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Abstract 

During each cell cycle the DNA must be replicated accurately in order to maintain 

genomic integrity. To ensure faithful replication of the entire genome, DNA replication 

must be tightly controlled. This control is achieved through the process of DNA 

licensing in which pre-replicative complexes are assembled to prime the DNA for 

replication in the coming S-phase. To prevent re-licensing and subsequent re-

replication, which would lead to genomic instability, DNA licensing must also be tightly 

controlled. The main mechanism of regulation of DNA licensing is through regulation of 

Cdt1 activity, a key component of DNA licensing. During the metazoan somatic cell 

cycle Cdt1 is regulated by proteolysis and inhibition by geminin. However there is 

evidence that the mechanisms of Cdt1 regulation during the short, rapid cleavage cell 

cycles of the early pre-MBT Xenopus embryo may differ. 

The results presented here show that upon expression of a deregulated, truncated 

version of Cdt1 in pre-MBT Xenopus embryos the cell cycle arrests with damaged DNA 

and evidence of checkpoint activation. This demonstrates that correct Cdt1 regulation 

is crucial for proper DNA licensing and pre-MBT embryonic cell cycle progression. 

There was no evidence of ubiquitination, degradation or phosphorylation of 

endogenous Cdt1. This suggests that changing interactions with geminin rather than 

proteolysis or post-translational modification provides the main mechanism of Cdt1 

regulation in pre-MBT Xenopus embryos. 

The highly regulated N-terminal region of Cdt1 is capable of binding to DNA and the 

licensing component Orc1. This suggests that domains for DNA and Orc1 binding are 

also located at this region of the Cdt1 protein. However, a truncated Cdt1 construct 

lacking the N-terminal domain is still capable of licensing the DNA. Since the regulation 

of Cdt1 is crucial for correct DNA licensing, these interactions may therefore constitute 

redundant mechanisms to ensure the proper activity of Cdt1. 

Overall the results presented in this thesis show that in early Xenopus embryos Cdt1 

regulation is crucial for faithful DNA licensing and cell cycle progression. In addition the 

main mechanism for regulation of Cdt1 is through dynamic interactions with geminin 

rather than post-translational modification or degradation during the pre-MBT 

embryonic cell cycle.                                                                               
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1.1 The Cell Cycle 

The cell cycle is a highly coordinated and regulated process in which the genetic 

material is duplicated and transferred through cell division to each generation of new 

cells. During the cell cycle the entire genome must be faithfully replicated and identical 

copies of the chromosomes distributed to opposite poles of the cell prior to cytokinesis 

which divides the cytoplasm to form two daughter cells (Israels and Israels, 2000). 

1.1.1 Cell Cycle Structure 

The somatic cell cycle is composed of four distinct phases: G1, S-phase, G2 and M-

phase. During S-phase the entire genome is accurately duplicated while in M-phase 

(mitosis) the duplicated chromosomes are separated and cell division occurs. The S- 

and M- phases of the cell cycle are separated by the gap phases G1 and G2. The gap 

phases serve multiple purposes; firstly they allow time for the cell to grow and the 

cytoplasm, with associated organelles and proteins, to double in mass. They also allow 

time for extracellular signals to be monitored to ensure the suitability of the 

environment for cell division. Finally, the gap phases contain checkpoints which ensure 

accurate completion of each cell cycle phase prior to progression and completion of 

the cell cycle (Alberts et al., 2002b). 

There is a further optional cell cycle phase, known as G0, in which the cells may enter a 

resting state if the conditions are deemed unfavourable for cell division. Some cell 

types such as neurons enter G0 permanently once terminally differentiated whereas 

other cells can enter and exit G0 under certain conditions (Alberts et al., 2002a). Cells 

may enter the G0 resting state during G1 due to checkpoint activation in response to 

DNA damage. It has also been shown that the p53 checkpoint may be activated under 

other conditions such as metabolite depletion causing an arrest of the cell cycle in the 

G0 phase (Linke et al., 1996). The resting phase allows the cell to address any issues 

before returning to the cell cycle as division in the presence of DNA damage may 

contribute to the development of cancerous cells. 

At M-phase the replicated chromosomes are separated before cyokinesis in which the 

cell is divided into two. M-phase is further divided into prophase, metaphase, 

anaphase and teleophase. During prophase the chromatin is condensed into 

chromosomes of which there are two copies, known as the sister chromatids, which 
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are joined at the centromere. In parallel during prophase the mitotic spindle begins to 

form in the cytoplasm of the cell. The mitotic spindle is a cytoskeleton of microtubules 

which act to separate the chromosomes to opposite poles of the cell. At the end of 

prophase (prometaphase) the nuclear envelop begins to break down. Once the nuclear 

envelope is degraded the chromosomes attach to the mitotic spindle and during 

metaphase line up at the equator of the spindle. Anaphase then follows in which the 

sister chromatids are separated along the spindle. During telophase the mitotic spindle 

elongates to leave one complete copy of the genome at each pole of the cell. Once at 

the poles the chromosomes are released from the mitotic spindle before reformation 

of the nuclear envelope. Through the process of cytokinesis the cytoplasm of the cell is 

then divided to produce two daughter cells each with an identical copy of the entire 

genome (Alberts et al., 2002b). The structure and events of the somatic cell cycle are 

highlighted in Figure 1.1 adapted from (Alberts et al., 2002b). 
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Figure 1.1. The structure and events of the somatic cell cycle. The cell cycle is comprised of the distinct 
phases G1, S-phase, G2 and M-phase with an optional resting state known as G0. During S-phase DNA 
replication occurs. During M-phase the events of prophase, metaphase, anaphase and telophase lead to 
separation of the replicated chromosomes. Following telophase the cytoplasm is divided through 
cytokinesis to produce two genetically identical daughter cells.  
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1.1.2 Regulation of the Cell Cycle by Cyclin-Dependant Kinases 

The universal regulators of the eukaryotic cell cycle are the cyclin-dependant kinases 

(CDKs) which pair with specific cyclins to allow progression through the distinct cell 

cycle phases. Progression through each cell cycle phase is controlled by a different 

cyclin-CDK complex. In vertebrates the CDKs CDK4 and CDK6 coupled with the cyclins 

D1, D2 and D3 are responsible for the transition between G1 and S-phase. Then 

progression through S-phase is controlled by CDK2 coupled with the cyclins E1, E2 or 

A2. The transition between G2 and M-phase is regulated by CDK1 coupled with the 

cyclins B1 and B2 (Sanchez and Dynlacht, 2005). 

The cyclin-CDK complexes function to regulate the cell cycle by phosphorylation of 

downstream target proteins which are required for progression through to the next 

cell cycle phase. The cyclin-CDK complex which has been the most extensively studied 

is the G1 CDK4/6-cylin D complex (Grana and Reddy, 1995). Once activated in early G1 

the CDK4/6-cylin D complex goes on to phosphorylate the retinoblastoma protein 

(pRB) which is then further phosphorylated by the cyclin E-CDK2 complex leading to 

release and activation of the pRB binding protein E2F (Harbour et al., 1999). E2F is a 

transcription factor which once activated causes transcription of specific genes whose 

protein products are necessary for entry into S-phase (Lundberg and Weinberg, 1998). 

1.1.3 Cell Cycle Checkpoints 

To ensure faithful DNA replication and cell division eukaryotic cells possess 

checkpoints which are activated in response to errors such as DNA damage. Activation 

of the checkpoints leads to cell cycle arrest to allow time for any errors to be corrected 

or death of the cell through apoptosis to prevent propagation of mutant progeny. The 

G1 checkpoint ensures cells with damaged DNA do not enter S-phase and replicate the 

damaged DNA as well as ensuring that the environmental conditions are adequate for 

cell proliferation. Meanwhile the G2 checkpoint prevents cells with damaged DNA 

following S-phase from entering mitosis. There is also an M-phase checkpoint to certify 

correct assembly of the mitotic spindle (Murray, 1994). 

In G1 the p53 checkpoint is activated in response to DNA damage and mediates cell 

cycle arrest or apoptosis. The p53 protein activates expression of p21CIP1, a CDK 

inhibitor which prevents phosphorylation of pRB through inhibition of the G1 cyclin-
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CDK complexes cyclin D1/D2-CDK4 and the S-phase cyclin-CDK complex cyclin E-CDK. 

Through prevention of pRB phosphorylation, transcription of the genes required for S-

phase entry is prevented and the cell therefore arrests in G1 (Harper et al., 1993). 

There is also evidence that p53 may play a role in G2/M cell cycle arrest as the CDK 

inhibitor p21, which is expressed following p53 activation, is also an inhibitor of the G2 

CDKs (Agarwal et al., 1995). Another CDK inhibitor from the CIP/KIP family, p27KIP1, is 

responsible for cell cycle arrest in G1 in response to cell to cell contact and TGF-β in 

growth arrested cells. An excess of p27KIP1 causes inhibition of the cyclin E-CDK2 

complex triggering the G1 arrest (Polyak et al., 1994). 

There is also a further family of CDK inhibitors known as the INK4/ARF family which act 

to arrest cells in G1 (Canepa et al., 2007). The INK4a/ARF gene generates two protein 

products, p16INK4a and p19ARF. The protein p16INK4a competes with cyclin D for binding 

of the CDK4 and CDK6 kinases thereby inhibiting the cyclin D-CDK4/6 kinase activity. 

This prevents phosphorylation of pRB and thus inhibits the transition from G1 into S-

phase. The p19ARF protein prevents the inhibition of p53 by MDM2 and therefore 

allows the activity of p53 to induce G1 and G2 arrest (Chin et al., 1998). 

1.2 DNA Licensing and Replication 

1.2.1 DNA Licensing 

It is essential that DNA replication is accurate in order to maintain genomic integrity 

and prevent potentially cancerous alterations to the genome. Metazoans possess a 

large genome and so DNA replication is enlisted from multiple replication origins. 

Therefore this process must be co-ordinated and controlled to ensure complete and 

accurate replication of the entire genome only once per cell cycle. This tight control is 

achieved by the process of DNA licensing in which each replication origin is primed and 

committed to replication (Blow and Dutta, 2005). 

The first step of DNA licensing is the binding of the six subunit origin recognition 

complex (ORC) to the origins of DNA. Once ORC is bound Cdc6 and Cdt1 are recruited 

to the origin. To complete licensing the Mcm2-7 complex is loaded to the origin by 

Cdt1. Together ORC, Cdc6, Cdt1 and Mcm2-7 form the pre-replicative complex (pre-

RC) (Gillespie et al., 2001). DNA licensing is believed to be a dynamic process with the 
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key step being the loading of Mcm2-7 to the DNA as once this step is complete ORC, 

Cdc6 and Cdt1 become dispensable (Tsakraklides and Bell, 2010). 

In the yeast S.cerevisiae ORC binds to specific DNA sequences, the ARS (autonomous 

replication sequence) (Bell and Stillman, 1992). In Xenopus however, there is no such 

ORC binding consensus sequence and the ORC complexes are instead organised 

spatially approximately 5-15 kb apart. The spacing of DNA origins was dependant on 

ORC abundance as a reduction in ORC lead to an increase in the average distance 

between origins (Blow et al., 2001). The human ORC protein complex also binds DNA 

via a mechanism that is independent of DNA sequence (Vashee et al., 2003). Also in 

Drosophila, ORC binding to DNA is independent of sequence and instead binding may 

be dependent on DNA topology with Drosophila ORC showing greater affinity for 

negatively supercoiled DNA (Remus et al., 2004). In addition ORC DNA binding is 

dependent on ATP binding but not its hydrolysis in Drosophila (Chesnokov et al., 2001). 

Similarly in human cells, Xenopus egg extract and the yeast S.cerevisiae ORC DNA 

binding is also dependant on ATP binding but not hydrolysis (Klemm et al., 1997; 

Gillespie et al., 2001; Giordano-Coltart et al., 2005). 

It has been demonstrated that the licensing proteins ORC, Cdc6 and Cdt1 are all 

required to load the MCM complex to DNA and therefore complete DNA licensing 

(Gillespie et al., 2001). However the exact mechanism and sequence of chromatin 

loading of the licensing proteins is unclear and may differ slightly between species. In 

the budding yeast S.cerevisiae the ORC complex protein Orc6 is required for an 

interaction between the ORC complex and Cdt1 which then facilitates Mcm2-7 loading 

and completion of DNA licensing (Chen et al., 2007).  In contrast it has been suggested 

that in Xenopus egg extract Orc6 is not essential for DNA licensing (Gillespie et al., 

2001).  Instead prior loading of Cdc6 to DNA is essential in Xenopus egg extract to allow 

chromatin bound Cdt1 to be active in DNA licensing (Tsuyama et al., 2005). In fission 

yeast however, Cdt1 recruitment to DNA appears to be independent of Cdc6 (Nishitani 

et al., 2000). It is therefore possible that in different species the order and mechanism 

of DNA loading of the licensing proteins also differs. 

Recently, studies have shown that there may be multiple intermediate complexes 

formed between the licensing proteins to allow Mcm2-7 chromatin binding during 
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DNA licensing. In S.cerevisiae chromatin bound ORC and Cdc6 form an ORC-Cdc6 

complex which then recruits multiple Cdt1 proteins to the DNA. The loading of 

multiple Cdt1 proteins then triggers formation of a double hexamer containing two 

Mcm2-7 complexes which is then loaded to DNA to complete DNA licensing (Takara 

and Bell, 2011). It has also been shown that the ORC-Cdc6 complex is capable of 

recruiting Mcm2-7 which is in turn in complex with Cdt1 as a Cdt1-Mcm2-7 complex. 

This mechanism produces an ORC-Cdc6-Cdt1-Mcm2-7 complex as an intermediate in 

DNA licensing (Sun et al., 2013). Following production of the intermediate it is thought 

that Cdt1 is released from the complex due to ATP hydrolysis of Orc1 and Cdc6 to leave 

an ORC-Cdc6-Mcm2-7 protein complex bound to DNA. It is believed that Cdt1 is then 

involved in loading a second Mcm2-7 hexamer to the DNA to form a Mcm2-7 double 

hexamer and therefore complete DNA licensing, however the exact mechanism of 

Mcm2-7 double hexamer formation remains unknown (Fernandez-Cid et al., 2013). 

In all eukaryotes the Mcm2-7 complex is essential for DNA licensing with the loading of 

the Mcm2-7 complex being the critical step which allows completion of DNA licensing. 

In both mammalian cells and Xenopus egg extract knock down of the MCM complex 

proteins leads to a block in DNA replication (Kimura et al., 1994; Madine et al., 1995). 

The Mcm2-7 complex was originally thought to act as a DNA helicase to unwind the 

DNA double helix during S-phase due to its parallel movement with the replication fork 

during S-phase (Aparicio et al., 1997). However it has since been shown that the DNA 

helicase is only active when the Mcm2-7 complex binds Cdc45 and the GINS complex 

proteins to form a Cdc45-Mcm2-7-GINS (CMG) complex (Kang et al., 2012). 

In somatic cells, DNA licensing occurs at the end of M-phase and into early G1 of the 

cell cycle (Gillespie et al., 2001). Several mechanisms contribute to the sanctioning of 

licensing only at this cell cycle stage; firstly the APC/C (anaphase promoting complex) is 

activated towards the end of M-phase leading to the destruction of M-phase 

regulatory proteins including CDK1, securin and geminin (Lei and Tye, 2001; Peters, 

2002). Secondly there is accumulation of the crucial licensing proteins Cdc6 and Cdt1. 

Finally, in metazoans only, there is down regulation of the licensing inhibitor geminin, 

a protein which inhibits the DNA licensing activity of Cdt1 during S-phase, G2 and early 

M-phase (Lei and Tye, 2001). 
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CDKs, which have various crucial roles throughout the cell cycle, have both positive 

and negative roles in promoting DNA licensing at the correct cell cycle stage. It has 

been shown that towards the end of M-phase CDKs activate the APC/C which then 

inhibits geminin activity therefore encouraging DNA licensing (Li and Blow, 2004). 

However extensive evidence suggests that CDK activity also has an inhibitory effect on 

licensing with high CDK levels throughout the cell cycle except for a window of low CDK 

levels during late M to early G1 phase in which licensing is sanctioned (Nishitani and 

Lygerou, 2002).  

1.2.2 DNA Replication 

Once DNA licensing is complete the origin is sufficiently equipped to allow DNA 

replication in S-phase. The trigger for recruitment of the replication machinery and 

initiation of DNA replication is an increase in the levels of two kinases: CDKs and DDKs 

(Dbf4-dependent kinase) during S-phase (Bell and Dutta, 2002). One of the first steps 

in initiation of DNA replication is phosphorylation of the MCM complex by DDK (Lei et 

al., 1997). It is thought that the action of the kinases at the beginning of S-phase 

causes a switch in the conformation of the Mcm2-7 helicase from an inactive to an 

active conformation. The GINS complex, which is named after the Japanese for 5, 1, 2 

and 3 (Go-Ichi-Nii-San) and consists of the four proteins Sld5, Psf1, Psf2, and Psf3, is 

then necessary for DNA replication (Takayama et al., 2003). The GINS complex and 

Cdc45, which are essential for initiation and elongation of DNA replication, then bind 

to Mcm2-7 to form a Cdc45-Mcm2-7-GINS (CMG) complex which activates the helicase 

activity of the Mcm2-7 complex. A strong association of Cdc45, part of the CMG, with 

the chromatin is also dependant on the activity of CDKs (Zou and Stillman, 1998). 

However GINS binding to chromatin is also important for DNA replication initiation 

with the chromatin binding of Cdc45 and GINS being mutually dependant and the Psf1 

component of GINS being essential for GINS chromatin binding and activity during DNA 

replication (Kubota et al., 2003; Kamada et al., 2007). 

When the Mcm2-7 complex is bound as part of the CMG complex the Mcm2-7 helicase 

has greater affinity for the DNA and ATP hydrolysis is increased in order to drive the 

Mcm2-7 helicase motor to unwind the DNA for replication (Ilves et al., 2010). Although 

the Mcm2-7 complex binds to double stranded DNA (dsDNA) during pre-RC formation, 

at initiation of replication there is remodelling of the Mcm2-7 complex to allow binding 
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to ssDNA during replication. The Mcm2-7 helicase complex then translocates in the 3’ 

to 5’ direction on the leading strand of the DNA template with exclusion of the lagging 

strand from the centre of the helicase (Fu et al., 2011). 

The Mcm10 protein, although not part of the Mcm2-7 helicase complex, is also 

essential for the initiation of DNA replication. Mcm10 binds to the DNA following pre-

RC formation and is required for loading of Cdc45, a component of the CMG complex, 

and RPA (Replication Protein A) binding (Wohlschlegel et al., 2002). RPA is essential for 

DNA replication as a single stranded DNA (ssDNA) binding protein which protects 

ssDNA from degradation during replication. It is also possible that RPA has roles in 

coordinating the binding of other DNA replication proteins to the ssDNA (Fanning et 

al., 2006). 

Once the Mcm2-7 as part of the CMG has unwound the DNA at the origin, replication 

of the DNA can begin. DNA polymerase α is then recruited to the unwound DNA 

(Walter and Newport, 2000). DNA polymerase α forms a complex with primase which 

is an RNA polymerase required to initiate de novo DNA synthesis. The primase 

generates a small RNA primer of which the pol α component of the complex recognises 

the 3’OH and extends the primer to produce an RNA-DNA primer. By this mechanism 

the pol α-primase initiates DNA synthesis at both the leading strand and each Okazaki 

fragment of the lagging strand (MacNeill, 2012). The RNA-DNA primers are then 

extended by DNA polymerase ε in the case of the leading strand (Pursell et al., 2007) 

and DNA polymerase δ in the case of the lagging strand (Nick McElhinny et al., 2008). 

The processivity of the DNA polymerase enzymes is increased by the DNA sliding clamp 

protein PCNA (proliferating cell nuclear antigen) which acts as a clamp to tether the 

polymerase enzymes to the DNA (Zhang et al., 1998). PCNA consists of three PCNA 

molecules which are bound together to form a ring structure with a central pore which 

encircles dsDNA (Krishna et al., 1994). The PCNA ring is loaded onto DNA by the sliding 

clamp loader Replication Factor C (RFC). The RFC protein binds PCNA to allow the 

PCNA ring to open and bind DNA in a mechanism dependant on ATP binding to RFC. 

The ATP is then hydrolysed and RFC is released from the PCNA-DNA complex to allow 

binding of the polymerase enzyme (Sakato et al., 2012).  
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As well as tethering the polymerase to the DNA, PCNA also acts as a platform to recruit 

other proteins to the sites of DNA replication. During replication of the lagging strand 

of the DNA, Okazaki fragments are produced due to the 5’ to 3’ direction of the 

polymerase enzymes. The Okazaki fragments must then be processed to remove the 

RNA-DNA primer flap and seal the nick in the DNA. To achieve this FEN-1 and DNA 

ligase I are recruited to DNA via PCNA. In addition PCNA recruits binding partners to 

the replication forks during other processes linked to replication such as DNA damage 

repair (Moldovan et al., 2007). Figure 1.2 shows a schematic representation of DNA 

licensing and replication in the somatic cell cycle adapted from (Nishitani and Lygerou, 

2002; Li and Blow, 2004; DePamphilis et al., 2006). 
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Figure 1.2. DNA licensing and replication initiation in somatic cells. A licensed DNA origin is shown in 
G1. In S-phase DNA replication is initiated, the MCM complex is phosphorylated by Cdc7-Dbf4 before 
binding GINS and Cdc45 to form an active helicase complex and RPA and the DNA polymerase enzymes 
are recruited to the replication fork.  PCNA is recruited to tether the polymerase to the DNA and further 
licensing is inhibited by downregulation of licensing components. During G2 licensing inhibition is 
maintained and the high CDK level continues (not shown). Towards the end of M-phase the licensing 
block is released and geminin is degraded releasing Cdt1 from inhibition to allow DNA licensing in the 
forthcoming G1.  
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1.3 Prevention of DNA Re-replication 

The licensing activity of the pre-RC is under strict control of the cell cycle. Mis-

regulation of pre-RC activity leads to a second round of licensing and replication on 

already replicated DNA (re-licensing and re-replication). Re-replication of the DNA can 

lead to an imbalance between oncogenes and their suppressors and contribute to 

development of abnormal proliferation and cancer if the errors in the DNA are not 

repaired (Tachibana et al., 2005a). DNA licensing must therefore be regulated so that it 

is only sanctioned during late M-phase to G1 and for the remainder of the cell cycle, S-

phase, G2 and early M-phase, further licensing is inhibited (Blow and Dutta, 2005). 

1.3.1 CDK Activity 

In yeast there is extensive evidence that CDK activity is important not only for cell cycle 

progression but also for ensuring that re-replication of DNA does not occur. In the 

fission yeast S.pombe overexpression of the Rum1 gene, which encodes a CDK 

inhibitor, in G2 of the cell cycle causes extensive re-replication (Moreno and Nurse, 

1994). The rum1 gene encodes a cdc2 kinase inhibitor which when overexpressed 

causes inhibition of the kinase activity of the p34cdc2-p56cdc13 complex. The resulting re-

replication is due to relinquishing of the block preventing unsolicited S-phase entry 

(Correa-Bordes and Nurse, 1995). In agreement with this when the p34cdc2-p56cdc13 

mitotic kinase complex is defective in G2 S.pombe cells, re-replication results as the 

cells revert back to a G1 state and undergo repeated entry into S-phase (Hayles et al., 

1994). It was proposed that the CDK activity at S-phase not only contributes to 

initiation of DNA replication but also inhibits new pre-RC formation. Indeed in the 

budding yeast S.cerevisae, when the kinase activity of the cyclin B-Cdk complex is 

inhibited during G2, new pre-RC complexes are formed on the already replicated DNA 

(Dahmann et al., 1995). 

Cyclin-dependant kinases have been shown to prevent re-replication of the DNA via 

multiple pathways in S.cerevisae. In this system the Clb-Cdc28 B-type CDK complex 

blocks re-assembly of pre-RCs during G2 and M-phase through multiple mechanisms in 

order to prevent re-replication (Nguyen and Li, 2001). Firstly, the Clb-Cdc28 CDK 

complex phosphorylates Cdc6 targeting the protein for ubiquitin-mediated proteolysis 

(Drury et al., 2000). The Clb-Cdc28 CDK complex also promotes export of the Mcm2-7 

complex form the nucleus during G2 and M-phases thereby preventing access of the 
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Mcm2-7 complex to the DNA (Nguyen et al., 2000). In a third mechanism the Clb-

Cdc28 CDK complex further prevents re-replication by hyperphosphorylation of the 

ORC complex which inhibits the function of ORC. It is only when all three of these 

mechanisms are inhibited that re-replication of the DNA is observed. At the end of M-

phase the kinase activity is inactivated to allow pre-RC formation during G1 thus 

ensuring that the DNA is licensed and replicated only once during each cell cycle 

(Nguyen and Li, 2001). 

It has been suggested that CDK activity may also play a role in limiting DNA replication 

to once per cell cycle in higher eukaryotes. This was based on evidence that in Xenopus 

egg extract a high Cdk2-cyclin E concentration is capable of inhibiting licensing by 

preventing the association of the Mcm2-7 complex with the DNA post-replication (Hua 

et al., 1997). However in the same Xenopus cell free system treatment of G2 nuclei 

with p21Cip1, an inhibitor of CDK activity, did not cause Mcm2-7 loading to the DNA and 

therefore did not induce re-licensing. This shows that CDK activity alone is not 

sufficient to prevent re-licensing and therefore other mechanisms are present in 

higher eukaryotes to limit DNA licensing and replication to once in a single cell cycle 

(Sun et al., 2000). 

1.3.2 Cdc6 Regulation 

Cdc6 is essential for DNA licensing as in the absence of Cdc6 no licensing occurs 

(Coleman et al., 1996). In the yeast S.cerevisae, Cdc6 is highly unstable and levels 

fluctuate during the cell cycle. Cdc6 is regulated by a pattern of degradation during S-

phase and re-synthesis during late M-phase ready for the next cell cycle. The CDK 

cdc28 is responsible for Cdc6 degradation during late G1 and the degradation is 

mediated by the SCF complex, a multi-protein (Skp, Cullin and F-box proteins) E3 

ubiquitin ligase complex (Drury et al., 2000). In contrast in metazoans Cdc6 can be 

detected bound to chromatin during both S-phase and G2 (Mendez and Stillman, 

2000). However Cdc6 is degraded in human cells during early G1 by the APC/C in 

association with the APC/C activator protein CDH1. Cdc6 undergoes polyubiquitination 

in vivo which is believed to mediate the degradation. Although Cdc6 is degraded in 

early G1, Cdc6 mRNA is present throughout the cell cycle in Hela cells and Cdc6 is 

resynthesised during late G1. The Cdc6 protein levels then persist through S-phase, G2 
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and M-phase which suggests that Cdc6 may play additional roles during the cell cycle 

in addition to the role in DNA licensing (Petersen et al., 2000). 

In contrast to yeast cells, Cdc6 levels remain persistent during S-phase, G2 and M-

phase in mammalian cells. This suggests that regulation of other licensing components 

limits DNA licensing and replication to once per cell cycle in this system with Cdc6 

required for further cell cycle events (Petersen et al., 2000). One possible additional 

function of Cdc6 is ensuring replication of the entire genome prior to exit from G2 into 

M-phase. There is evidence of this function in human cells where overexpression of 

Cdc6 in G2 cells causes cell cycle arrest preventing entry into mitosis. The arrest was 

due to checkpoint activation as evidenced by Chk1 (checkpoint kinase 1) 

phosphorylation. It is therefore believed that human Cdc6 may have a role in 

regulating entry into M-phase (Clay-Farrace et al., 2003). 

In S.pombe over expression of Cdc18 (the homologue to Cdc6) caused repeated rounds 

of DNA replication without an intervening M-phase (re-duplication). This suggested 

that Cdc6 regulation is important for preventing re-duplication in the yeast S.pombe  

(Nishitani and Nurse, 1995). However this observation appears to be unique to 

S.pombe. In C.elegans Cdc6 undergoes CUL4 (cullin 4, a component of the E3 ubiqutin 

ligase complex) mediated phosphorylation followed by exportation from the nucleus 

during S-phase. When this export of Cdc6 is blocked the embryos of the 

hermaphrodite worms are less viable compared to wild type controls. However the 

lethality is increased when the export insensitive Cdc6 mutant is expressed alongside a 

non-degradable Cdt1 mutant. Re-replication was observed when both the Cdc6 

mutant and the Cdt1 mutant were co-expressed. This suggests that although Cdc6 may 

be targeted for regulation to prevent re-replication, this is a redundant mechanism, 

with Cdt1 regulation being the main mechanism to prevent re-replication (Kim et al., 

2007). In Drosophila Cdc6 was shown to remain nuclear during S-phase and again 

overexpression of Cdc6 did not cause re-replication however, it did cause a slight delay 

in S-phase suggesting that Cdc6 may have role in S-phase coordination (Crevel et al., 

2005).  
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1.3.3 Cdt1 Regulation 

Cdt1 is an important component of the DNA licensing machinery and its regulation is 

crucial to ensure that licensing of DNA and therefore replication occur only once in a 

given cell cycle. Maiorano et al., have shown that addition of recombinant Cdt1 to G2 

nuclei causes DNA re-licensing and subsequent re-replication. This provides evidence 

that during G2 mechanisms are in place to exclude Cdt1 from the DNA (Maiorano et 

al., 2005). The addition of Cdt1 to G2 nuclei in Xenopus egg extract actually causes 

uncontrolled re-replication. This leads to the production of fragments of dsDNA due to 

the collision of replication forks in a head-to-tail manner. The Chk1 checkpoint is also 

activated as a result (Davidson et al., 2006). This shows that unsolicited Cdt1 activity 

following DNA replication in S-phase is sufficient to cause re-licensing and highlights 

the importance of correct Cdt1 regulation.  

Cdt1 degradation is an important mechanism for regulating Cdt1 activity in several 

model systems. In human cells Cdt1 undergoes proteasome mediated degradation. In 

this system the N-terminal region of phophorylated Cdt1 is recognised by Skp2. Skp2 is 

a component of the SCF ubiquitin ligase complex which polyubiquitinates multiple 

target proteins to target them for degradation by the proteasome. Following 

interaction with Skp2, Cdt1 undergoes SCFSkp2 mediated polyubiquitination which leads 

to Cdt1 degradation (Li et al., 2003). In addition in human cells a further ubiquitin 

ligase, the APC/C also plays a role in Cdt1 degradation. The Cdt1 N-terminal region 

contains three destruction boxes which interact with the APC/C triggering Cdt1 

degradation. Upon deletion of the three destruction boxes of Cdt1 re-replication 

occurs demonstrating the importance of APC/C mediated Cdt1 degradation in 

mammalian cells (Sugimoto et al., 2008). 

In C. elegans Cdt1 degradation also occurs, however the E3 ubiquitin ligase responsible 

is CUL-4/DDB-1 rather than SCFSkp2 as in humans. It has been shown that not only does 

DDB-1 interact with Cdt1 and CUL-4 directly, but also when DDB-1 is knocked down re-

replication is observed. This highlights the importance of regulating Cdt1 activity by 

degradation for correctly controlled DNA replication in C. elegans (Kim and Kipreos, 

2007). There is also a role for the CUL-4/DDB-1 pathway in Cdt1 degradation in 

humans but only after DNA damage induced by UV irradiation. After DNA damage, 

Cdt1 is ubiquitinated and degraded in a process dependant on PCNA as a co-factor in 
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order to inhibit licensing until the DNA is repaired (Senga et al., 2006). Interestingly in 

Xenopus egg extract the CUL-4/DDB-1 E3 ubiquitin ligase is also responsible for Cdt1 

ubiquitination and degradation in a process dependent on PCNA. In this pathway a 

complex of Cdt1 and CUL-4/DDB-1 loaded on chromatin is likely activated by PCNA 

loading in S-phase to trigger Cdt1 destruction. By this mechanism chromatin bound 

Cdt1 is degraded during ongoing DNA replication in S-phase in a replication dependant 

manner (Arias and Walter, 2005a).  

Metazoan cells also possess a unique Cdt1 inhibitor protein: geminin. During the cell 

cycle in human cells geminin activity is required to regulate Cdt1 activity to prevent re-

replication in G2 and subsequent cell cycle arrest at the G2 to M-phase transition 

(Klotz-Noack et al., 2012). However, there is evidence that geminin has a more 

complex role with Cdt1 other than simply as an inhibitor. It has been reported that in 

human cells along with its role as a Cdt1 inhibitor, geminin also promotes licensing by 

protecting Cdt1 from degradation during M-phase thereby allowing Cdt1 to 

accumulate (Ballabeni et al., 2004; Ballabeni et al., 2013). In agreement with this 

Lutzmann et al., have shown that a Cdt1-geminin complex is not only capable of 

preventing DNA re-replication but is also capable of licensing the DNA. This suggests 

that rather than simply blocking the activity of Cdt1, geminin may form a complex with 

Cdt1 to function as a molecular switch to shift between states of licensing -active and -

inactive (Lutzmann et al., 2006).  

One possible mechanism which would allow the Cdt1:geminin complex to switch 

between licensing -active and -inactive states is a change in stoichiometry of the 

complex. It has been shown that Cdt1 and geminin are able to form complexes 

together with two different stoichiometries, a heterotrimer 1:2 Cdt1:geminin complex 

and a heterohexamer consisting of two heterotrimers. When Cdt1 forms a 2:4 

Cdt1:geminin heterohexamer the  complex is unable to license the DNA due to 

concealment of the MCM binding residues of Cdt1 which are crucial for DNA licensing. 

