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ABSTRACT 

Autoimmune Addison’s disease (AAD) is a rare and highly heritable 

endocrinopathy. It is a complex genetic disease, meaning that it is due to a 

combination of interacting environmental and genetic factors. To date, the 

majority of the substantial genetic component to AAD aetiology remains 

undefined. In this study, a combination of hypothesis-driven (candidate gene) 

and discovery-driven (genome-wide) approaches have been used to search for 

novel genetic determinants of AAD.  

 

PCR-based approaches were undertaken to study the potential role of the 

CYP21A1P pseudogene in AAD. CYP21A1P is highly homologous to the 

CYP21A2 gene which encodes 21-hydroxylase, the primary autoantigen in 

AAD. In individuals with AAD, CYP21A1P is more likely to be absent from the 

genomic DNA sequence than in controls. qPCR and in situ hybridisation have 

been successfully combined to identify CYP21A1P transcripts in thymic, and 

fetal adrenal, tissue. These data perhaps indicate a role for CYP21A1P in 

induction of immune tolerance, with its loss being associated with autoimmunity 

against the steroidogenic apparatus.  

 

Taking a broader candidate gene approach, the largest association analysis in 

AAD to date, of twenty candidate genes in six European AAD cohorts, suggests 

a role for NF-κB1, IL23A and GATA3 variants in susceptibility to AAD in 

individual European cohorts, and a role for STAT4 more universally in AAD.  

 

SNP array technology has been used to conduct the first genome-wide linkage 

and association analysis in AAD. The linkage study, including 23 families, has 

linked regions on chromosomes 6, 7, 9 and 18 to disease. A genome-wide 

association analysis, comparing the 50 familial AAD cases to the Wellcome 

Trust 1958 UK Birth Cohort control group, revealed clusters of associated SNPs 

on chromosomes 2 and 6.  
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This body of work has illustrated some of the challenges in investigating a rare, 

complex genetic disorder, and how international collaboration can help to 

resolve some of these issues. In the course of this work, in addition to 

identifying a number of novel genetic determinants to AAD, exciting preliminary 

results have been generated which will need to be followed up. It is hoped that 

once these preliminary findings are replicated and further investigated, they will 

contribute significantly to an increase in our understanding of the pathogenesis 

of AAD, with the long-term aim of identifying novel means of treating the 

disease, altering its natural history or even preventing it.    
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1.1 TOLERANCE AND THE PATHOGENESIS OF AUTOIMMUNITY 

1.1.1 IMMUNITY, TOLERANCE AND AUTOIMMUNITY 

The immune system has evolved to protect the host from a wide variety of 

pathogens: this is achieved through a combination of innate and adaptive 

mechanisms. The innate immune system is concerned with the immediate and 

rapid defence of the host in a generic and nonspecific manner; it is made up of 

a number of different cell types and mechanisms. Primarily, its functions include 

pathogen recognition, immune and inflammatory cell recruitment through the 

production of chemokines and cytokines, activation of the complement cascade 

and activation of the adaptive immune system through antigen presentation. 

The main functions of the adaptive immune system are to recognise foreign 

antigens presented in the context of major histocompatibility complex (MHC) 

molecules during the process of antigen presentation, to respond rapidly and 

specifically to pathogens or to cells harbouring pathogens and to establish 

immunological memory for future defence. The adaptive immune response has 

two arms: an afferent, antigen presenting element, consisting of tissue 

macrophages and dendritic cells, and an effector arm comprising both T and B 

lymphocytes[1]. The immune system must achieve a fine balance between the 

need to fight infection and the need to maintain tolerance to self-antigens.  

 

Tolerance refers to the immune system’s ability to distinguish between native or 

self-antigens, which should not induce an immune response, and antigens from 

pathogens, which should provoke a vigorous immune response. Tolerance can 

be divided into two distinct mechanisms: central and peripheral tolerance 

(Figure 1). 
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Figure 1: Mechanisms of T cell-mediated immunity and tolerance.  

Foreign antigen presented on MHC molecules induces clonal proliferation and 
an immune response. In the thymus, self-antigen presented on MHC molecules 
induces clonal deletion (negative selection). Autoreactive T cells escaping to the 
periphery can be neutralised by one of three mechanisms. Firstly, regulatory T 
cells (TReg) may suppress their activity, directly through cell to cell contact, or 
through secreted cytokines. Secondly, encountering self-antigen presented by 
MHC molecules, but in the absence of a co-stimulatory molecule, induces 
anergy (hyporesponsiveness). Finally, repeated stimulation from a self-antigen, 
even in the presence of a co-stimulatory signal, induces activation-induced cell 
death. 
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1.1.1.1 CENTRAL TOLERANCE 

Both T and B lymphocytes are generated in the bone marrow. B lymphocytes 

mature in situ while T cells must travel to the thymus to undergo maturation. In 

the thymus, T lymphocytes undergo induction of central tolerance. Initially, they 

must undergo a process of positive selection whereby T cells which do not 

recognise self-MHC molecules presented to them by thymic medullary epithelial 

cells are destroyed. T cells which “pass” the positive selection process then 

undergo negative selection in the thymic medulla. Here, any T cells with a T cell 

receptor which responds to self-antigen in the context of MHC molecules 

(autoreactive T cells) presented by dendritic cells are deleted[2, 3]. The 

autoimmune regulator (AIRE) protein, a transcription factor encoded by the 

AIRE gene, is thought to be crucial in establishing central tolerance. AIRE is 

expressed in medullary thymic epithelial cells and allows them to express a 

wide variety of peripheral self-antigens which would not otherwise be present in 

the thymus, allowing identification and destruction of autoreactive T 

lymphocytes[4]. In support of the crucial role of AIRE in induction of tolerance, 

AIRE deficient mice have defective T lymphocyte negative selection and 

develop organ-specific autoimmune conditions[5], as do humans with mutations 

in the AIRE gene[6]. Even with AIRE allowing expression of a diverse array of 

antigens, some autoreactive T cells inevitably escape deletion, in particular 

those with receptors which have a low affinity for self-antigens that are rare in 

the thymus. 

 

B cells must also learn to be tolerant: this occurs in the bone marrow as they 

mature. Following the construction of the B cell receptor by heavy and light 

chain gene rearrangements, each B cell is “tested” to determine whether it is 

autoreactive. This is similar to the negative selection process which T 

lymphocytes must undergo. Autoreactive B cells are then thought to undergo 

receptor editing, whereby further light chain gene rearrangements may occur. 

Following receptor editing, any B lymphocyte that remains autoreactive is 

deleted. AIRE is not expressed in the bone marrow, and therefore B cells with 
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receptors that recognise antigens which are not expressed here may be 

released into the periphery.  

1.1.1.2 PERIPHERAL TOLERANCE 

Peripheral tolerance has evolved to control autoreactive lymphocytes which 

escape deletion centrally and involves a number of mechanisms. Newly 

released T and B lymphocytes are restricted to circulating through the 

secondary lymphoid organs, such as the lymph nodes and spleen, where they 

are most likely to encounter antigen presenting cells and therefore be of use. 

The self-antigens which are present in abundance in the secondary lymphoid 

organs are the same as those present in the bone marrow and thymus, 

therefore the cells likely to react to these antigens will already have been 

eliminated. If autoreactive T or B cells do leave the secondary lymphoid organs, 

other peripheral mechanisms are in place to prevent autoimmunity.  

 

Regulatory T cells (TReg) are a subset of CD4+ T lymphocytes which play an 

important role in maintaining tolerance in the periphery[7]. Natural and inducible 

TReg cells express CD25, CD4, cytotoxic T-lymphocyte antigen 4 (CTLA4) and 

forkhead box P3 (FOXP3)[8, 9]. Their primary function is to curb both 

physiological and pathological immune responses. However, the mechanism or 

mechanisms by which this suppression is achieved are not yet fully understood. 

TReg cells are thought to function in a contact-dependent manner, whereby they 

interact directly with T lymphocytes[10], perhaps allowing inhibitory co-

stimulatory molecules such as CTLA4[11, 12] to be engaged. Cytokines such as 

interleukin-10 (IL10) and transforming growth factor beta (TGFβ) are also 

thought to play a role in the suppressive functions of the TReg population, 

although there is some debate as to whether this is a major or minor role. On 

the one hand, in vitro studies with T cells unable to produce these cytokines 

have demonstrated that TReg cells can still function in their absence[10, 13]; 

conversely, in vivo studies in mice suggest that cytokines may play a more 

important role in TReg function than originally thought, suppressing both innate 

and adaptive immunity through secreted factors[14, 15]. The critical role of TReg 

cells in maintaining tolerance in the periphery has been illustrated in a number 
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of animal models. If congenitally T cell deficient BALB/c athymic nude mice are 

inoculated with T cell suspensions free of CD25+ cells from normal BALB/c mice, 

they develop autoimmune disease affecting multiple organs including the 

pancreas, gonads, thyroid and stomach[16]. If CD25+ non-depleted T cell 

suspensions were inoculated at the same time, autoimmune disease did not 

ensue [16]. Mutations in the FOXP3 gene in humans result in the immune 

dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome[17], a 

disease where autoimmunity predominates, further supporting the role of the 

TReg subpopulation in tolerance. 

 

In the periphery, in addition to TReg cells exerting a suppressive effect on 

autoreactive T cells, they may also be rendered anergic or hyporesponsive if 

they encounter antigen in the absence of a co-stimulatory signal[18-20]. Classical 

antigen presenting cells, such as macrophages and activated B cells, present 

antigen on MHC molecules. A second co-stimulatory signal results in  

T lymphocyte activation, for example from a B7 molecule which interacts with 

CD28 on the T lymphocyte’s cell surface. Non-antigen presenting cells, for 

example adrenal cortical cells, will display low levels of self-antigen on MHC but 

lack co-stimulatory molecules. T cells recognising self-antigen on a non-antigen 

presenting cell will therefore be rendered anergic by the lack of co-

stimulation[21]. In addition, T cells may also be rendered anergic if they receive 

strongly inhibitory costimulatory signals[22]. B cells also require a second signal 

to be activated, either from a helper T lymphocyte (TH), or via pattern 

recognition receptors which recognise bacterial or parasitic molecular patterns. 

These anergy-inducing mechanisms reduce the possibility of B cell mediated 

autoreactivity[23, 24].  

 

Another important mechanism for preserving tolerance is activation-induced cell 

death. Autoreactive lymphocytes which escape deletion and encounter self-

antigen in the periphery will be stimulated again and again, unlike antigens from 

infectious agents which are dealt with swiftly by the immune response and 

cleared. This repeated stimulation is recognised as abnormal and results in the 

death of the autoreactive lymphocyte, a process known as activation-induced 
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cell death[25, 26]. Finally, some autoreactive lymphocytes may be released but 

never encounter the native antigen that they recognise, because it is contained 

within an immunologically privileged site. Such sites are physically isolated from 

the immune system because lymphocytes are prevented from encountering 

self-antigens by a physical barrier such as the blood-brain barrier.  

 

If the balance between immunity and tolerance is not achieved and the immune 

system responds inappropriately to self-antigens, tolerance is lost and 

autoimmunity arises. Autoimmunity can be subdivided into organ-restricted 

conditions where one organ, or part of an organ, is the target of the immune 

response, for example autoimmune Addison’s disease (AAD), vitiligo or type 1 

diabetes, and systemic diseases where multiple tissues and organs are 

affected, such as rheumatoid arthritis or systemic lupus erythematosus (SLE). 

The mechanisms through which tolerance is lost and autoimmunity arises are 

not yet fully understood. These mechanisms are likely to be complex and 

multiple, involving both intrinsic features of the affected individual and extrinsic 

factors, such as genetic factors and environmental influences respectively.   

1.2 PRIMARY ADRENAL INSUFFICIENCY 

Primary adrenal insufficiency arises if the adrenal glands are destroyed, absent 

or are unable to function appropriately. Some of the many diverse causes of this 

problem are outlined in Table 1[27]. Firstly, defects in steroidogenesis can result 

in primary adrenal insufficiency. The most common example is 21 hydroxylase 

(21OH) deficiency occurring as a result of mutations in the gene encoding the 

enzyme cytochrome P450, family 21, subfamily A, polypeptide 2 (CYP21A2). 

These mutations cause congenital adrenal hyperplasia (CAH), one of the most 

common autosomal recessive conditions. Second, primary adrenal insufficiency 

may be caused by genetic defects that result in adrenal dysgenesis, for 

example mutations in the dosage-sensitive sex reversal, adrenal hypoplasia 

critical region, on chromosome X, 1 (DAX-1) gene resulting in congenital 

adrenal hypoplasia. Finally, destruction of the adrenal glands, for example by 

infiltration from malignant metastases or amyloidosis, haemorrhage and 

infarction in disseminated meningococcal septicaemia (Waterhouse-
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Friderichsen syndrome) or by autoimmune disease can result in primary adrenal 

insufficiency.  

1.2.1 A BRIEF HISTORY OF ADDISON’S DISEASE 

Dr Thomas Addison, a British physician born and raised in Newcastle upon 

Tyne, first described a condition with characteristic symptoms that include 

postural hypotension, lassitude, and increased pigmentation associated with 

pathological changes in the adrenal glands in his work ‘On the Constitutional 

and Local Effects of Disease of the Suprarenal Capsules’ in 1855[28]. This 

condition, now known eponymously as Addison’s disease, is a chronic disease 

due to the destruction of adrenocortical steroidogenic cells which results in 

primary adrenal insufficiency characteristically with both glucocorticoid and 

mineralocorticoid hormone deficiencies.  

 

Addison’s original description referred to patients with primary adrenocortical 

failure due to tuberculous infiltration of the adrenal glands. In the developed 

world today, autoimmune destruction of the adrenals is now the most common 

cause of Addison’s disease[29-32] .Regardless of aetiology, adrenal insufficiency 

was universally fatal until the 1940s, when the first cortisol precursors were 

synthesised and given to patients. These compounds revolutionised the 

management, turning it from a fatal condition into a chronic and manageable 

disease. 

1.3 AUTOIMMUNE ADDISON’S DISEASE 

Autoimmune Addison’s disease (AAD) is a relatively rare endocrine condition 

with a prevalence in the Caucasian European adult population of 110–140 

cases per million[31, 33, 34], making it 30- and 200-fold less prevalent than type 1 

diabetes and autoimmune thyroid diseases respectively. AAD displays a 

predilection for females, affecting three times as many women as men. Most 

often, it presents in individuals between the ages of 30 and 50 years, although it 

can affect people at any age[31]. In AAD, the steroidogenic enzymes within the 

steroidogenic cells of the adrenal cortex, form the target of a misdirected 
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immunological attack which leads to adrenal cortex destruction and failure of 

glucocorticoid and mineralocorticoid hormone production. The primary 

autoantigen in AAD is the 21-hydroxylase (21OH) steroidogenic enzyme[35] and 

autoantibodies to 21OH can be detected in 85% of individuals presenting with 

primary adrenal failure, thus defining them as having AAD[35]. 21OH 

autoantibodies predominantly have an immunoglobulin G subclass 1 (IgG1) 

isotype and target the carboxy terminal of this enzyme[36]. Although in vitro 

these antibodies can inhibit the enzymatic activity of 21OH by preventing its 

interaction with cytochrome P450 oxidoreductase[37, 38] this finding has not been 

replicated in vivo[39].  
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Category Examples 

Impaired 
steroidogenesis 

1) Defects in cholesterol biosynthesis 
 - Smith-Lemli-Opitz syndrome 
 - Abetalipoproteinaemia 
2) Defects in steroid biosynthesis  
 - StAR mutations 
 - Mitochondrial mutations 
 - Mutations in genes encoding steroidogenic enzymes 
resulting in congenital adrenal hyperplasia 
- Scavenger receptor BI mutations 

Adrenal dysgenesis/ 
hypoplasia 

 - DAX1 mutations 
 - SF1 mutations 
 - ACTHR mutations 
 - GPX1 mutations 
 - NNT mutations 

Adrenal destruction  - Autoimmune 
 - Metastatic malignancy 
 - Infectious 
 - Amyloidosis 
 - Haemochromatosis 
 - Haemorrhagic 
 - Adrenoleukodystrophy 
 - Sarcoidosis 

Table 1: Aetiologies of primary adrenal insufficiency. 

StAR, steroidogenic acute regulatory protein; DAX-1, Dosage-sensitive sex 
reversal-adrenal hypoplasia gene 1; SF1, steroidogenic factor 1; ACTHR, ACTH 
receptor gene. GPX1, glutathione peroxidase 1; NNT, nicotinamide nucleotide 
transhydrogenase. 
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The 21OH enzyme is located intracellularly on the smooth endoplasmic 

reticulum of intact cells[40] and this location precludes its direct interaction with 

circulating autoantibodies. Despite their apparent lack of functional activity, the 

presence of circulating 21OH autoantibodies is a reliable predictor of the 

development of AAD, since they indicate an ongoing autoimmune process 

within the adrenal glands. The proportion of individuals with idiopathic Addison 

disease in whom 21OH autoantibodies cannot be detected but who have 

disease with an underlying autoimmune aetiology, for example individuals with 

an aberrant immune response to other adrenal antigens, remains unknown. 

However, in addition to 21OH, other autoantigens have been identified in 

patients with AAD, including steroid 17-α-hydroxylase[41] and the cholesterol 

side-chain cleavage enzyme[42]. It is possible that those individuals who appear 

to have an autoimmune aetiology underlying their Addison’s disease have other 

autoantibodies not routinely measured. Biochemically, Addison’s disease 

results in reduced or absent glucocorticoid (namely cortisol) production with a 

compensatory increase in pituitary adrenocorticotrophic hormone (ACTH) 

secretion, due to a disruption in the hypothalamic-pituitary-adrenal axis 

feedback loop (Figure 2). It also results in reduced or absent mineralocorticoid 

(namely aldosterone) production. Mineralocorticoid deficiency causes a fall in 

blood pressure and postural hypotension, which stimulate renal renin secretion. 

1.3.1  CLINICAL PRESENTATION OF AAD 

As would be predicted, the clinical signs and symptoms associated with AAD 

correlate closely with glucocorticoid and mineralocorticoid deficiency. Affected 

individuals often present following a protracted period of ill-health and complain 

of non-specific symptoms including weight loss, lethargy, postural dizziness and 

nausea. Individuals will often develop increasing skin pigmentation, often 

considered the clinical hallmark of Addison’s disease. This is noted particularly 

in the skin flexures, scars and at areas of minor friction such as the knees and 

elbows. The increased pigmentation is widely thought to result from high levels 

of melanocyte-stimulating hormone, produced from the cleavage of ACTH from 

its precursor, pro-opiomelanocortin (POMC). However, anecdotally, we have 

noted that patients treated with synthetic ACTH also become pigmented, and 
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therefore this phenomenon may be directly due to the ACTH itself. 

Biochemically, affected individuals are often noted to be hyponatraemic and 

hyperkalaemic due to mineralocorticoid deficiency. A short synacthen test, 

whereby a bolus of synthetic ACTH analogue (synacthen) is given and the 

cortisol response measured at 30 and 60 minutes, reveals a subnormal 

response, while the ACTH level is often markedly elevated. 

 

Addisonian crisis, characterised by severe hypotension, hypoglycaemia, 

electrolyte disturbances, coma and sometimes death, may occur, often during a 

relatively minor concurrent illness, if the insidious symptoms and signs go 

unrecognised.  

 

Individuals diagnosed with AAD are dependent lifelong upon glucocorticoid and 

mineralocorticoid replacement and they face life-threatening consequences 

should these be omitted. Despite adequate replacement therapy, affected 

individuals have a poorer quality of life when compared to unaffected 

individuals[43], increased morbidity, resulting mainly from steroid-related 

osteoporosis and type 2 diabetes, and reduced life expectancy compared to 

their peers[44].  

1.3.2 THE NATURAL HISTORY OF AAD 

A series of phases have been proposed to occur in the natural history of 21OH 

autoantibody-positive AAD (Figure 3)[45]. During the earliest (potential) AAD 

phase, autoantibodies are present, but parameters of adrenal function remain 

entirely normal and no clinical features of disease are present. The subclinical 

phase follows, in which adrenal function gradually declines but clinical 

symptoms of AAD remain absent. Typically, during this phase, an initial rise in 

plasma renin and/or ACTH levels is evident before basal, and then stimulated, 

circulating cortisol concentrations become subnormal (<550nmol/l after 

synacthen stimulation) in a short synacthen test. Finally, clinical AAD develops. 

It is only at this stage that the affected individual becomes symptomatic, often 

with fatigue and pigmentation at first.
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Figure 2: Simplified schematic of the hypothalamic-pituitary-adrenal axis. 

Schematic simplification of the hypothalamic-pituitary-adrenal axis. 
Corticotropin-releasing hormone (CRH) is secreted from the hypothalamus and 
induces secretion of adrenocorticotrophic hormone (ACTH) from the anterior 
pituitary. This is turn results in glucocorticoid secretion from the adrenal cortex. 
Adequate glucocorticoid secretion prevents further ACTH and CRH secretion 
from the pituitary and hypothalamus respectively through a negative feedback 
loop (red arrows). If the adrenal cortex is destroyed, glucocorticoid secretion 
fails and the negative feedback is lost, resulting in increased CRH and ACTH 
secretion.     
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Figure 3: Glucocorticoid-induced immune privilege. 

A hypothetical model of the pathogenesis of autoimmune Addison’s disease 
(AAD) based on the breakdown of glucocorticoid-induced immune privilege. 
Gradual immune-mediated destruction of the adrenal gland occurs in patients 
with AAD. Stage 0 corresponds to the “potential” phase in the natural history of 
this disorder. Once tolerance to adrenal antigens is lost (stage 1), increased 
antigen presentation leads to increasing inflammatory infiltrates in the gland. 
Adrenocytes are damaged by this immune response and, in stage 2, local 
glucocorticoid production is impaired. Stages 1 and 2 correspond to the 
“subclinical” phase of AAD. Eventually, in stage 3, the adrenal cortex is 
destroyed and steroidogenesis ceases, which corresponds to the phase of 
“overt” clinical AAD[1]. 
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In a clinical study, 31% of initially asymptomatic individuals with steroid 21OH 

autoantibodies developed AAD. There was marked variation in the time taken to 

progress from autoantibody positivity to overt adrenal failure, with the duration 

ranging from 3 months up to 11 years in different patients[46]. Moreover, not all 

autoantibody positive individuals went on to develop progressive disease: some 

remain in the potential phase, never developing AAD, and some revert to being 

antibody-negative[45, 46]. It is not currently clear what causes some people to 

progress to disease development while others clear their autoantibodies. 

However, it does appear that patients with high titers of 21OH autoantibodies 

tend to progress more rapidly than those with low titers, perhaps indicating a 

more aggressive immune response. A case describing a woman with a 9 year 

history of hyperpigmentation, raised circulating ACTH levels and high steroid 

21OH autoantibody levels but a normal cortisol response to synacthen, 

highlights that individual responses to the presence of an ongoing autoimmune 

response are highly variable and rather unpredictable[47]. Similarly, case reports 

of two patients with remission of apparently established AAD[48, 49] and another 

with subclinical AAD and 21OH antibodies that became undetectable following 

glucocorticoid therapy[50, 51] suggest that even in patients with impaired 

steroidogenesis, adrenal autoimmunity might not always be permanent.  

1.3.3  PATHOLOGICAL FINDINGS IN AAD 

In AAD, the autoimmune destruction of the adrenal cortex is evident both 

macro- and microscopically, and is thought to be mediated by both the cellular 

and humoral arms of the immune system.  

 

Macroscopically, individuals with AAD have small, atrophic adrenal glands 

identified by high-resolution imaging modalities or post-mortem examination[52]. 

Microscopically, histological examination of the adrenals of individuals with AAD 

reveals that the autoimmune process affects the entire cortex, from the outer 

zona glomerulosa, through to the inner zona reticularis. Cellular infiltrates are 

identifiable, consisting of lymphocytes, eosinophils, macrophages and plasma 

cells[53]. 
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Cellular immunity is thought to be integral to the autoimmune destruction that 

occurs in AAD. In particular, T lymphocytes, identifiable in the cellular infiltrates 

seen histologically in the adrenals of individuals with AAD, are thought to play a 

crucial role in starting, and then perpetuating, the autoimmune process through 

their two key functions: cytokine release and cell lysis and destruction. As 21OH 

autoantibodies are common at the time of diagnosis of AAD[54, 55], humoral 

immunity is also thought to play a role in its pathogenesis. The enduring 

mystery, in AAD and other autoimmune conditions, is the immunological 

mechanism by which immune tolerance is lost in the first place.    

1.3.4 ISOLATED AAD, APS1 AND APS2  

AAD may occur in isolation or as part of one of the autoimmune 

polyendocrinopathy syndromes (APS).  

 

APS type 1 (APS1, also known as autoimmune polyendocrinopathy, 

candidiasis, and ectodermal dystrophy syndrome; or APECED) is a rare, 

monogenic, autosomal recessive syndrome resulting from mutations in the 

AIRE gene located on chromosome 21[6, 56, 57]. APS1 has a prevalence of only 

three per million in the UK population[58]. However, it occurs more frequently in 

certain groups, including Iranian Jewish (1:9,000)[59], Sardinian (1:14,000)[60], 

Finnish (1:25,000)[61] and Norwegian populations (1:90,000)[62]. Affected 

individuals usually present in childhood with chronic mucocutaneous 

candidiasis, adrenocortical failure and autoimmune hypoparathyroidism. They 

may also have associated dental enamel hypoplasia or nail dystrophy 

(ectodermal dystrophy)[63-65] and may go on to develop other autoimmune 

disorders later in life including type 1 diabetes, pernicious anaemia and primary 

gonadal failure[63]. 

 

APS type 2 (APS2) is much more common than APS1 and accounts for 

approximately half of cases of primary adrenal failure[66]. It is defined as AAD in 

conjunction with autoimmune thyroid disease and/or type 1 diabetes[63]. Other 

autoimmune conditions may also arise in individuals with APS2, including 

vitiligo, pernicious anaemia and primary gonadal failure[63]. APS2 is more 
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common in women than men and often presents in the fourth decade of life[55, 67] 

in marked contrast to APS1.  

1.3.5 THE GENETIC BASIS OF ISOLATED AAD AND APS2 

The strong genetic component to AAD susceptibility has long been recognised, 

with multiple reports of concordant monozygotic twins[68-71]. Familial clustering of 

cases of AAD also suggests a genetic basis[72, 73]. Pooled data from studies 

comprising more than 600 unrelated non-APS1 AAD probands from Norway 

and the UK have revealed only 14 families (2.3%) that contain affected AAD 

sibling pairs. From this data, a sibling recurrence risk ratio (that is, the risk of 

disease in a sibling of an affected individual, divided by the disease prevalence, 

also expressed as lambda-sibling, λs) can be estimated by using the formula[74]: 

 

λs = sibling risk (%) / population prevalence (%) 

 

Therefore, if the population prevalence of AAD is between 0.011% (110 per 

million)[31] and 0.014% (140 per million)[34], the λs for AAD is estimated to be 

between 160–210[1]. This is in contrast to type 1 diabetes, Graves’ disease and 

Crohn’s disease for example, which have a λs of 15, 10–15 and 17–35 

respectively[75-78]. These epidemiological data therefore suggest that AAD is the 

complex autoimmune disorder with the highest genetic load. In addition, 

individuals with AAD will commonly report family members with other 

autoimmune conditions[79] and approximately 50% of individuals with AAD will 

have, or will go on to develop, other autoimmune conditions themselves, most 

commonly Hashimoto’s thyroiditis and type 1 diabetes[32]. In a collection of 22 

multiplex AAD pedigrees from the UK and Norway, 24 of the 48 individuals with 

AAD (50%) had an additional autoimmune condition. 14/48 (29%) had an 

autoimmune thyroid condition and 7/48 (15%) had type 1 diabetes. Within these 

pedigrees, 80 AAD-free relatives were also studied and 12/80 (15%) had an 

autoimmune condition, such as autoimmune thyroid disease, pernicious 

anaemia, vitiligo and type 1 diabetes. The clustering of multiple autoimmune 

conditions within individuals with AAD, and within families of those with AAD, 

suggests common susceptibility loci for these disorders.  
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Isolated AAD, and AAD as a component of the APS2 syndrome, clearly have a 

strong genetic basis. However, these conditions are not inherited in a 

Mendelian fashion. Instead, they have a multifactorial or complex aetiology, in 

common with other autoimmune conditions such as type 1 diabetes and 

rheumatoid arthritis[80].  

1.4 GENETIC ANALYSIS OF COMPLEX DISEASES 

Like most autoimmune endocrinopathies[80], isolated AAD and APS2 have a 

complex genetic aetiology, which implies the interaction of genetic and 

environmental factors in a susceptible individual resulting in disease. These 

interactions are unpredictable, with genotype not always predicting phenotype, 

and vice-versa[81]. A number of factors may complicate the genetic analysis of 

complex conditions such as AAD. Incomplete penetrance means that an 

individual inheriting a known disease susceptibility allele may not manifest the 

disease, while an individual without any known disease susceptibility alleles 

may develop the disease for other reasons such as environmental factors or 

simply by chance, an occurrence called phenocopy. Mutations in any one of 

several genes may result in the same phenotype (genetic or locus 

heterogeneity), thus patients with the same disease may have entirely different 

genetic reasons for this. In addition, some conditions exhibit polygenic 

inheritance, where multiple mutations in different genes are required to produce 

the phenotype. Other conditions are difficult to map due to a high frequency of 

alleles linked to a condition in the general population. Finally, diseases may be 

transmitted by alternative mechanisms, for example through the mitochondrial 

genome, which might not be explored in a traditional genetic study[81].  

 

Traditionally, there have been two approaches to identifying complex disease 

loci: linkage and association studies. Both approaches can be performed on a 

“hypothesis-driven” basis, using a candidate gene approach, or on a “discovery-

driven” basis, using a genome-wide approach. 
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1.4.1 LINKAGE ANALYSIS 

Linkage analysis aims to test for co-inheritance of chromosomal regions with a 

trait or disease within pedigrees[82]. Linkage analysis is based upon the principle 

that genes located on the same chromosome, in close proximity to one another, 

are likely to co-segregate, or be inherited together, because the likelihood of a 

recombination (crossover) event at meiosis is low. Specifically, two genetic loci 

are said to be linked if they are transmitted together from parent to offspring 

more often than expected under independent inheritance. Therefore, if a 

polymorphic marker is in close proximity to, and in linkage with, a disease-

causing gene, the alleles of the polymorphic marker will co-segregate with the 

disease in affected families[83]. In the population as a whole, the non-random 

association of alleles at two or more loci, whereby they are found on the same 

haplotype more often than expected by chance, is termed linkage disequilibrium 

(LD).  

  

Linkage studies were traditionally undertaken using microsatellites markers 

(sometimes referred to as short tandem repeats or simple sequence repeats), 

however single nucleotide polymorphisms (SNPs), polymorphic markers 

distributed throughout the genome, are now more commonly used for linkage 

studies[84]. SNPs account for the majority of genetic variation between 

individuals. A common SNP occurs at a frequency of greater than 1% in the 

general population, and each individual harbours approximately ten million 

common SNPs and numerous rarer variants, some of which may be “private” to 

them[85]. In linkage maps, distances between markers are expressed in 

centimorgans (cM), where one cM is defined as that distance between loci for 

which 1% of the products of meiosis are recombinant, crossover events. One 

cM corresponds to approximately one million base pairs (bp) in humans[86]. 

Linkage is reported as a logarithm of the odds (LOD) score. The LOD score is 

the logarithm of the likelihood of the odds that two loci are linked compared with 

the likelihood of the odds for independent assortment (i.e. that the two loci are 

unlinked). By convention, a LOD score >3, which indicates 1000 to 1 odds that 

the observed linkage is not a chance observation[87], in Mendelian disorders is 

considered strong evidence for linkage. A LOD score of -2 is used to reject 
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linkage[88]. For complex traits, more stringent significance levels have been 

suggested to reduce the type 1 (false positive) statistical error rate. For 

example, a LOD score of >3.3 might constitute definite evidence for linkage 

while a LOD score of 1.9 to 3.3 would be suggestive of linkage only[89]. In 

addition, if the heterogeneity LOD (HLOD) score is reported, which allows for 

locus heterogeneity in a linkage analysis, it has been suggested that a 

correction should be applied by deducting 0.3 from the HLOD score to give a 

more conservative estimate of linkage i.e. that a reported HLOD score of 3.0 be 

corrected to a score of 2.7[90]. Critics of this more stringent approach suggest 

that using such rigorous significance levels results in difficulty replicating 

identified loci[91, 92]. 

 

Linkage analysis can be performed using a parametric (model-based) 

approach, where the inheritance pattern of a disease is tested against a specific 

model, or a non-parametric (model-free) approach, where an inheritance pattern 

is not assumed.  

1.4.1.1  PARAMETRIC LINKAGE ANALYSIS 

Morton was the first to use parametric linkage analysis in his seminal work of 

1956[93]. Parametric linkage analysis requires the mode of disease inheritance 

(disease model, for example recessive, dominant or co-dominant)[94], disease 

gene frequency and genotype penetrance for the disease of interest to be 

specified. This method has proved powerful in identifying susceptibility loci for 

monogenic disorders in large pedigrees, where the pattern of inheritance is 

clear, but is highly sensitive to model misspecification[94]. However, the very 

nature of complex genetic disorders means that the parameters that must be 

specified in order to perform parametric linkage analysis are often poorly 

defined. In addition, large pedigrees with multiple generations displaying a 

uniform mode of inheritance are not always available, particularly in late-onset 

diseases. In practice, to circumvent some of these issues, a number of analyses 

are often performed under different models. The researcher must then accept 

that the models represent an approximation of the real situation. Performing 

multiple analyses with different models introduces further potential for multiple 
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testing bias which should be considered in the final analysis. For these reasons, 

the parametric linkage method has proved less powerful for the investigation of 

complex genetic disorders to date. A non-parametric approach is often 

favoured, which circumvents the problem of selecting the correct model. 

1.4.1.2  NON-PARAMETRIC LINKAGE ANALYSIS 

Non-parametric linkage analysis does not require prior specification of a 

disease model. The rationale underlying non-parametric linkage analysis is that, 

within affected pedigrees, there will be excess sharing of haplotypes, greater 

than would be expected by chance, that are identical by descent (IBD), that is 

copies of the same ancestral allele, in the region of the gene causing disease.  

Non-parametric linkage is most commonly performed on affected sibling pairs[95, 

96], but has also been adapted to other relationships within affected pedigrees[97-

99]. It cannot be used for parent-offspring affected pairs as these always share 

one allele IBD. 

1.4.1.3  LIMITATIONS OF LINKAGE STUDIES 

Linkage studies do have a number of important limitations which should be 

considered when planning a study and interpreting the results. Linkage analysis 

has limited resolution, with disease causing alleles potentially a considerable 

physical distance from a linkage peak generated in a study. In addition, linkage 

peaks generated can be large, containing numerous genes. Linkage analyses 

should therefore be considered the first step in the genetic investigation of a 

disease, with further fine mapping studies often required following the initial 

linkage analysis. Denser linkage marker maps are now more widely available to 

increase resolution of studies. However, the use of more markers increases the 

time taken for computer analysis and results in the production of vast amounts 

of complex data. Genetic data for linkage analysis must be carefully quality 

controlled to minimise the potential for detecting a spurious finding. Using a 

stringent significance level goes some way to reducing false positive rates. To 

minimise these further, larger cohorts can be examined, or additional 

independent data sets can be tested as replication cohorts where these are 
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available. Results should be corrected for multiple testing which can further 

inflate false positive rates[100]. Unfortunately, in rarer complex diseases such as 

AAD, where affected pedigrees are uncommon, generating an independent 

data set can be challenging. In addition, AAD is a disease which most 

commonly affects Caucasian middle aged people, therefore the pedigrees are 

often relatively small, often with only two affected members, and parents may 

be missing from the data set because they are deceased. In addition, linkage 

cannot always successfully identify genes exerting modest effects[101] and this 

should be considered when investigating complex diseases where multiple loci 

may be contributing in modest ways to susceptibility.   

1.4.2 ASSOCIATION STUDIES 

Association studies have the aim of demonstrating a relationship between 

genetic variation at a locus and phenotypic variation. They may be population-

based case-control studies or intra-familial, where affected family members 

constitute the cases and unaffected family members constitute the controls. In 

common with linkage studies, SNPs are the most commonly used markers. The 

development of large SNP databases such as HapMap 

(http://www.hapmap.org)[102], has greatly facilitated the design of association 

studies, allowing the most informative SNPs to be selected for analysis, and 

allowing marker data for other SNPs to be “imputed” according to LD patterns 

i.e. genotyping one SNP (a tag SNP) allows researchers to predict the 

genotypes of other SNPs in LD with the tag SNP.  

1.4.2.1  POPULATION-BASED CASE-CONTROL ASSOCIATION STUDIES 

A population-based case-control association study compares the frequency of 

an allele in affected people compared to its frequency in controls in the 

population. If the control cohort is unaffected by the disease and is unrelated, 

and matched ethnically, to cases, a significant difference in allele frequency 

between cases and controls suggests that the allele is influencing disease 

susceptibility, or is in LD with a susceptibility locus. The factor by which an 

individual’s risk of disease must be multiplied for each copy of a particular risk 
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allele possessed is called the (allelic) relative risk (RR). The odds by which an 

individual’s risk of disease must be multiplied for each copy of a particular risk 

allele possessed is reported as the (allelic) odds ratio (OR). 

1.4.2.2  INTRA-FAMILIAL ASSOCIATION STUDIES 

Intra-familial association studies are designed to look at association within 

families, using unaffected family members as an internal control group. This 

avoids population stratification, where cases and controls exhibit allele 

differences due to ancestry and ethnicity, rather than due to true disease 

association. Transmission disequilibrium testing (TDT)[103] is the most 

commonly used analysis method and requires trios (affected offspring and their 

parents). It relies on tracking the transmission of alleles from parents to 

offspring. At least one parent must be heterozygous for the allele of interest. If a 

specific allele is transmitted to affected offspring more often than expected, the 

allele may be causing the disease directly, or may be linked to a locus causing 

disease. The need for living parents in a pedigree is nonetheless problematic in 

later-onset diseases like AAD. Therefore, to circumvent this issue, a method 

using affected and unaffected sibling pairs has been developed[104]. 

1.4.2.3  LIMITATIONS OF ASSOCIATION STUDIES 

In contrast to linkage studies, association studies are suitable for investigating 

genes with modest effects and for fine-mapping after an initial linkage analysis, 

however positive results have often proved difficult to replicate[105-109]. This may 

be because either the study is underpowered due to small cohort sizes, or 

because the selected cohort is not a well-defined group due to poor definition 

and characterisation of the disease or phenotype under investigation. Using 

large cohorts with strictly defined diagnostic criteria minimises these problems. 

Another reason why some studies have not been replicated is because the 

initial published report may have been a false positive result. Small studies 

should therefore be thought of as “hypothesis-generating” rather than definitive, 

and should be regarded as such until larger studies confirm or refute their 

findings[110]. In addition, genotyping errors may lead to problems with replicating 
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positive findings[111, 112]. These issues can be minimised by discarding 

genotyping data if the genotyping call rate (the percentage of samples studied 

yielding a genotype) is low, checking that control data sets are in Hardy-

Weinberg equilibrium (HWE) and re-genotyping a proportion of samples to 

ensure genotyping accuracy. Finally population stratification may result in 

spurious association: in particular, if multiple ethnic groups are analysed as one 

in order to increase cohort size[113]. Controls should be carefully matched to 

cases to avoid this, and ethnicity considered when analysing different 

population groups together. Although challenging, replication of results and 

meta-analysis are essential to ensure generation of robust data sets[114]. 

1.4.3 HYPOTHESIS-DRIVEN VERSUS DISCOVERY-DRIVEN RESEARCH: 

CANDIDATE GENE VERSUS GENOME-WIDE STUDIES 

Both linkage and association studies can be performed on a candidate gene 

basis, where a plausible candidate gene is chosen and markers in and around 

that gene are selected (the “hypothesis-driven” approach), or on a genome-wide 

basis, where no prior hypothesis is required and markers are distributed evenly 

throughout the genome (the “discovery-driven” approach). 

1.4.3.1  CANDIDATE GENE STUDIES 

A hypothesis-driven, candidate gene approach has been used to investigate a 

number of complex diseases to date. Candidate genes are selected based upon 

a hypothesis that the gene might be important in susceptibility to the disease of 

interest. There are approximately 23,000 genes in the human genome; 

therefore, candidates must be carefully and thoughtfully selected. A number of 

criteria have been suggested to aid the selection of a suitable candidate[115].  

 

Firstly, candidates can be selected based upon biology, whereby a gene is 

chosen for investigation based on the knowledge that the protein that it encodes 

is implicated in some way in the biology of a disease. For example, the 21OH 

enzyme is a key enzyme in the steroidogenesis pathway and the major 

autoantigen in AAD, therefore the gene which encodes this enzyme, 
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cytochrome P450, family 21, subfamily A, polypeptide 2 (CYP21A2) would be 

an example of a plausible candidate gene in AAD based on biology.  

 

Candidates may also be selected based upon studies of animal models of 

disease. The orthologue of a gene influencing a disease of interest in animals 

may be investigated in humans. For example, if a gene defect resulting in 

Addison’s disease in another species was identified, the human orthologue 

could be investigated as a potential candidate in AAD.  

 

Rare monogenic variants of a disease can also provide insights into disease 

aetiology and provide possible candidate genes for investigation. This approach 

has been used in AAD, where the role of AIRE gene mutations has been 

investigated in sporadic AAD after the discovery that these mutations result in 

the rare, autosomal recessive APS1[6]. Interestingly, AIRE mutations have not 

been found to contribute to AAD susceptibility[116], despite being causative in 

APS1.  

 

Finally, data gathered from genome-wide or candidate gene studies into related 

diseases, in particular autoimmune diseases, can also be used to generate 

plausible candidates. In AAD, the protein tyrosine phosphatase, non-receptor 

type 22 (PTPN22) gene was investigated after mutations at the locus were 

found to confer susceptibility to type 1 diabetes[117] and rheumatoid arthritis[118].   

1.4.3.2  LIMITATIONS OF CANDIDATE GENE STUDIES 

Candidate gene association studies are relatively cost-effective, as they focus 

on specific loci within the genome. In addition, when positive findings are 

reported, these should, in theory at least, have a meaningful interpretation given 

that the candidate approach is hypothesis based. Unfortunately, our 

understanding of the biology of many diseases is incomplete which makes 

selecting suitable candidates challenging. In addition, our understanding of 

genetics is also evolving. We now know that regions of deoxyribonucleic acid 

(DNA) outside of the exons, once considered “junk”, actually contain important 
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regulatory elements, such as microRNAs. If the traditional approach to 

candidate gene studies is followed, whereby only protein-coding genes are 

chosen for investigation, important aetiological variants might be missed. 

Genome-wide studies have therefore been proposed as a promising alternative. 

1.4.3.3 GENOME-WIDE STUDIES 

High-throughput genotyping and sequencing technology is developing rapidly 

and allows the researcher to scrutinise the whole genome for susceptibility loci. 

It is a truly discovery-driven approach, needing no prior hypothesis other than 

that the disease or trait of interest has a genetic aetiology. Currently, there are 

three ways to execute this approach. The first is to genotype markers, for 

example SNPs, spread throughout the genome, often using an array-based 

platform. The second is to sequence the protein-coding DNA sequence, which 

many people consider to be the functionally important DNA, known as whole 

exome sequencing and the third is to sequence the whole genome. While the 

latter two genome-wide approaches circumvent the need to select suitable 

candidates for analysis, they do provide their own challenges.  

1.4.3.4 LIMITATIONS OF GENOME-WIDE STUDIES 

The technology for performing genome-wide studies, either array-based or 

sequencing, is developing at a rapid rate. Although costs are falling, it still 

depends on “high-tech” manufacturing processes and is therefore costly, 

sometimes making large-scale studies prohibitively expensive. Whole genome 

sequencing is currently the most expensive of the three options.  

 

All three platforms generate vast quantities of data which must be manipulated, 

analysed and stored. The generation of such enormous quantities of data is a 

double-edged sword. While data can be analysed and meaningful results 

obtained, large amounts of data mean that false positive results may be 

gathered, or a biased analysis might result in incorrect conclusions being drawn 

from the data available. In addition, interrogating the entire genome at once 

raises the issue of how to deal with multiple testing bias.  
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Whole genome sequencing generates the most data and realistically, per 

individual sequenced, only a tiny proportion of the information gathered will be 

relevant to the disease under investigation. In addition, each Caucasian 

individual studied is estimated to harbour, on average, between 20,000 and 

25,000 coding variants, of which up to 10,000 will be non-synonymous[119, 120]. 

Individuals from “older” populations, such as Africa, may harbour significantly 

more, up to 70,000[121]. Sorting through these data to determine which aspects 

are relevant to the disease of interest is time-consuming. There are methods 

and algorithms to help with the process of distinguishing the pathogenic from 

the non-pathogenic variants, such as ANNOVAR[122], which annotates 

sequencing data and guides the user as to which variants are predicted to be 

functional and which are not. However, many of these algorithms exclude 

common polymorphisms on the basis that, if they arise in the healthy 

population, they are not likely to be contributing to disease. However, in 

complex diseases, it is possible that relatively common polymorphisms can be 

contributing to the phenotype. This can also be the case in monogenic 

conditions, such as in the autosomal recessive condition cystic fibrosis, where 

between 2 and 3% of healthy Caucasians are heterozygous for the most 

common causative mutant allele ΔF508[123]. This would be considered a 

common variant in some algorithms and therefore excluded from further 

analysis despite being pathogenic when homozygous. The algorithms are 

adapting all the time to circumvent these issues, but are not yet perfect. In 

addition, the databases that contain the information about common variants, 

such as dbSNP (the single nucleotide polymorphism database - 

http://www.ncbi.nlm.nih.gov/projects/SNP[124]) and the 1000 Genomes Project 

(http://www.1000genomes.org[125]) are not infallible. These databases are 

constantly being updated and corrected. This means that the interpretation of 

genome-wide data, in particular whole genome sequencing data, may be 

different tomorrow than it is today. Whole exome sequencing has the advantage 

of being more focussed than whole genome sequencing and it generates less 

data in comparison. However, it also has the disadvantage of potentially 

missing an important variant in the 99% of DNA sequence that is not protein-

coding. In addition, there are some technical difficulties with this approach that 
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current technologies are trying to rectify: for example, difficulty in sequencing 

CG-rich DNA sequence[126].  

 

The analysis of genome-wide data is particularly challenging. Computer 

programs designed for this purpose have developed in parallel to high-

throughput genotyping and sequencing technologies. However, it is difficult to 

select the appropriate program for your data set, format the data that you have 

in order to use your program of choice, and select the appropriate analyses to 

perform. In addition, if a large data set is analysed, the computer analyses can 

be very time-consuming. Genome-wide data analysis, in general, requires the 

input of a statistical geneticist to ensure that the results gained are meaningful 

and robust. The time and expertise taken to analyse genome-wide data, and in 

particular whole genome sequencing data, has led to the notion of the “$1,000 

genome, $100,000 analysis”[127]. Following data analysis, the positive findings 

that are discovered in these studies must then be put into context and their 

significance in the disease of interest must be explored.  

 

In addition to the logistical issues encountered when using these technologies, 

genome-wide genotyping and sequencing technologies raise a number of 

ethical and legal considerations. The interpretation of information gained from 

genome-wide studies, on an individual basis, is challenging. When used for 

diagnostic purposes, how do you gain informed consent from an individual for a 

complex test which might reveal numerous deleterious mutations, not all related 

to the condition for which they have had the test? For example, a healthy 

individual is estimated to be a heterozygous carrier of up to 100 highly 

penetrant deleterious variants[128]. Although this is likely to have no 

consequence for their own health, it may impact upon future children. Do all 

individuals who have whole genome sequencing therefore need genetic 

counselling regarding the possible impact of these variants on offspring? The 

possible use of personal genetic data must also be considered. Who should be 

allowed to access the information about an individual’s genome? If it should not 

be publicly accessible, how can these data be stored securely?  
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Perhaps most importantly, we still know relatively little about what the protein-

coding portions of our DNA do, how many proteins function and the impact that 

mutations, and even polymorphisms, have on the structure and function of 

these proteins. We know even less about what the non-protein coding regions 

of our DNA do. Cynics could say that genome-wide genotyping and sequencing 

technologies represent an example of advances in technology driving the 

research agenda, rather than vice-versa. However, the development of these 

technologies could also be viewed as an opportunity to fill in some of the gaps 

in our knowledge and to drive forward some of the basic science research 

needed to achieve a better understanding of human genetics and genomics. 

Regardless of the current challenges, genome-wide genotyping and sequencing 

provide extraordinary insight into our genetic makeup. The technical and 

logistical issues that arise will eventually be overcome by ever improving 

technologies and any disadvantages will hopefully be outweighed by the 

advantages gained from these exciting advances.  

1.4.4 CONCEPTUALISING COMPLEX DISEASE GENETICS 

In complex diseases to date, despite intensive research, a large proportion of 

the estimated heritability has not been accounted for, despite genome-wide 

association scans in large case-control cohorts. This has led to a change in the 

way that researchers conceptualise complex disease genetics[129], for both 

common and rare conditions, and new approaches are being developed as a 

consequence.  

 

Originally, as genome-wide studies gained in popularity, the “common disease-

common variant” (CDCV) hypothesis predominated[130-132]. This model states 

that common complex disease, for example hypertension, can be explained by 

a relatively small number of common variants, with each variant explaining a 

moderate proportion of disease risk (Figure 4). However, results from powerful 

genome-wide scans in common diseases have failed to demonstrate findings in 

line with this model and it has largely lost favour. When conceptualising 

complex disease genetics, three theories currently predominate, reviewed by 

Gibson[129]. The first is the infinitesimal model, which proposes that hundreds or 
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perhaps even thousands of common variants each contribute a tiny amount of 

risk to disease susceptibility or indeed to continuous traits such as height and 

weight[133, 134]. In this model, the associated loci observed in genome-wide 

studies are those with the largest effect sizes and they represent the tip of the 

iceberg. The second model is the rare allele model, which states that complex 

diseases are due to a large number of moderately penetrant rare variants[135, 

136]. These alleles will also be present in the healthy population, but because 

they are not fully penetrant, and due to poorly understood modifying influences 

such as epigenetic and environmental factors, these individuals will not express 

the disease. The final model is the broad sense heritability, or “G x E”, model, 

which suggests that a combination of genomic, environmental, and epigenetic 

factors in a susceptible individual influence disease[137, 138]. Any of these three 

models could offer an insight into the genetic aetiology of AAD and need to be 

considered when planning genetic studies. It is also possible that reality lies 

somewhere between, or in a combination of, these models, with common and 

rare variants influencing AAD disease susceptibility in the context of 

environmental and epigenetic pressures[129]. 
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Figure 4: Different expected signatures from genome-wide association 
studies for four models of disease. 

Each of the four plots shows the expected distribution of SNP effects, 
expressed as the percentage of variance for a disease or trait on the y axis and 
the position of SNPs on the x axis. In panel A, the common disease-common 
variant (CDCV) model, a small number of moderate effect loci would produce 
strong signals, each explaining several percent of the genetic variance. The 
infinitesimal model is shown in panel B. Many signals are seen, each explaining 
only a very small amount of the variance. In panel C, the rare allele model, 
causal variant effects are shown by yellow dots. These may be contributing a 
significant percentage of the variance in a few individuals, but are not common 
enough to result in genome-wide significance. In the broad sense heritability 
model shown in panel D, signals are seen in only certain environments, with 
different associations seen in the two environments (orange and green dots). 
When a mixed population, exposed to one or the other environments is studied, 
the overall effect at each locus is reduced (shown by the arrows) and fewer 
associations will be observed. Reproduced with permission of the authors from 
Nature Reviews Genetics “Rare and common variants: twenty arguments”[129]. 
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1.5 GENETICS OF AUTOIMMUNE ADDISON’S DISEASE 

1.5.1 ANIMAL MODELS IN AAD 

Animal studies can provide useful genetic information because breeding and 

environment can be carefully controlled and manipulated[81]. However, to date, a 

faithful experimental animal model for AAD has been elusive. Researchers have 

successfully induced allergic adrenalitis in a range of laboratory animals, 

including mice and rabbits, and have observed lymphocytic infiltrates within the 

adrenal glands of affected animals and autoantibody production in some[139]. 

Unfortunately, these animals do not go on to develop adrenocortical dysfunction 

and adrenal failure, which limits the relevance of this model, and its application, 

to the human condition.  

