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ABSTRACT 

In this work the potential application of CsH2PO4 as intermediate temperature electrolyte 

for Proton Exchange Membrane Water Electrolysis (PEMWE) was studied. This material, 

from the phosphate-based solid acid family, was previously reported as a promising 

electrolyte for intermediate temperature PEM fuel cells although no study as electrolyte in 

a PEMWE system had been carried out before.  

The physico-chemical properties of phosphate-based solid acids in terms of structure and 

morphology were investigated and their thermal stability evaluated. Proton conductivity at 

the intermediate temperature range (150 – 300 °C) was measured and the influence of 

humidity on the stability of CsH2PO4 in terms of dehydration and water solubility 

determined.  

Different approaches for the fabrication of CsH2PO4-based membranes are proposed in 

order to improve the mechanical properties and reduce the thickness and ohmic resistance 

of the electrolyte. Membrane fabrication techniques including casting of polymer/CsH2PO4 

composites, glass-fibre reinforcement, polymer doping or electrospinning were developed 

and the resulting membranes characterised in terms of structure, proton conductivity and 

mechanical stability.  

The compatibility of CsH2PO4 with IrO2 was evaluated and compared to standard acid 

electrolyte solutions in a three-electrode half-cell in the low temperature range (40 – 80 

°C). The performance of IrO2 towards oxygen evolution reaction (OER) in a CsH2PO4 

concentrated solution exhibited poor activity, which was attributed to a high kinetic 

activation caused by the high pH and high phosphate concentration in solution.  

Finally the performance of CsH2PO4 as solid-state electrolyte in the electrolysis cell was 

evaluated at intermediate temperatures (235 – 265 °C). Electrodes were optimised in terms 

of catalyst and ionomer loading for an intimate catalyst/electrolyte contact and 

characterised by cyclic voltammetry. The electrolysis system was characterised by quasi-

steady polarisation curves and electrochemical impedance spectroscopy. The maximum 

performance obtained by a Pt/CsH2PO4/IrO2 MEA system at 265 °C was 20 mA cm
-2

 at 

1.90 V. This low activity, in good agreement with the results obtained in the half-cell, was 

mainly attributed to kinetic losses generated in the CsH2PO4/IrO2 interface. The low 

acidity of the electrolyte is considered to affect the active oxidation state of iridium, 
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creating a non-hydrated oxide layer, which influenced negatively to the performance of the 

electrolyser.  

It is therefore concluded that despite the promising results reported for CsH2PO4 as 

electrolyte in intermediate temperature fuel cells, this material, and presumably the rest 

phosphate-based solid acids, are not to be considered as potential electrolytes for PEM 

water electrolysers.  

 

Keywords:  Water electrolysis; proton exchange membrane (PEM); inorganic proton 

conductors; solid acids; intermediate temperature. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

In this chapter an overall view of the global energy production and consumption system is 

explained and the feasibility of hydrogen as an alternative energy carrier to carbon based 

fuels by different hydrogen sources and production methods studied. The potential role of 

renewable energies coupled to a water electrolysis system in the future energy scenario is 

discussed. The advantages (and disadvantages) of proton exchange membrane water 

electrolysis (PEMWE) over other different electrolysis methods is discussed and the 

attraction of operating in the intermediate operating temperature (150 – 300 °C) addressed. 

Finally the objectives of this research are described and an overview of the content of this 

thesis explained. 

1.1. Background 

For centuries human being has been exploiting the resources of the planet with no measure 

or conscience of the consequences that may arise from it. We now realise that the natural 

resources used for our every-day living are finite and at the rate of consumption of our 

increasing population, close to 7 billion people now, those resources will be soon finished. 

We are also aware of the high negative impact the human kind and our way of living have 

in the fragile equilibrium of the planet by burning fossil fuels and cutting down massive 

areas of forests. It is crucial for the wellbeing of the planet, and of course for our own and 

for the generations coming, that we change the energy production and consumption model 

our societies are based on to a more sustainable alternative [1, 2].  

Nowadays more than 80 % of the total energy production of the planet is based on the 

combustion of fossil fuels such as oil, natural gas or coal (figure 1.1-a) [3]. This burning 

process produces high amounts of the so-called greenhouse gases (i.e. CO2, CH4) which 

are trapped in the atmosphere generating a global warming effect on the planet. The 

International Energy Agency (IEA) pictures a scenario in which global energy demand will 

rise by one-third in the period to 2012 – 2035, with a consequent rising of CO2 emissions 

of 20 % [4]. Besides, the natural reservoirs of fossil fuel resources are limited and therefore 

different alternatives of energy resources must be considered in a short-term view. 
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Moreover, the distribution of these natural resources is uneven in the world (figure 1.1-b) 

which generates socio-political issues between countries and often ends in wars to gain 

their control with the consequent death of many innocent people. For instance, the Gulf 

War, taking place in 1990 – 1991, where the control of the oil reserves in the Middle East 

was the highest driving force, civilian casualties between 50.000 – 100.000 were estimated 

[5].  

Energy security, as a concept of uninterrupted availability of energy sources at an 

affordable price, was introduced by the International Energy Agency (IEA) in 1974. It was 

created in order to secure and control the fuel supply (oil and natural gas mostly) and 

power generation in which the modern energy market is based on. The global character of 

this energy model and the uneven location of fossil fuel reservoirs, localised in few 

countries or regions in the world, makes the management and control of this energy system 

very complicated and highly dependent on political agreements. 

      

Figure 1.1. Pie charts of (a) the total world energy supply by source at 2010 (‘others’ includes wind, solar, 

thermal, etc.) [3] and (b) world distribution of proved oil reserves in 2012 [6].  

Energy production in big oil, natural gas and coal thermal plants or nuclear plants is 

nowadays the mayor electricity production system. The system operates in a centralised 

manner where high amounts of electricity are produced in a specific location and then 

distributed to the grid for its consumption by the user. This energy production system 

exhibits two main drawbacks; (1) a high energy loss by the electric power transmission 

through the grid and (2) the control of electricity prices is strongly influenced by the fuel 

producer. The first of these issues is mainly caused by the transmission of electricity by 

cable networks, where a considerable amount of the energy transmitted in electricity form 

is lost as heat derived from the Joule effect, this is, the production of heat resulting from 

(b) (a) 
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current flowing through a conductor. Some of the energy losses are also produced by the 

transformers in the power plant. Overall, the total energy loss between a power plant and 

users varies between 8 – 15 % [7].  The second issue mentioned, that is, the variability on 

the price of electricity, is greatly influenced by the fuel price and supply, which is 

determined by the fuel producer. Although the global energy market running nowadays is 

complicated and depends on many variables, the fuel and electric power production in a 

centralised and global model is the basic issue that allows the producers to control the price 

[8]. For these reasons the local production of energy in a decentralised manner or in small 

communities is of great interest. 

Alternative ways of energy production by sustainable resources such as wind or solar 

energy have been proposed in the last decades. Learning how to use these renewable and 

unlimited energy sources in an efficient way is necessary to develop and implement the 

technology. The main drawback of the mentioned renewable energy sources, such as wind 

or solar power, is that the energy is not produced in a continuous and homogeneous rate. 

This variability in the power production makes the balance between energy production 

(electricity produced by generators) and energy demand (electricity consumed) 

decompensated and therefore many energy excesses and shortages are produced. The 

storage of those energy excess peaks is the key technological issue for a real implantation 

of these renewable technologies [9].  

As electricity cannot be efficiently stored it must be used the same instant it is produced, 

meaning that supply and demand must always be balanced. One of the ways to storage this 

excess power is the production of hydrogen, which has to be synthesised by input of 

energy, as it does not exist in nature in its molecular structure. It acts as an energy carrier 

(or vector), storaging the energy applied to produce it as chemical energy. This hydrogen 

can then be utilised for electricity production in hydrogen fuel cells, which being 

electrochemical devices not dependant on Carnot´s cycle, exhibit efficiencies as high as 60 

% and produce as only emissions heat and water. When water is used as the source of 

hydrogen production by renewable energy, this energy production/consumption model is 

often called the Hydrogen cycle. It is very important, for this cycle to be sustainable and in 

order to build this model independent from fossil fuels, that the energy used for hydrogen 

production comes from a renewable source and the hydrogen prime source to be non-fossil, 

preferably water.  
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Although there are many different methods for hydrogen production and nowadays most of 

it is produced from fossil fuels, the electrolysis of water by renewable energy input is one 

of the few methods to proof sustainable in the hydrogen cycle. ‘Green hydrogen’ can be 

produced by coupling a water electrolysis system to either wind or solar power plants, for 

instance. Besides, the scale of these systems is very broad, being able to produce hydrogen 

in relatively small plants, in a local scale and for local consumption, without high 

environmental impact. The energy model based on the production of hydrogen is a real 

alternative for the implementation of renewable energies in our societies and for the 

necessary change to a more sustainable and environmentally friendly energy system [10].  

1.2. H2 production by Water Electrolysis 

Nowadays most of the global production of hydrogen is used in industrial processes such 

as the production of ammonia, oil processing or as a hydrogenating agent. Only ca. 1 % of 

the produced hydrogen is used as direct energy source, mostly in space programs [11]. The 

hydrogen used for these purposes is mainly produced from fossil fuels; natural gas, oil (as 

side product in refinering) and coal (figure 1.2).  

 

Figure 1.2. Hydrogen production by source at 2008 [12].  

The mayor hydrogen production methods comprise thermal processes, such as steam 

reforming of natural gas, gasification of coal or biomass or thermochemical water splitting 

(produced in nuclear fission reactors). All these processes generate undesirable side 

products, either greenhouse gas emissions or nuclear waste. In order to build an energy 

model, independent from fossil fuels, the production of hydrogen needs to be based on 

water. However, the global production of hydrogen from water is only of ca. 4 %, mostly 

produced by alkaline electrolysis, due to its higher cost of production comparing to the 
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above mentioned thermal methods [12]. The development of a highly efficient electrolysis 

system with low cost materials is therefore needed for a higher implementation of this 

technology in hydrogen production. 

The electrochemical conversion of water to hydrogen and oxygen is considered a well-

known principle to produce oxygen and hydrogen gas, first observed by Henry Cavendish 

in 1766 [13]. The core of an electrolysis unit is an electrochemical cell, which is filled with 

pure water and has two electrodes connected to an external power supply. At a certain 

potential, the electrodes start to produce hydrogen gas at the negative electrode and oxygen 

gas at the positive electrode following equation 1.1. 

H2O    ½ O2 + H2                            (1.1) 

The amount of gases produced per unit time is directly related to the current that passes 

through the electrochemical cell. Nicholson and Carlisle developed this technique in 1800 

by inducing a static charge to acidic water. In 1939 the first large water electrolysis plant 

with a capacity of 10,000 Nm
3
H2 h

-1
 was built and started operating [13, 14].  

From its early days water electrolysis has been greatly studied and different electrolysis 

methods were developed. The main three electrolysis methods operating nowadays are 

Alkaline Water Electrolysis (AWE), Proton Exchange Membrane Water Electrolysis 

(PEMWE) and Solid Oxide Water Electrolysis (SOWE) or Steam Electrolysis [15]. The 

main differences in the characteristics of these systems are given in table 1.1. 

Figure 1.1. Characteristic of different types of electrolysers.  

 AWE PEMWE SOWE 

Charge carrier OH
-
 H

+
 O

2-
 

Reactant H2O H2O H2O, CO2 

Electrolyte NaOH or KOH Polymer Ceramic 

Electrode Raney Ni Pt, Ir Ni-cermet 

Temperature / °C 40 – 90 20 - 90 800 - 1000 
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Alkaline Water Electrolysis (AWE) is a mature and reliable process, highly developed 

since its first operating system in 1978. It is the standard technology for large scale water 

electrolysis nowadays [16]. It operates using an alkaline solution of KOH or NaOH (ca. 30 

% wt.) as electrolyte, nickel electrode in the anode and carbon supported platinum or 

nickel electrode in the cathode. A porous diaphragm, conventionally asbestos, although 

recently polymeric porous films or NiO diaphragms are under investigation, is used to 

avoid the produced gases from mixing together. The principle of this process is based on 

the reduction of two molecules of water to one molecule of hydrogen and two hydroxyl 

ions at the cathode. The hydrogen escapes from the surface of the cathode in gaseous form 

and the hydroxyl ions migrate under the influence of the electrical field between cathode 

and anode through a porous diaphragm. In the anode the two hydroxyl ions are combined 

to form ½ molecule of oxygen and one molecule of water. These reactions are shown in 

equations 1.2 and 1.3. This system usually operates at a potential range of 1.8 – 2.2 V with 

current densities varying between 0.2 – 0.6 A cm
-2

 [16]. It exhibits efficiencies between 70 

- 85 %, based on the High Heating Value (HHV) of hydrogen, depending on the operating 

potential (equation 1.12). 

Cathode (-):  2H2O + 2e
-
    H2 + 2OH

-  
    (1.2) 

Anode (+):  2OH
-
     ½ O2+ H2O + 2e

-
    (1.3) 

In order to reduce the cathodic overpotential and improve the efficiency of these devices 

great effort has been focused in the development of alternative catalysts for hydrogen 

evolution. Mostly transition metal bi or trimetallic compounds, such as PtMo3 or PdTi, are 

under investigation for this purpose [17]. Investigations on non-precious materials, 

catalysts based on Ni or Fe, have also been carried out in order to reduce the overall cost of 

the device [18]. Although conventional alkaline electrolysers operate at a pressure range of 

1 – 5 bar, more developed advanced electrolysers can operate at elevated pressure, as high 

as 30 bar [19]. This high pressure provides a way to reduce the cost of further 

pressurisation of hydrogen to the overall process.  

The first Proton Exchange Membrane Water Electrolyser (PEMWE), or solid polymer 

electrolyte (SPE) electrolysis system, was built by General Electric [20] after the 

development of Nafion® proton exchange membrane by Dupont. The system was then 

developed by Membrel electrolyser technology over the years 1976 – 1989 [21]. Big effort 
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for the development of this technology is still carried out nowadays. The heart of this 

system is the so-called Membrane Electrode Assembly (MEA). The MEA is composed of a 

proton conducting membrane (i.e. perfluorosulfonic polymer, such as Nafion®) 

sandwiched between two electrodes, with platinum in the cathode (hydrogen evolution) 

and a metal oxide (i.e. iridium oxide) in the anode (oxygen evolution). The reactions taking 

place in the system are shown in equations 1.4 and 1.5. The catalysts are in contact with a 

gas diffusion layer, which is commonly based on carbon fibres in the cathode and porous 

titanium in the anode. Each of these electrodes is also in contact with a bipolar plate in 

order to build a single PEM electrolysis cell. An electrolysis stack is built by assembling in 

series several of these cells. The system can exhibit efficiencies as high as 90 %, based on 

the High Heating Value (HHV) of hydrogen [22]. 

Anode (+):  H2O    ½O2 + 2H
+
 + 2e

-
    (1.4) 

Cathode (-):  2H
+
 + 2e

-
    H2     (1.5) 

Highly pure water is fed to the anode, where oxygen evolution takes place. The protons 

produced in the electrochemical reaction in presence of metal oxide catalyst (i.e. IrO2) 

travel through the proton conducting membrane to the cathode. There, the protons and 

electrons recombine in presence of platinum to form hydrogen gas.  

Although in industrial plants the alkaline medium is preferred to acidic systems, because of 

a more easily controlled corrosion and cheaper construction materials, PEMWE exhibits 

several advantages over AWE systems. First, PEMWE can operate at much higher current 

densities, being able to operate up to 3.0 A cm
-2

 in comparison to 0.2 – 0.6 A cm
-2

 current 

densities exhibited by AWE at 1.8 – 2.2 V [16, 22, 23]. Secondly, as in PEMWE system a 

solid thin membrane is used as electrolyte, the volume of the cell is greatly reduced, and 

thus, stacks can be fabricated in a modular way. This is a very important characteristic to 

take into account for a decentralised hydrogen production system, where hydrogen is 

produced in a low scale in small communities, and issues related to its distribution are 

reduced [10]. PEMWE are also prepared to operate at high differential pressures, being 

able to directly produce pressurised and highly pure hydrogen. Although a lifetime of 5 

years is considered to be achievable in PEMWE [24], durability is still an issue needing to 

be addressed in these systems. Recent studies proved a stable operating PEMWE system 

with catalyst loadings as low as 0.1 – 0.2 mg cm
-2

 for 4000 h with no degradation [25]. 
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Solid Oxide Water Electrolysis (SOWE), or steam electrolysis, is a promising technology, 

still under development, which can reach higher efficiencies than alkaline or PEM 

electrolysis systems [26]. This system operates at temperatures between 800 – 1000 °C. 

This high temperature provides a series of advantages over the rest electrolysis 

technologies. From a thermodynamic point of view, the electric energy demand required to 

split a molecule of water, that is, the Gibbs free energy of the process, is considerably 

reduced (figure 1.4-a). Besides, the high temperature accelerates the reaction kinetics, 

reducing the overpotential of the reactions and providing higher efficiency to the 

electrolysis cell. It was reported single cells operating at 0.3 mA cm
-2

 current densities 

achieving 100% of Faraday efficiency at a voltage as low as 1.07 V [27].  

This technology employs oxygen ion conducting ceramics as electrolytes, such as ZrO2 - 

stabilised Y2O3, MgO or CaO, nickel-cermet electrode for hydrogen evolution and 

lanthanum, strontium and cobalt mixed oxide electrode for oxygen evolution. Water 

vapour is fed to the cathode where it splits to hydrogen gas and O
2-

 ions. The oxygen ions 

are then transported through the ceramic electrolyte to the anode, where they combine to 

form oxygen gas. These reactions are shown in equations 1.6 and 1.7. 

Cathode (-):  H2O + 2e
-
   H2 + O

2-
    (1.6) 

Anode (+):  O
2-

    ½ O2 + 2e
-
     (1.7) 

Lately, proton conducting ceramic materials have also been under investigation for their 

application as electrolytes in PEM steam electrolysis. These systems use materials such as 

Y-doped BaZrO3 or SrCeO3-based perovskites for the electrolyte [28], being the reactions 

taking place in the system the same as shown in equations 1.4 and 1.5. These materials 

operate at a more modest temperature range of 500 – 800 °C. 

Although advantageous in many ways, operating a system at such high temperatures carry 

other important issues, such as material degradation. The materials used to build the 

electrolysis cell must be corrosion resistant at high temperature and voltage, and issues 

such as the durability of the ceramic materials, sealing materials or the thermal expansion 

factors must be well addressed. The development of this technology is therefore focused in 

material science and in the engineering of the cell [23, 29]. 

In order to take advantage of the higher efficiency provided at high temperature and 

overcome the issue of the aggressive conditions subjected to the materials, high interest has 
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grown in the development of an intermediate temperature (100 – 300 °C) PEM electrolysis 

system. At this temperature range, the conditions are much milder and therefore a higher 

variety of materials can be used for the fabrication of the electrolysis cell. The main issue 

to make this system operate is that few materials have been proved to be proton conductors 

in the intermediate temperature range. The development of an intermediate temperature 

proton conducting membrane is therefore a critical issue for the development of this 

technology in the future. 

1.3. Intermediate Temperature Proton Exchange Membrane Water Electrolysis 

(IT-PEMWE) 

The electrochemical conversion of water to hydrogen and oxygen by utilising a renewable 

electrical energy source provides a clean and efficient way to produce pure hydrogen while 

reducing dependence on carbon based fuels [30]. In addition, water electrolysis offers a 

convenient method of localised hydrogen supply which overcomes problems and issues of 

its distribution [31, 32]. Although alkaline electrolysis is currently the dominant 

technology used due to its lower cost, proton exchange membrane water electrolysis 

(PEMWE) (figure 1.3) offers a series of advantages of great importance. It enables 

hydrogen production from pure water and electricity and has greater energy efficiency, 

higher production rates per unit electrode area and a more compact design. Nevertheless, 

because of its high electric energy requirement, there is no large scale use of PEMWE 

systems. There is a number of variables which have to be studied in order to enhance the 

performance of this device and the overall electrolysis system efficiency for more 

widespread commercial adoption. 

The main variables affecting the operating behaviour of the electrolyser are temperature 

and pressure, while the water management in the system plays a very important role. 

Increasing the operating temperature can have multiple beneficial effects in the system, 

such as the reduction of the required electrical energy and faster electrode kinetics. An 

increased operating pressure would lead to increased overall system efficiency as direct 

production of pressurised hydrogen could be carried out. Designing the system in such a 

way that only one reactant phase is present in each chamber (gaseous phase), would greatly 

simplify the system and eliminate the need of elegant solutions to avoid water 

management. The above points are discussed in detail below. 
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Figure 1.3. Schematic drawing of a PEM electrolysis cell [33]. 

1.3.1. Temperature 

Two reactions take place in a PEM electrolyser; water splitting in the anode (oxygen 

evolution reaction) and hydrogen evolution (proton reduction) in the cathode (equations 

1.4 and 1.5). The enthalpy of formation of one mole of water corresponds to the energy 

required to split one mole of water into hydrogen and oxygen. A fraction of this amount of 

energy, according to the second principle of thermodynamics, can be applied as thermal 

energy thus reducing the amount of electrical energy required (equations 1.8 – 1.9) [33, 

34]: 

ΔHR = ΔGR + TΔSR             (1.8) 

   ΔHR = ΔGR + Q         (1.9) 

Where ΔHR stands for enthalpy of reaction of water splitting, ΔGR for the Gibbs free 

energy of reaction, which corresponds to the minimum amount of energy that needs to be 

applied as electrical energy and TΔSR represents the product of entropy of reaction and 

temperature, which corresponds to the maximum amount of energy that needs to be applied 

as heat, termed Q in the above equation. 

The thermoneutral voltage, Vth, corresponding to the minimum cell voltage required to 

split a mole of water, is related to the total energy demand, ΔHR. The reversible voltage, 
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Vr, is related to the electric energy demand, ΔGR, of the cell. These relations are shown in 

equations 1.10 and 1.11. 

 

 

where n is the amount of electrons exchanged in the electrochemical reaction and F is 

Faraday constant (96485 C mol
-1

). As depicted in figure 1.4-a, the enthalpy, ΔHR, which 

corresponds to the total energy demand of the reaction, exhibits a sudden drop at 100 °C 

after which it rises slightly with temperature. That sudden drop corresponds to the enthalpy 

of evaporation of water. The fraction of the total energy needed as electricity, ΔGR, 

decreases with increasing the temperature while the fraction corresponding to heat 

requirement, Q, increases. The sum of the two, as expressed in equation 1.8, is almost 

constant (considering the slight increase in ΔHR). The thermoneutral, Vth, and reversible 

potential, Vr, are directly proportional to ΔHR and ΔGR respectively and therefore follow 

the same trend (figure 1.4-b). Above 100 °C Vth increases only slightly with increasing the 

temperature while Vr drops significantly [30, 35]. The electric energy applied in an 

electrolyser for water splitting reaction results in a significant amount of heat generated. 

This heat is used towards heat requirement, Q, which is needed for the reaction. The 

thermodynamic efficiency of the electrolyser is defined in equation 1.12. 

 

where HHVH2 is the produced hydrogen higher heating value and ΔGR and Q the 

electricity and heat used, respectively. With HHVH2 corresponding to ΔHR at 25 °C and 1 

atm and taking into account that Q = 0 because the operating potential is higher than the 

thermoneutral potential, the efficiency becomes:  

 

The efficiency of the electrolyser is thus inversely proportional to the potential of the cell. 

However, as the applied potential is above the thermoneutral voltage an excess of heat is 
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produced making the use of a cooling system necessary, affecting the overall efficiency 

and complexity of the system. It is worth noting that although the thermodynamic 

efficiency drops by increasing the temperature, the overall system efficiency can increase 

because of improved kinetics and reduced ohmic losses at higher temperatures.  

In the case of conventional PEM electrolysis, liquid water has to be fed in the anode. 

Another advantage of working in temperatures above 100 °C is the presence of only 

gaseous phase of reactants in the electrode compartment. Therefore water management 

does not need to be taken into account when designing the system. A possible problem in 

intermediate temperature PEM electrolysis could be the formation of cold spots during 

start-up and shut-down of the system which could lead to water condensation. 

   

Figure 1.4. Temperature dependence of (a) enthalpy, Gibbs free energy and heat requirement and (b) 

thermoneutral and reversible potentials, for water splitting reaction in liquid and gaseous phase at 1 atm. 

1.3.2. Pressure 

A proton exchange membrane (PEM) electrolyser can also work under pressurised 

conditions [30]. The operating pressure will affect the potential of the electrolyser 

according to Nerst equation: 

 

(a) (b) 
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where E is the applied potential, E0 the standard potential and P× is the partial pressure of 

the reactants. As pressure is increased in the device, each species’ partial pressure 

increases, as well as its concentration. If we consider that there is no pressure gradient in 

the two sides of the membrane the above equation changes to equation 1.15. 

 

Operating a pressurised electrolyser could prove advantageous in several ways. Direct 

production of pressurised hydrogen can simplify the overall system and reduce the cost as 

the use of an external compressor can be avoided. Marangio et al. compared the power 

needed for the operation of an atmospheric electrolyser system with subsequent 

compression of the produced H2 versus the power needed by pressurised electrolysis 

systems [36]. They concluded that the required power in the case of pressurised 

electrolysers is smaller, as shown in figure 1.5. This conclusion has been supported by 

other groups for PEM electrolysis [37, 38]. Nevertheless, operating at high pressure has 

been reported to increase hydrogen permeation through the membrane which, not only 

reduces the efficiency and degrades product quality, but may also exhibit safety issues 

[30]. 

 

Figure 1.5. Comparison of required power vs pressure to produce 1 mol s
-1

 (80.64 Nm
3
 h

-1
) of hydrogen in 

system operating at ambient temperature with subsequent pressurisation and pressurised systems [36]. 
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1.3.3. Previous work in IT-PEMWE 

In spite of the advantages arising from operating the electrolysis system in the intermediate 

temperature range (100 - 300 °C) from the thermodynamic, kinetic and engineering point 

of view, few studies have been reported in the area. The main drawback to develop this 

technology is accessing suitable proton conducting materials in this temperature range.  

The use of conventional proton exchange polymeric membrane, such as Nafion® or 

sulfonated polyethers, in a pressurised PEM electrolysis system at 125 – 150 °C has been 

reported [39]. As the higher pressure of the system allows the presence of liquid water at 

temperatures higher than 100 °C, conventional proton conducting membranes with proton 

conducting mechanism based on water can be used. When the system is not pressurised 

and liquid water is not present to act as proton carrier, this type of membranes cannot be 

used. An alternative is to substitute water by phosphoric acid as the proton carrier. Aili et 

al. reported a PEMWE system operating with H3PO4 – doped Nafion® and H3PO4 – doped 

polybenzimidazole (PBI) as electrolyte at ambient pressure and 130 °C. Performances of 

300 mA cm
−2

 and 500 mA cm
−2

 at 1.75 V were obtained respectively, although H3PO4/PBI 

system exhibited much lower durability [40]. Hansen et al. also reported a PEMWE 

system operating with H3PO4 – doped Aquivion® with values of 775 mA cm
−2

 at 1.80 V, 

also at 130 °C and ambient pressure [41]. They also reported degradation issues due to the 

presence of free phosphoric acid at high temperature and high potentials. Durability issues 

related to the corrosion of titanium-based electrodes and bipolar plates were also reported 

[42]. Important durability and corrosion issues are therefore related to IT-PEMWE system 

based on phosphoric acid-doped membranes. This is caused by the presence of free 

phosphoric acid in the system, which permeates through to membrane to the electrodes and 

bipolar plates. It has also been widely reported that this free H3PO4 limits the kinetics of 

oxygen reduction reaction (ORR) by the low oxygen permeability and phosphate 

adsorption onto the catalyst surface [43, 44]. These kinetic limitations are also expected to 

happen in the oxygen evolution reaction (OER) taking place in the electrolyser. 

In order to develop an intermediate temperature proton conducting electrolyte without the 

presence of free phosphoric acid, research focused on inorganic materials such as solid 

acids (see Chapter 2), heteropolyacids [45] or pyrophosphates [46] and composite 

polymeric/inorganic materials [47] are being widely studied. Although considerable effort 

has been made in the study of these intermediate temperature solid proton conductors for 
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PEMFCs, the sister technology to PEMWE, the application of these materials in a PEM 

electrolysis system has not been yet reported.  

The development of an intermediate temperature PEMWE system remains therefore as a 

challenge, where material development and system engineering play an important role. 

1.4. Research objectives 

This research is focused in the study of solid acid proton conducting materials for 

application as electrolyte in an intermediate temperature proton exchange membrane water 

electrolyser (IT-PEMWE).  

The research objectives were the following: 

- Synthesis and characterisation of medium temperature proton conducting phosphate-

based solid acids in order to select the most promising material for application as 

electrolyte in a water electrolyser. 

- Determine the feasibility of CsH2PO4 as electrolytic material in an IT-PEMWE in 

terms of physico-chemical stability. 

- Develop different methodologies to fabricate thin membranes based on CsH2PO4 to 

use in the electrolyser cell and provide lower ohmic resistance than a pellet. 

- Study the effect of CsH2PO4 as electrolytic aqueous medium in the activity of IrO2 

towards oxygen evolution reaction (OER) by half-cell electrochemical 

characterisation. 

- Investigate the viability of CsH2PO4 as electrolyte to develop a phosphoric acid-free 

proton exchange membrane water electrolyser in the intermediate temperature range 

(230 – 300 ºC). 

1.5. Overview of the thesis 

This thesis is presented as a series of eight chapters. All experimental work was carried out 

by the author, Asier Goñi-Urtiaga at the school of Chemical Engineering and Advanced 

Materials in Newcastle University, unless stated, such as the results obtained in a three-

moth secondment in CNRS-Montpellier II Université (France) or material characterisation 

results obtained by the University of Durham. In the end of all chapters a reference section 
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is included where the bibliography used is summarised. The content of the thesis is divided 

as follows: 

Chapter 1 gives an overview of the global energy production and consumption systems in 

use nowadays and the negative effects arising from them. Hydrogen is proposed as an 

alternative energy carrier and its sustainable production from water and renewable energy 

sources by electrolysis is explained. The advantages of intermediate temperature PEM 

water electrolysis over other electrolysis system are defended and the drawbacks for the 

development of this technology explained. 

In Chapter 2 a literature review of intermediate temperature proton conductors is carried 

out with special focus on solid acids. The characteristics of this family of materials are 

discussed and their applicability in PEM water electrolysis systems considered. 

Chapter 3 describes the experimental methods used in this research. The physico-chemical 

and electrochemical characterisation techniques performed for the study and evaluation of 

materials are detailed and the measurement conditions described. 

Chapters 4, 5, 6 and 7 describe and discuss the experimental results obtained during the 

three years of this research. 

In Chapter 4 the synthesis and characterisation of phosphate-based solid acids is explained. 

The properties of these materials in terms of crystal structure, morphology, proton 

conductivity and thermal stability are evaluated. The suitability, in terms of physical and 

chemical stability, of CsH2PO4 as proton conducting electrolyte for application in a PEM 

water electrolysis system is further studied. 

In Chapter 5 five different methods for the fabrication of composite membranes based on 

CsH2PO4 are proposed. The properties of the resulting membranes in terms of composition, 

proton conductivity and mechanical strength are evaluated and their applicability as proton 

conducting electrolytes discussed. 

Chapter 6 explores the effect of CsH2PO4, as electrolyte in its aqueous form, on the 

electrochemical active surface (EAS) of platinum black and iridium oxide and on the 

activity of iridium oxide towards oxygen evolution reaction (OER). All results are 

compared to aqueous solutions of sulfuric and phosphoric acids. Kinetic parameters for the 

evaluation of CsH2PO4 as electrolytic medium are calculated and discussed. 
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In Chapter 7 the evaluation of CsH2PO4 as a solid state proton conducting electrolyte in 

PEM water electrolysis is carried out. The effect of the ohmic and kinetic losses provided 

by the electrolyte in the overall performance of the electrolysis system is analysed and 

discussed. 

Chapter 8 summarises the conclusions obtained in this research and evaluates the 

applicability of CsH2PO4 as proton conducting material for application in intermediate 

temperature PEM water electrolysis. Different approaches and suggestions for potential 

future work are proposed.  

Appendices A and B gather the supporting experimental data and the list of publications 

and dissemination of this work, respectively.  
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CHAPTER 2 

LITERATURE REVIEW - SOLID ACIDS 

In this chapter a literature review of proton conducting materials with special focus in solid 

acids is detailed. The characteristics of the most studied solid acids and their composites in 

terms of structure and proton conductivity in the medium temperature range is 

summarised. A final section analyses the results obtained by previous researches in the 

application of medium temperature proton conductors in PEM fuel cells.   

2.1. Electrolyte materials 

Perfluorosulfonic acid polymers, such as Nafion®, are the state-of-the-art solid electrolytes 

used in proton exchange membrane (PEM) electrolysers and fuel cells at the present time. 

These polymers have limitations in the operating temperature as well as high production 

costs, and also their mechanical properties limit the device operating conditions. Therefore, 

several materials are under study nowadays in order to address those issues in proton 

exchange membrane electrochemical devices.  

Figure 2.1 depicts the conductivity of a number of proton conductive materials and their 

respective operating temperatures. Currently there is a need of materials that can fill the 

gap shown in figure 2.1. Those materials, or their composites, would make ideal candidates 

for use in water electrolysers and fuel cells combining satisfactory proton conductivity, 

chemical stability and good mechanical properties.  

The use of organic materials (i.e. Nafion®, PEEK, PBI) has been widely studied as they 

have good proton conduction and relatively good mechanical properties [1-3]. These 

materials exhibit a proton conduction mechanism called ‘vehicle mechanism’ [4, 5]. 

According to this mechanism the conduction path for protons is formed between adjacent 

acidic groups (i.e. –SO3
-
) attached to the polymer backbone using a proton solvent (i.e. 

H2O-H3O
+
) as a carrier [6]. Nevertheless, they exhibit limitations regarding the operating 

temperature. Perfluorosulfonic acid (e.g. Nafion®) [7] or sulfonated aromatic [8, 9] (i.e. S-

PEEK, S-PSf) membranes are limited to operating temperatures below the boiling point of 

water, as proton conduction is dependent on the presence of water that acts as a bridge 

between the sulfonic groups. Other organic materials such as polybenzimidazole (PBI) can 
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use H3PO4 as proton carrier which allows them to work at higher temperatures, of about 

180 ºC [10, 11]. Other materials based on different basic groups (i.e. pyridine) have also 

been under study with this purpose [1, 12]. 

The operating temperature of the above mentioned membranes can be increased if 

materials such as inorganic oxides (i.e. SiO2, TiO2), metal phosphates (i.e. ZrP, TiP) or 

heteropolyacids (HPAs) are introduced in the membrane structure [2, 13-18]. The 

hygroscopic nature of these materials can help retain water within the membrane thus 

enabling operation above 100 °C, usually around 120 – 130 °C. These materials may also 

provide higher mechanical stability to the composite membrane. 

The use of inorganic materials such as solid acids may provide an interesting alternative to 

fill the gap proposed in figure 2.1. These materials exhibit anhydrous proton conductivity 

and they could be used in a wide range of applications.  

 

Figure 2.1. Conductivity of various proton conductive materials with potential use as electrolytes in water 

electrolysers and fuel cells [14]. 

In summary, there is a wide range of materials which can be used as proton conductors in 

electrolyte materials [2, 14]. They can be divided in two main groups; inorganic and 

organic materials. The mixture of inorganic/organic components provides a synergetic way 
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to combine the advantageous properties of each material in order to form a composite 

hybrid membrane with improved properties [15, 17, 19-21].  

2.2. Solid acids 

Solid acid compounds exhibit properties which lie between those of a normal acid and a 

salt and consist usually of an alkali metal (or NH4) and tetrahedral oxyanions chains linked 

together by hydrogen bonds. The generic formula is given by equation 2.1. 

MxHy(AO4)z     (M = Li, K, Rb, Cs, NH4;  A = S, Se, P, As)           (2.1) 

These materials exhibit low proton conductivity at ambient temperature, but above certain 

temperatures, proton conduction is increased by several orders of magnitude. There is a 

dispute in literature regarding the reason to which this change in proton conduction should 

be attributed. Ortiz [22] and Lee [23] explained this conduction enhancement by water loss 

in the material caused by a thermal decomposition reaction, where the generated water is 

responsible for the mobility of protons through the electrolyte material. The proposed 

dehydration reaction is given in equation 2.2. 

MxHyAO4 (s)   →   MHy-yxAO4-x(s) + xH2O (g)                                (2.2) 

Other authors such as Baranov [24] or Haile [25] attribute this conductivity enhancement 

to a phase change in the bulk of the material. According to this theory, at temperatures 

above around 130 ºC (depending on the material), the material undergoes a structural 

change to a high temperature stable superprotonic phase. In that phase, the oxyanions 

acquire higher rotational freedom in the crystal lattice. This leads to a disorder in the 

hydrogen bonding between the oxyanion groups, because of the lattice rearrangement, 

allowing more combinations of possible hydrogen bonds. Between all the possible 

hydrogen bonds only a fraction of them is actually occupied enabling the protons to move 

among the proton vacancies of the lattice (hopping). This conduction mechanism is known 

as ‘grotthus mechanism’ [5] (figure 2.2) and is different from the ‘vehicle mechanism’ in 

the fact that conduction is achieved by proton hopping between oxyanions rather than 

conduction by a proton solvent.  
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Figure 2.2. Grotthus conduction mechanism.  

In figure 2.3 the conductivity of the most commonly studied cesium-based solid acids is 

presented. Because of the properties discussed above those materials are suitable for use as 

electrolytes in intermediate temperature (150 – 300 ºC) electrochemical devices. The 

potential use of these materials is both for proton exchange membrane (PEM) fuel cell and 

electrolysers.  

 

Figure 2.3. Arrhenius plot of the conductivity of various Cs-based solid acids [24, 26]. 

However, there are some issues that must be addressed before applying these materials as 

electrolytes. They exhibit chemical and mechanical limitations in the temperature range 

that would be interesting for electrolyser applications. Solid acids are crystallic materials 

and have ductile mechanical properties, especially in the superprotonic state at elevated 

temperatures, therefore it is hard to fabricate a robust and thin electrolyte structure [25]. 
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These materials are also water soluble and the large amount of water fed to the device must 

be considered when using them as electrolyte. The big amount of water present could lead 

to problems during the start-up and shut-down of the system in which case the temperature 

could be lower than 100 ºC leading to water condensation.  

Nevertheless, if we compare these materials with traditional polymer membrane materials, 

they show rather interesting properties. They conduct protons in the absence of water, 

which allows higher working temperature on the device, and have a very good 

impermeability to hydrogen and oxygen gases, which should lead to a lower overpotential 

on the electrolysis cell. Both factors can have a positive effect on the efficiency of the 

electrolyser. 

Some of the most studied solid acid materials are discussed below, highlighting the 

working temperature range, proton conduction values and other properties. 

2.2.1. Sulfate and selenate oxyanion based solid acids (MHSO4, MHSeO4) 

Some of the earliest studies on solid acid materials were conducted on alkali hydrogen 

sulfates and selenates due to their ferroelectric and ferroelastic properties [24]. They were 

found to undergo various phase transitions in the solid state, exhibiting increased proton 

conductivity by several orders of magnitude.  

There is a large number of sulfate and selenate based solid acids compounds studied, i.e. 

CsHSO4 / CsHSeO4 [24, 27], RbHSO4 / RbHSeO4 [27, 28], KHSO4 / KHSeO4 [27, 29]. 

Materials with combinations of oxyanions or alkali metals have also been studied, i.e. 

CsH(SO4)x(SeO4)1-x [30], RbH(SO4)x(SeO4)1-x [31], Rbx(NH4)1-xHSO4 [32]. Disulfate and 

diselenate solid acids with general formula M3H(AO4)2  such as Rb3H(SeO4)2 [33], 

K3H(SO4)2 [34], Cs3H(SeO4)2 [35] or Tl3H(SO4)2 [36, 37] have been studied and exhibit 

relatively high proton conductivity in the order of 10
-2 

- 10
-3 

S cm
-1

 and low activation 

energy for proton conduction [38].  

The synthesis of sulfate and selenate solid acids is usually made by the reaction in an 

aqueous medium at room temperature, as shown in equations 2.3 and 2.4. 

M2CO3 + 2H2SO4   →   2MHSO4 + H2O + CO2                           (2.3) 

M2CO3 + 2H2SeO4   →  2MHSeO4 + H2O + CO2                     (2.4) 
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where M is an alkali metal provided to the reaction by either the carbonate or by hydroxide 

(M(OH)2) precursor. Single crystals of the compound can be obtained by evaporation of 

the aqueous solution or cooling the melted material. Precipitation of polycrystalline 

powders can be induced by the addition of methanol to the solution. 

Not all the sulfate and selenate based solid acids studied exhibit transition to superprotonic 

phase. The properties of each material are based on the alkali metal used in each case. For 

instance, the decomposition and melting temperature of those compounds increases as the 

size of the alkali metal cation is increased, e.g LiHSO4 has lower melting temperature than 

CsHSO4. Also the superprotonic phase transition tends to appear in the presence of bigger 

size cations [38]. When the sulfate/selenate solid acids undergo the superprotonic phase 

transition the crystal lattice is rearranged in such a way that two of the four oxygen atoms 

per molecule participate in the formation of hydrogen bonds. This makes the number of 

possible proton sites double the number of protons [24]. 

It was also reported [39] that HAO4
-
 ions (A = S, Se) can form infinite chains such as in 

room temperature phases of CsHSO4, RbHSO4, RbHSeO4, NH4HSeO4 or cyclic dimers, as 

in high temperature phase β-CsHSeO4 [40]. Depending on the formation of infinite chains 

(HAO4
-
)n or cyclic dimers (HAO4

-
)2 the hydrogen bonding length, and thus its strength, 

varies, being longer and thus weaker in the case of cyclic dimers compared to infinite 

chains [38]. Generally, hydrogen bonds in cyclic dimers are weaker than the corresponding 

infinite chains as it was shown for several compounds (i.e. formic [41] and acetic acid [42] 

or hydrogensulphates [39]). The strength of the H-bonding was deeply studied in the case 

of CsHSO4 and CsHSeO4 where the transition from infinite chains into cyclic dimers 

during the phase transition was addressed by several techniques (i.e. Raman and Infrared 

spectroscopy, X-Ray and Neutron diffraction) [38, 39, 43].  