This suggests that the Cdt1 heterotrimer acts as the licensing active “permissive” 

switch while the heterohexamer acts as the licensing inactive “inhibitory” switch (De 

Marco et al., 2009). The Cdt1:geminin molecular switch model also explains the co-

localisation of Cdt1 and geminin on chromatin in human cell lines (Xouri et al., 2007). A 
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recent study has also shown that a Cdt1-geminin complex acts as a molecular switch in 

sea urchin eggs to trigger licensing of the male pronucleus (Aze et al., 2010). 

In Drosophila correct geminin levels are essential for DNA replication (Quinn et al., 

2001). Loss of geminin in Drosophila cells causes re-replication which is dependent on 

the presence of Cdt1 suggesting it to be the result of re-licensing due to Cdt1 activity 

(Melixetian et al., 2004). This highlights the importance of Cdt1 regulation by geminin 

in this system. There is also evidence that geminin loss has an effect on other events 

dependent on the cell cycle. In both normal and cancerous human cells geminin loss 

can cause overduplication of the centrosomes (Tachibana et al., 2005b). In mouse cells 

loss of geminin causes genome duplication in the absence of mitosis (Gonzalez et al., 

2006a). This suggests wide ranging functions for geminin in cell cycle and cell division 

processes as well as its well documented role as a Cdt1 inhibitor. In addition there is 

evidence that geminin may play a role in cell proliferation and embryonic patterning by 

inhibiting both Hox gene transcription and protein function, which play a role in 

embryonic development (Pitulescu et al., 2005). 

There is variation between different species of the significance of each regulatory 

mechanism in preventing DNA re-licensing and therefore re-replication. When geminin 

is depleted from Xenopus egg extract there is no re-replication observed even though 

geminin is capable of inhibiting DNA replication (McGarry and Kirschner, 1998). In 

Xenopus egg extract both geminin and Cdt1 proteolysis must be inhibited for 

uncontrolled Cdt1 activity to trigger re-licensing and re-replication (Li and Blow, 2005). 

However in the human cancer cell lines HCT116 and H1299 when geminin is depleted 

re-replication does occur (Zhu et al., 2004). Correct geminin function is essential in 

human cells to prevent re-replication. When the APC/C inhibitor Emi1 is depleted in 

human cell lines the APC/C is prematurely activated and goes on to inhibit geminin 

function. The result is re-replication (Machida and Dutta, 2007). However, in HeLa cells 

Cdt1 is degraded before geminin is expressed which suggests that in this case geminin 

inhibition acts as a redundant mechanism while degradation is the primary mechanism 

for Cdt1 regulation (Nishitani et al., 2001). 

Both degradation of Cdt1 and inhibition by geminin have been shown to be important 

for regulation of Cdt1 activity to prevent re-replication in Xenopus egg extract (Arias 
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and Walter, 2005b; Li and Blow, 2005). It has been shown in extract that upon entry 

into S-phase, the recruitment of Cdk2/cyclin E, Cdc45, RPA and DNA polymerase to the 

DNA triggers ubiquitin mediated degradation of Cdt1. Addition of recombinant Cdt1 to 

the extract following DNA replication resulted in re-replication and the extent of re-

replication was increased upon depletion of geminin. This is evidence that Cdt1 

degradation and inhibition by geminin act redundantly in the extract to prevent re-

licensing and re-replication (Arias and Walter, 2005b). In agreement with this, Li and 

Blow (2005) demonstrated that in Xenopus egg extract both Cdt1 degradation, 

mediated by the APC/C, and geminin inhibition of Cdt1 were necessary to avert re-

licensing and re-replication of the DNA (Li and Blow, 2005). 

1.3.4 Cdt1 Structure 

The Cdt1 protein has a domain structure with 3 main functional regions. It has 

previously been shown that the smallest section of Cdt1 capable of DNA licensing is a 

construct containing amino acids 243-620 (Ferenbach et al., 2005) with extensive 

evidence showing that the N-terminal region contains sites for regulation of Cdt1 via 

degradation (Li et al., 2003; Nishitani et al., 2004; Arias and Walter, 2005b; Arias and 

Walter, 2005a; Senga et al., 2006). The first 21 N-terminal amino acids contain a highly 

conserved PIP box which is essential for Cdt1 interaction with PCNA required for 

replication dependant Cdt1 degradation (Arias and Walter, 2005a). The N-terminal 

region also contains domains required for interaction with E3 ubiquitin ligase 

complexes. The PIP box is utilised for PCNA dependant degradation of Cdt1 mediated 

by the Cul4-DDB-1 E3 ubiquitin ligase (Nishitani et al., 2006). A cy motif is also located 

within the first 100 amino acids which is essential for the cyclin/Cdk dependant 

phosphorylation of Cdt1. The phosphorylated Cdt1 is then recognised by the SCFSkp2 E3 

ubiquitin ligase complex and targeted for proteolysis (Li et al., 2003; Liu et al., 2004; 

Nishitani et al., 2004; Nishitani et al., 2006). There are also several N-terminal 

destruction boxes which are recognised by the APC/C to allow ubiquitination and 

subsequent degradation of Cdt1 (Sugimoto et al., 2008). 

Although the N-terminal region of Cdt1 shows weak binding activity the main geminin 

binding region lies between amino acids 193-447. This region lies between two 

predicted coiled-coil domains of Cdt1. When the N-terminal coiled-coil domain is lost, 

as with the smallest Cdt1 construct capable of licensing DNA (ΔCdt1243-620), partial 
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geminin resistance results (Ferenbach et al., 2005). Coiled-coil domains are protein 

tertiary structure motifs consisting of 2-5 α-helical coils further coiled together (Mason 

and Arndt, 2004). The coiled-coil domains of Cdt1 are highly conserved between 

species and it has been suggested that the coiled-coil interacts with geminin although 

the coiled-coil domains and the central region of Cdt1 between these domains are 

both capable of interaction with geminin (Ferenbach et al., 2005). In addition to the 

degradation and geminin binding domains, the N-terminal region also contains a 

nuclear localisation signal (NLS) (Nishitani et al., 2004) to allow entry to the nucleus 

through NLS receptors on the nuclear envelope (Lange et al., 2010). 

The C-terminal 173 amino acids of Cdt1 bind to a complex containing the MCM 

complex proteins Mcm 2, 4, 6 and 7. Loading of the Mcm2-7 complex to DNA 

completes DNA licensing and therefore the MCM binding region is crucial for the 

licensing activity of Cdt1 (Ferenbach et al., 2005). A schematic representation of the 

domain structure of Cdt1 is shown in Figure 1.3.  
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Figure 1.3. Cdt1 structure and protein domains. Cdt1 has a domain structure and can be separated into 
a regulatory region and a DNA licensing region. The N-terminal 1-243 amino acids of Cdt1 contain D-box 
sequences for ubiquitin mediated degradation, a PIP box for PCNA dependant degradation, a cy motif 
for cyclin/Cdk dependant Cdt1 phosphorylation as well as a nuclear localisation sequence (NLS). The 
central region is essential for geminin binding while the green regions represent the coiled-coil domains 
also thought to be important for geminin binding. The C-terminal contains the MCM binding region 
which is necessary for the licensing activity of Cdt1. 
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1.3.5 The Importance of Correct DNA Licensing and Replication 

Due to the fact that the licensing proteins are intricately linked to DNA replication it is 

unsurprising that a connection between aberrant licensing activity and cancer 

development has been suggested. Inappropriate expression of the DNA licensing 

proteins or an insufficient number of licensed origins could lead to genomic instability 

which is a hallmark of cancer (Blow and Gillespie, 2008). 

Both Cdc6 and Cdt1 have been implicated in cancer development. It has been 

suggested that the genes for both Cdc6 and Cdt1 may function as oncogenes. During 

cancer development an oncogene is a mutated gene encoding a protein involved in the 

cell cycle which leads to increased cell division (Chial, 2008). It has been shown that 

integration of retroviral DNA into the primitive erythroid EB-PE cell line caused 

activation of the Cdt1 gene and this coincided with the EB-PE cells becoming immortal 

with immortalisation being a key step in cancer development (Arentson et al., 2002). In 

addition it has also been shown that Cdt1 overexpression causes development of DNA 

double strand breaks which activate the DNA damage checkpoint although the cells 

subsequently undergo senescence or apoptosis. However prolonged overexpression of 

Cdt1 in U2OS cells eventually led to a situation in which the cells were able to bypass 

the checkpoint. These cells showed significant genomic instability and also showed the 

potential to be potently invasive, an aggressive cancerous phenotype (Liontos et al., 

2007). This provides evidence that Cdt1 may function as an oncogene (Arentson et al., 

2002). 

The licensing protein Cdc6 has also been shown to exhibit oncogenic potential. There is 

evidence that overexpression of Cdc6 results in transcriptional repression of the 

INK4/ARF gene locus and a subsequent downregulation of the tumour suppressors 

encoded at this region, namely p16INK4a. Alongside activation of this oncogenic 

pathway, Cdc6 overexpression can also cooperate with the Ras oncogene to induce 

immortalisation and neoplastic transformation thus providing further proof of the 

oncogenic potential of Cdc6 (Gonzalez et al., 2006b). 

Although Cdt1 may contribute to cancer development it is also possible that Cdt1 may 

be a suitable candidate for targeted cancer therapy. A recent study has shown that the 

re-replication induced by inappropriate Cdt1 activity can be exploited to contribute to 
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the cell death of cancer cells. The NAE (NEDD8-activating enzyme) inhibitor MLN4924, 

which is currently undergoing phase I trials, causes Cdt1 accumulation by preventing 

the CRL-mediated (cullin ring ligase of an E3 ubiquitin ligase complex) mechanism of 

Cdt1 degradation. The elevated Cdt1 levels leads to re-replication and DNA damage 

which ultimately triggers apoptosis (Milhollen et al., 2011). It has also been suggested 

that cancerous cells can be selectively killed by suppressing geminin activity. Again 

unsolicited Cdt1 activity caused re-replication and DNA damage which subsequently 

led to apoptosis. The selectivity of this method to cancer cells was suggested to be due 

to the presence of additional mechanisms for the prevention of re-replication in 

normal cells compared to cancer cells (Zhu and DePamphilis, 2009). 

In addition to the association of inappropriate DNA licensing and caner, some of the 

DNA licensing proteins have also been linked to other diseases. Since proper DNA 

licensing and replication is important for correct cell cycle progression and cell division 

it is unsurprising that appropriate activity of licensing proteins is vital for development, 

a time when cell division is particularly significant. In line with this mutations of Orc1 

and other licensing proteins including Orc4, Orc6, Cdc6 and Cdt1 have been associated 

with the developmental growth defect Meier Gorlin syndrome, a form of primordial 

dwarfism (Bicknell et al., 2011a). It has been shown that in Zebrafish embryos 

depletion of Orc1 causes significant reductions in body size likely due to delays in S-

phase entry as a result of inadequate origin licensing (Bicknell et al., 2011b). 

With mutations in DNA licensing proteins including Cdt1, Cdc6 and the ORC proteins 

linked to diseases such as cancer and developmental growth defects, a thorough 

understanding of regulation of DNA licensing is essential. Through understanding how 

the licensing proteins are regulated and how mutations lead to disease new therapies 

may evolve. Indeed suppression of geminin activity to selectively kill cancer cells (Zhu 

and DePamphilis, 2009) may provide just one future treatment of certain cancers 

which involve targeting of the DNA licensing system. 

1.4 Xenopus laevis Model System 

There are several advantages to using Xenopus embryos as a model system. The first 

reasons are practical considerations; the embryo is large and develops externally 

making it easily manipulated by microinjection or dissection and the animal cap cells 
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can be removed and cultured (Jones and Smith, 2008). Also, manipulation of the 

embryo allows the effects on not just one cell cycle but development of the entire 

organism to be investigated. 

In addition the eggs of the Xenopus laevis toad can be utilised to produce Xenopus egg 

extract. The egg extract system was developed almost 30 years ago and as such has 

been well characterised. Xenopus extract supports many of the cell cycle events such 

as DNA licensing, replication and separation of the sister chromatids in vitro. These 

properties make the Xenopus egg extract system a useful model with which to study 

the mechanisms of cell cycle and DNA replication regulation (Gillespie et al., 2012). 

1.4.1 Xenopus laevis Embryo Development 

Embryonic development begins when one sperm from the male of the species fertilises 

one oocyte (egg) from the female to form the zygote. The zygote is the initial cell 

produced when two gamete cells, the sperm and the egg, fuse. Following fertilisation 

cleavage cell cycles occur which increase the total number of cells without a parallel 

increase in size of the zygote. At this stage in development the zygote forms a 

blastocyst in mammals and a blastula in other vertebrates. Gastrulation then follows in 

which the cells of the embryo are rearranged into three layers: the endoderm, 

ectoderm and mesoderm. Through differentiation, the cells of each layer then give rise 

to different tissues and organs leading to the development of a viable organism 

(Gilbert, 2000a). 

The eggs of the African clawed toad Xenopus laevis have a distinct polarity consisting 

of a dark pigmented animal pole and a pale vegetal pole which contains much of the 

yolk of the egg. The eggs are laid encased in a jelly and vitelline membrane which acts 

to both protect the egg and to attract and activate sperm cells to allow fertilisation 

(Gilbert, 2000a). The vitelline membrane is composed of a minimum of four 

glycoproteins which are required for the interaction between the sperm and the egg 

(Vo and Hedrick, 2000; Miwa et al., 2010). 

Xenopus laevis eggs are deposited from the female into the external environment prior 

to fertilisation and subsequent embryonic development. With no outside source of 

nutrition the reserves of the egg must be sufficient to produce an organism capable of 

self-feeding. The Xenopus eggs are therefore large, at approximately 1 mm in 



25 
 

diameter, to allow sufficient nutritional reserves for embryonic development. Due to 

the large size of the egg in comparison to the amount of DNA the first 12 cell divisions 

consist of rapid cleavages during which the DNA content increases exponentially to 

provide the necessary transcriptional output for later embryonic development 

(O'Farrell et al., 2004). 

Upon fertilisation the Xenopus zygote completes the meiotic cell cycle before entry 

into the mitotic cleavage cell cycles. The first cell division therefore takes longer than 

the subsequent cleavage divisions. Division from the single cell zygote to the two cell 

embryo therefore takes 1 hour 30 minutes following fertilisation whereas each 

cleavage cell cycles takes approximately 30 minutes. The cleavage cycles continue until 

approximately 6 hours after fertilisation at which point the mid-blastula transition 

(MBT) occurs and the cell cycle length is increased before gastrulation begins (O'Farrell 

et al., 2004).  

The development of the Xenopus embryo is classified into developmental stages 

(Nieuwkoop and Faber, 1967b). The blastula stage in which the cells form a layer over 

the blastocoelic cavity begins at stage 7 until stage 9 of development. The blastocoelic 

cavity, also known as the blastocoel, likely serves to provide space for the cell 

movements of gastrulation and to prevent the cells of the animal and vegetal poles 

from prematurely interacting (Gilbert, 2000b). Gastrulation begins at stage 10 during 

which the cells migrate and rearrange to form endoderm, ectoderm and mesoderm. 

The surface cells of the animal pole form the ectoderm while the cells of the vegetal 

pole form the endoderm and the cells of the mesoderm form from the deeper layers of 

cells within the embryo (Gilbert, 2000b). In later embryonic development the cells of 

the ectoderm give rise to the skin and nerve cells, the endoderm gives rise to the gut 

and organs associated with the gut and the mesoderm gives rise to blood cells and the 

vascular and connective tissues (Gilbert, 2000b; Fehling et al., 2003). 

Gastrulation is completed by stage 13.5 at which point the neurula stages begin which 

are characterized by formation of the neural plate. The early development of the CNS 

and associated nerves, ganglia and sense organs including the eyes and ears develop 

approximately up to stage 28. Up to stage 38 the axis of the embryo is developed along 

with the alimentary system of digestive organs, visceral and muscle tissue. By stage 53 
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the brain is well developed with much of the epidermis, connective tissue and patterns 

of skin pigmentation developed up to stage 60. The Xenopus embryo resembles a 

tadpole by stage 34 at approximately 48 hours following fertilisation and as such is 

motile by this stage of development (Nieuwkoop and Faber, 1967b). The 

developmental stages from stage 1 to 11 and stages 22, 34 and 40 are shown in Figure 

1.4 adapted from (Nieuwkoop and Faber, 1967a) along with the approximate times 

post-fertilisation of each stage. 
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Figure 1.4. Developmental Stages of Xenopus laevis Embryos. Xenopus eggs were fertilised and the 
vitalline envelope removed before normal development was monitored using a Leica M205 FA macro 
imaging system. For each stage of development depicted, the time post-fertilisation of the embryo is 
indicated. The embryo development shown is at 23°C. Scale bars for stages 1 through to 22 are 250µm, 
scale bar for stage 34 is 900µm and scale bar for stage 40 is 1200µm.  

Stage 1, 1 hr Stage 2, 1 hr 30 min Stage 3, 2 hr Stage 4, 2 hr 30 min 

Stage 5, 2 hr 45 min Stage 6, 3 hr 5 min Stage 6.5, 3 hr 30 min Stage 7, 4 hr 

Stage 8, 5 hr Stage 9, 7 hr Stage 10, 9 hr Stage 10.5, 11 hr 

Stage 11, 12 hr Stage 22, 24 hr Stage 34, 48 hr 

Stage 40, 72 hr 



28 
 

1.4.2 The Embryonic Cell Cycle 

The mature oocytes of Xenopus and Zebrafish are arrested in metaphase of meiosis II, 

the cell cycle which produces the haploid gamete cells. Meanwhile the oocytes of the 

fruit fly Drosophila are arrested in meiosis I and in the nematode worm C.elegans, 

completion of meiosis I and II only occurs upon fertilization (Von Stetina and Orr-

Weaver, 2011). In sea urchin the oocytes complete the meiotic cell cycle prior to 

fertilisation and arrest in G1-G0 (Voronina et al., 2003). Regardless of the stage of the 

cell cycle arrest, upon fertilisation a calcium wave releases the oocyte from the arrest 

prior to completion of meiosis and entry into the mitotic cell cycles (Whitaker, 2008). 

The first mitotic cell cycles of the Xenopus, Drosophila, and Zebrafish embryos consist 

of rapid cleavage cell cycles in which the number of cells and amount of DNA increases 

exponentially with each division while the size of the embryo remains constant 

(O'Farrell et al., 2004). To allow the rapid synchronous cleavages, the embryonic cell 

cycle consists of alternating S- and M- phases and lacks the distinct gap phases, G1 and 

G2, which are present in the somatic cell cycle (Graham and Morgan, 1966). Also, 

during the cleavage cell cycles the embryo is transcriptionally silent and instead relies 

on maternally derived stores of mRNA and proteins (Newport and Kirschner, 1982; 

Edgar and Schubiger, 1986). 

The rapid cleavages of Xenopus and sea urchin embryos are driven by oscillations in 

CDK activity to drive cell cycle events including nuclear membrane breakdown, mitosis 

and DNA replication (Newport and Kirschner, 1984). It has been shown that MPF is a 

complex between B type cyclins and CDK1 (Hartley et al., 1996; Doree and Hunt, 2002). 

During the first 16 cell divisions of the Xenopus embryo the levels of cyclin B1 and B2 

oscillate in parallel with the activity of CDK1 to regulate embryonic cell cycle timing 

(Hartley et al., 1996). However in Drosophila embryos the cyclin B and CDK1 levels 

remain constant during the first 7 cell cycles with the onset of fluctuations in cyclin 

levels and CDK1 activity between cycles 8 and 13 (Edgar et al., 1993). However, 

although the total levels of the B type cyclins and CDK1 activity in the syncytial 

Drosophila embryo do not fluctuate, there is local proteolysis of small pools of cyclin B 

which is required for mitosis exit during the cell cycle (Su et al., 1998). 
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It has been shown that during the cleavage cell cycles in Drosophila embryos, 

accumulation of cyclins is necessary for some of the events of mitosis but is not 

directly responsible for timing the cell cycle (McClealand et al., 2009a). Instead during 

the cleavage cycles, S-phase acts as a mitotic timer to time the cell cycle with 

checkpoints which couple S-phase completion to M-phase only essential prior to the 

MBT and becoming dispensable during the post-MBT cell cycles (McClealand et al., 

2009b). In sea urchin embryos during the early cleavage cycles progression into S-

phase is triggered by the activity of the cyclin E-CDK2 complex with high levels of cyclin 

E-CDK2 throughout the cell cycle unlike in somatic cells where the cyclin E-CDK2 levels 

oscillate (Sumerel et al., 2001). 

The cleavage cell cycles constitute the first 12 cell divisions in the Xenopus embryo 

until the onset of the mid-blastula transition (MBT) which occurs at approximately 6 

hours after fertilisation (O'Farrell et al., 2004). The MBT is triggered when the DNA to 

cytoplasm ratio reaches a critical level. Following the MBT the cell cycles of the embryo 

closer resemble the somatic cell cycles as they become asynchronous, gap phases are 

introduced, the cells acquire motility and zygotic transcription begins (Newport and 

Kirschner, 1982). The sea urchin embryo also undergoes cleavage cell cycles consisting 

only of oscillating S- and M- phases however unlike with Xenopus and Drosophila 

embryos, there is zygotic transcription throughout the cleavage cell cycles and an 

absence of a defined MBT (Yasuda and Schubiger, 1992). 

During the cleavage cell cycles the entire genome is replicated during the short and 

rapid S-phase prior to entry into mitosis. In the cleavage cycles of Drosophila embryos 

the 180 million base pair (bp) genome is replicated in 3.4 minutes while in Xenopus the 

1.7 billion bp genome is replicated in 15 minutes (O'Farrell et al., 2004). In order to 

achieve complete replication of the genome in such a short period of time the cells 

enlist many more DNA replication origins compared to in the longer later embryonic- 

and somatic- cell cycles (McKnight and Miller Jr, 1977; Walter and Newport, 1997). 

Due to the short rapid cleavage cycles of the early embryo and the lack of gap phases, 

DNA licensing occurs earlier in M-phase in time for the onset of S-phase. In C.elegans 

embryos Mcm2-7 loading and therefore DNA licensing occurs in anaphase of meiosis II 

and at metaphase and anaphase of the following mitotic cell cycles. Rapid turnover of 
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Orc1 and Cdc6 allows these proteins to license multiple origins to ensure adequate 

DNA licensing in the short C.elegans embryonic cell cycle (Sonneville et al., 2012). 

During the Drosophila embryonic cell cycle, prior to introduction of gap phases, Mcm2 

also binds DNA during anaphase (Su and O'Farrell, 1997). In early Xenopus embryos, 

karyomeres of nuclear membrane lamina form around the chromosomes to allow DNA 

licensing to occur during anaphase. PCNA is detected on such chromosomes during 

telophase suggesting initiation of DNA replication. This pattern of DNA licensing and 

replication terminates after the MBT (Lemaitre et al., 1998; Kisielewska and Blow, 

2012). Figure 1.5 shows a schematic representation of DNA licensing and regulation of 

licensing during the pre-MBT cell cycle in Xenopus embryos. 

Uniquely to sea urchin the DNA of the unfertilized G1 arrested egg is already licensed 

for replication with Cdc6, Cdt1 and Mcm3 all bound to chromatin. The male chromatin 

is then licensed post-fertilisation. In the unfertilized egg, the repression of DNA 

replication from the licensed DNA origins is thought to be achieved via pathways 

involving the MAP and checkpoint kinases (Aze et al., 2010). 

Considering that the structure of the cell cycle during the embryonic cleavage cell 

cycles differs significantly from the somatic cell cycle, it is also possible that regulation 

of DNA licensing and replication may differ considerably in early embryos. Indeed 

there is evidence that in early embryos the predominant methods of regulation differ, 

likely due to the rapid nature of the cell cycles. In early Xenopus embryos Cdt1 

degradation is minimal with the levels of both Cdt1 and geminin remaining persistently 

high throughout the cleavage cycles (Kisielewska and Blow, 2012). A persistently high 

level of geminin is also present in early Drosophila embryos during the syncitial 

divisions, regardless of the stage of the cell cycle (Quinn et al., 2001). In C.elegans 

embryos, Orc1 and Cdc6 are excluded from the nucleus during S-phase, possibly 

providing an alternative method to prevent re-licensing when there is insufficient time 

for protein degradation and re-synthesis (Sonneville et al., 2012).  

The importance of Cdt1 regulation for correct cell cycle progression in early pre-MBT 

Xenopus embryos has previously been disputed. It has been shown that depletion of 

endogenous geminin from the Xenopus embryo using morpholinos has no effect on 

pre-MBT cell division with cell cycle arrest only occurring at the MBT (McGarry, 2002). 
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However it has since been shown that functional knockdown of the geminin protein 

and therefore uncontrolled Cdt1 activity does lead to cell cycle arrest in pre-MBT 

Xenopus embryos (Kisielewska and Blow, 2012). Along with evidence that siRNA and 

morpholinos may be inadequate to produce RNAi in Xenopus embryos (Lund et al., 

2011) this suggests that Cdt1 regulation may be crucial for proper cell division in pre-

MBT embryos. The role and mechanisms of Cdt1 regulation during the pre-MBT cell 

cycle therefore requires clarification (highlighted in the red box of Figure 1.5). 
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Figure 1.5. DNA licensing and replication in the pre-MBT Xenopus embryonic cell cycle. The pre-MBT 
embryonic cell cycle consists of alternating S- and M- phases and DNA licensing occurs in late M-phase, 
specifically anaphase. In telophase PCNA can be detected on chromatin suggesting initiation of DNA 
replication (Philipova et al., 2005). During S-phase further licensing must be inhibited however the 
mechanisms behind the inhibition are currently unknown (red box). Although the exact mechanisms of 
regulation of the licensing proteins Cdt1 and geminin remain unclear there is evidence that they do not 
undergo degradation in the pre-MBT cell cycle as they do in somatic cells. 
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1.4.3 Additional Roles for the Pre-RC Proteins during Embryonic Development 

Some of the proteins involved in DNA licensing also interact with other proteins and 

form important interactions during embryonic development to provide roles distinct 

from licensing. Geminin in particular interacts with multiple proteins during embryonic 

development. Geminin not only associates with Hox proteins, which are important in 

regulating development of embryonic axis and structures, but can also interact with 

the regulator elements of the DNA at the Hox gene thereby functioning to coordinate 

development (Luo et al., 2004). Geminin has also been shown to play a role in cell 

commitment and ensuring the germ layers of the Xenopus embryo form at the correct 

locations (Lim et al., 2011). 

In Drosophila embryos, overexpression of geminin caused neural differentiation 

suggesting that geminin activity may play a role in neurogenesis during development. 

In addition, geminin overexpression resulted in a decrease in size of the eye discs of 

the larvae and adult eye (Quinn et al., 2001). A role for geminin in eye development 

has also been shown in fish embryos (Medaka fish). During Medaka development 

geminin interacts with the transcription factor Six3, known to be involved in 

development of the eye, to regulate a balance between cell differentiation and 

proliferation which is essential for normal eye development (Del Bene et al., 2004).  

There is also evidence that Cdc6 has diverse roles during the cell cycle and embryo 

development in addition to the well established role in DNA licensing. In mouse 

oocytes Cdc6 activity is essential for spindle formation during progression through 

meiosis (Anger et al., 2005). It has also been shown that in Xenopus oocytes an 

increase in Cdc6 activity may be sufficient to induce sperm binding and therefore aid in 

fertilisation (Tian et al., 1997). 

Geminin has been shown to be crucial in many pathways during embryonic 

development across different species in parallel to the roles in regulation of DNA 

licensing (Pitulescu et al., 2005). In addition, it has also been shown that Cdc6 may 

have roles in oocyte maturation and fertilisation (Tian et al., 1997; Anger et al., 2005). 

Some of the licensing proteins therefore play an important role during embryonic 

development as well as DNA licensing and replication. Therefore a comprehensive 
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understanding of regulation of the licensing proteins in the unique cell cycle of the 

early embryo is crucial. 

1.4.4 Xenopus Egg Extract 

Xenopus egg extract is a cell free in vitro model prepared from the eggs of the Xenopus 

laevis toad. The egg extract is produced from the Xenopus eggs using centrifugation 

which purifies the extract to leave only the membranes, cytoplasm and cytoplasmic 

proteins, including each of the proteins required for DNA licensing. During the 

centrifugation process materials which are not essential for extract function such as 

the yolk platelets, lipids and mitochondria are separated from the cytoplasm and 

discarded (Gillespie et al., 2012).  

The eggs of Xenopus laevis are held at metaphase arrest of meiosis II until fertilisation 

(Kanki and Donoghue, 1991). The arrest can be released through addition of Ca2+ to 

mimic the calcium spike which occurs at fertilisation. The egg extract can therefore be 

maintained in the metaphase arrest by addition of EGTA which sequesters any 

exogenous calcium to prevent activation of the eggs (Lohka and Masui, 1984). Extract 

produced in the presence of EGTA is therefore known as metaphase arrested egg 

extract (Gillespie et al., 2012). 

Upon addition of Ca2+ and demembranated Xenopus sperm DNA, the extract is 

released from the metaphase arrest into mitotic interphase and the sperm chromatin 

is decondensed. In addition a nuclear structure forms within the extract and the DNA 

licensing and replication machinery is also activated to allow efficient semi-

conservative replication of the sperm DNA. Within the extract the DNA is decondensed 

before being licensed and replicated to produce a complete set of paired sister 

chromatids. The extract can then be advanced into mitosis where the chromatids are 

condensed and separated along a mitotic spindle as is the case during the cell cycle in 

vivo. The events of the cell cycle in the egg extract are also regulated via the same 

control mechanisms of the in vivo cell cycle. These properties make the egg extract 

system an excellent model with which to study the events of DNA licensing and 

replication in vitro (Gillespie et al., 2012).  
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1.5 Aims 

Much of the current data regarding Cdt1 regulation relates to the somatic cell cycle. 

Even data acquired using Xenopus egg extract is more representative of the somatic or 

post-MBT cell cycle as the extract contains gap phases (Li and Blow, 2004; Maiorano et 

al., 2005). Given the differences between the early (pre-MBT) embryonic cell cycle and 

the somatic cell cycle it is also likely that the regulatory mechanisms may differ. Due to 

the short and rapid nature of the pre-MBT cell cycle it is likely that there is insufficient 

time for protein degradation and re-synthesis to be ready for the forthcoming cell 

cycle stage and therefore alternative mechanisms are utilised for Cdt1 regulation. 

Indeed, it has recently been shown that in pre-MBT Xenopus embryos, Cdt1 and 

geminin levels remain persistently high throughout the cell cycle with little 

degradation of Cdt1 (Kisielewska and Blow, 2012).  

The main aim of the thesis was therefore to elucidate the mechanisms which regulate 

DNA licensing to prevent re-replication of the DNA during the early cell cycle in 

Xenopus embryos. In order to achieve this goal the specific aims were: 

1. To investigate the effect of mis-regulation of Cdt1 on the Xenopus laevis 

embryonic cell cycle and embryo development in vivo. 

2. To determine the importance of correct Cdt1 regulation for proper DNA 

licensing and cell cycle progression in pre-MBT embryos. 

3. To establish the mechanisms of Cdt1 regulation in pre-MBT Xenopus embryos 

in vivo. 

4. To investigate whether or not the N-terminal domain of Cdt1 participates in 

protein-protein interactions with other members of the licensing machinery 

which may contribute to Cdt1 regulation 
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2.1 Plasmids and Cloning 

2.1.1 PCR 

The DNA sequence for the gene of the protein of interest, either Xenopus Cdt1 or RFP, 

was obtained from the National Centre for Biotechnology Information (NCBI). The DNA 

sequence was then aligned with the protein sequence and the start codon determined. 

Using this information appropriate PCR primers were designed in order to amplify the 

DNA sequence for the protein region required. The primers were also designed to 

include an ATG start codon in the 5’ forward primer before the start of the construct 

sequence to allow initiation of mRNA translation as well as either one or two 

restriction enzyme sites at the start and end of the sequence to allow insertion of the 

DNA into a plasmid vector. The primer sequences are listed in Table 2.1. 

For the PCR reaction DNA template (a minimum of 200 ng of circular plasmid DNA 

containing the DNA sequence of interest), 10 pmol start primer, 10 pmol end primer, 1 

mM dNTP’s (250 µM per dNTP, Promega dNTP mix), reaction buffer (1x concentrated), 

2.5 mM MgCl2 and either the Mol Taq polymerase, which possesses 5’ to 3’ 

exonuclease activity and produces a 3’ A overhang, or Velocity polymerase, which 

possesses proofreading 3’ to 5’ exonuclease activity and produces amplicons with 

blunt ends, were made up to a volume of 50 µl in dH2O and placed in a PCR thermal 

cycler. The reaction conditions for the PCR were as follows; 1 cycle at 95°C for 5 

minutes to ensure denaturation of the double stranded DNA template, followed by 30 

cycles of 95°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute to amplify the 

target sequence with one final cycle of 95°C for 5 minutes, 55°C for 30 seconds and 

70°C for 20 minutes to ensure completed DNA synthesis. 
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Construct 

Start 

Restriction 

Site 

End 

Restriction 

Site 

Primer Sequence (5’ to 3’) 

ΔCdt1243-620 
Bam HI, 

Bgl II 

Not I,  

Eco RI 

GGATCCAGATCTATGCCAGCCTATCAACGTTTTCAT 

GAATTCGCGGCCGCCTAGAGAGACTCTTCTTCCTTTGT 

ΔCdt11-243 Bam HI Eco RI 
GGATCCATGCCAGCCTATCAACGTTTTCAT 

GAATTCTGGGGCCTTTTCACTTTCCTG 

ΔCdt11-243 Bgl II Eco RI 
AGATCTATGGCAGACATGTCGCAAATG 

GAATTCTGGGGCCTTTTCACTTTCCTG 

ΔCdt1243-570 
Bam HI, 

Bgl II 
Eco RI 

GGATCCAGATCTATGCCAGCCTATCAACGTTTTCAT 

GAATTCTTCCATCTCACCTGGAGACAT 

RFP Eco RI Not I 
GAATTCATGGCCTCCTCCGAGGACGTC 

GCGGCCGCGGCGCCGGTGGAGTGGCGGCC 

 

Table 2.1. PCR primer sequences for production of Cdt1 and RFP constructs. For the Cdt1 constructs 
listed the numbers in superscript represent the amino acids of the Cdt1 protein which are encompassed 
by the primers. The restriction sites to be incorporated at the start and end of the DNA region of interest 
are listed. All primer sequences are in the 5’ to 3’ configuration. 
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2.1.2 Agarose Gel Electrophoresis 

To analyse DNA samples generated by PCR or restriction enzyme digested plasmid DNA 

samples, agarose gel electrophoresis was used. The DNA samples were prepared by 

addition of x6 DNA loading dye before running on a 1% agarose gel, covered with 1x 

TAE buffer (40 mM TRIS BASE, 5 mM EDTA pH 8, 0.114% acetic acid) at 130 V for 35 

minutes. Ethidium bromide (0.25 µg/ml) was added to the gel to allow detection of the 

DNA via UV. To allow identification of the DNA a 1 Kb DNA ladder (Promega) was 

loaded into one lane of the gel. DNA bands observed to be at the appropriate size 

were then cut from the gel and purified using the Qiagen QIAquick Gel Extraction Kit 

according to manufacturer’s instructions. Purified DNA samples were stored at -20°C 

to prevent degradation. 