 

Dogs, however, may spontaneously develop Addison’s disease with a clinical 

presentation very similar to that in humans[140, 141]. Canine Addison’s disease 

predominantly affects middle-aged female dogs and affected dogs commonly 

present with lassitude, diarrhoea, vomiting, weight loss, poor appetite and 

weakness. Biochemically, electrolyte disturbances are frequently observed, in 

common with the human presentation. An ACTH stimulation test, similar to the 

short synacthen test in humans, is the gold standard diagnostic test in dogs with 

suspected Addison’s. Canine Addison’s may affect any breed of dog, however 

some breeds do seem to be particularly susceptible, including Portuguese 

Water dogs, Leonbergers, Bearded Collies, Standard Poodles and the Nova 

Scotia Duck-Tolling Retriever. The quoted incidence range is between 1.5–

9.0% in these susceptible breeds[142-145]. The very high incidence of canine 

Addison’s in certain breeds likely reflects founder effects due to significant in-

breeding and the frequent use of popular sires[143]. These factors add weight to 

the hypothesis that, like human AAD, canine Addison’s has a strong genetic 

component to susceptibility. Linkage studies have been used in large, in-bred 

dog pedigrees to identify susceptibility loci for canine Addison’s. In the 

Portuguese Water dog, loci on chromosomes 12 and 37 have been linked with 

the disease, and these have subsequently been identified as orthologues of the 
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human leukocyte antigen (HLA) and the CTLA4 gene regions, which are both 

associated with multiple human autoimmune conditions.  

 

The observations that Canine Addison’s tends to affect female, middle-aged 

dogs, and susceptibility loci found in regions orthologous to known autoimmune 

loci in humans, have given rise to the hypothesis that, like human AAD, canine 

Addison’s might have an underlying autoimmune aetiology. However, this has 

not been definitively established. In dogs, lymphocytic infiltrates in the adrenal 

glands have been reported from post-mortem examinations of affected dogs 

and antibodies to adrenal cell antigens have been identified by indirect 

immunofluorescence[146]. However, autoantibodies to specific steroidogenic 

antigens have yet to be identified. It is therefore likely that canine Addison’s 

disease, similar to human Addison’s disease, is a heterogeneous condition: 

perhaps some affected dogs have an autoimmune aetiology while others have 

underlying defects in steroidogenesis or adrenocortical development. To date, 

candidate gene studies on affected dogs have yielded no useful insight into 

AAD in humans. Genome-wide studies are currently underway in small cohorts 

of susceptible breeds, and it will be interesting to see if the results of these 

studies parallel what is known about the genetic architecture of AAD in humans 

or whether they can shed new light on the human disease. 

1.5.2 GENETIC STUDIES OF AAD IN HUMANS 

Due to the rarity of AAD, large-scale genetic studies in humans have been 

impossible, and the studies carried out so far have been case-control candidate 

gene association studies conducted on relatively small patient cohorts. Despite 

the high genetic load of AAD, relatively few AAD loci have been identified to 

date and no single locus apart from MHC has thus far been shown to make a 

substantial contribution to genetic susceptibility. The majority of the substantial 

genetic component to AAD aetiology remains undefined. The genetics of AAD 

have been reviewed and the loci of interest are summarised below[1]. 

 

In patients with AAD, the majority of susceptibility loci identified to date exert 

their effects through the adaptive arm of the immune system; however, some 
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AAD susceptibility loci are now being discovered in genes of the innate immune 

system.  

1.5.2.1  THE ADAPTIVE IMMUNE SYSTEM 

Variants within the MHC class II genes are strongly associated with several 

autoimmune conditions. It is hypothesised that this is because some HLA 

alleles, in particular some HLA-DR or HLA-DQ polymorphisms, encode proteins 

which permit self-peptides to enter the antigen-binding pocket more readily than 

others. The association of multiple HLA alleles with AAD supports the 

hypothesis that AAD may result from autoreactivity against a number of different 

components of the steroidogenic machinery, rather than being triggered by an 

autoimmune response to a single peptide epitope of the steroid 21OH enzyme. 

The association between HLA–DR3 alleles and AAD[147] has been confirmed a 

number of times[148-150]. An association with HLA–DR4 has also been 

reported[147] and replicated. One study demonstrated an association between 

AAD and the DRB1*04–DQA1*0301–DQB1*0302 haplotype[55, 151] and 

heterozygote carriers of the DR3–DQ2 and DR4–DQ8 haplotypes were 

particularly susceptible to AAD. In another study of Norwegian patients, the 

DRB1*0404–DQ8 haplotype was strongly associated with AAD, while another 

haplotype, DRB1*0401–DQ8, had a protective effect[55]. A study from the USA 

then replicated the latter finding[152].  

 

Other genes within the MHC region have also been associated with AAD. 

However, it has been difficult to establish definitely an independent effect of 

these alleles, above and beyond the association with HLA, due to the strong LD 

that exists in the region. In many cases, the genes close to MHC which have 

been associated with AAD probably do not confer an independent risk, but 

instead act as markers for the HLA risk alleles close by. One such example is 

the CYP21A2 gene, located in the MHC class III region, which encodes the 

steroid 21OH enzyme and, as such, is a very plausible candidate for AAD. 

Variants in this gene have been studied in AAD, but any association has been 

widely attributed to LD with MHC class II alleles[150, 153]. One gene that does 

seem to be independently associated with AAD is the MHC class I polypeptide-
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related sequence A (MICA) gene[154]. The strength of the association with the 

MICA*5.1 polymorphism is greater than might be expected from linkage 

disequilibrium with the HLA-DR3–HLA-DR4 haplotype alone[151, 155]. 

 

The MHC class II transactivator (CIITA, previously known as MHC2TA) gene 

(chromosome 16) encodes a crucial regulator of MHC class II expression, the 

CIITA protein. Loss of function mutations in CIITA result in the bare lymphocyte 

syndrome, a severe monogenic primary immunodeficiency disorder[156]. 

Polymorphisms in the CIITA gene have been linked to the systemic 

autoimmune conditions rheumatoid arthritis[157] and SLE[158]. In addition, variants 

in the promoter region and in intron 3 of CIITA have been associated with AAD 

in both Italian and Norwegian patient cohorts[159, 160], however it is unclear 

exactly how these polymorphisms exert an impact on AAD susceptibility.  

 

Once a peptide has entered the MHC-binding groove, the MHC-peptide 

complex engages with the T cell receptor. This interaction in itself is not enough 

to stimulate an immune response. Co-stimulatory signals are needed and these 

may be either positive, promoting a vigorous immune response, or negative, 

which has the effect of downregulating, or dampening down the immune 

response. The CTLA4 gene on chromosome 2 encodes a co-stimulatory 

molecule that has a role in downregulating T cell responses[161]. Polymorphisms 

at the CTLA4 locus have been implicated in susceptibility to numerous organ-

specific and systemic autoimmune conditions, including type 1 diabetes[162, 163], 

autoimmune thyroid disease[164-167] and rheumatoid arthritis[168, 169]. Variants in 

CTLA4 have also been associated with AAD in a number of independent 

cohorts and these include an A/G SNP in exon 1[116], an AT repeat in the 3 

untranslated region (UTR) of exon 3[170] and a G/A SNP (JO30) downstream of 

the CTLA4 gene[171]. The 3’UTR and downstream variant are thought to result in 

decreased levels of soluble CTLA4. Soluble CTLA4 can interact with CD80 and 

CD86 molecules on antigen-presenting cells, competing with CD28, an 

activating T cell surface molecule, to dampen down the T cell response. Thus, 

in decreasing soluble CTLA4 levels, these polymorphisms may act as a positive 

regulator of the adaptive immune response by allowing CD28 to access more of 
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its ligand. Plausible support for this mechanism comes from non-obese diabetic 

(NOD) mouse models[172, 173]. However, paradoxically increased levels of 

soluble CTLA4 have been reported in individuals with autoimmune conditions in 

some studies[174, 175]. This suggests that the CTLA4/CD28 interaction with cell-

surface molecules, and subsequent downstream signalling, is incompletely 

understood.  

 

The PTPN22 gene on chromosome 1 encodes lymphoid tyrosine phosphatase 

(LYP) which, like CTLA4, is a negative regulator of T cell signalling. One 

particular PTPN22 variant has been implicated in susceptibility to rheumatoid 

arthritis. This is the T allele of SNP rs2476601, which results in an Arg620Trp 

substitution at the amino acid sequence level[118]. This particular variant has 

also been associated with type 1 diabetes[176], Graves’ Disease[177] and with 

AAD in several association studies in different populations[177-179]. Although the 

PTPN22 protein product LYP has an established regulatory role in T cell 

activation and function, the mechanisms underlying the association of the 

Arg620Trp variant with autoimmunity were initially debated. Some studies 

demonstrated that B and T cell responses were increased in individuals 

homozygous for the variant, but other studies found exactly the opposite[180-182]. 

A study in 2011 added clarity, showing that, in both humans and mice, the 

Arg620Trp is a loss-of-function variant which causes an unstable LYP product 

that is more readily degraded than the wild-type protein. Levels of functional 

LYP are therefore reduced by the variant and, thus, its inhibitory effects on T 

cell signalling and activation are reduced. This creates an environment which 

favours the development of autoimmunity[183]. Two other co-stimulatory 

molecules have also been implicated in the pathogenesis of AAD. Allelic 

variants in CD274 (which encodes programmed cell death 1 ligand 1, PD-L1) on 

chromosome 9 have been associated with autoimmune conditions, including 

AAD in the UK and Norwegian populations[184-186]. The CD226 gene on 

chromosome 18 encodes the CD226 protein, also known as DNAX-accessory 

molecule-1 or DNAM-1[187]. The Gly307Ser variant, rs763361, has been 

associated with multiple autoimmune conditions in various populations[188, 189] 

and has been studied in AAD[190]. However, in AAD, the association was with 

APS2 and not with isolated AAD, suggesting that it is perhaps due to the 
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concomitant type 1 diabetes and autoimmune thyroid disease present in APS2 

patients, rather than to AAD per se.  

 

B lymphocytes are responsible for the generation of antibodies and the humoral 

immune response, but are also important and efficient antigen-presenting cells 

which express cell-surface markers that regulate T cell signalling and function. 

Fc receptor-like (FCRL) family members are B cell surface receptors of the 

immunoglobulin receptor superfamily encoded in the FcRL gene locus on 

chromosome 1. These genes have been implicated in susceptibility to several 

autoimmune diseases[191-194]. For example, FcRL3 is expressed predominantly 

on B lymphocytes, but is also expressed on TReg cells and natural killer cells. A 

promoter polymorphism in the FCRL3 gene has been widely associated with 

rheumatoid arthritis and other systemic autoimmune disorders, particularly in 

Asian populations[192, 193]. A study of the FCRL3 locus in a cohort of UK AAD 

patients found that the strongest association occurred with the T allele of the 

SNP FCRL3_3*T (rs7528684 in the FCRL3 promoter), which is predicted to 

have reduced promoter activity[195]. Intriguingly, a haplotype comprising seven 

FCRL3 alleles including FCRL3_3*T was a susceptibility haplotype for AAD in 

white Europeans but appeared to be protective for multiple autoimmune 

conditions in a Japanese cohort. This contradiction could reflect population 

differences, or differences between the pathogenesis of AAD as an organ-

specific autoimmune disorder versus the pathogenesis of other multisystem 

autoimmune conditions. However, this apparent inconsistency emphasises 

some of the difficulties encountered when studying the genetics of 

autoimmunity. 

1.5.2.2  THE INNATE IMMUNE SYSTEM 

Loci that confer susceptibility to AAD through variants in genetic components of 

innate immune pathways are now starting to emerge. Examples include the 

NLR family, pyrin domain containing 1 (NLRP1) gene, the C-type lectin domain 

family 16, member A (CLEC16A) gene, the vitamin D receptor (VDR) gene and 

the cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) gene.  

 



 

38 

 

Cytoplasmic pattern-recognition receptors, such as the nucleotide-binding 

oligomerisation domain (NOD)-like receptors (NLRs), are an example of an 

innate mechanism which has evolved to detect foreign microbial products. The 

NLRs contribute to the formation of inflammasomes which are multiprotein 

complexes that activate proinflammatory cytokines and lead to a cascade which 

triggers the adaptive immune response. Defects in NLR function would be 

predicted to result in a reduced capacity to differentiate native from foreign anti-

gens. The first report of an association between NLRs and autoimmunity came 

from research into the role of the NOD2 (formerly CARD15) locus in Crohn’s 

disease[196, 197]. Since then, polymorphisms in a number of NLR genes have 

also been associated with other organ-specific autoimmune diseases including 

vitiligo[198] and type 1 diabetes[199]. In Norwegian patients, a coding variant 

(Leu155His) of NLRP1 (formerly known as NALP1) was associated with 

AAD[199] and this finding was replicated in a Polish cohort [200]. NLRP1 is 

thought to be important in the assembly of inflammasomes and is also a known 

activator of IL-1β, a proinflammatory cytokine. However, the effect of the 

Leu155His variant on these, and other functions, of NLRP1 remains unknown 

and requires further investigation.  

 

The CLEC16A gene encodes a protein of unknown function and lies in close 

proximity to the CIITA gene on chromosome 16. The CLEC16A protein 

possesses a C-type lectin-binding domain, indicating that it might be a cell-

surface receptor. It is known to be expressed on a number of professional 

antigen-presenting cells, including natural killer and dendritic cells[201]. 

Polymorphisms in CLEC16A have been implicated in a number of autoimmune 

conditions[202-205] including type 1 diabetes[117, 201]. In a study of AAD cases and 

controls from the UK and Norway, a CLEC16A intronic variant, rs12917716, 

was associated with AAD in the Norwegian cohort, but this finding was not 

replicated in the UK cohort[160]. 

 

Vitamin D is known to exert a suppressive effect on immunity and autoimmunity. 

Studies have demonstrated that vitamin D supplementation can prevent the 

onset of autoimmune diabetes in the NOD mouse which is prone to developing 
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diabetes[206]; in humans, vitamin D deficiency is associated with the 

development of some autoimmune conditions including type 1 diabetes[207]. 

Polymorphisms in two chromosome 12 genes, VDR and CYP27B1 (which 

encodes a cytochrome P450 1α-hydroxylase enzyme that catalyses the 

conversion of 25-hydroxyvitamin D3 to the active 1,25-dihydroxyvitamin D3), 

have been associated with AAD. A small German study found evidence of 

association between VDR genotypes and AAD however, an association with 

alleles was not found[208]. To confirm the VDR gene as a susceptibility locus in 

AAD, further independent studies are required. In contrast, there is convincing 

evidence that a promoter polymorphism, –1260C>A, in the CYP27B1 gene is 

associated with AAD, type 1 diabetes and autoimmune thyroid disease. This 

association was initially identified in a study from Germany[209] and 

subsequently confirmed in a UK study of AAD patients[210].
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1.6 STUDY AIMS 

The genetic determinants of AAD remain poorly defined despite on-going 

investigation. I plan to use both hypothesis-driven (candidate gene) approaches 

and a discovery-driven (genome-wide) approach to identify novel susceptibility 

alleles for AAD using unique sample resources.  

 

1) A hypothesis-driven approach to the investigation of AAD – The CYP21 

locus. 

 

To explore genomic variations in and around the CYP21A2 gene, in unrelated 

individuals with AAD and controls, using polymerase chain reaction (PCR)-

based approaches, tissue in situ hybridisation (TISH) and quantitative PCR 

(qPCR) 

 

2) A hypothesis-driven approach to the investigation of AAD – A study of 20 

candidate genes in six European AAD cohorts. 

 

To perform a candidate gene study in unrelated individuals with AAD and 

controls from six European cohorts using the Sequenom iPlex genotyping 

platform.  

 

3) A discovery-driven approach to the investigation of AAD – A genome-

wide study of multiplex AAD families. 

 

To perform a genome-wide linkage and association study on multiplex AAD 

families using the Affymetrix Genome-wide human SNP array 6.0.  
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CHAPTER 2 – STUDY SUBJECTS AND METHODS  
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2.1 SUBJECTS 

Ethical approval for this study was granted by the Leeds (East) Research Ethics 

Committee in 2005 (REC reference number 05/Q1206/144). 

2.1.1 TISSUE SAMPLES FOR FUNCTIONAL ASSAYS  

Human tissue samples were used to investigate CYP21A2 expression, and the 

expression of its closely related pseudogene, cytochrome P450, family 21, 

subfamily A, polypeptide 1 pseudogene (CYP21A1P), by TISH and qPCR. For 

TISH, skin and matched fixed and mounted adrenal samples were available for 

analysis from the Human Developmental Biology Resource (HDBR), Newcastle 

upon Tyne. In total, gDNA was extracted from 42 skin samples taken from fetal 

material ranging from eight to twelve weeks post-conception (wpc). These 

gDNA samples were used to establish the presence (CYP21A1P+) or absence 

(CYP21A1P–) of CYP21A1P. Mounted tissue sections corresponding to five of 

these samples (one CYP21A1P– sample, four CYP21A1P+ samples) were then 

used for TISH.  

 

For qPCR, three of the above adrenal samples (one CYP21A1P–, two 

CYP21A1P+) with matched kidney tissue were used for assay optimisation and 

quality control, in addition to thymus samples from seven infants and children, 

taken during cardiothoracic surgery, from the Human Biomaterials Resource 

Centre (HBRC), University of Birmingham. These samples were taken from 

individuals age eight days to 16 months (median age ten weeks). Age 

information was not available for two of the seven samples and no other clinical 

data was available for these samples. gDNA was extracted from the seven 

thymus samples and used to establish the presence or absence of CYP21A1P. 

All were CYP21A1P+. RNA was extracted from the remainder of the sample 

and used to synthesise cDNA for qPCR to establish expression of CYP21A2 

and CYP21A1P transcripts in this organ.  



 

43 

 

2.1.2 UNRELATED AAD CASE-CONTROL COHORTS  

In total, 2005 unrelated AAD DNA samples from six European countries were 

available for this study. To be included in the AAD cohorts, affected subjects 

had to have biochemical evidence of adrenal failure, with a maximum serum 

cortisol of less than 550nmol/L one hour following intravenous administration of 

synthetic ACTH analgoue (synacthen 250µg) and a raised ACTH level. Those 

with infective and infiltrative causes of Addison’s, those with secondary adrenal 

failure and those with APS1 were excluded from this study. In addition, 1972 

matched local healthy controls were available (Table 2). All controls were 

Caucasian and had no personal or family history of autoimmune disease. 

Clinically silent autoimmune disease was not excluded in these controls by 

checking autoantibody levels, adrenal or thyroid function, however this is likely 

to be very rare.  

2.1.2.1 UK COHORT 

For case-control and replication studies, 357 unrelated UK subjects with AAD 

were identified from local endocrine clinics within the north east of England and 

through the Addison’s disease self-help group network. All AAD subjects were 

Caucasian. 

 273 were female (76.5%) and 84 were male (23.5%)  

 The mean age of onset of AAD was 38.8 years (median 38 years, 

minimum 10 years, maximum 83 years)  

 203 (56.9%) had an additional autoimmune condition  

o 155 (43.4%) had autoimmune thyroid disease 

o 41 (15.0% of the female cohort) had premature ovarian failure 

o 21 (5.9%) had type 1 diabetes  

o 22 (6.2%) had pernicious anaemia 

o 11 (3.1%) had vitiligo 

o 8 (2.2%) had rheumatoid arthritis 

o 7 (2.0%) had coeliac disease 

o 3 (0.8%) had alopecia 

o 1 (0.3%) had Crohn’s disease 
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o 1 (0.3%) had ankylosing spondylitis  

o 1 (0.3%) had autoimmune hepatitis  

 

Serum samples were not available for the majority of the AAD cases, however 

of the 61 that were tested for 21OH autoantibodies, 53 (86.9%) were positive. A 

maximum of 627 control samples were available from British Caucasian 

individuals for comparison. 
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Table 2: AAD DNA resources available for analysis. 

Centre AAD Controls Total 

UK 357 367 724 

Norway 384 384 768 

Germany 341 235 576 

Italy - Perugia 100 188 288 

Italy - Padua 180 134 314 

Poland - Warsaw 159 50 209 

Poland - Poznan 116 246 362 

Sweden 368 368 736 

Total 2005 1972 3977 
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2.1.2.2 NORWEGIAN COHORT 

From Norway, 384 unrelated AAD cases were selected at random from a cohort 

of 426 individuals. 

 273 (64.0%) were females and 153 (36.0%) were males 

 359 (84.2%) were 21OH autoantibody positive 

 The mean age was 53 years (minimum 18, maximum 95 years) 

 The mean AAD disease duration was 14 years (minimum 0, maximum 56 

years) 

 Of the cohort as a whole, 66% reported autoimmune comorbidity 

o 198 (46.5%) had autoimmune thyroid disease  

o 49 (11.5%) had type 1 diabetes 

o 18 (6.6% of the female cohort) had premature ovarian failure  

o 42 (9.9%) had pernicious anaemia  

o 48 (11.3%) had vitiligo 

o 16 (3.8%) had alopecia 

o 3 (0.7%) had autoimmune hepatitis 

 

Healthy blood donor controls from Norway were also available for comparison 

(maximum 1353 samples). 

2.1.2.3 GERMAN COHORT 

From Germany, DNA samples from 341 AAD cases and 235 healthy matched 

controls were available. These samples were selected from a cohort of 364 

DNA samples. Of these, serum samples for 21OH autoantibody levels were 

available for 200: 170 (85%) were positive while 30 (15%) were negative.  

 The mean age at collection of these samples was 50.7 years (median 49 

years, minimum 22 years, maximum 88 years) 

 263 (72.2%) of this cohort were female  

 188 individuals (55.1%) had other autoimmune comorbidities in addition 

to AAD  

o 160 (46.9%) had autoimmune thyroid disease 
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o 24 (7.0%) had type 1 diabetes 

o 3 (0.82%) had vitiligo  

o 1 (0.27%) had Crohn’s disease 

2.1.2.4 SWEDISH COHORT 

From Sweden, 368 21OH autoantibody positive AAD cases and 368 healthy 

matched controls were available.  

 143 (38.9%) were male, 225 (61.1%) were female 

 The mean age of diagnosis was 34 years (median 32 years, minimum 0 

years, maximum 71 years) 

 228 individuals (62.0%) had other autoimmune comorbidities in addition 

to AAD 

o 180 (48.9%) had autoimmune thyroid disease 

o 40 (10.9%) had type 1 diabetes 

 

2.1.2.5 ITALIAN COHORT 

From Italy, DNA samples were available from Padua (180 AAD cases, of which 

166 (92.2%) were 21OH autoantibody positive and 14 (7.8%) were negative, 

and 134 matched healthy controls) and from Perugia (100 21OH autoantibody 

positive AAD cases, 188 healthy matched controls). 

 

Of the 180 AAD cases from Padua, 117 (65%) were female and 63 (35%) were 

male.  

 The mean age of onset of AAD was 34.7 years (median 34 years, 

minimum 6 years, maximum 84 years) 

 Of those people, a total of 142 (78.9%) had another autoimmune 

comorbidity 

o 134 (74.4%) had autoimmune thyroid disease 

o 18 (10%) had type 1 diabetes 
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o 4 (3.4% of the females in the cohort) had premature ovarian 

failure 

o 4 (2.2%) had vitiligo 

o 1 had coeliac disease 

o 1 had multiple sclerosis  

o 1 had rheumatoid arthritis.  

 

The AAD cohort from Perugia consisted of 67 (67%) females and 33 (33%) 

males.  

 The mean age of onset of AAD was 40.6 years (median 38 years, 

minimum 10 years, maximum 78 years) 

 65 (65%) of those with AAD had an additional autoimmune condition 

o 49 (49%) had autoimmune thyroid disease 

o 15 (15%) had type 1 diabetes 

o 12 (17.9% of the female cohort) had premature ovarian failure 

o 9 (9%) had vitiligo 

o 3 (3%) had coeliac disease 

o 2 (2%) had rheumatoid arthritis 

o 1 had SLE  

o 1 had pernicious anaemia.  

2.1.2.6 POLISH COHORT 

The AAD cohort from Poznan consisted of 116 individuals  

 85 (73.3%) were females and 31 (26.7%) were males  

 The mean age of onset of AAD in this cohort was 36.5 years (median 36 

years, minimum 14 years, maximum 69 years) 

 98 individuals (84.5%) within the cohort had associated autoimmune 

comorbidity 

o 87 (75.0%) had autoimmune thyroid disease 

o 21 (18.1%) had chronic atrophic gastritis of which 8 (6.9%) had a 

diagnosis of pernicious anaemia 

o 10 (11.8% of the female cohort) had premature ovarian failure 
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o 10 (8.6%) had type 1 diabetes 

o 7 (6.0%) had vitiligo 

o 3 (2.6%) had coeliac disease 

o 1 (0.86%) had alopecia 

 

21OH autoantibody levels were not available for this cohort. 246 healthy 

controls from Poznan were available for comparison.  

 

From Warsaw, 159 AAD cases were selected at random from a cohort of 229 

AAD cases. Of the cohort of 229, 114 (49.8%) were 21OH autoantibody 

positive, 106 (46.3%) were 21OH autoantibody negative and results were not 

available for 9 (3.2%).  

 173 (75.5%) were females and 56 (24.5%) were males 

 The mean age of onset of AAD in this cohort was 38.9 years (median 37 

years, minimum 9 years, maximum 76 years). Age of onset was not 

available for 12 individuals  

 Of the cohort as a whole, 165 (70%) reported autoimmune comorbidity  

o 138 (60.3%) reported autoimmune thyroid disease 

o 24 (10.5%) had vitiligo 

o 24 (10.5%) had type 1 diabetes 

o 15 (8.7% of the female cohort) had premature ovarian failure 

o 14 (6.1%) had pernicious anaemia 

o 5 (2.2%) had alopecia 

o 2 (0.9%) had coeliac disease 

o 2 (0.9%) had autoimmune hepatitis 

o 1 (0.4%) had SLE 

o 1 had rheumatoid arthritis 

o 1 had hypogonadism (1.8% of the male cohort).  

 42 individuals (18.3%) reported a family history of autoimmunity.  

 

From Warsaw, 50 healthy matched blood donor controls were available for 

comparison. 
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2.1.3 OTHER AUTOIMMUNE COHORTS 

2.1.3.1 UK GRAVES’ DISEASE COHORT 

A maximum of 447 DNA samples from individuals with Graves’ disease (but 

without AAD) from the UK were available. Subjects had biochemical evidence of 

hyperthyroidism with confirmation by positive serum autoantibodies (anti-thyroid 

stimulating hormone (TSH) receptor and/or anti-thyroid peroxidase), diffuse 

uptake on [99Tc]pertechnetate radionuclide scan, or presence of ophthalmopathy.  

 This cohort comprised 352 (78.7%) females and 95 males 

 At the time of the study, the mean age was 53 years (median 54 years, 

minimum 20 years, maximum 87 years). This information was missing for 

18 individuals 

o 1 individual also had pernicious anaemia 

o 2 had type 1 diabetes 

o 2 females had premature ovarian failure.  

2.1.3.2 NORWEGIAN TYPE 1 DIABETES COHORT 

1195 DNA samples from individuals with type 1 diabetes from Norway were 

available for genotyping. These samples were selected at random from a 

previously described cohort[211] of 1331 Caucasian type 1 diabetes patients 

(51.9% boys and 48.1% girls) all diagnosed with type 1 diabetes before the age 

of 17 and meeting the EURODIAB[212] criteria. In addition, 1353 control DNA 

samples were available for comparison. These were all Caucasian, Norwegian 

blood donor controls.  

2.1.3.3 NEW ZEALAND RHEUMATOID ARTHRITIS COHORT 

650 DNA samples from individuals with a diagnosis of rheumatoid arthritis from 

New Zealand were available. These samples came from Caucasian individuals 

from Auckland, Bay of Plenty, Wellington, Otago and Southland regions of New 

Zealand. They all met the 1987 American College of Rheumatology criteria for 

disease (four or more of the following: morning stiffness for at least six weeks in 
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and around joints lasting at least one hour before maximal improvement, soft 

tissue swelling of three or more joint areas observed by a physician for at least 

six weeks, swelling of the proximal interphalangeal, metacarpophalangeal, or 

wrist joints for at least six weeks, symmetric swelling for at least six weeks, 

rheumatoid nodules, the presence of rheumatoid factor in the serum, 

radiographic erosions and/or periarticular osteopenia in hand and/or wrist 

joints). 452 matched healthy local controls were available for comparison. 

2.1.4 MULTIPLEX AAD FAMILIES 

Prior to inclusion in the study, multiplex AAD kindreds, that is kindreds 

containing two or more individuals with AAD, were carefully assessed for 

suitability for the study, with the aim of selecting a relatively homogeneous 

group. To achieve this, careful phenotyping of all of the families, face-to-face or 

by telephone interview, was undertaken with a view to excluding families with a 

non-autoimmune aetiology to the Addison’s disease. A history of 

mucocutaneous candidiasis, hypoparathyroidism and dental problems was 

sought from all families to exclude those with APS1. In addition, all family 

members were asked about tuberculosis, to exclude this as a possible “familial” 

cause of Addison’s. An underlying autoimmune aetiology to Addison’s in 

families was accepted if the affected individuals had an additional autoimmune 

disease such as type 1 diabetes, autoimmune thyroid disease, pernicious 

anaemia or vitiligo. In the absence of a personal history of autoimmune disease, 

a family history of autoimmune disease in a first degree relative e.g. parent or 

sibling, in particular autoimmune thyroid disease or type 1 diabetes, lent support 

to an underlying autoimmune aetiology. Finally, 21OH autoantibody status, 

where serum was available, was considered.  

2.1.4.1 UK FAMILIES 

12 Caucasian UK AAD kindreds were identified from local endocrine clinics 

within the north east of England (n=2), from collaborators in Exeter (n=2) and 

from the Addison’s disease self-help group network (n=8) (Figure 5). 
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The UK kindreds comprised 57 individuals in total (28 males, 29 females). 11 of 

the 12 UK kindreds had two members with AAD (affected sibling pairs n=8, 

affected parent-child pairs n=3) whilst one kindred comprised a trio of affected 

siblings.  

 

Of those with AAD (n=25), 12 were female and 13 were male 

 The mean age of onset of AAD was 39 years (median 36 years, 

minimum 18 years, maximum 67 years).  

 14 of the 25 individuals with AAD had one or more autoimmune 

comorbidities 

o 7 also had autoimmune thyroid disease 

o 6 had type 1 diabetes 

o 3 had seronegative arthritis 

o 2 had pernicious anaemia 

o 1 had vitiligo 

o 1 had rheumatoid arthritis 

o 1 had Sjögren’s 

o 1 had SLE 

o 1 had hypogonadism 

o 1 had premature ovarian failure 

 

Of those unaffected kindred members (n=31), 17 were female and 15 were 

male.  

 8 had autoimmune comorbidities 

o 4 had autoimmune thyroid disease 

o 1 had type 1 diabetes  

o 1 had pernicious anaemia  

o 1 had vitiligo  

o 1 had coeliac disease 

 

One unaffected individual had had a subtotal thyroidectomy but this was for a 

large multinodular goitre and was not due to autoimmune thyroid disease. 

Ethylenediaminetetraacetic acid (EDTA) blood samples were available from all 
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57 individuals for DNA extraction. Serum samples for 21OH autoantibody status 

were available from 47 individuals in total. Of those 25 individuals with AAD, 

serum was available for 15 (9 were 21OH autoantibody positive, 6 were 21OH 

autoantibody negative). Of the unaffected family members, serum was available 

for 32 individuals. 3 were 21OH autoantibody positive and 29 were 21OH 

autoantibody negative.  

2.1.4.2 NORWEGIAN FAMILIES 

12 Norwegian kindreds were identified through the Norwegian registry of 

autoimmune diseases. These kindreds comprised 64 individuals in total (28 

males, 36 females). 10 of the 12 Norwegian kindreds had 2 members with AAD 

(affected sibling pairs n=5, affected parent-child pairs n=1, other relationships 

e.g. avuncular, cousins etc. n=4). One kindred comprised a trio of affected 

siblings and one kindred comprised of two pairs of affected sibling pairs in two 

generations (Figure 6).  

 

Of those with AAD (n=27), 18 were female and 9 were male 

 The mean age of onset of AAD was available for 25 of the 27 individuals 

with AAD and was 30.4 years (median 27 years, minimum 10 years, 

maximum 67 years) 

 Of those with AAD, 10 had autoimmune comorbidities 

o 9 also had autoimmune thyroid disease 

o 4 had type 1 diabetes 

o 2 had vitiligo 

o 2 had rheumatoid arthritis 

o 2 had coeliac disease 

o 1 had pernicious anaemia 

o 1 had gonadal failure  

o 1 had Sjögren’s disease 

 

Of those unaffected kindred members (n=37), 18 were female and 19 were 

male 
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 4 had autoimmune comorbidities 

o 4 had autoimmune thyroid disease 

o 1 had diabetes 

 

DNA samples were available from all 64 individuals and serum was available 

from 59 people. Of those 27 individuals with AAD, serum was available for 24 

(22 were 21OH autoantibody positive, 2 were 21OH autoantibody negative). Of 

the unaffected family members, serum was available for 35 individuals. 2 were 

21OH autoantibody positive and 33 were 21OH autoantibody negative. 
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Figure 5: UK multiplex AAD family pedigree structures. 

Circles represent females, squares represent males. Deceased individuals are 
represented by a score out circle or square. Filled circles/squares represent 
affected individuals and unfilled circles/squares represent unaffected 
individuals. Samples marked with an asterisk were available for 21OH 
autoantibody analysis: blue asterisk = 21OH autoantibody negative, red asterisk 
= 21OH autoantibody positive, black asterisk = 21OH autoantibody status 
unknown. AAD, autoimmune Addison’s disease; T1DM, type 1 diabetes 
mellitus; AITD, autoimmune thyroid disease; PA, pernicious anaemia; AS, 
ankylosing spondylitis; SLE, systemic lupus erythematosus; RA, rheumatoid 
arthritis; MNG, multimodular goitre; POF, premature ovarian failure.
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Figure 6: Norwegian multiplex AAD family pedigree structures. 

Circles represent females, squares represent males. Deceased individuals are 
represented by a score out circle or square. Filled circles/squares represent 
affected individuals and unfilled circles/squares represent unaffected 
individuals. Samples marked with an asterisk were available for 21OH 
autoantibody analysis: blue asterisk = 21OH autoantibody negative, red asterisk 
= 21OH autoantibody positive, black asterisk = 21OH autoantibody status 
unknown. AAD, autoimmune Addison’s disease; T1DM, type 1 diabetes 
mellitus; AITD, autoimmune thyroid disease; PA, pernicious anaemia; RA, 
rheumatoid arthritis. 
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2.2 GENERIC METHODS 

2.2.1 EXTRACTION OF GENOMIC DNA FROM WHOLE VENOUS BLOOD 

All centrifuge speeds are stated in g. This relates to revolutions per minute 

(rpm) as follows:  

 

g = (1.118 × 10-5) x R x S2 

 

where R is the radius of the centrifuge rotor and S is the speed in rpm. 

 

Genomic DNA (gDNA) was extracted from whole venous blood using the 

Nucleon BACC2 DNA extraction kit (GE Healthcare Life Sciences). 9ml of 

venous blood (anticoagulated with 0.5ml of 0.5M EDTA, pH 8), frozen at  

-80oC for storage, was defrosted at room temperature for 1 hour. Once fully 

defrosted, the blood was transferred into a 50ml polypropylene tube, and 40ml 

of lysis buffer Reagent A (10mM Tris-HCl, 320mM sucrose, 5mM MgCl2, 

1%(v/v) Triton X-100, pH 8.0) was added. The tube was rotary mixed for 4 

minutes at room temperature and then centrifuged at 1300g for 5 minutes. The 

supernatant was discarded, leaving a pellet which was resuspended in 2ml of 

Reagent B (400 mM Tris-HCL, 60 mM EDTA, 150 mM NaCl, 1% SDS, pH 8). 

The suspension was transferred into a clean 15ml polypropylene tube and 

500µl of sodium perchlorate was added. The tube was then inverted 7 times by 

hand and 2ml of chloroform was added before inverting the tube again, by 

hand, 7 times. Without disturbing the phases, 300µl Nucleon™ resin was added 

to the tube and centrifuged at 1300g for 3 minutes. 

 

The clear, colourless layer above the resin (approximately 3mls) was 

transferred to a clean 15ml polypropylene tube, without disturbing the resin 

layer. 2 volumes (approximately 6mls) of ice cold 100% ethanol were added to 

the solution, and the tube inverted, to precipitate gDNA. The opaque 

precipitated gDNA was extracted from the solution using a sterile plastic hook, 
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and suspended in 200µl of TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8) in a 

1.5ml tube, and refrigerated at 4oC overnight to allow the gDNA to dissolve fully. 

2.2.2 EXTRACTION OF GENOMIC DNA FROM TISSUES  

gDNA was extracted from tissues using the QIAamp DNA Mini Kit (Qiagen). 

Tissue samples stored in the -80oC freezer were defrosted and weighed. A 

maximum of 20mg of tissue was finely chopped in a petri dish using sterile 

scalpels. The tissue was then placed in a 1.5ml microcentrifuge tube and 180μl 

of buffer ATL was added. 20μl of proteinase K was then added and the solution 

mixed by vortexing. This was then incubated overnight at 56°C in a shaker-

incubator (Eppendorf Thermomixer comfort). 

 

The following morning, the tube was briefly centrifuged and then 200μl of buffer 

AL was added to the sample. The solution was mixed by vortexing for at least 

15 seconds and then incubated on a shaker-incubator for 10 minutes at 70°C. 

The tube was then briefly centrifuged and 200μl of 100% ethanol was added. 

This was then mixed by vortexing for a minimum of 15 seconds. The solution 

was then pipetted directly into a QIAamp Mini spin column placed into a 2ml 

collection tube and the cap closed. The column was centrifuged at 6000g for 1 

minute. The QIAamp Mini spin column was then placed into a clean 2ml 

collection tube and the tube containing the filtrate was discarded. 500μl of buffer 

AW1 was then added to the spin column and the column centrifuged at 6000g 

for 1 minute. Again, the column was then placed into a new collecting tube and 

the tube containing the filtrate was discarded. 500μl of buffer AW2 was then 

placed into the column and this was centrifuged at full speed (maximum 

20,000g) for 3 minutes. The tube containing the filtrate was discarded. The 

column was then placed in a new 2ml collection tube and centrifuged at full 

speed for 1 minute. Again, the tube containing the filtrate was discarded and the 

spin column was placed into a clean 1.5ml tube.  

 

To elute the DNA captured on the spin column membrane, 200μl of buffer AE 

was applied to the column and this was incubated at room temperature for 1 

minute before centrifuging at 6000g for 1 minute.  
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2.2.3 DNA QUANTIFICATION 

After 24 hours, the concentration and integrity of gDNA in the solution was 

determined using ultraviolet (UV) spectrophotometry of the optical density (OD) 

at 260nm (NanoDrop ND-1000, NanoDrop Technologies Inc). An OD260 of 1.0 is 

taken as 50µg/ml for double-stranded DNA. For use with the Affymetrix 

Genome-Wide Human SNP Array 6.0 platform, a minimum of 10µl of gDNA of a 

minimum concentration of 100ng/µl with an OD260/280 ratio between 1.7 and 2.0 

was required. For other PCR applications, a minimum of 20ng/µl with an 

OD260/280 ratio between 1.7 and 2.0 was required. DNA samples were also run 

out on an agarose gel to ensure sample integrity. 

2.2.4 EXTRACTION OF RNA FROM WHOLE VENOUS BLOOD 

Prior to each extraction, all equipment was cleaned with RNase ZAP (Sigma) to 

remove RNases. Ribonucleic acid (RNA) was extracted from whole venous 

blood using the PAXgene blood RNA kit (Qiagen), for extraction and purification 

of intracellular RNA.  

 

2.5ml of whole venous blood was collected in PAXgene vacutainer tubes and 

frozen at -80⁰C for storage. The PAXgene tubes were defrosted and allowed to 

stand at room temperature for 2 hours prior to the RNA extraction procedure. 

The PAXgene tube was then centrifuged at 3500g for 10 minutes and the 

supernatant discarded leaving a pellet, to which 4ml of RNase-free water was 

added. The PAXgene tube was then re-sealed using a fresh BD Hemogard 

closure lid and the pellet fully resuspended by vortexing. The tube was then 

centrifuged for a further 10 minutes at 3500g and the supernatant was again 

discarded, leaving a pellet.  

  

350μl of Buffer BR1 was then added and the pellet resuspended by vortexing. 

This solution was then transferred to a fresh 1.5ml microcentrifuge tube. 300μl 

of Buffer BR2 and 40μl proteinase K were then added and the solution mixed by 

vortexing for 5 seconds. This solution was then incubated at 55⁰C for 10 

minutes in a shaker-incubator to allow protein digestion.  
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The lysate was pipetted carefully into a PAXgene shredder spin column placed 

in a 2ml processing tube, and centrifuged for 3 minutes at maximum speed (not 

exceeding 20,000g) to remove any residual debris and to homogenise the 

lysate. The entire supernatant (the flow-through fraction) was then transferred to 

a fresh 1.5ml microcentrifuge tube without disturbing the pellet in the processing 

tube. 

 

350μl of 100% ethanol was then added and the solution mixed by vortexing 

before briefly centrifuging at 1000g for 2 seconds. 700μl of lysate was pipetted 

into the PAXgene RNA spin column placed in a 2ml processing tube, and 

centrifuged for 1 minute at 16,000g. During this step, RNA is selectively bound 

to the PAXgene silica membrane as contaminants pass through. The spin 

column was then removed and placed in a new 2ml processing tube, and the 

old processing tube, containing the flow-through, was discarded. This step was 

repeated with the remainder of the sample.  

 

Remaining contaminants were removed in several wash steps. Initially, 350μl of 

Buffer BR3 was pipetted into the PAXgene RNA spin column and centrifuged 

for 1 minute at 16,000g. The spin column was then placed in a new 2ml 

processing tube and the old processing tube containing the flow-through was 

discarded. 10μl of DNase I stock solution was added to 70μl of Buffer RDD and 

mixed by hand. 80μl of the DNase I mix was applied directly onto the PAXgene 

RNA spin column membrane, and left at room temperature for 15 minutes to 

remove any traces of DNA.  

 

350μl of Buffer BR3 was pipetted into the PAXgene RNA spin column, and 

centrifuged for 1 minute at 16,000g. The spin column was placed into a fresh 

2ml processing tube, and the old processing tube and flow-through discarded. 

500μl of Buffer BR4 was then pipetted into the PAXgene RNA spin column, and 

again centrifuged for 1 minute at 16,000g. Again, the spin column was placed in 

a new 2ml processing tube, and the old processing tube containing the flow-

through was discarded. 



 

61 

 

 

A further 500μl of Buffer BR4 was then pipetted into the PAXgene RNA spin 

column and centrifuged for 3 minutes at 16,000g. The tube containing the flow-

through was then discarded and the PAXgene RNA spin column was placed 

into a fresh 2ml tube. This was again centrifuged for 1 minute at 16,000g and 

the tube containing the flow through was discarded while a fresh 1.5ml 

microcentrifuge tube was used for the spin column.  

 

To elute RNA, 40μl of the Buffer BR5 was applied directly onto spin column 

membrane and centrifuged for 1 minute at 16,000g. This step was then 

repeated for maximum RNA yield. The eluate was then heat-denatured by 

incubating for 5 minutes at 65°C and then chilled immediately on ice following 

incubation. RNA samples were then stored at -80⁰C. 

2.2.5 EXTRACTION OF RNA FROM TISSUE 

Tissue samples, stored at -80⁰C, were defrosted on ice in a 1.5ml tube. 1ml of 

TRIzol (Invitrogen) was added. The tube was incubated at room temperature for 

5 minutes. 0.2ml of chloroform was then added and the mixture vortexed for 15 

seconds. This mixture was then incubated at room temperature for a further 3 

minutes. The tube was then centrifuged at 4⁰C for 15 minutes, at 12,000g. The 

upper, aqueous layer was then removed by pipette and put into a fresh tube. 

0.5ml of 100% isopropanol was added and the solution incubated at room 

temperature for 10 minutes. The tube was then centrifuged at 4⁰C for 10 

minutes, at 12,000g. The layer of isopropanol was then removed to leave a 

pellet. This was resuspended in 1ml of 70% ethanol (1ml of ethanol per 1ml of 

TRIzol). The tube was then centrifuged at 4⁰C for 5 minutes, at 7500g. The 

ethanol was then removed and the pellet allowed to air-dry for 2 minutes. The 

residual pellet was resuspended in 50µl Diethylpyrocarbonate (DEPC) water.  

 

To remove traces of gDNA contamination, RNA samples were treated with 

DNase, using the Primerdesign Precision DNase kit (Primerdesign, 

Southampton). In a PCR tube, for every 50µl of RNA, 5µl of 10X Precision 
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DNase reaction buffer was added, making the final reaction concentration 1X. 

1µl of Precision DNase enzyme was added for every 100µl of RNA solution. 

This solution was then incubated at 30⁰C for 10 minutes and then at 55⁰C for 5 

minutes to inactivate the DNase.  

 

Integrity and concentration of RNA samples was determined by UV 

spectrophotometry of the OD at 260nm using the NanoDrop ND-1000 

spectrophotometer (an OD260 of 1.0 being taken as 40μg/ml for RNA). Samples 

with an OD260/280 ratio of less than 1.80 or greater than 2.20 were rejected. RNA 

samples were also run out on an agarose gel to ensure sample integrity. 

 

2.2.6 FIRST STRAND cDNA SYNTHESIS 

5µg of RNA was pipetted into a PCR tube with 50ng of random hexamers and 

40u RNaseOut (Invitrogen). The volume was made up to 12µl with nuclease-

free filtered, sterile distilled water if necessary. This was incubated at 70⁰C for 

10 minutes in a PCR machine, briefly centrifuged and then placed on ice. To 

each tube, 8µl of master mix (0.5mM dNTPs, 1X buffer, 0.01M DTT and 200u 

Superscript III RT (Invitrogen) enzyme) was added to make a total reaction 

volume of 20µl. This was incubated in a PCR machine at 50⁰C for 1 hour and 

then 95⁰C for 5 minutes. After this, samples were briefly centrifuged and placed 

on ice. Complementary DNA (cDNA) was then stored at -20⁰C for later use.   

2.2.7 EXTRACTION AND PURIFICATION OF PCR PRODUCTS FROM AGAROSE 

GEL 

The QIAquick Gel Extraction Kit (Qiagen) was used to extract and purify PCR 

products from agarose gel for sequencing.  

 

PCR products were cut out from the agarose gel under direct UV visualisation, 

placed in a 1.5ml tube and weighed. 3 volumes of buffer QG were added and 

then each tube was incubated at 50⁰C on a heat block for 10 minutes, vortexing 
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regularly until the agarose gel had dissolved. 1 volume of 100% isopropanol 

was then added to the tube and mixed by hand. This solution was then applied 

to a QIAquick column placed into a 2ml collecting tube and centrifuged at 

17,900g for 1 minute. The flow-through was then discarded. 500µl of buffer QG 

was added to the column which was centrifuged for 1 minute at 17,900g. Once 

again, the flow-through was discarded. 750µl of buffer PE was then applied to 

the column and centrifuged for 1 minute at 17,900g. The QIAquick column was 

then placed in a fresh tube. To elute the PCR product, 50µl of buffer EB (10mM 

Tris-Cl, pH 8.5) was added and the column left to stand for 1 minute before 

centrifuging at 17,900g for 1 minute. The extracted product was sent to Eurofins 

MWG Operon for dideoxynucleotide (Sanger) sequencing. 

2.2.8 21OH AUTOANTIBODY ASSAY 

Available serum samples were shipped to Bergen, Norway on dry ice, for 

analysis of 21OH autoantibody levels. A fluid phase radioimmuno-precipitation 

assay was used as previously described[213]. In brief, each patient or control 

serum sample, diluted 1 in 10 in assay buffer (150 mM NaCl, 20 mM Tris–HCl, 

0.15 % (v/v) Tween–20, pH 8.0), was incubated overnight at 4°C with 15,000–

20,000 counts per minute (cpm) of radiolabeled 21OH antigen (in triplicate). 

Immune complexes were isolated by precipitation with protein A Sepharose (GE 

Healthcare Life Sciences). The amount of radiolabeled antigen bound by serum 

samples was analysed in filter-bottomed microtiter plates (Millipore) by a 

TopCount liquid scintillation counter (PerkinElmer). The results were expressed 

as an autoantibody index, AI:  

 

[(cpm sample – cpm negative standard)/(cpm positive standard – cpm negative 

standard) x 1000] 

 

For each assay plate, serum from an AAD patient with previously confirmed 

autoantibodies targeting the respective antigens was used as a positive control, 

while pooled human sera from healthy volunteers was used as a negative 

control. The upper normal limit (positive cut-off) for each antigen was set as the 
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autoantibody index calculated from the mean cpm of triplicates of 100 

Norwegian blood donors + 3 standard deviations (SD).  

2.2.9 GENOTYPING ON THE SEQUENOM PLATFORM 

The Sequenom MassARRAY platform is a high-throughput SNP genotyping 

platform which allows up to 40 SNPs to be genotyped in each reaction, through 

multiplexing of compatible assays. Initially, primers pairs specific to each SNP 

of interest are used in parallel in a PCR reaction. This is followed by an 

extension reaction, again specific to each SNP of interest, whereby an 

extension primer anneals immediately upstream of its target SNP. The reaction 

is then incubated with mass-modified di-deoxynucleotide terminators and each 

extension primer is extended by a single mass-modified base. The base 

extension is determined by the underlying sequence. The mass of the extended 

primer can then be determined using matrix-assisted laser desorption 

ionisation-time of flight (MALDI-TOF) mass spectrometry and the alleles present 

can be derived from the primer’s final mass[214]. 

2.2.9.1 SNP SELECTION FOR SEQUENOM  

To select SNPs for genotyping, the Ensembl database 

(http://www.ensembl.org)[215] was used to search for coding variants in genes or 

regions of interest and Haploview[216] was used to analyse LD patterns and 

haplotypes. The HapMap database (http://hapmap.ncbi.nlm.nih.gov)[102] was 

then used to select SNPs covering common haplotypes. 

2.2.9.2 SEQUENOM ASSAY DESIGN 

Following SNP selection, the Ensembl database was then used to identify the 

DNA sequence flanking each SNP. This sequence (approximately 300bp in 

length) was uploaded into the MySequenom website 

(https://www.mysequenom.com). The MassARRAY® Designer software was 

then used to design compatible, sequence-specific forward, reverse and iPLEX 

single base extension primers. All forward and reverse primers were ordered 

unmodified (Metabion) and the extension primers were high performance liquid 
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chromatography (HPLC) purified and MALDI-TOF checked (Metabion). Primer 

sequences for the twenty candidate gene study and the linkage validation 

association study are shown in appendices A and C respectively. 

2.2.9.3 SEQUENOM PCR METHOD 

Two Sequenom providers were used in the course of this work. Either PCR 

products were provided to NewGene (Newcastle, UK) for a post-PCR 

Sequenom genotyping service or gDNA samples were shipped to CIGMR 

(Manchester University, Manchester, UK) for a complete Sequenom genotyping 

service.  

 

To provide PCR products for genotyping, multiplex PCR was carried out in 96 

well plates and at least five negative controls and a number of duplicates were 

included, per plate, to ensure that the PCR was not contaminated and to ensure 

genotyping fidelity respectively. The PCR reaction volume was 10µl and 

contained 15ng of template gDNA, 1.25X PCR buffer (Qiagen), 1.63mM MgCl2 

(Qiagen), 0.5mM dNTPs (New England Biosciences) and 1u of HotStar Taq 

DNA polymerase (Qiagen). A pool of primers (Metabion) was made to include 

0.5 µM of each forward and reverse primer. This pool was added to the PCR 

reaction to give a final concentration of each primer of 0.1µM. The thermal 

cycling conditions for the reaction included an initial denaturation step at 95°C 

for 15 minutes, followed by: 45 cycles of 95°C for 20 seconds, 56°C for 30 

seconds and 72°C for 1 minute, followed by a final extension step of 72°C for 3 

minutes. A number of PCR products were then selected at random, including at 

least one negative control, and were visualised on a 1.8% agarose gel stained 

with SafeView Nucleic Acid Stain (5%, NBS Biologicals) to ensure that the PCR 

had been successful and was not contaminated. Following PCR, 5μl of each 

product was transferred into a 384 well plate and this plate was given to the 

Sequenom service provider for further processing.  

 

In brief, post-PCR, shrimp alkaline phosphatase (SAP) is transferred into each 

well of the 384 well plate. This removes non-incorporated dNTPs from 
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amplification products when incubated at 37°C for 50 minutes. The SAP 

enzyme is then inactivated by incubating at 85°C for 20 minutes. 

 

An extension reaction mix is then prepared, which contains an extension primer 

for each SNP of interest, di-deoxynucleotide terminators and polymerase 

enzyme. The post-PCR primer extension reaction generates allele-specific DNA 

products that, based on their unique mass values, allow two alleles at a site of 

interest to be discriminated. 