Also materials in the disulfate/diselenate category exhibit much higher conductivity values 

in their structural a-axis than in the c-axis, with differences of 1 to 2 orders of magnitude, 

which is explained by the hydrogen bonding arrangement in these materials [35].  

Studies of the thermal properties of sulfate and selenate based solid acids reveal that at 

intermediate temperatures and under reducing conditions in the presence of hydrogen, they 

react according to the following reactions (equations 2.5 – 2.7) [44]: 

MHAO4   →   MH1-2xAO4-x + xH2O                 (2.5) 
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2MHAO4 + 4H2   →   M2AO4 + 4H2O + H2A                       (2.6) 

2M3H(AO4)2 + 4H2   →   3M2AO4 + 4H2O + H2A               (2.7) 

Dehydration of the compounds (equation 2.5) could be avoided in the potential use in an 

electrolyser due to the large amount of water present. Pt catalysed reactions (equations 2.6 

and 2.7) generate H2S and H2Se products which act as effective catalyst poison on the 

surface of precious metals. This is an important drawback when we consider these 

materials as electrolytes in electrochemical devices.  

CsHSO4 and CsHSeO4 compounds have been the most studied materials in the 

sulfate/selenate family. 

2.2.1.1. CsHSO4  and CsHSeO4 

The structure of sulfate and selenate oxyanions based cesium solid acids (CHS and CHSe) 

is discussed in this section. These materials undergo various phase transitions with 

increasing temperature. Figure 2.4 depicts the phase diagram of CHS. In conditions of 

relatively low pressure and temperature, both compounds grow as crystals in the γ-phase 

from an aqueous solution. This is usually called phase III and in that phase the material 

exhibits monoclinic crystal structure. Conductivity in phase III is in the range of 10
-6 

- 10
-8

 

S cm
-1

. In that phase the HSO4
-
 form infinite chains and the protons are divided in one of 

two equilibrium sites in the lattice. At a temperature of 76 ºC for CHS and 69 ºC for CHSe 

these materials shift to β-phase (phase II) which is also monoclinic. Although this 

temperature is well defined for single crystals, it can strongly vary depending on external 

conditions for the powdered samples [45]. In this case unit cell parameters differ from the 

previous phase (i.e. smaller unit cell volume, larger H-H distances) but conductivity is still 

low [46] and the formation of the infinite chains shifts to a cyclic dimer structure among 

sulfates. A shift to tetragonal α-phase (phase I) occurs at 141 ºC in the case of CHS and 

128 ºC for CHSe in which the conductivity is in the order of 10
-2 

-10
-3

 S cm
-1

.  

As mentioned earlier, in that tetragonal state, each sulfate group can form between one and 

four hydrogen groups, with only one donor oxygen atom per bond. It has been suggested 

though, that in the high conductivity state, what is increased, is the mobility of oxygen 

defects rather than the concentration of the defects in the material [26]. Others [22, 23] 

attribute this property to the dehydration on the compound and the generation of water in 
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the surface of the particles. According to reaction 2.2, the materials undergo a 

dehydration/polymerisation reaction where poly- and pyro-sulfates and water are 

generated. This produced water would be the responsible for proton conductivity within 

the material. Lately Kamazawa et al. [47] reported self-diffusion of the proton along the 

material. The different phase transitions of CHS are plotted in the phase diagram on figure 

2.4. 

 

Figure 2.4. P-T phase diagram of CsHSO4 [46]. 

Haile et al. [25], reported that a conductivity 8 × 10
-3

 S cm
-1

 was reached for CsHSO4 at 

160 ºC under water saturated conditions. Other authors [24, 48] previously reported that 

the selenate based compound had conductivities in the range of 2.08 – 3.70 × 10
-3

 S cm
-1

 

and even 5 × 10
-2

 S cm
-1

 at around 215 ºC [49].  

Nevertheless, the decomposition reaction (equations 2.6 and 2.7) under reducing 

atmospheres has to be considered. Such decomposition could lead to the formation of 

products that poison the catalyst significantly, e.g. H2S. According to Ponomareva et al. 

[50] platinum is very active in cesium hydrogen sulfate reduction.  

Various composite materials based on hydrogen sulfate and selenate oxyanions have been 

studied using a variety of additives as explained in section 2.2.4.  
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2.2.2. Phosphate oxyanions based solid acids (MH2PO4) 

Synthesis of the material is carried in the same way as for sulfate/selenate solid acids 

(equation 2.8): 

M2CO3 + 2H3PO4    →   2MH2PO4 + H2O + CO2               (2.8) 

Not all the phosphate based solid acids exhibit the superprotonic phase transition. The most 

studied compounds in this area are discussed below. 

2.2.2.1. CsH2PO4 

Cesium dihydrogen phosphate (CDP) seems to be one of the most widely studied solid 

acids. This compound exhibits a monoclinic structure at room temperature. In that state the 

phosphate groups are linked together with hydrogen bonds of two different kinds: 

symmetric double minima and asymmetric single minimum [26]. It has been reported that 

phase III of the material is characterised by the formation of layers of phosphates in 2D 

formed by strong H-bonds linked in a 3D structure with weaker H-bonds among the layers 

[26, 38]. At 149 ºC it undergoes a phase transition to another monoclinic structured phase 

and at 230 ºC the structure changes into a cubic superprotonic phase prior to melting. This 

behaviour has been corroborated using several techniques such as X-Ray Powder 

Diffraction (XRPD), Differential Scanning Calorimmetry (DSC) and Thermogravimetric 

Analysis (TGA) [51, 52].  The conductivity rises to ca. 2.0 × 10
-2

 S cm
-1

 at 230 ºC, when 

the superprotonic phase is achieved [26, 53]. 

The superprotonic phase transition for CsH2PO4 has been identified to take place at 230 ºC 

[26, 54, 55] as depicted in figure 2.5. In the superprotonic phase, the lattice becomes cubic 

(Cs-Cl-like structure) with the oxyanion placed in the centre of a cube with Cs atoms on 

each corner. The oxyanion can take one of six possible orientations within the cube and 

therefore there are six possible ways hydrogen bonds can be formed. However there is no 

clear mechanism to explain the high conductivity in the superprotonic state but it is 

considered that hydrogen bond disorder and phosphate group disordered must play an 

independent part in the proton conduction [26]. The melting point of this material is about 

345 ºC, high enough for this material to be suitable for electrolysis and fuel cell 

applications.  
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It is reported [26, 53, 56] that CsH2PO4 is stable under oxidising and reducing atmospheres 

at 240 ºC, even under platinum catalysed environment and no HxP species are generated. 

Nonetheless, it decomposes due to the dehydration reaction in two steps (equations 2.9 and 

2.10). 

2CsH2PO4   →   Cs2H2P2O7 + H2O                       (2.9) 

CsH2PO4   →   CsPO3 + H2O                                      (2.10) 

The compound reacts forming intermediate hydrogen pyrophosphates and polyphosphates 

until its complete decomposition to CsPO3. In a fuel cell, this issue can be addressed by the 

humidification of the feeding gases by a water partial pressure of 0.4 atm [26, 56].  

 

Figure 2.5. P-T phase diagram of CsH2PO4 [57]. 

There is still an open discussion where some authors believe that the superprotonic 

properties of this material at intermediate temperatures are due to thermal decomposition to 

CsPO3 instead of a consequence of a phase change in the bulk [22, 58]. According to this 

cubic 

monoclinic 

monoclinic 

liquid 
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theory, the water produced by reaction 2.9 and 2.10 would be responsible for the proton 

mobility within the material. 

2.2.2.2. RbH2PO4 

The RbH2PO4 material structure is very similar to the structure of CsH2PO4 compound, 

sharing similar material properties although still some differences exist between them. This 

material, as reported by some authors [57, 59, 60], undergoes various phase transitions, 

enhancing material proton conduction when increasing temperature. RbH2PO4 room 

temperature phase is tetragonal (phase III) and it undergoes a phase change to a monoclinic 

structure (phase II) between 90 – 130 ºC. Both phases coexist in this temperature range. At 

276 ºC the material undergoes another phase change from monoclinic to a yet unclear 

superprotonic phase (phase I) with proton conductivity values of around 10
-2

 S cm
-1

 at 285 

ºC [61]. All these phase changes are shown in the phase diagram (figure 2.6).  

 

Figure 2.6. P-T phase diagram of RbH2PO4 [57] 
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The crystal structure of the monoclinic RbH2PO4 (above 130 ºC) is almost identical to the 

monoclinic room temperature phase of CsH2PO4. This suggests that RbH2PO4 also 

undergoes a polymorphic structural change to a high-symmetry disordered phase which 

provides superconductive properties. The conductivity of RbH2PO4 increases on orders of 

magnitude when increasing temperature and phase-change is generated. Several studies 

have been made to investigate the proton conduction mechanism [60, 62]. 

The monoclinic phase is stable up to temperatures of 210 – 250 ºC
 
[52, 59] where the 

compound suffers a dehydration reaction following equations 2.11 and 2.12. 

2RbH2PO4   →   Rb2H2P2O7 + H2O                                       (2.11) 

RbH2PO4   →   RbPO3 + H2O                             (2.12) 

Dehydration takes places at reaction sites on the external surface of RbH2PO4 particles, 

leading to a 4.9 % weight loss at 320 ºC due to generation of Rb2H2P2O7 and a total weight 

loss of 9.9 % at 450 ºC by the formation of the RbPO3 compound. Water partial pressure of 

0.56 atm avoids these reactions happen [61].  

It is also claimed [63] that structural phase change does not exist in this material and that 

the proton conduction properties are caused by the water produced in the polymerisation/ 

dehydration reaction. 

2.2.2.3. KH2PO4 and LiH2PO4 

Early studies reported that KH2PO4 exhibits two different phase transitions at 187 and 233 

ºC, changing from tetragonal to a monoclinic structure [57, 64]. Nevertheless, several 

studies in this area [52, 62, 65, 66] stated that the potassium and lithium based solid acids 

do not suffer structural phase transition to a superionic phase but a thermal decomposition 

and polymerisation in the surface of the material. 
 

MH2PO4    →   MPO3 + H2O (M = Li, K)                     (2.13) 

Conductivity values around 10
-4

 S cm
-1

 have been reported for the potassium based 

compound [67, 68] at 190 ºC. At higher temperatures the material starts to decompose and 

loses water from its structure as shown in equation 2.13. As reported by Boysen et al. [62], 

the overall dehydration reaction causes a 13,2 % mass loss in the material.  
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Nevertheless this material has been used [69] to fabricate a composite using a 

pyrophosphate as matrix and generating by this way a new high proton conducting phase 

as explained in section 2.2.4.  

In the case of LiH2PO4 a study reports a doubtful conductivity value as high as 10 S cm
-1

 at 

200 ºC which is attributed to the dehydration/polymerisation reaction of the compound 

(equation 2.13) [66]. Other studies report more reasonable conductivity values in the range 

of 10
-4

 – 10
-3

 S cm
-1

 [70, 71]. These results make these materials still interesting for 

electrolyte applications in electrochemical devices.  

2.2.2.4. Zirconium hydrogen phosphate (ZrP) 

ZrP is another solid acid with a structure based on two layers with water trapped between 

them [72]. It is expressed in two ways, depending on the amount of water molecules, as 

shown in equation 2.14. 

α, γ-ZrP = Zr(HPO4)2 · nH2O  [α: (n=1); γ: (n=2)]                      (2.14) 

The conduction mechanism of this material differs from the other solid acids as there is not 

a superprotonic phase transition involved and it is not based on the grotthus mechanism 

[5]. Instead, due to the morphology of the ZrP, conduction based on vehicle mechanism 

takes place using the water trapped between its layers. A α-ZrP single crystal has a 

conductivity value of 10
-5

 S cm
-1

, however it has been reported that in the surface of the 

crystal proton conduction is several orders of magnitude higher [17]. 

The need for water to make proton conduction possible, places this material in a lower 

temperature range application, which would not fill the ‘gap’ referred to in figure 2.1. As 

reported by some authors [73, 74] it is possible to create proton conducting composites by 

the incorporation of ZrP in a polymeric matrix, with enhanced mechanical properties and 

working temperature of 120 – 130 °C. There are also similar compounds such as titanium 

hydrogen phosphate which are under study [75, 76]. 

2.2.3. Arsenate oxyanions based solid acids (MH2AsO4) 

Although alkali metal hydrogen arsenate compounds are mentioned as potential solid acids 

electrolytes, few reports appear on these materials. Some structural studies of CsH2AsO4 
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[77, 78] and NH4H2AsO4 [79] as well as reports about combined oxyanion formed solid 

acids can be found [80, 81]. It is reported that NH4H2AsO4 solid acid undergoes a 

dehydration reaction starting at 165 ºC and completing at 475 ºC. This suggests that 

probably other arsenate based solid acids could also suffer from dehydration. KH2AsO4 

conductivity around 10
-4

 S cm
-1

 has been reported [67]. These compounds exhibit 

interesting properties but further research is needed before they are considered for use as 

electrolytes.  

Table 2.1 summarises the main studied solid acids, highlighting the superprotonic phase 

transition temperature and their conductivity.  

Table 2.1. Conductivity and phase transition temperature of various solid acids 

Compound 
Superprotonic 

transition T / °C 

Proton conductivity / 

S cm
-1

 
Reference 

CsHSO4 141 8 × 10
-3

 [24, 27] 

RbHSO4 160 - 170 ~ 10
-4

 [27] 

KHSO4 150 – 180 ~ 10
-4

 [27, 29] 

CsHSeO4 128 ~ 10
-3

 [24] 

RbHSeO4 170  [28] 

NH4HSeO4 136 ~ 10
-3

 [38] 

Cs3H(SeO4)2 180 2 × 10
-4

 [35] 

Rb3H(SeO4)2 185 5 × 10
-4

 [33, 35] 

K3H(SeO4)2 120 ~ 10
-3

 [35] 

K3H(SO4)2 200 10
-2

 - 10
-3

 [34, 35] 

Tl3H(SO4)2 130 10
-3

 [36, 37] 

CsH2PO4 230 2.2 × 10
-2

 [26, 53] 

RbH2PO4 276 ~ 10
-2

 [57, 59, 60] 

KH2PO4 190 10
-4

 [52, 62, 65] 

LiH2PO4 178 10
-3

 - 10
-4

 [66] 

CsH2AsO4 160  [77, 78] 

KH2AsO4 150 10
-4

 [67, 68] 

NH4H2AsO4 125 2.5 × 10
-3

 [79] 
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2.2.4. Solid acid composites 

In a composite membrane, two or more materials with different properties are combined to 

form a membrane with useful properties from all of them. An example of that would be to 

achieve a balance between conductivity, stability and ease of fabrication. Several studies 

have been conducted on the interaction between ionic salts and oxides targeting the 

fabrication of ion-conducting (nano)composites [82, 83].  

In an ionic-salt/oxide (MX/O) composite, when the oxide particle size is large, the 

conductivity is attributed to the charge mechanism proposed by Wagner and Maier [84]. 

The M cations are adsorbed on the oxide surface causing an enrichment of the interphase 

space-charge region by cation vacancies. This is corroborated by the fact that the values of 

the activation energy of conductivity and migration energy of cation vacancies are close. 

This mechanism, though, postulates that the bulk and surface properties of the material do 

not change and does not consider the formation of a new interphase. 

In nanocomposite materials, the surface contact area of the different compounds is very 

high. When the particle size of each material is reduced, the contact area between them 

will increase and thus, the interaction between components will acquire higher importance. 

These interactions change the bulk characteristics of the compounds due to the formation 

of a new interphase. The structural characteristics and stability of the new nanocomposite 

material is greatly affected by the interface and grain-boundary energies. The main 

thermodynamic reason for the formation of the nanocomposite and stabilization of 

interfaces is the adhesion energy (σa) [85]. An increase in this variable favours the wetting 

effect of the MX onto the oxide surface and leads to the formation of the nanocomposite. 

At high amounts of well dispersed, small size, oxide particles, the new phase material will 

be abundant and the properties will differ more from bulk MX. The new phase can be 

crystalline or amorphous [82, 83, 85, 86]. With substitution of a certain amount of the 

alkali metal or by the addition of an oxide to the solid acid a new disordered or amorphous 

phase with higher conductivity at low temperatures can be achieved, due to their chemical 

interaction in the interphase [85]. 

Composite materials were studied using solid acids (i.e. CsHSO4, Cs5H3(SO4)4, CsH2PO4) 

and metal oxides (i.e. SiO2, Al2O3, TiO2) [85]. Depending on the oxyanion and the surface 

energy of the oxide, which can be modified by surface functionalisation, different 
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interactions would happen between the materials leading to differently behaving composite 

[87]. 

2.2.4.1. Sulfate and selenate oxyanion based solid acid composites  

In the case of SO4
2-

 and SeO4
2-

 based solid acid composites, CsHSO4 compound appears to 

be the most studied. The use of this material as filler in a polymer matrix has been reported 

by some groups [88, 89] although a composite material of CsHSO4 with several oxides has 

been studied more extensively [27, 28, 85, 90-92]. The addition of highly dispersed metal 

oxides has been found to improve the conductivity properties of the solid acid based 

composite material at temperatures below the superprotonic transition. The addition of 

SiO2 particles led to a higher increase on the conductivity [28, 92] than using TiO2 [90] or 

Al2O3 particles [27] (figure 2.7). The addition of SiO2 has positive effect on conductivity 

up to the amount of 60 % wt. Larger quantities of SiO2 cause a drop in conductivity. The 

authors propose that the increase in conductivity could be due to the generation of an 

amorphous phase of the solid acid caused by the chemical interactions of the material with 

the solid oxide particles.  

   

Figure 2.7. Arrhenius plots of different composites of solid acids [27]. 

All the surface interactions between both materials can be changed by the functionalisation 

of the surface chemistry of the oxide particles by sulfuric or phosphoric acid. Other 

variables such as the particle size of the oxides, the dispersion into the solid acid matrix or 
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the pore size and distribution of the particles have a great influence on the composite 

material properties [92].  

2.2.4.2. Phosphate oxyanion based solid acid composites  

Although CsH2PO4 solid acid is a promising electrolyte due to its satisfactory conductivity 

at elevated temperatures, for practical use in electrolysers and fuel cells enhanced 

mechanical properties and physicochemical stability are required. Therefore, the addition 

of oxides and pyrophosphates in order to improve both properties has been studied with 

this purpose.   

β-Al2O3, TiO2 and SiO2 oxide particles are the most widely studied materials up to date 

and SiP2O7 and TiP2O7 pyrophosphates also are under study to form a solid acid composite. 

These materials can retain water at high temperatures due to their layered structure 

preventing this way the dehydration of the proton conducting material. They can generate 

an amorphous phase due to the interaction solid acid / oxide particle, as explained earlier 

[85]. They can also provide mechanical strength to the composite material and enhanced 

proton conduction below the superprotonic transition temperature.  

Reported by Ponomareva et al. [91], proton conducting CsH2PO4 / SiO2 composite was 

synthesised by mechanical ball-milling and pressing of the mixture. The composites were 

fabricated by varying the molar ratio of both materials and also by modifying silica oxides 

by acidic additives, such as, H2SO4, H3PO4 and CsHSO4 in order to induce a hydrophilic 

surface in the oxide. The oxide particle size, and thus surface area, seems to have a great 

influence on the resulting composites. These CsH2PO4 / SiO2 composites exhibit proton 

conductivity of about 10
-2

- 10
-3

 S cm
-1

 at 130 – 250 ºC and relatively high thermal stability 

at lower water partial pressure. Other studies have also been carried out on SiO2 addition to 

phosphate based solid acids and its effect in phase transitions [93]. Recently, Chisholm et 

al. reported the fabrication and operation in a fuel cell of a mechanically strong CsH2PO4 

membrane with 10 % wt. SiO2  [94].  

As reported by Matsui et al., silicon pyrophosphates can be used in the synthesis of a 

composite material [69, 95-97]. When SiP2O7 is used as additive, CsH2PO4 reacts with the 

pyrophosphate leading to a new ionic-conducting phase CsH5(PO4)2 / SiP2O7. This material 

exhibited high proton conductivity of 4.4 × 10
-2

 S cm
-1

 at 266 ºC under 30 % H2O/Ar 

atmosphere. At 230 ºC dehydration of the material and condensation of phosphates takes 
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place, resulting in a weight loss of the electrolyte material. This can be avoided by 

introducing water in the feeding stream, in amounts of 10 – 30 %. There is also an 

interesting study of Ponomareva et al. in the fabrication of CsH2PO4 / SiO2 composites 

[98]. 

As reported by Li et al. RbH2PO4 / SiO2 composites can be fabricated [99, 100]. The proton 

transport of the electrolyte material was studied varying the molar ratio between solid 

acid/oxide. It was found that at low temperatures, conductivity was enhanced when the 

amount of SiO2 was below 60 % wt. However, in the case of high temperatures 

conductivities of the composite were always lower than pure RbH2PO4. 

Muroyama et al. [69] also reported a study of MH2PO4 / SiP2O7 composite systems with 

RbH2PO4 as solid acid compound. The proton conducting RbH5(PO4)2 compound is 

generated by the interaction of the solid acid with the pyrophosphate. As reported by this 

group, this compound (as well as CsH5(PO4)2 and KH5(PO4)2) exhibit high proton 

conductivity, over 10
-1

 S cm
-1

 at 150 – 300 ºC as shown in figure 2.8. This value decreases 

to 5 × 10
-2

 S cm
-1

 when SiP2O7 (molar ratio: 1/4) is added in the composite. The high 

conductivity exhibited by these materials make them potentially applicable as electrolytes 

in PEM fuel cells and electrolysers, filling the gap proposed in figure 2.1. 

 

Figure 2.8. Arrhenius plot of various solid acid/silicon pyrophosphate composites [69]. 
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Extensive research has focused on the use of layered metal (IV) acid phosphate particles as 

filler in polymer composite membranes. The addition of ZrP was found to improve 

conductivity, chemical stability and mechanical properties. An example of that is the use of 

α and β – ZrP particles dispersed into a PSFA or aromatic polymer matrixes [17, 73, 101]. 

There are several ways of preparing a composite membrane which depend either on the 

filler particles size, polymeric matrix nature and composite membrane preparation method. 

Alberti and Casciolla [17] and Jones and Rozière [21] reported composite fabrication 

techniques such as direct filling by filtration or in-situ formation of phosphates in the 

membrane. There is also the possibility of functionalizing the metal (IV) phosphates with 

inorganic and organic groups (e.g. Zr(O3P-OH)(O3P-C6H4SO3H) which has been widely 

studied by several groups [75, 76, 102-109]. Other metal phosphates, like titanium 

phosphate (TiP) have also been studied with the same purpose [75, 76].  

2.3. Intermediate temperature Proton Exchange Membrane Fuel Cells (PEMFC) 

Research and development of PEMFC in the intermediate temperature range (150 - 300 

o
C) has attracted extensive interest. In this section a series of proton conducting materials 

applied in PEMFC are reviewed. Such membranes include proton conducting materials 

such as acid-doped polymers, heteropolyacids, pyrophosphates, solid acids and their 

composites.  

Poly[2,2’-m-(phenylene)-5,5’-bibenzimidazole] (PBI) is a commonly used polymer in 

intermediate temperature fuel cell technology. The basic nature of the polybenzimidazole 

allows an acid-base interaction between the polymer and an acid, making it possible to 

provide the membrane with high proton conductivity by doping it with phosphoric acid [1, 

10, 11]. This polymeric membrane can operate at temperatures up to 180°C.  Polymers 

based on pyridine groups have also been studied with the same purpose [1, 12]. 

As mentioned in the previous section Nafion® / ZrP is a composite membrane with 

application in intermediate temperature PEMFC. The performance improvement of a fuel 

cell with the addition of ZrP in the Nafion membrane [101] is shown in figure 2.9. Stein et 

al.
 
improved the performance by using zirconium and titanium sulfophenyl phosphonates 

[108]. Conductivity values of 10
-1

 S cm
-1

 have been reported for Nafion® / TiP in 

temperatures of 100 ºC [75]. Hogarth et al.
 
[76] reported conductivity values of 4.4 – 1.9 × 

10
-3

 in sol-gel titanium phosphates. 
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Figure 2.9. IV curves of Nafion115 and Nafion115/α-ZrP composite membrane [101] 

Heteropolyacids (HPA) are inorganic compounds with high conductivity even at room 

temperature. The basic structure unit of these acids is a cluster called Keggin unit 

[XM12O40]
3+

, where X is a cation such as P, Si or B and M a metal like Mo or W, and they 

are found in hydrated form. Typical compounds include H3PW12O40 nH2O (PWA), 

H3PMo12O40 nH2O (PMoA), and H4SiW12O40 nH2O (SiWA). These compounds are water 

soluble and would wash out of a PEM unless they are immobilised.  

To address this issue HPAs are covalently attached to a polymer, such as aromatic 

polymers or nafion
 
[18, 110, 111]. Helen et al. [112] reported good proton conductivity of 

10
-2

 S cm
-1

 by fabricating Nafion® composites with functional compounds such as 

silicotungstic acid. The addition of this compound seemed to decrease methanol crossover 

through the membrane, nevertheless the conductivity of Nafion is not enhanced. Hybrid 

HPA-polymers could be optimised for higher temperature and drier fuel cell operation by 

controlling the morphology and structure of the polymers. Heteropolyacids trapped in 

nano-silica matrices is
 
also

 
reported [113]. Some groups

 
[18, 111, 114] reported the 

fabrication of composite membranes with Nafion® and HPA reaching values of 1.5 × 10
-1

 

S cm
-1

 at 120 ºC operating at 30 % relative humidity. However, the operating temperature 

was still limited by the polymer properties to 150 ºC. A copolymer composite membrane of 

H3PW12O40 heteropolyacid and directly polymerised sulfonated poly(arylene ether 
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sulfone), reported by Kim et al. [110], exhibited good thermal stability (decomposition 

temperature in nitrogen > 300 °C) and proton conductivity of 0.15 S cm
-1

 at 164ºC.  

Other acids such as phosphoantimonic acid (HSbP2O8) have been studied due to their high 

proton conductivity. Krishnan et al. [115] reported conductivity values of 4.5 × 10
-2

 S 

cm
−1

, at 70 ºC and 100 % RH. The composite membranes of sulfonated poly-ether-ether 

ketone (s-PEEK) with HSbP2O8
.
H2O content up to 40 % wt. were prepared by introducing 

the solid proton conductor from an aqueous suspension. Phosphatoantimonic acids
 

(HnSbnP2O3n+5
.
xH2O (n = 1, 3, 5)) were reported by Deniard-Courant et al. [116], as early 

as in 1988, to be a good proton conductor. 

Metal pyrophosphates (MP2O7, M = Sn, Ti, Si, Ge, Ce and Zr) have been studied due to 

their high proton conductivity, in the range of 10
-1

 – 10
-3

 S cm
-1

, at temperatures up to 250 

ºC and low humidity conditions. Pyrophosphates of tetravalent metals are promising and 

various MP2O7 (i.e. M=Si, Zr, Ti) were used to fabricate proton conductive composite 

membranes with CsH2PO4, RbH2PO3 [69] or NH4PO3 [117]. Hibino et al. reported 

extensive studies on SnP2O7 [118]. The proton conductivity of SnP2O7 can be increased by 

doping with trivalent elements such as In and Al [118-125]. It was found that partial 

substitution of the metal species (M
4+

) by a lower valence metal (M
2+

 or M
3+

) can provide 

enhancement in proton conductivity up to values of 0.195 S cm
-1

 and a PEMFC power 

density of 264 mW cm
-2

  in the case of  350 μm thickness In
3+

 doped SnP2O7 electrolyte at 

250 °C (figure 2.10) [119]. Chen et al. [122] reported a fuel cell power density of 15 mW 

cm
-2

 using a thin Sn0.9In0.1P2O7 membrane with unhumidified H2 and air at 170ºC and 

compared it to the performance of a pure CsH2PO4 electrolyte. Jin et al. [123] recently 

reported satisfactory fuel cell performance using the same compound to build a phosphoric 

acid free electrode for intermediate temperature fuel cells. Additionally, Sun et al. [126] 

studied CeP2O7 for intermediate temperature fuel cells, which exhibited proton 

conductivity above 10
-2

 S cm
-1

 and resulted in 25 mW cm
-2

 power output at 250 ºC in a 

H2/O2 fuel cell. Li et al. [127] studied Y-doped zirconium pyrophosphate nanofilms which 

exhibit conductivities up to 5 × 10
-4

 S cm
-1

. However, it was found that the conductivity of 

such metal (IV) pyrophosphates depends greatly on the preparation method [121]. Besides, 

similar to perovskite type oxides, water vapour may have interactions with electron holes 

or oxygen vacancies in a pyrophosphate lattice [128].  

Solid acids have also been used in PEMFC systems. Haile et al. built a fuel cell system 

using a 1 – 1.5 mm CsHSO4 thick membrane as electrolyte and platinum black electrodes 
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of loading from 3.8 to 38 mg cm
-2 

[25]. This system operating at 160 
o
C under water 

saturated gas streams, although yielding 1.1 V open circuit potential, performed rather 

poorly. The poor performance was mainly attributed to high thickness of the electrolyte.  

CsH2PO4 was reported as a viable electrolyte for intermediate temperature (150 - 300 
o
C) 

fuel cells by Uda et al. [129]. The CsH2PO4 membrane had thickness of 25 μm and 

electrode Pt loadings of 7.7 mg cm
-2

 (Pt black on the anode and C-supported Pt on the 

cathode). The cell operated at 250 ºC and the peak power density was 415 mW cm
-2

 (figure 

2.10). The high overpotential observed in the fuel cell system was attributed to the slow 

electrocatalysis rate on the cathode side. The main obstacles that have to be overcome in 

the design of the fuel cell were the fabrication of a mechanically strong self-supported 

membrane and the control of the operating temperature and humidification to avoid 

dehydration or decomposition. A composite material using CsH2PO4 and SiO2 particles has 

been used to enhance the mechanical properties of the membrane providing less 

mechanical deformation [94]. Another study in this area compares the performance using 

Pt or Pd based electrocatalysts [130]. 

 

Figure 2.10. Fuel cell performance of CsH2PO4 [129] and Sn0.9In0.1P2O7 [119] membranes at 250 °C. 

Solid acid based materials also look promising for direct methanol fuel cells due to low 

fuel permeation. This could help avoid the high overpotentials generated in DMFC caused 

by the MeOH permeation in Nafion®-like membranes.  
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2.4. Conclusions 

Proton exchange membrane water electrolysers (PEMWE) have practical limitations in 

their operation due to the use of Nafion® as electrolyte that restricts operating temperature 

below 100 
o
C. In order to increase the working temperature and therefore reduce the 

amount of electrical energy required in an electrolyser, an intermediate temperature 

electrolyte is required. A stable proton conducting material in the range of 150 – 300 ºC 

would prove critical in the development of intermediate temperature electrolysis.  

Solid acids exhibit high proton conductivity in anhydrous conditions at temperatures above 

130ºC and therefore are suitable for this use. The mechanism of enhanced proton 

conductivity in the superionic state is not yet clear and there is a debate in literature as to 

this should be attributed to dehydration or to a solid state phase change. The most widely 

studied materials in the family of solid acids are CsHSO4 and CsH2PO4 exhibiting proton 

conductivities higher than 10
-2

 S cm
-1

. However, solid acids are inorganic crystalline 

materials and have poor mechanical properties in comparison to polymer-based 

electrolytes and therefore further development of these materials or membrane fabrication 

methods is required. 

CsH2PO4 has been used as electrolyte in H2/O2 system fuel cell systems, achieving 

acceptable performances of 415 mW cm
-2

. These materials, however, have never been 

applied as electrolytes in a water electrolysis system.  
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CHAPTER 3 

EXPERIMENTAL METHODS 

In this chapter, the methodology used for the characterisation of materials is explained. 

The fundamentals of every technique used for the physico-chemical as well as the 

electrochemical analysis of samples and the equipment used are described. The analysis of 

the results obtained by these techniques will be further discussed in following chapters.  

3.1 Physico-chemical methods  

3.1.1 Powder X-Ray Diffraction (P-XRD) 

Powder X-ray diffraction analysis is a robust technique able to provide a rapid 

determination of the number of crystalline phases of a sample, providing that minerals are 

present at a level of 2 % wt. or above. It was used to characterise the crystallographic 

structure and to confirm the identities of the synthesised crystalline phosphate-based solid 

acids (see Chapters 4 and 5). The crystallography of catalysts was also analysed by this 

technique (see Chapter 6). These measurements were carried out by the Chemical and 

Materials Analysis group (ACMA) of the department of Chemical Engineering and 

Advanced Materials (CEAM) in Newcastle University. The instrument used was a 

PANalytical X’Pert Pro Multipurpose Diffractometer (MPD), fitted with an X’Celerator 

and a secondary monochromator. The X’Celerator was an ultra-fast X-ray detector with 

RTMS (Real Time Multiple Strip) technology to collect X-rays diffracted from the sample 

over a range of 2θ angles. All scans were carried out in continuous mode using the 

X’Celerator RTMS detector. 

For data acquisition a Philips PW3040/60 X-ray generator was used with a Cu anode of 40 

kV and 40 mA to produce Cu-Kα radiation with a wavelength of 1.54180 Å. The data was 

collected over a 2θ range of 5 to 90° with a step size of 0.0334°2θ and a nominal time per 

step of 150 s.  

Phase identification was carried out by means of the X’Pert accompanying program High 

Score Plus and the results were compared with the International Crystallographic 

http://en.wikipedia.org/wiki/%C3%85
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Diffraction Database (ICDD). The minimum crystallite size of the compounds was 

calculated using Scherrer equation (equation 3.1) [1]: 

 

where τ is the minimum crystallite size (Å), K the shape factor (K = 0.9 Å, assuming 

spherical crystallites), λ the X-Ray wavelength (Å), β’ is the instrument broadening 

(radians) and θ the Bragg angle (radians).   

Semi-quantitative Relative Intensity Ratio (RIR) method was used to estimate the mass 

ratio of different phases within a sample. This method consists in the comparison of the 

integrated intensities of the diffraction peaks from each of the phases in order to estimate 

the mass ratio between them [2]. These measurements were carried out using PANalytical 

X’Pert software. 

Sample preparation 

The samples were maintained in the oven at 80 °C for 24 h prior to the analysis to avoid 

any adsorbed humidity due to the hygroscopic nature of the powders. Approximately 10 

mg samples were ground for 5 min in an agate mortar to eliminate possible agglomerates 

and to homogenise the sample and then packed into the sample holder. The measurements 

were performed using a rotating sample stage to achieve homogeneous results. The 

compounds were characterised in ambient conditions of temperature (~20 °C) and pressure 

(~1 atm).  

3.1.2 Environmental Scanning Electron Microscopy (E-SEM) 

Environmental scanning electron microscopy is an ideal tool for observing the surface 

shape and morphology of samples. It was used to characterise the morphology of the solid 

acid powders and to measure their particle size (see Chapter 4). Surface and cross-section 

morphology of composite membranes was also analysed using this technique (see Chapter 

5). The samples were scanned by an electron beam and the signal produced by the 

interaction with the surface was measured by a detector. The analysis of the secondary 

electrons of the samples allowed producing a topographic image of the samples. These 

measurements were carried out by the Chemicals and Materials Analysis group (ACMA) 

of the department of Chemical Engineering and Advanced Materials (CEAM) in 

http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C3%85
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Newcastle University. The E-SEM micrographs were recorded using a FEI XL30 ESEM-

FEG (Environmental Scanning Electron Microscope-Field Emission Gun) in low vacuum 

mode at 10 -15 kV. 

Sample preparation 

Solid acid powder samples were dried in an oven for 24 h at 80 °C to avoid moistening. 

They were ground in an agate mortar for 5 min to homogenise and to avoid agglomerates. 

The sample was placed on an aluminium holder and coated by sputtering with a layer of 

gold of few nanometres thickness to allow a clear image of the sample. The composite 

membranes were placed on an aluminium holder with both sides facing the top. The cross 

section of the membrane was also analysed. To obtain a non-deformed image of the cross 

section of the membranes a fragile fracture was carried out by placing the membrane into 

liquid N2 for 1 min and breaking it with two tweezers.  

3.1.3 Energy Dispersive X-ray Spectroscopy (EDS) 

Energy dispersive X-ray spectroscopy is a technique use for the elemental characterisation 

of a sample. Samples were exposed to a beam of charged particles and the X-ray emissions 

generated by the sample were analysed by an X-ray detector. CsH2PO4-doped PBI 

membranes were analysed by this technique in order to study the interaction between both 

materials (see Chapter 5). These measurements were carried out by the Chemicals and 

Materials Analysis group (ACMA) of the department of Chemical Engineering and 

Advanced Materials (CEAM) in Newcastle University. The elemental line-scan analysis of 

the samples was carried out using a FEI XL30 ESEM-FEG (Environmental Scanning 

Electron Microscope-Field Emission Gun) with a Rontec microanalysis system attached 

and the software used was called Quantax. The measurements were done in low vacuum at 

20 kV. 

Sample preparation 

A fragile fracture of the membrane was carried out by placing the membrane into liquid N2 

for 1 min and breaking it with two tweezers and the cross section was determined by E-

SEM to allow the line-scan analysis.  
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3.1.4 Thermo-gravimetric Analysis (TGA)  

Thermo-gravimetric analysis is a technique used for thermal characterisation, where the 

mass of a sample is monitored as a function of temperature or time as it is subjected to a 

controlled temperature program in a controlled atmosphere. It was used to measure the 

mass loss of the synthesised solid acid powders (see Chapter 4). The analysis was made in 

the department of Chemical Engineering and Advanced Materials (CEAM) of Newcastle 

University using a PerkinElmer STA600 analyser. The analysis was made under inert 

atmosphere (He) with a gas flow rate of 30 ml min
-1

 and in a temperature range from 50 °C 

to 600 °C with a thermal slope of 5 °C min
-1

. The mass of the samples was ca. 100 mg 

before the analysis.  

Sample preparation 

Powdered solid acids were ground in an agate mortar for 5 min and placed in a ceramic 

crucible. All samples were dried in the oven for 24 h at 80 °C prior to the experiment to 

avoid any adsorbed humidity. 

3.1.5 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry is a technique used for thermal characterisation where 

the difference in the amount of heat required to increase the temperature of a sample and 

reference is measured as a function of temperature. It measures how the heat capacity (Cp) 

of a material is changed by temperature. A sample of known mass is heated or cooled and 

the changes in its heat capacity are tracked as changes in the heat flow. This technique was 

used for the detection of transitions like melts, phase changes or decomposition in the 

synthesised solid acids (see Chapter 4). The analysis was made in the department of 

Chemical Engineering and Advanced Materials (CEAM) of Newcastle University using a 

PerkinElmer STA600 analyser. The analysis was made under inert atmosphere (He) with a 

gas flow rate of 30 ml min
-1

 and in a temperature range from 50 °C to 600 °C with a 

thermal slope of 5 °C min
-1

. The mass of the samples was ca. 100 mg before the analysis. 

Sample preparation 

Powdered solid acids were ground in an agate mortar for 5 min and placed in a ceramic 

crucible. All samples were dried in the oven for 24 h at 80 °C prior to the experiment to 

avoid any absorbed humidity. 

http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Temperature
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3.1.6 Solid state Nuclear Magnetic Resonance (ss-NMR) Spectroscopy  

Solid state nuclear magnetic resonance spectroscopy is an analytical technique used to 

characterise physical and chemical properties of atoms or molecules in a material. It is 

based on a phenomenon occurring in the nuclei of an atom when it is subjected to a static 

magnetic field and then exposed to a second oscillating magnetic field. By this technique 

analysis on the nuclei of atoms are performed and the chemical environment of specific 

nuclei is deduced from the information obtained. It was used to study phosphate 

condensation on the heat-treated CsH2PO4 samples (see Chapter 5). Solid state 
1
H and 

31
P 

NMR analyses were performed with a Varian VNMRS 400 WideBore solid state NMR 

spectrometer with a Varian 3.2 mm T3 probe and 3.2 mm zirconia rotor. This analysis was 

made in the department ‘Chimie Moléculaire et Organisation du Solide’ of the ‘Institut 

Charles Gerhardt Montpellier, CNRS-UM2’, France.  

Sample preparation 

Powdered and fibre CsH2PO4 were ground in an agate mortar for 5 min and placed in the 

NMR holder. All samples were dried in the oven for 24 h at 80 °C prior to the experiment 

to avoid any adsorbed humidity. 

3.1.7 Mechanical properties  

The mechanical properties of the fabricated composite membranes were characterised by 

measuring their tensile strength. The tensile properties indicate how the material reacts to 

forces being applied in tension. A tensile test is a fundamental mechanical test where a 

carefully prepared specimen is loaded in a very controlled manner while measuring the 

applied load and the elongation of the specimen over some distance.  

Tensile tests were used to determine the modulus of elasticity, or Young’s modulus (Y), 

which describes tensile elasticity, that is, the tendency of an object to deform along an axis 

when opposing forces are applied along that same axis. It is defined as the ratio of tensile 

stress to tensile strain and calculated from the slope of its stress/strain curve in the elastic 

deformation region (figure 3.1). In this linear region, the line obeys the relationship defined 

as Hooke's Law where the ratio of stress to strain is a constant. 

The point of the curve where the stress/strain line relationship deviates from the straight 

line is known as the Yield strength point. After this point the strain increases faster than the 

http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Tensile_stress
http://en.wikipedia.org/wiki/Tensile_stress
http://en.wikipedia.org/wiki/Tensile_stress
http://en.wikipedia.org/wiki/Tension_(physics)
http://en.wikipedia.org/wiki/Slope
http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
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stress, and some permanent deformation occurs and the material will not return to its 

original unstressed condition when the load is removed.  

The ultimate tensile strength (UTS) is the maximum stress level reached in a tension test. It 

represents the strength of a material to withstand external forces without breaking. On the 

stress/strain curve the UTS is the highest point of the line. 

 

Figure 3.1. Schematic representation of a stress/strain curve. 

These experiments were carried out in a Tinius Olsen device H25KS with a 100 N load. 1 

mm s
-1

 speed was applied until specimen break took place. Horizon software was used in 

the experiments. The above mentioned parameters were calculated for each of the 

composite membranes fabricated (see Chapter 5). 

Sample preparation 

Composite membranes were cut in 5 × 1 cm strips. The thickness of each sample was 

measured prior to the experiment using a standard micrometre.  

