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Abstract 

This thesis aims to investigate the behaviour of financial markets by using agent-based 

computational models. By using a special adaptive form of the Strongly Typed Genetic 

Programming (STGP)- based learning algorithm and real historical data of stocks, indices and 

currency pairs I analysed various stylized facts of financial returns, market efficiency and 

stock market forecasts.  

This thesis also sought to discuss the following: 1) The appearance of herding in financial 

markets and the behavioural foundations of stylised facts of financial returns; 2) The 

implications of trader cognitive abilities for stock market properties; 3) The relationship 

between market efficiency and market adaptability; 4) The development of profitable stock 

market forecasts and the price-volume relationship; 5) High frequency trading, technical 

analysis and market efficiency. 

The main findings and contributions suggest that: 1) The magnitude of herding behaviour 

does not contribute to the mispricing of assets in the long run; 2) Individual rationality and 

market structure are equally important in market performance; 3) Stock market dynamics 

are better explained by the evolutionary process associated with the Adaptive Market 

Hypothesis; 4) The STGP technique significantly outperforms traditional forecasting 

methods such as Box-Jenkins and Holt-Winters; 5) The dynamic relationship between price 

and volume revealed inconclusive forecasting picture; 6) There is no definite answers as to 

whether high frequency trading is harmful or beneficial to market efficiency.    

  

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgments  

 

I am entirely grateful to Professor Hudson for his invaluable help troughout my studies at 

Newcastle University Business School. This work could not be possible without his help. I am 

also grateful to my co-supervisor Dr. Bartosz Gebka whose accurate comments and 

suggestions made this research richer. I hope that we can find time and space to continue 

working together on future research topics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

  

Contents 
Chapter 1 ................................................................................................................................................. 1 

Introduction ............................................................................................................................................ 1 

1.1 Background ................................................................................................................................... 1 

1.1.1 The Rationale for Agent-Based Modelling. ............................................................................ 1 

1.1.2 Methodological Aspects of Agent-Based simulations. .......................................................... 6 

1.1.3 Comparison between agent-based models and human subject experiments .................... 11 

1.2 Motivations for the thesis ........................................................................................................... 14 

1.3 Main findings and contributions ................................................................................................. 19 

1.4 Summary of the structure of the thesis. ..................................................................................... 23 

Chapter 2 ............................................................................................................................................... 24 

Literature Survey ................................................................................................................................... 24 

2.1 Artificial Stock Market Modelling ............................................................................................... 24 

2.1.1 Introduction ......................................................................................................................... 24 

2.1.2 Early studies and small artificial stock market models ........................................................ 26 

2.1.3 Many-type artificial stock market models ........................................................................... 30 

2.1.4 Emergence behaviour and many agent models .................................................................. 35 

2.1.5 Advanced artificial stock market modelling trends ............................................................. 51 

2.1.5 Recent artificial stock market modelling trends .................................................................. 55 

Chapter 3. .............................................................................................................................................. 57 

Artificial Intelligence Tools and Main Software Platform ..................................................................... 57 

3.1 Artificial Intelligence Tools in Finance ........................................................................................ 57 

3.1.1 Artificial Neural Network (ANN) in Finance ......................................................................... 57 

3.1.2 Genetic Algorithm in Finance ............................................................................................... 60 

3.1.3 Genetic Programming in Finance ......................................................................................... 62 

3.1.4 Strongly Typed Genetic Programming in Finance ................................................................ 68 

3.2 Main Software Platform .............................................................................................................. 70 

3.2.1 Altreva Adaptive Modeler .................................................................................................... 70 

3.2.2 Developing initial trading rules ............................................................................................ 71 

3.2.3  Artificial stock market structure ......................................................................................... 73 

3.2.4 Virtual Market clearing mechanism and order generation process .................................... 75 

Chapter 4 ............................................................................................................................................... 77 



vi 
 

Artificial stock market dynamics and market efficiency: An econometric perspective........................ 77 

4.1 Introduction ................................................................................................................................ 77 

4.2 Background ................................................................................................................................. 80 

4.2.1. Origins and supporting empirical evidence on the EMH .................................................... 80 

4.2.2. Challenging empirical evidence on the EMH ...................................................................... 81 

4.2.3. Ongoing debate of the EMH and the emergence of the AMH ........................................... 84 

4.3 Artificial stock market structure for this particular experiment ................................................. 87 

4.4 Simulation Results ....................................................................................................................... 88 

4.4.1. Is a financial market populated by more heterogeneous adaptive traders efficient? ....... 88 

4.5 Conclusions ............................................................................................................................... 105 

Chapter 5 ............................................................................................................................................. 107 

Herd behaviour experimental testing in laboratory artificial stock market settings. Behavioural 

foundations of stylised facts of financial returns................................................................................ 107 

5.1 Introduction .............................................................................................................................. 107 

5.2 Artificial stock market structure for this particular experiment ............................................... 111 

5.3 Simulation Results ..................................................................................................................... 113 

5.3.1. An investigation of whether the price series generated by artificial stock market agents 

exhibit herding behaviour in individual stocks as well as in a group of stocks. Testing the 

Marginal Trader Hypothesis. ....................................................................................................... 113 

5.3.2 Volatility analysis of price series generated by ‘Best Agents’ and ‘All Agents’. Is the Virtual 

Market price based on the behaviour of ‘All Agents’ less volatile in comparison with a price 

based on the behaviour of a small subset of agents?................................................................. 120 

5.3.3 Artificial stock markets and the Efficient Market Hypothesis. Is the price series generated 

by Best Agents more likely to converge with the Efficient Market Hypothesis, and therefore 

more efficient? ............................................................................................................................ 123 

5.4 Conclusions ............................................................................................................................... 127 

5.4.1 Limitations of the use of artificial markets in measuring herding behaviour. ....................... 129 

Chapter 6 ............................................................................................................................................. 130 

The implications of trader cognitive abilities for stock market properties ........................................ 130 

6.1 Introduction .............................................................................................................................. 130 

6.2 Background ............................................................................................................................... 132 

6.3 Artificial stock market structure for this particular experiment ............................................... 138 

6.4 Simulation results ..................................................................................................................... 141 

5.4.1 Whether the efficiency of markets is primarily a function of their rules or whether the 

effect of human motivations and cognitive abilities dominates. How much of the market 



vii 
 

efficiency is attributable to individual rationality, and how much is attributable to market 

discipline? That is testing the Hayek’s hypothesis. ..................................................................... 141 

6.4.2 Are the price series generated by the most intelligence agents more likely to conform to 

the Efficient Market Hypothesis, and therefore be more efficient? .......................................... 150 

6.5 Conclusions ............................................................................................................................... 153 

6.5.1 Limitations of the use of artificial tradesr in evaluating cognitive abilities. .......................... 154 

Chapter 7 ............................................................................................................................................. 156 

Using Strongly Typed Genetic Programming for profitable stock market forecasts. ......................... 156 

7.1. Introduction ............................................................................................................................. 156 

7.2. Background .............................................................................................................................. 158 

7.3. Artificial stock market structure for this particular experiment .............................................. 162 

7.3.1. Benchmark models and measures of forecasting accuracy. ............................................. 163 

7.4. Simulation results .................................................................................................................... 165 

7.4.1.An investigation into whether, to what extent and in which form the stock returns in 

excess of the risk free rate are indeed predictable and profitable. Evidence of in-sample and 

out-of-sample predictability with and without transaction costs taken into account. .............. 165 

7.4.2.An investigation into whether intelligence and trader cognitive abilities matter in the 

formation of more sophisticated trading rules or if the market mechanism is the main driving 

force. ........................................................................................................................................... 188 

7.5. Conclusions .............................................................................................................................. 189 

Chapter 8 ............................................................................................................................................. 191 

New evidence of small-cap stocks profitability and price-volume relation ....................................... 191 

8.1. Introduction ............................................................................................................................. 191 

8.2. Background .............................................................................................................................. 194 

8.3. Artificial stock market settings for this particular experiment ................................................ 197 

8.4. One-step-ahead (static) forecasts and benchmark forecasting models. ................................. 198 

8.5. Measures of forecasting accuracy. .......................................................................................... 199 

8.6. Simulation results .................................................................................................................... 200 

8.6.1. Comprehensive analysis of whether small-cap stocks are more predictable than large-cap 

stocks. An investigation into whether the three indices’ returns, in excess of the risk free rate 

are predictable, and most importantly profitable. ..................................................................... 200 

8.6.2. The dynamic relationship between trading volume and index returns. An investigation 

into whether the level of in-sample trading volume is a good predictor for the out-of-sample 

stock returns. .............................................................................................................................. 221 

8.6.3. An investigation into whether a market with a reduced population of 1,000 traders is 

capable of generating accurate and profitable forecasts. .......................................................... 225 

8.7. Conclusions .............................................................................................................................. 226 



viii 
 

Chapter 9 ............................................................................................................................................. 228 

Does high frequency trading affect technical analysis and market efficiency? And if so, how? ........ 228 

9.1. Introduction ............................................................................................................................. 228 

9.2. Background .............................................................................................................................. 231 

9.2.1. Technical analysis on the FX markets ............................................................................... 231 

9.2.2. HFT and its impact on market efficiency........................................................................... 235 

9.3. Artificial stock market structure for this particular experiment. ............................................. 238 

9.4. Data and parameters ............................................................................................................... 239 

9.5. Forecasting methods ................................................................................................................ 240 

9.5.1. Benchmark models ........................................................................................................... 240 

9.5.2. Evaluation of point forecasts ............................................................................................ 242 

9.5.3. Evaluation of directional forecasts. .................................................................................. 243 

9.6. Simulation results .................................................................................................................... 243 

9.6.1. Net profitability of high frequency trading ....................................................................... 243 

9.6.2. The impact of HFT on market quality................................................................................ 253 

9.7. Conclusions .............................................................................................................................. 262 

10.0 Conclusions of the thesis ........................................................................................................ 264 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

Figure 1.0 Main GP problem solving steps. .......................................................................................... 63 

Figure 2.0 Crossover process with different parents. .......................................................................... 64 

Figure 3.0 Crossover process with identical parents. ........................................................................... 65 

Figure 4.0 The two different mutation types. ...................................................................................... 66 

Figure 5.0 Altreva Adaptive Modeler main operational parts. ............................................................. 70 

Figure 6.0 The process of genetic crossover for generating new trading strategies. .......................... 71 

Figure 7.0 Order generation process. ................................................................................................... 75 

Figure 8.0 Time series plot of FTSE 100 generated by 1,000 traders. .................................................. 96 

Figure 9.0 Time series plot of FTSE 100 generated by 10,000 traders. ................................................ 96 

Figure 10.0 Time series plot of S&P 500 generated by 1,000 traders. ................................................. 96 

Figure 11.0 Time series plot of S&P 500 generated by 10,000 traders. ............................................... 97 

Figure 12.0 Time series plot of Russell 3000 generated by 1,000 traders. .......................................... 97 

Figure 13.0 Time series plot of Russell 3000 generated by 10,000 traders. ........................................ 97 

Figure 14.0 Hurst exponent for FTSE 100 price series generated by 10,000 traders. .......................... 99 

Figure 15.0 Histogram of Hurst exponent for FTSE 100 price series generated by 10,000 traders. .. 100 

Figure 16.0 Hurst exponent for S&P 500 price series generated by 10,000 traders. ......................... 100 

Figure 17.0 Histogram of Hurst exponent for S&P 500 price series generated by 10,000 traders. ... 100 

Figure 18.0 Hurst exponent for Russell 3000 price series generated by 10,000 traders. .................. 101 

Figure 19.0 Histogram of Hurst exponent for Russell 3000 price series generated by 10,000 traders.

 ............................................................................................................................................................ 101 

Figure 19.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. ....................... 177 

Figure 21.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. .............................. 178 

Figure 22.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns.................................. 178 

Figure 23.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. A plot of real data 

has been added on ................................................................................... Error! Bookmark not defined. 

Figure 24.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. A plot of real data has 

been added on for comparison purposes. .......................................................................................... 179 

Figure 25.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns. A plot of real data has 

been added on for comparison purposes. .......................................................................................... 180 

Figure 26.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. ....................... 180 

Figure 27.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. .............................. 181 

Figure 28.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns.................................. 181 



x 
 

Figure 29.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. A plot of real data 

has been added on for comparison purposes. ................................................................................... 182 

Figure 30.0  Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. A plot of real data has 

been added on for comparison purposes. ............................................... Error! Bookmark not defined. 

Figure 31.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns. A plot of real data has 

been added on for comparison purposes. .......................................................................................... 183 

Figure 32.0  Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 1000 daily index returns. ................ 212 

Figure 33.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 2000 daily index returns. ................ 212 

Figure 34.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 3000 daily index returns. ................ 213 

Figure 35.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 1000 daily index returns. A plot of real 

data has been added on for comparison purposes. ........................................................................... 214 

Figure 36.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 2000 daily index returns. A plot of real 

data has been added on for comparison purposes. ........................................................................... 214 

Figure 37.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell daily index returns. A plot of real data 

has been added on for comparison purposes. ................................................................................... 214 

 

 

 

 

 

 

 

 

 



xi 
 

List of Tables 

Table 1.0 Main characteristics of traditional and agent-based models ............................................... 10 

Table 2.0 Artificial Stock Market Parameter Settings ........................................................................... 87 

Table 3.0 Econometric statistics for FTSE 100 price series generated by a different number of traders 

in various artificial stock markets. ........................................................................................................ 90 

Table 4.0 Econometric statistics for S&P 500 price series generated by a different number of traders 

in various artificial stock markets. ........................................................................................................ 90 

Table 5.0 Econometric statistics for Russell 3000 price series generated by a different number of 

traders in various artificial stock markets. ............................................................................................ 91 

Table 6.0 Descriptive statistics of FTSE 100, S&P 500 and Russell 3000 price series-absolute 

deviations from real prices as a proportion of real prices for markets populated by 1,000 and 10,000 

traders. .................................................................................................................................................. 98 

Table 7.0 Artificial Stock Market Parameter Settings ......................................................................... 112 

Table 8.0 Dow Jones herding statistic based on 17,441 trading days for ‘Best Agents’ and ‘All Agents’.

 ............................................................................................................................................................ 115 

Table 9.0 IBM herding statistic based on 17,441 trading days for ‘Best Agents’ and ‘All Agents’. .... 116 

Table 10.0 GE herding statistic based on 17,441 trading days for ‘Best Agents’ and ‘All Agents’. .... 116 

Table 11.0 Econometric statistics for Dow Jones price series generated by ‘Best Agents’ and ‘All 

Agents’. ............................................................................................................................................... 120 

Table 12.0 Econometric statistics for General Electric price series generated by ‘Best Agents’ and ‘All 

Agents’. ............................................................................................................................................... 121 

Table 13.0 Econometric statistics for IBM price series generated by ‘Best Agents’ and ‘All Agents’. 121 

Table 14.0 Artificial Stock Market Parameter Settings. ...................................................................... 138 

Table 15.0 Econometric statistics of S&P 500 and Coca Cola Company Mean Absolute Error. ......... 142 

Table 16.0 Econometric statistics of S&P 500 and Coca Cola return series. ...................................... 143 

Table 17.0 Econometric statistics of S&P 500 and Coca Cola Company real return series. ............... 144 

Table 18.0 Econometric statistics of S&P 500 and Coca Cola Company stock prices......................... 145 

Table 19.0 Econometric statistics of S&P 500 and Coca Cola Company trading volume. .................. 147 

Table 20.0 Econometric properties of S&P 500 and Coca Cola return series. ................................... 151 

Table 21.0 Artificial Stock Market Parameter Settings ....................................................................... 162 

Table 22.0 Descriptive statistics for the S&P 500, IBM, and GE in-sample and out-of-sample daily 

returns. ................................................................................................................................................ 165 

Table 23.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (without 

transaction costs) forecasting models on S&P 500 daily stock return series. .................................... 166 

Table 24.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (without 

transaction costs) forecasting models on IBM daily stock return series. ........................................... 166 

Table 25.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (without 

transaction costs) forecasting models on GE daily stock return series. ............................................. 167 

Table 26.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (transaction 

costs included) forecasting models on S&P 500 daily stock return series.......................................... 167 

Table 27.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (transaction 

costs included) forecasting models on IBM daily stock return series................................................. 168 

Table 28.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (transaction 

costs included) forecasting models on GE daily stock return series. .................................................. 168 



xii 
 

Table 29.0  In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models on S&P 500 daily stock return series. .................................................................. 169 

Table 30.0  In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models on IBM daily stock return series. ......................................................................... 169 

Table 31.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models on GE daily stock return series. ........................................................................... 170 

Table 32.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting 

models of the S&P 500 daily stock returns. ........................................................................................ 171 

Table 33.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of the S&P 500 daily stock returns. ........................................................................................ 172 

Table 34.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting 

models of the IBM daily stock returns. ............................................................................................... 173 

Table 35.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of the IBM daily stock returns ................................................................................................ 174 

Table 36.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting 

models of the GE daily stock returns. ................................................................................................. 175 

Table 37.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of the GE daily stock returns. ................................................................................................. 176 

Table 38.0 Out-of-sample comparison of the predictive strength and profitability of the STGP with 

included transaction costs of 1.25% for the S&P 500, IBM, and GE forecasting models a. ................ 186 

Table 39.0 Comparison of the predictive strength and profitability of the STGP (over the entire 

sample) with included transaction costs of 1.25% for the S&P 500, IBM, and GE forecasting models a.

 ............................................................................................................................................................ 186 

Table 40.0 Artificial Stock Market Parameter Settings ....................................................................... 198 

Table 41.0 Descriptive statistics for the Russell 1000, Russell 2000, and Russell 3000 in-sample and 

out-of-sample daily index returns. ..................................................................................................... 200 

Table 42.0 In-sample and out-of-sample performance of Box-Jenkins (without transaction costs) 

forecasting models of Russell 1000 daily index return series. ............................................................ 201 

Table 43.0 In-sample and out-of-sample performance of Holt-Winters (without transaction costs) 

multiplicative exponential smoothing forecasting models of Russell 1000 daily index return series.

 ............................................................................................................................................................ 201 

Table 44.0 In-sample and out-of-sample performance of Box-Jenkins (without transaction costs) 

forecasting models of Russell 2000 daily index return series. ............................................................ 201 

Table 45.0 In-sample and out-of-sample performance of Holt-Winters (without transaction costs)  

multiplicative exponential smoothing forecasting models of Russell 2000 daily index return series.

 ............................................................................................................................................................ 202 

Table 46.0 In-sample and out-of-sample performance of Box-Jenkins (without transaction costs) 

forecasting models of Russell 3000 daily index return series. ............................................................ 202 

Table 47.0 In-sample and out-of-sample performance of Holt-Winters (without transaction costs) 

multiplicative exponential smoothing forecasting models of Russell 3000 daily index return series.

 ............................................................................................................................................................ 202 

Table 48.0 In-sample and out-of-sample performance of Box-Jenkins forecasting models with 

transaction costs of Russell 1000 daily index return series. ............................................................... 203 

Table 49.0 In-sample and out-of-sample performance of Holt-Winters multiplicative exponential 

smoothing forecasting models with transaction costs of Russell 1000 daily index return series. ..... 203 



xiii 
 

Table 50.0 In-sample and out-of-sample performance of Box-Jenkins forecasting models with 

transaction costs of Russell 2000 daily index return series. ............................................................... 203 

Table 51.0 In-sample and out-of-sample performance of Holt-Winters multiplicative exponential 

smoothing forecasting models with transaction costs of Russell 2000 daily index return series. ..... 204 

Table 52.0 In-sample and out-of-sample performance of Box-Jenkins forecasting models with 

transaction costs of Russell 3000 daily index return series. ............................................................... 204 

Table 53.0 In-sample and out-of-sample performance of Holt-Winters multiplicative exponential 

smoothing forecasting models with transaction costs of Russell 3000 daily index return series. ..... 204 

Table 54.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models of Russell 1000 daily index return series. ............................................................ 205 

Table 55.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models of Russell 2000 daily index return series. ............................................................ 205 

Table 56.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models of Russell 3000 index return series. .................................................................... 206 

Table 57.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting 

models of Russell 1000 daily index returns. ....................................................................................... 208 

Table 58.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting 

models of Russell 2000 daily index returns ........................................................................................ 208 

Table 59.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting 

models of Russell 3000 daily index returns. ....................................................................................... 209 

Table 60.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of Russell 1000 daily index returns. ....................................................................................... 209 

Table 61.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of Russell 2000 daily index returns. ....................................................................................... 210 

Table 62.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of Russell 3000 daily index returns. ....................................................................................... 210 

Table 63.0 Out-of-sample comparison of the predictive strength and profitability of STGP with 

included transaction costs (0.25% for the large cap index and 0.60% for the small cap index) for 

Russell 1000, Russell 2000 and Russell 3000 a. ................................................................................... 216 

Table 64.0 Comparison of the predictive strength and profitability over the entire sample of STGP 

with included transaction costs (0.25% for the large cap index and 0.60% for the small cap index) for 

Russell 1000, Russell 2000 and Russell 3000 a. ................................................................................... 217 

Table 65.0 In-sample and out-of-sample trading volume recorded on the artificial stock market and 

ADF test for Russell 1000, Russell 2000, and Russell 3000. ................................................................ 221 

Table 66.0 Linear and nonlinear Granger causality tests for the whole sample of 8,840 observations.

 ............................................................................................................................................................ 223 

Table 67.0 Granger causality test for 7,306 in-sample and 1,534 out-of-sample observations. ....... 224 

Table 68.0 Artificial Stock Market Parameter Settings ....................................................................... 238 

Table 69.0 Summary of statistics of FX one-minute high frequency in-sample and out-of-sample data.

 ............................................................................................................................................................ 244 

Table 70.0 In-sample AR-GARCH* coefficient estimates based on the quasi-maximum likelihood 

method. ............................................................................................................................................... 246 

Table 71.0 In-sample AR-GARCH* coefficient estimates based on the STGP method. ...................... 247 

Table 72.0 In-sample K nearest neighbour forecasting based on conventional non-parametric 

predictive model coefficient estimates (RMSE and MAE are shown x103) ........................................ 248 



xiv 
 

Table 73.0 In-sample K nearest neighbor forecasting coefficient estimates based on the STGP 

technique (RMSE and MAE are shown x103) ...................................................................................... 248 

Table 74.0 Summary of RMSE (x103), MAE (x103), Pesaran and Timmerman and Henriksson and 

Merton tests for one period ahead forecasts based on conventional parametric and non-parametric 

predictive models................................................................................................................................ 249 

Table 75.0 Out-of-sample summary of RMSE (x103), MAE (x103), Pesaran and Timmerman and 

Henriksson and Merton tests for one period ahead forecasts based on the STGP technique. ......... 250 

Table 76.0 Out-of-sample comparison of the predictive strength and profitability of STGP in the 

presence of transaction costs of 1.5 basis points for the six currency pairs. ..................................... 251 

Table 77.0  State Space Model for each of the six currency pairs based on the whole sample of 

206,413 one-minute high frequency data. ......................................................................................... 256 

Table 78.0  Disaggregated State Space Model of HFTbid and HFTask for each of the six currency pairs 

based on the whole sample of 206,413 one-minute high frequency data. ........................................ 258 

 

 

 

 

 

 

 

 

 

 



15 
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Chapter 1 

Introduction 

1.1 Background 

1.1.1 The Rationale for Agent-Based Modelling.  

 

The types of phenomena that are interesting in finance and still difficult to explain 

analytically involve the complex nature of heterogeneous boundedly rational agents and 

their interactions within the constraints imposed by financial institutions and authorities 

(Tay, 2013). Traditional finance theories describe what agents’ actions, expectations and 

strategies are in equilibrium with the outcome these create behaviours aggregate (Arthur, 

2005).  

The equilibrium story begun more than a century ago when Leon Walras introduced a 

model of equilibrium pricing in his pioneering 1874 work Elements of Pure Economics. The 

desire to develop powerful Walrasian general equilibrium models has been greater ever 

since. Economists are not only investigating the existence of equilibria within these models, 

but the uniqueness and stability of models. The Arrow-Debreu (1959, 1964) framework 

represents the modern embodiment of Walrasian models. However, this framework is still 

far too complex to be solved for millions of heterogeneous consumers and companies 

(Ehrentreich,2008). Moreover, static equilibrium approach cannot easily distinguish 

between multiple equilibria and cannot answer how individual investors’ behaviour, 

strategies, and expectations might react to or change with the patterns they create, which is 

the main topic of my research. 

It is well known fact that macroeconomic models are often described in terms of three 

different vectors: ty represent the endogenous variables, tx is the vector of exogeneous 

forcing variables, and t the set of random shocks (Ehrentreich,2008). All fixed parameters 

are subsumed in a vector  :  

                                                      1 , , ,t t t ty F y x                                                        (1) 



2 
 

Lucas (1976) made criticism that it is likely that some of the parameters in vector   may 

change because of a shift of policy regime . Lucas (1976) argued that aggregate quantities 

and prices could react in a different way than forecasted because agents might change their 

behaviour and this process cannot be captured in the equations. For instance, rational 

individuals could change their expectations even before a planned policy shift is introduced. 

The author suggested that an attempt to exploit a potential trade-off between 

unemployment and the inflation rate via an expansionary monetary policy may thus be 

foiled transforming equation (1.0) into: 

                                                    1 , , , ,t t t ty F y x                                              (2) 

Where    consist of regime dependent parameters and  consist of truly invariable taste 

and technology parameters (Ehrentreich,2008). Lucas (1976) was unable to offer a solution 

to this fundamental problem imposing a standard that no conventional macroeconomic 

model can probably ever fulfil (Ehrentreich,2008).  

More recently another substantial hurdle occurred in the economist’s pathway. The fallacy 

of composition phenomenon states that what is true for individual agents may not hold for 

the aggregate economy (Caballero, 1992; Hartley, 1997). This phenomenon emphasises the 

tension between microeconomics and macroeconomics. We all know that the economy is 

formed by a large number of consumers and companies whose interactions could cause 

emergent behaviour at the macroeconomic level. However, appropriate policy 

recommendations for individual economic entities may be inefficient for the aggregate 

economy or vice versa.  

Jacobs et al. (2010) consider how conventional economic models deal with so-called 

liquidity black holes. On Monday, 19 October 1987, liquidity disappeared from the U.S. stock 

market as numerous investors all attempted to sell at the same time. Similar liquidity black 

holes occurred when the hedge fund Long-Term Capital Management collapsed in 1998 and, 

more recently, during the 2008-09 economic downturn (Jacobs 1999, 2004, 2009). In these 

liquidity black hole cases, the price process wasn’t fixed. However, traditional economic 

models assume the contrary intuition providing a solid platform for misleading results.  
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Some scholars argue that financial market models should be based on market efficiency and 

rational market participants (Muth, 1961; Fama, 1970; Fama, 1991). Some others suggest 

that investors are not-so-rational beings who are swayed by fads, fashions, and other 

cognitive biases (Bikhchandani et al., 1992). Financial markets are populated by a mixture of 

these investors and others with completely different investment patterns. As a result of this 

diversity behavioural finance emerged as a research programme, which allowed for 

explanations of financial phenomena based on irrational investor behaviour and provided 

two main pedagogical goals such as what kind of mistakes to avoid while investing and what 

strategies in financial markets are more appropriate for earning abnormal returns 

(Subrahmanyam, 2007). Conventional economic models assume random processes modeled 

as a Brownian motion or as a function of a Brownian motion that does not allow the 

investigation of whether a given combinations of investor behaviours lead to particular price 

patterns (Jacobs et al., 2010).   