2.1.3 Plasmids and Transformation 

Construct DNA produced by PCR and subsequently purified from the agarose gel was 

then inserted into the pGEM-T vector which contains a single T overhang at the 3’ end. 

This allows the pGEM-T vector to accept insertion of PCR generated DNA which 

contains a single A overhang at the 3’ end created by the polymerase enzyme. To 

insert the DNA into the plasmid an overnight ligation at 16°C was used which consisted 

of the construct DNA, 50-100 ng pGEM-T vector, 1x reaction buffer and 1-3 units T4 

DNA ligase enzyme. The pGEM-T vector is compatible with the blue and white 

screening technique as the inserted DNA disrupts the gene for the α-peptide of β-

galactosidase. When transformed with the ligation mix, white bacterial colonies 

indicate pGEM-T containing the construct DNA. Blue colonies do not contain the 

construct DNA and therefore produce functional β-galactosidase which is activated by 

IPTG to cleave X-gal on the plates producing a blue by-product.  

The overnight ligation mixture was used to transform either Nova Blue or JM109 E.coli 

strains using heat shock. For the transformation 5 µl of the overnight ligation mix was 

added to 20-100 µl of bacteria, depending on the competency of the cells, and 

incubated on ice for 30 minutes. The bacteria were then subjected to heat shock at 

42°C for 1 minute and incubation on ice for a further 2 minutes before addition of 200 

µl of SOC media (Sigma). The bacterial culture was then incubated at 37°C for 45 

minutes before spreading on agar plates containing 100 µg/ml ampicillin and coated 

with 100 µl 200 mM IPTG and 2.5 mg X-gal. The plates were incubated overnight at 
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37°C. White colonies were then removed from the plate and cultured small scale in 10 

ml LB media containing ampicillin (100 µg/ml), overnight at 37°C, 180 rpm. The 

plasmid DNA was then purified from 1.5 ml of the small scale culture using the 

Promega Wizard Plus SV Minipreps DNA Purification System according to 

manufacturer’s instructions. 

The purified plasmid DNA was then cut by restriction digestion to release the inserted 

DNA from the plasmid vector. A 15 µl sample of the purified plasmid DNA was 

incubated with the restriction enzymes targeted to the restriction sites generated by 

the PCR primers, at a concentration of 10-12 units with 1x restriction enzyme buffer at 

37°C for 3 hours. DNA loading dye was added before the digested DNA samples were 

run on an agarose gel electrophoresis, as above, to check for the presence of both the 

pGEM-T vector and the inserted construct DNA. The correct construct DNA was then 

cut from the gel and purified, as above, to give construct DNA with DNA overhangs at 

each end produced by the restriction enzymes. The construct DNA was then inserted 

into the plasmid pRN3 for expression as mRNA or the plasmid pET-32a(+) for 

expression as recombinant protein. The appropriate plasmid expression vectors were 

cut using the corresponding restriction enzymes to produce complementary ends for 

successful insertion of the purified construct DNA. The construct DNA was then ligated 

into the plasmid expression vector, transformed into JM109 (minus addition of IPTG 

and X-gal to the plates) and checked via restriction digestion and agarose gel 

electrophoresis as above. Any samples that appeared to show correct insertion of the 

construct DNA into the final expression vector underwent DNA sequencing for 

confirmation. For DNA sequencing the plasmid DNA samples were sent to DNA 

Sequencing and Services at the University of Dundee. The DNA sequencing result of 

the construct was then aligned against the known DNA sequence of the construct of 

interest using the EMBOSS needle alignment program. The alignment was checked to 

ensure there were no base pair errors or frame shift mutations. 

For addition of a fluorescent protein tag to the Cdt1 construct DNA, the DNA for the 

fluorescent protein RFP was produced via PCR, inserted into the pGEM-T vector, 

purified and restriction enzyme digested as above. The fluorescent protein DNA 

fragment was then purified from the restriction digestion as above to produce a 

fluorescent protein DNA fragment with DNA overhangs at each end produced by the 
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restriction enzymes. The plasmid vector, either pRN3 or pET-32a(+), containing the 

correct Cdt1 construct was then opened using the restriction enzymes complementary 

to the overhangs to allow insertion of the fluorescent protein DNA fragment by 

overnight ligation. The final expression vector containing the Cdt1 DNA and fluorescent 

protein DNA was then ran on an agarose gel electrophoresis before being sent for DNA 

sequence for conformation as above. The final Cdt1 plasmid constructs are shown in 

Figure 2.1.  
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Figure 2.1. Completed Cdt1 constructs. The Cdt1 constructs that were inserted into the pRN3 plasmid 
are for mRNA expression. The Cdt1 construct that was inserted into the pET-32a(+) plasmid is for 
recombinant protein expression.  



43 
 

2.2 In vitro Transcription 

The final pRN3 mRNA expression vector containing the verified construct DNA was 

linearised using the restriction enzyme Kpn I as this cuts the vector downstream of the 

construct DNA sequence and leaves the construct DNA within the vector intact. The 

linearised construct DNA was then purified using the Qiagen QIAquick PCR Purification 

Kit according to manufacturer’s instructions. Ethanol precipitation was then used to 

ensure any salt carry over from the kit buffers were removed and to further purify the 

DNA as cleaner template DNA preparations produce greater yields of mRNA. For 

ethanol precipitation, a one-tenth volume of sodium acetate and three volumes of 

100% ethanol were added to the DNA followed by incubation at -80°C for 10 minutes. 

The DNA was then centrifuged at 14,000 g, 4°C for 20 minutes before re-suspending 

the pellet in 100 µl of 70% ethanol. The DNA was centrifuged at maximum speed, 4°C 

for 10 minutes, after which the supernatant was discarded and the purified DNA pellet 

left to air dry before re-suspension in 6 µl DEPC-treated water. The linearised and 

purified DNA was then used as a template for synthesis of mRNA using the T3 

mMESSAGE mMACHINE Kit according to manufacturer’s instructions (Ambion, Austin, 

TX). 

2.3 Protein Expression and Purification 

The appropriate DNA sequences were sub-cloned from the pGEM-T vector into the 

pET-32a(+) expression vector, which also includes an N and C terminal His-Tag, as 

above. The correctly sequenced pET-32a(+) constructs were transformed into 

expression bacteria, the E.coli strain Tuner, and grown on ampicillin-containing (100 

µg/ml) agar plates overnight at 37°C. Colonies were then removed from the plate and 

cultured small scale, overnight at 37°C in 10 ml 2xyt media containing ampicillin (100 

µg/ml). The small scale cultures were used to inoculate 1-3 litres of 2xyt media + 100 

µg/ml ampicillin. The large scale cultures were grown to OD600 1-1.2 at 37°C before 

inducing with 0.2 mM IPTG overnight at 16°C, 150 rpm. The cultures were centrifuged 

at 8000 rpm for 8 minutes at 4°, the supernatant discarded and the bacterial pellets 

stored at -80°C. To purify the recombinant protein from the bacterial cells the Novagen 

His-bind purification kit was used according to manufacturer’s instructions with minor 

modifications. The bacterial pellets were re-suspended in x1 binding buffer 

supplemented with protease inhibitors (2 µg/ml aprotinin, 2 µg/ml pepstatin A, 2 
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µg/ml leupeptin and 100 µM benzamidine) and 0.05% detergent (Triton-X100). 

Lysozyme (100 µg/ml) was then added to the resuspension before placing on a roller 

mixer for 15 minutes at room temperature. The bacterial cells were then lysed using 

pulsed sonication on ice. DNase (5 µg/ml) and RNase (10 µg/ml) was then added to the 

cell lysate before placing on a roller mixer for 15-30 minutes at room temperature. The 

cell lysate was then centrifuged at 10,000 rpm, 4°C for 40 minutes. The recombinant 

protein was purified from the supernatant by his-bind resin column chromatography 

using the Novagen His-bind purification kit according to manufacturer’s instructions. 

The purified protein was eluted from the his-bind resin column in x1 elution buffer 

collected in 1 ml fractions.  

To determine which fractions contained higher purity and recombinant protein levels 5 

µl samples were collected, added to 15 µl Laemmli buffer (final concentrations of 

Laemmli buffer 3% SDS, 7.5% β-mercaptoethanol, 10.5% glycerol, 0.12 M TRIS pH 6.8 

and 0.003% bromophenol blue), boiled for 10 minutes at 96°C and centrifuged at 

maximum speed for 1 minute before running on an SDS-PAGE gel (4-12% BIS-TRIS 

gradient gel, Invitrogen) at 180 V for 1 hour. The gel was then stained using coomassie 

blue stain (0.25% coomassie brilliant blue, 10% acetic acid, 45% methanol, 45% 

deionised water) and destained (5% acetic acid, 45% methanol, 50% deionised water) 

to reveal the protein bands. Fractions containing appropriate levels of purity and 

recombinant protein were then combined and the elution buffer exchanged for x0.5 

PBS using GE Healthcare PD-10 desalting columns according to manufacturer’s 

instructions. The PD column was equilibrated using x0.5 PBS. The recombinant protein 

was then concentrated using vivaspin 6 ultrafiltration spin columns with a molecular 

weight cut off of either 10,000 or 35,000 Daltons (Sartorius Stedim Biotech). The 

concentration of the recombinant protein was determined using the Thermo Scientific 

Pierce BCA Protein Assay Kit according to manufacturer’s instructions. 

2.4 Xenopus laevis 

To induce egg laying, female Xenopus laevis frogs were injected subcutaneously with 

150 units of PMSG to promote oocyte maturation before subcutaneous injection of 

500 units of hCG 3 days later. Once injected with hCG the frogs were placed in 

individual tanks containing 1x MMR (1 M NaCl, 50 mM HEPES, 20 mM KCl, 20 mM 

CaCl2, 10 mM MgCl2, and 1 mM EDTA pH 7.8 in dH2O) for laying. Both the frogs and the 
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eggs should be kept at 23°C to preserve egg quality. Once collected the eggs can be 

fertilised to produce embryos or instead used to produce Xenopus egg extract. 

2.4.1 Xenopus Embryos 

To fertilise the eggs, one testis from the male Xenopus laevis was macerated in 1x 

MMR to maintain in an inactive state. To fertilise, the inactive sperm was spread 

around a petri dish of eggs before being activated by 2 ml 0.1x MMR followed 5 

minutes later by flooding with 0.1x MMR. The sperm is activated due to osmotic shock 

triggered by the reduction in salt content of the 0.1x MMR buffer which mimics the 

low salinity of the pond water environment to trigger sperm motility (Tholl et al., 

2011). This method of fertilisation allows all of the eggs to be fertilised at the same 

time point therefore producing a batch of synchronously dividing embryos. Figure 2.1 

shows a batch of synchronously dividing Xenopus embryos in which every embryo in 

the batch divides at approximately the same time. After incubation at 23°C for 20 

minutes the protective vitelline coat of the embryos was removed using 2% cystine (pH 

7.8) for 5-8 minutes. The embryos were then washed with- and preserved in- 0.1x 

MMR. Embryo development was monitored using a Leica M205 FA macro imaging 

system set to take one image every 5 minutes. 

Embryo samples taken for Western blot analysis were devoid of buffer and fixed using 

liquid nitrogen or dry ice before storage at -80°C. For immunofluorescence analysis 

embryos were fixed in 2 ml fix solution (10x MEMFA and 37% formaldehyde in ddH2O) 

on a roller for 45 minutes before addition of 2 ml methanol. After a further 15 minutes 

on the roller the embryo sample was placed in 2 ml methanol for 5 minutes before 

storing in 2 ml of fresh methanol at -20°C. 
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Figure 2.2. Synchronously dividing Xenopus laevis embryos. All embryos in the batch were fertilised 
and divide at the same time. The scale bar is 500µm. (A) First embryonic cell division (developmental 
stage 2). (B) Second embryonic cell division (developmental stage 3). (C) Third embryonic cell division 
(developmental stage 4). (D) Fourth embryonic cell division into a 16 cell embryo (developmental stage 
5).  

A B 

C D 
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2.4.2 Xenopus Egg Extract Production 

The eggs of Xenopus laevis are arrested at metaphase of meiosis II. Upon fertilisation a 

calcium wave releases the egg from the metaphase arrest. By mimicking this calcium 

wave, the presence of exogenous calcium can activate the unfertilised eggs and egg 

extract, releasing them from metaphase arrest into interphase of the first mitotic cell 

cycle. The presence of the calcium chelator EGTA during production of the egg extract 

allows the metaphase arrest to be maintained and the resultant extract is therefore 

metaphase arrested Xenopus egg extract. 

For production of the extract only the highest quality eggs were used. High quality eggs 

were those identified as having a clear distinction between the dark animal pole and 

light vegetal pole with a clean vitelline coat. The high quality eggs were pooled and 

washed with 1x MMR before removal of the vitelline coat in de-jellying solution (2% 

cysteine, 1 mM EGTA) for 5-10 minutes. Once the coat was completely removed the 

eggs were washed with XBE2 [1x αβ salts (100 mM KCl, 2 mM Mg2Cl, 0.1 mM CaCl2), 10 

mM hepes KOH, 5 mM EGTA, 1.71% w/v sucrose]. Damaged or activated eggs, which 

appear white to grey in colour, were then removed and the remaining eggs washed 

with XBE2 containing 10 µg/ml protease inhibitors leupeptin, pepstatin A and 

aprotinin. The eggs were then centrifuged at 3000 rpm, 16°C for 1 minute in 1 ml of 

XBE2 buffer containing 10 µg/ml leupeptin, pepstatin A, aprotinin and 100 µg/ml 

cytochalasin D to pack. Once the eggs were packed down, excess buffer and any 

activated eggs were removed before centrifuging at 10,000 rpm, 16°C for 10 minutes. 

The middle layer of extract containing the cytoplasmic fraction was removed before 

addition of 10 µg/ml leupeptin, pepstatin A, aprotinin and cytochalasin D along with a 

one-twentieth volume of ER (energy regenerator, which consists of 25 mM 

phosphocreatine and 15 µg/ml creatine phosphokinase) and 15% LFB1/50 (50 mM KCl, 

40 mM hepes KOH, 20 mM potassium phosphate, 2 mM MgCl2, 1 mM EGTA, 2 mM 

DTT, 10% w/v sucrose and 10 µg/ml leupeptin, pepstatin and aprotinin). The extract 

was then centrifuged at 30,000 rpm, 4°C for 17 minutes. Next the golden cytoplasmic 

layer was removed ensuring that the membrane layer below was not disturbed as this 

contains the mitochondria which lyse after freeze-thawing to promote apoptosis 

within the extract making it un-useable. Glycerol (2%) was then added to the extract 

for cryoprotection before snap freezing 20 µl drops in liquid nitrogen to form beads of 
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20 µl aliquots which were stored at -80°C. A schematic of Xenopus egg extract 

production is shown in Figure 2.3. This method of producing egg extract was 

developed in Professor Julian Blow’s laboratory at the University of Dundee and was 

used in order to keep extracts consistent between laboratories (Gillespie et al., 2012). 
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Figure 2.3. Production of Xenopus egg extract. (A) High quality Xenopus eggs were collected and 
centrifuged at 10,000 rpm for 10 minutes. (B) The grey fraction of crude cytoplasm was collected and 
centrifuged at 30,000 rpm for 17 minutes. (C) The purified cytoplasmic fraction was collected and frozen 
in 20 µl beads for storage at -80°C. 
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To ensure that the egg extract is metaphase arrested and competent for DNA 

replication, the ability of the extract to undergo nuclear assembly was confirmed 

(Figure 2.3). To check nuclear assembly, a sample of extract was supplemented with 10 

ng/µl demembranated sperm DNA and a one-fortieth volume of ER (final 

concentrations of 25mM phosphocreatine and 15µg/ml creatine phosphokinase in the 

extract)  and cycloheximide (final concentration on 250 µg/ml in the extract)  before 

activation with 0.3 mM CaCl2. At 10 minutes, 60 minutes and 120 minutes post-

activation 1 µl extract samples were placed on microscope slides with 1 µl of extract fix 

solution (67% glycerol, 10% 10x MMR, 10% formaldehyde and 0.001% Hoechst) The 

Hoechst in the fix solution stained the DNA allowing the structure of the DNA to be 

observed using UV microscopy. 

At 10 minutes after activation with CaCl2 the sperm DNA appears linear and has begun 

to decondense. By 60 minutes the decondensed sperm DNA has completed nuclear 

assembly forming approximately circular nuclei. At 120 minutes DNA licensing and 

replication is complete and the sperm DNA is condensed (Figure 2.4).  
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Figure 2.4. Nuclear assembly in Xenopus egg extract. The extract was supplemented with 10 ng/µl 
demembranated sperm DNA and released from metaphase arrest by addition of 0.3 mM CaCl2. At 10, 60 
and 120 minutes post-calcium addition 1 µl samples were fixed and the DNA stained with Hoechst 
before imaging using UV microscopy. Scale bar is 10 µM. 

  

10 min 60 min 120 min 
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2.4.3 Use of Xenopus Egg Extract 

Aliquots of Xenopus egg extract were thawed at room temperature. To maintain ATP 

levels and prevent progression into mitosis the extract was supplemented with one-

fortieth volume of ER (final concentrations of 25mM phosphocreatine and 15µg/ml 

creatine phosphokinase in the extract) and cycloheximide (final concentration on 250 

µg/ml in the extract) respectively. The extract was then released from the metaphase 

arrest into interphase by addition of 0.3 mM CaCl2 and DNA added in the form of 

demembranated sperm nuclei at 20 ng/µl unless otherwise stated. The extract was 

incubated at 23°C until each experimental time point which was measured as the time 

elapsed following activation. Depending on the rationale of the experiment, the 

extract was optionally supplemented with inhibitors or recombinant protein constructs 

which are listed in Table 2.2. 
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Component Description Concentration 

p27 Cyclin-dependant kinase inhibitor 100 nM 

D-Box peptide Competitive APC/C inhibitor 2 mM 

ΔCdt11-243-RFP 

Truncated recombinant Cdt1 consisting of 

the N-terminal 1-243 amino acids of Cdt1 

with an RFP fluorescent tag 

19 ng/µl 

GemH-RFP 
Non-degradable form of geminin with an 

RFP fluorescent tag 
0.38 µg/µl 

 

Table 2.2. Inhibitors and recombinant proteins used to optionally supplement Xenopus egg extract. 
Each component, which was optionally added to the Xenopus egg extract depending on the rational of 
the experiment, is listed with a description and the final working concentration used unless otherwise 
stated. 
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2.5 Chromatin Isolation 

2.5.1 Isolation of Chromatin from Xenopus laevis Embryos 

Healthy synchronously dividing embryos were collected at selected time points during 

the cell division cycle. A 0.5-1 ml volume of embryos was packed by gentle 

centrifugation for 2 seconds using a bench top centrifuge and devoid of buffer before 

fixing in liquid nitrogen and storage at -80°C. To isolate the chromatin the embryo 

samples were thawed and centrifuged at maximum speed, 4°C for 10 minutes. After 

the centrifuge the layer containing the chromatin was collected and supplemented 

with 10 µg/ml of the protease inhibitors pepstatin A, leupeptin and aprotinin and ten 

volumes of buffer A (10 mM HEPES pH 7.6, 15 mM KCl, 1 mM EDTA, 0.5 mM 

spermidine, 0.15 mM spermine, 0.5 mM DTT, 0.2% Triton-X100 and 10 µg/ml each of 

pepstatin A, leupeptin and aprotinin). The nuclear extract was then mixed and 

centrifuged at 500 g, 4°C for 20 minutes. The supernatant was discarded before 

addition of 10 µg/ml pepstatin A, leupeptin and aprotinin to the pellet and re-

suspension in 10 ml buffer A. The re-suspended pellet was then layered over 4 ml of 

buffer A containing 15% glycerol and centrifuged at 500 g, 4°C for 20 minutes. The 

supernatant was discarded before a final centrifugation at maximum speed, 4°C for 1 

minute. The remaining supernatant was removed and the pellet re-suspended in 

Laemmli buffer (10% SDS, 25% β-mercaptoethanol, 35% glycerol, 0.4 M TRIS pH 6.8 

and 0.01% bromophenol blue) before boiling at 96°C for 10 minutes and centrifuging 

at maximum speed for 1 minute. The chromatin samples were then stored at -20°C. 

2.5.2 Isolation of Chromatin from Xenopus Egg Extract 

Xenopus egg extract was thawed and supplemented with a one-fortieth volume of ER 

and 250 µg/ml cycloheximide followed by activation with 0.3 mM CaCl2 and incubation 

for 15 minutes at 23°C. Following incubation there was optional supplementation with 

100 nmol p27 or ΔCdt11-243-RFP before addition of 20 ng/µl DNA. The extract was then 

incubated at 23°C. At selected time points the DNA was then isolated from 20 µl of 

extract. To the 20 µl extract samples 500 µl of NIB (50 mM KCl, 50 mM HEPES pH 7.6, 5 

mM MgCl2, 2 mM DTT, 0.5 mM Spermidine, 0.15 mM Spermine, 0.1% Triton-X100, and 

1 µg/ml each of Leupeptin, Pepstatin A and Aprotinin) was added followed by addition 

of a 100 µl cushion of NIB containing 20% w/v sucrose to the bottom of the eppindorf 

tube and centrifugation at 5000 g, 4°C for 5 minutes. The supernatant was then 
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removed leaving approximately 15 µl to cover the chromatin pellet. The pellet was 

then centrifuged at maximum speed, 4°C for 2 minutes before complete removal of 

the supernatant. The chromatin pellet was then re-suspended in 10 µl Laemmli buffer 

(10% SDS, 25% β-mercaptoethanol, 35% glycerol, 0.4 M TRIS pH 6.8 and 0.01% 

bromophenol blue), boiled at 96°C for 10 minutes, centrifuged at maximum speed for 

1 minute and stored at -20°C in preparation for western blot analysis. 

2.6 Microinjection 

A Narishige PC-10 micropipette puller was used to produce micropipettes for use with 

the World Precision Instruments Nanoliter 2000 oil-based microinjection system. Oil 

was loaded into the tip of the micropipette followed by protein or mRNA loading. The 

protein or mRNA was then injected into the embryos at various developmental stages. 

Following microinjection the embryos were maintained in 0.1x MMR and development 

was monitored using either a Motic stereomicroscope or a Leica M205 FA fluorescence 

macroimaging system. 

2.7 Western Blot 

2.7.1 Sample Preparation 

Whole embryo samples stored at -80°C were thawed on ice to prevent protein 

degradation and homogenised in 12 µl of extraction buffer (20 mM EGTA, 20 mM 

HEPES pH 7.5, 15 mM MgCl2, 1 mM DTT, 0.5 mM PMSF and 3 μg/ml of the protease 

inhibitors leupeptin, pepstatin A and aprotinin). The extraction buffer was optionally 

supplemented with the deubiquitylase inhibitor NEM (20 mM) when the preservation 

of any ubiquitination was required. The samples were then centrifuged for 10 minutes 

at maximum speed, 4oC and the supernatant collected and added to 8 µl Laemmli 

buffer (final concentrations in Laemmli buffer are 4% SDS, 10% β-mercaptoethanol, 

14% glycerol 0.16 M TRIS pH 6.8 and 0.004% bromophenol blue). The samples were 

boiled for 5-10 minutes at 96°C and centrifuged for 1 minute at maximum speed. 

Prepared samples in Laemmli buffer were then either used immediately or stored at -

20°C. 

Xenopus egg extract samples were fixed in Laemmli buffer at a ratio of 0.5-1 µl of 

extract per 10 µl of Laemmli buffer (final concentrations in Laemmli buffer are 9-9.5% 

SDS, 22.5-23.75% β-mercaptoethanol, 31.5-33.25% glycerol, 0.36-0.38 M TRIS pH 6.8 
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and 0.009-0.0095% bromophenol blue). The samples were then boiled for 5-10 

minutes at 96°C and centrifuged for 1 minute at maximum speed before storage at -

20°C.  

2.7.2 SDS-PAGE and Western Blot 

Samples stored at -20°C were thawed, boiled for 5-10 minutes at 96°C and centrifuged 

for 1 minute at maximum speed before gel loading. Prepared samples were run on a 4-

12% BIS-TRIS gradient gel (Invirogen) at 180 V for approximately 1 hour 5 minutes in 1x 

MOPS buffer (Invitrogen). The gel was placed in a sandwich with the membrane, filter 

paper and filter pads and placed in a blotting tank (Biorad) in transfer buffer (25 mM 

TRIS base, 192 mM glycine and 20% methanol in dH2O). Blotting was for 3 hours 30 

minutes at 50 V onto a hydrophobic polyvinylidene difluoride (PVDF) membrane 

(Thermo Scientific) which was pre-activated by soaking in 100% methanol for 5 

seconds. The membrane was blocked in PBST+5% milk (PBST is x1 PBS and 0.1% Triton-

X100 in dH2O) either overnight at 4oC or for 2 hours at room temperature. The 

membrane was probed with primary antibody overnight at 4oC followed by treatment 

with secondary antibody either overnight at 4oC or for 2 hours at room temperature. 

The primary and secondary antibodies and concentrations used are listed in Table 2.3. 

After each step the membrane was washed 3 times in PBST. The membrane was then 

treated with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) 

before development on medical X-ray film (Kodak blue sensitive). 

When analysing isolated chromatin samples, prior to protein transfer to the PVDF 

membrane, the bottom 1 cm of the SDS-PAGE gel was removed and placed in 

coomassie blue stain. The gel section was then destained to reveal the histone protein 

bands. For preservation the gel was placed between two deionised water-soaked 

cellulose sheets (Promega Gel Drying Film), clamped to seal and air dried for 24 hours. 
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Antibody Concentration Company 

Catalogue 

Number 

Primary 

R
ab

b
it

 

Cdt1 1:1000 Prof. Julian Blow’s Lab 

Geminin 1:1000 Prof. Julian Blow’s Lab 

Orc1 1:2000 Prof. Julian Blow’s Lab 

Phospho-Ser 1:500 Cell Signaling #2324S 

M
o

u
se

 

RFP 1:1000 Abcam ab65856 

PCNA 1:2000 Cell Signaling #2586 

Mcm2 1:1000 Prof. Julian Blow’s Lab 

β-actin 1:500 Sigma A2228-200UL 

His-tag 1:1000 Abcam ab18184 

Phospho-Thr 1:1000 Cell Signaling #93915 

Secondary 

Anti-mouse HRP 

conjugated 

1:35000 Sigma A5278-1ML 

Anti-rabbit HRP 

conjugated 

1:35000 Sigma A8275-1ML 

 

Table 2.3. List of antibodies used for western blot analysis. All primary antibodies were diluted in 3% 
BSA with 0.02% sodium azide, stored at 4°C and re-used. All secondary antibodies were diluted in PBST 
buffer with 5% milk and used once. The working concentrations of each antibody are listed along with 
the company and catalogue number for each antibody. Antibodies obtained from Professor Julian Blow’s 
lab were a kind gift and are not commercially available. 
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2.7.3 Image J Analysis 

The developed films were scanned in greyscale using a HP Scanjet G3010 scanner. To 

analyse the densities of the bands on the blots Image J software was used. To select 

the first band on the blot the rectangular tool was used and through the analyse menu, 

gels and first lane were selected. After outlining all the bands with the rectangular tool, 

graphs of the densities within each rectangle were produced using the ‘plot lane’ 

function. Due to background signal on the blots the peaks of the graphs did not touch 

the baseline. The bottom of the peaks for each band was therefore closed using the 

straight line tool to allow the areas of the peaks to be selected using the wand tool. 

Once the areas of each peak were highlighted the ‘label peaks’ function was used to 

express each peak as a percentage of the total area of all the peaks combined. The 

area and percentage data for each band on the blot was then transferred to an excel 

spread sheet. The percentage data was used to calculate the relative densities for each 

of the bands on the blot. The relative densities were calculated relative to the band 

corresponding to time point zero of the experiment, unless otherwise stated. 

2.7.4 Statistical Analysis 

The relative density values calculated from the Image J data were analysed using 

GraphPad Prism version 4.03 for Windows (GraphPad Software, San Diego California, 

USA). The relative densities were entered into the Prism data table and plotted on an 

XY graph as mean ±SEM. The linear regression line of each data set was then calculated 

and plotted on the graph. The linear regression line was calculated using the ‘least 

squares’ method in which the sum of the squares of the distance vertically from the 

line of each point on the graph was minimised.  

To determine whether or not there was a significant difference between protein 

degradation rates under different conditions the slopes of the linear regression lines 

for each condition were compared. The test, which is equivalent to an analysis of 

covariance (ANCOVA), was performed to test the null hypothesis that the slopes of the 

linear regression lines were identical (Zar, 1999). A P value of less than 0.05 indicated 

that the slopes of the lines were significantly different and thus there was a significant 

difference between the rates of protein degradation between the two conditions. In 

addition the slopes of the linear regression lines were also tested against the null 

hypothesis that the slope was equal to zero. A P value of less than 0.05 indicated that 
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the slopes of the lines significantly deviated from zero. A slope that does not 

significantly deviate from zero shows that there is no rate of change, the level stays 

constant and therefore there is no change in the protein level and thus no protein 

degradation within the sample. 

2.8 Immunofluorescence 

Embryo samples were placed in 2ml bleaching solution (10% hydrogen peroxide and 

67% methanol) on a white light transluminator for 2 hours followed by rehydration in 

1x PBS to limit background fluorescence. The embryos were then washed in TBS (155 

mM NaCl, 10 mM Tris-Cl pH 7.4 and 0.1% Triton-X100) before blocking in TBS+5% milk 

for 2 hours at room temperature. The embryos were again washed in TBS before 

treatment with primary antibody overnight at 4oC. The embryo samples were then 

washed in TBS before treatment with secondary antibody in overnight at 4oC on the 

shaker. The primary and secondary antibodies and concentrations used are listed in 

Table 2.4. The embryos were then washed and stored in TBS. Once the embryo 

samples were placed on microscope slides Vectashield mounting medium for 

fluorescence with DAPI was added before placing the cover slip. The embryo slides 

were stored at 4°C before imaging using a Zeiss confocal/2-photon (model LSM 510) 

with numerical aperture 1.4, and 63x oil immersion objective. 
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Antibody Concentration Company 

Catalogue 

Number 

Primary 
R

ab
b

it
 

Cdt1 1:50 Prof. Julian Blow’s Lab 

Rad 51 1:100 Abcam ab31769-100 

p53 1:100 Abcam ab38497-100 

IgG 1:100 Sigma I5006-10mg 

M
o

u
se

 Mcm2 1:200 Prof. Julian Blow’s Lab 

RFP 1:200 Abcam ab65856 

Secondary 

Alexa fluor 488 

goat-anti-mouse 

1:1000 Invitrogen A31619 

Alexa fluor 555 

goat-anti-rabbit 

1:1000 Invitrogen A31629 

 

Table 2.4. List of antibodies used for immunofluorescence analysis. All primary and secondary 
antibodies were diluted in TBS buffer containing 3% BSA. The working concentrations of each antibody 
are listed along with the company and catalogue number for each antibody. Antibodies obtained from 
Professor Julian Blow’s lab were a kind gift and are not commercially available. 
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2.9 Immunoprecipitation 

Protein A sepharose beads were swollen in 1x PBS at 4°C. Once the beads were 

swollen 0.02% sodium azide was added to prevent bacterial contamination. To couple 

RFP antibody (Abcam, ab65856) to the protein A beads a one-tenth volume of 

antibody was added to the beads and made up to a 50% slurry with IP buffer (20 mM 

TRIS pH 8, 50 mM NaCl, 10 mM EGTA pH 8, 100 µM sodium fluoride, 100 µM sodium 

orthovanadate, 0.5 mM PMSF, 0.5% sodium deoxycholate, 1% Triton-X100 and 10 

µg/ml each of leupeptin, pepstatin A and aprotinin). The antibody and bead slurry was 

then placed on a roller mixer for one hour at room temperature. The beads were then 

centrifuged for 1 minute at 800 rpm, 4°C before removal of the antibody solution and 

addition of 1 ml 0.2 M sodium borate pH 9. The beads were again centrifuged at 800 

rpm, 4°C for 1 minute and the sodium borate treatment was repeated. After 

centrifuging at 800 rpm, 4°C for 1 minute the sodium borate was removed and 1 ml 0.2 

M sodium borate containing 20 mM DMP (dimethylpimelimidate, an imidoester 

crosslinker) added before incubation at room temperature for 30 minutes on a roller 

mixer. The beads were then centrifuged at 800 rpm, 4°C for 1 minute before removal 

of the supernatant and addition of 1 ml 0.2 M ethanolamine pH 8. The beads were 

again centrifuged at 800 rpm, 4°C for 1 minute before removal of the supernatant. The 

beads were then incubated in 1 ml 0.2 M ethanolamine for 2 hours at room 

temperature on a roller mixer. Finally, the beads were washed by centrifugation at 800 

rpm, 4°C for 1 minute followed by removal of the supernatant and addition of 1x PBS 

repeated twice. The RFP antibody was now cross-linked to the beads. 