3.1.8 Electrospinning 

Electrospinning is a technique used to produce polymeric or hybrid fibres in the 

micrometre to nanometre scale [3, 4]. The principle of this technique is to apply a high 

potential to a drop of a polymer solution, such that the repulsive electrical forces overcome 

the surface tension of the drop. A charged jet of the solution is then ejected onto a 

javascript:popupOBO('CMO:0001620','c3ta11851g')
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grounded collector allowing the evaporation of the solvent and the formation of solid thin 

fibres. The shape of the polymer solution droplet changes when the potential is applied, 

resulting in a characteristic shape known as the Taylor Cone. The electrospinning device 

comprised a high voltage power supply and a syringe pump to control the feed rate of 

solution to the syringe (figure 3.2). 

 

Figure 3.2. Schematic diagram of the electrospinning device [4].  

This technique was used to produce CsH2PO4 fibres and to develop a new method to 

fabricate phosphate-based solid acid proton conducting membranes (see Chapter 5). 

CsH2PO4 was electrospun by the electrospinning device onto a grounded collector covered 

by an aluminium foil. The output solution rate of the needle was 0.3 ml h
−1

 and the 

distance of the needle from the target and the potential applied were 10 cm and 15 kV 

respectively. 

Sample preparation 

The methodology used for sample preparation for the electrospinning of the partially 

dehydrated CsH2PO4 is explained in section 5.1. 

3.2 Electrochemical methods  

3.2.1 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy is a method used to characterise the electrical 

properties and determine parameters associated with electrochemical interface and bulk of 

javascript:popupOBO('CHEBI:46787','c3ta11851g')
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materials. The principle of this technique is to measure the response of a system to an 

applied sinusoidally varying alternating voltage at a range of frequencies. Impedance 

analysis of ionic solids identifies the elementary process such as, bulk conduction, ionic 

transport, grain boundary conduction and the electrode-electrolyte interface process in the 

measured frequency domain. It is a non-destructive technique and also can provide the 

dynamic properties to understand the microscopic nature of the proton conducting 

materials [5]. 

The proton conductivity of the solid acids was measured using EIS. The EIS experiment 

involved applying a small sinusoidal voltage perturbation (20 mV) to the system in a broad 

range of frequencies (between 1 Hz and 500 kHz) and measuring the resulting current with 

the phase angle. Using this data, the real (Z’) and imaginary (Z’’) impedances were 

calculated and plotted against each other in what is called Nyquist impedance spectra 

(figure 3.3). The value corresponding to the ionic resistance of the electrolyte (Relectrolyte) 

was calculated from the intercept of the spectrum with the real axis.  

 

Figure 3.3. Nyquist plot of a 300 µm thickness CsH2PO4 pellet at 250 ºC. 

Considering the calculated resistance and the distance between the electrodes and cross-

section area, conductivity of the material was calculated using equation 3.2. Stabilising 

time of 20 min was left before measuring each point. All the measurements were made 

under water saturated N2 stream with a gas flow rate of 50 ml min
-1

 and the cell 

temperature was varied in the range of 50 to 300 °C. 

Relectrolyte 
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where σ is the proton conductivity (S cm
-1

), d represents the distance between electrodes 

(cm), R the resistance (Ω) and A is the cross-section area (cm
2
).  

Due to the heterogeneity of some of the composite membranes, in-plane and through-plane 

conductivity measurements were carried out in these samples. In-plane measurements were 

carried out placing the same side of the membrane in a four platinum electrode cell (figure 

3.9) while for through-plane conductivity the electrolysis tubular cell (figure 3.10) with 

one electrode on each side of the membrane was used. This way the anisotropic behaviour 

of the proton conduction in the cast composite membranes was studied.  

Sample preparation 

Pellets of the solid acids with a diameter of 1.8 cm were prepared by pressing the powder 

at 7 × 10
3
 kg cm

-2
 and ca. 18 °C for 30 min. These pellets were prepared with 300 mg 

powder and thickness of ca. 300 μm in order to maintain enough mechanical strength and 

avoid pellet cracking in the conductivity cell. Pellets were sandwiched between two 1.5 cm 

diameter carbon papers (Freudenberg H2315-I2-C8, with gas diffusion layer) to provide 

better contact in the electrolyte/electrode interface. Measurements were carried out in the 

tubular electrolysis cell shown in figure 3.10 with an Ar flow of 50 ml min
-1

 passing 

through a temperature controlled water saturator. Torque was applied by applying 2.5 atm 

air pressure to the compression piston. The composite membranes were cut in 1 × 5 cm 

sized strips. The samples were placed in the conductivity cell shown in figure 3.9 and the 

cell was sealed by applying a 2 N m torque using a torque wrench of 0 to 5 N m range.  

3.2.2 Cyclic Voltammetry (CV) 

Cyclic voltammetry is one of the most important and widely used methods for 

electrochemical studies of a system, providing information about thermodynamic and 

kinetics of redox processes of electroactive species, adsorption and coupled chemical 

reactions. The obtained voltammograms in which the current is monitored as a function of 

applied potential is informative concerning the oxidation and reduction reactions from 

which the required information can be acquired. In cyclic voltammetry, the potential/time 

waveform is based on sweeping potential at a constant rate between initial and final 
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potentials (E1 and E2) which is known as the forward scan. Then the potential can be swept 

back to the initial potential (from E2 to E1) in the backward scan, as shown in figure 3.4.  

Cyclic voltammetry was performed in this research to address the effect of different 

aqueous electrolytes in the electrochemical active surface (EAS) of platinum and iridium 

oxide and to identify the redox processes taking place at different potentials (see Chapter 

6). These experiments were carried out in a standard three electrode cell (figure 3.8). CVs 

were also performed to characterise the electrodes of the single-cell electrolysis system 

(figure 3.10) and estimate catalyst utilisation with a solid state electrolyte (see Chapter 7).  

 

 

Figure 3.4. (a) cyclic potential sweep, (b) resulting cyclic voltammogram.   

ESA values of iridium oxide are commonly given by charge units (mC cm
-2

) calculated by 

the area integration of the cyclic voltammograms in the 0 – 1.4 V region [6-8]. In the case 

of platinum, a well-established technique to calculate the EAS is to integrate the charge of 

the proton desorption peak (QH) obtained in the range of 0 – 0.4 V [9-11]. At this potential 

range the proton attached to the surface of the Pt desorbs giving an anodic current in form 

of a peak. The value of this coulombic charge is directly proportional to the area of catalyst 

active in the electrochemical half-reaction as showed in equation 3.3.  

 

where QH represents the charge for hydrogen desorption (mC cm
-2

),  the platinum 

loading (mg cm
-2

) and 0.21 (mC cm
-2

) represent the charge required to desorb a monolayer 

of H2 on bright Pt [12, 13].  
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Sample preparation 

Due to the variety of methods and electrodes prepared for both, half-cell and electrolysis 

cell experiments, the sample preparation methods are explained in detail in the 

experimental sections of Chapters 6 and 7. 

3.2.3 Linear Sweep Voltammetry (LSV) 

Linear sweep voltammetry follows the same principle as cyclic sweep voltammetry where 

only the forward sweep is monitored (figure 3.4). Quasi-steady linear sweep 

voltammograms (or polarisations) were performed in both aqueous media (three electrode 

cell, figure 3.8) and in solid state (tubular electrolysis cell, figure 3.10) in order to 

determine the activity and stability of the system towards water splitting reaction. Quasi-

steady polarisation curves were carried out in the potential range of 1.0 – 2.0 V at a scan 

rate of 1 mV s
-1

 in all experiments. In the obtained curves the losses arising from the ohmic 

resistance of the system (iRA), ionic from the electrolyte and electric from the system, and 

the kinetic losses produced by the anode (ηAn) and cathode (ηCath) are included (figure 3.5). 

The effect of these processes was separately analysed in order to determine the 

contribution of each of them to the overall performance of the system. 

 

Figure 3.5. Standard polarisation curve of an electrolysis system showing the reversible voltage (vr), ohmic 

losses (iRA) and anode and cathode overpotentials (η). 
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The effect of the ohmic resistance of the system (iRA) was determined by electrochemical 

impedance spectroscopy (section 3.2.1). The contribution of the ohmic resistance arises 

mainly from the protonic resistance provided by the electrolyte. It was calculated for the 

aqueous electrolyte in half-cell studies (see Chapter 6) and for the solid electrolyte in the 

single-cell electrolysis characterisation (see chapter 7). 

The contribution of the kinetic losses produced in the cathode (ηCath) was calculated for 

the single-cell electrolysis system (see Chapter 7), corresponding to the hydrogen 

evolution reaction (HER). Hydrogen pump polarisations were carried out in order to 

determine the overpotential provided by the cathode kinetics in the electrolysis cell. These 

measurements were carried out feeding 50 ml min
-1

 H2 gas to the counter (and reference) 

electrode and 50 ml min
-1

 N2 gas to the working electrode and then polarising the system 

from 0 to 350 mV. The hydrogen is oxidised in the counter electrode to protons and 

electrons; protons travel through the electrolyte and electrons through the external circuit 

to meet in the working electrode, where protons are reduced to hydrogen gas. The 

electrolysis cell shown in figure 3.10 was used for these experiments.  

The linear sweeps obtained were corrected for the iRA and ηCath in order to determine the 

kinetic losses produced in the anode (ηAn), corresponding to the oxygen evolution reaction 

(OER). The activity of IrO2 towards OER was calculated by determining the current 

density obtained at different overpotentials. The kinetic parameters corresponding to this 

reaction (Tafel slope, b, exchange current density, j0, and activation energy, Ea) were 

calculated as explained in section 3.2.3.1.  

Sample preparation 

Due to the variety of methods and electrodes prepared for both, half-cell and single-cell 

electrolysis experiments, the sample preparation methods are explained in detail in the 

experimental section of Chapters 6 and 7. 

3.2.3.1 Calculation of the kinetic parameters 

During the linear sweeps the electrocatalytic process is dominated by two main processes; 

(1) charge-transfer, where the exchange of electrons between the electrode and the 

electrolyte is the limiting step and (2) mass-transport, where the process is controlled by 

the diffusion of species. In order to study the electrocatalytic activity of the catalyst and 
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calculate pure kinetic parameters, the region where the process is controlled by charge-

transfer must be determined.  

This is the initial region of the polarisation curve where the relation of the exchange of 

electrons with the surface of the electrode and the potential applied is exponential, (region 

I, figure 3.6). During the rest of the curve, region II of figure 3.6, both processes will take 

place at the same time, being the limiting step a balance between electron transfer in the 

interface electrode/electrolyte and the diffusion of reactants and products (and the species 

taking place in the reaction mechanism, i.e. H
+
) from the active sites of the electrocatalyst 

[14, 15]. 

 

Figure 3.6. Polarisation curve of IrO2 in 5.15M H3PO4 at 80 °C, scan rate 1 mV s
-1

. 

The reversible potential, Erev, is the potential before polarising the system, where no net 

current flows, and which can be calculated by Nerst equation (equation 3.4). 

 

where R represents the ideal gas constant (8.314 J mol
-1

 K
-1

), n the number of electrons 

taking place in the reaction and F represents the Faradaic constant (96495 C mol
-1

). As the 

concentration of oxidised and reduced species in the system is difficult to determine 

experimentally, the reversible potential can also be calculated from the thermodynamic 

parameters of the reaction: 

 

I 
    

II 
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where ΔGR (kJ mol
-1

) stands for the Gibbs free energy of reaction. For any given 

temperature ΔGR can be calculated from reaction 3.6, where the enthalpy and entropy of 

reaction (ΔHR, ΔSR) will be temperature dependent as stated in reactions 3.7 and 3.8. 

 

                                                     (3.7) 

                               (3.8) 

where H
0
 (kJ mol

-1
) and S

0
 (kJ mol

-1
 K

-1
) represent the standard enthalpy and entropy and 

Cp (kJ mol
-1

) the temperature dependant heat transfer coefficient. At the reversible 

potential the system is in a dynamic equilibrium where oxidation and reduction processes 

happen at the same rate. The sum of these cathodic and anodic currents equal to zero and 

their magnitude, both the same in absolute values, equals to the so-called exchange current 

(i0). 

                 (3.9) 

            (3.10) 

i0 is a kinetic parameter which describes how fast the electrochemical reaction happens 

when the system is at equilibrium and is thus directly related to the ability for charge 

transfer in the electrode/electrolyte interface [14].  

When the system is polarised to more positive potentials an anodic current is generated by 

the OER and the cathodic parameter in Butler-Volmer equation (equation 3.11) disappears, 

leading to the so-called Tafel equation (equation 3.12) [16]. 

               (3.11) 

    (3.12) 
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where η is the overpotential (the difference between the applied potential and the Erev), 

meaning how far is the system from equilibrium, b stands for the Tafel slope  

and a equals  It is possible to measure experimentally the exchange 

current (i0) and Tafel slope (b) by plotting the logarithmic current vs. applied potential (or 

overpotential), known as Tafel plot (figure 3.7).  

 

Figure 3.7. Tafel plot of IrO2 in 5.15M H3PO4 at 80 °C, scan rate 1 mV s
-1

.  

The charge transfer process occurs where the linear region of the polarisations is 

distinguished. The slope of the linear region is b and the interception where the 

extrapolation of the linear region meets the Erev (η = 0) is the value where i = i0.  

The activation energy is the minimum energy required for the electrochemical process to 

occur. It can be calculated from the dependence if i0 with temperature, following Arrhenius 

law (equations 3.13 and 3.14). 

 

 

where Ea represents the activation energy (kJ mol
-1

) of the electrochemical reaction. This 

parameter is calculated experimentally by calculating the slope of the line in the so-called 

Arrhenius plot; that is log i0 vs. T
-1

.  

η = a + b log i 

g  0 
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3.2.4 Electrochemical cells  

Three different electrochemical cells were used in this research; (1) a standard jacketed 

three electrode cell for catalyst characterisation studies, (2) a four electrode cell for in-

plane conductivity measurements of composite membranes and (3) a tubular electrolysis 

cell for electrolysis studies and trough-plane conductivity measurements of pellets and 

membranes. 

The three electrode cell consisted in a 100 ml capacity glass cell (figure 3.8). It was 

jacketed for a temperature controlled performance using a standard water bath. The 

reference electrode used was Ag/AgCl electrode (BASi), glassy carbon electrode (BASi) 

with 0.07 cm
2
 area or a gold electrode with 0.154 cm

2
 were used as working electrode and 

a platinised titanium mesh with 2.5 × 2 cm as counter electrode. N2 was bubbled 

continuously in the solution to maintain the system deoxygenated. The cell was connected 

to a Sycopel Scientific Ministat potentionstat (Model 256D Metered Ministat) to perform 

the linear and sweep voltammetry experiments. 

  

Figure 3.8. Schematic diagram of the three electrode half-cell, showing the reference electrode (RE), counter 

electrode (CE) and working electrode (WE). 

The four electrode cell used for in-plane conductivity measurements is shown in figure 3.9. 

Four equally spaced platinum foils act as the electrodes in contact with the measured 

material. Two of the electrodes were used to current flow while the other two were used to 

Water outlet 

Water inlet 
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measure the voltage drop of the system. 50 ml min
-1

 Ar was passed through a temperature 

controlled water saturator and then fed to the gas chamber of the cell, in contact with the Pt 

electrodes. All gas feeding tubes were heated to avoid water condensation in the system. 

The cell was connected to a frequency response analyser (PSM1735 Multimeter analyser 

with a Newton 4th Ltd. Impedance Analysis Interface) to perform impedance 

measurements. 

 

Figure 3.9. Schematic drawing of proton conductivity cell for in-plane conductivity measurements. 

Electrolysis studies and through-plane impedance measurements were carried out in the 

tubular cell shown in figure 3.10. The sample (either pellet or membrane) was placed in the 

sample holder (figure 3.10-b) between two titanium rods with gas inlet and outlet. A spiral 

channelling was mechanised at the end of the titanium rods to distribute the gases 

uniformly. The ends of the rods were gold coated to avoid any corrosion issues. A 

thermocouple was fitted in the gas channel of one of the rods in close contact with the 

measured sample. The titanium rods were embedded in two ceramic tubes and everything 

clamped together by a cylindrical heater. Torque to the system was provided by a 

pressurised piston in the edge of one of the titanium rods. The pressure range was 0 – 5 

atm. All gas feeding tubes were heated to avoid water condensation in the system. 

Electrolysis studies were performed using an EG&G Princeton scanning potentiostat model 

362. For EIS measurements the cell was connected to a frequency response analyser 

(PSM1735 Multimeter analyser with a Newton 4th Ltd. Impedance Analysis Interface). 

The electrical resistance provided by the system was measured at different piston pressures 

and subtracted from the impedance resistance measured (figure A-1, appendix A). 

Gas chamber opening 

Platinum foils 

                          O-ring 
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Figure 3.10. Schematic drawing of (a) electrochemical tubular cell and (b) sample holder. 
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CHAPTER 4 

SYNTHESIS AND CHARACTERISATION OF PHOSPHATE-

BASED SOLID ACIDS 

In this chapter the physico-chemical and electrochemical characterisation of phosphate-

based solid acids was carried out and the stability in terms of thermal decomposition and 

water solubility addressed. Structure and morphology in terms of crystallite and particle 

sizes were examined by P-XRD and E-SEM and thermal stability in terms of dehydration 

was studied by TGA-DSC analysis in the temperature range of 50 – 600 °C. The 

dependency of proton conductivity on temperature was determined by EIS in order to 

study the so-called ‘superprotonic phase transition’ exhibited by these materials. The effect 

of humidification on the stability of CsH2PO4 was further analysed in order to address the 

humidity conditions required for a stable performance of this material in the electrolysis 

system. 

4.1 Introduction  

Great effort has been made in material science in order to develop new materials to allow 

increasing the operating temperature of proton exchange membrane fuel cells (PEMFC) 

and water electrolysers (PEMWE) [1-4]. The increase in the operating temperature reduces 

the electric energy demand and enhances the kinetics of the electrochemical reactions and 

the catalyst tolerance to CO poisoning. Water management in these devices is also greatly 

simplified when operating above 100 °C [5].  

The electrolyte is the main cause of the temperature restriction due to the water boiling 

point. Nafion®, a perfluorosulfonated chained polymer, which is the state-of-the-art 

electrolyte membrane used in these electrochemical devices, loses its proton conductivity 

in the absence of liquid water [6]. It has been therefore an extent research in material 

science in order to find or develop materials which can conduct protons at temperatures 

higher than 100 °C; that is, in the absence of liquid water. Although there is knowledge of 

high temperature proton conductors in the range of 500 – 800 °C [7], few possibilities of 

proton conducting materials in the medium temperature range (100 – 300 °C) where 
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operating conditions are much more favourable from an engineering point of view, have 

been found [1, 8, 9]. Phosphoric acid-doped polymers have been the most promising 

electrolytes for medium temperatures [10, 11], but still many problems have to be 

overcome, ca. slow electrode kinetics [12, 13] or durability issues caused by membrane 

mechanical degradation and phosphoric acid leaching [14, 15]. Solid acids have attracted 

great interest the last decade due to their high proton conductivity (10
-2 

- 10
-3

 S cm
-1

) at the 

intermediate temperature range (150 - 300 °C) [16, 17]. Their proton conductivity 

mechanism is believed to be driven by proton hopping, also known as ‘Grotthuss 

mechanism’ [4, 18]. These inorganic salts are usually composed by an alkali-metal as the 

positive ion and one (or more) kind of the following anion groups; sulphates, selenates, 

phosphates and arsenates.  

In this chapter the synthesis and characterisation of phosphate-based solid acids is 

investigated. Five different materials of the alkali-metal family, MH2PO4 (M = Cs, Rb, K, 

Li and NH4) were synthesised and their properties investigated. The effect of 

humidification in the stability of CsH2PO4 was further analysed in order to determine the 

suitability of this material as electrolyte in PEM water electrolysers. 

4.2 Experimental  

The synthesis of phosphate-based solid acids, MH2PO4 (M = Cs, Rb, K, Li), was carried 

out by combining each starting reagent Cs2CO3 (Aldrich, 99.0%), Rb2CO3 (Alfa-Aesar, 

99.8%), K2CO3 (Alfa-Aesar, 99.0%), Li2CO3 (Sigma-Aldrich, 99.0%) and H3PO4 (Sigma-

Aldrich, ACS > 85% wt. aq. solution) in a molar ratio of 1:2 (equation 4.1). 

 M2CO3 + 2H3PO4     2MH2PO4 + H2O + CO2                   (4.1) 

The reaction was carried out in aqueous solution at ~18 °C and 1 atm. In the case of 

LiH2PO4, KH2PO4 RbH2PO4 and CsH2PO4 polycrystalline powders were obtained by drop 

wise addition of 1.5 M solid acid aqueous solution into 250 ml methanol. Single crystals 

were grown by the slow evaporation of water at ambient conditions (~18 °C, 1 atm) from 

3.0 M aqueous solution of each solid acid. Sample verification was carried out by Powder 

X-Ray Diffraction analysis (P-XRD) at ~20 °C and 1 atm. Granular (NH4)H2PO4 was 

obtained from commercial source (Sigma-Aldrich, 98.0%). Polycrystalline powder of this 

compound was obtained by drop wise addition of 1.5 M aqueous solution into 250 ml 
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acetone and single crystals by the slow evaporation of 3.0 M aqueous solution at ambient 

conditions (~18 °C, 1 atm). All the samples were dried in an oven at 80 ºC for 24 h to 

avoid moistening. Pellets of all materials were fabricated by pressing the grounded powder 

at 7 × 10
3
 kg cm

-2
 at room temperature for 30 min. Pellets were approximately 300 µm 

thick (although exact thickness was measured for each one of the samples) and 1.8 cm 

diameter. 

The crystallographic properties of the samples were characterised by Powder X-Ray 

Diffraction (P-XRD) and morphology by Environmental Scanning electron microscopy (E-

SEM). The thermal stability of the samples was analysed by Thermo-Gravimetric Analysis 

(TGA) and Differential Scanning Calorimetry (DSC) and their proton conductivity 

measured by Electrochemical Impedance Spectroscopy (EIS). All these methods are more 

extensibly explained in chapter 3.   

4.3 Characterisation of phosphate-based solid acids 

4.3.1 Crystallographic structure and morphology 

Phosphate-based solid acids were characterised by P-XRD in order to verify the successful 

synthesis of the compounds and study their crystallographic structure. The spectrum of 

each of the synthesised powders matches with the data provided by the International 

Crystallographic Diffraction Database (ICDD). By Scherrer equation (equation 3.1, 

Chapter 3) the crystallite size of the compound was calculated using the three most 

characteristic peaks of each spectrum. 

All the solid acid compounds exhibited an average crystallite size of the same range, 

between 60 and 90 nm diameter, assuming spherical crystallites. LiH2PO4 exhibits the 

highest crystallite size while KH2PO4 showed the smallest, while Rb, Cs and NH4-based 

dihydrogen phosphates exhibited sizes in between. The specifications and crystallographic 

data of these compounds is summarised in table 4.1. It has been reported by several authors 

how the crystal structure of these materials changes at higher temperatures, when they 

undergo a structural solid phase transition to proton conducting materials [19-22]. 
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Figure 4.1. P-XRD spectra of polycrystalline powder of phosphate-based solid acids at room temperature 

and atmospherical pressure. 

Table 4.1. Crystallographic data of solid acids at ~ 18 °C. 

Material 
Card-number       

/ ICDD 
Crystal system  

Crystallite size            

/ nm 

LiH2PO4 00-021-498 Orthorhombic 89.5 

KH2PO4 00-035-0807 Tetragonal 60.7 

RbH2PO4 00-034-0074 Tetragonal 64.9 

CsH2PO4 01-035-0746 Monoclinic 68.3 

NH4H2PO4 00-006-0125 Tetragonal 80.3 

LiH2PO4 

KH2PO4 

RbH2PO4 

CsH2PO4 

NH4H2PO4 



                            Chapter 4: Synthesis and characterisation of phosphate-based solid acids 
 

75 
 

 

The particle size is an important parameter to take into account in inorganic proton 

conductors. In order to use this type of materials as an electrolytic media for proton 

conduction they are commonly subjected to high pressures in order to fabricate a dense 

pellet. The particle size and distribution affects the density and homogeneity of this pellet 

by the effect of the grain boundary. Besides as it will be explained further, particle size has 

an effect in material dehydration rate by effect of the surface area. It is also an important 

variable to study in both electrode and composite membrane fabrication, where smallest 

particles are commonly preferred. The preference to smaller particles arises from three 

main reasons; (1) small particle size would increase the surface area to volume ratio 

allowing a better triple phase boundary in the electrode when the powder is used as 

ionomer (2) smaller particles are commonly easier fused together by pressure and more 

dense pellets without grain boundary can be fabricated and (3) smaller particles produce a 

better colloidal dispersion of the powder into a polymer solution allowing a more 

homogeneous casting of a polymeric/inorganic composite membrane (see Chapter 5). 

In order to study the morphology and particle size, further characterisation of the solid 

acids was carried out by E-SEM. The precipitation of the solid polycrystalline powders 

was carried out in various solvents; acetone, 1, 2 – propanol, ethanol and methanol in order 

to study its effect on the particle size. Powders precipitated into methanol (acetone in the 

case of NH4H2PO4) exhibited in general the smallest particle size and thus, only those 

results are discussed in this chapter.  

The E-SEM micrographs show the morphology and particle size of the polycrystalline 

powders. The particle size distribution of the solid acid powders was calculated by the 

analysis of three different regions of the micrographs with a sample size of 300 points and 

is shown in figure 4.3. 

LiH2PO4 showed the smallest particle sized powder with an average of 400 nm. KH2PO4 

exhibited the highest particle size of 30 µm average of clearly defined and very well 

dispersed monolithic morphology particles. Rb and Cs-based dihydrogen phosphates 

powders showed a similar smooth-edge particle shape with an average of 2 and 4 µm 

respectively, although CsH2PO4 had a much higher particle size distribution. NH4H2PO4 

exhibited 5 µm average particle size although bigger particles as high as 50 µm were also 

spotted.  
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A particle is considered a sum of crystallites arranged together. Considering spherical 

units, an estimation of the agglomerated number of crystallites to form a particle was 

carried out. This calculation was done considering the mean size of the particle size 

distribution of each compound (table 4.2). 

   

   

   

  Figure 4.2. E-SEM images of (a) LiH2PO4 (b) KH2PO4 (c) RbH2PO4 (d) CsH2PO4 and (e) NH4H2PO4 

powders precipitated into methanol (and acetone). 
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  Figure 4.3. Particle size distribution of polycrystalline (a) LiH2PO4 (b) KH2PO4 (c) RbH2PO4 (d) CsH2PO4 

and (e) NH4H2PO4 

 

Table 4.2. Particle and crystallite size of phosphate-based solid acids. 

Material 
Crystallite size            

/ nm 

Mean particle 

size / µm 

N° of crystallites 

per particle 

LiH2PO4 89.5 0.40 4.44 

KH2PO4 60.7 30 494 

RbH2PO4 64.9 2 30.8 

CsH2PO4 68.3 4 50.6 

NH4H2PO4 80.3 5 62.3 

 

e 

d 

b a 

c 
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The particle size distribution of these compounds obtained by precipitation into methanol 

has not been previously studied by other research groups and therefore no consistent data 

to compare is available in literature. Few SEM micrographs of CsH2PO4 [23] and 

RbH2PO4 [24] polycrystalline powders precipitated by this method were found in the 

literature and analysed in order to compare to the results obtained in this research. Cs and 

Rb salts show mean particle sizes of ca. 5 and 4 µm respectively and smooth edged 

morphology, which are slightly higher but in close agreement to the results obtained. Ahn. 

et al. reported a polyol precipitation method which affects the morphology of CsH2PO4 

powder, being able to obtain plate and rod like particles over the micron-size [25]. Authors 

suggested that preferred orientations of the crystals are responsible of the different 

morphologies obtained. A few reports on the fabrication of CsH2PO4 nanoparticles are 

reported using different surfactants where particles in the nanometric size were obtained 

[26-28]. The problems exhibited by this method are the difficulty of eliminating the 

surfactants after the fabrication and the low physical stability of the nanoparticles caused 

by their high hygroscopicity; they adsorb atmospheric humidity and they dissolve together 

into bigger particles. This nanoparticle fabrication method was tried in this research but no 

successful results were obtained. 

4.3.2 Proton conductivity 

The most characteristic property of this family of solid acids is their transition to proton 

conductors at the medium temperature range. Proton conductivity at a certain temperature 

is enhanced by two to three orders of magnitude placing them as potential materials as 

intermediate temperature electrolytes. This transition is noticed in many of the studied 

(di)hydrogen sulphates, selenates, arsenates or phosphates [16, 17]. It is explained by two 

theories; (1) solid-state phase transition [29, 30] or (2) material dehydration [31, 32].  

The first one of these theories, proposed by Baranov et al., states that these materials 

undergo a polymorphic transition in their crystal structure which is responsible for the high 

proton conductivity [29]. They proposed that the mechanism for proton conductivity after 

this polymorphic transition is carried by proton hopping or ‘Grotthuss mechanism’, where 

occupation of the interstitial proton site is possible and the proton migration from one 

oxygen atom of the phosphate group to another is accompanied by the formation of a new 

hydrogen bond. KH2PO4 was reported to undergo a structural change from tetragonal to 

monoclinic symmetry at 187 °C [29] accompanied by an increase in proton conductivity of 
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approximately two orders of magnitude. Same tetragonal to monoclinic transitions was 

reported for RbH2PO4 at 86 °C although this material undergoes another phase transition to 

a yet unclear structure of superprotonic phase at 285 °C [24]. CsH2PO4 undergoes a 

monoclinic to cubic structural transition at 231 °C accompanied by an increase of three 

orders of magnitude in proton conductivity [33].  

The second theory states that the high proton conductivity exhibited by these materials at 

the medium temperature range in caused by a dehydration/polymerisation reaction [20]. 

The water produced by this reaction would be responsible for proton conductivity in the 

lattice of the crystals by vehicle mechanism. In this case water would act as a proton 

solvent producing hydronium ions, H3O
+
, allowing proton conduction in the grain 

boundary of the material. 

EIS is the most commonly used technique to measure transport properties such as protonic 

conductivity [34]. In figure 4.4 the transition to proton conducting materials of the 

synthesised solid acids measured by this technique is shown. All samples were 

characterised in humidified conditions (RH = 3.0 %) to avoid any dehydration of the 

materials above their transition temperature [21, 24, 35, 36]. 

 

  Figure 4.4. Temperature dependence of the protonic conductivity of (a) LiH2PO4 (b) KH2PO4 (c) RbH2PO4 

(d) CsH2PO4 and (e) NH4H2PO4 

All materials show a sharp increase in their conductivity at a certain temperature. LiH2PO4 

reached a maximum proton conductivity of 2 × 10
-3

 S cm
-1

 at 200 °C in contrast to the high 
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conductivity value of 10 S cm
-1

 reported by Lee et al. [21]. Same conductivity value was 

achieved for RbH2PO4 at a much higher temperature of 285 °C which is in good agreement 

with the 10
-2

 S cm
-1

 value reported by Li et al. [37]. KH2PO4 and NH4H2PO4 showed a 

maximum conductivity of 5 × 10
-3

 and 9 × 10
-3

 S cm
-1

 at 210 and 200 °C, respectively. 

Measured conductivity values for these two compounds are one and two orders of 

magnitude higher respectively than those results reported by other authors [29, 38, 39]. The 

conductivity of NH4H2PO4 dropped considerably with time, which is attributed to the 

decomposition of this compound to ammonia and phosphoric acid, as explained later in 

this chapter. CsH2PO4 shows the highest conductivity among the other solid acids, 

reaching values over 10
-2

 S cm
-1

 at temperatures higher than 230 °C. This temperature 

transition and conductivity results are in good agreement with other reported values which 

are in the range of 8× 10
-3

 to 2.2 × 10
-2

 S cm
-1

 [17, 18, 40]. CsH2PO4 also remains stable in 

the broadest temperature range, 230 – 280 °C, before it melts. This makes the cesium-

based solid acid the most interesting material for application as electrolyte and its proton 

conducting behaviour is therefore further studied in this research. The maximum proton 

conductivity and transition temperature values of all the studied phosphate based solid 

acids are tabulated in table 4.3.  

Table 4.3. Proton conductivity and transition temperature of phosphate based solid acids. 

Material 
Proton conductivity 

σ / S cm
-1

 

Transition temperature 

Tt / °C 

LiH2PO4 2.0 × 10
-3

 200 

KH2PO4 5.0 × 10
-3

 210 

RbH2PO4 2.0 × 10
-3

 285 

CsH2PO4 1.5 × 10
-2

 230 

NH4H2PO4 9.0 × 10
-3

 200 

 

Impedance analysis by Nyquist plot, figure 4.5, shows the difference on the spectrum of 

CsH2PO4 at temperatures lower and higher than 230 °C. At 200°C the spectra exhibits a 

single arc that extends to the origin at high frequencies and intercepts the real axis at lower 

frequencies. This intercept point corresponds to the dc conductivity of the electrolyte. A 

resistance value of approximately 3500 Ω cm
2
 is exhibited by the non-conducting pellet, 
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which considering the 300 µm thickness of it lead us to conductivity value of 

approximately 8 × 10
-6 

S cm
-1

. The value of the intercept and consequently the size of the 

semicircle decreases when the temperature is increased from 100 to 230 °C meaning that 

the protonic conductivity increases slightly in that temperature range as seen in figure 4.4. 

At temperatures higher than 230 °C however, the impedance spectra changes drastically to 

a straight line where no arc is shown. The resistance measured from the system is between 

2 and 3 Ω cm
2
 at 250 °C, which leads to values over 10

-2 
S cm

-1
. This value is obtained 

from the high frequency intercept with the real axis corresponding to the dc conductivity of 

the electrolyte. 

 

  Figure 4.5. (I) Nyquist plot of the EIS spectra of CsH2PO4 at (■) 200 °C and (♦) 250 °C. (II) Inset of the 

high frecuency region. 

Conductivity values at the low temperature range, below 230 °C, differs between samples 

and it is attributed to residual surface water present in the grain boundary regions of the 

polycrystalline material [18]. This residual water in the grain boundary would partially 

(I) 

(II) 
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dissolve the solid acid and generate protonated water molecules, H3O
+
, that would be 

responsible of proton transport by vehicle mechanism. The slight increase in proton 

conductivity with temperature at temperatures below 230 °C is attributed to a faster 

diffusion of the hydronium ions. At temperatures higher than 230 °C, according to many 

authors, the proton conduction mechanism changes drastically to the so-called ‘Grotthuss 

mechanism’ where protons are able to ‘hop’ from a phosphate group to another allowing 

much higher proton conduction within the material. At temperatures higher than 280 °C 

the melting of the pellet causes short-circuits in the system. Although the melting point of 

CsH2PO4 is reported to be much higher, ca. 345 °C [41], the humidity has a strong 

influence on it, and the operating temperature range at the relative humidity needed to 

avoid dehydration of the material (see section 4.3.1), is reduced to 230 – 280 °C.   

This material also exhibits a clear hysteresis in proton conductivity between heating and 

cooling cycles (figure 4.6). Some defend this hysteresis is caused by the difference in the 

activation energy required for the solid state transition in both cooling and heating cycles 

and it is therefore considered as an indicator of the phase-transition theory to a proton 

conducting state [18]. Others defend that the dehydration reaction happening over their 

transition temperature remains happening at some extent in the cooling cycle causing this 

hysteresis [32].  

 

  Figure 4.6. Temperature dependence of the protonic conductivity of CsH2PO4. The hysteresis between the 

heating and cooling cycle is shown.              
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The hysteresis region of CsH2PO4 was found to be unstable with time. Proton conductivity 

measurements were performed at different times maintaining the temperature of the system 

at temperatures between 230 - 215 °C in the cooling cycles. The proton conductivity in this 

hysteresis region tends to decrease to its original value with rates of approximately one 

order of magnitude every two hours (measured at 220 °C). This can be explained by either 

a low stability of the proton conducting crystal structure at this temperature range or by a 

continuous decrease of the dehydration reaction rate. The author in this study is inclined to 

believe the first of both options, as dehydration should stop at temperatures below ca. 230 

°C [35] showing a much faster decrease in the reaction rate. Either way the temperature 

range for stable operating conditions is limited to temperatures higher than 230 °C.  

4.4 Physical and chemical stability 

The high proton conductivity exhibited by this family of solid acids makes them 

potentially useful electrolytes in PEM electrochemical devices [42]. However, the physico-

chemical stability of these materials in the intermediate temperature range where they 

exhibit this property must be addressed. Two main issues could affect the integrity of the 

materials at these conditions; water solubility and dehydration. The big amounts of water 

fed into a PEM water electrolyser, even as steam at T > 100 °C, could partially (or totally) 

dissolve the electrolyte and produce gas crossover or electric shortcuts through it. This 

would cause a gradual decrease on the performance until a failure of the system.  

CsH2PO4 has been proved to be the most conductive material of this family over the widest 

temperature range (230 – 280 °C) which placed it as the most interesting material to focus 

this study. Thermal stability of the phosphate-based soli acids in powder form was studied 

by TGA and DSC in order to address the rate of dehydration of the materials in the absence 

of humidification. 

The stability of CsH2PO4 in pellet form under different humidification conditions was also 

carried out in order to study the conditions to prevent dehydration as well as the 

reversibility of it. Electrochemical impedance spectroscopy was used to measure the 

resistance of a CsH2PO4 pellet over 24 h tests. The resistance measured would be directly 

related to the degree of dehydration of the material as well as to the dissolution of the 

pellet. Samples were also characterised by E-SEM in order to address the physical integrity 

of the pellet before and after the experiments. 
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4.4.1 Thermal stability 

The thermal stability of these compounds is a key point to be studied. Their application at 

medium temperatures (150 - 300 °C) makes it necessary to study any material degradation 

around this range. As reported by various authors [24, 35, 43-45] these compounds 

undergo a dehydration reaction when they reach their transition temperature to proton 

conductors. This dehydration arises from the condensation reaction of dihydrogen 

phosphate groups to form pyro- and poly-phosphates until their total dehydration to meta-

phosphates [35, 41], although as reported by Osterheld et al. [46], many kinds of different 

condensed species of phosphates may be generated. In order to analyse this degradation 

process, thermo-gravimetric analysis coupled with differential scanning calorimetry (TGA-

DSC) was carried out (figure 4.7).  

The mass loss obtained for Li, K, Rb and Cs dihydrogen phosphates follow the same 

tendency. They start dehydrating at temperatures close to their transition temperature to 

proton conductors and they show two main different slopes in the dehydration rate. These 

data is in good agreement with results provided by other authors [21, 24, 41, 44] where the 

two slopes regarded in the mass loss profile of these solid acids are attributed to different 

steps in the dehydration mechanism. The first one would correspond to the condensation of 

phosphates to the formation of half-dehydrated compound or pyro-phosphate (MH2P2O7) 

and the second to the formation of the totally dehydrated meta-phosphate (MPO3) 

(equations 4.3 – 4.4) [35, 41].  

  MH2PO4  M2H2P2O7 (s) + H2O (g)     (4.3) 

    M2H2P2O7  MPO3 (s) + H2O (g)       (4.4) 

The mass loss start is accompanied by a well-defined endothermic peak which some 

attribute to the solid state phase transition enthalpy [29, 35] and others to the enthalpy of 

the dehydration reaction [31, 32]. The total loss is in very good agreement with the total 

theoretical loss calculated, considering all the mass loss produced by dehydration, this is, 

to the intrinsic water in the dihydrogen phosphate structure. The onset dehydration 

temperature and total mass loss of each compound in the 50 to 600 °C temperature range, 

compared to the theoretical mass loss expected is shown in table 4.4. 
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  Figure 4.7. TGA and DSC analysis of (a) LiH2PO4 (b) KH2PO4 (c) RbH2PO4 (d) CsH2PO4 at 5 °C min
-1

. 

d c 

b a 
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Figure 4.8. TGA and DSC analysis of (e) NH4H2PO4 at 5 °C min
-1 

Table 4.4. Dehydration mass loss of phosphate-based solid acids. 

Material 
Theoretical mass 

loss    / % 

Real mass loss                   

/ % 

Dehydration onset 

temp.   / °C 

LiH2PO4 17.3 17.2 205 

KH2PO4 13.2 12.5 208 

RbH2PO4 9.9 9.5 210 

CsH2PO4 7.8 7.6 228 

NH4H2PO4 15.6 33.5 182 

 

In the case of NH4H2PO4, a different profile of mass loss following a continuous slope is 

regarded in contrast with the rest of phosphate-based solid acids. Many authors attribute 

this mass loss to a degradation of the compound by the decomposition to ammonia and 

phosphoric acid (equation 4.5) [39, 47].  

NH4H2PO4  NH3 (g) + H3PO4 (l)     (4.5) 

The results obtained in this study show a clear endothermic peak at the same temperature 

the mass loss starts. This is attributed to the enthalpy of reaction 4.5. and the continuous 

linear mass loss in the TGA plot to a combined mass loss of the produced NH3 and the 

dehydration of the produced H3PO4 [48]. The theoretical total mass loss of the material 

  e 
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considering these two effects is of approximately 35 % which is in better agreement with 

the results obtained. Some authors defend that the continuous mass loss is attributed to a 

simultaneous decomposition and condensation of ammonium phosphates and that direct 

dehydration of NH4H2PO4 can only happen in presence of a NH3 atmosphere [45].  

It was proposed that the dehydration process of phosphate solid acids is also related to the 

particle size of the polycrystalline powder. Li et al. [24] reported that RbH2PO4 particles 

tend to dehydrate in the outer shell part of the particles reaching eventually the core of the 

particles, as shown in the diagram in figure 4.9. This, in combination with the two-step the 

dehydration process proposed earlier, would explain the different rates shown in the mass 

loss curves. We consider that this model can be applied to all the solid acids studied here, 

with exception of NH4H2PO4. 

 

Figure 4.9. Schematic model of the dehydration process proposed by Li et al. [24] applied to CsH2PO4. 

To verify the particle size effect on dehydration of these materials, TGA results obtained 

for polycrystalline powder and single crystals of CsH2PO4 were compared and the effect of 

dehydration rate addressed. 

   

  Figure 4.10. E-SEM micrographs of (a) polycrystalline CsH2PO4 and (b) single crystals of CsH2PO4. 