Many macroeconomic models claims that the choices of all different agents in one sector 

can be as the choices of a single ‘representative’ standard utility maximizing agent whose 

rationality significantly coincides with the aggregate rationality of all heterogeneous agents. 

The notion of the representative agent was born in Marshall’s Principles of Economics. 

Kirman (1992) argued that this assumption is wrong because such models are inappropriate 

in studying issues of unemployment and places where no trade at all takes place (Varian, 

1987). Kirman (1992) pointed out that there is no direct relation between individual and 

collective rationality and there is no formal justification for the assumption that the 

aggregate of individuals act like an individual maximizer. The author went further suggesting 

that even we assume that the rationality of the aggregate can be matched to those of a 

maximizing individual, the reaction of the representative agent to some aspects of the initial 

model may not be the same as the aggregate reaction at individual level (for instance, a 

change in government policy). Also, the personal preferences of the representative agent 

cannot be used to decide whether a particular economic model is more appropriate than 

another.  
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Moreover, the aggregate behaviour is characterised by complex dynamics and developing a 

representative agent whose behaviour has these dynamics could potentially lead to 

constrained results. Kirman (1992) concluded that the choices and rationality of the 

representative agent may be substantially different to those of the entire society, and 

therefore the representative agent should have no future. In a very recent experiment, Tay 

(2013) considered the role of the representative agent in decision-making processes when 

the decisions have to be made by all participating heterogeneous decision makers, each 

with their own unique preferences and private information that are not directly observable 

by the other decision makers, and concluded that this serious issue cannot be solved by 

conventional analytical modelling techniques.  

Furthermore, conventional models of financial markets do not indicate the dynamic process 

that will need to happen in order to achieve the equilibrium condition. This is especially 

valid for models that produce multiple eqilibria, and therefore it is unclear which 

equilibrium among the multiple eqilibria representative agents would converge on (Tay, 

2013).  

Shleifer and Summers (1990) also put in doubt the future of the representative agents and 

their role in rational arbitrages. Rational arbitrageurs play a central role in standard finance 

by assuring that security prices follow their fundamental values and there are no riskless 

arbitrage opportunities even if there are many irrational noise traders. The authors 

demonstrated, contrary to the EMH, that arbitrage does not fully counter the responses of 

prices to fluctuations in uninformed demand and introduced the notion of limited arbitrage 

where movements in investor sentiment are an important indicator of asset prices.  

Significant evidence further undermined the role of the representative agent in financial 

markets. Individual agents in financial markets tend to be overconfident, which makes them 

take on more risk (Alpert and Raiffa, 1982). Andreassen and Kraus (1998) claims that agents 

tend to extrapolate past time series resulting in chasing specific trends and patterns. 

Tversky and Kahneman (1982) found evidence that agents tend to underestimate base rates 

and emphasise acquiring new information leading to overreaction to news.   
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Financial analysts were surprised by the financial crisis of 2007-2009. Geanakoplos et al. 

(2012) asked whether the bubble was generated by low interest rates and lending criteria, 

irrational exuberance, too much refinancing or too much leverage? Although leverage was 

the main variable that went up and down along with housing prices, how can researchers 

disregard the other explanations, or determinate which is more important? Conventional 

models attempt to answer these questions by developing equilibrium models with a 

representative agent. However, the household sector comprises hundreds of millions of 

individuals, with great heterogeneity, and therefore traditional models are not capable of 

accurately calibrating this heterogeneity and the role that it played in the bubble.    

The above economic and finance issues posed a number of important questions such as why 

fully rational and perfectly informed agents have essentially no ability to exercise free 

choice and are incapable of generating emergent economic phenomena? (Lawson,1997; 

Ehrentreich,2008). Conventional economic approaches use equational representation to 

enable a global markets characterisation, but why have they failed to explain the link 

between individual investor behaviour and the global market dynamics and trends that 

emerged? (Mathieu and Secq, 2012).     

Why do traditional economic and finance models find it very difficult to explain the 

empirical features of real-world financial markets such as fat-tails and their associated asset 

return distributions, volatility clustering, and the existence of cross correlations between 

asset returns, volume and volatility.  

Why traditional economic and finance models still cannot fulfil the Lucas (1976) critique, 

cannot solve the Arrow-Debreu (1954) framework, cannot justify the role of the 

representative agents, cannot satisfy the fallacy of composition phenomenon and failed to 

foresee the recent economic crisis? Are there any better economic modelling techniques 

available?  

For the purpose of developing meaningful assumptions about anticipated market activities, 

researchers need models capable of representing the strategies of different market 

participants and changes in the composition of those participants. Hartley (1997) pointed 

out the existence of such models.  
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However, despite various anomalies, financial markets are important and increasingly 

powerful institutions. From the social point of view financial markets are still rational in the 

way our society is organised because humans preferences, though bounded in their 

rationality still represent some measure of social value. The intrinsic indifference of financial 

markets to non-financial matters such as social and environmental factors becomes a very 

important link between the financial reality and the ‘lifeworld’ (Thielemann, 2000; 

Mackintosh et al., 2000). Rubinstein (2001) suggested that even if markets are not rational, 

abnormal profit opportunities still may not exist, indicating that financial markets may be 

said to be ‘minimally rational’.  

1.1.2 Methodological Aspects of Agent-Based simulations.  

 

Rapid advances in computing technologies have changed society nowadays. The increased 

availability of powerful computers in the last ten years has been used as a platform for 

developing new models and forecasting techniques. Scientific advances both in software 

and hardware stimulated financial field research that was impossible before.  

Huge computational capacity at the beginning of 21st century enabled the development of 

an entirely new generation of intelligent computing models such as agent-based 

computation, neural networks, fuzzy logic, genetic algorithms and genetic programming. 

The main aim of these intelligent computing techniques is to perform actions that simulate 

human decision-making processes. They are characterised by learning from past experience 

and high levels of flexibility allowing them to adapt to new circumstances. Moreover, the 

new computational techniques can find better solutions to issues unsolvable by traditional 

mean. The development of Agent-Based Computational Economics (Tesfatsion, 2002) and 

Computational Finance (Tsang and Martinez-Jaramillo, 2004) provide some tools to tackle 

the limitations of traditional economics and finance. The agent-based approach is more akin 

to reality than other modelling approaches and provides an opportunity to represent and 

test theories which cannot easily be described using mathematical formulae (Axelrod, 

1997). Agent-based models (ABM) reveal much richer behavioural structure that is 

embedded in a financial entity which may otherwise be overlooked by conventional 

equation-based models (Tay, 2013).  



7 
 

For example, Parunak et al. (1998) compared ABM and equation-based modelling of a 

supply network and reported that equation-based models failed to capture quite a number 

of rich effects, such as memory effect of backlogged orders, amplification of order variation 

and transition effects, which were preset in ABM. Moreover, ABM does not require fully 

rational market participants capable of generating emerging phenomena. The ability to cope 

with heterogeneous and boundedly rational individuals makes it a perfect tool to study 

decentralized markets (Ehrentreich, 2008). Kirman (1992) argued that heterogeneity of 

agents is an important condition in solving the standard economic model and researchers 

should study aggregate activity from the perspective of the direct interaction between 

different individuals.   

The new computational techniques can find better solutions to issues unsolvable by 

traditional means. For instance, ABM offer an easy escape from the Lucas (1976) critique 

and if a policy change is announced or even implemented, artificial agents recalculate their 

optimization problem, given their objective function and budget constraints. This also 

satisfies the desire for a microfoundation in classical terms because agents’ behaviour is 

generated from a utility maximinization problem (Ehrentreich, 2008).  

Also, artificial agents are capable of finding the competitive equilibrium allocation for the 

Arrow-Debreu framework (Sargent, 1979) and do not commit the fallacy of composition by 

ignoring valid aggregation concerns (Kirman, 1992). ABM are characterised by transparent 

dynamics that can be recorded allowing the researcher to reverse the time line of evolution 

to examine how a particular equilibrium has been reached (Tay, 2013). Geanakoplos et al. 

(2012) developed an agent-based computational model which mimicked the behaviour of 

more than two million potential homeowners in more than ten years. Remarkably, their 

model included details on each homeowner such as race, income, age, wealth, and marital 

status. The purpose was to investigate how these characteristics correlate with the home 

buying behaviour of individuals. Their model detected processes such as how rising prices 

and the possibility of refinancing encourage individuals to engage in speculative operations 

by purchasing more-expensive houses than they can afford to buy. These processes cannot 

be  captured by conventional dynamic stochastic models.  
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Parunak et al. (1997) argue that ABM often map more naturally to the structure of the 

problem than equation-based models by specifying simple behavioural and transition rules 

attached to well defined entities, therefore providing a medium for the infusion of any 

economic theory or methodology into the model. Furthermore, the implementation of 

agent interactions can be governed by space, networks, or a combination of structures 

(Alam et al., 2012). This would be far more complex task to achieve by mathematics or any 

other conventional economic models.     

Agent-based computational modeling is an interesting bottom-up approach to studying 

economics and finance, which allows the disaggregation of systems into individual 

components that can potentially have their own characteristics and rule sets. Tesfatsion 

(2009) describe agent-based computational economics (ACE) as ‘evolving systems of 

autonomous interacting agents’. As advocated by many during the financial crisis of 2007-

2008 (e.g. Bouchard (2008), Farmer and Foley (2009), and Lux and Westerhoff (2009)), 

agent-based models (ABM) should play a large role in future financial modeling. Researchers 

use computers in order to study the evolution of investors’ behavior under controlled 

experimental conditions. An important point to highlight is that ABM generate investment 

agent interactions which evolve further over time without any additional manipulations 

from the modeler.  

The core purpose of ABM encompasses the process of simulating simultaneous interactions 

of multiple investment agents in an attempt to determinate complex behavior. 

Computational finance simulates the actions and interactions of multiple autonomous 

individuals and investigates their impact on the whole system.  

ABM consists of a number of agents which interact both with each other and with their 

environment, and can make decisions and change their actions as a result of their 

interactions (Ferber, 1999). The behaviour of the whole system depends on the aggregated 

individual behaviour of each agent. Agents can interact either indirectly through a shared 

environment and/or directly with each other through markets, social networks and/or 

institutions (Matthews et al., 2007).  
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ABM are able to capture complex emergent behaviour (unanticipated behaviour shown by a 

system) observed in the interactions of multiple artificial agents equipped with simplistic 

commanding rules. Agents can be very diverse ranging from ordinary consumers and 

investors to global policy-makers. Thus, the computerised environment can simulate 

anything from local shops to governmental structures.  

Some well documented examples of ABM include: voting behaviours in elections (Kollman 

et al.1992); size-frequency distributions for traffic jams (Nigel and Rasmussen, 1994); 

identifying and exploring behaviours in battlefields (Ilachinski, 1997); company size and 

growth rate distributions (Axtell, 1999); price variations within stock-market trading (Bak et 

al. 1999); understanding theories of political identity and stability (Lustick, 2002); social 

networks of terrorist groups (North et al.2004); business coalitions over industry standards 

(Axelrod, 2006); multi-cellular level interaction and behaviour (Athale and Deisboeck, 2006); 

modeling economic processes as dynamic systems of interacting agents (Tesfatsion, 2006), 

to name but a few.   

ABM generates simulation models of multiple investors with different investment targets. 

Computer programs record all interactions of artificial agents in order to investigate their 

behaviour over time. Agent-based computation enables the modelling of individual 

heterogeneity and agent positioning in financial, geographical or environmental types. ABM 

successfully possesses a wider range of nonlinear behaviour in comparison with traditional 

equilibrium models.  

For instance, LeBaron (2005) introduced a series of different financial models which provide 

a plausible explanation for economic downturns and simulate liquidity stagnation that never 

occurs in conventional equilibrium models. One of the main advantages of the ABM is that 

they effectively overcome the restrictive assumptions required by analytical models for 

tractability. For example, all agents within a specific setting could be modelled as 

heterogeneous with respect to their preferences, forecasting rules or trading strategies. 

Table 1.0 illustrate the main characteristics of traditional and agent-based models. 
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Traditional models Agent-based models 

Deterministic (one future) Stochastic (multiple futures) 

Allocative (top-down) Aggregative (bottom-up) 

Equation based formulas Adaptive agents 

Do not give explanations Explanatory power 

Few parameters Many parameters 

Spatially coarse Spatially explicit 

Environment given Environment created 

You react to them You learn from them 
Table 1.0 Main characteristics of traditional and agent-based models (source: Barnard, 1999).  

Some of the other advantages over traditional economic models include: 

•There is no global mechanism that controls the interactions of agents in ABM. Instead 

agents compete with each other and coordinate their actions. Heterogeneity also allow for 

the specification of traders with varying degrees of rationality. This offers advantages over 

traditional economic approaches that assume perfectly rational individuals, if they consider 

individuals at all (Crooks and Heppenstall, 2012).    

•Different behavioural patterns and strategies are continuously adapted as agents 

constantly learn. Learning enables agents to switch their strategies in a better way. 

•In financial terms, the computerized economy works far away from global equilibrium with 

constant possibilities for improvement.  

•ABM has the ability to capture emergent environmental dynamics. Agents exhibit complex 

behaviour, including learning and adaptation. Furthermore, the ability of ABM to describe 

the behaviour and interactions of a system allows for system dynamics to be directly 

implemented into the model. This represents a movement away from the static nature of 

traditional economic models (Crooks and Heppenstall, 2012).      

There are two general issues in the development of ABM- the design of the agents and the 

design of the environment. An important issue concerns the development of decision 

making rules and their incorporation into the model. Even when the modeller uses artificial 

neural networks, genetic algorithms or genetic programming, he/she need to apply a 

predefined set of informational variables.  
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Although these rules can successfully mimic real-life decision making rules, it is not known if 

any of these rules indeed faithfully represent the inductive reasoning behaviour 

demonstrated by actual human decision-makers. Another related concern is that the 

modeller has to decide whether the agents should be enabled to learn only from their own 

experiences or from the collective experience of all agents in the model (social learning). 

Also, the design of the ABM environment is much more complicated as many details at the 

agent and institutional level need to be defined (Tay, 2013). On the other hand, models may 

have far too many parameters, and the impact of many of these parameters may not be 

well understood or tractable (LeBaron, 2004a).  

  

1.1.3 Comparison between agent-based models and human subject experiments 

 

Two computer-based technologies, the computational laboratory and the experimental, 

have begun to have implications on financial research. This section explores the relationship 

between artificial markets populated by computer-based agents and experimental markets 

with human participants. Both approaches exploit controlled laboratory conditions as 

means of isolating the resources of aggregate phenomena.  

Most of the papers combining the two approaches have used primary the agent-based 

models to analyse the results obtained from laboratory experiments with human subjects. 

There are only a few exceptions where researchers have not sought to analyse findings from 

agent-based simulations with follow-up experiments involving human subjects (Duffy, 

2006). This is based on the assumption that human subject experiments impose more 

constraints on what a researcher can do than agent-based modelling simulations. There are 

several important reasons for this apparent pattern. For instance, experiments performed 

with human participants generally need to be short in nature, both to prevent boredom 

among participants (one has to worry about human subject becoming bored) and to avoid 

the bankruptcy of the investigators who reward the participants with monetary payments. 

In sharp contrast, agent-based computational experiments can be run for many generations 

to diminish dependence on initial conditions (Tesfatsion, 2003).  
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Moreover, there are limits to the number of different agent characteristics that researchers 

can hope to induce in an experimental laboratory and time and budget constraints limit the 

number of simulations that can be performed. Furthermore, the number of agents used in 

agent-based modelling is quite different from that adopted in experiments with human 

subjects. For example, all experiments in this thesis involve 10,000 traders, a number which 

is significantly higher than the number of participants in experiments with human subjects. 

Agent-based artificial stock markets allowed me to run experiments for many more periods 

than are possible in human subject experiments (I have run 1,250 experiments in Chapter 

6). Moreover, agent-based simulations enable indirect communication between traders (via 

their use of Strongly Typed Genetic Programming to update trading rules) – a feature that is 

not present in experiments with human subjects. In agent-based artificial stock market 

environment a number of different agent characteristics can be build, starting from traders 

with zero memory and random behaviour (Chapter 6) and going through markets populated 

by different groups of traders (Chapters 4, 5 and 6).  

Gode and Sunder (1993) demonstrated that zero intelligence computational traders are able 

to achieve allocative efficiency that exceeds the efficiency achieved by human actors 

operating in the same experimental environment. Gode and Sunder (1993) and Chan et al. 

(1999) demonstrated that agent-based artificial markets allow greater control over the 

preferences and information-processing capabilities of agents than experimental markets 

with human subjects. According to the authors, human subjects vary in their learning 

abilities, habits and preferences (attitude towards risk for example), even after careful 

efforts to control most of the differences by experimenters. Smith (1982) argues that the 

external validity of human subject behaviour can be questioned because humans are often 

inexperienced with the task under examination.    

Although human subject experiments cannot control subject behaviour, agent-based 

models have many degrees of freedom imposing computational difficulties for researchers. 

Agent-based researchers are often unable to provide external validity for the simple rules 

they assign to their artificial agents (Duffy, 2006). Also, sometimes evolutionary algorithms 

used in the development of agent-based models act as black boxes and the evolutionary 

algorithms may not be suitable for modelling decision-making processes (Duffy, 2006).  
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According to Duffy (2006) evolution is often a slow process and so algorithms that mimic 

this process tend to operate better under unchanging conditions. However, financial 

systems are often developed as state dependent, and may also experience temporary 

shocks. Under such circumstances, the performance of evolutionary algorithms may need 

modification relative to less volatile conditions for which they were initially created. Duffy 

(2006) argues that the processes by which artificial agents in agent-based models form 

expectations and adapt to constantly changing environmental conditions is not typically 

based on any specific micro evidence. The author went even further suggesting that the 

empirical comparisons that most researchers perform are between the simulated aggregate 

results and the empirical issue under investigation. LeBaron (2001) pointed out another 

dilemma in this area – where to set the bounds for boundedly rational traders. The trading 

strategies can be allowed to become far too complex in the evolutionary process leading to 

over specialised rules. 

Unlike experiments with human subjects, in which the dynamics of the subjects’ behaviour 

over many trading periods are almost never modelled exactly, agent-based artificial stock 

markets can easily accommodate complex learning behaviour, heterogeneous preferences, 

asymmetric information, and ad hoc heuristics (Poggio et al., 2001). Financial markets are 

particularly appealing applications for agent-based models for many different reasons. The 

first reason is that the key debates in finance about market efficiency (Chapter 4) and 

rationality (Chapter 6) are still unresolved. The second reason is that financial markets 

contain many curious puzzles such as herding behaviour and various stylised facts (Chapter 

5), the ‘size effect’ and volume-return relationship (Chapter 8) that are not well understood. 

The third reason is that financial markets provide a wealth of pricing and volume data that 

can be analysed (Chapter 9). The fourth reason is that when considering evolution (Chapter 

4), financial markets provide a good approximation to a crude fitness measure through 

wealth or return performance (Chapters 7, 8 and 9). Finally there are strong links to relevant 

experimental results that in some occasions operate at the same time scales as actual 

financial markets (examples can be found in all chapters of my thesis.   
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1.2 Motivations for the thesis 
 

The Efficient Market Hypothesis (EMH) postulates that asset prices should always be 

consistent with their fundamental values because security prices reflect all available 

information. Since its creation, the concept of efficient markets has been applied to many 

theoretical models and empirical studies of asset prices, generating several controversial 

debates. 

Unfortunately conventional financial models are not capable of replicating the complexity of 

the stock markets. In Chapter 4, I used the STGP computational technique and several 

traditional econometric methods to examine the emergent properties of the stock markets. 

Agent-based modelling and artificial stock markets in particular, provide an appropriate 

environment for testing the Efficient Market Hypothesis (EMH) and the Adaptive Market 

Hypothesis (AMH). My experiments performed under artificial laboratory stock market 

settings generated rich varieties of market dynamics to investigate the formation of stock 

market dynamics and to measure the level of market efficiency.  

Many scholars express concerns that herding behavior causes excess volatility, destabilises 

financial markets and increase the likelihood of systemic risk. Investigating herding behavior 

in financial markets is of particular interest because it might provide an explanation of 

excess volatility and bubbles.  

The economic crises of the 1980’s and 1990’s suggested that herding behavior caused 

excess volatility and financial system fragility (Corcos et al., 2002). However it is difficult to 

test all these theoretical assumptions directly. For instance, the research related to herding 

behavior focused mainly on statistical measures of clustering. The empirical difficulty in 

testing comes from the fact that there is no database of private information available and 

therefore it is hardly possible to prove whether market participants disregard their own 

information and engage in herding behavior.  

This serious research obstacle can be eliminated in experimental settings such as agent-

based artificial stock market where the information possessed by market participants can be 

strictly controlled.  
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My experiments in Chapter 5 represent extremely suitable environment to investigate the 

occurrence of ‘spurious herding’ (Bikchandani and Sharma, 2001) or ‘investigative herding’ 

(Froot et al., 1992; Hirshleifer et al., 1994) where a group of traders such as ‘Best Agents’ 

and ‘All Agents’ make similar decisions because they face similar information (historical data 

of Dow Jones, IBM and GE). I measure herding behaviour as the average tendency of a 

group of traders (‘Best Agents’ and ‘All Agents’) to buy (sell) Dow Jones, IBM and GE at the 

same time. This herding behaviour measure accesses the correlation in trading patterns for 

a particular group of traders and their tendency to buy and sell the same set of financial 

instruments. 

Market structure and individual rationality remain at the centre of a debate as to which is 

the main driving force in market performance. The empirical research regarding whether 

individual rationality or market structure most influences market performance and market 

efficiency has been controversial. So far academics have been divided into two main camps. 

While one camp believes that market structure is the main driving force behind market 

performance (Gode and Sunder, 1993; Sunder, 2006a and 2006b; Sunder 2007) the other 

camp claims that individual rationality plays a significant role in the formation of market 

properties (Cliff and Bruten, 1997; Brewer et al., 2002; Yeh, 2007 and 2008).    

It is very difficult, however, to determinate the role of trader’s individual rationality in a 

general stock market environment where thousands of individual investors with different 

risk attitudes, expectations, wealth preferences and even pleasure in trading operate. 

Investors can implement a fundamentalist strategy, a technical strategy or a combination of 

both to form their forecasting expectations. The nature of their trading strategies changes 

over time, and traders often adopt combined strategies coupled with gut feelings.  

Obviously it is difficult to control the behavior of investors and investigate their decision 

making processes. Oberlechner (2011) argue that academics experience great difficulties in 

interpreting how groups of these strategies behave in a general market environment. The 

agent-based markets and zero intelligence markets, in particular, is an appropriate tool for 

examining the market mechanism in isolation from the traders who populate the market.  
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In stock market simulation experiments that I developed in Chapter 6, artificial traders 

receive information about the value of a real financial instrument and observe the history of 

past trades. Artificial traders in my experiments are able to make independent decisions 

creating a heterogeneous market structure which helped me to determine whether trader 

cognitive abilities or the market structure itself play a dominant role in market efficiency. 

Stock market predictability remains a topic of continuous controversy. Predicting stock 

market returns is a difficult task which depends on economic and political factors as well as 

investors expectations. Some researchers suggest that stock market predictability is due to 

noise trading activities or speculative bubbles, which force stock prices to deviate from their 

intrinsic values. Researchers and investors constantly make efforts to forecast the future 

price movements and develop profitable trading rules.  

The application of Genetic Programming (GP) to financial forecasts has been rather scarce 

with few papers found in the literature. The application of the Strongly Typed Genetic 

Programming (STGP) technique developed by Montana back in 1995 to stock market 

forecasting has not yet been done. The STGP technique is an enhanced version of genetic 

programming that enables the population to change gradually, which is an essential factor 

in maintaining a certain degree of model stability.  

In Chapter 7, I implemented the STGP technique to develop forecasting models which 

present new evidence suggesting less adherence to random walks in financial time series. I 

used real-life historical data of the S&P 500, IBM and General Electric (GE) to compare four 

different in-sample and out-of-sample STGP models to traditional econometric forecasting 

models such as Box-Jenkins and the Holt-Winters exponential smoothing.  

There are two main motivations behind my forecasting experiments. Firstly, I wanted to 

determinate whether, to what extent, and in which form the stock returns of the three 

financial instruments in excess of the risk free rate were indeed predictable and profitable. 

My second motivation was to provide rare experimental tests of the Optimism Principle 

developed by Picard and Cook (1984) and the Adaptive Expectations Hypothesis (Weigand 

et al., 2004).  
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The ‘size effect’ is the anomalous pricing of the size factor as indicated by a significant risk 

premium in the conventional capital asset pricing model. There is substantial evidence in 

academia that size is an appropriate variable for explaining the cross-sectional variation of 

long-run asset returns (Horowitz et al., 2000). Since the pioneering work of Banz (1981) and 

Reinganum (1981, 1983), the application of firm size (shares outstanding multiplied by stock 

price) to measure abnormal asset returns became widespread in the finance research.  

In Chapter 8, I used the STGP technique to shed light on the ‘size effect’ equity puzzle and 

empirically demonstrate the impact of trading volume of the future direction of stock 

returns. I also performed experimental tests of the errors-in-expectation or extrapolation 

hypothesis developed by Lakonishok et al. (1994) and LaPorta et al.(1997).  

I used real-life historical quotes of three indices- the Russell 1000, the Russell 2000 and the 

Russell 3000 to investigate the predictability of small-cap stocks and large-cap stocks and 

the dynamic causal relationship between trading volume and index returns.  

Academic economists argue that with a turnover of 2,000 billion US dollars per day (BIS, 

2005), it is highly improbable that the FX market is not at least weakly efficient and 

systematic profitable opportunities based on past price analysis should rapidly diminish by 

arbitrage (Curcio, et al.,1997).  Hence, the puzzle still remains as to why technical analysis is 

widely used by investors and, consequently, whether the currency markets are 

informationally weakly efficient.  

Traditionally, studies on foreign exchange (FX) technical trading profitability published so far 

failed to account for transaction costs, trading rule optimisation over time, out-of-sample 

verification, and data snooping issues (Park and Irwin, 2007).  

Also, there are some common misunderstandings about how high frequency trading (HFT) 

affects the financial markets. Is HFT beneficial or harmful to market efficiency? What is the 

role of HFT on price discovery and efficiency processes? To what extend the policy makers 

should control HFT? The existing literature on the topic is scarce and does not provide clear 

evidence about the claims.  
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The literature mostly demonstrates the positive effects of HFT on market properties 

(Gomber et al., 2011). Moreover, discussions on this topic often lack sufficient and precise 

information of how HFT trading algorithms work in practice.    