 

The extension reaction mix is transferred into the SAP-treated PCR plates. A 

SpectroCLEAN cationic resin is used to remove salt particles from the extension 

reaction. 15nl of the extension product from each well of the sample plate is 

then spotted onto a 384 format SpectroCHIP. The SpectroCHIPs are loaded 

into the MALDI-TOF mass spectrometer. Each spot is then excited with a laser 

under vacuum conditions and sample molecules are vaporised and ionised. 

They are then transferred electrostatically into a time-of-flight mass 

spectrometer (TOF-MS), where they are separated from the matrix ions, 

individually detected based on their mass-to-charge ratios, and analysed. 

Detection of an ion at the end of the tube is based on its flight time, which is 

proportional to the square root of its mass-to-charge ratio. This process 

generates data for each sample, and from this, a genotype can be derived[214].  

2.2.9.4 SEQUENOM DATA MANAGEMENT AND QUALITY CONTROL 

Case-control association study genotype data from Sequenom providers were 

returned in a Microsoft Excel spreadsheet. Failed genotypes were recorded as 

0, while successful genotypes were shown as A (indicating a homozygous 

genotype of AA), B (indicating a homozygous genotype of BB) and AB 

indicating a heterozygote.  

 

Initially, data quality control checks were carried out. All non-template control 

(water blank) samples were assessed to ensure that these did not produce 

genotype results suggesting a contaminated PCR reaction. The results of 
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duplicate samples were then checked to ensure that the genotype results per 

SNP replicated, thus ensuring assay fidelity. Replicate samples were then 

removed from the data set. Sequenom summary plots were reviewed to ensure 

that distinct clusters of genotypes were seen (Figure 7).  

 

Data were then sorted and analysed using the filter function to display 

genotyping results for each SNP individually. For each SNP, a count was made 

of each genotype (AA, AB, BB) in cases and then in controls. Genotype 

frequencies were then used to calculate percentage call rates for each SNP: 

 

Genotyping call rate = AA+AB+BB/sample size x 100 

 

SNPs with a call rate of less than 95% were excluded from further analysis. 

Allele frequencies were then calculated from the genotype frequencies 

 

Allele A frequency = 2(AA) + AB  
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Figure 7: Sequenom cluster genotype plots. 

Cluster plots for two GATA3 SNPs genotyped in 335 UK AAD patients. The plot 
for SNP rs10905284 is shown in panel A, the plot for rs2229359 in panel B. 
Each genotype is represented by a coloured dot. Panel A shows an example of 
a reliable Sequenom assay, with three distinct clusters of genotype calls 
(orange = AA, blue = CC, green = CA) and few samples falling between the 
groups (shown as failed genotypes in red). In contrast, panel B shows an assay 
which has not worked as well on this occasion, with more failed calls and less 
distinct clusters, particularly for the less common TT genotype (shown in blue). 
The results for this assay were excluded from analysis. 
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Genotype data from the control cohorts at each SNP were assessed for 

deviation from HWE using a free access computer program available at 

http://www.tufts.edu. The HWE principle states that genotype and allele 

frequencies in a population remain constant from generation to generation 

provided no disrupting factors are introduced, for example non-random matings 

or mutations. Therefore, if a single locus has three possible genotypes, AA, AB 

and BB, and the frequencies of A and B are expressed as p and q respectively, 

genotype data in HWE should obey the formula: 

  

(p2) + (2pq) + (q2) = 1 

 

The above computer program performs a chi squared (χ2) test of independence 

(as genotype data is nominal), with 1 degree of freedom, comparing observed 

genotype data in controls with expected genotypes under the HWE principle. A 

P value is then derived from the χ2 distribution, with the P value representing the 

probability that the deviation of the observed from that expected is due to 

chance alone. Any SNP in any control cohort with a HWE P value of <0.01 was 

excluded. In genetic studies, significant deviation from HWE often indicates a 

small sample size or a genotyping problem.  

2.2.9.5 STATISTICAL ANALYSIS OF SEQUENOM GENOTYPE DATA 

Following all quality control checks, frequencies of genotypes and alleles in 

cases and controls at each SNP were compared to look for differences. This 

was done in one of two ways depending on the structure and format of the raw 

data. For some analyses, contingency tables were constructed. For genotypes, 

3 x 2 contingency tables were used (2 degrees of freedom) and for alleles, 2 x 2 

contingency tables were used (1 degree of freedom). χ2 statistics and P values, 

for both genotypes (Pgenotype) and alleles (Pallele), were then calculated using an 

online calculator (http://www.obg.cuhk.edu.hk). Alternatively, PLINK was used 

to perform association tests[217]. PLINK generates a genotypic P value from a 3 

x 2 χ2 test and a Cochran-Armitage allelic test P value. Results were considered 

indicative of association if the P value was <0.05. All P values are reported 
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uncorrected for multiple testing. The two analysis methods were compared and 

were found to give comparable results.  

 

Odds ratios (OR) and 95% confidence intervals were calculated using an online 

calculator (http://www.hutchon.net/ConfidOR.htm), which uses the formula:  

 

OR = (a x d)/(b x c)  

 

where a and c are the numbers of patients and controls with the risk allele A 

respectively, and b and d are the numbers of patients and controls with the 

alternative B allele[218, 219]. All odds ratios are stated in respect to the minor 

allele. Where the appropriate demographic data were available, AAD cohorts 

were subdivided into individuals with AAD alone (isolated AAD; iAAD) and those 

with AAD in conjunction with another autoimmune condition (APS2). 

Additionally, subgroup analyses were performed using 21OH autoantibody 

status where this information was available. 

 

In some analyses, to determine whether there was significant genetic 

heterogeneity between the cohorts, control cohort allele frequency data 

between countries were compared using a 2 x 2 χ2 test. The allele frequencies 

between cohorts were considered significantly different, suggesting genetic 

heterogeneity, if the P value was <0.05.  

 

Where appropriate, haplotype analysis was performed using the UNPHASED 

software package[220]. For this, rare haplotypes (<5%) were excluded, as these 

can result in spurious results. An initial basic association analysis is performed 

and the most associated marker identified. The analysis is then conditioned 

upon this marker and the next most associated marker selected in sequential 

order, until all association has been accounted for. A haplotype analysis is then 

performed, using the most common haplotype as the “reference” and an overall 

estimate of association calculated.  
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2.2.9.6 META-ANALYSIS 

The RevMan 5 software package (The Nordic Cochrane Centre[221]) was used 

to perform meta-analysis, using a conservative random effects model to allow 

for heterogeneity. Should a correction for multiple testing be required, an 

adapted method of the Bonferroni correction was applied using the formula: 

 

α/n 

 

where α is the desired significance level (e.g. 0.05) and n is the number of 

independent tests carried out on a data set (the number of hypotheses 

tested)[222, 223].  
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2.3 CYP21 LOCUS METHODS  

2.3.1 CYP21A1P GENOMIC DNA DELETION 

A competitive PCR assay to differentiate the CYP21A2 gene from the 

CYP21A1P pseudogene (Figure 8) had already been established by a previous 

member of the laboratory group, Alekhya Narravula. To establish this assay, 

primers on either side of the 8bp deletion that differentiates CYP21A1P from 

CYP21A2 were designed in order to amplify both sequences from gDNA in the 

same reaction. The forward primer sequence (5’–3’) was 

TCCTCCTGCAGACAAGCTG and the reverse primer sequence (5’–3’) was 

CTTCTTGTGGGCTTTCCAGA (Tm 60⁰C). 

 

Primer pairs were checked for specificity using both the University of California 

Santa Cruz (UCSC) in silico PCR design tool (http://www.genome.ucsc.edu) 

and the National Center for Biotechnology Information (NCBI) nucleotide 

BLAST tool (http://www.ncbi.nlm.nih.gov). Primers were ordered from Eurofins 

MWG Operon.  

 

The PCR reaction volume was 25µl and contained 1X PCR buffer (Qiagen), 

0.15mM MgCl2 (Qiagen), 0.1mM dNTPs (New England Biosciences), 1.6µM 

each primer (Integrated DNA technologies) and 0.75u HotStar Taq DNA 

polymerase (Qiagen). The thermal cycling conditions included an initial 

denaturation step at 94°C for 15 minutes, followed by 35 cycles of 94°C for 30 

seconds, 54°C for 30 seconds and 72°C for 30 seconds, followed by a final 

extension step of 72°C for 10 minutes. The PCR products were run out, next to 

a 100bp ladder, on a 3.8% agarose gel at 100V for 90 minutes and visualised 

using a UV light. The 85bp CYP21A2 product could be distinguished by size 

from the 77bp CYP21A1P product. 

 

This assay had been previously used to genotype 295 AAD patients and 299 

healthy controls for the presence or absence of the CYP21A1P pseudogene. I 
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used this assay to study an additional 20 individuals with AAD, 447 people with 

Graves’ disease and 328 controls. 2 x 2 contingency tables were created in 

order to analyse the results. A P value and odds ratio were generated using a χ2 

test. 
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Figure 8: Schematic of the CYP21A2 and CYP21A1P genes, their validated 
transcripts and their known and predicted protein products.  

The CYP21A2 gene is shown in panel Ai, with exons indicated by the coloured 
boxes marked 1 to 10 inclusive. The two validated transcripts are shown in 
panel Aii and the protein products derived from translation of these transcripts is 
shown in panel Aiii. The underlined amino acid residues in panel Aiii indicate 
the difference between the amino acid sequence for the protein product derived 
from transcript 1 compared to that derived from transcript 2. A schematic 
representation of the CYP21A1P pseudogene is shown in panel Bi. There is a 
deleterious mutation in exon 3 labelled 707-714delGAGACTAC which 
differentiates it from the gene. There are no validated transcripts for the 
pseudogene however the predicted amino acid sequence for a truncated protein 
product produced from the frameshift mutation and premature stop codon 
introduced by the deletion in exon 3 is shown in panel Biii. Those amino acids in 
Biii which differ from those in panel Aiii due to the frameshift mutation are 
shown in red, bold text. 
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2.3.2 TISSUE IN SITU HYBRIDISATION TO ESTABLISH CYP21A2 AND 

CYP21A1P EXPRESSION 

2.3.2.1 OVERVIEW 

Tissue in situ hybridisation (TISH) is a technique used to study gene expression 

in fixed tissues. Tissues must first be prepared by removing paraffin, retrieving 

the antigens and permeabilising tissue. Tissues can then be exposed to labelled 

probes designed to be specific and complementary to a messenger RNA 

(mRNA) or a microRNA sequence of interest. In this study, digoxigenin (DIG) 

labelled probes were used. A full length RNA probe, synthesised from a 

CYP21A2 cDNA template, was designed to hybridise to both CYP21A2 and 

CYP21A1P mRNA transcripts, in order to demonstrate their presence or 

absence in the tissues of interest. In addition, two short locked nucleic acid 

(LNA) probes were designed, one to hybridise specifically to CYP21A2 and 

another to hybridise to CYP21A1P, allowing us to determine whether both 

transcripts were expressed in tissues of interest, and to study their specific 

distributions. LNAs are chemically modified nucleotides which contain an 

additional 2'–O,4'–C–methylene bridge within the ribose ring[224, 225]. LNA probes 

are oligonucleotides in which LNAs replace ribonucleic acids at specific 

intervals along their length. The introduction of LNAs with their modified, rigid 

ribose ring changes the properties of the probe, conferring high binding affinity 

to complementary sequence and reduced degradation by nucleases, resulting 

in increased stability[226]. Despite being very short compared to RNA probes, 

LNA probes hybridise very specifically. This means that they can be used to 

distinguish between highly similar transcripts, with only a single base pair 

difference[227, 228] and can be used to detect short sequences, such as 

microRNAs in tissue sections[229-231]. This makes them ideal to study the 

CYP21A2 and CYP21A1P transcripts which are highly homologous. Following 

hybridisation of the probes, Fab fragments conjugated to alkaline phosphatase 

(AP) were used to bind to the DIG labels which were conjugated to the 5’ and 3’ 

bases of the LNA probe when it was synthesised. A nitro-blue tetrazolium and 

5-bromo-4-chloro-3'-indolyphosphate (NBT-BCIP) system was then used for 
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detection. BCIP is an alkaline phosphatase substrate which reacts after 

dephosphorylation to give a dark blue dye as an oxidation product. NBT acts as 

an oxidant and also gives a dark blue dye. This intensifies the colour, making 

detection more sensitive. In this study, fetal tissues were studied for CYP21A2 

and CYP21A1P expression.  

2.3.2.2 TISSUE RESOURCES 

For this study, adrenal tissue from subjects with and without the CYP21A1P 

pseudogene were required. To identify appropriate tissues, the Newcastle 

HDBR database was used to search for any specimen between 8 and 12 wpc 

where both a frozen skin sample, for gDNA extraction, and fixed adrenal tissue, 

for TISH, were available. In total, 42 potential specimens were identified. gDNA 

was extracted from the 42 fetal skin samples and this was used to genotype 

each specimen for CYP21A1P. 40 specimens (95.2%) were found to have the 

pseudogene (CYP21A1P+) and two (4.8%) were found to have no CYP21A1P 

(CYP21A1P–). Fixed and mounted adrenal and kidney sections from two 

CYP21A1P+ samples (N1822, 10 wpc; N1593, 12 wpc) and from one 

CYP21A1P– sample (N1643, 11 wpc) were therefore selected for the TISH 

experiment. In addition, central nervous system sections from two samples 

(N1481, 9 wpc; N646, 8 wpc) were available for use with a positive control LNA 

probe, which hybridises strongly and specifically to an abundant microRNA 

(hsa–miR–124) expressed exclusively in neuronal tissue. The use of this probe 

on these neuronal sections was to act as a positive control for the LNA probe 

technique optimisation. In addition, other specific controls were used: to 

determine if the CYP21A2 LNA probe was hybridising specifically, limb and 

cardiac tissue sections were available from two 12wpc fetuses (N1593 and 

N1782 respectively) for use as control tissues, as these are not expected to 

express CYP21A2. A sonic hedgehog mRNA riboprobe, which hybridises 

specifically to bone, was used as a positive control for this experiment.  
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2.3.2.3 TISH PROTOCOL 

TISH was performed through the “In House Gene Expression” service available 

from the Human Developmental Biology Resource (http://www.HDBR.org), 

Newcastle. Initially, I designed and ordered primer pairs (Integrated DNA 

Technologies) (Table 3), with SP6 and T7 extensions, to anneal to cDNA from 

both CYP21A2 and CYP21A1P. These were supplied to HDBR.  

 

A PCR was performed, using 100ng of whole cDNA from a Carnegie Stage 22 

embryo as a template. The PCR reaction volume was 50µl and contained 1X 

GoTaq PCR buffer (Promega), 0.5µM dNTPs (New England Biosciences), 

0.5µM each primer (Integrated DNA technologies) and 1.25u GoTaq DNA 

polymerase (Promega). The thermal cycling conditions included an initial 

denaturation step at 94°C for 5 minutes, followed by 30 cycles of 95°C for 1 

minute, 55°C for 1 minute and 74°C for 1 minute, followed by a final extension 

step of 74°C for 10 minutes. PCR products were run out on a 1% agarose gel 

for approximately 60 minutes at 80V. Amplicons were produced for primer pairs 

2 and 3 only. The product for primer pair 2 was strongest and therefore this 

amplicon was cut out and extracted from the gel using a QIAquick Gel 

Extraction Kit (Qiagen). This purified PCR product was then diluted 1/10, 1/100 

and 1/1000. 1µl of each dilution was then used as the template for a second 

round of PCR, using the above protocol. The PCR products were again run out 

on a 1% agarose gel. 

 

The strongest band was cut out and extracted using the QIAquick Gel 

Extraction Kit (Qiagen) and quantified using the Nanodrop. This PCR DNA was 

then used to set up two in vitro transcription reactions using an RNA DIG 

Labelling Kit (SP6/T7) (Roche) to produce an SP6 (antisense) riboprobe and a 

T7 (sense) riboprobe.
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Table 3: Primer pairs for TISH.  

Three primer pair combinations for TISH. The T7 sequence is shown in blue 
text and the SP6 sequence in red text. 

 

Primer 
pair 

name 

Sense probe (T7) 
(5’-3’) 

Antisense probe (SP6) 
(5’-3’) 

Tm (°C) Product size 
(bp) 

Pair 1 
 

TAAGTTAATACGA
CTCACTATAGGGC
GACAGGCTCCAC
CTTGGGCTGC 

AATACGATTTAGGTGA
CACTATAGAATACTCT
TCCATGCTCGGCTGC
GC 

60 636 

Pair 2 TAAGTTAATACGA
CTCACTATAGGGC
GAAAGCTCACCC
GCTCAGCCCT 

AATACGATTTAGGTGA
CACTATAGAATACACC
AGGGCCCAGTTCGTG
GT 

60 624 

Pair 3 TAAGTTAATACGA
CTCACTATAGGGC
GAGAGCGCATGA
GAGCCCAGCC 

AATACGATTTAGGTGA
CACTATAGAATACGCG
GTGGGGCAAGGCTAA
GG 

60 657 
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In a 20µl reaction volume, 75ng of PCR DNA was added to 1X Transcription 

buffer and 1X DIG labelling mix. 20u of RNase inhibitor was then added, with 

40u of either SP6 or T7 RNA polymerase. This was incubated at 37°C for 2 

hours. 20u of DNase I was then added and the solution mixed thoroughly before 

incubating at 37°C for 15 minutes. ProbeQuant G-50 Micro Columns (GE 

Healthcare) were then placed in a centrifuge and spun at 735g for 1 minute.  

 

Following incubation with DNase I, the in vitro transcription reaction solutions 

were made up to 50µl with nuclease-free DEPC water and added to the 

ProbeQuant G-50 columns. These were centrifuged at 735g for 2 minutes to 

remove unincorporated NTPs. The Nanodrop was then used to quantify RNA 

produced. A 2% RNA formamide gel was then made by adding 36mls of DEPC 

sterile distilled water to 5mls of 10 x MOPS (3-(N-morpholino)propanesulfonic 

acid)-EDTA-sodium acetate buffer (400mM MOPS, 100mM sodium acetate, 

10mM EDTA, pH 8.3. Sigma). 1g of RNAse free agarose (Invitrogen) was 

added and the solution weighed. This was then heated in a microwave for 90 

seconds to dissolve the agarose. DEPC sterile distilled water was then added to 

make the solution up to the pre-heated weight (41 mls total volume). In a fume 

hood, 9mls of 37% formamide (Sigma) was added to make the total volume to 

50mls. This was then poured into a gel tray, with a comb in situ to form wells, 

and left in a hood to set.  

 

1µl of each product was then added to loading dye (1X) and heated at 70⁰C for 

10 minutes prior to loading. Samples were run on the gel at 50V for 2 hours in 

1X MOPS-EDTA-Sodium acetate buffer and visualised by UV to determine that 

they were the appropriate size. The first reaction, with SP6, produced an 

“antisense” probe complementary to CYP21A2 and CYP21A1P mRNA for use 

in the TISH protocol. The second reaction was set up with T7 in place of SP6, 

producing a “sense” probe, for use as a negative control in the TISH protocol. 

The SP6 and T7 riboprobes were then carefully labelled and stored at -80°C for 

future use.   
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Prior to starting the TISH protocol, all solutions were made using DEPC-treated 

water or phosphate buffered saline (PBS). All glass/steelware were baked at 

180⁰C for at least 4 hours before use. For each reaction, a T7 probe slide was 

included as a negative control. 

 

Slides were placed in metal racks and paraffin removed by soaking in Xylene 

for 5 minutes x 3, Xylene/Ethanol 1:1 for 3 minutes, 100% ethanol for 3 minutes 

x 2, 90% ethanol for 3 minutes, 70% ethanol for 3 minutes and 50% ethanol for 

3 minutes. Slides were then washed in PBS for 2 minutes, the PBS discarded 

and fresh PBS added for a further 2 minute wash.  

  

To permeabilise tissues, the slides were left in a PBS solution containing 

Proteinase K (20µg/ml) at 37⁰C for 8 minutes. They were then rinsed for 30 

seconds in PBS and the PBS discarded. Slides were then fixed for 20 minutes 

in 4% paraformaldehyde (PFA) in PBS. They were then washed for 2 minutes in 

PBS twice and the PBS discarded at the end of each wash. The sections were 

then left in 0.1M Triethanolamine pH 8.0, 0.25% Acetic anhydride DEPC PBS 

for 10 minutes before washing twice, for 2 minutes in PBS. Sections were then 

dehydrated using a series of ethanol washes (50%, 70%, 90%, 100% and 100% 

for 2 minutes each). At the end of the final ethanol wash, slides were placed in 

fresh DEPC 100% ethanol for 2 minutes. Slides were then air-dried by placing 

them in a rack covered in foil (cleaned in DEPC ethanol) in a filtered air stream 

for 1 to 3 hours. 

 

To hybridise the RNA probe to mRNA, the slides were placed in a plastic slide 

tray which had been cleaned in DEPC ethanol. The solution containing the 

labelled probe was made up, using DIG Easy Hyb Mix (Roche), 3ng/µl, allowing 

100µl of hybridisation solution per slide (300ng of mRNA probe was added to 

100µl of Hyb mix per slide). This solution was then pipetted onto each slide and 

a cover slip gently applied to protect the section. A hybridisation chamber was 

prepared, with paper towel soaked in 2X saline-sodium citrate (SSC) (to make a 

20X solution, 3M NaCl, 0.3M Na-citrate, pH 7.2) to keep the slides moist. The 

slides were then placed into the chamber and left at 64⁰C overnight.  
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Post-hybridisation, the cover slips were removed by rinsing the slides in pre-

warmed 5X SSC (60⁰C). Slides were then placed in a black (to avoid gradient 

staining) plastic slide rack and washed in 5X SSC for 10 minutes at 60⁰C, 5X 

SSC for 10 minutes at 60⁰C, 2X SSC for 10 minutes at 60⁰C, 2X SSC for 10 

minutes at 60⁰C. Slides were then allowed to cool to room temperature. For 

antibody detection, slides were washed in buffer 1 (0.1M Tris (pH 7.6), 0.15M 

NaCl, made up to 1L with distilled water) on a rocker for 10 minutes at room 

temperature x 3. Each slide was then covered in 10% fetal calf serum (FCS, 

previously heat inactivated at 58⁰C for 30 minutes in buffer 1) for 1 hour. 150µl 

of anti-DIG AP mix (diluted 1:1000 – 2% FCS/buffer 1 - Roche) was then 

pipetted onto each slide. Slides were then covered with a fresh parafilm 

coverslip. The slide tray was moistened with paper towels soaked in buffer 1 

and left overnight at 4⁰C. 

 

The next day, slides were washed in buffer 1 on a rocker for 10 minutes at room 

temperature x 3. They were then equilibrated in buffer 2 (0.1M Tris (pH 9.5), 

0.1M NaCl, make up to 1L with distilled water) on a rocker for 5 minutes at room 

temperature x 3 and placed in a slide tray. An NBT-BCIP (20µl/ml - Roche) 

solution in buffer 2 was made up in a foil covered falcon tube (light sensitive). 

Each slide was then flooded with this solution and the slide tray covered in foil 

to protect from the light. Slides were then left to develop in a dark room and 

checked regularly for staining under the microscope. Fresh solution was added 

to avoid the slides drying out if needed. Development typically took from 30 

minutes to several days. Once staining is detected, to stop the reaction, slides 

were rinsed in buffer 2 and then in several changes of distilled water. Sections 

were then mounted in Aquamount (Fisher Scientific) and the edges of the 

coverslips painted in clear varnish to seal. 

 

The above protocol was also adapted for use with CYP21A2 and CYP21A1P 

LNA probes, designed and made by Exiqon. The probe sequences are shown 

in Table 4.  
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Probe name Probe sequence 

CYP21A2 LNA probe /5DIG_N/TCCAGAGCAGGGAGTAGTCT/3DIG_N/ 

CYP21A1P LNA probe /5DIG_N/AGCAGAGACCAACGACAG/3DIG_N/ 

hsa-miR-124 positive 
control LNA probe 

/5DIG_N/GGCATTCACCGCGTGCCTTA/3DIG_N/ 

Scramble-ISH negative 
control LNA probe 

/5DIG_N/GTGTAACACGTCTATACGCCCA/3DIG_N/ 

Table 4: LNA probe sequences. 

Sequence information for the four end-labelled LNA probes used for TISH.
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For each experiment, a scrambled probe, not known to hybridise to any known 

human RNA or micro-RNA sequence (Scramble–ISH, Exiqon) was used to act 

as a negative control. A positive control probe known to specifically hybridise to 

neuronal tissue (has-miR-124, Exiqon) was also used. 

 

The has–miR–124 control probe was used at 20nM concentration as per 

instructions. The Scramble-ISH probe was used at equivalent concentrations to 

the CYP21A2 and CYP21A1P probes. For the CYP21A2 and CYP21A1P LNA 

probes, a titration series was first used to determine the optimum concentration 

for each of the two probes in the hybridisation solution. Probes were tried at a 

concentration of 10nM, 20nM, 40nM, 100nM and 250nM. 

 

LNA probes were left to hybridise overnight at 53⁰C as per the manufacturer’s 

instructions. Various combinations of hybridisation temperature (50⁰C to 56⁰C) 

were used to optimise conditions. The stringency of the post-hybridisation 

washes was also adjusted. In addition to the medium stringency washes (as 

above), a high stringency wash protocol of 1X SSC followed by two washes of 

0.1X SSC was used to minimise non-specific hybridisation signals. The 

remainder of the TISH protocol was unchanged.  

2.3.3 NORTHERN BLOTTING 

2.3.3.1 OVERVIEW 

Northern blotting was developed to study expression of transcripts. Initially, 

RNA samples in a tissue of interest are separated by size using gel 

electrophoresis. The RNA may then be transferred onto a blotting membrane for 

detection by probes specific and complementary to the sequence within the 

transcript of interest. In this study, Northern blotting was performed with the aim 

of confirming that the SP6 antisense mRNA riboprobe and CYP21A2 and 

CYP21A1P LNA probes were hybridising to an appropriate sized transcript.  
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2.3.3.2 NORTHERN BLOTTING PROTOCOL 

Prior to starting the Northern blotting protocol, all solutions were made using 

DEPC treated water and all glass/steelware was baked at 180⁰C for 4 hours 

before use. A 2% RNA formamide gel was then made (see TISH protocol). 

400ng adrenal RNA samples were prepared with 1X RNA loading dye 

(Fermentas) and each sample made up to 12µl with DEPC water. In addition, a 

ladder was prepared allowing 0.5µl of ladder for every mm lane width e.g. 4µl 

for an 8mm wide lane. Two ladders were tried: the unlabelled Riboruler High 

Range ready-to-use RNA ladder (Fermentas) and the DIG labelled RNA 

molecular weight marker (Roche). Each sample and ladder were heated at 

70⁰C for 10 minutes and then put immediately onto ice for 2 minutes prior to 

loading.  

 

Electrophoresis was carried out in 1X MOPS-EDTA-Sodium acetate buffer at 

50v for 2 hours. Following electrophoresis, the ladder lane was cut out and 

soaked in a 3X Gel Red nucleic acid stain solution (Biotium, made up to 3X 

from a 10000X stock with sterile, distilled water) in the dark for 15 minutes and 

then visualised using UV to check that the bands of the ladder had adequately 

separated prior to transfer. In the case of the unlabelled ladder, bands were 

marked on the gel using a scalpel. 

 

A transfer stack was constructed (Figure 9) and transfer was performed 

overnight. 30 minutes prior to transfer, Hybond N nylon membrane (GE 

Healthcare Life Sciences) was soaked in 20X SSC (3M NaCl, 0.3M sodium 

citrate). 20X SSC solution was poured into a dish and an inverted gel tray was 

placed into this. A sheet of filter paper (Whatman, GE Healthcare) 20cm x 10cm 

was folded around the gel tray so that the ends extended into the SSC solution. 

2 sheets of filter paper were then placed onto this and the gel placed on top of 

the filter paper. The nylon membrane was placed carefully onto the gel and any 

bubbles removed by gently rolling a glass pipette over the surface. At this point, 

the gel with ladder lanes marked was lined up with the unmarked gel and the 

ladder lanes marked on the membrane with a scalpel to allow sizing of any 

band seen. 
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Figure 9: The components of the Northern blotting stack.  

Panel A shows the stack components for overnight transfer. Panel B illustrates the parafilm frame that forms part of the stack. 
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One sheet of filter paper, cut to the same size as the membrane, was placed on 

top of the membrane and then a frame of parafilm was placed around the edges 

of this. Three further sheets of filter paper were placed on top of this and then a 

stack of absorbent paper towels were stacked on top. Finally, a weighted plate 

was placed on top to add pressure. The stack was covered in clingfilm and left 

overnight.  

 

Following transfer, the membrane was cut into separate lanes so that each RNA 

sample was on a separate piece of membrane. Each lane had ladder bands 

marked by scalpel for product sizing. The top of the membrane was marked 

with a scalpel to facilitate orientation. While the membrane was still damp, the 

RNA was fixed to it by UV cross-linking at 120mJ for 1 minute (BioRad 

Genelinker). Specimen bags and weigh boats were then labelled to identify 

each sample. Dig Easy Hyb Mix (Roche), 3ng/µl, was made up, allowing 10ml 

of hybridisation solution per 1 x 10cm blot. This hybridisation buffer was 

warmed to hybridisation temperature (68⁰C for RNA probes, 53⁰C for LNA 

probes). Each piece of membrane was placed into a labelled sealable specimen 

bag and 10ml of Dig Easy Hyb Mix was added per 1 x 10cm strip of membrane. 

This was left at hybridisation temperature for 30 minutes and then poured off.  

 

Probes were made up in 10ml of the hybridisation solution. 150ng of the T7 and 

SP6 probes were used while a range of LNA probe concentrations were tried, 

from 20 and 100nM. All probes were heated to 95⁰C for 5 minutes and then put 

onto ice. Each probe was then added to 10ml of Dig Easy Hyb mix and this 

solution was then added to the appropriate specimen bag containing the 

membrane. The LNA probes were placed in a shaking water bath at 53⁰C 

overnight while the mRNA probes were incubated at 68⁰C overnight.  

 

Following overnight hybridisation, the DIG Easy Hyb mix was poured off and the 

membranes washed. All wash steps were carried out at 53⁰C for LNA probes 

and 68⁰C for the RNA probe. Membranes were washed in 5X warmed SSC for 

10 minutes, 5X warmed SSC for 10 minutes, 2X warmed SSC for 10 minutes. 

The final wash was carried out at room temperature with 2X warmed SSC for 10 
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minutes. The membranes were then equilibrated with buffer 1 by carrying out 

three 5 minute washes on a shaker.  

 

1X Blocking solution (Life Technologies, Invitrogen), made up from 10X 

concentrate with buffer 1, was then used to block the membrane, by soaking at 

room temperature for 30 minutes. Membranes were then washed for 5 minutes 

in buffer 1. The Anti-digoxigenin-AP antibody (Roche) was then diluted 1 in 

5000 in buffer 1 (1µl in 5 ml). This was added to the washed membranes in 

bags, allowing 10 ml per 1x10cm blot and incubated at room temperature for 30 

minutes.  

 

Following incubation with the antibody, the blots were washed on a shaker 3 x 

for 5 minutes each in buffer 1. The blots were then washed in buffer 2 on a 

shaker for 5 minutes. For detection, NBT/BCIP (Roche) 20µl/ml solution in 

buffer 2 was made up in a foil covered falcon tube (light sensitive). This solution 

was then added to the blots, allowing 10ml per 1x10cm blot and these were 

then left in the dark for 30 minutes at room temperature. To stop staining, 

membranes were rinsed in buffer 2 and then in several changes of distilled 

water. 

  

2.3.4 FLUORESCENCE-BASED QUANTITATIVE REAL-TIME PCR TO 

DETERMINE CYP21A2 AND CYP21A1P EXPRESSION 

2.3.4.1 OVERVIEW 

Fluorescence-based quantitative real-time PCR (qPCR) can be used to monitor 

the progress of the PCR reaction in “real time” by measuring fluorescence 

produced during DNA amplification. The basis for this technique is that, early in 

the PCR reaction, when little amplification has occurred, there is little 

fluorescent signal released. The baseline for the amplification plot is therefore 

defined early in the reaction. As amplified PCR products accumulate, the 

fluorescent signal increases and can be detected above the baseline. A fixed 
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fluorescence threshold can be set arbitrarily above the baseline and the cycle 

number at which the fluorescent signal crosses this threshold determines the 

threshold cycle (CT). The point at which the target is first detected during the 

PCR cycle can therefore be monitored. The higher the starting copy number of 

the nucleic acid target, the earlier an increase in the fluorescent signal is 

detected and the lower the CT value will be. Conversely, if only tiny amounts of 

target nucleic acid are present in the tested sample, a high CT will be observed. 

In these reactions, fluorescence is provided by fluorogenic probes and there are 

many of these available, both specific and non-specific. In this project, qPCR 

assays specific to CYP21A2 and CYP21A1P were designed by Primerdesign, 

Southampton and included specific primers (Table 5, Figure 10) and double-dye 

hydrolysis (Taqman-style) probes. The aim of qPCR in this study was to 

determine whether CYP21A2 and CYP21A1P were expressed in human 

thymus samples through the use of two FAM-labelled probes specific to 

CYP21A2 and CYP21A1P respectively, using cDNA as the PCR template, an 

absolute quantification method and human adrenal tissue to optimise the 

protocol.  

2.3.4.2 TISSUE RESOURCES 

Following genotyping of fetal skin samples for the presence or absence of 

CYP21A1P, RNA was extracted from three fetal adrenal glands available from 

Newcastle HDBR (one CYP21A1P– specimen, N1733, 11wpc; two 

CYP21A1P+ specimens, N1736, 9wpc and N1812, 12wpc) and cDNA was 

synthesised. In addition, seven thymus glands from infants and children 

(CYP21A1P+) were available for analysis from Birmingham. Finally, matched 

kidney samples from N1812, N1736 and N1733 were available for analysis.  
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2.3.4.3 METHOD 

2.3.4.3.1 STANDARD CURVE PRODUCTION 

A standard curve was produced using a positive control template for CYP21A2 

and CYP21A1P respectively. These control templates were produced by 

Primerdesign. The undiluted CYP21A2 control (positive control tube 1) 

contained 200,000 copies and was used to produce a series of dilutions (Table 

6). A series of dilutions was then made using the CYP21A1P positive control in 

the same manner.  
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Assay Sense primer Anti-sense primer Tm 
(⁰C) 

Product 
length (bp) 

CYP21A2 CAAGAGGACCATT
GAGGAAGC 

TCCAGAGCAGGG
ACTAGTCTC 

57 131 

CYP21A1P CGGACCTGTCGTT
GGTCTC 

CTCACAGAACTCC
TGGGTCA 

57 123 

Table 5: Primer sequences for the CYP21A2 and CYP21A1P qPCR assays.  

qPCR assays were designed and made by Primerdesign, Southampton. 
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CATCTACAGGCTCCACCTTGGGCTGCAAGATGTGGTGGTGCTGAACTCCA
AGAGGACCATTGAGGAAGCCATGGTCAAAAAGTGGGCAGACTTTGCTGG
CAGACCTGAGCCACTTACCTACAAGCTGGTGTCTAGGAACTACCCGGACC
TGTCNTTGGGAGACTACTCNCTGCTCTGGAAAGCCCACAAGAAGCTCACC
CGCTCAGCCCTGCTGCTGGGCATCCGTGACTCCATGGAGCCAGTGGTGG
AGCAGCTGACCCAGGAGTTCTGTGAGCGCATGAGAGCCCAGCCCGGCAC
CCCTGTGGCCATTGAGGAGGAATTCTCTCTCCTCACCTGCAGCATCATCTG
TTACCTCACCTTCGGAGACAAGATCAAGGACGACAACTTAATGCCTGCCTA
TTACAAATGTATCCAGGAGGTGTTAAAAACCTGGAGCCACTGGTCCATCCA
AATTGTGGACGTGATTCCCTTTCTCAGGTTCTTCCCCAATCCAGGTCTCCG
GAGGCTGAAGCAGGCCATAGAGAAGAGGGATCACATCGTGGAGATGCAG
CTGAGGCAGC 

Figure 10: cDNA sequence of CYP21A2 illustrating qPCR primer positions.  

Exon-exon boundaries are shown underlined. The 8bps that are deleted in 
CYP21A1P are shown highlighted in pink. The CYP21A2 assay primer pair is 
shown in bold italic green text. The CYP21A1P assay primer pair is shown in 
red text. The forward primer for the CYP21A1P assay overlaps with the reverse 
primer of the CYP21A2 assay (shown in red, bold text). The CYP21A2 assay 
spans the exon-exon boundary however the CYP21A1P assay does not. 
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Standard curve Absolute copy number 

Positive control tube 1 200 000 

Positive control tube 2 20 000 

Positive control tube 3 2 000 

Positive control tube 4 200 

Positive control tube 5 20 

Positive control tube 6 2 

Table 6: Standard curve production for qPCR absolute quantification. 
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2.3.4.3.2 qPCR PROTOCOL 

cDNA samples were prepared from DNase-treated RNA samples, using 5µg of 

RNA per reverse transcription reaction. Prior to use, each cDNA sample was 

diluted 1 in 10 with nuclease-free water. Each real-time PCR reaction was set 

up in a 384-well optical plate (Starlab) on ice. Standards and samples for each 

gene were run in triplicate. Water blanks were also run for each gene as 

controls. The CYP21A2 assay spans the exon-exon boundary, however the 

CYP21A1P assay could not be designed to be intron-spanning in the same 

way. Therefore RNA samples were run for each sample and each gene to 

ensure that starting material was not contaminated with gDNA. 20µl reaction 

volumes were used and each reaction contained 1X Primerdesign Precision 

qPCR Master Mix (0.25u Taq polymerase, 0.03mM MgCl, dNTP mix: 1.25µM 

each), 1µl of the primer/probe mix of interest (CYP21A2 or CYP21A1P, 

containing 300nM of each primer) and 5µl of template. Reaction volumes were 

made up with sterile, distilled, nuclease-free water. The PCR plate was then 

sealed using optical PCR film (Starlab). The qPCR reactions were carried out 

using a 7900HT real-time PCR system (Applied Biosystems) and cycled at 95⁰C 

for 10 minutes, then 50 cycles at 95⁰C for 15 seconds and 60⁰C for 1 minute. 

Data was collected during each cycle during the 60⁰C step through the FAM 

channel. Results were then analysed using the 7900HT Sequence Detection 

System software (Applied Biosystems). An absolute quantification method was 

used to determine CYP21A2 and CYP21A1P copy numbers/µl of sample. Each 

standard and sample were run in triplicate producing 3 CT measurements for 

each. The coefficient of variation was calculated for each set of replicates:  

 

CV = SD/mean CT x 100 

 

If this was less than 5%, the results were accepted. If the CV was greater than 

5%, the sample was rejected. Samples where a single replicate failed, giving an 

“undetermined” result, were accepted if the CV of the two remaining samples 

was less than 5%. Samples where two of the three replicates failed were 

rejected.  
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An initial quality control experiment was conducted. For this, a standard curve 

for both CYP21A2 and CYP21A1P was produced by plotting the triplicate CT 

values on the Y axis against the log10 of the starting copy number on the X axis. 

To determine primer efficiencies, the CT values for each standard sample, for 

each assay, were plotted and the gradient of the slope for each assay was 

calculated by linear regression in Prism 5 (GraphPad). The slope gradient 

should be approximately -3.32, indicating a priming efficiency of close to 100%. 

The primer efficiency (E) is calculated from the gradient using the following 

formula: 

 

E = 10(-1/slope) -1 x 100 

 

In general, slopes in the range of -3.60 to -3.10 are generally considered 

acceptable for qPCR, corresponding to primer amplification efficiencies of 

between 90 and 110%. Primer efficiencies were calculated from triplicate CT 

values generated from standard samples and these were replicated on three 

separate occasions. The standard curve for each plate was then used to 

determine the linear dynamic range of the assay. This range determines the 

limits of assay detection and sets a minimum and maximum CT for each assay. 

CT values falling outside this range are discarded.  

 

A second quality control experiment was then conducted to test the specificity of 

the CYP21A1P assay by using it, alongside the CYP21A2 assay, on 

CYP21A1P- and CYP21A1P+ fetal adrenal samples. This experiment aimed to 

ensure that the CYP21A1P assay was specific for pseudogene transcripts and 

was not erroneously amplifying the highly homologous CYP21A2 transcripts. To 

this end, cDNA synthesised from a CYP21A1P- fetal adrenal sample (N1733, 

11wpc) and from two CYP21A1P+ fetal adrenal samples (N1736, 9wpc and 

N1812, 12wpc) were used in the qPCR assay. If CT values were generated for 

the CYP21A1P- sample using the CYP21A1P assay, this would suggest that 

the assay was non-specific. RNA samples from each specimen were also 

included to ensure that the RNA samples were not contaminated by gDNA. 
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Following quality control measures, the qPCR assays were used on samples of 

interest. Using the standard curve, Prism 5 software was used to “interpolate” 

log10 copy numbers for each sample, based on its CT measurements. These 

were converted to copy numbers: 

 

Copy number in assay sample = 10x (where x is the interpolated value) 

 

As 5µl of cDNA diluted 1 in 10 was used in the qPCR protocol, the copy number 

value calculated related to the number of copies in 0.5µl of undiluted sample. To 

allow comparison of samples and replicate results, all values were therefore 

converted to an absolute copy number/µl by multiplying by two.  

 

As each sample was run in triplicate, and on at least two days, multiple absolute 

copy number values were generated per sample. This allowed a mean and 

standard error of the mean to be plotted per sample for CYP21A2 and 

CYP21A1P expression. The mean absolute copy number results for each 

sample for CYP21A1P and CYP21A2 could then be calculated. The mean of 

CYP21A1P copies could then be normalised to the mean of CYP21A2 copies. 

The mean was used for this as the CYP21A1P and CYP21A2 assays for each 

sample were run in separate wells, and therefore the results of individual 

components of the triplicates for CYP21A1P and CYP21A2 were not directly 

comparable. The assays were used to determine CYP21A2 and CYP21A1P 

expression in human thymus obtained from infants and children during 

cardiothoracic surgery.  
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2.4 20 CANDIDATE GENE ASSOCIATION STUDY METHODS  

2.4.1 NF-κB1 GENOTYPING BY RESTRICTION FRAGMENT LENGTH 

POLYMORPHISM (RFLP) GENOTYPING  

In this method, a restriction enzyme specific to a single allele of the SNP of 

interest is identified using a restriction site mapping tool, for example Webcutter 

version 2.0 (http://rna.lundberg.gu.se/cutter2). The RFLP method was used to 

genotype the rs4698861 SNP in the NFKB1 gene in a cohort of UK Graves’ 

disease patients (392 cases).  

 

The genomic sequence containing the rs4698861 SNP was found on the 

Ensembl database. The Webcutter 2.0 program was then used to identify an 

NlaIV restriction site introduced by the single nucleotide A to G substitution at 

this locus. Two primer pairs to amplify the SNP by PCR were designed in the 

Primer3 program[232]. Pair 1 gave an expected product of 390bp and pair 2 gave 

an expected product of 517 bp (Table 7). Each PCR was performed in a 10µl 

volume. Each reaction contained 200ng DNA template, 1X GoTaq buffer 

(Promega), 0.2mM each dNTP (New England Biolabs), 0.25µM each primer 

(MWG) and 0.25u GoTaq DNA polymerase (Promega). The thermal cycling 

conditions included an initial denaturation step at 94°C for 2 minutes, followed 

by 31 cycles of 94°C for 30 seconds, 60°C for 1 minute and 72°C for 1 minute, 

followed by a final extension step of 72°C for 10 minutes. 5µl of the PCR 

products were run out on a 2% agarose gel next to a 100bp ladder at 90v for 45 

minutes and visualised under UV light to check that the PCR had been 

successful and that the correct size product was visible (Figure 11). 

 

Primer pair 2, which gave a larger product pre-digest, was selected for further 

work. Following PCR, a digest was set up. The digest volume was 10µl and 

contained 2µl of PCR product, 1u NlaIV enzyme (New England Biolabs), 1X 

Buffer 4 (New England Biolabs) and 10% bovine serum albumin (New England 

Biolabs). The mixture was incubated at 37⁰C for 1 hour. The NlaIV enzyme cuts 

if the G allele is present at the SNP site. The digest products were run out on a 
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1.0% agarose gel, next to a 100bp ladder, at 90v for 1 hour and visualised using 

UV light. If the AA genotype is present, 2 products of approximately 400 and 

60bp are seen. If the genotype is GG, 2 products of 200 and 60bp are seen. If 

the AG genotype is present, 3 products of 400, 200 and 60bp are seen (Figure 

11). To increase genotyping call accuracy, the post-digest PCR products were 

independently assessed by two individuals within the lab (Katie MacArthur and 

I). Any genotypes that were not agreed upon were repeated or discarded to 

reduce the chance of erroneous calls.  
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Primer 
name 

Pair 
number 

Primer Sequence (5’-3’) Tm 
(⁰C) 

Product 
size (bp) 

rs4698861 
forward 1 

1 GCCAAAGGGATCAGAAATGA 60 390bp 

rs4698861 
reverse 1 

CACGCTGTGTGCATATGTTG 60 

rs4698861 
forward 2 

2 CTTCTTTCTGCCACTTCTTTGTGT 61 517bp 

rs4698861 
reverse 2 

GCATATGTTGCTCATCATTCAAGA 61 

Table 7: Primer sequences for genotyping rs4698861 in the NF-κB1 gene 
by RFLP. 
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Figure 11: rs4698861 RFLP gel images. 

2% agarose gel electrophoresis of PCR products pre-digest (panel A) and 1% 
agarose gel electrophoresis of digested PCR products (panel B). In panel A, 
products for NF-κB1 SNP rs4698861 primer pairs 1 and 2, designed to amplify 
a portion of DNA flanking rs4698861, are shown. In this image, a 100bp ladder 
is shown in lanes 1 and 18 and arrows indicate a product of 400 and 300bp. 
PCR products from primer pair 1 of 390bp are shown in lanes 2 to 8. PCR 
products from primer pair 2 of 517bp are shown in lanes 10 to 16. Lanes 9 and 
17 contain a no template control. In panel B, post-digest products are shown for 
primer pair 2. A 100bp ladder is shown in lane 1 and arrows indicate a product 
of 400, 100 and 60bp in size. An example of a heterozygote (AG) at SNP 
rs4698861 is seen in lane 4. In this case, three products are seen: 400, 200 and 
60bp in size. An example of a wild type homozygote (AA) is seen in lane 8 
where two products, 400 and 60bp in size, are seen. Lane 15 is an example of 
a mutant homozygote (GG) where two products of 200 and 60bp are seen (all 
indicated with arrows). The sample in lane 7 is a no template control.  
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2.5 GENOME-WIDE LINKAGE AND ASSOCIATION STUDY 

METHODS 

2.5.1 LINKAGE STUDY POWER CALCULATION 

The available pedigrees from the UK and Norway were used to perform power 

calculations. To do this, the pedigree was converted to linkage format using the 

MAKEPED program[233], and the SLINK program[234, 235] was used to simulate 

data at a polymorphic marker in the members of the 100 pedigree replicates. A 

rare, dominant model was used, assuming a disease allele frequency in the 

population of 1 in 10,000 and assuming a disease penetrance of 0.1% if 0 risk 

alleles are present and 99.9% if 1 or 2 risk alleles are present. Study power was 

calculated for four levels of heterogeneity between the families: no 

heterogeneity, 25% heterogeneity, 50% heterogeneity and 75% heterogeneity. 

Merlin[236] was used to run a linkage analysis on the simulated data and data 

were analysed in the statistics package Stata[237]. 

2.5.2 GENOTYPING ON THE AFFYMETRIX GENOME-WIDE HUMAN SNP 

ARRAY 6.0 

Following extraction and quality control checks, gDNA samples were shipped, 

with ice packs, to genotyping companies. All samples were genotyped on the 

Affymetrix genome-wide human SNP array 6.0. Genotyping was undertaken in 

three phases. The first kindreds (43 samples in total from the UK) were 

genotyped by Almac Diagnostics in June 2010, while the second (69 samples 

from Norway and the UK) and third (ten samples from the UK, including one 

repeat sample from batch two) batches were genotyped by AROS Applied 

Biotechnology in April 2011 and April 2012 respectively. In total, 121 individuals 

from 24 families were genotyped (12 families from the UK, 12 from Norway) 

(Figure 12).  
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Figure 12: Flowchart of method used for the linkage analysis in multiplex 
AAD families.  

 



 

102 

 

2.5.2.1 THE AFFYMETRIX GENOME-WIDE HUMAN SNP ARRAY 6.0 

SNP microarrays (also referred to as SNP arrays or SNP chips) have been 

developed as a genotyping platform to exploit the uniform distribution of SNPs 

throughout the human genome[238]. SNP arrays allow multiple SNPs to be 

genotyped simultaneously[239], and work on the principle that complementary 

nucleotide sequences hybridise to one another. Each microarray is made up of 

numerous short sequences of single-stranded DNA fragments (oligonucleotide 

probes, corresponding to SNPs) which are synthesised in situ and arranged in a 

grid pattern on a solid surface, usually glass or silica. DNA is digested with Nsp 

I and Sty I restriction enzymes and ligated to adaptors that recognise the 

cohesive 4bp overhangs. A generic primer that recognises the adaptor 

sequence is used to amplify DNA fragments which have been ligated to 

adaptors in the 200 to 1100bp size range. PCR amplification products for each 

restriction enzyme digest are combined and purified using activated beads and 

then the amplified DNA is fragmented, labelled and hybridised to the array. Any 

sequences in the sample that find a “match” on the array will bind to that 

complementary sequence at a specific spot and then a computer program can 

be used to determine the amount of sample bound to each spot on the 

microarray[240]. A number of SNP microarray platforms are now commercially 

available. The Affymetrix Genome-Wide Human SNP Array 6.0 claims to 

“represent the most genetic variation on a single array”[240], featuring 1.8 million 

genetic markers, including more than 900,000 SNPs and more than 900,000 

probes for the detection of copy number variation.  

 

Samples were genotyped in batches at either Almac diagnostics, UK or at 

AROS Applied Biotechnology, Denmark. Raw data files in birdseed-v2 format 

were returned for analysis.  
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2.5.2.2 RAW DATA MANAGEMENT AND FORMATTING FOR LINKAGE 

Initially, the raw data files received were formatted to create manageable files 

that could be used for an initial linkage analysis. To extract the relevant data 

from the source data files, Professor Cordell wrote short programs using Perl, a 

computer programming language.  

 

A Perl program was initially used to extract fields of interest (the probe SNP ID, 

the dbSNP RS number, chromosome, physical position, strand, allele A, allele 

B, allele frequencies, minor allele, minor allele frequency) from the Affymetrix 

SNP 6.0 annotation file. These fields were used to create a map file describing 

the position of each genotyped SNP.  

 

Genotype data was returned for each individual sample analysed in a separate 

file. Relevant data was extracted from these source files using a Perl program, 

including SNP unique identifier code, call (genotype), signal A and signal B. If 

there was no call for a SNP, this was coded as 00.  

 

The data for each individual were then combined, again using a Perl script, to 

produce a single genotype data file (lgen file). Initially, each individual 

genotyped was allocated a unique “person” number (1–121 inclusive). Samples 

were genotyped in three separate batches. Individuals genotyped in the first 

batch were coded as belonging to family “0” while those added in batch two 

were coded as belonging to family “1”. Finally, individuals genotyped in the final 

batch were coded as belonging to family “new”. A pedigree file, reflecting all 

participants in the study, was then created in Microsoft Excel. This file identified 

relatives and defined their relationships to each other. Each family was 

allocated a family identifier code and each individual within a family was 

allocated a unique person identifier code (Figure 13).  

 

PLINK (version 1.07, Shaun Purcell, 

http://pngu.mgh.harvard.edu/purcell/plink/)[217] was then used to update the lgen 

file with the correct information from the pedigree file, thus defining individuals 
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belonging to each of the 24 families studied, each individual’s gender, their 

parents (defined by their father’s and mother’s person identifier code) and 

phenotype (affected or unaffected). PLINK is a free access whole genome 

association study analysis engine and is relatively user-friendly, can be used to 

generate summary statistics and is particularly useful for formatting and 

managing large data sets, including recoding and reordering data files, merging 

files and extracting subsets of data such as individual families or sets of SNPs. 
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Figure 13: Pedigree file structure for linkage analysis. 

Representation of pedigree information in diagram (panel A) and pedigree file 
format (panel B). Column 1 of the pedigree file gives the family ID number, in 
this case family 15 is used as an example. Each family member is given an 
individual ID number, shown in column 2. Family 15 comprises 14 individuals. 
The gender of each individual is defined in column 5, with males coded as 1 
and females coded as 2. Phenotype is defined in column 6 with unaffected 
individuals coded as 1 and affected individuals coded as 2. Intrafamilial 
relationships are defined by the father and mother ID. For example, individuals 
3 and 4 are unaffected female siblings, as both have person 1 as their father 
and person 2 as their mother. Individuals who are founders, that is they have no 
relatives in generations above them in the family, have a father and mother 
code of 0 and 0. Individuals 1, 2, 5 and 10 are examples of founders in this 
family. 
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PLINK is also useful for data quality control, allowing the user to calculate 

missing genotype rates, determining the genetic relationships of individuals 

genotyped, checking for errors in family data and performing gender checks 

using X chromosome genotype data[217].  