 (b)  (a) 
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The difference in particle size between both structures of the same material is of ×100 to 

×1000 (figure 4.10). Thermal analysis plotted in figure 4.11 shows that polycrystalline 

powder (a) dehydrates at a considerably faster rate that single crystals. In figure 4.12. 

however, DSC spectra show that the endothermic peak corresponding to both dehydration 

steps occur at the same temperature.  

 

  Figure 4.11. TGA of (a) polycrystalline CsH2PO4 and (b) single crystals CsH2PO4 at 5 °C min
-1

. 

 

Figure 4.12. DSC of (a) Polycrystalline CsH2PO4 and (b) single crystals CsH2PO4 at 5 °C min
-1

. 

b  a 

 a 

b 
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The two-step dehydration/condensation process proposed before is therefore consistent 

with the data obtained and the mass loss of the material is attributed only to water loss. 

This dehydration, as will be explained in further analysis, can be avoided by supplying 

humidification to the system [35]. 

The stability of CsH2PO4 under real operating conditions of a PEM water electrolyser was 

addressed. Avoiding the dehydration of the solid acid is a key issue for a successful 

application of this material as electrolyte in these devices. Proton conductivity loss to 

values under 10
-2

 S cm
-1

 would generate high ohmic resistance in the system considering 

the high thickness required, >300 µm, for a mechanically stable pellet.  

4.4.2 The effect of humidification on the stability of CsH2PO4 

Condensation of phosphates is a well-known phenomenon where the constituent water of 

the acidic groups is lost when temperature is increased. This process is found in a wide 

range of phosphate-based materials varying the condensation/dehydration onset 

temperature from one material to another. As already proven in this chapter, phosphate 

condensation in CsH2PO4 starts at a temperature of ca. 230 °C, curiously similar to its 

proton transition temperature. At this conditions, and in absence of humidity, the 

hydrogen-bonded dihydrogen phosphate chains of this material lose its constituent water 

condensating the phosphate groups into pyro- and polyphosphates (CsHxPyOz) until its 

total dehydration to cesium metaphosphate (CsPO3) (reactions 4.3 and 4.4) [35, 41, 46]. 

The loss of constituent water from the dihydrogen phosphate chain, and the consequent 

loss of proton bonds, causes a decrease in the proton conductivity of the material. A simple 

model for phosphate condensation is shown in figure 4.13. The ‘proton hopping’ or 

‘Grotthuss’ conduction mechanism explained before (see Chapter 2) [4], can no longer 

work when dehydration takes place. In order to avoid this reaction, humidification in the 

system must be carefully controlled at all times.  

 

Figure 4.13. Simple model of phosphate condensation. 
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In order to study the suitability of CsH2PO4 as proton conducting electrolyte in PEM water 

electrolysis systems, the stability of this material at different humidification rates was 

addressed. The minimum humidification required to avoid dehydration above 230 °C as 

well as the physical stability in terms of material dissolution at high humidification rates 

were studied.  

The value of water partial pressure (PH2O) provided to the system was controlled by 

passing the feeding gas (Ar) through a temperature-controlled water saturator. The relative 

humidity in the system was calculated by equation 4.6. 

 

where PH2O (atm) describes the water partial pressure in the feeding gas and P*H2O (atm) 

the saturation water partial pressure at a given temperature. At temperatures higher than 

100 °C the relative humidity drops exponentially if the system is not overpressured. In 

figure 4.14 the relative humidity dependence on the temperature of the system is plotted 

and the operating region of the system (T > 230 °C) highlighted. The maximum relative 

humidity possible to achieve at 235 °C (and atmospheric pressure) is 3.5 %, which is 

obtained by heating the water saturator to its maximum temperature, 99 °C. 

 

Figure 4.14. % RH vs. temperature diagram at atmospheric pressure and (a) 100 – 300 ºC, (b) 230 – 240 ºC. 

(a) 
(b) 
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The system was operated at 235 °C (over its phase transition temperature to proton 

conductive state) and the humidification conditions applied are those summarised in table 

4.5. The water vapour pressure at 235 ºC is 32.1 atm. The resistance of the CsH2PO4 

pellets was measured by EIS and monitored for 24 h in order to study the loss in proton 

conductivity of the material. The cell where these experiments were carried out is shown in 

figure 3.10. The results obtained are plotted in figure 4.15. 

Table 4.5. Humidification conditions of the system. 

Tsaturator / °C PH2O / atm RH (Tcell = 235 °C) / % 

99 0.97 3.21 

70 0.31 1.04 

60 0.20 0.66 

50 0.12 0.40 

40 0.06 0.21 

20 0.02 0.06 

The minimum humidification rate required in the system to avoid dehydration of CsH2PO4 

is 0.12 atm of water partial pressure (0.40 % RH in the cell), which is in good agreement 

with the results obtained by Otomo et al. [49] and Haile et al.[35]. At higher 

humidification rates the conductivity of the material remains stable but at lower rates 

however, material dehydration, driven by self-condensation of phosphate groups [46], 

causes a gradual decrease in the proton conductivity of the material. At humidification 

rates of 0.06 and 0.02 atm PH2O the conductivity loss starts at 0 and 2 h and the rate is of 

approximately one order of magnitude every 24 h and 12 h, respectively. At the highest 

humidification rate provided to the system, 0.97 atm (3.21 % RH in the cell), proton 

conductivity of CsH2PO4 remains stable. 

Otomo et al. reported comparable results in terms of stability of CsH2PO4 under similar 

humidification rates [50] although the stable behaviour of the pellet at the minimum 

humidification to avoid dehydration, determined as PH2O = 0.12 atm in this study, was not 

reported. In addition, they reported a much more drastic conductivity drop for low 

humidity rates, decreasing by 2 or 3 orders of magnitude in the first minutes. This 

difference is explained by the experimental conditions; in this study samples were 
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stabilised at 0.30 atm PH2O prior to experiment and thus residual water adsorbed in the 

grain boundary of the material would have an effect in the proton conductivity making the 

drop gradual. This is assuming that in the results reported by Otomo et al. no initial 

humidification was provided. This positive effect of adsorbed water can also be noticed by 

the slightly higher conductivity shown at the highest humidity ratio, which can also be seen 

in their results, and is even more noticeable at low proton conducting conditions, below 

230 °C [18].  

 

Figure 4.15. Time dependence of the protonic conductivity of CsH2PO4 at atm. pressure and 235 °C. 

In terms of material dissolution, the resistance provided by the electrolyte is expected to 

decrease due to a thinning of the pellet, and CsH2PO4 is therefore considered stable at high 

humidification rates and suitable for electrolysis application. This conclusion is 

complemented by E-SEM characterisation of samples before and after the tests. As shown 

in figure 4.16 in the cross-section micrographs of pellets, the samples subjected to low 

humidification rates (figures c and d) show considerable porosity. This is attributed to 

water release in gas form caused by dehydration of the material. The water vapour bubbles 

generated in this process produce holes in the bulk of the pellet providing it with 

substantial porosity. In figure 4.16 (b) the micrograph of high humidification rate sample is 

shown where the unchanged integrity of the pellet is patent. 
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Figure 4.16. SEM micrographs of (a) new pellet and after stability test at (b) PH2O= 0.97 atm, (c) PH2O= 0.07 

atm and (d) PH2O= 0.02 atm. 

The effect of the humidification rate in the reversibility of the dehydration reaction of 

CsH2PO4 was also studied. For this purpose, various experiments were carried out where 

the material was deliberately subjected to dehydration either by dry gas or low 

humidification gas. Then the system was provided with humidified gas in order to study 

the rate of rehydration (hydrolysis of condensed phosphates) at different humidification 

conditions. The proton conductivity of the samples was again measured in order to monitor 

the dehydration/rehydration reactions in the material. Otomo et al. were the only group 

reporting the reversibility of CsH2PO4 in terms of proton conductivity [49]. They reported 

that providing 0.30 atm of water partial pressure to the system after brief dehydration the 

material recovered its initial proton conductivity. They did not study however the 

minimum humidification rate required to trigger rehydration. The next experiments 

reported address the minimum humidification required for this purpose and the response 

time of the system to the changes in humidification. 

(b) (a) 

(c) (d) 
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Figure 4.17. % RH vs. temperature diagram at atmospheric pressure. 

 

Figure 4.18. % RH vs. temperature diagram at atmospheric pressure. 

In figure 4.17 four different regions are highlighted corresponding to different 

humidification rates of the feeding gas. During the first six hours, region a, the sample was 

stabilised at 0.12 atm water partial pressure showing a constant proton conductivity of 10
-2

 

S cm
-1

. After the stabilisation time dry gas was supplied to the system for one hour, region 

b, where a significant sharp decrease in proton conductivity is seen followed by a 

stabilisation region to values of approximately 2.5 × 10
-3

 S cm
-1

. In region c, 

humidification of PH2O = 0.12 atm was again provided to the system to induce rehydration 

(a) (b) (d) (c) 

(a) (c) (b) 
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of the material, but as it is shown, no increase in conductivity happened. This means that 

although a humidification rate of PH2O = 0.12 atm can avoid dehydration, it is not enough to 

promote the reaction in the opposite direction. In region d humidification was increased to 

PH2O= 0.97 atm causing, after 30 min stabilisation time, a gradual increase in proton 

conductivity to almost a total recovery (97 %). These 30 minutes is the time the system 

needed to respond to the change and stabilise to the given humidification rate. 

In figure 4.18, a similar experiment is shown where a CsH2PO4 pellet was stabilised at 0.02 

atm of water partial pressure for 24 h, region a, and then humidification of PH2O = 0.20 

atm, region b, and PH2O = 0.31 atm, region c, were provided by increasing the temperature 

in the water saturator. 0.31 atm of water partial pressure is the minimum humidification 

required to induce a rehydration of the material at this temperature. It can be concluded 

that higher humidification rates are therefore needed to rehydrate CsH2PO4, PH2O > 0.31 

atm, than to avoid dehydration, PH2O > 0.12 atm.  
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4.5 Conclusions 

The investigation and development of intermediate temperature proton conducting 

materials is a key issue to allow rising the operating temperature of PEM electrochemical 

devices. In this chapter the synthesis of phosphate-based solid acids was carried out and 

their properties in terms of structure, morphology and proton conductivity studied. The 

effect of material dehydration at the intermediate temperature range induced by phosphate 

condensation was addressed and the physical and chemical stability of CsH2PO4 under 

operating temperature and humidification conditions analysed. 

All phosphate-based solid acids exhibited a clear transition to proton conductors in the 

intermediate temperature range. Maximum values of proton conductivity over 10
-2 

S cm
-1

 

were obtained for CsH2PO4 at temperatures between 230 and 280 °C.  

A significant mass loss takes place close to transition temperatures when no humidification 

is provided, which is attributed to dehydration for all cases except of NH4H2PO4, where 

chemical decomposition to ammonia and phosphoric acid is assumed. Although it is 

reported that no water is required for proton transport in these materials, in real operating 

conditions water must be provided to the system in order to maintain proton conductivity 

and material stability.  

CsH2PO4 shows good stability in terms of water solubility at high humidification rates and 

dehydration was proved to be avoided when PH2O > 0.120 atm is applied to the system. 

Rehydration of the material, this is, hydrolysis of condensed phosphates, can be carried out 

at PH2O > 0.313 atm being the rehydration rate faster at higher water partial pressures. 

Higher humidification rates are therefore needed to trigger rehydration than to avoid 

dehydration. 

These results place CsH2PO4 as a promising proton conductor material for PEM fuel cells 

and electrolysers. The inorganic nature of this material however, requires high thickness 

pellets to be fabricated, ca. 300 µm, and used as electrolytes. Different approaches to 

reduce the thickness of the electrolyte and thus, the ohmic resistance of the system are 

proposed in Chapter 5. 
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CHAPTER 5 

FABRICATION OF CSH2PO4 - BASED PROTON 

CONDUCTING MEMBRANES 

In this chapter different approaches to build thin membranes based on CsH2PO4 are 

proposed. The methodology of each fabrication technique is explained and the membrane 

characterisation results presented in terms of morphology, composition, proton 

conductivity and tensile strength. Five membrane fabrication methods are proposed in this 

section; (1) casting of CsH2PO4/polymer membranes, (2) CsH2PO4-doped polymeric 

membranes, (3) glass-fibre reinforced membranes, (4) electrospinning of CsH2PO4 fibre 

mat and (5) casting of partially polymerised CsH2PO4. The maximum proton conductivity 

achieved was 8 × 10
-3

 S cm
-1

 at 250 °C by the glass-reinforced membranes. 

5.1 Introduction  

The main characteristic of PEM water electrolysis over other electrolysis systems is the use 

of a solid electrolyte. It reduces the volume of the cell and provides the system with several 

advantages such as a more portable design with high energy density. The modular nature 

of PEM electrolysers gives the possibility of a delocalised fuel production (energy storage 

in form of H2) in order to build a decentralised energy production system (see Chapter 1) 

[1, 2]. The electrolyte of the electrolyser cell needs to fulfil several specifications in order 

to be applicable in a real system. It must have high proton conductivity and low electrical 

conductivity, high chemical and thermal stability and it has to act as an effective separator 

with good mechanical strength and low permeability to gases. Perfluorosulfonic acid 

polymers (i.e. Nafion®) are the state-of-the-art electrolytes used for this application 

fulfilling all the specifications listed above. However, these polymers need liquid water in 

their structure in order to conduct protons and they are therefore limited to operating 

temperatures below 100 °C. In order to increase the operating temperature of PEM 

electrolysers, CsH2PO4, from the phosphate solid acid family, is proposed in this research 

as an alternative proton conducting solid electrolyte. CsH2PO4 has been reported as a 

promising proton conducting material to be used in intermediate temperature fuel cells [3]. 

At temperatures higher than 230 °C, this material undergoes a structural change providing 
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it with high proton conductivity (1.5 × 10
-2

 S cm
-1

) which makes it desirable to use as 

electrolyte in intermediate temperature electrochemical devices, i.e. water electrolysers.  

Commonly, electrolytes of these phosphate salts are fabricated by unaxially compressing 

the polycrystalline powder at high pressures to form a dense pellet. The inorganic nature of 

the material provides the pellet fabricated by this method with very brittle properties and 

therefore high thickness is needed in order to fabricate a mechanically stable electrolyte. 

The pellet must be able to support the stresses generated in the electrolysis cell, by 

temperature and pressure gradients for instance. Uda et al. [4] reported the fabrication of a 

membrane electrode assembly (MEA) using a CsH2PO4 pellet as thin as 25 µm supported 

on a porous stainless steel electrode. The extremely low thickness of the electrolyte 

provides their fuel cell system with relatively low ohmic resistance (~ 150 mΩ cm
2
) and 

maximum single cell power densities of 415 mW cm
-2

 at 240 °C. In this research the same 

methodology was tried in order to build a thin supported pellet, however no successful 

results were obtained as the electrolytes did not have enough mechanical stability and 

electric short-circuits and high gas permeability were caused by pellet cracking.  

Although a few short durability test are reported for the system mentioned above, the long-

term durability of this system is an issue that should be better addressed, not only in stable 

operating conditions (at a fixed potential), but also in start-stop cycles were stresses arisen 

from cooling and heating the system could affect the integrity of such thin and brittle 

electrolyte. In this research, the minimum thickness achieved for a stable, self-supported 

pellet was found to be ca. 300 µm, which considering the proton conductivity of this 

material would provide the electrolysis cell with a minimum resistance of ca. 1.5 Ω cm
2
. 

This high resistance would generate high ohmic losses lowering the overall performance of 

the system. Different approaches for electrolyte fabrication are therefore required. Many 

authors reported that the addition of several oxides (i.e. SiO2, TiO2) to a solid acid powder 

provides it with slightly higher proton conductivity (ca. 3 × 10
-2

 S cm
-1

) by the creation of 

a new conducting phase and enhanced mechanical stability, although no data of the latter is 

provided [5-7]. The resulting material is an inorganic powder which is also compressed 

into thick pellets (ca. 400 µm) to use as electrolyte. Although proton conductivity is 

increased the resistance provided by the electrolyte would still be too high because of the 

high thickness required. Bocchetta et al. reported the fabrication of a porous alumina 

membrane (50 µm) filled with CsH2PO4 for application in a fuel cell [8]. They proposed 

these membranes as low temperature PEM electrolytes and claim that the interaction 
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between the alumina membrane and the solid acid creates a new proton conducting phase 

at room temperature. The solubility of CsH2PO4 in condensed water is an issue that should 

be addressed in that case, as it would affect the durability of the system. Boysen et al. 

reported the fabrication of composite membranes as thin as 5 – 20 µm by the casting of a 

sulfate-based solid acid (CsHSO4) with polyvinylidene difluoride (PVDF) [9]. This method 

provided membranes with a maximum conductivity of 5.6 × 10
-3

 S cm
-1

 for a 20 µm 

thickness membrane at 150 °C. An addition of 20 % wt. of polymer lowered the 

conductivity of the solid acid by approximately half an order of magnitude.  

Although few attempts to fabricate solid acid-based composite membranes have been 

carried out, it still remains as a challenge to make this material applicable in a real 

electrochemical system. Next, five different fabrication methods to build thin membranes 

based on CsH2PO4 are proposed. 

5.2 Membrane fabrication methods  

The fabrication methods reported in this research include doping of basic polymers 

(imidazole and pyridine-based polymers) by acid/base interaction with CsH2PO4, the 

addition of a stable polymer as a binder and the addition of glass fibres as a reinforcement 

for CsH2PO4 and two methods based on a partial dehydration/polymerisation of CsH2PO4; 

casting of a partially polymerised CsH2PO4 membrane and the fabrication of a highly 

interconnected CsH2PO4 – fibre mat by electrospinning. 

5.2.1 Casting of CsH2PO4/polymer composite membranes 

In order to provide mechanical stability to a CsH2PO4-based membrane, a polymer was 

added as a binder. The polymer used, poly-[2,2'-m-(phenylene)-5,5'-bibenzimidazole] 

(PBI), was chosen due to its high chemical and thermal stability at the intermediate 

temperature range of 230 – 300 °C. This high stability is provided by the strong 

intermolecular bonds of the aromatic bi-benzimidazole structure (figure 5.1).  

The low price and the availability of this polymer, because of its use as phosphoric acid-

doped electrolyte in fuel cells, made it desirable to use in the fabrication of composite 

membranes.  
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The addition of a polymer to the CsH2PO4-based membrane would help bind the solid acid 

particles together providing the composite membrane with higher mechanical stability 

enabling the fabrication of thin membranes. 

 

Figure 5.1. Chemical structure of poly-[2,2'-m-(phenylene)-5,5'-bibenzimidazole] (PBI). 

Experimental   

Poly-[2,2'-m-(phenylene)-5,5'-bibenzimidazole] (PBI) (Between Lizenz GmbH) with a Mw 

= 10
6
 g mol

-1
 was dissolved in dimethyl acetamide (DMAc) using a sealed teflon vessel 

and heating it in a microwave for 1 min at 400 W for 6 to 8 times. 5 and 10 % wt. PBI 

solution in DMAc were prepared. The resulting solutions were centrifuged in order to 

eliminate non-dissolved rests of PBI. The exact concentrations of the solutions were 

determined by casting a known volume of the PBI solution into a membrane and weighing 

it afterwards. 

The synthesis of CsH2PO4 was carried out as explained in section 4.2. The powder was 

precipitated by spraying the reaction solution into methanol in order to achieve a more 

homogeneous particle size distribution of the CsH2PO4 particles. 

In order to fabricate composite membranes, the required amounts of polycrystalline 

powder of CsH2PO4 were added to PBI solution and mechanically stirred for 2 h. The 

dispersion was then placed in an ultrasonic bath for 15 min and casted onto a 5 × 5 cm 

glass plate at 75 °C for 6 h. The resulting composite membrane was pealed from the glass 

plate using methanol and then dried in the oven at 80 °C for 24 h.  

Composite membranes with weight percentages of CsH2PO4 of 75, 80, 85, 90 and 95 % wt. 

were fabricated using 5 and 10 % wt. PBI solutions. The two different PBI solution 

concentrations were used to analyse the influence of the viscosity on the dispersion of 

CsH2PO4 particles in solution. The thickness of the membranes varied between 25 and 150 

µm and was controlled by the amount of material used in their fabrication. 
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5.2.2 CsH2PO4 – doped polymeric membranes 

Doping of a basic polymer with an acid is a methodology used to fabricate proton 

conducting membranes for intermediate temperature fuel cells. The most common example 

is the doping of PBI with phosphoric acid. The imidazole groups of the chemical structure 

of PBI, due to their basic nature, creates bonds with the phosphoric acid by acid/base 

interaction providing the polymer with a high loading of acid in its structure. The 

phosphoric acid acts as a proton carrier within the membrane providing it with high proton 

conductivity (3 - 5 × 10
-2

 S cm
-1

) at temperatures as high as 180 °C [10, 11]. Pyridine 

based polymers (Advent TPS®) are also doped with phosphoric acid in order to provide 

the membrane with high proton conductivity and to use in intermediate temperature fuel 

cells as electrolyte [12]. The chemical structure of the pyridine based aromatic polyether of 

Advent TPS® polymer is shown in figure 5.2. In the case of this polymer, pyridine groups 

act as the basic agents allowing the doping of the polymeric membrane with an acid. The 

main characteristics of both polymers are displayed in table 5.1. 

  

Figure 5.2. Chemical structure of pyridine-based Advent TPS® polymer. 

Table 5.1. Physico-chemical properties of PBI and Advent TPS® membranes. 

Properties Advent TPS® [13] PBI [11, 14, 15] 

Tg / °C 250 - 255 425 - 435 

T decomposition (5% weight loss) / °C 415 700 

Maximum tensile strength (non-doped) / Mpa 74  4 125  25 

Maximum tensile strength (H3PO4-doped) / Mpa 12  2 15  4 

Proton conductivity (H3PO4-doped) / S cm
-1

 8 × 10
-2

 5 × 10
-2

 

 

In this research both polymers, PBI and Advent TPS®, were used in their membrane form 

in order to get doped by CsH2PO4. The basic groups of both polymers, imidazole and 
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pyridine respectively, would interact by an acid/base interaction with the solid acid 

building hydrogen bonds as they do with phosphoric acid and allowing the doping of the 

membrane with CsH2PO4. 

Experimental 

PBI membranes were fabricated by casting a 10 % wt. PBI solution in DMAc onto a 5 × 5 

cm glass plate at 75 °C for 8 h. Membranes with thickness of 10 - 20 µm were fabricated. 

Advent TPS® membranes were purchased (Advent Technologies) with thickness of 75 

µm.  

Membranes were immersed in a 6.5 M saturated water solution of CsH2PO4 and kept at 85 

°C for 6 days to allow the acid/base interaction between both materials. Membranes were 

also immersed in melted CsH2PO4 at 300 °C for 2 and 4 h with the same purpose. 100 ml 

min
-1

 humid N2 (PH2O = 0.95 atm) was provided to the system to avoid dehydration of 

CsH2PO4. The resulting membranes were washed in methanol and dried in an oven at 80 

°C overnight. 

5.2.3 Glass fibre reinforced membranes 

In this method the addition of glass fibres to CsH2PO4 in order to build a stable and thin 

pellet with improved mechanical properties was studied. The presence of glass fibres in a 

compressed CsH2PO4 structure would help to distribute the stresses and enable the 

fabrication of thinner pellets with less brittle characteristics. Glass fibre filters were used in 

order to provide an interconnected fibre-mat structure and they were filled with CsH2PO4 

in order to provide proton conductivity to the composite. The high thermal stability of the 

glass fibre filters made them desirable to use with this purpose. Specifications of the glass 

fibre filters used in this research are summarised in table 5.2. 

Experimental 

Binder-free glass fibre filters (Millipore®, type 1) were placed in 5.0 cm diameter petri 

dish and volumes of 1, 1.5, 2 and 3 ml of CsH2PO4 saturated solution at room temperature 

(C = 4.4 M) were added. The samples were dried in an oven at 80 °C for 5 h and then 

pressed between two teflon sheets at 7 × 10
3
 kg cm

-2
 at room temperature for 30 min. The 

thickness of the resulting composite membranes was between 100 and 200 µm depending 

on the amount of CsH2PO4 solution added.  
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Table 5.2. Specifications of Milipore® type 1 glass-fibre filters. 

Chemical composition Glass fibre (without binder) 

Maximum Operating Temperature / °C 500 

Pore size / µm 1.6 

Wettability Hydrophilic 

Filter Diameter / mm 47 

Porosity / % 90 

5.2.4 Electrospinning of CsH2PO4 fibre mat 

In this section a new fabrication method of a composite membrane based on the 

electrospinning of CsH2PO4 is proposed. Electrospinning is a technique used to produce 

polymeric or hybrid fibres in the micrometre to nanometre scale [16, 17] (see section 

3.1.8). A CsH2PO4 solution in water cannot be electrospun because of the low viscosity 

and charging of the solution when a high voltage is applied. The addition of a carrier 

polymer to the solution could provide a way to electrospin CsH2PO4 fibres but this would 

imply further treatment of the produced fibres to eliminate the polymer, either thermally or 

by washing. This step would affect the integrity of the fibres in terms of morphology and 

composition. For this reason a different method to electrospun CsH2PO4, based on the 

condensation of phosphates, was developed. 

CsH2PO4, as the majority of the phosphate-based solid acids, undergoes a 

dehydration/polymerisation reaction over its so-called superprotonic phase transition 

temperature (reactions 4.3 - 4.4). By this reaction the material loses its constituent water, 

generating longer chains of condensed phosphates leading to the formation of pyro- and 

poly-phosphates (CsHxPyOz) until its complete dehydration to cesium metaphosphate 

(CsPO3).  

When this polymerised material is dissolved in water it gives a transparent viscous 

solution. The viscosity of this solution allows it to be electrospun in the absence of any 

carrier polymer or additive making it possible to generate pure inorganic fibres of this salt 

in one step. This method is proposed for the fabrication of a dense highly interconnected 

CsH2PO4 fibre-mat. The later addition of a polymer to this mat in order to provide good 
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mechanical properties and occlude porosity would lead to a new fabrication method of a 

medium temperature proton conducting membrane. 

Experimental 

Polycrystalline powder of CsH2PO4 was heat-treated to induce the dehydration reaction. 

The conditions of the thermal treatment are displayed in table 5.3. These treatment 

conditions were chosen as they induced the lowest degree of dehydration needed to 

electrospin CsH2PO4 into fibres. The resulting partially polymerised CsH2PO4 powder 

(CDPp) was dissolved in DI water to a concentration of 2.25 g ml
-1

. This concentration 

provided suitable viscosity to the solution in order to be electrospun. The solution of CDPp 

was then electrospun by the electrospinning device (figure 3.2, chapter 3) onto a grounded 

collector covered by an aluminium foil in the conditions displayed in table 5.4.  

Table 5.3. Heat treatment conditions 

Temperature / °C 300 

Heating rate / °C min
-1

 10 

Time / h 3 

Table  5.4. Electrospinning conditions 

Potential / kV 15 

Distance / cm 10 

Rate solution / ml h
-1

 0.3 

 

Fibre-mats where kept in a 50 % RH atmosphere for 7 days (CDPf-RH) to allow the 

rehydration of the fibres to the initial CsH2PO4. No higher relative humidity was used 

because the electrospun fibre would dissolve.  

5.2.5 Casting of partially polymerised CsH2PO4 

The same principle of phosphate condensation used for the fabrication of electrospun 

CsH2PO4 fibres was used to fabricate cast membranes of partially polymerised CsH2PO4. 

The loss of the constituent water of this salt upon heat treatment generates longer chains of 

phosphates providing the material with a more polymeric nature. The resulting material, 

unlike pure CsH2PO4, can be casted into self-supported membranes as thin as 25 µm. 

Although the mechanical properties of the material are improved by this process proton 

conductivity is partially lost. A compromise between both properties is therefore required 

in order to build a mechanically stable proton conducting membrane for application in a 

PEMWE. The heat treatment conditions used in this method were the minimum time and 
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temperature conditions to induce the dehydration degree needed for a successful casting of 

a membrane. Less time or temperature dehydration processes did not generate enough 

phosphate condensation to allow casting the material into a self-supported membrane. 

Experimental 

CsH2PO4 was heat treated in the conditions displayed in table 5.3. The resulting partially 

dehydrated material (CDPp) was dissolved in DI water in a concentration of 5.0 mg ml
-1

. 

The solution was stirred until complete dissolution and placed in the ultrasonic bath for 1 h 

in order to eliminate any air bubbles retained in the viscous solution. Membranes were 

casted onto 5 × 5 cm glass plates at 80 °C for 6 h until all water was evaporated and pealed 

with methanol. The resulting samples were dried in an oven at 80 °C for 24 h. The 

thickness of the membranes was controlled by the volume of solution used in the casting. 

5.3 Characterisation of membranes 

Membranes fabricated by the five different methods described above were characterised in 

terms of composition, morphology, proton conductivity and tensile strength. These 

characteristics define the potential of the membranes for application as electrolytes in a 

PEMWE. 

5.3.1 Composition  

The chemical composition of membranes fabricated by membrane doping with CsH2PO4, 

electrospinning and casting of partially dehydrated CsH2PO4 was further analysed. These 

methods are based on the chemical modification of materials by acid/base interaction and 

dehydration of CsH2PO4 respectively. Characterisation of the chemical composition of the 

final materials was therefore carried out. 

5.3.1.1 Doping level of CsH2PO4/polymer membranes 

The CsH2PO4 doping level of the membranes was calculated by measuring the weight 

before and after the doping process and applying equation 5.1. All weights were measured 

after drying the membranes in the oven at 80 °C for 24 h to eliminate the contribution of 

water uptake to the total weight of the doped membranes. The solid acid doping level (x) 
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of the membranes was calculated as the molar number of CsH2PO4 per repeat unit of 

polymer, calculated by equation 5.1. Doping level results are reported in table 5.5. 

 

where, mdoped and mundoped are the weight of the doped and non-doped membranes and 

MCsH2PO4 and Mpolymer represent the molecular weight of CsH2PO4 and of a repeat unit of 

the polymer, respectively. 

Table 5.5. CsH2PO4 doping level of Advent TPS® and PBI membranes. 

Conditions 

x / mol CsH2PO4 polymer unit
-1

 

Advent TPS® PBI 

6.5 M CsH2PO4 sol. 

T = 85 °C  t = 6 days 
0 0.22 

Melted CsH2PO4 

T = 300 °C 

t = 2 h - 0.74 

t = 4 h - 0.68 

 

PBI membranes got a 0.22 doping level when a saturated solution of CsH2PO4 was used 

and values close to 0.70 in pure melted CsH2PO4. This doping corresponds to the amount 

of solid acid interacting with the imidazole groups by hydrogen bonding. Advent TPS® 

membranes showed no difference in their weight before and after doping in a saturated 

solution of CsH2PO4. The difference in the doping level on both types of membranes is 

attributed to the slightly higher alkalinity of the imidazole groups of PBI (pKa = 5.5) to the 

pyridine groups of Advent TPS® (pKa = 5.2) [11, 18]. Advent TPS® membranes showed 

chemical instability when melted CsH2PO4 was used as the doping medium. The resulting 

membranes changed their colour from yellow to black and lost their mechanical stability 

breaking into many pieces and making the weight measurement after the doping process 

not possible. This loss in mechanical stability is attributed to the chemical degradation of 

the polymer under the conditions applied. 

The low doping levels obtained by these methods are attributed to a poor acid/base 

interaction caused by the low acidity of CsH2PO4. The pH of saturated solution of 
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CsH2PO4 solution was experimentally measured at different temperatures (figure 5.3). A 

constant pH value of 4.63 was measured at all temperatures. The low acidity of the 

CsH2PO4 solution, also expected in pure melted CsH2PO4, does not provide enough 

protons to the medium and therefore hydrogen bonding between the basic groups of the 

polymer and the solid acid is limited. 

 

Figure 5.3. Saturation concentration and pH dependency on temperature of CsH2PO4 solution. 

         

 

Figure 5.4. EDS analysis of the cross section of CsH2PO4-doped PBI membrane (T = 300 °C, t = 2 h). 
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PBI membranes doped in melted CsH2PO4 were analysed by EDS in order to study the 

distribution of the solid acid in the thickness of the polymeric membrane. The profile of P 

and Cs elements in their cross section line was analysed (figure 5.4). Phosphorous was 

more abundant than cesium along the entire cross section line analysed. This was attributed 

to a higher interaction of the benzimidazole groups with the disassociated H2PO4
-
 ions 

rather than the exchange of the proton of the benzimidazole group with large size Cs
+
 ion. 

The amount of phosphorous is lower in the edges of the membrane which could be caused 

by the washing up carried out with methanol after the doping process. 

5.3.1.2 Phosphate condensation and CsH2PO4 fibre composition 

The chemical structure of partially polymerised CsH2PO4 used in the casting and 

electrospinning methods was studied. The structure of fibrous CsH2PO4 (CDPf) and 

rehydrated CsH2PO4 fibres (CDPf-RH) was analysed by P-XRD and 
1
H and 

31
P MAS NMR. 

P-XRD spectra of these materials are shown in figure 5.5. 

 

Figure 5.5. P-XRD patterns in the 2θ range of 14-32° of (a) CsH2PO4 (b) CDPf and (c) CDPf-RH. 

The first pattern (figure 5.5-a) shows the typical diffraction peaks corresponding to the 

room temperature monoclinic structure of CsH2PO4, with a B21/m space group and lattice 

parameters  a = 4.8725 Å, b = 6.3689 Å and c = 15.0499 Å [19].  
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In pattern (b), corresponding to CDPf, the main peaks of the initial CsH2PO4, marked with 

‘◊’, are still visible although they generally show lower intensity. New diffraction peaks 

attributed to formation of a new phase of partially polymerised CsH2PO4, cesium 

pyrophosphate (Cs2H2P2O7) [20-22], are shown and marked with ‘*’. The positions are in 

good agreement with the diffraction peaks reported in the ICDD for this material (card 

number: 45-619). This phase presents an orthorhombic structure with lattice parameters a 

= 4.571 Å, b = 8.150 Å and c = 11.405 Å [23]. The presence of three low intensity peaks 

marked with ‘o’
 
suggests further polymerisation to cesium metaphosphate (CsPO3) [21], of 

monoclinic structure and lattice parameters a = 12.744 Å, b = 4.344 Å and c = 6.829 Å 

[23]. These peaks do not closely correspond to patterns reported in the ICDD for CsPO3 

(card number: 45-617) probably because they correspond to a different degree of 

condensation of phosphates [24]. It is worth noting that the left hand limb at 25.9° was 

described as an unknown phase diffraction peak by Taninouchi et al [21].  

In diffraction pattern (c), corresponding to rehydrated electrospun fibres (CDPf-RH), all the 

diffraction peaks corresponding to CsH2PO4 and Cs2H2P2O7 are observed, meaning that 

cesium pyrophosphate does not hydrolysed to the initial CsH2PO4 in the conditions 

applied. Nevertheless, the peaks corresponding to further polymerised species disappeared, 

which means that those species hydrolysed in these conditions. According to these 

diffraction patterns, in CDPf a mixture of partially dehydrated/polymerised (Cs2H2P2O7) 

and bulk (CsH2PO4) material coexist, although few low intensity peaks corresponding to 

further dehydrated species were also observed. 

Considering CsH2PO4 and Cs2H2P2O7 as the major coexisting phases in the CsH2PO4 

fibres, a semi-quantitative Relative Intensity Ratio (RIR) method was used to estimate the 

mass ratio of each of the phases in the samples [25]. The values obtained for a mass ratio 

of phases CsH2PO4:Cs2H2P2O7 were 69:31% for CDPf and 71:29% for CDPf-RH. This 

suggest that, although a few condensed phosphate species appear to hydrolyse, most of 

them remain stable at the conditions applied, which are thermodynamically more 

favourable for rehydration than the temperature and relative humidity conditions of an 

intermediate temperature electrochemical device.  

Figure 5.6 shows the 
31

P MAS NMR spectra of (a) bulk CsH2PO4 (b) CDPp (c) CDPf and 

(d) CDPf-RH. The first spectrum presents a single sharp resonance with a chemical shift at -

5.39 ppm which corresponds to the phosphorous of the dihydrogen phosphate group. This 

resonance appears also in the spectra of figure 5.6 (b), (c), (d), indicating that dihydrogen 
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phosphate groups are conserved in the material after partial polymerisation and 

electrospinning to CsH2PO4 fibres. In the spectrum of CDPp six resonances with different 

chemical shifts are observed at -5.39, -6.52, -7.14, -9.14, -21.08 and -22.80 ppm 

corresponding to different degrees of condensation of the phosphate groups. All these 

signals are also visible, although with lower intensity, in the spectrum of CDPf. The lower 

intensity is explained by the partial rehydration of the material when dissolving it in water 

to prepare the electrospinning solution. In the spectrum of CDPf, after conditioning at 50 % 

RH for 7 days, the resonances with chemical shifts at -6.65 and -9.20 disappear, which was 

attributed to the partial hydrolysis of the condensed phosphate species.  

 

Figure 5.6. 
31

P MAS NMR spectra of (a) pure CsH2PO4 (b) CDPp (c) CDPf and   (d) CDPf-RH  

-22.80 

-22.80 

-22.80 
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1
H NMR spectra of bulk CsH2PO4 is shown figure 5.7-a. Two resonances with chemical 

shifts at 14.47 and 10.96 ppm are observed. These peaks correspond to the two 

crystallographically distinct hydrogen atoms of the dihydrogen phosphate group [26-28]. 

In the case of the 
1
H NMR spectra of CDPf (fig. 5.7-b), the same two resonances are 

observed with a small negative shift of approximately 0.50 ppm placing them at 13.92 and 

10.55 ppm. The presence of the two same resonances in the electrospun fibres confirms 

that the initial bulk CsH2PO4 type environment of hydrogen remains in the structure of the 

electrospun fibres.  

 

 
Figure 5.7. 

1
H MAS NMR spectra of (a) bulk CsH2PO4 and (b) CDPf 

5.3.2 Morphology 

The morphology of CsH2PO4 based membranes was studied by E-SEM. Top, bottom and 

cross section images of the membranes were obtained, as shown in figure 5.8. The 

homogeneity of the membranes in terms of CsH2PO4 distribution and thickness was 

studied.  

The distribution of CsH2PO4 particles in membranes fabricated by the casting of 

CsH2PO4/polymer method is a fundamental issue. In this method PBI was used as 
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polymeric binder to keep the CsH2PO4 particles together and to provide enough 

mechanical strength to allow fabricating thin membranes (< 50 µm). 

Membranes fabricated with CsH2PO4 weight percentages higher than 75 % were not 

mechanically stable and tend to break in the pealing process after casting. The distribution 

of CsH2PO4 particles in the membrane was not homogeneous due to the precipitation of 

particles on the bottom of the membrane during the casting process. This effect was more 

noticeable in membrane fabricated using 5 % wt. PBI solution because of its lower 

viscosity. 

This precipitation caused an excess of PBI on the top side of the membrane which creates a 

non proton conducting polymeric layer. This two-layered membrane structure is not 

desirable as the top PBI layer would act as an isolating layer when using it as proton 

conducting electrolyte. E-SEM micrographs of a composite membrane with 75 % wt. of 

CsH2PO4 are shown in figure 5.8. 

 

   

Figure 5.8. E-SEM images of CDP0.75/PBI0.25 composite membrane. (a) bottom side (b) top side (c) cross 

section 

Membranes fabricated by glass fibre reinforcing method were characterised in terms of 

porosity (density) and fibre distribution in the CsH2PO4 matrix. 2 ml of saturated solution 

of CsH2PO4 was found to be the optimum amount of solid acid to fill the glass fibre filter 

(figure 5.9). Lower volumes did not fill completely the filter whereas higher volumes 

created an excess of CsH2PO4 on the top of the membrane which cracked and detached 

from it. 

b) 

c) a) 

Top side 

Bottom side 
CDP PBI 
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Figure 5.9. E-SEM cross section image of glass fibre reinforced CsH2PO4 composite membrane. 

The high pressure applied fused the CsH2PO4 crystals creating a dense and continuous 

solid acid phase between both sides of the membrane. This continuous phase is 

fundamental in order to have proton conducting paths between both electrodes in an 

electrolysis cell. 

Membranes fabricated by electrospinning were characterised by E-SEM in order to study 

the morphology of the fabricated CsH2PO4 fibres, the densification of the fibre mat and the 

distribution of the polymer added to the mat to occlude the porosity of the resulting 

membrane. Figure 5.10 shows the E-SEM micrographs of CsH2PO4 fibres.  

The distribution of fibre diameter of CDPf, calculated by the analysis of three different 

regions of the mat surface with a sample size of 300 points, follows a normal distribution 

having its maximum at 1.25 μm, as shown in figure 5.11. The majority of the fibres are of 

sizes in the range 0.5 - 2 μm, although some thicker fibres are also visible. These thick 

fibres are formed by the instabilities occurring in the Taylor cone during the 

electrospinning process [29] (see section 3.1.8). 
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Figure 5.10. E-SEM image of electrospun CsH2PO4 fibres. 

 

Figure 5.11. Diameter size distribution of CDPf  

CsH2PO4 fibres fabricated by electrospinning onto the static target produce a ‘cotton-wool-

like’ mat. This mat was pressed to densify it, and thus to reduce its porosity, using 

pressures from 0.5 to 4 tonne at room temperature and for 1 min each sample. In figure 

5.12 E-SEM micrographs of the fibre mat after densification at 2 and 4 tonne are shown. A 

pressure of 2 tonne (figure 5.12-a) was chosen as the optimum value as it provided the 

highest porosity reduction while maintaining integrity of the fibres. At pressures higher 

than 4 tonne, fibres fused together, becoming a brittle pellet (figure 5.12-b). The thickness 
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of the fibre mat is easily controlled by the time of electrospinning and densification 

pressure.  

 

Figure 5.12. E-SEM micrographs (x250 and x1800) of densified CDPf mats at (a) 2 tonne and (b) 4 tonne  

PBI was added to the fiber mat in order to provide the membrane with higher mechanical 

strength and to occlude the porosity. Unlike in the CsH2PO4/polymer casting method, 

where discrete particles of the solid acid get isolated by a polymer layer, the highly 

interconnected mat of CsH2PO4 fibres fabricated by electrospinning would provide enough 

percolation degree in the CsH2PO4 phase allowing proton conducting paths along the 

thickness of the membrane.  