A remarkable gap between the results of academic research on HFT and its perceived 

impact on markets in the public, media and regulatory discussions can be observed.  To a 

certain extent the HFT research has been biased because many studies are administrated by 

investment banks or investors who use HFT strategies (Gomber et al., 2011). The apparent 

lack of conclusive evidence enabled HFT to operate with limited regulatory understanding. 

Policymakers around the world are still debating whether to introduce limits on HFT or even 

completely ban it. Hence, I think than further research on the topic is highly desirable.  

In my last experiment I applied the STGP technique to one-minute high frequency data of 

the six most traded currency pairs to examine whether the FX markets need time to process 

information and could be inefficient at very high frequencies but efficient at lower, e.g., 

daily horizons.  

I also assessed the impact of HFT on market quality and integrity and discussed whether 

policymakers around the world should introduce stricter rules on HFT or even completely 

ban it. I am not aware of any study utilizing minute-by-minute price data in this context. 

Secondly, I don’t ignore any of the issues identified in the literature as potentially affecting 

the reliability of trading results and inference based on them: I control for transaction costs, 

allow agents to learn from their experience and to switch to more profitable rules, evaluate 

the profitability of rules based on their predictive power rather than in-sample fit, and avoid 

data-snooping biases by allowing all potential rules and their combinations to be traded on 

and evaluated by agents. Thirdly, I am the first to apply genetic programming techniques to 

analyse the impact of HFT on market quality. 
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1.3 Main findings and contributions 
 

The artificial traders in Chapter 4 of the thesis can be considered to be agents that adapt, 

learn, evolve and try to survive. The random nature of the trading rules of the agets allowed 

me to observe how they learn, adapt and survive. The presentce of 10,000 heterogeneous 

and interactive adaptive traders, rich in dynamics, provides the opportunity to study the 

stock market as complex adaptive system. Artificial traders are, by definition, capable of 

adapting, learning, and evolving, which makes them extremely suitable for the analysis of 

market efficiency and adaptability, because adaptation and learning in heterogeneous 

structures are known as important tools for analysisng financial market behaviour 

(Hommes, 2001).  

My research contributions of Chapter 4 include the following: 

• The introduction of increased heterogeneity and greater genetic diversity leads to higher 

market efficiency in terms of the AMH. 

•The presence of different market sizes suggests that the market is more efficient when the 

population size increases. 

• Stock market dynamics and nonlinearities are better explained by the evolutionary 

process associated with the Adaptive Market Hypothesis proposed by Lo (2004). 

•Market efficiency seems to exist simultaneously with the need for adaptive flexibility. 

• Individual trader learning, adaptation and evolution reinforced the motion of efficient 

markets. 

Chapter 5 of the thesis provides evidence of the emergent properties of herding behaviour, 

stock market efficiency and stylised facts of financial returns such as leptokurtosis, non-

IIDness and volatility clustering that characterise real world financial markets. The main 

contribution of Chapter 5 is the trade-off that I developed between reality (real historical 

data of the three financial instruments) and the explanatory power of the stylised facts 

analysed through the STGP technique. The other findings and contributions include: 
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• In line with previous research, I found some evidence of more herding in a group of stocks 

than in individual stocks. 

• The magnitude of herding in my experiment is far from dramatic and does not exhibit the 

long-run mispricing of assets and bubble formation.  

• My experimental tests demonstrate that an artificial stock market populated by a small 

fraction of best performing agents behaves differently from a market composed of a greater 

number of less well performing agents. 

•The market based on the behaviour of the entire population of 10,000 artificial traders 

exhibit less herding and is more efficient in terms of the EMH than the segmented market 

populated by best performing agents (5 per cent of the total population).   

Chapter 6 of my thesis investigates the implications of trader cognitive abilities on stock 

market properties. This chapter provides a new perspective to the research in this field by 

examining and explaining the reason for the divergence of the results in the literature.  

•The main contribution of Chapter 6 is associated with a mixture of positive and negative 

impacts from individual intelligence and market performance.   

This finding is achieved through: 

•Using real-life historical data of S&P 500 and the Coca-Cola Company (most studies used 

artificial data). 

•I implemented 10,000 artificial traders (most studies used up to 2,000). 

•I used Strongly Typed Genetic Programming technique (all studies used Genetic 

Programming). 

•I created greater genome depth of the most intelligent traders (compared to genome 

depth up to 15 in other studies). 
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Chapter 7 uses Strongly Typed Genetic Programming technique to find profitable stock 

market forecasts. The main findings and contributions of this chapter are: 

•Small-cap stocks are more predictable than large-cap stocks. 

• Out-of-sample tests demonstrated STGP outperformance resulting in statistically and 

economically significant excess returns after taking into account appropriate transaction 

costs. 

• I performed rare tests of the Optimism Principle (Picard and Cook, 1984) and empirically 

demonstrated that some forecasters believe that their predictions are more accurate than 

they are in reality. 

• I found support for the Adaptive Expectations Hypothesis (Weigand et al.,2004), where 

decision-makers rely predominantly on recent trends in forming their future forecasts.  

Chapter 8 of this thesis presents a new evidence of small-cap stocks profitability and the 

price-volume relation. This chapter contributes to the existing literature by investigating 

whether small-cap stocks are more profitable than large-cap stocks and whether trading 

volume has any predictive power for stock returns. After implementing the STGP technique 

and analysing historical quotes of the Russell 1000, Russell 2000 and the Russell 3000, I 

found the following: 

• Substantial evidence of small-cap stocks dominance which is not period-specific as some 

researchers argue.  

•The investigation of the dynamic relationship between trading volume and index returns 

revealed an inconclusive picture that does not allow me to develop volume-based trading 

strategies. 

• My findings are consistent with the errors-in-expectations hypothesis (Lakonishok et 

al.,1994 and LaPorta et al.,1997), which posits that excess returns of growth stocks are 

driven by more optimistic forecasts compared to those of value stocks.  
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Chapter 9 offers in depth analysis of high frequency trading profitability and market 

regulation. In my last experiment I applied the STGP technique to one-minute high 

frequency data of the six most traded currency pairs and I have found that: 

 

• The search for answers to the puzzle described above should be conducted on high 

frequency rather than daily data, as the trading and resulting price adjustments take place 

on an intraday basis. The most academic studies related to technical trading in the FX 

market were not consistent with the real-life practice of technical analysis because they 

largely limited their trading strategies to daily data observations (Brabazon and O’Neil, 

2004; Qi and Wu, 2006; Reitz and Taylor, 2006). 

 

• My empirical results suggest that the STGP technique applied to six of the most traded 

currency pairs significantly outperform the traditional econometric parametric and non-

parametric forecasting models leading to statistically and economically significant profits in 

the presence of transaction costs. 

 

• I found evidence of positive impact of HFT on price efficiency and market dynamics.  

•However, I think that the results are inconclusive and the need for regulatory intervention 

cannot be neglected.    
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1.4 Summary of the structure of the thesis. 
 

In summary, the remainder of the thesis is organised in the following way: In Chapter 2, I 

review the notion of artificial stock market modelling. My intention is to provide a 

comprehensive literature review of the broad topic of my thesis. Chapters 4 to 9, which 

include the main analysis of my simulation results provides topic-specific literature review 

by examining the most important works that have been done in the past and review the 

most recent research in the area.  

In Chapter 3, I describe in detail the computational model and the software platform I use in 

my experiments. Chapter 4 provides a direct test of the Efficient Market Hypothesis within 

artificial stock market settings. Chapter 5 analyse the occurrence of herding behaviour in 

financial markets and the behavioural foundations of the stylised facts of financial returns. 

Chapter 6 investigates the impact of trader cognitive abilities on stock market properties. 

Chapter 7 demonstrates whether the use of the Strongly Typed Genetic Programming 

(STGP) technique can lead to profitable trading strategies. Chapter 8 compares the 

predictive ability of the STGP technique and traditional econometric forecasting models to 

determine the profitability of small-cap stocks and large-cap stocks. Chapter 9 describes a 

novel approach to high frequency technical trading and its profitability. It measures the level 

of profitability and investigates whether high frequency trading has beneficial or harmful 

effect on market efficiency. Chapter 10 concludes my work and summarises the research 

findings. Finally, I point out some promising areas of future research.  
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Chapter 2 

Literature Survey 

2.1 Artificial Stock Market Modelling  

2.1.1 Introduction 

 

Stock markets are the main source for companies to obtain money by providing a 

marketplace to facilitate the exchange of assets. Market participants are individual and 

institutional investors, hedge funds and publicly traded corporations. Stock markets 

represent an important and interesting challenge for agent-based modellers for two main 

reasons. First, stock markets worldwide still pose many open questions that standard 

modelling approaches have not been able to solve so far. The second reason is that a huge 

amount of financial data is available for experimental agent-based modelling purposes.  

The recent financial crisis highlighted the need for new research tools capable of dealing 

with the high level of complexity of the financial world. A natural method to analyse a 

complex system such as the stock market is to implement an agent-based modelling 

technique which entails simulating the stock market from the bottom up with a huge 

number of interacting heterogeneous boundedly rational traders that are designed to copy 

the behaviour of real-life traders (Tay, 2013). Financial markets offer an important field of 

agent-based modelling application, since agent objectives are clearly identified (Brandouy, 

2013) and Bayesian learning (machine learning) can be used by agents to incorporate all 

available information into the decision making process (Mitchell, 1997).   

One possibility to examine the properties of real markets is to build artificial markets, whose 

dynamics are represented by computer programmes designed to simulate different 

behaviours. Some of these computer programmes may attempt to replicate naïve 

behaviour, others may generate intelligence. Since the behaviour of all agents is under the 

researchers’ control, the experiments have means to control different experimental factors 

and relate market behaviour to observed phenomena (Tsang and Martinez-Jaramillo, 2004).  
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Artificial stock markets are grounded on an individual-based approach with local 

interactions, heterogeneous traders, distributed knowledge and resources, agent 

autonomy- features that cannot be used or done in conventional, aggregate models 

(Mathieu and Brandouy, 2012). Artificial stock markets propose a powerful platform to test 

new regulations, new exchange structures or new investment strategies in completely 

controlled environment (Brandouy, 2013). The development of artificial stock markets has 

thus become a major application for the agent-based paradigm.  
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2.1.2 Early studies and small artificial stock market models 

 

Most of the earliest simulations of financial markets intended to design an entire 

functioning financial market, which carefully analysed a small number of strategies used by 

agents to trade a risky asset. The first artificial stock markets were rather analytic than 

computational and are characterised by high level of tractability (LeBaron, 2004a).  

In general, artificial stock market models are divided into two categories such as ‘few-type 

models’ which consist of small fixed sets of trading strategies and ‘many-type models’ in 

which artificial traders are allowed to choose from large and evolving number of trading 

strategies. ‘Few-type models’ encompass the early years of artificial stock market modelling 

(Ehrentreich, 2008). Although in the ‘few-type models’ artificial traders are allowed to 

choose from among fixed sets of trading strategies, they provide an important dimension of 

tractability and clear connections between model parameters. This feature cannot be seen 

in the more complex ‘many-type models’.    

The first artificial stock market structure was built by Stigler in 1964, who generated trading 

orders as random variables to investigate the effect of the regulations of the SEC on 

American stock markets using empirical data from the 1920s and 1950s. Garman (1976) 

developed two basic models, ‘dealership’ and ‘auction’ markets to examine the moment-to-

moment trading activities in asset markets. The author presented some new explanations of 

observed empirical phenomena such as leptokurtosis, movement of asset prices around 

their inventory positions and the dependence of probability functions on previous 

transaction prices.    

A few years later, Figlewski (1978) developed another ‘few-type’ artificial financial market 

model. His market model investigates the impact of distributing wealth among market 

participants with different levels of information. In order to establish price formation 

processes across the market, Figlewski assumed that all agents know the wealth levels of 

each other (unrealistic in real financial markets). While better informed agents 

outperformed the efficient benchmark by 14 per cent, simulations suggests that the overall 

market efficiency has been reduced by the introduction of agents with inferior information.   
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Although the disadvantage of Figlewski’s experiment is the presence of very limited 

information on the dynamics of prices and trades, it is still an important early investigation 

on how wealth dynamics affect the convergence to an efficient market (this is quite similar 

to my experiment in Chapter 4).  

Frankel and Froot (1986, 1986) were the first to simulate foreign exchange markets by 

combining a standard monetary model of open economy macroeconomics with chartist-

fundamentalist approach to expectation formation in order to provide a possible 

explanation of the dollar bubble over the first half of the eighties.  

DeGrauwe et al.(1993) claimed that Frankel and Froot’s model leads to chaotic behaviour of 

exchange rates and proposed a model of artificial stock market which was the first to 

explain some stylised facts other than the mere deviation from the fundamental value 

recorded in the literature so far.  

Kim and Markowitz (1989) developed their artificial stock market to investigate the reasons 

for the stock market crash in 1987 when the U.S. stock market decreased by more than 20 

per cent. Since this dramatic decrease could not be explained by the emergence of new 

information, research orientated around factors other than information-based trading was 

necessary in determining stock price volatility. In their experiment the authors tried to 

analyse the relationship between the share of agents pursuing portfolio insurance strategies 

and the volatility of the market. The simulated market contained two different types of 

traders, ‘rebalancers’ and ‘portfolio insurers’, and two assets, stocks and cash. The wealth 

w of each trader at time t was quantified by: 

                                                                    t t t tw q p c                                                            (3) 

Where tq is the number of assets the trader holds at time t , tp is the price of the asset at 

time t and tc denotes the cash traders hold at time t . ‘Rebalancers’ keep half of their wealth 

in stocks and the other half in cash, i.e. 

                                   Target of rebalancers: 0.5t t t wtq p c                                                (4) 
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Hence, the rebalancing strategy has a stabilizing effect on the market because increasing 

prices induce the rebalancers to increase their supply or reduce their demand; decreasing 

prices have the opposite effect. ‘Portfolio insurers’ adopted a strategy that guarantee 

minimum wealth at a specified insurance expiration date.  

The actual experiment started with rebalancers’ portfolios in disequilibrium- ‘rebalancers’ 

initially have either too many or too few assets. The overall result of this particular approach 

was the demonstration of the destabilizing potential of portfolio insurance strategies. The 

authors concluded that trading volume, price volatility, and the size of price changes 

significantly increased when the fraction of portfolio insurance traders increased. Kim and 

Markowitz simulated a market composed by traders who pursue strategies found in real-life 

markets and provided a detailed description at the microscopic level. In contrast to this 

specific model, more recent simulations of stock markets deal with much more stylised facts 

and descriptions of traders’ behaviour. Although the trading strategies were well defined 

allowing assessment of their impact, a market populated by many traders using portfolio 

insurance strategies can be very unstable (LeBaron, 2006).  

In a simulated financial market of Kirman and Teyssiere (2001) technical and fundamental 

traders followed a finite set of well-defined portfolio rules and shifted between a limited 

number of strategies according to an epidemiological process of contagion. Kirman and 

Teyssiere compared the long memory properties of the simulated market with actual 

volatility in various foreign exchange series, and reported a very good quantitative match. 

The major drawback of this artificial stock market is that traders have to follow a finite set of 

preliminary trading rules restricting their ability to evolve and learn.   

Although more recently created, the artificial stock market of Farmer and Joshi (2002) is a 

small market with fewer trading strategies designed to replicate a benchmark set of real 

trading strategies. The authors used U.S. aggregate real dividends interpolated to daily 

frequencies to simulate traders that follow trend following and value strategies. This 

artificial stock market generated long swings away from fundamental values and 

uncorrelated daily returns. It also generated fat tails, volatility clustering and trading volume 

persistence. This artificial stock market provide clear tractability since it was based on 

realistic trading strategies.  
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The study of Westerhoff (2003c) investigated the impacts of price limits on trading, which is 

one of the most interesting questions for market policy makers. In general terms, price 

limits prevent the wide movement of asset prices and when the price reaches that limit, no 

trades occur above or below the specified limit. The trading process does not terminate, but 

orders are executed at or within the price limit. This artificial stock market model consisted 

of technical traders whose demand was dependent on recent price trends, and fundamental 

traders. The pool of fundamental traders increased when the distance between the asset 

price and fundamental values increased generating natural fundamental reverting 

dynamics. When the price limit increased from zero, the distance of the traded price from 

fundamental values fell, and when the price limit passed 0.5 percent the asset prices 

deviated from their intrinsic values. The author concluded that setting optimal price limits 

critically depends on asset price movements around their fundamental values. Although 

interesting, the empirical results generated by artificial traders in this experiment does 

depend critically on very specific behavioural assumptions made for the market maker.    

The minority game generated important results for financial researchers (LeBaron, 2004a). 

The game involved two different doors, denoted 0 and 1, and an odd number of individuals 

choosing a door in each round of the game. After the choices are made, the door with the 

smaller number of individuals wins the race. The purpose of the game is to be contrarian in 

nature, and not to follow everyone else (Arthur, 1994; Challet and Zhang, 1997).  

Savit et al. (1999) presented a relatively simple artificial market model to examine how 

agents develop their codings and dynamics and how they adapt their behaviour in an 

endogenously changing market environment. Their experiment compared the volatility to a 

specific benchmark where agents were allowed to choose their strategies in a completely 

random fashion. For this purpose the authors studied the impact of changing the length of 

the historical data set  m on volatility and market dynamics. Small changes in the length of 

m resulted in larger observed volatility than the benchmark indicating that artificial agents 

adapt against each other in a manner which generates substantial volatility. Interestingly, 

large changes in m enabled random volatility, highlighting that strategies based on bigger 

historical data set could be associated with a random number generator in their strategy 

choices. 



30 
 

Although famous for their tractability and simple trading strategies the ‘few-type models’ 

are often biased towards any particular trading strategy adopted ex ante by the modeller. 

Apart from the ad hoc nature of their trading strategies and the lack of learning algorithms 

engaged in searching the space in order to find new trading opportunities, the ‘few-type 

models’ are limited in their abilities to seek out and take advantage of any inefficiencies in 

the search space. The ‘many-type models’ discussed in the next section aims to fill this gap.   

 

2.1.3 Many-type artificial stock market models  

 

The so called ‘many-type models’ include larger sets of trading strategies constructed by 

using a wide variety of computational techniques. These computerised models enabled 

researchers to examine the processes of emergence, survival and co-evolution of trading 

strategies over time. They also attempted to perform in depth analysis of market efficiency. 

If the artificial market occasionally moves to a state where inefficiency appears, then the 

evolutionary algorithm of the many-type models will search for new strategies.  

Levy et al.(1994) offered one of the first of ‘many-type models’ approaches in a 

collaborative work at Hebrew University including both economists and physicists. Their 

artificial stock market consisted of an ensemble of interacting speculators whose behaviour 

was derived from a traditional utility maximization scheme. At the beginning of every period 

each trader i divided up his entire wealth  W i into stocks and bonds (cash wasn’t 

included). With  X i denoting the amount of stocks in the portfolio of investor i , his 

wealth was quantified as follows: 

                                                   1 1t t t

sumofshares sumofbonds

W X i W i X i W i                                           (5) 

Where the superimposed boundaries were between 0.01<  X i <0.99. Interestingly, the 

authors have found chaotic motion in stock prices and lack of empirical scaling laws in any 

of their experiments. This artificial stock market was criticised by Zschischang and Lux (2001) 

on the basis of sensitivity of the original results to the initial conditions of the experiment.  
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The authors imposed further critiques by stating that the empirical results may be sensitive 

to the number of traders in the experiment. This critique is interesting, but it was based on 

three different memory lengths only- 10, 141, and 256. It remains to be seen if it has other 

implications on longer memory lengths.    

Arifovic (1996) produced an artificial stock market with richer and extensive structure based 

on the foreign exchange model of Kareken and Wallace (1981) to analyse the dynamics of 

the market under different parameters. The results showed that the consumption level in 

the first period converges to near its optimum value but the exchange rate constantly 

moves over time, and never settles to any constant value. Remarkably, in equilibrium the 

return of the two assets was the same, and therefore the learning of traders was indifferent 

between holding the two currencies. Hence, fractions of traders moved to holding one 

currency or another, shifting the exchange rate around as they change demand between 

currencies. This clearly demonstrated that equilibrium can be achieved if traders terminate 

their learning and exploration processes in the market. However, the experiment has a 

major drawback in that, if there exists one price series and exchange rate paring that 

corresponds to the equilibrium level, then there will be many such equilibria.  

Mahfoud and Mani (1996) presented a new genetic-algorithm-based market for inductive 

machine learning. The model was applied to financial forecasting in individual stocks. The 

genetic algorithm model was benchmarked against a neural network model on 5000 stock-

prediction experiments. Consistent with my forecasting evaluations in Chapters 7, 8, and 9, 

the authors concluded that both artificial models significantly outperformed the market, 

with the genetic algorithm model generating more accurate forecasts.   

Lettau (1997) developed his artificial stock market to examine the portfolio decisions of 

boundedly rational agents in order to determine how investors in mutual funds move 

money into and out of four different groups of mutual funds. The model was rather a simple 

one in which agents used a genetic algorithm to update their portfolio decisions. The author 

demonstrated that mutual fund investors follow the same pattern as the adaptive agents in 

the model in terms of investing funds. Furthermore, Lettau (1997) claim that a model with 

entry and exit of artificial agents is able to match quite closely the mutual fund data sets.  
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Lettau’s experimental results demonstrate that in different specifications the genetic 

algorithm can learn the optimal parameter for the portfolio policy, nevertheless, there are 

some important caveats. This is a very stylised and simplified artificial stock market. The 

author made no attempt to model the price formation process at all. Hence, this cannot 

beviewed as an attempt to simulate real-life financial markets, in which the dependence 

between today’s price and trader’s strategies is the most critical aspect for the agent-based 

modelling approach (Chapters 7, 8 and 9). However, this experiment represents a good 

learning tool because the setup is quite straightforward (LeBaron, 2006). 

Youssefmir and Huberman (1997) investigated the issue of volatility clustering in financial 

markets by analysing a simple resource allocation model where traders were allowed to 

choose between different resources with the payoff of every single resource dependent on 

the actual number of traders using it. The authors observed that the volatility clustering in 

their market was reminiscent of real financial markets and in the competitive market 

dynamics they analysed, traders payoffs were decreasing in the number of traders using the 

resource. The other connection between this experiment and real financial markets is that 

traders were allowed to implement various trading strategies to optimize their behaviour.   

Tsang et al. (1998) proposed a genetic programming based artificial market named EDDIE 

(Evolutionary Dynamic Data Investment Evaluator) to forecast horse races as well as 

financial instruments. Given a set of variables, EDDIE attempted to find interactions among 

variables and discover non-linear functions. When experimented on 180 handicap races 

based on real data in the UK, the model outperformed all common strategies used in horse 

race betting by great margins. EDDIE was then applied to historical dataset of the S&P 500 

and achieved a decent annual rate of return over a three and a half year period.  

Li (2001) expanded the EDDIE artificial stock market by implementing a special function 

called FGP-2, which provided the researcher with a handle for turning the precision against 

the missing forecasting opportunities. This valuable addition enabled Li to pick investment 

opportunities with greater confidence.  
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Arifovic and Gencay (2000) constructed an artificial stock market based on the previous 

work of Arifovic (1996) and presented significant evidence that the generated return series 

from the model are not only nonlinearly dependent, but are most likely chaotic in nature. 

Their estimation was conducted by applying the Lyapunov exponent (quantity that 

characterises the rate separation of infinitesimally close trajectories) altogether with various 

phase diagrams on the dynamics. 

Routledge (2001) examined the effect of agents’ learning by enabling them to buy a costly 

signal about a future dividend payout of an asset. The actual learning took place when 

traders were allowed to convert the noisy signal into a future dividend forecasts and traders 

who didn’t want to buy the signal used their current price to infer the future dividend 

payout. The author observed that the original equilibrium was unstable and analysed the 

dynamics of this instability.The equilibrium instability was due to a change in the market 

proportions of informed versus uninformed traders and when the number of uninformed 

traders decreased, the ability of their fraction to learn decreased too due to small sample 

sizes. Grossman and Stiglitz (1980) demonstrate that there is an equilibrium in which a 

number of traders will purchase the signal of future dividend payout of a stock. Routledge 

(2001) argue that this can be achieved within the GA learning environment. There are, 

however, sets of parameters for which the original equilibrium proves to be unstable. For 

instance, the change in market segments of informed versus uninformed traders means that 

the parameters of the linear forecasts are wrong. In particular, the uninformed traders have 

to have the ability to interpret the price with fewer of their type in the experiment. At the 

same time, if the number of uniformed traders decreases, the ability to learn decline based 

on the small sample size leading to convergence to a situation in which all traders are 

informed (Routledge, 1999).  

Johnson et al. (2001) presented an interesting application of the minority game to artificial 

stock market forecasting. Real financial time series were implemented in a binary string 

dependent on price movements and the continued model dynamics were used in out-of-

sample forecasting evaluation. Artificial traders were able to generate some insignificant 

profits in real high frequency historical data. However, the main criticism of this model is 

that it does not have any natural role for prices in its basic version.  
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LeBaron (2006) argues that it would appear that the contrary principles of the minority 

game is somewhat forced, and real-life stock markets it may be better to follow the herding 

behaviour (explained in Chapter 5) for a short period of time. Moreover, it remains to be 

seen how robust and reliable the empirical results generated by artificial traders in this 

experiment are.   

In another minority game framework, Hart et al. (2003), recommended possible 

governmental market policies aimed at mitigating bubbles and crashes and stabilising 

financial markets. The authors orientated their artificial market towards simulating a 

financial crash before it happened in reality and observed a relieve of the crash pressure 

and stabilised financial market dynamics. Their policy recommendation was associated with 

a kind of a release valve in market dynamics which lets off steam before the real big crash 

occurs.      

All the artificial stock market models described in this section were among the first attempts 

at microscopic simulations of financial markets and their aims were more to provide 

mechanisms for bubbles and crashes than investigating statistical properties of the 

generated time series. However, all these artificial stock markets often suffer from the lack 

of precise definition of their far too many parameters. Also, the impact of many of these 

parameters is not well understood by researchers. Moreover, there are still relatively few 

general principles that researchers can apply to the development of the ‘many-type models’ 

of artificial stock markets (LeBaron, 2006). Nevertheless, this criticism did not stop all future 

experimentations. There are directions in which the artificial stock markets are moving 

giving these markets a more solid foundation discussed in the next section.  
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2.1.4 Emergence behaviour and many agent models 

 

Artificial stock markets described in this section move farther from examining model 

dynamics, and more toward analysing the occurrence of trading strategies and examining 

their co-evolution over time. Simulated stock markets in this category aim at determining 

which trading strategies will appear and survive thorough self-reinforcement, and which will 

fail (LeBaron, 2004a).   

The model of Rieck (1994) represents one of the earliest attempts to examine the 

emergence and evolution of trading strategies. He replicated actual trading strategies using 

evolutionary techniques and concluded that fundamental strategies are not able to take 

over the market and drive asset prices to their fundamental values. In artificial markets 

populated by fundamentalist based trading strategies the asset prices moved away from 

their intrinsic values, but eventually returned.   These results are suggestive that artificial 

stock market models could be replicated with more microstructure orientated trading 

mechanisms.  