The antibody coupled beads were then separated into 20 µl aliquots and excess PBS 

removed. To each aliquot of beads 500 µl IP buffer was added before centrifuging at 

800 rpm, 4°C for 1 minute. Excess IP buffer was then removed and 20µl extract 

samples were added with 150 µl IP buffer and incubated at 4°C overnight on a roller 

mixer. The beads were washed by centrifugation at 800 rpm, 4°C for 1 minute followed 

by removal of the supernatant and addition of 500 µl IP buffer. This wash step was 

then repeated three times and after the third wash step the supernatant was 

removed. The beads were then washed in high salt by addition of 500 µl IP buffer 

containing 200 mM NaCl, centrifugation at 800 rpm, 4°C for 1 minute and removal of 

the supernatant. The high salt wash step was then repeated three times and after the 
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third wash the supernatant was removed. The beads were then washed twice in 500 µl 

IP buffer, centrifuged at 800 rpm, 4°C for 1 minute followed by removal of the 

supernatant. Finally the beads were washed in 1x PBS twice before centrifugation at 

800 rpm, 4°C for 1 minute followed by removal of the supernatant. To release the 

bound protein from the antibody beads and prepare the samples for western blot 

analysis, 15 µl of Laemmli buffer (10% SDS, 25% β-mercaptoethanol, 35% glycerol, 0.4 

M TRIS pH 6.8 and 0.01% bromophenol blue) was added to each aliquot of beads 

before boiling at 96°C for 10 minutes and centrifuging at maximum speed for 1 minute. 

The supernatant was run on an SDS-PAGE gel and blotted onto hydrophobic 

polyvinylidene difluoride nitrocellulose membrane for western blot analysis as 

described in section 2.7. 

2.10 Chemicals and Reagents 

All chemicals were from Sigma-Aldrich or Melford Laboratories Ltd unless otherwise 

stated. Restriction enzymes, vectors and DNA ladders were from Promega unless 

otherwise stated. All the reagents used were of the highest quality available. 
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3.1 Introduction 

In every organism it is imperative that the DNA is replicated accurately during each cell 

division in order to maintain genomic integrity and prevent potentially cancerous 

alterations to the genome. In the cells of the Metazoa the genome is large and 

consequently DNA replication is enlisted from multiple sites, known as the origins of 

replication. It is therefore essential that DNA replication is tightly coordinated and 

controlled to ensure complete and accurate replication of the entire genome only once 

per cell cycle. This tight control is achieved by the process of DNA licensing which 

primes the replication origins for DNA replication during the coming S-phase (Blow and 

Dutta, 2005). 

Faithful DNA replication is in part ensured by regulation of the DNA licensing pathway. 

DNA licensing is sanctioned only during late M-phase to early S-phase thereby 

preventing re-licensing of replicated DNA and subsequent re-replication (Truong and 

Wu, 2011). Regulation of the DNA licensing protein Cdt1 is crucial in ensuring that DNA 

licensing and therefore replication occur only once in a single cell cycle. It has been 

shown that addition of recombinant Cdt1 to G2 nuclei in Xenopus egg extract causes 

re-licensing and subsequent re-replication of the DNA highlighting the importance of 

correct Cdt1 regulation (Maiorano et al., 2005). 

In Metazoans there are two mechanisms which regulate the activity of Cdt1 to prevent 

DNA re-replication: proteolysis and inhibition by the natural Cdt1 inhibitor protein 

geminin (Li and Blow, 2005). Geminin is active during S-phase, G2 and M-phase and 

degraded prior to the onset of G1 and therefore DNA licensing (McGarry and 

Kirschner, 1998). However a significant level of geminin escapes degradation during M-

phase (Hodgson et al., 2002) and it has been shown that a Cdt1-geminin complex is 

both capable of licensing the DNA and preventing DNA re-replication (Lutzmann et al., 

2006). This suggests that rather than simply blocking the activity of Cdt1, geminin may 

form a complex with Cdt1 and act as a molecular switch with the stoichiometry of the 

complex changing to allow a shift between licensing –active and –inactive states 

(Lutzmann et al., 2006). 

Degradation of Cdt1 is also a crucial regulatory mechanism in ensuring the restriction 

of DNA licensing to once per cell cycle. There are several distinct pathways for Cdt1 
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degradation involving different E3 ubiquitin ligases. In Xenopus, Drosophila and 

mammalian cell lines Cdt1 is ubiquitinated and targeted for degradation by the Cul4-

DDB1 ubiquitin ligase complex in a replication-dependant manner requiring PCNA as a 

co-factor (Arias and Walter, 2005a; Senga et al., 2006; Lee et al., 2010). In human cells 

a further E3 ubiqutin ligase complex, SCFSkp2, acts redundantly with the Cul4-DDB1 

pathway to polyubiqutinate Cdt1 and target the protein for proteasome mediated 

degradation (Li et al., 2003; Takeda et al., 2005). In addition a further ubiquitin ligase, 

the APC/C, also plays a role in ubiquitin mediated proteolysis of Cdt1 in Xenopus egg 

extract (Li and Blow, 2005) and mammalian cells (Sugimoto et al., 2008). 

The early cleavage cell cycles of the Xenopus embryo differ considerably from the cell 

cycle in somatic cells. During the first 12 embryonic cleavages the cell divisions are 

rapid, synchronous, and occur in the absence of growth and transcription. The embryo 

instead relies on a maternally derived store of mRNA and proteins. The cleavage cell 

cycles also lack the distinct gap phases, G1 and G2, which are present in the somatic 

cell cycle. This pattern of cell division occurs until the onset of the Mid-Blastula 

Transition (MBT) which is triggered after cleavage cycle 12. The post-MBT cell cycles 

are asynchronous, contain gap phases and are transcriptionally active, closer 

resembling the somatic cell cycle (O'Farrell et al., 2004). 

The Xenopus embryo provides a unique opportunity to investigate the regulation of 

Cdt1 and effects of mis-regulation of Cdt1 not only on an individual cell cycle but also 

the consequences for embryo development. The embryos can be easily manipulated 

and protein function can be uniquely studied with the possibility to inject recombinant 

proteins or mRNA which can be efficiently translated by the developing embryo 

(Gurdon et al., 1974). Combined with the abundance of published data on the 

structure of Cdt1 it is therefore possible to design mutated constructs of Cdt1 for 

expression in Xenopus embryos allowing Cdt1 structure and function to be investigated 

during the embryonic cell cycle in vivo. 

3.2 Results 

The organisation of the functional domains within the Cdt1 protein has been 

extensively investigated. It has been shown that a Xenopus Cdt1 construct consisting of 

amino acids 243 to 620 is the smallest section of Cdt1 capable of licensing DNA whilst 
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also possessing partial resistance to geminin. The N-terminal region of Xenopus Cdt1 

shows weak geminin binding activity while the central region of the protein between 

amino acids 193-447 contains the main geminin-binding region. The 173 amino acids at 

the extreme C-terminal of the Xenopus Cdt1 protein binds to a complex of the Mcm 

subunits 2, 4, 6 and 7 and is therefore essential for the licensing activity of Cdt1 

(Ferenbach et al., 2005). A schematic representation of Cdt1 is shown in Figure 3.1A. 

The N-terminal region of Cdt1 contains multiple sites which are crucial for regulation. 

Firstly a conserved PIP box, which is essential for interaction with PCNA and therefore 

PCNA-dependant degradation, is located within the first 21 amino acids of Cdt1 (Arias 

and Walter, 2005a; Senga et al., 2006). Within the extreme N-terminal 100 amino acids 

of Cdt1 there is also a Cy motif which is essential for cyclin/Cdk dependant 

phosphorylation of Cdt1 required for SCFSkp2 dependant proteolysis (Li et al., 2003; Liu 

et al., 2004; Nishitani et al., 2004; Nishitani et al., 2006). Finally there are also several 

destruction boxes (D-box) located within the N-terminal which are recognised by the 

APC/C for ubiquitin mediated proteolysis of Cdt1 (Sugimoto et al., 2008). 

Taking into account the previously published Cdt1 structure and function data, three 

truncated Cdt1 constructs were designed. The ΔCdt1243-620 construct, which is 

proficient at DNA licensing but partially resistant to geminin (Ferenbach et al., 2005), 

lacks the N-terminal 242 amino acids important for Cdt1 regulation. This stabilised 

Cdt1 construct was designed to examine the effect of mis-regulation of Cdt1 on 

Xenopus embryonic development. The ΔCdt1243-570-RFP construct, missing some of the 

C-terminal amino acids required for MCM binding and therefore DNA licensing 

(Ferenbach et al., 2005), was designed as a licensing null control for the ΔCdt1243-620 

construct. Finally the ΔCdt11-243-RFP construct consists only of the N-terminal 243 

amino acids and therefore lacks licensing activity and only weakly binds geminin 

(Ferenbach et al., 2005). This construct was designed to specifically investigate the 

regulation of Cdt1. Schematic representations of each Cdt1 construct are shown in 

Figure 3.1. 
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Figure 3.1. Cdt1 structure and construct design. (A) Cdt1 has a domain structure. The N-terminal 1-243 
amino acids of Cdt1 contain sequences for ubiquitin mediated degradation and a PIP box for PCNA 
dependant degradation as well as sites for Cdt1 phosphorylation. The central region is essential for 
geminin binding. The C-terminal contains the MCM binding region which is necessary for the licensing 
activity of Cdt1. (B) Stabilised Cdt1 lacking the N-terminal region which contains sites for degradation of 
Cdt1. (C) Licensing null Cdt1 lacking part of the MCM binding domain (with an RFP tag). (D) Cdt1 N-
terminal regulatory domain with an RFP tag. 
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The ΔCdt1243-620 construct of Cdt1 was designed to lack the N-terminal 242 amino acids 

of Cdt1 which contains protein sequences and domains required for regulation of Cdt1. 

This truncated ΔCdt1243-620 protein will therefore be resistant to degradation and 

partially resistant to inhibition by geminin (Li et al., 2003; Liu et al., 2004; Nishitani et 

al., 2004; Arias and Walter, 2005a; Ferenbach et al., 2005; Nishitani et al., 2006; Senga 

et al., 2006; Sugimoto et al., 2008). By microinjection and expression of this ΔCdt1243-

620 construct in Xenopus embryos the effect of mis-regulation of Cdt1 on embryonic 

cell division and also embryo development can be investigated. 

To produce the ΔCdt1243-620 construct, PCR was used with primers designed to 

incorporate only the DNA bases which code for the amino acids 243 to 620 of Cdt1 

from a plasmid template containing the DNA sequence for full length Cdt1. The PCR 

primers were also designed to incorporate restriction enzyme sites at the start and end 

of the sequence to allow sub-cloning of the Cdt1 fragment between plasmid vectors. 

An ATG start codon was also added to the 5’ –end primer to ensure efficient 

translation of the mRNA sequence into protein. 

The PCR product was run on an agarose gel and the ΔCdt1243-620 DNA fragment 

produced is shown in Figure 3.2A. During the PCR reaction the DNA polymerase 

generates a single A base overhang at the 3’ –end which allows efficient insertion of 

PCR products into the pGEM-T vector containing a complementary 3’ –T overhang. 

Once the ΔCdt1243-620 DNA fragment was successfully inserted into the pGEM-T vector 

(Figure 3.2B) the fragment could be removed using the restriction enzyme sites which 

were added during the PCR.  

To allow production of mRNA from this ΔCdt1243-620 DNA template for microinjection 

into Xenopus embryos, the DNA must first be transferred to a plasmid which is 

compatible for in vitro mRNA transcription. The pRN3 vector was chosen as the final 

mRNA expression vector as it was produced specifically for synthesis of mRNA to be 

microinjected into Xenopus embryos and as such has been used successfully for this 

purpose (Lemaire et al., 1995; Kisielewska and Blow, 2012). The ΔCdt1243-620 fragment 

was therefore cut from the pGEM-T vector using the restriction enzymes Bgl II and Not 

I as these restriction sites are also present in the pRN3 mRNA expression vector. To 

allow insertion of the ΔCdt1243-620 DNA fragment the empty circular pRN3 plasmid was 
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opened using the Bgl II and Not I restriction enzymes producing ends complementary 

to the cut ΔCdt1243-620 DNA fragment. 

Once the ΔCdt1243-620 DNA was inserted into the pRN3 vector (Figure 3.2C) the 

complete plasmid was sent for DNA sequencing to ensure that the DNA sequence of 

ΔCdt1243-620 was in the correct reading frame with no base pair errors. The pRN3 vector 

containing verified ΔCdt1243-620 DNA was then used as a template for synthesis of 

mRNA for microinjection and expression in Xenopus embryos. 
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Figure 3.2. PCR of the ΔCdt1
243-620

DNA fragment and sub-cloning into the pRN3 mRNA expression 
vector. (A) PCR to produce the ΔCdt1

243-620
 DNA fragment. PCR reaction mix was run on an agarose gel. 

Unused primers are marked by asterisk. (B) pGEM-T plasmid containing ΔCdt1
243-620

 DNA was purified 
from bacteria and digested with Bam HI and Not I before running on an agarose gel. Lanes 1, 3 and 4 
show three bands corresponding to ΔCdt1

243-620
 DNA (1.1kb), pGEM-T plasmid (3kb) and uncut pGEM-T 

containing ΔCdt1
243-620

 DNA (4.1kb). (C) pRN3 plasmid containing ΔCdt1
243-620

 DNA was purified from 
bacteria, digested with Bgl II and Not I and ran on an agarose gel. Lanes 1 and 3 show bands 
corresponding to ΔCdt1

243-620
 DNA (1.1kb) and pRN3 (3.3kb). DNA ladder is 1kb.  
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The primary antibody to Cdt1 is polyclonal and therefore some cross-reactive bands 

are also visible on western blots in addition to the Cdt1 band. To confirm expression of 

Cdt1 construct mRNA within the Xenopus embryos the corresponding Cdt1 protein 

constructs need to be detectable via western blot analysis. Where the Cdt1 construct is 

difficult to detect due to non-specific bands a tagged version of the construct would 

allow simple detection. A fluorescent protein tag would also be useful for detection of 

the Cdt1 constructs by fluorescence microscopy. Since it has been shown that 

fluorescence in the red wavelength gives a higher signal-to-noise ratio and reduced 

autofluorescence, RFP rather than GFP would provide a practical tag with less 

detection of background fluorescence (Wildt and Deuschle, 1999). There are also 

monoclonal primary antibodies targeted to RFP readily available to allow specific 

detection of RFP tagged Cdt1 constructs via western blot. 

To produce an RFP construct which could be inserted into the plasmid vectors 

containing Cdt1 construct DNA, PCR was used with primers designed to incorporate 

complementary restriction enzyme sites at the start and end of the sequence. The RFP 

DNA fragment produced by PCR was then inserted into the pGEM-T vector (Figure 3.3A 

and B). Since the pRN3 plasmid only has three restriction enzyme sites within its 

multiple cloning site, Bgl II, Eco RI and Not I, the RFP construct was designed to be 

inserted between the Eco RI and Not I restriction sites. With the Cdt1 constructs 

inserted into pRN3 between the Bgl II and Eco RI sites this allows insertion of RFP to 

produce a Cdt1 construct with a C-terminal RFP tag. The RFP DNA fragment was 

therefore cut using Eco RI and Not I restriction enzymes and inserted into the pRN3 

vector which had also been opened using Eco RI and Not I. This produced a pRN3 

plasmid containing RFP DNA (Figure 3.3C) from which the RFP fragment could be sub-

cloned into separate plasmid vectors containing Cdt1 construct DNA or alternatively 

the Cdt1 construct DNA could be sub-cloned into the pRN3 vector containing RFP. 
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Figure 3.3. Cloning of RFP. (A) The total PCR reaction mix (50µl) was run on an agarose gel. RFP is 
approximately 720bp. *Unused PCR primers. (B) pGEM-T RFP plasmid DNA purified from bacteria, 
digested with EcoRI and NotI and ran on an agarose gel. pGEM-T is 3kb and RFP is approximately 720bp. 
(C) pRN3 RFP plasmid DNA purified from bacteria, digested with EcoRI and NotI and ran on an agarose 
gel. *uncut pRN3 RFP plasmid DNA. DNA ladder is 1kb. 
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The ΔCdt1243-570-RFP construct was designed to lack not only the N-terminal 242 amino 

acids of Cdt1, which contain domains important for regulation, but also 50 amino acids 

at the extreme C-terminal which contains the MCM binding region (Ferenbach et al., 

2005). This ΔCdt1243-570-RFP construct of Cdt1 will therefore be resistant to 

degradation and partially resistant to inhibition by geminin as with the ΔCdt1243-620 

construct, but will also be incapable of licensing the DNA due to the truncation of the 

MCM binding domain which is crucial for the licensing activity of Cdt1 (Ferenbach et 

al., 2005). Due to the lack of licensing activity, the ΔCdt1243-570-RFP construct will act as 

a licensing null control to the ΔCdt1243-620 construct. This will allow confirmation of 

whether or not any effects on embryo development caused by ΔCdt1243-620expression 

are mediated by the ability of ΔCdt1243-620 to license the DNA. 

To produce the ΔCdt1243-570 construct, PCR was used with primers designed to 

incorporate only the DNA bases which code for the amino acids 243 to 570 of Cdt1 

from a plasmid template containing the DNA sequence for full length Cdt1. The PCR 

primers were also designed to incorporate restriction enzyme sites Bam HI and Bgl II at 

the 5’ –end and Eco RI at the 3’ –end of the sequence. The ΔCdt1243-570 DNA fragment 

produced by PCR was then inserted into the pGEM-T vector (Figure 3.4 A and B). To 

add an RFP tag, the ΔCdt1243-570 DNA fragment was sub-cloned from the pGEM-t vector 

as a Bgl II-Eco RI fragment and inserted into the pRN3 vector containing the RFP DNA 

sequence shown in Figure 3.3C. 

Once the ΔCdt1243-570 DNA fragment was inserted into the pRN3 vector containing RFP 

to form ΔCdt1243-570-RFP (Figure 3.4C) the complete plasmid was sent for DNA 

sequencing to ensure both the ΔCdt1243-570 and RFP DNA sequences were present and 

correct. The pRN3 vector containing verified ΔCdt1243-570-RFP DNA was then used as a 

template for synthesis of mRNA for expression in Xenopus embryos. 
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Figure 3.4. Cloning of ΔCdt1
243-570

 into the pRN3 mRNA expression vector. (A) PCR reaction ran on an 
agarose gel. ΔCdt1

243-570
 is 1.1kb in size. (B) pGEM-T ΔCdt1

243-570
 plasmid DNA purified from bacteria, 

digested with Bgl II and Eco RI and ran on an agarose gel. pGEM-T is 3kb and ΔCdt1
243-570

 is 1.1kb. (C) 
pRN3 ΔCdt1

243-570
-RFP plasmid DNA purified from bacteria, digested with Bgl II and Not I and ran on an 

agarose gel. pRN3 is 3.3kb and the ΔCdt1
243-570

-RFP fragment is approximately 1.8kb. DNA ladder is 1kb.  
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The ΔCdt11-243-RFP construct was designed to include only the N-terminal 243 amino 

acids of Cdt1. This N-terminal ΔCdt11-243-RFP construct therefore lacks the main 

geminin binding region and the C-terminal MCM binding site which is required for DNA 

licensing (Ferenbach et al., 2005). The ΔCdt11-243-RFP construct represents the main 

regulatory region of Cdt1 which includes the PIP box, Cy motif and D-boxes required 

for several mechanisms of Cdt1 proteolysis (Li et al., 2003; Liu et al., 2004; Nishitani et 

al., 2004; Arias and Walter, 2005a; Nishitani et al., 2006; Senga et al., 2006). This N-

terminal Cdt1 construct will therefore be useful for investigating the mechanisms of 

Cdt1 regulation in the Xenopus embryonic cell cycle in vivo. 

To produce the ΔCdt11-243 construct, PCR was used with primers designed to 

incorporate only the DNA bases which code for the amino acids 1 to 243 of Cdt1 from 

a plasmid template containing the DNA sequence for full length Cdt1. The PCR primers 

were also designed to incorporate restriction enzyme sites Bgl II at the 5’ –end and Eco 

RI at the 3’ –end of the sequence. The ΔCdt11-243DNA fragment produced by PCR was 

then inserted into the pGEM-T vector (Figure 3.5 A and B). To add an RFP tag to the C-

terminal of the ΔCdt11-243 construct, the ΔCdt11-243DNA fragment was sub-cloned from 

the pGEM-t vector as a Bgl II-Eco RI fragment and inserted into the pRN3 vector 

containing the RFP DNA (Figure 3.3C) which was opened with Bgl II and Eco RI to allow 

insertion. 

Once the ΔCdt11-243 DNA fragment was inserted into the pRN3 vector containing RFP to 

form ΔCdt11-243-RFP (Figure 3.5C) the complete plasmid was sent for DNA sequencing 

to ensure both the ΔCdt11-243 and RFP DNA sequences were present and correct. The 

pRN3 vector containing verified ΔCdt11-243-RFP DNA was then used as a template for 

synthesis of mRNA for expression in Xenopus embryos. 
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Figure 3.5. Cloning of ΔCdt1
1-243

-RFP into the pRN3 mRNA expression vector. (A) The total PCR reaction 
mix (50µl) was ran on an agarose gel. The band at approximately 750bp is ΔCdt1

1-243
. *Unused primers 

from PCR reaction. (B) pGEM-T ΔCdt1
1-243

 plasmid DNA purified from bacteria, digested with Bgl II and 
Eco RI and ran on an agarose gel. pGEM-T is 3kb and ΔCdt1

1-243
 is approximately 750bp. (C) pRN3 ΔCdt1

1-

243
-RFP plasmid DNA purified from bacteria, digested with Bgl II and Not I and ran on an agarose gel. 

pRN3 is 3.3kb and the ΔCdt1
1-243

-RFP fragment is approximately 1.4kb. DNA ladder is 1kb.  
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The pRN3 vector in which the ΔCdt11-243-RFP construct was inserted is suitable for use 

as a template to produce mRNA through in vitro transcription. Once microinjected into 

Xenopus embryos the mRNA is translated to produce ΔCdt11-243-RFP protein and 

therefore allow investigation of Cdt1 regulation in vivo. However in order to 

complement the in vivo experiments using the in vitro Xenopus egg extract model 

system a recombinant protein construct of ΔCdt11-243-RFP would be more appropriate. 

In order to be expressed as a recombinant protein, the ΔCdt11-243-RFP construct DNA 

must first be inserted into a suitable protein expression vector. The pET-32a(+) plasmid 

was chosen as this vector has previously been used successfully to produce functional 

recombinant protein constructs of Xenopus licensing proteins (Kisielewska and Blow, 

2012). To produce ΔCdt11-243 DNA containing appropriate restriction enzyme sites for 

insertion into pET-32a(+), PCR was used with primers designed to include the first 243 

amino acids of Cdt1 with a 5’ –end Bam HI site and a 3’ –end Eco RI site. The ΔCdt11-243 

DNA fragment produced by PCR was then inserted into the pGEM-T vector (Figure 

3.6A). The ΔCdt11-243 DNA fragment was then sub-cloned from the pGEM-T vector as a 

Bam HI-Eco RI fragment and inserted into a pET-32a(+) vector opened using Bam HI 

and Eco RI (Figure 3.6B). To add an RFP tag to the C-terminal of the ΔCdt11-243 

construct, RFP was sub-cloned from the pRN3 vector as an Eco RI-Not I fragment and 

inserted into the pET-32a(+) vector containing the ΔCdt11-243 construct. 

Once the ΔCdt11-243 DNA fragment was inserted into the pET32a(+) vector containing 

RFP to form ΔCdt11-243-RFP (Figure 3.6C) the complete plasmid was sent for DNA 

sequencing to ensure both the ΔCdt11-243 and RFP DNA sequences were present and 

correct. The pET-32a(+) vector containing the verified ΔCdt11-243-RFP DNA was then 

used to express ΔCdt11-243-RFP as a recombinant protein. 
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Figure 3.6. Cloning of ΔCdt1
1-243

-RFP into the pET-32a(+) protein expression vector. (A) pGEM-T ΔCdt1
1-

243
 plasmid DNA purified from bacteria, digested with Bam HI and Eco RI and ran on an agarose gel. 

pGEM-T is 3kb and ΔCdt1
1-243

 is approximately 729bp. (B) pET-32a(+) ΔCdt1
1-243

 plasmid DNA purified 
from bacteria, digested with Bam HI and Eco RI and ran on an agarose gel. pET-32a(+) is 5.9kb and 
ΔCdt1

1-243
 is approximately 729bp. (C) pET-32a(+) ΔCdt1

1-243
-RFP plasmid DNA purified from bacteria, 

digested with Bam HI and Not I and ran on an agarose gel. pET-32a(+) is 5.9kb and ΔCdt1
1-243

-RFP is 
approximately 1.44kb. *uncut plasmid DNA (containing pET-32a(+) and ΔCdt1

1-243
-RFP DNA). DNA ladder 

is 1kb.  
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To produce soluble recombinant ΔCdt11-243-RFP protein, the E. coli bacterial strain 

Tuner was transformed with the pET-32a(+) plasmid containing the ΔCdt11-243-RFP 

DNA. Once a stably transformed large scale culture was established IPTG was used to 

induce expression of ΔCdt11-243-RFP. The IPTG activates expression from the T7 

promoter of pET-32a(+) which lies downstream of the ΔCdt11-243-RFP DNA sequence. 

Expression from the pET-32a(+) plasmid produces recombinant proteins containing 

both an N-terminal and C-terminal His-Tag. The ΔCdt11-243-RFP protein was therefore 

purified from the induced Tuner bacterial culture by his-bind resin column 

chromatography. The recombinant ΔCdt11-243-RFP protein was eluted from the his-bind 

resin column in five fractions. Samples from each fraction were then ran on an SDS-

PAGE gel and stained to detect ΔCdt11-243-RFP (Figure 3.7A). Fractions 1, 2 and 3 were 

combined and further purified using viva spin columns with a molecular weight cut off 

of 35,000 Daltons which would result in removal of the lower bands observed on the 

gel in Figure 3.7A. In addition the bands detected around the ΔCdt11-243-RFP construct 

from 35 kDa upwards were not detected by either the His-Tag or Cdt1 antibodies 

(Figure 3.7B). This suggests that those proteins are not truncated fragments of the 

ΔCdt11-243-RFP construct and therefore are unlikely to interfere with the function of 

the ΔCdt11-243-RFP protein. 

It was important to verify that the purified protein band observed on the SDS-PAGE gel 

was indeed ΔCdt11-243-RFP. Samples from a serial dilution of ΔCdt11-243-RFP in non-

activated Xenopus egg extract were therefore run on an SDS-PAGE gel and 

immunoblotted for His-Tag and Cdt1. Figure 3.7B shows that the band detected on the 

purification gel was also detected by both His-Tag and Cdt1 antibodies confirming 

successful purification of ΔCdt11-243-RFP recombinant protein. 

The predicted molecular weight of the ΔCdt11-243-RFP protein construct is 

approximately 60 kDa including the His-Tags which were added due to the sequence 

from the pET-32a(+) vector. Although the ΔCdt11-243-RFP protein construct runs at 

approximately 80 kDa on the SDS-PAGE gel (Figure 3.7A) the protein is detected by 

both His-Tag and Cdt1 antibodies. This confirms that the purified protein contains the 

Cdt1 fragment and His-Tag as expected (Figure 3.7B). Since the RFP antibody is 

monoclonal and highly specific this was used to detect the ΔCdt11-243-RFP construct in 

further blots (Figure 5.2 onwards). This also confirms that in addition to the His-Tag 
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and Cdt1 fragment, the RFP protein is also present as expected in the purified ΔCdt11-

243-RFP protein construct. 
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Figure 3.7. Purification of ΔCdt1
1-243

-RFP recombinant protein. (A) ΔCdt1
1-243

-RFP protein was eluted 
from a his-tag purification column in 5x 1 ml aliquots. From each aliquot 5 µl samples were collected and 
ran on an SDS-PAGE gel. ΔCdt1

1-243
-RFP is arrowed. (B) ΔCdt1

1-243
-RFP protein was diluted in Xenopus egg 

extract. From each dilution, 1 µl samples were ran on an SDS-PAGE and blotted for His-Tag and Cdt1.  
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3.3 Discussion 

One method which has been successfully used to investigate the regulation of the 

embryonic cell cycle is microinjection and expression of mRNA constructs in 

developing Xenopus embryos (Kisielewska and Blow, 2012). The benefit of this in vivo 

system is that the effect of the expressed constructs on not only one cell division cycle 

but also whole organism development can be determined. Also, mRNA expressed 

within the embryo itself consequently allows translation to protein under native 

conditions, increasing the prospect of correct protein folding to produce functional 

protein.  

It has previously been shown that depletion of endogenous geminin mRNA has no 

effect of pre-MBT embryonic cell division with arrest of embryonic development only 

at MBT (McGarry, 2002). It was therefore suggested that geminin and Cdt1 are 

inconsequential during the pre-MBT cleavage cell cycles (McGarry, 2002; Kerns et al., 

2007). However it has since been shown that functional knockdown of geminin, and 

therefore deregulated Cdt1, arrested pre-MBT cell cycle progression (Kisielewska and 

Blow, 2012). With conflicting data on the importance of Cdt1 regulation for correct 

embryo development, mRNA expression in Xenopus embryos provides the ideal 

method for clarification of the role of Cdt1 during the pre-MBT embryonic cell cycle. 

The functional domains of Cdt1 were previously elucidated using the in vitro Xenopus 

egg extract system supplemented with truncated Cdt1 protein constructs (Ferenbach 

et al., 2005). With much of the data on DNA licensing to date carried out using 

Xenopus egg extract, the use of this system is well characterised. Xenopus egg extract 

therefore provides an ideal in vitro system for use to complement in vivo experiments 

utilising Xenopus embryos. 

With ΔCdt1243-620, ΔCdt1243-570-RFP and ΔCdt11-243-RFP constructs in the pRN3 mRNA 

expression vectors, in vitro transcription can be utilised to produce mRNA for 

microinjection into Xenopus embryos. The purified and characterised ΔCdt11-243-RFP 

protein construct is suitable for both microinjection into Xenopus embryos and 

supplementation into Xenopus egg extract. These Cdt1 constructs therefore provide 

the tools to allow investigation of the mechanisms of Cdt1 regulation both in vivo and 

in vitro. 
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4.1 Introduction 

In somatic cells, regulation of Cdt1 activity is critical in ensuring DNA licensing and 

therefore replication occur only once per cell cycle. It has been shown that when 

recombinant Cdt1 is added to G2 nuclei in which the DNA has already undergone DNA 

licensing and replication in G1 and S-phase, re-licensing and re-replication of the DNA 

occurs (Maiorano et al., 2005). In addition when the two main mechanisms of Cdt1 

regulation: proteolysis and inhibition by geminin are abrogated, uncontrolled re-

licensing and re-replication of the DNA occurs. This demonstrates the importance of 

Cdt1 regulation for proper DNA licensing and replication during the somatic cell cycle 

(Li and Blow, 2005). 

Although the importance of Cdt1 regulation during the somatic cell cycle is clear, the 

role and mechanisms of Cdt1 regulation during the embryonic cell cycle is not well 

characterised. In Drosophila embryos, PIP box-mediated degradation of Cdt1 is 

important for normal embryonic cell division. A mutant Cdt1 lacking the N-terminal PIP 

box expressed in Drosophila embryonic cells was stable during S-phase and lead to 

tissue malformation and developmental defects (Lee et al., 2010). However there have 

been conflicting reports on the importance of Cdt1 regulation for embryonic cell 

division in the early pre-MBT Xenopus embryo. Depletion of endogenous geminin 

mRNA in pre-MBT embryos had no effect on cell division with embryonic cell cycle 

arrest only at the onset of MBT suggesting that regulation of both geminin and Cdt1 is 

inconsequential prior to MBT (McGarry, 2002; Kerns et al., 2007). It has since been 

shown that functional knockdown of the geminin protein causes arrest of pre-MBT 

embryonic cell cycle progression. This suggests that geminin and therefore Cdt1 

regulation are essential for proper pre-MBT embryonic development (Kisielewska and 

Blow, 2012). 

With conflicting data, it is important to clarify the role of Cdt1 regulation on Xenopus 

pre-MBT embryonic cell division and development. Since the truncated ΔCdt1243-620 

construct produced in chapter 3 lacks the N-terminal regulatory region and is partially 

resistant to geminin, expression in Xenopus embryos provides the ideal tool to clarify 

the importance of Cdt1 regulation for pre-MBT cell division and embryonic 

development. 
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4.2 Results 

Microinjection the mRNA for the truncated de-regulated ΔCdt1243-620 construct of Cdt1 

into Xenopus embryos provides the tool with which to study the effect of miss-

regulation of Cdt1 on the pre-MBT embryonic cell cycle in vivo. To first ensure that any 

effects of ΔCdt1243-620 mRNA injection on the cell cycle and embryonic development 

were due to activity of the ΔCdt1243-620 protein rather than as a consequence of the 

microinjection itself, microinjection controls were carried out. 

