., 2011), or lower ETC activity when energy is 

generated via glycolysis (Janeway et al., 2011). Another noticeable difference 

between cell types was the difference between the a549 Parental lung cells and 

the a549 Rho-zero cells without mtDNA, for which the Rho-zero cells showed a 

significantly higher complex II activity, possibly due to an increase in nuclear-

encoded complex II activity as a compensatory mechanism for dysfunction in 

the other complexes which are partially mtDNA-encoded. The present study 

also confirmed previous work on human cells showing that fibroblasts have 

faster complex II and IV activities than keratinocytes, which may be due to the 

ROS-producing ability of the keratinocytes, at the expense of maximal complex 

activities (Hornig-Do et al., 2007). It was speculated that the activity of complex 

II decreased with age in the fibroblasts but not in the keratinocytes (Chapter 3), 

due to the higher activity of complex II in the fibroblasts. This decrease in 

mitochondrial complex activity with age in cells with higher maximum ETC 

complex activities has also been observed previously (Kwong and Sohal, 2000; 

Choksi et al., 2011). 
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Chapter 6. UV-Induced MtDNA Damage 

Detection in Human Skin Cells 
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6.1 Introduction  

6.1.1 MtDNA damage as a biomarker of UV-induced genetic damage 

Due to the similarities between UV damage and chronological age in skin, 

different UV exposures are able to be used as a model for differently aged skin 

as discussed in more detail in Chapter 7. In Chapter 7, whale skin exposed to 

varying degrees of UV was used as a model for different ages. To measure this 

UV damage in the subsequent chapter (Chapter 7), the qPCR amplification of a 

large section of mtDNA was used, for which the current chapter serves as a 

proof-of-concept for UV-induced damage detection in a similar-sized region. 

The use of mtDNA as a biomarker of damage, as analysed by qPCR, has been 

utilised previously to reliably and sensitively detect UV-induced genetic damage 

in humans and laboratory animals, usually within a large 11 kb segment 

(Kalinowski et al., 1992; Ray et al., 2000; Santos et al., 2002; Durham et al., 

2003; Eischeid et al., 2009; Hunter et al., 2010; Swalwell et al., 2012). This 

mitochondrial genome, unlike nDNA, is present in many copies within a cell and 

can therefore withstand a high level of mutation before cellular alterations occur; 

this means that damage is able to accumulate (Birch-Machin and Swalwell, 

2010). It also has a limited number of repair mechanisms, for example it lacks 

the nucleotide excision repair pathway for removal of UV damage and also 

lacks protective histones (Birch-Machin and Swalwell, 2010). Therefore, mtDNA 

is an excellent biomarker for the measurement of UV-induced changes 

throughout the lifetime of an individual (Birch-Machin and Swalwell, 2010). UV-

induced mtDNA damage has been measured in previous studies using qPCR to 

amplify a long section of mtDNA, which is based on the observation that UV-

induced damage can cause strand breaks in the mtDNA and therefore block the 

amplifying ability of DNA polymerase (Kalinowski et al., 1992). This principle is 

shown in Figure 40A, which also demonstrates how the relative copy number 

can be determined using primers to amplify a short region which is unlikely to 

contain damage (Koch et al., 2001; Jung et al., 2009; Hunter et al., 2010; 

Swalwell et al., 2012). Using qPCR, the level of amplified double-stranded 

mtDNA product is detectable at each qPCR cycle via the binding of a dye which 

displays fluorescence once bound, and the relative level of damage can 

therefore be determined by the number of cycles it takes before the level of 

amplified product reaches a certain threshold (the Ct value) (Figure 40B). 

Therefore, those samples with a higher number of intact mitochondrial genomes 
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Cycle 

Low Damage 
Threshold 

High Damage 

(i.e. less damage) undergo more efficient amplification, and have a lower Ct 

value.  

 

Figure 40  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 40. The principle of quantitative real-time PCR. A) The principle behind the detection 
of UV-induced damage using qPCR. The horizontal black line shows the mtDNA strand, with 
the blue vertical lines marking spaces of 1 kb apart. The red stars show areas of damage. The 
primers to amplify a large region are capable of detecting this damage (shown by the black 
arrows), and the primers to amplify a short region are to determine the relative copy number 
(shown by the green arrows). B) The qPCR amplification plot shows two samples run in 
triplicate, as shown by the coloured lines, one with low mtDNA damage and one with high 
mtDNA damage. A threshold is set, and the number of cycles it takes before the level of 
amplified DNA crosses this threshold is known as the Ct, with a low value indicating low 
damage (or a high copy number) and a high value indicating high damage (or a low copy 
number).     
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6.2 Hypotheses 

The hypotheses of this area of the project were 1) the long-fragment qPCR 

assay is capable of detecting UV-induced damage in human skin cells in vitro 

as shown previously, and areas of 4.4 kb of the mtDNA are usable to detect 

damage for the whale skin study in Chapter 7; 2) damage detected is prevented 

by a UV-blocking agent, which would imply that the observed damage is due to 

UV; and 3) the long-fragment qPCR assay is capable of detecting UV-induced 

damage in human skin in vivo, taken by epidermal skin swabs, to confirm the 

appropriate use of the long-fragment qPCR assay for the analysis of whale skin 

sections in Chapter 7. 
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6.3 Materials and Methods 

The cell culture, qPCR, cellular DNA extractions, and gel electrophoresis 

methods used within this chapter are given in the general Materials and 

Methods, in Chapter 2. 

 

6.3.1 Lamp calibration 

The two lamp types used to irradiate the HDFn cells in vitro were either seven 6 

foot (ft) iSOLde Cleo performance 100 W-R lamps (Cleo) (iSOLde, Germany), 

or two 6 ft Arimed B 100 W lamps (Arimed B) (Cosmedico, Germany). The 

spectral irradiance of the lamps was calibrated previously by Dr Jim Lloyd 

(Newcastle University).  

 

6.3.2 UV irradiation in vitro 

HDFn cells to be used for in vitro irradiation were washed twice in PBS, and 

removed from flasks using TE at 37°C for 5 minutes. Following TE incubation, 

complete DMEM was added to neutralise TE activity. Approximately 1.5 x 105 

cells in 3 ml complete DMEM media were seeded per 9.2 cm2 Petri dish. Cells 

were grown at 37°C for 16 hours to allow adhesion to the dish, then washed 

once in PBS, and 1.5 ml serum-free DMEM (plus PS) was added to the dishes. 

The Cleo lamps or the Arimed B lamps were fitted into a custom built irradiation 

unit prior to use. UV irradiation levels were measured using a DMc150 

Monochromator (Bentham Instruments Ltd., UK), and 6 readings for each lamp 

type were taken to find the average output for each. Irradiation values for 

multiple time points were derived from these readings, as shown in Table 2. The 

standard erythemal dose (SED) measured for the Cleo lamps was 23.8 after 20 

minutes irradiation, and for the Arimed B lamps was 2.9 after 25 minutes 

irradiation, which were the chosen time points for optimum damage. To irradiate 

cells, lids were removed and the cells were placed under the lamps for various 

time points. For control cells, either lids were not removed and cells were 

completely wrapped in foil to prevent UV from reaching the cells, or lids were 

removed and foil was placed on top. Following irradiation, cells were washed 

once with PBS, and TE was added for 5 minutes at 37°C to detach cells. 

Following incubation, media was added to neutralise TE and the cells were 

removed from the dish using a Cell Scraper (Techno Plastic Products, 

Switzerland). Cells were placed into a 1.5 ml Eppendorf tube and centrifuged at 
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8000 rpm for 3 minutes, after which the cell pellet was resuspended in 200 µl 

PBS and the DNA extracted using a QIAamp DNA Mini Kit as described in 

section 2.4.1. The 4.4 kb and 83 bp qPCRs were performed as described in 

section 2.4.2. 

 

Table 2  
 

Lamp Type Irradiation Time UVA Energy UVB Energy SEDs 

Cleo 

5 43505.05 290.44 5.95 

10 87010.09 580.89 11.90 

15 130515.14 871.33 17.84 

20 174020.19 1161.77 23.79 

25 217525.23 1452.22 29.74 

30 261030.28 1742.66 35.69 

35 304535.33 2033.10 41.64 

40 348040.38 2323.55 47.59 

45 391545.42 2613.99 53.53 

50 435050.47 2904.43 59.48 

55 478555.52 3194.88 65.43 

60 522060.56 3485.32 71.38 

Arimed B 

5 987.02 39.02 0.57 

10 1974.04 78.04 1.15 

15 2961.05 117.06 1.72 

20 3948.07 156.08 2.29 

25 4935.09 195.10 2.87 

30 5922.11 234.12 3.44 

35 6909.12 273.15 4.02 

40 7896.14 312.17 4.59 

45 8883.16 351.19 5.16 

50 9870.18 390.21 5.74 

55 10857.19 429.23 6.31 

60 11844.21 468.25 6.88 

 
 
Table 2. UV outputs for the Cleo and Arimed B lamps. The UV energy emitted from the Cleo 
and Arimed B lamps is shown in mJ/cm

2
 for each time point for the Cleo and Arimed B lamps, 

as well as the SEDs. The irradiation time is given in minutes, and the underlined numbers show 
the chosen irradiation times for the Cleo and Arimed B lamps for optimal mtDNA damage.  
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6.3.3 UV irradiation with SPF cream protection 

To ensure that any mtDNA damage detected was due to UV, a cream 

containing sun-protection factor (SPF) was used, which should decrease the 

level of mtDNA damage, as well as a sham cream containing no SPF 

protection. The creams used were L'Oréal Revitalift Day Cream with SPF30 

protection (L'Oréal, Paris) and Revitalift Day Cream (L'Oréal, Paris). Cells were 

irradiated for 20 minutes with the Cleo lamps, and for 25 minutes with the 

Arimed B lamps, based on the results from irradiation at different time points to 

determine maximum DNA damage. The tape used was Transpore Clear tape 

(3M, UK), and cream was applied to the surface of this by adhering a 5 cm2 

section of tape to the top of cell Petri dishes with lids removed, and applying 

2 mg/cm2 cream to the top of the tape by finger using a Disposable Nitrile 

Powder-free Glove (Sempermed, UK). Following irradiation, cells were collected 

and the DNA was extracted as described in section 2.4.1, and qPCR performed 

as described in section 2.4.2. 

 

6.3.4 Cell viability following UV irradiation 

To test for cell viability following UV irradiation, a 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was 

used. This required cells to be analysed in a clear 96-well plate. Initially, 

5 x 103 cells were added in 100 µl complete DMEM per well to the plate, and 

incubated at 37°C for 16 hours. Following incubation, the media was replaced 

with 100 µl serum-free DMEM (plus PS) per well, and cells were either covered 

with foil, Transpore Clear tape alone, Transpore Clear tape with 2 mg/cm2 

Revitalift Day Cream, or Transpore Clear tape with 2 mg/cm2 Revitalift Day 

Cream with SPF30 protection. Cells were irradiated for 20 minutes with the Cleo 

lamps or 25 minutes with the Arimed B lamps, after which the media was 

replaced with 100 µl complete DMEM, 20 µl MTS (Promega, UK) was added 

per well, and the cells were incubated at 37°C for 4.5 hours. After the 

incubation, the absorbance at 490 nm was measured using a SpectraMax 250 

Microplate Reader and the results viewed using SoftMax Pro V3.1.1. 

 

6.3.5 UV irradiation in vivo 

The backs of volunteers were irradiated in an area of approximately 7 cm2, as 

performed by Boots (Nottingham, UK) under their standard in vivo ethically 
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approved program. Epidermal samples were taken using skin swabs before and 

after irradiation, by brushing back and forth several times on the specific areas 

of the back. The specific areas of the back were irradiated with solar simulated 

light once a day for 5 days with a single exposure of 0.8 minimal erythemal 

doses (MED) on each day, resulting in a cumulative dose of 4 MEDs over the 

5 days. MED represents the minimal amount of UV required to produce 

erythema which will differ depending on skin colour, for use in vivo (Heckman et 

al., 2013), whereas SED represents a standard dose equivalent to 100 J/m2, 

and is independent of skin colour (Lucas et al., 2006). 

 

6.3.6 DNA extraction from human skin swabs 

DNA from skin swabs taken from areas of human backs was extracted using a 

QIAamp DNA Mini Kit (Qiagen, UK), using the Buccal Swabs protocol. Skin 

swabs were taken by Boots, UK. This was achieved as described previously 

(Harbottle et al., 2010), by washing the specific area of the back with 70% 

ethanol to remove dead skin cells and potential microbes, and allowing to dry. 

Cell samples were obtained by rubbing firmly with dry cotton swabs against the 

back 15 times, to obtain the top layers of the skin, and stored in sterile tubes 

until DNA extraction. Upon receiving samples, swabs were placed into 1.5 ml 

Eppendorf tubes, and 400 µl PBS, 20 µl proteinase K, and 400 µl lysis buffer 

(Buffer AL) were added. Samples were vortexed for 15 seconds and incubated 

at 56°C for 10 minutes, after which the extraction was performed as described 

in section 2.4.1 from the 56°C incubation onwards. 

 

6.3.7 QPCR primers 

Primers for the amplification of human mtDNA sections of approximately 500 bp 

or 4.4 kb to study the damage within were designed by Dr Helen Swalwell 

(Newcastle University), and primers for the amplification of a short section of 

83 bp to check the relative mtDNA amount were chosen from the literature 

(Koch et al., 2001). Human primer positions are shown in Figure 41, and the 

sequences are shown in Table 3. All primers were produced by Eurofins MWG 

Operon. 
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Figure 41  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 41. Positions of the designed primers on human mtDNA for use in qPCR. A) The 
approximate position and size of the 4.4 kb-product primer pair for use in amplifying human 
mtDNA to determine damage within. B) The 500 bp-product primer pair for use in amplifying 
human mtDNA to determine damage within. C) The 83 bp-product primer pair for use in 
amplifying human mtDNA to determine the relative copy number. The top of the circle is the 
position of the D-loop. 
 
 
 
 

Table 3  

 

Table 3. Primer sequences for qPCR with human mtDNA. The primer sets specific for 
human mtDNA, with product sizes of approximately 4.4 kb, 500 bp, and 83 bp. The base 
sequences from 5’ to 3’ are shown for the forward (F) and reverse (R) primers, as well as the 
exact product length in bp, and the nucleotide numbers in bp which give the positions of the 
products to be amplified within the mtDNA. 
 
 
 
 

Primer Set Base Sequence (5’ to 3’) Length (bp) 
Nucleotide Numbers 

(bp) 

4.4 kb 
Human 

F CCC GGT AAT CGC ATA AAA CT 
4355 3245-7599 

R GCT GCA TGT GCC ATT AAG AT 

500 bp 
Human 

F ATC GGA GGA CAA CCA GTA AG 
538 15758-16295 

R CGT GGG TAG GTT TGT TGG TAT C 

83 bp 
Human 

F GAT TTG GGT ACC ACC CAA GTA TTG 
83 16042-16124 

R AAT ATT CAT GGT GGC TGG CAG TA 

A B 

C 
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6.4 Results 

6.4.1 MtDNA damage following UV exposure in vitro 

In order to show that UV radiation can cause an increase in mtDNA damage 

which is detectable in a 4.4 kb region of the mitochondrial genome by qPCR, 

two different lamp types were used to irradiate the cells for a selection of time 

points. The Cleo lamps and the Arimed B lamps were chosen as they provide 

both UVA (315-400 nm) and UVB (280-315 nm) (Figure 42), similar to the 

sunlight reaching the earth’s surface, with the Arimed B lamps being the most 

similar to natural sunlight (Cosmedico, 2013). HDFn cells were used as these 

are derived from the skin, and are therefore susceptible to UV damage (Al-

Baker et al., 2005; Schroeder et al., 2008). Cells were exposed to both lamp 

types for 5 to 60 minutes, with time points taken every 5 minutes, to determine 

an optimum level of mtDNA damage. It was found that significant mtDNA 

damage within the 4.4 kb region begins to occur after only 5 minutes exposure 

for both lamp types (P<0.0001, one-way ANOVA with Dunnett’s test to compare 

columns to the control which was foil around for 5 minutes), despite the same 

number of mtDNA copies being present due to no differences in Ct values when 

using the 83 bp-product primers. After 20 minutes of exposure for the Cleo 

lamps (Figure 43A) and 25 minutes of exposure for the Arimed B lamps (Figure 

43B) a level of damage was reached which was not exceeded if the cells were 

irradiated for longer. These results suggest that the 4.4 kb-product primers are 

able to detect damage caused by UV radiation.  
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Figure 42. Spectral irradiance charts for the Cleo and Arimed B lamps. The spectral 
wavelengths for the Cleo (blue) and Arimed B (Green) lamps are shown, which shows the levels 
of irradiance at various wavelengths. The peaks in the charts at around 313 nm and 365 nm are 
caused by the mercury in the lamps. The approximate wavelength range for the Cleo lamps is 
310 nm to 400 nm, and for the Arimed B lamps is 300 nm to 400 nm. The wavelength ranges 
were determined and the original graph was produced by Dr Jim Lloyd and Dr Jennifer Latimer 
(Newcastle University). 
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Figure 43. MtDNA damage in HDFn cells exposed to UV for various time points. A) HDFn 
cells were irradiated with Cleo lamps for various time points. Cells were covered in foil for 5 
minutes, 30 minutes or 60 minutes as controls. Cells were irradiated without foil for 5 to 60 
minutes at 5 minute time point intervals. MtDNA was extracted from cells and the level of 
damage was determined within a 4.4 kb region using qPCR. The Ct values obtained from the 
qPCR reaction represent the level of mtDNA damage within a sample. A significant difference in 
damage from the control (foil around 5 minutes) was seen after only 5 minutes (P<0.0001***, 
one-way ANOVA with Dunnett’s test). B) HDFn cells were irradiated with Arimed B lamps under 
the same conditions. A significant increase in damage compared to the control (foil around 5 
minutes) was seen after only 5 minutes (P<0.0001***, one-way ANOVA with Dunnett’s test). 
The grey bars show the UV-protected cells (foil-covered), and the yellow bars show the cells 
exposed to UV radiation. The error bars show the SEM. There were two biological repeats (two 
different dishes) each ran in duplicate for the qPCR for each irradiation time and lamp type. 
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6.4.2 MtDNA damage following UV exposure in the presence of cream 

containing SPF30 

In order to test whether the observed mtDNA damage was due to UV as 

opposed to other factors such as heat (Purschke et al., 2010; Chan et al., 

2013), a cream containing SPF30 was tested compared to a cream without SPF 

protection (sham cream). For these irradiations, a control dish with foil placed 

on top and the lid removed was used, to mimic the conditions of the dishes with 

their sides exposed more closely. Tape capable of permitting UV light through 

was used as a positive control, to ensure that any potential decrease in mtDNA 

damage by the cream was not due to the tape blocking the UV. The cells 

irradiated using this tape did not give a significantly different level of damage 

than the cells fully exposed for both lamp types (Figure 44A and Figure 44B) 

(P>0.05, one-way ANOVA with Bonferroni correction). For the Cleo lamps 

(Figure 44A), it was found that the cream with SPF significantly reduced the 

mtDNA damage compared to the sham cream without SPF (P<0.01, one-way 

ANOVA with Bonferroni correction). However, the cream with SPF still gave a 

significantly higher level of damage than the foil on top (P<0.01, one-way 

ANOVA with Bonferroni correction), suggesting that the cream containing 

SPF30 was able to significantly reduce the level of damage compared to non-

SPF-containing cream, but was unable to fully protect the cells as effectively as 

foil. 