The Santa Fe Artificial Stock Market (SF-ASM) developed by LeBaron et al. (1999)  was one 

of the most influential artificial stock market models, which provided a solid base for other 

artificial stock market experiments. It was initially written in the C programming language 

and imported into the Swarm language later on, generating much interest in science. The 

main aim of the model was to understand the trading environmental behaviour in a market 

where trading strategies evolve and compete against each other. There were two assets 

that artificial agents trade- a risky asset with a random dividend, td  and a risk-free bond 

which provide constant level of interest, r . The dividend was associated with the following 

autoregressive process: 

                                                         1t t td d p d d                                 (6) 

where t  is Gaussian and independent, and p equals 0.95.  

Under constant absolute risk aversion (CARA) utility and Gaussian distributions for dividends 

and prices, the actual demand for holding shares of the risky stock by trader i , was 

quantified in the following form: 
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Where tp is the price of the risky stock at t , 2

, ,t i p d  is the conditional variance of p d at 

time t , for trader i , is the absolute risk aversion coefficient, and 
,t iE is the expectation of a 

trader i at time t . The authors assumed a fixed number of traders, N ,and a number of 

stocks equal to the number of traders: 
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

                                                                 (8) 

Where is represents the optimal linear functional form for trader i . The authors 

successfully implemented the most important processes of learning and forecasting in the 

model through a classifier forecasting system which matches current information with 

conditional forecasting of future prices. Artificial stock market agents forecast future prices 

by matching precise trading rules to current informational fundamental or technical sets. A 

linear price and dividend forecast was presented in the following form: 

                                                , 1 1t i t t j t t jE p d a p d b                                                  (9) 

Where tp  is the price of the risky asset at time t , ,t iE is the expectation for agent i at time t

, and td  is a state variable. The parameters ja and jb are initially set to random values 

distributed informally about the rational expectation equilibrium (REE). P  measure the 

probability and it is a crucial parameter which estimate the number of learning periods of all 

artificial agents as a function  K K p , where measures the learning rate. All matched 

trading rules were evaluated according to their accuracy in forecasting price and dividends. 

Every single trading rule kept a record of its squared predicting error: 

                    
2

2 2

, , 1, , 1 1 , , 1 11t i j t i j t t t i j t tp d E p d                                 (10) 

The worst performing 15 per cent of the trading rules in their experiment were eliminated 

from the market participant’s rule setting and replaced by completely new rules via genetic 

algorithm crossover and mutation techniques.  
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The SF-ASM model successfully replicated stylized facts or empirical puzzles of the real-

world financial time series such as fat tails (non-normal return distributions) and persistent 

volatility. Also, artificial agents were able to collectively learn a homogeneous rational 

expectations equilibrium (REE) for certain parameters resulting in time series and individual 

forecast values consistent with the equilibrium parameter values.   

One of the major disadvantages of the SF-ASM is that the software is not easy to read or 

use. Also, the software was developed before objective programming languages were 

popular, and was only adapted to objective form. Although some of the general statistical 

properties and features can be replicated, exact simulation of trajectories across different 

computing platforms proved difficult. LeBaron (2005) argue that the classifier system of SF-

ASM has proved to be very complicated for modelling purposes. This is due to the fact that 

many parameters have to be defined, and it is rather unclear which of these is important. 

Moreover, the implementation of the classifier and the lack of technical trading rules are 

often criticised. Finally, another important critique of SF-ASM is that by assuming constant 

absolute risk aversion utility functions, the software ignores the wealth dynamics of traders. 

Fortunately, this serious design issue is not present in Altreva Adaptive Modeler (there is no 

constant absolute risk aversion utility function and the software takes into account the 

wealth level of traders, Section 3.2 of the thesis).   

Arifovic and Masson (1999) created a model to simulate the emergence of foreign  exchange 

crises. The artificial market model aimed at better understanding of periodic currency crises 

in developing countries, because recent studies have shown that developing markets are 

vulnerable to periodic crises as well as significant capital outflows leading to overall 

macroeconomic instability. The agents were allowed to make simple risk neutral portfolio 

decisions between developing and developed country dept and then compared the returns 

of developed country debt with the expected returns of developing country dept. Initial 

values from the Argentina’s currency crisis were imported to the model to observe the 

process of emergence of the crisis.    
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Chakrabarti and Roll (1999) produced an artificial stock market where traders mimicked 

other large traders’ behaviour in an attempt to achieve more sophisticated forecasting 

results. This was done by observing and adjusting trading behaviour towards better 

performing agents. The authors observed that intensified trading activity lead to sharp price 

movements and a enhanced learning process. Another important conclusion is related to 

the threshold level at which a trade conducted between two artificial market participants is 

noticed by all other traders. Chakrabarti and Roll purposefully reduced the threshold level in 

their experiment resulting in reduced price volatility and increased forecasting accuracy. 

This fact indicated the presence of highly effective learning processes in the market.  The 

authors implemented a novel approach to investigate the impact of various parameters and 

performed different simulations at randomly chosen parameter values. To analyse this huge 

dataset, they performed multiple linear regressions on the parameter values in order to 

investigate their implications on empirical findings. This, however, is a lengthy and indirect 

to examine parameter sensitivity.  

Chakrabarti (1999) replicated one of the most well documented features in intra-day data- 

the U-shaped pattern in bid-ask spreads. The bid-ask spreads tend to be wide at the opening 

of trading, narrow during the day, and wide before the close, forming the U-shaped pattern. 

Simulated foreign exchange traders received random order flow during trading hours 

providing them with information about the aggregate order flow, and the value of the 

currency. Traders were risk averse and their reservation prices were estimated in a Bayesian 

learning framework. The empirical results revealed the presence of the U-shaped spreads 

and volatility presence. Surprisingly, there was more unexplained variation in the variables 

during afternoon trading highlighting the importance of price path dependence in trades 

executed at different time slots.  Moreover, Chakrabarti (1999) detected the presence of 

significant nonlinear effects in both quadratic and cross terms indicating the complex 

relationship between the underlying information and preference parameters.   

The artificial stock market model of Lux and Marchesi (1999) has its roots in earlier attempts 

of economists at implementing heterogeneity into stochastic models of speculative stock 

markets (Samanidou et al.,2007). This particular simulation of a stock market was inspired 

by the analysis of herd behaviour in ant colonies (Kirman, 1993), and earlier applications of 

statistical mechanics to different issues in sociology and political sciences.  
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Their artificial stock market model was capable of generating bubbles with over-or 

undervaluation of the stocks and periodic oscillations with repeated market crashes. Traders 

were allowed to switch between a chartist and fundamentalist trading strategy creating 

more complicated market dynamics than previous models found in the literature. The 

complicated dynamics generated chaotic patterns in mean values of the relevant state 

variables represented by the number of traders in each group plus the market price. 

Statistical analysis of these chaotic patterns revealed that they are characterised by fat tails 

providing a possible explanation of one of the ubiquitous stylised facts in financial time 

series.  

In a series of more recent papers Huang and Solomon (2000, 2001, 2002) extended the Levy 

et al. (1994) simulation of artificial stock market and implemented a random multiplicative 

process for the wealth of each trader, with different traders coupled through their average 

wealth in a similar way to predator-prey models (based on Lotka-Volterra systems 

frequently used to describe the dynamics of biological systems in which two species 

interact, one a predator and one its pray). The authors assumed that all traders start with 

the same wealth but later each of them speculates differently on the market and gains or 

losses funds proportional to his current wealth state quantified by: 

                                              1i iw t w t       1,2,.....,i N                                           (11) 

Where  is a number fluctuating in a small interval D centred about unity. The important 

conclusion was that due to the random nature of the multiplicative process a few hundred 

professional speculators and not the millions of non-speculative families dominate most of 

the market movements.  

Cont and Bouchaud (2000) proposed one of the simplest artificial stock market models, 

having only a few free parameters and a cluster (group) of traders making joint decisions in 

order to simulate the herding behaviour of traders. According to their model at each time 

step, each cluster either trades with probability 2a  or sleeps with probability 1 2a . During 

the trading process agents either buy or sell an amount proportional to the size s of the 

cluster i . Hence, a represent the probability of the member of a cluster to be a buyer.  
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The market price is driven by the difference between the total supply and demand and the 

logarithm of the price changes proportionally to this difference. Similar to my experimental 

findings in Chapter 5, the authors observed and explained important stylised facts of 

financial markets such as volatility clustering, positive correlations between trading volume 

and price fluctuations and asymmetry between sharp peaks and flat valleys.  

Ehrenstein (2002) and Westerhoff (2003) applied Cont and Bouchaud’s model to investigate 

the implications of a small Tobin tax on all transactions and to estimate the exact amount of 

tax needed. Working independently both authors discovered that depending on 

parameters, either the total tax revenue has a maximum in the region of up to 1 per cent 

taxation, or it increases monotonically. After taking into account the tendency of 

governments to overexploit available sources of tax income, they recommended the 

introduction of the Tobin tax for the first case, but not for the second. Moreover, the 

authors claimed that this would potentially reduce the amount of speculation, but not by an 

order of significant magnitude (Ehrenstein et al.,2005).    

Lux and Marchesi (2000) investigated the occurrence of stylised facts of financial returns 

within an artificial multi-agent framework of speculative activity where artificial traders with 

both chartist and fundamentalist strategies operated. The authors presented a possible 

explanation for stylised facts such as unit root in levels together with heteroscedasticity and 

leptorkurtosis of returns. They observed that volatility clustering phenomenon is a 

consequence of the market being subject to occasional temporal instability.  

De Fontnouvelle (2000) implemented models with artificial agents to investigate whether 

the forces driving volatility and trading volume in financial markets are the same as those 

driving asset returns. The author concluded that the driving forces behind return volatility 

and trading volume differ from asset returns. However, the simulated time series for return 

volatility and trading volume showed a copersistence very similar to that observed in actual 

financial markets.  

Darley et al. (2000) simulated realistic market trading mechanism to investigate the impact 

of changing the tick size with different populations of parasite artificial traders. The 

evaluation was done through traders’ ability to closely track fundamental values, and price 

volatility.  
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The effect of changing the tick size was insignificant when there were just a few parasite 

traders. However, when the number of parasites increased, the impact of the parasite 

strategies also increased leading to reduced market ability to track intrinsic values. This 

particular finding is contrary to the perceived assumption that any reduction in the tick size 

is leading to efficient market functioning. 

In 2000, Chen and Yeh constructed artificial stock market model similar to the SF-ASM. The 

slight difference was that the price adjustment process occurs in response to excess 

demands based on forecasting abilities of future prices. The authors implemented genetic 

programming technique in order to modify traders learning function. An important point is 

that Chen and Yeh enabled all traders to evolve their prediction functions. The actual goal of 

each artificial trader was to maximize the one-period expected utility function: 

                                              , , 1 , 1 ,expi t i t i t i tE U W E W I                                      (12) 

Subject to: 

                                                 , 1 , , 1 11i t i t i t t tW r M h P D                                              (13) 

 

Where , 1i tW  is the total wealth of trader i at time period t ; P is the price of the stock at 

time period t ; tD is per-share cash dividends;  , .i tE represent trader i conditional 

expectation of 1tW  given her information up to t ; ,i tI is the information set and r is the 

riskless interest rate.                                                                                                                               

Chen and Yeh designed an innovatory pool of various naturally occurring trading rules called 

a ‘business school’. In essence the ‘business school’ included a group of artificial agents 

(school members) competing with each other for the purpose of determining the best 

possible forecasting models. Both the ‘business school’ participants and traders continually 

co-evolved over time. While the success of the ‘business school’ members was measured by 

their current forecasting abilities, traders’ success was observed by the accumulation of 

wealth resources.  
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The interesting feature is that each trader individually chooses between two options-

whether to trade in the artificial stock market or to request some time off to attend the 

‘business school’ in order to experiment with specific forecasting models developed and 

provided by school participants. The rationale behind ‘business school’ attendance is to 

determine a forecasting model that is superior to the one currently adopted by the other 

artificial traders. Remarkably, Chen and Yeh concluded that individual artificial traders 

behave as non-believers of the Efficient Market Hypothesis (EMH), although experimental 

results suggested that the artificial stock market is efficient. This outcome is consistent with 

my experimental findings presented in Chapter 4. The other conclusion they made is that 

market behaviour experienced constant changes. For instance, the initial success of some 

trading strategies was no longer effective as they were adopted by a large number of 

artificial agents. Although simulations of this artificial stock market displayed some features 

of the real-life return time series, there are several features that disagree with the real data. 

For instance, there is a large level of positive skew and the return series are independent, 

which indicates there may be no persistent volatility pattern. Moreover, the authors tested 

for the presence of a unit root and couldn’t reject a unit root. This seems surprising 

considering the stationary nature of the dividend process.  

A year later, Chen and Yeh (2001), applied genetic programming technique to evolve a 

population of traders learning over time. Their experiment was based on the SF-ABM and 

aimed to understand the emergent properties of the EMH and the REE hypotheses. They 

inquired whether the macrobehaviour depicted by those two hypotheses is consistent with 

academic theories of microbehaviour. The authors applied a series of econometric tests and 

concluded that the results cannot be interpreted as a simple scaling-up of individual 

behaviour and proposed a conjecture based on sunspot-like signals to explain why 

macrobehaviour can be very different from microbehaviour.     

Chen et al. (2001) introduced a stochastic simulation model of a financial market populated 

by noise traders and fundamentalist speculators to explore the behaviour of the model 

when testing for the presence of chaos or non-linearity in the simulated data. All artificial 

traders in their experiment were allowed to switch between optimistic and pessimistic 

moods as well as between noise trading and speculative trading. The authors achieved very 

unstable results in their tests for non-linearity and dependence.  
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They reported both acceptance and strong rejection of identically and independently 

distributions in different realisations of the model. However, when tested for independence 

in second moments and estimating GARCH structures, the results appear much more robust 

and the computed GARCH model closely assembled the typical outcomes of various 

empirical studies.     

The Genoa artificial stock market was created by Raberto et al. (2001). This artificial stock 

market consisted of heterogeneous agents trading one single asset through a realistic 

trading mechanism for price formation. Initially, agents were endowed with a finite amount 

of cash and in each period they made random buy and sell decisions constrained by 

available resources and dependent on the volatility of previous periods. The most important 

aspect of the Genoa artificial market was its ability to generate the key stylised facts such as 

fat tails and volatility clustering using simple trading rules. The disadvantage of this 

particular artificial stock market is that traders are generally fairly unsophisticated. Buyers 

and sellers group into larger dependent groups, which then move together creating herding 

behaviour by design (this is similar to my empirical outcomes discussed in Chapter 5).  

Bullard and Duffy (2001) simulated a traditional macroeconomic model for asset prices by 

enabling traders to predict future price levels using a recursive regression technique, which 

exhibited excess volatility. The purpose of this particular simulation was to capture market 

features similar to real-life stock markets. The authors reported parameters that were able 

to give them reasonable volatility in stock returns and low volatility in per capita 

consumption growth consistent with U.S. macro economic data.   

LeBaron (2001a) and LeBaron (2002) presented artificial stock market models capable of 

mimicking different real-life portfolio strategies. Traders’ memory lengths followed Levy et 

al. (1994), and while some of them evaluated their strategies by using a small past history of 

returns, some others used longer histories. Traders’ preferences were based on constant 

relative risk aversion, and therefore more wealthy traders possessed a larger part of the 

market. Agents had the freedom to choose optimal strategies according to their history 

length and traded a risky and a risk free asset.  
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The author compared all simulated results with real historical data for the S&P 500, and 

reported replication of a large range of financial market phenomena such as long memory 

volatility persistence, volatility cross correlations and the tendency for volatility to generally 

lead trading volume. However, the main ctiticism of this artificial stock market is that 

predictability in the early stages of the market is unrealistically high. Regressions of returns 

on simple lagged returns can generate R-squared values as high as 0.7.  

Stock markets are often dependent on the actual behaviour of a broker dealer who controls 

liquidity (LeBaron, 2004a). Chan and Shelton (2001) study the role of this dealer, and its 

ability to learn optimal strategies. The dealer in their experiment was positioned within a 

market with random order flow generated by both informed and uninformed traders. 

Uninformed traders operated in a random manner and informed ones received a signal 

about the true value of an asset. The authors tested different learning mechanisms and 

reinforcement learning algorithms and captured the optimal policy function for the market 

maker.     

Audet et al. (2001) addressed the important question of order book versus dealer markets 

to investigate which type of market is preferrable and whether there is a general optimal 

stock market structure. The latter question is a puzzling one, since many real-life stock 

markets have both trading systems working together. The order book was designed to 

simulate most modern electronic trading systems and allowed all traders to know the 

current depth and liquidity in the market.  

The dealer markets also mimicked actual features of this type of market disclosing less 

information on the state of the market, but enabling traders to reveal less information 

related to their current demands. Interestingly, when order flow increased and become 

more correlated across customers, dealer markets seemed more desirable destination for 

trading. This particular finding indicated that when investors move large orders through a 

trading system, the anonymity of the dealer system outperformed the transparency of the 

order based system. Moreover, the authors demonstrated that dealer markets are more 

attractive when the number of dealers is increased and their risk aversion is reduced. It was 

evident that the dealer market was able to absorb significantly more risk as answering a 

critical policy question.  
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Yeh (2003) based his artificial stock market principles on Chen and Yeh (2001) to examine 

market performance under different tick sizes. Similarly to most models in this section of my 

thesis, traders used forecasting information based on future prices and dividends to 

establish a reservation price. Orders were executed in random ordering of traders, within an 

order book. In cases when traders’ reservation price does not cross the current book, 

traders issued a limit order through a simplistic algorithm consisted of the reservation price 

and the data quotes. His experimental results demonstrated that the tick size plays an 

important role in market performance. Reduced tick sizes has led to decreased spreads 

positively affecting market liquidity. This finding is consistent with some of the high 

frequency trading outcomes of Chapter 9 of this thesis.  

In a similar fashion, Bottazzi et al. (2003) compared the Walrasian trading protocol with a 

batch action procedure (similar to Altreva Adaptive Modeler, Section 3.2.4), and a limit 

order book to determine the optimal trading structure. The structure of the model was 

similar to the SF-ASM, enabling traders to produce relatively simple price and volatility 

forecasts as weighted averages over the recent past. Based on random principles the 

traders decided between executing a limit order stored in the order book, or a market order 

implemented immediately. The batch market was a preferable destination for trading when 

the probability of a market order was large, but when this probability was low, the order 

book market was preferred. This finding indicated that in markets where traders are not 

able to reveal any information in the limit book, a batch action is required to aggregate the 

sparse quantity of information received through order flow.     

Although the vast majority of artificial stock markets cited so far described empirical 

replication of stylized facts, the model developed by Winker and Gilli (2001) attepted to 

formally estimate parameters based on the Kirman (1991) model, where agents switched 

chartist and fundamentalist strategies and a weighted average of their forecasts was used 

by portfolio managers trading in the foreign exchange markets. Winker and Gilli (2001) 

fitted two features of actual financial returns such as kurtosis and the first order volatility 

coefficient in an ARCH (1) model and provided a detailed study of the sensitivity of the 

results to different parameter specifications.   
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Joshi et al.(2002) applied game theory to the SF-ASM to examine the optimal frequency for 

traders to revise their market forecasting rules. The authors reported a unique strategic 

Nash equilibrium, and this particular equilibrium is sub-optimal in the sense that artificial 

agents’ earnings are not maximized and the market is inefficient. Joshi et al. (2002) 

concluded that this strategic equilibrium is based on the prisoner’s dilemma principles and 

suggested that financial markets can end up in situations similar to this dilemma in which 

frequent revisions of forecasting rules and extensive technical trading enhance price 

variability and reduce earnings.   

Aoki (2002) composed an artificial stock market framework for market participation with 

infinitely many strategies or trading rules. The author derived the number of types or 

clusters of agents from a rather general specification of the entry and exit dynamics to 

demonstrate that often the sum of the fractions of agents in the two largest groups will be 

close to one. This finding provided a theoretical rationale for the confinement to two trader 

groups in many models of speculative dynamics.  

Iori (2002) presented an interesting artificial stock market where traders received a signal 

that combined information on choices of local neighbours, and this signal was used as an 

input into trader’s decision to generate a bid or ask order for an asset. Then the market 

maker covered all imbalances in orders and adjusted the asset prices by: 
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Where tD and tZ represented the number of positive and negative values of the signal. 

Asset returns were estimated by log difference of equation (14), and the volatility was 

calculated by the absolute values of these returns. Remarkably, this particular artificial stock 

market generated nearly uncorrelated returns with volatility close to long memory and 

simulated behaviour of a long hyperbolic decay pattern in the autocorrelations. The model 

also showed strong positive correlation between trading volume and volatility and indicated 

that the threshold part of the simulations caused volatility to occur. LeBaron (2006) pointed 

out that the only disadvantage of this particular artificial stock market is that the 

thresholding of the signal is vitally important for volatility clustering to appear.  
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Similar to my experiment in Chapter 8, Chen and Liao (2003) simulated the stock market 

environment to examine the possible explanations for the presence of the casual relation 

between stock returns and trading volume. The authors argue that conventional 

assumptions such as information and reaction asymmetry, noise traders and tax factors are 

not explicitly required. Their simulation findings suggested that the stock price-volume 

relation could be seen as a genetic property of financial markets in the light of autonomous 

interacting traders.   

Cincotti et al. (2003) developed an artificial stock market with a finite amount of cash 

resources and number of stocks. The initial training of the model consisted of a random 

trading strategy constrained by the finiteness of resources available and by the level of 

market volatility. Three different trading strategies were introduced and experimented in 

two different market conditions: a steady market and a growing market with asset inflation. 

The stock market properties successfully generated stylised facts such as volatility 

clustering, fat tails and reversion to the mean (I detected the same stylised facts in Chapter 

5). The authors demonstrated that the profitability of each trading strategy depends on the 

periodicity of portfolio reallocation and on the market condition. However, only a strategy 

that fully exploited the reversion to the mean process gave satisfactory results in all cases.  

Lawrenz and Westerhoff (2003) simulated a foreign exchange market populated by 

heterogeneous, boundedly-rational traders which rely on a mix of technical and 

fundamental trading rules evaluated by genetic algorithm learning. Their model 

simultaneously generated numerous stylised facts such as unit roots, fat tails, volatility 

clustering, a fuzzy relationship between news and exchange-rate movements, co-integration 

between the exchange rate and its fundamental value, a declining kurtosis under time 

aggregation and weak evidence of mean reversion.  

The artificial stock market created by Noe et al. (2003) represents the first model to 

consider corporate finance related issues. Their experiment examined how companies raise 

capital and issue securities that maximize their profits. The model also investigated how 

investors evaluate the securities issued by companies based on past information.  
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This particular simulation included a company with an investment project that needs to be 

financed by choosing from six different securities that can be issued, and two potential 

external investors. The six securities included debt and equity as well as convertible and 

subordinated dept. When the evolutionary learning process was absent from their 

experiment, companies competed against a fixed set of investors who knew the appropriate 

pricing operations and equity and subordinated debt dominated the market in contrast to 

the real-life markets where straight debt is used. Surprisingly when an evolutionary learning 

process was introduced in the model, debt was the most commonly used financial 

instrument with subordinated debt placed second, and equity third. The authors 

demonstrated that the popularity of debt is associated with the ability of artificial traders to 

learn via co-evolutionary learning dynamics and evaluate different financial instruments. An 

important conclusion of this experiment is that investors tend to underprice securities in 

cases with or without learning. Although this is an interesting first attempt to connect 

artificial stock markets with corporate finance and the coevolution of traders’ behaviour 

along with the institutions that guide that behaviour is interesting, the results of this study 

need to be explored under different learning specifications and investment institutions.     

Ehrentreich (2004) reconsidered and reassessed the evidence of technical trading in the SF-

ABM framework in light of an upwardly biased mutation operator and an arbitrary mutation 

operator. While the arbitrary mutation operator failed to establish technical trading 

activities, two tests other than the inappropriate investigation of the aggregate bit level 

established the existence of technical trading beyond that level. When the selective forces 

are rather weak, Ehrentreich found that the continued existence of technical trading can be 

reconciled with the EMH.   

Gulyas et al. (2004) extended the early version of the SF-ABM model by combining the 

realm of agent-based modelling and participatory simulations where some agents are 

artificial, while a human subject imposed control on others. The authors demonstrated that 

blending models of experimental economics and agent-based modelling tools can enhance 

the processes of testing human economic behaviour as well as theoretical assumptions 

embedded in computational models. Interestingly, their experimental results indicated that 

technical trading could result in market deviations such as bubbles and crashes.    
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Markose et al. (2003) investigated the Red Queen principle within artificial stock market 

settings. The Red Queen theory places constraints on performance enhancement of all 

individuals if each is to maintain the status quo in relative fitness measured by an index 

relative to aggregate performance. In artificial stock market settings agents have to 

individually learn and adapt in a multi population genetic programming environment, 

retraining of genetic programmes is performed in ad hoc way. However, Markose et al. 

(2003) argue that in terms of the Red Queen principle, performance enhancement should be 

of an endogenous constrainted type, which is different to ad hoc and exogenously imposed 

by the researcher. Moreover, the authors argue that the rate of retraining is associated with 

the extent to which a lower bond constraint on agent wealth relative to aggregate wealth is 

satisfied or not.   

Korczak and Lipinski (2004) presented an artificial stock market based on an evolutionary 

algorithm that used technical analysis trading rules. The authors combined two approaches 

to investigate whether replacing the original set of rules by a set of linear combinations of 

them causes a significant decline in performance. The first approach included 350 trading 

rules and the second one consisted of 150 trading rules. After running numerous 

experiments with real-life data from the Paris Stock Exchange, the authors demonstrated 

that the original set of trading rules can successfully be replaced with the smaller set of 

linear combinations of them without a major efficiency loss, while achieving a significant 

reduction in computing time. This finding enabled optimization of trading strategies in real-

life systems because computing time is the major constraint in real-time data processing.  

Similar to Altreva Adaptive Modeler stock market structure (Section 3.2.3), Raberto and 

Cincotti (2005) composed a double-action artificial stock market populated by agents with 

heterogeneous beliefs who trade one risky asset in exchange for cash. All agents were 

designed to issue initial random orders subject to budget constraints in order to investigate 

two significant stylised facts of the limit order book: the distribution of waiting times 

between two consecutive transactions and the instantaneous price impact function. 

Raberto and Cincotti demonstrated both theoretically and through simulations that when 

the order waiting times are exponentially distributed, trading waiting times are also 

exponentially distributed.  
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Amilton (2005) implemented the efficient method of moments and maximum likelihood 

methods to examine earlier simulations of financial markets. The author compared the 

results of his models to the results of real data and conventional econometric models. He 

claimed that previous findings in artificial market modelling are based on unrealistic 

computing of the noise term and when the stochastic process is properly estimated the 

models are still capable of generating some stylised facts, but the fit is quite poor.  