The mRNA for the truncated Cdt1 constructs ΔCdt1243-620, ΔCdt1243-570-RFP and ΔCdt11-

243-RFP was solubilised in DEPC-treated water. It was therefore important to establish 

that neither the DEPC-treated water nor the microinjection procedure, induced cell 

cycle arrest or developmental abnormalities in Xenopus embryos. A 30 nl volume of 

DEPC-treated water was injected into 1 cell of a 4 cell embryo at 2 hours post-

fertilisation. The embryos were then maintained and monitored over a 48 hour period. 

Figure 4.1 A and B shows that embryos injected with DEPC-treated water progress 

normally through development as with non-injected control embryos. This shows that 

neither the DEPC-treated water nor the microinjection procedures are capable of 

causing the cell cycle arrest and developmental abnormalities associated with 

microinjection of ΔCdt1243-620 mRNA. 

The recombinant protein ΔCdt11-243-RFP produced in chapter 3 for microinjection into 

Xenopus embryos was diluted in x0.5 PBS. To ensure that the x0.5 PBS would not affect 

the cell cycle or embryo development a 32.2 nl volume was injected into embryos at 1 

hour 15 minutes post-fertilisation before the first cell division. Figure 4.1C shows that 

the embryos injected with x0.5 PBS progress normally through development as with 

the non-injected control shown in Figure 4.1A. This shows that x0.5 PBS has no effect 

on the embryonic cell cycle and embryo development. Even with damage to the 

embryo at the injection site (Figure 4.1, arrowed), the embryos still progress through 

development with no sign of abnormalities 48 hours post-fertilisation. This shows that 

even with some damage to the embryo at the site of injection, the embryo develops 

normally. Therefore the microinjection procedure itself does not cause cell cycle arrest 

or developmental abnormalities.   
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Figure 4.1. Microinjection controls. (A) The non-injected embryo shows normal embryonic 
development from 2 hours to 48 hours post-fertilisation. (B) 30nl of DEPC-treated water was injected 
into one cell of a four cell embryo at 2 hours post fertilisation (blastula stage 3). (C) 32.2nl of x0.5 PBS 
was injected into the embryo at 1 hour 15 minutes post-fertilisation before the first cell division 
(developmental stage 1). Injection site is arrowed. Scale bar is 500µm. (D) 18 ng of licensing null 
ΔCdt1

243-570
-RFP mRNA was injected into 1 cell of a 2 cell embryo (developmental stage 2) and embryo 

development monitored until 72 hours after fertilisation. The control shows development of a non-
injected embryo monitored over a 72 hour period following fertilisation. Scale bar is 500µm.   
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Figure 4.1 shows that the microinjection procedure its self has no effect on embryonic 

development. As an additional control a licensing null construct of Cdt1 was also 

microinjected into developing Xenopus embryos. The pRN3 vector containing ΔCdt1243-

570-RFP construct DNA (developed in Chapter 3) was used to produce ΔCdt1243-570-RFP 

mRNA by in vitro transcription. To determine the effect of ΔCdt1243-570-RFP on the pre-

MBT cell cycle 18ng of ΔCdt1243-570-RFP mRNA was injected into 1 cell of a 2 cell 

embryo and embryo development monitored over a 72 hour period. Figure 4.1D shows 

that following injection of ΔCdt1243-570-RFP mRNA into pre-MBT embryonic cells the 

cells continue to divide and embryo development progresses normally as with non-

injected control embryos. This further confirms that the microinjection procedure or 

materials injected have no effect on embryo development themselves and therefore 

any effect observed is due solely to the Cdt1 construct itself. 

The Xenopus embryos were maintained at 23°C during the course of the microinjection 

experiments. Under these conditions each cell cycle takes approximately 25-30 

minutes to complete. Due to the time restriction when injecting the embryos at a 

particular developmental stage and the necessity to inject as many embryos as 

possible with the Cdt1 constructs, non-injected embryos were used as controls during 

subsequent experiments. 

To investigate the effect of mis-regulation of Cdt1 a truncated de-regulated construct 

of Cdt1, ΔCdt1243-620, was used. The pRN3 vector containing ΔCdt1243-620 construct DNA 

(Chapter 3) was used to produce ΔCdt1243-620 mRNA by in vitro transcription. Firstly, 11 

ng of ΔCdt1243-620 mRNA was injected into fertilised Xenopus eggs one hour post-

fertilisation, before the first cell division. The microinjection was embryonic lethal with 

none of the injected embryos undergoing the first cell division. Instead each embryo 

became apoptotic before rupturing. The failure of the embryos to progress after 

injection could suggest that expression of theΔCdt1243-620 construct causes cell cycle 

arrest. Alternatively the embryonic death could have been caused by a problem with 

fertilisation of the injected embryos. 

To eliminate the risk of injecting non-fertilised or unhealthy embryos, the stage of 

embryo development at microinjection was changed to one cell of a two cell embryo. 

Microinjection at this stage of development allows the non-injected half of the embryo 
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to act as a natural control of how the embryo would have divided without injection. 

Next, 11 ng of ΔCdt1243-620 mRNA was therefore microinjected into one cell of a two 

cell embryo at 1 hour 30 minutes post-fertilisation and the embryo development 

monitored. As shown in Figure 4.2A the cell injected with ΔCdt1243-620 mRNA arrests in 

development at the stage of injection while the non-injected cell of the embryo 

continues to divide. The control embryo shows normal Xenopus embryonic cell division 

of a non-injected embryo (Figure 4.2B). 
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Figure 4.2.Microinjection of ΔCdt1
243-620

 mRNA into Xenopus embryos. (A) 11ng of ΔCdt1
243-620

 mRNA 
injected into one cell of a 2 cell embryo (stage 2, 1 hour 30 minutes post-fertilisation). Injection site is 
arrowed. (B) Control non-injected embryo development from 1 hour 30 minutes to 2 hours 45 minutes 
post-fertilisation. Scale bar is 500µm. 
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To confirm that the cell cycle arrest observed was due to expression of the ΔCdt1243-620 

mRNA and therefore unregulated ΔCdt1243-620 activity, injected embryos were 

immunoblotted and probed with Cdt1 antibody. From 1 hour following injection single 

embryo samples were collected every 30 minutes between 2 hours 30 minutes and 4 

hours post-fertilisation.  Single non-injected embryo samples were also collected as 

controls. Figure 4.3 shows that a band was present at the correct molecular weight for 

ΔCdt1243-620 (approximately 43 kDa) in the injected embryo samples. In contrast in the 

non-injected controls the band at that molecular weight was absent. This confirms that 

the injected ΔCdt1243-620 mRNA was expressed to produce ΔCdt1243-620 protein within 

the Xenopus embryos. 

The embryonic cells injected with and expressing truncated ΔCdt1243-620 show rapid cell 

cycle arrest within one cell division of injection. With unregulated Cdt1 activity causing 

such rapid arrest of embryonic cell division this suggests that correct Cdt1 activity is 

essential during the pre-MBT embryonic cell cycle. 
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Figure 4.3. Expression of ΔCdt1
243-620

 mRNA in Xenopus embryos. Embryos were injected with 11ng 
ΔCdt1

243-620
 mRNA into 1 cell of a 2 cell embryo at 1 hour 30 minutes post-fertilisation (blastula stage 2). 

One embryo was collected every 30 minutes from 2 hours 30 minutes post-fertilisation to 4 hours post-
fertilisation, which covers 3 complete cell cycles, and blotted with Cdt1 antibody. Control embryos are 
non-injected Xenopus embryos collected in parallel to ΔCdt1

243-620
 mRNA injected embryos. 
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It was next important to determine the consequences of the cell cycle arrest on 

embryonic development. To determine the effect of arrest of one embryonic cell 

during development, embryos were injected with 6.12 ng of ΔCdt1243-620 mRNA into 1 

cell of a 2 cell embryo at 1 hour 30 minutes post fertilisation. The embryos were then 

maintained in optimal conditions and their development monitored. To determine 

whether or not cell cycle arrest of one cell at different stages of early embryonic 

development would cause similar abnormalities the microinjection was repeated into 

1 cell of a 2 cell embryo, 1 cell of an 8 cell embryo and 1 cell of a 16 cell embryo. Figure 

4.4 shows that regardless of the developmental stage of the embryo at injection of 

ΔCdt1243-620 mRNA, the embryos progress although with severe developmental 

abnormalities. The developmental abnormality is characteristic between each injected 

embryo producing a phenotype of curvature of the spine. This shows that although the 

loss of one cell of the embryo is not embryonic lethal, even at the 2 cell stage where 

this constitutes a loss of half of the embryo, subsequent development is impaired. 

A further embryo injected with 6.12 ng of ΔCdt1243-620 mRNA into the animal pole later 

in development at 4 hours 30 minutes post-fertilisation, also develops an abnormal 

curvature of the spine (Figure 4.4). The cells of the animal pole of the Xenopus embryo 

give rise to several structures within the embryo including the mesoderm, nervous 

system and epidermis. The mesoderm of the embryo gives rise to several different 

tissue types including bone and muscle, malformation of which could potentially 

produce the curved embryo phonotype observed (Gilbert, 2000b).  
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Figure 4.4. Development of Xenopus embryos injected with ΔCdt1
243-620

mRNA at different 
developmental stages. Embryos were injected with 6.12ng ΔCdt1

243-620
 mRNA into one cell of either 2, 8 

or 16 cells (blastula stages 2-4) or into the animal pole (AP) at 4 hours 30 minutes post-fertilisation 
(blastula stage 7.5). Controls are non-injected embryos. Scale bars are 500µm. 
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Next, it was important to determine the mechanisms behind the cell cycle arrest 

induced by the truncated ΔCdt1243-620 construct. Since the ΔCdt1243-620 construct lacks 

the N-terminal regulatory region but possesses an intact MCM domain essential for 

DNA licensing, it is likely that the cell cycle arrest observed was triggered by 

uncontrolled DNA re-licensing.  Immunofluorescence was therefore used to investigate 

the licensing state of the arrested cells. 

For immunofluorescence analysis, the cells of the embryo must be small enough to 

allow imaging using confocal/multiphoton 2P microscopy. The embryos were therefore 

maintained to allow development until 4 hours 30 minutes post-fertilisation before 

microinjection of ΔCdt1243-620 mRNA into the animal pole. Figure 4.5A shows an 

embryo injected with 11 ng of ΔCdt1243-620 mRNA imaged at 7 hours 50 minutes post-

fertilisation, 3 hours 20 minutes following injection. A patch of arrested cells at the 

injection site are outlined. The control embryo shows normal embryonic development 

of a non-injected Xenopus embryo at 7 hours 50 minutes post-fertilisation. Figure 4.5 

shows that when the embryo is injected into the animal pole at 4 hours 30 minutes 

post-fertilisation a group of arrested cells results rather than just one arrested cell. At 

this stage in development the animal pole of the embryo consists of an outer wall of 

cells only 2-3 layers thick covering a cavity known as the blastocoel (Nieuwkoop and 

Faber, 1967b; Gilbert, 2000b). It is therefore possible that the ΔCdt1243-620 mRNA was 

microinjected into this cavity from which it was up taken by multiple cells resulting in 

an area of arrested cells. 

The control and the ΔCdt1243-620 injected embryo shown in Figure 4.5A were then fixed 

for immunofluorescence and probed with Mcm2 and Cdt1 to determine the licensing 

state of the cells. Figure 4.5B shows that in the arrested cells of the embryo injected 

with ΔCdt1243-620 mRNA both Mcm2 and Cdt1 are arrested on chromatin. In contrast in 

the control embryo, which is at the post-MBT stage of development, the cells are not 

arrested and therefore can be observed at different cell cycle stages with differing 

levels and localisation patterns of Mcm2 and Cdt1 accordingly. In prophase and S-

phase the DNA is licensed with both Mcm2 and Cdt1 associated to chromatin. In 

metaphase the Mcm2 level is greatly reduced and Cdt1 localises around the mitotic 

spindle as S-phase is complete and the DNA is no longer licensed (Figure 4.5B). This 

shows that the ΔCdt1243-620 construct caused cell cycle arrested with the DNA in a 
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licensed state. This suggests that ΔCdt1243-620 caused re-licensing of already replicated 

DNA leading to re-replication which then triggered the cell cycle arrest. 
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Figure 4.5. Cell cycle state of embryonic cells exposed to ΔCdt1
243-620

 mRNA compared to controls. (A) 
Embryos were injected with 11ng ΔCdt1

243-620
 mRNA into the animal pole at 4 hours 30 minutes post-

fertilisation (blastula stage 7.5). The embryos were then imaged at 7 hours 50 minutes post-fertilisation 
(3 hours 20 minutes after injection). A section of arrested cells of the ΔCdt1

243-620
 mRNA -injected 

embryo are outlined. The control embryo shows normal development at 7 hours 50 minutes post-
fertilisation (blastula stage 9.5). The scale bars are 250µm. (B) The embryo samples from (A) were fixed 
at 7 hours 50 minutes post-fertilisation (blastula stage 9.5) for immunofluorescence. The DNA was 
stained using DAPI to show the cell cycle stage and Mcm2 and Ctd1 were used to determine the 
licensing state of the cells. The arrested cells of the embryo injected with ΔCdt1

243-620
 mRNA are arrested 

in S-phase. In the control embryo, cells are shown at different stages of the cell cycle which are 
numbered: 1. S-phase, 2. Prophase, 3. Metaphase and 4. Anaphase. The scale bars are 20µm. 
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The cells of the embryo injected with ΔCdt1243-620 mRNA were arrested in S-phase with 

both Mcm2 and Cdt1 bound to chromatin. In contrast the cells of the control non-

injected embryo were cycling the cell cycle and therefore were in different cell cycle 

stages with Mcm2 and Cdt1 bound accordingly (Figure 4.5B). In addition, the cells of 

the embryo injected with ΔCdt1243-620 mRNA which were not expressing the mRNA and 

therefore not arrested, were also observed to be cycling the cell cycle. In order to 

quantify this effect the cell cycle stage of the cells within a 200 micrometer squared 

region of the embryo injected with ΔCdt1243-620 mRNA at both the effected and non-

effected regions was analysed. 

Figure 4.6 shows that the arrested cells of the embryo injected with ΔCdt1243-620 mRNA 

were predominantly arrested in S-phase with both Mcm2 and Cdt1 arrested on 

chromatin. This shows that the cells arrested at S-phase with licensed chromatin 

confirming that the cells arrested in a licensed state. The one cell observed in 

metaphase at the arrested cell region was located towards the edge of the arrested 

region and likely represents a non-affected cell. In contrast the non-affected cells of 

the embryo were observed to be in the different cell cycle stages S-phase, prophase, 

metaphase and anaphase with lower levels of chromatin bound Mcm2 and Cdt1 during 

prophase, metaphase and anaphase (Figure 4.5B and Figure 4.6).  
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Figure 4.6. Quantification of cell cycle stage of arrested and non-arrested cells of an embryo injected 
with ΔCdt1

243-620
 mRNA. A 200 micrometer squared region of both the arrested and non-arrested region 

of the embryo injected with ΔCdt1
243-620

 mRNA shown in figure 4.5A was selected. The cell cycle stage of 
each cell within the selected region, as determined by the state of the chromatin and binding of Mcm2 
and Cdt1, was recorded and plotted.   
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The results so far show that expression of ΔCdt1243-620 mRNA in Xenopus embryos 

causes cell cycle arrest with the cells arrested in a licensed state. This suggests that the 

cell cycle arrest is mediated by re-licensing and re-replication of the DNA. It was 

therefore likely that DNA re-replication induced DNA damage had occurred triggering 

cell cycle arrest. The presence of DNA damage in the arrested cells was therefore 

investigated. 

Immunofluorescence was used to detect Rad51 bound to DNA as a marker for DNA 

damage. Rad51 binds to DNA during the process of homologous recombination, a DNA 

damage repair pathway. Therefore Rad51 is only present at sites of DNA damage 

(Balakrishnan et al., 2009). Figure 4.7A shows an embryo injected with 11 ng of 

ΔCdt1243-620 mRNA into 1 cell of 16 at 2 hours 30 minutes post-fertilisation. The embryo 

was then maintained for 4hours 20 minutes post-injection before fixing for 

immunofluorescence. Figure 4.7B shows an embryo injected with 11 ng ΔCdt1243-620 

mRNA into the animal pole at 4 hours 40 minutes post-fertilisation. The embryo was 

then fixed for immunofluorescence at 1 hour 10 minutes post-injection. Chromatin 

bound Rad 51 was detected in both ΔCdt1243-620 injected embryos. In contrast in the 

control non-injected embryos there was no evidence of chromatin bound Rad 51. This 

shows that there is DNA damage in the cells expressing ΔCdt1243-620 mRNA. 

Figure 4.7A shows that although the embryo was injected with ΔCdt1243-620 mRNA into 

1 cell of 16 there are multiple nuclei containing chromatin bound Rad51. Although at 

this stage in development the blastocoel has not formed, the precursor to the 

blastocoel known as the cleavage cavity is present beneath the cells of the animal pole. 

The cleavage cavity is present from the four cell stage onwards and increases in size 

with each cleavage to form the blastocoel by stage 7 of development (Nieuwkoop and 

Faber, 1967b). It is again possible that the microinjection needle pierced through the 

injected animal pole cell to release the ΔCdt1243-620 mRNA into the cleavage cavity. Up 

take of ΔCdt1243-620 mRNA from the cleavage cavity by multiple animal pole cells would 

explain the presence of multiple nuclei showing chromatin bound Rad 51 and DNA 

damage. 
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The presence of DNA damage provides further evidence that the unregulated ΔCdt1243-

620 construct induces cell cycle arrest through uncontrolled re-licensing and re-

replication leading to the DNA damage observed.  
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Figure 4.7. Immunofluorescence showing the presence of Rad 51 in arrested embryonic cells following 
ΔCdt1

243-620
 mRNA injection. Xenopus embryos were fixed and probed for the presence of Rad 51, a 

marker of DNA damage. DAPI was used to stain the DNA before the embryo samples were whole 
mounted and imaged using a Zeiss confocal/2-photon microscope. Scale bars are 20µm. (A) Xenopus 
embryos were injected with 11ng ΔCdt1

243-620
 mRNA into 1 cell of a 16 cell embryo at 2 hours 30 minutes 

post-fertilisation (blastula stage 5). Injected embryos and non-injected controls were then fixed at 7 
hours 10 minutes post-fertilisation (blastula stage 9) to ensure that the nuclei of the cells were small 
enough for confocal imaging. Rad 51 was localised to the DNA of arrested cells of injected embryos but 
not controls. (B) Xenopus embryos were injected with 11ng ΔCdt1

243-620
 mRNA into the animal pole at 4 

hours 40 minutes post-fertilisation (blastula stage7. 5). Injected embryos and non-injected controls were 
then fixed at 5 hours 50 minutes post-fertilisation (blastula stage 8.5) to ensure that the nuclei of the 
cells were small enough for confocal imaging. Again Rad 51 localised to the DNA of cells of the injected 
embryo but not controls. 
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Since ΔCdt1243-620 mRNA expression causes cell cycle arrest mediated by DNA damage, 

the next step was to investigate whether or not the DNA damage lead to checkpoint 

activation therefore causing the cell cycle to arrest. One cell cycle checkpoint known to 

be activated by DNA damage is the p53 checkpoint pathway. Here, DNA damage leads 

to activation of protein kinases which phosphorylate p53 thereby reducing 

degradation and subsequently increasing p53 levels within the cell. The p53 protein 

then induces transcription of p21 which inhibits S-phase CDK activity to arrest the cell 

cycle (Alberts et al., 2002c). To determine whether or not the DNA damage observed in 

Figure 4.7 triggered the p53 checkpoint, immunofluorescence was used probing for 

p53 in cells expressing ΔCdt1243-620 mRNA. 

Figure 4.8A shows an embryo injected with 11 ng ΔCdt1243-620 mRNA into 1 cell of 8 at 

2 hours 10 minutes post-fertilisation. The embryo was then maintained for 3 hours 35 

minutes post-injection before fixing for immunofluorescence. In the nuclei of the 

injected embryo chromatin bound p53 was present. Again in the embryo injected with 

ΔCdt1243-620 mRNA, there are multiple nuclei arrested with chromatin bound p53 likely 

due to injection into the cleavage cavity. In contrast the control non-injected embryo 

shows a barely detectable level of p53. Since there is known to be a stockpile of 

maternal p53 in the cytoplasm of early Xenopus embryonic cells (Tchang et al., 1993) 

and the presence of p53 is essential for development (Wallingford et al., 1997), a small 

background level is to be expected.  

Figure 4.8B shows an embryo injected with 11 ng ΔCdt1243-620 mRNA into the animal 

pole at 4 hours 40 minutes post-fertilisation. The microinjection was aimed at the 

blastocoel cavity below the animal cap cells in order to allow uptake of ΔCdt1243-620 

mRNA into multiple cells. The embryo was then fixed for immunofluorescence 1 hour 

50 minutes post-injection. Chromatin bound p53 was again detected in the embryo 

injected with ΔCdt1243-620. In contrast in the control non-injected embryo there was 

little to no p53 detected either bound to DNA or in the cytoplasm. This provides 

evidence that the deregulated ΔCdt1243-620 construct causes DNA damage leading to 

cell cycle arrest mediated by the p53 DNA damage checkpoint. 
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Figure 4.8. Immunofluorescence showing the presence of p53 in arrested embryonic cells following 
ΔCdt1

243-620
 mRNA injection. Xenopus embryos were fixed and probed for the presence of p53 to detect 

checkpoint activation. DAPI was used to stain the DNA before the embryo samples were whole mounted 
and imaged using a Zeiss confocal/2-photon microscope. Scale bars are 20 µm. (A) Xenopus embryos 
were injected with 11 ng ΔCdt1

243-620
 mRNA into 1 cell of an 8 cell embryo at 2 hours 10 minutes post-

fertilisation (blastula stage 4). Injected embryos and non-injected control embryos were then fixed at 5 
hr 45 min post-fertilisation (blastula stage 8.5). p53 was detected localised to the DNA in the injected 
embryo cells but not controls. (B) Xenopus embryos were injected with 11 ng ΔCdt1

243-620
 mRNA into the 

animal pole at 4 hours 40 minutes post-fertilisation (blastula stage 7.5). Injected embryos and non-
injected controls were then fixed at 6 hours 30 minutes post-fertilisation (blastula stage 8.5). p53 was 
detected on the DNA of injected embryo cells but not controls. 
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In order to quantify the expression of Rad51 and p53 in the embryos injected with 

ΔCdt1243-620 mRNA image J, was used to measure the average fluorescence intensity of 

the Rad51 and p53 signals in injected versus non-injected embryos. 

The average fluorescence intensity of the Rad51 signal was measured in a minimum of 

5 nuclei in each of 2 embryos injected with 11 ng ΔCdt1243-620 mRNA into the animal 

pole at 4 hours 40 minutes post-fertilisation (blastula stage7. 5). Following injection 

the embryos were fixed for immunofluorescence between 5 hours 30 minutes and 7 

hours 30 minutes post-fertilisation. Non-injected embryos fixed for 

immunofluorescence in parallel to the injected embryos were used as controls. Figure 

4.9A shows that the nuclear Rad51 signal was higher in the ΔCdt1243-620 mRNA injected 

embryos compared to non-injected controls. This confirms that expression of ΔCdt1243-

620 mRNA in Xenopus embryos causes DNA damage. 

The average fluorescence intensity of the p53 signal was also measured in a minimum 

of 5 nuclei in each of 2 embryos injected with 11 ng ΔCdt1243-620 mRNA into 1 cell of an 

8 cell embryo at 2 hours 10 minutes post-fertilisation (blastula stage 4). Following 

injection the embryos were fixed for immunofluorescence between 5 hours 45 

minutes and 7 hours post-fertilisation. Non-injected embryos fixed for 

immunofluorescence in parallel to the injected embryos were used as controls. Figure 

4.9B shows that the nuclear p53 signal was higher in the ΔCdt1243-620 mRNA injected 

embryos compared to non-injected controls. This confirms that expression of ΔCdt1243-

620 mRNA in Xenopus embryos triggers p53 expression suggesting that the DNA 

damage causes cell cycle arrest via the p53 checkpoint. 
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Figure 4.9. Quantification of the average fluorescence intensity of the Rad51 and p53 signals in 
embryos injected with ΔCdt1

243-620
 mRNA compared to non-injected controls. (A) The average 

fluorescence intensity of the Rad51 signal was measured in a minimum of 5 nuclei in each of 2 embryos 
injected with 11 ng ΔCdt1

243-620
 mRNA into the animal pole at 4 hours 40 minutes post-fertilisation 

(blastula stage7. 5). The signal from the 5 nuclei was averaged and the averages for each of the 2 
embryos plotted as a bar chart. The error bars show the SEM for n=2. (B) The average fluorescence 
intensity of the p53 signal was measured in a minimum of 5 nuclei in each of 2 embryos injected with 11 
ng ΔCdt1

243-620
 mRNA into 1 cell of an 8 cell embryo at 2 hours 10 minutes post-fertilisation (blastula 

stage 4). The signal from the 5 nuclei was averaged and the averages for each of the 2 embryos plotted 
as a bar chart. The error bars show the SEM for n=2.   
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The results so far suggest that the deregulated ΔCdt1243-620 construct causes cell cycle 

arrest through uncontrolled DNA licensing leading to re-licensing and re-replication of 

the DNA. To further confirm this, a licensing null Cdt1 construct (ΔCdt1243-570-RFP) was 

designed to consist of the same amino acids of Cdt1 as ΔCdt1243-620 but lacking the 

extreme C-terminal 50 amino acids. The loss of the C-terminal 50 amino acids destroys 

the MCM binding domain which is necessary for DNA licensing. Therefore ΔCdt1243-570-

RFP constitutes a Cdt1 construct that is deregulated as with ΔCdt1243-620 but is also 

incapable of licensing the DNA. 

The pRN3 vector containing ΔCdt1243-570-RFP construct DNA (Chapter 3) was used to 

produce ΔCdt1243-570-RFP mRNA by in vitro transcription. To determine the effect of 

ΔCdt1243-570-RFP on the pre-MBT cell cycle 18ng of ΔCdt1243-570-RFP mRNA was injected 

into 1 cell of a 2 cell embryo and embryo development monitored over a 72 hour 

period. Figure 4.10A shows that following injection of ΔCdt1243-570-RFP mRNA into pre-

MBT embryonic cells the cells continue to divide and embryo development progresses 

normally as with non-injected control embryos. Western blot was used to confirm 

expression of the ΔCdt1243-570-RFP mRNA within the embryos to produce ΔCdt1243-570-

RFP protein. Embryos were injected with 18 ng of ΔCdt1243-570-RFP mRNA either before 

the first cell division at 1 hour 10 minutes post-fertilisation or into one cell of two at 1 

hour 30 minutes post-fertilisation. Between 2 and 3 hours following injection with 

ΔCdt1243-570-RFP mRNA, whole embryos were fixed and their extracts blotted for RFP to 

detect ΔCdt1243-570-RFP. Figure 4.10B shows a band detected by RFP antibody 

confirming expression of the ΔCdt1243-570-RFP mRNA. 

This shows that when the licensing activity of deregulated ΔCdt1243-620 is abolished, the 

pre-MBT cells are able to divide and the embryo develop normally. This further 

confirms that it is the uncontrolled licensing activity of deregulated ΔCdt1243-620 causing 

the DNA damage and cell cycle arrest through DNA re-licensing and re-replication. 
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Figure 4.10. Microinjection and expression of ΔCdt1
243-570

-RFP mRNA in Xenopus embryos. (A) 18 ng of ΔCdt1
243-570

-RFP mRNA was injected into 1 cell of a 2 cell embryo 
(developmental stage 2) and embryo development monitored until 72 hours after fertilisation. The control shows development of a non-injected embryo monitored over a 72 
hour period following fertilisation. Scale bar is 500µm. (B) Embryos were injected with 18ng ΔCdt1

243-570
-RFP mRNA at either the one cell stage (developmental stage 1) or into 1 

cell of 2 (developmental stage 2). Single embryos were fixed at various time points post fertilisation, their extracts ran on an SDS-PAGE gel and immunoblotted for RFP.  
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Since deregulated ΔCdt1243-620 causes cell cycle arrest and developmental 

abnormalities in pre-MBT embryos, this suggests that proper regulation of Cdt1 is 

critical for correct pre-MBT cell division. 

4.3 Discussion 

With conflicting data on the requirement of correct Cdt1 regulation for maintenance of 

proper DNA replication and cell division within pre-MBT Xenopus embryonic cells it 

was important to clarify the importance of Cdt1 regulation for embryonic 

development. A deregulated truncated Cdt1 construct, ΔCdt1243-620, was designed to 

lack the N-terminal region which contains domains required for the regulation of Cdt1. 

Upon expression in Xenopus embryos, ΔCdt1243-620 caused the cell to arrest in 

development. In addition the cells were arrested in a licensed state suggesting that re-

licensing and re-replication occurred. The presence of chromatin bound Rad 51 and 

p53 show that DNA damage was present and suggests that checkpoint activation lead 

to the cell cycle arrest observed. The presence of DNA damage further confirms the 

likelihood of re-licensing and re-replication as the primary cause of the cell cycle arrest. 

Since a licensing null Cdt1 mutant (ΔCdt1243-570-RFP) did not cause cell cycle arrest, this 

suggests that the arrest triggered by the ΔCdt1243-620 construct was due to aberrant 

DNA licensing. This provides strong evidence that Cdt1 must be carefully regulated to 

allow correct DNA replication and embryonic cell cycle progression. 

In a study by McGarry, morpholinos was used to deplete geminin from early 

developing Xenopus embryos in order to determine the importance of geminin-

dependant regulatory mechanisms on progression of the embryonic cell cycle. In the 

geminin morpholino experiment the affected cells arrested only at the onset of the 

MBT in a Chk1 dependant manner once the G2 phase was introduced to the cell cycle. 

This lead to the suggestion that geminin and therefore regulation of Cdt1, the protein 

it inhibits, are dispensable for preventing re-replication in early pre-MBT Xenopus 

embryos (McGarry, 2002). However the geminin depletion was not complete until just 

prior to the MBT which possibly explains the later cell cycle arrest. There is also 

evidence that siRNAs are unable to support RNA interference in early Xenopus 

embryos as they instead bind to maternal Ago proteins in a sequence independent 

manner. The Ago proteins which are inactivated by the siRNA are required for pre-
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miRNA processing at MBT and the result is embryonic defects at later developmental 

stages (Lund et al., 2011). 

In a further study by Kerns et al., when both non-geminin binding and non-degradable 

Cdt1 mutants were injected separately into early Xenopus embryos the cells arrested 

only at the onset of the MBT again suggesting that Cdt1 regulation is dispensable for 

pre-MBT cell cycle progression (Kerns et al., 2007). However, it has since been shown 

that functional knock down of geminin causes cell cycle arrest in pre-MBT Xenpous 

embryonic cells suggesting that regulation of Cdt1 via geminin binding is critical for cell 

division in pre-MBT embryonic cells (Kisielewska and Blow, 2012). This is in agreement 

with the results presented here in which deregulated Cdt1 activity causes pre-MBT cell 

cycle arrest with evidence of re-licensing and re-replication. One of the possibilities for 

the discrepancy is that in the study by Kerns et al., the concentration of Cdt1 mutant 

mRNA injected into the Xenopus embryos was in the picogram region (300 pg) whereas 

both in this chapter and in the study by Kisielewska and Blow, the mRNA injected was 

in the nanogram region (6-12 ng). It is therefore possible that when low pg levels of 

mRNA are injected it takes time for the accumulation of translated protein constructs 

to a level sufficient to exert effects on DNA replication and the cell cycle. Slow 

accumulation of protein constructs as the embryo progresses through pre-MBT cell 

divisions could explain the later arrest at the onset of MBT. 

It was initially believed that early pre-MBT embryos did not possess checkpoints to 

allow cell cycle arrest in response to DNA damage (Finkielstein et al., 2001). In 

Drosophila embryos, the early cleavage cell divisions continue even in the presence of 

aphidicolin-induced DNA damage (Raff and Glover, 1988). Similarly in Xenopus 

embryos the pre-MBT cleavage cell cycles also continued despite DNA damage with 

cell cycle arrest occurring only at the MBT. However the arrest was independent of 

transcription suggesting that the checkpoint may be present but inhibited prior to the 

onset of MBT (Newport and Dasso, 1989). Evidence has since emerged that, under 

certain conditions, the DNA damage checkpoint can be activated in pre-MBT Xenopus 

embryonic cells. It has been shown that when the DNA to cytoplasm ratio is increased, 

DNA double strand breaks lead to activation of the Chk1 checkpoint in pre-MBT cells. 

This indicates the presence of a maternal DNA damage response in pre-MBT Xenopus 

embryos. It is therefore possible that ΔCdt1243-620-induced re-replication altered the 



110 
 

DNA to cytoplasm ratio facilitating checkpoint activation and cell cycle arrest (Conn et 

al., 2004). In addition it has been previously shown that excess p53 expression in pre-

MBT embryonic cells leads to cell cycle arrest (Hoever et al., 1994). This demonstrates 

that the p53 checkpoint machinery is present in pre-MBT cells. Furthermore it has 

been shown that in pre-MBT cells p53 is imported into the nucleus in a manner linked 

to S-phase of the cell cycle with accumulation following DNA damage. This suggests 

that p53 may play a role in S-phase regulation during the cleavage cycles of the 

Xenopus embryo (Tchang and Mechali, 1999). Combined with the presence of p53 in 

ΔCdt1243-620 expressing cells, this suggests that p53 may also contribute to the cell cycle 

arrest observed. 