 

For the same experiment performed with the Arimed B lamps (Figure 44B), 

there was no significant difference seen between the cells with SPF cream and 

the cells with sham cream (P>0.05, one-way ANOVA with Bonferroni 

correction). However, this did become significant when only these two 

conditions were taken into account (P=0.0472, unpaired t-test). Additionally, 

there was no difference in damage between those cells with foil on top or those 

cells with SPF cream (P>0.05, one-way ANOVA with Bonferroni correction), yet 

there was between the sham cream and the foil (P<0.0001, one-way ANOVA 

with Bonferroni correction). This suggests that the SPF had prevented the 

majority of the damage caused by UV in a manner similar to the foil for this 

lamp type.  
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The level of damage within an 83 bp region of the mitochondrial genome was 

also studied for all samples, as this small region which is unlikely to contain 

damage gives information on the amount of mtDNA present in the sample 

(Koch et al., 2001). It was found that all samples gave Ct values within 1 Ct of 

the average for the 83 bp qPCR, suggesting that the differences seen in the 

4.4 kb reactions were not due to differences in mtDNA content (Berdal and 

Holst-Jensen, 2001; Niemitz et al., 2004; Mraz et al., 2009). 
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Figure 44. MtDNA damage in cells in the presence of cream with or without SPF 
protection. A) HDFn cells were irradiated with Cleo lamps for 20 minutes, with either foil 
around, foil on top, no foil (exposed), tape alone, cream without SPF, or cream plus SPF. There 
was a significantly higher level of damage in the cells with sham cream compared to the cells 
with cream and SPF (P<0.01, one-way ANOVA with Bonferroni correction). B) HDFn cells were 
irradiated with Arimed B lamps for 25 minutes under the same conditions. The cream with SPF 
was not significantly different from the sham cream (P>0.05, one-way ANOVA with Bonferroni 
correction), but the cream with SPF was also not significantly different than the foil on top 
(P>0.05, one-way ANOVA with Bonferroni correction), whereas the sham cream was 
(P<0.0001, one-way ANOVA with Bonferroni correction). The error bars show the SEM. For 
each lamp type, two dishes of cells were used per treatment. Two qPCRs were performed for 
each dish, each in duplicate. 
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6.4.3 Cell viability following UV exposure in the presence of cream 

containing SPF30 

To determine whether the reduced mtDNA damage of cells with cream 

containing SPF, as opposed to cream without, was either due to a decrease in 

mtDNA damage in viable cells or due to higher cell viability, cell viability assays 

were performed. As can be seen in Figure 45A, for cells irradiated with the Cleo 

lamps, all cells which were exposed to UV had a significantly lower level of 

viability than the foil-covered cells (P<0.0001 for the exposed cells, P<0.01 for 

the cells with tape, and P<0.05 for the cells with SPF or sham cream, one-way 

ANOVA with Bonferroni correction). However, none of the exposed cells 

showed any significant difference from one another (P>0.05, one-way ANOVA 

with Bonferroni correction), which implies that despite there being a difference 

in mtDNA damage between the two cream types there was no difference in 

viability.  

 

For the Arimed B lamps, it can be seen in Figure 45B that those cells which had 

foil on top had a significantly higher viability than those cells which were 

exposed (P<0.0001 for the exposed cells and the cells with tape, P<0.01 for the 

cells with sham cream, P<0.05 for the cells with SPF, one-way ANOVA with 

Bonferroni correction). There was again no significant difference between cells 

with the two different cream types (P>0.05, one-way ANOVA with Bonferroni 

correction). 
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Figure 45  
 
 

 

 

 

 

  

 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
Figure 45. Cell viability in the presence of cream either with or without SPF protection. A) 
HDFn cells were irradiated with Cleo lamps for 20 minutes, either with foil on top, exposed, with 
tape, with tape and sham cream, or with tape and cream plus SPF30. The cells with foil had 
significantly higher viability than the cells which were fully exposed (P<0.0001, one-way ANOVA 
with Bonferroni correction), the cells with tape (P<0.01, one-way ANOVA with Bonferroni 
correction), and the cells with sham cream or cream plus SPF (P<0.05, one-way ANOVA with 
Bonferroni correction). There was no difference in viability between the cells with sham cream 
and the cells with cream plus SPF (P>0.05, one-way ANOVA with Bonferroni correction). B) 
HDFn cells were irradiated with Arimed B lamps for 25 minutes under the same conditions as 
above. The cells with foil had significantly higher viability than the cells which were fully exposed 
or exposed with tape (P<0.0001, one-way ANOVA with Bonferroni correction), the cells with 
sham cream (P<0.01, one-way ANOVA with Bonferroni correction), and the cells with cream 
plus SPF (P<0.05, one-way ANOVA with Bonferroni correction). There was no difference in 
viability between the cells with sham cream and the cells with cream plus SPF (P>0.05, one-
way ANOVA with Bonferroni correction). Cell viabilities were normalised to the control (with foil 
on top) for each lamp type. The error bars show the SEM. For each lamp type, cell viability 
assays were performed with three biological repeats, each with eight technical replicates.  
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6.4.4 MtDNA damage in UV-exposed human skin in vivo 

To confirm whether UV damage is detectable in vivo in mammalian skin, human 

skin swab samples were received from differently irradiated skin of human 

backs and the DNA was extracted. These samples were taken from the same 

donors both before irradiation and after irradiation with solar simulated light for 

5 days with a single exposure of 0.8 MEDs on each day, resulting in a 

cumulative dose of 4 MEDs. MEDs were used instead of SEDs as differently 

pigmented skin in vivo responds to UV to different extents (Sachdeva, 2009), 

and MED represents the minimal amount of UV required to produce erythema 

(Heckman et al., 2013).  

 

Primers to amplify a region of 500 bp were used to check the in vivo samples 

for mtDNA damage. To ensure that the 500 bp primers were capable of damage 

detection within mtDNA, as regions this small have not been used previously in 

the literature, qPCR results for this primer set were compared to results using 

the 4.4 kb-primers, for which primers to amplify regions smaller than this have 

been used previously to attempt to detect differences (Kalinowski et al., 1992; 

Ray et al., 2000; Durham et al., 2003; Eischeid et al., 2009; Hunter et al., 2010). 

It was found that the qPCR results for the 500 bp-product primers correlated 

directly with the damage for the 4.4 kb-product primers using human skin 

fibroblast cells (Figure 46) (P<0.0001, rho=1.0000, non-parametric Spearman 

correlation).  

 

 

 

 

 

 

 

 

 

 

 

 

 



181 
 

20 21 22 23 24 25
19

20

21

22

23

24

25

26

27

28

29

30

Figure 46  
 

 

 

 

 

 

 

 

 

 

 

 
Figure 46. Comparison of the 4.4 kb and 500 bp-product primers. QPCR was performed on 
12 human fibroblast samples using the 4.4 kb and the 500 bp-product primer sets, and a highly 
significant correlation was seen between the Ct values for the two primer sets (P<0.0001, 
rho=1.0000, non-parametric Spearman correlation). The green line shows the line of best fit. 
Results were obtained from two qPCR reactions each performed in duplicate for 12 samples. 
 
 
 
 

The level of mtDNA damage within a region of 500bp was measured by qPCR, 

and it was found that there was a significantly higher level of mtDNA damage in 

samples from the same individuals following exposure with 4 MEDs, as shown 

in Figure 47A (P=0.0216, unpaired t-test). The difference of approximately 1.57 

Cts between the non-irradiated and irradiated samples equates to an actual fold 

difference of approximately 2^1.57, or 3-fold more damage in the irradiated 

samples. To ensure that this increase in damage was not due to a natural 

increase in mtDNA damage over the 5 days, swabs were also taken from a 

different area of the back of each person before and after the 5 days of 

irradiation, without exposure. It was found that those areas which were not 

exposed did not have any significant change in damage over the course of the 5 

days (Figure 47B) (P=0.4038, unpaired t-test). To ensure that an equal amount 

of mtDNA was added to the 500 bp qPCR, an 83 bp short section qPCR was 

performed, and it was found that all of the samples had similar Ct values 

suggesting the same amount of mtDNA. As the preliminary data found here 

suggested that UV damage is detectable using skin swabs of the back, the 

study was continued by Dr Asif Tulah (Newcastle University). 
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Figure 47. MtDNA damage following irradiation in vivo. A) Samples were taken by skin 
swabs from one area (area 1) of the backs of three people (non-irradiated, day 0), then the 
same area was irradiated every day for 5 days and a sample was taken from the same area 
(irradiated, day 5). There was a significant increase in the level of mtDNA damage following the 
5 days of irradiation (P=0.0216*, unpaired t-test). MtDNA damage is represented by the Ct 
value. B) Samples were taken from another area of the back (area 2) of the same three people 
(non-irradiated, day 0), and a sample from the same area was taken 5 days later without any 
irradiation (non-irradiated, day 5). There was no significant difference in mtDNA damage 
(P=0.4038, unpaired t-test). The error bars show the SEM. Two qPCR reactions were 
performed for each sample, each in duplicate, for three donors. 
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6.5 Discussion 

6.5.1 MtDNA damage is detectable in a 4.4 kb mtDNA section in vitro 

Real-time qPCR is a technique used previously and reliably to detect UV-

induced genetic damage in mtDNA in both cells and tissues (Kalinowski et al., 

1992; Birch-Machin et al., 1998; Ayala-Torres et al., 2000; Ray et al., 2000; 

Durham et al., 2003; Santos et al., 2006; Hunter et al., 2010; Meyer, 2010; 

Swalwell et al., 2012). To confirm the ability of qPCR to detect mtDNA damage 

within a smaller mtDNA region (4.4 kb) using previously unpublished primers, 

skin cells were irradiated with both UVA and UVB simultaneously to simulate 

natural sunlight. The Arimed B lamps were used as these lamps give a UVA 

and UVB ratio similar to that of natural daylight to represent natural UV 

conditions, which is approximately 4% UVB and 96% UVA for the lamps 

(Cosmedico, 2013), with natural sunlight being 6% UVB and 94% UVA (Diffey, 

2002). The Cleo lamps were chosen as they contain very little UVB (0.7% (Das 

et al., 2002)), to allow information on UVA alone to be determined. Damage was 

detected with both lamp types, from as little as 0.57 SEDs. This represents 

approximately 4 hours of exposure to a weak sun with a UV index of 1, and only 

12 minutes of exposure when the UV index is extremely high at 11 (World 

Health Organisation, 2006). This suggests that mtDNA damage can be detected 

using this technique within a 4.4 kb region, even at low levels of UV, for natural 

sunlight. 

 

The damage detected using this qPCR method was most likely to be due to UV 

damage because the cream containing SPF30 was able to reduce the level of 

mtDNA damage compared to the cream without SPF, suggesting damage was 

not due to other factors such as heat which has been shown to induce mtDNA 

damage previously in some studies (Purschke et al., 2010; Chan et al., 2013), 

(however not in others (Swalwell et al., 2012)). SPF represents the extent to 

which a sunscreen can protect against UV damage (Bech-Thomsen and Wulf, 

1992), with SPF30 considered high protection (Bendová et al., 2007). Since the 

cells in the presence of the cream containing the SPF had lower mtDNA 

damage than the cells with sham cream, it suggested that at least some of the 

mtDNA damage observed in exposed cells was caused by UV which was 

blocked by SPF cream. For the Arimed B lamps, the SPF cream prevented 

mtDNA damage to the same extent as the foil, suggesting that for this lamp type 
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(which is the most similar to natural sunlight) the UV is completely blocked; 

therefore the damage detected for the exposed cells without SPF was likely due 

to UV. For the Cleo lamp, the SPF was unable to block all of the UV-induced 

mtDNA damage, possibly due to the much higher level of SEDs compared to 

the Arimed B lamps (23.79 versus 2.87). 

 

6.5.2 MtDNA damage is detectable in an mtDNA section in vivo 

To further confirm the ability of the long qPCR assay in the detection of UV-

induced damage, skin was irradiated in vivo, and an increase in mtDNA 

damage was observed. MtDNA damage induced by UV has been detected 

previously in vivo in the form of deletions and mutations. For example, the 4977 

bp common deletion has been shown to be more highly induced in sun-exposed 

human skin (Yang et al., 1995; Birch-Machin et al., 1998; Berneburg et al., 

2004; Reimann et al., 2007; Kaneko et al., 2012), including via repeated 

artificial irradiations as used in the present study (Berneburg et al., 2004; 

Reimann et al., 2007). Other mtDNA deletions have been shown to be higher in 

sun-exposed skin, such as the 3895 bp deletion (Krishnan et al., 2004; 

Harbottle et al., 2010). Other mutations include the T414G mutation, which has 

been shown to be higher in sun-exposed human skin than in sun-protected 

(Birket and Birch-Machin, 2007). MtDNA damage in the form of strand breaks 

has also been detected in human skin tissue using the long-region amplification 

qPCR technique as used in the present study (Ray et al., 2000; Durham et al., 

2003); however, in this project the level of mtDNA damage was measured 

within an even smaller region of 500 bp, to see whether damage could still be 

detected. This region appeared to be capable of detecting UV damage, and 

because this region was shown to correlate with the 4.4 kb primer set, it further 

confirmed the use of the 4.4 kb-product primer set in detection of UV-induced 

mtDNA damage, which provides additional confidence that UV damage is 

detectable in whale skin in a region of this size (for Chapter 7). This project also 

demonstrated that mtDNA damage is able to be detected in very few skin cells 

as taken by a swab; therefore, whole tissue sections may not be required which 

is useful to know for possible future studies on human skin for which the taking 

of tissue sections may not be practical.  
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6.6 Summary 

This Chapter provided a proof-of-concept study for the following Chapter 

(Chapter 7), for which a 4.4 kb region was used to detect UV-induced mtDNA 

damage in whale skin from differently UV-exposed whales as a model for 

different ages. The 4.4 kb region tested in this chapter was able to show 

differences in mtDNA damage in vitro, for which the damage was shown to be 

preventable when using a UV-blocking cream. Damage in the 4.4 kb region also 

correlated with results from another primer set (500 bp) used in vivo. Therefore, 

a region of this size should be capable of demonstrating mtDNA damage in 

whale skin; additionally, in previous studies regions from 1 kb up to 15 kb have 

been capable of UV-induced damage detection (Kalinowski et al., 1992; Ray et 

al., 2000; Durham et al., 2003; Eischeid et al., 2009; Hunter et al., 2010). In the 

following chapter (Chapter 7), the level of mtDNA damage was measured in 

whale skin taken from the Gulf of California, Mexico, where the UV index is 

approximately 11 during the summer (Martinez-Levasseur et al., 2013). This 

represents an extremely high level of solar UV, and in this climate 0.57 SEDs 

can be achieved in only 12 minutes of exposure (World Health Organisation, 

2006). As damage could be measured in vitro in HDFn cells at only 0.57 SEDs, 

and the whales spend many hours a day under UV exposure (Whitehead, 

2003), it is likely that a 4.4 kb qPCR assay will be able to detect mtDNA 

damage induced by UV in whales. 