Mannaro et al. (2008) studied the effects of the Tobin tax within artificial stock market 

settings. The microstructure of their market was constructed of four different types of 

traders: random traders, fundamentalists, momentum traders, and contrarians with limited 

resources. There were two separate artificial markets with different transaction taxes and 

traders were allowed to choose in which market they would like to trade. An attraction 

function that drives traders’ choice based on perceived profitability was introduced. After 

performing extensive simulations the authors concluded that the Tobin tax increases 

volatility and decreases trading volumes.   

The artificial stock market created by Beltratti and Margarita (1992) and developed further 

by Beltratti et al., 1996 is very different from the other artificial markets presented so far. 

The model was designed to search for emergent pattern in the trading behaviour of agents, 

but unlike the other markets, this one didn’t have any organised trading institutions. Traders 

operated in completely random fashion bumping into potential trading patterns. All traders 

developed forecasts based on assumptions and past local and global information. Then 

traders compared their predictions and the one with the largest forecast was allowed to buy 

1 share from the trader with the smallest forecast. The actual trade was executed at the 

average of the two forecasts and the market kept record of the average execution price 

across the random pairings.  

A common concern about all artificial stock markets discussed so far is validation. The main 

criticism is that there are too many degrees of freedom. Agent-based modellers are able not 

just to move freely through large parameter environments, but can also change entire 

markets in the attempt to fit different sets of stylised facts of financial returns. Moreover, 

researchers are starting to move from the more stylised earlier artificial stock markets 

towards advanced simulations of financial markets discussed in the next section.  



51 
 

The latter try to replicate very explicitly the actual trading mechanisms that are being used 

in real-life trading (for example, Altreva Adaptive Modeler, Section 3.2) rather than building 

a stylised trading framework. The advanced artificial stock markets are well designed to 

describe the construction and design of actual stock markets.    

 

2.1.5 Advanced artificial stock market modelling trends 

 

Vytautas and Ramanauskas (2010) proposed an artificial stock market based on the 

interaction of heterogeneous traders that is characterised by forward-looking behaviour 

governed by a reinforcement-learning algorithm combined with an evolutionary selection 

mechanism. This particular model was used to analyse market efficiency and self-regulation. 

The results suggested that the asset prices in their model reflect fundamentals in broad 

terms but under-or over-valuation phenomena are sustained for prolonged periods of time. 

The authors found weak self-regulation ability of the market, indicating that institutional 

settings alone, such as the centralised exchange based on double auction trading are not 

sufficient to guarantee effective market functioning. Moreover, they found a positive 

relationship between asset returns and liquidity changes, and therefore exogenous shocks 

to investors’ cash holdings are leading to substantial changes in asset prices.   

 Yeh and Yang (2010) analysed the effectiveness of price limits from the perspectives of 

volatility, price distortion, volume and welfare in an artificial stock market. The market was 

populated by boundedly rational and heterogeneous traders whose learning behaviour was 

based on genetic programming algorithm. The authors observe both positive and negative 

effects from the imposition of price limits. When compared to the market without price 

limits, it turned out that properly developed price limits reduce volatility and price 

distortion, and have positive impact on liquidity and welfare.  

Not very different from the zero-intelligence traders in Chapter 6 of this thesis, Ponta et al. 

(2011) created a multi-asset artificial stock market populated by zero-intelligence traders 

with finite financial resources to study the statistical properties of their market. The market 

consisted of different types of assets representing companies from different economic 

sectors.  
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Companies operating in the business sectors of the economy were not allowed to pay 

dividends as a consequence of random restrictions on the allocation universe of zero-

intelligence traders. When dividend-paying assets were introduced to the market, the 

artificial stock market returned the same structural results observed in the experiments 

without dividends. These findings suggest a significant structural influence on statistical 

properties of the artificial stock market.  

In another study Ponta et al. (2011) examined the statistical properties of the univariate and 

multivariate processes of prices and returns in an artificial stock market characterised by 

heterogeneous informed traders. Traders disseminate information and sentiments through 

interactions determined by sparsely connected graphs. There was a central market maker 

that governed the price processes for each asset at the intersection of the demand and 

supply curves (in comparison, there is no market maker in all my experiments). In terms of 

the univariate price processes their artificial stock market was able to generate stylised facts 

such as unit roots, volatility clustering and fat tails. The proposed simulation model 

endogeneously reproduced the static and dynamic stylised facts such as cross-correlation 

between returns of different securities.  

LeBaron’s (2012) model of an artificial stock market not only replicated most of the key 

features of financial time series, but highlighted some genetic stabilizing and destabilizing 

properties that may appear in real stock markets. The author went further and tested the 

Minksy’s (1986) macroeconomic effects (Minksy argues that financial markets exhibit 

bubbles as investors become increasingly confident about markets) in a laboratory 

environment. Remarkably, LeBaron observed that market dynamics are predominated by 

irregular swings around fundamental values and asset prices slowly increase, and then crash 

fast and dramatically with high volatility and high trading volume. During the price rise, 

traders with similar volatility forecast models lowered their assessment of market risk 

encouraging more aggressive trading behaviour leading to a crash. This process fully 

matches the Manksy market instability dynamic, and other contemporary approaches to 

financial instability.  
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Cooke (2012) proposed a new class of artificial stock markets that use general equilibrium 

price clearing with built in exogenously dividends from a geometric vector autoregressive 

model. There was no risk free asset and traders were enabled to form their demands for an 

arbitrary number of stocks with arbitrary covariance structure. Cooke (2012) derived an 

optimisation problem for estimating equilibrium prices and demonstrated that his simulated 

market successfully generated many real stock market dynamics and phenomenon.   

Kimura et al. (2012) proposed a different approach for the analysis of stock prices by 

investigating the simulation of traders’ behaviour in an artificial stock market where traders 

interact, by demanding and supplying stock, driving asset prices to an equilibrium value. 

Their empirical results of the dynamics of asset prices indicated that, under the assumption 

of utility maximizing traders with different expectations about future dividends, stock prices 

may under-react. Moreover, the gradual change of stock prices in the sub-reaction 

confronted the principles of the EMH.  

Huang et al. (2012) constructed an order-driven artificial stock market to analyse the 

transaction costs of ten securities in the Taiwan stock market. Their empirical findings 

showed that the liquidity costs of market order of the ten financial instruments ranged 

between -1 per cent and 1 per cent. However, the simulation costs of market order in their 

artificial stock market are larger than those of real data ranging between 0 per cent and 10 

per cent. The authors assumed that the reason for this difference is that investors in real-life 

stock markets do not execute their orders blindly. Regardless of the difference, this models 

represent an appropriate simulation tool for transaction cost assessment when investors 

would like to liquidate their stocks in a short span of time.  

Panayi et al. (2012) introduced a semi-synthetic artificial stock market based on a new 

concept in the area of agent-based modelling of financial markets. Essentially the model was 

partially based on real order book data and partially based on artificial agents, making it 

closer to the real-life market rather than a pure agent-based model. The authors performed 

tests of realistic daily trading runs believing that traders from real markets execute their buy 

or sell orders not as suggested in the dataset, but based on the difference between the price 

they observe in the artificial stock market and the price they has seen on the real stock 

market.  
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The experiment examined the effect of using homogeneous, limited intelligence traders 

compared to realistic traders to evaluate a number of financial metrics for intra- and inter-

day variability. The homogeneity of limited intelligence traders resulted in constant upward 

or downward trends, as well as atypical volatility indicating that results using realistic 

traders and relative pricing of real order tend to outperform other modelling approaches. 

The main criticism even in advanced artificial stock markets is that most simulations assume 

trading of only one risky asset and one risk-free asset alone. It is true that, with all of the 

latest technological innovations in the latest simulations, it was important to begin with the 

simplifying case of one risky and one risk-free asset. LeBaron (2006) suggest that the process 

of such simplification could prevent the observation of many interesting features of artificial 

stock markets. Trading of these two assets usually take place in one stock market 

representing another common issue in contemporary artificial stock markets. Often the risk-

free rate within all simulations is fixed, and therefore the market is not a general equilibrium 

model. This can be problematic in that examining the level and volatility of the risk-free rate 

of the two assets itself represents another asset pricing dilemma. Setting the risk-free rate 

to be as low and stable as it is in real-life macro datasets proved very difficult, and most 

researchers ignore this important issue. The very recent artificial stock markets discussed in 

the next section aims to avoid these criticisms.     
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2.1.5 Recent artificial stock market modelling trends 

 

Mathieu and Brandouy (2013) developed the Artificial Trading Open Market (ATOM) with 

the aim of simulating the main features of the Euronext-NYSE stock exchange 

microstructure. Consistent with the order generation process described in Section 3.2.4, 

ATOM successfully matched bid and ask orders submitted by artificial traders to determine 

quotations and prices. These market evaluations were governed by a negotiation system 

between sellers and buyers based on an asynchronous, double action mechanism built in 

the order book. Hence, ATOM was able to generate, play or replay order flows from real-life 

or artificially generated stock exchanges in a very quick manner. Remarkably, the model 

enabled the combination of human-beings and artificial traders on a single market using its 

network capabilities. ATOM has been involved in various investment practices, portfolio 

management, risk management, stock market regulation, and algorithmic trading.  

Yang and Sun (2013) proposed a novel model of a European option market which better 

replicated some features of real option markets. Their artificial market consisted of three 

types of option traders and multi-agent matchmaking tradeoff that closely mimicked real 

option markets. The experimental results revealed interesting findings. The average option 

price increased with an increase of information inflow, but the variance decreased. This 

proved the significance of information disseminated by the option market in the model. By 

using different proportions of hedging and speculating option traders, the results suggested 

that an increase of hedging option traders can stabilize the market. On the other hand, an 

increase in the proportion of speculative option traders can make the market more volatile 

and this finding is consistent with the results from real financial markets.  

Brandouy et al. (2013) constructed an agent-based artificial stock market populated by 

heterogeneous mean-variance traders with quadratic utility functions to study the effect of 

individual investor’s preferences on their portfolio dynamics from the wealth and risk 

adjusted return point of view. The authors compared the relative performance of 

investment strategies using ecological competitions, where populations of artificial traders 

co-evolve. The empirical findings indicated that a higher relative risk aversion process 

helped the population of traders to survive in the long-run measured by a higher wealth 

indicator or the Sharpe ratio of constrained portfolios.  
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When short-selling was introduced in the model, the highest risk aversion did not secure the 

highest profits, eliminating risk takers and traders with high risk aversion from the market 

and leaving only traders with moderate level of risk aversion to survive in the long-run.     

Utility-maximizing consumption and investment strategies in closed form are unknown for 

realistic settings which include portfolio constraints, incomplete markets and very high 

number of state variables. Conventional numerical techniques experience difficulties in 

solving those issues. Kraft and Munk (2013) developed artificial market strategies to tackle 

the constrained consumptions-investment issues. The authors applied their artificial market 

strategies to the life-cycle problem of an individual who gets unspanned labour income and 

is prohibited from borrowing and short selling.  

Youki et al. (2013) investigated the existence of and the possible origin of the disposition 

effect in an experimental environment that closely mimics real stock markets. The authors 

accurately depicted actual individual investor trading behaviour and found the presence of 

the disposition effect in their artificial stock market. The loss aversion process has been 

pointed out as being one of the possible sources of the disposition effect.  

Another often ignored and unsolved issue even by the latest technological artificial stock 

market innovations is timing. In an environment of constantly evolving strategies timing can 

play a significant role in process of adaptation of the strategies to the specific timing and 

trading structures. Moreover, developing multiple artificial stock markets for trading is still a 

difficult problem for all agent-based modellers. This issue has not been solved yet even after 

the introduction of powerful and sophisticated modelling tools such as Altreva Adaptive 

Modeler (Section 3.2). Once agent-based modellers are more confident in advanced 

mastering of Genetic Programming technique, they will probably develop multi-asset 

markets. It will be interesting to see whether researchers will be able to develop 

asynchronous trading actions performed on multi-asset artificial stock markets as well. This 

remains to be seen in the near future.  
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Chapter 3. 

Artificial Intelligence Tools and Main Software Platform 

3.1 Artificial Intelligence Tools in Finance 

3.1.1 Artificial Neural Network (ANN) in Finance 

 

The aim of artificial intelligence is to develop a system that could compute, learn, 

remember, and optimize in the same way as a human brain (Cheng and Titterington, 1994).  

The history of neural networks begins when scientists were trying to model the neuron. 

McCulloch and Pitts (1943) created the first model of a neuron with two inputs and one 

output. The authors pointed out that a neuron won’t be active if only one of the inputs is 

active. The weights for each input were equal, and the output was binary. McCulloch and 

Pitts’ neuron is known as logic circuit in science. In general, neural networks represent a 

collection of simple computational units interlinked by a system of connections. The number 

of units can vary widely and the connections be intricate (Cheng and Titterington, 1994).   

Artificial Neural Network (ANN) is in fact a functional simulation of a simplified model of the 

biological neurons aiming at the simulation of intelligent data combined with evaluation 

methods such as pattern recognition, classification and generalization by using simple 

processing units called neurons (Malik, 2005). The rationale behind the development of the 

ANN models was the idea of detailed study on how the brain works and to create a 

mechanism that would function in the same way. While powerful computers process 

elementary operations in nanoseconds, the human brain requires milliseconds. However, 

the critical difference is not in the speed of processing but in the organization of processing. 

A key notion in neural networks is the connectionism. All processing tasks in the human 

brain are spread over 1012 neurons connected each other and the brain achieves complex 

tasks based on the massively parallel way in which many simplistic operations are 

performed simultaneously (Cheng and Titterington, 1994). The purpose of the artificial 

neuron is to mimic the first-order characteristics of actual biological neurons. The usefulness 

of ANN is based on its capability to solve difficult problems through the high degree of 

connectivity that provides the neurons its high processing ability.  
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Each neuron performs only very limited operation, but the parallel- distributed architecture 

is massive and enable quick solutions by working in parallel. The ANN’s are capable of 

developing a generalised solution to any particular problem other than that used for 

training and to generate valid solutions, even when there are errors in the training dataset 

(Malik, 2005). They have an excellent ability of approximating any nonlinear mapping to any 

degree of accuracy (Hornik, 1989) and don’t require a priori model to be assumed (Bishop, 

1995). The major advantage of ANN’s is that the domain knowledge base in disseminated in 

the neurons and information processing is performed in parallel-distributed manner (Udapa, 

1997). Moreover, ANN’s are highly parallel data processing tools capable of learning 

functional data dependencies (Malik, 2005).  These advantages make the ANN a powerful 

tool for modelling issues in which functional relationships are uncertain or vary through 

time.  

There are different variations of ANN’s but all of them have three important key elements 

such as the individual neuron, the connections between the neurons, and the learning 

algorithm. Every single different variation is characterised by the kind of possible 

connections between neurons. For instance, one neuron could be connected to another, but 

the second neuron cannot have another connection towards the first. ANN’s are composed 

of one or more layers of neurons. In massive neural network entities such as Perceptron, 

Multi-layer feed-forward network with Back-Propagation (BP) learning, the Boltzmann 

Machine, Linear Associator and the Grossberg model, the output from the units from a 

single layer is allowed to activate neurons in the next level only (Dillon, 1991).     

However, neural networks suffer from two major limitations, despite their popularity. The 

unsatisfactory low performance under uncertainty in the data is the first issue. For instance, 

neural networks are powerless in point forecasts where uncertainty in operation of the 

system exists. Unexpected passenger demand in public transportation systems, machine 

breakdowns on the shop floor and abrupt changes in weather conditions in the national 

energy market are areas where neural network performance is inefficient. This issue is 

based on the fact that the neural networks generate averaged numbers of solutions 

dependent on inputs. Unfortunately, such reduction cannot be eliminated through changing 

the structure of the model or re-execution of the training process (Khosravi, 2010).  
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The second pitfall of the neural network is associated again with point directional 

predictions. Neural network models generate point predictions without any accuracy 

indications. Neural networks are unreliable if training data is sparse and targets are multi-

valued or potentially affected by probabilistic events (Khosravi, 2010). Sometimes neural 

networks are criticised by financial practitioners as being black boxes (Benitez et al., 1997) 

turning the attention of researchers to more sophisticated evolutionary computation.  

All the neural network drawbacks can be avoided by the introduction of more sophisticated 

artificial intelligence programming tools such as Genetic Algorithms, Genetic Programming, 

and especially Strongly Typed Genetic Programming (Zhang and Ciesielski, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



60 
 

3.1.2 Genetic Algorithm in Finance  

 

The Genetic Algorithm (GA) is a simple optimization technique and a powerful learning tool 

in many agent-based models. GA is based on a simulation of the natural selection process or 

survival-of-the fittest principle (Darwinian process). In essence, GA computationally mimics 

the process of natural selection and evolution. Holland (1960) was the pioneer creator of 

the first computational technique which successfully mimicked natural selection through 

crossover and mutation operators. The author applied fixed-length simple binary coding to 

solve difficult problems and real-life issues. The typical genetic algorithm consisted of three 

main stages on its way to determining optimal solutions. 

Initialization was the first step which encompassed the random generation and 

development of various chromosomes or a pool of different solutions. In most cases the 

pool included up to 200 chromosomes. Larger pools offer greater diversity and better 

solutions at the expense of more computer power. Later on in the process, the initially 

diverse pool of chromosomes experience transformation of similarity and identity through 

specific genetic recombinations.  

Fitness evaluation was the next step where the fittest chromosomes produce more offspring 

leading to optimisation of GA search for the individual representing the optimal solution to 

a particular issue. As a result, the objective function could be further maximized.  

Selection is the final selection phase where the GA commences reproduction activites and 

selection of future generation parents. The selective mechanism identifies which individuals 

have the best genetic material for parental reproduction. The most fitted chromosomes are 

more likely to reproduce in the next generation of individual artificial agents. The most 

popular selection method is called ‘tournament selection’, where randomly picked pairs of 

strings are compared in fitness value terms and the fittest agent is forwarded to the mating 

population. The tournament process continues until the pool is fully populated (Goldberg, 

1994).   The Fundamental Theorem of Genetic Algorithms suggests that once an individual 

has been processed, the GA reaches many different points in the search space. Hence, a 

preliminary identified limited set of individual agents effectively explore huge search spaces 

(Goldberg, 1989).              
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Drake and Marks (2002) argues that genetic algorithms are useful financial market tools. For 

example, Hiemstra (1996) applied GA to the tactical asset allocation to observe that the 

established system outperformed a passive rebalancing policy. In another experiment 

Lettau (1997) used GA to examine portfolio decisions of boundedly rational traders in a 

financial market and demonstrated that the GA-based traders learned to carry too much risk 

as compared to the optimal portfolio of rational investors. Arifovic (1996) implemented GA 

to analyse the behaviour of the exchange rate, portfolio decisions, and composition 

decisions. The author reported similar GA performances to those observed in experiments 

with human subjects. GA can be applied in the development of optimal parameters 

threshold values for technical trading models, portfolio optimisation, pricing of options and 

futures, and automatic induction of foreign-exchange trading rules. Due to their 

transparency of the achieved outcomes, GA, provide wide practical applications in credit 

scoring, financial spreadsheets, processing insurance applications, portfolio management, 

and trading stocks. Moreover, GA can effectively detect financial market and exchange rate 

volatility (Chen, 2002).   

Genetic algorithms are well-suited to for financial modelling financial markets because of 

the following reasons. Simplicity and flexibility are the main advantages of GA when 

simulating financial markets. GA are pay-off driven (pay-offs means improvements in 

predictive power or return over a benchmark). GA ability in finding approximate solutions to 

combinatorially explosive issues means that a very good match between the problem 

solving model and the problem exists. Furthermore, GA can be implemented in most 

parameter optimization processes. Unlike conventional models, GA simulates a wide range 

of extensions, flexible modelling and constraints. For instance, Multiple Discriminant 

Analysis (MDA) was for many decades the prominent bankruptcy prediction technique 

based on balance-sheet figures. GA is capable of formulating financial ratios which 

successfully determine future bankruptcy signals which significantly outperform Multiple 

Discriminant Analysis by more than 10 per cent (Kingdon and Feldman, 1995).  
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3.1.3 Genetic Programming in Finance 

 

Genetic Programming (GP) was introduced by Koza in 1992 and represents a programming 

technique of automatically generating computer programs to perform specified tasks. It 

uses a GA to search through a space of possible computer programs for a program which is 

optimal in its ability to perform a particular task. GP is a branch of GA but much more 

powerful than the later. The major difference between GP and GA is the representation of 

the problem solution. While the outcome of the GA is a quantity, the result of GP operations 

is another computer program. GP is best used in situations where there is no ideal solution 

or in cases when variables are constantly changing. While in GA, a solution candidate is 

labelled a chromosome, in GP a solution candidate is organised as a parse tree whose nodes 

are procedures, functions, variables and constants in hierarchically structured programs. 

The tree consists of different building blocks (functions) which processes its branch nodes as 

inputs and provide an output at the end. The subtrees of a node in any parse tree describe 

the arguments to the procedure or function in that node. In a GP process, the researcher 

identifies all the possible variables, functions and constants implemented as nodes in a 

parse tree (Montana, 2002). The content as well as the size and shape of the tree might 

experience dramatic change during the evolution process. Similarly to GA, Genetic 

Programming replicates the stochastic process where the fittest survive and transfer their 

genetic material to the next generation. Then the fittest solutions multiply and create 

completely new generations until the very best solution is found. GP models can flexibly 

search among complex patterns and evolve the best solutions in large search spaces. Figure 

1.0 illustrates the main four execution steps in a genetic programming run.  
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Figure 1.0 Main GP problem solving steps. Copied from       

http://www.geneticprogramming.com/Tutorial/index.html     

The GP process begins with the random generation of a wide variety of different computer 

programs designed to closely match the description of the problem. Then the researcher 

establishes the maximum size (number of functions and terminals) of the initial individual 

programs grouped in a rooted point-labelled program tree. In the second step, each 

program in the computational population is executed and then assigned a fitness value 

measuring how well it solves the issue. The fitness value could potentially take many 

different forms such as the amount of error between an output and the desired output, 

program adequacy in capturing patterns, or the process of categorizing objects into classes. 

The third phase encompasses the creation of new population of offspring programs through 

crossover, mutation or reproduction. The process of fitness estimation and performing 

genetic operations is repeated over many generations. The crossover technique is the most 

important process related to GP modification where two of the fittest parents sexually 

combine to form two new offspring. This is usually done through the ‘tournament selection’ 

where two solutions are chosen randomly and the fittest of them will win the biological 

mating simulation.  

http://www.geneticprogramming.com/Tutorial/index.html
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Figures 2.0 and 3.0 illustrate crossover operations with both different and identical parents. 

The two figures suggest that crossover create offspring by deleting the crossover 

component from the first parent and then inserting the crossover element of the second 

selected parent (Koza, 1992). In fact, Figure 1.2 represents one of the main differences 

between GA and GP. While in GA, identical parents can generate only identical offspring, in 

GP identical parents are capable of generating different offspring (the main advantage of 

GP). In other words GP can develop two completely new solutions out of the same solution.   

 

 

 

 

Figure 2.0 Crossover process with different parents. Copied from: 

http://www.geneticprogramming.com/Tutorial/index.html  

 

http://www.geneticprogramming.com/Tutorial/index.html
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Figure 3.0 Crossover process with identical parents. Copied from: 

http://www.geneticprogramming.com/Tutorial/index.html  

Figure 3.0 illustrate how identical parental groups can create different offspring output. The 

bold parts of both systems represent the subtree selections to be combined in a crossover 

process. The crossover process begin by random selection of a node within each tree as 

crossover points and the subtree rooted at the selected node in the second parent replace 

the subtree rooted at the selected node in the first parent to generate a child.  Then the 

child could be used further in the process if its maximum depth is less than or equal to the 

maximum depth of any tree (Montana, 2002).  

Mutation is another significant genetic programming process (Figure 4.0). There are two 

mutation categories. In the first type different single functions or terminals could be easily 

substituted, while in the second mutation type a whole subtree can replace another 

subtree. In a similar way to crossover, the mutation process begins by random selection of a 

node within the parent tree as the mutation point and generates a new tree of maximum 

mutation tree depth. The process continues by replacing the subtree rooted at the selected 

node with the generated tree and if the maximum depth of the newly created child is less 

than or equal to the maximum depth of any tree the whole process is completed.  

http://www.geneticprogramming.com/Tutorial/index.html
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In cases when the maximum depth of the child is greater than the maximum depth of any 

tree, then the researcher can use the parent or start the computing process from the 

beginning (Montana, 2002).   

 

 Figure 4.0 The two different mutation types. Copied from: 

http://www.geneticprogramming.com/Tutorial/index.html   

The tree located at bottom right of Figure 4.0 represents successful replacement of two 

subtrees. The bottom left tree shows a mutation operation of two terminals-terminal (2) 

and terminal (a). The same configuration illustrates a mutation of a single function (-) for 

single function (+). The reproduction operation is a relatively straightforward process of 

copying only a single individual and implementing it into the next generation. 

The GP methodology finds wider applicability in financial markets due to its adequate tree 

structure of the solution candidates which very closely matches the decision behaviour of 

real human traders. In computer simulated markets traders’ parameters and the market 

mechanism can be precisely modelled and controlled to test a wide range of different 

hypotheses. The dynamic behaviour of evolved agents provides significant insights into the 

persistence of various types of trading behaviours.   

 

http://www.geneticprogramming.com/Tutorial/index.html
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Neely et al. (1997) and Neely and Weller (1999) implemented GP to search for profitable 

technical trading rules in the foreign exchange market. They captured economically 

significant out-of-sample excess returns to those rules for the selected six exchange rates. 

Bhattacharyya et al. (1998) used GP to find trading patterns and demonstrated that the 

acquired solutions were simpler, easier to interpret and less likely to overfit for the high-

frequency data from the foreign exchange market. Chen et al. (1998) adopted GP to derive 

option pricing formulas by using real S&P 500 index options data. They compared the results 

generated by the GP to the traditional Black-Scholes formula and reported GP 

outperformance. In a similar experiment Chidambaran et al. (1998) applied GP to 

approximate the relationship between the price of a stock option, the terms of the option 

contract, and properties of the underlying stock price and demonstrated that the superiority 

of GP over the Black-Scholes model. Marney and Tarbert (2000) and Marney et al. (2001) 

developed profitable stock market trading rules through the implementation of GP.   
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3.1.4 Strongly Typed Genetic Programming in Finance  

 

Strongly Typed Genetic Programming (STGP) is an enhanced version of GP which enforces 

data type constraints and whose use of generic functions and data types makes it a lot more 

powerful than GA and GP. STGP was introduced by Montana back in 1995, and unlike GP 

each variable and constant has an assigned type, ensuring that all generated parse trees 

consist of these data types. Moreover, each function has a specified type for each argument 

and for the value it returns. This in turn defines that functions and terminals can be 

implemented as bases for other functions enhancing the development of more meaningful 

and fitter solutions. While functions are classified as operators, such as add(...) or 

average(...), created to make arguments in the process of finding solutions, terminals are 

variables that take no arguments. This design condition represents an important difference 

with GP because specified data types in STGP greatly decrease the space search time and 

improve the generalization performance of the solutions found. The typing system in STGP 

keeps track of the parity of the GP trees leading to a reduced search space from all possible 

GP trees down to only the subspace of trees that are characterised by proper symmetry 

(Zumbach et al., 2001).  