In mammalian somatic cells Cdt1 is degraded during S-phase and is present at almost 

undetectable levels during G2 (Nishitani et al., 2001). In contrast the Cdt1 natural 

inhibitor protein geminin accumulates during S-phase and G2 and is absent during G1 

following degradation at the metaphase-anaphase transition (McGarry and Kirschner, 

1998). However in pre-MBT Xenopus embryonic cells both Cdt1 and geminin levels 

remain persistently high throughout the cell cycle. This suggests that in pre-MBT cells 

Cdt1 is regulated by mechanisms other than degradation. One possibility is that in pre-

MBT cells DNA licensing is regulated instead through dynamic Cdt1 and geminin 

interactions (Kisielewska and Blow, 2012). In agreement with this it has previously 

been shown that a Cdt1-geminin complex is capable of both competent DNA licensing 

and prevention of DNA re-replication. This suggests that a Cdt1-geminin complex may 

act as a molecular switch to shift between licensing active- and inactive- states 

(Lutzmann et al., 2006). It is likely that the switch between licensing states of the Cdt1-

geminin complex is induced by changing stoichiometry of the complex. Indeed a 

heterohexamer consisting of a 2:4 ratio of Cdt1:geminin is unable to license the DNA 

due to an inability to engage the MCM complex (De Marco et al., 2009). 

Although the N-terminal region of Cdt1 is necessary for its degradation in mammalian 

somatic cells (Nishitani et al., 2004), the lack of Cdt1 degradation in pre-MBT cells 

(Kisielewska and Blow, 2012) suggests that ΔCdt1243-620 perturbs licensing regulation 

via a separate mechanism. Given that the stoichiometry of the Cdt1:geminin complex 

may be important for the licensing activity of Cdt1 (Lutzmann et al., 2006; De Marco et 

al., 2009), it is possible that ΔCdt1243-620 disturbs the balance between Cdt1 and 
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geminin leading to the Cdt1:geminin complex conforming to the licensing active 

conformation. Since the Cdt1:geminin complex is unable to license DNA when in a 2:4 

ratio complex (De Marco et al., 2009) it is possible that the presence of ΔCdt1243-620 

lead to the levels of Cdt1 outweighing geminin and preventing formation of the 

licensing inactive 2:4 ratio complex. This would allow licensing active Cdt1:geminin 

complexes or Cdt1 alone to re-license the DNA. 

The main geminin binding domain of Cdt1 lies in the central region of the protein. 

However there is evidence of a second region for geminin binding towards the N-

terminal of Cdt1 (Saxena et al., 2004; Ferenbach et al., 2005). It is therefore possible 

that the ΔCdt1243-620 construct is at least partially resistant to geminin inhibition 

(Ferenbach et al., 2005). The DNA damage and cell cycle arrest triggered by the 

ΔCdt1243-620 construct may therefore be due to the ability to avoid regulation via 

geminin binding thereby allowing ΔCdt1243-620 to re-license already replicated DNA. 

It has been widely documented that there several regulatory domains present at the 

N-terminal region of Cdt1 including a PIP box for PCNA interaction, destruction boxes, 

ubiquitination sites and a cy motif for phosphorylation by CDKs (reviewed in (Caillat 

and Perrakis, 2012)). Human Cdt1 is phosphorylated at the cy motif by cyclin A-Cdk 

complexes which then targets Cdt1 for degradation by the SCFSkp2 E3 ubiquitin ligase 

complex. However the phosphorylation at the cy motif also reduces the DNA binding 

activity of Cdt1. This suggests that Cdt1 phosphorylation in the absence of degradation 

may also have an inhibitory effect on Cdt1 licensing activity (Sugimoto et al., 2004). 
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5.1 Introduction 

The results presented in Chapter 4 show that when a truncated, mutant form of Cdt1 

which lacks the N-terminal region (ΔCdt1243-620) is expressed in pre-MBT Xenopus 

embryonic cells, deregulated Cdt1 activity leads to re-licensing, re-replication, DNA 

damage and ultimately cell cycle arrest. There are two possible mechanisms by which 

the ΔCdt1243-620 construct avoids regulation. Firstly, ΔCdt1243-620 may override 

regulation by geminin either by disruption of the ratio of Cdt1 to geminin within the 

cell (Lutzmann et al., 2006; De Marco et al., 2009; Kisielewska and Blow, 2012) or due 

to a partial resistance to inhibition by geminin (Ferenbach et al., 2005). Secondly, 

although Cdt1 levels remain stable within the pre-MBT embryo, there may be post-

translational modifications directed at the N-terminal region which inhibit Cdt1 

licensing activity in the absence of degradation. Indeed there is evidence that in 

human cells phosphorylation of Cdt1 at the N-terminal cy motif reduces the DNA 

binding activity of Cdt1 as well as targeting the protein for degradation (Sugimoto et 

al., 2004). Reduced DNA binding activity of Cdt1 could potentially reduce the licensing 

activity of Cdt1 since DNA binding is required for the loading of the MCM complex, the 

final step in producing a licensed DNA origin (Takara and Bell, 2011). 

It was next important to determine which of the two possible mechanisms were 

involved in the mis-regulation of Cdt1 activity which lead to the cell cycle arrest 

observed with the ΔCdt1243-620 construct. A construct consisting of only the N-terminal 

region of Cdt1 provides a tool to investigate the possibility that Cdt1 is regulated by 

post-translational modifications such as ubiquitination or phosphorylation in pre-MBT 

cells. The N-terminal ΔCdt11-243-RFP construct produced in Chapter 3 is contained 

within both the mRNA and protein expression vectors pRN3 and pET-32a(+) 

respectfully. Expression of ΔCdt11-243-RFP mRNA within Xenopus embryos would allow 

the regulation of this region of Cdt1 to be investigated in vivo while the ΔCdt11-243-RFP 

recombinant protein provides a tool for investigation of regulation in the in vitro 

Xenopus egg extract system.  
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5.2 Results 

The N-terminal region of Cdt1 contains sites for both phosphorylation and 

ubiquitination. To examine the regulatory mechanisms targeted to the N-terminal 

region of Cdt1 in Xenopus pre-MBT embryos, mRNA for the ΔCdt11-243-RFP construct 

was produced for microinjection into Xenopus embryos. The pRN3 vector containing 

ΔCdt11-243-RFP construct DNA which was developed in Chapter 3 was used to produce 

ΔCdt11-243-RFP mRNA by in vitro transcription. An 11 ng amount of ΔCdt11-243-RFP 

mRNA was then microinjected into one cell of a two cell embryo at 1 hour 30 min post-

fertilisation. The embryos were then maintained in optimal conditions for growth and 

their development monitored. 

Figure 5.1 shows development of a ΔCdt11-243-RFP injected embryo compared to a non-

injected control between 2 hours and 48 hours post-fertilisation. The cell injected with 

ΔCdt11-243-RFP continues to divide as normal with no evidence of cell cycle arrest or 

slowing of cell division. At 48 hours post-fertilisation the embryo has developed 

normally into a tadpole as with the non-injected control embryo. The absence of cell 

cycle arrest in the presence of the ΔCdt11-243-RFP construct is to be expected since this 

N-terminal construct lacks the MCM binding domain which is essential for the licensing 

activity of Cdt1. The ΔCdt11-243-RFP construct is therefore unable to induce re-licensing 

and re-replication as observed with the ΔCdt1243-620 construct in Chapter 4. 
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Figure 5.1. Microinjection of ΔCdt1
1-243

-RFP mRNA in Xenopus embryos. 11 ng of ΔCdt1
1-243

-RFP mRNA 
was injected into 1 cell of a 2 cell embryo (developmental stage 2) and embryo development monitored 
until 48 hours after fertilisation. The control shows non-injected embryo development monitored over a 
48 hour period following fertilisation. Scale bar is 500 µm. 
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It was next important to establish whether or not the ΔCdt11-243-RFP mRNA was 

expressed within the injected embryos. Single embryo samples were collected every 

10 minutes from 50 minutes post-injection over a 2 hour 40 minute period. The 

extracts from each embryo sample containing the total protein from the embryo were 

run on single lanes on an SDS-PAGE gel and immunoblotted for RFP to detect the 

presence of expressed ΔCdt11-243-RFP. Figure 5.1A shows that a band is detected by 

RFP antibody confirming expression of the ΔCdt11-243-RFP mRNA. In comparison no 

band was detected by RFP antibody in the control non-injected embryo samples 

(Figure 5.2B). Geminin was used as a loading control since geminin levels remain stable 

throughout the cell cycle in pre-MBT embryos (Kisielewska and Blow, 2012). 

Although ΔCdt11-243-RFP expression was detected, the embryos at time points 02:40, 

02:50 and 03:10 do not show a band detected by RFP. Also the embryos at time points 

02:20, 03:00, 03:20, 03:40 show a much smaller band than time points 02:30, 03:30, 

03:50 and 04:00. The differing densities of the bands are not due to sample loading as 

the loading control geminin remains constant (Figure 5.2A). There are two possibilities 

for the differing band densities of ΔCdt11-243-RFP. Firstly, it could be that the ΔCdt11-243-

RFP mRNA was expressed and then subsequently degraded within the cell. Since Cdt1 

is not significantly degraded during the pre-MBT cell cycle (Kisielewska and Blow, 2012) 

this would mean that the full length Cdt1 protein is somehow protected from 

degradation while the N-terminal ΔCdt11-243-RFP construct is not. This could possibly 

be achieved by binding to other proteins with the complex being resistant to 

degradation. One potential interaction partner which could protect Cdt1 from 

degradation is geminin. With the main geminin binding site on Cdt1 located at the 

central region of the protein, the ΔCdt11-243-RFP has only weak geminin binding activity 

(Ferenbach et al., 2005). The weak geminin binding activity could therefore decrease 

the interaction between geminin and ΔCdt11-243-RFP allowing ΔCdt11-243-RFP to escape 

the complex to be degraded. Secondly, it is also possible that since separate single 

embryo samples are used for each time point it could be that there are differing levels 

of expression or a lack of expression within different embryos. 

To determine whether or not the N-terminal region of Cdt1 is targeted for regulation 

by mechanisms involving ubiquitination in pre-MBT embryos the ubiquitin state of 

ΔCdt11-243-RFP was examined. The embryo samples expressing ΔCdt11-243-RFP were 
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immunoblotted for ubiquitin at the site on the blot of the ΔCdt11-243-RFP construct. 

Figure 5.2A shows two bands just above the ΔCdt11-243-RFP construct detected by 

ubiquitin antibody. However, the bands were also present in the embryo samples at 

time points 02:40, 02:50 and 03:10 which did not show a band for ΔCdt11-243-RFP 

mRNA expression (Figure 5.2A). This suggests that the ubiquitin bands may be 

background unspecific binding or ubiquitination at a separate protein of similar size 

within the embryo rather than ubiquitination of the ΔCdt11-243-RFP construct.  
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Figure 5.2. ΔCdt1
1-243

-RFP mRNA expression in early Xenopus embryos. (A) Embryos were injected with 
11 ng ΔCdt1

1-243
-RFP mRNA into one cell of a two cell embryo (developmental stage 2). Single embryo 

samples were collected every 10 minutes from 2 hours 20 minutes to 4 hours after fertilisation, ran on 
an SDS-PAGE gel and blotted for RFP to detect the presence of ΔCdt1

1-243
-RFP. Ubiquitin antibody was 

used to detect ubiquitination of ΔCdt1
1-243

-RFP. The arrow marks the location of ΔCdt1
1-243

-RFP on the 
blot. Geminin was used as a loading control. Asterisk indicates unspecific binding. (B) Control non-
injected embryos were also collected every 10 minutes from 2 hours 20 minutes to 4 hours post-
fertilisation and blotted for RFP and geminin. Asterisk indicates unspecific binding. 
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Since it appears that the ΔCdt11-243-RFP construct may not be ubiquitinated in pre-MBT 

embryos, it was next important to examine the ubiquitin state of wild type full length 

Cdt1 to confirm whether or not ubiquitination plays a role in Cdt1 regulation in early 

embryos. To investigate the ubiquitin state of full length Cdt1, Xenopus embryos were 

placed in buffer containing the proteasome inhibitor MG132. MG132 inhibits the 26S 

proteasome complex and therefore prevents degradation of ubiquitinated proteins 

(Lee and Goldberg, 1998). Consequently there is an accumulation of ubiquitinated 

proteins within the cell. Although Cdt1 is not regulated by degradation (Kisielewska 

and Blow, 2012), if there is even a small amount of ubiquitin mediated degradation in 

pre-MBT embryos the MG132 would cause an accumulation of ubiquitinated Cdt1 over 

time. 

Xenopus embryos were placed in 0.1x MMR buffer supplemented with 0.4 mM MG132 

at 2 hours post-fertilisation. The MG132 stock was diluted in DMSO, therefore the 

control embryos were placed in 0.1x MMR buffer supplemented with an equal volume 

of DMSO as added to the MG132 treated embryos. Figure 5.3A shows that the embryo 

continues to divide and progress normally through the early cleavage cell cycles until 6 

hours post-fertilisation at which point the embryo undergoes the MBT. Following the 

MBT the cells of the embryo become less defined and begin to apoptose up until 10 

hours post-fertilisation. By 24 hours all MG132 treated embryos had died and 

ruptured. In contrast the DMSO treated embryos continued to divide normally through 

the MBT to develop into normal tadpoles at 48 and up to 96 hours post-fertilisation 

(Figure 5.3B). This suggests that the MG132 was responsible for the cell death within 

the embryos which occurred at approximately MBT. There are two possible 

explanations for embryo death only after the MBT following treatment with MG132. 

Firstly, the MG132 may be slow to permeate the cells of the embryo leading to cell 

death occurring 4 to 5 hours following supplementation of the media with MG132. 

However, MG132 is cell permeable and a highly potent inhibitor of the proteasome 

(Lee and Goldberg, 1998). The second possibility is that protein degradation is not a 

main mechanism of regulation during the pre-MBT embryonic cell cycles. This is in line 

with data showing that in pre-MBT embryos, Cdt1 and geminin levels remain stable 

(Kisielewska and Blow, 2012). Once the embryo goes through the MBT the cell cycles 

become somatic like as zygotic transcription begins and the cell cycles become longer 
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and asynchronous with distinct gap phases G1 and G2 (Newport and Kirschner, 1982; 

O'Farrell et al., 2004). In somatic cells and Xenopus egg extract, both Cdt1 and geminin 

are degraded (McGarry and Kirschner, 1998; Li and Blow, 2005). This would explain the 

onset of MG132 induced cell and embryo death only after the MBT. 
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Figure 5.3. Xenopus laevis embryos treated with the proteasome inhibitor MG132. (A) Embryos were 
placed in 0.1x MMR buffer containing 0.4 mM MG132 (solubilised in DMSO) and their development 
monitored. Scale bar is 250 µM (B) Control embryos were placed in 0.1x MMR buffer containing DMSO. 
Scale bar is 500 µM. (C) Single MG132 treated embryo samples were collected every 10 min from 4 
hours after fertilization, ran on an SDS-PAGE gel and blotted for Cdt1, ubiquitin and β-actin. The arrow 
marks the location of Cdt1 on the blot.  β-actin was used as a loading control. (D) Single DMSO treated 
embryo samples were collected every 10 min from 4 hours after fertilization, ran on an SDS-PAGE gel 
and blotted for Cdt1 and geminin. Geminin was used as a loading control. 
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To detect ubiqutination of Cdt1, single MG132 treated embryos and DMSO controls 

were collected every 10 minutes from 4-5 hours post-fertilisation (2-3 hours post-

treatment). Since the pre-MBT cell cycle length is approximately 25 minutes, this range 

of time points encompasses at least one whole cell cycle. The whole cell extract of the 

embryos were then run, in single lanes for each time point, on an SDS-PAGE gel. Figure 

5.3C shows the MG132 treated embryo samples immunoblotted for Cdt1 and 

ubiquitin. As a loading control the samples were also immunoblotted for β-actin. The 

western blot shows that there is no accumulation of Cdt1 over the 1 hour time period 

in the presence of MG132. The Cdt1 levels do not show any accumulation in 

comparison to the Cdt1 levels in the control DMSO treated embryos (Figure 5.3D). This 

provides further evidence that Cdt1 is not regulated by proteolysis in pre-MBT Xenopus 

embryos. There is also neither a clear ubiquitin chain present at wild type Cdt1 nor an 

accumulation in the ubiquitin signal over time which would be expected if Cdt1 was 

regulated by ubiquitination (Figure 5.3C). This suggests that in pre-MBT embryos Cdt1 

may not be regulated by ubiquitination. Another possibility is that the ubiquitin 

antibody is inadequate for detection of ubiquitinated Cdt1. Combined with the lack of 

detectable ubiquitination of the ΔCdt11-243-RFP construct (Figure 5.2) this provides 

evidence that Cdt1 may not be ubiquitinated during the pre-MBT cell cycle. 

It has been shown previously that the N-terminal region of Cdt1 is necessary to allow 

degradation and that without this region Cdt1 becomes stabilised (Nishitani et al., 

2004). Since there was varying levels of ΔCdt11-243-RFP protein in the embryos injected 

with ΔCdt11-243-RFP mRNA which could be due to degradation or differing mRNA 

expression levels (Figure 5.2) it was next important to characterise the degradation of 

the ΔCdt11-243-RFP construct. It was also important to confirm that the RFP tag does 

not interfere with the degradation and that the ΔCdt11-243-RFP construct is capable of 

undergoing degradation. 

In Xenopus egg extract endogenous Cdt1 levels decrease upon release from metaphase 

by calcium addition. In line with the N-terminal region being necessary for Cdt1 

degradation, a mutant Cdt1 construct lacking the N-terminal 242 amino acids was 

stable in Xenopus egg extract upon release from metaphase (Li and Blow, 2005). Since 

the N-terminal region of Cdt1 is required for degradation it was assumed that the 

ΔCdt11-243-RFP construct would follow a similar pattern of degradation as with 
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endogenous Cdt1 in Xenopus egg extract upon release from metaphase. To test this 

theory, Xenopus egg extract was supplemented with 20 ng/µl sperm DNA and 19 ng/µl 

ΔCdt11-243-RFP recombinant protein, released from metaphase with 0.3 mM CaCl2 and 

the levels of ΔCdt11-243-RFP monitored. At 10 to 20 minute intervals following 

activation 1 µl samples were collected and blotted for RFP to detect ΔCdt11-243-RFP 

levels. The final extract sample was collected at 120 minutes following activation 

because by this time both DNA licensing and replication are complete.  

Figure 5.4 shows that in activated egg extract supplemented with 19 ng/µl ΔCdt11-243-

RFP, the level of ΔCdt11-243-RFP decreases over time. As a control Xenopus egg extract 

was supplemented with 20 ng/µl sperm DNA and 19 ng/µl ΔCdt11-243-RFP in the 

absence of CaCl2 addition and therefore absence of activation. In the non-activated 

egg extract ΔCdt11-243-RFP levels remain stable as is the case with endogenous Cdt1. 

This again suggests that in activated Xenopus egg extract which has been released 

from metaphase arrest, ΔCdt11-243-RFP is degraded over time. In addition when the egg 

extract is not activated and held under metaphase arrest, ΔCdt11-243-RFP is not 

degraded as is also the case with endogenous Cdt1.  
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Figure 5.4. Levels of ΔCdt1
1-243

-RFP over time in activated and non-activated Xenopus egg extract. 
Xenopus extract was supplemented with 19 ng/µl ΔCdt1

1-243
-RFP protein, 20 ng/µl DNA and +/- 0.3 mM 

CaCl2. 1µl samples were collected and blotted for RFP to detect ΔCdt1
1-243

-RFP protein at time points 
selected to cover DNA licensing and replication. The blot labelled ‘+’ Ca

2+
 shows samples from active 

extract and the ‘-’ Ca
2+

 blot shows samples from non-active (metaphase arrested) extract. 
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On the western blot Figure 5.4 the bands of ΔCdt11-243-RFP appear to decrease in 

intensity over time following activation of the extract. To quantify the western blots 

and confirm the decrease in band intensity densitometry analysis was used. For the 

densitometry analysis Image J was used to calculate the densities of each band on each 

of the western blots. The density of each band was then divided by the density of the 

first band, corresponding to time point 0 min, to give the relative densities. Therefore 

the density of the band for time point 0 is always 1 and a decrease in relative density 

of each band over time is indicative of a decrease in band density and therefore a 

decrease in ΔCdt11-243-RFP levels. Each density was made relative to the density of the 

band for time point 0 because as the first time point this corresponds to the starting 

level of ΔCdt11-243-RFP within the extract. 

To ensure the degradation of ΔCdt11-243-RFP in activated Xenopus egg extract was 

reproducible the experiment was repeated twice more under the same conditions. 

Again Xenopus egg extract was supplemented with 20 ng/µl sperm DNA, 19 ng/µl 

ΔCdt11-243-RFP and +/- 0.3 mM CaCl2. Every 10 to 20 minutes between 0 and 120 

following +/- calcium addition, a 1 µl sample was collected, ran on an SDS-PAGE gel 

and blotted for RFP to detect ΔCdt11-243-RFP. The band intensities of each ΔCdt11-243-

RFP band on the western blots, including those shown in Figure 5.4, were calculated 

using image J. Using the band intensities the relative density of each band was 

calculated by dividing the density of each band by the density of the band 

corresponding to time point 0 as the band at 0 minutes represents the starting level of 

ΔCdt11-243-RFP within the extract. The relative densities for each experiment (n=3) 

were then entered into the statistical software program GraphPad Prism and plotted 

on a graph as mean ±SEM (Figure 5.5). The linear regression lines for the relative 

densities of the ΔCdt11-243-RFP bands were then plotted for ΔCdt11-243-RFP levels in 

active (+Ca2+) and inactive (-Ca2+) Xenopus egg extract. Figure 5.5 shows that there is a 

decrease in ΔCdt11-243-RFP band density over time in active but not inactive egg 

extract. 

To determine whether the difference in ΔCdt11-243-RFP levels between active and 

inactive egg extract is significantly different an analysis of covariance (ANCOVA) was 

carried out using GraphPad Prism. The ANCOVA tested the null hypothesis that the 

slopes of the linear regression lines for ΔCdt11-243-RFP levels in active and inactive egg 
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extract are identical. The ANCOVA analysis gave a p value of p<0.0001 thus there is a 

statistically significant difference between ΔCdt11-243-RFP levels in active extract 

compared to inactive extract. In addition the slops of the linear regression lines were 

also tested against the null hypothesis that the slope was equal to zero. The analysis of 

the linear regression line slopes gave a p value of p<0.0001 for ΔCdt11-243-RFP levels in 

active extract and a p value of p=0.6528 for ΔCdt11-243-RFP levels in inactive extract. 

This shows that the slope of the linear regression line of ΔCdt11-243-RFP levels in active 

extract is significantly non-zero. This therefore further confirms that in active Xenopus 

egg extract ΔCdt11-243-RFP is degraded over time following activation and release from 

metaphase.  
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Figure 5.5. Graph showing ΔCdt1
1-243

-RFP band intensities on western blots of Ca
2+

 activated (+Ca
2+

) 
and non-activated (-Ca

2+
) Xenopus egg extract. Xenopus egg extract was supplemented with 20 ng/µl 

DNA, 19 ng/µl ΔCdt1
1-243

-RFP recombinant protein and +/- 0.3 mM CaCl2. 1µl samples were taken every 
10 to 20 minutes, ran on an SDS-PAGE gel and blotted for RFP to detect ΔCdt1

1-243
-RFP. The band 

intensities of ΔCdt1
1-243

-RFP bands were measured using Image J software and the relative densities 
calculated (relative to time point 0) and analysed using Prism software (n=3, p<0.0001). 
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As shown in Figure 5.4 and Figure 5.5 following release from metaphase, ΔCdt11-243-

RFP is degraded in Xenopus egg extract. It was therefore next important to establish 

the mechanism behind the degradation. The degradation of endogenous Cdt1 in 

Xenopus egg extract upon release from metaphase is accomplished through 

ubiquitination mediated by the APC/C (Li and Blow, 2005). It is therefore possible that 

the ΔCdt11-243-RFP construct is also degraded through APC/C-mediated ubiquitination. 

To investigate whether or not ΔCdt11-243-RFP is degraded by an APC/C mediated 

mechanism the degradation of ΔCdt11-243-RFP in the presence of an APC/C inhibitor 

was monitored. Proteins which are targeted for degradation by the APC/C contain a 

conserved destruction box motif of nine amino acids which is necessary for proteolysis. 

A peptide inhibitor consisting of only these nine amino acids (Dbox) competes for 

binding to the APC/C and therefore inhibits degradation of APC/C substrates (Peter et 

al., 2001). Xenopus egg extract was therefore supplemented with 20 ng/µl sperm DNA, 

19 ng/µl ΔCdt11-243-RFP and +/- 2 mM of the APC/C inhibitor Dbox and activated by 0.3 

mM CaCl2. At 10 to 20 minute intervals following activation 1 µl samples were 

collected, run on an SDS-PAGE gel and blotted for RFP to detect ΔCdt11-243-RFP levels. 

Figure 5.6A shows that in the presence of Dbox ΔCdt11-243-RFP levels appear to remain 

relatively stable. In contrast with the control blot ΔCdt11-243-RFP levels appear to 

reduce over time in activated egg extract in the absence of Dbox. This suggests that 

Dbox inhibits ΔCdt11-243-RFP degradation and therefore the degradation is mediated by 

the APC/C. 

The experiment shown in Figure 5.6A was then repeated before performing 

densitometry analysis on both western blots. For the densitometry analysis Image J 

was used to calculate the intensities of each band. The band intensities were then used 

to calculate the relative densities relative to time point 0 as the starting level of 

ΔCdt11-243-RFP. The relative densities were then plotted as mean ±SEM against time 

and the linear regression lines calculated using GraphPad Prism statistical software 

(Figure 5.6B). The slops of the linear regression lines were then tested against the null 

hypothesis that the slope was equal to zero. The analysis of the linear regression line 

slopes gave a p value of p=0.0043 for ΔCdt11-243-RFP levels in the absence of Dbox and 

a p value of p=0.9499 for ΔCdt11-243-RFP levels in the presence of Dbox. This shows that 

the slope of the linear regression line of ΔCdt11-243-RFP levels in the presence of Dbox 
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is not significantly non-zero and therefore ΔCdt11-243-RFP is not degraded in the 

presence of the APC/C inhibitor Dbox. This is further evidence that ΔCdt11-243-RFP is 

degraded via mechanisms mediated by the APC/C. 

The level of degradation of ΔCdt11-243-RFP in the absence of Dbox (Figure 5.6) is small 

and incomplete compared with the level of degradation of ΔCdt11-243-RFP in active 

extract in Figure 5.4 and Figure 5.5. However the levels of ΔCdt11-243-RFP degradation 

were variable between experiments as shown by the error bars for active extract on 

Figure 5.5. Due to this variability further repeats of the experiment with the Dbox 

inhibitor would have provided a higher n number and therefore more robust statistics.  
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Figure 5.6. Levels of ΔCdt1
1-243

-RFP over time in activated Xenopus egg extract in the presence of the 
APC/C inhibitor Dbox. (A) Xenopus egg extract was supplemented with 20 ng/µl DNA, 19 ng/µl ΔCdt1

1-

243
-RFP recombinant protein and +/- 2 mM Dbox. 1 µl samples were taken every 10 to 20 minutes, ran 

on an SDS-PAGE gel and blotted for RFP to detect ΔCdt1
1-243

-RFP. (B) The band intensities of ΔCdt1
1-243

-
RFP bands were measured using Image J software and the relative densities calculated (relative to time 
point 0) and analysed using Prism software (n=2). 
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The N-terminal region of Cdt1 also contains a PIP box motif of eight amino acids which 

is required for the interaction of Cdt1 with PCNA. The interaction between Cdt1 and 

PCNA is required for the replication-dependant degradation of Cdt1 during S-phase. 

PCNA loading at S-phase triggers degradation of Cdt1 via the Cul4 E3 ubiquitin ligase 

(Arias and Walter, 2005a). Since the PIP box is located within the N-terminal region 

included in the ΔCdt11-243-RFP construct it is possible that this PCNA dependant 

mechanism of degradation also plays a role in ΔCdt11-243-RFP degradation. 

To investigate whether or not ΔCdt11-243-RFP is degraded by PCNA mediated 

replication-dependant proteolysis p27 was used to block PCNA loading to chromatin. 

By blocking PCNA loading initiation of DNA replication is inhibited and therefore 

replication-dependant mechanisms of degradation are also inhibited. The protein p27 

is a CDK inhibitor which inhibits cyclin E-Cdk2 and cyclin A-Cdk2 leading to G1 cell cycle 

arrest and thus prevents entry into S-phase (Toyoshima and Hunter, 1994). Xenopus 

egg extract was therefore supplemented with 20 ng/µl sperm DNA, 19 ng/µl ΔCdt11-

243-RFP plus increasing concentrations of p27 from 26-364 µM and activated by 0.3 

mM CaCl2. At 120 minutes post-activation once DNA licensing, and in extract not 

supplemented with p27, S-phase was complete, 1 µl samples were taken, run on an 

SDS-PAGE gel and blotted for RFP to detect ΔCdt11-243-RFP. As a control non-activated, 

metaphase arrested extract was used to show the level of ΔCdt11-243-RFP at 120 

minutes when there is no degradation. At the lowest concentration of p27 (26 µM) 

there is still degradation of ΔCdt11-243-RFP compared to the non-activated control. 

However, at higher p27 concentrations, from 52-364 µM, the ΔCdt11-243-RFP 

degradation appears reduced (Figure 5.7A). This suggests that some of the ΔCdt11-243-

RFP degradation may be replication-dependant degradation during S-phase. 
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Figure 5.7. Effect of differing concentrations of p27 on ΔCdt1
1-243

-RFP degradation. (A) Xenopus egg 
extract was supplemented with increasing concentrations of p27, 20 ng/µl DNA, 19 ng/µl ΔCdt1

1-243
-RFP 

and activated with 0.3 mM CaCl2 to release the cell cycle. At 120 minutes post-activation once DNA 
licensing and S-phase was complete, 1 µl samples were taken and blotted for RFP. The NA control minus 
p27 shows the level of ΔCdt1

1-243
-RFP in non-activated extract at 120 minutes. (B) The relative densities 

(relative to NA control) of the bands from (A). 
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To quantify the degradation of ΔCdt11-243-RFP in the presence of p27 (Figure 5.7A), 

Image J was used to measure the band intensities of ΔCdt11-243-RFP. The band 

intensities were then used to calculate the relative densities relative to the non-

activated control in which there is no degradation of ΔCdt11-243-RFP.  The relative 

density of ΔCdt11-243-RFP at 26 µM p27 is just under half (at approximately 0.5) 

compared to control. The relative density of ΔCdt11-243-RFP at each concentration of 

p27 between 52 and 364 µM is between approximately 0.6-0.7. This suggests that at 

higher concentrations p27 prevents some of the degradation of ΔCdt11-243-RFP. 

However, the relationship between p27 concentration and prevention of degradation 

of ΔCdt11-243-RFP is not reciprocal suggesting that beyond a concentration of 52 µM 

p27 the inhibition of ΔCdt11-243-RFP degradation plateaus (Figure 5.7B). The 

densitometry analysis confirms that at higher concentrations p27 reduces the 

degradation of ΔCdt11-243-RFP and therefore PCNA mediated replication-dependant 

mechanisms at least partially mediate ΔCdt11-243-RFP degradation. 

In Xenopus egg extract ΔCdt11-243-RFP is degraded upon release from metaphase 

following activation with calcium Figure 5.4. However, the extract was also 

supplemented with 20 ng/µl sperm DNA. It has previously been reported that in 

Xenopus egg extract when the DNA concentration is low, endogenous Cdt1 levels 

remain stable following release from metaphase (Kisielewska and Blow, 2012). 

The next step was therefore to investigate whether or not the ΔCdt11-243-RFP construct 

also stabilised in Xenopus egg extract under low DNA conditions upon release from 

metaphase. Xenopus egg extract was therefore supplemented with lower 

concentrations of 2.5- or 0.15- ng/µl DNA plus 19 ng/µl ΔCdt11-243-RFP and released 

from metaphase arrest using 0.3 mM CaCl2. At 10 to 20 minute intervals following 

activation 0.5 µl samples were collected, run on an SDS-PAGE gel and blotted for RFP 

to detect ΔCdt11-243-RFP levels. Figure 5.8 shows that at both 2.5- and 0.15- ng/µl DNA 

the level of ΔCdt11-243-RFP remains constant over a 120 minute time period following 

release from metaphase. The 120 minute time period covers both DNA licensing and 

DNA replication within the extract. As a control, the level of ΔCdt11-243-RFP in non-

activated Xenopus egg extract in which there is no ΔCdt11-243-RFP degradation was 

sampled following a 120 minute incubation period (sample NA 120). This suggests that 
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as with endogenous Cdt1, ΔCdt11-243-RFP also stabilises upon release from metaphase 

in Xenopus egg extract supplemented with low DNA concentrations.  
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Figure 5.8. ΔCdt1
1-243

-RFP protein degradation in Xenopus egg extract under low DNA conditions. 
Xenopus extract was supplemented with 19 ng/µl ΔCdt1

1-243
-RFP protein and either 2.5- or 0.15- ng/µl 

DNA then activated with 0.3 mM CaCl2 to undergo one cell cycle. At time points chosen to cover DNA 
licensing and replication, 0.5µl samples were taken and blotted for RFP to detect ΔCdt1

1-243
-RFP protein. 