 

 

 

 

 

 

 

 

 

 

 



186 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7. Mitochondrial DNA Damage in 
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7.1 Introduction  

7.1.1 The similarities between UV exposure and chronological ageing 

The genetic changes observed in UV-irradiated (photo-aged) skin have been 

shown to be similar to those found in chronologically-aged skin, and it is 

observed that UV radiation can accelerate skin ageing (Kosmadaki and 

Gilchrest, 2004; Quan et al., 2006; Birket and Birch-Machin, 2007; Akase et al., 

2012). The similarities between UV-exposed and chronologically-aged skin are 

demonstrated by examples of the same type of damage found in both, which 

include mtDNA damage such as the 3895 bp mtDNA deletion, which is 

correlated more strongly with skin from sun-exposed regions of the body as well 

as in the skin of older individuals (Krishnan et al., 2004; Harbottle et al., 2010). 

Other genetic examples include the T414G mtDNA mutation, which has been 

shown in previous studies (Michikawa et al., 1999; Barritt et al., 2000) as well as 

throughout this project (Chapter 4) to be more commonly associated with the 

skin of older individuals, as well as being higher in sun-exposed skin (Birket and 

Birch-Machin, 2007). Other changes in the skin with age include wrinkling, loss 

of elastic fibres and of collagen (Naylor et al., 2011), and an increased risk of 

skin cancers such as malignant melanoma (Cancer Research, 2012), which are 

a phenomenon also observed in photo-aged skin (Nishimori et al., 2001; 

Imokawa, 2008; Rass and Reichrath, 2008). As the effects of UV and of intrinsic 

ageing have very similar patterns, animal models of skin which have been 

differentially exposed to UV can be used as a model for differently aged skin 

(Seo et al., 2009; Flores et al., 2010; Akase et al., 2012). This is useful for when 

it is not practical to study chronological ageing in animals due to their long 

lifespans.  

 

7.1.2 Whale skin as a model for ageing 

Skin exposed to different levels of UV is able to be used as a model for 

differently chronically-aged skin, due to the similarities observed for each. The 

effects of UV are well-documented for humans and laboratory animals 

(Spradbrow et al., 1987; Noonan et al., 2003; Hunter et al., 2010); however, 

laboratory animals may not be the ideal model for human skin as these animals 

are generally small, fur-covered, and short-lived, and are irradiated in the 

laboratory rather than naturally. Some of the damaging effects of UV on wildlife 

have been documented, but these are mainly restricted to fish, amphibians, and 
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other aquatic invertebrates (Kiesecker et al., 2001; Blaustein et al., 2003; 

Tedetti and Sempere, 2006; Dahms and Lee, 2010). Large, wild-living 

mammals, which are rarely studied in terms of UV damage, may represent an 

ideal model for UV exposure, as they are exposed to natural UV from the sun 

throughout their long-lives. Due to the physiological traits of whales, such as the 

need to breathe air, or the long hours spent socialising at the ocean surface 

(Whitehead, 2003; Martinez-Levasseur et al., 2011), whales are forced to 

undergo long periods of continuous exposure to UV, making them an ideal 

model for the study of UV-induced skin damage as a model for ageing. Whales 

also lack UV-protective fur or feathers on their skin, similar to humans, allowing 

the direct penetration of UV rays onto the skin, and they are also likely to have 

differences in UV exposure due to differences in pigmentation levels and UV 

exposure times (Martinez-Levasseur et al., 2011). Figure 48 shows the 

microanatomy of whale skin in comparison to human skin. Previous research 

has indicated that whale skin is indeed susceptible to the damaging effects of 

UV, in the form of skin blisters and other skin damage such as oedema and 

apoptosis (Martinez-Levasseur et al., 2011). However, the level of genetic 

damage has not been studied previously in these animals. An additional reason 

as to why whale skin could make a good model, is that it has been observed 

that whales in captivity, which are subjected to long periods at the surface of the 

water, are susceptible to sunburn and skin damage, and have to be regularly 

applied with the sun-protector zinc-oxide to protect against sunburn (Kirby, 

2012), further confirming that whales are indeed susceptible to the effects of 

UV. Whales are also long-lived, and can live to over 100 years in the wild 

(Dobson, 2003), which could be useful for documenting the effects of 

cumulative genetic damage over many years. Therefore, whales with different 

UV exposures were chosen for use in this study, as a model to represent 

differently aged skin, to determine whether genetic damage is increased with 

age and what possible factors can influence the level of this damage. 
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Figure 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 48. The microanatomy of human and whale skin. Both human and whale skin are 
composed of three main layers, which are the epidermis, the dermis, and the 
hypodermis/subcutaneous tissue. A) The epidermis of human skin is approximately 0.1 mm 
thick, the dermis is 1-4 mm thick, and the hypodermis is 1-6mm thick (Bashkatov et al., 2005). 
B) Whale skin epidermis consists of a thin pigmented layer of <1 mm thick, with the total 
thickness of the epidermis approximately 5 mm, but can be lower or higher depending on the 
whale species. The dermal layer is thin and is <1 mm. The hypodermis can be up to 60 cm in 
thickness depending on the whale species and area of the body (Tinker, 1988). Images edited 
from (Berardi et al., 2006; Mouton and Botha, 2012). 
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7.1.3 Differences in the skin of blue whales, fin whales, and sperm whales 

In a previous study performed by Martinez-Levasseur et al. (2011), whale skin 

samples from blue whales, fin whales, and sperm whales were collected from 

the Gulf of California, Mexico, which has an extremely high UV index as shown 

in Figure 49 (Bournay and UNEP/GRID-Arendal, 2007). Samples were taken 

from the UV-exposed backs of these cetaceans, to obtain information regarding 

skin lesions such as sun-induced blistering in these differently pigmented whale 

species (Figure 50A) (Martinez-Levasseur et al., 2011). The results indicated 

that the lighter-skinned blue whales and sperm whales appeared to accumulate 

a higher number of blisters than the darker-skinned fin whales (Figure 50B) 

(Martinez-Levasseur et al., 2011). This pigmentation level in the whales 

appeared to have a higher influence than the time spent at the surface for the 

determination of cellular skin damage, as sperm whales spend longer periods of 

time at the surface during breathing (7 to 10 minutes for the sperm whales and 

only 2 minutes or less for the blue and fin whales (Croll et al., 2001)), and they 

can also spend up to 6 hours longer than the blue and fin whales at the surface 

during socialisation (Whitehead, 2003). Due to the differences in surface times 

and pigmentation, these three species were chosen to determine the level of 

mtDNA damage within for the current project. The cellular defence mechanisms 

against UV such as pigmentation are discussed in more detail in the general 

Introduction, section 1.5.3. 

 

Through this chapter, mtDNA from whales under various levels of UV stress 

was examined using qPCR to check for differences in damage, which would 

allow insights into mtDNA damage levels with age, as well as the ability to study 

differences in mtDNA damage protection mechanisms between species. These 

protection mechanisms may have evolved differently to counteract damage. 

Studying whale mtDNA also provided the chance to study for the first time in the 

literature the mitochondrial effects caused by UV radiation and therefore age on 

the skin of whales. 
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Figure 49  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 49. Global UV index map showing the area from which whale samples were taken. 
The UV index represents a standard measurement of UV strength reaching the earth’s surface 
(World Health Organisation, 2013). The blue star shows where the whale skin samples from 
blue whales, fin whales, and sperm whales were taken (the Gulf of California, Mexico), where 
the UV index is very high to extreme. Image was edited from (Bournay and UNEP/GRID-
Arendal, 2007). 
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Figure 50  
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 50. Whale skin colouration and surface time and the level of UV-induced skin 
blisters. A) Blue whales in general have the lightest skin colour, followed by sperm whales, and 
then the fin whales (Martinez-Levasseur et al., 2011). Blue and fin whales spend similar lengths 
of time at the surface of the ocean, whereas sperm whales spend longer at the surface between 
dives and during socialisation (Whitehead, 2003; Martinez-Levasseur et al., 2011). The image 
was highly edited from (Martinez-Levasseur et al., 2011). B) The level of sun-induced gross skin 
blisters in blue whales, fin whales, and sperm whales. Blue whales, the lightest species, had the 
highest number of blisters. Pigmentation was more important in the study in determining the 
level of skin blisters when compared to surface time. The numbers in the bars show the sample 
sizes, and the image was taken and edited from (Martinez-Levasseur et al., 2011). 
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7.2 Hypotheses 

The hypotheses of this area of my project were 1) differences in UV-induced 

mtDNA damage can be detected simultaneously in three different whale 

species using qPCR; 2) this mtDNA damage is correlated with factors related to 

UV, such as pigmentation, apoptosis, micro-vesicles, migration patterns, 

surface times, and the level of Hsp70 expression; and 3) this damage differs 

between species, due to possible differences in evolutionary responses to UV-

induced damage. Any differences observed between differently UV-exposed 

whales would be used as a model for differences in differently aged skin. 

Additionally, the defence mechanisms providing the most effective protection 

against mtDNA damage could have possible implications for the treatment of 

human ageing. 
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7.3 Materials and Methods 

The qPCR and gel electrophoresis methods used within this chapter are given 

in the general Materials and Methods, in Chapter 2. 

 

7.3.1 Whale skin sample collection 

Epidermal whale skin samples were collected from 15 blue whales 

(Balaenoptera musculus, abbreviated Bm), 10 fin whales (Balaenoptera 

physalus, abbreviated Bp), and 18 sperm whales (Physeter macrocephalus, 

abbreviated Pm) from the Gulf of California, Mexico, during the time period from 

January to June (2007-2009) by Dr Laura Martinez-Levasseur (University of 

London), Dr Karina Acevedo-Whitehouse (University of London), and Dr Diane 

Gendron (Instituto Politécnico Nacional), using a 7 mm stainless steel dart 

(Martinez-Levasseur et al., 2011). Samples were stored in ethanol at 4°C until 

DNA extraction was performed. The age of the whales was taken into account, 

and only those whales with a minimum age of 1 year old were used in the study. 

Only one sample was taken per whale.  

 

7.3.2 DNA extraction from whale skin tissue 

Total DNA was extracted from epidermal whale skin samples using a QIAamp 

DNeasy Blood and Tissue kit (Qiagen, UK). During this technique, whale skin 

samples of approximately 25 mg were sliced into smaller sections of 

approximately 1 mm2 and placed into a 1.5 ml Eppendorf tube. To these tissue 

sections, 180 µl lysis buffer (Buffer ATL) and 20 µl proteinase K were added. 

The tube was vortexed and incubated at 56°C for 1 hour to lyse the sample, 

after which 200 µl of another lysis buffer (Buffer AL) was added to further lyse 

the cells. Samples were vortexed for 15 seconds, and incubated at 70°C for 

10 minutes. Following incubation, 200 µl ethanol was added to purify the DNA 

and samples were vortexed again for 15 seconds. The sample was then 

transferred to a QIAamp Spin Column, and the remaining DNA extraction was 

performed as described in section 2.4.1 from the point of sample transfer to a 

QIAamp Spin Column. DNA was stored at 4°C or -20°C until use. The DNA 

from blue and fin whales, and several of the sperm whales was extracted by 

Dr Laura Martinez-Levasseur.   
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7.3.3 QPCR primer design 

Primers for use in qPCR for the amplification of whale mtDNA to analyse the 

level of damage had to be designed in this project, as whale mtDNA has not 

been analysed previously using this method. The mtDNA of the blue, sperm, 

and fin whales are 16,402 bp, 16,428 bp, and 16,398 bp respectively. 

Therefore, two sections of approximately 8.5 kb or four sections of 

approximately 4.4 kb were initially designed to specifically amplify the mtDNA to 

ensure the entire mitochondrial genome could be checked for damage (primer 

positions are shown in Figure 51A and Figure 51B). The primer sets were 

designed to overlap to ensure the whole genome could be checked. The 4.4 kb 

and 8.5 kb-product primers were specific for the blue and fin whale samples 

only. Following the success of these primers and the acquisition of DNA from an 

additional species, the sperm whale, a universal primer set of approximately 

4.3 kb was designed to bind specifically to all three species (Figure 51C), to 

allow direct comparisons between species in the same qPCR reaction. In order 

to find the relative amount of mtDNA within a sample, primers to amplify a 

region of 51 bp specific to all three species were also designed (Figure 51D), as 

a region this small is unlikely to contain high levels of damage and can therefore 

be used to quantify mtDNA amount (Koch et al., 2001; Hunter et al., 2010). The 

mitochondrial genome sequences of the blue whales, sperm whales, and fin 

whales were downloaded from the National Centre for Biotechnology 

Information (NCBI) database (NCBI, 2013), and primers of 20-21 bp in length 

were designed using Primer3 (Rozen and Skaletsky, 2000). A Basic Local 

Alignment Search Tool (BLAST) (NCBI, 2013) was used to ensure primers 

would only bind to the intended regions, and not elsewhere to potential 

pseudogenes within the whale nDNA (Bensasson et al., 2001), or within any 

possible contaminating human DNA. The qPCR annealing temperature of all 

the primers was also checked to ensure their simultaneous use under the same 

qPCR conditions. The final whale primer sequences are shown in Table 4. All 

primers were produced by Eurofins MWG Operon. 
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Figure 51  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 51. Positions of the designed primers on whale mtDNA for use in qPCR. A) The two 
8.5 kb-product primer pairs for use in amplifying whale mtDNA to determine damage within. 
These primers were capable of amplifying the mtDNA from blue and fin whales only. B) The four 
4.4 kb-product primer pairs for use in amplifying whale mtDNA to determine damage. These 
primers were capable of amplifying the mtDNA from blue and fin whales only. C) The universal 
4.3 kb-product primer set for use in amplifying whale mtDNA to determine damage. These 
primers were capable of amplifying mtDNA from blue, fin and sperm whales. D) The 51 bp-
product primers for use in determining the relative copy number of whale mtDNA. These primers 
were capable of amplifying the mtDNA from blue, fin, and sperm whales. 
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Table 4  
 

Primer Set Base Sequence (5’ to 3’) Length (bp) Nucleotide Numbers (bp) 

8.5 kb 
Whale 

1F TTA ACC CAA CAG CAT CCA CA 
8295; 8295 4620-12914; 4623-12917 

1R ATT GCT GAT GGG AGT CAA GG 

2F CGA CCC CTA CAT CAA CCA AT 
8738; 8734 12534-4869; 12537-4872 

2R GTT TGG TTT AGT CCG CCT CA 

4.4 kb 
Whale 

1F GAA CTC GGC AAA CAC AAA CC 
4489; 4489 2345-6833; 2348-6836 

1R CCG CCT ACT GTG AAA AGG AA 

2F TCA AAC TCC CCT TTT CGT ATG 
4400; 4400 6315-10714; 6318-10717 

2R TGG GCT GTG GAG TTA ATT CAG 

3F TCC CAC CTA ATA TCC GCA TT 
4329; 4329 

10405-14733; 10408-
14736 3R TTA AGC AGA GGC CGA GTA GG 

4F TTT GAA GAA ACC CCC ACA AA 
4405; 4401 14469-2471; 14472-2474 

4R CTA CCT TTG CAC GGT CAG GA 

4.3 kb 
Whale 

F GAA CTC GGC AAA CAC AAA CC 4302; 4302; 
4306 

2345-6646; 2348-6649; 
1931-6236 R GGG CTC ATA CGA TAA AGC CTA 

51 bp 
Whale 

F AAC CTC ACC AAC CCT TGC TA 
51; 51; 51 

1077-1127; 1079-1129; 
653-703 R TTT GCT GAA GAT GGC GGT AT 

 
 
Table 4. Primer sequences for qPCR with whale mtDNA. The primer sets specific for whale 
mtDNA, with product sizes of approximately 8.5 kb, 4.4 kb, 4.3 kb, and 51 bp. The two 8.5 kb 
and four 4.4 kb sets were specific for blue whales and fin whales, and the 4.3 kb and 51 bp sets 
were specific for blue whales, fin whales, and sperm whales. The base sequences from 5’ to 3’ 
are shown for the forward (F) and reverse (R) primers, as well as the exact product length in bp, 
and the nucleotide numbers in bp which give the positions of the products to be amplified within 
the mtDNA. For primer product length and nucleotide numbers, the order in the table is given as 
blue whale; fin whale, or blue whale; fin whale; sperm whale. 
 
 
 
 

7.3.4 Whale skin colour 

The skin colour of the whale samples was determined previously by Dr Laura 

Martinez-Levasseur (Martinez-Levasseur et al., 2011). To do this, digital 

photographs of haematoxylin and eosin stained (H&E stained) sections were 

viewed, and a standardised area was chosen on the deepest layer of the 

epidermis, the epidermal ridges, as the number of melanocytes is most 

abundant here. Melanin pigment count was performed using the image-

processing software Image J (Schneider et al., 2012), by converting the 

photograph into greyscale and counting the areas of melanin. An example of an 
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H&E stained whale skin section is shown in Figure 52, with human skin shown 

in Figure 53 for comparison. 

  

Figure 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 52. H&E stained section of fin whale skin. A) An H&E stained section of fin whale skin 
showing the epidermis, the dermis, and the epidermal ridges (Er) where the melanocytes are 
most abundant (Martinez-Levasseur et al., 2011). B) The epidermal ridges were selected to 
determine whale skin colour, for which three layers were defined of 100 arbitrary units each 
(100 arbitrary units is equal to 40 µm). C) The deepest of the three layers was used to quantify 
melanocytes. D) Melanocytes are located at the basal layer of the epidermis, as shown by the 
black arrows. The black areas within cells (as opposed to the dark grey areas) show melanin. 
Image used with permission from the doctoral thesis of Dr Laura Martinez-Levasseur. 