Whilst in conventional GP, the agent’s trading rules are evaluated by the same fitness 

function in every generation, STGP evaluate the fitness of agents through a dynamic fitness 

function. The dynamic nature of the fitness function enables the process of finding 

appropriate solutions to move forward and include the most recent experimental 

observations. Another important difference between the conventional GP and STGP is that 

whilst GP replaces the entire genetic population through crossover and mutation 

techniques, STGP only replaces a small proportion of the entire population at a time. This 

enables the population to change gradually and is an essential factor in maintaining a 

certain degree of model stability. (Witkam, 2013).   
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In GP, Boolean functions (switching functions) are represented by a real number, with 

0 for false assumptions, and 0 for true statements, allowing free mixing of the 

types. However, when the type become more complex in cases such as vectors, matrices or 

lists, the process of embedding  is hardly possible to be completed. Hence, SPGP enabled 

the computation of more complex random programs by imposing specific symmetry of 

parity to the solution (Zumbach et al., 2001).   

In order to construct a parse tree researchers need to bear in mind important additional 

criteria beyond those required for GP. For instance, the root node of the tree returns a value 

of the type required by the problem and each non-root node returns a value of the type 

required by the parent node as an argument (Montana, 2002). While GA and GP can be 

developed in any programming language, the STGP is normally written in a new 

programming language, which is a combination of Ada (Barnes, 1982) and Lisp (Steele, 

1984) programming languages. The important element taken from Ada programming 

language is the concept of generics as a method of developing strongly typed data.  Lisp 

provided the concept of having programs represented by their actual parse trees (Montana, 

1995).  

The application of STGP to financial markets is not well documented in the literature with 

only a few published studies providing great scope for future research. For instance, 

Zumbach et al. (2002) applied STGP to thirteen years of high frequency data for two foreign 

exchange time series to discover new types of volatility forecasting models. The out-of-

sample forecasting performance was compared to traditional ARCH-types models. The 

authors observed that STGP consistently outperformed the benchmarks indicating that the 

cross products of returns at different time horizons significantly improve the predictive 

performance. The application of STGP technique to financial markets is present in all 

chapters of my thesis.   
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3.2 Main Software Platform 

3.2.1 Altreva Adaptive Modeler  

 

Altreva Adaptive Modeler is a platform for developing agent-based stock market simulation 

models. The artificial stock market model is populated by up to 10,000 of traders each with 

their own technical trading rule. All 10,000 traders and their trading rules evolve through an 

adaptive genetic programming mechanism. Self-organization through the evolution of 

traders and the price dynamics drives the model to learn to recognise price patterns while 

adapting to changing stock market behaviour. The actual evolution of the model never stops 

and evolves with parallel with the real stock market (Witkam, 2013). 

In essence, Altreva Adaptive Modeler comprises two main parts: the agent-based model 

which receives real historical data and generates price forecasts, and the trading system 

which decides when a new trading signal should be produced based on the forecasts.  

 

Figure 5.0 Altreva Adaptive Modeler main operational parts. Copied from: 

http://altreva.com/Adaptive_Modeler_Users_Guide.htm   

The software typically requires a sufficient amount of historical data for its evolutionary 

learning process. Altreva Adaptive Modeler reads historical data from Comma Separated 

Values (CSV) ASCII text files in formats compatible with charting and technical analysis 

software packages. The software processes any data intervals ranging from 1 millisecond to 

multiple days.  

The following processes developed within Altreva Adaptive Modeler are present in all 

experiments presented in Chapters 4, 5, 6, 7, 8 and 9 of my thesis.  

 

 

http://altreva.com/Adaptive_Modeler_Users_Guide.htm
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3.2.2 Developing initial trading rules 

 

Every agent in my experiments has only one trading rule. The software uses a special 

adaptive form of Strongly Typed Genetic Programming (STGP), where the genomes are the 

actual trading rules of agents. The very first generation of trading rules is created randomly.  

The crossover recombination technique (randomly chosen parts of two trading rules are 

exchanged in order to create two new trading rules, Figure 6.0) and mutation operation that 

randomly change a small part of the trading rule are applied to create later generations.  

 

Figure 6.0 The process of genetic crossover for generating new trading strategies. Trading strategies si and 

sj are the parents. The breaking point has been chosen randomly and then one-point crossover has been used 

to create children sk and sI . Copied from: 

http://www.tandfonline.com/doi/full/10.1080/14697688.2010.539249  

 The best performing agents from the initial selection are selected based on the breeding 

fitness return to be parents in the crossover process. The breeding fitness return process 

represents a trailing return of a wealth moving average. This is the return over the last n

quotes of an exponential moving average of trader’s wealth, where n could have the 

maximum breeding value of 250. Every pair of parents creates two offspring traders, so the 

number of parents and the number of offspring is equal. The newly created traders replaces 

poorly performing traders of the initial selection based on the replacement fitness return. 

The replacement fitness return represents the average return of a wealth moving average 

per quote since the initial trader creation. In quantitative terms, this is the cumulative 

return of an exponential moving average of trader’s wealth, divided by trader’s breeding 

value.   

http://www.tandfonline.com/doi/full/10.1080/14697688.2010.539249
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Hence, the crossover process keeps the population of traders constant. The process of 

mutation includes randomly changing a small part of a program in the GP tree in order to 

create new generations. The whole process is repeated until at least one programme in the 

population achieves a satisfactory fitness level (Witkam, 2013).   

There is no stopping condition in my experimental models because they keep evolving as 

long as new prices get imported. The random nature of the initial rules is to ensure that a 

large variety of possible trading rules is fully investigated. To avoid the creation of trading 

rules that cannot be properly evaluated and to reduce the creation of meaningless trading 

rules, the modelling software uses a form of STGP. The STGP (Montana, 1995) involves the 

definition of a specific set of types that fit the problem domain. Every function and terminal 

is than defined to return a specific type and every function argument is defined to be of a 

specific type. This in turn defines which functions and terminals can be used as arguments 

for other functions. 

The trading rules use historical price and volume data as input, and according to their 

internal logic, generate advice which consists of a desired position in the security as a 

percentage of wealth and an order limit price for purchasing or selling the security. The 

internal logic of the trading rules consists of the following operators:  

•Price and volume data access functions; 

•Average, min, max functions on historical price or volume data; 

•Various logical and comparison operators; 

•Some basic Technical Indicators (Witkam, 2013).   

For the purpose of my experiments we consider the degree of intelligence to be 

proportional to the level of complexity of the trading rule. I control the complexity of 

trading rules by varying the maximum genome depth, which is the maximum number of 

hierarchical levels a genome is allowed to have.   
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3.2.3  Artificial stock market structure 

 

I study individual investor behaviour within the context of the artificial stock market 

populated by 10,000 boundedly rational agents. All of the agents are characterised by 

adaptive learning behaviour represented by the genetic programming algorithm. The 

artificial traders all have different trading rules. Hence, the agents in the model are not 

orientated towards predetermined formation of strategies, and therefore are free to 

develop and continually evolve new trading rules. Agents’ trading rules will improve by a 

natural selection process because the survival-of-the-fittest principle is in place.  

The traders’ forecasting rules are represented and evolved by STGP. The actual difference 

between the levels of intelligence determines the complexity of the forecasting 

expectations that artificial agents are able to evolve. The complexity of the forecasting 

expectations is measured by the depth of the STGP tree. The various genome depths affect 

the memory length of traders. A greater genome depth means that more complex trading 

rules can be developed that look further back in history. According to LeBaron (2004), 

traders use different amounts of past information to evaluate trading strategies and, 

therefore, they possess various memory lengths when evaluating forecasting rules. 

Additionally, markets composed of different intelligence levels offer the opportunity to 

analyse market efficiency in depth, rather than examining whether intelligence improves 

market properties where zero intelligence is present.  

Artificial traders generate wealth by investing in two assets that are available in the artificial 

stock market- the risky stock asset and the risk free asset represented by cash. Because the 

models continuously evolve, the agents with trading rules that perform well become 

wealthier, positively influencing the forecasting accuracy of the model.  

In each period, an artificial trader has two methods of keeping his wealth: 

                                                    
, , ,i t i t t i tW M Ph                                                                      (15) 

where 
,i tW is the wealth accumulated by trader i in period t ;

,i tM and 
,i th represents the 

money and the amount of security held by artificial trader i respectively, in period t ,and tP

is the price of the asset in period t .  
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All traders get the same Initial wealth, which can be assigned to new traders either by 

Pareto distribution or Maxwell-Boltzmann distribution. The first method involves an unequal 

distribution where a large part of the total wealth is possessed by a small fraction of traders 

(known as ’80-20 rule’). This particular method distributes wealth to very wealthy traders 

but not necessarily to the remainder of the population. However, this shortcoming is 

compensated with the Maxwell-Boltzmann distribution, which consider the distribution of a 

conserved quantity such as money among components of a closed model such as agents in 

an economy (Dragulescu and Yakovenko, 2000 and 2001). Although money could be 

considered conserved in a closed economy, wealth when includes non-cash assets is not 

necessarily conserved. Moreover, artificial stock market models simulated in Altreva 

Adaptive Modeler in some cases do not represent a closed economy. However, according to 

Witkam (2013) these inconsistencies are rather insignificant for assigning initial wealth 

values to traders. The Maxwell-Boltzmann distribution has a parameter a that has a 

significant impact on the magnitude of values: 

                                                                  

2

3

rms
a                                                                          (16) 

Where rms is the root mean square of the values (Witkam, 2013). 

 

 

 

 

 

 

 

 

 



75 
 

3.2.4 Virtual Market clearing mechanism and order generation process 

 

The Virtual Market is a simulated double auction call (or batch action) market where all buy 

and sell orders from artificial agents are collected. After having received the real-world 

market price (prices are imported into the model from a CSV file), agents evaluate their 

trading rule and place their order (if any). The Virtual Market then calculates the clearing 

price. The clearing price is the price at which the highest trading volume from limit orders 

can be matched. If the same highest trading volume can be matched at multiple price levels, 

then the clearing price will be the average of the lowest and the highest of those prices. The 

market orders have no influence on the clearing price because the clearing price calculation 

algorithm is designed based on commonly used mechanisms in real-life call markets.  

After the clearing price has been calculated, all of the executable orders are executed for 

the clearing price. Therefore, the buyers and sellers automatically receive "price 

improvement". There is no market maker. The number of shares bought by agents is always 

equal to the number of shares sold by agents. In other words, prices in the artificial market 

are determined by the traders’ orders (Figure 7.0). 

 

  Figure 7.0 Order generation process. Copied from: 

http://altreva.com/Adaptive_Modeler_Users_Guide.htm   

When the total number of shares offered (at or below clearing price) exceeds the total 

number of shares asked (at or above clearing price) or vice versa, the remaining orders will 

not be (fully) executed.  

 

http://altreva.com/Adaptive_Modeler_Users_Guide.htm
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In this case, the orders at the clearing price will be selected for execution with priority for 

market orders over the limit orders and then on a first-in-first-out (FIFO) basis. The FIFO 

principle only applies to the priority assigned to agent orders (within one round) when not 

all orders can be executed if supply does not equal demand.  

The orders can be partially executed. If there are no matching limit orders at all, no market 

orders will be executed either. In that case, the published Virtual Market price will be the 

Virtual Market price of the previous quote (Witkam, 2013).  

The order generation process consists of the following components. The software 

transforms the output of an agent’s trading rule into a buy or sell order through comparison 

of the desired position and the agent’s current position. Hence, the agents do not directly 

determinate the number of shares to buy or sell but determinate their desired position size 

in the asset as a percentage of their wealth, using their trading rule.  

Then the software calculates the number of shares that need to be purchased or sold based 

on the difference between the desired position size and agent’s current position size. In the 

case that shares need to be purchased or sold, an order is generated to buy or sell the 

required amount of shares and given by the specified limit price or market order indication. 

Agents determinate their order limit price using their trading rule (the ‘Advice’ gene 

combines all this information into the output returned by the trading rule). Functions such 

as ‘average’, ‘min’ and ‘max’ calculate the average, minimum and maximum of the closing 

prices over given number of quotes on the given market. For instance, average (l,m) is the 

average closing price over quotes [t-l,t-1] on market m, where t is the current quote. The 

‘min’ and ‘max’ functions return the lowest and respectively the highest of the closing prices 

over the last n quotes, on market m (where n and m are specified function parameters).  

I would like to illustrate the order generation process described above with the following 

example-if an agent holds 1000 shares of the Coca-Cola Company, priced at 38.50 and 

80,000 in cash his wealth will be 118,500 and its position is 32.5%. Its trading rule generates 

an advice of a position of 50% and a limit price of 38.50. Then a limit order will be produced 

to purchase 539 (=50%*118,500/38.50-1000) additional Coca-Cola shares with a price of 

38.50.  
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Chapter 4 

Artificial stock market dynamics and market efficiency: An 

econometric perspective.  
 

4.1 Introduction 
 

A few decades ago, the Efficient Market Hypothesis (EMH) was widely admired by academic 

financial economists. The EMH postulates that market prices should reflect all available 

information. As a consequence, market prices should always be consistent with their 

fundamental values. The hypothesis was independently developed by Samuelson (1965) and 

Fama (1963, 1965a, 1965b, 1970). Samuelson (1965) generated a series of non-linear 

programming solutions to spatial pricing models with no uncertainty, and proposed that in 

informationally efficient markets price changes are unpredictable if market prices fully 

incorporate the information disseminated from all market participants. Since then, the 

concept of efficient markets has been applied to many theoretical models and empirical 

studies of asset prices, generating several controversial debates.    

Advocates of the EMH, such as Jensen (1978), have argued that there is no other 

proposition in finance which has more solid supporting empirical evidence than the EMH. In 

the late 1970s, the EMH began its transition from theory to doctrine. Thompson (1978), 

Galai (1978), Charest (1978a), Davidson and Froyen (1982), and in the early 1990s, Nichols 

(1993), Conrad (1995), and Shanken and Smith (1996) provided evidence that supported the 

EMH. Malkiel (2003) suggested that stock markets are more efficient and rather less 

predictable than many academic studies would have us believe.  

By the beginning of the twenty-first century, the academic dominance of the EMH has 

become less prominent. A group of researchers equipped with anomalous evidence 

inconsistent with the EMH, suggested that the EMH should be replaced by a behavioural 

finance approach (Thaler, 1993; Haugen, 1999; Schleifer, 2000; Shiller, 2003). It has been 

observed that financial markets do not process information instantaneously (Chan et al., 

1996), and that markets can overreact as a result of investor optimism or pessimism 

(Dissanaike, 1997).  
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Furthermore, many empirical studies support the fact that markets are predictable and 

technical trading strategies generate significant profits (Brock et al., 1992; Jeegadesh and 

Titman, 2001; Chiarella and He, 2002).  

More recently a number of economists have begun to question the accuracy of the 

empirical results associated with the EMH by using more sophisticated data sets and greater 

computing power.  The concepts of heterogeneity, bounded rationality, and evolutionary 

adaptive agents have been explored by Brock and Hommes (1997, 1998), Chiarella and He 

(2002a, 2002b), Gaunersdorfer and Hommes (2000), and Hommes (2001). A few years later, 

in an attempt to accommodate most of the complexities of the real world, Lo (2004, 2005) 

proposed the Adaptive Market Hypothesis (AMH). This hypothesis modifies the EMH 

paradigm to suggest that the forces that drive prices to their efficient levels are weaker and 

the processes of learning and competition and evolutionary selection pressures govern 

these forces. 

The controversy intensified and researchers began to question whether the EMH could ever 

be validated or discredited (Langevoort, 1992). Roll (1977) went even further suggesting 

that EMH and CAPM are joint hypotheses. Nevertheless, the majority of the studies related 

to market efficiency and adaptability have one major shortcoming. They failed to investigate 

the relation between market diversity and market efficiency, and the impact of individual 

learning and adaptability on the diversity of traders’ expectations. Chen and Yeh (2001) 

expressed the view that the market size could potentially have a dramatic impact on market 

efficiency. The questions this study is trying to answer are whether market organization 

influence traders’ strategies and in turn market efficiency and whether market structure 

affect individual learning in the AMH?  

In this study, I developed ten stock markets- each populated by different numbers of 

artificial traders- for each of the FTSE 100, S&P 500 and Russell 3000 indices. I also 

implemented a special adaptive learning form of Genetic Programming (GP), called Strongly 

Typed Genetic Programming (STGP), in order to investigate the relationship between market 

efficiency and adaptability. The reason for using STGP is because Lo (2004, 2005) regarded 

the market as an evolutionary process where the principles of evolution- such as 

competition, adaptation, and natural selection- are applicable to financial markets.  
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Hence, the artificial traders in my experiment can be considered to be agents that adapt, 

learn, evolve, and try to survive. The random nature of the initial trading rules of the agents 

allowed me to observe how they learn, adapt, and survive (the worst performing traders 

were replaced). The scientific advantage of the STGP over the conventional Genetic 

Programming (GP) used in most studies so far is that STGP evaluates the fitness of agents 

through a dynamic fitness function which processes the most recent quotes of the three 

indices in my experiment, rather than a re-execution of the same trading rules.  

I then empirically evaluated the price series of these three indices to investigate the 

relationship between markets populated by different numbers of heterogeneous agents 

with different dynamics and the validity of the Efficient Market Hypothesis (EMH) and the 

Adaptive Market Hypothesis (AMH).  I also explored the dynamic behaviour of the models 

when testing for the presence of nonlinearity.   

Despite the voluminous literature on the topic, no other study has implemented the STGP 

technique and 10,000 artificial agents, which has enabled me to develop of a wider variety 

of trading rules. My financial markets can, therefore, be viewed as co-evolving ecologies of 

different trading strategies. These strategies are analogous to a biological species, and the 

amount of funds deployed by traders following a given strategy is analogous to the 

population of that species (Farmer and Lo, 1999). The presence of 10,000 heterogeneous 

and interacting adaptive traders, rich in dynamics, provides the opportunity to study the 

stock market as a complex adaptive system. Artificial traders are, by definition, capable of 

adapting, learning, and evolving, which makes them extremely suitable for the analysis of 

market efficiency and adaptability, because adaptation and learning in heterogeneous 

structures are known as important tools for analysing financial market behaviour (Hommes, 

2001). Hommes (2011) argued that heterogeneity is a critical aspect of the theory of 

expectations, because a model of heterogeneous expectations can explain different 

aggregate outcomes across different market settings.   

To summarise, the contributions of this chapter are as follows. Firstly, I am the first to apply 

the STGP technique in the analysis of market efficiency and adaptability, whilst taking into 

account different market structures and individual trader cognitive abilities and 

heterogeneity. Recent studies, such as Urquhart and Hudson (2013), suggest that the AMH 

better describes the behaviour of stock returns than the EMH.  
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However, the authors based their conclusions entirely on econometric tests, and failed to 

observe the processes of adaptation, learning, competition, and evolutionary selection 

pressures that govern the AMH. My study aimed to fill this gap by providing significant 

empirical findings combined with evidence gained from evolutionary dynamic processes. 

Secondly, since their creation, the EMH and the AMH have not been formalised 

appropriately. I hope that the solid empirical evidence that I present could shed light on the 

formation of stock market dynamics and the formalisation of both hypotheses within 

artificial laboratory stock market settings. Thirdly, I have found that different trader 

populations behave as an efficient adaptive system. I observed that market efficiency is not 

necessarily associated with rational assumptions and that nonlinear dependence in index 

returns evolve over time. Hence, I think that market efficiency is not a static characteristic as 

assumed in most of the studies published so far. My findings are consistent with the 

perception of financial markets as adaptive systems subject to evolutionary selection 

pressures.   

 

4.2 Background  

 4.2.1. Origins and supporting empirical evidence on the EMH 

 

More than a century ago, Bachelier (1900) analysed the mathematical theory of random 

processes and expressed the view that stock price movements follow a Brownian motion 

and that, therefore, stock prices are unpredictable. Several years later, Samuelson (1965) 

generated a series of non-linear programming solutions to spatial pricing models with no 

uncertainty, and proposed that the price changes in informationally efficient markets are 

unpredictable if market prices fully incorporate the information disseminated from all 

market participants.  

In four different seminal papers, Fama (1963, 1965a, 1965b, 1970) measured the statistical 

properties of market prices and operationalised the EMH by allocating structure on various 

information sets available to market participants.  
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Fama (1970) reviewed the empirical evidence gained in the 1960s and proposed three major 

versions: (a) weak form tests of the efficient market models, (b) tests of martingale models 

of the semi-strong form, and (c) strong form tests of the efficient markets.  

During the early years of development, the EMH gained massive academic attention. Jensen 

(1978) stated that ‘there is no other proposition in economics which has more solid 

empirical evidence supporting it than the EMH’. Thompson (1978), Galai (1978), Charest 

(1978a), and Davidson and Froyen (1982) provided early empirical evidence in support of 

the EMH. Studies by Nichols (1993), Conrad (1995), and Shanken and Smith (1996) 

generated further support for market efficiency. Malkiel (2003) acknowledged that market 

participants are less rational and that predictable patterns in stock returns can appear for 

short periods of time, but that stock markets are more efficient and less predictable than 

many recent research papers demonstrate.    

Chen et al. (1997) approached the EMH through the application of Genetic Programming 

(GP). The authors tested a short-term sample of TAIEX (Taiwan index) and the S&P 500 and 

concluded that the EMH is sustained, although they also confirmed the existence of short-

term nonlinear regularities. However, these nonlinear regularities could not be exploited 

further to a profitable level due to the very high search costs involved in the process of 

discovering them.   

4.2.2. Challenging empirical evidence on the EMH 

 

Studies in the last three decades suggest a rejection of the EMH (Lehman, 1990; Jegadeesh, 

1990; Hsieh, 1991; Richardson and Smith, 1993). Lo and MacKinlay (1988) rejected the 

random walk model for weekly stock market returns and suggest that this rejection does not 

necessarily mean the inefficiency of stock-price formation.  

Timmermann and Granger (2004) that even if the EMH is correct, stock prices can still be 

predicted. The authors argue that the EMH does not rule out stock market predictability if 

the behaviour of investors results in efficient markets by their constant profit-seeking 

attitude.  



82 
 

Timmermann and Granger (2004) proposed a forecasting procedure that could work even if 

the EMH is correct. The EMH suggest the absence of arbitrage opportunities but it does not 

eliminate all forms of predictability in financial returns. Under conditions of no arbitrage, 

the current price of any financial instrument, tP is represented by the conditional 

expectation of the financial instrument’s payoffs- consisting of its future price, 1tP and any 

dividends, 1tD  - multiplied by a variable known as ‘pricing kernel’, 1tQ  , that comprises 

variations in economic risk premia: 

                                                 1 1 1t t t t tP E Q P D  
                                                     (17) 

Where  . / tE  is the population expectation, dependent on the information set t . The 

EMH translates into a simple moment condition under a set of restrictive assumptions 

(Harrison and Krebs, 1979). As most stock prices are trended, tests for predictability 

eliminate such trends by considering the excess rate of return, 1tR  , defined as the return, 

 1 1 /t t t tP D P P   , above the risk-free rate (for instance the return on T-bills used in my 

experiments), ,f tr . Dividing Equation (17) by tP and subtracting ,f tr , we get: 

                                                                 1 1 / 0t t tE Q R                                                     (18) 

Timmermann and Granger (2004) pointed out that since the process generating risk-

premium is model-dependent and is not observable, testing the EMH can only be performed 

jointly with auxiliary hypotheses about 1tQ  . This could be done by rearranging Equation 

(18) to get: 
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Timmermann and Granger (2004) argue that predictability of returns thus does not violate 

the EMH. Forecasting models are effective because they predict the conditional variance of 

returns with the pricing kernel, 1tQ  , scaled by its conditional mean. In fact the EMH does 

not take into account how the information variables in the information set, t are used to 

generate actual forecasts.  
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The authors went even further suggesting that market efficiency should not be associated 

with the random walk model for stock prices because stock prices plus cumulated dividends 

discounted at the risk free rate should follow a martingale process under the risk-neutral or 

equivalent martingale probability measure. In its strictest form the random walk hypothesis 

states that price increments are IID (identically and independently distributed), then this 

hypothesis is rejected by the presence of conditional heteroskedasticity in returns 

regardless any risk premium effects.    

Grossman and Stiglitz (1980) argued that if financial markets were efficient, there would not 

be any profit generated through information gathering, therefore, there would be no reason 

to trade and the markets would eventually collapse. Thus, there must be profit-making- 

opportunities to compensate investors for the cost of acquiring information and trading.  

The ‘behaviour finance’ group of researchers equipped with anomalous empirical evidence 

against the validity of the EMH, challenged the advocates of market efficiency (Thaler, 1993; 

Haugen, 1999; Schleifer, 2000; Koonce, 2001; Shiller, 2003). Chan et al. (1996) investigated 

whether the predictability of future returns from past returns is based on the market’s 

under reaction to information associated with past earning news. The authors found 

insignificant evidence of subsequent reversals in the returns of stocks with high price and 

earnings momentum, suggesting that financial markets respond gradually to new 

information. Studies by De Bondt and Thaler (1985, 1987); Kahneman and Tversky (1982); 

Arrow (1982); and Dissanaike (1997) demonstrate that investors do not behave in a rational 

way because they are overly influenced by current information and pay little attention to 

past information. Hence, investors tend to overreact, building the foundations of the stock 

market Overreaction Hypothesis (ORH). The ORH, postulates that if stock prices 

systematically overshoot as a result of excessive investor optimism or pessimism, price 

reversals should be predictable from past price performances (Dissanaike, 1997).  Brock et 

al. (1992) implemented two of the simplest trading rules- moving average and trading rule 

break- to analyse the Dow Jones movements from 1897 to 1986, and reported a rejection of 

the EMH in favour of strong support for technical trading strategies. Jegadeesh and Titman 

(1993, 2001) provided evidence of substantial momentum trading profits that were not a 

product of data snooping bias, confirming the assumptions behind the behavioural models.     
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4.2.3. Ongoing debate of the EMH and the emergence of the AMH 

 

Sargent (1993) used the notion of bounded rationality as opposed to perfect rationality, to 

describe how traders with limited information about fundamental values develop 

expectation price models. Traders are not irrational, but -considering the amount of limited 

information they possess- they tend to adapt to optimal beliefs and act in a rational way. 

The endogenous nature of uncertainty of the state of the world does not allow traders to 

develop life-time optimisation strategies in favour of more simple reasoning and rules of 

thumb (Shefrin, 2000). Brock and Hommes (1997a, 1998) demonstrated that evolutionary 

adaptive systems with many heterogeneous agents, which implemented various trading 

strategies, represent a nonlinear system capable of generating a wide variety of stylised 

facts. The authors observed an evolutionary competition between trading strategies where 

traders implemented their strategies according to an evolutionary fitness measure, such as 

accumulated past profits. Hence, Brock and Hommes proposed to model financial markets 

as Adaptive Belief Systems populated by boundedly rational traders.  