 

A preliminary map file was then made. For ease, each SNP was initially labelled 

as being on chromosome 1 and arbitrary cM and kilobase (kb) positions were 

allocated. This file was then updated to include the correct chromosome 

information for each SNP (1-22, X=23, Y=24), with an accurate cM and kb 

position defined by the Affymetrix SNP 6.0 annotation file. 

2.5.2.3 DATA QUALITY CONTROL AND MARKER DENSITY REDUCTION FOR 

LINKAGE ANALYSIS 

I undertook a number of checks to ensure that only high quality genotyping data 

were used for the linkage analysis. The first step was to check for missing data 

at each SNP and for each individual using PLINK. High levels of missing data 

for a SNP might indicate a genotyping problem at that probe, while high levels 

of missing data for an individual might indicate a problem with the DNA sample. 

Individuals and SNPs with poor calls should be excluded for these reasons. The 

data were then checked to ensure that the allocated gender for each individual 

in the pedigree file matched the genotyping data, using PLINK to check that X 

chromosome heterozygosity data related appropriately to each individual’s 

allocated gender. Any discrepancies were resolved using an amelogenin PCR 

assay. 

 

The data were then checked for an excess of Mendelian errors both at SNPs 

and within individuals. This was to ensure that the samples had not been 

mislabelled or become muddled up in the lab. This check would also identify 

mis-paternity should there be any such cases in our families. SNPs with a 

Mendelian error rate of 10% or more, and families with a Mendelian error rate of 

5% or more, would be excluded from further analysis. 
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Individuals born as a result of random matings within a population will have 

genotypes that are in HWE. Calculated inbreeding co-efficients (F) represent a 

measure of deviation from HWE averaged over all SNPs in an array. Deviation 

from HWE resulting in an outlying F value can indicate a number of issues. A 

low F (high heterozygosity) may indicate sample contamination. A high F value 

(low heterozygosity) may indicate either true inbreeding or suggests that the 

individual in question originates from a different population i.e. a different ethnic 

group. The latter is known as the Wahlund effect[241]. Heterozygosity rates were 

calculated for each individual genotyped as part of the quality control measures 

employed in this study. To do this, PLINK was used to calculate the observed 

number of homozygous genotypes and the total number of genotypes. 

Heterozygosity rates could then be calculated as follows: 

 

number of non-missing genotypes-number of homozygous genotypes/number 

of non-missing genotypes 

  

PLINK was used to calculate average rates of IBD allele sharing across the 

genome in pedigrees. R[242], a statistical program, was then used to generate 

graphs of these data. I checked that there was no excess IBD allele sharing in 

unrelated individuals, and that related individuals shared an appropriate 

proportion of alleles IBD (e.g. parent-offspring pairs should share 1 allele IBD 

while full siblings share 0 alleles IBD 25% of the time, 1 allele IBD 50% of the 

time and 2 alleles IBD 25% of the time, resulting in an average of 1 allele 

shared IBD).  

 

The Affymetrix SNP 6.0 array contains more than 900,000 SNP probes and 

therefore produces very dense SNP genotyping data. The linkage analysis was 

to be performed using Merlin (version 1.1.2, Goncalo Abecasis, 

http://www.sph.umich.edu/csg/abecasis/Merlin)[236], a free computer program 

that has been designed to perform linkage analyses on pedigree data. Merlin is 

an acronym for “multi-point engine for rapid likelihood inference” and uses 

sparse binary trees to track gene flow through pedigrees, allowing the detection 

of alleles co-segregating with a phenotype of interest[236]. Merlin can handle 
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denser marker maps than other linkage programs however, to make the 

analyses computationally efficient and to reduce the chances of detecting false 

positive linkage due to SNPs in LD, the SNP map was thinned for linkage 

analysis. Information gathered during the quality control steps and from SNP LD 

patterns was first used to remove poor quality genotype data and to select 

informative and independent SNPs, thus reducing the chances of a false 

positive finding.  

 

SNPs were first thinned based on genotyping call rate. Any SNP with a 

genotyping call rate of less than 99% was excluded (80,150 SNPs excluded). 

Heterozygous SNPs are most informative for linkage analysis, allowing allele 

flow through pedigrees to be followed, therefore the dataset was thinned further 

based on heterozygosity. Initially, SNPs with a minor allele frequency of less 

than 0.3 were excluded (773,909 SNPs excluded). SNPs were then thinned 

further on the basis of Mendelian error rates, where families with greater than 

5% Mendelian error rates were excluded (0 families excluded) and SNPs with 

greater than 10% Mendelian error rate were excluded (2 SNPs excluded). SNPs 

were thinned on the basis of LD, with SNPs not in LD with each other being 

selected to avoid false positive results. To do this, we used the Welcome Trust 

Case-Control Consortium (WTCCC) 1958 birth cohort genome-wide data to 

calculate LD and then select SNPs on the basis of those LD calculations. At this 

point, more than 50,000 SNPs remained which was too dense a map, therefore 

a minor allele frequency cut off of 0.4 was applied. This then left 36,775 SNPs. 

This map was used for an initial linkage analysis, however the files generated 

were difficult to manage as they were so large, therefore the SNPs were thinned 

further using MapThin[243], a computer program, to arbitrarily select 4 and then 2 

SNPs per cM, leaving 14,771 and 7429 SNPs respectively in total for the final 

linkage analyses. 

2.5.2.4  DATA FORMATTING FOR MERLIN 

The pedigree, map and genotype data files that had been created from the raw 

data files were appropriately formatted for use with Merlin. In addition, an allele 

frequency file was created from the WTCCC 1958 birth cohort data. This file 
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contained details of the major and minor allele at each SNP and the frequencies 

of these. PLINK was used to update the allele annotation within the genotype 

data file, changing alleles originally coded as A or B to the correct nucleotide 

(i.e. A, C, G or T). The nucleotides were then recoded numerically from A, C, G 

and T to 1, 2, 3, 4 respectively. 

2.5.2.5  LINKAGE ANALYSIS USING MERLIN 

Merlin was used to perform the linkage analysis. The linkage analysis was 

performed under the supervision of Professor Cordell. Initially, a parametric 

linkage analysis was performed on the autosomal chromosomes using a 

number of models: rare dominant, rare recessive and rare co-dominant (Table 

8). Both LOD and HLOD scores were calculated. The HLOD score is generated 

based on heterogeneity likelihood. That is to say, the linkage analysis can allow 

for the possibility that clinically indistinguishable forms of a disease may be 

seen in different kindreds, caused by genes at different loci. When Merlin is 

used to perform this method, it generates a parameter called α which indicates 

the proportion of kindreds under investigation whose disease is due to a gene 

linked to the marker being studied, where 1 is equal to 100%. The HLOD is then 

calculated. Allowing for genetic heterogeneity between families in this way is 

often considered more powerful than non-parametric linkage analysis[244, 245]. A 

non-parametric linkage analysis was then also performed. The X chromosome 

was analysed separately using MINX, a version of Merlin designed for markers 

on the X chromosome. Again, a parametric analysis, using the same models, 

and a non-parametric analysis were performed.  

 

A second analysis was then performed, taking 21OH autoantibody status as the 

trait. 21OH autoantibody positive individuals were re-coded in PLINK as cases 

and 21OH autoantibody negative individuals were re-coded as controls. The 

linkage analysis was then repeated.  
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Model name Disease allele 
frequency 

Penetrance 
if 0 disease 
alleles are 

present 

Penetrance 
if 1 disease 

allele is 
present 

Penetrance 
if 2 disease 
alleles are 

present 

Rare 
dominant 

0.0001 0.001 0.999 0.999 

Rare 
recessive 

0.0001 0.001 0.001 0.999 

Rare co-
dominant 

0.0001 0.001 0.75 0.999 

Table 8: Models used for parametric linkage analysis in Merlin.
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2.5.2.6 ASSOCIATION ANALYSIS IN MULTIPLEX AAD FAMILIES USING EMMAX  

Association analyses were performed using the EMMAX (Efficient mixed-model 

association expedited) program[246]. EMMAX is another free program which is 

based upon EMMA (efficient mixed-model association), a variance component 

approach, which allows for sample structure by explicitly accounting for pairwise 

relatedness between individuals. A useful feature of EMMAX is that it accepts 

transposed files generated by PLINK. Two association analyses were 

performed. The first used the affected AAD family members as cases and 

unaffected family members as controls. The second analysis included the 

affected AAD family members as cases and compared their genotyping results 

to those of 2706 1958 UK birth cohort controls, available through the WTCCC. 

Control data from the WTCCC had already undergone strict quality control 

filtering on the basis of call rate (SNPs excluded if call rate was <95% or <99% 

if the minor allele frequency was less than 0.05) and HWE (<5.7 x 10-7). In the 

multiplex AAD family cases and controls, SNPs with a call rate of less than 99% 

were excluded as were SNPs with a Mendelian error rate of 10% or more. In the 

multiplex AAD family controls used in the first analysis, in addition to the above 

measures, SNPs which were out of HWE were also excluded. To do this, two 

thresholds were applied, a stringent threshold of P <0.01 and a less stringent 

threshold of P <1.0 x 10-8, and the results compared. Finally, any SNP with a 

minor allele frequency of less than 5% was excluded as these rare variants can 

be difficult to genotype.  

 

For the first analysis, 595,118 SNPs met the quality control criteria if a HWE 

threshold of P <1.0 x 10-8 was applied. If a HWE threshold of P <0.01 was 

applied, a further 2275 SNPs were excluded (592,843 SNPs in total). For the 

second association analysis, 551,634 SNPs met the quality control criteria. For 

each analysis, R[242], a statistical package that can be used to plot graphs of 

complex data, was used to generate quantile-quantile (QQ) and Manhattan 

plots from the results. EMMAX and R were used with guidance from Dr 

Rebecca Darley in the statistical genetics group, Institute of Genetic Medicine, 

Newcastle University. The LocusZoom program[247] was then used to visualise 
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data on a regional basis by selecting the most associated SNP and plotting 

SNPs, both in LD and not in LD, around it.    

2.5.3 AMELOGENIN SEX IDENTIFICATION ASSAY 

The amelogenin gene, found on both the X and Y chromosomes, can be used 

in sex determination of samples by PCR, since the X chromosome amelogenin 

allele (AMELX) contains a 6bp deletion in intron 1 which is not present in the Y 

chromosome allele (AMELY). For this assay, primers specific for intron 1, which 

span the deletion, are designed: forward primer sequence (5’-3’) 

CCCTGGGCTCTGTAAAGAATAGTG, reverse primer sequence (5’-3’) 

ATCAGAGCTTAAACTGGGAAGCTG, Tm 61⁰C. A female DNA sample (XX) 

will produce a 106bp PCR product and a sample from a male (XY) will result in 

two PCR products of 106 and 112bp. These products can be visualised by 

agarose gel electrophoresis, thus allowing differentiation of sex from unknown 

samples. 

 

DNA samples were diluted to a concentration of 20ng/µl. PCR was carried out 

in PCR tubes with a reaction volume of 25µl. The PCR reaction contained 1X 

PCR buffer (Qiagen), 0.15mM MgCl2 (Qiagen), 0.1mM dNTPs (New England 

Biosciences),1.6µM of each primer (Eurofins MWG Operon), 0.75u HotStar Taq 

DNA polymerase (Qiagen) and 40ng of DNA. The thermal cycling conditions 

included an initial denaturation step at 94°C for 15 minutes, followed by 35 

cycles of 94°C for 30 seconds, 57°C for 30 seconds and 72°C for 30 seconds, 

followed by a final extension step of 72°C for 10 minutes. The PCR products 

were run out, next to a 100bp, on a 4% agarose gel at 90V for 1 hour and 

visualised using a UV light. Samples where 2 bands were present at 106 and 

112bp were designated male, while samples where a single 106bp product was 

apparent were designated female.  
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CHAPTER 3 – A HYPOTHESIS-DRIVEN APPROACH TO THE 

INVESTIGATION OF AAD – THE CYP21 LOCUS 



 

114 

 

3.1 BACKGROUND 

The central dogma of molecular biology was originally that the only function of 

RNA was to act as an intermediate, allowing information contained within the 

gDNA to be transferred into an amino acid sequence and therefore a protein. 

Non-coding sequence was thought to be junk DNA awaiting evolutionary 

elimination. However, the discovery that non-coding gDNA sequence is often 

transcribed into non-coding RNA generated the hypothesis that these non-

coding transcripts could have a function, perhaps influencing and regulating 

coding genes and therefore health and disease[248]. This has since led to 

extensive research into non-coding RNAs and their functions. One potential 

source of non-coding RNA is pseudogenes. Pseudogenes are sequences of 

DNA which have derived from functional genes, and often closely resemble 

these ancestor genes, but are rendered non-functional by mutations. 

Pseudogenes were first described in the Xenopus laevis (African clawed frog) 

species by Jacq et al[249] and have since been found in the sequence of 

numerous other species including humans. Pseudogenes arise in the gDNA 

sequence by two main mechanisms: retrotransposition events (resulting in 

processed or retro-pseudogenes) and duplication events (resulting in non-

processed or duplicated pseudogenes).  

 

Processed pseudogenes arise due to retrotransposition events. This is when a 

single-stranded transcript or part of a transcript is spontaneously reverse-

transcribed back into the gDNA sequence as double-stranded sequence by an 

RNA polymerase. The re-inserted sequence is often referred to as a 

retrotransposon. The presence of a poly(A) tail and the lack of intronic 

sequence in retrotransposons reveals that they have derived from an mRNA 

source[250, 251]. Although a retrotransposed gene can be functional[252], the 

process of retrotranscription frequently results in mutation and inactivation, in 

which case the inserted sequence is known as a processed pseudogene[250].  

 

Non-processed pseudogenes arise as a result of duplication events. These 

occur commonly in the genome and form the basis of gene families which arise 
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as a result of duplication of a single common ancestor: for example, the human 

globin genes which encode haemoglobin subunits[253]. In some cases, 

mutations render these duplicated sequences non-functional[253], in which case 

they are referred to as non-processed pseudogenes.  

 

The RCCX module on chromosome 6 is an example of a portion of DNA 

sequence which has undergone duplication resulting in non-processed 

pseudogenes. The RCCX module is approximately 30kb and is found in the 

MHC class III region. The module contains four genes arranged in tandem: the 

serine/threonine nuclear protein kinase (RP) gene; the complement component 

C4 gene (C4, present as a long C4A or a short C4A and a long C4B or a short 

C4B); the CYP21A2 gene (also known as CYP21B); and the extracellular matrix 

protein tenascin (TNX) gene[254]. The RCCX module may exist in three forms: 

as a monomodular, bimodular or trimodular structure containing zero, one or 

two duplications of its constituent genes. If the RCCX is monomodular, as found 

in 17% of the Caucasian population, it contains only one functional copy of each 

of the four genes (RP1, C4, CYP21A2 and TNXB). If the RCCX is bimodular 

(69%), it contains a functional copy of each of the four constituent genes and a 

duplication containing three non-processed pseudogenes (CYP21A1P, TNXA, 

RP2) and an additional functional C4 gene. A trimodular RCCX (14%) contains 

two duplications (Figure 14)[254]. In addition to functional C4 genes, non-

functional copies may be present, termed “null” alleles. The RCCX module is of 

interest in AAD as it contains the CYP21A2 gene. This gene encodes the 

steroid 21OH enzyme which is a key enzyme in the steroidogenesis 

pathway[255] (Figure 15). The functional CYP21A2 gene is approximately 3.4kb 

in length and is composed of ten exons[256]. It is expressed from as early as 50 

to 52 days post-conception in the adrenal gland, gonad, liver, thymus and brain. 

Expression at much lower levels has also been reported in the heart, lung, 

kidney, pancreas, prostate and stomach[257, 258].  
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Figure 14: Schematic of RCCX haplotypes in Caucasians. 

The monomodular RCCX comprises a single functional copy of the 
serine/threonine nuclear protein kinase (RP) gene (purple rectangle, 1), the 
complement component C4 gene (green rectangle, 2), the CYP21A2 
(cytochrome P450, family 21, subfamily A, polypeptide 2, also known as 
CYP21B) gene (blue rectangle, 3) and the extracellular matrix protein tenascin 
(TNX) gene (orange rectangle, 4). If the RCCX is bimodular, it contains a 
functional copy of each of the four constituent genes and a duplication 
containing three non-processed pseudogenes (RP2 – yellow rectangle a, 
CYP21A1P – red rectangle b, TNXA – grey rectangle c) and an additional 
functional C4 gene. A trimodular RCCX contains two duplications.
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Figure 15: The steroid biosynthesis pathway.  

CYP11A, Cholesterol side-chain cleavage enzyme; CYP11B1, 11 beta 
hydroxylase; CYP11B2, aldosterone synthase; CYP17, 17 alpha hydroxylase; 
CYP19, oestrogen synthase; 17β HSD, 17 beta hydroxysteroid dehydrogenase; 
CYP21, 21-hydroxylase; 3β HSD, 3 beta-hydroxysteroid dehydrogenase.  
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The CYP21A1P non-processed pseudogene is highly homologous to 

CYP21A2[259]. It contains exons, introns and promoter regions, however it has 

been rendered non-functional by a deleterious 8bp deletion in exon three which 

results in a frameshift and premature stop codon[259]. CYP21A2 has six 

predicted transcripts but only two, 1914 and 2182bp in size, are listed in the 

Consensus Coding Sequence Project (CCDS) database[260], demonstrating that 

they have been validated by multiple sources. CYP21A1P has two predicted 

transcripts, 1481 and 1971bp in length, however these are not validated and 

therefore not listed in CCDS. The predicted CYP21A1P protein product is 

truncated due to the deleterious mutations in CYP21A1P and is therefore not 

predicted to have any enzymatic activity. The deleterious nature of the 

pseudogene’s mutations is demonstrated in congenital adrenal hyperplasia 

(CAH), which is an inherited condition where 21OH deficiency results in an 

inability to make cortisol. CAH is most commonly due to recombination events 

between the gene and the pseudogene: either deleterious mutations in the 

pseudogene are transferred into the functional CYP21A2 gene (gene-

conversion events) rendering the gene non-functional[261], or the functional gene 

is deleted and replaced by the pseudogene[262, 263].  

 

Like many pseudogenes, CYP21A1P is evolutionarily conserved in humans and 

its sequence exhibits reduced nucleotide variability and an excess of 

synonymous SNPs compared to non-synonymous SNPs; all of which are 

hallmarks of DNA sequence with a functional role[264]. Indeed, CYP21A1P 

transcripts have been isolated from cultured adrenal cells, demonstrating that 

non-coding RNA is derived from the pseudogene sequence[265]. Furthermore, a 

previous member of the laboratory group, Alekhya Narravula, had previously 

determined that almost 1 in 5 individuals with AAD had zero copies of 

CYP21A1P compared to just 1 in 27 controls (P <0.0001). At a molecular level, 

having no CYP21A1P copies is synonymous with being homozygous for the 

monomodular RCCX. With this in mind, we hypothesised that CYP21A1P 

transcripts and/or CYP21A1P protein products are expressed in human thymus 

to promote and induce tolerance to components of the steroidogenic enzymes. 

While CYP21A2 gene transcripts or the CYP21A2 protein product could serve 

this purpose, we hypothesise that the high concentration of immunosuppressive 
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steroids produced by the functionally active 21OH enzyme could inhibit 

lymphocyte activity and therefore perhaps the tolerance-inducing process. 

Having a non-functional but highly homologous pseudogene might allow 

transcripts or a defective product to be expressed in the absence of steroids, 

perhaps in the thymus, allowing tolerance to the steroidogenic apparatus to be 

developed. Thus, it follows that an individual without any copies of the 

CYP21A1P pseudogene could be more susceptible to developing AAD 

compared to individuals with copies of the pseudogene who have been 

rendered tolerant to the steroidogenic apparatus through CYP21A1P 

pseudogene expression.  
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3.2 AIM 

I aimed to determine whether individuals with another autoimmune condition, 

Graves’ disease, were more likely to have no copies of CYP21A1P compared to 

controls or whether this finding is restricted to AAD. My second aim was to 

determine whether transcripts of CYP21A1P could be detected in fetal tissues. 

The presence of CYP21A1P transcripts in fetal tissue might imply a role for it in 

the development of tolerance in early life.  

3.3 SUMMARY OF STUDY DESIGN 

A PCR method was used to genotype additional individuals with AAD and 

healthy controls (in addition to those already studied by Alekhya Narravula) to 

determine the proportion of AAD cases and controls with no CYP21A1P copies 

(CYP21A1P–). In addition, 447 individuals from the UK with Graves’ disease 

were also genotyped to determine whether any differences were restricted to 

AAD or whether they might also be observed in another autoimmune condition.  

 

To study CYP21A2 and CYP21A1P expression, a series of tissue in situ 

hybridisation (TISH) experiments were planned. TISH was initially attempted on 

10 to 12 week post-conception (wpc) fetal adrenal tissue. Adrenal tissue was 

chosen as a positive control tissue for initial protocol optimisation because 

CYP21A2 is known to be expressed here in fetal life, from as early as 50 days 

post-conception[257]. In addition, as CYP21A1P transcripts have previously been 

detected in adrenal cell lines[265], adrenal tissue would seem to be the most 

likely site of expression of CYP21A1P, if indeed it is expressed. A pair of 

traditional mRNA riboprobes were designed (an antisense probe and a sense 

negative control probe) which would hybridise to both CYP21A2 and 

CYP21A1P transcripts in fixed, mounted adrenal tissue. As mRNA riboprobes 

are long, ideally between 250 and 1500bp in length, it is not possible to design 

two probes which could differentiate between two highly homologous transcripts 

such as CYP21A2 and CYP21A1P. The mRNA probe was therefore used as a 
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positive control in this experiment, giving an indication of the expected pattern 

of distribution of CYP21A2 and/or CYP21A1P transcripts in the tissues studied.  

 

To differentiate CYP21A2 from CYP21A1P expression specifically, a pair of 

locked nucleic acid (LNA) probes (Exiqon) were also designed: one specific to 

CYP21A2 and the other specific to CYP21A1P. The published literature 

suggests that LNA probes can be used to distinguish transcripts differing at only 

one or two bases[266], due to their short nature and the increased hybridisation 

specificity conferred by the LNAs introduced. This, in theory, makes them ideal 

for this project: two LNA probes could be used to test for the presence or 

absence of each transcript individually, even when the transcripts differ by only 

an 8bp deletion. For this study, to ascertain the specificity of the CYP21A1P 

probe, both CYP21A1P– and CYP21A1P+ samples would be used, thus 

ensuring that the CYP21A1P probe is not hybridising to CYP21A2 transcripts. In 

conjunction with TISH, Northern blotting, using fetal adrenal RNA, was 

performed to determine the size of transcripts to which each probe was 

hybridising.   

 

Following TISH, a qPCR expression experiment was designed, with double-dye 

hydrolysis probes, to detect CYP21A2 and CYP21A1P transcripts in fetal 

adrenal gland and thymus obtained from children.  
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3.4 RESULTS 

3.4.1 ABSENCE OF CYP21A1P IN INDIVIDUALS WITH AUTOIMMUNE DISEASE 

A previous MSc student in the laboratory group, Alekhya Narravula, used a 

competitive PCR assay to test for the presence of CYP21A1P in gDNA samples 

from 295 individuals with AAD and 299 controls. The results of this work are 

summarised in Table 9 (panel A). I used the same assay to assess an 

additional 20 individuals with AAD, 447 samples from individuals with Graves’ 

disease and 328 additional healthy controls. The results of this work are 

summarised in Table 9 (panel B). All results from this assay are shown in Table 

9 (panel C). An image generated from UV visualisation of the PCR products 

from this assay is shown in Figure 16. 

 

55 of the 315 AAD samples tested (17.5%) were CYP21A1P– compared to just 

19 of 627 (3.0%) of controls (P <0.00001, OR 6.77 [95% CI 3.94 – 11.63]). In 

addition, 35 of 447 (7.8%) people with Graves’ disease were CYP21A1P– 

compared to 3.0% of controls (P 0.0007, OR 2.72 [95% CI 1.53 – 4.82]).  
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A AAD patients (n=295) Controls (n=299) 

CYP21A1P absent 50 (16.9%) 11 (3.7%)* 

CYP21A1P present 245 (83.1%) 288 (96.3%) 

 

B AAD patients 
(n=20) 

Graves’ disease 
patients (n=447) 

Controls 
(n=328) 

CYP21A1P absent 5 (25.0%) 35 (7.8%) 8 (2.4%) 

CYP21A1P present 15 (75.0%) 412 (92.2%) 320 (97.6%) 

 

C AAD patients 
(n=315) * 

Graves’ disease 
patients (n=447) $ 

Controls 
(n=627) 

CYP21A1P absent 55 (17.5%) 35 (7.8%) 19 (3.0%) 

CYP21A1P present 260 (82.5%) 412 (92.2%) 608 (97.0%)  

*χ2 P <0.00001 (8.1x10-15), OR 6.77 [95% CI 3.94 – 11.63] 

$ χ2 P 0.0007, OR 2.72 [95% CI 1.53-4.82] 

Table 9: Competitive PCR assay results demonstrating frequency of 
CYP21A1P absence in AAD, Graves’ disease and controls. 

Panel A: Rates of CYP21A1P absence in AAD cases and controls (work done 
by A. Narravula). Panel B: Rates of CYP21A1P absence in AAD cases, Graves’ 
disease cases and healthy controls (work done by A. Mitchell). Panel C: 
Summary results table of CYP21A1P competitive PCR assay.  
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Figure 16: Competitive CYP21A2/CYP21A1P PCR gel image. 

3.8% agarose gel electrophoresis of PCR products obtained using the 
CYP21A2/CYP21A1P competitive PCR assay. The 85bp and the 77bp bands 
are the CYP21A2 and CYP21A1P amplicons respectively. A 100bp ladder is 
shown in lane 1 and lane 2 is a no template (water) control. The sample in lane 
14 has failed to produce any PCR products. Samples in lanes 3 to 12 inclusive 
and the sample in lane 15 have all produced two bands consistent with 
amplicons derived from the CYP21A2 gene and the CYP21A1P pseudogene. 
The sample in lane 13 does not have a 77bp band and is therefore CYP21A1P 
deleted. 
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3.4.2 CYP21A1P EXPRESSION IN FETAL TISSUE  

3.4.2.1 TISSUE IN SITU HYBRIDISATION TO DETERMINE CYP21A2 AND 

CYP21A1P EXPRESSION 

In the TISH experiment, the SP6 and T7 mRNA riboprobes were hybridised to 

adrenal and renal tissue obtained from 10 to 12 wpc human foetuses. Marked, 

specific hybridisation throughout the fetal adrenal gland, most marked at the 

periphery, was seen with the SP6 probe in both of the CYP21A1P+ samples 

(N1822, N1593) and in the CYP21A1P– sample (N1643). No hybridisation was 

seen with the T7 (sense) negative control probe, confirming that the 

hybridisation to adrenal with the SP6 probe was specific (Figure 17). Using 

Northern blotting with RNA derived from fetal adrenal gland, a band at 

approximately 2000bp was seen with the SP6 probe, while no band was seen 

with the T7 probe (Figure 18). This is the appropriate size for the validated 

CYP21A2 protein coding transcripts (1914 and 2182bp).  

 

The detection of a strong signal in the CYP21A1P– sample confirms the 

presence of CYP21A2 transcripts in fetal adrenal gland. The signal detected in 

the two CYP21A1P+ samples could be due to the presence of CYP21A2 

transcripts with or without CYP21A1P transcripts (Figure 17). No hybridisation 

was seen in the renal tissue adjacent to the adrenal gland, suggesting that the 

transcripts are either not expressed here or not abundant enough to be 

detected by this method. mRNA probes which hybridise specifically to kidney, 

such as FRMD7 and collagen 6 riboprobes, have been applied successfully to 

all three samples used in this experiment for other projects at the HDBR, 

Newcastle, suggesting that the absence of signal in kidney was not due to 

localised RNA degradation in this tissue. An example, showing positive signal 

from kidney with the FRMD7 riboprobe for sample N1593 is shown in Figure 17. 

This finding therefore confirmed CYP21A2 expression in fetal adrenal gland.   
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The TISH protocol was then adapted for use with the CYP21A2 and CYP21A1P 

LNA probes, with the aim of establishing whether CYP21A1P transcripts are 

expressed in fetal tissues. To optimise the protocol, tissue sections from the 

CYP21A1P+ fetuses (N1822, N1593) were used, in order to give optimal 

hybridisation signals. 
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Figure 17: CYP21A2 and/or CYP21A1P expression in fetal adrenal 
demonstrated with CYP21-specific mRNA riboprobes. 

Tissue in situ hybridisation with the SP6 (upper panel) and T7 negative control 
(middle panel) mRNA riboprobes under light-field conditions at 2.5x 
magnification (300ng of probe per slide). Samples N1822 (panels A, D) and 
N1593 (panels B, E) are known to have the CYP21A1P sequence in their gDNA 
(CYP21A1P+). N1643 (panels C, F) does not (CYP21A1P–). There is marked, 
specific hybridisation throughout the fetal adrenal gland in all three samples with 
the SP6 probe (panels A, B, C), suggesting the presence of CYP21A2 and/or 
CYP21A1P transcripts. There is no hybridisation to fetal renal in these sections. 
To establish the presence of intact RNA in fetal kidney, an FRMD7 mRNA 
probe, which hybridises specifically to kidney, is included as a positive control 
(lower panel, G) and was used on a renal tissue section from 12 wpc fetus 
N1593. There is no non-specific hybridisation with the T7 sense probe to either 
the fetal adrenal or kidney (panels D, E, F). wpc, weeks post-conception.
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Figure 18: Northern blotting of fetal adrenal RNA, with the SP6 and T7 
mRNA riboprobes.  

Panel A shows the results with the SP6 and T7 mRNA probes compared to a 
DIG-labelled RNA ladder (Roche), on the right of each blot. A single band (red 
arrow) between the 2661 and 1517bp markers was seen with the SP6 probe, 
while no band is seen on the blot hybridised to the T7 probe. Panel B shows the 
results with the SP6 and T7 mRNA probes compared to a non-labelled ladder 
(Riboruler, high range ladder, Fermentas) marked using indelible pen on the 
right of each blot. The ladder marker positions are marked onto the membrane 
prior to transfer. A single band (green arrow) at 2000bp was seen with the SP6 
probe, while no band is seen on the blot hybridised to the negative control T7 
probe. 
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Initially, the LNA probes were used as per the manufacturer’s (Exiqon) 

instructions, at concentrations of 20 to 40nM. When both of the LNA probes 

were used at this concentration, a strong signal was seen in both the fetal 

adrenal and kidney with the CYP21A2 probe, but no signal was seen with the 

CYP21A1P probe. The manufacturer’s recommendation in this instance is to 

perform a titration gradient experiment and then to proceed to use the probe at 

the lowest concentration at which a positive hybridisation signal is seen.  

 

The titration gradient experiment, conducted on sample N1593 which had been 

used for other studies with good results, using 10, 20, 40, 100 and 250nm 

concentrations of each LNA probe for hybridisation, demonstrated that a 

concentration of 250nM of CYP21A1P probe was needed to generate a signal 

(Figure 19). At this concentration, a strong signal was seen in both the fetal 

adrenal and kidney, in the same distribution as with the CYP21A2 LNA probe. 

There are two predicted CYP21A1P transcripts of 1481 and 1971bp and two 

validated CYP21A2 protein coding transcripts. However, when the CYP21A2 

and CYP21A1P LNA probes were used at varying concentrations, from 40 to 

250nM, in the Northern blotting protocol, using fetal adrenal RNA, no bands 

were seen. Therefore the size of  the transcript that the LNA probes were 

hybridising to could not be determined.  

 

At such a high probe concentration there was concern that the signal seen with 

the CYP21A1P LNA probe might be non-specific. To investigate this, the 

CYP21A1P LNA probe was used at the lowest concentration required to give a 

signal (200nM) on CYP21A1P+ sample N1593 and on CYP21A1P– sample 

N1643. A strong hybridisation signal was seen from the fetal adrenal and kidney 

in all sections in this experiment, including from the CYP21A1P– fetus, 

confirming non-specific binding at this high concentration (Figure 20). To further 

confirm this, a similar pattern of staining was seen with the scrambled negative 

control probe when used at 250nM (Figure 19). When the CYP21A1P probe 

was used at the recommended concentration of 40nM on the CYP21A1P– 

tissue, no signal was seen.  
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Figure 19: LNA probe in situ hybridisation titration gradient experiment. 

12 weeks post-conception CYP21A1P+ fetal adrenal and renal tissue sections used in an LNA probe concentration titration gradient in 
situ hybridisation experiment. Results are shown from the CYP21A2 (upper panel), the CYP21A1P (middle panel) and the Scramble–ISH 
negative control (lower panel) LNA probes at increasing concentrations under light-field conditions, at 2.5x magnification. There is 
marked hybridisation with the CYP21A2 LNA probe throughout the fetal adrenal gland and kidney, but most marked at the periphery of 
each tissue at all probe concentrations, with signal intensifying with increased probe concentration. With the CYP21A1P LNA probe, 
hybridisation is seen at 250nM concentration of probe only. Using the scrambled probe at the same concentration gives a similar pattern 
of hybridisation which suggests non-specific hybridisation at high concentrations.  
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Figure 20: CYP21A1P LNA probe in situ hybridisation specificity 
experiment.  

In situ hybridisation results with the CYP21A2 (upper panel) and the CYP21A1P 
(lower panel) LNA probes under light-field conditions at 2.5x magnification. 12 
weeks post-conception (wpc) fetus N1593 (panels A, C) is CYP21A1P+ while 
11 wpc fetus N1643 (panels B, D) is CYP21A1P–. There is hybridisation 
throughout the fetal adrenal gland and kidney in all tissue sections, most 
marked at the periphery. The strong hybridisation signal in the CYP21A1P– 
sections with the CYP21A1P LNA probe (panel D) suggests non-specific 
hybridisation of the CYP21A1P LNA probe.  
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In summary, if the CYP21A1P LNA probe is used at a concentration of 20–

40nm, as recommended by the manufacturer, no hybridisation is seen. Used at 

a sufficient concentration to produce a hybridisation signal, the hybridisation is 

non-specific. One interpretation of these results is that the LNA probe, used at 

the manufacturer’s recommended concentration, can be used to demonstrate 

that CYP21A1P transcripts are not expressed in fetal adrenal or kidney, or that 

transcripts are expressed at such a low level that they could not be detected. 

However, the lack of a positive control tissue for this series of experiments, 

where CYP21A1P is definitely expressed, meant that this could not be 

confirmed satisfactorily. Therefore the results from this LNA probe were 

discounted and an alternative method, using qPCR, was developed to 

investigate CYP21A1P expression in these tissues.  

 

The CYP21A2 LNA probe gave a strong hybridisation signal in the fetal adrenal 

gland from 20nM concentration in both the CYP21A1P+ and CYP21A1P– 

tissues, with marked staining at the periphery of the gland. This finding was 

expected and in keeping with published findings[257, 258]. Moreover, an even 

stronger signal was observed in fetal kidney and again, the signal was strongest 

at the periphery of the kidney. Although these results appeared to suggest 

marked CYP21A2 expression in both fetal adrenal and kidney at 20–40nM 

concentration, the strong signal seen in the kidney was viewed with suspicion 

for four reasons. Firstly, the traditional SP6 mRNA riboprobe results showed no 

signal in the kidney, indicating no, or only very low, expression of CYP21A2 

transcripts in the kidney. Secondly, the distribution of staining in the kidney and 

adrenal with the CYP21A2 LNA probe was identical to the non-specific 

hybridisation signal seen with the CYP21A1P and scrambled LNA probes when 

used at high concentrations. Thirdly, the stronger staining in kidney compared 

to adrenal is contrary to previous published findings[258]. Where CYP21A2 

transcripts have previously been detected in the fetal kidney by qPCR, the 

levels have been significantly lower than levels in the fetal adrenal[258]. Finally, 

when used in the Northern blotting protocol, no bands were seen when either of 

the LNA probes were hybridised to adrenal fetal RNA. A series of experiments 

were conducted altering the stringency of the TISH conditions, including 

hybridising at higher temperatures (up to 56⁰C) and increasing the length and 
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stringency of the post-hybridisation washes to reduce non-specific hybridisation. 

However, this made no difference and the same pattern of hybridisation was still 

observed. The possible explanations for this observation are that either 

CYP21A2 is expressed in both fetal adrenal and kidney at equal levels, or that 

the CYP21A2 LNA probe binds either entirely non-specifically to fixed tissue 

sections, or binds specifically but to a homologous transcript present in 

abundance in fetal adrenal and kidney.  

  

To determine whether the CYP21A2 probe was binding in a totally non-specific 

manner to fixed tissue, the probe was hybridised at 40nM to cardiac and limb 

tissue. These tissues were selected as they are not expected to express high 

levels of CYP21A2. Sections of cardiac tissue and limb tissue, both from 12wpc 

fetuses (N1782 and N1593 respectively) were used for this experiment. A sonic 

hedgehog mRNA probe, expressed in bone, was used on the limb tissue as a 

positive control. No signal was seen in limb or heart with either the CYP21A2 or 

the scrambled (control) LNA probe (Figure 21). A positive signal was seen in 

bone with the sonic hedgehog mRNA control probe. This suggests that the 

CYP21A2 LNA probe does not bind to fixed tissue in a completely non-specific 

matter.  

 

The probe designs for the CYP21A2 and CYP21A1P LNA probes were 

reassessed by the designers at Exiqon, however due to the high homology 

between gene and pseudogene, the original designs could not be improved. 

 

In summary, the SP6 mRNA probe demonstrated CYP21A2 expression in fetal 

adrenal only and a 2000bp band was seen by Northern blotting, appropriate to 

the CYP21A2 transcript. The CYP21A1P LNA probe did not produce a signal in 

fetal adrenal or kidney at the recommended concentration; at higher 

concentrations, it was found to hybridise non-specifically. In contrast, the 

CYP21A2 LNA probe showed marked and equal expression in fetal adrenal and 

kidney when used at the recommended concentration. However, hybridisation 

to an appropriate sized transcript could not be determined by Northern blotting. 

As we lacked a positive control tissue for the CYP21A1P probe, it was 
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impossible to determine whether CYP21A1P is just not expressed in adrenal, or 

whether the CYP21A1P LNA probe was simply not working. In addition, the 

discrepancy between the mRNA riboprobe and CYP21A2 LNA probe TISH 

results could not be satisfactorily explained. Due to these technical challenges, 

the use of further fetal tissue, a rare resource, for continuing TISH experiments 

was not felt to be justified, as the results would be difficult to interpret. 

Therefore, the TISH investigation was abandoned and an alternative line of 

investigation, using qPCR, was planned. The aim of qPCR was twofold: firstly 

we aimed to determine if CYP21A1P is expressed in fetal adrenal and thymus; 

secondly, we aimed to use qPCR to investigate CYP21A2 expression in kidney, 

thus clarifying the contradictory results generated by TISH.   
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Figure 21: LNA probe in situ hybridisation control tissue experiment. 

In situ hybridisation using the CYP21A2 and scrambled LNA probes at 40nM on 
12 weeks post-conception fetal limb (N1782, upper panel) and cardiac tissue 
(N1593, lower panel) under light-field conditions at 2.5x magnification. A sonic 
hedgehog mRNA probe, which hybridises to bone, was used at a concentration 
of 150ng per slide as a positive control for the experiment (panel C, 
hybridisation to bone indicated by arrows). The CYP21A2 and scrambled LNA 
probes do not hybridise to limb tissue (panels A and B respectively) or cardiac 
tissue (panel D and E respectively). The specific hybridisation to bone seen with 
the sonic hedgehog positive control riboprobe (panel C) demonstrates that the 
in situ hybridisation technique has worked and that lack of staining with the 
other two probes is not due to experimental failure.  
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3.4.2.2 FLUORESCENCE-BASED QUANTITATIVE REAL-TIME PCR TO DETERMINE 

CYP21A2 AND CYP21A1P EXPRESSION 

3.4.2.2.1 qPCR PRIMER EFFICIENCY 

For quality control, the primer efficiencies were first determined by running the 

standard curve samples in triplicate and plotting the results (Figure 22). The 

gradient of the slope for both the CYP21A2 and the CYP21A1P assays was 

then determined by linear regression and PCR efficiency calculated. Excellent 

primer efficiencies were confirmed as the gradients for the slope plotted for the 

standard curve for the CYP21A2 and CYP21A1P assays were -3.22 [95% CI -

3.07 to -3.37] and -3.26 [95% CI -3.18 to -3.35] corresponding to primer 

efficiencies of 104.5% and 102.6% respectively. These results replicated well 

when run a further two times on different days (Table 10).  

3.4.2.2.2 qPCR LINEAR DYNAMIC RANGE 

Using the standard curve samples run on each plate, the linear dynamic ranges 

of the assay were determined (Figure 22). The linear dynamic range of each 

assay varied slightly from plate to plate. For the CYP21A2 assay, generally CT 

values of less than 16.0 and greater than 37.0 were considered beyond the 

limits of assay detection for the CYP21A2 assay and CT values of less than 14.0 

and greater than 37.0 were considered beyond the limits of assay detection for 

the CYP21A1P assay. Samples with low CT values could be diluted for analysis 

(however this was not necessary for any sample analysed). 
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Figure 22: qPCR primer efficiencies and linear dynamic range for the 
CYP21A2 and CYP21A1P assays. 

Standard curves plotted for the CYP21A2 (red) and CYP21A1P (blue) qPCR 
assays. The mean CT values are plotted with the standard error of the mean. 
The Log10 copy number is shown on the x axis and the CT value on the y axis. 
The gradients of each slope were calculated by linear regression and confirmed 
excellent primer efficiency for both assays. The linear dynamic range of each 
assay is shown by the dashed purple line for the CYP21A2 assay and the 
dashed green line for the CYP21A1P assay. 
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Assay Gradient of slope 
replicate 1  

[95% CI] 

Gradient of slope 
replicate 2  

[95% CI] 

Gradient of slope 
replicate 3  

[95% CI] 

CYP21A2 -3.22 [-3.07 to -3.37] -3.13 [-3.00 to -3.26] -3.15 [-2.97 to -3.33] 

CYP21A1P -3.26 [-3.18 to -3.35] -3.14 [-3.05 to -3.23] -3.34 [-3.30 to -3.37] 

Table 10: CYP21A2 and CYP21A1P qPCR primer efficiency replicates.  

Standard curve gradients, with 95% confidence intervals, generated from 
standard samples run in triplicate on three separate occasions. 
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3.4.2.2.3 CYP21A1P ASSAY SPECIFICITY 

The qPCR assays were used on cDNA synthesised from two CYP21A1P+ fetal 

adrenal samples (N1736, 9wpc and N1812, 12wpc) and from one CYP21A1P– 

fetal adrenal sample (N1733, 11wpc). The aim was to ensure that the 

CYP21A1P assay was specific for pseudogene transcripts and was not 

erroneously amplifying the highly homologous CYP21A2 transcripts. RNA 

samples from each specimen were also included to ensure that the RNA 

samples were not contaminated by gDNA, which could also give rise to 

spurious results. This experiment was repeated on two separate days to ensure 

the validity of the results and to allow direct comparison of results. An absolute 

copy number/µl was calculated for each sample (up to 6 replicates obtained 

from samples run in triplicate on two occasions).  

 

No amplification was detected with the non-template controls or the RNA 

samples included in this experiment on either occasion, which confirmed that 

the qPCR plates were not contaminated and that the RNA samples were free 

from gDNA contamination. CYP21A2 transcripts were detected in all three fetal 

adrenal samples as would be expected (mean 447,057 copies/µl). Sample 

N1812 had a significantly lower number of copies/µl compared to samples 

N1736 and N1733 (mean 55,750, 726,170 and 559,251 copies/µl respectively). 

CYP21A1P transcripts were detected in the adrenal samples from N1812 and 

N1736 (mean 1374 and 8858 copies/µl respectively) but were not detected in 

any of the replicates from CYP21A1P- sample N1733 demonstrating assay 

specificity. In samples N1812 and N1736, where CYP21A2 and CYP21A1P 

transcripts were both expressed, CYP21A2 transcripts were 40 to 80 fold more 

abundant than CYP21A1P transcripts. These data confirm that the CYP21A1P 

assay is specific to CYP21A1P transcripts. In addition, it confirms that both 

CYP21A2 and CYP21A1P transcripts are expressed in the fetal adrenal gland, 

with CYP21A1P transcripts expressed at 40 to 80 fold lower levels than the 

more abundant CYP21A2 transcripts (Figure 23).  
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Figure 23: CYP21A1P qPCR assay specificity. 

Mean absolute copy number/µl (and standard error of the mean) are shown for 
three fetal adrenal samples, analysed in triplicate and on two different days. 
Samples N1812 and N1736 are gDNA CYP21A1P+ (green) while N1733 is 
CYP21A1P– (yellow). CYP21A2 transcripts (striped columns) were detected in 
all three samples, with N1812 having lower copies/µl (mean 55,750 copies/µl) 
than samples N1736 and N1733 (mean 726,170 and 559,251 copies/µl 
respectively). CYP21A1P transcripts (chequered columns) were detected in the 
adrenal samples from N1812 and N1736 (1374 and 8858 copies/µl respectively) 
but were not detected in any of the triplicates from CYP21A1P– sample (N1733 
shown in yellow), which demonstrated assay specificity. 
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3.4.2.2.4 CYP21A2 AND CYP21A1P EXPRESSION IN THYMUS 

Of the seven cDNA samples prepared from thymus tissue, two were rejected 

(thymus samples 4 and 5) due to gDNA contamination, despite careful 

preparation and DNase treatment, detected by running RNA samples with the 

cDNA samples in the qPCR assay. Of the five remaining samples, CYP21A2 

was expressed at very low levels in three of the five samples (thymus samples 

1, 3 and 7: 2.5, 1.7 and 6.5 copies/µl respectively) (Figure 24). These levels 

were at the very limit of assay detection. No CYP21A2 expression was detected 

in thymus samples 2 and 6. In contrast, CYP21A1P was expressed at low levels 

in all five thymus samples. The mean number of copies/µl of CYP21A1P was 

8.16 (median 4.7, minimum 3.4, maximum 23.5). CYP21A1P was 1.5 to 5 fold 

more abundant in thymus than CYP21A2. A Mann-Whitney U test was 

performed to determine if the copy number/µl of CYP21A2 was significantly 

different to the copy number/µl of CYP21A1P per sample, but the result did not 

reach statistical significance (P 0.075).  

 

When the mean CYP21A1P copy number was normalised to the mean 

CYP21A2 copy number in each sample for the three fetal adrenal samples and 

the five thymus samples, we observed that CYP21A1P appeared to be more 

abundant in thymus compared to CYP21A2 (which was indeed absent in two 

thymus samples in multiple replicates). Conversely, in adrenal, CYP21A1P is 

significantly less abundant in adrenal when compared to CYP21A2 transcript 

levels (Figure 25).  
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Figure 24: CYP21A2 and CYP21A1P expression in thymus. 

Mean absolute copy number/µl (and standard error of the mean) are shown for 
five thymus samples (all CYP21A1P+). CYP21A2 transcripts (striped columns) 
were detected at low levels in three of the five samples, however no copies 
were detected in thymus samples 2 and 6. CYP21A1P transcripts (chequered 
columns) were detected in all five samples and were 1.5 to 5 fold more 
abundant than CYP21A2 transcripts, although this difference was not 
statistically significant.
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Figure 25: Mean copy number of CYP21A1P normalised to the mean copy 
number of CYP21A2 for three fetal adrenal samples (N1812, N1736 and 
N1733) and five thymus samples (thymus 1, 2, 3, 6 and 7). 

There is no CYP21A1P expression in N1733 as it is gDNA CYP21A1P–. In fetal 
adrenal CYP21A2 is much more abundant than CYP21A1P. In contrast, in 
thymus, CYP21A1P is expressed at low levels and is slightly more abundant 
than CYP21A2. However, the difference was not statistically significantly. 
CYP21A2 is not always expressed in thymus (thymus 2 and 6 both express 
CYP21A1P but not CYP21A2). 
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3.4.2.2.5 CYP21A2 AND CYP21A1P EXPRESSION IN KIDNEY 

In order to investigate the TISH results further, in particular whether CYP21A2 

is expressed in renal tissue as indicated by the CYP21A2 LNA probe, we used 

the qPCR assays on kidney tissue obtained from samples N1812, N1733 and 

N1736. This was carried out in order to compare copy numbers of CYP21A2 

transcript in kidney and adrenal.  

 

CYP21A2 was expressed in kidney tissue in all three samples. Sample N1812 

had the least copies of CYP21A2 in adrenal (mean 55,750 copies/µl) but the 

most copies in kidney (mean 3266 copies/µl), with CYP21A2 being 17 fold more 

abundant in adrenal compared to kidney. In contrast, samples N1733 and 

N1736 had greater copy numbers in adrenal (mean of 726,170 and 559,251 

copies/µl respectively) but much lower expression levels in kidney (56 and 22 

copies/µl respectively). In sample N1733, CYP21A2 was expressed 9900 fold 

more abundantly in adrenal than kidney and in sample N1736, it was expressed 

33,000 fold more abundantly in adrenal than kidney (Figure 26). These data are 

contrary to the TISH results with the CYP21A2 LNA probe, which suggested 

that CYP21A2 is expressed at an equal or greater level in kidney than adrenal.  
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Figure 26: CYP21A2 expression by qPCR in three matched fetal adrenal 
and kidney samples. 

Mean absolute copy number/µl (and standard error of the mean) are shown for 
three fetal adrenal (grey spotted bars) and kidney (blue chequered bars) 
samples. These samples have been analysed in triplicate twice. CYP21A2 
transcripts were detected in both adrenal and kidney tissue in all three samples. 
Sample N1812 had the least copies of CYP21A2 in adrenal (mean 55,750 
copies/µl) but the most copies in kidney (mean 3266 copies/µl). N1736 had a 
mean of 726,170 copies/µl in adrenal but only 22 copies/µl in kidney. Sample 
N1733 had a mean of 559,251 copies/µl in adrenal and 56 copies/µl in kidney. 
In all samples, there was at least a 17 fold increase in copies of CYP21A2 in 
adrenal when compared to kidney.    
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3.5 DISCUSSION 

The CYP21 locus on chromosome 6 is perhaps the most obvious candidate for 

investigation in AAD, as it encodes the 21OH enzyme which is the primary 

autoantigen in this condition. While this locus has been extensively studied in 

individuals with CAH, relatively little is known of its role, if any, in susceptibility 

to AAD. Two previous studies[153, 267], both conducted in the 1990s, have 

investigated polymorphisms in the CYP21A2 gene. However, due to the strong 

LD which extends some distance from the HLA region, they were both unable to 

identify an independent effect of CYP21A2 polymorphisms, above and beyond 

that conferred by the MHC class II alleles. Therefore, the CYP21 locus remains 

the “elephant in the room” for AAD geneticists: it is the most obvious and 

biologically plausible candidate locus for AAD and as such, warrants further 

investigation, but is frequently overlooked due to the difficulties of dissecting its 

role from that of the HLA alleles nearby.  

 

The preliminary work in this study has established that individuals with AAD are 

more likely to have no copies of the CYP21A1P pseudogene (synonymous with 

being homozygous for the monomodular RCCX), when compared with controls: 

17.5% of AAD individuals have zero copies of CYP21A1P compared to just 

3.0% of controls (P <0.00001, OR 6.77 [95% CI 3.94 – 11.63]). On review of the 

available clinical information for all AAD individuals with and without CYP21A1P 

copies, there were no differences in clinical characteristics between the two 

groups. This finding led to the hypothesis that CYP21A1P might be important in 

inducing tolerance to the steroidogenic machinery and that its absence might 

therefore predispose to AAD. However, following genotyping of a cohort of 

individuals with Graves’ disease without concomitant AAD, where 7.8% had no 

CYP21A1P gene compared to 3.0% of controls (P 0.0007, OR 2.72 [95% CI 

1.53 – 4.82]), it appears that, although the association is much stronger with 

AAD than with Graves’ disease, this finding is not restricted to AAD alone.  
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Previous studies have demonstrated that individuals who are homozygous for 

the monomodular RCCX, in particular those with a null C4A gene, are 

predisposed to autoimmune conditions including SLE[268] and type 1 

diabetes[269, 270]. However, the monomodular RCCX associated with these 

conditions is, in European Caucasians, in strong LD with the HLA–A1–B8–

DR3–DQ2 haplotype, also known as the 8.1 ancestral haplotype (8.1 AH). The 

8.1 AH is strongly linked to autoimmunity, with the HLA–DRB1*0301 allele 

appearing to have a particularly strong influence[271]. The 8.1 AH has been 

associated with multiple autoimmune conditions including type 1 diabetes[272], 

SLE[273], coeliac disease[274, 275] and also AAD[45, 276]. There is therefore some 

debate as to whether components of the monomodular RCCX (or, more likely, 

absence of components from the duplicated RCCX, such as the CYP21A1P 

pseudogene[277] or additional copies of the functional C4 gene[278]), are 

conferring independent risk to autoimmunity[279-281] or simply “tagging” an HLA 

haplotype which is influencing disease susceptibility.  