 

40 µm 
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Figure 53 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 53. H&E stained section of human skin. An H&E stained section of human skin 
showing the epidermis and the dermis. An approximate scale bar is given to allow comparison 
to whale skin. Image edited from (Bernerd et al., 2012). 
 
 
 
 

7.3.5 Whale apoptotic cell and micro-vesicle quantification 

Apoptosis and micro-vesicle quantification were determined as described 

previously (Martinez-Levasseur et al., 2011) and performed by Dr Laura 

Martinez-Levasseur. The presence or absence of apoptosis was determined by 

the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate 

nick-end labelling (TUNEL) method, which detects double-strand breaks in DNA 

which occur in the end-stages of apoptosis (Nakaseko et al., 2003; Yamaguchi 

et al., 2008). To quantify apoptotic cells, a standardised area was determined 

on the dorsal area of the whales (the back), taking body length into account, by 

examining the dorsal fin length of each whale, which is proportional to body 

length (Martinez-Levasseur et al., 2011). The number of apoptotic cells per 

individual whale was counted per 100 arbitrary units, by digital photography. 

Samples were considered to have apoptosis present if there was a large 

amount and wide distribution of apoptotic cells detected, and absent if there 

were few or no apoptotic cells observed (Martinez-Levasseur et al., 2011). 

Micro-vesicles are skin lesions produced in response to UV exposure, to aid in 

the repair of sun-damaged tissue (Ulrich et al., 2009). To quantify the level of 

~100µm 

Epidermis 

Dermis 
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micro-vesicles present, a standardised area was determined on the dorsal area 

of the whales, taking body length into account. The number of micro-vesicles 

per individual whale was counted per 100 arbitrary units, by digital photography, 

following H&E staining. To confirm the presence of the micro-vesicles, slides 

were also examined by dermopathologists as described by Martinez-Levasseur 

et al. (2011). 

 

7.3.6 Age of individual whales 

The minimum age of the blue whales was calculated following long-term 

observation of the north-east Pacific Ocean population of whales. Information 

on the minimum age of the whales was available for 8 of the blue whale 

samples used in this study, as documented in the Centro Interdisciplinario de 

Ciencias Marinas (CICIMAR) data set, and provided by Dr Laura Martinez-

Levasseur. The minimum age was estimated based on the initial sighting of the 

whale in the Gulf of California, and future observations of the same whale 

following photo identification. 

 

7.3.7 Whale Hsp70 expression 

The gene expression level of Hsp70 was determined by Dr Laura Martinez-

Levasseur. To do this, RNA was extracted from tissue samples using an 

RNeasy Mini kit, and the cDNA was generated using a QuantiTect Reverse 

Transcription kit (Qiagen, UK). QPCR was performed using a 7300 Real-Time 

PCR System (Applied Biosystems) to determine the expression of Hsp70 based 

on the level of amplification of this protein using specific primers, as compared 

to two internal controls (ribosomal proteins S18 and L4). 
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7.4 Results 

7.4.1 Sample DNA quantification 

Total DNA (nuclear and mitochondrial) was extracted from epidermal skin 

sections from 15 blue whales, 10 fin whales, and 18 sperm whales and the DNA 

concentrations were determined. These concentrations were used as a guide 

as to the amount of total DNA to be added to the qPCR reaction, with the short 

fragment qPCR later used to determine the relative level of mtDNA per sample. 

 

7.4.2 QPCR optimisation: 8.5 kb sections 

Whale samples received for mtDNA analysis were originally from blue whales 

and fin whales only, as a preliminary test to see whether differences in damage 

could be determined in whale skin. Initial primers sets for qPCR optimisation 

were therefore specific for these two species only. QPCR was first attempted 

with two pairs of primers to amplify two mtDNA sections of approximately 8.5 kb 

each to cover both halves of the approximately 16.4 kb whale mitochondrial 

genome. 

 

One blue whale sample and one fin whale sample were used to test the two 

8.5 kb-product primers, using the enzyme Phusion DNA Polymerase and a 

Chromo4 machine. As can be seen in Table 5 and Figure 54A, the 8.5 kb-

product primers were able to amplify the two samples from different species; 

however, the qPCR efficiencies were low. QPCR efficiencies represent the 

amount of sample replication at each cycle, with 100% representing a perfect 

doubling (Agilent Technologies, 2012). The blank negative control contained no 

DNA, and gave no fluorescent signal as expected. To ensure the designed 

primers were producing a single product, the dissociation curve (melt curve) 

was examined and a single product length seemed to be produced based on 

the presence of a single peak (Figure 54B). This is based on the observation 

that DNA strands of similar lengths become separated (melt) at similar 

temperatures, at which point the fluorescent dye becomes dissociated. This was 

confirmed by gel electrophoresis, for which a single band of between 8000-

10,000 bp was present for both samples (Figure 54C), suggesting the qPCR 

amplification was successful.  
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Optimisation of the 8.5 kb-product qPCR reaction was attempted by using a 

lower level of fluorescent dye in the reaction (0.075x SYBR Green concentrate 

instead of the previously used 0.1x SYBR Green), as higher levels of this dye 

may be inhibiting the DNA polymerase (Eischeid, 2011). The efficiency however 

did not appear to change with a lower SYBR Green concentration (Table 6). A 

lower dye concentration appeared to increase the Ct values implying a lower 

fluorescent signal, so the original concentration was maintained. Instead, new 

primers were designed to amplify four sections of approximately 4.4 kb each in 

length, as mtDNA fragments of close to this size have been amplified previously 

to test for UV-induced damage (Kalinowski et al., 1992; Ray et al., 2000; 

Durham et al., 2003; Eischeid et al., 2009; Hunter et al., 2010), as well as in 

Chapter 6 of this project. 

 

Table 5  
 

 

 

 

 

 
Table 5. QPCR results with the 8.5 kb-product primers. One blue whale and one fin whale 
sample were used to test the amplification ability of the 8.5 kb-product primers. Each sample 
was run in triplicate for each of two qPCR reactions using a Chromo4 machine, Phusion 
polymerase, and SYBR Green dye with a primer annealing temperature of 60°C, and the 
average qPCR efficiency and Ct values of the replicates are shown. Blanks showed no 
amplification product. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample Primer Set Average Efficiency Average Ct Value 

Blue Whale 
8.5 kb Set 1 12% 14.87 

8.5 kb Set 2 14% 14.25 

Fin Whale 
8.5 kb Set 1 35% 20.59 

8.5 kb Set 2 46% 19.22 
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Gel electrophoresis  
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Figure 54. QPCR results with 8.5 kb-product primers. A) The amplification plot for one blue 
whale and one fin whale sample with the 8.5 kb-product primers. The plot shows the 
fluorescence versus the qPCR cycle number. Each colour represents a different sample 
replicate, with each sample performed in triplicate. B) The melt curve showing the fluorescence 
at different temperatures, and the derivative plot of the melt curve which shows a single peak at 
approximately 90°C. C) Two out of the three triplicates for each sample were tested for DNA 
length using gel electrophoresis. HyperLadder 1 (Bioline, UK) was used to determine band 
sizes, as shown to the left. L: ladder; 1: blue whale; 2: fin whale; B: blank.  

 

 

Table 6 
 

 
Table 6. QPCR results with different fluorescent dye concentrations. QPCR using a fin 
whale sample was performed using either 0.1x or 0.075x concentration of SYBR Green dye, 
with the 8.5 kb primer set 1. Each SYBR Green dye concentration was run in triplicate for each 
of two qPCR reactions using a Chromo4 machine and Phusion polymerase.  

 

 

Sample Primer Set Dye Concentration Average Efficiency Average Ct Value 

Fin 
Whale 

8.5 kb Set 1 
0.1x 41% 19.91 

0.075x 40% 20.28 
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7.4.3 QPCR optimisation: 4.4 kb sections  

Primers to amplify four mtDNA sections of approximately 4.4 kb each to check 

the entire 16.4 kb mitochondrial genome for damage were tested, and were 

again specific for the blue and fin whales only. One blue whale sample and one 

fin whale sample were used to test the efficiency of the four 4.4 kb-product 

primers. The whale samples were able to be successfully amplified using these 

designed primers, as shown in Table 7, with higher qPCR efficiencies than for 

the 8.5 kb-product primers. To optimise the reaction further and improve the 

qPCR efficiencies, the primer-annealing temperature was lowered from 60°C to 

57°C. This improved the efficiency of the qPCR reaction from approximately 

66% to approximately 77% (Table 8), so an annealing temperature of 57°C was 

used for future experiments.  

 

Potential differences in mtDNA damage were able to be detected at this length, 

as shown by the variation in Ct values between samples, which are visible in 

Figure 55A. All four primer sets gave similar values for the same sample. Figure 

55B shows the melt curve for the 4.4 kb primer sets 1, 2, and 4, all of which 

gave a single peak suggesting a single product was generated. However, 

primer set 3 gave a slight second peak (Figure 55C). To further investigate the 

primers, gel electrophoresis was performed and the results are shown in Figure 

55D. It can be seen that a band of approximately 4.4 kb was generated for each 

sample with each of the four primer sets. However, primer set 4 showed a 

second band of lower intensity at approximately 2 kb despite showing a single 

peak on the melt curve. Because of these factors, primer sets 3 and 4 were 

chosen not to be continued with to determine mtDNA damage. As differences in 

damage were able to be detected at this length of approximately 4.4 kb with a 

high efficiency, this length was continued with. 
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Table 7  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7. QPCR results with the 4.4 kb-product primers. One blue whale and one fin whale 
sample were used to test the amplification ability of the 4.4 kb-product primers. Each sample 
was run in triplicate for each of two qPCR reactions using a Chromo4 machine, Phusion 
polymerase, and SYBR Green dye with a primer annealing temperature of 60°C, and the 
average qPCR efficiency and Ct value of the replicates are shown. Blanks showed no 
amplification product. 
 
 
 
 

Table 8  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8. QPCR results with the 4.4 kb-product primers with a lower primer-annealing 
temperature. One blue whale and one fin whale sample were used to test the amplification 
ability of the 4.4 kb-product primers following a reduction in primer-annealing temperature from 
60°C to 57°C. Each sample was run in triplicate for each of two qPCR reactions using a 
Chromo4 machine, Phusion polymerase, and SYBR Green dye with a primer annealing 
temperature of 57°C. The average qPCR efficiency and Ct value of the replicates are shown. 
Blanks showed no amplification product. 
 
 
 
 
 
 
 
   

Sample Primer Set Average Efficiency Average Ct Value 

Blue Whale 

4.4 kb Set 1 76% 16.31 

4.4 kb Set 2 53% 14.57 

4.4 kb Set 3 67% 15.84 

4.4 kb Set 4 79% 16.51 

Fin Whale 

4.4 kb Set 1 70% 13.91 

4.4 kb Set 2 47% 13.17 

4.4 kb Set 3 68% 13.58 

4.4 kb Set 4 65% 14.28 

Sample Primer Set Average Efficiency Average Ct Value 

Blue Whale 

4.4 kb Set 1 73% 17.55 

4.4 kb Set 2 70% 17.15 

4.4 kb Set 3 73% 17.43 

4.4 kb Set 4 77% 18.45 

Fin Whale 

4.4 kb Set 1 83% 14.83 

4.4 kb Set 2 75% 15.02 

4.4 kb Set 3 87% 14.90 

4.4 kb Set 4 76% 15.61 
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Figure 7. Gel electrophoresis result for 8.5kb  
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Figure 7. Gel electrophoresis result for 8.5kb primers and 57°C annealing temperature. 
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Figure 55. QPCR results with 4.4 kb-product primers. A) The amplification plot for one blue 
and one fin whale sample with the four 4.4 kb-product primers, showing the fluorescence versus 
the qPCR cycle number. Each colour represents a different sample replicate, with each sample 
performed in triplicate. The fin whale sample had a lower level of damage in this example, as it 
crossed the threshold in a lower number of cycles. B) The melt curve showing the fluorescence 
at different temperatures for primer sets 1, 2, and 4, with a peak at approximately 86°C. C) The 
melt curve for primer set 3, with two peaks at approximately 86°C and at 90°C. D) Two out of 
the three triplicates for each sample were tested for DNA length using gel electrophoresis. 
HyperLadder 1 was used to determine band sizes, as shown to the left. L: ladder; 1: blue whale; 
2: fin whale; B: blank. 
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7.4.4 QPCR optimisation: alternative DNA polymerase 

In an attempt to optimise the qPCR reaction further, an alternative enzyme to 

Phusion DNA polymerase was tested. The enzyme KAPA HiFi DNA polymerase 

was chosen as this enzyme is thought to have lower error rates than Phusion, 

to increase the sensitivity of the qPCR (Kapa Biosystems, 2013). The enzyme 

KAPA HiFi DNA polymerase was tested with a blue whale sample using the 

4.4 kb-product primer set 1. However, with this enzyme, the efficiencies were 

much lower and the Ct values much higher than with Phusion polymerase 

(Table 9), suggesting less efficient product formation. Further analysis by gel 

electrophoresis showed a strong band at approximately 4.4 kb for the Phusion 

enzyme, but a low intensity band with the KAPA HiFi polymerase (Figure 56). 

As Phusion DNA polymerase provided the most efficient results, this enzyme 

was used in all further experiments. 

 

Table 9  

 
Table 9. QPCR results with the 4.4 kb-product primers and different DNA polymerases. 
QPCR using a blue whale sample was performed using either Phusion DNA polymerase or 
KAPA HiFi polymerase with the 4.4 kb-product primer set 1. Each polymerase was run in 
triplicate for each of two qPCR reactions using a Chromo4 machine and SYBR Green dye.  
 
 
 
 

Figure 56  
 
 
 

 
 
 
 
 
 
 
 
Figure 56. Gel electrophoresis with Phusion polymerase or KAPA HiFi DNA polymerase. 
The product lengths of the 4.4 kb-product primer set 1 qPCR reaction with a blue whale sample 
and different polymerases were tested using gel electrophoresis. Two out of three replicates 
were tested for the Phusion DNA polymerase. All three replicates were tested for the KAPA HiFi 
polymerase. HyperLadder 1 was used to determine band sizes, as shown to the left. L: ladder; 
1: blue whale; B: blank. 

DNA Polymerase Sample Primer Set Average Efficiency Average Ct Value 

Phusion DNA Polymerase Blue 
Whale 

4.4 kb Set 1 
58% 18.00  

KAPA HiFi Polymerase 37% 22.17 



208 
 

7.4.5 QPCR optimisation: alternative fluorescent dye 

An alternative fluorescent dye to SYBR Green was tested with the 4.4 kb-

product primers to determine whether the reaction could be made more 

sensitive to double-stranded DNA detection. EvaGreen dye (Biotium, UK) was 

chosen to test as this dye is more stable in storage so will not degrade as 

quickly as SYBR Green (Khan et al., 2011), which may be less effective if 

degraded. Various concentrations of the dye were tested with a blue whale 

sample and the 4.4 kb-product primer set 4, with the qPCR reaction run 

simultaneously with SYBR Green dye at its chosen optimised concentration. 

SYBR Green was used at a final concentration of 0.1x, and as EvaGreen is less 

inhibitory towards qPCR as it degrades more slowly than SYBR Green, it was 

used at higher concentrations of 0.4x, 0.7x, and 1x. As can be seen in Table 10, 

the efficiency of the reaction was higher with 0.4x EvaGreen dye compared to 

0.1x SYBR Green dye, despite the higher average Ct value which would imply 

that EvaGreen has a weaker fluorescent signal. Although increasing 

concentrations of EvaGreen reduced the Ct value (due to more dye and a 

brighter fluorescent signal), it also reduced the efficiency of the reaction. It was 

expected that increasing the dye concentration further may provide a more 

detectable signal but may also reduce the reaction efficiency. Gel 

electrophoresis revealed a strong band at approximately 4.4 kb for SYBR Green 

dye and a weak band at approximately 4.4 kb for EvaGreen dye (Figure 57). 

Therefore, this dye was not used to replace SYBR Green. This reaction also 

confirmed that the 4.4 kb-product primer set 4 is not suitable for use in the 

strand break assay, as this primer set produced an additional brighter band 

between 1.5 kb and 2 kb. 
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Table 10  
 

 
Table 10. QPCR results with the 4.4 kb-product primers and different fluorescent dyes. 
QPCR using a blue whale sample was performed using various concentrations of EvaGreen 
dye, with the previously optimised concentration of SYBR Green for comparison. Phusion DNA 
polymerase was used with the 4.4 kb-product primer set 4, and each concentration was run in 
triplicate for two qPCR reactions using a Chromo4 machine.  
 
 
 
 

Figure 57  
 

 

 

 

 

 
 
 
 
Figure 57. Gel electrophoresis with different fluorescent dyes and concentrations. The 
products of the 4.4 kb-product primer set 4 qPCR reactions with a blue whale sample and 
different dye concentrations were tested using gel electrophoresis. Two out of three replicates 
were tested for 0.1x SYBR Green, 0.4x EvaGreen, 0.7x EvaGreen, and 1x EvaGreen. 
HyperLadder 1 was used to determine band sizes, as shown to the left. L: ladder; 1: 0.1x SYBR 
Green; 2: 0.4x EvaGreen; 3: 0.7x EvaGreen; 4: 1x EvaGreen; B: blank. 
 