Hommes (2000) studied the financial markets through the concept of evolutionary systems 

with different competing trading strategies. All traders involved in the experiment were 

boundedly rational, in the sense that they were capable of following well performed 

strategies according to wealth accumulated in the past. The author showed how simple 

technical trading rules exist and survive evolutionary competition in an entirely 

heterogeneous environment, where prices and beliefs co-evolve over time. The 

evolutionary model successfully replicated and described the formulation of various stylised 

facts.  

Chen and Yeh (2002) investigated the emergent properties of artificial stock markets in the 

light of the EMH and the Rational Expectations Hypothesis (REH). The authors inquired 

whether the macro-behaviour depicted by the two hypotheses was consistent with the 

behaviour of the micro-level. A conjecture based on a sunspot-like signal indicated that 

macro-behaviour can be very different from micro-behaviour and the aggregate results 

cannot be regarded as a simple scaling-up of individual behaviour.  
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Kaizoji et al. (2002) implemented a spin model in the context of a stock market with 

fundamentalists and interacting heterogeneous traders to investigate stock market 

dynamics. The authors demonstrated that magnetisation in the spin model is associated 

with the actual trading volume in the stock market, and, most importantly, that the market 

price is determined by magnetisation under natural assumptions.  

The Adaptive Market Hypothesis (AMH) was proposed by Lo (2004) and can be regarded as 

a new version of the EMH, based on revolutionary principles. Lo argued that market prices 

reflect as much information as required by the mixture of environmental factors and the 

number of distinct groups of market participants. The AMH postulates that market 

efficiency is not an isolated process, but it is a very dynamic and context-dependent process 

where market participants adapt to a changing environment and the processes of learning 

and competition, as well as the evolutionary selection pressures that govern the AMH. The 

agents are not perfectly rational, but rather they are boundedly rational satisfiers that 

operate in ecological systems competing for scarce resources. The ecological systems exhibit 

cycles in which competition for resources depletes trading opportunities, but completely 

new opportunities appear later on in the process.   

Lo (2005) extended his work further and highlighted that traders act in their own-self- 

interest, but they also make mistakes. However, they tend to learn from their mistakes and 

adapt to changing market conditions. Competition drives adaptation and innovation and 

evolution determinates market dynamics.    

Lim (2007) analysed eleven emerging and two developed markets through the portmanteau 

bicorrelation test and concluded that market efficiency evolves over time. Their rolling 

sample framework was able to capture periods of efficiency and inefficiency by comparing 

the time windows that these markets generate significant nonlinear serial dependence. It 

appeared that the U.S. market was the most efficient and the Argentine market the most 

inefficient.  

Potters et al. (2008) studied in great detail the market prices of options on liquid markets, 

where the market corrected the inadequate Black-Scholes formula to investigate two 

statistical aspects of asset fluctuations: volatility clustering and correlations in the scale of 

fluctuations.  
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These two aspects were not initially included in the pricing models but later appeared in the 

price fixed by the market as a whole. Hence, the authors concluded that financial markets 

behave as rather efficient adaptive systems.    

Neely et al. (2009) used daily exchange rate data from the Federal Reserve H.10 Statistical 

Release and concluded that financial markets deviate substantially from the EMH and they 

are adaptive systems based on evolutionary selection pressures. More complex trading 

strategies in their experiment survived longer than simple strategies, suggesting that 

financial markets function as adaptive systems.  

Kim (2009) developed a monetary model based on the incomplete knowledge of market 

participants governed by adaptive learning rules, which allowed agents to learn about the 

economic environment. Simulation results demonstrated that the model under adaptive 

learning dominates the market and explained why fundamentals predict exchange-rate 

returns over long horizons but not over short horizons.  

Benink et al. (2010) used artificial financial markets to study market efficiency and learning 

in the context of the Neo-Austrian economic paradigm. The authors demonstrated that 

markets are more efficient when informational advantages are small and the learning of 

traders leads to a more informationally efficient market but also a less efficient market in 

terms of excess returns.  

Urquhart and Hudson (2013) empirically investigated the US, the UK and the Japanese 

markets using long run historical data and concluded that the AMH provides a better 

description of the behaviour of stock returns than the EMH. Their empirical results 

suggested that each of the three markets showed evidence of being an adaptive market, 

with returns going through periods of independence and dependence.  
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4.3 Artificial stock market structure for this particular experiment 
 

Table 2.0 represents the main technical settings of my artificial stock markets. I developed 

ten different markets (denoted A-J) populated by different number of traders for each of 

the three financial instruments. Market A is populated by 1,000 traders; Market B has 2,000 

traders; Market C has 3,000 traders; Market D has 4,000 traders; Market E has 5,000 

traders; Market F has 6,000 traders; Market G has 7,000 traders; Market H has 8,000 

traders; Market I has 9,000 traders and Market J is populated by 10,000 artificial traders.  

 

                                                                                        Artificial stock market parameters 

Total population size (agents) per market 10,0000 in Market J; 9,000 in Market I; 8,000 in Market H; 
7,000 in Market G; 6,000 in Market F; 5,000 in Market E; 
4,000 in Market D, 3,000 in Market C; 2,000 in Market B; 
1,000 in Market A. 

‘Best Performing Traders’ size(percentage of the total 
population) 

5% 

Initial wealth(equal for all agents) 100,000 

Significant Forecasting range 0% to 10% 

Number of decimal places to round quotes on importing 2 

Minimum price increment for prices generated by model 0.01 

Minimum position unit 20% 

Maximum genome size 4096* 

Maximum genome depth 20** 

Minimum initial genome depth 2 

Maximum initial genome depth 5 

Breeding cycle frequency (bars) 1 

Minimum breeding age (bars) 80 

Initial selection type random 

Parent selection (percentage of initial selection that will 
breed)  

5% 

Mutation probability (per offspring)  10% 

Total number of quotes processed- FTSE 100 7,262 

Total number of quotes processed-S&P 500 7,262 

Total number of quotes processed-Russell 3000 7,262 

Seed generation from clock Yes 

Creation of unique genomes Yes 

Offspring will replace the worst performing agents of the 
initial selection   

Yes 

 

                                                      Table 2.0 Artificial Stock Market Parameter Settings 

 
*Maximum genome size measure the total number of nodes in an agent’s trading rule. A node is a gene in the genome 
such as a function or a value.  

**Maximum genome depth measures the highest number of hierarchical levels that occurs in an agent’s genome (trading 
rule). The depth of a trading rule can be an indicator of its complexity.  
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4.4 Simulation Results 

4.4.1. Is a financial market populated by more heterogeneous adaptive traders efficient?  

 

Throughout the years, the EMH was mainly formalised based on the concept of probabilistic 

independence in probability theory. Malkeil (1987) quantified the notion of efficient 

markets by considering the rate of return tR ,a random function defined in the
2L

probabilistic Hilbert space, as well as 1t ,the  -algebra produced by the history of rate of 

return  
1t

j j
R




. 

Hence, the EMH states that tR is independent of any random variables in 1t . Moreover, 

when taking into account the conditional expectation 1t tE R  , the EMH then implies 

the following: 

                                                           1 0t tE R                                                            (20) 

Because Equation (20) is a result of the random walk in a discrete-time stochastic process, 

the EMH is associated with the random walk process. Recent research based on nonlinear 

tests indicates the existence of nonlinear dependence in stock market data. For instance, 

the studies of Brock et al. (1987), Frank et al. (1988), Savit (1988, 1989), Hsieh (1989), 

Scheinkman and LeBaron (1989), Peters (1991) and Willey (1992) demonstrate the presence 

of nonlinear dependence between tR and 1t ,or that  
t

i i
R


represents a chaotic time 

series which seems to be characterised with random behaviour, but it is in fact 

deterministic. Moreover, Farmer and Lo (1999) argue that to make the EMH operational, 

researchers have to specify trader cognitive abilities, information structure, risk 

preferences, etc. But then the EMH will consist of a test of several auxiliary hypotheses and 

any potential rejection of such a joint hypothesis could provide misleading information 

which part of the joint hypothesis is inconsistent with the dataset. Is there any other 

hypothesis that better represent market efficiency taking into account market complexity 

and trader behaviour?  
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To analyse the implications of market size on market efficiency and adaptability, I consider 

experiments associated with ten different market sizes (number of traders). Lo (2004) argue 

that measuring the level of market efficiency of a particular market should be seen as 

relative to other markets. In view of this claim, I investigated the outcome of various tests 

for nonlinearity and compare market efficiency between ten different markets.  

The STGP modelling approach represents an appropriate tool for examining the stock 

market mechanism in isolation from the traders who populate the artificial stock market. An 

important addition is that I am able to investigate the relationship between the market 

dynamics and trading activities and therefore to analyse the efficiency of the stock market in 

terms of the EMH and the AMH. The heterogeneous environment where stock prices and 

traders’ beliefs co-evolve over time provides an appropriate laboratory platform to 

investigate market efficiency and the emergent behaviour of the stylised facts of financial 

returns. Also the heterogeneity of expectations among artificial traders provides important 

nonlinear conditions for the market.  

First, I would like to investigate whether my artificial stock markets for the three financial 

instruments are efficient in the sense that the stock returns are statistically independent. In 

order to test for statistical independence, I adopted the procedure of Chen et al.(2000) 

which consists of the Rissanen’s predictive stochastic complexity (PSC) filtering (Rissanen, 

1989), followed by the celebrated BDS testing proposed by Brock et al.(1996). In 

econometric terms, a stock market is efficient when its return series are unpredictable, or in 

other words series are identically and independently distributed (IID). Similarly to 4.3.3 and 

5.4.2, I begin my econometric analysis by applying the Augmented Dickey-Fuller (ADF) test 

to detect the presence of a unit root. My ADF testing procedure includes running a 

regression of the first difference of the log price series against series that have been lagged 

once and then combined with a drift and time trend. The null hypothesis of a unit root 

presence was rejected in all three index price series in all different market levels (Tables 3.0, 

4.0 and 5.0). Hence, the return series generated by all artificial traders in all markets are 

stationary at the 95% significance level. This finding is consistent with Lee et al. (2010) who 

reported stationary price series in 32 developed and 26 developing countries. I then applied 

the Rissanen’s PSC criterion to the return series generated by the STGP mechanism to 

identify the linear ARMA model by selecting the model with minimum PSC.  
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If some of the three financial instruments at any market level satisfies the EMH, both p and 

q of ARMA should equal zero. Hence, there will not be any linear dependence and the 

return series are not linearly predictable. The seventh column of Tables 3.0, 4.0 and 5.0 

shows the ARMA process extracted from the return series. All FTSE 100, S&P 500 and Russell 

3000 return series in Markets A, B, C, D, E and F are linearly dependent and therefore 

inefficient.   

                                                                                                        FTSE 100 

Market Std.dev SK KU JB ADF* PSC BDS GARCH Kaplan 

A 1656.6 -0.1717 1.6546 575.35 -37.99 (1,0) 0.13 (0,1) R 

B 1656.3 -0.1717 1.6545 575.30 -37.12 (1,0) 0.43 (0,1) R 

C 1637.1 -0.1706 1.6221 570.05 -37.89 (0,1) 0.29 (0,1) R 

D 1600.8 -0.1701 1.5651 569.23 -37.16 (1,0) 0.71 (1,2) R 

E 1489.4 -0.1687 1.4769 568.11 -38.23 (1,0) 1.48 (1,0) R 

F 1204.7 -0.1611 1.4476 567.58 -35.68 (0,1) 1.72 (0,1) R 

G 1201.2 -0.1565 1.4290 566.47 -35.54 (0,0) 0.38** *** R 

H 1011.3 -0.1522 1.3618 565.78 -35.46 (0,0) 0.30** *** R 

I 800.87 -0.1489 1.2767 560.03 -35.17 (0,0) 0.27** *** A 

J 781.89 -0.1119 1.2001 559.32 -34.94 (0,0) 0.20** *** A 

SK-skewness; KU-kurtosis; JB-the Jarque-Bera test; the numbers in brackets (p,q) in the column PSC are the orders of the 

ARMA (p,q) selected by the PSC criterion. 

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

**Failed to reject the Null hypothesis that series are identically and independently distributed (IID). 

***No presence of ARCH effect. 

Table 3.0 Econometric statistics for FTSE 100 price series generated by a different number of traders in 

various artificial stock markets.  

                                                                                                        S&P 500 

Market Std.dev SK KU JB ADF* PSC BDS GARCH Kaplan 

A 436.61 -0.0732 1.4571 715.57 -64.42 (0,1) 0.42 (0,1) R 

B 436.57 -0.0730 1.4569 715.50 -64.88 (0,1) 0.85 (0,1) R 

C 436.20 -0.0727 1.4560 714.23 -64.35 (1,0) 1.21 (1,0) R 

D 411.01 -0.0699 1.4555 714.11 -64.10 (1,0) 1.38 (1,2) R 

E 390.77 -0.0690 1.4490 713.78 -63.37 (1,0) 0.90 (1,2) R 

F 387.32 -0.0687 1.4474 713.32 -63.19 (1,0) 0.36 (0,1) R 

G 380.93 -0.0680 1.4470 713.27 -63.67 (0,0) 1.37 *** R 

H 373.56 -0.0674 1.3329 713.01 -62.46 (0,0) 0.35** (0,1) R 

I 370.31 -0.0645 1.3012 712.23 -62.33 (0,0) 0.31** *** A 

J 368.89 -0.0631 1.2991 712.01 -62.01 (0,0) 0.24** *** A 

SK-skewness; KU-kurtosis; JB-the Jarque-Bera test; the numbers in brackets (p,q) in the column PSC are the orders of the 

ARMA (p,q) selected by the PSC criterion.  

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

**Failed to reject the Null hypothesis that series are identically and independently distributed (IID). 

***No presence of ARCH effect. 

Table 4.0 Econometric statistics for S&P 500 price series generated by a different number of traders in 

various artificial stock markets.  
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                                                                                  Russell 3000 

Market Std.dev SK KU JB ADF* PSC BDS GARCH Kaplan 

A 458.59 -0.0453 1.4742 720.21 -90.77 (1,0) 0.20 (0,1) R 

B 458.58 -0.0452 1.4740 720.20 -90.73 (1,0) 0.30 (1,0) R 

C 458.00 -0.0443 1.4738 719.98 -90.12 (1,0) 1.38 (1,0) R 

D 446.21 -0.0411 1.4732 719.34 -90.56 (0,1) 1.36 (0,1) R 

E 433.78 -0.0410 1.4727 719.21 -89.63 (1,0) 0.34 (1,1) R 

F 430.25 -0.0390 1.4001 719.10 -89.39 (1,0) 0.99 (0,1) R 

G 428.11 -0.0378 1.3998 718.88 -89.12 (0,0) 0.12 (1,1) R 

H 420.20 -0.0372 1.3991 718.24 -88.85 (0,0) 0.32** *** R 

I 415.11 -0.0321 1.3983 718.11 -88.50 (0,0) 1.43** *** A 

J 404.80 -0.0299 1.3930 718.01 -88.11 (0,0) 0.56** *** A 

SK-skewness; KU-kurtosis; JB-the Jarque-Bera test; the numbers in brackets (p,q) in the column PSC are the orders of the 

ARMA (p,q) selected by the PSC criterion.  

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

**Failed to reject the Null hypothesis that series are identically and independently distributed (IID). 

***No presence of ARCH effect. 

Table 5.0 Econometric statistics for Russell 3000 price series generated by a different number of traders 

in various artificial stock markets.  

 

The return series generated by artificial traders in Markets G, H, I and J are linearly 

independent (p=0, q=0). Lack of linearity in these four markets suggest an important initial 

finding that artificial stock markets populated by 7,000 8,000, 9,000 and 10,000 artificial 

traders are so efficient that there are no linear signals found.   

I estimated the most appropriate ARMA (p,q) model and fitted it to the data set in order to 

discard all linearity from the sample. Any signal left in the residual series must be non-linear. 

I used the BDS test to investigate for nonlinearity. The BDS test detects significant deviations 

in the correlation of integral behaviour from that anticipated under the IID of the dataset. 

The correlation integral is quantified by:  

                                      
 

,
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                                               (21) 
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Where 
( 1)( , ,...., )m

t t t t my y y y    an ‘m-history’ computed from the underlying uni-

variate dataset and   an indicator function:  , 1m m m m

t s t sy y if y y     and 

zero otherwise. The correlation integral establishes the frequency and connectivity with 

which different points are within radius  of each other. Here m represents the embedding 

dimension within which lag has been implemented in the computing of ‘m-history’ to 

prevent the formation of a very high correlation between the elements of an m -tuple (Chen 

et al. 2000).  

If the returns generated by the artificial traders in my experiments are identically and 

independently distributed, then the correlation function (Equation 21) suggests that 

 , ,1lim lim
m

m e
x x

C C
 

 for sure for all 0  and m =2,3,.....The test statistic, with limiting 

standard normal distribution under the null hypothesis was proposed by Brock et al. (1996): 

                                        , , ,1 ,/m

m m mV n C C                                          (22) 

Brock et al. (1996) offered an estimation process for the standard deviation ,m .  

I applied the BDS test directly to the data generated by the artificial traders in Markets G, H, 

I and J because there are no linear signals detected in these series. The empirical results of 

the test are reported in the eighth column of Tables 3.0, 4.0 and 5.0. 

The null hypothesis of IID is significantly rejected in Markets A, B, C, D, E and F indicating 

nonlinear dependence in the return series. In Markets G, H, I and J the null hypothesis has 

not been rejected, suggesting that series generated by the artificial agents are identically 

and independently distributed. In terms of the BDS test, Markets G, H, I and J are 

nonlinearly dependent, more random and therefore more efficient than markets populated 

with fewer traders. This finding can be considered to be a match of the classical version of 

the EMH.   
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According to the econometric literature, however, a large part of the nonlinearity in data is 

in their second moment. I performed the Lagrange multiplier (LM) test with up to 14 lags to 

detect the presence of an ARCH effect of the residual. In case the null hypothesis is rejected, 

I further identified the GARCH order of the series according to the Schwartz Information 

Criterion. The ninth column of Tables 3.0, 4.0 and 5.0 represents the results. All markets 

with reduced numbers of artificial traders reported the presence of an ARCH effect. I 

proceeded to further identify the GARCH order based on the Swartz Information Criterion. 

This process can be expressed in quantitative terms by: 

             
1/2

t t tr h   ,         
2

0

1 1

p q

t i t i i t i

i i

h x h   

 

                     (23) 

Where t is the IID normal innovations and the restrictions are 0 0  , i , 0i  and 

1i i

i i

    ,(Chen et al.2000).  

While Market H of the S&P 500 and Market G of the Russell 3000 consisted of ARCH effects, 

the most populated markets- I and J- in all experiments of the three indices did not consist 

of any ARCH effect. This result is consistent with the BDS test. Barnett et al. (1998) 

highlighted that the BDS and the Kaplan tests are the best performing ones in nonlinear 

terms. Moreover, there is a possibility that the process in the data might be chaotic, rather 

than stochastic. To investigate this assumption I adopted the Kaplan test (Kaplan, 1994). 

Kaplan argues that in deterministic processes, unlike stochastic processes, nearby points are 

also nearby under their image in the phase space environment. In technical terms, if iX and 

jY are relatively close to each other, then 1iX  and 1jY  are also close to each other.  

When   2 1
, , ,...,i i i i i m

X r r r r     
 is embedded in m dimensional phase space, I observe 

the presence of a recursive function given by: 

                                                           i iX f X                                                           (24) 

Where  is the fixed positive integer time decay. Hence, I can calculate: 
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                                  ij i jX X    and ,i j i jX X                                (25) 

 

For all time subscripts  ,i j for a specified choice of embedding dimension m . I assume 

that    , / #A i jE A    , where   ,, : i jA i j    . In a case of a completely 

deterministic system with continuous f I achieved  lim 0E





 and therefore K (the 

actual value of Kaplan) is the limitation of  E  as 0  .  

One of the most important moments in this particular test is to estimate a piecewise 

regression line for  , ,,i j i j  and apply the intercept to calculate the value of K . I based 

the actual statistical procedure for K on simulated series which have the same histogram 

and similar autocorrelation functions as the original series. Acceptance of the null of IID is 

when K is smaller than the test statistic. The opposite is valid for the rejection of the null 

hypothesis.  

In terms of the Kaplan test (the last column of Tables 3.0, 4.0 and 5.0), only Markets I and J 

of the three financial instruments demonstrate consistency with the test. The two markets 

populated by the highest number of artificial traders do not reject the null hypothesis of IID 

based on the BDS, ARCH and Kaplan tests.  

de Lima (1998) investigated nonlinearity and nonstationarity in the S&P daily returns from 

January 2, 1980 to December 31, 1990. The author was unable to reject the null hypothesis 

of IID series in all subsamples prior to the 1987 crash. Interestingly, when he expanded the 

sample and included the crash, the outcome was a strong rejection. Chen et al. (2000) 

reported similar experimental findings.  
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My results are consistent with Chen et al.(2000) based on rejection and non-rejection of the 

null for the entire markets of the three indices, rather than based on subsample tests as 

performed by de Lima (1998). This supports the doubt raised by Chen et al. (2000) of 

whether de Lima’s research interpretations that the presence of nonstationarity rather than 

dependence might have been the reason for the rejection of the null of IID prior to the 1987 

crash.  

The EMH postulates that prices should always be consistent with their fundamental values 

because asset prices reflect all available information. This is sometimes referred to as 

allocative efficiency which means that stock prices reflect the true fundamental value of the 

underlying asset. Many academics tend to believe that the prudent behaviour of traders is 

indispensable for a certain desirable feature of the stock price i.e. that the prices are likely 

to be more consistent with thier fundamental values (Chen and Yeh, 1999; Binswanger, 

1999).  

As illustrated in Figures 8.0, 10.0 and 12.0 the FTSE 100, the S&P 500 and the Russell 3000 

price series generated by 1,000 traders only (all markets denoted by A) exhibit market 

inefficiency. The red curve which represents the generated price series by the artificial 

traders deviates substantially from the fundamental values of the three indices represented 

by the yellow curve. Figures 9.0, 11.0 and 13.0 illustrate the price series for the three 

financial instruments generated by 10,000 artificial traders (all markets denoted by J). It is 

clearly evident that the price series and their fundamental values significantly overlap, 

suggesting market efficiency.  
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Figure 8.0 Time series plot of FTSE 100 generated by 1,000 traders. Note: the yellow curve consists of 
historical FTSE 100 quotes, the red curve represent price series generated by 1,000 traders.    

 

 

Figure 9.0 Time series plot of FTSE 100 generated by 10,000 traders.  

 

 

Figure 10.0 Time series plot of S&P 500 generated by 1,000 traders.  
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Figure 11.0 Time series plot of S&P 500 generated by 10,000 traders.  

 

 

Figure 12.0 Time series plot of Russell 3000 generated by 1,000 traders.  

 

Figure 13.0 Time series plot of Russell 3000 generated by 10,000 traders.  
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This claim is confirmed by the empirical tests I performed. Table 6.0 describes the absolute 

deviations from real prices as a proportion of the real FTSE 100, S&P 500 and Russell 3000 in 

Market A and Market J. The mean, maximum and standard deviation reported by the 

markets with reduced numbers of artificial traders are significantly higher than the 

equivalent statistics for the prices series generated by traders in the most populated 

markets.  The significance of the differences in the mean values has been estimated by t-

tests on the paired differences between the deviations from intrinsic (fundamental) values 

for the two markets. All differences recorded in Table 6.0 are significant at the 1% level.  

                                                                                                        FTSE 100 

Market N Minimum Maximum Mean Std.deviation 

J-10,000 traders 7262 0.0000 0.8456 0.3283* 0.0272 

A-1,000 traders 7262 0.0000 0.9041 0.9918* 0.1018 

Mean paired difference between Market J and Market A -0.6635  

                                                                                                         S&P 500 

J-10,000 traders 7262 0.0000 1.0141 0.0236* 0.2387 

A-1,000 traders 7262 0.0000 1.0293 0.0890* 0.9310 

Mean paired difference between Market J and Market A -0.0654  

                                                                                                      Russell 3000 

 7262 0.0000 0.7223 0.1736* 0.0113 

 7262 0.0000 0.8327 0.7632* 0.1487 

Mean paired difference between Market J and Market A -0.5896  

*Significantly different from 0 at the 1% level.  

Table 6.0 Descriptive statistics of FTSE 100, S&P 500 and Russell 3000 price series-absolute deviations 

from real prices as a proportion of real prices for markets populated by 1,000 and 10,000 traders.  

 

It is important to note, however, that the market prices in inefficient markets periodically 

and temporarily deviate from their fundamental values. As the figures illustrate, market 

prices moves back to their intrinsic levels in the long-run. Hence, inefficiency does not cause 

long-run mispricing of assets, leading to persistent arbitrage opportunities. My empirical 

results are consistent with the findings of Decamps and Lovo (2000) who pointed out that 

asset prices converge to their fundamental values in the long-run. 
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The Hurst exponent proposed by Hurst (1951) provides a measure for long-term memory 

and fractality of a time series. Hurst (1951) demonstrated that range series scaled by power-

law as time increases: 

                                                          / * H

t
R S c t                                                   (26) 

 /
t

R S represents the rescaled range series at time t , c is a constant and H is called the 

Hurst exponent. 0.5H  indicates a random series, 0 0.5H  indicates an anti-

persistent series and 0.5 1H  signals a persistent series. A persistent series is trend 

reinforcing (the direction of the next value is more likely the same as the current value). 

Figure 14.0 below illustrates the Hurst exponent for FTSE 100 generated by 10,000 artificial 

traders. The Hurst exponent ranges from 0.390 to 0.620.  

 

Figure 14.0 Hurst exponent for FTSE 100 price series generated by 10,000 traders.  

Figure 15.0 shows that the FTSE 100 Hurst exponent peaks around the value 0.5H  which 

indicates a random series and therefore efficient markets.  
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Figure 15.0 Histogram of Hurst exponent for FTSE 100 price series generated by 10,000 traders.  

Figure 16.0 illustrates that the Hurst exponent ranges between 0.375 and 0.625 for S&P 500 

return series generated by 10,000 traders.  

 

Figure 16.0 Hurst exponent for S&P 500 price series generated by 10,000 traders.  

 

Figure 17.0 clearly indicate that the Hurst exponent has peaked at the value of 0.5H 

suggesting randomness and efficient markets. 

 

Figure 17.0 Histogram of Hurst exponent for S&P 500 price series generated by 10,000 traders.   
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Figure 18.0 shows the Hurst exponent for the Russell 3000 ranging between 0.400 and 0.610 

and Figure 19.0 shows a peaked value of 0.5. Hence, the return series generated by 10,000 

artificial traders for the Russell 3000 are random and the market is efficient.  

 

 

Figure 18.0 Hurst exponent for Russell 3000 price series generated by 10,000 traders. 

 

 

Figure 19.0 Histogram of Hurst exponent for Russell 3000 price series generated by 10,000 traders.  