The addition of polymer creates a similar problem as the CsH2PO4/polymer casting 

method, which is the creation of an isolating PBI layer on top of the membrane due to an 

excess of PBI solution. Low volumes of PBI solution did not occlude the porosity of the 

fibre mat and slightly higher volumes provide an excess of polymer. In figure 5.13 the 

polymeric layer created on the top of the fibre mat is shown. It was not possible for the 

author to fabricate a non porous membrane without the existence of this layer.  

Membranes fabricated by the casting of partially polymerised CsH2PO4 were also 

characterised by E-SEM in order to determine the homogeneity of the thickness and the 

porosity. In this method, as well as in the electrospinning method, CsH2PO4 was subjected 

to a heat treatment in order to induce a partial polymerisation of the material. Figure 5.14 

shows E-SEM micrographs of CsH2PO4 and CDPp.  

The as-prepared CsH2PO4 (figure 5.14-a) exhibited smooth particles on its surface with an 

average diameter size of 8 µm. After the polymerisation step (figure 5.14-b) particles fused 
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together forming agglomerates of diameter >50 µm which appeared to form an extended 

structure in three dimensions. 

 

Figure 5.13. E-SEM cross section micrographs of CDPf mat with PBI polymer.  

 

 

Figure 5.14. E-SEM micrographs of (a) CsH2PO4 powder and (b) CDPp powder. 

Casted membranes of partially polymerised CsH2PO4 were fabricated with thickness 

between 25 and 200 µm. The top side of these membranes showed an uneven surface 

morphology. No porosity or holes caused by bubbles in the casting solution were seen in 

the E-SEM micrographs of these membranes, as shown in figure 5.15. 
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Figure 5.15. E-SEM cross section micrograph of a casted membrane of partially polymerised CsH2PO4.  

5.3.3 Proton conductivity 

Proton conductivity is one of the most important characteristics an electrolyte must fulfil in 

order to be applied in a PEMWE. The electrolyte must exhibit the maximum proton 

conductivity and the minimum thickness possible in order to minimise the ohmic losses in 

the system. 

Pure CsH2PO4 exhibits proton conductivity over 10
-2

 S cm
-1

 at temperatures higher than 

230 °C, but due to its brittle mechanical properties high thickness pellets (> 300 µm) must 

be fabricated. The maximum proton conductivity any membrane based on CsH2PO4 would 

exhibit would not be over the above mentioned value and therefore the only approach to 

minimise the resistance of the electrolyte is based in the fabrication of thinner membranes.  

The maximum though-plane proton conductivity obtained from each of the composite 

membranes fabricated by the methods explained in this chapter at 200 – 250 °C 

temperature range is shown in figure 5.16. Results are compared to the conductivity of a 

pure CsH2PO4 pellet. 

The lowest proton conductivity was exhibited by membranes fabricated by CsH2PO4-

doped PBI membranes. The conductivity of all membranes fabricated by this method was 

in the range of 10
-7

 S cm
-1

 regardless of the doping conditions. In figure 5.12-c the 
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conductivity of PBI membrane doped at 300 °C for 2 h in melted CsH2PO4 is shown. This 

low conductivity values proof that the maximum doping level achieved by this method, 

0.74 mol CsH2PO4 PBI unit
-1

, is not enough solid acid uptake to provide the membrane 

with proton conducting paths. In H3PO4-doped PBI membranes the doping level is in the 

range of 5 - 15 mol H3PO4 PBI unit
-1

 [30, 31], which is a mixed contribution of phosphoric 

acid chemically bonded to the PBI basic groups and free phosphoric acid. In order to have 

a successful CsH2PO4-doped PBI membrane considerably higher doping levels should be 

achieved which in this research was not experimentally possible because of the low acidity 

of CsH2PO4 and thus, low acid/base interaction. 

 

Fig. 5.16. Effect of temperature in the protonic conductivity of (a) CsH2PO4 pellet (b) CDP0.75/PBI0.25 

membrane by casting of PBI/polymer method (c) CsH2PO4 doped PBI membrane (doped in melted CsH2PO4 

for 2 h) (d) glass fibre reinforced membrane (e) electrospun membrane (with polymer) and (f) partially 

dehydrated CsH2PO4 membrane fabricated by casting. 

Membranes obtained by casting of CsH2PO4/polymer method, where PBI was used as 

binder to build a thin membrane, exhibited a maximum through-plane proton conductivity 

of 3 × 10
-4

 S cm
-1

 at 250 °C. In figure 5.12-b the temperature dependence on the proton 

conductivity of CDP0.75/PBI0.25 composite membrane is shown. Proton conductivity of 

membranes with lower amount of polymer is not shown as they were not mechanically 

stable and the pealing process after casting was not possible. The loss in conductivity 

compared to pure CsH2PO4, approximately 2 orders of magnitude, was attributed to the 
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formation of a PBI layer on top of the membrane and to the isolation of the discrete 

particles of CsH2PO4 by a thin PBI layer. In this fabrication method, where CsH2PO4 

powder is dispersed into a PBI solution and then casted, PBI acts as a binder as well as an 

insulator. In order to address the contribution of the PBI layer formed on top of the 

membrane by an excess of polymer solution to the overall resistance of the membrane, in-

plane and through-plane conductivity measurements were carried out. Results of both 

measurements for a CDP0.75/PBI0.25 composite membrane are shown in figure 5.17. 

In plane measurements were carried out in the bottom side of the composite membrane, 

where no PBI layer was formed. Figure 5.17 shows the contribution of the PBI layer 

formed on the top of the membrane to the overall resistance lowering the conductivity by 

almost 1 order of magnitude from in-plane to through-plane. Although this polymeric layer 

increases the resistance of the membrane the in-plane conductivity (ca. 10
-3

 S cm
-1

) is still 

1 order of magnitude lower than pure CsH2PO4. This loss in conductivity is attributed to 

the formation of a thin PBI layer between the particles of the solid acid. This polymeric 

layer in the grain boundary of CsH2PO4 increased the resistance for proton conduction 

from particle to particle; no continuous CsH2PO4 phase is achieved by this method. 

 

Fig. 5.17. Effect of temperature in the in-plane and through-plane protonic conductivity of CDP0.75/PBI0.25 

composite membrane. 

In order to avoid the isolation effect of discrete CsH2PO4 particles by PBI, another 

membrane fabrication method by the electrospinning of CsH2PO4 is proposed. A highly 
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interconnected fibre mat of CsH2PO4 was fabricated as the backbone of the membrane and 

then the porosity of the mat occluded by the addition of PBI. The interconnected fibre 

backbone would provide enough proton conducting paths with good percolation degree 

within the composite membrane structure.  

The conductivity of CsH2PO4 fibres compressed in pellet form was measured in order to 

address the loss in conductivity caused by the partial dehydration of CsH2PO4. The fibres 

(CDPf) exhibited a maximum proton conductivity of 8 × 10
-3

 S cm
-1

 at 250 °C. However, 

once PBI was added to the fibre mat the conductivity of the membrane decreased to 1.5 × 

10
-4

 S cm
-1

. Values are shown in figure 5.18. This loss in conductivity is once again 

attributed to the formation of an isolating PBI layer on top of the composite membrane 

(figure 5.13). 

 

Fig. 5.18. Effect of temperature in the through-plane protonic conductivity of a pellet of CsH2PO4 fibres 

(CDPf) and electrospun fibre mat of CsH2PO4 with PBI (CDPf/PBI). 

The solution of partially polymerised CsH2PO4 was also directly casted into membranes 

without any additive. The maximum proton conductivity exhibited by this type of 

membranes was 3 × 10
-3

 S cm
-1

. The conductivity of the cast membrane was compared to 

those of the partially polymerised powder in pellet form (figure 5.19). Although both 

materials exhibit similar proton conductivity at 250 °C the profile of each of them varies 

considerably at the range of temperatures measured. The difference in the proton 

conduction is attributed to the rehydration of partially polymerised CsH2PO4. The profile 

shape of the cast CDPp membrane is very similar to that of the initial non-dehydrated 
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material, with a notorious increase in the proton conductivity at 230 °C. This was 

attributed to a partial rehydration of CsH2PO4 when the casting solution (in H2O) was 

prepared. When the proton conductivity of the material is measured just after the 

dehydration process, a different profile with a more gradual increase was seen. This 

slightly higher conductivity at lower temperatures could be attributed to a higher 

adsorption of water which helped the proton conduction in the material. 

Although the proton conductivity of membranes fabricated by this method was almost one 

order of magnitude lower than that of pure CsH2PO4, it is worth mentioning that this 

methodology allowed fabricating very thin membranes which would help to lower the 

ohmic resistance of the system. In order to equal the resistance provided by a 300 µm 

CsH2PO4 pellet, 2.0 Ω cm
-2

, membranes fabricated by this method should not have 

thicknesses higher than 60 µm.  

 

Fig. 5.19. Effect of temperature in the through-plane protonic conductivity of a pellet of partially 

polymerised CsH2PO4 (CDPp pellet) and membrane fabricated by casting of partially polymerised CsH2PO4 

(casted CDPp). 

The highest proton conductivity was achieved by glass fibre reinforced membranes. The 

addition of an interconnected mat of glass fibres provides the composite membrane with 

less brittle characteristics and therefore thinner membranes (100 – 200 µm) could be 

fabricated. The maximum proton conductivity exhibited by these membranes is 4 × 10
-3

 S 

cm
-1

 at 250 °C as shown in figure 5.16, although values as high as 8 × 10
-3

 S cm
-1

 at 275 

°C were recorded. This high conductivity and the possibility of reducing the thickness of 
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the pellet make this a potentially useful membrane fabrication method. Nonetheless, 

membrane thicknesses lower than 80 µm are required in order to fabricate an electrolyte 

with resistance lower than 1 Ω cm
-2

. 

5.3.4 Tensile strength 

In order to assess the mechanical properties of the composite membranes fabricated, their 

tensile strength was measured. The effect of polymer and glass-fibre addition to the 

inorganic salt and the partial polymerisation effect on the mechanical properties of the 

membrane were studied in terms of tensile strength. All composite membranes were 

compared to a pure PBI casted membrane. Tensile data about pure CsH2PO4 pellet was not 

possible to be obtained due to the high brittleness of the sample. The tensile stress vs. 

strain curves of the fabricated membranes are shown in figure 5.16 and the Young modulus 

and maximum stress summarised in table 5.6. 

In figure 5.16-I, the tensile strength properties of a pure non-doped PBI membrane is 

compared to the fabricated CsH2PO4-based membranes. The mechanical strength towards 

tensile stress is significantly higher in the pure PBI membrane, exhibiting a maximum 

stress of 4460 N cm
-2

 and a Young modulus of 0.93 GPa. These results are in good 

agreement to those reported for pristine PBI membranes, being in the maximum stress in 

the range of 7.5 – 15 × 10
3
 N cm

-2
 and Young modulus of 1 – 1.5 GPa [14, 30]. 

 

Composite membranes 

Pristine PBI membrane 

  (I) 



                            Chapter 5: Fabrication of CsH2PO4-based proton conducting membranes 

126 
 

 

Fig. 5.20. (I) Tensile stress vs. strain comparison between a casted pure PBI membrane and the fabricated 

composite membranes. (II) Tensile stress vs. strain comparison between (a) CDP0.75/PBI0.25 and (b) 

CDP0.66/PBI0.33 membranes by casting of PBI/polymer method (c) electrospun membrane with PBI (d) glass 

fibre reinforced membrane (e) partially dehydrated CsH2PO4 membrane fabricated by casting. 

Table 5.6. Mechanical properties of CsH2PO4-based composite membranes. 

Membrane 

Mechanical parameters 

Young modulus / GPa UTS / N cm
-2

 

Casting of pure PBI 0.93 4460 

Casting of CDP0.66 / PBI0.33 0.73 804 

Casting of CDP0.75 / PBI0.25 0.18 547 

Electrospun / PBI 0.24 227 

Glass-fibre reinforced 0.14 209 

Partially dehydrated 0.13 74 

 

The maximum tensile stress supported by the rest of the composite membranes was 

significantly lower to that exhibited by pristine PBI. CsH2PO4/PBI cast membrane with 

33% wt. of polymer exhibited the highest maximum stress (804 N cm
-2

) and Young 

modulus (0.73 GPa) of all composite membranes. Then CsH2PO4/PBI cast membrane with 

25% PBI and the electrospun membrane with PBI showed considerably lower values 

(II) 
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because a lower amount of polymer in the membrane. Lastly, glass-fibre reinforced 

membrane and cast of partially dehydrated CsH2PO4 membrane exhibited similar values of 

Young modulus, ca. 0.14 GPa, and maximum stress of 209 and 74 N cm
-2

, respectively. 

The mechanical properties towards tensile strength of the composite membranes exhibited 

relatively low values, comparing to those of pristine PBI. Nevertheless, it has to be stressed 

that the membranes fabricated by the proposed methods exhibited more ductile properties 

than the pure CsH2PO4 pellet. The decrease in the brittleness of the membranes, comparing 

to that of pure CsH2PO4, makes the composite membranes easily handled and assembled 

into a electrochemical cell. 
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5.4 Conclusions 

The difficulty of fabricating a thin membrane of CsH2PO4 is an important issue in order to 

apply this material as a proton conducting electrolyte in electrochemical systems. In this 

chapter, five different methods were proposed for the fabrication of CsH2PO4-based 

composite membranes; (1) casting of CsH2PO4/polymer membrane, (2) CsH2PO4-doped 

polymeric membrane, (3) glass-fibre reinforced membranes, (4) electrospinning of 

CsH2PO4 fibre mat and (5) the casting of partially polymerised CsH2PO4. 

Physico-chemical characterisation of membranes was carried out and the morphology and 

homogeneity of the different membranes reported. Minimum thickness membranes were 

obtained by the casting of CsH2PO4/PBI membranes, as thin as 25 µm. P-XRD and ss-

NMR results revealed that the heat treated CsH2PO4, used in methods relying on its partial 

polymerisation, methods (4) and (5), various phases coexist, being the initial proton 

conducting phase still present in the structure of the material. The partially polymerised 

CsH2PO4 exhibited a maximum conductivity of 3 × 10
-3

 S cm
-1

 at 250 °C. 

Membranes fabricated by the glass-fibre reinforced method exhibited the highest proton 

conductivity, 8 × 10
-3

 S cm
-1

 at 275 °C. All methods using polymer as a binder, doped 

membrane or to occlude porosity, methods (1), (2) and (4), show low proton conductivity, 

< 3 × 10
-4

 S cm
-1

, caused by the isolating properties of the polymer and low acid uptake. 

Membranes fabricated by the casting of partially polymerised CsH2PO4 exhibited a 

maximum conductivity value of 2 × 10
-3

 S cm
-1

 at 250 °C.  

The mechanical properties of the composite membranes in terms of tensile stress were 

significantly lower than those obtained for pure PBI polymeric membrane. Nevertheless, 

although the mechanical properties of the pure CsH2PO4 pellet could not be measured 

because of its high brittleness, the fabricated composite membranes exhibited more ductile 

properties which made them easy to handle and to assemble in the electrochemical cell. 

In conclusion, glass-fibre reinforcing was considered as the most promising method for 

CsH2PO4–based membrane fabrication, because of mainly its high proton conductivity and 

mechanical stability. 
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CHAPTER 6 

THE EFFECT OF THE ELECTROLYTE ON THE CATALYTIC 

ELECTROCHEMICAL ACTIVE SURFACE (EAS) AND 

OXYGEN EVOLUTION REACTION (OER)  

In this chapter the effect of the electrolytic media on the electrochemical active surface 

(EAS) of IrO2 and Pt black was studied. The activity of IrO2 as oxygen evolution reaction 

catalyst in CsH2PO4 saturated solution was also addressed and compared to its 

performance in H3PO4 and H2SO4 solutions. IrO2 showed poor activity towards OER in 

CsH2PO4 solution which was mainly attributed to the low acidity of the electrolyte (pH = 

4.63) and to anion adsorption in the catalyst caused by the high phosphate concentration. 

6.1 Introduction 

The nature of the electrolyte plays an important and significant role in the activity of a 

catalyst towards any electrochemical reaction [1-4]. The presence of different ionic 

species, pH or viscosity for instance, would affect the performance of a catalyst in terms of 

catalyst deactivation, reaction mechanism or diffusion of reactants and products. All these 

parameters will have a great impact on the overall performance of any electrocatalyst for a 

given reaction. 

In the case of PEM water electrolysers, although both hydrogen and oxygen evolution 

reactions take place at the same time, it is the latter (OER) that attracts more interest as it is 

the slowest, limiting reaction of the system. RuO2 is proved to be the most active catalyst 

for OER in acidic media although its poor stability leads IrO2 as the state-of-the-art catalyst 

for this reaction in these electrochemical devices. Nevertheless, a significant effort is being 

made by the research community in order to develop new catalyst with improved activity 

and stability as well as reduced cost [5-10]. 

In this research the effect of the electrolyte on the OER rate of IrO2 was studied for H3PO4, 

H2SO4 and CsH2PO4 solutions. In addition, the impact of these electrolytes on the 

electrochemical active surface (EAS) of IrO2 and Pt was reported. 
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6.2 Experimental 

Pt black (Alfa-Aesar) and IrO2 (Sigma-Aldrich) catalyst were purchased from commercial 

sources. These are the same catalyst used for the electrolysis studies carried out in chapter 

7. Both Pt and IrO2 catalyst inks were prepared by dispersing 50 mg of catalyst in 1ml N-

Methyl-2-pyrrolidone (NMP). 20 % wt. polyvinylidene fluoride (PVDF) was added as a 

binder in order to help the catalyst stick to the electrode and avoid catalyst detachment 

during experiments.  

Samples for ESA calculation were prepared by micro-pipetting 3 µl ink dispersion onto a 

glassy carbon electrode (BASi) with 0.07 cm
2
 area. Samples for OER studies were 

prepared by micro-pipetting 4 µl ink dispersion onto a gold electrode with 0.154 cm
2
 area. 

Catalyst loadings were 2.14 and 1.30 mg cm
-2

, respectively. All inks were sonicated for 30 

min before depositing onto the electrode. Electrodes were placed in the oven at 80 °C 

overnight to dry the samples. 

Saturated solution of CsH2PO4 at 40 °C (5.15 M) was prepared by dissolving 120 g 

CsH2PO4 (see Chapter 4.2 for synthesis method) in 100 ml DI water. Same concentration 

(5.15 M) solutions of H3PO4 (Sigma-Aldrich, >85 % wt.) and H2SO4 (Sigma-Aldrich, 95-

98 %) were prepared by mixing the required amounts of acids with DI water. 

The experiments were carried out in a standard jacketed half-cell configuration (figure 3.8) 

at temperatures between 40 and 80 °C, controlled by a water bath. N2 gas was bubbled in 

the solution in all experiments in order to maintain the solution deoxygenated. 

6.3 Electrochemical Active Surface (EAS)  

The amount of catalyst active in an electrochemical reaction is dependent on the 

accessibility of the active sites of that catalyst to the reactants and the ability of it to release 

the products. In the case of a PEM water electrolyser, hydrogen evolution reaction (HER) 

in the cathode and oxygen evolution reaction (OER) in the anode (equations 1.4 – 1.5) will 

take place. This means that for both electrodes protonic and electric conducting paths must 

exist for the reaction to happen as well as physical paths to allow the access and release of 

gases. The sites of the electrode where all these conditions meet is the so-called triple 

phase boundary [11, 12]. The amount of catalyst in this boundary will lead to the 

calculation of the electrochemical active surface (EAS). 

http://en.wikipedia.org/wiki/N-Methyl-2-pyrrolidone
http://en.wikipedia.org/wiki/N-Methyl-2-pyrrolidone
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6.3.1 Pt black and IrO2 ESA determination by P-XRD  

The EAS of a catalyst can be estimated from the average crystallite size calculation using 

the Scherrer equation (equation 3.1) using the data obtained from the P-XRD spectra. 

Assuming spherical crystallites and knowing the density value of the material, a ratio of 

area per mass unit can be calculated. In figure 6.1 the P-XRD spectra of commercially 

available Pt black and IrO2 are plotted.  

 

Figure 6.1. P-XRD spectra of (a) Pt black and (b) IrO2 at 25 ºC and 1 bar. 

The three most characteristic diffraction peaks of both materials (39.7°, 46.0° and 67.4° 2θ 

for Pt and 28.0°, 34.7° and 54.0° 2θ for IrO2) were used in the crystallite size calculation 

by Scherrer equation (equation 3.1). The value of EASXRD is an estimation assuming that 

all the area of the catalyst is active and available for the reaction. Although in a real 

electrochemical system these conditions are not fulfilled, it provides an estimation of the 

catalyst % utilisation. 

Table 6.1. Pt black and IrO2 crystallographic properties. 

Catalyst 
ρ  

/ g cm
-3

 

Crystallite size 

/ nm 

EASXRD 

/ m
2 
g

-1
 

Pt black 21.4 6.9 40.5 

IrO2 11.6 31.6 16.3 

(a) 

(b) 
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6.3.2 Pt black ESA determination by cyclic voltammetry  

A real estimation of the EAS of an electrode can be determined by the calculation of the 

charge obtained by cyclic voltammetry (CV) in a half cell (see section 3.2.2) [13]. Pt black 

and IrO2 were characterised by this technique in concentrated solutions (5.15 M) of H3PO4, 

H2SO4 and CsH2PO4 in order to study the effect of the electrolyte on the EAS of the 

catalysts. Experiments at a range of temperatures (40 – 80 °C) and scan rates (20 – 200 mV 

s
-1

) were carried out to investigate the impact of these variables. For every sample 10 

cycles were performed, which was enough to obtain stable and reproducible results. 

Figure 6.2 depicts a standard CV of platinum black in 5.15 M H3PO4 using 20 mV s
-1

 

sweep rate. In this voltammogram four main regions can be differentiated, all of them 

corresponding to different electrochemical processes happening at a given potential [14]; 

H2 desorption (a) and adsorption (b) onto the platinum surface and Pt oxidation (c) and 

reduction (d). At potentials lower than 0 V (vs. SHE) H2 evolution starts (I) while O2 

evolution starts at potential higher than 1.23 V (II). At the linear region between 0.4 – 0.8 

V no electrochemical process take place, this is where only the charging of the double 

layer of the electrode occurs. 

 

Figure 6.2. Cyclic voltammogram of Pt black in 5.15M H3PO4 at 20 mV s
-1

 sweep rate (cycle nº 10) and 40 

ºC with the proton desorption area (QH) highlighted. 

In the case of Pt, a well-established technique to calculate the EAS is to integrate the 

charge of the proton desorption peak (QH) obtained in the range of 0 – 0.4 V [15-17]. At 

this potential range, the proton attached to the surface of the Pt desorbs giving an anodic 

QH 
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current in form of a peak. The value of this coulombic charge is directly proportional to the 

area of catalyst active in the electrochemical half-reaction as showed in equation 3.3 (see 

Chapter 3). The contribution of the double layer charge, although relatively small for Pt 

black samples, was subtracted for all EASCV calculations. Figure 6.3 shows the effect of 

the temperature on the EASCV of Pt black in the three different acidic electrolytes. All CV 

of Pt in different electrolytes at 50 mV s
-1

 are shown in figure A-2 (appendix A). 

 

Figure 6.3. Pt black EASCV dependency on temperature in 5.15M (♦) H2SO4, (■) H3PO4 and (▲) CsH2PO4 

aqueous solutions at 50 mV s
-1

 scan rate. 

As seen in figure 6.3, the EAS of Pt black increases significantly in H2SO4 and H3PO4, 20 

and 24 % respectively, when the temperature increases from 40 to 80 °C. In the case of 

CsH2PO4 a very mild increase of 2.4 % between 40 and 80 °C is noticed in the EASCV 

values. These results suggest that the EASCV is related to the pH as at higher proton 

concentration higher values were obtained. Lower pH values provide higher proton 

concentration and conductivity to the solution providing better access of the protons to the 

catalyst sites. Higher temperatures would also enhance proton diffusion in solution 

increasing the access of protons to these sites.  

It has been suggested that anion adsorption onto the catalyst surface also affects the EAS, 

being phosphate anions more strongly adsorbed than sulphates and thereby showing higher 

active area in H2SO4 solution [18-21]. The catalyst utilisation value, obtained from the 

relation between calculated ESAXRD and ESACV is also plotted in figure 6.3, being ca. 70 

% for CsH2PO4 at all temperatures and as high as 85 and 91 % for H3PO4 and H2SO4 at 80 

°C, respectively. Not much data is reported for Pt black utilisation in three electrode cell 
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configuration in acidic media. In the case of carbon supported platinum catalyst values, 

around 50 % were reported [22], although a high dispersion of values in catalyst utilisation 

are also reported (ca. 20 – 100 %) [16]. The high utilisation values obtained in this study 

are attributed to the absence of carbon as catalyst support, as well as to the much bigger 

particle size of Pt black compared to Pt/C. It is worth noting that although catalyst 

utilisation in Pt black seems high the absolute values of ESA are considerably smaller than 

carbon supported platinum, which is mostly caused by bigger and less dispersed 

crystallites. 

6.3.3 IrO2 ESA determination by cyclic voltammetry  

IrO2 has been long studied as an OER electrocatalyst for several electrochemical processes, 

including PEM electrolysis. As reported by many authors [23-26], iridium, as many other 

metals, forms hydrous oxide films when it is subjected to positive potential sweeps, 

leading, by the interaction with the ions in solution (i.e. H
+
, OH

-
), to oxide layers with 

properties differing to those of anhydrous oxides. The main difference arising from 

anhydrous and hydrous metal oxide films is that the latter shows a much higher degree of 

dispersion (less compact films) making the oxide layer considerably less dense.  

Iridium undergoes several oxidation processes before reaching a stable and active state 

towards OER [24]. In these processes the oxidation state of the iridium ion changes by a 

simultaneous transfer of electrons and protons to keep the electroneutrality of the hydrous 

oxide film. The insertion of these ionic species in the oxide layer generates a so-called 

charge storage phenomenon in the material which can be studied by voltammetric 

techniques and can be related, for instance, to the hydrous oxide film thickness and 

composition. The anodic and cathodic currents generated by the redox processes of iridium 

are shown as oxidation and reduction peaks in the cyclic voltammograms. These redox 

couples have been extensively studied in order to identify the specific oxidation/reduction 

processes occurring and the species and charges involved in them. The main redox 

processes identified and agreed by most authors are Ir
III

/Ir
IV

 and Ir
IV

/Ir
VI

 couples taking 

place at potentials of ca. 1.0 V and 1.4 V (vs. SHE), respectively. The basic reaction for 

these processes is usually written as follows [18]: 

IrOx(OH)y + δH
+
 + δe

-  
↔ IrOx-δ(OH)y+δ    (6.1) 
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Burke et al. [24] modelled the reaction corresponding to the Ir
III

/Ir
IV

 couple considering the 

hydrous composition of the oxide as shown in equation 6.2 and in terms of structure in 

equation 6.3. 

2 [ IrO2(OH)2 · 2H2O ]
2-

 + 2e
-
  ↔  [Ir2O3(OH)3 · 3H2O ]

3-
 + 3OH

-
     (6.2) 

 

(6.3) 

  

 

Both 6.1 and 6.2 equations define the same redox process yielding the same chemical 

species. Equation 6.3 helps to understand the nature and composition of this type of 

hydrous oxide and the charge storage phenomenon arising from this process.  

Figure 6.4 shows the standard CV of IrO2 obtained in 5.15 M H3PO4 at 20 mV s
-1

 sweep 

rate. In this case the voltammogram shows the anodic and cathodic currents generated by 

the solid sate redox transitions of iridium (a-b and c-d). At potentials lower than 0 V (vs. 

SHE) H2 evolution starts (I) while O2 evolution starts at potential higher than 1.23 V (II).  

 

Figure 6.4. Cyclic voltammogram of IrO2 in 5.15M H3PO4 at 80 °C and 50 mV s
-1

 sweep rate (cycle nº 10). 

The redox couple situated at ca. 1.0 - 1.1 V (c-d) corresponds, in good agreement with 

other authors, to the Ir
III

/Ir
IV

 transition, which is often clearly seen in iridium 
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voltammograms. The other redox couple situated at ca. 0.6 – 0.7 V is often reported as a 

pre-peak or shoulder. Juodkazyte et al. [27] attributed this peak to the transition of Ir/Ir
III

 in 

deoxygenated solutions following the reaction in equation 6.4. Mozota et al. [28] reported 

that the location and shape of this peak is greatly influenced by the nature of the ions in 

solution which agrees with the results obtained in this study (figure 6.5). 

Ir + 3H2O
  
↔ Ir(OH)3 + 3H

+
 + 3e

-
    (6.4) 

Unlike platinum, the pseudocapacitive behaviour caused by the implication of H
+
 in the 

redox transitions of iridium makes it complicated to relate the charge to the surface area of 

electrochemically active catalyst. For this reason ESACV values of IrO2 are commonly 

given by charge units (mC cm
-2

) calculated by the area integration of the cyclic 

voltammograms in the 0 – 1.4 V region [24, 27, 29]. The obtained charge is dependent on 

the scan rate of the sweep (figure 6.5). Rest of CVs, at different temperatures are shown in 

figures A.3 – A.5 (appendix A). 

 

Figure 6.5. Cyclic voltammograms of IrO2 in the three aqueous electrolytes at 20 mV s
-1

 (left) and 200 mV s
-

1
 (right) sweep rate (40 °C) (cycles nº 10). 

As seen in figure 6.5, the shape of the cyclic voltammograms changes considerably in the 

different electrolytes. In the case of H2SO4, the first redox couple at 0.6 – 0.7 V is easily 

recognised at all scan rates while the second couple at 1.0 – 1.1 V is slightly seen, only at 

high scan rates. The CVs of H3PO4 and CsH2PO4 electrolytes show very similar shape in 

the first half of the scan (0 – 0.6 V), however, in the second half the charge produced by 

the redox transitions is higher in H3PO4 which is more evident at higher scan rates. The 

oxygen evolution peak is not seen at high scan rates because of the masking effect of the 

double layer charge. Further oxidation step of iridium, Ir
IV

/Ir
VI

, is reported by several 

H2SO4 

H3PO4 

CsH2PO4 

H2SO4 

H3PO4 
CsH2PO4 
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authors to take place at higher potentials [23, 24, 31, 33]. This oxidation process will be 

further investigated in section 6.4. 

The hydrogen evolution peak noticed at potentials close to 0 V suggests that the iridium 

oxide is at least partially reduced to metallic iridium, since hydrogen is not easily adsorbed 

onto an oxide surface [30, 31]. However, Boodts et al. suggested [32] and other authors 

agreed [33] that the oxide surface is never reduced to the metallic compound and therefore 

no bulk reduction of the catalyst takes place.  

The dependency of the charge on the sweep rate is believed to be related to the existence of 

two regions on the catalyst surface; a region which protons can easily access (outer region) 

and another region where the accessibility for proton is lower (inner region) [34]. For this 

reason the total charge (qT) can be related to the sum of the inner (qin) and outer charge 

(qout) as shown in equation 6.5. 

      (6.5) 

At low scan rates the total charge dominates the process, while at high scan rates, as 

protons do not have enough time to intercalate into the oxide, it is the outer charge that 

dominates. In order to calculate the outer parameter, the charge obtained by the integration 

of the voltammogram (q) vs. the inverse of the square root of the scan rate (v
-1/2

) is plotted 

and the obtained curve extrapolated to zero. For the total charge, the straight line obtained 

by plotting q
-1

 vs. v
1/2

 is extrapolated to zero. All values are plotted in figure A.6, appendix 

A. 

The summary of the effect of the electrolyte on the EAS values of Pt black and IrO2 is 

shown in table 6.2. The amount of electrochemically active sites in these catalysts is 

affected by the anion nature and concentration in solution, being phosphate the anion with 

higher influence in the EAS loss and CsH2PO4 the solution where both catalysts show the 

lowest EAS. An increase in temperature influenced positively the EAS in all cases 

presumably caused by a better diffusion of species (i.e. H
+
) at higher temperatures, as well 

as thermodynamically more favourable condition for anion desorption at higher 

temperatures. According to Burke et al. [24] the pH would also have an effect in the redox 

processes of hydrous metal oxides, i.e. iridium oxide, in other way. They suggested that as 

pH is increased, the equilibrium represented by equation 6.1 would be shifted to the left 

and the metal ion activity, and therefore its redox peak charge, would be reduced. This 
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would also explain the lowering tendency of the total charge of IrO2 with increasing the 

pH. Generally, the charge data obtained for IrO2 is lower than results provided by other 

authors, where values of 140 mC cm
-2

 were reported [29]. This is mainly attributed to the 

synthesis method used, which affects the particle size and consequently the ESA. As 

protons are involved in the oxidation steps of iridium (reaction 6.1), the oxidation and 

reduction peaks of the redox couple shift with the different pH of the electrolyte. The 

charge of these peaks is also dependant on the pH, as proton adsorption would be function 

of proton concentration in solution. 

 

Table 6.2. Summary of EAS and charge values of Pt black and IrO2 in 5.15M H2SO4, H3PO4 and CsH2PO4 at 

40, 60 and 80 ºC. 

Electrolyte 
Temperature    

/ °C 

Pt black EAS        

/ m
2
 g

-1
 

IrO2 

Total charge 

 / mC cm
-2

 

Inner charge   

/ mC cm
-2

 

Outer charge 

/ mC cm
-2

 

H2SO4 

40 30.4 76.9 66.8 10.1 

60 32.8 76.9 62.1 14.9 

80 36.8 62.5 50.3 12.2 

H3PO4 

40 27.8 30.3 15.9 14.4 

60 30.7 38.5 30.2 8.2 

80 34.3 46.6 36.2 10.4 

CsH2PO4 

40 27.3 28.6 21.8 6.7 

60 27.8 30.3 20.3 10.0 

80 28.0 31.2 20.6 10.6 
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6.4 Oxygen evolution reaction (OER) 

In PEM water electrolysis most of the losses limiting the electrochemical performance of 

the system arise from the overpotential generated in the anode, where the oxygen evolution 

reaction (OER) takes place [35]. The mechanism of this electrocatalytic reaction is much 

slower than the mechanism of the hydrogen evolution reaction (HER) taking place in the 

cathode, for this reason it is considered as the limiting reaction in the system and thus it has 

been the focus of much more extensive research [36-39].  

The compatibility of the catalyst and the environment in which OER takes place is key 

issue for a successful electrocatalytic performance. In this section, the catalytic activity 

towards OER of commercially available IrO2 catalyst in the presence of a saturated 

solution of CsH2PO4 (5.15 M) was studied. In order to address the effect of the pH and 

anion presence in solution, the same experiments were reported in the same concentration 

of H3PO4 and H2SO4 solutions and diluted (0.10 M) H2SO4 solution. 

The two above-mentioned variables, pH and anion presence, are proved to place a great 

influence in the OER. On one hand, the acidity of the electrolyte would favour a certain 

mechanism driven by the concentrations, and therefore diffusion, of H
+
 and OH

-
 species in 

the reaction media [40]. On the other hand, the anions of the electrolyte have a tendency to 

adsorb in the electrocatalyst surface which can lead to the deactivation of the active sites 

responsible for the reaction [21, 41].  

6.4.1 OER characterisation by linear sweep polarisations  

In order to study the OER in IrO2 electrocatalyst quasi-steady polarisation curves (1 mV s
-1

 

scan rate) were carried out at a range of temperatures (40 – 80 °C) for each electrolyte. 5 

cycles were performed for all samples in order to obtain stable reproducible results. 

All OER polarisation curves show a considerable hysteresis between the forward and 

backward scan as shown in figure 6.6. The difference shown in the activity of the 

electrocatalyst could be explained by two main reasons; (1) the blockage of active sites by 

the formation of O2 bubbles on the surface of the electrode, or (2) partial deactivation of 

the catalyst by further oxidation of IrO2 at high potentials to less active oxidation states 

[42]. Catalyst detachment is not considered to be the reason for this hysteresis as when the 

linear sweep is repeated at the same temperature the forward scan shows the same values 
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as before. The potential detachment of catalyst from the electrode surface was also 

monitored by integrating the area of the cyclic voltammetry curve before and after the 

linear sweep experiment series. The measured area did not show any significant decrease 

in charge, which suggests that no significant amount of IrO2 was detached from the 

electrode surface by O2 bubbling. It is therefore suggested that IrO2 undergoes further 

oxidation at high potentials that affects its performance towards OER. 

 

Figure 6.6. Hysteresis of the polarisation cycle nº 5 for IrO2 in 5.15M CsH2PO4 at 40 °C, scan rate 1 mV s
-1

. 

The loss of activity due to hysteresis for all electrolytes at different temperatures was 

calculated and shown in figure 6.7. For both H3PO4 and H2SO4 concentrated solutions the 

activity loss between both cycles decreases with temperature whereas in CsH2PO4 and 

diluted H2SO4 solutions the loss keeps relatively constant at the range of temperatures 

used. The linear sweeps used in this study were the last forward scan (cycle nº 5) for all 

experiments in order to eliminate the hysteresis effect in the data analysis.  

  

Figure 6.7. % loss in activity at 1.6 V (left) and 1.7 V (right) at different temperatures measured from the 

hysteresis of the polarisation cycles of 5.15 M (♦) H3PO4, (■) H2SO4, (▲) CsH2PO4 and (×) 0.10 M H2SO4. 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

143 
 

6.4.2 iR and pH effect of the electrolyte on the OER activity of IrO2 

In the case of this study four different acid solutions were used as electrolyte; a saturated 

solution at 40 °C of CsH2PO4 (5.15 M), same concentration H3PO4 and H2SO4 solutions, 

and diluted (0.10 M) H2SO4 solution to match the same pH of concentrated H3PO4 

solution. In all polarisations the effect of the pH and the ohmic resistance (iR) of the 

solutions must be addressed in order to have comparable results in different electrolytes.  

The difference in pH between the electrolytes is caused by the difference in the proton 

concentration of the solutions. As protons are involved in the OER, the reversible potential 

of this reaction will shift by 59 mV per pH unit at 25 °C according to Nernst equation 

(equations 6.6 – 6.8), which would increase at higher temperatures. 

 

 

 

The pH values for all four solutions were theoretically determined using the acidic 

constants of the acids (ka) which determine the degree of disassociation of the acid into 

protons and anions. The values obtained were in good agreement with the potential shift 

measured in the H2 evolution peak of the cyclic voltammograms of Pt electrode for H2SO4 

and H3PO4 acids. In the case of CsH2PO4 the theoretical value calculated from the acidic 

constant of H2PO4
-
 ion differs significantly from the values obtained by an standard pH-

meter as well as from the HER potential shift on Pt electrode. All these values are shown in 

table 6.3. 

The pH of both H3PO4 and H2SO4 solutions is very acidic due to the high degree of 

disassociation of these acids and the consequent high concentration of protons (hydronium 

ions in solution, H3O
+
). In the case of CsH2PO4 solution, although still acidic, the pH value 

is considerably higher. The first disassociation step of this salt liberates no protons 

(CsH2PO4    Cs
+
 + H2PO4

-
) and therefore just the diprotic (H2PO4

-
) and triprotic (HPO4

-2
) 

acid (both very weak) will donate protons to the solution.  

 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

144 
 

Table 6.3. pH values of the electrolytes obtained by theoretical calculation (pHth), potential shift from HER 

in Pt (pH from Eshift) and measured by standard pH-meter (pHmeas). 

Electrolyte pHth  pH from Eshift pHmeas 

H2SO4 (5.15 M) -1.01* -0.86 0.25 

H2SO4 (0.10 M) 0.71* - 0.48 

H3PO4 (5.15 M) 0.71* 0.73 0.53 

CsH2PO4 (5.15 M) 3.25 4.63* 4.71 

* These values were used for pH-correct the OER linear sweeps. 

The concentration of the anions in solution was calculated by the acidic constants which 

measure the degree of disassociation of the acids to protons and the conjugate anions. In 

case of CsH2PO4 a total disassociation of the salt is considered and the measured pH value 

of 4.63 was used to calculate the HPO4
-2

 and PO4
-3

 species` concentration. The anion 

concentrations for each electrolyte are summarised in table 6.4. 

Table 6.4. Anion concentration in the aqueous electrolytes. 

Electrolyte [HSO4
-
] / M [SO4

-2
] / M [H2PO4

-
] / M [HPO4

-2
] / M [PO4

-3
] / M 

H2SO4 (5.15 M) - 5.15 - - - 

H2SO4 (0.10 M) - 0.10 - - - 

H3PO4 (5.15 M) - - 0.19 1.1 × 10
-4 

7.2 × 10
-9

 

CsH2PO4 (5.15 M) - - 5.15 2.3 × 10
-5

 1.6 × 10
-9

 

 

iR measurements of the acidic solutions were carried out by electrochemical impedance 

spectroscopy (EIS) in order to correct the OER polarisations for the ohmic losses generated 

by the aqueous electrolyte. The high acidity of both concentrated H3PO4 and H2SO4 (5.15 

M) make the solutions very conductive, hence the iR contribution is considerably low at 

the current densities obtained, 74 and 153 mΩ cm
2
 respectively at 40 °C. In the case of 

diluted H2SO4 (0.10 M), the resistance of the solution shows a considerably higher value of 

617 mΩ cm
2
 attributed to the low concentration of the acid, and consequently proton 

concentration in solution. The impedance spectra of CsH2PO4 solution was corrected for 

the contribution of Cs
+
 ion conduction in solution. In order to address the real iR 
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contribution arisen from H
+
 conduction in this electrolyte, another experiment was run 

where the electrolyte was placed in a cell between two Pt coated (1.0 mg Pt cm
-2

) gas 

diffusion electrodes (GDE) and a polarisation was recorded where H2 evolution and H2 

oxidation took place in each of the electrodes (figure A.7, appendix A). As the kinetics of 

these reactions in Pt are very fast it is easy to recognise the iR contribution of H
+
 

conductivity by measuring the slope of the ohmic region line of the polarisation (R = E/I). 

The ratio used for the correction of the CsH2PO4 solution impedance spectrum between the 

total conductivity measured by EIS and proton conductivity was 2.44. In figure 6.8 Nyquist 

plot show the iR contribution of each electrolyte to the system. Values shown for CsH2PO4 

solution were corrected for Cs
+
 ion contribution. 

 

Figure 6.8. Nyquist plot of the half-cell showing the iR contribution of 5.15 M (♦) H2SO4, (■) H3PO4, (▲) 

CsH2PO4 and (×) 0.10 M H2SO4 at 40 °C. 