 
 
 

The 4.4 kb-product primers were also tested with multiple other blue whale and 

fin whale samples for primer sets 1 and 2, which were able to be successfully 

amplified. This suggests that the length of 4.4 kb and the optimised conditions 

could be taken further and used to study mtDNA damage levels within and 

between different whale species, and to determine any correlations between 

genetic damage and UV exposure.  

 

 

Fluorescent Dye Sample Primer Set Average Efficiency Average Ct Value 

0.1x SYBR Green 

Blue Whale 4.4 kb Set 4 

60% 16.77 

0.4x EvaGreen 82% 19.66 

0.7x EvaGreen 61% 18.19 

1x EvaGreen 49% 17.48 
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7.4.6 QPCR optimisation: 4.3 kb section 

Based on the successful optimisation of the qPCR assay to amplify and detect 

differences in damage between the mtDNA of blue and fin whale samples, skin 

samples from an additional species, the sperm whale, were acquired. As the 

previously designed 4.4 kb-product primers could not bind with 100% specificity 

to the sperm whale mtDNA, alternative primers capable of binding to all three 

species were designed, to allow simultaneous analysis in a qPCR reaction. The 

4.4 kb-product primer sets all showed similar Ct values within each sample, 

indicating that the mtDNA had similar levels of damage throughout the genome 

and there was not one region of the genome that was preferentially damaged. 

Therefore, only one region was chosen to be designed to bind to all three 

species with 100% specificity. The designed primer set to amplify a region of 

approximately 4.3 kb appeared to be successful in amplifying blue whale, fin 

whale, and sperm whale mtDNA, simultaneously in a single qPCR reaction with 

high qPCR efficiencies (Table 11 and Figure 58A). A single peak was also 

generated for all three samples on a melt curve (Figure 58B) and a single gel 

electrophoresis product of the correct length (Figure 58C). 

 

Table 11  
 

 
 
 
 
 
 
 
 
 
 
Table 11. QPCR results with the 4.3 kb-product primers. One blue whale, one fin whale, and 
two sperm whale samples were used to test the amplification ability of the universal 4.3 kb-
product primers. Each sample was run in triplicate for two qPCR reactions using a Chromo4 
machine, Phusion polymerase, and SYBR Green dye with a primer annealing temperature of 
57°C. The average qPCR efficiency and Ct values of the replicates are shown. Blanks showed 
no amplification product. 
 
 
 
 
 
 
 
 
 
 
 

Sample Primer Set Average Efficiency Average Ct Value 

Blue Whale 

4.3 kb 

89% 13.62 

Fin Whale 84% 16.87 

Sperm Whale 1 84% 16.00 

Sperm Whale 2 96% 13.98 
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Figure 7. Gel  
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Figure 58. QPCR results with the 4.3 kb-product primer set. A) The amplification plot of one 
blue whale, one fin whale, and two sperm whale samples with the 4.3 kb-product primer set, 
showing the fluorescence versus the qPCR cycle number. Each colour represents a different 
sample replicate, with each sample performed in triplicate. B) The melt curve showing the 
fluorescence at different temperatures with a peak at approximately 86°C. C) All three triplicates 
for each sample were tested for DNA length using gel electrophoresis. HyperLadder 1 was used 
to determine band sizes, as shown to the left. L: ladder; 1: sperm whale 1; 2: sperm whale 2; 3: 
fin whale; 4: blue whale; B: blank. 
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To confirm the ability of these 4.3 kb-product primers to detect differences in 

mtDNA damage between samples, the Ct values obtained using the 4.4 kb-

product primer set 1 and the universal 4.3 kb-product set were compared using 

two representative blue whale and fin whale samples. The results showed that 

both primer sets gave similar levels of damage for each sample, with those 

samples with higher Ct values for the 4.4 kb-product set also showing higher Ct 

values with the universal 4.3 kb-product set (Table 12). These two primer sets 

were also tested using two different qPCR machines (a Chromo4 machine for 

the 4.4 kb-product primer set, and a StepOnePlus machine for the 4.3 kb-

product primer set), showing the reproducibility of the assay across multiple 

qPCR machines. 

 

Table 12  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 12. QPCR results with the 4.3 kb-product and 4.4 kb-product primers. Two blue 
whale and two fin whale samples were used to compare the Ct values received for the universal 
4.3 kb-product primers and the 4.4 kb-product primers. Each sample was run in triplicate for two 
qPCR reactions using either a Chromo4 machine (for the 4.4 kb-product primers) or a 
StepOnePlus machine (for the 4.3 kb-product primers), using Phusion polymerase, SYBR 
Green, and a primer annealing temperature of 57°C. The average Ct values of the replicates 
are shown. Blanks showed no amplification product. 
 
 
 
 

The concentration of mtDNA to be used in future qPCR assays to determine 

mtDNA damage was chosen based on results from a concentration curve for 

the 4.3 kb-product primers (Figure 59). Results showed that the reaction was 

linear from 25 ng to 200 ng (for every 2-fold increase in concentration there is 

expected to be a Ct decrease of 1); therefore, a concentration of 100 ng was 

Sample Primer Set Average Ct Value 

Blue Whale 1 
4.4 kb Set 1 13.83 

4.3 kb  13.94 

Blue Whale 2 
4.4 kb Set 1 15.83 

4.3 kb  15.85 

Fin Whale 1 
4.4 kb Set 1 15.43 

4.3 kb  15.27 

Fin Whale 2 
4.4 kb Set 1 15.84 

4.3 kb  15.70 
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chosen for analysis based upon linearity of the concentration curve and the 

availability of DNA material. 

 

Figure 59  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 59. QPCR dilution curve for the 4.3 kb-product primers. A sperm whale sample was 
used to determine the optimum concentration for qPCR with the 4.3 kb-product primers, with the 
concentrations of 200 ng, 100 ng, 50 ng, 25 ng, 12.5 ng, 6.25 ng, 3.13 ng, and 1.56 ng used. A) 
The amplification plot for each concentration. B) Individual Ct values were plotted for the log(2) 
of each concentration, as each 2-fold increase in concentration should decrease the Ct value by 
1. The reaction was linear from 25 ng to 200 ng, as indicated by the purple line. Each sample 
was run in duplicate for two qPCR reactions using a StepOnePlus machine, Phusion 
polymerase, SYBR Green, and a primer annealing temperature of 57°C. 
 
 

200 ng 

100 ng 

50 ng 

25 ng 

12.5 ng 

6.25 ng, 

3.13 ng, 

1.56 ng 

Cycle 

F
lu

o
re

s
c
e
n

c
e
 

A 

B 

Log(2) Concentration 

C
t 

V
a

lu
e

 



214 
 

7.4.7 MtDNA relative copy number 

DNA extracted from whale skin samples contained both nDNA and mtDNA, as 

the DNA extraction technique used was not specific for either DNA type. 

Therefore, measurements of DNA concentrations to be used in the qPCR 

assays represented the total amount of nucleic acid present rather than the 

mtDNA concentration alone. It was therefore important to find the relative copy 

number of each sample to ensure that an approximately equal amount of 

mtDNA was added to the 4.3 kb-product primer assays for all samples. To do 

this, a short region of below 200 bp is amplified by qPCR and the Ct 

determined; from this the relative mtDNA copy number is found and the total 

amount of DNA added to the long qPCR altered accordingly. This approach 

uses the same principle as has been used previously in humans to determine 

the relative mtDNA copy number whereby a region of 83 bp is amplified (Koch 

et al., 2001; Swalwell et al., 2012). A set of primers to amplify a region of 51 bp 

were designed through this study to be specific for all three whale species used. 

If the samples have similar Ct values when amplified by qPCR using this short 

region, it ensures that they contain similar amounts of mtDNA, as this short 

region of mtDNA is unlikely to contain high levels of damage (Koch et al., 2001; 

Hunter et al., 2010). A higher Ct represents a lower mtDNA copy number, as a 

higher number of cycles are required for amplification. If this were the case, 

more of this sample would have to be added to the 4.3 kb-product reaction to 

ensure an equal mtDNA amount. To test the designed primers, a concentration 

curve using a sperm whale sample was performed to ensure that for each 2-fold 

increase in DNA added to the reaction, there was a Ct decrease of 1, and to 

determine an appropriate concentration to be used. The results in Figure 60A 

show that these primers were suitable for determining the relative amount of 

mtDNA in the whale samples, and as the reaction was linear from 1.56 ng to 

200 ng (Figure 60B), a concentration of 50 ng was chosen for future 51 bp 

assays. 

 

The relative copy number qPCR was performed with the 51 bp-product primers 

for the 15 blue whale, 10 fin whale, and 18 sperm whale samples to be used for 

the 4.3 kb assay. All of the Ct values were very similar (within 1 Ct of the 

average), suggesting a similar level of mtDNA per 50 ng of total DNA in each 

sample. As the Ct values were very close, the concentration added to the later 



215 
 

0 2 4 6 8 10
12

13

14

15

16

17

18

19

20

21

22

Log(2) Concentration

C
t 
V

a
lu

e

4.3 kb qPCR reactions was not altered (Berdal and Holst-Jensen, 2001; Niemitz 

et al., 2004; Mraz et al., 2009). Single peaks were also seen on the melt curves 

suggesting the formation of a single product. 

 

Figure 60  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 60. QPCR dilution curve for the 51 bp-product primers. One sperm whale sample 
was used to determine the optimum concentration for qPCR with the 51 bp-product primers, 
with the concentrations of 200 ng, 100 ng, 50 ng, 25 ng, 12.5 ng, 6.25 ng, 3.13 ng, and 1.56 ng 
used. A) The amplification plot for each concentration. B) Individual Ct values were plotted for 
the log(2) of each concentration, as each 2-fold increase in concentration should decrease the 
Ct value by 1. The reaction was linear from 1.56 ng to 200 ng, as indicated by the purple line. 
Each sample was run in duplicate for two qPCR reactions using a StepOnePlus machine, 
Phusion polymerase, SYBR Green, and a primer annealing temperature of 60°C. 
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7.4.8 MtDNA damage levels within three whale species 

Once it was determined that the samples contained similar mtDNA amounts per 

total DNA concentration, 15 blue whale, 10 fin whale, and 18 sperm whale 

samples were assayed with the 4.3 kb-product primers using the previously 

established optimal conditions, to determine their individual levels of mtDNA 

damage. Figure 61 shows the results for each individual sample of the three 

species used, with the average raw Ct values given. It was not possible to 

acquire a completely undamaged sample of whale skin for use as an 

undamaged control; therefore the sample with the lowest level of mtDNA 

damage was used as a representative for an undamaged control, to compare 

any increases in damage (Durham et al., 2003; Harbottle and Birch-Machin, 

2006; Hunter et al., 2010). A significantly higher level of damage was found in 

the majority of samples compared to the undamaged control for each species 

(P<0.0001, one-way ANOVA with Dunnett’s test). This difference in damage 

observed between whale skin samples would be even more pronounced if the 

absolute fold difference in damage were to be plotted, as each 1 Ct difference 

from the control represents a 2-fold increase in damage. For example, the Ct 

difference of 5.04 between Bm754 and Bm675 actually represents a difference 

in damage of 32.90 (25.04), where Bm675 has approximately 33-fold higher 

damage. Results were not plotted in this manner as using this method would 

give bias to those samples which were much higher than the undamaged 

control, and make any possible differences in the less damaged samples harder 

to detect. For example, using the blue whale species, it was found that 

significant differences were present between 8 of the samples compared to the 

lowest sample when the fold difference in damage was plotted (Figure 62A). 

However, if the most highly damaged sample were to be removed (sample 

Bm675), 2 more of the samples become significant (Bm690 and Bm753), and 

the level of significance rises in others (Bm663, Bm701, Bm716, and Bm731) 

(Figure 62B). Therefore, the plotting of fold differences directly could alter the 

results if there is a massively damaged sample present within a species. If the 

most damaged sample were to be removed from the graph which shows the Ct 

value rather than the fold difference, all of the samples retain the same 

significance. MtDNA damage was therefore expressed as raw Ct values in this 

project, as used previously when examining differences in mtDNA damage 

(Sood et al., 2011). 
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Figure 61. Graphical representation of mtDNA damage in three whale species. A) The 
qPCR results for the 4.3 kb-product primer set with samples from 15 blue whales. B) The qPCR 
results for the 4.3 kb-product primer set with samples from 18 sperm whales. C) The qPCR 
results for the 4.3 kb-product primer set for 10 fin whales. Each bar represents the average from 
at least two qPCR repeats each performed in triplicate. The Ct values show the level of mtDNA 
damage, and the blue bars show the least damaged sample for each species, which was used 
as a control to perform the statistical analysis. The error bars show the SEM. Significant 
differences in mtDNA damage were observed in all three species compared to the control for 
each (P<0.05*, P<0.01**, P<0.0001***, one-way ANOVA with Dunnett’s test). 
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Figure 62. Graphical representation of the fold difference in mtDNA damage for blue 
whale samples. A) The qPCR results for the 4.3 kb-product primer set with samples from 15 
blue whales, showing the fold difference in damage compared to the least damaged sample, 
which is represented by the blue bar. B) The qPCR results for the 4.3 kb-product primer set with 
samples from 15 blue whales showing the fold difference in damage compared to the least 
damaged sample, represented by the blue bar. The sample showing an extremely high level 
fold difference in damage (sample Bm675) was removed from this graph to demonstrate its bias 
in reducing the significance of several of the other samples. The fold difference in damage was 
determined by finding the difference from the least damaged sample, and performing 2 to the 
power of this value. The error bars show the SEM. Significant differences in mtDNA damage 
were observed compared to the control sample (P<0.05*, P<0.01**, P<0.0001***, one-way 
ANOVA with Dunnett’s test). 
 
 
 
 

7.4.9 MtDNA damage correlation with other markers of UV damage 

The principle of the 4 kb-product primer assay to detect UV-induced mtDNA 

damage has been demonstrated previously in humans (Birch-Machin et al., 

1998; Ayala-Torres et al., 2000; Ray et al., 2000; Durham et al., 2003; Santos et 

al., 2006; Swalwell et al., 2012), as well as in the present project (Chapter 6). 

To confirm that the mtDNA damage observed in whale skin was likely to be due 

to UV damage instead of other factors, the mtDNA damage was correlated with 

other known markers of UV damage, namely the presence or absence of micro-

vesicles, or the presence or absence of apoptosis. Micro-vesicles are a 

morphological change in response to acute sun damage (Ulrich et al., 2009; 

Martinez-Levasseur et al., 2011). The presence of micro-vesicles correlated 

significantly with mtDNA damage, suggesting that those whales with 

micro-vesicles present have increased mtDNA damage (Figure 63A) (P=0.0047, 

unpaired t-test). Apoptosis is increased in response to UV exposure to remove 

damage (Yamaguchi et al., 2008), which is the method by which the body 

removes damaged cells, and is thought to be a protective mechanism against 

potentially carcinogenic cells (Yamaguchi et al., 2008). Apoptosis levels 

correlated inversely with mtDNA damage in those whale samples for which 

information was available (Figure 63B) (P=0.0495, unpaired t-test). This 

suggests that those whales with apoptosis present have lower mtDNA damage 

levels. These correlations further confirm the effectiveness of the qPCR method 

used in this study in detecting damage principally caused by UV. 