The ‘NA 120’ sample is a non-activated control sample at 120 minutes post-activation to show ΔCdt1
1-

243
-RFP level when the cell cycle is not triggered and so no degradation should occur.  
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To ensure the stabilisation of ΔCdt11-243-RFP in activated Xenopus egg extract 

supplemented with lower concentrations of DNA was reproducible the experiment 

was repeated twice more under the same conditions. Again Xenopus egg extract was 

supplemented with 2.5- or 0.15 ng/µl sperm DNA plus 19 ng/µl ΔCdt11-243-RFP and 

activated with 0.3 mM CaCl2 to release from metaphase arrest. Every 10 to 20 minutes 

between 0 and 120 following calcium addition and release from metaphase, a 0.5 µl 

sample was collected, ran on an SDS-PAGE gel and blotted for RFP to detect ΔCdt11-243-

RFP. Image J was then used to calculate the band intensities of the ΔCdt11-243-RFP band 

from Figure 5.8 and the subsequent repeats. Using the band intensities the relative 

density of each band was calculated relative to time point 0 as this band represents 

the starting level of ΔCdt11-243-RFP. The relative densities for each experiment (n=3) 

were then plotted as mean ±SEM against time and the linear regression lines 

calculated using GraphPad Prism statistical software (Figure 5.9). The slops of the 

linear regression lines were then tested against the null hypothesis that the slope was 

equal to zero. If the slope is equal to zero there is no rate of change over time and 

therefore no degradation of ΔCdt11-243-RFP. The analysis of the linear regression line 

slopes gave a p value of p=0.2218 for ΔCdt11-243-RFP levels in extract supplemented 

with 2.5 ng/µl DNA and a p value of p=0.5598 for ΔCdt11-243-RFP levels in extract 

supplemented with 0.15 ng/µl DNA. These p values indicate that the slopes of the 

linear regression lines do not significantly deviate from zero. This therefore confirms 

that as with endogenous Cdt1, in egg extract supplemented with low concentrations of 

DNA, ΔCdt11-243-RFP is not degraded following release from metaphase arrest.  
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Figure 5.9. ΔCdt1
1-243

-RFP levels in activated Xenopus egg extract with low DNA concentrations. 
Xenopus egg extract was supplemented with 19 ng/µl ΔCdt1

1-243
-RFP recombinant protein, either 2.5- or 

0.15- ng/µl DNA and activated with 0.3 mM CaCl2. 1 µl samples were taken at various time points post-
activation, ran on an SDS-PAGE gel and immunoblotted for RFP. The RFP band intensities were 
measured using Image J software and relative densities calculated and analysed using Prism statistical 
software (n=3). 
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Although the results shown in Figure 5.2 and Figure 5.3 provide evidence that Cdt1 

may not be regulated by ubiquitination in pre-MBT embryos, there may be regulation 

via other mechanisms of post-translational modification such as phosphorylation. To 

investigate this possibility the phosphorylation state of wild type Cdt1 was 

investigated. The Cdt1 antibody is polyclonal and as such also recognises unspecific 

bands on western blots as well as Cdt1. One of the ways in which the embryo samples 

can be purified to produce an extract containing less non-specific proteins and 

therefore reduce unspecific binding is to isolate the chromatin and analyse only 

chromatin bound proteins. Since Cdt1 is a DNA licensing protein it will be present in 

the isolated chromatin samples when it is DNA bound. It is also reasonable to assume 

that the nuclear and DNA bound pools of Cdt1 within the embryonic cells would need 

to be tightly regulated in order to prevent DNA re-licensing. Therefore analysis of the 

phosphorylation state of chromatin bound Cdt1 would be appropriate. 

To examine the phosphorylation state of wild type Cdt1 the chromatin was therefore 

isolated from synchronously dividing early embryos. Prior to the MBT the cell cycles of 

each cell within the embryo are synchronous. By also synchronising fertilisation and 

therefore cell division of each embryo within the entire batch, the isolated chromatin 

from 0.5 ml of embryos represents one time point of the cell cycle specifically 

(Kisielewska and Blow, 2012). The chromatin was isolated from 0.5 ml of synchronous 

embryos every 5 minutes from 4 hours to 4 hours 50 minutes post-fertilisation. Since 

one complete pre-MBT cell cycle takes approximately 25 minutes these time points 

were chosen to encompass at least one whole cell cycle. Also the fertilised egg 

contains one compete copy of the genome which is then duplicated and transferred to 

the daughter cell during each cell division. Therefore the total level of DNA within the 

embryo starts low and grows exponentially with each division. The chromatin was 

isolated form embryos from 4 hours post-fertilisation to allow sufficient quantities of 

DNA to allow reliable isolation. 

Figure 5.10A shows a band detected by phosphoserine antibodies which overlaps with 

the location of the Cdt1 band on the blot. The chromatin samples were 

immunoblotted using the phosphorylation antibodies before immunoblotting for Cdt1 

to ensure that the Cdt1 signal did not interfere with the phosphorylation signal. The 

histones were stained as a loading control and to ensure uncontaminated isolation of 
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the chromatin. This could suggest that in pre-MBT embryos Cdt1 may be at least 

partially regulated by phosphorylation of serine residues. However it is also possible 

that the phosposerine band detected represents phosphorylation of a separate 

protein, distinct from Cdt1, which is of the same molecular weight as Cdt1. 

Since phosphorylation of Cdt1 could potentially occur at threonine residues as well as 

serine residues the Cdt1 section of the blot was also immunoblotted for 

phosphothreonine. Figure 5.10A shows that no phosphothreonine band was detected 

at Cdt1 which could suggest that chromatin bound Cdt1 is not phosphorylated at 

threonine. However since there is no positive control for phosphothreonine it as also 

possible that the phosphothreonine antibody did not work. 

To attempt to determine whether or not the serine phosphorlation detected in Figure 

5.10A was Cdt1 phosphorylation, the phosphorylation state of the ΔCdt11-243-RFP 

construct was investigated.  If Cdt1 undergoes phosphorylation at serine residues as a 

mechanism of regulation it is likely that the phosphorylation occurs at the N-terminal 

regulatory region which is known to be phosphorylated in mammalian cells. To 

investigate this possibility the ability of the ΔCdt11-243-RFP protein construct to 

undergo phosphorylation in Xenopus egg extract was investigated. One method which 

would allow isolation and purification of the ΔCdt11-243-RFP construct from the extract 

in order to check the phosphorylation state would be immunoprecipitation (IP). As the 

Cdt1 antibody is polyclonal and also recognises unspecific bands, RFP antibody has so 

far been used to detect the RFP tagged constructs as it is monoclonal and therefore 

highly specific. Since the RFP antibodies used to detect the ΔCdt11-243-RFP construct 

have not been tested for use in IP experiments by the manufacturer (Abcam, product 

number ab65856), it was first important to establish whether or not IP using these RFP 

antibodies would successfully isolate the ΔCdt11-243-RFP construct from the extract. To 

test the RFP antibodies for use in IP experiments the RFP antibodies were coupled to 

protein A sepharose beads. Xenopus egg extract containing sperm DNA was 

supplemented +/- 19ng/µl ΔCdt11-243-RFP protein and activated with 0.3 mM CaCl2 as 

positive and negative controls. The extract samples were then added to the RFP 

antibody coupled beads overnight. Figure 5.10B shows that the ΔCdt11-243-RFP 

construct was successfully isolated using the RFP beads. This confirms that the RFP 



140 
 

antibodies are suitable for use in IP experiments to isolate the ΔCdt11-243-RFP construct 

under the IP conditions used. 

For the IP, Xenopus egg extract was supplemented with 20 ng/µl sperm DNA and +/- 19 

ng/µl ΔCdt11-243-RFP before activation with 0.3 mM CaCl2. At the time points 0, 60, 90 

and 120 minutes following activation, 150 µl of IP buffer was added to the extract 

sample before incubation with the RFP antibody beads. These time points were chosen 

to encompass the stages of DNA licensing and replication within the extract with DNA 

licensing complete by 60 minutes and DNA replication complete by 120 minutes 

(Gillespie et al., 2012).  
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Figure 5.10. Phosphorylation of Cdt1 in pre-MBT Xenopus laevis embryos and Xenopus egg extract. (A) 
Chromatin was isolated from 0.5 ml of synchronized embryos every 5 minutes from 4 hours post-
fertilisation. Samples were collected for 50 minutes to encompass one complete cell cycle. 10 µl samples 
were run on an SDS-PAGE gel and blotted for Cdt1 and phosphorylation at Serine and Threonine 
residues of Cdt1. Histones were used as a loading control and to confirm chromatin isolation. (B) 
Xenopus egg extract was supplemented with 20 ng/µl sperm DNA and +/- 19 ng/µl ΔCdt1

1-243
-RFP before 

activation with 0.3 mM CaCl2. The ΔCdt1
1-243

-RFP was isolated by IP using RFP antibody beads, ran on an 
SDS-PAGE gel and immunoblotted for RFP to detect ΔCdt1

1-243
-RFP. (C) Xenopus egg extract was 

supplemented with 20 ng/µl sperm DNA and +/- 19 ng/µl ΔCdt1
1-243

-RFP before activation with 0.3 mM 
CaCl2. The time is in minutes post-activation. At each time point ΔCdt1

1-243
-RFP was isolated by IP using 

RFP antibody beads. The bound protein was then released from the RFP antibody beads, ran on an SDS-
PAGE gel and immunoblotted for phosphor-ser and RFP. 
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Figure 5.10C shows the isolation of the ΔCdt11-243-RFP construct from the extract at 

each time point. For the negative control egg extract minus ΔCdt11-243-RFP was added 

to the RFP antibody beads at 120 minutes following activation. The negative control 

confirms that there is no band detected by the RFP antibody in the absence of ΔCdt11-

243-RFP. Therefore the band detected by the RFP antibody is indeed the ΔCdt11-243-RFP 

construct. In addition there was no phosphorylation of serine residues of the ΔCdt11-

243-RFP construct detected. This could suggest that the N-terminal 1-243 amino acid 

region of Cdt1 is not regulated by phosphorylation of serine. However, since there is 

no positive control of a phosphoserine phosphorlated protein included it as also 

possible that the phosphothreonine antibody did not work. 
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5.3 Discussion 

The results presented in Chapter 4 show that when a truncated, mutant form of Cdt1 

which lacks the N-terminal region (ΔCdt1243-620) is expressed in pre-MBT Xenopus 

embryonic cells, deregulated Cdt1 activity causes cell cycle arrest induced by DNA re-

licensing and re-replication. This shows that correct regulation of Cdt1 is essential for 

normal pre-MBT Xenopus embryo progression. It was therefore important to establish 

the mechanisms involved in Cdt1 regulation during the pre-MBT cell cycle. 

There are two possible mechanisms by which the ΔCdt1243-620 construct abrogates 

regulation resulting in uncontrolled re-licensing. The first possibility is that ΔCdt1243-620 

overrides the inhibitory effects of geminin. This could be caused by disruption of the 

ratio of Cdt1 to geminin within the cell preventing formation of an inactive 

Cdt1:geminin complex stoichiometry (Lutzmann et al., 2006; De Marco et al., 2009; 

Kisielewska and Blow, 2012), or due to a partial resistance to inhibition by geminin 

(Ferenbach et al., 2005). The second possibility is that, since the N-terminal region 

contains multiple sites for Cdt1 regulation (reviewed in (Caillat and Perrakis, 2012)), 

there may be post-translational modifications of Cdt1 targeted to this region but in the 

absence of degradation since Cdt1 levels remain stable in pre-MBT embryos 

(Kisielewska and Blow, 2012). A truncated Cdt1 construct containing only the N-

terminal region, ΔCdt11-243-RFP, provides the ideal tool with which to investigate the 

mechanisms of Cdt1 regulation in Xenopus embryos that were potentially abrogated 

by the ΔCdt1243-620 construct. 

The N-terminal region of Cdt1 contains sites targeted for phosphorylation and 

ubiquitination. In human cells there are three separate E3 ubiquitin ligase complexes 

which recognise the N-terminal domain of Cdt1 and mediate Cdt1 proteolysis 

(reviewed in (Caillat and Perrakis, 2012)). Although Cdt1 levels remain stable in pre-

MBT cells (Kisielewska and Blow, 2012) there may be inhibitory post-translational 

modification of Cdt1 in the absence of degradation. Indeed in human cells 

phosphorylation at the N-terminal cy motif of Cdt1 reduces the DNA binding activity of 

Cdt1 which in turn could reduce the licensing activity of Cdt1 (Sugimoto et al., 2004). 

To investigate this possibility both the phosphorylation and ubiquitination status in 

MBT cells or ΔCdt11-243-RFP in Xenopus egg extract was investigated (Figure 5.2 and 

Figure 5.3). This suggests that Cdt1 activity is not regulated by ubiquitination during 
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the pre-MBT cell cycle. There was also no evidence of endogenous Cdt1 accumulation 

in pre-MBT cells in the presence of the proteasome inhibitor MG132 (Figure 5.3) which 

further confirms that the stable Cdt1 levels are due to a lack of Cdt1 degradation in 

pre-MBT embryos. Taken together this suggests that the mechanisms of ubiquitination 

which mediate Cdt1 degradation in somatic cells may be absent or inactive in pre-MBT 

embryos or the full length endogenous Cdt1 is somehow protected from degradation. 

One possibility is that geminin binding to Cdt1 which inhibits the licensing activity of 

Cdt1 also protects Cdt1 from degradation (Lutzmann et al., 2006). Indeed it has been 

shown that in human cells geminin is capable of stabilising Cdt1 by preventing 

ubiquitination and proteasome mediated degradation (Ballabeni et al., 2004). 

Phosphorylation of serine but not threonine residues of chromatin was detected at the 

molecular weight of chromatin bound Cdt1 in stage 7 pre-MBT embryos (Figure 5.10). 

It is possible that Cdt1 may be regulated by mechanisms involving serine 

phosphorylation during the pre-MBT cell cycle. However at the N-terminal ΔCdt11-243-

RFP region there was no serine phosphorylation detected (Figure 5.10). It is possible 

that the serine phosphorylation detected at chromatin bound endogenous Cdt1 was 

not located to the N-terminal region although regulatory phosphorylation occurs at the 

N-terminal region in somatic cells (Sugimoto et al., 2004). However it is possible that 

the serine phosphorylation detected was of another protein distinct from Cdt1 but 

with the same molecular weight. In addition it is possible that the lack of detection of 

serine phosphorylation at ΔCdt11-243-RFP was due to a failure of the antibody rather 

than a true lack of phosphorylation.   

Another potential limitation is that the method of IP used to detect phosphorylation of 

ΔCdt11-243-RFP was insufficient. However steps were taken to ensure the preservation 

of any phosphorylation present at ΔCdt11-243-RFP. To preserve ΔCdt11-243-RFP 

phosphorylation the IP buffer was supplemented with the phosphatase inhibitors 

sodium orthovanadate and sodium fluoride which inhibit tyrosine and 

serine/threonine phosphatases respectively. The extract samples were also only 

incubated with the RFP antibody beads for one hour rather than overnight in order to 

preserve any phosphorylation. However there was also no gel shift of ΔCdt11-243-RFP 

detected which would occur in the presence of ΔCdt11-243-RFP phosphorylation. This 
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therefore further suggests that ΔCdt11-243-RFP is not phosphorylated in Xenopus egg 

extract in vitro.  

Since there is no evidence of ubiquitination or phosphorylation of the N-terminal, 

ΔCdt11-243-RFP construct this suggests that the ΔCdt1243-620 construct does not 

abrogate regulation through avoidance of inhibitory post-translational modification. It 

is therefore likely that the ΔCdt1243-620 construct exerts its effects on the pre-MBT cell 

cycle and cell division by disrupting the ratio of Cdt1 to geminin within the cell and 

therefore avoiding geminin inhibition. 

In Xenopus egg extract, endogenous Cdt1 is degraded in an APC/C mediated manner 

upon release of the extract from metaphase arrest. It has previously been shown that 

a truncated Cdt1 mutant lacking the first 243 amino acids is stable in Xenopus egg 

extract. This shows that it is the N-terminal regulatory region of Cdt1 which is targeted 

for degradation upon release of the extract from metaphase (Li and Blow, 2005). In 

agreement with this, the results presented here show that the N-terminal ΔCdt11-243-

RFP construct is degraded upon release from metaphase arrest (Figure 5.4 andFigure 

5.5). In addition the levels of ΔCdt11-243-RFP stabilise in the presence of the APC/C 

inhibitor Dbox. This shows that like with endogenous Cdt1, degradation of ΔCdt11-243-

RFP is also mediated by the APC/C. It has also been shown previously that when 

Xenopus egg extract contains a lower DNA concentration, endogenous Cdt1 remains 

stable and is not degraded upon release from metaphase (Kisielewska and Blow, 

2012). The ΔCdt11-243-RFP construct also remains stable in extract at lower DNA 

concentrations (Figure 5.8 and Figure 5.9). Taken together the results presented here 

show that the degradation patterns of ΔCdt11-243-RFP in Xenopus egg extract are 

analogous to the degradation patterns of endogenous Cdt1. This further confirms that 

the N-terminal region, containing protein regulatory domains, is targeted to allow 

degradation of Cdt1. It also shows that the RFP tag of ΔCdt11-243-RFP does not interfere 

with the function of the Cdt1 1-243 amino acid region. The ΔCdt11-243-RFP construct 

therefore provides a functional tool with which to investigate other Cdt1 functions 

such as DNA and protein binding. 

It has been shown that in Xenopus egg extract supplemented with a low concentration 

of DNA, endogenous Cdt1 is not degraded and instead remains stable (Kisielewska and 
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Blow, 2012). One of the main mechanisms of Cdt1 degradation is DNA replication 

dependant in which chromatin bound Cdt1 is targeted for degradation following 

interaction with PCNA (Arias and Walter, 2005a). It therefore follows that with lower 

levels of DNA there is less DNA dependant degradation and so Cdt1 levels stabilise. The 

interaction of Cdt1 with PCNA required for DNA dependant degradation is mediated by 

a PCNA interaction domain, the PIP box, located at the N-terminal region of Cdt1 (Arias 

and Walter, 2005a). In line with this, the N-terminal ΔCdt11-243-RFP construct is also 

stabilised at lower concentrations of DNA which suggests that ΔCdt11-243-RFP also 

undergoes DNA replication dependant degradation. Also, the CDK inhibitor p27 which 

inhibits DNA replication initiation and PCNA loading (Toyoshima and Hunter, 1994), 

blocks some of the degradation of ΔCdt11-243-RFP at p27 concentrations above 52 µM 

(Figure 5.8). This provides further evidence that some of the Cdt1 degradation is 

replication dependant and mediated via the N-terminal region of Cdt1. 

While Figures 5.6 to 5.10 show evidence of degradation of the N-terminal ΔCdt11-243-

RFP construct in both an APC/C and replication dependant manner they only present 

limited evidence of degradation. In order to be fully conclusive some of the 

experiments require additional controls. The western blots shown in Figures 5.4, 5.6, 

5.7 and 5.8 require loading controls. However since the extract is a cell free system the 

standard loading controls of actin or tubulin are not present therefore a membrane or 

gel stain for total protein loading such as Ponceau S stain or Coomassie stain would be 

more appropriate. Additional controls to show that the Ca2+ activation of the extract 

was achieved and that the DBox inhibitor was active in this experimental set up would 

strengthen the results presented here. Therefore the conclusions drawn here are 

preliminary and would require further experimental confirmation to be conclusive. 
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Results IV. The Cdt1 N-terminal Region is Recruited to Chromatin 

 

  



148 
 

6.1 Introduction 

It has been well documented that the N-terminal region of Cdt1 contains multiple 

domains which are necessary for regulation of Cdt1 activity. There is a PIP box which is 

required for interaction with PCNA and replication dependant degradation (Arias and 

Walter, 2005a; Senga et al., 2006) as well as a cy motif which is required for cyclin/Cdk 

phosphorylation dependant SCFSkp2 mediated degradation (Li et al., 2003; Liu et al., 

2004; Nishitani et al., 2004; Nishitani et al., 2006). In addition there are several N-

terminal D-box motifs which are targeted for APC/C mediated Cdt1 degradation 

(Sugimoto et al., 2008). 

In addition to the regulatory domains there is also a bipartite nuclear localisation 

sequence (NLS) within the N-terminal region of Cdt1 (Nishitani et al., 2004). A bipartite 

NLS is a classical NLS sequence consisting of two clusters of basic amino acids 

separated by a linker region of amino acids. The classical NLS binds to an NLS receptor 

on the surface of the nuclear envelope to allow transport of the protein into the 

nucleus (Lange et al., 2010). The presence of an NLS in the N-terminal region suggests 

that this region of Cdt1 may be important for nuclear localisation. 

The results presented in Chapter 5 show that the ΔCdt11-243-RFP construct follows the 

same patterns and mechanisms of degradation as with endogenous Cdt1 in line with 

the N-terminal region containing multiple domains to target Cdt1 for regulation and 

degradation. This shows that the Cdt1 region (ΔCdt11-243) of the construct is functional 

and that the RFP tag does not interfere with this functionality. The ΔCdt11-243-RFP 

construct therefore provides a functional tool to allow investigation of the role of the 

N-terminal region of Cdt1 in nuclear entry and DNA binding.  



149 
 

6.2 Results 

To investigate the localisation of the ΔCdt11-243-RFP construct during the pre-MBT cell 

cycle in vivo, the mRNA for the ΔCdt11-243-RFP was produced for microinjection and 

expression in Xenopus embryos. The pRN3 vector containing ΔCdt11-243-RFP construct 

DNA produced in Chapter 3 was used to produce ΔCdt11-243-RFP mRNA by in vitro 

transcription. 

A 12 ng amount of ΔCdt11-243-RFP mRNA was then microinjected into one cell of a two 

cell embryo at 1 hour 30 min post-fertilisation. The embryos were then maintained in 

optimal conditions for growth. To confirm expression of the ΔCdt11-243-RFP mRNA and 

investigate the localisation of the ΔCdt11-243-RFP protein within the cell 

immunofluorescence was used. For immunofluorescence the embryos injected with 

ΔCdt11-243-RFP mRNA and the non-injected controls were maintained in development 

until 6 hours 45 minutes post-fertilisation. At this point in development the cells of the 

embryo are small enough to allow imaging using confocal/multiphoton 2P microscopy. 

Figure 6.1 shows immunofluorescence of a whole mount embryo injected with ΔCdt11-

243-RFP mRNA and a non-injected control fixed at 6 hours 45 minutes post-fertilisation 

which is 5 hours 15 minutes following injection. RFP was used to detect ΔCdt11-243-RFP 

and DAPI was used to stain the DNA. The RFP signal was high in the embryo injected 

with ΔCdt11-243-RFP mRNA compared to the control non-injected embryo therefore 

confirming expression of the mRNA. 

The immunofluorescence shows two nuclei in prophase and two nuclei in S-phase of 

the cell cycle. The cell cycle stage was determined due to the appearance of the DNA 

which is made visible by staining with DAPI. During prophase the DNA is condensed 

whereas in S-phase the DNA is decondensed to allow access of the replication fork 

proteins to DNA. Therefore the DAPI staining is smoother and more consistent in S-

phase when the DNA is decondensed (Alexandrow and Hamlin, 2005). Figure 6.1A 

shows a higher signal intensity of RFP in the nucleus during S-phase (cells 3 and 4) 

compared to prophase (cells 1 and 2). This suggests that during S-phase ΔCdt11-243-RFP 

is localised to the nucleus and possibly bound to the DNA. 

In order to quantify the expression and nuclear localisation of ΔCdt11-243-RFP in the 

embryos injected with ΔCdt11-243-RFP mRNA, image J was used to measure the average 
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fluorescence intensity of the nuclear RFP signal in injected versus non-injected 

embryos at different cell cycle stages. 

The average fluorescence intensity of the RFP signal was measured in a minimum of 2-

3 nuclei and averaged for different cell cycle stages in each of 2 embryos injected with 

12 ng ΔCdt11-243-RFP mRNA into one cell of two at 1 hours 30 minutes post-fertilisation 

(developmental stage 2). Following injection the embryos were fixed for 

immunofluorescence at 6 hours 45 minutes post-fertilisation as at this stage of 

development the cells are small enough to be imaged by confocal microscopy. Non-

injected embryos fixed for immunofluorescence in parallel to the injected embryos 

were used as controls. Figure 6.1C shows that the nuclear RFP signal was higher during 

S-phase in the ΔCdt11-243-RFP mRNA injected embryos compared to non-injected 

controls. However, during prophase and metaphase of the cell cycle the nuclear RFP 

signal was comparative to that of the controls. This further suggests that ΔCdt11-243-

RFP localises to the DNA during S-phase of the cell cycle. 
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Figure 6.1. Immunofluorescence showing ΔCdt1
1-243

-RFP mRNA expression in Xenopus embryos. (A) 
12ng ΔCdt1

1-243
-RFP mRNA was injected into one cell of a two cell embryo (developmental stage 2). The 

embryo was fixed at 6 hours 45 minutes post-fertilisation and probed using RFP antibody. The cell cycle 
stages of each cell are numbered: 1. and 2. Prophase, 3. and 4. S-phase. (B) Control non-injected embryo 
fixed at 6 hours 45 minutes post-fertilisation and probed using RFP antibody. Scale bar is 10µm. (C) 
Quantification of the average fluorescence intensity of the nuclear RFP signal in at difference cell cycle 
stages in embryos injected with 12ng ΔCdt1

1-243
-RFP mRNA and control non-injected embryos. The signal 

was measured in a minimum of 2-3 nuclei and averaged in each of 2 separate embryos. The error bars 
represent the standard deviation, n=2. 
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Figure 6.1 shows that the RFP signal of ΔCdt11-243-RFP overlaps with the DNA signal 

during S-phase in vivo in Xenopus embryos. This shows that ΔCdt11-243-RFP is localised 

to the nucleus and suggests that ΔCdt11-243-RFP may also be chromatin bound during S-

phase. To confirm the localisation of ΔCdt11-243-RFP to the nucleus the in vitro Xenopus 

egg extract system was used. 

Xenopus egg extract was supplemented with 20 ng/µl demembranated sperm DNA 

plus +/- 200 ng/µl ΔCdt11-243-RFP and released from metaphase arrest using 0.3 mM 

CaCl2. At 40 minutes following activation with calcium, at which point DNA licensing is 

complete, 1 µl samples were fixed and the DNA stained using Hoechst. The extract 

samples were then imaged using a Leica Confocal with UV filter to detect Hoechst 

stained DNA and a red filter to detect RFP and therefore ΔCdt11-243-RFP. Figure 6.2A 

shows that as expected, upon activation of the extract the sperm DNA has 

decondensed and completed nuclear assembly forming circular nuclei (Gillespie et al., 

2012). The ΔCdt11-243-RFP construct is again localised to the nucleus. Figure 6.2B shows 

multiple nuclei showing the localisation of ΔCdt11-243-RFP to the DNA (arrowed). In 

contrast in the control sample only a background RFP signal is detected with no RFP 

signal located to the nuclei or DNA (Figure 6.2C). 

This further confirms that the ΔCdt11-243-RFP construct localises to the nucleus. This 

suggests that the N-terminal region of Cdt1 contains domains required to cross the 

nuclear envelope and localise within the nucleus.  
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Figure 6.2. Chromatin binding of ΔCdt1
1-243

-RFP recombinant protein.  Xenopus egg extract was 
activated with 0.3 mM CaCl2 and supplemented with 20 ng/µl DNA and +/- 200 ng/µl ΔCdt1

1-243
-RFP. 1 µl 

samples were fixed at 40 minutes post-activation, at which point DNA licensing is complete.  The DNA 
within the extract was stained using Hoechst. Samples were imaged using a Leica Confocal with UV filter 
for Hoechst and red filter for RFP. (A) Single S-phase nuclei showing the presence of ΔCdt1

1-243
-RFP. 

Scale bar 10 µm. (B) Multiple nuclei. Arrows highlight S-phase nuclei with ΔCdt1
1-243

-RFP. Scale bar 100 
µm. (C) Control sample. Xenopus extract was activated and supplemented with 20 ng/µl DNA but no 
ΔCdt1

1-243
-RFP. 1 µl samples were fixed after 40 minutes and the DNA stained using Hoechst. Samples 

were imaged using Leica Confocal with 405 mm UV laser for Hoechst and 485 mm red Argon-Krypton 
laser to detect RPF. Scale bar 75µm. 
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To quantify the number of cells with nuclear ΔCdt11-243-RFP the percentage of cells 

with nuclear RFP signal was calculated from Figure 6.2. As shown in Figure 6.3, in 

excess of 60% of nuclei showed RFP staining in the extract supplemented with 20 ng/µl 

DNA and +/- 200 ng/µl ΔCdt11-243-RFP. In contrast in the control embryo which was 

supplemented with 20 ng/µl DNA only none of the nuclei showed RFP staining. This 

further confirms that the ΔCdt11-243-RFP construct of Cdt1 is capable of localising to the 

nucleus. 
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Figure 6.3. Quantification of nuclear ΔCdt1
1-243

-RFP in activated Xenopus egg extract. Xenopus egg 
extract was activated with 0.3 mM CaCl2 and supplemented with 20 ng/µl DNA and +/- 200 ng/µl ΔCdt1

1-

243
-RFP. 1 µl samples were fixed at 40 minutes post-activation, at which point DNA licensing is complete.  

The DNA within the extract was stained using Hoechst. Samples were imaged using a Leica Confocal with 
UV filter for Hoechst and red filter for RFP. The percentage of nuclei showing RFP staining was then 
calculated from the images shown in Figure 6.2 B and C.  
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It was next important to confirm whether or not ΔCdt11-243-RFP is also capable of 

binding to the DNA once localised to the nuclear space. To isolate chromatin from 

Xenopus embryos, a 0.5 ml volume of embryos is required. Since this is too high a 

number to successfully inject with mRNA at the same point in development, chromatin 

isolation from Xenopus egg extract was instead utilised. 

Xenopus egg extract was activated to release from metaphase with 0.3 mM CaCl2 

before supplementing +/- 20 ng/µl sperm DNA and -/+ 44 ng/µl ΔCdt11-243-RFP. At 70 

minutes following activation, at which point DNA licensing is complete, the reaction 

was stopped and the chromatin isolated. To detect chromatin bound proteins the 

isolated chromatin samples were run on an SDS-PAGE gel and blotted for RFP to detect 

ΔCdt11-243-RFP. The samples were also blotted for Mcm2 and PCNA to detect 

successful DNA licensing. The histones were stained to confirm isolation of the 

chromatin and to act as a loading control. A sample of extract activated with calcium 

but not supplemented with either DNA or ΔCdt11-243-RFP was used as a negative 

control to show the pattern of bands when there is no DNA and therefore no DNA 

licensing or isolated histones. 

The extract sample containing only DNA and no ΔCdt11-243-RFP shows licensed DNA. In 

the extract containing both DNA and ΔCdt11-243-RFP the Mcm2 and PCNA bands also 

show licensed DNA. This shows that ΔCdt11-243-RFP does not affect DNA licensing 

which is to be expected since the ΔCdt11-243 region does not contain an MCM binding 

domain and so is not licensing active. Figure 6.3 shows that the ΔCdt11-243-RFP protein 

is isolated with the chromatin. The ΔCdt11-243-RFP construct therefore was chromatin 

bound in activated Xenopus egg extract following DNA licensing. This confirms that the 

ΔCdt11-243-RFP construct is capable of binding to DNA as well as localising to the 

nucleus. 
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Figure 6.4. Chromatin binding of ΔCdt1
1-243

-RFP recombinant protein. Xenopus extract was activated 
with 0.3 mM CaCl2 and supplemented with 20 ng/µl DNA and -/+ 44 ng/µl ΔCdt1

1-243
-RFP. The reaction 

was stopped 70 minutes after activation, at which point DNA licensing should be complete within the 
extract, and the chromatin isolated, ran on an SDS-PAGE gel and blotted for Mcm2, RFP and PCNA. The -
DNA sample was used as a negative control and the + DNA sample was used as a positive control to 
show isolation of licensed chromatin. Histones were used as a loading control and to confirm chromatin 
isolation. 
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The results presented in Figure 6.4 confirm that the ΔCdt11-243-RFP construct is able to 

bind to chromatin. The chromatin was isolated from the extract at 70 minutes 

following activation following DNA licensing. This shows that ΔCdt11-243-RFP was bound 

to chromatin once licensing was complete but does not show at which point during 

DNA licensing at which the ΔCdt11-243-RFP construct was recruited. 

To determine the point during the cell cycle at which ΔCdt11-243-RFP is recruited to 

chromatin and whether or not ΔCdt11-243-RFP is subsequently released from 

chromatin, a time course chromatin isolation was used. Xenopus egg extract was 

activated to release from metaphase with 0.3 mM CaCl2 before supplementing with 20 

ng/µl sperm DNA and 22 ng/µl ΔCdt11-243-RFP. Samples of the extract were then fixed 

and the chromatin isolated at selected time points between 0 and 160 minutes post-

activation to encompass one whole cycle of DNA licensing and replication within the 

extract. The isolated chromatin samples were run on an SDS-PAGE gel and 

immunoblotted to detect chromatin bound proteins. The chromatin samples were 

blotted for Mcm2, PCNA and geminin to determine the licensing and replication state 

of the chromatin and blotted for RFP to detect ΔCdt11-243-RFP. 