As proton conductivity, like most species’ diffusion, is enhanced by increasing the 

temperature, the resistance of the system at different temperatures was measured. The 

obtained data is plotted in figure 6.9. The cell resistance in the case of diluted and 

concentrated H2SO4 and concentrated H3PO4 shows a moderate decrease when increasing 

the temperature of the system from 40 to 80 °C, while in the case of CsH2PO4 the cell 

resistance is decreased by approximately 35 %. It is worth mentioning that unlike what 

would be expected, the resistance of the solution to H
+
 conduction is not linearly related to 

the pH value, i.e. to the H
+
 concentration in solution. In case of the same pH solutions of 
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5.15 M H3PO4 and 0.10 M H2SO4 the resistance of the solution is increased by ca. four 

times and in the case of 5.15 M CsH2PO4 solution, with a very low proton concentration, 

the resistance is similar to that of the diluted H2SO4. This suggests that the water and the 

anionic species in solution interact with H
+
 in different ways affecting its diffusion through 

the solution. This could be explained by different ‘proton carrier clusters’ in each of the 

solutions. 

 

Figure 6.9. Resistance of the system at different temperature for 5.15 M (♦) H2SO4, (■) H3PO4, (▲) 

CsH2PO4 and (×) 0.10 M H2SO4. 

The pH and iR-corrected linear sweeps of IrO2 in the four electrolyte solutions at 80 °C are 

shown in figure 6.10 and the activity of IrO2 in the temperature range of 40 - 80 °C at 1.6 

and 1.7 V is plotted in figure 6.13. The electro-catalytic performance of IrO2 changes 

considerably in different environments, which is attributed to two main variables; (1) pH 

and (2) anion adsorption onto the catalyst. The rest of the polarisations at 40 – 70 ºC are 

shown in figures A.8 – A.11, appendix A. 

The performance of the catalyst is clearly related to the proton concentration in solution as 

seen in figure 6.11. The worst performance was obtained in concentrated CsH2PO4 solution 

(5.15 M) where the pH value is high (pH = 4.63), meaning a very low proton 

concentration. In the case of concentrated H3PO4 (5.15 M) and diluted H2SO4 (0.10 M), 

both with the same pH value of 0.714, the polarisations show approximately the same 

slope and for the concentrated H2SO4 solution (5.15 M), with the lowest pH value (pH = -

1.0), the slope of the linear sweep is clearly improved. As protons are involved in the 

oxygen evolution reaction mechanism (see equations 6.9 - 6.11) as well as in the oxidation 

process of iridium (equation 6.1), the difference in pH would affect the rate of reaction 

caused by the availability of protons to the catalytic sites.  
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Figure 6.10. Linear sweep voltammograms for OER of IrO2 in different electrolytes at 80 °C and 1 mV s
-1

 

(cycle nº 5). 

The effect of the pH in the oxidation potential is given in the Pourbaix diagram of Ir - H2O 

system (figure 6.11) [42]. Here, the dependence of the different oxidation state transitions 

of Ir in the wide range of pH is plotted. For the oxidation steps of Ir
0
/Ir

III
 and Ir

III
/Ir

IV
 the 

above mentioned 59 mV per pH unit relationship is considered, whereas for Ir
III

/Ir
VI

 and 

Ir
IV

/Ir
VI

 oxidation steps 98.5 and 118 mV per pH unit were considered, respectively. The 

difference in slopes arises from the stoichiometric relation of Ir and protons in the 

oxidation reaction. Other authors [43] included the effect of current density of the system 

in the relation between potential and pH for IrO2. This way in addition to the 

thermodynamic parameters considered in the Pourbaix diagram, kinetic considerations 

were included. All these studies confirm that the proton concentration in the electrolyte 

will affect the oxidation state of the iridium surface at a given potential and current density, 

influencing the activity of the iridium oxide towards OER. 

Although the performance of the electrocatalyst has been shown to be related to the pH, the 

anion concentration in solution also seems to have an important effect in the onset potential 

(Eonset) for OER. For concentrated and diluted H2SO4 solutions, where the SO4
2-

 anion 

concentration is 5.15 and 0.10 M respectively, the Eonset shifts by approximately 80 mV. 

This suggests that a high concentration of anions favours anion adsorption onto the catalyst 

surface lowering the exchange current density (rate of reaction at equilibrium) and thus 

generating an overpotential in the OER onset. The Eonset for concentrated H3PO4 and 
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CsH2PO4 solutions is higher than for H2SO4 as phosphate anions are known to adsorb more 

strongly than sulphate anions on the catalyst surface [21], creating an even higher 

overpotential. For both H3PO4 and CsH2PO4 solutions the onset potential is very similar 

suggesting that the 0.193 M H2PO4
-
 anion concentration in 5.15 M H3PO4 solution (table 

6.4) is enough to saturate the catalyst surface with phosphate groups. 

 

 

Figure 6.11. Pourbaix diagram of Ir-H2O system at 25 °C [42]. Vertical lines pointing the pH of (a) 5.15M 

H2SO4, (b) 5.15 M H3PO4 and 0.10M H2SO4 and (c) 5.15M CsH2PO4. 

The effect of temperature in the electrocatalytic performance, as shown in figure 6.12, is 

not the same for the different electrolytes. At moderate potentials (1.60 V) the activity of 

both concentrated H3PO4 and H2SO4 acids and CsH2PO4 solution remains constant at all 

temperatures. This suggests that there is not an obvious improvement in the reaction 

kinetics when temperature increases, which could be related to catalyst deactivation by 

anion adsorption. These are not the results expected as the anion desorption is usually an 

endothermic process and thus it should be favoured by increasing temperature [44]. It is 

thereby suggested that the temperature window used in these experiments is not wide 

enough to significantly affect this process. The activity of diluted H2SO4 improves by 65 % 

           a   b             c 
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with temperature increase of 40 °C but it is worth pointing out that, as the onset potential 

in this case is considerably lower, the measurement is no longer made on a purely kinetic 

region, and therefore this improvement could be driven by better ion diffusion. At higher 

potentials (1.70 V), the electrocatalytic activity is significantly improved by approximately 

60 % by increasing the temperature from 40 to 80 °C in the case of both concentrated and 

diluted H2SO4 solutions. In the case of H3PO4 and CsH2PO4 solutions the improvement in 

activity is much more modest, being approximately 30 % for both systems. At this 

potential a mixed effect region is considered were kinetic and mass transport contributions 

take place and therefore a mass transport improvement due to a higher temperature is 

considered. Although a first thought might be to relate a better performance to higher 

proton conductivity, it is shown in figure 6.9 that the most significant decrease in 

resistance is shown in CsH2PO4 solution which shows a very moderate improvement in 

activity. It is therefore suggested that the activity improvement is related to the diffusion of 

the conjugated anions (SO4
2-

 and H2PO4
-
) in solution which agrees with the similar 

behaviour of both sulphate and phosphate-based solutions.  

  

Figure 6.12. Electro-catalytic activity of IrO2 for OER at 1.6 V (left) and 1.7 V (right) in 5.15 M (♦) H2SO4, 

(■) H3PO4, (▲) CsH2PO4 and (×) 0.10 M H2SO4. 

6.4.3 Effect of the electrolyte in the kinetic parameters and reaction mechanism  

The kinetic parameters for oxygen evolution were calculated in order to address the 

different processes happening in each electrolyte (i.e. catalyst oxidation/reduction, anion 

adsorption/desorption) and the limiting steps of the oxygen evolution reaction mechanism 

at the different pH and anion concentrations.  

Although many reaction mechanisms are proposed for OER [40, 45], the following is 

generally accepted for metal oxide electrocatalysts in acidic media: 
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   S + H2O        S–OHads + H
+
 + e

-
        (6.9) 

  S – OHads      S–Oads + H
+
 + e

-
                 (6.10) 

       2S–Oads         2S + O2              (6.11) 

where S represents active site of the oxide electrocatalyst and OHads and Oads stand for 

adsorbed hydroxyl species and adsorbed oxygen atoms, respectively. The first two steps of 

this mechanism involve a charge transfer where the formation of adsorbed hydroxyl 

species on the active site and the deprotonation of the species take place, respectively. In 

the last step an oxygen molecule is formed giving place to two free active sites of 

electrocatalyst [46].  

From the Tafel plots (E vs. log j) of the linear sweeps of IrO2 in the different electrolytes 

three different linear regions were identified; a low overpotential (Tafel 1), a moderate 

overpotential (Tafel 2) and a high overpotential region (Tafel 3). In figure 6.13 the three 

regions in the case of IrO2 in 5.15 M CsH2PO4 solution are shown.  

 

Figure 6.13. E vs. log j plot of IrO2 in 5.15 M CsH2PO4 solution at 40 °C where three different Tafel regions 

are differentiated; low overpotential (Tafel 1), moderate overpotential (Tafel 2) and high overpotential (Tafel 

3) region (sweep rate = 1mV s
-1

). 

Low overpotential region (Tafel 1) 

The first Tafel region at the low overpotential is clearly seen in the different four 

electrolytes at 40 °C. At higher temperatures this region tend to lose linearity because of 
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the appearance of an oxidation peak in the 1.35 – 1.40 V range (figure 6.15). The presence 

of this peak is attributed to the potential cycling of the samples from 1.10 to 1.80 V, as at 

the backward scans, a peak corresponding to the reduction couple of iridium was found. 

Although the temperature is not thought to be responsible for the appearance of the peaks, 

it affects the potential in which the reduction/oxidation peaks appear, reducing their 

potential difference at higher temperature. This can be seen and follows the same trend in 

all samples of H2SO4 and H3PO4 solutions. In figure 6.14 this effect is shown for 5.15 M 

H2SO4 samples. 

       

Figure 6.14. Effect of temperature (40 to 80 °C) on the oxidation peak (left) and reduction peak (right) of 

IrO2 in 5.15 M H2SO4 (scan rate = 1 mV s
-1

). 

 

Figure 6.15. Ir oxidation peak at 80 °C in the four different electrolytes. 

In the case of CsH2PO4 solution no reduction or oxidation peaks were seen in this potential 

range, as shown in figure 6.15. Although a significant negative shift in the reduction 

potential of iridium is expected by the difference in pH as stated in the Pourbaix diagram 

(figure 6.11), the linear sweeps were already pH-corrected and therefore the oxidation peak 
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should not be hidden by the potential shift. This might be explained by a different pH 

dependence of the redox transition potential from the Nernstian relationship of 59 mV pH 

unit
-1

 [24, 27, 42] (equation 6.8) as will be discussed later. The absence of the oxidation 

peak in CsH2PO4 solution could also be attributed to small charge of the oxidation process 

caused by the low proton concentration. 

As shown in figure 6.16 and table 6.5, the Tafel slopes and the potential region in which 

the linearity is seen at 40 °C differ considerably between the four electrolytes. In the case 

of sulphuric acid solutions the Tafel slope increases from 100 to 123 mV dec
-1

 when the 

concentration is increased from 0.10 to 5.15 M and for both phosphate solutions, H3PO4 

and CsH2PO4, the Tafel slope shows a value of approximately 160 mV dec
-1

. The charge 

transfer coefficient was calculated from the Tafel slopes, corresponding presumably to an 

oxidation step of iridium to a more active state towards OER. The exchange current 

densities show higher values in sulphuric acid solutions which can be attributed to a 

weaker adsorption of the sulphate species comparing to that of phosphates. The adsorption 

of anions onto the catalyst active sites would, as stated before, partially inhibit the reaction 

at equilibrium lowering the j0 values.  

. 

Figure 6.16. Tafel slopes of IrO2 at low overpotential in different electrolytes at 40 °C (scan rate = 1 mV s
-1

). 

This low overpotential region is therefore attributed to an oxidation step of iridium to a 

more active oxidation state towards OER, presumably Ir
IV 

/ Ir
VI

. Burke et al. [24] identified 

a redox peak by cyclic voltammetry in 1.0 M H2SO4 at similar potentials, ca. 1.40 V. 

Several other authors also reported this redox couple, generally identified by cyclic 

voltammetry, at similar potentials, between 1.30 – 1.50 V [31, 40]. In the Pourbaix 

5.15 M  
CsH2PO4 

5.15 M  
H3PO4 5.15 M  

H2SO4 

0.10 M  
H2SO4 
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diagram of Ir – H2O system (figure 6.11) the unusual pH dependence on the potential of 

this process is shown, which agrees with many other authors [24, 31, 40, 42]. It is stated 

that not only the pH dependence differs from the Nernstian relation, being in this case 118 

mV pH unit
-1

, but it also would be affected by the composition of the oxide layer, i.e. the 

concentration of oxidised iridium species. According to these authors the potential 

difference arises from the more acidic character of the produced oxide because of the 

increased charge density around the metal ion. It is also mentioned that at higher pH 

values, the oxidation reaction (equation 6.1) is shifted to the left, hindering the oxidation 

process to some extent. 

Table 6.5. Kinetic parameters of IrO2 at the low overpotential range at 40 °C. 

Electrolyte 
Tafel slope (b) / 

mV dec
-1

 

Charge transfer 

coefficient (α) 

Exchange current 

density (j0)* 

 / mA cm
-2

XRD 

Overpotential (η)  

/ mV 

H2SO4 (5.15 M) 123 0.50 1.22 × 10
-5

 160 – 280 

H2SO4 (0.10 M) 100 0.64 7.97 × 10
-6

 140 – 230 

H3PO4 (5.15 M) 159 0.41 2.17 × 10
-5

 200 – 330 

CsH2PO4 (5.15 M) 162 0.42 9.50 × 10
-6

 210 – 300 

* j0 values normalised to the surface area of IrO2 obtained from P-XRD (see table 6.1) 

Moderate overpotential region (Tafel 2) 

At the moderate potential range a clearly defined Tafel region (Tafel 2, figure 6.13) is seen 

in all electrolytes and temperatures. Tafel slopes in 5.15 M H2SO4, H3PO4 and CsH2PO4 

show values of approximately 75 mV dec
-1

 at most temperatures and 65 mV dec
-1

 in the 

case of 0.10 M H2SO4 (figure 6.17) which is in good agreement with the results reported 

by other authors for OER for IrO2 in acid solutions at this potential range [23, 25, 47].  

All Tafel slopes remain relatively constant at different temperatures (figure 6.18, left) 

which suggests that the temperature range used does not affect significantly the process 

happening at the moderate potential range (1.45 – 1.65 V). Values close to 1 were obtained 

for the charge transfer coefficient (figure 6.18, right).  
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Figure 6.17. Tafel slopes of IrO2 at moderate overpotential in different electrolytes at 80 °C (scan rate = 1 

mV s
-1

). 

  

Figure 6.18. Tafel slope (left) and charge transfer coefficient (right) dependence on temperature for IrO2 at 

moderate overpotential in 5.15 M (♦) H2SO4, (■) H3PO4, (▲) CsH2PO4 and (×) 0.10 M H2SO4. 

Tafel slope values of ca.  have been reported for iridium oxide at the moderate 

overpotential in acidic solutions, which are in good agreement with the values obtained in 

this research. This Tafel slope value is attributed to the second step in the reaction 

mechanisms being the rate determining step (equation 6.10). Nevertheless high dispersion 

in the Tafel slopes have been reported for this moderate overpotential region, varying from 

ca. 40 to 90 mV dec
-1

 (at 25 ºC) [23,48,54]. 

Gottesfeld et al. [23] proposed that the Tafel slope for this process depends on the oxide 

layer thickness of the catalyst, varying between 50 and 90 mV dec
-1

 (at room temperature) 

from a thick oxide layer (700 Å) to a thin anodised surface (10-20 Å). The change in the 

Tafel slope, according to the authors, is caused by the different affinity for oxygen 

intermediates (i.e. OH
-
) of the oxide layers when the second step in the reaction 

5.15 M  
CsH2PO4 5.15 M  

H3PO4 
5.15 M  
H2SO4 

0.10 M  
H2SO4 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

155 
 

mechanisms (S–OHads    S–Oads + H
+
 + e

-
), where the hydroxyl consumption takes place 

releasing a proton and producing an adsorbed oxygen atom, is the rate determining step. At 

higher overpotentials their results show higher Tafel values, close to 150 mV dec
-1 

which 

according to them would correspond to the first step of the reaction mechanism (S + H2O   

   S–OH*ads + H
+
 + e

-
) being the rate determining step, where the hydroxyl group is 

adsorbed onto the catalyst surface. These results are in agreement with those obtained in 

this study as it will be explained later in this section. Hu et al. [48] proposed in a more 

recent study that the Tafel slope, when the first step of the mechanism is the rate 

determining step, exhibits values of 120 mV dec
-1

, while in the case of the second step 

being the rate determining step, Tafel slope equals 40 mV dec
-1

. They agreed with the 

influence of the oxide layer composition on Tafel slope and proposed that the intermediate 

values of Tafel slopes obtained, 60 mV dec
-1

, are caused by a sub-mechanism on the first 

step, as shown in equations 6.12 and 6.13. 

S + H2O      S–OH*ads + H
+
 + e

-
            (6.12) 

S – OH*ads      S – OHads      (6.13) 

where the adsorption intermediates (i.e. -OH*ads and -OHads) are the same chemical species 

with different energy states. They therefore concluded that the reaction at the moderate 

overpotential range is controlled by the first step in the reaction mechanism. Miles et al. 

[25] also reported a Tafel value of 80 mV dec
-1

 for IrO2 in 1.0 M H2SO4, at a similar 

overpotential. Burke et al. [24] stressed the importance of the composition and thickness of 

the oxide layer; they suggested that if it becomes too thick the system could be limited by 

the electron transfer within the oxide layer instead of being limited by ion transfer. This 

effect, according to the authors, would affect the reaction rate and increase the Tafel slope 

value.  

The exchange current densities (j0) were calculated from the intersection of the Tafel 

slopes with the reversible potential, Erev. Values of exchange current density were lower 

than those reported by Miles et al. [25] for a 1.0 M H2SO4 solution at the moderate 

overpotential region, which were in the range of 1.5 × 10 
-4 

mA cm
-2

. In this study j0 

exhibited values between 5.1 × 10 
-7 

and 4.9 × 10 
-6

 mA cm
-2

 showing the following trend 

at all temperatures, 0.10 M H2SO4  5.15 M H2SO4 > 5.15 M CsH2PO4  5.15 M H3PO4. 

This variation in j0 could be related to the adsorption of anions onto the catalyst surface as 
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phosphate ions are known to adsorb more strongly than sulphate ions. Anion adsorption 

would occlude active sites on the catalyst surface partially inhibiting the reaction at 

equilibrium and thus reducing the j0. The charge transfer coefficient for IrO2 in acidic 

solutions reported by Miles et al., 0.82, is in good agreement with those obtained in this 

study (figure 6.18 - right).  

The activation energy for the electrochemical process was calculated from the dependence 

if j0 with temperature, following Arrhenius law (equations 3.13 - 3.14). In Figure 6.19 the 

Arrhenius plots for OER at the moderate overpotential region is shown. 

The activation energies for this process in the different electrolytes varied between 39 and 

23 kJ mol
-1

, following the trend; 5.15 M H3PO4 > 0.10 M H2SO4 > 5.15 M CsH2PO4 > 5.15 

M H2SO4. The Ea values obtained are approximately half of those reported by [21] for 

diluted H2SO4 and H3PO4 solutions. This difference could be related to the contribution of 

the anion adsorption/desorption process to the overall apparent Ea. 

 

Figure 6.19. Arrhenius plots of for IrO2 in 5.15 M (♦) H2SO4, (■) H3PO4, (▲) CsH2PO4 and (×) 0.10 M 

H2SO4. 

High overpotential region (Tafel 3) 

At the high overpotential region of the polarisation curves, potentials higher than 1.60 V 

for all electrolytes, another Tafel region is considered (Tafel 3, figure 6.13). This region, 

unlike the previous two (Tafel 1 and Tafel 2, figure 6.13), does not show a totally linear 

tendency which suggests that this cannot be considered as a pure kinetic region. Apart 
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from kinetic effect arising from the OER and the effect of the oxide layer characteristics 

formed at higher potentials, a mass transport contribution affected by presumably proton 

mass transport in the electrolyte should be considered. Protons are generated in the 

working electrode where OER takes place and consumed in the counter electrode, in the 

HER. At high overpotentials and high current densities the production/consumption of 

protons will create a proton concentration gradient in the electrolyte affecting the 

performance of the reaction. This local change of pH on the electrode surface would on 

one hand shift the reaction potential and on the other hand affect the OER by the diffusion 

of the species involved in the reaction [53]. 

In order to address the effect of the mass transport in this region of the linear sweeps, a 

simple correction based on Fick´s first law of diffusion was used (equation 6.14).  

 

where J represents the flux density (mol m
2
 s

-1
), D stands for the diffusion coefficient of H

+
 

in the electrolyte solution (m
2
 s

-1
) and dC and dx represent the differential in concentration 

and position. Relating the molar flux to the current generated in the system we can 

calculate the theoretical value of the limiting current for each electrolyte. 

 

 

where jL (mA cm
-2

) represents the limiting current density of the system and δ (cm) the 

Nernst diffusion layer.  

Considering a δ of 0.01 cm [49] for a non-stirred solution, and the diffusion coefficients 

found in the literature [50, 51] the limiting current for each system can be calculated. In the 

case of 5.15 M H2SO4, being a strong acid, the disassociation to protons is complete and 

therefore the high concentration of protons (pH = -1.0) is considered enough to avoid any 

effect in terms of proton mass transport and therefore, no mass transport correction was 

carried out. For 5.15 M H3PO4, although the proton concentration is much lower (pH = 

0.714), the weak nature of the acid provides the solution with a high concentration of non-
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disassociated H3PO4, which would act as a proton donor, bringing to equilibrium any 

localised pH gradient in the system. For this reason H3PO4 solution would neither be 

affected by proton mass-transport issues. This buffer effect of the phosphoric acid solution 

is also considered in the case of 5.15 M CsH2PO4 solution. Despite the low proton 

concentration of this solution (pH = 4.63), the non-disassociated H2PO4
-
 and HPO4

2-
 

species in solution would act as proton donors maintaining the proton concentration 

constant in the solution and thus, countering any localised pH change in the proximity of 

the electrodes.    

In the case of the 0.10 M H2SO4 solution however, the complete disassociation of the acid 

would provide a moderate proton concentration ([H
+
] = 0.20 M) which, using the above 

mentioned parameters, lead us to a jL value of 135 mA cm
-2

. Plotting E vs. (jL×j)/(jL-j) the 

effect of the mass transport is subtracted from the linear sweep lowering the Tafel slope 

from 315 to 144 mV dec
-1

 (figure 6.20). 

 

Figure 6.20. Proton mass transport correction at high overpotential in 0.10 M H2SO4 at 60 °C. 

The Tafel slope values obtained for the four electrolytes at the temperature range 40 – 80 

°C are shown in figure 6.22, left. The slope is clearly related to the pH of the solution, 

being at 80 °C, 107 mV dec
-1

 for 5.15 M H2SO4, 142 and 130 mV dec
-1

 for same pH 0.1 M 

H2SO4 and 5.15M H3PO4 solutions respectively and 212 mV dec
-1

 for CsH2PO4. This 

means that the proton concentration plays an important role in the OER in acidic media 

 0.10 M  
  H2SO4 

Mass-transport 
corrected 

315 mV dec
-1

 

144 mV dec
-1
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improving the OER rate as the pH decreases. Tafel values obtained for H2SO4 and H3PO4 

solutions were similar to those reported by Gottesfeld et al. and Lyons et al. for OER in 1.0 

M H2SO4 at the high overpotential region [23,53], where Tafel slope equaled 120 and 150 

mV dec
-1

, respectively. Tafel slope values reported at the high overpotential region follow 

the general expression of , which is atributted to the first step of the reaction 

mechanism, that is, the adsorption of OH
-
 species onto the catalyst, being the rate 

determining step (S + H2O    S–OHads + H
+
 + e

-
).  

 

Figure 6.21. Tafel slopes of IrO2 at high overpotential in different electrolytes at 80 °C. 

The significantly high Tafel slope measured in the case of 5.15 M CsH2PO4 solution at 

high overpotentials suggests that the extremely low concentration of protons has negative 

effects on the oxygen evolution reaction. The effect of the low proton concentration on the 

formation of the active oxide species in the catalyst surface should be taken into account. 

As protons are involved in the oxidation step of iridium to an active oxidation state 

(presumably Ir
VI

), such high pH would not provide enough proton concentration, changing 

the oxide layer characteristics to a less active oxide layer towards OER. In other words, as 

stated by Burke et al. [24], at high pH conditions the electro-oxidation reaction of iridium 

(IrOx(OH)y) would be shifted to the left (equation 6.1) and therefore the hydroxylic 

complex of iridium becomes more stable and the metal ion activity reduces. If this is so, 

the affinity of the oxide for hydroxyl groups would be different, affecting the rate of 

reaction. It is thereby proposed, that although protons are not believed to influence the 

performance in terms of mass transport in the current densities obtained, they have a 

5.15 M  
CsH2PO4 

5.15 M  
H3PO4 

5.15 M  
H2SO4 

0.10 M  
H2SO4 
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significant effect in the kinetics of iridium towards OER, affecting the properties of the 

surface oxide and therefore, reaction rate. 

Burke et al. [24] also reported in their study a Tafel slope of ca. 200 mV dec
-1

 for OER in 

IrO2 in 1.0 M H2SO4 solution, which they attributed to structural changes in the oxide layer 

as, according to them, no conventional principles of electrochemistry could explain such 

result. Krishtalik [55] reported high overpotential Tafel slope values in ruthenium-based 

anodes of 80 mV dec
-1

 at pH < 2, which would increase to values as high as 220 mV dec
-1

 

at pH = 10 (which would again drop to 70 mV dec
-1

 at pH > 12). The increase in the slope 

was not attributed to a change of the limiting step of the unchanged mechanism but to a 

modification of the surface composition, affecting the interaction of the adsorbed 

intermediate species (i.e. OHads, Oads) with the reactants. Several other authors reported 

high experimental values of Tafel slopes for OER (at room temperature) using different 

catalyst, such as, boron-doped diamond (b = 340 mV dec
-1

) [56] or Ru-based perovskyte (b 

= 222 mV dec
-1

) [57]. All these high experimental Tafel slope values were attributed to the 

different characteristics of the catalysts surface, affecting the affinity and coverage of the 

intermediate species taking place in the reaction mechanism. For other processes, such as 

the electro-oxidation of methanol by Pt-based catalyst, high Tafel values at the high 

overpotential region, between 230 – 270 mV dec
-1

, were also reported [58]. They attributed 

the high values of Tafel slopes to the effect of the particle size and distribution, as these 

parameters play important roles in the oxidation of small organic molecules [59]. 

The increase in temperature decreased the Tafel slope value in all H2SO4 and H3PO4 

solutions. In CsH2PO4 solution the Tafel slopes remained approximately at the same value. 

Charge transfer coefficients were calculated from Tafel slopes, being values close to 0.5 

for all H2SO4 and H3PO4 solutions and 0.25 in the case of CsH2PO4 (figure 6.22 - right). 

  

Figure 6.22. Tafel slope and charge transfer coefficient dependence on temperature for IrO2 at high 

overpotential in 5.15 M (♦) H2SO4, (■) H3PO4, (▲) CsH2PO4 and (×) 0.10 M H2SO4. 
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The exchange current density values obtained were in the range of 2.8 × 10
-5

 and 5.0 × 10
-4

 

mA cm
-2

 for all concentrated solutions and of approximately 2.0 × 10
-2

 mA cm
-2

 for the 

diluted H2SO4 solution. The difference in the j0 values is attributed to the anion adsorption 

onto the catalyst surface. The difference in anion concentration may still affect the 

exchange current density in this high overpotential range, being the highest in dilute 

H2SO4, where the anion concentration is lower. The activation energy was calculated at the 

high overpotential range from the relation of the exchange current density with temperature 

(figure 6.23). The activation energies obtained for OER in the different electrolytes are the 

following; 12 kJ mol
-1

 in 5.15 M H2SO4, 13 kJ mol
-1

 in 5.15 M H3PO4, 15 kJ mol
-1

 in 5.15 

M CsH2PO4 and 31 kJ mol
-1

 in 0.10 M H2SO4.  

 

Figure 6.23. Arrhenius plots of for IrO2 in 5.15 M (♦) H2SO4, (■) H3PO4, (▲) CsH2PO4 and (×) 0.10 M 

H2SO4. 

The significantly low values obtained for Ea in all electrolytes, specifically in CsH2PO4 

considering its low performance towards OER, suggest that the values do not correspond 

only to purely OER. Other processes occurring at the same potential, i.e. anion desorption 

or iridium oxidation could be affecting the overall apparent Ea lowering it to the values 

reported. 
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6.5 Conclusions 

The effect of pH and anion concentration on the electrochemical active surface (EAS) of 

IrO2 and Pt black was first addressed. H2SO4 was found to be the electrolyte where both 

catalysts show the highest EAS followed by H3PO4 and CsH2PO4. This suggests that anion 

adsorption onto the catalyst surface affects the amount of free catalyst and thus, the overall 

catalyst performance towards a given reaction. Lower pH values increase the integrated 

charge for both catalysts because of higher proton concentration and accessibility to the 

catalytic sites.   

The performance of IrO2 in saturated solution of CsH2PO4 shows a significantly low 

activity towards OER. The effect of pH and different anion nature (sulphates and 

phosphates) and concentration was addressed by comparing the results to the same 

concentration (5.15 M) H2SO4 and H3PO4 and diluted (0.10 M) H2SO4 solutions. Onset 

potential for IrO2 in CsH2PO4 shows the highest overpotential of all electrolytes. This is 

attributed to the stronger adsorption of phosphates compared to sulphate anions and to the 

highest anionic concentration of all solutions. The shapes of the steady-state linear sweeps 

suggest that the activity of IrO2 towards OER is strongly affected by the pH and thus the 

main reason of the poor performance on CsH2PO4 is caused by the high pH value of the 

solution (pH = 4.63).  

The kinetic study of IrO2 in the different electrolytes proves that the oxidation of iridium 

towards a more active oxidation state for OER take place before the actual reaction. This 

was concluded by noticing an oxidation peak at the low overpotential region in most 

electrolytes before OER was considered to start. At the moderate overpotential region a 

well defined Tafel region with slopes of ca.  was exhibited in all electrolytes and 

attributed to the second step of the reaction mechanism being the rate determining step 

(equation 6.10), where the release of a proton and an electron from the adsorbed hydroxyl 

group takes place. The high overpotential region of the polarisation, corrected for mass-

transport contribution in the case of 0.10 M H2SO4, exhibited Tafel slope values of ca. 

 for all H2SO4 and H3PO4 acid solution. This Tafel value is attributed to the first step 

of the reaction mechanism being the rate determining step (equation 6.9), where adsorption 

of the hydroxyl group onto the catalyst takes place. In CsH2PO4 saturated solution Tafel 
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slope values close to  where measured. These high values are attributed to the 

difference in the oxide properties of iridium, suggesting that the pH of the CsH2PO4 

solution is too high to provide enough protons to the iridium to create a hydrous oxide 

layer, active towards OER.  

In conclusion, CsH2PO4 in solution is not a favourable electrolyte for IrO2 towards OER. 

The low acidity inhibits the activity of the catalyst driven presumably by a change in the 

oxide layer thickness and composition, to a non-hydrated and less active oxide. The use of 

this material as solid state electrolyte in a PEM water electrolysis system is studied in 

Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

164 
 

6.6 References 

1. Samaranayake, C.P. and S.K. Sastry, Electrode and pH effects on electrochemical 

reactions during ohmic heating. Journal of Electroanalytical Chemistry, 2005. 577(1): p. 

125-135. 

2. Gómez-Marín, A.M. and J.M. Feliu, Pt(111) surface disorder kinetics in perchloric acid 

solutions and the influence of specific anion adsorption. Electrochimica Acta, 2012. 82(0): 

p. 558-569. 

3. Nylen, L., Behm, M., Cornell, A., & Lindbergh, G., Investigation of the oxygen evolving 

electrode in pH-neutral electrolytes: Modelling and experiments of the RDE-cell. 

Electrochimica Acta, 2007. 52(13): p. 4513-4524. 

4. Li, S., Chen, H. Y., Tang, M. C., Wei, W., Xia, W., Wu, Y. M. and Jiang, X., 

Electrochemical behavior of lead alloys in sulfuric and phosphoric acid electrolyte. 

Journal of power sources, 2006. 158(2): p. 914-919. 

5. Kadakia, K., High performance fluorine doped (Sn,Ru)O2 oxygen evolution 

reaction electro-catalysts for proton exchange membrane based water electrolysis. Journal 

of power sources, 2014. 245(0): p. 362-370. 

6. Lee, W.H. and H. Kim, Oxidized iridium nanodendrites as catalysts for oxygen evolution 

reactions. Catalysis Communications, 2011. 12(6): p. 408-411. 

7. Li, G., Yu, H., Song, W., Wang, X., Li, Y., Shao, Z., & Yi, B., Zeolite-templated 

IrxRu1−xO2 electrocatalysts for oxygen evolution reaction in solid polymer electrolyte water 

electrolyzers. international journal of hydrogen energy, 2012. 37(22): p. 16786-16794. 

8. Ma, L., S. Sui, and Y. Zhai, Preparation and characterization of Ir/TiC catalyst for oxygen 

evolution. Journal of power sources, 2008. 177(2): p. 470-477. 

9. Ma, H., Liu, C., Liao, J., Su, Y., Xue, X., & Xing, W., Study of ruthenium oxide catalyst 

for electrocatalytic performance in oxygen evolution. Journal of Molecular Catalysis A: 

Chemical, 2006. 247(1–2): p. 7-13. 

10. Mamaca, N., Mayousse, E., Arrii-Clacens, S., Napporn, T. W., Servat, K., Guillet, N., & 

Kokoh, K. B., Electrochemical activity of ruthenium and iridium based catalysts for 

oxygen evolution reaction. Applied Catalysis B: Environmental, 2012. 111–112(0): p. 376-

380. 

11. Wilson, M.S. and S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel cell 

electrodes. Journal of Applied Electrochemistry, 1992. 22(1): p. 1-7. 

12. O’Hayre, R., Barnett, D. M., & Prinz, F. B., The triple phase boundary; a mathematical 

model and experimental investigations for fuel cells. Journal of The Electrochemical 

Society, 2005. 152(2): p. A439 - A444. 

13. Trassatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry. Pure 

Appl. Chem., 1991. 63(5): p. 711-734. 

14. Woods, R., Electroanalytical chemistry: a series of advances. 1976, New York: Dekker. 1-

162. 

15. Perez, J., E.R. Gonzalez, and E.A. Ticianelli, Oxygen electrocatalysis on thin porous 

coating rotating platinum electrodes. Electrochimica Acta, 1998. 44(8–9): p. 1329-1339. 

16. Deepalochani, B.K., Performance of Platinum Black and Supported Platinum Catalysts in 

a Direct Methanol Fuel Cell Int. J. Electrochem. Sci., 2009. 4: p. 386-395. 

17. McBreen, J., Voltammetric Studies of Electrodes in Contact with Ionomeric Membranes. 

Journal of The Electrochemical Society, 1985. 132(5): p. 1112-1116. 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

165 
 

18. Faguy, P. W., Markovic, N., Adzic, R. R., Fierro, C. A., & Yeager, E. B., A study of 

bisulfate adsorption on Pt(111) single crystal electrodes using in situ Fourier transform 

infrared spectroscopy. Journal of electroanalytical chemistry and interfacial 

electrochemistry, 1990. 289(1–2): p. 245-262. 

19. Ye, S., H. Kita, and A. Aramata, Hydrogen and anion adsorption at platinum single crystal 

electrodes in phosphate solutions over a wide range of pH. Journal of Electroanalytical 

Chemistry, 1992. 333(1–2): p. 299-312. 

20. Kamat, A., Herrmann, M., Ternes, D., Klein, O., Krewer, U., & Scholl, S., Experimental 

Investigations into Phosphoric Acid Adsorption on Platinum Catalysts in a High 

Temperature PEM Fuel Cell. Fuel Cells, 2011. 11(4): p. 511-517. 

21. Owe, L.-E., Characterisation of Iridium Oxides for Acidic Water Electrolysis, in 

Department of Materials Science and Engineering. 2011, Norwegian University of Science 

and Technology: Trondheim, Norway. 

22. Mamlouk, M., Investigation of high temperature polymer electrolyte membrane fuel cells, 

in Chemical Engineering and Advanced Materials (2008), Newcastle University: 

Newcastle upon Tyne, thesis. 

23. Gottesfeld, S. and S. Srinivasan, Electrochemical and optical studies of thick oxide layers 

on iridium and their electrocatalytic activities for the oxygen evolution reaction. Journal of 

electroanalytical chemistry and interfacial electrochemistry, 1978. 86(1): p. 89-104. 

24. Burke, L.D., Whelan , D.P., A voltammetric investigation of the charge storage reactions 

of hydrous iridium oxide layers. J Electroanal Chem., 1984. 162: p. 121-141. 

25. Miles, M. H., Klaus, E. A., Gunn, B. P., Locker, J. R., Serafin, W. E., & Srinivasan, S., The 

oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 ºC in acid 

solutions. Electrochimica Acta, 1978. 23(6): p. 521-526. 

26. Zerbino, J.O., Tacconi, NR. and A.J. Arva, The Activation and Deactivation of Iridium 

Electrodes in Acid Electrolytes. Journal of The Electrochemical Society, 1978. 125(8): p. 

1266-1276. 

27. Juodkazytė, J., Šebeka, B., Valsiunas, I., & Juodkazis, K., Iridium anodic oxidation to Ir 

(III) and Ir (IV) hydrous oxides. Electroanalysis, 2005. 17(11): p. 947-952. 

28. Mozota, J. and B.E. Conway, Surface and bulk processes at oxidized iridium electrodes I. 

Monolayer stage and transition to reversible multilayer oxide film behaviour. 

Electrochimica Acta, 1983. 28(1): p. 1-8. 

29. Felix, C., Maiyalagan, T., Pasupathi, S., Bladergroen, B., & Linkov, V., Synthesis, 

characterisation and evaluation of IrO2 based binary metal oxide electrocatalysts for 

oxygen evolution reaction. International Journal of Electrochemical Science, 2012. 7: p. 

12064-12077. 

30. Slavcheva, E., Radev, I., Topalov, G., & Budevski, E., Sputtered electrocatalysts for PEM 

electrochemical energy converters. Electrochimica Acta, 2007. 53(2): p. 362-368. 

31. Wen, T.C. and C.C. Hu, Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides. Journal 

of The Electrochemical Society, 1992. 139(8): p. 2158-2163. 

32. Boodts, J.C.F. and S. Trasatti, Hydrogen evolution on iridium oxide cathodes. Journal of 

Applied Electrochemistry, 1989. 19(2): p. 255-262. 

33. Cheng, J., Zhang, H., Ma, H., Zhong, H., & Zou, Y., Study of carbon-supported IrO2 and 

RuO2 for use in the hydrogen evolution reaction in a solid polymer electrolyte electrolyzer. 

Electrochimica Acta, 2010. 55(5): p. 1855-1861. 

34. Ardizzone, S., G. Fregonara, and S. Trasatti, ―Inner‖ and ―outer‖ active surface of RuO2 

electrodes. Electrochimica Acta, 1990. 35(1): p. 263-267. 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

166 
 

35. Compton, R.G., Electrode Kinetics: Reactions. Vol. 27. 1987: Elsevier. 367. 

36. Reier, T., M. Oezaslan, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction (OER) 

on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. 

ACS Catalysis, 2012. 2(8): p. 1765-1772. 

37. McCrory, C. C., Jung, S., Peters, J. C., & Jaramillo, T. F., Benchmarking Heterogeneous 

Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical 

Society, 2013. 

38. Doyle, R.L., Godwin, Ian J., Brandon, Michael P., Lyons, Michael E. G., Redox and 

electrochemical water splitting catalytic properties of hydrated metal oxide modified 

electrodes. Physical Chemistry Chemical Physics, 2013. 15(33): p. 13737. 

39. Gorlin, Y. and T.F. Jaramillo, A Bifunctional Nonprecious Metal Catalyst for Oxygen 

Reduction and Water Oxidation. Journal of the American Chemical Society, 2010. 

132(39): p. 13612-13614. 

40. Matsumoto, Y. and E. Sato, Electrocatalytic properties of transition metal oxides for 

oxygen evolution reaction. Materials Chemistry and Physics, 1986. 14(5): p. 397-426. 

41. Zlotorowicz, A., Electrocatalysts for medium temperature PEM water electrolysis. 2013, 

NTNU. p. 144. 

42. Pourbaix, M.a.Z., Electrochemical Properties of the Platinum Metals. Platinum Metals 

Rev., 1959. 3(3): p. 100-106. 

43. Minguzzi, A., Fan, F. R. F., Vertova, A., Rondinini, S., & Bard, A. J., Dynamic potential–

pH diagrams application to electrocatalysts for water oxidation. Chemical Science, 2012. 

3(1): p. 217-229. 

44. Walter, J., Weber, J.R., Adsorption processes. The University of Michigan, 1974: p. 375-

392. 

45. Bockris, J.M., Kinetics of activation controlled consecutive electrochemical reactions: 

anodic evolution of oxygen. The Journal of Chemical Physics, 1956. 24: p. 817. 

46. Song, S., Zhang, H., Ma, X., Shao, Z., Baker, R. T., & Yi, B., Electrochemical 

investigation of electrocatalysts for the oxygen evolution reaction in PEM water 

electrolyzers. international journal of hydrogen energy, 2008. 33(19): p. 4955-4961. 

47. Siracusano, S., Baglio, V., D’Urso, C., Antonucci, V., & Aricò, A. S., Preparation and 

characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for 

application in SPE electrolysers. Electrochimica Acta, 2009. 54(26): p. 6292-6299. 

48. Hu, J. M., Zhang, J. Q., Meng, H. M., & Cao, C. N., Microstructure, electrochemical 

surface and electrocatalytic properties of IrO2+ Ta2O5 oxide electrodes. Journal of 

materials science, 2003. 38(4): p. 705-712. 

49. John O'M. Bockris, Maria Gamboa-Aldecoa, Modern Electrochemistry. 2000. 2: p. 1232-

1236. 

50. Leaist, D.G., Diffusion in aqueous solutions of sulfuric acid. Can. J. Chem., 1984. 62: p. 

1692-97. 