 

 

 

 



221 
 

A
bs

en
t

P
re

se
nt

12

13

14

15

16

17
**

A
bs

en
t t

o 
Lo

w

P
re

se
nt

12

13

14

15

16

17
*

Figure 63  
 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 63. MtDNA damage of whales compared to the presence or absence of micro-
vesicles or apoptosis. A) The qPCR results for mtDNA damage with the 4.3 kb-product primer 
set compared to the presence or absence of micro-vesicles, for 15 blue whale, 10 fin whale, and 
17 sperm whale samples. A significantly higher level of mtDNA damage was observed for 
samples with micro-vesicles present (P=0.0047**, unpaired t-test). B) The qPCR results for 
mtDNA damage with the 4.3 kb-product primer set compared to the absence or presence of 
apoptosis, for 5 blue whale, 2 fin whale, and 11 sperm whale samples. A significantly lower level 
of mtDNA damage was observed for samples with apoptosis present (P=0.0495*, unpaired t-
test). The error bars show the SEM. The averages of at least two qPCR reactions each 
performed in triplicate were used for each sample.  
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7.4.10 MtDNA damage levels between different whale species 

The average mtDNA damage level for each species was compared to 

determine whether differences in damage were present between different 

species, to see if certain characteristics can affect the level of mtDNA damage 

within their skin. No significant differences in average mtDNA damage were 

seen for the blue whales versus the sperm whales, or the blue whales versus 

the fin whales (Figure 64A) (P>0.05, one-way ANOVA with Bonferroni 

correction). However, the fin whales showed a significantly higher level of 

mtDNA damage than the sperm whales (Figure 64A) (P<0.01, one-way ANOVA 

with Bonferroni correction). This was despite the fact that the fin whale samples 

used had significantly higher skin pigmentation than the blue whales and sperm 

whales (Figure 64B) (P<0.01, one-way ANOVA with Bonferroni correction), and 

so may have been expected to have less damage. The level of micro-vesicles 

was found to be significantly lower in the sperm whales compared to the blue 

whales and fin whales (Figure 64C) (P<0.0001, one-way ANOVA with 

Bonferroni correction), and the level of apoptosis was found to be significantly 

lower in the blue whales and fin whales compared to the sperm whales (Figure 

64D) (P<0.01 for the blue whales and P<0.05 for the fin whales, one-way 

ANOVA with Bonferroni correction). These results implied that the sperm 

whales, which had significantly lower mtDNA damage than the fin whales, had 

the lowest level of micro-vesicles and the highest level of apoptosis. 
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Figure 64. Differences in mtDNA damage, pigmentation, micro-vesicles, and apoptosis 
between three different whale species. A) The qPCR results for the 4.3 kb-product primers to 
determine mtDNA damage (expressed in Ct) for 15 blue whale, 18 sperm whale, and 10 fin 
whale samples. There was a significantly higher level of mtDNA damage in the fin whales 
compared to the sperm whales (P<0.01**, one-way ANOVA with Bonferroni correction). The 
averages of at least two qPCR reactions each performed in triplicate were used for each 
sample. B) The average level of pigmentation for each species for 15 blue whale, 15 sperm 
whale, and 10 fin whale samples. There was a significantly higher level of pigmentation in the 
fin whale samples compared to the blue whale samples and the sperm whale samples 
(P<0.01**, one-way ANOVA with Bonferroni correction). C) The presence or absence of micro-
vesicles for each species for 15 blue whale, 18 sperm whale, and 10 fin whale samples. There 
was a significantly lower level of micro-vesicles in the sperm whales compared to the blue 
whales and the fin whales (P<0.0001***, one-way ANOVA with Bonferroni correction). The 
presence of micro-vesicles was represented by 1, and the absence as 0. D) The presence or 
absence of apoptosis for each species for 5 blue whale, 11 sperm whale, and 2 fin whale 
samples. There was a significantly higher level of apoptosis in the sperm whales compared to 
the blue whales (P<0.01**, one-way ANOVA with Bonferroni correction) and fin whales 
(P<0.05*, one-way ANOVA with Bonferroni correction). The level of apoptosis was scaled from 
0 to 3, with 0 to 2 absent to a few apoptotic cells, and 3 being high levels and widely distributed, 
as done previously (Martinez-Levasseur et al., 2011). The error bars show the SEM. 
 
 
 
 

7.4.11 MtDNA damage and Hsp70 

The family of heat shock proteins known as Hsp70 are proteins whose 

expression is induced in response to cellular stressors such as heat shock, 

infrared radiation and UV radiation (De la Coba et al., 2009). The level of Hsp70 

was compared to the level of mtDNA damage in those samples for which 

information was available, to determine whether the heat shock response is 

associated with higher or lower levels of mtDNA damage. Figure 65 shows the 

results for 3 blue whale, 6 fin whale, and 15 sperm whale samples, and as can 

be seen the level of mtDNA damage was significantly lower in those samples 

with higher Hsp70 expression (P=0.0063, rho=0.5524, non-parametric 

Spearman correlation). The level of Hsp70 expression was also compared 

between the three species, and it was found that although non-significant, the 

sperm whales had a trend towards a higher level of Hsp70 (Figure 66) 

(P=0.0690, one-way ANOVA with Bonferroni correction). This may have not 

been significant due to the low number of blue and fin whale samples available 

for analysis, as when only the fin and sperm whales were taken into account 

there was a significant difference between the two species (P=0.0463, unpaired 

t-test). 
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Figure 65. Individual mtDNA damage compared to Hsp70 level. The mtDNA damage (Ct) as 
determined using the 4.3 kb-product primers was compared to the Hsp70 level for individual 
whales, for 3 blue whale, 14 sperm whale, and 6 fin whale samples. There was a significant 
inverse correlation between the level of mtDNA damage and the level of Hsp70 expression 
(P=0.0063, rho=0.5524, non-parametric Spearman correlation). Hsp70 is given as ΔCt (sample 
Ct difference from the control), and lower values represent higher levels of expression due to 
lower Ct values representing higher expression. The green line shows the line of best fit. The 
error bars show the SEM. At least two qPCR reactions each in triplicate were performed for 
each sample. 
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Figure 66. Differences in Hsp70 expression in three different whale species. The Hsp70 
level for 3 blue whale, 14 sperm whale, and 6 fin whale samples. There was no significant 
difference in damage between the three samples (P=0.0690, one-way ANOVA with Bonferroni 
correction), but the sperm whales were trending towards higher damage. When only the fin and 
sperm whales were analysed, there was a significant difference in damage (P=0.0463, unpaired 
t-test). Hsp70 is given as ΔCt, and lower values represent higher levels of damage. The error 
bars show the SEM. 
 
 
 
 

7.4.12 MtDNA damage and pigmentation 

The level of mtDNA damage did not correlate with the level of pigmentation 

present when individual samples from all three species were viewed 

simultaneously (Figure 67A) (P=0.7633, rho=0.0492, non-parametric Spearman 

correlation). However, the level of mtDNA damage did correlate with 

pigmentation when compared within the blue whales alone. Taken as an 

individual species, the blue whales showed a significant inverse correlation 

between the level of pigmentation and mtDNA damage (Figure 67B) (P=0.0148, 

rho=-0.6143, non-parametric Spearman correlation). This was not the case for 

the sperm whales (Figure 67C) (P=0.9698, rho=0.0107, non-parametric 

Spearman correlation) or the fin whales (Figure 67D) (P=0.5135, rho=0.2364, 

non-parametric Spearman correlation), which showed no correlation between 

individual pigmentation level and individual mtDNA damage. 
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Figure 67. Individual mtDNA damage compared to individual pigmentation level. A) The 
mtDNA damage (Ct) as determined using the 4.3 kb-product primers compared to the individual 
pigmentation level for all three species, for 15 blue whale, 15 sperm whale, and 10 fin whale 
samples. There was no significant correlation between mtDNA damage and pigmentation 
(P=0.7633, rho=0.0492, non-parametric Spearman correlation). B) The mtDNA damage 
compared to the individual pigmentation level for 15 blue whale samples. There was a 
significant inverse correlation between the level of mtDNA damage and the level of 
pigmentation (P=0.0148, rho=-0.6143, non-parametric Spearman correlation). The green line 
shows the line of best fit. C) The mtDNA damage compared to the individual pigmentation level 
for 15 sperm whale samples. There was no significant correlation between mtDNA damage and 
pigmentation (P=0.9698, rho=0.0107, non-parametric Spearman correlation). D) The mtDNA 
damage compared to the individual pigmentation level for 10 fin whale samples. There was no 
significant correlation between mtDNA damage and pigmentation (P=0.5135, rho=0.2364, non-
parametric Spearman correlation). The error bars show the SEM. At least two qPCR reactions 
each performed in triplicate were used for each sample.  
 
 
 
 

7.4.13 MtDNA damage and seasonal variation 

In the Gulf of California, Mexico, where the whale samples were obtained, the 

UV index increases from February to April by approximately 4 UV index points 

(Lemus-Deschamps et al., 2002). The level of mtDNA damage in whale skin in 

these 2 months was therefore compared to see if any acute changes in damage 

were occurring. Unfortunately, the sperm whale samples were all taken in the 

same month, so were unable to be analysed for differences between months. 

Although there was no significant difference in damage in the fin whales (Figure 

68B) (P=0.2410, unpaired t-test), the blue whales showed a significant 

decrease in mtDNA damage from February to April (Figure 68A) (P=0.0416, 

unpaired t-test), despite the increase in UV index. The pigmentation level of the 

blue whales from February to April was also studied, and it was found that there 

was a highly significant increase in pigmentation from February to April (Figure 

68C) (P=0.0040, unpaired t-test), which was not seen in the fin whales (Figure 

68D) (P=0.5100, unpaired t-test).  
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Figure 68. MtDNA damage and pigmentation changes from February to April. A) The 
mtDNA damage (Ct) as determined using the 4.3 kb-product primers compared to the month for 
which the individual sample was taken, for 13 blue whale samples. There was a significantly 
lower level of damage in April compared to February (P=0.0416*, unpaired t-test). B) The 
mtDNA damage compared to the month for which the individual sample was taken, for 10 fin 
whale samples. There was no significant change in damage from February to April (P=0.2410, 
unpaired t-test). At least two qPCR reactions each performed in triplicate were used for each 
sample. C) The pigmentation level of whales compared to the month for which the individual 
sample was taken, for 13 blue whale samples. There was a significantly higher level of 
pigmentation for those samples taken in April (P=0.0040**, unpaired t-test). D) The 
pigmentation level of whales compared to the month for which the individual sample was taken, 
for 10 fin whale samples. There was no significant change in pigmentation from February to 
April (P=0.5100, unpaired t-test). The error bars show the SEM. 
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7.4.14 MtDNA damage and increasing age 

The population of blue whales in the Gulf of California have been observed and 

documented for over 20 years, allowing the minimum age of many of the whale 

samples to be known. For those whale samples for which the age was known, 

which included only the blue whales, the age was compared to the mtDNA 

damage. It was found that a significant correlation existed between the age of 

the whale and the level of mtDNA damage observed (Figure 69) (P= 0.0279, 

rho=0.7904, non-parametric Spearman correlation). The age of the individual 

did not correlate with the pigmentation level of that individual (P=0.3786, rho=-

0.3473, non-parametric Spearman correlation) (results not shown), which 

implied that the increase in mtDNA damage with age was not due to a decrease 

in pigmentation. 

 

Figure 69  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 69. Individual mtDNA damage compared to individual age for blue whale samples. 
The mtDNA damage (Ct) as determined using the 4.3 kb-product primers compared to the 
individual age of 8 blue whale samples. There was a significant correlation between the level of 
mtDNA damage and the age of the whale (P=0.0279, rho=0.7904, non-parametric Spearman 
correlation). The green line shows the line of best fit. The error bars show the SEM. At least two 
qPCR reactions each performed in triplicate were used for each sample. 
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7.5 Discussion 

7.5.1 Successful optimisation of mtDNA damage detection in a previously 

unstudied taxonomic group 

Real-time qPCR is a technique used previously and reliably to detect UV-

induced genetic damage in the mtDNA of humans (Birch-Machin et al., 1998; 

Ayala-Torres et al., 2000; Ray et al., 2000; Durham et al., 2003; Santos et al., 

2006; Swalwell et al., 2012) and a range of laboratory animals including 

C. elegans, mice, and zebrafish (Kalinowski et al., 1992; Hunter et al., 2010; 

Meyer, 2010). As cetaceans (whales) are a group of animals for which the 

detection of UV-induced mtDNA damage has not been attempted previously, it 

was vital to develop and optimise a qPCR technique for the successful 

detection of damage. In previous studies, damage is typically detected in a 

large 10 – 15 kb region of the 16.5 kb mtDNA (Hunter et al., 2010; Swalwell et 

al., 2012) to allow a large probability of damage being encountered. However, 

multiple sections of smaller lengths (e.g. 11 kb plus 5.5 kb) have also been 

used to successfully detect UV-induced damage (Ray et al., 2000; Durham et 

al., 2003), and regions as small as 1 kb and 2.6 kb have also been used 

successfully (Kalinowski et al., 1992; Eischeid et al., 2009; Hunter et al., 2010). 

Primer qPCR efficiencies (the amount of sample replication at each cycle, with 

100% representing a perfect doubling (Agilent Technologies, 2012)) were low 

when amplifying sections of 8.5 kb in the present project, which could be 

problematic if the mtDNA is prevented from amplification due to the primers 

being unable to function effectively, rather than due to the presence of UV-

induced damage. Primers to amplify four regions of 4.4 kb were therefore 

designed, to improve the efficiency of the reaction due to the lower number of 

bases required to be replicated. Primers of this size were also shown earlier in 

the project (Chapter 6) to be able to successfully detect differences in UV-

induced mtDNA damage in human skin cells. All four of the primer sets gave 

similar Ct values per sample for the three species tested, which indicated that 

there was an evenly distributed spread of damage throughout the genome. This 

was important to know, as different species could potentially harbour hotspots 

of damage in different areas throughout their mtDNA genome (Gilbert et al., 

2003; Jandova et al., 2012; Zhou et al., 2012). For example, mtDNA sequences 

that are GC-rich or are palindromic have been shown to be particularly sensitive 

to mutagenesis caused by ionising radiation (Zhou et al., 2012). As there were 
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no preferentially damaged areas of the whale mitochondrial genome, this 

implied that any single 4.4 kb region could be used to determine the general 

damage throughout the genome. 

 

Based on the successful amplification of blue and fin samples using a section of 

mtDNA of approximately 4.4 kb, a new species, namely the sperm whale, was 

introduced. This species was chosen as it has a much higher surface time than 

the blue or fin whales, and could therefore show potential differences in 

UV-induced damage or damage responses. A new primer set capable of 

binding to the mtDNA of all three species was designed to amplify the mtDNA 

simultaneously to allow for direct comparisons. Due to the sperm whale 

mitochondrial genome being only 85% similar to that of blue and fin whales 

(NCBI, 2013) (and the blue and fin whales being only 93% similar themselves), 

there were limited areas to which 20 bp-long primers could bind with 100% base 

specificity; however, a single primer set to amplify 4.3 kb was designed, and 

found to be capable of amplifying the mtDNA of blue whales, sperm whales, 

and fin whales with high and similar efficiencies.  

 

7.5.2 UV-induced mtDNA damage is detectable within three different whale 

species  

UV-induced damage has been detected previously at a cellular level in whale 

skin (Martinez-Levasseur et al., 2011), but not at a genetic level. In the 15 blue 

whale, 18 sperm whale, and 10 fin whale samples studied, there were 

significant differences in mtDNA damage detected, when compared to the least 

damaged sample for each species. This method of comparison has been used 

previously when a completely undamaged control was not available (Durham et 

al., 2003; Birch-Machin, 2006; Hunter et al., 2010), as in the case of this study; 

whales are wild and free-ranging so it was not possible to acquire a completely 

undamaged control, for example from a non-exposed region such as the 

underside of the whale. However, because a spectrum of damage was 

observed between the different whale samples, it strongly suggested that 

damage was present and detectable.  
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7.5.3 MtDNA damage correlates with known markers of UV-induced 

damage 

The mtDNA damage levels of samples were compared to other known markers 

of UV-induced damage, to ensure that the observed mtDNA damage was due 

to UV, as opposed to other genotoxic factors such as the environmental 

pollutant benzo[a]pyrene (Begeman and Colucci, 1968), which has been shown 

previously to induce mtDNA damage detectable by qPCR (Jung et al., 2009). 

Micro-vesicles are a morphological response to sustained UV exposure in skin 

to aid in the repair of sun-damaged tissue (Ulrich et al., 2009; Martinez-

Levasseur et al., 2011). In this study, individual whales with micro-vesicles 

present showed the highest amount of mtDNA damage, suggesting that genetic 

and cellular damage are correlated, and are both caused by UV exposure. 

Apoptosis is induced in response to UV, as a defensive mechanism to remove 

damage to prevent potentially carcinogenic mutations from being replicated 

(Schafer et al., 2010). Whales with apoptotic cells present showed the lowest 

amount of mtDNA damage. This is in accordance with a previous study on 

whale skin, which found that the level of apoptosis was increased in response to 

prolonged UV exposure, and those whales with higher levels of apoptosis had 

lower levels of UV-induced cellular skin damage (Martinez-Levasseur et al., 

2011). Additionally, a previous study on human skin found that there was a 

significant increase in apoptosis following UV exposure, which was correlated 

with a reduction in UV-induced cellular and genetic damage (Yamaguchi et al., 

2008). These correlations with micro-vesicles and apoptosis imply that the 

genetic damage observed through this study was caused principally by UV, 

which is activating damage response mechanisms. 

 

7.5.4 The level of mtDNA damage varies between different whale species 

When comparing the overall level of mtDNA damage between the blue whales 

and the fin whales, there was no significant difference observed, despite the 

much higher level of pigmentation seen in the fin whales. Previous studies have 

shown that pigment provides protection against UV-induced genetic damage in 

human skin (Tadokoro et al., 2003; Miyamura et al., 2007; Brenner and 

Hearing, 2008; Yamaguchi et al., 2008), and fin whales have been shown 

previously to have lower levels of sun-induced cellular damage (Martinez-

Levasseur et al., 2011). However, in the previous study on whale skin 
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(Martinez-Levasseur et al., 2011), the level of pigmentation correlated positively 

with the level of apoptosis; this was not the case for the particular samples 

received for this project, for which the fin whales had similar levels of apoptosis 

to the blue whales. Therefore the increase in apoptosis usually conferred by 

melanin (Takeuchi et al., 2004; Yamaguchi et al., 2008) did not appear to be in 

effect for these particular fin whale samples. Another reason for the high mtDNA 

damage in the fin whales despite high pigmentation could be that the fin whales 

are absorbing some of the UV with their high pigmentation levels, however as 

they spend the majority of the year in the hot climate of Mexico (Bérubé et al., 

2002), overall mtDNA damage may still remain high. In contrast, the blue 

whales spend only 2-4 months per year in the hot climate of Mexico, and spend 

the remaining time in the cooler area between Alaska and California 

(Calambokidis et al., 2009). Therefore, despite having lower pigmentation 

levels, the blue whales are also under lower levels of UV than the fin whales, 

and therefore have lower mtDNA damage in general. 