Figure 6.5 shows that at 0 minutes following activation and supplementation of the 

extract with DNA and ΔCdt11-243-RFP there are no licensing proteins bound to DNA and 

therefore DNA licensing has not begun. At 10 minutes Mcm2 is loaded as DNA 

licensing has begun. Some geminin is also present at 10 minutes which was likely 

recruited with endogenous Cdt1 since Cdt1 is required for MCM loading and geminin 

and Cdt1 have previously been shown to co-localise on DNA (Gillespie et al., 2001). At 

90 minutes PCNA is bound to the DNA as DNA licensing is now complete and S-phase is 

underway. There is also an increase in chromatin bound geminin at 90 minutes which 

will likely be recruited to inhibit endogenous Cdt1 activity and prevent re-licensing of 

the DNA during S-phase which would result in re-replication. At 60 minutes a small 

amount of ΔCdt11-243-RFP is loaded to the DNA with more loaded at 90 minutes. This 

suggests that ΔCdt11-243-RFP was loaded on chromatin at the end of DNA licensing and 

start of S-phase. 
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Figure 6.5. Chromatin binding of ΔCdt1
1-243

-RFP recombinant protein during one cell cycle in Xenopus 
egg extract in the presence and absence of p27. (A) Xenopus extract was activated with 0.3 mM CaCl2 
and supplemented with 20 ng/µl DNA and 22 ng/µl ΔCdt1

1-243
-RFP. The reaction was stopped and the 

chromatin isolated at selected time points after activation to encompass DNA licensing and replication 
within the extract. The chromatin samples were ran on an SDS-PAGE gel and blotted for Mcm2, RFP, 
PCNA and geminin to determine the licensing and replication state of the chromatin. The samples were 
also blotted for RFP to detect ΔCdt1

1-243
-RFP. Histones were used as a loading control and to confirm 

chromatin isolation. (B) Xenopus extract was activated with 0.3 mM CaCl2 and supplemented with 20 
ng/µl DNA, 19 ng/µl ΔCdt1

1-243
-RFP and 100 nmol p27. The reaction was stopped and the chromatin 

isolated at selected time points after activation to encompass DNA licensing and replication within the 
extract. The chromatin samples were ran on an SDS-PAGE gel and blotted for Mcm2 to determine the 
licensing state of the chromatin and PCNA to confirm p27 inhibition of PCNA loading and DNA 
replication initiation. The samples were also blotted for RFP to detect ΔCdt1

1-243
-RFP. Histones were 

used as a loading control and to confirm chromatin isolation.  
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It was next important to determine how the ΔCdt11-243-RFP construct is loaded onto 

chromatin. Although ORC, Cdc6 and Cdt1 are all required to load the MCM complex 

onto DNA and thereby license the DNA for replication (Gillespie et al., 2001) the 

sequence of events towards chromatin loading are unclear. In the yeast S.cerevisiae 

Orc6 is required for the interaction of the ORC complex with Cdt1 to facilitate Mcm2-7 

loading and therefore DNA licensing (Chen et al., 2007). In contrast in Xenopus egg 

extract it has been suggested that the ORC protein Orc6 is not required for DNA 

licensing (Gillespie et al., 2001). In fission yeast it has been shown that Cdt1 

recruitment to chromatin is independent of Cdc6 (Nishitani et al., 2000). Although it 

has been shown that Cdt1 can bind DNA independently of DNA strand, sequence or 

conformation (Yanagi et al., 2002), in Xenpous egg extract prior binding of Cdc6 to 

chromatin is essential for chromatin bound Cdt1 to function in DNA licensing. In this 

system Cdt1 recruited to chromatin prior to Cdc6 is not functional in licensing and 

suggests that a strict order of recruitment of the licensing proteins to chromatin is 

essential for licensing activity (Tsuyama et al., 2005). 

It has since been shown in S.cerevisiae that a chromatin bound ORC-Cdc6 complex 

recruits multiple molecules of Cdt1 which in turn initiate formation of an MCM 

complex double hexamer for loading to the DNA to complete licensing (Takara and 

Bell, 2011). It has also been shown that the ORC-Cdc6 complex recruits a Cdt1-Mcm2-7 

complex with an ORC-Cdc6-Cdt1-Mcm2-7 complex forming as an intermediate in DNA 

licensing (Sun et al., 2013). It is thought that following formation of the ORC-Cdc6-

Cdt1-Mcm2-7 complex ATP hydrolysis of Orc1 and Cdc6 leads to release of Cdt1 from 

the DNA to leave an ORC-Cdc6-Mcm2-7 complex bound to DNA. Since licensing 

requires the loading of a double Mcm2-7 hexamer, the second Mcm2-7 hexamer is 

then loaded to the DNA in a Cdt1 dependant manner although the exact mechanism of 

formation of the Mcm2-7 double hexamer remains unknown (Fernandez-Cid et al., 

2013). 

Given that Cdt1 is recruited to DNA following ORC and Cdc6 loading, it is therefore 

possible that the ΔCdt11-243-RFP construct is loaded to chromatin by forming a complex 

with other licensing proteins such as interaction with an ORC-Cdc6 complex. Due to 

the loading of ΔCdt11-243-RFP onto chromatin towards the end of licensing and start of 
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S-phase (Figure 6.5A) it is also possible that the loading is PCNA dependant and 

mediated through the PIP box of ΔCdt11-243-RFP (Arias and Walter, 2005a).  

In Xenopus egg extract Mcm2 loading occurs at 10 minutes post-activation whereas 

ΔCdt11-243-RFP loading only began to appear at 60 minutes post-activation (Figure 

6.5A). Since ΔCdt11-243-RFP loading to chromatin occurs towards the end of DNA 

licensing and start of S-phase it is unlikely that it is recruited by an Orc1 interaction as 

ORC loading is one of the first steps in DNA licensing. It is therefore plausible that the 

ΔCdt11-243-RFP protein is loaded to chromatin in a PCNA dependant manner. PCNA is 

only chromatin bound during DNA replication.  

To investigate the possibility that ΔCdt11-243-RFP is loaded to DNA in a PCNA dependant 

manner, the CDK inhibitor p27 was used to block PCNA loading and initiation of DNA 

replication. Xenopus egg extract was activated with 0.3 mM CaCl2 before 

supplementing with 20 ng/µl sperm DNA, 19 ng/µl ΔCdt11-243-RFP and 100 nmol p27. 

Samples of the extract were then fixed and the chromatin isolated at selected time 

points between 0 and 240 minutes post-activation to encompass one whole cycle of 

DNA licensing and what would be DNA replication in the absence of p27. The isolated 

chromatin samples were run on an SDS-PAGE gel and immunoblotted to detect 

chromatin bound proteins. The chromatin samples were blotted for Mcm2 to 

determine the licensing state of the chromatin and blotted for RFP to detect ΔCdt11-

243-RFP. The samples were also blotted for PCNA to confirm the inhibition of DNA 

replication initiation by p27 as in the absence of initiation PCNA is not loaded onto 

chromatin. 

Figure 6.5B shows that p27 has inhibited the loading of PCNA onto chromatin. In 

addition, at the time points 60 to 160 minutes following activation, ΔCdt11-243-RFP 

chromatin loading is also inhibited. In extract minus p27, ΔCdt11-243-RFP was chromatin 

bound between 60 and 160 minutes post activation. This shows that when PCNA 

chromatin loading is inhibited, ΔCdt11-243-RFP loading is also inhibited suggesting that 

ΔCdt11-243-RFP DNA loading is via a PCNA dependant mechanism. Although some 

ΔCdt11-243-RFP was detected between 200 And 240 minutes post-activation this is past 

the time at which DNA replication was blocked and is likely due to sample 

contamination. 
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The loading of the ΔCdt11-243-RFP construct to DNA at the end of licensing in a PCNA 

dependant manner suggests that the interaction between the N-terminal of Cdt1 and 

DNA is not important for DNA licensing. Since one of the main mechanisms of Cdt1 

regulation is via DNA replication and PCNA dependant degradation mediated at the N-

terminal PIP box of Cdt1 (Arias and Walter, 2005a), this suggests that the ΔCdt11-243-

RFP construct binding could be important for Cdt1 regulation rather than Cdt1 

licensing activity. 

In order for ΔCdt11-243-RFP to be loaded to DNA in either an ORC-Cdc6 or PCNA 

dependant manner the ΔCdt11-243-RFP protein must have the capacity to interact with 

these licensing proteins. However, the interactions between the Cdt1 protein and 

other licensing components such as Orc1-6 and Cdc6 have not been identified (Caillat 

and Perrakis, 2012). The binding sites of Cdt1 to licensing components other than 

MCM and geminin (Ferenbach et al., 2005) have also not been mapped. 

Since the interaction domains of Cdt1 to the other licensing proteins including the ORC 

complex proteins are unknown it was important to determine whether or not the 

ΔCdt11-243-RFP construct is capable of binding to ORC. To investigate the interacting 

proteins of ΔCdt11-243-RFP IP was used. Xenopus egg extract was activated with 0.3 mM 

CaCl2 before supplementing with 20 ng/µl sperm DNA and 19 ng/µl ΔCdt11-243-RFP. At 

60 minutes and 90 minutes post-activation which represent the end of licensing and 

mid-point of S-phase, the licensing reaction was stopped and the extract added to RFP 

antibody beads overnight. During the IP the ΔCdt11-243-RFP protein is isolated using the 

RFP antibody and any proteins that co-precipitate were therefore bound to ΔCdt11-243-

RFP. The isolated ΔCdt11-243-RFP samples from the IP were run on an SDS-PAGE gel and 

blotted for the Orc1 protein. Since Figure 6.5B suggests that ΔCdt11-243-RFP is recruited 

to chromatin in a PCNA dependant manner the samples were also blotted for PCNA. To 

confirm isolation of ΔCdt11-243-RFP the samples were blotted for RFP. For the negative 

control activated Xenopus egg extract supplemented with 20 ng/µl DNA but minus 

ΔCdt11-243-RFP was added to the RFP antibody beads. 

Figure 6.6 shows that at both 60 minutes and 90 minutes in activated egg extract, both 

Orc1 and PCNA co-precipitate with ΔCdt11-243-RFP. The negative control confirms that 

without the presence of the ΔCdt11-243-RFP construct the RFP antibody is unable to 
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isolate Orc1. This verifies that Orc1 was isolated as a result of binding to ΔCdt11-243-RFP 

rather than indirectly by the RFP antibody itself. Therefore this shows that both Orc1 

and PCNA are able to bind to the ΔCdt11-243-RFP construct. 

A PIP box for interaction of Cdt1 with PCNA has previously been mapped to the first 13 

amino acids of the N-terminus of Cdt1 (Arias and Walter, 2005a) which explains the 

binding of PCNA to ΔCdt11-243-RFP. The binding of Orc1 to ΔCdt11-243-RFP (Figure 6.5) 

suggests that there is an Orc1 binding region located within the N-terminal 243 amino 

acids of Cdt1. As shown in Figure 6.5, ΔCdt11-243-RFP interacts with both Orc1 and 

PCNA. Since Figure 6.5 shows greater binding of PCNA to ΔCdt11-243-RFP at 90 minutes 

post-activation, once S-phase is underway, this further suggests that ΔCdt11-243-RFP is 

recruited to chromatin by PCNA rather than via an Orc1-Cdc6 interaction.  
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Figure 6.6. Protein binding of ΔCdt1
1-243

-RFP to other DNA licensing proteins in Xenopus egg extract. 
Xenopus egg extract was activated with 0.3 mM CaCl2 and supplemented with 20 ng/µl demembranated 
sperm DNA and 19 ng/µl ΔCdt1

1-243
-RFP. At 60 minutes and 90 minutes post-activation to represent the 

end of licensing and mid-point of S-phase, IP with RFP antibody beads was used to isolate the ΔCdt1
1-243

-
RFP protein. The isolated ΔCdt1

1-243
-RFP samples were then ran on an SDS-PAGE gel and blotted for the 

licensing and replication proteins Orc1 and PCNA. The samples were also blotted for RFP to detect 
ΔCdt1

1-243
-RFP. As a negative control active extract minus ΔCdt1

1-243
-RFP was added to RFP antibody 

beads and purified by IP at 90 minutes post-activation. 
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6.3 Discussion 

The results presented here show that the Cdt1 N-terminal ΔCdt11-243-RFP construct is 

localised to the nucleus during S-phase in Xenopus embryos. In agreement with this 

the ΔCdt11-243-RFP construct is also localised to the nucleus in vitro in Xenopus egg 

extract. Once in the nucleus the ΔCdt11-243-RFP protein is recruited to DNA towards the 

end of DNA licensing and at the start of S-phase. Although the ΔCdt11-243-RFP protein 

binds to both Orc1 and PCNA in Xenopus egg extract, when PCNA DNA loading is 

inhibited ΔCdt11-243-RFP loading is also abolished suggesting that PCNA rather than 

Orc1 is involved in the chromatin loading of ΔCdt11-243-RFP. 

It has previously been shown that in human cells a Cdt1 mutant lacking the first 161 

amino acids localises to the cytoplasm and does not enter the nucleus. This was 

attributed to the absence of an NLS which is located at the N-terminal region of Cdt1 

between amino acids 48-71 (Nishitani et al., 2004). In agreement, the results 

presented here show that the N-terminal 1-243 amino acid region of Cdt1 has the 

capacity to localise to the nucleus. However, the results presented in Chapter 4 show 

that a ΔCdt1243-620 construct is capable of inducing re-licensing and re-replication of 

DNA leading to DNA damage and cell cycle arrest. The ΔCdt1243-620 construct must 

therefore also have the ability to cross the nuclear envelope into the nucleus. One 

possibility for the discrepancy is that there are further domains away from the N-

terminal region which are also capable of targeting Cdt1 to the nucleus. It is also 

possible that the ΔCdt1243-620 construct binds to other licensing proteins such as Cdc6 

or one of the ORC or MCM complex proteins and is then transported into the nucleus 

as part of the protein complex. Indeed it has been shown that in budding yeast Cdt1 is 

recruited to the nucleus as part of a Cdt1-Mcm2-7 protein complex (Tanaka and 

Diffley, 2002). Since the ΔCdt1243-620 construct contains an MCM binding domain it is 

therefore possible that ΔCdt1243-620 was able to localise to the nucleus through forming 

a complex with Mcm2-7. 

In the study showing that truncated Cdt1 mutants lacking the N-terminal domain are 

localised to the cytoplasm rather than the DNA, the cell cycle stage of the localisation 

of the Cdt1 mutant was not stated (Nishitani et al., 2004). It is therefore possible that 

the different mechanisms of Cdt1 nuclear import occur at different cell cycle stages. 
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Indeed the N-terminal ΔCdt11-243-RFP construct was shown to localise to the nucleus 

during S-phase but not prophase in Xenopus embryonic cells (Figure 6.1). 

Since both the ΔCdt11-243-RFP and ΔCdt1243-620 constructs are capable of localising to 

the nucleus via separate mechanisms this suggests that there are multiple redundant 

mechanisms for Cdt1 nuclear import. Due to the importance of Cdt1 activity for correct 

DNA licensing and replication, this would not be the first instance of redundancy in 

Cdt1 regulation. In Xenopus egg extract both geminin inhibition and Cdt1 proteolysis 

must be abolished before there is DNA re-replication due to uncontrolled Cdt1 activity 

(Li and Blow, 2005). 

Data regarding the interactions between Cdt1 and the other licensing proteins Orc1-6 

or Cdc6 are currently lacking (Caillat and Perrakis, 2012). The co-precipitation of Orc1 

with ΔCdt11-243-RFP suggests that there is an Orc1 binding site in the N-terminal region 

of Cdt1 (Figure 6.6). However only 60 and 90 minutes following extract activation were 

sampled which represent the end of licensing and mid-point of S-phase. Since Orc1 

binding is one of the earlier time points in DNA licensing, the role of Orc1 binding the 

N-terminal of Cdt1 during later licensing and S-phase remains unclear and therefore 

requires further investigation.   
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7.1 Summary and Conclusions 

7.1.1 Introduction 

In order to maintain genetic integrity it is essential that the DNA is replicated 

completely and accurately during each cell cycle. To ensure faithful duplication of the 

genome, DNA replication is tightly controlled. This tight control is achieved through 

first licensing the DNA for replication which primes the DNA to sanction replication 

from the licensed sites during S-phase. The process of DNA licensing must also be 

tightly controlled to allow licensing during late M-phase to G1 only. Re-licensing of the 

already replicated DNA can lead to re-replication and genomic instability which is a 

hallmark of cancer (Blow and Dutta, 2005; Blow and Gillespie, 2008). 

One of the main mechanisms by which DNA licensing is limited to once per cell cycle is 

through regulation of the activity of the DNA licensing protein Cdt1. In Metazoan 

somatic cells Cdt1 is regulated via two mechanisms: degradation and inhibition by 

geminin (Arias and Walter, 2005b; Li and Blow, 2005; Caillat and Perrakis, 2012). 

However, the importance of Cdt1 regulation for correct cell cycle progression in early 

embryonic cells has been a point of contention. Depletion of geminin mRNA from 

Xenopus embryos using morpholinos had no effect on cell cycle progression until the 

onset of the MBT. This suggested that regulation of geminin activity, and by 

association Cdt1 activity, was redundant during the pre-MBT embryonic cell cycle 

(McGarry, 2002). In contrast it has also been shown that functional knockdown of 

geminin activity causes arrest of the pre-MBT cell cycle suggesting that regulation of 

geminin and therefore Cdt1 activity is crucial during the pre-MBT cell cycle (Kisielewska 

and Blow, 2012). The role of Cdt1 regulation for proper embryonic development 

therefore required further clarification. 

The structure of Cdt1 can be organised into three functional regions. The N-terminal 

region of the protein contains many of the regulatory regions including destruction 

boxes, a PIP box and cy motif which are each involved in Cdt1 regulation via 

degradation (Li et al., 2003; Liu et al., 2004; Nishitani et al., 2004; Arias and Walter, 

2005a; Nishitani et al., 2006; Senga et al., 2006). The central region of Cdt1 contains 

sites for binding to the Cdt1 inhibitor protein geminin while the C-terminal region 

contains the MCM binding domain which is essential for the licensing activity of Cdt1 
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(Ferenbach et al., 2005). The highly characterised structure of the Cdt1 protein allowed 

truncated Cdt1 constructs to be designed which were deregulated but licensing active 

(ΔCdt1243-620) and regulated but licensing inactive (ΔCdt11-243-RFP). The constructs were 

therefore designed to allow the effect of mis-regulation of Cdt1 to be investigated 

along with the mechanisms of Cdt1 regulation. 

Upon microinjection into developing Xenopus embryos, mRNA is efficiently translated 

into protein (Gurdon et al., 1974). This technique therefore provides the opportunity 

to investigate Cdt1 regulation during the pre-MBT cell cycle in vivo using the truncated 

Cdt1 constructs. The Cdt1 constructs were inserted into the pRN3 vector which is 

compatible with in vitro transcription to produce mRNA for expression in Xenopus 

embryos. In addition the ΔCdt11-243-RFP construct was also inserted into the pET-32a(+) 

vector to allow expression as recombinant protein to investigate Cdt1 regulation using 

the in vitro Xenopus egg extract system. 

7.1.2 Correct Cdt1 Regulation is Crucial for pre-MBT Cell Division 

Expression of the mRNA of the deregulated ΔCdt1243-620 construct caused cell cycle 

arrest in pre-MBT Xenopus embryonic cells. The ΔCdt1243-620-expressing cells were 

arrested with both Mcm2 and Cdt1 bound to the DNA which shows that the cells were 

arrested in a licensed state and suggests that re-licensing and subsequent re-

replication of the DNA occurred. In addition chromatin bound Rad 51 and p53 were 

detected in the arrested cells showing the presence of DNA damage and suggesting 

activation of cell cycle checkpoints. The presence of DNA damage further substantiates 

the occurrence of DNA re-replication in the arrested cells. The cell cycle arrest also 

lead to severe developmental abnormalities in the effected Xenopus embryos. This 

provides strong evidence that Cdt1 activity must be tightly regulated for normal pre-

MBT embryonic cell cycle progression. 

It has previously been shown that depletion of geminin mRNA from pre-MBT Xenopus 

embryos using morpholinos has no effect on the embryonic cell cycle until the onset of 

the MBT at which point cell cycle arrest occurred. This lead to the suggestion that 

geminin and therefore Cdt1 activity were inconsequential for preventing re-replication 

in pre-MBT Xenopus embryos (McGarry, 2002). However it has since been shown that 

siRNA is unsuited to the Xenopus embryonic model and as such does not induce RNAi. 
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The siRNA in fact binds non-specifically to Ago proteins resulting in embryonic defects 

during later development (Lund et al., 2011). This suggests that in the study by 

McGarry the effects observed were due to the geminin morpholinos binding to Ago 

proteins rather than depletion of geminin. It has also been shown that functional 

knockdown of the geminin protein in pre-MBT cells causes arrest of the cell cycle 

(Kisielewska and Blow, 2012). This is in agreement with the results presented here and 

therefore provides extensive evidence that Cdt1 regulation by geminin is essential to 

prevent re-replication and allow cell cycle progression in pre-MBT Xenopus embryos.  

7.1.3 Cdt1 is Regulated by Changing Interactions with Geminin in pre-MBT Cells 

Since Cdt1 regulation is critical to prevent re-licensing and re-replication to allow 

normal pre-MBT cell cycle progression it was important to determine the mechanisms 

of Cdt1 regulation in this system. The ΔCdt11-243-RFP construct consisting of only the N-

terminal regulatory region of Cdt1 was used to investigate Cdt1 regulation during the 

embryonic cell cycle both in vivo and in vitro.  

The N-terminal region of Cdt1 contains sites necessary to target the protein for 

ubiquitination during the somatic cell cycle. However there was no evidence of 

ubiquitination of the ΔCdt11-243-RFP construct either in Xenopus embryos or in the 

Xenopus egg extract system. In addition, when Xenopus embryos were treated with 

the proteasome inhibitor MG132 there was no accumulation of wild type Cdt1 and no 

evidence of accumulation of an ubiquitin ladder or chain. Taken together this suggests 

that Cdt1 is not regulated by ubiquitination during the pre-MBT cell cycle. 

In addition to sites targeted for ubiquitination there are also sites for phosphorylation 

of Cdt1 located at the N-terminal region. In pre-MBT Xenopus embryos serine 

phosphorylation was detected at the molecular weight of chromatin bound Cdt1 and 

could indicate that phosphorylation may play a role in Cdt1 regulation. It is also 

possible that the serine phosphorylation detected was of a protein of the same 

molecular weight as Cdt1. There was also no detection of serine phosphorylation of 

the N-terminal ΔCdt11-243-RFP construct. It could be that the potential serine 

phosphorylation of chromatin bound Cdt1 was localised to a different area of the Cdt1 

protein away from the N-terminal domain. However there is a PEST domain, which has 

recently been characterised in mouse Cdt1 but is conserved across different species, 
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located at the N-terminal of Cdt1 which is rich in serine and threonine residues. In 

human cells the PEST domain is phosphorylated to prevent Cdt1 recruitment to 

chromatin during M-phase (Coulombe et al., 2013). Therefore it may be that this 

region is not phosphorylated in the in vitro system or it is also possible that the 

methods used were insufficient to detect the phosphorylation.  

In Xenopus egg extract Cdt1 is degraded upon release from metaphase through APC/C 

mediated proteolysis (Li and Blow, 2005). The ΔCdt11-243-RFP construct was also 

degraded in Xenopus egg extract upon release from metaphase arrest. The 

degradation of ΔCdt11-243-RFP was inhibited by addition of the APC/C inhibitor Dbox 

while some of the degradation of ΔCdt11-243-RFP was also inhibited by p27, a CDK 

inhibitor which blocks initiation of DNA replication. This shows that as with 

endogenous Cdt1 the ΔCdt11-243-RFP construct is degraded by two different pathways: 

APC/C mediated degradation and replication dependant degradation. As is the case 

with endogenous Cdt1, the degradation of ΔCdt11-243-RFP in activated egg extract was 

abolished in extract supplemented with lower DNA concentrations (Kisielewska and 

Blow, 2012). This can be attributed to less DNA content resulting in less replication 

dependant degradation of ΔCdt11-243-RFP. 

Although the N-terminal ΔCdt11-243-RFP construct of Cdt1 is targeted for degradation 

as with endogenous Cdt1, there was a lack of accumulation of Cdt1 in pre-MBT 

embryos treated with the proteasome inhibitor MG132. This suggests that Cdt1 is not 

degraded during the pre-MBT cell cycle. This is in line with recently published data 

showing that Cdt1 and geminin levels remain persistently high during the pre-MBT cell 

cycle (Kisielewska and Blow, 2012) and therefore confirms that degradation of Cdt1 is 

not enlisted to regulate Cdt1 activity in pre-MBT Xenopus embryos. This suggests that 

during the pre-MBT cell cycle either the mechanisms for targeting Cdt1 for proteolysis 

are absent or inactive; or alternatively Cdt1 is protected from degradation. One 

potential candidate protein for protecting Cdt1 from proteolysis is geminin which has 

been shown to stabilise Cdt1 in human cells by preventing ubiquitination and 

subsequent degradation (Ballabeni et al., 2004). 

It has previously been suggested that a complex between Cdt1 and geminin may act as 

a switch to flip between licensing active and inactive states with a Cdt1:geminin 



172 
 

complex shown to possess licensing activity (Lutzmann et al., 2006). In agreement with 

this it has been shown that the Cdt1:geminin complex can form two stoichiometries of 

2:4 and  1:2 with the 2:4 Cdt1:geminin complex incapable of licensing the DNA (De 

Marco et al., 2009). The results presented here show that Cdt1 regulation is crucial 

during the pre-MBT cell cycles. However Cdt1 is not degraded nor is there evidence of 

Cdt1 ubiquitination, although there may be phosphorylation specific to chromatin 

bound Cdt1. Combined with the persistently high levels of both Cdt1 and geminin 

throughout the pre-MBT cell cycle (Kisielewska and Blow, 2012) this suggests that Cdt1 

is regulated through changing interactions with geminin. This mechanism would allow 

Cdt1 to bind geminin in a licensing active stoichiometry during DNA licensing and in a 

licensing inactive stoichiometry during S-phase to prevent re-licensing and re-

replication. The proposed model for regulation of Cdt1 in the pre-MBT cell cycle is 

shown in Figure 7.1. 

The model of Cdt1 regulation through dynamic complex formation with geminin 

(Figure 7.1) would allow regulation of Cdt1 in the absence of degradation. It would also 

explain how ΔCdt1243-620 was able to cause the cell cycle arrest by disrupting the 

Cdt1:geminin ratio and escaping inactive complex formation.  
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Figure 7.1. Proposed model for DNA licensing and Cdt1 regulation in pre-MBT Xenopus embryos. The 
pre-MBT embryonic cell cycle consists only of alternating S- and M- phases. DNA licensing therefore 
occurs during anaphase of M-phase with PCNA detected on chromatin during telophase suggesting 
initiation of DNA replication. Regulation of Cdt1 is predominantly through forming a licensing active 
complex with geminin during M-phase and a licensing inactive complex during S-phase with some 
regulation of chromatin bound Cdt1 via serine residue phosphorylation. Based on the Cdt1:geminin 
complex structures characterised by De Marco et al., the active complex is shown in a 1:2 ratio of 
Cdt1:geminin and the inactive complex is shown in a 2:4 ratio. 
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7.1.4 The Cdt1 N-terminal Region Participates in DNA and Protein Interactions 

The DNA and protein interactions of the N-terminal ΔCdt11-243-RFP construct were also 

investigated. The ΔCdt11-243-RFP construct is capable of both crossing the nuclear 

envelope, which is in agreement with previous work showing a nuclear localisation 

signal located to the Cdt1 N-terminal (Nishitani et al., 2004), and binding DNA. In 

addition the ΔCdt11-243-RFP construct was able to bind DNA during S-phase in Xenopus 

embryonic cells and at the onset of S-phase in Xenopus egg extract. The binding of the 

N-terminal region to DNA was via a mechanism dependant on PCNA. However since 

the ΔCdt1243-620 construct which lacks the N-terminal region is capable of DNA licensing 

(Ferenbach et al., 2005) this suggests that there are other mechanisms for Cdt1 DNA 

binding targeted away from the N-terminal region. There may therefore be 

redundancy in mechanisms for DNA loading of Cdt1. 

The results presented here also show that the ΔCdt11-243-RFP construct binds to Orc1. 

The interaction domains of Cdt1 to other licensing proteins have not been previously 

mapped (Caillat and Perrakis, 2012) and this data suggests that there is an Orc1 

binding site located at the N-terminal region of Cdt1. It is possible that an interaction 

between Cdt1 and Orc1 through the N-terminal binding site plays a role during DNA 

licensing. However the ΔCdt1243-620 construct, which lacks the N-terminal region and 

therefore the N-terminal Orc1 binding site, is still capable of licensing the DNA 

(Ferenbach et al., 2005). This suggests that the interaction between the Cdt1 N-

terminal and Orc1 is not essential for DNA licensing. It is possible that this interaction 

acts redundantly to interactions with other ORC proteins. It is therefore important for 

further work to map the other protein-protein interaction domains of Cdt1. 

It has previously been shown that mechanisms of regulation of Cdt1 act redundantly in 

Xenopus egg extract with re-replication of DNA occurring only when both geminin 

inhibition and Cdt1 proteolysis are abolished (Li and Blow, 2005). This redundancy is 

unsurprising given the importance of correct regulation of Cdt1 activity for proper DNA 

licensing. The potential redundancy observed in the Cdt1 interactions with DNA and 

Orc1 suggests that there may be multiple layers of redundancy across many aspects of 

Cdt1 function in order to ensure correct activity of Cdt1. 
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7.2 Future Work 

In Chapter 5 the regulation of the N-terminal ΔCdt11-243-RFP construct was 

investigated. It was shown that concentrations of the p27 inhibitor above 52 µM 

partially prevented the degradation of ΔCdt11-243-RFP. This suggests that degradation 

of ΔCdt11-243-RFP is at least in part dependant on replication and interaction with PCNA 

since p27 blocks PCNA loading and initiation of DNA replication. This is consistent with 

reports showing that full length Cdt1 is degraded in a replication dependant manner 

through interaction with PCNA via a PIP box located at the N-terminal region of Cdt1 

(Arias and Walter, 2005a). The stabilisation of ΔCdt11-243-RFP levels in Xenopus egg 

extract under low DNA conditions in which lower DNA content would lead to lower 

levels of replication-dependant degradation also provides evidence that the ΔCdt11-243-

RFP construct is degraded via this mechanism. However, it would also be appropriate 

to repeat the experiment at a single concentration of p27 to observe the stabilisation 

of ΔCdt11-243-RFP in the presence of p27 over time from activation of the extract in 

comparison to the degradation of ΔCdt11-243-RFP in the absence of p27. Repeating this 

experiment in duplicate would also allow statistical analysis of the data and robust 

confirmation of the role of PCNA-mediated replication-dependant degradation of the 

ΔCdt11-243-RFP construct.  

It has been shown that in Xenopus egg extract endogenous Cdt1 is degraded through 

mechanisms mediated by the APC/C (Li and Blow, 2005). Consistent with this in 

Chapter 5 it was shown that the APC/C inhibitor Dbox prevents degradation of ΔCdt11-

243-RFP. The N-terminal ΔCdt11-243-RFP construct is therefore also targeted for 

degradation mediated by the APC/C. This experiment was repeated twice and 

statistical analysis of the results confirmed that Dbox inhibited degradation of ΔCdt11-

243-RFP. However it would of provided a more robust statistical analysis if the n 

number of the experiments was increased to at least n=3 which was used to show the 

degradation of ΔCdt11-243-RFP in activated egg extract. 

Although it has been shown previously that there are sites in the N-terminal region of 

Cdt1 which are targeted for ubiquitination there was no evidence of ubiquitination of 

either ΔCdt11-243-RFP or wild type Cdt1 in Xenopus embryos in vivo. This suggests that 

Cdt1 is not regulated by ubiquitin mediated mechanisms during the embryonic cell 

cycle. However, ubiquitination is difficult to detect using ub antibodies and western 
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blotting as there is the possibility that the antibodies may be unreliable. In an attempt 

to preserve any ubiquitination present and aid detection, a deubiquitylase inhibitor 

was used in the buffer when producing the embryo extract which was blotted for 

uniquitin (Figure 5.3C). An alternative technique which could be used to confirm that 

there is no ubiquitination of either ΔCdt11-243-RFP or endogenous Cdt1 in embryos 

would be to express a tagged version of ubiquitin and then immunoblot for the tag 

rather than the ubiquitin itself (Choo and Zhang, 2009). The tagged ubiquitin could also 

be added to egg extract along with ΔCdt11-243-RFP before co-immunoprecipitation to 

determine whether or not the two interact. 

To determine whether or not the ΔCdt11-243-RFP construct was able to bind to other 

licensing proteins IP was used. The results presented in Chapter 6 show that ΔCdt11-243-

RFP binds to Orc1 and PCNA. However, only two time points of the cell cycle in the egg 

extract were sampled and therefore it cannot be ruled out that there are other 

protein-protein interactions involving Cdt1 and the licensing proteins at other time 

points during DNA licensing. It would therefore be useful to repeat the experiments 

and sample more time points from earlier in the cell cycle during the time of active 

DNA licensing and investigate binding of other licensing proteins such as Cdc6. Since 

the interaction domains of the Cdt1 protein with the other licensing proteins other 

than the MCM complex and geminin have not been mapped (Caillat and Perrakis, 

2012), IP using ΔCdt11-243-RFP would be a useful technique to map any binding sites 

present in the N-terminal region. Given that Orc1 binds to ΔCdt11-243-RFP it is also 

possible that ΔCdt11-243-RFP interacts with one of the other ORC complex proteins 

Orc2, Orc3, Orc4, Orc5 or Orc6. 

Until recently the interactions and mechanisms of Mcm2-7 loading via the licensing 

proteins ORC, Cdc6 and Cdt1 was not known. Recent studies in yeast have shown that 

there are several steps during the process of DNA licensing in which multi-protein 

complexes between ORC, Cdc6, Cdt1 and Mcm2-7 are formed in order to load the 

Mcm2-7 complex and form a licensed DNA origin (Takara and Bell, 2011, Sun et al., 

2013)). The mechanism behind the loading of the second Mcm2-7 complex to form the 

Mcm2-7 heterohexamer is still unclear (Fernandez-Cid et al., 2013). It is therefore 

important for future work to establish the mechanisms behind the loading of the 

second Mcm2-7 complex in this yeast model system. In addition given the differences 
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between the yeast system and the Xenopus embryo it is also important to establish 

whether or not the same interactions and complexes exist between the ORC, Cdc6 and 

Cdt1 proteins in loading the Mcm2-7 complex in both Xenopus embryos in vivo and in 

Xenopus egg extract in vitro. 
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