51. Ruiz Bevia, F., J. Fernandez-Sempere, and N. Boluda-Botella, Variation of phosphoric 

acid diffusion coefficient with concentration. AIChE Journal, 1995. 41(1): p. 185-189. 

52. Bockris, J.M. and A.S. Huq, The mechanism of the electrolytic evolution of oxygen on 

platinum. Proceedings of the Royal Society of London. Series A. Mathematical and 

Physical Sciences, 1956. 237(1209): p. 277-296. 



                                   Chapter 6: The effect of the electrolyte on the catalytic EAS and OER 

167 
 

53. Pletcher, D. and Sotiropoulos, S., Hydrogen Adsorption-Desorption and Oxide Formation-

Reduction on Polycrystalline platinum in Unbuffered Aqueous Solutions. J. Chem. Soc. 

Faraday Trans., 1994, 90 (24): p. 3663-3668. 

54. Lyons, M.E.G. and Floquet, S., Mechanism of oxygen reactions at porous oxide electrodes. 

Part 2 – Oxygen evolution at RuO2, IrO2 and IrxRu1-xO2 electrodes in aqueous acid and 

alkaline solution. Phys. Chem. Chem. Phys., 2011, 13: p. 5314-5335. 

55. Krishtalik, L.J., Kinetics and mechanism of anodic chlorine and oxygen evolution reactions 

on transition metal oxide electrodes. Electrochimica acta, 1980, 26: p.329 – 337. 

56. Kapałka, A., Fóti, G. and Comninellis, C., Determination of the Tafel slope for oxygen 

evolution on boron-doped diamond electrodes. Electrochemistry Communications, 2008, 

10 (4): p.607–610. 

57. Chi, E-O., Kwon, Y-U and Mho, S-I., Oxygen evolution reactioni at electrodes of single 

phase ruthenium oxides with perovskyte and pyrochlore structures, Bull. Korean Chem. 

Soc., 1997, 18 (9): p. 972-976. 

58. Gloaguen, F., Leger, J. -M. and Lamy, C., Electrocatalytic oxidation of methanol on 

platinum nanoparticles electrodeposited onto porous carbon substrates. Journal of applied 

electrochemistry, 1997, 20, p: 1052-1060 

59. Neto, A. O., Perez, J., Napporn, W. T., Ticianelli E.A. and Gonzalez, E. R., 

Electrocatalytic oxidation of methanol: Study with Pt:Mo dispersed catalyst. J. Braz. 

Chem. Soc., 2000, 11 (1). 

 



                                                                  Chapter 7: CsH2PO4 as electrolyte in IT-PEMWE 

168 
 

CHAPTER 7 

CSH2PO4 AS ELECTROLYTE IN INTERMEDIATE 

TEMPERATURE PROTON EXCHANGE MEMBRANE 

WATER ELECTROLYSIS (IT-PEMWE)  

In this chapter the performance of CsH2PO4 as electrolyte in a solid electrolyte water 

electrolysis system is analysed. CsH2PO4 was used as a solid pellet and in glass fibre 

reinforced composite membrane form. Platinum-based cathodes were characterised by 

cyclic and linear sweep voltammetry in order to study the effect of platinum loading and 

CsH2PO4 loading required as ionomer in the electrode. Anode characterisation was 

performed by cyclic voltammetry and full electrolysis cell characterisation by linear sweep 

polarisations. Hydrogen and oxygen evolution reactions were analysed separately and their 

kinetic parameters calculated. The ohmic contribution of the electrolyte was determined by 

electrochemical impedance spectroscopy, measuring minimum resistances of ca. 1.5 and 

1.0 Ω cm
-2

 for a pellet and a composite membrane, respectively. The maximum activity 

obtained for the electrolysis system using a CsH2PO4 pellet as electrolyte was 20 mA cm
-2

 

at 1.90 V and 265 °C. The stability of the electrolyte under operating conditions was 

addressed for 48 h. Finally, a comparison between CsH2PO4–based fuel cell and 

electrolysis cell systems was carried out. 

7.1.    Introduction  

Material research has focused on the development of intermediate temperature proton 

conductors, mostly for their application in PEM fuel cell systems. The intermediate 

temperature range (100 – 300 °C) provides the electrochemical system with numerous 

advantages such as, higher thermodynamic efficiency, faster kinetics and easier water 

management.  

In 2001 Sossina Haile’s group in Caltech, California, proposed solid acids as promising 

proton conductor materials [1] and few years later they developed an intermediate 

temperature fuel cell based on CsH2PO4 as electrolyte. The initial performance of 48.9 mW 
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cm
-2

 obtained for a H2/O2 fuel cell with a 280 µm CsH2PO4 pellet [2] was then greatly 

improved to 415 mW cm
-2

 by reducing the electrolyte thickness to 25 µm [3]. 

Water electrolysis is often regarded as the opposite principle of a fuel cell. While in a 

H2/O2 fuel cell hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) 

take place in the electrodes, in a water electrolysis hydrogen evolution reaction (HER) and 

oxygen evolution reaction (OER) take place; the same reactions but in opposite directions. 

For this reason, the promising results obtained for CsH2PO4-based PEMFC were also 

expected in an intermediate temperature PEMWE. The main difference of these two 

electrochemical systems is the material used in the oxygen electrode. While in PEMFC, 

carbon supported platinum is commonly used as catalyst on carbon paper/cloth gas 

diffusion layer (GDL) for the ORR, in PEMWE iridium oxide is used as OER catalyst and 

titanium foam/mesh as GDL or current collector. Carbon materials are not used in the 

anode of PEMWE in order to avoid its electrochemical oxidation at high potentials 

(equation 7.1) [4]. 

C + 2H2O    CO2 + 4H
+
 + 4e

-
     ESHE = 0.207 V         (7.1) 

The role of the electrolyte in both PEMFC and PEMWE systems is to conduct the 

produced protons between both electrodes, closing the electrochemical circuit. The 

conductivity and thickness of this electrolyte will provide the system with certain ohmic 

resistance, and thus, minimum thickness with a maximum conductivity is required for a 

successful operation. The environment provided by the electrolyte/catalyst interface in the 

electrode surface is equally relevant for a good electrochemical performance.  

In chapter 6 the effect of a saturated aqueous solution of CsH2PO4 on the activity of IrO2 as 

OER catalyst was studied. The system exhibited poor activity compared to that obtained in 

concentrated (and diluted) H2SO4 and H3PO4 acids. Three different Tafel slopes were 

identified in all the systems, being the values obtained in the 40 – 80 ºC temperature range 

for CsH2PO4 the following; (1) b ~ 162 mV dec
-1

 at the low overpotential region (2) b ~ 75 

mV dec
-1

 at the moderate overpotential region and (3) b ~ 220 mV dec
-1

 at the high 

overpotential region. The first Tafel region was attributed to the electro-oxidation process 

of iridium, presumably Ir
IV

/Ir
VI

. The second and third Tafel regions were attributed to the 

OER by the electrochemical oxide path mechanism (reactions 6.9 - 6.11), where the rate 

determining step of the reaction changes from the second step (reaction 6.10) being the 
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r.d.s. at moderate overpotentials, to the first step (reaction 6.9) being r.d.s. at high 

overpotentials. The high Tafel slope values obtained at the high overpotential region (b ~ 

220 mV dec
-1

) were attributed to the high pH environment provided by the electrolyte (pH 

= 4.63), which is considered to affect the oxygen evolution reaction in iridium oxide by the 

following mutually related reasons: 

 The oxidation process of iridium requires a protonation step (equation 6.1) in order to 

create a hydrated oxide layer active towards OER. The high pH of the electrolyte, 

close to neutral, would not provide enough proton concentration, creating an oxide 

layer with different characteristics and lower activity towards OER.  

 The acidic reaction mechanism considered in this process, equations 6.9 – 6.11, relies 

on the active sites of iridium oxide to carry out the oxygen evolution reaction by the 

adsorption of intermediate species, such as S-OHads or S-Oads and by the release of 

protons. The low proton concentration of the electrolyte would affect the activity of 

the catalytic sites towards OER by altering the affinity of the oxide surface to the 

intermediates of the reaction mechanism.  

On the other hand, the low relative humidity in the electrolysis system at intermediate 

temperature and ambient pressure, RH ~ 3.0 % at 250 ºC, may affect the performance of 

the system in terms of mass transport. Besides, it is proposed in this research that the low 

water concentration in the catalytic layer may cause a catalytically driven dehydration of 

CsH2PO4 to use the produced water as reactant. In other words, at the conditions applied, it 

may be more favourable for IrO2 to obtain water from the structure of CsH2PO4 than from 

the vapour phase.  

Therefore, in order to study the feasibility of CsH2PO4 as solid electrolyte in an IT-

PEMWE system, the compatibility of this material for a good kinetic performance with 

both platinum and iridium oxide and the stability of the electrolyte under operation 

conditions were addressed.  

7.2.    Experimental 

Electrolytes 

CsH2PO4 polycrystalline powder was synthesised as explained in section 4.2. Pellets were 

fabricated by pressing the powder at 7 × 10
3
 kg cm

-2
 at room temperature for 30 min. 
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Pellets were approximately 300 µm thick (although exact thickness was measured for each 

one of the samples) and 1.8 cm diameter. CsH2PO4-based glass fibre reinforced composite 

membranes (CDPGF) were fabricated as explained in section 5.2.3. The thicknesses of these 

composite membranes were ca. 85 5 µm. 

Cathodes 

Cathodes for water electrolysis were fabricated by spraying the required amount of Pt 

black ink dispersion on carbon paper (Freudenberg H2315-I2-C8, with microporous layer) 

at 80 °C. Pt loadings in these electrodes varied between 0.5 – 2.0 mg Pt cm
-2

. Pt black inks 

were prepared by dispersing 3.0 mg ml
-1

 Pt black (Alfa-Aesar) in 5 ml isopropanol:water 

solution (volume ratio, 1:3) and sonicating for 1 h. CsH2PO4, as ionomer, was added to the 

ink dispersion in Pt:CsH2PO4 ratios of 2:1, 1:1 and 1:2. Final CsH2PO4 ionomer loadings in 

the electrodes varied between 0 – 2.0 mg CsH2PO4 cm
-2

. Reference electrodes loaded with 

2.0 mg Pt black cm
-2

 were fabricated using the same procedure as above. No CsH2PO4 was 

added as ionomer to these electrodes. 

Anodes 

Anodes for water electrolysis were fabricated by three different methods: 

Onto CsH2PO4 pellet: 

1. Pipetting the required amount of IrO2 ink dispersion onto the surface of the CsH2PO4 

pellet at 80 °C. IrO2 loadings in these electrodes varied between 0.5 – 3.0 mg IrO2 cm
-

2
. IrO2 inks were prepared by dispersing 5.0 mg IrO2 (Sigma-Aldrich) in 2 ml of 

isopropanol and sonicating for 2 h. CsH2PO4, as ionomer, was added to the ink 

dispersion in IrO2:CsH2PO4 ratios of 2:1, 1:1 and 2:3. Final CsH2PO4 ionomer 

loadings in the electrodes varied between 0 – 3.0 mg CsH2PO4 cm
-2

. IrO2 loadings 

were verified by weighing the pellet before and after the ink deposition. Pellets were 

kept at 80 °C for 24 h prior to the first weight measure. 

Onto CDPGF composite membrane: 

2. Spraying the required amount of IrO2 ink dispersion onto the surface of CDPGF 

composite membrane at 80 °C. Electrodes with 2.0 mg IrO2 cm
-2

 were fabricated. IrO2 

inks were prepared by dispersing 5.0 mg IrO2 (Sigma-Aldrich) in 2 ml of isopropanol 

and sonicating for 2 h. CsH2PO4, as ionomer, was added to the ink dispersion in 1:1 
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IrO2:CsH2PO4 ratio. IrO2 loadings were verified by weighing the CDPGF membranes 

before and after the ink deposition. Membranes were kept at 80 °C for 24 h prior to the 

first weight measure. 

3. Using the Decal method; spraying the required amount of IrO2 ink dispersion onto the 

surface of a teflon sheet and drying it at 80 °C for 4 h. The sprayed teflon and the 

CDPGF membrane were compressed at 0.5 kg cm
-2

 for 5 min at room temperature for a 

complete transfer of the catalyst. Electrodes with 2.0 mg IrO2 cm
-2

 were fabricated. 

IrO2 inks were prepared by dispersing 5.0 mg IrO2 (Sigma-Aldrich) in 3 ml 

isopropanol:water solution (volume ratio, 1:3) and sonicating for 2 h. CsH2PO4 was 

added as ionomer to the ink dispersion in 1:1 IrO2:CsH2PO4 ratio. IrO2 loadings were 

verified by weighing the CDPGF membranes before and after the ink transfer. 

Membranes were kept at 80 °C for 24 h prior to the first weight measure. 

Membrane Electrode Assembly (MEA) 

MEAs were fabricated in-situ by assembling together the Pt-loaded carbon paper 

(cathode), the anode-deposited electrolyte and the gold-coated titanium mesh in the cell. 

The torque provided to the system was 3 atm by a pressurised piston. The MEA was sealed 

using high temperature silicone (ACC silicones, silicoset 158).  

7.3    Cathode performance 

Platinum-based cathodes were characterised in terms of electrochemical active surface and 

activity towards the hydrogen evolution reaction (HER). The effect of the platinum loading 

and CsH2PO4 loading (as ionomer) on the electrode performance was characterised by 

cyclic and linear sweep voltammetry. The kinetic parameters of these electrodes towards 

HER were calculated. CsH2PO4 pellet (thickness of ca. 300 µm) was used as electrolyte in 

all experiments. All experiments were performed between 235 and 275 ºC. 

7.3.1    Electrochemical Active Surface (EAS) 

Cyclic voltammetry was used in order to estimate the catalyst utilisation of the fabricated 

platinum-based cathodes. Experiments were carried out using the methodology explained 

in section 3.2.2, by feeding 50 ml min
-1

 H2 gas to the reference (and counter) electrode and 

50 ml min
-1

 N2 gas to the working electrode. Platinum black loadings were varied between 
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0.5 - 2.0 mg Pt cm
-2

. In figure 7.1 the cyclic voltammograms of these electrodes are shown 

in the potential range 0 – 1000 mV (vs RHE). A CV of Pt black electrode in a saturated 

aqueous solution of CsH2PO4 is shown as an inset in figure 7.1.  

The increasing Pt loading did not show any significant effect in the shape or coulombic 

charge of the voltammograms performed. A slight increase in the double layer of the 

voltammogram in the 500 – 800 mV range was attributed to the increasing thickness of the 

catalytic layer when the loading increased. As potentials higher than 1000 mV (vs RHE) 

were not applied, platinum oxidation did not take place in the electrode and therefore no 

platinum reduction peak at ca. 800 mV appeared in the backward scan.  

 

Figure 7.1. (I) Cyclic voltammograms of cathodes (cycles nº 10) with (a) 0.5 mg Pt cm
-2

, (b) 1.0 mg Pt cm
-2

, 

(c) 1.5 mg Pt cm
-2

 and (d) 2.0 mg Pt cm
-2

 at 100 mV s
-1

 and 245 ºC (reference loading = 2.0 mg Pt cm
-2

, no 

ionomer). (II) Cyclic voltammogram of Pt black (cycle nº 10)  in 5.15 M CsH2PO4 solution at 40 ºC and 100 

mV s
-1

. 

Table 7.1. Coulombic charge (Q) of cathodes with different Pt loadings (no ionomer). 

Pt loading / mg cm
-2

 Q / mC cm
-2

 

0.5 52.4 

1.0 62.0 

1.5 56.5 

2.0 48.2 

(I) (II) 
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As the CVs did not show a clear hydrogen desorption area in the 0 – 400 mV range, EAS 

values (obtained by equation 3.3) could not be calculated. Instead, the charge value of the 

entire CV was calculated for each sample and compared as shown in table 7.1. It needs to 

be clarified that the charge obtained by the integration of the whole CV did not represent 

the EAS of platinum of the electrode, as other parameters (i.e. double layer or platinum 

oxidation charge) were included in the value. Nevertheless, considering the similarity 

between all voltammograms, the charge obtained was used as an indicator of the amount of 

active platinum for comparison between electrodes. 

As shown in table 7.1, the difference in platinum loading on the electrode did not affect 

significantly the coulombic charge obtained by the integration of the voltammograms. All 

electrodes show a relatively constant value between 48.2 – 62.0 mC cm
-2

. Assuming these 

values to be proportional to the catalyst utilisation in terms of ESA, the catalyst loading 

increase was not considered to enhance significantly platinum utilisation. This is explained 

by considering only the catalytic layer in contact with the electrolyte surface active in the 

process. The platinum in contact with the electrolyte provided a triple-phase-boundary 

where electrons, protons and reactants could be transported by electric (platinum), protonic 

(electrolyte) and gaseous (pores) pathways, respectively. The excess of platinum standing 

on top of the first catalytic active layer was not active in the process because of the absence 

of protonic pathways from the catalytic site to the electrolyte. The addition of a proton 

conducting agent to act as ionomer in the catalytic layer was therefore required in order to 

provide greater amount of active catalytic sites in the electrode and thus, to increase the 

ESA of the electrode. 

CsH2PO4 in its polycrystalline form was added as ionomer to the catalytic layer. CsH2PO4 

loadings of 0.5, 1 and 2 mg cm
-2

 were added in order to estimate the optimum value of 

ionomer required to provide ionic pathways while adding the minimum resistance possible 

to the electrode. In figure 7.2-I the cyclic voltammograms of CsH2PO4-loaded electrodes 

are plotted and compared to an electrode with no CsH2PO4 as ionomer. As an indicator of 

the catalyst utilisation on the electrode, as CVs did not show clear hydrogen desorption 

area, the charge value of the entire CV was calculated and compared as shown in table 7.2. 

A CV of Pt black electrode in a saturated aqueous solution of CsH2PO4 is shown as an 

inset in figure 7.2.  
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Figure 7.2. (I) Cyclic voltammograms of cathodes (cycles nº 10) with 1.0 mg Pt cm
-2

 and CsH2PO4 loadings 

of  (a) 0 mg cm
-2

, (b) 0.5 mg cm
-2

 (c) 1.0 mg cm
-2

 and (d) 2.0 mg cm
-2

 at 100 mV s
-1 

and 245 ºC (reference 

loading = 2.0 mg Pt cm
-2

, no ionomer). (II) Cyclic voltammogram of Pt black (cycle nº 10)  in 5.15 M 

CsH2PO4 solution at 40 ºC and 100 mV s
-1

. 

Table 7.2. Coulombic charge (Q) of cathodes with different CsH2PO4 loadings (1.0 mg Pt cm
-2

). 

CsH2PO4 loading / mg cm
-2

 Q / mC cm
-2

 

0 62.0 

0.5 95.5 

1.0 97.4 

2.0 103 

 

The shape of the voltammograms changed when CsH2PO4 was added as ionomer, being 

noticeable more defined platinum oxidation/reduction area and a small increase in the 

double layer charge. Although the hydrogen desorption peak at 0 – 400 mV did not exhibit 

significant changes, the appearance of a platinum reduction peak at 700 – 800 mV suggests 

that CsH2PO4 had an effect in the catalyst utilisation of the electrode.  

Charge values obtained by the integration of the CV increase considerably by the addition 

of CsH2PO4 as ionomer. The difference is mainly attributed to the area of platinum 

oxidation/reduction region, making charge values increase by ca. 60 % when 0.5 – 2 mg 

cm
-2

 CsH2PO4 was added as ionomer. The slight increase in the double layer charge was 

(I) (II) 
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attributed to the greater thickness and the capacitance added to the catalytic layer by the 

solid acid.  

Comparing the shape of the CVs of the electrodes in the solid sate system to that of the 

CsH2PO4 aqueous solution (figure 7.2-II) the difference in the hydrogen desorption/ 

adsorption area can be addressed. The significant difference between both systems is 

caused by the higher mobility and accessibility of protons in the aqueous solution. The low 

catalyst utilisation in the solid system is therefore attributed to the low availability of 

protons in the catalytic sites of platinum. 

The activity of these electrodes towards hydrogen evolution reaction was analysed and the 

kinetic parameters calculated in order to address the contribution of the cathodes to the 

overall losses of the electrolysis system. 

7.3.2    Hydrogen Evolution Reaction (HER) 

The activity of platinum-based cathodes towards hydrogen evolution was evaluated by 

quasi-steady linear sweep polarisations of a Pt/CsH2PO4/Pt MEA system. The electrolysis 

cell was operated in ‘hydrogen pump mode’ (see section 3.2.3) in order to estimate the 

kinetic limitations of the electrodes towards HER and their contribution to the overall 

electrolysis performance losses. The understanding of the effect of the electrolyte on the 

kinetic parameters of platinum towards HER is fundamental for a successful application of 

this catalyst in the electrolyser cell. The linear sweeps were performed at the temperature 

range of 235 – 275 °C using as electrolyte a solid CsH2PO4 pellet of ca. 300 µm thickness. 

In figure 7.3 HER polarisations of 1.0 mg cm
-2

 platinum loaded electrode, with no 

CsH2PO4 ionomer, at 235, 245, 255 and 265 °C are shown. These polarisations showed an 

expected tendency of increasing activity with temperature, attributed to faster reaction 

kinetics and lower ohmic resistance of the electrolyte at higher temperatures. However, as 

shown in figure 7.4, the performance of the electrode at temperatures higher than 265 °C 

decreases. This decrease in the activity of the electrode is attributed to the melting of the 

electrolyte at those temperature and humidity conditions (PH2O = 0.95 atm). The melting of 

the electrolyte could on one hand, partially occlude the porosity of the electrode, 

difficulting the access of gas to the electrochemically active catalytic sites, and on the other 

hand, affect the stability of the catalyst due to phosphate adsorption. Both theories explain 

the considerable decrease in activity of electrodes at temperatures higher than 265 °C. This 
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temperature was therefore considered as the maximum operating temperature of the 

system. The iR values measured did not show any significant change from 265 to 275 °C 

(figure 7.6) and therefore the electrolyte resistance was not considered responsible for the 

decrease in activity, bearing in mind that the opposite effect was expected . 

 

Figure 7.3. HER polarisations of a cathode with 1.0 mg Pt cm
-2

 and no CsH2PO4 ionomer at (a) 235°C (b) 

245°C (c) 255°C and (d) 265°C (sweep rate = 1 mV s
-1

). 

 

Figure 7.4. HER polarisations of a cathode with 1.0 mg Pt cm
-2

 and no CsH2PO4 ionomer at (a) 265 °C (b) 

275°C (sweep rate = 1 mV s
-1

). 

T 
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The effect of CsH2PO4 as ionomer in the HER electrodes was evaluated by measuring their 

activity at -100 and -300 mV overpotential. The activity of electrodes with 0, 1.0 and 2.0 

mg cm
-2

 CsH2PO4 as ionomer are plotted and compared in figure 7.5. The addition of 

CsH2PO4 as ionomer to the catalytic layer did not have any significant effect on the 

activity of the electrodes towards HER. The reason of absence of effect in the HER activity 

was attributed to the physical morphology of CsH2PO4, that is, discrete particles. In order 

to act as a proton conducting agent in the catalytic layer, the ionomer must fulfil two main 

requirements; (1) it has to exhibit good percolation degree and (2) it has to allow gases 

reaching and leaving the catalytic site.  

The first of these requirements means that the ionomer in contact with the catalytic site 

must build a well interconnected framework able to transport protons from the reaction site 

to the electrolyte. In low temperature electrodes this is achieved by adding an optimum 

amount of polymeric ionomer (i.e. Nafion®) which creates an extremely thin film (ca. 0.5 - 

1 nm) on top of the catalyst, which on one hand, provides proton conducting pathways to 

the electrolyte and one the other hand, is thin enough to avoid blocking the access of 

reactants to the catalytic site [5, 6]. In this case, however, the morphology of CsH2PO4 as 

discrete particles distributed in the catalytic layer did not allow building an interconnected 

framework of it and therefore no access of the electrochemically produced protons to the 

electrolyte was possible. For this reason it is suggested that even in CsH2PO4 ionomer-

loaded electrodes only the first catalytic layer, in contact with the pellet surface, was active 

in the hydrogen evolution reaction. 

Due to the absence of any significant effect in activity by adding CsH2PO4 as ionomer, the 

electrode with no ionomer and 1.0 mg cm
-2 

was used in further electrolysis experiments.  

   

Figure 7.5. HER activity of 1.0 mg Pt cm
-2

 electrode with CsH2PO4 loadings of (a) 0 mg cm
-2

 (b) 1.0 mg cm
-

2
 and (c) 2.0 mg cm

-2
 at (I) -100 mV and (II) -300 mV overpotential. 
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The kinetic parameters of this electrode towards HER were calculated and discussed. The 

linear sweeps were performed at the temperature range of 235 – 275 °C and corrected for 

the ohmic resistance provided by the electrolyte, a solid CsH2PO4 pellet (thickness of ca. 

300 µm). The iR contribution of the electrolyte was measured at each temperature by 

electrochemical impedance spectroscopy and its effect subtracted from the HER 

polarisations. The Nyquist plots obtained are shown in figure 7.6. The resistance of the 

electrolyte was obtained from the high frequency intercept with the real axis of the 

spectrum, varying from 1.93 Ω cm
2
 at 235 °C to 1.57 Ω cm

2
 at 265 °C. At 275 °C the 

resistance of the electrolyte was slightly increased, about 100 mΩ, presumably due to the 

melting of the electrolyte and its flow to the electrodes. 

 

Figure 7.6. Nyquist plot of the electrolyte resistance (CsH2PO4 pellet, ca. 300 µm thickness) at (a) 235°C (b) 

245°C (c) 255°C (d) 265°C and (e) 275 °C. 

Tafel plots of the iR corrected polarisations were plotted at all temperatures and the linear 

region corresponding to the Tafel region identified. From this linear region the Tafel slope 

of the electrode towards HER was fitted and calculated (figure 7.7). Tafel slopes were 

fitted in the potential range of -30 to -80 mV as this was identified as the most linear region 

in the logarithmic plot. The minimum regression obtained for the linear fitting was R
2
 = 

0.979 at 245 °C, which was high enough to consider it as a linear region. The exchange 

current densities were calculated by extrapolating the Tafel linear equation to the reversible 

potential for HER at the conditions of each polarisation. All Tafel and exchange current 

densities obtained for each temperature are shown in table 7.3. 
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Figure 7.7. Tafel slope of 1.0 mg Pt cm
-2

 electrode at 245°C (iR corrected). 

The Tafel values obtained decrease from 87 to 52 mV dec
-1

 when increasing the 

temperature from 235 to 265 ºC. At 275 ºC the Tafel value increases to 83 mV dec
-1

 caused 

presumably by the melting of the electrolyte. This increase in the slope at 275 ºC could be 

attributed either to slower kinetics in the melted form of CsH2PO4 or to other kinetic 

process happening at those conditions, such as phosphate adsorption, due to a higher 

mobility of anions in the melted material.  

Table 7.3. Kinetic parameters of HER of 1.0 mg Pt cm
-2

 electrode (no ionomer). 

Temperature / °C 
Tafel slope               

/ mV dec
-1

 

Exchange current density, 

j0 / mA cm
-2

[XRD] 

235 87 1.35 × 10
-2

 

245 67 1.30 × 10
-2

 

255 61 1.27 × 10
-2

 

265 52 1.28 × 10
-2

 

275 83 1.61 × 10
-2

 

 

Tafel slope values reported for platinum in acid solution exhibit values of 30 – 40 mV dec
-1

 

at low overpotentials and room temperature [7,8]. The commonly accepted HER 

mechanism in acidic media is given by a combination of equations 7.1 – 7.3 [14, 17]. 

     61 mV dec
-1
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S + H
+
 + e

-
     S-Hads    (Volmer reaction)     (7.1) 

  2 S-Hads   2S + H2         (Tafel reaction)         (7.2) 

                         S-Hads + H
+
 + e

-
   S + H2         (Heyrovsky reaction)       (7.3) 

According to this mechanism, first a proton and an electron combine on the catalyst 

surface into an adsorbed hydrogen atom. It can be followed either by a recombination of 

two adsorbed atoms or by an adsorbed atom combining with a proton and an electron in the 

catalytic site to form a diatomic hydrogen molecule. Conway and Bai [15], proposed a 

mechanism to justify experimentally obtained 30 mV dec
-1

 Tafel slope (25 ºC), where 

Tafel and Heyrovsky reactions occur in parallel paths, being Tafel reaction more 

predominant at low overpotentials and Heyrovsky reaction at high overpotentials. This 

mechanism is believed to occur in the CsH2PO4 system studied, were Tafel slopes exhibit 

approximately the same expression  considering the temperature difference.  

The exchange current density values were normalised to the area calculated from P-XRD 

(table 6.1), considering the 1.0 mg cm
-2

 platinum loading on the electrode. The values 

obtained were lower than the values reported for HER in acidic medium, which commonly 

show values in the range of 0.1 – 1.0 mA cm
-2

[XRD] [7, 8], 10 to 100 times higher. This 

means that at equilibrium, the rate of reaction is lower in the solid CsH2PO4 system 

compared to aqueous acid solutions. This is attributed to a higher mobility of protons in the 

acid solution compared to that of the solid CsH2PO4 system, or in other words, to a higher 

platinum ESA in the aqueous system. Besides, the interface between the solid pellet 

electrolyte and the electrode is considered to be less intimate than that of the aqueous 

solution, making it harder for the electrode to exchange protons with the electrolyte, and 

therefore, decreasing the exchange current density. It must be pointed, however, that the 

estimation of j0 is based on 1 mg cm
-2

 platinum loading considered in the electrode, which 

is likely to be partially inactive in the electrochemical reaction.  

The decreasing tendency of the Tafel slope with temperature caused the exchange current 

density to keep relatively constant at all temperatures instead of increasing with 

temperature as it was expected. For this reason the activation energy of the process could 

not be calculated. 
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7.4.    Anode performance 

Iridium oxide-based cathodes were characterised in terms of electrochemical active surface 

and activity towards oxygen evolution reaction (OER). The effect of IrO2 loading and 

CsH2PO4 loading (as ionomer) on the electrode performance was characterised by cyclic 

and linear sweep voltammetry. In order to determine the activity of the fabricated anodes 

towards OER, the kinetic contribution of the cathode and the ohmic contribution of the 

electrolyte were subtracted from the polarisation curves. The kinetic parameters of these 

electrodes towards OER were calculated. 

7.4.1.    Electrochemical Surface Area (ESA) 

The electrochemical surface area of the fabricated anodes was estimated by integrating the 

charge of cyclic voltammograms performed from 0 – 1.4 V. These anodes were used as 

working electrodes with 50 ml min
-1

 N2 flow and the platinum-loaded cathode with 50 ml 

min
-1

 H2 flow as reference and counter electrode. Both gases were saturated with 0.95 atm 

of partial pressure of water. Iridium oxide loadings were varied from 0.5 to 3.0 mg cm
-2

 in 

order to study the effect of the loading in the EAS of the electrode. CVs are shown in 

figure 7.8-I. CV of IrO2 in a saturated solution of CsH2PO4 is shown in figure 7.8-II. 

 

Figure 7.8. (I) Cyclic voltammograms of anodes (cycles nº 10) with no ionomer and IrO2 loadings of (a) 0.5 

mg cm
-2

, (b) 1.0 mg cm
-2

, (c) 2.0 mg cm
-2

 and (d) 3.0 mg cm
-2

 at 100 mV s
-1

 and 245 ºC (cathode loading = 

1.0 mg Pt cm
-2

, no ionomer). (II) Cyclic voltammogram of IrO2 (cycle nº 10) in 5.15 M CsH2PO4 solution at 

40 ºC and 100 mV s
-1

. 

(I) (II) 
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Table 7.4. Charge of the integrated CVs of anodes with different IrO2 loadings (no ionomer). 

IrO2 loading / mg cm
-2

 Q / mC cm
-2

 

0.5 12.4 

1.0 11.9 

2.0 15.0 

3.0 14.0 

 

All electrodes exhibit a similar shape with a broad oxidation peak between 100 – 500 mV 

and a notorious reduction peak at approximately 550 mV. The shape of the CV differs 

considerably from that obtained in the aqueous solution, where two non-well defined 

iridium redox couples were identified at ca. 0.7 and 1.0 V (figure 7.8-II), attributed to 

Ir/Ir
III

 and Ir
III

/Ir
IV

 respectively (see section 6.3.3). 

The charge values obtained from the integration of the CVs, given in table 7.4, suggest that 

no significant increase in the IrO2 utilisation is achieved by increasing catalyst loading. 

This agrees with the idea of being just the catalyst in contact with the electrolyte, the first 

layer of IrO2 deposited on top of the pellet, active in the electrode. The absence of 

ionomer, and therefore, proton conducting paths in the catalytic layer, causes the catalyst 

on top of the first layer to be inactive. All integrated charge values obtained were in the 

range of 11.9 – 15.0 mC cm
-2

. These values are similar to the charge obtained by the 

integration of the CV in the aqueous solution, 16.2 mC cm
-2

. Despite the similarity in 

charge values, it is important to note the high contribution of the reduction peak at ca. 550 

mV to the whole charge of the CVs of the solid state system. This significant peak, not 

exhibited in the aqueous system, is not considered to correspond to a redox couple of 

iridium despite being included in the charge values given. The charge value of this peak is 

similar in all the electrodes analysed, exhibiting values of ca. 3.1 mC cm
-2

.  

In order to increase the catalyst utilisation in the catalyst layer, CsH2PO4 was added as 

ionomer in the electrode to provide higher amount of triple phase boundary areas by 

building proton conducting paths. Electrodes with IrO2:CsH2PO4 mass ratios of 2:1, 1:1 

and 2:3 were characterised by cyclic voltammetry and the integrated charge compared to 

an electrode with no ionomer. CVs and charge values are shown in figure 7.9 and table 7.5. 
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Figure 7.9. Cyclic voltammograms of anodes (cycles nº 10) with 2.0 mg cm
-2

 and CsH2PO4 loadings of (a) 0 

mg cm
-2

, (b) 1.0 mg cm
-2

 (c) 2.0 mg cm
-2

 and (d) 3.0 mg cm
-2

 at 100 mV s
-1

 and 245 ºC (cathode loading = 

1.0 mg Pt cm
-2

, no ionomer). (II) Cyclic voltammogram of IrO2 (cycle nº 10) in 5.15 M CsH2PO4 solution at 

40 ºC and 100 mV s
-1

. 

Table 7.5. Charge of the integrated CVs of anodes with different IrO2 loadings (no ionomer). 

CsH2PO4 loading / mg cm
-2

 Q / mC cm
-2

 

0 16.5 

1.0 14.9 

2.0 17.9 

3.0 14.1 

 

The charge values obtained, between 14.1 – 17.9 mC cm
-2

, did not change significantly 

with CsH2PO4 loading, suggesting that the solid acid did not provide significant ionomeric 

properties to the catalytic layer. This could be attributed to the discrete particle 

morphology of CsH2PO4 which did not provide an interconnected framework of ionomer 

to connect the catalytic site with the electrolyte, that it to say, ionomer percolation. At 

potentials higher than ca. 1.2 V, however, the shape of the CVs differs considerably when 

CsH2PO4 is present in the catalytic layer. At those potentials samples exhibit an oxidation 

tendency in the forward scan and a reduction peak in the backward scan. One could 

attribute this peak to the oxidation of iridium, presumably Ir
IV 

/ Ir
VI

, suggesting that the 

(I) (II) 
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presence of CsH2PO4 provides a proton source to the catalyst to oxidise and create the so-

called hydrated oxide (equation 6.2). If that was so, the improved kinetics would be 

attributed to some positive effect of the ionomer, which would act as a proton donor for 

iridium enabling the oxidation step, and therefore, percolation would be achieved at some 

extent. Nevertheless, the CVs exhibit a potential shift of ca. 200 mV in the reduction peak 

at 400 – 600 mV. If all CVs were lined up taking this reduction peak as reference, the non-

CsH2PO4 loaded electrode CV would stop at ca. 1.2 V and therefore, the oxidation peak 

would not yet be visible. For this reason, a positive effect arising from CsH2PO4 as 

ionomer was not considered.  

In order to estimate an approximate value of catalyst usage for each electrode, the 

minimum IrO2 loading was taken as a reference, 0.5 mg IrO2 cm
-2

, considering that all 

catalyst was electrochemically active in the reaction. From this assumption, that is, a 100 

% utilisation of IrO2 in this electrode, the estimated catalyst active loading and utilisation 

for the rest electrodes was calculated (table 7.6).  

From the values obtained for the estimated catalyst loading and utilisation, it can be 

concluded that, for the all catalyst and ionomer loadings evaluated, the amount of catalyst 

electrochemically active in the electrode was relatively constant. This was explained by 

considering the first layer of catalyst, in intimate contact with the electrolyte, active in the 

electrode, fulfilling the three conditions required for a triple phase boundary; protonic, 

electrical and gaseous connection paths. 

Table 7.6. Comparative values of IrO2 utilisation in the fabricated anodes. 

IrO2 loading              

/ mg cm
-2

 

CsH2PO4 loading       

/ mg cm
-2

 

Estimated IrO2 

loading  / mg cm
-2

 

IrO2 utilisation              

/ % 

0.50 0 0.50 100 

1.0 0 0.49 49 

2.0 

0 0.68 34 

1.0 0.58 29 

2.0 0.71 35 

3.0 0.57 28 

3.0 0 0.57 19 
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7.4.2.    Oxygen Evolution Reaction (OER) 

The oxygen evolution reaction taking place in the anode of the electrolysis cell is the 

limiting reaction of the system due to its slow kinetics. As discussed in Chapter 6, the OER 

in aqueous CsH2PO4 is less favourable than in other acids i.e. sulfuric or phosphoric acids. 

This is mostly influenced by the low acidity of CsH2PO4 saturated solution (pH = 4.63). In 

order to determine the OER performance of IrO2 on the solid state system, the polarisations 

performed in the electrolysis cell were corrected for the iR contribution of the electrolyte 

and the kinetic contribution of HER of the cathode.  

For these experiments a 300 µm thickness CsH2PO4 pellet was used as electrolyte. The iR 

contribution of the electrolyte was estimated by electrochemical impedance spectroscopy, 

from the high frequency intercept with the real axis of the Nyquist spectrum. The system 

exhibited resistances between 1.55 – 1.90 Ω cm
2
 at the temperature range of 235 – 265 ºC. 

The kinetic contribution of the cathode was measured from the HER polarisation curves 

(figure 7.3) after correcting them for iR. The resulting corrected linear sweep corresponded 

to presumably pure OER kinetics of IrO2 in contact with a solid CsH2PO4 electrolyte.  

As shown in figure 7.10, the contribution of the iR and HER to the total operating 

performance was relatively low due to the small current densities obtained and the 

relatively fast kinetics of HER on platinum, respectively. In order to calculate the kinetic 

parameters for OER in the electrode, 2.0 mg IrO2 cm
-2

-loaded electrode was used as anode. 

This was the best IrO2 loading for the electrolysis performance, as shown in section 7.5. 

The electrolysis cell was operated at temperatures between 235 – 265 ºC with a 1.0 mg Pt 

cm
-2

-loaded anode. No CsH2PO4 was used as ionomer in any of the electrodes. The kinetic 

parameters for each temperature, Tafel slope and exchange current density, were calculated 

and summarised in table 7.7. In figure 7.11, OER polarisations of IrO2 at different 

temperatures are shown.  

Although low performance was achieved in this system, with a maximum activity of 16 

mA cm
-2

 at 1.70 V and 265 ºC, it is worth noting the low onset potential of the reaction. 

The onset potential values varied between 1.16 – 1.20 V, which considering the reversible 

potential value for OER at 235 – 265 ºC, gives overpotentials between 50 – 70 mV. These 

low overpotentials differ considerably to those of the aqueous system, where values 

between 210 - 300 mV were obtained. The significantly lower onset potential in the solid 
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state system could be attributed to the absence of phosphate adsorption onto the catalyst 

surface due to a lower mobility of these species in solid state than in aqueous solution. 

 

Figure 7.10. Electrolysis polarisation with no ionomer and 2.0 mg cm
-2

 IrO2 (a) obtained curve, (b) iR 

corrected, and (c) HER corrected (pure OER polarisation) at 245 ºC (sweep rate = 1 mV s
-1

). 

 

Figure 7.11. Pure OER polarisation with no ionomer and 2.0 mg cm
-2

 IrO2 at (a) 235 ºC (b) 245 ºC (c) 255 

ºC and (d) 265 ºC (sweep rate = 1 mV s
-1

). 

T 

j 

j 
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Logarithmic plots of the OER polarisation reveal two main Tafel regions; a low 

overpotential region with potentials between 1.25 -1.55 V and a high overpotential region, 

with potentials between 1.55 – 1.85 V (figure 7.12). Both regions show high Tafel slopes 

at temperatures of 235 – 265 ºC, between 239 – 304 mV dec
-1

 at the low overpotential 

region and 439 - 497 mV dec
-1

 at the high overpotential region. These two regions (along 

with a third at the low overpotential range) were identified in the half-cell OER studies of 

IrO2, displayed in chapter 6, and were attributed to two different rate determining steps of 

the OER mechanism (equations 6.9 – 6.11): 

1.  Low overpotential region: the rate determining step is the second step of the reaction 

mechanism (S–OHads  S–Oads + H
+
 + e

-
), where the hydroxyl consumption takes 

place releasing a proton, an electron and an adsorbed oxygen atom. A theoretical Tafel 

slope of  is attributed to this step [13]. 

2.  High overpotential region: the rate determining step is the first step of the reaction 

mechanism (S + H2O  S–OHads + H
+
 + e

-
), where the hydroxyl group is adsorbed 

onto the catalyst surface. A theoretical Tafel slope value of  is attributed to this 

step as the r.d.s. [13]. 

 

Figure 7.12. Tafel plot of OER for a cathode with no ionomer and 2.0 mg cm
-2

 IrO2 at 245 ºC. The two Tafel 

regions identified are highlighted. 

Tafel 1 

Tafel 2 

log j 
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Table 7.7. Kinetic parameters of OER of 2.0 mg Pt cm
-2

 electrode (no ionomer). 