 

The UK AAD, Graves’ disease and control cohorts have not been HLA-

genotyped as this is an expensive undertaking. However, HLA data has been 

gathered for a significant proportion of the Norwegian AAD cohort and this data 

has been kindly shared with us by our collaborators in Bergen. Using our 

competitive PCR assay, of 319 AAD cases genotyped for CYP21A1P presence 

(CYP21A1P+) or absence (CYP21A1P–), 42 (13.2%) were CYP21A1P–. This 

compared to just 19/413 (4.6%) of controls (P 3.2 x 10-5, OR 3.14 [95% CI 1.79 

– 5.52]). This result was similar to our findings in the UK AAD case and control 

cohorts.  

 

HLA data were available for 35 of the 42 CYP21A1P– Norwegian AAD cases. 

22 of 35 (62.9%) CYP21A1P– individuals were homozygous for both HLA–

DRB1*0301 and HLA–DQB1*02 (HLA-DR3), compared with only 3 of 230 

(1.3%) CYP21A1P+ individuals. In addition, 24 of 35 (68.6%) CYP21A1P– 

individuals were homozygous for the HLA-B*08 allele compared to just 3 of 228 

(1.3%) CYP21A1P+ people. 13 of 34 (38.2%) of CYP21A1P– people were 

found to be homozygous for HLA-A*01 compared to 10 of 228 (4.4%) of 
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CYP21A1P+ individuals. Finally, 28 of 34 (82.4%) CYP21A1P– individuals with 

AAD were homozygous for the MICA*5.1 allele compared to 108 of 229 (47.2%) 

of CYP21A1P+ AAD patients. In addition, HLA data were available for 323 

healthy controls (303 CYP21A1P+, 20 CYP21A1P–). 9/20 (45.0%) CYP21A1P– 

controls were homozygous for both HLA–DRB1*0301 and HLA–DQB1*02 

(HLA-DR3), compared with only 6 of 303 (2.0%) CYP21A1P+ controls. 

Furthermore, 9 of 20 (45.0%) CYP21A1P– controls were homozygous for the 

HLA-B*08 allele compared to just 1 of 303 (0.3%) CYP21A1P+ controls. 6 of 20 

(30.0%) of CYP21A1P– controls were found to be homozygous for HLA-A*01 

compared to 3 of 303 (1.0%) of CYP21A1P+ controls. Finally, 10 of 20 (50.0%) 

CYP21A1P– controls were homozygous for the MICA*5.1 allele compared to 91 

of 302 (30.1%) of CYP21A1P+ controls (Husebye et al, unpublished data).  

 

HLA haplotype reconstruction using PHASE software, performed by Ingeborg 

Bronstad (Husebye group, Bergen, Norway), was used to compare the 

frequency of the HLA haplotype of interest, the 8.1 AH (HLA–A*01–B*08–

DRB1*0301–DQB1*02)  in CYP21A1P+ and CYP21A1P– AAD cases and then 

in controls, before comparing cases with controls. This analysis was performed 

using χ2 tests. This analysis showed that the 8.1 AH is associated with 

CYP21A1P– in both AAD cases and in controls (P 9.6 x 10-7, OR 3.62 [95% CI 

2.11-6.21]; P 1.2 x 10-7, OR 5.81 [95% CI 2.86-11.82] respectively). There was 

no significant difference in the frequency of the 8.1 AH haplotype between 

CYP21A1P+ AAD cases and controls (P 0.076) and between CYP21A1P– AAD 

cases and controls (P 0.81).  

 

These data suggest that absence of CYP21A1P is commonly associated with 

the 8.1 AH in both cases and controls and can be viewed as tagging this 

autoimmune-associated haplotype. This association explains why we have 

observed an excess of CYP21A1P– individuals in our cohort of Graves’ disease 

patients in addition to those with AAD, as Graves’ disease is also associated 

with the 8.1 AH (reviewed in [76]).  
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The association between the absence of CYP21A1P (indicating a 

homozygously monomodular RCCX) and AAD, noted in both the UK and 

Norwegian AAD cohorts, was more marked than that seen with Graves’ disease 

(OR 6.77 and 2.72 respectively). Although available HLA data and HLA 

haplotype analysis suggest that at least some of this association is due to LD 

with the 8.1 AH, this observation begs the question of whether this explains the 

entire association or whether other factors are at play. In Caucasian individuals, 

the presence of the C4A null allele, which is often seen in conjunction with a 

monomodular RCCX, has been shown to increase risk of SLE[282]. Although this 

was originally attributed to the influence of HLA on susceptibility to SLE, the 

increased susceptibility was noted both in those with, and without, the 8.1 

AH[273], suggesting independent effects. In support of the C4 null allele being an 

independent risk factor for SLE, it is also associated with SLE in populations 

where the 8.1 AH is rare, for example in Chinese and Korean SLE cohorts[283-

285]. The C4 null allele is thought to result in partial C4 deficiency. Complete C4 

deficiency is rare and is associated with homozygosity of the C4A and C4B null 

alleles. It has been shown to be associated with impaired antibody responses to 

antigens presented by T cells in both humans and guinea pigs[286] and with an 

immune-complex mediated lupus-like disease in humans[287]. In contrast, partial 

C4 deficiency results in reduced clearance of immune complexes and 

autoimmune disease[288]. In AAD, it is possible that those people who are 

homozygous for the monomodular RCCX, and therefore CYP21A1P–, might 

also carry the C4 null allele, which would result in partial C4 deficiency. This 

could lead to subtle perturbations of the complement cascade which may be 

contributing to the autoimmune process in AAD, independent of the association 

with HLA. This hypothesis has not been tested in this study and requires 

investigation.  

 

The finding of CYP21A1P absence in a significantly greater proportion of AAD 

patients compared to controls provoked interest in the expression of CYP21A1P 

transcripts and led to the hypothesis that a steroid-rich thymic environment 

might be toxic for emerging T lymphocytes and impede the positive/negative 

selection process, and that pseudogene transcripts could therefore be 

expressed in thymus as a mechanism for inducing tolerance in a steroid-neutral 
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environment. In a CYP21A1P– individual, failure to express pseudogene 

transcripts in thymus during development might mean that tolerance to key 

steroidogenic components is not established, ultimately leading to an aberrant 

immune response to those elements later in life, which could cause AAD. 

Therefore, the possibility of pseudogene transcripts being expressed in the 

thymus was of particular interest. As the thymus gland involutes in adults, 

thymus samples for this project were obtained from infants and children 

undergoing cardiothoracic surgery for congenital heart defects from the 

Birmingham University HBRC. In order to establish and optimise assays of 

CYP21A1P expression, a positive control tissue was required. Adrenal tissue 

was chosen as a positive control tissue because CYP21A2 is known to be 

expressed here in fetal life[257] and levels of CYP21A1P would be compared, per 

sample, to levels of CYP21A2. A known positive control tissue for CYP21A1P 

expression has not previously been established. However, CYP21A1P 

transcripts have previously been detected in adrenal cell lines[265], and therefore 

adrenal tissue would seem to be the most likely site of expression of 

CYP21A1P if indeed it is expressed. 

 

Using TISH and an antisense SP6 mRNA riboprobe on CYP21A1P– fetal 

adrenal tissue, we established expression of CYP21A2 transcripts in fetal 

adrenal tissue obtained from 10 to 12 wpc fetuses. A strong positive signal, 

most marked at the periphery of the fetal adrenal gland, was seen in the three 

samples tested (Figure 17). We confirmed that the mRNA SP6 antisense 

riboprobe was hybridising to a transcript approximately 2000bp in length by 

Northern blotting (Figure 18). The 2000bp single band seen in Northern blotting 

corresponds to two known protein-coding CYP21A2 transcripts: 1914bp and 

2182bp in length. The finding of abundant CYP21A2 expression in fetal adrenal 

is in keeping with reports in published literature[257, 258]. No signal was seen in 

the adjacent fetal kidney, suggesting that CYP21A2 transcripts are either not 

expressed here, or are expressed at very low levels which could not be 

detected with the mRNA probe. qPCR has previously been used to demonstrate 

abundant CYP21A2 expression in fetal adrenal. CYP21A2 transcripts were also 

detected in fetal kidney, but at much lower levels, between 4 to 70 fold less than 

in the adrenal[258]. As qPCR is an amplification method, it is likely to be more 
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sensitive than TISH for targets of low abundance, explaining the discrepancy 

between our negative TISH kidney results and previous qPCR data.  

 

When the SP6 mRNA probe was applied to CYP21A1P+ tissue, a positive 

signal was also seen, in the same distribution (Figure 17) and there was little 

discernible difference in hybridisation when compared with the results from 

CYP21A1P– tissue. The signal seen in this tissue could be due to the presence 

of CYP21A2 and/or CYP21A1P transcripts, as the mRNA probe could not be 

designed to differentiate between the two transcripts. The LNA probes were 

therefore applied to both CYP21A1P+ and CYP21A1P– tissue to try to establish 

whether CYP21A1P is expressed in fetal adrenal tissue prior to investigating 

thymus.  

 

The CYP21A1P LNA probe did not hybridise to fetal adrenal or kidney when 

used at the manufacturer’s recommended concentration (20–40nM). At a 

concentration sufficient to generate a signal in CYP21A1P+ tissue 

(approximately 200nM), non-specific hybridisation occurred (Figure 19). At 

200nM, a signal was seen in both fetal adrenal and kidney in CYP21A1P– 

tissue. Indeed, when the scrambled probe was used at this high concentration, 

the same pattern of non-specific hybridisation was seen. As we did not have a 

positive control tissue, we were unable to ascribe the lack of signal when used 

at 20–40nM concentration to CYP21A1P not being expressed and therefore the 

results of the CYP21A1P LNA probe experiments had to be disregarded.  

 

In contrast, the CYP21A2 LNA probe gave a strong signal in both fetal adrenal 

and kidney when used at 20nM (Figure 19). However, when this probe was 

used in conjunction with Northern blotting at a range of concentrations, no band 

was seen and therefore we could not confirm the size of the transcript to which 

the probe was hybridising. We successfully demonstrated that the CYP21A2 

LNA probe did not hybridise to limb or cardiac tissue sections (Figure 21), and 

therefore was not binding in a completely non-specific manner to fixed tissue. 

The observation of equal or stronger signal from the kidney than the adrenal 

was in stark contrast to the mRNA riboprobe results, which suggested no, or 
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only very low, expression of CYP21A2 in the fetal kidney. While LNA probes are 

short and end-labelled with DIG molecules for detection, the mRNA riboprobes 

used in this project have multiple DIG molecules incorporated throughout the 

length of the longer probe. These are introduced by labelling 1 in 3 dUTP 

molecules with DIG, which are incorporated into the probe during the in vitro 

transcription reaction. As a consequence, one would anticipate that the signal 

gained from a DIG-labelled mRNA riboprobe would be significantly greater than 

that gained from an end-labelled LNA probe targeting the same transcript.  

 

Following these initial TISH results, and in light of the discrepancy between 

expression patterns with the different probes, both the mRNA riboprobe and 

CYP21A2 LNA probe results were scrutinised carefully. The mRNA riboprobe 

results were felt to be accurate for a number of reasons, while the CYP21A2 

LNA probe results were eventually viewed with suspicion.  

 

The mRNA riboprobe results were in keeping with previously published 

findings[258] and Northern blotting was used successfully to establish that the 

SP6 probe was hybridising to an appropriate sized transcript. The lack of signal 

from kidney with the mRNA riboprobe was not felt to be due to protocol failure, 

as strong and specific signal was seen in the adrenal gland. In addition, good 

signal from the adrenal eliminates the possibility that RNases were introduced 

to the tissue sections during the TISH protocol. Had this been the case, RNA 

degradation would be seen across the whole tissue section, leading to lack of 

signal in both adrenal and kidney. Furthermore, tissue sections from the three 

samples used for this TISH project had previously been used in unrelated 

projects with riboprobes specific to renal tissue, for example FRMD7 and 

collagen 6, with excellent results. This suggests that significant and localised 

RNA degradation in the renal tissue adjacent to the adrenal gland prior to tissue 

fixation and storage was not the cause for the absence in signal from the 

kidney. In contrast, the expression pattern seen with the CYP21A2 LNA probe, 

with strong expression more marked in kidney than adrenal, is entirely contrary 

to previous findings. Even using the CYP21A2 LNA probe at high concentration 

in Northern blotting, the size of transcript to which the probe was binding could 
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not be identified. As entirely non-specific hybridisation had been eliminated by 

using the CYP21A2 LNA probe on limb and cardiac tissue with negative results, 

this raised the possibility that the probe might be hybridising to a small, 

abundant, homologous target transcript: for example, an uncharacterised 

microRNA, small enough in size to have completely “run off” the RNA 

formamide gel during electrophoresis.  

 

As the CYP21A1P LNA probe results had been unsatisfactory, an alternative 

line of investigation was sought to establish CYP21A1P expression. Two qPCR 

assays were therefore designed, one specific to CYP21A2 and one to 

CYP21A1P, and an absolute copy number method was used to analyse results. 

qPCR would also be used to investigate CYP21A2 and CYP21A1P expression 

in fetal kidney, thus investigating further the discrepancy between the TISH 

mRNA riboprobe and CYP21A2 LNA probe results.    

 

Using qPCR, initial quality control experiments on three fetal adrenal tissue 

samples (two gDNA CYP21A1P+, one gDNA CYP21A1P-) demonstrated that 

both the CYP21A2 and CYP21A1P assays were sensitive, being able to detect 

as few as 1 copy/µl, and specific. Using these assays, we demonstrated, for the 

first time, that in individuals who are gDNA CYP21A1P+, CYP21A1P transcripts 

are expressed in fetal adrenal gland between 10 and 12 wpc. In this tissue, 

CYP21A1P transcripts are 40 to 80 fold less abundant than CYP21A2 

transcripts, which are expressed at high levels (mean 5116 copies/µl 

CYP21A1P; 447,057 copies/µl CYP21A2) (Figure 23).  

 

Following assay optimisation in fetal adrenal tissue, thymus samples were 

assessed to determine CYP21A2 and CYP21A1P expression. Using qPCR, of 

five thymus samples that met with quality control criteria, very low levels of 

CYP21A2 were expressed in three thymus samples (1.7, 2.5 and 6.5 copies/µl) 

and in two samples, CYP21A2 was not expressed. This finding reflects previous 

published results, where qPCR has been used to demonstrate CYP21A2 

expression in thymus[258]. In the same five samples, we established, for the first 

time, that CYP21A1P is expressed in thymus, again at low levels. Expression 
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was seen in all five samples, with a mean copy number/µl of 8.16 (median 4.7, 

minimum 3.4, maximum 23.5). In contrast to fetal adrenal tissue, in thymus, 

CYP21A1P was expressed at 1.5 to 5 fold higher levels than CYP21A2 (mean 

2.14 copies/µl) (Figure 24), although this difference was not statistically 

significant (P 0.075). In comparison to fetal adrenal tissue, levels of both 

CYP21A2 and CYP21A1P transcripts in thymus were considerably lower.   

 

In order to further investigate the discrepancy between TISH results with the 

mRNA riboprobe and the CYP21A2 LNA probe, RNA was extracted from kidney 

samples matched to adrenal samples already studied (N1812, N1733 and 

N1736 ). Matched samples would allow comparison of CYP21A2 copy 

number/µl in adrenal and kidney. If the copy number in kidney was significantly 

lower than the copy number in adrenal, this would support that the results 

gained from the TISH experiment with the mRNA riboprobe and suggest that 

the results gained with the CYP21A2 LNA probe were spurious. However, if 

copy number was approximately equal in the two tissues, or greater in kidney 

than adrenal, this would be in keeping with the findings with the CYP21A2 LNA 

probe.  

 

CYP21A2 transcripts were detected in all three of the matched kidney samples. 

There was significant variation in copy number between the three samples. 

CYP21A2 transcripts were expressed at 17 to 33,000 fold lower levels in kidney 

compared to adrenal (Figure 26). The mean number of copies/µl in kidney was 

1115 (minimum 22, maximum 3266 copies/µl) compared to 447,057 copies/µl in 

adrenal (minimum 55,750, maximum 726,170 copies/µl). This result suggests 

that the TISH results gained from the CYP21A2 LNA probe, which showed an 

equal or stronger signal from kidney than adrenal, were not reliable.  

 

There was considerable variability between samples in the number of copies of 

each transcript present/µl. This variability was apparent even between samples 

of the same developmental age. This variability could reflect true differences in 

transcript copy number between samples but could also reflect technical factors, 

for example, conditions affecting RNA quality and levels degradation, such as 
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the length of time taken from sample procurement to storage, sample transport 

conditions prior to freezing and the length of time the sample had been frozen 

prior to use. In addition, some variation is inevitably introduced during the RNA 

extraction, cDNA preparation and qPCR procedure. Finally, adrenal and thymus 

tissue samples were obtained from Newcastle and Birmingham biobank 

facilities. As only very small samples were available, we were unable to spare 

tissue for histological examination in order to determine the proportions of 

medulla and cortex in each sample. Differing proportions of each tissue may 

account for some variability between the samples.  

 

In summary, these results indicate that CYP21A1P transcripts are expressed in 

relatively low numbers, both in the adrenal gland in fetal life, and in the thymus 

in infants and children. This observation is in keeping with a previous study that 

demonstrated CYP21A1P transcripts in an adrenal cell line[265]. This observation 

is intriguing as these transcripts would be predicted to undergo nonsense-

mediated mRNA decay (NMD). NMD is an important cellular “quality control” 

mechanism whereby mRNAs containing premature translation termination 

codons are rapidly degraded. This pathway is in place to prevent accumulation 

of truncated and abnormal proteins in cells[289].  The observation of CYP21A1P 

transcripts in both fetal adrenal tissue and in thymus tissue can perhaps be 

explained in one of two ways: first, that the CYP21A1P transcripts are subject to 

NMD and that we are simply detecting a small number which are yet to be 

removed by this regulatory system. In thymus, where copy numbers were very 

low, usually in single figures, this explanation seems likely. The other possibility 

is that the CYP21A1P transcripts are NMD-insensitive. This phenomenon has 

previously been reported in both humans and in other species[290-292], however 

the mechanism or mechanisms by which some transcripts are able to evade 

NMD are not yet fully understood and are subject to continuing research. The 

key question now is whether a CYP21A1P protein product can be detected. If a 

protein product cannot be detected, this supports the idea that the transcripts 

observed in adrenal and thymus tissue are transient and subject to NMD, 

however if a CYP21A1P protein product can be detected, this supports the 

latter suggestion that the transcripts are protected in some way from the NMD 

mechanism. 
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This study has also demonstrated that LNA probes do not always hybridise 

specifically, and cannot always be used to differentiate between highly 

homologous transcripts. In this study, comparison of LNA probe TISH results 

with those gained using a traditional mRNA riboprobe highlighted significant 

discrepancies and these were resolved using qPCR in favour of the mRNA 

riboprobe results. Comparison of LNA probe data with riboprobe data is 

therefore a useful tool in differentiating specific from non-specific hybridisation.  
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3.6 CONCLUSIONS AND FUTURE DIRECTIONS  

While this small study has provided new evidence that CYP21A1P transcripts 

are expressed in both fetal adrenal and thymus, with such small sample sizes it 

would be inappropriate to draw wider conclusions at this stage. The sample size 

is limited by availability of fetal tissue and tissue from infants and children, 

which is an extremely rare resource. qPCR could be used to analyse a greater 

sample set and to look at different developmental stages and a range of 

different tissues. This would give a more accurate overview of variability of inter-

individual transcript copy numbers and variation in transcript levels at different 

developmental stages in various tissues.  

 

The next step in this study is to determine whether a CYP21A1P protein product 

is expressed. This could be done using Western blotting and an antibody to the 

N-terminus, which is predicted to be shared by the CYP21A2 protein and the 

putative CYP21A1P protein product. While the protein product of the CYP21A2 

gene is between 465 and 495 amino acids in length, the predicted pseudogene 

protein product, if one does exist, would be considerably shorter, approximately 

131 amino acids in length. This difference would be due to the deletion in exon 

three, which introduces a premature stop codon and frameshift, resulting in 

truncation of the predicted pseudogene protein. These different sized proteins 

could be easily differentiated by size by Western blotting in tissues of interest. 

Expression of a pseudogene protein product would confirm that CYP21A1P 

transcripts in some way evade the NMD mechanism and would also lend 

support to our hypothesis that it plays a role in establishing tolerance to 

essential components of the steroidogenic machinery. 
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CHAPTER 4 – A HYPOTHESIS-DRIVEN APPROACH TO THE 

INVESTIGATION OF AAD – A STUDY OF TWENTY 

CANDIDATE GENES IN EUROPEAN AAD COHORTS 
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4.1 BACKGROUND 

The hypothesis-driven candidate gene approach has seen a number of 

successes in the investigation of AAD. Most notably, the finding of association 

of PTPN22[176, 177] and CTLA4[116, 171] polymorphisms with AAD which have been 

widely replicated. In order to attain adequate power in these studies, large case-

control cohorts are needed. In AAD, previous candidate gene studies have 

been relatively small, including at most 300 affected individuals, and some 

findings have proved difficult to replicate. The Euradrenal consortium has 

recently provided a platform for collaboration between researchers interested in 

AAD in Europe and has, for the first time, allowed almost 2000 AAD samples to 

be collected together for genetic analysis. 

 

While this size of cohort would provide power for an initial genome wide study, 

the lack of a replication cohort has prohibited this approach to date. A large 

candidate gene study provides an alternative, hypothesis-driven approach to 

learning more about the underlying genetic aetiology of AAD and makes good 

use of this valuable and unique DNA resource.  

 

Candidate genes for investigation in this study were selected from four broad 

biological pathways known to be important in the pathogenesis of autoimmune 

conditions and the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed) 

was used to review recent literature to aid selection of plausible candidate 

genes within these pathways. The selected candidates included genes 

influencing CD4+ lymphocyte fate (GATA3, GATA binding protein 3; IL17A, 

interleukin 17A; IL17RA, interleukin 17 receptor A; IL21, interleukin 21; IL23A, 

interleukin 23 alpha subunit p19; RORA, RAR-related orphan receptor A; 

RORC, RAR-related orphan receptor C; STAT2, signal transducer and activator 

of transcription 2; STAT4, signal transducer and activator of transcription 4 and 

TBX21, T-box 21), T cell signalling (the CD28-CTLA4-ICOS (inducible T-cell co-

stimulator) cluster), transcription factors which alter the immune response 

(NFATC2, nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 2, NFKB1, nuclear factor of kappa light polypeptide gene enhancer 
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in B-cells 1 and REL, v-rel reticuloendotheliosis viral oncogene homolog) and 

genes important for innate immune mechanisms (CYP2R1, vitamin D 25-

hydroxylase; CYP24A1, CYP27B1, 25-hydroxyvitamin D-1 alpha hydroxylase; 

GC, vitamin D binding protein; IFIH1, interferon induced with helicase C domain 

1 and VDR). 

4.1.1 GENES INFLUENCING CD4+ CELL FATE DETERMINATION 

CD4+ T lymphocytes play a critical role in the adaptive immune response and 

are therefore thought to play a central part in loss of tolerance and the 

development and perpetuation of autoimmune responses. Our understanding of 

these cells is constantly evolving. Historically, they were thought of as a uniform 

population, defined purely on the basis of having both CD3 and CD4 surface 

molecules, and were referred to as “helper T cells”. Now CD3+CD4+ T 

lymphocytes are being increasingly subdivided and re-classified as our 

understanding of T cell biology, and its complexity, increases. Two main 

subdivisions now exist: TH and TReg cells. These can then be further subdivided. 

The TH cells are commonly subdivided into TH1, TH2, TH9[293], TH17, TH22[294] 

and follicular helper T cells (TFH)[295, 296]. TReg cells all have a CD25 cell surface 

molecule, in addition to CD3 and CD4[13, 297-299]. They are currently subdivided 

into TR1, natural TReg and inducible TReg cells[300], although other subdivisions 

have also been proposed. These subdivisions are made according to their 

function, regulating transcription factors, surface marker phenotype (in addition 

to the T cell receptor (TCR), CD3 and CD4 molecules) and their cytokine 

secretion profile when stimulated. It is likely that the number of subdivisions will 

increase in the future.  

 

As our understanding of T lymphocyte biology increases, some long-held 

paradigms are being challenged. One such paradigm is the “master regulator” 

theory of CD4+ differentiation which defined a single transcription factor 

regulating differentiation and cell fate of each subtype. TBX21 was thought to 

be the master regulator for TH1 cells, GATA3 for TH2 cells, retinoic acid-related 

orphan receptor γt (ROR-γt) for TH17 cells and FOXP3 for TReg cells. However, it 

is increasingly recognised that T cell lineage fate is far more complex and 
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dynamic than previously thought: these factors can be co-expressed and can 

interact with other factors, all influenced by the cytokine environment, to alter TH 

cell balance in vivo[301, 302]. In addition, the model that TH1 dominated responses 

result in autoimmune disease and that TH2 dominated responses result in 

allergic disease[303] is being challenged. We now recognise that, in autoimmune 

disease, a number of interacting subsets contribute towards pathophysiology, in 

particular TH1, TH2, TH17 and TReg cells. This makes genes involved in these 

lineages plausible candidates for AAD. In this study, ten genes contributing to 

CD4+ cell fate were selected for investigation: three involved in TH1 cell lineage 

specification (TBX21, STAT4 and STAT2), one in TH2 specification (GATA3, 

which also has a role in TReg function) and six in TH17 specification (IL17A, 

IL17RA, IL21, IL23A, RORA and RORC).  

4.1.1.1 THE TH1 CELL LINEAGE 

The development of TH1 cells is regulated by IL12[304, 305]. Their surface marker 

molecules include the IL12 receptor, the interferon gamma (IFN-γ) receptor[306] 

and the CXCR3 chemokine receptor[307] and, when stimulated, they secrete 

IFN-γ, IL2[306] and lymphotoxin alpha[300, 308]. TH1 cells present antigens in the 

context of MHC class II and activate macrophages. They have a crucial role in 

immunity against intracellular pathogens. The key transcription factors for this 

subset are TBX21[309], STAT4[305] and STAT1[310]. 15 SNPs in three TH1 genes 

were selected for investigation: two independent SNPs in TBX21, 11 SNPs in 

STAT4, including a cluster of seven in moderate LD, and two SNPs in complete 

LD in STAT2.  

 

The TBX21 gene on chromosome 17 contains six exons and is a member of a 

family of genes which contain a T-box binding domain. It encodes the TBX21 

transcription factor which is an important regulator of TH1 lymphocyte 

development, with a critical role in inducing TH1 cell specification from TH 

cells[309]. TBX21 is also thought to modulate TH17 cell responses[311]. 

Polymorphisms in TBX21 have been associated with autoimmune disease in 

various populations, with most studies coming from Asia. Associations include 

type 1 diabetes in a cohort from Japan[312], SLE in a cohort of Chinese 
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patients[313], Graves’ disease in a smaller cohort from Japan[314] and rheumatoid 

arthritis in Korean patients[315].  

 

STATs are cytosolic proteins which all have an Src homology 2 (SH2) domain 

and a carboxyl terminal tyrosine phosphorylation site. STAT proteins all contain 

a DNA binding site[316] or multiple DNA binding sites[317]. STATs are activated in 

response to cytokines and growth factors and, when activated, they dimerise. 

These dimers translocate to the nucleus and exert effects on signal transduction 

and activation of transcription by binding to the promoters of specific target 

genes[318]. The STAT4 gene is found on chromosome 2 and is composed of 24 

exons. It encodes STAT4, which is expressed in myeloid cells, T lymphocytes, 

the thymus and testes. It is phosphorylated specifically in response to IL12, type 

1 interferons (e.g. interferon alpha and beta) and IL23[319] and is essential for 

the TH1 response and cellular immunity. In support of this, STAT4 knock-out 

mice are viable and fertile but their IL12-mediated functions are impaired, 

including the induction of the primary TH1 cytokine IFN-γ and TH1 

differentiation[320]. As the balance between TH1 and TH2 responses is thought to 

be critical in immune tolerance and susceptibility to autoimmunity, STAT4 is an 

excellent candidate gene for all autoimmune conditions. Indeed, polymorphisms 

in STAT4 have been associated with both rheumatoid arthritis and SLE in a 

large American study[321].  

 

The STAT2 gene is found on chromosome 12 and consists of 24 exons. It 

encodes the STAT2 protein which is widely expressed and, like STAT4, is 

phosphorylated in response to type 1 interferons[320, 322, 323]. However, STAT2 

lacks the ability to bind DNA directly and therefore forms a transcriptional 

complex with STAT1 and p48 to exert its actions[323, 324]. STAT2 polymorphisms 

have been associated with psoriasis in a European genome-wide study[325].  

4.1.1.2 THE TH2 CELL LINEAGE 

TH2 cells activate B cells and therefore promote humoral immunity. They are 

important in the immune response to extracellular pathogens, but can also 

mediate allergic disease if not tightly regulated[326]. Their development and 
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maintenance are regulated by IL4[327], IL25[328, 329] and IL33[330]. TH2 cells 

express cell surface IL4, IL17 receptor B and IL33 receptors[331], the chemokine 

receptor CCR4[307], and the chemoattractant receptor-homologous molecule 

expressed on TH2 cells (CRTH2) receptor[307]. When stimulated, they secrete 

IL4[327], IL5[327], IL10[332] and IL13[308], and their regulating transcription factors 

include GATA3[333], STAT6[334], interferon regulatory factor 4 (IRF4)[335, 336], 

basic helix-loop-helix family, member e41; BHLHE41 (DEC2)[337, 338] and v-maf 

musculoaponeurotic fibrosarcoma oncogene homolog[339]. In this study, four 

SNPs in the GATA3 gene, including a pair in moderate LD (rs3802604 and 

rs570613, r2 0.67), were chosen to investigate the influence of GATA3 

polymorphisms in AAD susceptibility.  

 

GATA3 is found on chromosome 10 and encodes the GATA3 transcription 

factor. GATA3 is a member of the GATA-binding protein family which has six 

members in mammals (GATA1 to GATA6), each containing two highly 

conserved zinc finger domains: one at the C-terminal which allows DNA 

binding; one at the N-terminal which stabilises the protein-DNA interaction[340]. 

The GATA family members all interact with 5’-(A/T)GATA(A/G)-3’ sequence on 

DNA, altering transcription and regulating gene expression[341-343]. It is from this 

interaction that they derive their name. The GATA3 protein is widely expressed 

both in embryonic development and in adult life[344], is an important regulator of 

T cell development and plays a crucial role in determining T cell fate, in 

particular the differentiation of naïve CD4+ T cells into TH2 cells[345-347]. Until very 

recently, GATA3 was thought to be the master regulator of TH2 differentiation. 

However, it is now recognised that GATA3 interacts with a number of other 

factors, such as STAT4 and TBX21, to perform this, and other, functions[302]. 

GATA3 is also an important regulator of TReg cells[348] which have potent 

immunosuppressive properties and therefore promote the dampening down of 

immune responses[7, 10, 349]. TReg cells are thus critical for maintaining immune 

homeostasis and tolerance to self[350]. One group of TReg cells are generated 

from naïve T cells centrally, in the thymus, when they are termed natural TReg 

cells[3, 351], or peripherally, when they are called inducible TReg cells[352]. They are 

recognised by their CD25+ cell surface phenotype[13, 297-299], and may also bear 

CTLA4[351] and glucocorticoid-induced TNF receptor-related protein (GITR)[353] 
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cell surface markers. FOXP3 was thought to be the master regulator of this 

subset of cells[8, 9], but other transcription factors are also important in this 

lineage, including STAT5[354], FOXO1[355], FOXO3[355], SMAD2[356] and 

SMAD3[356]. TReg lymphocytes secrete IL10 and TGF-β[357]. 

 

Loss of function mutations in the GATA3 gene result in the hypoparathyroidism, 

sensorineural deafness and renal abnormalities (HDR) syndrome[358] while 

GATA3 polymorphisms have been associated with allergic rhinitis[359], breast 

cancer[360] and Hodgkin’s lymphoma[361]. To date, no GATA3 polymorphisms 

have yet been associated with autoimmune disease, although altered GATA3 

expression has been linked to both systemic sclerosis[362] and flares of SLE[363].  

 

4.1.1.3 THE TH17 CELL LINEAGE 

TH17 cells were originally named because they produce IL17[364], although we 

now know that their cytokine secretion profile is not limited to IL17 alone: they 

also secrete IL17A, IL17F, IL21[365], IL22 and IL26[366]. The function of TH17 

cells is to provide additional immunological defence against microbes, 

particularly at epithelial surfaces such as in the gut, and to secrete cytokines 

which are chemoattractant to neutrophils. TH17 cells are extremely 

proinflammatory[367]. Their surface marker profile includes the IL23 receptor, the 

IL1 receptor, the chemokine receptor CCR6[368] and CD161 (killer cell lectin-like 

receptor subfamily B, member 1 also known as KLRB1)[369]. They are produced 

in response to TGF-β[370], IL6[371] and IL21[372] and are maintained by IL23[373] 

and IL1[367]. Their regulating transcription factors include RORγt[374], RORα[375] 

and STAT3[376]. Three SNPs in IL17A (rs3819024 and rs16882180 in moderate 

LD (r2 0.55) and one independent SNP), two independent SNPs in IL17RA, two 

independent SNPs in IL21, one SNP in IL23A, four independent SNPs in RORA 

and five largely independent SNPs in RORC (maximum r2 0.40) were selected 

for genotyping.  
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The IL17A gene comprises three exons and is located on chromosome 6. It 

encodes the IL17A cytokine. Polymorphisms in the IL17A gene have previously 

been associated with both ulcerative colitis[377] and Crohn’s disease[378]. The 

IL17RA gene, found on chromosome 22, encodes the IL17A receptor which is 

expressed mainly on immune cells. IL17RA polymorphisms have been 

associated with alopecia areata[379] and Crohn’s disease[378]. The IL21 gene on 

chromosome 4 encodes the interleukin 21 cytokine which plays a role in both 

innate and adaptive immunity by inducing the differentiation, proliferation and 

activation of many cell types including macrophages, natural killer cells, B 

lymphocytes and T lymphocytes[365]. IL21 levels have been correlated with 

disease severity in psoriasis[380], with alterations in lymphocyte subsets in 

patients with SLE[381] and with immune reconstitution autoimmune conditions 

following alemtuzumab (Campath) therapy[382]. Polymorphisms in the IL21 gene 

have been associated with Graves’ disease[383] and with SLE[384, 385].  

 

The IL23A (interleukin 23, alpha subunit p19) gene comprises four exons and is 

found on chromosome 12. It is widely expressed and encodes a subunit of the 

IL23 cytokine, a dimeric cytokine made up of IL23A and IL12B, which can 

promote differentiation of naïve TH cells to TH17 cells[386]. The RORC gene is 

found on chromosome 1 and two transcripts are expressed: RORγ and RORγt, 

both of which are orphan nuclear receptors which can function as transcription 

factors. RORγ is expressed in a number of tissues, including the liver and 

thymus, however its function is poorly defined. The expression of RORγt is 

limited to the thymus where it plays an important role in inhibiting apoptosis of 

undifferentiated T cells and enhances their differentiation into TH17 cells[375]. 

The final member of the TH17 pathway that we selected for analysis was the 

RORA gene on chromosome 15, which encodes the RORα protein. This 

protein, like RORγt, is a nuclear receptor and transcription factor important for 

TH17 lineage specification[375].  

4.1.2 GENES INFLUENCING T CELL SIGNALLING 

T cell activity must be carefully regulated in order to achieve a fine balance of 

effective protection against pathogens and maintenance of tolerance to self-
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antigens. Tolerance in T lymphocytes is maintained by a number of 

mechanisms, both centrally, in the thymus, where autoreactive T lymphocytes 

are silenced or destroyed, and peripherally, outside of the thymus. 

Costimulatory molecules, present on antigen presenting cells, are important 

mediators of tolerance and have important roles in T lymphocyte regulation and 

function. Costimulatory molecules contribute one half of the classic two signal 

model for T cell activation. In the two signal model, following presentation of an 

antigen in the context of MHC, a costimulatory signal is required for T cell 

activation[387-389]. Many costimulatory molecules have now been described and 

these can provide positive, activating signals or negative signals which 

downgrade the T cell response.   

 

The CD28/CTLA4/ICOS gene cluster is found on chromosome 2. The three 

genes which make up the cluster are relatively close together and significant LD 

exists in the region, particularly between CTLA4 and ICOS. These three genes 

encode cell surface molecules that act as costimulatory molecules for T cell 

responses. While the CTLA4 molecule has a role in downregulating T cell 

responses[161], the CD28 and ICOS molecules have the opposite effect, 

providing positive signals which upregulate T cell activity[390]. Genomic variants 

at the CTLA4 locus have been implicated in the aetiology of numerous auto-

immune conditions, including autoimmune thyroid diseases[164-167], type 1 

diabetes[162, 163] and rheumatoid arthritis[168, 169]. CD28 polymorphisms have 

previously been associated with rheumatoid arthritis[391] and an increase in the 

circulating levels of soluble CD28 have also been reported both in this 

condition[392] and in other autoimmune diseases including SLE and Sjögren’s 

syndrome[393, 394]. ICOS polymorphisms have been associated with rheumatoid 

arthritis[395] and SLE[396]. Due to the strong LD in the region, it can be difficult to 

ascertain whether CD28 and ICOS are conferring risk of autoimmune disease 

independent of CTLA4. In this study, four SNPs in CD28, including a pair in 

moderate LD (DIL107 and rs1181389, r2 0.71), were chosen for genotyping. In 

addition, two independent SNPs situated between CD28 and CTLA4 were 

selected and seven SNPs in or close to the CTLA4 gene, including a trio of 

SNPs in significant LD (rs231775, rs231726 and rs231727). Finally, one 

independent SNP between CTLA4 and ICOS, and two independent SNPs in or 
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upstream of the ICOS gene, were also genotyped, to capture as much variation 

in this region as possible.  

4.1.3 GENES ENCODING TRANSCRIPTION FACTORS INVOLVED IN DYNAMIC 

IMMUNE RESPONSES 

The NF-κB proteins comprise a family of transcription factors which influence a 

wide variety of biological processes including innate and adaptive immune 

responses, inflammation, cell growth, tissue differentiation and apoptosis[397-

399]. Members of this family share a highly conserved DNA-binding domain 

called the Rel homology (RH) domain, nuclear localisation sequences and 

dimerisation sequences[400].  

 

The family members can be subdivided into two groups depending on the 

structure of the c-terminal portion of the protein. The class 1, or NF-κB, proteins 

include NF-κB1 (sometimes called p50/p105) and NF-κB2 (p52/p100) and have 

ankyrin repeats in this section, while the class 2, or Rel, proteins, including RelA, 

RelB and c-Rel, have transcriptional activation domains here[399]. The class 1 

proteins must form dimers with the class 2 proteins in order to act as 

transcription factors.  

 

In most cells, NF-κB proteins are present in the cytoplasm in a complex with an 

inhibitor protein which is a member of the inhibitor κB (IκB) family[401]. In 

response to a stimulus, for example cytokines or bacterial products, NF-κB 

proteins are activated by degradation of the IκB protein by an IκB kinase. They 

then form dimers and translocate to the nucleus and alter gene expression[402]. 

The wide-ranging effects on immunity and autoimmunity make components of 

this pathway excellent candidates for AAD susceptibility. Therefore, for this 

study six SNPs in the NF-κB1 (nuclear factor of kappa light polypeptide gene 

enhancer in B-cells 1) gene and two in REL were selected for investigation. The 

NF-κB1 gene is comprised of 24 exons and is found on chromosome 4. NF-κB1 

encodes two isoforms: p105 is a non-DNA binding protein and p50 is capable of 

binding to DNA[403]. When activated, NF-κB1 forms biologically active 



 

168 

 

heterodimers or dimers with Rel proteins, which translocate to the nucleus to 

alter transcription. NF-κB1 is widely expressed at low levels in many tissues, 

and is expressed at higher levels in lymphocytes.  

 

Polymorphisms in the NF-κB1 gene have been implicated in a number of 

autoimmune and inflammatory conditions such as inflammatory bowel 

disease[404], type I diabetes[405] and Graves’ disease[406]. The REL gene, on 

chromosome 2, consisting of 11 exons, encodes the proto-oncogene c-Rel 

which is widely expressed at low levels and highly expressed in B and T 

lymphocytes. c-REL is thought to play a critical role in T and B cell 

differentiation, proliferation and survival[407-411], in particular in TReg 

development[412]. It is also thought to have an overlapping role with TH17 cell 

function[413, 414]. REL polymorphisms have been associated with a number of 

autoimmune conditions including rheumatoid arthritis[415], coeliac disease[416] 

and psoriasis[417, 418]. In this study, six SNPs in, and around, the NF-κB1 gene 

were selected for investigation: there was moderate LD between four of these 

and two were independent. Two SNPs in complete LD in the REL gene were 

also selected for genotyping.  

 

The NFAT proteins fulfil a similar role to NF-κB proteins, allowing rapid initiation 

of gene expression during immune responses. They are expressed on cells of 

the immune system such as lymphocytes, mast cells and macrophages, and 

play a critical role in the transcription of genes required for a vigorous immune 

response[419-421]. NFAT proteins have a REL-homology region and an NFAT-

homology region and they can bind similar DNA sequences as the NF-κB 

dimers, but are not known to form dimers with NF-κB proteins[399, 422]. Like NF-

κB proteins, NFAT proteins are present in the cytoplasm but rapidly translocate 

to the cell nucleus when surface T cell receptors, or other receptors coupled to 

calcium mobilisation, are stimulated. The translocation process is controlled by 

the protein phosphatase calcineurin, which interacts with the NFAT domain. In 

the nucleus, NFAT proteins form transcription complexes with other NFAT 

proteins and with molecules such as GATA4, and regulate gene expression in 

response to T cell activation during immune and inflammatory responses[422]. 
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NFATC2 encodes the nuclear factor of activated T-cells, cytoplasmic 

calcineurin-dependent 2 protein. It is located on chromosome 20 and comprises 

11 exons. Polymorphisms in NFATC2 have been associated with narcolepsy[423] 

and altered NFATC2 expression has been linked to complicated sarcoidosis in 

a recent, small study[424]. However, polymorphisms in this gene have not been 

associated with autoimmune disease to date, despite it being a very plausible 

candidate. 14 SNPs in NFATC2 were selected for genotyping, including two 

pairs of SNPs in moderate LD (rs959996 and rs2024582, r2 0.72; rs3787189 

and rs2273642, r2 0.61) and a cluster of eight SNPs in moderate LD.   

4.1.4 GENES INFLUENCING INNATE IMMUNE MECHANISMS 

The innate immune system is concerned with defending the host from infection 

by pathogens in a rapid, generic and nonspecific manner. Its primary functions 

include pathogen recognition, immune-cell recruitment through the production of 

chemokines and cytokines, activation of the complement cascade and 

activation of the adaptive immune system through antigen presentation. The 

innate immune system is complex: it involves numerous cell types, mechanisms 

and biomolecular pathways. 

 

Vitamin D has long been recognised to have significant effects on the immune 

system and on autoimmunity. In the late 1800s, sunlight, one of the main 

sources of vitamin D, was a favoured treatment for a number of infectious and 

autoimmune diseases, including tuberculosis and lupus. This was long before 

the discovery of antibiotics and vitamin D itself, which was discovered in 1922 

by Mellanby, in the course of his research into rickets[425]. Since the discovery of 

vitamin D, much research has focussed on the effects of its metabolites, vitamin 

D pathway components, and the vitamin D receptor, on immunity and in 

autoimmune disease. Alterations in the function of components of the vitamin D 

pathway, in addition to vitamin D levels, have been associated with autoimmune 

conditions, as have polymorphisms in the genes encoding these components, 

making them good candidates in AAD. Five genes from the vitamin D pathway 

were selected for this study. Three SNPs in moderate to high LD were selected 

in CYP27B1, 9 SNPs, including rs4809959 and rs2296241 which are in 
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moderate LD (r2 0.78), were selected from CYP24A1, three independent SNPs 

in CYP2R1, three largely independent SNPs in GC (maximum r2 0.42) and six 

SNPs in VDR (including a pair in moderate LD, rs2189480 and rs3819545, r2 

0.57) were selected for genotyping.  

 

CYP27B1 is a member of the cytochrome P450 superfamily of enzymes. These 

catalyse a large number of reactions involved in the synthesis of lipids, 

cholesterol and steroids, and in drug metabolism. The primary function of 

CYP27B1 is to hydroxylate 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3, 

an active metabolite which can bind to the vitamin D receptor and regulate 

calcium homeostasis and exert a suppressive effect on immunity and 

autoimmunity[206]. CYP27B1 is encoded by the CYP27B1 gene, found on 

chromosome 12. The CYP27B1 protein is located on the inner mitochondrial 

membrane[426] and it is widely expressed. CYP27B1 polymorphisms have been 

associated with type 1 diabetes[427], autoimmune thyroid disease[209] and AAD 

already, but in a relatively small study that has yet to be replicated[209]. 

 

The CYP24A1 gene is found on chromosome 20 and encodes another 

cytochrome P450, the cytochrome P450 family 24, subfamily A, polypeptide 1 

(CYP24A1, previously known as vitamin D 24-hydroxylase). This hydroxylase 

enzyme is found in mitochondria and its primary function is to hydroxylate 25-

hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3, resulting in their 

degradation[428, 429]. Polymorphisms in CYP24A1 have been linked to reduced 

vitamin D levels in individuals with type 1 diabetes, although no significant 

association was found with type 1 diabetes and these polymorphisms per 

se[430].  

 

The CYP2R1 gene is found on chromosome 11 and encodes the cytochrome 

P450, family 2, subfamily R, polypeptide 1 (CYP2R1, previously known as 

vitamin D 25-hydroxylase). This enzyme is found in the cytoplasm and 

hydroxylates vitamin D to form the active 25-hydroxyvitamin D. Polymorphisms 

in CYP2R1 have previously been associated with type 1 diabetes[430]. 
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The GC gene on chromosome 4 encodes the vitamin D binding protein, which is 

a plasma protein belonging to the same family as albumin. The vitamin D 

binding protein transports vitamin D and its metabolites to target tissues. GC 

polymorphisms have been associated with the development of arthritis and 

uveitis in Korean patients with ankylosing spondylitis[431] and with reduced levels 

of vitamin D in individuals with type 1 diabetes, although this study failed to 

demonstrate a direct association between GC polymorphisms and type 1 

diabetes[430].  

 

The VDR gene on chromosome 12 encodes the vitamin D receptor transcription 

factor which belongs to the steroid receptor family. On activation, VDR forms 

heterodimers; these bind to vitamin D responsive elements in the promoters of 

target genes and activate their expression[432]. VDR can be expressed on any 

dividing cells and it is known to be expressed in at least 30 tissues, including on 

many immune cells[433-435]. Polymorphisms in VDR have previously been 

associated with autoimmune thyroid disease, type 1 diabetes[436], SLE and 

rheumatoid arthritis[437]. 

 

One additional gene involved in innate immunity was selected for inclusion in 

this study. The IFIH1 gene on chromosome 2 encodes the IFIH1 protein which 

is a member of the DEAD box protein family. Members of this family are 

putative RNA helicases and are implicated in a number of cellular processes 

involving RNA metabolism and alteration of RNA secondary structure[438]. IFIH1 

is thought to promote mRNA degradation by specific RNases and is involved in 

defending the host against viruses[439]. IFIH1 polymorphisms have been 

associated with a number of common autoimmune conditions including Graves’ 

disease[440] and type 1 diabetes[441], making it a plausible candidate in AAD, in 

particular in APS2. Three independent SNPs were selected for genotyping in 

the IFIH1 gene.  
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4.2 AIM 

My aim was to investigate the role of twenty candidate genes in the 

pathogenesis of AAD in six European case-control cohorts, using the 

Sequenom iPlex genotyping platform. 

4.3 SUMMARY OF STUDY DESIGN 

A list of 36 candidate genes of interest was constructed and members of the 

Euradrenal consortium were asked to vote for the 20 genes that they would like 

to be included in the study. 20 candidate genes were thus selected for analysis 

in this study. Sequenom iPlex assays were designed for multiple SNPs within 

these genes. 

 

In round one, 101 SNPs in these 20 genes were chosen for genotyping in UK 

(309 AAD, 335 controls) and Norwegian (382 AAD, 380 controls) AAD case-

control cohorts. Primer sequences are detailed in electronic appendix A. These 

SNPs were genotyped in four separate Sequenom plexes by CIGMR, 

Manchester. Data were analysed for each cohort as a whole, and then the 

cohorts were subdivided into individuals with isolated AAD (iAAD) and into 

those with AAD in addition to another autoimmune condition (APS2) and the 

analysis repeated. Genotype data are shown in full in electronic appendix B.  

 

Following analysis of round 1 data, a second round of genotyping was 

undertaken to determine whether any of the findings in round 1 could be 

replicated in other European cohorts. In round two, 21 SNPs in 11 genes, 

associated in either the UK or Norwegian cohort in round 1, were genotyped by 

CIGMR, Manchester, in a single Sequenom plex, in case and control cohorts 

from Germany (341 AAD, 235 controls), Poland (275 AAD, 296 controls), Italy 

(280 AAD, 322 controls) and Sweden (368 AAD, 368 controls). Data from each 

cohort were analysed individually. Genotype data are shown in full in electronic 

appendix B. A subgroup analysis was not performed as clinical information to 

divide the cohorts into iAAD and APS2 were not available for all cohorts. A 
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meta-analysis was then performed, using the RevMan 5 software, across the 

six cohorts as a whole, initially including all individuals, and then excluding any 

individual without positive serum 21OH autoantibodies.  

 

Following round 1 and round 2 data analyses, some candidates were taken 

forward to further investigation in a series of replication studies. A single SNP in 

NF-κB1, found to be associated with AAD in the UK cohort, was investigated by 

RFLP in a cohort of individuals from the UK with Graves’s disease, to see if the 

round 1 findings could be replicated in another autoimmune disease. In addition, 

15 SNPs in the GATA3 gene were selected for further investigation by 

Sequenom genotyping in UK and Norwegian AAD cohorts (335 UK AAD, 302 

UK controls, 352 Norwegian AAD, 1353 Norwegian controls) to narrow down 

the association detected in rounds 1 and 2. The primer sequences for these 

GATA3 SNPs can be found in electronic appendix A. These SNPs were also 

genotyped in 283 UK Graves’ disease patients, 1195 type 1 diabetes patients 

from Norway and in a cohort of 650 rheumatoid arthritis patients from New 

Zealand and 452 matched controls, to see if the findings could be replicated in 

other autoimmune cohorts. For the GATA3 replication study, PCR was carried 

out in house for the AAD, Graves’ disease and rheumatoid arthritis cohorts and 

PCR products given to Newgene, Newcastle for further processing. For the type 

1 diabetes cohort, PCR and Sequenom genotyping were undertaken by CIGMR, 

Manchester. GATA3 genotype data can be found in electronic appendix B. 
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4.4 RESULTS  

4.4.1 STUDY POWER 

Power calculations were performed using QUANTO[442]. The power of the study 

as a whole, and per cohort, was calculated before genotyping was undertaken. 

Including all 1955 AAD cases and 1936 controls, and assuming a minor allele 

frequency (MAF) of 0.3 and a type I error rate, or α, of 0.00078 (allowing for 

testing 64 independent markers in round 1 of genotyping: 0.05/64) the study 

has 100% power to detect a locus with an odds ratio of 1.4 and 65% power to 

detect a locus with an odds ratio of 1.2. Assuming a lower MAF reduces the 

power significantly: if a MAF of 0.2 is assumed, the power falls to 93% to detect 

a locus with an odds ratio of 1.4 and 48% to detect a locus with an odds ratio of 

1.2.  

 

Including only samples known to be 21OH autoantibody positive (1204 cases), 

assuming a MAF of 0.3, the study has 47% power to detect a locus with an 

odds ratio of 1.2 and 100% power to detect a locus with an odds ratio of 1.4. 

Again, if a MAF of 0.2 is assumed, the power is reduced (32% to detect a locus 

with an odds ratio of 1.2 and 80% to detect a locus with an odds ratio of 1.4).  

 

The study power per individual European cohort was calculated under the same 

assumptions. Assuming a MAF of 0.3, each individual cohort would have more 

than 60% power to detect a locus with an odds ratio of 1.6 and more than 90% 

power to detect a locus with an odds ratio of 1.8. If a MAF of 0.2 or 0.1 is 

assumed, the power drops significantly (Figure 27). 