 

The blue whales and the sperm whales showed no significant difference in the 

level of UV-induced mtDNA damage. The particular blue and sperm whales 

used in this study did not have significantly different levels of pigmentation; 

however, the sperm whales did have a much higher number of samples with 

apoptotic cells present. Despite the higher levels of apoptotic protection in the 

sperm whales, which could be expected to decrease mtDNA damage, there 

was a similar level of overall damage in the blue and sperm whales. This could 

be due to the blue whales being exposed to lower levels of UV because of the 

high surface times of the sperm whales (Whitehead, 2003). 

 

The fin whale samples in this study were found to have a significantly higher 

level of mtDNA damage than the sperm whale samples. This was despite a 

higher level of pigmentation in the fin whales, and despite being found in a 

previous study to have a lower level of UV-induced skin damage (Martinez-

Levasseur et al., 2011). This could have again been due to the particular 

samples received, for which the sperm whales had much higher apoptosis than 

the fin whales. The high apoptosis in the sperm whale samples could be 

removing the mtDNA damage (Kulms and Schwarz, 2000; Yamaguchi et al., 

2008; Lee et al., 2013), which may explain why this species had lower levels of 
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mtDNA damage and micro-vesicles. Sperm whale samples were also shown to 

have higher expression levels of the stress response gene Hsp70, which has 

been shown previously to be induced in response to UV (Matsuda et al., 2010), 

to provide photoprotection (Simon et al., 1995; Matsuda et al., 2010). These 

increased levels of apoptosis and of Hsp70 in the sperm whales may be 

providing protection, and may suggest that apoptosis and Hsp70 combined 

provide a higher level of protection than pigmentation alone. This is useful to 

know in terms of ageing, as therapies to improve stress responses such as 

these could be beneficial in reducing mtDNA damage, which is thought to play a 

role in the ageing process (Birch-Machin, 2006).  

 

It could be suggested that the blue whales have not evolved high levels of skin 

pigmentation, apoptosis, or Hsp70, because they spend the majority of the year 

in areas with a moderate to low UV index (Bournay and UNEP/GRID-Arendal, 

2007). It could also be suggested that the fin whales have evolved higher 

pigmentation levels as a UV-defensive mechanism, as they spend the majority 

of the year in an area with a high UV index. As sperm whales have very long 

surface times, it could be suggested that they have evolved multiple UV-

defensive mechanisms (apoptosis and Hsp70) which could be especially 

efficient at damage removal. Other untested stress response mechanisms in the 

sperm whales may also be present, which could be adding to the high level of 

defence and therefore low level of mtDNA damage observed in the sperm 

whales. 

 

7.5.5 Higher Hsp70 expression correlates with lower mtDNA damage in 

three different whale species 

The Hsp70 family of proteins are commonly used as a biomarker for cellular 

stress (Ogawa et al., 2008). It was found in this project that the level of Hsp70 

expression correlated inversely with the level of mtDNA damage when 

comparing all individuals, suggesting that Hsp70 is playing a role in the 

reduction of UV-induced genetic damage in all whale skin, as seen in mice and 

human cells (Niu et al., 2006; Matsuda et al., 2010). 

 

Sperm whales were found to have high levels of both apoptosis and of Hsp70, 

which was unusual as Hsp70 has been found to suppress apoptosis to allow 
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protein re-folding instead of cell death (Mosser and Martin, 1992; Beere and 

Green, 2001). However, other studies have shown that Hsp70 can promote 

apoptosis when levels of these proteins are high enough (Ran et al., 2004). 

Therefore, it could be that sperm whales initially induce stress response 

pathways such as Hsp70, in an attempt to repair any protein damage caused by 

UV (De la Coba et al., 2009). If this repair is unsuccessful or if the damage 

becomes too vast, they may be capable of then inducing apoptosis to remove 

the damage. If this was the case, it could imply that sperm whales are very 

efficient in both damage repair and removal. Having both of these responses 

could be necessary for the sperm whales which spend long periods of time at 

the ocean surface (Whitehead, 2003); therefore the sperm whales may have 

evolved these mechanisms to counteract the harmful effects of UV. Hsp70 has 

been shown recently to inhibit the production of melanin in mice (Hoshino et al., 

2010), which could explain why the sperm whales had low skin pigmentation.  

 

7.5.6 Higher pigmentation correlates with lower mtDNA damage within the 

blue whale species 

When looking within just the blue whale species, it was found that those whales 

with a higher level of pigmentation had a lower level of mtDNA damage. This 

correlation was not observed in the sperm whales or fin whales, possibly due to 

the high levels of other stress responses such as Hsp70 and apoptosis (for the 

sperm whales), or due to the skin being so dark for the fin whales that slight 

variations in colour did not affect the genetic damage, as it has been shown in 

human cells that both medium and darkly pigmented cells provide similar 

mtDNA protection (Swalwell et al., 2012). The main reason for the inverse 

correlation between pigmentation and mtDNA damage in the blue whales is 

likely to be due to the month of sampling; those whales sampled in April were 

shown to have a lower level of damage than those sampled in February. This is 

described in more detail below in section 7.5.7. 

 

7.5.7 Blue whales increase pigmentation levels in response to seasonal 

UV increases 

The level of pigmentation between animals of the same species can vary 

dramatically, as seen with humans and other animals (Costin and Hearing, 

2007). Research in humans has indicated that as the level of skin pigmentation 
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increases, the level of UV-induced mtDNA damage decreases (Swalwell et al., 

2012). It was observed in the present study that the level of mtDNA damage in 

the blue whales was decreasing from February to April, despite an increase in 

the UV index (Martinez-Levasseur et al., 2011). This difference may have been 

of even higher significance if the same individual whale was able to be sampled 

from February to April to reduce intra-individual differences. The decrease in 

UV-induced damage in blue whale skin was in accordance with the previous 

study on sunburned whales (Martinez-Levasseur et al., 2011), in which it was 

found that the level of blisters was lower in April compared to February for the 

blue whales. 

 

When the pigmentation levels were taken into account from February to April, a 

significant increase in the level of pigmentation was seen for the blue whales, 

but not the fin whales. The blue whales from the north-east Pacific population 

studied spend only 2 to 4 months per year in the hot climate of Mexico and 

spend the remaining time in the cooler area between Alaska and California 

(Calambokidis et al., 2009); therefore, as the blue whales arrive from cooler 

regions in February they are suddenly exposed to high UV levels, which 

continue increasing from February to April (Martinez-Levasseur et al., 2011) 

(whereas fin whales are in the hot climate year-round). It was proposed that the 

blue whales may have high mtDNA damage initially due to the sudden exposure 

to UV, and may be increasing their pigmentation levels long-term from February 

to April as an acclimatisation response to reduce damage, which is known to 

happen in humans (Sayre et al., 1981; Costin and Hearing, 2007; Coelho et al., 

2009; Miyamura et al., 2011). This ‘tanning’ response could be a 

photoprotective mechanism to increase the tolerance to solar radiation after a 

period of sunlight exposure, and could be possibly being activated by the DNA 

damage obtained when the blue whales are first exposed to the high levels of 

UV, which has been shown to happen previously in humans (Eller et al., 1996; 

Lin and Fisher, 2007). A ‘tanning’ response has been seen previously in marine 

life such as hammerhead sharks (Lowe and Goodman-Lowe, 1996) and 

seabream fish (Adachi et al., 2005), in which it was found that the level of 

melanin was higher following a period of sun-exposure; however, this study 

gives evidence for the first time of this response being observed in marine 

mammals. 
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The blue whales may have evolved the ability to tan due to the seasonally 

changing UV conditions which they are exposed to. This has been suggested to 

also have occurred during early human migration, during which the ability to tan 

possibly evolved for those humans under seasonally variable conditions 

(Jablonski and Chaplin, 2012), to allow for increased damage protection during 

high UV and the ability to produce vitamin D during low UV (Jablonski and 

Chaplin, 2012). As for the fin whales, it is probable that because they are under 

high UV levels for the majority of the year and there is little variation in seasonal 

UV (Lemus-Deschamps et al., 2002; Martinez-Levasseur et al., 2011), they 

have no need for a tanning response, and are continuously dark-skinned, as 

happens in humans living in the Tropics (Jablonski and Chaplin, 2010). In order 

to confirm the tanning response of the blue whales, samples could be taken 

from the blue whales during the winter months when they have returned to 

cooler areas, to determine whether the level of pigmentation returns to lower 

levels once the whales have migrated away from Mexico. 

 

7.5.8 MtDNA damage is higher in older individual whales 

The age of the blue whales (which were the only species for which the ages 

were known) correlated significantly with their individual mtDNA damage, which 

is in accordance with previous results found in humans (Hayakawa et al., 1992; 

Chomyn and Attardi, 2003; Krishnan et al., 2007). This could suggest that whale 

skin accumulates mtDNA damage throughout the lifetime of the whale, possibly 

partially due to UV, and due to intrinsic factors.  

 

The age of the individual whale did not correlate with the level of pigmentation, 

which implied that the increase in mtDNA damage observed with age was not 

just due to a decrease in pigmentation. Because mtDNA damage was seen in a 

4 kb region for both UV-damaged and chronologically-aged whale skin, it gives 

evidence that differently UV-exposed whale skin can be used as a reliable 

model for different ages. 
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7.6 Summary 

Through this chapter, mtDNA damage in whales under various levels of UV 

stress was examined using qPCR, to give insights as to the effects of mtDNA 

damage with age, due to the similarities between photo and chronological 

ageing. A reliable method for mtDNA damage detection was optimised, for a 

taxonomic group for which this has not been attempted previously. The damage 

detected using this method correlated with other known markers of UV damage, 

suggesting UV was responsible. A spectrum of mtDNA damage was observed 

between the samples, suggesting that differences in mtDNA damage were 

present, and that all three whale species are indeed susceptible to the 

damaging effects of UV. This damage was different between the three whale 

species, which could be due to differently evolved mechanisms of coping with 

UV-induced stress, from constitutively high pigmentation, to high apoptosis and 

stress responses, to an ability to tan. Within all whale samples, an increase in 

Hsp70 expression resulted in decreased mtDNA damage. This could have 

future therapeutic potentials, with treatments which increase Hsp70 and other 

stress responses used to potentially reduce mtDNA damage increases 

observed with age. The level of mtDNA damage was greater with age as well as 

with increased UV, which demonstrates the use of the optimised method in 

detecting UV damage as a model for aged skin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



241 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8. Discussion 
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8.1 Overview  

For over 50 years it has been speculated that mitochondria may play a key role 

in the ageing process (Harman, 1972; Hulbert et al., 2007; Barja, 2013). This is 

due to the mainly correlative results displaying an increase in mtDNA damage, 

ROS, and mitochondrial dysfunction with age. However, the exact role of the 

mitochondria in the ageing process remains unknown.  

 

The individual complexes of the mitochondria perform respiration to generate 

cellular energy, during which ROS are produced as a by-product. The exact role 

of these mitochondrial complexes in the ageing process is unknown, as some 

previous studies have shown decreases in complex activities with age, whereas 

others have shown no change. Complex II of the respiratory chain was chosen 

to be examined in terms of ageing in the present study, as it is the least studied 

complex of the respiratory chain, and recent observations have shown that this 

complex can generate ROS at similar levels as complexes I and III (Guo and 

Lemire, 2003; Lemarie et al., 2011; Quinlan et al., 2012). This complex has also 

been shown in previous studies to be associated with the ageing process; for 

example, mutations in the complex II subunits affecting only the activity of 

complex II have been shown to decrease the lifespan of nematodes and flies 

(Hosokawa et al., 1994; Adachi et al., 1998; Ishii et al., 1998; Walker et al., 

2006; Tsuda et al., 2007; Huang and Lemire, 2009; Pfeiffer et al., 2011; 

Wojtovich et al., 2013), which was able to be prevented when complex II 

respiration was blocked (Pfeiffer et al., 2011). Complex II has also been shown 

to be lower with age in the skin of naturally aged mice (Velarde et al., 2012), 

various rat tissues (Sandhu and Kaur, 2003; Kumaran et al., 2004; Cocco et al., 

2005; Balietti et al., 2009; Braidy et al., 2011), human muscle (Trounce et al., 

1989; Coggan et al., 1992; Boffoli et al., 1994; Short et al., 2005), and human 

lymphocyte cells (Drouet et al., 1999). However, the activity of complex II in the 

skin of differently aged humans has not been examined prior to the current 

study, which was crucial to address as the skin is the largest organ of the body 

and also provides a barrier to environmental insults, rendering it a very 

important organ. 

 

The major finding of the present study was the observation that complex II 

activity decreases in an age-dependant manner in human skin, a finding which 
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to my knowledge has not been demonstrated previously. This could have been 

potentially caused by a decrease in the complex II subunits SDHA and SDHB, 

which also correlated with increasing age. It was observed that the decrease in 

complex II activity occurred specifically in senescent cells, which could provide 

the first evidence of a difference in senescent cells from younger individuals and 

senescent cells from older individuals in terms of mitochondrial complex II 

activity. Additionally, an increase in mitochondrial dysfunction with age was 

found not only in human skin, but also in a taxonomic group not previously 

studied in terms of age-related damage, the whales. In the three whale species 

studied, it was observed that the level of mtDNA damage increased both with 

age and with increased UV exposure (as a model for age) using novel primers 

and a new technique for the detection of age-related mtDNA damage, 

suggesting that increased mitochondrial damage with age is not just confined to 

human skin.  

 

8.2 Mitochondrial Complex II Activity Decreases with Age in Human Skin 

In the present study it was found that the activity of mitochondrial complex II, 

but not complex IV, decreased significantly with age in human skin fibroblast 

cells. This could suggest that a decrease in ETC activity with age is localised to 

complex II in skin, and is not just a general decrease in overall ETC activity. To 

confirm this, the activities of complexes I, III, and V with age could be tested in 

human skin. As complex II has also been shown in previous studies to be 

decreased with age in human muscle and lymphocyte cells (Trounce et al., 

1989; Coggan et al., 1992; Boffoli et al., 1994; Drouet et al., 1999; Short et al., 

2005), it could be that older individuals have decreased complex II activity with 

age throughout the whole body. However, the activity of complex II in other 

tissues would have to be measured to verify this. The observed decrease in 

complex II activity in human skin was found to be specific to skin fibroblast cells, 

possibly due to the higher rate of cellular turnover in skin keratinocyte cells 

(Iizuka, 1994; Stout et al., 2005), which may prevent the accumulation of 

damage to complex II. This is the case for mtDNA damage, which does not 

accumulate as readily in keratinocytes compared to fibroblasts (Krishnan et al., 

2004; Harbottle and Birch-Machin, 2006).   
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The present study confirmed in human skin the previous work on mouse skin 

(Velarde et al., 2012), demonstrating a decrease in complex II activity, but not 

complex IV activity, with age. It was initially speculated in the present study that 

this decrease in complex II activity with age may be due to either a lower activity 

of complex II per mitochondrial unit, or due to a lower overall abundance of 

complex II units per mitochondria. This was tested by measuring the expression 

and protein levels of the individual subunits of complex II, which extends the 

previous mouse study (Velarde et al., 2012), and it was found that the complex 

II subunits SDHA and SDHB were also decreased with age; this could suggest 

that the latter hypothesis is more likely.  

 

It could be speculated that a decrease in complex II activity with age will result 

in an increase in ROS leakage (Morten et al., 2006; Byun et al., 2008; Quinlan 

et al., 2012), which may cause damage to cellular components and therefore a 

decrease in tissue function (Conley et al., 2000; Petersen et al., 2003; 

Tonkonogi et al., 2003; Short et al., 2005). If this were the case, complex II 

could be considered causal in the ageing process. It could also be suggested 

that a decrease in complex II activity with age occurs consequentially of other 

factors, such as an increase in ROS abundance (Li et al., 1995; Melov et al., 

1999; Capel et al., 2005; Morten et al., 2006; Koziel et al., 2011; Velarde et al., 

2012) due to lower cellular defence levels with age (Micallef et al., 2007; 

Krizhanovsky et al., 2008; Rodier and Campisi, 2011; Dutta et al., 2012; Baker 

and Sedivy, 2013; Viiri et al., 2013). ROS may then affect complex II directly or 

cause damage to the nDNA-encoded subunits of complex II (Li et al., 1995; 

Melov et al., 1999; Wallace, 1999; Kumaran et al., 2004; Morten et al., 2006; 

Velarde et al., 2012). It has been shown previously that increased ROS 

(generated by SOD-knockout in mice) can result in a decrease in SDHB protein 

expression and in complex II activity (Morten et al., 2006). ROS may therefore 

also affect SDHB expression during natural ageing, as it was found in the 

present study that SDHB decreases with age in both the fibroblasts and the 

keratinocytes. 

 

 

 



245 
 

8.3 The Age-Related Decrease in Complex II Activity is Specific to 

Senescent Cells 

To further understand the potential reasons behind the age-related decline in 

complex II activity in human skin fibroblast cells, samples were sorted into 

senescent and non-senescent cell populations. Senescent cells have been 

shown to harbour mitochondrial dysfunction (Passos et al., 2007a; Dekker et al., 

2009; Moiseeva et al., 2009; Passos et al., 2010; Treiber et al., 2011; Velarde et 

al., 2012), and it was hypothesised in the present study that senescent cells 

from older donors may have increased mitochondrial dysfunction than 

senescent cells from younger donors, which could contribute to the overall 

complex II activity decrease observed with age. It was found in the present 

study that this was indeed the case, as there was a significant decline in 

complex II activity in senescent cells, but not in non-senescent cells, with age. 