Temperature / °C 

Tafel region 1 (1.25 – 1.55 V) Tafel region 2 (1.55 – 1.85 V) 

Tafel slope               

/ mV dec
-1

 

Exchange current 

density,                     

j0 / mA cm
-2

[XRD] 

Tafel slope               

/ mV dec
-1

 

Exchange current 

density,                       

j0 / mA cm
-2

[XRD] 

235 268 1.8 × 10
-3

 481 2.2 × 10
-3

 

245 304 1.4 × 10
-3

 439 3.1 × 10
-3

 

255 281 1.7 × 10
-3

 497 6.7 × 10
-3

 

265 239 1.5 × 10
-3

 453 8.3 × 10
-3

 

 

The first Tafel region (Tafel 1, figure 7.12) was also identified in the OER polarisations 

performed in a saturated CsH2PO4 solution (chapter 6), exhibiting Tafel slopes between 72 

- 80 mV dec
-1

. The potential range of this Tafel region was 1.45 – 1.65 V whereas in solid 

state system the same region was identified at 1.25 – 1.55 V. The difference in potential is 

attributed to the potential shift arising from the temperature difference; the reversible 

potential at 25 ºC, 1.229 V, shifts to 1.131 V at 250 ºC. The overpotential difference 

between both processes, considering the approximate 100 mV potential shift caused by 

temperature, was therefore very similar.  

The higher Tafel slope values obtained in the aqueous solution comparing to the theoretical 

slope stated for the second step of the electochemical oxide path mechanism, that is , b  

 [13], are attributed to the effect of the oxide layer characteristics. Gottesfeld et al. 

[9], proved that the Tafel slope in the low overpotential region could increase by the 

properties and thickness of the oxide layer, exhibiting Tafel slopes between  

and . The Tafel slopes obtained for the solid state CsH2PO4 system at the low 

overpotential region were in the range of 239 – 304 mV dec
-1

, corresponding to slopes 

between  and . These high slope values are mainly attributed to the different 

characteristics of the iridium oxide layer in the solid system, where the low concentration 

and mobility of H
+
 do not allow the formation of an active hydrous oxide layer of iridium. 

As the electrochemical oxidation of iridium requires protons in order to build a hydrated 

oxide active for OER (equation 6.1), the absence of free protons in the solid system would 

difficult the oxide formation process increasing significantly Tafel slope values. 
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In the high overpotential region, at potentials higher than 1.55 V, Tafel slope values 

between 453 – 497 mV dec
-1

 were measured at 235 – 265 ºC. This same region was also 

identified in the aqueous solution system where values as high as 230 mV dec
-1

 were 

obtained in potentials over 1.65 V. The 100 mV difference in potential would correspond 

to the potential shift arising from the temperature difference.  

As discussed in chapter 6, the high Tafel slope values obtained at this overpotential were 

related to the high pH of the electrolyte. The Tafel slope follows an increasing tendency 

with pH at the high overpotential region, being  close to 120 mV dec
-1

, b  , in low 

pH solutions (i.e. H2SO4) and high ca. 220 mV dec
-1

, b  , in a saturated CsH2PO4 

solution (pH = 4.63). The values obtained in the solid state system, between 453 – 497 mV 

dec
-1

, correspond approximately to the same Tafel slope value of the aqueous system at 

high overpotentials, b  . This Tafel slope is approximately twice as high as the 

theoretical Tafel value attributed to the first step of the reaction mechanism being the r.d.s. 

This difference is attributed to the effect of the high pH of the electrolyte on the properties 

of the oxide layer of iridium. At such low proton concentration, the oxidation path to a 

hydrated iridium oxide layer, active towards OER, is expected to be inhibited to some 

extent by the low concentration of H
+
. The new oxide layer, presumably of higher density 

and lower electronic conduction [18], would exhibit different affinity for the reaction 

intermediates and the adsorption/desorption energies of these species and the interactions 

between them and the reactants will change, resulting in a higher Tafel slope. Although it 

could be argued that the r.d.s. or even the reaction mechanism could change by the high pH 

environment, no theoretical Tafel slope of  based on conventional electrochemistry 

is reported for any of the OER mechanisms proposed in the literature [13,16].  

The exchange current densities of each of the temperatures were calculated by 

extrapolating the Tafel equation to the reversible potential at the given temperature. The 

values obtained are displayed in table 7.7 for both, high and low overpotential regions. At 

235 – 265 ºC the reversible voltage range is 1.135 – 1.127 V. All exchange current 

densities were normalised by the theoretical catalyst area calculated from P-XRD. 

Although 2.0 mg cm
-2

 IrO2 loading was used on the electrode, the electrochemically active 

loading should be estimated. To obtain an approximate value of the active catalyst loading, 

the charge obtained by the integration of the CV at the electrode with 0.5 mg cm
-2

 IrO2, 
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24.4 mC cm
-2

 (table 7.4), was used as a reference value, considering that all catalyst was 

electrochemically active in the electrode. The IrO2 loading was calculated from the relative 

ratio of charge between the actual and the reference electrode. This way, a value of 0.68 

mg IrO2 cm
-2

 was estimated in the electrode and using the 16.30 m
2
 g

-1
 value obtained by 

P-XRD for IrO2 (table 6.1) an estimated area of 187 .21 cm
2
 for IrO2 was determined. 

At the low overpotential region (1.25 – 1.55 V) the exchange current densities exhibited 

constant values of ca. 1.6 × 10
-3

 mA cm
-2

, approximately three to four orders of magnitude 

higher that those obtained in the half cell, using saturated CsH2PO4 solution. At the high 

overpotential region however, j0 increase with temperature and the values obtained, 

between 2.2 – 1.3 × 10
-3

 mA cm
-2

, which are closer to those obtained in the aqueous 

solution, approximately one order of magnitude higher. The higher j0 obtained in the solid 

system is attributed to faster kinetics at higher temperatures and therefore higher reaction 

rate at equilibrium. 

The activation energy for the high overpotential Tafel region was calculated using the 

Arrhenius relation showed in equations 3.13 – 3.14. In figure 7.13 the Arrhenius plot for 

the low and high overpotential regions are shown. The activation energy was calculated 

from the value of the slope obtained (-Ea/2.3R). 

 

Figure 7.13. Arrhenius plot of log i0 vs. T
-1

 at (a) low overpotential and (b) high overpotential region. Ea 

calculated from the slope. 

At the low overpotential region, the exchange current density did not exhibit any variation 

with temperature and therefore Ea could not be calculated. This was attributed to the effect 

of other processes taking place at that potential range, such as the electro-oxidation of 
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iridium, from Ir
IV

 to Ir
VI

. At the high overpotential region, j0 exhibits a clear increasing 

tendency with temperature, leading to an Ea value of 108 kJ mol
-1

. The high overpotential 

activation energy value, attributed to OER, is considerably higher than that obtained in 

aqueous solution, 15 kJ mol
-1

.  

The significant difference between Ea in aqueous and solid state system could be attributed 

to the energy requirement to adsorb reactant water on the catalytic surface. The low 

relative humidity of the cell at atmospheric pressure, ca. 3.0 %, could have an effect in the 

capacity of IrO2 to adsorb and oxidise the water provided as a gas to the electrode. Instead, 

it is proposed that the water IrO2 used to perform OER could be the structural water of the 

CsH2PO4 in contact with the catalyst. According to this theory, IrO2 would catalyse a 

dehydration reaction on CsH2PO4 using the structural water of the solid acid as reactant in 

the electrolysis cell. The dehydrated CsH2PO4 would be again rehydrated with the water 

provided to the system until equilibrium is reached. This hypothesis is further proposed 

and debated in section 7.5.2, where the resistance of the electrolyte was monitored during 

an electrolysis durability test under current loading. According to this theory, the high Ea 

exhibited by the solid state system could be attributed to the energy requirement to ‘strip’ a 

water molecule from the CsH2PO4 structure. 

7.5.    Single cell water electrolysis  

The performance of the Pt/CsH2PO4/IrO2 MEA in a single electrolysis cell was measured. 

As seen in the previous section, the oxygen evolution reaction provides the system with the 

highest losses, compared to those arising from the hydrogen evolution reaction in the 

cathode and the iR losses provided by the ohmic resistance of the electrolyte (figure 7.10). 

The effect of the anode in the overall performance of the cell is therefore of mayor 

importance. The optimisation of the catalytic layer in terms of catalyst and ionomer 

loading was carried out and the performance in a single electrolysis cell evaluated.  

Figures 7.14 and 7.15 show polarisation obtained for a system with a 300 µm thickness 

pellet as electrolyte and 1.0 mg cm
-2

 Pt loaded electrode as cathode. No correction was 

performed for these polarisations, as the iR contribution and the HER kinetic contribution 

of all MEAs was considered to be the same for all the fabricated MEAs. The IrO2 and 

CsH2PO4 (as inonomer) loadings on the anode were changed in order to study their effect 

in the overall performance of the system. The activity values of the polarisation obtained at 

1.40 V and 1.80 V are summarised in table 7.8.  
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Figure 7.14. Polarisations of Pt/CsH2PO4/IrO2 electrolysis cell system at 265 ºC with IrO2 loadings on the 

anode of (a) 0.5 mg cm
-2

, (b) 1.0 mg cm
-2

, (c) 2.0 mg cm
-2

 and (d) 3.0 mg cm
-2

 at 1 mV s
-1

 (cathode loading = 

1.0 mg Pt cm
-2

, no ionomer). 

 

Figure 7.15. Polarisations of Pt/CsH2PO4/IrO2 electrolysis cell system at 265 ºC with 2.0 mg cm
-2 

IrO2 

loading and CsH2PO4 loadings of (a) 0 mg cm
-2

, (b) 1.0 mg cm
-2

, (c) 2.0 mg cm
-2

 and (d) 3.0 mg cm
-2

 at 1 

mV s
-1

 (cathode loading = 1.0 mg Pt cm
-2

, no ionomer). 

j 

j 
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Table 7.8. Activity values of the electrolysis cell at low and high overpotentials. 

Characteristic of the anode Activity 

Catalyst loading           

/ mg IrO2 cm
-2

 

Ionomer loading          

/ mg CsH2PO4 cm
-2

 
j / mA cm

-2
 at 1.40 V j / mA cm

-2
 at 1.80 V 

0.5 0 1.3 9.6 

1.0 0 1.7 12.4 

2.0 

0 1.7 13.8 

0.5 1.3 13.4 

1.0 1.4 14.9 

2.0 1.4 10.6 

3.0 1.4 10.4 

3.0 0 1.8 9.7 

 

The purely kinetic region considered for all polarisations, between 1.20 – 1.50 V, showed 

very similar shape and activity in all cases. All activity values varied between 1.31 – 1.80 

mA cm
-2

 at 1.40 V regardless of the IrO2 or CsH2PO4 loadings. This supports the view that 

just the first catalytic layer in contact with the electrolyte is only active in the anode. No 

effect in the OER kinetics arising from different IrO2 or CsH2PO4 loadings in the catalytic 

layer was exhibited. At a higher overpotential region, between 1.50 – 2.0 V, the slope of 

the polarisation changed slightly with the different anodes. In terms of IrO2 loading, best 

performance was obtained by a 2.0 mg cm
-2

 IrO2-loaded anode. The difference between 

them was mainly attributed to mass transport issues arising from the difference in the 

thickness of the catalytic layer. The diffusion of water as reactant to reach the active site of 

the catalyst and the release of gaseous O2 as product were considered responsible for the 

difference in the polarisations.  

In the case of anodes with different CsH2PO4 loadings, the effect was similar, exhibiting 

slightly different slopes in the high overpotential region of the polarisations. These 

differences were also attributed to mass transport issues generated by the presence of 

CsH2PO4 in the catalytic layer, which would change the thickness, porosity and electrical 

conductivity of the catalytic layer. Nevertheless, the activity for all MEAs at 1.80 V did not 

differ significantly, being all in the range of 9.6 – 14.9 mA cm
-2

. 
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The same electrolysis system based on a CsH2PO4 glass-fibre reinforced composite 

membrane (85 µm thickness) was evaluated. These CsH2PO4-based membranes (CDPGF) 

were found to exhibit the best compromise between proton conductivity and tensile 

strength among all fabricated membranes (σ = 4 × 10
-3

 S cm
-1

 at 250 °C and Y = 0.14 GPa) 

(see section 5.3.4). For CDPGF membranes anodes were deposited by spraying (figure 

7.16-b) and by Decal method (figure 7.16-c) as explained in the experimental section of 

this chapter.  

The kinetic region of the polarisation curves exhibited higher activity in the system using a 

pure CsH2PO4 pellet comparing to that of the composite membranes. This difference in the 

kinetics is attributed to a more intimate interface between the catalyst layer and the 

electrolyte in the case of CsH2PO4 pellet. As discussed before, the first layer of IrO2 is 

considered to be the electrochemically active catalyst in the electrode as it is in contact 

with the electrolyte, where the conditions for a triple phase boundary are achieved. In 

CDPGF membranes, as part of the volume of the membrane is formed by non-conductive 

glass-fibres, less catalyst is expected to be in contact with CsH2PO4, and therefore, lower 

catalyst utilisation was achieved. This is clearly exhibited in the exponential region of the 

polarisation curves. 

 

Figure 7.16. Polarisations of electrolysis cell system at 265 ºC with (a) 350 µm thickness CsH2PO4 pellet and  

(b,c) 85 µm thickness glass-fibre reinforced CsH2PO4 membrane with anode deposited by spraying and by 

Decal method, respectively. 
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At higher potentials, where a more linear region is regarded, systems using CDPGF 

membranes showed lower slope comparing to that of the CsH2PO4 pellet. This difference 

in the slope of the polarisation is mostly attributed to the difference on the iR between both 

electrolytes, which showed values of ca. 1.0 and 1.5 Ω cm
2
 measured by impedance for 

CDPGF membrane and CsH2PO4 pellet, respectively. However, some mass transport 

contribution is also expected at high potentials, by mainly water and O2 diffusion in the 

anodic catalytic layer. Even if high current densities were not achieved, the low relative 

humidity in the conditions applied (ca. 3.0 %) could cause mass transport issues. The 

difference in the slope of the high potential region of the polarisations in figure 7.16 is 

therefore attributed to the ohmic resistance of the electrolyte and to the difference in water 

transport caused by the different characteristics (i.e. thickness, porosity) of the anodes.  

The two different techniques used for anode deposition on CDPGF membranes, spraying 

and Decal method, caused a significant effect in the kinetic region of the polarisations. The 

overpotential of MEA with the sprayed anode at 2.0 mA cm
-2

 was 50 mV smaller than the 

MEA with anode deposited by Decal method. This difference is mostly attributed to the 

contact of the IrO2/CsH2PO4 interface in the anode.  

7.5.1     Fuel Cell system 

The poor performance shown by the electrolysis system is mostly attributed to the slow 

kinetics of the oxygen evolution reaction. The low proton concentration of the electrolyte 

is believed to affect the oxidation state of IrO2 inhibiting to some extent the formation of a 

hydrated oxide layer active towards OER.  

It was reported by various authors that CsH2PO4-based fuel cell systems exhibit an 

acceptable performance, as high as 415 mW cm
-2

 at 250 ºC [2]. This promising value was 

achieved by fabricating a thin pellet as electrolyte (ca. 25 µm) to reduce the ohmic losses 

in the system. The oxygen reduction reaction (ORR), taking place in the cathode of a fuel 

cell, although is considered to be responsible of the major losses in the system, is fast 

enough to make the system achieve the values reported.  

The fuel cell MEA was loaded with 1.0 mg cm
2
 platinum black in both carbon paper 

electrodes (no ionomer) and 50 ml min
-1

 of pure H2 and O2 were fed to anode and cathode 

respectively (PH2O = 0.75 atm). The MEA of the electrolysis cell was loaded with 1.0 mg 

cm
-2

 platinum black on the carbon paper anode and 2.0 mg IrO2 and 1.0 mg CsH2PO4 on 
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the carbon paper cathode. 50 ml min
-1

 of pure H2 and N2 were fed to the cathode and anode 

respectively, both with a water partial pressure of 0.95 atm. The performance of the fuel 

cell system, operating with a 300 µm-thick CsH2PO4 electrolyte at 265 ºC, is shown in 

figure 7.17 and compared to the operation obtained in the electrolysis cell. Linear sweep 

polarisations for both systems and iR corrected sweeps are shown. 

Taking as reference the reversible potential at 265 ºC, 1.127 V, the electrolysis cell system 

exhibits a considerable lower performance. The polarisations of the electrolysis cell (figure 

7.17 – a,b) showed that the iR effect of the electrolyte is considerably small which, as 

discussed in section 7.4, attributes most of the losses of the sweep to the OER. Despite the 

high temperature, the kinetics on the anode were too slow and therefore high overpotentials 

were required to provide some activity to the system.  

 

Figure 7.17. Polarisations of (I) electrolysis and (II) fuel cell system with 300 µm CsH2PO4 pellet as 

electrolyte at 255 ºC, (a,c) raw data and (b,d) iR corrected. (scan rate = 1 mV s
-1

)  

(I) Electrolysis cell: anode = 2.0 mg cm
-2 

IrO2 + 1.0 mg cm
-2 

CsH2PO4; cathode = 1.0 mg cm
-2 

Pt (no 

ionomer). (II) Fuel cell (H2/O2): anode = 1.0 mg cm
-2 

Pt (no ionomer); cathode = 1.0 mg cm
-2 

Pt (no 

ionomer)    

To provide the system with 20 mA cm
-2

 activity 750 and 530 mV overpotentials were 

required for the electrolysis and fuel cell systems, respectively. The 220 mV overpotential 

difference between both systems is mainly attributed to the faster kinetics of the oxygen 

reduction reaction compared to those of oxygen evolution. Although in both electrodes the 

(I) 

 (II) 
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same reaction in opposite directions takes place there are few aspects that must be taken 

into account: 

1.  The catalyst used in both systems, Pt for ORR and IrO2 for OER, have an effect on the 

reaction mechanism altering the path and activation energy of the reaction. The 

operating potential of both systems is different, being considerably higher in the 

electrolyser, and therefore the influence of the potential in the surface properties of the 

catalyst must be taken into account. The significant effect of the oxide layer 

characteristics of IrO2 towards OER activity could be, for instance, a differential factor 

in the activity between both catalysts. 

2. The concentration of reactants in the fuel cell system is significantly higher than that of 

the electrolysis system. Whereas in the fuel cell pure O2 was fed to the ORR electrode, 

ca. PO2 = 1.0 atm, the high temperature of the system (265 ºC) drops significantly the 

PH2O = 0.9 atm fed in the N2 to the electrolyser cell, to a relative humidity value of 

approximately 3.0 % (see figure 4.14). The low water concentration could affect the 

system in terms of mass transport, although no limiting currents were obtained at 

potentials of 2.0 V. The low concentration is expected to have an effect in the reaction 

kinetics by reactant diffusion to the catalytic sites. Higher water concentration levels in 

the electrode could only be achieved by pressurising the system.  

3.  As reported by various authors, the activity of a H3PO4-doped PBI membrane fuel cell 

(ca. 900 mA cm
-2

 at 0.50 V) [10] is higher and more stable than that of the same 

electrolyte electrolysis cell (ca. 500 mA cm
-2

 at 1.75 V) [11]. The analogy between both 

systems, H3PO4-doped membrane and CsH2PO4, was also considered to be related to 

the phosphate presence in the catalytic environment. It is proposed that, due to the low 

relative humidity at the temperatures these systems operate, 180 and 265 ºC 

respectively, the water used as reactant in the OER could be provided by the H3PO4 or 

CsH2PO4 in contact with the catalyst. It would be considered as a catalytically induced 

dehydration reaction of both compounds. If this was so, the system would have to 

overtake the activation energy equivalent to ‘stripping’ a molecule of water from the 

intrinsic structure of the phosphates. This would also decrease the conductivity of the 

electrolyte in contact with the catalyst providing higher ohmic losses in the electrode 

and electrolyte.  
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The low electrolysis performance of CsH2PO4-based system was attributed to the above-

mentioned aspects, focusing the main losses of the system in the oxygen evolution reaction 

on IrO2. The high pH of the electrolyte, which is considered to affect the oxidation 

properties of IrO2, and therefore, its activity towards OER, seems to at a less extent affect 

the Pt reaction path towards ORR. Unlike on IrO2, oxide-free platinum sites must exist in 

the catalytic layer of the fuel cell cathode in order to ORR to take place. For this reason the 

characteristics of the oxide layer would not have such an effect as it does in IrO2 and 

therefore the high pH of the electrolyte is believed to have a less significant effect on the 

ORR on Pt. The oxidation of platinum in an acidic medium, taking place at potentials 

higher than ca. 0.7 V, is not considered to be involved in the oxygen reduction reaction 

mechanism.  

7.5.2     Durability and system limitations 

The stability of the electrolysis system was analysed during 48 h. The system was 

maintained at a fixed potential of 1.80 V while the current density of the system was 

monitored. Impedance measurements were performed in order to address the value of 

resistance provided by the electrolyte during the experiment obtained from the high 

frequency intercept with the real axis of the Nyquist spectrum. The results obtained are 

shown in figures 7.18 and 7.19. 

In figure 7.18 the value of current density of the system is shown at 255 ºC and 1.80 V. For 

the impedance measurements the potentiostat was disconnected (for approximately 30 s) 

and reconnected after, creating high current peaks (marked with ‘*’ in the plot). A high and 

fast decrease in current density was exhibited after each peak until reaching a stable value 

of ca. 8.5 mA cm
-2

. The system showed an overall decreasing trend in activity with time, 

showing an approximate decay of 0.5 mA cm
-2

 day
-1

, considering the stable regions in the 

plot. The resistance of the electrolyte was also monitored during the test in order to verify 

if the ohmic resistance of the electrolyte affected the stability of the system.  

As shown in figure 7.19, the initial impedance measurement, before the system was 

polarised, exhibited a resistance of 1.60 Ω cm
2
, which was an expected value for a 300 µm 

electrolyte with 1.5 × 10
-2

 S cm
-1

 proton conductivity. The resistance of the electrolyte 

however, increased considerably (to values over 5.4 Ω cm
2
) when the system was initially 

polarised. Once the system stabilised at a current density of ca. 8.5 mA cm
-2

, the resistance 
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of the electrolyte stabilised at values close to 2.5 Ω cm
2
, however, a constant decreasing 

tendency, proportional to the current density decrease, was shown. After the test was 

performed and the system stabilised for 2 h under no external potential, the electrolyte 

exhibited a resistance of 1.70 Ω cm
-2

, slightly higher than the initial resistance value.  

 

Figure 7.18. Analysis of the stability of the electrolysis cell at 1.80 V for 48 h at 255 ºC. Impedance 

measurements marked by (*). 

 

Figure 7.19. Analysis of the electrolyte resistance during the stability of the electrolysis cell at 1.80 V for 48 

h at 255 ºC. 

The unstable iR contribution of the electrolyte and the current density flowing in the 

system are believed to keep a direct relation. It is proposed that due to the low relative 

humidity in the cell, the water used as reactant in the anode of the electrolysis cell could 

* * * * * * 
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come from the structural water of the CsH2PO4 in contact with the catalyst. IrO2 could act 

as a catalyst for the dehydration of CsH2PO4 using the water produced as reactant in the 

system. Equally, the dehydrated CsH2PO4 would find rehydration equilibrium with the 

relative humidity provided to the cell. According to this theory the decrease in conductivity 

would be proportionally related to the amount of current density flowing in the system. 

This is considering that all the increase in the resistance of the system is derived from 

CsH2PO4 proton conductivity loss, although it could be argued that the electrical resistance 

of the IrO2 layer could contribute to it. As mentioned before, the high pH of the electrolyte 

would affect the characteristics of the oxide layer by driving the oxidation path towards a 

non-hydrated oxide and changes in potential and time would affect the thickness of the 

oxide layer. Although it is likely that these parameters have an effect in the resistance of 

the electrode, considering the electrical resistivity reported for IrO2 to be 1.50 × 10
-6

 Ω cm 

[12], the contribution of IrO2 to the overall resistance is considered negligible. 
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7.5.    Conclusions 

The performance of electrolysis cell with a solid CsH2PO4 electrolyte was studied. The 

contributions of the hydrogen and oxygen evolution reactions and the iR effect of the 

electrolyte to the overall losses of electrolysis system were separately analysed. 

The iR contribution of the electrolyte was calculated by electrochemical impedance 

spectroscopy. Minimum resistance of 1.5 Ω cm
2
 was obtained for a 300 µm thick pellet 

and 1.0 Ω cm
2
 for a 85 µm glass-fibre reinforced membrane. The hydrogen evolution 

reaction (HER) contribution to the overall losses of the system was estimated by quasi-

steady linear sweep polarisations, obtaining a maximum activity value of 20 mA cm
-2

 at 50 

mV overpotential and 265 ºC. Tafel slope values between 87 and 52 mV dec
-1

 and 

exchange current densities of ca. 1.30 × 10
-2

 mA cm
-2

[XRD] were obtained. Oxygen 

evolution reaction (OER) exhibited the higher contribution to the losses of the electrolyser. 

The maximum activity obtained was 20 mA cm
-2

 at ca. 600 mV overpotential and 265 ºC. 

Two Tafel regions were identified; a low overpotential region with Tafel slope values 

varying between 304 – 239 mV dec
-1

 and current exchange densities of ca. 1.6 × 10
-3

 mA 

cm
-2

[XRD] and a high overpotential region with Tafel slopes of 497 – 453 mV dec
-1

 and 

current exchange densities of between 8.3 – 2.2 × 10
-3

 mA cm
-2

[XRD]. The two different 

Tafel regions, at low and high overpotentials, were attributed the second and the first step 

of the reaction mechanism for OER being the r.d.s., respectively. The high Tafel slope 

values obtained for both regions, b ~  and  comparing to the theoretical values 

of b ~  and  reported for the electrochemical oxidation mechanism for OER in 

acidic media, is attributed to the different characteristics of the oxide layer of IrO2 formed 

in the high pH environment provided by CsH2PO4. The low proton concentration provided 

by the solid acid is considered to be responsible of the formation of a non-hydrated oxide, 

with less activity towards OER.  

The electrolysis system exhibited a maximum activity of 20 mA cm
-2

 at 1.90 V and 265 ºC. 

The poor activity of the system is mainly attributed the low water concentration in the 

anode at the operation conditions, RH = 3.0 %, and to the low activity of non-hydrated 

iridium oxide towards OER, caused by the high pH of the electrolyte.   

The durability of the system under constant potential application (1.80 V) showed that 

current density undergoes a decay of approximately 0.5 mA day
-1

. This is mainly attributed 
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to catalyst deactivation caused by the low proton concentration in the system and to the 

increase in the ohmic resistance of the electrolyte. This last effect is proposed to be caused 

by a catalytically driven dehydration of CsH2PO4 by IrO2, which presumably utilised the 

water produced as reactant in the system. This could explain the higher value obtained for 

the Ea in the solid system, 108 kJ mol
-1

, comparing to that obtained in the half-cell in 

aqueous solution. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

In this chapter, the main conclusions obtained in this research are summarised and the 

applicability of CsH2PO4 as proton conducting material in an intermediate temperature 

PEM water electrolysis system evaluated. Different approaches and suggestions for 

potential application of inorganic proton conductors in PEM water electrolysis and other 

electrochemical devices are proposed. 

8.1.    Conclusions 

Phosphate-based solid acids (MH2PO4, where M = Li, K, Rb, Cs, NH4) were synthesised 

and characterised in order to address their physico-chemical and electrochemical 

properties.  

 All solid acids exhibited a clear transition to proton conductors in the intermediate 

temperature range (150 – 300 ºC). Maximum values of proton conductivity, over 10
-2 

S cm
-1

, were obtained for CsH2PO4 at temperatures between 230 and 280 °C.  

 Although it is reported that no water is required for proton transport in solid acids, in 

real operating conditions water must be provided to the system in order to maintain 

proton conductivity and material stability.  

 A significant mass loss takes place for all phosphate-based solid acids close to the 

proton conducting transition temperatures when no humidification is provided, which 

is attributed to dehydration for all cases except of NH4H2PO4, where chemical 

decomposition to ammonia and phosphoric acid is assumed.  

 CsH2PO4 exhibited good stability in terms of water solubility at high humidification 

rates and dehydration was proved to be avoided when PH2O > 0.12 atm is applied to the 

system. Rehydration of the material, this is, hydrolysis of condensed phosphates, can 

be carried out at PH2O > 0.31 atm being the rehydration rate faster at higher water 

partial pressures. Higher humidification rates are therefore needed to trigger 

rehydration than to avoid dehydration. 
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Five different methods were proposed for the fabrication of CsH2PO4-based composite 

membranes; (1) casting of CsH2PO4/polymer membrane, (2) CsH2PO4-doped polymeric 

membrane, (3) glass-fibre reinforced membranes, (4) electrospinning of CsH2PO4 fibre mat 

and (5) the casting of partially polymerised CsH2PO4.  

 Membranes fabricated by the glass-fibre reinforced method exhibited the highest 

proton conductivity, 8 × 10
-3

 S cm
-1

 at 275 °C.  

 All methods using polymer as a binder, doped membrane or to occlude porosity, show 

low proton conductivity, < 3 × 10
-4

 S cm
-1

, caused by the isolating properties of the 

polymer and low acid uptake.  

 Membranes fabricated by the casting of partially polymerised CsH2PO4 exhibited a 

maximum conductivity value of 2 × 10
-3

 S cm
-1

 at 250 °C. 

The effect of pH and anion concentration on the electrochemical active surface (EAS) of 

IrO2 and Pt black and the activity of IrO2 towards OER were addressed in a half-cell using 

a saturated solution of CsH2PO4. Results were compared to those obtained in H2SO4 and 

H3PO4 aqueous electrolytes. 

 Lower pH values increase the integrated charge for both catalysts explained by higher 

proton accessibility to the catalytic sites. Anion adsorption onto the catalyst surface 

affects the amount of free catalyst and thus, EAS for both Pt and IrO2.  

 The performance of IrO2 in saturated solution of CsH2PO4 shows a significantly low 

activity towards OER. Steady-state linear sweeps suggest that the activity of IrO2 

towards OER is strongly dependant on the pH. The main reason for the poor 

performance on CsH2PO4 is attributed to the high pH of the solution (pH = 4.63). 

Onset potential for OER in CsH2PO4 shows the highest overpotential of all electrolytes 

(> 200 mV), attributed to the stronger adsorption of phosphates compared to sulphate 

anions and to the highest anionic concentration of all solutions.  

 The kinetic study of IrO2 in the different electrolytes proves that the oxidation of 

iridium towards a more active oxidation state for OER take place before the actual 

reaction. All solutions exhibited similar Tafel slopes at the moderate overpotential 

region, ca. , attributed to the second step of the reaction mechanism being the 

r.d.s. The high overpotential Tafel region, attributed to the first step of the reaction 
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mechanism as the r.d.s, exhibited a very significant difference in Tafel slopes between 

CsH2PO4 and the rest of the acids. This suggests that the limiting step of this reaction 

is highly dependent on the proton concentration in solution.  

 CsH2PO4 in solution is not a favourable electrolyte for IrO2 towards OER. The low 

acidity inhibits the activity of the catalyst driven presumably by a modification of the 

oxide layer thickness and composition, to a non-hydrated and less active oxide.  

CsH2PO4 was evaluated as solid-state proton conducting electrolyte in a single-cell 

electrolyser at the intermediate temperature range (235 – 275 ºC).  

 Minimum resistance of 1.5 Ω cm
2
 was obtained for a 300 µm thick pellet and 1.0 Ω 

cm
2
 for an 85 µm glass-fibre reinforced membrane.  

 The hydrogen evolution reaction (HER) under platinum exhibited a maximum activity 

value of 20 mA cm
-2

 at 50 mV overpotential and 265 ºC. Tafel slope values between 

87 and 52 mV dec
-1

 and exchange current densities of ca. 1.3 × 10
-2

 mA cm
-2

[XRD] 

were obtained.  

 Oxygen evolution reaction (OER) exhibited the highest contribution to the losses of 

the electrolyser. The maximum activity obtained was 20 mA cm
-2

 at ca. 600 mV 

overpotential and 265 ºC. Two Tafel regions were identified; a low overpotential 

region with Tafel slope values varying between 304 – 239 mV dec
-1

 and current 

exchange densities of ca. 1.6 × 10
-3

 mA cm
-2

 and a high overpotential region with 

Tafel slopes of 497 – 439 mV dec
-1

 and exchange current densities of 8.3 – 2.2 × 10
-3

 

mA cm
-2

. Apparent Ea of 108 kJ mol
-1

 was estimated for the high overpotential region. 

 The electrolysis system exhibited a maximum activity of 20 mA cm
-2

 at 1.90 V and 

265 ºC. The poor activity of the system is mainly attributed the low water 

concentration in the anode at the operation conditions, RH = 3.0 %, and to the low 

activity of iridium oxide towards OER, caused by the high pH of the electrolyte.   

 The durability of the system under constant potential application (1.80 V) showed that 

current density undergoes a decay of approximately 0.5 mA day
-1

. This is attributed to 

catalyst deactivation caused by the low proton concentration in the system and to the 

increase in the ohmic resistance of the electrolyte. This last effect is proposed to be 

caused by a catalytically driven dehydration of CsH2PO4 by IrO2, which presumably 

utilised the water produced as reactant in the system.  
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Considering all the conclusions derived from the analysis of the data obtained in this 

research, it is concluded that, opposite to what it was expected, CsH2PO4 is not a 

favourable electrolyte for application in an intermediate temperature PEM water 

electrolysis system. The main drawback for the application of this material is the low 

oxygen evolution reaction rate of iridium oxide in the high-pH electrolytic environment 

provided by CsH2PO4. Other issues, such as the ohmic resistance provided by the high 

thickness electrolyte or its durability under long-term operation or pressurised conditions 

make CsH2PO4, and presumably the rest of phosphate-based solid acids, non applicable in 

this electrochemical system. 

8.2.    Future work 

The high pH environment provided by CsH2PO4 in the catalytic region reduces 

dramatically the activity of iridium oxide towards oxygen evolution reaction, even at 

intermediate temperatures, where kinetics are enhanced. A suggestion for a further analysis 

and development of this water electrolysis system is proposed: 

 The kinetic study of IrO2 towards oxygen evolution reaction in aqueous solution 

carried out in this research and its comparison to the solid state system rather ‘risky’ 

because of the difference between both system, in ion movility or water concentration 

for instance. For further analysis of iridium oxide performance towards OER, the 

kinetic study of IrO2 in melted CsH2PO4 is suggested. For this purpose, a standard 

half-cell setup with a IrO2 microelectrode to avoid mass transport issues is proposed. 

The system should be fed with water-saturated N2 in order to avoid dehydration and 

provide reactant for the reaction. 

 The use of alternative non-precious metal based catalysts may provide higher activity 

at the low acidic / neutral environment, reducing also the overall cost of the system. 

Co and Ni –based catalyst are proposed in the literature as alternative catalyst for OER 

in neutral conditions. Cobalt phosphate catalyst or other non precious metal-based 

phosphates may present an interesting alternative for a suitable compatibility between 

both phosphate-based electrolyte and catalyst [1-3]. 

Phosphate-based solid acids, specially CsH2PO4 due to its highest conductivity, could be 

applied as solid proton conducting agents in other different electrochemical devices rather 

than PEM water electrolysis. Electrochemical systems could benefit from the intermediate 
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temperature operation range and the mild acidity conditions provided by these materials. 

Next some suggestions of electrochemical systems are proposed: 

 The methodology developed in this research for the fabrication of CsH2PO4 

microfibers could be used for the preparation of CsH2PO4–based electrodes for 

intermediate temperature fuel cells. CsH2PO4 fibers would act as catalyst support 

providing a highly interconnected proton conducting framework in the catalyst layer 

increasing the triple-phase boundary on the electrode. The deposition of platinum on 

the CsH2PO4 fibers-mat could be carried out by sputtering techniques [4].  

 Electrochemical sensors integrated in systems where the temperature reaches the 

intermediate range (150 – 300 ºC) may benefit from a solid acid electrolyte, as few 

other materials conduct protons at intermediate temperatures. The sudden transition of 

most solid acids to a proton conducting state at the intermediate temperature range 

could also be use as an indicator in these electrochemical devices.  

 Electrochemical H2 purification systems, commonly based in low temperature proton 

conductors, may benefit of a higher efficency at higher operation temperatures. The 

temperature limitations provided by the polymeric electrolyte (i.e. Nafion®) could be 

overcome by the use of a solid acid as electrolyte. 
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APPENDIX A 

SUPPORTING INFORMATION 

In this section the data not exhibited in the thesis is included as supporting information for 

the reader. All figures exhibited in this section were addressed in the text. 

   

Figure A.1. Electrical resistance of electrolysis cell (figure 3.10) at different pressures applied by the piston. 

 

 

Figure A.2. CVs of Pt in 5.15 M (—) H2SO4. (—) H3PO4 and (—) CsH2PO4 at (a) 40 ºC, (b) 60 ºC and (c) 80 

ºC (scan rate = 50 mV sec
-1

). 

(a) (b) 

(c) 
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Figure A.3. CVs of IrO2 in 5.15 M H2SO4 at (—) 40 ºC, (—) 60 ºC, (—) 80 ºC. 

 

  

Figure A.4. CVs of IrO2 in 5.15 M H3PO4 at (—) 40 ºC, (—)  60 ºC, (—) 80 ºC. 

 

  

Figure A.5. CVs of IrO2 in 5.15 M CsH2PO4 at (—) 40 ºC, (—)  60 ºC, (—) 80 ºC. 
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Figure A.6. Outer charge (left) and total charge (right) calculation plots for 5.15 M H2SO4, H3PO4 and 

CsH2PO4 aqueous electrolytes at 40, 60 and 80 °C. 
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Figure A.7. HER polarisations  with 1.0 mg Pt cm
-2

 and 5.15 M aqueous CsH2PO4 (sweep rate = 1 mV s
-1

). 

 

 

Figure A.8. OER polarisations of IrO2 at 40°C (sweep rate = 1 mV s
-1

). 

 

 

Figure A.9. OER polarisations of IrO2 at 50°C (sweep rate = 1 mV s
-1

). 
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Figure A.10. OER polarisations of IrO2 at 60°C (sweep rate = 1 mV s
-1

). 

 

 

Figure A.11. OER polarisations of IrO2 at 70°C (sweep rate = 1 mV s
-1

). 

  

 

 

5.15 M CsH2PO4 
5.15 M H3PO4 

5.15 M H2SO4 

0.10 M H2SO4 

5.15 M CsH2PO4 

5.15 M H3PO4 

5.15 M H2SO4 

0.10 M H2SO4 



                                                               Appendix B: List of Publications and Dissemination 

216 
 

APPENDIX B 

LIST OF PUBLICATIONS AND DISSEMINATION 

PUBLICATIONS: 

Published papers in scientific journals: 

1. A. Goñi-Urtiaga, D. Presvytes and K. Scott, Solid acids as electrolyte materials for Proton 

Exchange Membrane (PEM) electrolysis: Review. International Journal of Hydrogen Energy, 

2012, 37(4). 

2. A. Goñi-Urtiaga, K. Scott, S. Cavaliere, D. J. Jones and J. Roziére, A new fabrication method 

of an intermediate temperature proton exchange membrane by the electrospinning of 

CsH2PO4. Journal of Material Chemistry, 2013, 1. 

Papers to submit to scientific journals: 

3. A. Goñi-Urtiaga, M. Mamlouk and K. Scott, Cesium dihydrogen phosphate as electrolyte for 

PEM water electrolysis. Part 1 – The influence of the aqueous electrolyte on the oxygen 

evolution reaction behavior of iridium oxide.  

4. A. Goñi-Urtiaga and K. Scott, Cesium dihydrogen phosphate as electrolyte for PEM water 

electrolysis. Part 2 – The application of a solid electrolyte in an intermediate temperature 

water electrolyser. 

CONFERENCES: 

Oral presentations: 

5. A. Goñi-Urtiaga and K. Scott, Membrane materials for PEM electrolysers. 9
th
 ISCARW 

hydrogen safety course, Belfast, UK, 11 – 15 October 2010. 

6. D. Prevytes, A. Goñi-Urtiaga and K. Scott. Towards a High Temperature Water Electrolyser 

- Electrocatalysis and Membranes. Electrochem 2011 conference, Bath (UK), 5 – 6 

September 2011. 

7. A. Goñi-Urtiaga and K. Scott, Development of Composite Membranes based on Solid Acids 

for Medium Temperature PEM Electrolyser. CEAM postgraduate student research 

conference, Newcastle upon Tyne (UK), 19 – 20 March 2012. 

8. A. Goñi-Urtiaga, K. Scott, D.J. Jones and J. Roziére, Fabrication of a intermediate 

temperature proton conducting membrane by the electrospinning of phosphate-based solid 

acids. E-MRS 2012 Spring Meeting, Strasbourg (France), 14 – 18 May 2012. 

9. A. Goñi-Urtiaga and K. Scott, Development of CsH2PO4 – based composite membranes for 

Medium Temperature PEM Electrolyser. CEAM postgraduate student research conference, 

Newcastle upon Tyne (UK), 20 – 21 March 2013. 



                                                               Appendix B: List of Publications and Dissemination 

217 
 

10. A. Goñi-Urtiaga and K. Scott, Development of composite membranes of phosphate-based 

solid acids for medium temperature PEM fuel cell and electrolyser. 4
th
 European PEFC and 

H2 forum, Lucerne (Switzerland), 2 – 5 July 2013. (oral presentation) 

11. A. Goñi-Urtiaga and K. Scott, Cesium dihydrogen phosphate as electrolyte for Intermediate 

Temperature Proton Exchange Membrane Water Electrolysis (IT-PEMWE). SUSHGEN 

final workshop, Paris (France), 29 November 2013. 

Poster presentations: 

12. A. Goñi-Urtiaga and K. Scott, Membrane materials for PEM electrolysers. Carisma II 

International Conference on medium and high temperature proton exchange membrane fuel 

cells, La Grande Motte (France), 20 – 24 September 2010. 

13. A. Goñi-Urtiaga and K. Scott, Fabrication of solid acid based composite membranes for 

medium temperature PEM electrolysis. ‘Water electrolysis and hydrogen as part of the future 

renewable energy system’ symposium, Copenhagen (Denmark), 10 – 11 May 2012. 

14. A. Goñi-Urtiaga and K. Scott, Development of composite membranes of phosphate-based 

solid acids for medium temperature PEM fuel cell and electrolyser. 4
th
 European PEFC and 

H2 forum, Lucerne (Switzerland), 2 – 5 July 2013. (poster presentation) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

218 
 

 

 

 

 