 

175 

 

 

Figure 27: Power estimates for cohorts in the 20 candidate gene study. 

Line graphs demonstrating the power of the candidate gene cohorts to detect 
loci with differing odds ratios. Each assumes a type I error rate (α) of 0.00078. 
Panel A shows the power assuming a minor allele frequency (MAF) of 0.3, 
panel B 0.2 and panel C 0.1. While the cohort as a whole, and the 21OH 
autoantibody positive cohort, both shown with solid lines, are well powered to 
detect a locus with an odds ratio of 1.4 or above, the individual cohorts, shown 
with dashed lines, have significantly less power.   
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4.4.2 ROUND 1 RESULTS 

4.4.2.1 ROUND 1 DATA QUALITY CONTROL 

SNP genotyping call rates for the UK and Norwegian AAD and control cohorts 

are shown in Table 11. In total, 32 of the 101 SNPs (31.7%) had a call rate of 

less than 95% in either the UK case or control cohorts and 27 of the 101 SNPs 

(26.7%) had a call rate of less than 95% in either the Norwegian case or control 

cohorts. These SNPs were therefore excluded from further analysis. The “drop-

out” rate appears to be high. However, of the excluded SNPs, the mean 

genotyping call rate was 90.1% (minimum 27%, maximum 94%, median 93%), 

therefore most of these were close to meeting the study quality control inclusion 

criteria. Had a less stringent genotyping call rate threshold been arbitrarily 

applied, the drop-out rate would have been reduced considerably. However, the 

genotyping call rate threshold was set at 95% and the relatively high drop-out 

rate tolerated in order to ensure that only high quality genotyping data was 

taken forward for analysis. In the UK control cohort, no SNP deviated 

significantly from HWE (P<0.01) however, one of the remaining SNPs in the 

Norwegian control cohort, rs10735810 was out of HWE (P 0.0087) and was 

consequently also excluded from the final analysis. Therefore, in total, 69 and 

73 SNPs were included in the final analysis in the UK and Norwegian cohorts 

respectively.  

 

Following quality control checks, the allele frequencies in control cohorts were 

compared by χ2 testing to determine whether there was significant heterogeneity 

between the UK and Norwegian cohorts. Significant heterogeneity was noted (P 

<0.05) at 1 in 5 SNPs (20%) tested in both cohorts, therefore the UK and 

Norwegian data were analysed separately.  
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Table 11: SNP genotyping call rates for the UK and Norwegian cohorts in 
round 1 of the 20 candidate gene study. 

Cohort SNP genotyping call rate (%) Number of SNPs 
excluded on the 
basis of call rate 

<95% 

Mean Minimum Median Maximum 

UK AAD 
cases 

98 89 99 100 32/101 

UK controls 96 88 97 99 

Norwegian 
AAD cases 

95 27 97 99 27/101 

Norwegian 
controls 

96 71 97 99 
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4.4.2.2 ROUND 1 UK COHORT RESULTS  

In total, 13 SNPs in nine genes were associated with AAD in the UK cohort and 

all significant results (Pgenotype or Pallele <0.05) are summarised in Table 12. Full 

genotype and allele data are listed in electronic appendix B.  

 

Maximal association was seen with the NF-κB1 gene. Six SNPs were 

genotyped in, and close to, this gene (Figure 28). Alleles at markers B, C and E, 

all in moderate LD (rs10026278, rs230532 and rs4698861, r2 0.39 – 0.68), were 

associated with AAD in the UK cases compared to controls. The maximum 

evidence for association was found at the intergenic marker E where the GG 

genotype was found in 22 of 308 cases (7.1%) compared with 45 of 321 

controls (14.0%) (P 0.00084). A similar decrease in the frequency of the minor 

G allele was observed at this SNP in AAD cases compared with controls (27.4% 

and 37.4% respectively) [odds ratio (OR) 0.63, 95% confidence interval (CI) 

0.50 – 0.80; P 0.00017)]. When the AAD case cohort was subdivided into iAAD 

(n=135) and into those with APS2 (n=174), the association was with APS2 

(Pgenotype 0.00004, Pallele 0.0000076, OR 0.51 [95% CI 0.38 – 0.69]). Haplotype 

analysis in UNPHASED[220] revealed that this marker accounts for all of the 

association with disease and that the other markers are simply associated 

because they are in LD with this SNP.  
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Gene 
SNPs 
typed 

SNPs  
excluded rs ID 

Minor 
allele 

MAF 
cases/controls Pgenotype/Pallele OR [95% CI] Contribution 

LD between 
associated 
markers* 

NFKB1 6 0 

rs10026278 T 0.27 / 0.35 0.012 / 0.0034 0.69 [0.54-0.88] 

APS2  Moderate  

rs230532 T 0.30 / 0.40 0.0016 / 0.00041 0.65 [0.52-0.82] 

rs4698861 G 0.27 / 0.37 0.00084 / 0.00017 0.63 [0.50-0.80] 

CYP27B1 3 1 

rs4646536 G 0.26 / 0.33 0.012 / 0.0091 0.72 [0.56-0.92] 

APS2 Significant rs703842 G 0.27 / 0.33 0.027 / 0.014 0.74 [0.58-0.94] 

IL23A 1 0 rs11170816 A 0.05 / 0.09 N/A / 0.0047 0.53 [0.34-0.84] iAAD only 
 REL 2 1 rs13017599 A 0.41 / 0.33 0.0099 / 0.0028 1.40 [1.12-1.76] iAAD>APS2 
 

GATA3 4 0 

rs569421 C 0.26 / 0.19 0.0092 / 0.003 1.50 [1.15-1.96] 

iAAD  Low rs444929 C 0.21 / 0.28 0.012 / 0.0053 0.69 [0.54-0.90] 

IL21 2 1 rs907715 T 0.32 / 0.39 0.015 / 0.012 0.74 [0.59-0.93] APS2  
 STAT2 2 1 rs2066808 G 0.05 / 0.09 N/A / 0.012 0.57 [0.36-0.90] iAAD 
 CYP24A1 9 3 rs4809959 G 0.48 / 0.53 0.012 / 0.046 0.80 [0.64-0.99] APS2 
 IL17A 3 0 rs16882180 T 0.32 / 0.38 0.13 / 0.043 0.79 [0.63-1.00] APS2 
 

Table 12: Summary of significant associations in the UK AAD cohort in round 1 of genotyping.  

Only significant results (P < 0.05) are shown. Associated SNPs, the minor allele and its frequency (MAF) in cases and controls, and the P 
value and odds ratio (OR) generated by comparing both genotypes and allele frequencies between cases and controls are shown. The 
“contribution” column shows whether the association was with isolated AAD (iAAD) or AAD with other autoimmune conditions (APS2) 
when the cohort was subdivided. If the minor genotype was not present, a genotyping P value was not generated (marked N/A). *Low LD 
= r2 <0.40, moderate LD = r2 0.40-0.79, significant LD = r2 >0.79. 
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Figure 28: Schematic representation of the NF-κB1 locus (panel A) and pairwise linkage disequilibrium (r2) measures between 6 
SNPs genotyped in and around the NF-κB1 gene (panel B). 

In panel A, exons are depicted by the blue boxes and intronic sequence is illustrated by the line. The six genotyped variants are shown 
with their approximate locations. SNPs associated with AAD in the UK cohort are shown in red (diagram not to scale). In panel B, LD 
measures between six SNPs in and around the NF-κB1 gene are shown in a Haploview LD plot generated using genotype data derived 
from Caucasian individuals from HapMap. White boxes represent the lowest r2 values and black boxes represent the highest r2 values. 
Two of the six genotyped SNPs, C and E are in moderate LD (r2 0.68) and there is also some LD between these two SNPs and B and F. 
Markers A and D are independent. 
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4.4.2.3 ROUND 1 NORWEGIAN COHORT RESULTS  

In total, 11 SNPs in seven genes were associated with AAD in the Norwegian 

cohort and all significant results (Pgenotype or Pallele <0.05) are summarised in 

Table 13. Genotype and allele data can be found in electronic appendix B.  

 

Maximal association was seen at intronic marker G (rs4274624) in the STAT4 

gene (Figure 29). In total, nine SNPs were genotyped in this gene but, in this 

cohort, two SNPs, F and I (rs10931481 and rs4853543) were excluded due to 

poor call rates in the case cohort. Of the remaining seven, only alleles at marker 

G were associated with AAD. At this SNP, the CC genotype was observed in 25 

of 375 cases (6.7%) compared to 9 of 375 controls (2.4%) (P 0.0013). The C 

allele appeared to be conferring disease risk as it was observed in 26.9% of 

cases and in only 19.5% of controls (P 0.00045, OR 1.52, [95% CI 1.20 – 1.9]). 

The cohort was then subdivided into individuals with iAAD (n=162) and into 

those with APS2 (n=220). At this SNP, the association was with both iAAD and 

APS2 (iAAD Pgenotype 0.0065, Pallele 0.0027, OR 1.58 [95% CI 1.16 – 2.14]; APS2 

Pgenotype 0.0087, Pallele 0.0038, OR 1.50 [95% CI 1.13 – 1.98]). This associated 

SNP is in moderate LD with two other neighbouring intronic SNPs (marker F, 

rs10931481, r2 0.59 and marker H, rs16833260 r2 0.56). Marker F was excluded 

from the analysis, however no association was observed with alleles at marker 

H and AAD. 
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Gene 
SNPs 
 typed 

SNPs  
excluded rs ID 

Minor  
allele 

MAF 
cases/controls Pgenotype/Pallele OR [95% CI] Contribution 

LD between 
associated markers* 

STAT4 11 2 rs4274624 C 0.27 / 0.19 0.0013 / 0.00045 1.52 [1.20-1.94] iAAD>APS2 

 RORA 4 1 rs1234805 T 0.37 / 0.30 0.0068 / 0.0018 1.41 [1.13-1.75] APS2>iAAD 

 

CD28/ 
CTLA4/ 
ICOS 16 4 

rs3181096 T 0.32 / 0.38 0.038 / 0.012 0.76 [0.61-0.94] 

APS2  

Low 

rs231775 G 0.49 / 0.42 0.016 / 0.0042 1.35 [1.10-1.66] 

Significant 

rs231726 T 0.44 / 0.37 0.0093 / 0.0026 1.37 [1.11-1.69] 

rs231727 A 0.44 / 0.37 0.025 / 0.0070 1.33 [1.08-1.63] 

rs2882973 C 0.40 / 0.35 0.087 / 0.035 1.25 [1.01-1.54] Low 

GATA3 4 0 rs3802604 G 0.32 / 0.37 0.04 / 0.038 0.79 [0.64-0.98] iAAD  

 NFKB1 6 2 rs228611 A 0.43 / 0.49 0.063 / 0.024 0.79 [0.65-0.97] iAAD 

 CYP24A1 9 1 rs2209314 C 0.25 / 0.25  0.031 / 0.91 0.99 [0.78-1.25] N/A 

 IL17A 3 1 rs4711998 A 0.22 / 0.27 0.060 / 0.039 0.77 [0.61-0.98] APS2 

 

Table 13: Summary of significant associations in the Norwegian AAD cohort in round 1 of genotyping. 

Only significant results (P < 0.05) are shown. Associated SNPs, the minor allele and its frequency (MAF) in cases and controls, and the P 
value and odds ratio (OR) generated by comparing both genotypes and allele frequencies between cases and controls are shown. The 
“contribution” column shows whether the association was with isolated AAD (iAAD) or AAD with other autoimmune conditions (APS2) 
when the cohort was subdivided. *Low LD = r2 <0.40, moderate LD = r2 0.40-0.79, significant LD = r2 >0.79. 
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Figure 29: Schematic representation of the STAT4 locus (panel A) and pairwise linkage disequilibrium (r2) measures between 
11 SNPs genotyped in and around this locus (panel B). 

In panel A, exons are depicted by the blue boxes and intronic sequence is illustrated by the line. The 11 genotyped variants are shown 
with their approximate locations. The associated SNP, marker G, in the Norwegian AAD cohort is shown in red. This SNP, and marker F 
(in blue) were also associated in the six cohort meta-analysis. In panel B, LD measures between the SNPs are shown in a Haploview LD 
plot generated using genotype data derived from Caucasian individuals from HapMap. White boxes represent the lowest r2 values and 
black boxes represent the highest r2 values. There is significant LD between markers F and H (rs10931481 and rs16833260; r2 0.94). 
There is also moderate LD between a number of other SNPs. No LD information for marker A was available. 
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4.4.3 ROUND 2 RESULTS 

4.4.3.1 ROUND 2 DATA QUALITY CONTROL  

SNP genotyping call rates in round 2 for the German, Swedish, Italian and 

Polish AAD and control cohorts are shown in Table 14. Genotyping call rates at 

each SNP were greater than 95% in all cohorts and therefore no SNP was 

excluded from further analysis on this basis. In the German control cohort, SNP 

rs3819024 was out of HWE (P 0.005); in the Polish control cohort, SNP 

rs13017599 was out of HWE (P 0.0091). These two SNPs were therefore 

excluded. Therefore, in total, 21 SNPs were included in the final analysis in the 

Italian and Swedish cohorts, while 20 SNPs were analysed in the German and 

Polish cohort groups.  

 

Full genotype data for all cohorts studied in round 2 can be found in electronic 

appendix B.  

4.4.3.2 ROUND 2 GERMAN COHORT RESULTS  

Of the 20 SNPs analysed, alleles at one independent SNP in the IL21 gene 

(rs907715) were associated with AAD, with the T allele having a protective 

effect (Pgenotype 0.0078 and Pallele 0.018, OR for T allele 0.73 [95% CI 0.56 – 

0.95]) (Table 15).  

4.4.3.3 ROUND 2 SWEDISH COHORT RESULTS  

Of the 21 SNPs analysed, the C allele at rs4274624 in the STAT4 gene 

appeared to be conferring a modest risk of AAD. The association was seen with 

alleles only and did not reach statistical significance with genotypes (Pgenotype 

0.056, Pallele 0.017, OR for C allele 1.33 [95% CI 1.05 – 1.68]). This SNP is in 

moderate LD (r2 0.59) with a neighbouring marker, rs10931481, which was also 

genotyped in this round. However, no association with AAD was noted at this 

SNP in this cohort (Table 15). 
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4.4.3.4 ROUND 2 ITALIAN COHORT RESULTS  

The Italian cohort was divided into samples from two geographically separate 

regions of Italy; Padua (180 AAD, 134 controls) in northern Italy and Perugia 

(100 AAD, 188 controls) in central Italy. Following genotyping, the genotype and 

allele frequencies were compared between the two control cohorts. This was 

done using a 3x2 and 2x2 χ2 test respectively, to determine whether the two 

control cohorts were significantly different. The control groups differed 

significantly at only 1 of the 21 SNPs genotyped, rs907715 in IL21 (Pgenotype 0.04, 

Pallele 0.02). The cohorts were initially analysed separately and then combined 

for a final analysis, given that there was little heterogeneity between the control 

cohorts.  

 

Of the 21 SNPs genotyped in the Padua cohort, seven were associated with 

AAD. In the smaller Perugia cohort, only one SNP was associated with AAD 

(Italian subgroup genotype data can be found in appendix B). 

 

In the Italian cohort as a whole, six SNPs were associated with AAD and these 

significant results (Pgenotype or Pallele <0.05) are summarised in Table 15. 

Maximal association was seen with alleles at rs11171806 in IL23A. Here, the T 

allele was conferring disease risk (Pgenotype 0.012, Pallele 0.0028, OR for T allele 

2.37 [95% CI 1.32 – 4.23]).  

4.4.3.5 ROUND 2 POLISH COHORT RESULTS  

The Polish cohort was divided into samples from Warsaw in the east of Poland 

(159 AAD, 50 controls) and Poznan in the west (116 AAD, 246 controls). The 

genotype and allele frequencies were compared between the two control 

cohorts and the control groups differed significantly at two of the 21 SNPs 

genotyped (rs3802604 in GATA3: Pgenotype 0.02, Pallele 0.016; rs1234805 in 

RORA: Pgenotype 0.036, Pallele 0.047). The cohorts were initially analysed 
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separately and then combined for a final analysis, given that there was little 

heterogeneity between the control cohorts. 

 

Two SNPs were associated with AAD in the Warsaw cohort while two different 

SNPs were associated with AAD in the Poznan cohort (Polish subgroup 

genotype data can be found in appendix B).  

 

In the Polish cohort as a whole, of the 20 SNPs which met the quality control 

inclusion criteria, three were associated with AAD. These significant results 

(Pgenotype or Pallele <0.05) are summarised in Table 15. Maximal association was 

seen with alleles at the independent rs2221903 SNP in the IL21 gene. Here, the 

C allele appeared to be conferring modest disease protection (Pgenotype 0.04, 

Pallele 0.02, OR for C allele 0.75 [95% CI 0.58 – 0.96]).  

 

Following analysis of genotype data for each individual cohort, allele 

frequencies in control cohorts were compared by χ2 testing between the six 

different European cohorts, to determine whether there was significant 

heterogeneity between the populations studied (Table 16). The highest levels of 

heterogeneity between control cohorts were seen between the Italian and UK 

cohorts. Of the 15 SNPs that passed the quality control criteria in these two 

cohorts, allele frequencies at 11 (73.3%) were significantly different (P <0.05), 

suggesting significant genetic differences between these two populations. The 

least heterogeneity was seen between the German and Swedish cohorts. Of the 

20 SNPs that passed the quality control criteria in these two cohorts, allele 

frequencies did not differ significantly at any marker.  
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Cohort SNP genotyping call rate (%) Number of 
SNPs excluded 
on the basis of 
call rate <95% 

Mean Minimum Median Maximum 

German AAD 
cases 

97 96 98 98 0/21 

German  controls 98 97 98 99 

Swedish AAD 
cases 

100 100 99 100 0/21 

Swedish controls 99 98 100 100  

Italian AAD 
cases 

99 97 99 99 0/21 

Italian controls 100 98 100 100 

Polish AAD 
cases 

98 96 98 98 0/21 

Polish controls 100 98 100 100 

Table 14: SNP genotyping call rates for the German, Italian, Polish and 
Swedish cohorts in round 2 of the 20 candidate gene study. 
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Gene 
SNPs 
typed 

SNPs 
excluded rs ID 

Minor 
allele MAF cases/controls Pgenotype/Pallele OR [95% CI] 

LD between 
associated markers* 

Round 2 data – Germany 

IL21 2 0 rs907715 T 0.24 / 0.31 0.0078 / 0.018 0.73 [0.56-0.95] 
  

Round 2 data – Sweden 

STAT4 3 0 rs4274624 C 0.29 / 0.24 0.056 / 0.017 1.33 [1.10-1.68] 
  

Round 2 data – Italy 

STAT4 3 0 

rs10931481 G 0.36 / 0.29 0.016 / 0.0056 1.41 [1.11-1.80] 

moderate rs4274624 C 0.28 / 0.22 0.059 / 0.02 1.37 [1.10-1.78] 

IL23A 1 0 rs11171806 A 0.06 / 0.03 0.012 / 0.0028 2.37 [1.32-4.23] 
 NFKB1 3 0 rs10026278 T 0.27 / 0.23 0.049 / 0.078 1.27 [0.97-1.65] 
 

STAT2 2 0 

rs2066808 G 0.07 / 0.04 0.037 / 0.014 1.93 [1.13-3.28] 

significant rs2066807 G 0.06 / 0.03 0.023 / 0.0063 2.18 [1.23-3.85] 

 
Round 2 data – Poland 

IL21 2 0 rs2221903 C 0.31 / 0.38 0.04 / 0.02 0.75 [0.58-0.96] 
 CYP24A1 1 0 rs4809959 G 0.56 / 0.49 0.11 / 0.03 1.29 [1.02-1.64] 
 GATA3 3 0 rs444929 C 0.18 / 0.21 0.03 / 0.12 0.79 [0.59-1.06] 
 

Table 15: Summary of significant associations in the German, Swedish, Italian and Polish cohorts in round 2 of genotyping. 

Only significant results (P < 0.05) are shown. *Low LD = r2 <0.40, moderate LD = r2 0.40–0.79, significant LD = r2 >0.79.
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UK Norway Germany Italy Poland Sweden 

UK   16.7% 21.4% 73.3% 53.3% 46.7% 

Norway     7.7% 64.3% 30.8% 14.3% 

Germany       50.0% 5.3% 0.0% 

Italy         60.0% 57.1% 

Poland           20.0% 

Sweden             

Table 16: Genetic heterogeneity between the six different European 
control cohorts included in the 20 candidate gene study. 

Allele frequencies were compared between all control populations using a χ2 
test. The percentage of comparisons where a statistically significant result was 
seen (P <0.05) is shown in the table. A low percentage indicates that there were 
few markers at which allele frequencies differed between two populations of 
interest suggesting that there is little genetic heterogeneity between those two 
populations. A high percentage indicates that allele frequencies between two 
populations differed significantly at multiple markers, suggesting significant 
genetic heterogeneity between those two populations. Between the German 
and Swedish control cohorts, allele frequencies did not differ significantly at a 
single marker, suggesting that these populations are relatively genetically 
similar. By contrast, the UK and Italian control cohorts differed significantly at 
73% of markers tested, suggesting significant genetic heterogeneity between 
these two cohorts.
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4.4.4 META-ANALYSIS 

The RevMan 5 software package was used to estimate an odds ratio, an I2 

statistic of heterogeneity and a two-sided P value, applying a conservative 

random effects model, at each locus tested in round 2 of the study (21 SNPs). 

The random effects model was selected to account for the heterogeneity 

between the cohorts. Data from all six European cohorts were included (1955 

cases and 1936 controls). Any SNP, in any cohort, not meeting the quality 

control criteria (call rate of less than 95% in either the case or control population, 

or out of HWE (P<0.01) in the control population) was excluded.  

 

In total, four SNPs in three genes were associated with AAD (Table 17). 

Maximal association was seen with two SNPs in moderate LD (r2 0.59) in the 

STAT4 gene. Maximal association was observed at marker G (rs4274624, P 

<0.0001, OR 1.27 [95% CI 1.12-1.42]). The analysis was repeated in Stata[237] 

to gain an accurate P value estimate: the P value was calculated as 0.00016. 

The slight discrepancy between the results from Revman 5 and those from 

Stata is because Revman 5 uses allele data only for meta-analysis, whereas 

Stata uses genotype data. As the differences were very small, the results from 

the two programs were comparable. Association was also noted at marker F in 

the STAT4 gene (rs10931481, P 0.0007, OR 1.23 [95% CI 1.09-1.39]) (Figure 

30).  

 

The rs4646536 SNP in CYP27B1 was also associated in the meta-analysis 

(random effects model: P 0.03, OR 0.90 [95% CI 0.82-0.99]). This marker is in 

moderate LD with another genotyped SNP, rs10876993 (r2 0.45). However, no 

association was seen with this SNP and AAD (Figure 31). Finally, rs3802604 

(marker E), an independent SNP in GATA3, was also associated with AAD 

(random effects model: P 0.03, OR 0.90 [95% CI 0.82-0.99]) (Figure 32).  

 

When any individuals who were not 21OH autoantibody positive were excluded 

and the meta-analysis repeated (1204 21OH+ cases: 53 from UK, 290 from 

Norway, 73 from Poland, 154 from Germany, 266 from Italy and 368 from 
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Sweden; 1936 controls were available for comparison), three SNPs were 

associated (Table 17). Using a random effects model, maximal association was 

again observed at marker G in STAT4 (rs4274624, P 0.0003, 0.76 [95% CI 0.65 

– 0.88]). At marker E in GATA3, association was observed (rs3802604, P 0.04, 

OR 1.12 [95% CI 1.00-1.25]). In addition, rs13017599 in REL was associated in 

this cohort (P 0.03, OR 0.88 [95% CI 0.78 – 0.99]) although the result for this 

SNP in the cohort as a whole did not reach statistical significance (P 0.05).   



 

192 

 

  All AAD 
(maximum 
1955 cases, 

1936 
controls) 

21-OH + 
(maximum 

1204 cases, 
1936 

controls) 

Notes 

Gene SNP P value I2 
(%) 

P value I2 

(%) 
 

CYP27B1 rs10876994 0.19 0 0.25 0 UK & Norway excluded 
(1264 cases; 861 21OH+, 

1221 controls) 

CYP27B1 rs4646536 0.03 0 0.16 9  

STAT4 rs10931481 0.0007 0 0.07 64 UK & Norway excluded 
(1264 cases; 861 21OH+, 

1221 controls) 

STAT4 rs4274624 0.00016 20 0.0003 28  

STAT4 rs4853543 0.8 0 0.97 7 UK & Norway excluded 
(1264 cases; 861 21OH+, 

1221 controls) 

REL rs13017599 0.05 0 0.03 0 UK & Poland excluded 
(1371 cases; 1078 21OH+,  

1305 controls) 

GATA3 rs569421 0.65 48 0.78 0  

GATA3 rs3802604 0.03 0 0.04 0  

GATA3 rs444929 0.1 58 0.42 55  

Table 17: Summary of significant meta-analysis results, applying a 
random effects model, for round 2 of the twenty candidate gene study.  

Data are shown for all studied SNPs in genes where at least one result was 
significant (P <0.05, shown in yellow and bold). The results are shown for the 
cohort as a whole and for the cohort excluding any individuals who are 21OH 
autoantibody negative. The “notes” column details any cohorts excluded for 
quality control reasons.  
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Figure 30: Forest plots of meta-analysis results for two markers, 
rs4274624 (panel A) and rs10931481 (panel B) in the STAT4 gene.  

Data from the UK and Norway at marker rs10931481 did not meet the quality 
control criteria and are therefore missing. Pooled analysis showed some 
heterogeneity among the cohorts at rs4274624 (P 0.28, I2 20%) and no 
heterogeneity at rs10931481 (P 0.54. I2 0%). Using a random effects model, the 
meta-analysis confirms association between the T allele at SNP rs4274624, and 
the A allele at SNP rs10931481 and AAD in different European populations, 
with an odds ratio (OR) of 1.27 [95% CI 1.12 – 1.42], P <0.0001 and 1.23 [95% 
CI 1.09 – 1.39], P 0.0007 respectively. *P value 0.00016 when data analysed 
under a random effects model in Stata.  
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Figure 31: Forest plot of meta-analysis results for a single marker, 
rs4646536, in the CYP27B1 gene in AAD. 

Pooled analysis showed no heterogeneity among the cohorts (P 0.53, I2 0%). 
Applying a random effects model, the meta-analysis confirms association 
between the G allele at this SNP and AAD in different European populations, 
with an OR of 0.90 [95% CI 0.81 – 0.99), P 0.03.  
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Figure 32: Forest plot of meta-analysis results for a single marker, 
rs3802604 SNP in the GATA3 gene in AAD. 

Pooled analysis showed no heterogeneity among the cohorts (P 0.52, I2 0%). 
Using a random effects model, the meta-analysis confirms association between 
the G allele at this SNP and AAD in different European populations, with an OR 
of 0.90 [95% CI 0.82 – 0.99), P 0.03.  
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4.4.5 REPLICATION STUDIES – THE rs4698861 NF-κB1 POLYMORPHISM IN 

UK GRAVES’ DISEASE 

To determine whether the finding of association between alleles at marker E, 

rs4698861 in the NF-κB1 gene, and AAD in the UK cohort could be replicated in 

another more common autoimmune disease, Graves’ disease, in the UK 

population, this SNP was genotyped by RFLP in 392 UK GD cases for 

comparison with Sequenom UK control data from round 1.  

4.4.5.1 RESULTS – NF-κB1 IN UK GRAVES’ DISEASE 

The G/G genotype was present in 35/392 (8.9%) UK Graves’ cases compared 

to 45/321 (14.0%) UK controls, while the A/G heterozygote was present in 

173/392 (44.1%) Graves’ disease cases, compared to 150/321 (46.7%) controls 

(Pgenotype 0.035). The minor G allele appeared to be protective for Graves’ as it 

was present in only 243/784 (31.0%) of cases, compared to 240/642 (37.4%) 

controls (Pallele 0.011, OR 0.75 [95% CI 0.60 – 0.94]).  

4.4.6 REPLICATION STUDIES – GATA3 POLYMORPHISMS AND AAD 

SUSCEPTIBILITY 

Polymorphisms in the GATA3 gene have not previously been associated with 

autoimmune conditions, thus this represented a novel finding. I therefore 

decided to investigate other SNPs in this gene, using the Sequenom platform, in 

the UK and Norwegian AAD cohorts to determine the extent of the association 

in AAD. In addition, I genotyped these SNPs in a cohort of UK Graves’ disease 

patients, in individuals with type 1 diabetes from Norway and in a cohort of 

patients with rheumatoid arthritis from New Zealand, to determine whether any 

association found was specific to AAD or extended to these other, more 

common, autoimmune conditions. All genotype data can be found in electronic 

appendix B. 
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HapMap was used to select SNPs in all of the common LD blocks of the GATA3 

gene and a Sequenom plex was designed, including 15 SNPs in total. The 

Sequenom platform was then used to genotype these SNPs in UK and 

Norwegian AAD cohorts (335 UK AAD, 302 UK controls; 352 Norwegian AAD, 

1353 controls), UK Graves’ disease patients (283 cases), Norwegian type 1 

diabetes patients (1195 cases, 1353 controls) and in rheumatoid arthritis 

patients from New Zealand (650 cases, 452 controls). SNPs with a call rate of 

less than 95% were excluded from the analysis, as were SNPs out of HWE (P 

<0.01) in the control cohorts. 

4.4.6.1 DATA QUALITY CONTROL 

In the UK AAD cohort, one SNP (rs2229359) was excluded on the basis of a 

low call rate of 90% in the cases. In the Norwegian AAD and type 1 diabetes 

analyses where a single control group was shared, two SNPs, rs2275806 and 

rs1058240, were excluded on the basis of low call rates in the control group. In 

the UK Graves’ disease cohort, one SNP (rs9746) was excluded, again due to a 

low call rate in the cases. This SNP also genotyped poorly in the rheumatoid 

arthritis cases and controls from New Zealand and was also excluded from 

analysis in that cohort.  

4.4.6.2  RESULTS - GATA3 IN UK AAD 

4.4.6.2.1 ASSOCIATION ANALYSIS 

Of the 14 SNPs included in the analysis (Figure 33), maximal association was 

observed at marker I, an intronic variant (rs422628). At this SNP, the CC 

genotype was seen less commonly in AAD cases (13/327; 4.0%) compared to 

controls (28/287; 9.8%. Pgenotype 0.013). The CT heterozygote was seen in 

similar proportions in cases and controls (38.5% and 38.7% respectively). A 

similar decrease in the frequency of the C allele was seen in AAD cases 

compared to controls at this SNP (23.2% versus 29.1% respectively, Pallele 0.01, 

OR 0.74 [95% CI 0.57 – 0.95]). When the cohort was subdivided into those with 

iAAD (n=157) and those with APS2 (n=178), the association was only with iAAD 

(Pgenotype 0.001, Pallele 0.0005, OR 0.55 [95% CI 0.39 – 0.77]). This SNP is in 
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moderate LD with neighbouring intronic marker H (rs444929, r2 0.78) and 

association was also noted with genotypes and alleles at this SNP (Pgenotype 

0.017, Pallele 0.019, OR for C allele 0.73 [95% CI 0.56 – 0.95]). At this marker, 

the association was also with the iAAD subgroup (Pgenotype 0.011, Pallele 0.0055, 

OR 0.62 [95% CI 0.44 – 0.87]). Markers H and I are in moderate LD with marker 

N in the 3’ UTR (rs1058240, r2 0.79). Here, although a similar trend was seen, 

statistical significance was not reached (Pgenotype 0.052, Pallele 0.081, OR for G 

allele 0.79 [95% CI 0.60 – 1.03]). However, in the subgroup analysis, 

association was noted with the iAAD subgroup at this SNP (Pgenotype 0.11, Pallele 

0.0073, OR for G allele 0.62 [95% CI 0.43 – 0.88]).  

 

An association with genotypes and alleles with AAD was also seen at intronic 

marker G (rs569421: Pgenotype 0.029, Pallele 0.0096, OR for C allele 1.42 [95% CI 

1.09 – 1.85]). Again, the association was with iAAD (Pgenotype 0.048, Pallele 0.013, 

OR 1.50 [95% CI 1.09 – 2.07]) and not with APS2. This marker is in significant 

LD with marker J (rs406103, r2 0.82) and nominal association was seen with 

alleles only at this marker (Pgenotype 0.08, Pallele 0.026, OR for T allele 1.36 [95% 

CI 1.04 – 1.78]). When the cohort was subdivided into iAAD and APS2 no 

significant association was seen (Pgenotype 0.17, Pallele 0.07 with iAAD; Pgenotype 

0.11, Pallele 0.055 with APS2). At marker M in the 3’ UTR (rs9746), also in 

moderate LD with both marker G (r2 0.51) and J (r2 0.61), a similar nominal 

association was seen with alleles only (Pgenotype 0.097, Pallele 0.048, OR for G 

allele 1.39 [95% CI 1.00 – 1.94]). When the cohort was subdivided, there was 

nominal association with iAAD with both genotypes and alleles (Pgenotype 0.049, 

Pallele 0.029, OR for G allele 1.55 [95% CI 1.04 – 2.30]).  

 

Finally, at marker B (rs2275806), an upstream variant, an association was seen 

with genotypes only (Pgenotype 0.022, Pallele 0.06). When the cohort was 

subdivided, nominal association was seen with genotypes only with iAAD 

(Pgenotype 0.036, Pallele 0.088). This SNP is in moderate LD with neighbouring 

intronic markers D, E and F (rs3781094, r2 0.62; rs3802604, r2 0.68; rs570613, 

r2 0.47). Association was not seen at any of these markers.  
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Figure 33: Schematic representation of the GATA3 locus (panel A) and pairwise linkage disequilibrium (r2) measures between 
15 SNPs genotyped in and around the GATA3 gene (panel B). 

In panel A, exons are depicted by the blue boxes and intronic sequence is illustrated by the line. The 15 genotyped variants are shown 
with their approximate locations. In panel B, LD measures between the 15 SNPs are shown in a Haploview LD plot generated using 
genotype data derived from Caucasian individuals from HapMap. White boxes represent the lowest r2 values and black boxes represent 
the highest r2 values. There is significant LD between markers B, D, E, F and K, markers G, J and M and between markers H, I and N. 
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4.4.6.2.2 HAPLOTYPE ANALYSIS 

As multiple markers were found to be associated with AAD in the UK cohort, the 

UNPHASED program[220] was used to estimate haplotype frequencies and 

association. In the analysis, the SNP where maximal association with alleles 

was observed (SNP G, rs569421) was initially conditioned on. The next most 

associated marker was then selected (marker M, rs9746) and this was 

conditioned on, in addition to marker G and so on, until all the association was 

accounted for (Figure 34). A four marker haplotype, comprising markers D-G-I-

M (rs3781094-rs569421-rs422628-rs9746), was found to be significantly 

associated with AAD, with an overall P value of 1.72 x 10-12. The major 

haplotype at these markers, C–T–T–A, was found with frequencies of 

approximately 53% in both cases and controls. The A–C–T–A haplotype 

appeared to be protective for AAD, being present in just 1.9% of cases 

compared to 10.9% of controls (OR 0.17 [95% CI 0.082 – 0.36]). 
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Figure 34: Flowchart of method for UNPHASED haplotype analysis.  

Haplotype analysis of GATA3 SNPs genotyped in the UK AAD cohort is used as 
an example. Following association analysis, sequential conditioning occurs until 
all association has been accounted for. Haplotype analysis can then be 
undertaken for the associated SNPs, in this case rs3781094, rs569421, 
rs422628 and rs9746, using the most common haplotype, C–T–T–A, as the 
reference.  
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4.4.6.3 RESULTS – GATA3 IN NORWEGIAN AAD 

In the Norwegian AAD cohort, nominal association was noted with two intronic 

markers in moderate LD; D (rs3781094) and F (rs570613) (r2 0.58) (Figure 33). 

Alleles only were associated with AAD at marker D (Pgenotype 0.11, Pallele 0.042, 

OR for A allele 0.82 [95% CI 0.68 – 0.99]) but when the cohort was subdivided 

into iAAD (n=149) and APS2 (n=203), no significant association was noted. 

Genotypes only were associated with AAD at marker F (Pgenotype 0.049, Pallele 

0.32). No association was observed with alleles at this marker. Again, no 

significant association was observed with either the iAAD or the APS2 

subcohorts. 

 

Alleles at marker E (rs3802604), which were modestly associated with AAD in 

the Norwegian cohort in round 1 of this study (382 AAD cases, 380 controls; 

Pgenotype 0.04, Pallele 0.032), were not associated with AAD in this analysis which 

included a larger control cohort for comparison (Pgenotype 0.34, Pallele 0.15). 

Indeed, if the genotyping results for AAD cases from round 1 at this marker are 

compared with the genotyping results for the larger control cohort in this 

analysis, no association is noted (Pgenotype 0.46, Pallele 0.22) suggesting that the 

round 1 result may have been a spurious finding due to the small control cohort 

size.  

4.4.6.4 RESULTS – GATA3 META-ANALYSIS IN AAD 

The UK and Norwegian data were analysed together in a meta-analysis, using 

the Revman 5 program and applying a random effects model. There was 

significant genetic heterogeneity at five markers, indicated by an I2 of greater 

than 60%. No association was noted at any markers in the meta-analysis.  

 

In the previous rounds of genotyping, marker E (rs3802604) was associated 

with AAD in a meta-analysis of the data from the six European cohorts (P 0.03). 

If the data from the larger Norwegian control cohort are used for the six cohort 
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meta-analysis in place of the Norwegian control data from round 1, the result no 

longer reaches statistical significance (P 0.06).  

4.4.6.5 RESULTS – GATA3 IN UK GRAVES’ DISEASE  

In the UK Graves’ disease cohort, association was observed with both 

genotypes and alleles at marker G (rs569421) (Figure 33). The CC genotype 

was seen in 17/276 (6.2%) of cases compared to in 13/300 (4.3%) controls 

(Pgenotype 0.049). A similar increase in C allele frequency was observed in cases 

compared to controls (25.7% versus 19.8%, OR for C allele 1.40 [95% CI 1.06 – 

1.85], Pallele 0.017). There is moderate to significant LD between this SNP and 

markers J and M (rs406103, r2 0.82; rs9746, r2 0.51 ), however, no association 

was seen at these markers.  

 

At marker F (rs570613) an association with Graves’ was observed with 

genotypes only (Pgenotype 0.018, Pallele 0.17). This SNP is in moderate LD with 

four others (markers B, D, F and K r2 0.47 – 0.67), however, none of these 

SNPs were associated in this analysis.  

4.4.6.6 RESULTS – GATA3 IN NORWEGIAN TYPE 1 DIABETES MELLITUS 

In the Norwegian type 1 diabetes cohort, nominal association was noted with 

alleles only at a single independent marker in the 3’ UTR (marker L, rs2229360; 

Pgenotype 0.063, Pallele 0.024, OR 1.56 [95% CI 1.06 – 2.29]). 

4.4.6.7 RESULTS – GATA3 IN NEW ZEALAND RHEUMATOID ARTHRITIS  

In the New Zealand rheumatoid arthritis cohort, association was seen at intronic 

marker E (rs3802604) with genotypes and alleles (Figure 33). The GG genotype 

was seen in 109/640 (17.0%) of cases compared to 53/441 (12.0%) of controls 

(Pgenotype 0.033). Similarly, the G allele was seen in 40.3% of cases and in 34.8% 

of controls (Pallele 0.0096, OR 1.27 [95% CI 1.06 – 1.51]). At the four markers in 

moderate LD with this SNP (markers B, D, F and K), no association was noted. 
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Association with alleles only at marker L in the 3’ UTR (rs2229360) was also 

observed (Pgenotype 0.098, Pallele 0.026, OR for T allele 2.90 [95% CI 1.09 – 7.71]).  

4.4.6.8 RESULTS – GATA3 META-ANALYSIS IN AUTOIMMUNE DISEASES 

The genotype data for the 15 GATA3 SNPs were analysed together in a meta-

analysis applying a random effects model. Initially, all data were combined. As 

the same control cohorts were used for comparison with the UK and Norwegian 

case cohorts, a second analysis was conducted, excluding the smallest cohorts 

(i.e. the UK Graves’ disease cohort and the Norwegian AAD cohort) to eliminate 

overlap of the control groups.  

 

At ten loci, significant heterogeneity was noted (I2 values 41 to 74%). In the 

meta-analysis of all five autoimmune disease cohorts, no marker was 

associated with disease. This was also the case if the UK Graves’ and 

Norwegian AAD cohorts were removed to eliminate control group overlap. This 

result, in conjunction with the single cohort analyses, suggest that GATA3 does 

not confer susceptibility to autoimmune diseases in general, although it does 

appear to be exerting an effect in the UK AAD cohort.  
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4.5  DISCUSSION 

This candidate gene case-control association study is the largest genetic study 

performed in AAD to date and includes almost two thousand affected 

participants from six European countries. This study has been made possible 

through collaboration within the Euradrenal consortium funded by a European 

Union Framework Programme 7 grant. It has generated some interesting and 

novel data, highlighting significant genetic heterogeneity between Caucasian 

European populations and implicating a number of biomolecular pathways in 

the pathogenesis of this rare autoimmune condition.  

4.5.1 GENETIC HETEROGENEITY BETWEEN EUROPEAN COHORTS 

This study has revealed significant differences in allele frequencies between 

healthy Caucasian individuals from the six European countries involved (Table 

16). In general, as would perhaps be predicted, allele frequencies tend to differ 

less between countries that are geographically close when compared to 

countries that are distant. For example, allele frequencies between the control 

cohorts from adjacent countries Germany and Poland differed significantly at 

only 1 of 19 (5.3%) of the loci tested. Likewise, allele frequencies between the 

control cohorts from Norway and Sweden differed at three of 21 loci (14.3%). 

Conversely, allele frequencies differed greatly between geographically distant 

control populations, such as the UK and Sweden, where significant differences 

in allele frequencies were noted at almost half of the loci tested. However, allele 

frequencies between Sweden and Germany did not differ at any of the loci 

tested, even though these countries are relatively far apart. This reflects a 

greater degree of common ancestry between these two populations: the 

Swedish empire during the 17th and early 18th centuries included large portions 

of northern Europe, including northern Germany. Allele frequencies tended to 

be more comparable among the northern European countries (UK, Germany, 

Poland, Norway and Sweden) compared to allele frequencies between these 

countries and Italy, the only southern European country included in this study. 

The Italian control cohort was genetically dissimilar to the other controls cohorts 

at 50% or more of the loci tested. This emphasises the importance of carefully 
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matching controls to the population under study, and in appropriately 

accounting for this heterogeneity in pooled statistical analyses, such as meta-

analysis.  

 

The design of this study, with rounds of genotyping based on the results from 

previous analyses, makes the assumption that loci contributing to AAD in the 

UK and Norwegian cohorts in round 1 might also be contributing to disease in 

the other cohorts in round 2. Conversely, the study design also assumes that 

loci not associated with AAD in the UK and Norwegian cohorts will also not be 

contributing to AAD susceptibility in the other cohorts. Thus SNPs associated 

with AAD in the UK and/or Norway in round 1 were taken forward to round 2 for 

genotyping while those not associated were discarded. The study was designed 

in this manner due to time and budget constraints. In addition, the DNA samples 

for the UK and Norwegian case and control cohorts were already available at 

the outset of the study, while other samples had to be collected. Therefore, it 

made logistical sense to use these samples for round 1. However, the 

significant genetic heterogeneity observed between the control cohorts means 

that this underlying assumption may not be correct. It is therefore possible that 

SNPs genotyped in round 1 which were discarded for round 2 may have yielded 

significant and interesting results in the round 2 cohorts had they been 

genotyped. This is likely to be the case for the Italian cohort in particular which 

was genetically less similar to the other cohorts.  

4.5.2 CANDIDATE GENE ASSOCIATIONS 

The sizes of the individual cohorts included in this study are comparable to 

many cohorts included in previously published genetic studies of AAD, however 

power calculations estimated prior to undertaking genotyping demonstrate that 

each individual cohort would have more than 60% power to detect a locus with 

an odds ratio of 1.6, assuming a MAF of 0.3. If a MAF of 0.2 and 0.1 are 

assumed, the power drops significantly (Figure 27). Criticisms levelled at 

previously published studies include this lack of power and also the failure to 

correct for multiple testing. Indeed, although the individual cohort results 

generated from this study are interesting and highlight many loci that are 
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potentially contributing to AAD aetiology, if the effects of multiple testing are 

taken into account, due to the relatively small cohort sizes, many of the findings 

would fail to meet the corrected threshold for statistical significance.  

 

There are a number of approaches which can be used to allow for multiple 

comparisons within a data set[443]. These can be useful for interpreting results 

and reducing the possibility of reporting a false positive result. Using a 

sequential study design, such as employed in this study, is one recognised way 

of verifying a positive finding. In the sequential method, which was first applied 

in the field of genetics by Morton in the 1950s[88], data are collected and/or 

analysed in stages, thus eliminating false positive initial results through failure to 

replicate them at a later stage in the study. However, even when this method is 

used to design a study, the testing of multiple markers should still be considered 

when interpreting the results. There are a number of ways of doing this.  

 

Permutation testing is a computational simulation-based method which can be 

used to calculate significance levels for SNPs using the data derived from 

genotyping. In this method, data are re-analysed again and again up to a 

maximum number of permutations. On each occasion, the case and control 

labels are randomly assigned within the whole data set. Observed P values can 

then be compared to P values generated during the repeated permutations[444]. 

This method can be carried out using a number of computer programs including 

PLINK[217], but it can be computationally intensive. It also looks at each SNP 

individually and does not allow for markers being in LD.  

 

The false discovery rate (FDR) method[445] works on the basis that, when a well-

defined statistical test is repeated again and again, there will be an expected 

number of false positive results generated. The proportion of false positives 

expected can therefore be estimated using computer software to generate a 

threshold of statistical significance. This is a less computationally intensive 

method than permutation testing but again does not allow for multiple markers 

in LD.  
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An alternative method is the Bonferroni method[223] which offers a conceptually 

much more simple way of correcting for multiple testing. If the desired 

significance level is set at P 0.05 and 100 markers are tested, any result with a 

P value of 0.0005 (0.05/100) would be considered statistically significant. This is 

a conservative approach and some argue that it is too stringent, and increases 

the likelihood of a false negative result[443]. In addition, this method assumes 

that all loci tested are independent and therefore, like permutation testing, does 

not account for some markers being in LD. Therefore, an adaptation of the 

Bonferroni method can be used which allows for LD between markers. An 

arbitrary threshold can be selected above which SNPs are said to be in LD, for 

example an r2 ≥0.40. If markers are in LD, they account for a single locus and if 

they are not in LD, they are considered independent. The significance level is 

then corrected for the number of loci tested. For example, if 100 tests are 

performed but there is significant LD between markers and therefore, in real 

terms, only 50 independent loci are tested, the corrected level of significance 

would be P 0.001 (0.05/50). As this study is designed to look at multiple SNPs 

within candidate genes, with some independent SNPs and some in LD being 

tested, the adapted Bonferroni method for determining significance levels has 

been applied.  

 

In round 1, 101 SNPs were genotyped. Taking into account LD patterns 

between SNPs, using data derived from Caucasian individuals from HapMap, 

taking an r2 cut off <0.40 to signify independence, 64 of these can be 

considered independent markers. Correcting for the 64 independent loci results 

in a corrected significance level of P <0.00078 (0.05/64). Similarly, in round 2, 

where 21 SNPs were analysed but only 15 of these represent independent loci, 

a significance threshold of P <0.0033 (0.05/15) can be applied. Combining the 

results in a meta-analysis provides a more powerful means of data analysis. 

Including all individuals with AAD, this study has more than 80% power to 

detect a locus with an odds ratio of 1.4, assuming a MAF of 0.1 or more. The 

same correction for multiple testing can be made for the meta-analysis results 

as were made for the data results for round 2.  
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Allowing for multiple comparisons in round 1 (64 loci tested, P <0.00078), only 1 

SNP from the Norwegian cohort (rs4274624 in STAT4; Pallele 0.00045) and two 

from the UK cohort (rs230532 and rs4698861 in NF-κB1; Pallele 0.00041 and 

0.00017 respectively) would meet the threshold for association. Even if a more 

stringent Bonferroni correction is applied, allowing for 101 SNPs tested (P 

<0.0005), these SNPs would remain associated. In round 2, allowing for testing 

of 15 independent loci (P < 0.0033), only 1 marker in the Italian cohort 

(rs11171806 in IL23A; Pallele 0.0028) would be significantly associated with 

AAD. If a more stringent significance threshold was applied, allowing for 21 

tests (<P 0.0024), this result would not be considered significant. In the meta-

analysis, taking the AAD cohort as a whole and allowing for multiple 

comparisons, alleles at only two SNPs, both in the STAT4 gene, would be 

associated with AAD (rs4274624 P 0.0001; rs10931481 P 0.0007) and the more 

modest associations observed with alleles at CYP27B1, GATA3 and REL would 

no longer be considered significant. 

 

In general, a robust approach to correcting for multiple comparisons is justified 

in order to reduce false positive results. Nonetheless, some true results may be 

discarded as a consequence. It is possible that this is the case for the multiple 

SNPs at the CD28-CTLA4-ICOS which were found to be associated with AAD 

in the Norwegian population in round 1. Polymorphisms at the CTLA4 locus 

have previously been investigated in AAD in a number of small cohorts, with 

association reported in studies involving Italian[446], Norwegian[171] and UK 

subjects[116, 170]. However, conflicting results reporting no association have also 

been published from a Spanish cohort study[447] and from a study in the UK 

population, which reported no association except in those with the HLA-DQA1 

allele[448]. The CTLA4 SNP that is most consistently associated with AAD is the 

rs231775 marker (also known as CTLA4 +49A/G and Ala17). A meta-analysis 

of published study results for this SNP has previously been conducted by 

Brozzetti et al[446], to include 537 AAD cases and 1528 controls. Using both 

random and fixed effects models, they reported an association with AAD (P 

<0.0001), with an odds ratio of 1.48 [95% CI 1.28 – 1.71]. The two models gave 

very similar results as there was little heterogeneity between the studies. If the 

UK and Norwegian round 1 candidate gene data from the current study are 
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added to this meta-analysis, and the data from Vaidya et al removed from the 

dataset due to overlap between this and the UK cohort, using a random effects 

model (I2 51%), the overall association is highly significant (P 0.0004, OR 1.34 

[95% CI 1.14 – 1.58]) (Figure 35). This indicates that the finding of multiple 

SNPs associated with AAD at the CD28-CTLA4-ICOS locus in the Norwegian 

cohort might be a true finding, in line with previous studies, despite not reaching 

statistical significance when multiple testing is considered. Nevertheless, 

correction for multiple comparisons has been made in this study because, on 

balance, it is important that candidate gene association study findings are 

robust and replicable. 

 

In summary, following correction for multiple testing, this study implicates 3 

genes in AAD susceptibility: NF-κB1 in the UK population, IL23A in the Italian 

population and STAT4 in the cohort as a whole, with marked association noted 

in the Norwegian population in particular. These findings provide novel insights 

into the underlying genetic aetiology of AAD and implicate a number of 

biomolecular pathways in the pathogenesis of this rare condition. The STAT4 

and IL23A proteins play a role in CD4+ cell fate: the STAT4 transcription factor 

is known to be vital for the TH1 response and also plays a role in TH17 

differentiation while IL23A is a subunit of the IL23 cytokine which drives 

differentiation of naïve TH lymphocytes to TH17 cells. NF-κB1 is a crucial 

component of the NF-κB pathway which allows a vigorous and rapid immune 

and inflammatory response to numerous potentially harmful stimuli.  
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Figure 35: Forest plot of meta-analysis results for the rs231775 SNP in the 
CTLA4 gene. 

The UK and Norwegian data for this SNP, from round 1 of the genotyping 
process, have been added to data previously collated by Brozzetti et al, 
European Journal of Endocrinology 2010[446]. The Vaidya study has been 
removed from the dataset due to overlap with the UK AAD cohort. Pooled 
analysis showed heterogeneity among the studies (I2 51%); therefore a random 
effects model was applied. The meta-analysis confirms association between the 
A allele at rs231775 and AAD, with an OR of 1.34 [95% CI 1.14 – 1.58], P 
0.0004.  
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4.5.2.1 THE NF-κB PATHWAY IS ASSOCIATED WITH AAD AND GRAVES’ DISEASE 

IN THE UK POPULATION 

In this study, six SNPs in and around the NF-κB1 gene were genotyped (Figure 

28). Alleles at three of these SNPs have been associated with AAD for the first 

time in the UK cohort. This finding adds to the growing literature of autoimmune 

conditions known to be associated with variants in this gene[449]. An NF-κB1 

promoter polymorphism (-94ins/del ATTG, rs28720239) has previously been 

associated with ulcerative colitis[450] and Graves’ disease[406], while alleles of a 

CA repeat downstream of NF-κB1 in a regulatory region have been linked to 

susceptibility to type 1 diabetes[405]. In the UK AAD cohort, alleles at three SNPs 

in a haplotype (markers B, C and E - rs10026278, rs230532 and rs4698861) 

were associated with disease, with the minor allele at each SNP appearing to 

be protective for AAD (OR 0.63 – 0.70). The association was consistently with 

APS2 rather than with iAAD. As those individuals with APS2 most commonly 

have autoimmune thyroid disease, the next logical step was to investigate the 

SNP which accounts for the association, rs4698861 (marker E), in a cohort of 

individuals with Graves’ disease from the UK. This marker is found downstream 

of the NF-κB1 gene. Using RFLP, we noted association with Graves’ disease 

and alleles at this marker, with the G allele again appearing to confer disease 

protection (OR 0.75 [95% CI 0.60 – 0.94]). This result provides independent 

confirmation that variants in this gene contribute to Graves’ disease 

susceptibility in individuals from the UK.  