The present study therefore provides the first evidence that senescent cells 

from older individuals are less efficient in terms of mitochondrial complex II 

activity than senescent cells from younger individuals. There was no correlation 

between complex IV activity and age in the senescent or the non-senescent 

cells, which further validates the finding that complex IV activity is not altered 

with age in human skin fibroblast cells. As ROS levels are higher in senescent 

cells (Passos et al., 2007a), it could be that the complex II activity of this cell 

type is more highly affected with age, as defence mechanisms begin to falter 

(Micallef et al., 2007; Krizhanovsky et al., 2008; Rodier and Campisi, 2011; 

Dutta et al., 2012; Baker and Sedivy, 2013; Viiri et al., 2013).  

 

8.4 Complex II as a Potential Target for the Treatment of Ageing  

If complex II were found to play a causal role or to exacerbate the ageing 

process, it could potentially provide a target for treatments of ageing. An 

enhancement of complex II activity in the brain of aged mice has been observed 

in past work (Ajith et al., 2009), using an extract from the mushroom 

Ganoderma lucidum, which is commonly used as a medicinal substance in 

China (Batra et al., 2013). This extract has been shown to extend the lifespan of 

mice (Nonaka et al., 2006; Steiner, 2013) and C. elegans (Chuang et al., 2009). 

However, whether the life-extending properties of this substance occur solely 

via complex II is unlikely (Steiner, 2013). Other work has demonstrated that 

complex II activity is able to be restored in the hearts of aged rats upon long-
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term treatment with the drug N-acetylcysteine (NAC) (Cocco et al., 2005), 

however, lifespan was not tested for. In addition, it has been shown previously 

that an overexpression of SDHA/SDHB subunits in neuronal cells from the 

brains of Huntington's disease patients restored the usually lowered complex II 

activity and decreased cellular death (Benchoua et al., 2006). 

 

As only the senescent cells showed a decrease in complex II activity with age, 

future studies could focus on complex II in senescent cells only as a specific 

target for age-related treatments. A recent attempt to specifically target 

senescent cells was performed, using nanotechnology (Agostini et al., 2012). 

Agostini et al., (2012) used nanoparticles to release drugs specifically into 

senescent cells based on the presence of β-gal, which was successfully 

performed in yeast. This could allow for future studies to specifically enhance 

complex II activity in senescent cells of older individuals. This rejuvenation of 

senescent cells in the elderly may be more beneficial than the complete 

removal of senescent cells, as this cell type is involved in the prevention of 

cancerous cell division. 

 

8.5 Complex II Activity is Cell-Type Dependent  

The activity of complex II was found to decrease with age in fibroblast cells, but 

not in keratinocyte cells. It was also found that the fibroblast cells had a 

significantly higher maximal rate of complex II activity than the keratinocyte cells 

as shown previously (Hornig-Do et al., 2007), which was suggested to be due to 

the ROS-generating requirement of keratinocytes for differentiation, at the 

expense of the maximal complex II activity (Hornig-Do et al., 2007). Differences 

in maximal complex II activities have also been shown to exist between other 

cell types (Chretien et al., 1994; Kwong and Sohal, 2000; Benard et al., 2006; 

Fernández-Vizarra et al., 2011), and it was hypothesised that maximal activities 

may influence whether or not a change in complex II activity is detectable with 

age in the particular cell type. It could be speculated that those cells with faster 

maximal complex II activity rates show noticeable decreases in complex II 

activity with age, as observed for the fibroblasts and keratinocytes in the 

present study, and previously in mouse tissues (Kwong and Sohal, 2000; 

Choksi et al., 2011). 
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Differences in maximal complex II activity were observed for the cell types 

tested, which were primary fibroblast cells, primary keratinocyte cells, HDFn 

cells, HaCaT cells, HepG2 cells, a549 Parental cells, a549 Rho-zero cells, 

MRC5 cells, and MRC5/hTERT cells. However, no general correlation was 

found to predict complex II activity, as cells from the same tissue showed 

differences in complex II activity, and immortal cell types were neither 

consistency higher or lower in terms of complex II activity compared to non-

immortal cells. Future studies could also measure complex II activity in these 

cell types with age in vitro, to determine whether a correlation exists between 

the overall maximal activity, and whether a decrease in activity with age is 

detectable.  

 

8.6 The T414G MtDNA Mutation is Higher in Skin Cells from Older 

Individuals 

The level of T414G mtDNA mutation was confirmed in the present study to be 

at a higher level in older individuals, in human skin fibroblast cells, which is in 

accordance with previous work (Michikawa et al., 1999; Birket and Birch-

Machin, 2007). The T414G mutation, which has been used as a marker of 

mtDNA damage (Birket and Birch-Machin, 2007; Seibel et al., 2008), was 

shown in past work not to be preferentially associated with either senescent or 

non-senescent FACS-sorted populations (Birket et al., 2009). However, whether 

this mutation is increased in senescent cells alone with age had not been tested 

before the present study. It was observed in the present work that this mutation 

was not detectable in senescent or in non-senescent cells following FACS-

sorting, possibly due to the lower aged individuals used compared to the 

previous study (Birket et al., 2009). It was also likely that the mutation was 

diluted to the point of being non-detectable when only 20% of the sample was 

analysed. Therefore, this mutation may not be an appropriate marker with which 

to compare differences in mtDNA damage in FACS-sorted senescent cells with 

age.   

 

8.7 MtDNA Damage Increases with Age in Whale Skin 

The level of mitochondrial dysfunction (in terms of a decrease in complex II 

activity and an increase in T414G mutation) was shown in the present project to 

be higher in cells from the skin of older humans, as discussed above. An 
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increase in mitochondrial damage with age was not restricted to human skin; it 

was also found in the present study that the level of mtDNA damage increased 

with both natural age and with increased UV exposure as a model for age, in 

the skin of a large and previously untested group of animals, the whales. This is 

in accordance with previous studies on human and laboratory animals, for 

which mtDNA damage (in the form of mutations rather than strand breaks) has 

been shown to be increased with both age (Arnheim and Cortopassi, 1992; 

Cooper et al., 1992; Michikawa et al., 1999; Birket and Birch-Machin, 2007; 

Meissner et al., 2008; Cui et al., 2012) and UV (Kalinowski et al., 1992; Ray et 

al., 2000; Durham et al., 2003; Eischeid et al., 2009; Hunter et al., 2010). 

 

8.8 MtDNA Damage Decreases as Hsp70 Increases in Whale Skin 

As whales undergo extensive levels of UV exposure due to breathing and other 

surfacing obligations (Croll et al., 2001; Whitehead, 2003), as well as their long 

lifespans, and their lack of UV protection from fur or feathers, it is likely that they 

have developed effective defence mechanisms against UV. It was found in the 

present study that differences in mtDNA damage exist both between and within 

the three whale species studied, which could be indicative of different 

evolutionary response mechanisms for the defence against UV-induced 

damage. Lower mtDNA damage correlated with increased apoptosis and 

increased Hsp70 expression across samples from all three species, but did not 

correlate with pigmentation when all three species were examined. Additionally, 

the sperm whales were found to have a much lower level of mtDNA damage 

than the fin whales, despite having a lower pigmentation level. Upon closer 

inspection, it was observed that the sperm whale samples used in the present 

study had significantly higher levels of both apoptosis and Hsp70. This could 

imply that apoptosis and Hsp70 confer higher protection to mtDNA than 

pigmentation alone.  

 

In terms of therapeutic potentials for human ageing, it could be speculated that 

improving the Hsp70 stress response may decrease the rate of ageing, 

resulting in a decrease in mtDNA damage. In humans and laboratory animals, 

the level of Hsp70 has been shown to decline with age (Heydari et al., 1993; 

Heydari et al., 1994; Broome et al., 2006; Gagliano et al., 2007; Calderwood et 

al., 2009; Malyshev, 2013). Previous work has shown that compounds isolated 



249 
 

from the red algae Porphyra rosengurttii are able to maintain Hsp70 expression 

in mice skin exposed to UV (De la Coba et al., 2009), which could possibly be 

useful for future ageing studies. Past work has also demonstrated that the 

overexpression of Hsp70 throughout the lifetime of mice results in more 

effective damage recovery in muscles, as well as lower lipid peroxidation 

(Broome et al., 2006). Additionally, higher Hsp70 expression has been found in 

past studies to increase the lifespan of Drosophila (Singh et al., 2007; 

Malyshev, 2013) and C. elegans (Hsu et al., 2003), and in humans it has been 

demonstrated that centenarians, unlike other older individuals, have similar 

Hsp70 levels in their lymphocyte cells as those observed in younger individuals 

(Ambra et al., 2004). Therefore, it could be that the enhancement of Hsp70 may 

decrease the rate of human ageing, and could be focussed upon in future 

studies (Calderwood et al., 2009; Malyshev, 2013). 

 

8.9 An Updated Version of the Vicious Cycle Theory of Ageing 

It was confirmed in the present study that both mitochondrial dysfunction and 

mtDNA damage are associated with age, as shown previously in various tissues 

and species. This was demonstrated in the form of a lower complex II activity 

with age in human skin, and an increase in mtDNA damage with age in the skin 

of whales, neither of which has been shown previously. Both of these factors 

(increased mitochondrial dysfunction and mtDNA damage) agree with the 

vicious cycle theory of ageing (Bandy and Davison, 1990). Although this theory 

remains disputed and is unlikely to be the full picture in all cell types (Sanz et 

al., 2006; Barja, 2013), it presented a useful tool for connecting the three major 

aspects of mitochondria and ageing. It could be speculated that this cycle is 

occurring only in specific cell types, such as senescent cells, which were found 

in the present study to show a decrease in mitochondrial complex II activity with 

age, whereas the non-senescent cells did not. This may help to explain past 

controversial results regarding this theory which have attempted to incorporate 

multiple different cell types. Additionally, an updated version of the vicious cycle 

may make the theory more valid. As complex II is nuclear-encoded, this could 

add an additional interacting feature to the cycle, as shown in Figure 70. It was 

also observed in the present study that senescent cells show a decrease in 

complex II activity with age, which could indicate that this vicious cycle is taking 

place predominantly in senescent cells if it is in fact occurring, or is exacerbated 
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by ROS release from senescent cells (Nelson et al., 2012). ROS may decrease 

the levels of functional mitochondrial proteins such as the complex II subunits 

SDHA and SDHB, either directly or via nDNA damage, and cause a lowered 

activity of this complex, and further ROS release. In addition, this process may 

be exacerbated by UV from the sun, which can increase ROS or cause DNA 

damage directly (Schafer et al., 2010). 

 

Figure 70   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 70. An updated version of the vicious cycle theory of ageing. The vicious cycle 
theory of ageing suggests that ROS generated during mitochondrial respiration is able to cause 
damage to mtDNA, which may result in the dysfunctional expression of mitochondrial units, 
leading to further ROS production in a continuing vicious cycle of increasing damage (Bandy 
and Davison, 1990; Zdanov et al., 2006; Dlaskova et al., 2008). The traditional vicious cycle 
theory may be expanded by the observation that complex II is decreased with age, despite 
being nuclear-encoded. Cellular senescence is also thought to result in mitochondrial 
dysfunction, as well as being induced and maintained via ROS. In addition, external insults such 
as solar UV (shown by the red arrows) is thought to enhance ageing, either via an increase in 
ROS or via mtDNA damage directly. The mitochondrion is shown in pink.   
 
 
 
 

8.10 Future Work  

In the present study, the activity of complex II was found to decrease in human 

skin fibroblast cells with age. This could be indicative of a whole-body decrease 

in complex II activity; however, the activity of complex II in other tissues from 

naturally aged individuals would have to be examined in order to confirm or 
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discard this hypothesis, which could be performed in future work. In addition, 

the remaining mitochondrial complexes could be studied in human skin and 

elsewhere in the body, to determine whether the decrease in complex II activity 

with age was localised to complex II or was observed throughout the respiratory 

chain. As a decrease in complex II activity with age in human skin may be 

merely a correlative artefact, future studies could specifically impair complex II 

activity in laboratory animals (rather than via increased ROS as performed 

previously (Li et al., 1995; Melov et al., 1999; Morten et al., 2006; Velarde et al., 

2012)), to determine the repercussions. If a decrease in complex II activity 

alone results in the generation of ageing phenotypes, it could be that this 

complex plays an important causal role in the ageing process. 

 

To confirm that the decrease in complex II activity with age was specific to 

senescent cells only, future studies could examine the protein and expression 

levels of SDHA and SDHB in FACS-sorted cells, to see whether any decrease 

in these subunits with age is occurring, and if so whether this is specific to the 

senescent cells. If the decrease in complex II activity and its subunits is specific 

to senescent cells, future therapeutic interventions could focus on this cell type. 

 

In addition to potential future therapeutic interventions to enhance complex II 

activity in senescent cells with age, treatments focussed on the improvement of 

the Hsp70 stress response, which was found to be an effective defence 

mechanism against mtDNA damage in whale skin, could be tested in older 

animals in future studies to determine whether ageing phenotypes are reduced. 
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Appendix 

Table 13  

 
 
Table 13. Donor information for the human skin fibroblast samples. The names of the skin 
samples are given, as well as the age, sex, race, and anatomical site of each donor, for the 
fibroblast cell samples. Unfortunately, information regarding the lifestyle of the individual donors 
such as smoking, exercise levels, and diet, as well as information regarding disease, was not 
available. 

 

 

Sample Age Sex Race Anatomical Site 

S485F 6 Male Caucasian Foreskin 

S499F 20 Male Caucasian Foreskin 

S420F 21 Male Caucasian Foreskin 

S538F 29 Male Caucasian Foreskin 

S544F 30 Male Caucasian Foreskin 

S539F 31 Male Caucasian Foreskin 

S490F 32 Male Caucasian Foreskin 

S537F 34 Male Caucasian Foreskin 

S554F 34 Male Caucasian Foreskin 

S497F 37 Male Caucasian Foreskin 

S563F 42 Male Caucasian Foreskin 

S550F 43 Male Caucasian Foreskin 

S482F 45 Male Caucasian Foreskin 

S533F 45 Male Caucasian Foreskin 

S483F 46 Male Caucasian Foreskin 

S498F 48 Male Caucasian Foreskin 

S536F 51 Male Caucasian Foreskin 

S564F 54 Male Caucasian Foreskin 

S534F 56 Male Caucasian Foreskin 

S540F 62 Male Caucasian Foreskin 

S549F 62 Male Caucasian Foreskin 

S421F 64 Male Caucasian Foreskin 

S423F 65 Male Caucasian Foreskin 

S557F 65 Male Caucasian Foreskin 

S541F 66 Male Caucasian Foreskin 

S436F 71 Male Caucasian Foreskin 

S484F 72 Male Caucasian Foreskin 
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Table 14  

 
 
Table 14. Donor information for the human skin keratinocyte samples. The names of the 
skin samples, as well as the age, sex, race, and anatomical site of each donor, are given for the 
keratinocyte cell samples.    

 

 

 

 

 

Sample Age Sex Race Anatomical Site 

S614F 18 Male Caucasian Foreskin 

S615F 18 Male Caucasian Foreskin 

S591F 19 Male Caucasian Foreskin 

S547F 20 Male Caucasian Foreskin 

S601F 22 Male Caucasian Foreskin 

S617F 24 Male Caucasian Foreskin 

S689F 26 Male Caucasian Foreskin 

S702F 26 Male Caucasian Foreskin 

S537F 34 Male Caucasian Foreskin 

S583F 39 Male Caucasian Foreskin 

S607F 40 Male Caucasian Foreskin 

S528F 44 Male Caucasian Foreskin 

S593F 44 Male Caucasian Foreskin 

S496F 46 Male Caucasian Foreskin 

S536F 51 Male Caucasian Foreskin 

S552F 51 Male Caucasian Foreskin 

S683F 53 Male Caucasian Foreskin 

S534F 56 Male Caucasian Foreskin 

S535F 58 Male Caucasian Foreskin 

S602F 61 Male Caucasian Foreskin 

S549F 62 Male Caucasian Foreskin 

S599F 63 Male Caucasian Foreskin 

S557F 65 Male Caucasian Foreskin 

S624F 77 Male Caucasian Foreskin 

S597F 79 Male Caucasian Foreskin 

S531F 80 Male Caucasian Foreskin 
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Table 15  

 
 
Table 15. Details on the cell lines used. The cell type and disease status of each cell line is 
given, as well as information regarding the age and sex of the donor, and the anatomical site 
from which the sample was taken. All cell lines were derived from humans. 

Cell Name Cell Type Disease Age Sex 
Anatomical 

Site 

HDFn Fibroblast Normal Neonatal Male Foreskin 

HaCaT Keratinocyte 
Distant periphery 
of a Melanoma 

62 years old Male Back 

HepG2 Epithelial 
Hepatocellular 

Carcinoma 
15 years old Male Liver 

a549 Parental Epithelial Adenocarcinoma 58 years old Male Lung 

a549 Rho-
zero 

Epithelial Adenocarcinoma 58 years old Male Lung 

MRC5 Fibroblast Normal 
14 weeks 
gestation 

Male Lung 

MRC5/hTERT Fibroblast Normal 
14 weeks 
gestation 

Male Lung 

   Blue W
hales

Sperm
 W

hales

Fin W
hales
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