 

In this study, individuals with Graves’ disease were genotyped by RFLP and 

compared to control data from an earlier part of the study derived from the 

Sequenom platform. Ideally, genotype data to be compared between cases and 

controls should be generated using a single platform. This is because 

genotyping errors can markedly influence results. If a single platform is used, 

any bias introduced by the method of genotyping that is not detected in the 

quality control procedures will, in theory, be shared between both cases and 

controls. There is very little data comparing Sequenom to RFLP, as the two 

methods tend to be used in different contexts. Sequenom is a high-throughput 
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application designed for genotyping multiple SNPs together in a large number of 

samples, whereas RFLP is a more labour-intensive method and is used to look 

at one SNP at a time. However, one previous study has compared results 

gathered from analysing 73 human DNA samples on six different genotyping 

platforms and has demonstrated that, for biallelic SNPs, the inter-assay error 

rates are actually relatively similar[451]. In this study, a triallelic SNP was 

genotyped using Sequencing, Sequenom and LightCycler qPCR chemistry to 

detect the three alleles, G, T and A, while biallelic assays were designed for 

Taqman qPCR chemistry, RFLP and conventional allelic discrimination PCR to 

detect the G and T alleles. Excluding the six samples with the rare A allele 

which could not be detected by the RFLP assay, only two genotyping errors 

occurred (TT genotypes called incorrectly as GT and GG), allowing a genotype 

detection error rate of 3.0% to be calculated. Conversely, Sequenom did not 

incorrectly call any genotypes (genotype detection error rate 0%) and could be 

used to detect the rare A allele, but four of the 73 samples (5.5%) failed to 

genotype by this method (Figure 36). The above results suggest that the 

methods are reasonably comparable. The RFLP genotype error rate will be 

partly dependent upon the assay used and the quality of the post-digest 

products, as some PCR digests result in crisp bands which are easy to 

interpret, while others do not. The RFLP assay selected to genotype SNP E 

(rs4698861) was selected as it gave easily interpretable post-digest products. In 

addition, two individuals independently assessed the RFLP products and called 

the genotypes, so that unclear genotypes could be repeated or discarded. 

These strategies together should reduce the rate of erroneous genotypes, 

supporting the validity of the above association, despite the limitations in the 

methodology.  
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Figure 36: Comparison of allele frequency results generated by RFLP and 
Sequenom genotyping methods. 

Graph generated from data taken from Huebner et al, Cancer Epidemiol 
Biomarkers Prev, 2007[451]), comparing allele frequencies derived from the 
Sequenom iPlex platform and RFLP compared to the true allele frequency, 
derived from triangulation of results from at least four methods (RFLP and 
Sequenom results shown only). The two platforms give comparable results to 
the true result. 
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Alleles at the associated markers in NF-κB1 are relatively common variants, 

seen in a significant proportion of the healthy population. As such, these 

synonymous polymorphisms are not likely to be contributing to disease 

susceptibility themselves. Instead, they are likely to be “tagging” a susceptibility 

allele that is in LD with them. Interestingly, the three SNPs associated with 

AAD, which include marker E (rs4698861) which was also associated with GD, 

are all contained within a region of extended LD. This region also contains the 

previously associated -94ins/del ATTG variant and it is possible that the 

associated SNPs in this study are tagging this variant. Alleles of -94ins/del 

ATTG have previously been shown to influence nuclear protein binding to the 

NF-κB1 promoter, with the ATTG deletion allele having markedly reduced 

promoter activity compared to the wild type[450]. It is therefore possible that this 

functional polymorphism, in LD with the associated SNPs in this study, could be 

subtly disrupting the NF-κB pathway, altering the immune response and thus 

rendering individuals susceptible to autoimmune disease.  

4.5.2.2 AN IL23A VARIANT IS ASSOCIATED WITH AAD IN THE ITALIAN 

POPULATION 

Polymorphisms in the IL23A gene have previously been implicated in 

susceptibility to psoriasis[325] and psoriatic arthropathy[452] in Europeans. In 

these previous studies, significant LD between IL23A and the adjacent gene 

STAT2 has been noted and it is not clear at present which is conferring 

susceptibility or whether both are acting as markers for another locus. This 

candidate gene study suggests a role for the IL23A/STAT2 locus in AAD in the 

Italian population. In the Italian cohort, the A allele at rs11171806, a 

synonymous variant in the IL23A gene, was associated with disease (P 0.0028, 

OR 2.37 [95% CI 1.32 – 4.23]). This marker is in LD with both the genotyped 

SNPs in STAT2 (rs2066808, rs2066807 r2>0.90) and, although they did not 

remain significantly associated once correction for multiple testing was made, 

these were also associated with AAD in the Italian cohort (rs2066808 Pallele 

0.014, OR 1.93 [95% CI 1.13 – 3.28]; rs2066807 Pallele 0.0063, OR 2.18 [95% CI 

1.23 – 3.85]). These variants are found in healthy controls and are synonymous. 

Therefore, like the variants in the NF-κB1 gene, they are likely to be tagging a 
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susceptibility locus rather than contributing to disease propensity directly 

themselves. A number of non-synonymous variants are found in and around the 

IL23A and STAT2 genes and it is possible that these, or a non-coding sequence 

variant exerting a regulatory effect, might be contributing to disease 

susceptibility in this case. 

4.5.2.3 STAT4 POLYMORPHISMS ARE ASSOCIATED WITH AAD IN THE 

EUROPEAN POPULATION 

Variants in the STAT4 gene have previously been associated with systemic 

autoimmune conditions. An association with STAT4 SNPs and rheumatoid 

arthritis has been observed in North American Caucasians[321] and in Korean 

Asians[453], while associations with both SLE[321] and primary Sjögren’s 

syndrome[454] have been observed in European Caucasians in separate studies. 

This study extends the association to an organ-specific autoimmune condition, 

AAD.  

 

The association with markers in STAT4 and AAD was initially noted in the 

Norwegian cohort in round 1, where the minor C allele of marker G (rs4274624) 

was present in 27.2% of AAD cases compared with just 19.5% of controls 

(Pgenotype 0.00084, Pallele 0.0004, OR 1.55 [95% CI 1.21 – 1.97]) (Figure 29). The 

C allele at this marker was also associated with AAD in the Swedish and Italian 

cohorts in round 2 (Table 15), although the associations were modest and did 

not withstand correction for multiple testing. In the Italian cohort, the G allele at 

marker F (rs10931481), in moderate LD (r2 0.59) with marker G, was also 

associated with disease, but again, this finding was not significant when 

corrections were made for multiple comparisons. In a meta-analysis, using a 

random effects model, both marker G and marker F were associated with AAD 

(marker G, rs4274624 P 0.00016, OR 1.27 for C allele [95% CI 1.12-1.42]; 

marker F, rs10931481 P 0.0007, OR for G allele 1.23 [95% CI 1.09-1.39]) 

(Figure 30).  
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When using case-control cohorts from different countries, the possibility of 

heterogeneity between cases due to diagnostic differences must be considered. 

To be included in this study, individuals with AAD had to have biochemical 

evidence of adrenal failure, with a maximum serum cortisol of less than 

550nmol/L 1 hour following intravenous administration of synthetic ACTH 

analogue (synacthen 250µg) and a raised ACTH level. In addition, every effort 

was made to exclude those with secondary causes of adrenal insufficiency and 

those with APS1. Exclusions were made based on history and examination 

findings and they were applied to create relatively homogeneous AAD cohorts, 

containing individuals with similar phenotypes regardless of their country of 

origin. Unfortunately, despite these efforts, it is inevitable that there will be some 

heterogeneity between cases due to diagnostic uncertainty in a small minority of 

cases. This is one limitation universal to nearly all genetic studies where there is 

more than one possible underlying cause for the disease. In order to further 

define the AAD phenotype and increase AAD cohort homogeneity, a subgroup 

analysis including only individuals with 21OH autoantibodies can be studied. 

While 21OH autoantibody subgroup analyses were not performed for the 

individual AAD cohorts due to their small sizes, a 21OH autoantibody subgroup 

analysis was included in the meta-analysis, where any 21OH autoantibody 

negative individual was excluded. In this analysis, marker G in STAT4 remained 

significantly associated (rs4274624, P 0.0003).  

 

In a study by Remmers et al[321], the minor allele at STAT4 marker rs7574865 

was significantly associated with both rheumatoid arthritis (P 4.64 x 10-8, OR 

1.27 [95% CI 1.16 – 1.36]) and SLE (P 1.87 x 10-9, OR 1.55 [95% CI 1.34 – 

1.79] in a meta-analysis. The minor allele at this SNP, in addition to three others 

in intron 3 of STAT4, was also associated with rheumatoid arthritis in the 

Korean population (P 0.0065, OR 1.27 [95% CI 1.11 – 1.45])[453] and with 

primary Sjögren’s syndrome in a small study (P 0.01, OR 1.47 [95% CI 1.09 – 

1.97])[454]. The marker most associated with AAD in the meta-analysis 

performed in this study, marker G (rs4274624), is in significant LD (r2 0.90) with 

SNP rs7574865. Marker F (rs10931481), also associated with AAD in the meta-

analysis, is in moderate LD with both marker G (r2 0.59) and rs7574865 (r2 0.53) 

and was further associated with rheumatoid arthritis and SLE directly in the 
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study by Remmers (P 0.005, 0.025 respectively)[321], but to a lesser degree than 

rs7574865. These SNPs are all within a large intron in the STAT4 gene which 

raises the possibility that they are tagging a variant which, rather than disrupting 

protein structure and/or function directly as deleterious mutations in the coding 

regions might, may result in splice variation or disrupt non-coding regulatory 

components to result in disease susceptibility.  

4.5.3 THE GATA3 LOCUS AND ITS ROLE IN SUSCEPTIBILITY TO 

AUTOIMMUNITY  

From the data gathered in round 1, one further locus appeared to be exerting an 

effect on AAD susceptibility in both the UK and Norwegian AAD cohorts. 

Consistently, the association was with iAAD rather than APS2. Different 

markers were associated in the two cohorts: markers G and H (rs569421 and 

rs444929) in the UK cohort and marker E (rs3802604) in the Norwegian cohort 

(Figure 33). However, given the significant genetic heterogeneity between the 

control groups from the two countries, this result was not surprising. When 

multiple testing corrections were applied to the round 1 data set, statistical 

significance at this locus was not quite achieved. Nonetheless, the association 

of multiple markers in GATA3 with iAAD appeared convincing. The function of 

GATA3 as a key regulator of T lymphocyte development, in particular TH2 cell 

differentiation and TH2[345] and TReg function[348], make it an excellent candidate 

for autoimmune disease and was a persuasive argument for investigating this 

locus further. In addition, as GATA3 polymorphisms have not previously been 

associated with autoimmune disease, this would represent a novel finding in 

terms of both AAD and autoimmunity in general. Therefore, this locus was 

chosen for further exploration. In the GATA3 replication study, 15 SNPs were 

genotyped, in cohorts of UK AAD, Norwegian AAD, UK Graves’, Norwegian 

type 1 diabetes and New Zealand rheumatoid arthritis cohorts. The 15 SNPs 

genotyped represent five independent loci.  
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4.5.3.1 GATA3 INFLUENCES SUSCEPTIBILITY TO AAD IN THE UK BUT NOT THE 

NORWEGIAN POPULATION 

In the UK cohort, the pattern of association noted between the four previously 

genotyped GATA3 SNPs and AAD in round 1 was replicated. Genotyping 

additional markers added more information to the round 1 findings. In the UK 

AAD cohort as a whole, association was noted at six of the 14 markers which 

passed the quality control checks (Figure 33). At each of the six associated 

markers, the association was with iAAD and not with APS2. Allowing for five 

comparisons (P 0.05/5 = 0.01), alleles at two intronic markers, (markers G and I, 

rs569421 and rs422628 respectively), would be considered significantly 

associated with AAD (Pallele 0.0096 and 0.01 respectively). In addition, a four 

marker haplotype, comprising SNPs D-G-I-M (rs3781094-rs569421-rs422628-

rs9746), was found to be significantly associated with AAD in the UK subjects 

(P 1.72 x 10-12), with the A-C-T-A haplotype conferring significant disease 

protection (OR 0.17 [95% CI 0.082 – 0.36]).   

 

For the GATA3 replication study, a large Norwegian control cohort, comprising 

1353 individuals, became available for use. This was significantly larger than 

the control cohort available for genotyping in round 1, which comprised 380 

individuals. In round 1, four SNPs in GATA3 were genotyped in the Norwegian 

case-control cohorts and association was noted with genotypes and alleles at 

marker E only (rs3802604; Pgenotype 0.04, Pallele 0.032). In the GATA3 replication 

study, comparing 352 AAD cases to 1353 controls, no such association was 

observed at this marker (Pgenotype 0.34, Pallele 0.15). To investigate this 

discrepancy, the round 1 Norwegian control cohort genotype and allele 

frequency data at this marker were compared to the data collected for the 1353 

Norwegian controls in the follow-on study, using a χ2 test. Genotype frequencies 

between the two Norwegian control cohorts differed significantly at this marker 

(P 0.034). Furthermore, if the genotyping results for AAD cases from round 1 at 

this marker are compared with the results for the larger control cohort in this 

analysis, no association is noted (Pgenotype 0.46, Pallele 0.22) suggesting that the 

round 1 result may have been a spurious finding, likely reflecting random 

sampling error in the smaller control cohort. This explains why the result failed 
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to replicate in the GATA3 follow on study. In the Norwegian cohort, across the 

13 GATA3 SNPs which met the inclusion criteria, modest association with 

alleles only was noted at marker D (rs3781094, P 0.042) and with genotypes 

only at marker F (rs570613, P 0.049). However, these results do not remain 

significant when multiple comparisons are considered. 

 

A meta-analysis of the UK and Norwegian data revealed significant 

heterogeneity between the two populations. In this analysis, no single marker 

was associated with AAD.  

 

In conclusion, this study has demonstrated significant association between 

GATA3 alleles and AAD in the UK cohort, but has failed to replicate this finding 

in a Norwegian AAD cohort. The first possible explanation for this observation is 

that both findings are true and that there is true genetic heterogeneity between 

the populations, meaning that polymorphisms at the GATA3 locus are 

conferring disease susceptibility in UK individuals but that it is not a 

susceptibility locus for AAD in Norwegian individuals.  

 

While Caucasian individuals of European origin have historically often been 

studied as a single entity in genetic analyses, there are large cohort studies 

which suggest that allele frequencies vary considerably within this group, and 

even between different regions within countries, lending support to the case for 

using carefully matched controls for genetic studies. For example, a study by 

Cross et al published in 2010[455] compared allele frequencies at 51 SNPs in 

19,027 self-reported white Caucasians. The cohort was divided into those from 

Scandinavia, the UK, Germany and Eastern Europe. Between these four 

European regions, minor allele frequencies differed significantly at 19 (37.3%) 

SNPs (P <0.05). The difference was particularly marked (P <0.0001) at 5 (9.8%) 

of the 51 SNPs analysed (Figure 37). This supports the hypothesis that a 

susceptibility allele in the UK cohort might not be replicated in the Norwegian 

population. Furthermore, this has previously been observed in genetic studies in 

AAD in UK and Norwegian cohorts, where a significant association has been 

demonstrated in one cohort but not the other[170, 456]. One explanation for this is 
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selection pressure. There are many selection pressures, however infection is a 

particularly strong driver of selection and, combined with differing environmental 

factors, contributes significantly to genetic diversity between countries[457]. 
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Figure 37: Differences in minor allele frequencies between subgroups of 
European Caucasians at five loci. 

Graph to illustrate differences (P <0.0001) between minor allele frequencies at 
five SNPs between subgroups of European Caucasians. This figure is 
reproduced from page 12 of “Population based allele frequencies of disease 
associated polymorphisms in the Personalized Medicine Research Project” by 
Cross et al, published in BMC Genetics in 2010 (volume 11)[455], with 
permission from the authors. 
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Exposure to different pathogens between two populations can result in 

significant differences in allele frequencies. This could result in two populations, 

for example the UK and Norway, having different susceptibility loci for a disease 

of interest[457], particularly in a complex disease such as AAD where multiple 

factors result in disease.    

 

The second explanation is that the association in the UK AAD cohort is a false 

positive finding, and that the differences observed between the case and control 

cohorts are due to inadequate sample size and random sampling error. A 

comparison of the minor allele frequencies between the UK AAD cohort controls 

(n=302) and a much larger control cohort of 3000 UK controls available from the 

WTCCC[458] (WTCCC genotype data for GATA3 SNPs kindly provided by 

Mandy Phipps-Green, assistant research fellow, Merriman lab, Department of 

Biochemistry, University of Otago, New Zealand) was therefore undertaken to 

determine whether the controls used for this study were comparable to the 

larger control cohort at the two SNPs which remained associated after 

correction for multiple testing, markers G and I (rs569421 and rs422628).  

 

There was no significant difference at marker G between the UK AAD controls 

and the WTCCC controls (MAF AAD controls 0.20, MAF WTCCC controls 0.17; 

P 0.072). However, at marker I, a statistically significant difference was seen, 

with the UK AAD controls having a MAF of 0.29 compared to the WTCCC 

cohort which had a MAF of 0.24 (P 0.0093). Indeed, if the UK AAD case data at 

these SNPs are compared directly with the WTCCC control data, a strong 

association is seen at marker G (rs569421; Pgenotype <0.00001, Pallele <0.00001, 

OR 1.72 [95% CI 1.43 – 2.07]) but not at marker I (rs422628; Pgenotype 0.22, 

Pallele 0.59, OR 0.95 [95% CI 0.78 – 1.15]). This suggests that the association 

with alleles at marker I with AAD in this study may be spurious, due to sampling 

error, but that the association with alleles at marker G is a true finding, as it 

remains strongly associated when a larger control cohort comprising 3000 UK 

individuals is used for comparison. Marker G is in strong LD (r2 0.82) with 

another intronic variant, marker J (rs406103). Alleles at this marker were also 

associated with AAD in the UK cohort (Pallele 0.026) but this result did not 
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withstand correction for multiple testing. If the UK AAD data at this marker are 

compared to the imputed control data for this marker from the WTCCC, the 

association is highly significant (Pgenotype <0.00001, Pallele <0.00001, OR 1.58 

[95% CI 1.31 – 1.91]), supporting the hypothesis that the association of UK AAD 

with GATA3 polymorphisms is a true association and not a spurious one.  

4.5.3.2 GATA3 IN AUTOIMMUNE DISEASE SUSCEPTIBILITY 

As association with GATA3 polymorphisms and AAD in the UK population had 

been established and appeared convincing, the 15 GATA3 SNPs in this follow-

on study were also genotyped in three non-AAD autoimmune cohorts (UK 

Graves’ disease, Norwegian type 1 diabetes and New Zealand rheumatoid 

arthritis). The purpose of this work was to establish whether GATA3 could be a 

pleiotropic susceptibility locus for autoimmunity (that is one gene influencing 

multiple phenotypes). Following correction for testing five loci (0.05/5 = P 

<0.01), only one intronic SNP, marker E (rs3802604), remained associated in 

the rheumatoid arthritis cohort (Pallele 0.0096) (Figure 33). When LD patterns in 

the New Zealand controls were studied using Haploview[216], significant LD 

between marker E and neighbouring intronic markers D and G was observed (r2 

0.88 and r2 0.66 respectively). However, no significant association was seen at 

these other two SNPs, suggesting that the association at marker E in this cohort 

might be spurious. A meta-analysis was performed across the disease cohorts 

studied at the 15 GATA3 SNPs to look for a marker which might be influencing 

autoimmunity in general, but no association was found.  

 

There are many examples of pleiotropic genes in autoimmune diseases. The 

MHC region is the most widely replicated example and appears to be a 

universal autoimmunity locus. Other examples include the CTLA4 and PTPN22 

loci, which appear to influence AAD[178, 179], Graves’ disease[177, 459], type 1 

diabetes[162, 176, 211] and rheumatoid arthritis[168, 460] susceptibility, among other 

conditions. Furthermore, this study has provided evidence that the NF-κB1 gene 

is a susceptibility locus for both AAD and Graves’ disease in the UK population. 

However, there are also numerous examples in the literature where a 

susceptibility locus for one autoimmune condition is investigated in another and 
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no association is detected. In some cases, the failure to replicate a finding is 

ascribed to a lack of study power. However, in other instances this does not 

appear to be the case: both the positive and the negative findings appear to be 

true. A recent study by Ramos et al[461] looked in detail at this phenomenon in 

the context of SLE, a rare multisystem autoimmune condition, in Europeans. 

They studied 446 non-MHC variants that had been associated in genome-wide 

studies with one or more of 17 autoimmune conditions in a cohort of 1500 SLE 

cases and 5706 controls. Some findings were then replicated in a separate 

cohort comprising 2085 SLE cases and 2854 controls. The investigators found 

a number of pleiotropic loci which appeared to be contributing to susceptibility to 

SLE and other autoimmune conditions, but also found a number of loci which 

appeared to be unique to SLE. Moreover, they generated some interesting 

results from a hierarchical clustering analysis which aimed to determine which 

autoimmune conditions are most similar. They found the most genetic similarity 

between type 1 diabetes and rheumatoid arthritis, and between Crohn’s disease 

and ulcerative colitis. In contrast, they discovered that SLE is the most 

genetically distinct autoimmune disease of those studied, which did not include 

AAD as no genome-wide studies have been conducted in this condition to date. 

Therefore, GATA3 may be an example of a gene which contributes significant 

susceptibility to a single autoimmune condition in one population (i.e. AAD in 

the UK), but does not appear to be influencing susceptibility to the other 

conditions studied. Conversely, AAD may be genetically dissimilar to the 

autoimmune conditions selected in the GATA3 replication study for further 

investigation. If alternative autoimmune cohorts were selected, for example 

vitiligo or premature autoimmune ovarian failure, one or more of these diseases 

might show association with GATA3 polymorphisms. 
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4.6 CONCLUSIONS AND FUTURE DIRECTIONS 

This is the largest genetic study performed in AAD to date, including almost 

2000 affected participants from six European countries. The results 

demonstrate significant genetic heterogeneity between the participating 

European countries. In addition, this study provides novel insight into the 

genetic aetiology of AAD, implicating IL23A in susceptibility to AAD in Italians, 

NF-κB1 and GATA3 in susceptibility to AAD in the UK population and STAT4 in 

susceptibility to AAD in a meta-analysis of all cohorts. 

 

The functional significance of these associations must now be studied. For 

example, it would be interesting to take STAT4, which harboured the most 

associated variants and look for functional differences between individuals with, 

and without AAD, with different genotypes at the most associated SNPs. 

Quantitative PCR could be used to determine whether genotype influences 

levels of STAT4 expression and Western blotting could be used to determine 

whether individuals with differing genotypes produce differing amounts of the 

STAT4 protein. As STAT4 is essential for the TH1 response, further studies 

could also aim to quantify the relative proportions of TH1 and TH2 cells in 

individuals with differing STAT4 polymorphism genotypes using flow cytometry. 

The production of the primary TH1 cytokine, IFN-γ, stimulated and unstimulated, 

could be studied in individuals with different genotypes using an intracellular 

cytokine flow cytometry method secretion assay or an Elispot assay.    

 

Finally, a well-powered genome-wide association study might provide unique 

and interesting insights into the genetic architecture of AAD. This would also 

allow AAD to be compared to other autoimmune conditions, using a hierarchical 

clustering method similar to that used by Ramos[461] to determine which 

condition, if any, is most similar to AAD. This information would be valuable in 

directing future research efforts: positive genetic and functional findings in a 

condition closely related to AAD genetically could be prioritised for further 

investigation ahead of those found in autoimmune conditions less related to 

AAD. Unfortunately, while a significant collaborative European cohort now 
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exists, a replication cohort is currently lacking and this would be needed in order 

to validate any initial genome-wide screen findings. Therefore the onus is on 

clinicians and researchers alike to engage individuals with AAD in genetic 

research, in order to make further progress in the field.  
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CHAPTER 5 – A DISCOVERY-DRIVEN APPROACH TO THE 

INVESTIGATION OF AAD – A GENOME-WIDE STUDY OF 

MULTIPLEX AAD FAMILIES 
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5.1 BACKGROUND 

AAD has a high genetic load compared to other autoimmune conditions, and yet 

we know relatively little about its genetic aetiology. This is because it is a rare 

disease which means that large AAD cohorts suitable for a powerful genetic 

study are scarce. If a large cohort of unrelated AAD patients and healthy 

controls could be collected together, a genome-wide association study could be 

conducted to shed light on the underlying genetic aetiology of AAD. This 

approach has been used for other complex autoimmune conditions, for example 

type 1 diabetes[201]. However, to date, even collaborative efforts to collect 

cohorts have not resulted in large enough sample sizes to generate sufficient 

study power for an initial genome-wide study and a replication study. Linkage 

studies are an alternative, powerful means of identifying genetic susceptibility 

loci. Multiplex AAD families (families comprising two or more individuals with 

AAD) could be used as an alternative study group in a linkage analysis, an 

approach which has never been applied to AAD before.  

 

Carefully phenotyped multiplex AAD families are likely to be highly informative 

for genetic investigation by linkage. In addition, they could also be used for an 

intrafamilial association study, taking affected family members as cases and 

comparing them to the unaffected family members who act as controls in this 

study design. To avoid false positive results, linkage analysis requires a 

relatively sparse marker map made up of carefully selected, informative SNPs. 

Conversely, a dense marker map is needed for association analysis. 

Genotyping by SNP microarrays provides data that, with appropriate formatting 

and management, can be used for both linkage and association analysis, thus 

allowing the maximum amount of information to be gained from a single study.  

 



 

230 

 

5.2 AIM 

I aimed to perform a genome-wide linkage and association analysis on multiplex 

AAD families, using the Affymetrix Genome-wide human SNP array 6.0 

genotyping platform, searching for novel genetic loci for further investigation. 

5.3 SUMMARY OF STUDY DESIGN 

24 multiplex AAD families from the UK and Norway (Figure 5, Figure 6), 

comprising 121 individuals in total, were identified to be included in a linkage 

analysis. DNA from all individuals was sent for genotyping on the Affymetrix 

SNP 6.0 array and raw data was returned and formatted for analysis. Following 

strict quality control measures, the selected markers were thinned to produce a 

marker map suitable for linkage analysis in Merlin[236]. Parametric and non-

parametric linkage analyses were performed on the autosomes and then these 

analyses were repeated for the X chromosome using MINX, a version of Merlin 

designed for the analysis of X chromosome markers. A further linkage analysis 

was then performed, where the study individuals were coded as being either 

21OH autoantibody positive cases (36 individuals) or 21OH autoantibody 

negative controls (69 individuals). Autoantibody status was unknown for 12 

individuals and these were therefore excluded from this analysis. 

 

Following linkage analysis, the quality controlled but unthinned data set, 

constituting a much denser marker map, was used for an association analysis in 

EMMAX. Two analyses were conducted. The first took affected family members 

as cases and compared them to unaffected family members as controls. The 

second again used affected family members as cases but compared them to 

control genotype data from more than 2000 healthy individuals genotyped as 

part of the WTCCC 1958 UK birth cohort. Linkage and association data were 

then compared and two linkage regions prioritised for a validation experiment. 

For this, 64 SNPs were selected from within two regions of interest. Primer 

sequences for these assays can be found in electronic appendix C. These 

SNPs were genotyped on the Sequenom platform for use in an association 

study in UK, Norwegian and Swedish unrelated AAD case-control cohorts.  
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5.4 RESULTS – LINKAGE ANALYSIS IN MULTIPLEX AAD FAMILIES 

5.4.1 LINKAGE STUDY POWER 

SLINK[[235] was used to estimate study power. Under a rare dominant model 

(Table 8), assuming a disease allele frequency in the population of 1 in 10,000 

and assuming a disease penetrance of 0.001 (0.1%) if 0 risk alleles are present 

and 0.999 (99.9%) if 1 or 2 risk alleles are present and assuming 75% of 

families are linked (i.e. 25% heterogeneity), the study has 77% power to detect 

a locus with an HLOD of 3.0 or greater, and 98% power to detect a locus with 

an HLOD score of 2.0 or greater. Allowing for greater levels of heterogeneity 

significantly reduced the study power (Table 18). 

5.4.2 LINKAGE ANALYSIS – QUALITY CONTROL RESULTS 

5.4.2.1 LOCUS AND INDIVIDUAL MISSINGNESS 

The mean genotyping call rate per SNP was 99.3% (minimum 0%, maximum 

100%, median 100%). Of the 909,622 SNPs genotyped, 80,150 (8.8%) had a 

call rate of less than 99% and were excluded. The mean call rate per individual 

genotyped was 99.3% (minimum 88.5%, maximum 99.8%, median 99.5%). 

Only one individual had a call rate of less than 97.5%. This individual was 

excluded, leaving 120 people in 24 families to be analysed (Figure 38).  

5.4.2.2 SEX CHECK 

Initially, seven individuals were identified whose genetic sex did not match their 

allocated sex in the pedigree file. DNA from these individuals was used in an 

amelogenin PCR assay designed to determine genetic sex. In all seven cases, 

the genetic sex by amelogenin PCR matched the genetic sex determined from 

the array data (Figure 39). On further investigation, four had been misassigned 

when our collaborators had drawn their pedigree diagrams and the pedigree file 

was updated to correct this error. In the case of three individuals (all from one 

Norwegian family), the problem could not be resolved. This family was excluded 



 

232 

 

from further analysis, leaving 117 individuals in 23 families in the cohort to be 

analysed.  

5.4.2.3 MENDELIAN ERROR RATES 

At each SNP, the mean number of Mendelian errors was low at 0.037 (minimum 

0, maximum 5, median 0). The number of Mendelian errors within each 

individual were also low (44 individuals had one or more errors). Of these 44 

individuals, the mean number of errors was 166.5 (minimum 9, maximum 1006, 

median 66). Within families, the number of Mendelian errors was also low: nine 

families had one or more Mendelian errors. Of these nine families, the mean 

number of errors was 267.9 (minimum 21, maximum 1050, median 176.5). 

5.4.2.4 HETEROZYGOSITY RATES 

The mean calculated heterozygosity rate was 0.32 (minimum 0.31, maximum 

0.35, median 0.32). This was plotted against the call rate of each sample. There 

were no anomalous results and therefore no individuals were excluded on the 

basis of heterozygosity rate (Figure 38).  

5.4.2.5 ALLELE SHARING 

There was no excess IBD allele sharing in unrelated individuals (mean alleles 

shared IBD less than 0.2 with a standard error of 0 to 0.47), while parent-

offspring pairs shared an appropriate proportion of alleles IBD (mean of 1 allele 

shared IBD with a standard error of 0 to 0.3) as did full sibling pairs (mean of 1 

allele shared IBD with a standard error of 0.6 to 0.8) (Figure 40).   

 

Following quality control measures, 23 families comprising 117 individuals 

remained and were included in the final analysis. Of these, 50 were cases (29 

females, 21 males) and 67 were controls (34 females, 33 males).   
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 All families linked 
(no heterogeneity) 

75% of families 
linked (25% 

heterogeneity) 

50% of families 
linked (50% 

heterogeneity) 

25% of families 
linked (75% 

heterogeneity) 

Power to 
detect 
HLOD >3 

99% 77% 30% 1% 

Power to 
detect 
HLOD >2 

100% 98% 52% 13% 

Power to 
detect 
HLOD >1 

100% 100% 81% 35% 

Table 18: Linkage study power estimates generated from the SLINK program, assuming differing levels of heterogeneity 
between the families.  
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Figure 38: Heterozygosity and genotyping call rates for each individual genotyped for the linkage study in AAD.  

Heterozygosity rate is shown on the y axis and the genotyping call rate on the x axis for each family member genotyped. The individual 
with a call rate of less than 89% was excluded from the analysis.  
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Figure 39: Amelogenin sex differentiation PCR assay gel image.  

4% agarose gel electrophoresis of PCR products from the amelogenin assay. A 
100bp ladder is shown in lane 1 and a no template control, run as a negative 
control, is shown in lane 11. Positive controls of known gender are shown in 
lane 2 (a male sample with two bands close together of 106 and 112bp) and 
lane 3 (a female sample with a single 106bp band). Lanes 4 to 10 are samples 
who had miss-assigned genders (gender by PCR: female, male, male, female, 
male, female, female respectively).  
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Figure 40: Allele sharing identical by descent (IBD) among individuals 
within the multiplex AAD family pedigrees.  

Graphs demonstrating IBD allele sharing among individuals within the AAD 
pedigrees. The mean number of alleles shared IBD is shown on the x axis and 
the standard error is shown on the y axis. Panel A demonstrates that parent-
offspring pairs share 1 allele IBD with a low standard error. Panel B shows that 
full sibling pairs share 1 allele IBD but with a higher standard error as 0, 1 or 2 
alleles can be shared IBD. Panel C shows that between pairs in other 
relationships e.g. cousins etc, the degree of allele sharing IBD is lower. Panel D 
shows that unrelated individuals share on average 0 alleles IBD.  
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5.4.3 LINKAGE ANALYSIS RESULTS – MARKER MAP INFORMATION CONTENT 

Linkage analysis was performed using three marker maps of varying density. A 

dense map of 36,775 markers provided excellent information content but 

produced large files that were difficult to manipulate. Using a marker map of two 

SNPs per cM (7429 SNPs) meant that some information content was lost. Using 

a map of four SNPs per cM (14,771 SNPs) gave a good level of information 

content, between 80 and 100% per chromosome, while generating manageable 

files (Figure 41). All SNP positions are derived from the Ensembl database 

(GRCh37)[215]. 

5.4.4 LINKAGE ANALYSIS RESULTS – AAD TAKEN AS THE TRAIT OF 

INTEREST 

5.4.4.1 PARAMETRIC LINKAGE ANALYSIS OF THE AUTOSOMES 

Applying a rare dominant model, assuming a disease allele frequency in the 

population of 1 in 10,000 (0.0001) and assuming a disease penetrance of 0.001 

(0.1%) if 0 risk alleles are present and 0.999 (99.9%) if 1 or 2 risk alleles are 

present, three loci on chromosomes 18, 9 and 7, had LOD scores of greater 

than 2.0 (Figure 42).  

 

The maximum LOD score was observed within a linkage peak on chromosome 

18, between 116.5 and 121.9cM (75241668 – 77950543bp). Within this peak, a 

maximum LOD and HLOD score of 3.00 was seen at marker SNP_A-8291421 

(rs1113678, 76554812bp). 

 

On chromosome 9, a linkage peak was observed between 36.0 and 40.4cM 

(17486802 – 19751149bp), with a maximum LOD and HLOD score within this 

peak of 2.90 at marker SNP_A-1996138 (rs10123624, 19025385bp).  

 

On chromosome 7, a maximum LOD and HLOD of 2.88 was seen at marker 

SNP_A-4232044 (rs10263367) at position 70082089bp within a linkage peak 
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spanning 82.4 – 86.2cM (70020160 – 73809454bp). A second, smaller linkage 

peak between 69.8 and 71.7cM (47565504 – 49876993bp) was also seen on 

this chromosome. Within this peak, a maximum HLOD of 2.09 at marker 

SNP_A-2279338 (rs13228770, 49457067bp) was observed (estimated 

proportion of linked families (α) 0.66). At this locus, the maximum LOD score 

was 1.28.  

 

When a rare co-dominant model was applied, assuming a disease allele 

frequency in the population of 1 in 10,000 (0.0001) and assuming a disease 

penetrance of 0.001 (0.1%) if 0 risk alleles are present, 0.75 (75%) if 1 risk 

allele is present and 0.999 (99.9%) if 2 alleles are present, two loci had an 

HLOD score of greater than 2.0 (Figure 43). On chromosome 2, a linkage peak 

between 32.4 and 35.5cM (12675092 – 15457535bp) was seen. The maximum 

HLOD within this peak was 2.57 (α 0.80, LOD 1.43) at marker SNP_A-8683599 

(rs2380452, 12897058bp). On chromosome 9, a small linkage peak was seen 

between 145.5 and 146.6cM (135482340 – 136043697bp) with a maximum 

HLOD of 2.08 (α 0.75, LOD -0.97) at SNP_A-2265585, rs10901207 at 

135618325bp.  

 

When a rare recessive model was applied, assuming a disease allele frequency 

in the population of 1 in 10,000 (0.0001) and assuming a disease penetrance of 

0.001 (0.1%) if 0 or 1 risk alleles are present and 0.999 (99.9%) if 2 risk alleles 

are present, no loci had a LOD score of greater than 2.0.  

5.4.4.2 NON-PARAMETRIC LINKAGE ANALYSIS OF THE AUTOSOMES 

In a non-parametric analysis, which effectively excludes the parent-offspring 

pairs (n=5), one locus on chromosome 6 had a LOD score of greater than 3.0 

(Figure 44). Here, a large linkage peak was seen from 46.0 to 55.4cM 

(22375648 – 35968100bp). The maximum LOD score, applying the Kong and 

Cox exponential model searching for a large increase in allele sharing in a small 

number of families, was 3.01 at 51.5cM (SNP_A-1923640, rs2072633 at 

31919578bp). At this locus, the linear LOD score (designed to identify small 

increases in allele sharing spread across a large number of families) was 3.13.  
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5.4.4.3 PARAMETRIC AND NON-PARAMETRIC LINKAGE ANALYSIS OF THE X 

CHROMOSOME  

The X chromosome was analysed, using the same parametric models as above 

and by non-parametric analysis. No loci had a LOD score of greater than 1.  
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Figure 41: Information content in the linkage analysis using three marker maps of differing densities.  

Information content graphs for chromosome 1 using an unthinned marker map of 36,775 SNPs (panel A) compared to a marker map 
thinned to four SNPs per cM, comprising 14,771 SNPs (panel B) and to two SNPs per cM, comprising 7429 SNPs (panel C). An 
information content above 0.8 (80%) indicates sufficient coverage. There is little difference in information content gained when using a 
dense marker map compared to a thinned marker map.
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Figure 42: Graphical representation of parametric linkage results in the 
multiplex AAD families assuming a rare dominant model.  

Graphs showing LOD (black lines) and HLOD (grey lines) scores generated in a 
parametric linkage analysis, assuming a rare dominant model. The LOD/HLOD 
score is on the y axis and the cM position is on the x axis. The dotted black line 
shows the LOD/HLOD threshold of 3.0, taken as convincing evidence of 
linkage. Linkage peaks of LOD/HLOD greater than 2.0 were observed on 
chromosomes 18 (panel A), 9 (panel B) and 7 (panel C). An HLOD score of 3.0 
was observed on chromosome 18.  
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Figure 43: Graphical representation of parametric linkage results in the multiplex AAD families assuming a rare co-dominant 
model.  

Graphs showing LOD (black lines) and HLOD (grey lines) scores generated in a parametric linkage analysis, assuming a rare co-
dominant model. The LOD/HLOD score is shown on the y axis and the cM position is on the x axis. The dotted black line shows the 
LOD/HLOD threshold of 3.0, taken as convincing evidence of linkage. Linkage peaks of LOD/HLOD greater than 2.0 were observed on 
chromosomes 2 (panel A) and 9 (panel B). No linkage peaks with a LOD/HLOD of 3.0 or greater were seen using this model.  
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Figure 44: Graphical representation of non-parametric linkage results in 
the multiplex AAD families.  

Graph showing exponential LOD (black lines) and linear LOD (grey lines) 
scores generated in a non-parametric linkage analysis. The LOD score is on the 
y axis and the cM position is on the x axis. The dotted black line shows the LOD 
threshold of 3.0, taken as convincing evidence of linkage. A linkage peak of 
LOD greater than 3.0 was observed on chromosome 6 only.  
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5.4.5 LINKAGE ANALYSIS RESULTS – 21OH AUTOANTIBODY POSITIVITY AS 

THE TRAIT OF INTEREST 

5.4.5.1 PARAMETRIC LINKAGE ANALYSIS OF THE AUTOSOMES 

Applying a rare dominant model, and using a four SNP per cM marker map, 

three loci on chromosomes 3, 18 and 1 had LOD or HLOD scores of 2 or more 

(Figure 45). On chromosome 3, a maximum HLOD of 3.25 (α 0.68, LOD 1.02) 

was seen at 19.1cM (SNP_A-1839084, rs1948153, 6481324bp), in a large 

linkage peak spanning 0.4 to 19.39cM (98655 – 6725175bp). A linkage peak 

was also observed on chromosome 18, spanning 117.4 to 120.8cM (75814302 

– 76966335bp) with a max HLOD of 2.14 at 119.6cM (α 0.50, LOD -3.14, 

SNP_A-8291421, rs1113678, 76554812bp). Additionally, a smaller linkage peak 

was also seen on chromosome 1, spanning 32.80 to 35.80cM (18346165 – 

19049946bp) with a maximum HLOD of 2.06 (α 0.69, LOD 1.10) observed at 

35.3cM (SNP_A-2304622, rs1934057, 18962095bp).  

 

Applying a rare co-dominant model, linkage peaks were observed in the same 

regions of chromosomes 3 and 18 as seen with the dominant model. On 

chromosome 3, a linkage peak was observed at 14.3 to 19.4cM (4665565 – 

6725175bp), with a maximum HLOD of 2.22 at 19.10cM (SNP_A-1839084, 

rs1948153, 6481324bp, α 0.69, LOD 1.44). In addition, a narrower peak was 

observed at 32.4 to 33.7cM (13720097 – 14628404bp) with a maximum HLOD 

and LOD of 3.12 observed at 33.4cM (SNP_A-8468450, rs4402920, 

14478231bp). On chromosome 18, a linkage peak was seen between 117.4 

and 119.6cM, with a maximum HLOD of 2.13 observed at 117.5cM (SNP_A-

8660306, rs9946731, 75851340bp, α 0.57, LOD -2.46). 

 

Applying a rare recessive model, no loci had a LOD or HLOD score of greater 

than 2.  
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5.4.5.2 NON-PARAMETRIC LINKAGE ANALYSIS OF THE AUTOSOMES 

In a non-parametric linkage analysis, two narrow linkage peaks were observed 

on chromosome 3 (Figure 46). The first was seen between 32.8 and 33.7cM 

(14180552 – 14628404bp), with a maximum exponential LOD of 2.52 at 

33.39cM (SNP_A-8468450, rs4402920, 14478231bp). The linear LOD here was 

2.06. The second peak was observed between 51.8 and 52.1cM (28700022 – 

28887146bp) where a maximum exponential LOD of 2.38 was seen at 51.92cM 

(SNP_A-8447998, rs2888033, 28760544bp). Here, the linear LOD was 2.28.  

5.4.5.3 PARAMETRIC AND NON-PARAMETRIC LINKAGE ANALYSIS OF THE X 

CHROMOSOME  

The X chromosome was analysed, using the same parametric models as above 

and by non-parametric linkage analysis. No loci had a LOD score of greater 

than 1.  

 

Following linkage analysis, the Ensembl[215] and HapMap[102] databases were 

used to look for plausible candidate genes located within the regions of linkage. 
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Figure 45: Graphical representation of parametric linkage results, taking 
21OH status as the trait, assuming a rare dominant model.  

Graphs showing LOD (black lines) and HLOD (grey lines) scores generated in a 
parametric linkage analysis taking 21OH autoantibody positive status as the 
trait, assuming a rare dominant model. The LOD/HLOD score is on the y axis 
and the cM position is on the x axis. The dotted black line shows the 
LOD/HLOD threshold of 3.0, taken as convincing evidence of linkage. Linkage 
peaks of LOD/HLOD greater than 2.0 were observed on chromosomes 3 (panel 
A), 18 (panel B) and 1 (panel C). The HLOD score for the linkage peak on 
chromosome 3 exceeded 3.0.
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Figure 46: Graphical representation of non-parametric linkage results, 
taking 21OH status as the trait.  

Graph showing Exponential LOD (black lines) and linear LOD (grey lines) 
scores generated in a non-parametric linkage analysis taking 21OH 
autoantibody positivity as the trait. The LOD score is on the y axis and the cM 
position is on the x axis. The dotted black line shows the LOD threshold of 3.0, 
taken as convincing evidence of linkage. A linkage peak of LOD greater than 
2.0 was observed on chromosome 3 only.  
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5.5 RESULTS – ASSOCIATION ANALYSIS IN MULTIPLEX AAD 

FAMILIES 

5.5.1 ASSOCIATION STUDY POWER 

A power calculation was performed for both association analyses planned using 

the QUANTO program[442]. In the case of 50 AAD cases versus 67 unaffected 

relatives, assuming a MAF of 0.3 and an α of 0.05, the study has 71% power to 

detect a locus with an odds ratio of 2.0 and 22% power to detect a locus with a 

more modest odds ratio of 1.4. Under the same assumptions, if a genome-wide 

α of 5x10-7 is assumed to allow for multiple testing, the study has no power to 

detect a locus with an odds ratio of 2.0 or less, but has 9% and 36% power to 

detect loci with an odds ratio of 3.0 and 4.0 respectively.  

 

For the second analysis, comparing the 50 AAD cases with 2706 1958 birth 

cohort controls under the same assumptions (MAF 0.3, α 0.05), the study has 

92% power to detect a locus with an odds ratio of 2.0 and 36% power to detect 

a locus with a more modest odds ratio of 1.4. Again, under the same 

assumptions but applying a genome wide α of 5x10-7, the study has only 2% 

power to detect a locus with an odds ratio of 2.0 but has 52% and 92% power to 

detect loci with odds ratios of 3.0 and 4.0 respectively. 

5.5.2 ASSOCIATION ANALYSIS QUALITY CONTROL 

Association analyses were performed using the EMMAX program[246]. For these 

analyses, SNPs were excluded if they had a call rate of <99% or a minor allele 

frequency of <5%. SNPs were also excluded if they were out of HWE in the 

control cohort. For this, two thresholds were applied: a stringent threshold (P 

<0.01) gave a final data set of 592,843 SNPs in total while the less stringent 

threshold (P <1.0 x 10-8) gave a final data set of 595,118 SNPs.  
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5.5.3 ASSOCIATION ANALYSIS RESULTS – 50 AAD FAMILY CASES VERSUS 67 

CONTROLS 

An initial comparison of the results revealed no difference in the most 

associated SNPs with both HWE thresholds, therefore the results with the 

threshold of P <1.0 x 10-8 are presented. R was used to generate a quantile-

quantile (QQ plot) (Figure 47), where observed statistics (–log10 P value 

generated in EMMAX) were plotted against the expected values under the null 

hypothesis. This plot revealed that the observed results were significantly 

deflated compared to the expected results, but still followed a linear pattern. I 

hypothesise that this is because of the structure of the population tested. 

EMMAX accounts for relatedness within populations and expects that those 

individuals sharing a phenotype i.e. cases, will be genetically more similar than 

those who are discordant for a phenotype. In this study design, those discordant 

for the phenotype i.e. cases and controls, are more genetically similar than 

would be expected as they come from many small pedigrees. Therefore, the 

population tested in this case does not fit the model assumed by EMMAX. This 

has resulted in a deflation of the statistical results which should be considered 

in the interpretation of the results.  

 

The threshold used to denote genome-wide significance in large genome-wide 

association studies is P <0.0000005 (5 x 10-7). The association study in the 

AAD families did not reveal any SNPs that met the threshold for genome-wide 

significance (Figure 48), even accounting for the deflation of the results. Due to 

the lack of study power and the weakness of the associations detected in this 

analysis, the results were disregarded. 
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Figure 47: Quantile-quantile (QQ) plot for an association analysis 
comparing 50 multiplex AAD family cases versus 67 family controls.  

QQ plot of ordered observed statistics (-log10 P value) on the y axis versus 
expected values under the null hypothesis on the x axis. The line which 
intercepts the x and y axes at zero represents the relationship between 
expected and observed values under the null hypothesis. The observed results 
are deflated compared to the expected results, as the data do not fit the model 
assumed by the software program used, EMMAX.  
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Figure 48: Manhattan plot showing results from an association analysis of 
50 AAD family cases versus 67 family controls.  

In this Manhattan plot, the chromosome position is shown on the x axis. The y 
axis shows the –log10 of the P value; –log10(P). Each SNP is represented by a 
coloured circle. In a genome-wide study such as this, a –log10(P) of seven, 
equivalent to a P value of 0.0000001, would be considered statistically 
significant. In this analysis, no SNPs met this threshold of significance.  
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5.5.4 ASSOCIATION ANALYSIS RESULTS – 50 AAD FAMILY CASES VERSUS 

1958 BIRTH COHORT CONTROLS  

EMMAX was used to perform an association analysis between the 50 affected 

family members acting as cases and 2706 controls (1396 males, 1310 females) 

from the 1958 UK birth cohort available from the WTCCC. 551,634 SNPs met 

the quality control criteria and were used for the analysis. The QQ plot, drawn in 

R (Figure 49), did not demonstrate significant deflation. This is due to the fact 

that, in this analysis, the population studied does fit the model assumed by 

EMMAX. The cases are from many small families and so are genetically more 

similar compared to unrelated people. Furthermore, the cases are unrelated to 

the WTCCC controls. Therefore, the groups that are discordant for the 

phenotype are more genetically dissimilar, as fits the EMMAX assumption. 

  

17 SNPs were associated with a P value of less than 5 x 10-7 and these are 

shown in Table 19. This is graphically represented by the Manhattan plot 

(Figure 50) and regional data was visualised using LocusZoom[247]. A cluster of 

five associated intergenic SNPs in tight LD (r2>0.8), spanning 228kb on 

chromosome 2 was seen (Figure 51), with maximal association at rs10495950 

(P 9.7 x 10-8). In addition, a pair of SNPs on chromosome 6 were also 

associated (Figure 52). These were in the HLA region, a region of extended LD, 

and a number of associated SNPs were noted here, all in moderate to 

significant LD with the most associated SNP in this analysis, rs2187668. As 

clusters of SNPs reaching, or almost reaching, genome-wide statistical 

significance were seen in these two regions, these results were thought to 

represent true association.  

 



 

253 

 

 

Figure 49: Quantile-quantile (QQ) plots for an association analysis comparing 50 AAD family cases versus 2706 WTCCC 1958 
birth cohort controls.  

QQ plots of ordered observed statistics (-log10 P value) on the y axis versus expected values under the null hypothesis on the x axis. The 
line which intercepts the x and y axes at zero represents the relationship between expected and observed values under the null 
hypothesis. Panel A represents the QQ plot for all data. Panel B represents the QQ plot with the six most outlying results removed.  
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Chr rs ID Position (HapMap)  EMMAX P value Position  

2 rs11681243 48104650  1.7 x 10
-7 

 Intergenic  

2 rs7561696 48157345  1.8 x 10
-7 

 Intergenic  

2 rs13431982 48286415  3.3 x 10
-7 

 Intergenic  

2 rs10495950 48288258  9.7 x 10
-8 

 Intergenic  

2 rs17325209  48332704  2.1 x 10
-7 

 Intergenic  

2 rs1406242 151151406  5.9 x 10
-20 

 Intergenic  

3 rs7632505 124220987  4.3 x 10
-9 

 SEMA5B (semaphorin 5B)  

3 rs16840699 134920281  2.6 x 10
-10 

 Intergenic  

6 rs1150753 32167835  4.4 x 10
-7 

 TNXB (Tenascin B isoform 1) 

6 rs2187668 32713852  3.0 x 10
-7 

 HLA-DQA1  

6 rs15680 58380385  1.5 x 10
-12 

 Glucuronidase beta-like 2) 

8 rs1426192 21392622  3.4 x 10
-10 

 Intergenic  

13 rs873294 109965408  5.4 x 10
-24 

 Intergenic  

14 rs8007744 27399226  1.1 x 10
-18 

 Intergenic  

18 rs7229302 11498894  9.1 x 10
-16 

 Intergenic  

21 rs3787764 37154098  6.2 x 10
-25 

 HLCS (Holocarboxylase synthetase) 

Table 19: Association analysis results between 50 AAD family cases and 2706 1958 birth cohort controls.  

All SNPs with a P value less than 5 x 10-7 are shown in chromosome order. The final column shows the SNPs in relation to genes and 
non-coding RNAs. Intergenic SNPs are those not in genes or non-coding RNAs.  
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Figure 50: Manhattan plot showing results from an association analysis of 
50 AAD family cases versus 2706 WTCCC 1958 birth cohort controls.  

In this Manhattan plot, the chromosome position is shown on the x axis. The y 
axis shows the –log10 P value; –log10(P). Each SNP is represented by a 
coloured circle. In a genome-wide study such as this, a –log10(P) of seven, 
equivalent to a P value of 0.0000001, would be considered statistically 
significant (shown by the green line). In this analysis, a number of SNPs exceed 
this threshold, including a cluster of SNPs on chromosome 2 and a pair on 
chromosome 6.  
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Figure 51: Associated SNPs on chromosome 2 in 50 multiplex AAD cases compared to 2706 WTCCC 1958 birth cohort controls.   

LocusZoom plot showing a region on chromosome 2 containing an associated SNP, rs10495950, denoted by the purple diamond. This 
plot shows that this SNP is significantly associated with AAD in an analysis of 50 multiplex AAD cases and 2706 healthy controls, as are 
a cluster of other SNPs in the same intergenic region which are in significant LD with rs10495950 (r2 >0.80). These SNPs are in a region 
of low recombination and LD extends to SNPs in neighbouring genes MSH6, FBXO11, FOXN2, KLRAQ1 and STON1.  
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Figure 52: Associated SNPs on chromosome 6 in 50 multiplex AAD cases 
compared to 2706 WTCCC 1958 birth cohort controls.  

LocusZoom plot showing the HLA region on chromosome 6 containing an 
associated SNP, rs2187668, denoted by the purple diamond. The plot shows 
that this SNP is significantly associated with AAD in an analysis of 50 multiplex 
AAD cases and 2706 healthy controls, as are a cluster of other SNPs in the 
same region which are in moderate to significant LD with rs2187668 (r2 >0.40). 
These SNPs are in a region of low recombination which is very gene-dense (57 
genes are omitted from the bottom panel) and includes the CYP21A2 gene 
(indicated by the red circle) which encodes the steroid 21OH enzyme, a key 
component of the steroidogenesis pathway. LD extends to SNPs in 
neighbouring genes.  
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The linkage and association data were then compared to determine whether 

any of the most associated SNPs were located within the linkage peaks found 

(Table 20). There was overlap between the linkage peak on chromosome 6 

generated from the non-parametric analysis, taking AAD as the trait, with a pair 

of associated SNPs on chromosome 6 found in the genome-wide association 

analysis between the 50 AAD family cases and 2706 WTCCC 1958 birth cohort 

controls (Table 20). These regions both correspond to HLA, already known to 

be associated with AAD. This finding validates the approaches taken. The other 

region of interest found in the 50 AAD family cases and 2706 WTCCC 1958 

birth cohort controls association study, on chromosome 2, did not correspond 

with the linkage peak on chromosome 2 generated from the parametric linkage 

analysis using a co-dominant model. The most associated marker on 

chromosome 2 in the association study was some 35Mb upstream of the most 

associated marker in the linkage analysis. Therefore, the association analysis 

did not help to focus the areas of interest generated by the linkage analyses.  
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Study Trait of 
interest 

Analysis Chromosomal segment 
linked/associated 

Most linked/associated marker 
(position) 

Maximum LOD/HLOD or P 
value 

Linkage 
study 

AAD  Non-parametric Chr 6: 22.4-36.0 Mb rs2072633 (32.0 Mb) Linear LOD 3.13/exponential 
LOD 3.01 

Parametric, rare dominant Chr 18: 75.2-78.0 Mb rs1113678 (76.6 Mb) LOD/HLOD 3.00 

Chr 9: 17.5-19.8 Mb rs10123624 (19.0 Mb) LOD/HLOD 2.90 

Chr 7: 70.0-73.8 Mb rs10263367 (70.1 Mb) LOD/HLOD 2.88 

Parametric, rare co-dominant Chr 2: 12.7-15.5 Mb rs2380452 (12.9 Mb) LOD 1.43/HLOD 2.57 

21OH+ Parametric, rare dominant Chr 3: 0.99-6.7 Mb rs1948153 (6.5 Mb) LOD 1.02/HLOD 3.25 

 Association 
study  

AAD 50 AAD, 2706 WTCCC 
controls 

Chr 2: 48.1-48.3 Mb rs10495950 (48.3 Mb) P 9.7 x 10
-8

 

Chr 6: 32.2-32.7 Mb rs2187668 (32.7 Mb) P 3.0 x 10
-7

 

 Validation 
study 
meta-
analysis 

AAD Maximum 1097 AAD, 1117 
controls 

Chr 18: 74.5-76.1 Mb rs7236339 (75.7 Mb) P 0.004 

21OH+ Chr 18: 74.5-76.1 Mb rs7231100 (74.5 Mb) P 0.004 

Chr 7: 69.4-70.9 Mb rs12698902 (69.5 Mb) P 0.01 

Table 20: Summary of significant results from the AAD linkage, association and validation study analyses.  

For the linkage study, only loci with a maximum HLOD of greater than or equal to 2.50 are shown. For the association study, only loci 
where at least two SNPs reached genome-wide significance (P <5 x 10-7) are shown.  For the validation study, all results are presented.  
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5.6 VALIDATION STUDY IN EUROPEAN UNRELATED AAD CASE-

CONTROL COHORTS 

In summary, taking the results generated from the analysis of AAD as the trait 

of interest, linkage peaks with a LOD or HLOD of greater than 2.0 were 

observed on chromosomes 7, 9 and 18 applying a dominant model, and on 2 

and 9 applying a co-dominant model in a parametric analysis. In the non-

parametric analysis, one locus with a LOD of greater than 3.0 on chromosome 6 

was observed. Pairs or small clusters of SNPs reaching genome-wide 

significance were only seen on chromosomes 2 and 6. There was overlap 

between the linkage peak and association results on chromosome 6 only. A 

validation experiment was planned, aiming to investigate SNPs underlying 

some of the linkage peaks in a study of unrelated AAD cases and controls. As 

the linkage peaks were large and numerous, to make the validation experiment 

financially feasible, two peaks were prioritised for further investigation in a case-

control association study design.   

 

Initially, the linkage peak on chromosome 6 was eliminated from further analysis 

because of its close proximity to the MHC. MHC is already known to be strongly 

associated with AAD and autoimmunity. LD extends a large distance from MHC 

itself, which would make it difficult to determine whether any significant results 

were exerting an independent effect or arising due to LD with MHC alleles. The 

linkage peak on chromosome 18 was selected as the first area for more 

detailed analysis, as this had the greatest LOD score and the region of linkage 

was close to a plausible candidate gene, nuclear factor of activated T-cells, 

cytoplasmic, calcineurin-dependent 1 (NFATC1). NFATC1 encodes a 

transcription factor which plays a central role in gene transcription during the 

immune response and T cell activation and differentiation[422, 462]. The peak on 

chromosome 7 was then also chosen for further investigation, as this had a 

strong LOD score and the region of interest is very gene-rich, containing some 

plausible candidates for AAD. 
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A Sequenom assay was then designed, in three plexes, to include SNPs 

representing as many LD blocks as possible from in and around the regions of 

linkage on chromosomes 18 (75241668 – 77639585bp) and 7 (71185100 – 

73809454bp). Sequenom primer sequences for the 64 selected SNPs can be 

found in electronic appendix C. LD plots of all SNPs genotyped on 

chromosomes 18 and 7 are included in electronic appendix D. These 64 SNPs 

were genotyped by CIGMR, Manchester, in AAD case and control cohorts from 

the UK (346 AAD, 367 controls) and Norway (384 cases, 384 controls). A cohort 

from Sweden was also included. In this cohort, due to a shortage of DNA, one 

plex (21 SNPs in total), was genotyped in 345 AAD cases and 344 controls 

while the other two plexes (43 SNPs) were genotyped in 367 cases and 366 

controls. The data analysis was performed using contingency tables to calculate 

χ
2 statistics and P values. The full genotyping data for this analysis can be found 

in electronic appendix E.  

5.6.1.1 VALIDATION STUDY POWER 

Using QUANTO[442], power calculations for this validation study were performed. 

Assuming a MAF of 0.3 and α of 0.00083 to account for multiple testing, each 

individual cohort has more than 80% power to detect a locus with an odds ratio 

of 1.6 or more (Table 21). Combining the cohorts in a meta-analysis, under the 

same assumptions, this study has 97% power to detect a locus with an odds 

ratio 1.4.   

5.6.1.2 DATA QUALITY CONTROL 

Any SNP with a call rate of less than 95%, and any SNP out of HWE in the 

control cohort (P <0.01), was excluded from analysis. In the UK cohort, two 

SNPs were excluded based on a low call rate in the control cohort (rs1051978 

on chromosome 18 and rs7808818 on chromosome 7). In the Norwegian 

cohort, one SNP (rs4717599 on chromosome 7) was out of HWE in the control 

cohort (P 0.0097) and was therefore excluded. In the Swedish cohort, one SNP 

(rs2067534 on chromosome 18) was excluded on the basis of a call rate of 94% 

in the control cohort (see electronic appendix D). 
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Cohort (number 
of AAD cases) 

Case:control 
ratio 

OR 1.2 OR 1.4 OR 1.6 OR 1.8 

Combined (1097) 1:1.02 30% 97% 100% 100% 

Norway (384) 1:1 5% 41% 85% 98% 

Sweden (367) 1:1 4% 38% 82% 98% 

UK (346) 1:1.06 4% 36% 81% 97% 

Table 21: Table showing outcomes of power calculations for the validation 
study.  

Power is shown as a percentage for each individual cohort and the cohort as a 
whole, assuming a minor allele frequency of 0.3, a disease prevalence of 
1/10000 (0.0001) and an α of 0.00083 to account for multiple testing.
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5.6.1.3 INDIVIDUAL COHORT RESULTS 

The significant results from the validation experiment are summarised in Table 

22. 

5.6.1.4 META-ANALYSIS 

Meta-analysis was performed using Revman 5[221]. A random effects model was 

used to allow for heterogeneity between the cohorts. Any SNP not meeting the 

quality control criteria was excluded. In the cohort as a whole, three 

independent SNPs, all on chromosome 18, were associated. Maximal 

association was seen at rs7236339 (P 0.004), with association also noted at 

rs754093 (P 0.02) and rs8091998 (P 0.04). rs754093 was noted to be in the 

NFATC1 gene while the other two markers are intergenic (Table 23).  

 

In the 21OH autoantibody positive cohort, four SNPs were associated; three 

independent SNPs on chromosome 18 and one SNP on chromosome 7. On 

chromosome 18, maximal association was seen at rs7231100 (P 0.004), with 

less striking association also seen at rs1960120 (P 0.02) and rs11081569 (P 

0.03). These markers were all noted to be intergenic.  A single SNP on 

chromosome 7, rs12698902, located in the autism susceptibility candidate 2 

(AUTS2) gene, was also associated with AAD (P 0.01). 

 

The results of the linkage and association analyses, in addition to the validation 

study results, are summarised in Table 20. 
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SNP ID 

UK cohort  
(346 AAD,  

367 controls) 

Norwegian cohort  
(384 AAD,  

384 controls) 

Swedish cohort 
(367 AAD,  

366 controls;  
except SNPs 

marked * 345 AAD, 
344 controls) 

Chr 
P 

genotype 
P 

allele 
P 

genotype 
P 

allele 
P 

genotype P allele 

18 rs7231100* N/S N/S 0.042 0.026 N/S N/S 

18 rs2941794 N/S N/S 0.046 0.38 N/S N/S 

18 rs6506869 0.0097 0.39 N/S N/S N/S N/S 

18 rs2085985* 0.014 0.41 N/S N/S N/S N/S 

18 RS754093 N/S N/S N/S N/S 0.033 0.07 

18 rs3826573 N/S N/S N/S N/S 0.0053 0.0016 

18 rs1960120* N/S N/S N/S N/S 0.058 0.017 

18 rs7236339* N/S N/S 0.073 0.032 0.031 0.28 

7 rs12672930 N/S N/S 0.029 0.034 N/S N/S 

7 rs12698902 N/S N/S N/S N/S 0.02 0.0063 

7 rs10486872 0.093 0.037 N/S N/S N/S N/S 

7 rs10237317 0.1 0.044 N/S N/S N/S N/S 

7 rs38319 N/S N/S 0.12 0.038 N/S N/S 

7 rs38307 0.1 0.035 0.0037 0.001 N/S N/S 

Table 22: Validation study significant association results for the UK, 
Norwegian and Swedish AAD cohorts.  

Of the 64 SNPs genotyped in this study, 14 (eight on chromosome 18 and six 
on chromosome 7) were associated with AAD in one or more of the cohorts. 
Non-significant results (P >0.05) are shown as N/S. SNPs marked with an 
asterisk (*) were genotyped in 345 Swedish AAD and 344 controls due to a 
shortage of DNA. 
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Chromosome rs ID AAD 21OH+ only Information 

P value (I2) P value (I2) 

18 rs7231100 0.19 (59%) 0.004 (0%) Intergenic 

18 rs754093 0.02 (0%) 0.12 (0%) NFATC1 

18 rs1960120 0.28 (46%) 0.02 (0%) Intergenic 

18 rs8091998 0.04 (0%) 0.69 (8%) Intergenic 

18 rs7236339 0.004 (0%) 0.05 (0%) Intergenic 

18 rs11081569 0.07 (0%) 0.03 (0%) Intergenic 

7 rs12698902 0.13 (45%) 0.01 (0%) AUTS2 

Table 23: Meta-analysis, applying a random effects model, of chromosome 
18 and chromosome 7 validation study genotyping results from UK, 
Norwegian and Swedish AAD cohorts.  

Association is seen with alleles at three SNPs on chromosome 18 (shown in 
yellow) in the AAD cohort as a whole. When all 21OH autoantibody negative 
people were excluded, alleles at three SNPs on this chromosome, and a further 
SNP on chromosome 7, were associated (shown in pink).
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5.7 DISCUSSION  

5.7.1 LINKAGE ANALYSIS  

This study is the first linkage analysis in AAD and takes advantage of a unique 

sample resource of multiplex AAD families from both the UK and Norway. It has 

generated some interesting results which will need further investigation and 

replication.  

 

This study implicates a number of chromosomal regions in susceptibility to 

AAD. In a non-parametric analysis, a linkage peak with a linear LOD of 3.13 

was seen on chromosome 6, corresponding to the HLA region which is a known 

susceptibility locus for AAD. The detection of a linkage peak at this region of 

chromosome 6 demonstrates that the study is sufficiently powerful to detect a 

locus with an odds ratio previously estimated to be between 3 and 15[55, 463], and 

validates the approach used.  

 

When a parametric analysis was performed, applying a dominant model, a 

single linkage peak on chromosome 18 had a LOD/HLOD score of 3.00 (at 

76.6Mb) confirming linkage, while two other loci, on chromosomes 9 and 7, had 

LOD/HLOD scores of just less than 3.0 (maximum LOD/HLOD 2.90 at 19.0Mb 

on chromosome 9; maximum LOD/HLOD 2.88 at 70.1Mb on chromosome 7), 

which is highly suggestive of linkage. When this analysis was repeated using a 

co-dominant model, one linkage peak on chromosome 2 was observed with an 

HLOD greater than 2.5, suggestive of linkage (HLOD 2.57 at 12.9Mb, α 0.80). 

Assessing the pedigrees included in this analysis, no unifying mode of disease 

inheritance was apparent across all families. Some families displayed an 

autosomal dominant mode of inheritance, with affected individuals seen in 

multiple generations, while others obeyed a recessive pattern, with generations 

being skipped. In some families, where information was only available for a 

single generation, for example a trio of siblings, the mode of inheritance was 

unclear.  
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In any linkage analysis, this apparent heterogeneity can be allowed for in one of 

two ways: either by using a non-parametric approach, or by using a parametric 

approach and assessing the proportion of linked families, represented by α. The 

non-parametric approach, which assesses sharing of alleles IBD and therefore 

by necessity must exclude affected parent-offspring pairs, loses some power as 

the result of the reduced number of kindreds suitable for the analysis. The 

exclusion of affected parent-offspring pairs, suggestive of a dominant pattern of 

inheritance, means that the non-parametric method often gives similar results to 

using a recessive model in a parametric analysis. Indeed, although not 

significant, a region of linkage with a maximum LOD/HLOD of 1.66 was seen on 

chromosome 6 in the parametric linkage analysis applying a recessive model, 

supporting this observation. In contrast, the parametric approach, using multiple 

models, allows all pedigrees to be included, thus increasing study power, and 

the calculation of the HLOD allows for genetic heterogeneity between the 

kindreds. At the most significant linkage peaks on chromosomes 18, 9 and 7, all 

families were contributing to the results and therefore the observed LOD and 

HLOD scores were the same. Applying different models in the parametric 

linkage analysis gave very different results, demonstrating clearly that 

parametric linkage analysis is sensitive to the model specified. On balance, 

assessing the pedigree information available, the dominant model would seem 

to be the most appropriate. Results should be interpreted in light of the multiple 

analyses used in this study. 

 

The kindreds selected for this study were relatively small, comprising just a few 

individuals. In general, larger, multi-generational families tend to be more 

informative for linkage analysis and if smaller kindreds are to be used, more will 

be needed in order to generate sufficient study power. The small nature of the 

multiplex AAD kindreds collected for this study reflects the fact that AAD is a 

condition which largely affects people of Caucasian extraction, where families 

tend to be small, and has its major peak of onset in middle-age. Therefore, 

kindreds available for analysis tend to be small and, as the probands are often 

in their fourth or fifth decade of life, their parents may be deceased and 

therefore unavailable for analysis. Only five three-generation families (i.e. 

grandparents, parents and children) were available for inclusion, while five 
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kindreds included just a single generation (i.e. a group of siblings). Kindreds 

included in this linkage study were carefully assessed in order to select a 

relatively homogeneous AAD population. To limit the possibility of including 

kindreds with a non-autoimmune aetiology to their Addison’s, such as 

tuberculosis or adrenoleukodystrophy, and to exclude those with monogenic 

AAD due to APS1, families included were carefully questioned. A history of 

mucocutaneous candidiasis, hypoparathyroidism and dental problems was 

sought to exclude those with APS1 and a history of tuberculosis or other 

unusual phenotypic features which would suggest a diagnosis other than AAD 

was sought from included family members. Features in families that were 

considered suggestive of an autoimmune aetiology included the presence of 

other autoimmune conditions in those with AAD and in their first degree 

relatives. In particular, a personal or family history of autoimmune thyroid 

disease or type 1 diabetes was sought as these conditions are commonly seen 

in conjunction with AAD, and in relatives of people with AAD.  

 

21OH autoantibody status was given low diagnostic priority in terms of 

confirming the diagnosis of AAD in affected cases, and in terms of excluding 

AAD in “healthy” relative controls. As the hallmark for autoimmune disease, 

assigning 21OH autoantibody status a low diagnostic priority may seem 

counterintuitive. However, the 21OH status of individuals may be misleading. 

The 21OH autoantibody assay is not currently in routine diagnostic use and, 

although careful quality control measures are employed during the use of this 

assay, including batching the samples with both positive and negative controls, 

there is the possibility of a spurious (most commonly a false negative) result, as 

with any other assay. A recent study has demonstrated that there is some 

inevitable intra and inter-laboratory assay variation[464]. In terms of its use in 

confirming the diagnosis of an autoimmune aetiology in those with Addison’s, 

21OH autoantibodies are useful when positive, but relatively unhelpful when 

negative. The reasons for this are twofold. Firstly, a minority of individuals with 

known AAD are found to be 21OH autoantibody negative[465]. These individuals 

may have autoantibodies to other adrenal components which are not routinely 

tested for. Secondly, in individuals with AAD, 21OH autoantibody titres have 

been found to reduce over time as the adrenal cortex is gradually destroyed and 
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the autoimmune process burns out. In one study, 21OH autoantibodies were 

detected in 92% of individuals tested within 2 years of diagnosis and in 78% of 

those tested after 2 years of diagnosis[465]. Therefore, in individuals who have 

been diagnosed with Addison’s disease for a number of years, a negative 

autoantibody result is not unexpected and certainly does not exclude the 

diagnosis of AAD.  

 

In terms of its use in healthy controls with no clinical signs or symptoms of 

adrenal insufficiency, the significance of a positive 21OH autoantibody assay 

result is currently unknown. Simplistically, you could regard a negative 21OH 

result in this population as normal and a positive result as abnormal, meaning 

that a 21OH autoantibody positive control should be excluded. However, in a 

review[466] which collated results from multiple studies, in 6488 healthy controls, 

without any evidence of autoimmune disease, a total of 37 (0.57%) had positive 

21OH or adrenal cortex autoantibodies, with studies reporting incidences 

between 0 and 1.6%[54, 467]. In those people who do have positive 

autoantibodies, the risk of progression to overt adrenal failure has been 

calculated. In one longitudinal follow-up study, of 100 individuals who were 

adrenal autoantibody positive, 31 developed AAD over a follow-up period of up 

to 21 years[46]. This allowed a cumulative risk of 48.5% to be calculated for 

21OH autoantibody positive individuals[46]. The risk of progression was 

increased in children compared with adults and in those with high titres 

compared to those with moderate or low autoantibody titres. Crucially however, 

not all individuals with autoantibodies go on to develop progressive disease, 

with some remaining antibody positive but with normal adrenal function long 

term, and with some reverting to being autoantibody negative[45, 46]. Together, 

these findings demonstrate that autoantibody status cannot be reliably used to 

predict progression to AAD in people who are well and autoantibody positive, or 

to confirm the diagnosis of AAD in individuals with disease who are 

autoantibody negative.  

 

In our kindreds, eight individuals with AAD were found to be 21OH autoantibody 

negative. These individuals came from five families (three from the UK, two 
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from Norway) and had a mean duration of disease 10.3 years (median 6.5 

years, minimum 2 years, maximum 37 years). Given that all had been 

diagnosed with AAD for at least 2 years, and some for much longer, these 

negative 21OH assay results are not entirely surprising and do not exclude a 

diagnosis of AAD. In addition, those who were 21OH autoantibody negative, 

and those who could not be tested due to lack of serum, all had either a 

personal history of autoimmune thyroid disease or type 1 diabetes, a history of 

these conditions in a first degree relative or a close relative with positive 21OH 

autoantibodies, with the exception of two sisters from UK family 6. These 

factors combine to make a diagnosis of AAD likely, even in those without 

confirmed 21OH autoantibodies. The two siblings who did not meet the above 

criteria, did however both have ankylosing spondylitis in addition to Addison’s, a 

disease with a probable underlying autoimmune aetiology associated with HLA 

alleles. Therefore, this family was not excluded from the linkage analysis.  

 

Five “healthy” relatives, with no clinical evidence of adrenal insufficiency, from 

five separate kindreds, were found to be 21OH autoantibody positive. This 

finding provoked a second linkage analysis, looking at 21OH autoantibody 

status as the trait of interest. Unfortunately, serum samples, and therefore 

21OH autoantibody results, were not available for 12 individuals, 11 of whom 

had AAD, therefore considerable power was lost in this analysis. However, 

there was a single linkage peak with a LOD of greater than 3.0 in the parametric 

analysis applying a dominant model. This was on chromosome 3 where a 

maximum HLOD of 3.23 at 6.5Mb provided strong evidence for linkage. The 

detection of a novel linkage peak on chromosome 3 in this analysis, which was 

not observed when AAD was assessed as the trait, suggests that 21OH 

autoantibody status may have different genetic determinants to AAD. It can be 

hypothesised that these differences perhaps determine which individuals with 

21OH autoantibodies go on to develop AAD, which remain autoantibody 

positive but do not progress to disease and which clear their autoantibodies and 

remain autoantibody and disease-free in the long term. As 21OH autoantibodies 

are more common early in disease, genes associated with 21OH positivity are 

perhaps those responsible for disease initiation, while the genetic determinants 
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of disease progression may be entirely distinct. This hypothesis requires further 

investigation.  

 

In order to ensure that linkage results generated were valid and replicable, 

considerable effort was made to select a homogenous cohort of carefully 

phenotyped kindreds for this study. Despite this, one major limitation to any 

linkage study in later-onset diseases such as AAD is that while an individual’s 

genetic makeup is relatively stable, rendering them susceptible to a particular 

disease, their phenotype can change. In the kindreds studied here, it is possible 

that some unaffected relatives, whether currently 21OH autoantibody positive or 

negative, may later develop AAD. Furthermore, the 21OH autoantibody status 

of some individuals may change over time, with people with AAD becoming 

autoantibody negative as the time interval from diagnosis increases and some 

people who are antibody negative becoming positive. It is impossible to control 

for this effectively. Excluding children under the age of 18 as healthy controls 

helps to minimise this as an unaffected child could simply not have had the 

opportunity to develop disease if they are genetically predisposed to do so. 

Careful long-term follow up will be useful to determine the outcome of all of the 

people involved in this study, in particular those who are 21OH autoantibody 

positive but currently clinically unaffected by AAD.   

5.7.2 GENOME-WIDE ASSOCIATION ANALYSES 

The linkage peaks observed in this study were large and contained many 

genes, some coding for proteins of unknown function and some which appeared 

to be plausible candidates for AAD. A full list of all genes underlying the linkage 

peaks, taken from HapMap[102], can be found in electronic appendix F. Two 

genome-wide association analyses were therefore performed using the 

genotyping data from the multiplex AAD families in an attempt to narrow down 

the areas of interest. Initially, affected AAD individuals from within the families 

were used as cases and compared to the unaffected relatives as controls. This 

analysis did not reveal any significant associations and this was not surprising 

as this analysis was very underpowered. The second analysis took the affected 

AAD individuals within the families as cases and compared them to more than 
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2000 controls from the WTCCC UK 1958 birth cohort to increase the study 

power. A number of SNPs were associated in this analysis. Any associated 

SNPs seen in isolation were disregarded, as these are likely to represent 

chance findings or spurious genotyping results. However a pair of SNPs on 

chromosome 6, 546kb apart, corresponding to the HLA, were associated 

(rs2187668, P 3.0 x 10-7 ; rs1150753, P 4.4 x 10-7) (Figure 52) as were a cluster 

of five SNPs spanning 230kb on chromosome 2, where maximal association 

was seen with SNP rs10495950 (P 9.7 x 10
-8

) (Figure 51). The finding of a pair 

of SNPs corresponding to the HLA region again validates this method. The 

cluster of associated SNPs on chromosome 2 was approximately 30Mb 

upstream of the linkage peak seen on the same chromosome in the parametric 

analysis using a co-dominant model: the two regions therefore did not 

correspond. These associated SNPs were noted to be between the F-box only 

protein 11 (FBXO11) and Forkhead box N2 (FOXN2) genes. These genes are 

118 and 63kb distant from the nearest associated SNP respectively.  

 

The FBXO11 protein product contains domains that allow it to methylate 

arginine residues[468]. Methylation is known to be important in multiple cellular 

processes and arginine methylation in particular is a common post-translational 

modification thought to be important in regulating protein function[469, 470]. The 

FBXO11 protein has been shown to suppress the function of p53, a ubiquitous 

tumour suppressor protein, through neddylation, a process very similar to 

ubiquitination[471]. In addition, it is also known to regulate the TGFβ signalling 

pathway[472, 473] which is important for cell growth, differentiation, apoptosis and 

TReg function. These diverse functions make it a plausible potential candidate 

gene for AAD. The FOXN2 gene encodes a forkhead domain DNA binding 

protein, also known as the Human T-cell leukaemia virus enhancer factor. As its 

alternative name suggests, it is thought to regulate transcription of the human T-

cell leukaemia virus long terminal repeat[474], thus perhaps playing a role in T 

cell leukaemia and lymphoma. As a DNA-binding protein, it is likely to have 

other functions, although these are poorly understood at present. Studies in 

mice have shown that the Human T-cell leukaemia virus enhancer factor is 

expressed in a number of tissues during embryogenesis, suggesting that it 
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might have a role in development[475]. Unfortunately, the associated SNPs on 

chromosome 2 observed between these two genes are in a region of low 

recombination and therefore extended LD, which includes not only the FBXO11 

and FOXN2 genes, but also mutS homolog 6 (MSH6), a highly conserved DNA 

repair gene[476], protein phosphatase 1, regulatory subunit 21 (PPP1R21), a 

gene which encodes a protein thought to regulate protein phosphatase 1 which 

is involved in numerous cellular processes including cell signalling and DNA 

damage repair[477] and stonin 1 (STON1), a member of the stonin protein family, 

members of which are involved in molecule trafficking and endocytosis. Based 

on known function alone, the FBXO11 gene is probably the most likely 

candidate in AAD. However, as our understanding of protein function is 

incomplete, the true association could lie with any of these genes, or indeed 

with a non-coding RNA exerting a regulatory effect. This region therefore 

requires further investigation.  

 

A significant limitation in the design of the genome-wide association study, 

comparing the 50 familial AAD cases with the UK WTCCC controls, is that more 

than half of the AAD cases (54%) originate from Norway. Comparing Norwegian 

AAD cases to controls from the UK could potentially result in some spurious 

findings due to inherent genetic differences between the populations (population 

stratification). Indeed, the candidate gene study included in this thesis did 

demonstrate some genetic heterogeneity between the UK and Norwegian 

control cohorts. The UK WTCCC controls were selected for this study as the 

data are freely available, the demographics of the control population are well 

described and the data have undergone strict quality control measures and are 

therefore known to be robust. Conversely, a similar Norwegian control cohort 

that could be used for comparison is not freely available. Furthermore, if the 50 

familial AAD cases were to be divided into individual UK and Norwegian cohorts 

for separate analyses, the study would lose significant power. The use of the 

UK WTCCC controls therefore represents a compromise which should be 

considered when interpreting the results.   
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With this limitation in mind, given that the linkage analysis was more powerful 

from the outset than the genome-wide association analyses and as there was 

no overlap between the regions of linkage and the associated SNPs, with the 

exception of the HLA region on chromosome 6, the decision was taken to use 

the preliminary linkage analysis results to direct further investigations to detect 

novel susceptibility loci for AAD, with a view to investigating the association with 

chromosome 2 at a later date. 

5.7.3 VALIDATION STUDY ASSOCATION ANALYSIS 

Following assimilation of the linkage and association data, the linkage peaks 

were scrutinised further, with particular attention being paid to any likely 

candidate genes underlying the peaks. The linkage peaks on chromosomes 18 

and 7 were chosen for a case-control validation study in UK, Norwegian and 

Swedish AAD cohorts. Chromosome 18 was chosen as this was the only 

linkage region, with the exception of chromosome 6, meeting the LOD threshold 

of 3.0 when AAD was examined as a trait. There was little difference between 

the amplitude of the linkage peaks on chromosomes 9 and 7. However, 

chromosome 7 was chosen for the validation study as the region of interest was 

more gene-rich. The meta-analysis was performed in two ways. Initially, the 

cohort was analysed as a whole, including 1097 AAD cases and 1117 controls, 

using a random effects model to allow for heterogeneity. Then, a second 

analysis was performed, excluding any individuals who were not 21OH 

autoantibody positive (including a maximum 702 AAD cases and 1117 controls). 

In this study, 60 independent loci were tested and the effects of multiple testing 

must be considered when interpreting the results. If a Bonferroni correction is 

applied based on 60 independent tests, a P value of 0.00083 (0.05/60) would 

be considered statistically significant and any result not meeting this threshold 

could be considered a chance finding as a result of multiple testing.  

 

In the meta-analysis of the cohort as a whole, modest association was observed 

with three independent SNPs on chromosome 18 and AAD; however, none of 

these would meet the corrected P value threshold.  
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Two of these SNPs on chromosome 18 are 18kb apart (rs8091998 (P 0.04), 

rs7236339 (P 0.004). rs8091998 is found approximately 47kb upstream from 

the carboxy-terminal domain RNA polymerase II, polypeptide A phosphatase, 

subunit 1 (CTDP1) gene which encodes a protein that can phosphorylate RNA 

polymerase II and therefore influence transcription[478], and rs7236339 is 

approximately 44kb downsteam from the potassium voltage-gated channel 

subfamily G, member 2 (KCNG2) gene which encodes a subunit of the 

potassium voltage-gated ion channel. Importantly, there is no LD between these 

associated markers, and no LD between these and any SNPs within the two 

neighbouring genes. As there is no LD between the associated markers and 

SNPs in CTDP1 or KCNG2, it is very unlikely that this observed association is 

due to a causative mutation in either of these genes. Three other SNPs in the 

region between CTDP1 and KCNG2 were also genotyped in this validation 

study: these were not in LD with the associated SNPs, and no association was 

observed with these markers and disease.  

 

When the meta-analysis was repeated, excluding 21OH autoantibody negative 

individuals, two different independent SNPs (rs1960120, P 0.02; rs11081569, P 

0.03), in the same intergenic region, were associated with AAD. These SNPs 

are 87kb apart: rs1960120 is 21kb upstream of CTDP1 while rs11081569 is just 

1kb downstream from KCNG2. Again, there is no LD between these two SNPs, 

and no LD between these and any SNPs within the neighbouring genes. It is 

possible that these are chance findings as the P values do not remain 

significant when multiple testing is considered. However, the finding of multiple, 

associated, independent SNPs in this intergenic region could also indicate 

association between AAD and a causative non-coding variant located between 

the two genes which is being tagged by these associated markers.  

 

The third chromosome 18 SNP also associated with AAD in the full AAD cohort 

meta-analysis was rs754093 (P 0.02). This SNP is located in the NFATC1 

gene. NFATC1 is an excellent candidate gene for autoimmune conditions in 

general, including AAD, as it encodes a transcription factor which is a member 

of the NFAT family of proteins. The NFAT proteins are expressed on cells of the 
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immune system and rapidly induce gene expression, which allows a fast and 

vigorous immune response[419-421]. NFAT proteins have a REL-homology region 

and an NFAT-homology region and can bind specific DNA sequences[399, 422]. 

They are present in the cytoplasm but rapidly translocate to the cell nucleus 

when surface T cell receptors, or other receptors coupled to calcium 

mobilisation, are stimulated. The translocation process is controlled by 

calcineurin which interacts with the NFAT domain. In the nucleus, they form 

transcription complexes with NFAT proteins and other molecules, and regulate 

gene expression in response to T cell activation during immune and 

inflammatory responses[422]. NFATC1 is a gene that comprises ten exons, 

spanning approximately 130kb. In Caucasians, the gene can be loosely divided 

into six LD blocks. In this study, eight independent SNPs in NFATC1 were 

genotyped, but only one was associated with AAD and the association was 

modest. The individual cohort results did not reveal anything of added interest in 

this region. Again, this could be a chance finding, but could also be an 

indication that the NFATC1 gene is exerting a modest influence on AAD 

susceptibility. Further investigation into this locus would be needed to confirm or 

refute this hypothesis.  

 

In the meta-analysis of 21OH autoantibody positive subjects, in addition to the 

two intergenic chromosome 18 SNPs discussed above, a further SNP on 

chromosome 18, rs7231100, was also associated (P 0.004).This SNP lies 

between the galanin receptor 1 (GALR1) gene, which encodes a G-protein 

coupled receptor for the neuropeptide galanin[479, 480], and the Sal-like 3 (SALL3) 

gene, which encodes a conserved zinc finger protein[481] thought to be important 

in developmental processes and in regulating DNA methylation[482, 483]. These 

two genes are almost 2Mb apart and the associated SNP it is not in LD with any 

SNPs within these genes. This SNP lies 54kb from the rs2002842 SNP which 

has been associated with rheumatoid arthritis in a previous genome wide 

association study[484]. However, these SNPs are not in LD and the rs2002842 

SNP was investigated in this study and was not found to be associated with 

AAD, either in the cohort as a whole, or in the 21OH autoantibody positive only 

cohort (P 0.70 and 0.47 respectively).  
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Finally, a single SNP in the AUTS2 gene on chromosome 7, rs12698902, was 

associated with AAD (P 0.01) in the 21OH autoantibody positive analysis. The 

AUTS2 gene was initially identified by a group studying a pair of monozygotic 

twins with autism and developmental delay[485] and as such, research into the 

gene and its protein product have, to date, largely focussed on 

neurodevelopmental disorders and been driven by researchers in this field. It is 

a large gene that spans approximately 1.2Mb and is composed of 19 exons. 

The physiological role of the AUTS2 protein is unknown. From studies in mice, 

AUTS2 has been found to be a nuclear protein which is highly expressed in the 

cerebral cortex and cerebellum[486]. Mutations in this gene have been 

associated with developmental delay[487] and autism[488], while genome-wide 

association studies have linked this region to both epilepsy[489] and alcohol 

intake[486]. Finally, a recent study has linked AUTS2 polymorphisms to heroin 

dependence and demonstrated reduced levels of expression in heroin 

addicts[490]. These findings make the AUTS2 gene an unlikely functional 

candidate for AAD at present, however it is likely that the AUTS2 protein has 

broader functions and is more widely expressed than is currently appreciated, 

and therefore it is possible that it might have a role to play in susceptibility to an 

autoimmune disorder. Of the seven independent SNPs in AUTS2 genotyped in 

this study, only one was associated with AAD in the meta-analysis of the 21OH 

autoantibody positive cohort. Again, this could be a chance finding or it could 

indicate that AUTS2 is associated with susceptibility to AAD. The likelihood of 

this being a real association is increased by the observation that there is 

association with different AUTS2 SNPs within the individual cohorts genotyped 

(Table 22). Although the meta-analysis P value result at this SNP does not meet 

the threshold set when multiple testing is considered, the pattern of association 

between the cohorts with SNPs in the AUTS2 gene does indicate that there 

might be a role for AUTS2 in susceptibility to AAD.  

 

The main limitation of this validation study is that the linkage peaks are very 

large and the resulting haplotype coverage provided by the 64 SNPs genotyped 

was therefore inadequate. Although the Sequenom platform allows the user to 
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multiplex assays, a maximum of 40 assays can be genotyped in one plex, and 

assay compatibility issues often mean that only 20 to 25 SNPs can be 

genotyped together. Ideally, all the variation underneath the two linkage peaks 

of interest would have been captured by genotyping one SNP per LD block. 

However, the chromosome 18 linkage peak spans 2.7 million base pairs and 

the chromosome 7 peak spans 3.8 million base pairs. To attain adequate 

coverage, even with careful SNP selection, many hundreds more SNPs would 

need to be genotyped.  

 

Another significant flaw of the validation study pertains to a fundamental 

assumption made when designing the study: that individuals with AAD occurring 

sporadically will have the same underlying genetic basis to their disease as 

individuals with the familial form. If this is not the case and variants conferring 

disease in multiplex AAD families are entirely different to variants conferring 

susceptibility to AAD in sporadic cases, then searching under regions linked to 

familial AAD in sporadic AAD case-control cohorts would be a futile exercise. 

The finding of linkage with the HLA region on chromosome 6 suggests that the 

multiplex AAD families do at least share some susceptibility loci with sporadic 

cases. However, there are some loci that are known to confer susceptibility to 

sporadic AAD which do not correspond to any of the linkage peaks seen in the 

families. Replicated loci known to confer susceptibility to sporadic AAD include 

the CTLA4 gene on chromosome 2, which is some 189 million bases from the 

linkage peak observed in the parametric co-dominant analysis and 156 million 

bases from the cluster of associated SNPs on chromosome 2 from the 

association analysis. The PTPN22 gene on chromosome 1 has also been 

associated with AAD in a number of cohorts but no linkage was seen in any 

analyses to the chromosomal region containing this susceptibility locus. 

However, the CTLA4 and PTPN22 loci confer only modest risk, with odds ratios 

calculated between 1 and 2, therefore these might not be detected by linkage 

analysis.   
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5.8 CONCLUSIONS AND FUTURE DIRECTIONS 

The linkage study has implicated a number of novel chromosomal regions in the 

pathogenesis of AAD in multiplex AAD families. However, the linkage peaks 

generated are large; neither the genome-wide association analyses performed 

nor the regional case-control association results, gathered through genotyping 

SNPs underlying the linkage peaks, have helped to narrow down the areas of 

interest in order to locate a causative locus. The genome-wide analysis looking 

at the 50 familial AAD cases compared to the UK 1958 birth cohort available 

from the WTCCC revealed a cluster of intergenic SNPs on chromosome 2 

which were associated with AAD. The case-control validation study 

demonstrated some modest association between an intergenic region between 

the CTDP1 and the KCNG2 genes on chromosome 18, the NFATC1 gene on 

chromosome 18 and the AUTS2 gene on chromosome 7 and AAD. However, 

none of the P values obtained in the cohorts individually, or in the meta-

analysis, met the threshold applied when multiple testing is taken into 

consideration, making these results less convincing. These findings warrant 

further investigation and a number of approaches could be adopted.  

 

To replicate and validate the linkage study findings, a carefully selected 

replication cohort, made up of additional multiplex AAD kindreds, is ideally 

required. As these kindreds are relatively rare, this replication cohort may take 

some years to assemble. An alternative approach would be to sequence 

selected members of the multiplex AAD families, looking for deleterious 

variants. Whole genome sequencing or whole exome sequencing technology, 

which is now falling in price and increasing in availability, could be used for this 

purpose. Indeed, a number of members of the multiplex AAD families used in 

this study are now being investigated by whole exome sequencing, by our 

Norwegian collaborators, for this reason. The results of this work are not yet 

available.  

 

To investigate further the cluster of associated SNPs on chromosome 2 in a 

region spanning 1Mb, detected by the genome-wide association study in the 50 



 

280 

 

familial AAD cases and 2706 WTCCC controls, one of two approaches could be 

taken. A custom microarray could be designed to include SNPs in the region. 

These arrays usually include multiples of 96 assays selected by the researcher 

to provide the maximum amount of information for the region of interest. 

Another approach which could be used is targeted resequencing, where a 

subset of the genome is sequenced: for example, a region of interest, a single 

chromosome or a group of exons. This technique commonly uses either array-

based hybridisation capture methods, where numerous oligonucleotides 

complementary to the region of interest are synthesised in situ on a DNA 

microarray[491, 492], or solution-based hybridisation capture, where 

oligonucleotide capture probes in solution are used to target regions of 

interest[493]. Both custom microarrays and targeted resequencing offer good 

regional coverage, however the advantage of targeted resequencing over a 

custom array is that it can be easily used to detect rare variants and structural 

changes which might be contributing to AAD disease susceptibility.   

 

In sporadic AAD cases, the results of interest from the validation study could be 

taken forward to a further candidate region study, looking in more detail at the 

NFATC1 and AUTS2 genes in addition to the intergenic region noted to be 

associated on chromosome 18. Again, either a custom microarray or targeted 

resequencing approach could be used in this instance to provide good coverage 

of the genes and surrounding regions and to determine whether these loci are 

contributing to AAD susceptibility.  

 

Finally, a genome-wide association study in sporadic AAD could be considered. 

This would require multi-centre cooperation to gather enough DNA samples for 

an initial study and a replication study. This approach would be expensive, but 

potentially very interesting.  

 

This work has implicated some novel chromosomal regions in the aetiology of 

both familial and sporadic AAD, but should be viewed as a hypothesis-

generating study. These findings must now be replicated and refined in order to 

increase our understanding of the pathophysiology of AAD.  
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CONCLUDING REMARKS 
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Despite being highly heritable, the underlying genetic aetiology to AAD is poorly 

understood. The rarity of AAD, combined with the lack of a good animal model 

of disease and the complex nature of its inheritance, makes it an interesting but 

challenging condition to investigate genetically.  

 

Prior to this series of studies, a number of candidate genes had been 

investigated in AAD by association analysis and implicated in disease 

susceptibility, including the HLA region and the CTLA4 and PTPN22 genes, 

which are the most widely replicated susceptibility loci in AAD. However, the 

studies previously conducted had been on relatively small cohorts and large, 

collaborative studies were lacking. In addition, a linkage study in AAD had never 

been conducted due to the rarity of multiplex families containing two or more 

individuals with AAD.  

 

This study has made use of unique sample resources and close collaborations 

with researchers across Europe to investigate the underlying genetic aetiology 

of AAD using a number of complementary approaches. This study was 

conducted with the single aim of discovering new genetic disease determinants. 

The hypothesis-driven approach, which has previously been applied to the 

study of AAD, has been employed in this work to investigate a number of 

promising candidate genes by association analysis in the largest cohort of AAD 

patients ever assembled. In addition, the candidate gene approach has been 

combined with a hypothesis-free, discovery-driven approach, using genome-

wide SNP genotyping technology in multiplex AAD families to perform the first 

linkage and genome-wide association study in AAD.  

 

In this study, PCR-based approaches have been undertaken to investigate 

perhaps the most obvious candidate locus in AAD, the steroid 21-hydroxylase 

locus on chromosome 6. This locus contains the CYP21A2 gene which encodes 

the 21-hydroxylase enzyme, the primary autoantigen in AAD, and also contains 

a highly homologous pseudogene, CYP21A1P, which contains a deleterious 

8bp deletion rendering the predicted protein product truncated and non-

functional. Attempts have been previously made to study this locus in AAD. 
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However, CYP21A2 is in a region of extended linkage disequilibrium, in close 

proximity to HLA, a known susceptibility locus in AAD, and this has made 

interpretation of the results of these studies difficult. In work which led up to this 

study, our group discovered that individuals with AAD are more likely to have no 

genomic copies of the CYP21A1P pseudogene when compared to controls. 

This observation could be attributed to LD with HLA. However, we hypothesise 

that this is not the case and that CYP21A1P transcripts and/or CYP21A1P 

protein products may be expressed in human thymus to promote and induce 

tolerance to components of the steroidogenic enzymes. Absence of these 

transcripts in individuals who do not have any copies of the CYP21A1P 

pseudogene in their gDNA could therefore result in increased susceptibility to 

AAD. As a first step in investigating this hypothesis, a cohort of individuals with 

Graves’ disease, for which HLA is also a susceptibility locus, were also 

genotyped for the presence or absence of CYP21A1P. While CYP21A1P was 

absent more often in Graves’ patients compared to controls, the association 

was far stronger with AAD. This suggests that although absence of CYP21A1P 

in individuals with AAD may be partly explained by LD with HLA, this deletion 

might also be conferring an independent effect on disease susceptibility in 

support of the initial hypothesis. Expression analysis, combining qPCR and 

tissue in situ hybridisation, were then successfully used to identify CYP21A1P 

transcripts in both fetal adrenal tissue and in thymic tissue obtained from infants 

and children. The presence of these transcripts are again in keeping with our 

hypothesis and may indicate a role for the CYP21A1P pseudogene in induction 

of immune tolerance. This intriguing finding will now need to be investigated 

further. We plan to use Western blotting to determine whether a truncated 

CYP21A1P protein product is expressed in these tissues. The presence of a 

pseudogene protein product would add further weight to the hypothesis that 

CYP21A1P has a role in establishing and maintaining immune tolerance to 

steroidogenic machinery and that absence of CYP21A1P predisposes to AAD.  

 

Taking a broader candidate gene approach, in this study, association analysis 

of twenty candidate genes in six European AAD cohorts was performed. Prior to 

this candidate gene study, loci implicated in the aetiology of AAD, and 

replicated in two cohorts, included MHC, MICA, MHC2TA, CYP27B1, NLRP-1, 
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PD-L1, CTLA4 and PTPN22. Following correction for multiple testing, the 

results from the 20 candidate gene study suggest a role for polymorphisms at 

three loci already associated with other autoimmune diseases in AAD and a 

single novel locus, not previously associated with autoimmunity. Of the three 

loci previously associated with autoimmune disease, two of these, NF-κB1 and 

IL23A, appear to influence AAD disease susceptibility only in certain 

populations: NF-κB1 in individuals from the UK and IL23A in Italian individuals. 

The third locus, STAT4, appears to influence disease susceptibility more 

universally in Europeans, as indicated by meta-analysis. A single locus not 

previously associated with autoimmunity, GATA3, was also associated with 

AAD, but only in the UK population. Further investigation of case-control cohorts 

with other autoimmune conditions, including type 1 diabetes, Graves’ disease 

and rheumatoid arthritis, failed to demonstrate any association with 

polymorphisms in GATA3. This suggests that this locus may not be influencing 

autoimmunity broadly, but may be specific to AAD susceptibility. This large 

candidate gene study has therefore added significantly to the growing list of 

susceptibility loci for AAD. In addition, this study has demonstrated significant 

heterogeneity between Caucasian European control cohorts. This finding is 

significant as it implies that, across individuals of European origin, often 

assumed to be genetically similar, the underlying genetic aetiology to AAD, and 

indeed other complex genetic disorders, may be subtly different. This could lead 

to difficulty replicating findings across cohorts from different countries and 

highlights the importance of carefully matching cases and controls in studies.  

 

Applying a discovery-driven, genome-wide approach to the investigation of a 

complex disease can result in interesting and unpredictable findings as no prior 

hypothesis is required. In this study, genome-wide SNP genotyping technology 

has been used to conduct the first linkage analysis in AAD, including 23 families 

from the UK and Norway with two or more individuals with AAD. A genome-wide 

association study, taking the 50 individuals with AAD from these families and 

comparing their genotype data to that from the publicly available Wellcome 

Trust 1958 UK Birth Cohort control group was also conducted for the first time 

in this disease. A non-parametric linkage analysis identified a single region of 

linkage on chromosome 6, corresponding to the HLA region. SNPs in this same 
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region on chromosome 6 were also associated in the genome-wide association 

analysis. The linkage peak and cluster of associated SNPs, which 

corresponded to HLA, a known AAD susceptibility locus, validated the two 

approaches taken. In addition, a parametric linkage analysis, applying a rare 

dominant model, identified three further chromosomal regions linked to disease, 

on chromosomes 7, 9 and 18, which are of interest. A further linkage peak, on 

chromosome 3, was identified when 21OH autoantibody positivity was analysed 

as the trait of interest in a parametric analysis applying a dominant model. This 

intriguing finding suggests that the genetic determinants of overt disease may 

be different to those which determine autoantibody status and progression from 

autoantibody positivity to subclinical to overt disease. Finally, a cluster of SNPs 

on chromosome 2 was also identified in the genome-wide association study, 

suggesting possible aetiological variants in these regions.  

 

To follow up these findings, we investigated 64 SNPs underlying the linked 

regions on chromosomes 7 and 18 in unrelated AAD case and control cohorts 

from the UK, Norway and Sweden. Unfortunately, this experiment did not reveal 

any susceptibility variants when multiple testing had been accounted for. This 

result was disappointing but perhaps predictable, as the linkage peaks were 

large, owing to the resolution of linkage analysis, and the majority of haplotypes 

in the two regions of interest were not represented in the data set. It is also 

possible that genetic determinants of familial AAD are different to those which 

confer susceptibility in the sporadic form of disease. Nevertheless, this work has 

generated some very interesting preliminary data and the findings now need to 

be replicated and investigated further. To this end, members of our multiplex 

AAD families are currently being investigated by whole exome sequencing by 

our Norwegian collaborators and the results of this are eagerly anticipated. In 

addition, collaborators in Sweden are currently collecting multiplex AAD families 

for a replication linkage study. Together, this further work should contribute 

significantly to our understanding of the genetic aetiology of AAD.  

 

Despite the challenges associated with investigating a rare, complex genetic 

disorder such as AAD, it is very important that progress is made in the field. 
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Ultimately, it is hoped that, through uncovering the genetic determinants of AAD 

and other related autoimmune conditions, and understanding how these result 

in disease, we will gain a greater understanding of the pathogenesis of AAD 

and autoimmunity in general. This, in turn, will lead to new therapeutic 

interventions being developed. Advances in genetic technologies and analysis 

methods are bringing this possibility ever closer, providing endless opportunities 

for learning more about heritable but non-Mendelian conditions such as AAD. 

The whole human genome can now be sequenced to search for rare variants 

that were, until recently, difficult and expensive to investigate and this could 

prove very useful in searching for variants contributing to AAD. The combination 

of genomic and functional approaches, which aim to investigate how sequence 

variants confer disease susceptibility, offer exciting and unique insights into 

disease pathogenesis, with the possibility of developing new drug targets. 

 

New therapies are much needed for AAD. Current clinical management focuses 

on replacing deficient steroid hormones, treating Addisonian crises when they 

arise and managing the consequences of long-term minor steroid over-

replacement. While this can be considered adequate, it is far from optimal: 

individuals with AAD have a poorer quality of life and increased mortality when 

compared to unaffected, age-matched peers. Rather than managing problems 

as they arise, a more satisfactory approach would be to attempt to alter the 

natural history of the disease. This could be achieved, for example, by 

modulating the immune response in an attempt to halt the autoimmune process 

which causes AAD, perhaps resulting in restoration of tolerance to native 

adrenal antigens. Indeed, attempts at altering the natural history of AAD by 

using B cell depletion therapy in affected individuals early in the disease, while 

some residual steroidogenic function remains, have already been attempted in 

our research group with some promising initial results[494]. However, in order to 

develop more new therapeutic approaches, novel therapeutic targets are 

needed. It is only by investigating the underlying aetiology of this disease that 

we will come to understand its pathogenesis more fully. It is through these 

insights that the gap between bench and bedside will be bridged and we will 

better understand how to treat individuals with AAD optimally and how to 

counsel their relatives of their own risk of AAD in the future.  
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