 

Furthermore, I investigated whether the efficient markets populated by the largest number 

of traders possess long-memory for FTSE 100, S&P 500 or Russell 3000. A random process 

characterised by long memory when the autocorrelation function decays asymptotically as a 

power-law of the form 
 

with 1   (Lillo and Farmer, 2004). In other words, values from 

the past could have significant implications on the present, implying anomalous diffusion 

under stochastic conditions which emphasises the presence of long-memory.  
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When the value of the exponent is smaller than 1, the process might have long-memory 

(the smaller the value of , the longer the memory). In order to define the long-memory 

process I follow Lillo and Farmer (2004):  

                                      k k L k 
 if the limit k                                      (27) 

Where 0 1  and  L x is a slowly varying function at infinity if  lim / ( ) 1
x

L tx L x




(Embrechts et al., 1997).  

In my experiment, I am considering only positively correlated long-memory processes, with 

a Hurst exponent in the interval (0.5, 1). In terms of the Hurst exponent  H , the long-

memory process is characterised by: 

                                                          2 2H                                                                    (28) 

On the other hand, short-memory processes can be quantified by: 

                                                            1/ 2H                                                                         (29) 

With an autocorrelation function that decays faster than 
1k 

. The relationship between the 

diffusion properties of the integrated process explains the rationale behind the use of the 

Hurst exponent. In cases of normal diffusion the increments do not possess long-memory 

and the standard deviation increases at the rate of 
1/2t . In cases of long-memory 

increments, the standard deviation increases at the rate of  Ht L t , with 1/ 2 1H   and 

a slow-varying  L t function. As the peaked value of the Hurst exponent is 0.5 in all 

experiments with markets denoted by J for the three financial instruments, I estimate the 

corresponding   exponent from Equation (36). In all three markets populated by 10,000 

artificial traders, I calculated that 1  , suggesting a lack of long-memory processes in 

place. Consistent with my previous empirical results I can conclude that all markets denoted 

by J for the FTSE 100, S&P 500 and Russell 3000 are characterised with strong market 

efficiency- the process possesses short-memory with 0.5H  and the autocorrelation 

function decay faster than 
1k 

.  
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Overall my experimental results show that an artificial stock markets populated by a 

reduced number of traders behaves differently from markets with greater genetic diversity. 

The price series generated by artificial agents in Markets I and J conform to the EMH. This is 

clear evidence that enhanced genetic diversity has a beneficial effect on the market. The 

presence of more artificial traders in Markets I and J corresponds to an enhanced variety of 

different trading rules, and most importantly, greater market efficiency. Hence, the price 

formation process produced by a greater number of traders is a better predictor than any 

small fraction of traders. This is a result of the greater genetic diversity that is presented in 

the total population. Enhanced diversity means more heterogeneous trading rules and 

behaviour leading to greater flexibility in the virtual market clearing price mechanism.  

Also, with the presence of a greater number of traders, the market is more competitive and 

more information is reflected in the order flow. It seems that markets populated by a 

greater number of traders react to price changes in a timely manner, making the entire 

market more efficient by enhancing the process of adjustment of prices to their 

fundamental values. Moreover, the BDS, the ARCH and the Kaplan tests revealed that richer 

dynamic structures, such as stock markets populated by a greater number of traders, helps 

to describe the findings of complex nonlinear dependence in stock market data.   

Despite the EMH view, my empirical results provide evidence that patterns observed in 

financial markets seems to indicate that markets characterise by internal dynamics of their 

own. Financial markets dynamics seems influenced by the wider heterogeneity as well as by 

the microstructure of the market. I think that the key to analyise and understand the rich 

market dynamics is the mechanism which allows various population of traders to learn and 

adapt over time. My empirical results better explain market efficiency in terms of the AMH. I 

observe that market efficiency is not an isolated process, but it is a dynamic and context-

dependent process where market participants adapt to their changing environment.  

Enhanced genetic diversity provides an appropriate environment where different numbers 

of artificial traders involved in the evolutionary process adapt to a changing environment. 

Markets composed of more traders seem to adapt better to the changing environmental 

conditions leading to increased level of market efficiency.  
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Moreover, the evolutionary nature of the artificial traders is based on survival of the fittest 

principle, that is, to better cope with changing circumstances, market dynamics and 

opportunities. In other words, natural selection operates to select the fittest within an 

evolutionary framework in which markets and traders interact and evolve dynamically 

according to the law of economic selection. Under these circumstances, traders compete, 

learn and evolve. Hence, market efficiency involves reasons and beliefs which have 

adaptational value because they are changeable in response to changing market 

circumstances. My findings are consistent with Blume and Easley (1992) who claim that the 

‘market selection hypothesis’ based on the natural selection and survival of economic actors 

better represent the relationship between market efficiency and market adaptability. The 

price of FTSE 100, S&P 500 and Russell 3000 in Markets I and J reflect as much information 

as required by the mixture of environmental factors and the number of distinct groups of 

artificial traders ranging from 1,000 in Markets A to 10,000 in Markets J. Hence, the AMH 

seems to measure better market efficiency due to its less theoretically restrictive nature 

than the EMH.  The AMH does not require market participants to uniformly follow the 

rationality axioms of neo-classical economics.  

Overall, the experimental results presented above can be summarized as two implications 

on financial market efficiency and adaptability, namely, the size effect and the learning 

effect. On the one hand, the size effect on its own suggests that the market is more efficient 

when the population size increases. On the other hand, the learning effect indicates that the 

market is more efficient when traders’ adaptive behaviour become more independent. I can 

conclude that enhanced market size, and greater heterogeneous learning style is leading to 

improvement in diversity of traders’ expectations resulting in more efficient and adaptable 

financial market structures.    
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4.5 Conclusions 
 

The controversy surrounding the EMH has stimulated several new directions of research. 

Many of the well-established financial models rely on two building blocks: market efficiency 

and homogeneous traders. In this paper, I propose the idea that financial markets should be 

viewed from a Darwinian ‘survival of the fittest’ perspective and, specially, within an 

evolutionary framework in which markets, financial instruments, and traders interact, 

compete, learn, adapt, and evolve dynamically. My experiment provided such a dynamic 

environment.   

This chapter investigates the relation between market diversity and market efficiency. My 

empirical findings demonstrate that greater market heterogeneity and adaptability play key 

roles in market efficiency. The increase of market size significantly and positively 

contributed to the market efficiency by means of enhancing market diversity. Moreover, 

individual trader learning, adaptation, and evolution reinforced the motion of efficient 

markets. My research contributions are twofold. On the one hand, the presence of different 

market sizes suggests that the market is more efficient when the population size increases. 

On the other hand, the learning effect indicates that the market is more efficient when 

traders’ adaptive behaviour becomes more independent.  

Hence, larger market size and a greater heterogeneous learning style are leading to 

improvement in the diversity of traders’ expectations, resulting in more efficient and 

adaptable financial market structures.    

 I generated rich varieties of market dynamics which provided a promising direction to 

contribute to the current studies on micro-structure and anomalies. My empirical findings 

suggest that stock markets composed of a reduced number of traders- represented by 

Markets A, B, C, D, E, and F- behave differently when compared with markets with a greater 

genetic diversity- represented by Markets G, H, I, and J. I have found that the presence of 

more artificial traders in the last two markets (I and J) is associated with an enhanced 

variety of trading rules, leading to greater market efficiency in terms of the EMH. However, I 

have also found that the EMH on its own cannot explain the internal market dynamics, 

market micro-structure, and the heterogeneity of market participants.  
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My experimental results suggest that market efficiency is a dynamic and context-dependent 

process, where traders adapt to constantly changing market conditions.  

The various empirical tests I performed suggest that markets populated by a greater 

number of traders help to discover the findings of complex nonlinear dependence in stock 

market data and explain the emergent nature of the EMH and the AMH. I think that the 

AMH does not require market participants to follow the specific rationality axioms of neo-

classical economics and, therefore, market efficiency exists simultaneously with the need 

for adaptive flexibility.  

The evolutionary nature of the STGP technique enabled me to empirically test the idea that 

different trader populations behave as an efficient adaptive system. My empirical findings 

revealed that the presence of increased heterogeneity in markets provides ideal conditions 

for artificial agents to adapt to the changing environmental conditions, leading to higher 

market efficiency.  

One area of future research I would like to explore myself is the degree of traders’ 

prudence- the time horizon which traders look back at while they make investment 

decisions. I also would like to include social learning in my future experiments and analyse 

the adaptive switch between social and individual learning.    
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Chapter 5 

Herd behaviour experimental testing in laboratory artificial stock 

market settings. Behavioural foundations of stylised facts of financial 

returns.  

5.1 Introduction 
 

The majority of investors actively trade stocks instead of buying and holding a market 

portfolio. Active trading may move asset prices around the intrinsic value of the stock and 

increase long-run price volatility. Analysing herd behaviour in financial markets is of 

particular interest because it might offer an explanation of excess volatility and bubbles. 

Traders experience herd behaviour when the knowledge that others are investing changes 

their decision from not investing to making the investment. In other words, investors copy 

the behaviour of other investors leading to changes in their decision-making process after 

observing others. Investors ignore to a certain degree, their private opinions and follow the 

market leading to a switch from non-trading to trading. Herding might cause changes in the 

magnitude of trading activity, the assets traders invest in, or even their valuation. Herding 

behaviour explains why profit-maximising individuals with similar information react similarly 

in terms of investing funds (Bikhchandani and Sharma, 2001). The financial crises of the 

1980s and 1990s have highlighted herding as a possible reason for excess volatility and 

financial system fragility. Banerjee (1992), Bickchandani et al., (1992) and Welch (1992) 

were among the first scholars to write about herd behaviour. They analyse herd behaviour 

under abstract conditions (in the context of fads, fashions and customs) where privately 

informed individuals develop their decision-making process in sequence. These early 

research papers attempt to describe herding when a finite number of individuals have 

already chosen their actions and all following individuals abandon their own specific private 

information and herd. Devenow and Welch (1996) suggest that agents disregard their prior 

beliefs and follow the actions of other agents creating herding. Christie and Huang (1995) 

assumed that herding is most pronounced when market returns are extreme. Their findings 

show that when market agents abandon their own stock price forecasts in favour of the 

aggregate market behaviour, their asset returns are very similar to the overall market 

return.   
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A few years later, Avery and Zemsky (1998) investigated herd behaviour in real financial 

market settings with stock prices determined by a market maker according to the order 

flow. The authors concluded that the price mechanism prevents the development of 

informational cascades (a market condition in which traders disregard their own 

information and imitate previous traders’ decisions leading to herd behaviour). They 

demonstrated that informational cascades are impossible because new information can 

reach the market at any time; thus, consistent with a steady informational flow, prices do 

not deviate significantly from fundamental values. Moreover, according to their findings 

herd behaviour does not cause excess volatility and the mispricing of assets in the long run.  

Lakonishok, Shleifer and Vishny (1992) and Bikhchandani and Sharma (2001) claim that 

there seems to be weaker evidence of herding behaviour in individual stocks than in groups 

of stocks. They stressed that this does not exclude the possibility of more intensive herding 

in certain stocks such as stocks of a particular size or with particular performance records.  

The Marginal Trader Hypothesis (MTH), proposed by Forsythe et al (1992)  states that a 

small fraction of savvy individuals are capable of setting market prices and strive for market 

efficiency. Marginal traders are described as well-informed and active traders who are more 

capable of inferring true price and willing to explore those inferences. The authors argue 

that when one removes those ‘perfect’ individuals from the pool of traders prediction 

markets lose their accuracy.  Prediction markets are markets established to generate 

knowledge and forecasts about the likelihood of future events. Forsythe et al (1992) analyse 

data from the Iowa Presidential Stock Market (IPSM), which was successfully created in 

1988 and operated as a computerised double-auction market in order to forecast the vote 

shares of the presidential candidates in elections held in the same year. They combined 

market design and incentive structures familiar from laboratory experiments to find out 

how the 1988 US presidentials would finish. The accuracy of prediction they achieved was 

very impressive.  
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However it is difficult to test those theoretical assumptions directly. The literature related to 

herding behaviour in financial markets focuses primarily on statistical measures of 

clustering. The main difficulty from the empirical point of view comes from the fact that 

there is no database on the private information available to investors and hence it is not 

possible to prove whether market agents strictly disregard their own information and 

imitate. This serious obstacle can be avoided in experimental settings such as an agent-

based artificial stock market where the information possessed by traders can be controlled.  

Under laboratory settings researchers can observe the private information available to 

individuals for decision-making purposes, and therefore it is possible to test the presence of 

herding. In a market simulation model that I created using Altreva Adaptive Modeler, 

artificial traders receive information about the value of a real security and observe the 

history of past trades. Based on this information they decide if they want to buy or sell one 

or more units of the security. By observing how artificial agents deal with the same piece of 

public information and react to the decisions of the previous agents I can detect the possible 

presence of herding behaviour. My experiments are extremely suitable environment to 

investigate the occurrence of ‘spurious herding’ (Bikchandani and Sharma, 2001) or 

‘investigative herding’ (Froot et al., 1992; Hirshleifer et al., 1994) where a group of traders 

such as ‘Best Agents’ and ‘All Agents’ make similar decisions because they face similar 

information (historical data of Dow Jones, IBM and GE). Several studies use a statistical 

measure of herding behaviour proposed by Lakonishok et al., (1992). The authors divide and 

measure herding behaviour as the average tendency of a group of traders to buy (sell) 

particular stocks at the same time. This herding measure examines the correlation in trading 

patterns for a particular group of traders and their tendency to buy and sell the same set of 

stocks.  

The modelling software that I use provides a rich environment to examine herd behaviour 

as artificial traders make independent decisions creating a heterogeneous market structure 

(the market is populated by 10,000 boundedly rational artificial agents each with different 

trading rules and behaviour). Traders adaptive behaviour in my artificial stock market is 

modelled with an evolutionary computing technique called Strongly Typed Genetic 

Programming (STGP). The STGP evolves the trading rules at the micro level and co-evolves 

all agents through trading on the artificial market at the macro level.  
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In this chapter I evaluate the price series of a group of stocks modelled by the Dow Jones 

and individual stocks represented by General Electric and IBM generated using two main 

groups of artificial agents- ‘Best Agents’ and ‘All Agents’. I then use econometric evaluation 

to analyse the following topics: 

(i) Do price series generated by artificial stock market agents exhibit herding behaviour in 

individual stocks as well as in a group of stocks?   

(ii) Volatility analysis of price series generated by ‘Best Agents’ and ‘All Agents’. Is the Virtual 

Market price based on the behaviour of all agents less volatile in comparison with a small 

subset of agents? 

(iii) Artificial stock markets and the Efficient Market Hypothesis. Is the price series 

generated by ‘Best Agents’ more likely to conform to the Efficient Market Hypothesis, and 

therefore be more efficient?  

Chen and Yeh (1999) developed a genetic programming (GP) based artificial stock market in 

order to investigate herding behaviour. Chen and Yeh’s paper is a good starting point and I 

suggest several extensions to their approach based on the following important factors: 

-A greater number of artificial agents. While Chen and Yeh’s model consists of only 500 

traders, I employ 10,000 agents. A larger population means increased model stability and 

reduced sensitivity to random issues. The presence of substantially more artificial agents 

creates a competitive environment where different trading rules compete and evolve in 

parallel at the same time. Having a greater number of agents open up the opportunity to 

implement a wider variety of trading strategies programmed in the agents’ trading rules 

(Witkam, 2013).  

-Rather than using a fixed intrinsic value of the stock (fixed at 100 in Chen and Yeh’s model), 

I feed the software with real historical asset prices. This is done in order to prevent the 

formation and development of herding behaviour by design. Cipriani and Guarino (2002) 

argue that when the price is fixed, individuals tend to disregard their own information and 

strictly follow the decisions made by the previous agents resulting in herding behaviour.  
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-My model developed within Altreva settings is built incrementally (walk-forward with no 

overfitting of historical data). It constantly evolves and adapts to market changes instead of 

being static. I have 10,000 different trading strategies competing simultaneously and 

evolving on the artificial stock market in real time. Hence, the model is more resilient to 

changing market conditions and model performance is significantly more consistent and 

reliable (Witkam, 2013).     

No known study examines the heterogeneity, efficiency and behaviour of the stock market 

by the implementation of Strongly Typed Genetic Programming (STGP) technique. 

Specifically, the major contributions of this chapter are as follows.  

•Initially to provide evidence of the emergent properties of herding behaviour, stock market 

efficiency and stylised facts of financial returns gained by implementing a special form of 

Genetic Programming- STGP.  

•Secondly to provide unique tests of the MTH within artificial stock market settings.    

5.2 Artificial stock market structure for this particular experiment 
 

Table 2.0 illustrates the main parameters of the GP-based artificial stock market model. 

Caram et al. (2010) introduced a self-organised competition scheme related to the agents’ 

sizes. While the authors imposed constraints allowing only agents of similar sizes to 

compete with each other, I do not implement such size constraints but focus on the wealth- 

creating attributes of agents. Each of my artificial markets is divided into two main groups- a 

small fraction of traders called ‘Best Agents’ and ‘All Agents’ (the remainder of the market). 

Four different ‘Best Agents’ group sizes were designed- 1%, 5%, 10% and 20% of the total 

population. By agent group size I mean the fraction of a given market that the agent group 

has. Both ‘Best Agents’ and ‘All Agents’ group sizes are part of and operate in the same 

market. Hence, I have four stock markets encompassing the four different agent group sizes. 

The markets trade separately each of the three financial instruments- the Dow Jones (DJ), 

GE and IBM. For instance, the first market is populated by 1% of the best- performing agents 

(100 traders) and the remaining 9,900 (99%) of the total 10,000 traders represented by the 

‘All Agents’ group.   
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The most important characteristic of ‘Best Agents’ groups is that they momentarily perform 

best in terms of continuous Breeding Fitness Return (a trailing return of a wealth-moving 

average). This particular type of return is used to measure the fitness criterion for the 

selection of agents to breed. Breeding in essence is a process of creating new artificial 

traders to replace poor performing ones. Breeding involve the selection of well performing 

traders and the production of completely new genomes by recombination of the parent 

genomes by crossover and mutation operations. Hence, agents’ trading rules will improve 

by a natural selection process as the survival-of-the-fittest principle is in place.Artificial 

agents produce wealth by investing in two assets available on the virtual market. One of 

them is the risky stock asset and the other is the risk free asset represented by cash. There 

are three separate markets each composed of money and different financial instruments 

such as IBM, General Electric or an index like the Dow Jones.  

 
                                                                                         Artificial stock market parameters 

Total population size (agents)  10,0000 

Best performing agents size(percentage of the total 
population) 

1%; 5%; 10; 20% 

Initial wealth(equal for all agents) 100,000 

Fixed broker fee 10% 

Average bid/ask spread 0.01% 

Significant Forecasting range 0% to 10% 

Number of decimal places to round quotes on importing 2 

Minimum price increment for prices generated by model 0.01 

Minimum position unit 20% 

Maximum genome size 4096* 

Maximum genome depth 20** 

Minimum initial genome depth 2 

Maximum initial genome depth 5 

Breeding cycle frequency (bars) 1 

Minimum breeding age (bars) 80 

Initial selection type random 

Parent selection (percentage of initial selection that will 
breed)  

5% 

Mutation probability (per offspring)  10% 

Total number of quotes (bars) processed- DJ 19,942 (01/09/1931-17/06/2011) 

Total number of quotes (bars) processed- GE 12,353 (02/01/1962-17/06/2011) 

Total number of quotes (bars) processed-IBM 12,355 (02/01/1962-21/06/2011) 

Trading hours (open/close) 09:30/16:00 

Short positions allowed  Yes 

Seed generation from clock Yes 

Creation of unique genomes Yes 

Offspring will replace the worst performing agents of the 
initial selection   

Yes 

 

                                                                      Table 7.0 Artificial Stock Market Parameter Settings 
*Maximum genome size measure the total number of nodes in an agent’s trading rule. A node is a gene in the genome such as a function 
or a value. **Maximum genome depth measures the highest number of hierarchical levels that occurs in an agent’s genome (trading rule). 
The depth of a trading rule can be an indicator of its complexity. 
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5.3 Simulation Results 

5.3.1. An investigation of whether the price series generated by artificial stock market 

agents exhibit herding behaviour in individual stocks as well as in a group of stocks. 

Testing the Marginal Trader Hypothesis.  

 

I use a statistical measure of herding proposed by Lakonishok et al. (1992). The authors 

argue that herding behaviour can only be detected within subsets of traders. Hence, this 

particular measure of herding behaviour is extremely suitable for my experiments because 

is based on trades conducted by a subset of market participants such as ‘Best Agents’ and 

‘All Agents’ over a period of time. I measure herding behaviour as the average tendency of a 

group of traders (‘Best Agents’ and ‘All Agents’) to buy (sell) Dow Jones, IBM and GE at the 

same time. This herding behaviour measure accesses the correlation in trading patterns for 

a particular group of traders and their tendency to buy and sell the same set of financial 

instruments. Hence, herding behaviour leads to correlated trading.  

The measure of herding behaviour for a given financial instrument i , in a given trading day  

t ,  ,H i t , is defined as  

                                             , , / , , ,H i t B i t B i t S i t p t AF i t   
                        (30)

 

Let  ,B i t  ,S i t   be the number of traders in this subset who buy [sell] a financial 

instrument i in trading day t and  ,H i t be the measure of herding in financial instrument i

for trading day t . In other words  ,B i t is the number of traders who increase their holdings 

in Dow Jones, IBM and GE in the trading day (net buyers),  ,S i t is the number of traders 

who decrease their holdings (net sellers),  p t  is the expected proportion of cash traders 

possess in that trading day.  

The adjustment factor  ,AF i t is related to the fact that under the null hypothesis of no 

herding, i.e. when the probability of any trader being a net buyer of any financial instrument 

is  p t , the absolute value of         , , ,B i t B i t S i t p t  is greater than zero.   
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 ,AF i t is, therefore, the expected value of          , / , ,B i t B i t S i t p t  under the null 

hypothesis of no herding. Since  ,B i t follows a binomial distribution with probability of 

 p t success,  ,AF i t can be estimated given  p t and the number of agents trading in that 

financial instrument in that day. For any financial instrument,  ,AF i t declines as the 

number of agents trading in that financial instrument rises (Lakonishok et al., 1992 and 

Bikhchandani and Sharma, 2001).    

The herding measures in my experiments are computed for each financial instrument – 

trading day and then averaged across different subgroups such as ‘Best Agents’ and ‘All 

Agents’. Values of  ,H i t significantly different from zero are interpreted as evidence of 

herding behaviour.  

Tables 8.0, 9.0 and 10.0 represent my main results on herding behaviour. The third and 

fourth column of the tables reports the mean and median herding measures for the whole 

sample. The mean herding measure (the key measure) of Dow Jones at 1% ‘Best Agents’ is 

0.048 and it implies that if  p t , the average fraction of changes that are increases, was 0.5, 

then 54.8% of the traders of ‘Best Agents’ subgroup were changing their average holdings of 

Dow Jones in one direction and 45.2% in the opposite direction. The presence of herding is 

also confirmed by the relatively large median herding measure of 0.011. However, herding 

behaviour is less prominent when the market is populated by more artificial traders. For 

instance, the remainder of the market represented by ‘All Agents’ group indicate that only 

53.7% of the traders change their average holdings of the index in one direction and 46.3% 

in the opposite direction. Table 8.0 illustrate the same statistical trend at 5%, 10% and 20% 

levels.    

IBM herding statistics (Table 9.0) demonstrate the presence of substantially less herding 

behaviour. For example, the mean herding measure of IBM at 20% ‘Best Agents’ shows that 

50.9% of the traders change their average holdings of the security in one direction and 

49.1% in the opposite direction. ‘All Agents’ at 20% level of the same security indicate 

insignificant herding behaviour of 50.4% of the traders change their holdings of IBM in one 

direction and 49.6% in the opposite direction.  
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The median herding measure is even smaller, only 0.001, which suggest that there is very 

insignificant herding behaviour. GE herding statistics on Table 10.0 also indicate the 

presence of less herding comparing to Dow Jones.   

 

                                                                                         1% 

 N Mean Median 

Best Agents 17441 0.048* 0.011* 

All Agents 17441 0.037* 0.008* 

                                                                                         5% 

Best Agents 17441 0.042* 0.010** 

All Agents 17441 0.030* 0.006* 

                                                                                        10% 

Best Agents 17441 0.039* 0.008* 

All Agents 17441 0.024* 0.005** 

                                                                                        20% 

Best Agents 17441 0.021* 0.006* 

All Agents 17441 0.013* 0.002* 

 

Table 8.0 Dow Jones herding statistic based on 17,441 trading days for ‘Best Agents’ and ‘All Agents’. 

*Results are statistically significant at the 1% level. **Results are statistically significant at the 5% level.  

The mean and median herding statistics are presented for ‘Best Agents’ and ‘All Agents’. The herding statistic for a given 

day is defined as            , , / , , ,H i t B i t B i t S i t p t AF i t    where  ,B i t is the number of traders who increase their Dow 

Jones holdings in the day (net buyers),  ,S i t is the number of traders who decrease their Dow Jones holdings (net sellers), 

 p t is the expected proportion of traders buying in that day, and  ,AF i t is the adjustment factor explained in the text. The 

herding measures are computed for Dow Jones in each day and then averaged across ‘Best Agents’ and ‘All Agents’.   
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                                                                                         1% 

 N Mean Median 

Best Agents 17441 0.031* 0.004* 

All Agents 17441 0.025* 0.002** 

                                                                                         5% 

Best Agents 17441 0.029** 0.003* 

All Agents 17441 0.017* 0.001* 

                                                                                        10% 

Best Agents 17441 0.018* 0.002* 

All Agents 17441 0.010* 0.001* 

                                                                                        20% 

Best Agents 17441 0.009* 0.001* 

All Agents 17441 0.004* 0.001* 

 

Table 9.0 IBM herding statistic based on 17,441 trading days for ‘Best Agents’ and ‘All Agents’. 

*Results are statistically significant at the 1% level. **Results are statistically significant at the 5% level.  

The mean and median herding statistics are presented for ‘Best Agents’ and ‘All Agents’. The herding statistic for a given 

day is defined as            , , / , , ,H i t B i t B i t S i t p t AF i t    where  ,B i t is the number of traders who increase their IBM 

holdings in the day (net buyers),  ,S i t is the number of traders who decrease their IBM holdings (net sellers),  p t is the 

expected proportion of traders buying in that day, and  ,AF i t is the adjustment factor explained in the text. The herding 

measures are computed for IBM in each day and then averaged across ‘Best Agents’ and ‘All Agents’.    

                                                                                         1% 

 N Mean Median 

Best Agents 17441 0.035* 0.005* 

All Agents 17441 0.021* 0.002* 

                                                                                         5% 

Best Agents 17441 0.027* 0.005* 

All Agents 17441 0.018** 0.002* 

                                                                                        10% 

Best Agents 17441 0.020* 0.003* 

All Agents 17441 0.011* 0.001* 

                                                                                        20% 

Best Agents 17441 0.013* 0.002** 

All Agents 17441 0.005* 0.001* 

 

Table 10.0 GE herding statistic based on 17,441 trading days for ‘Best Agents’ and ‘All Agents’. 

*Results are statistically significant at the 1% level. **Results are statistically significant at the 5% level.  

The mean and median herding statistics are presented for ‘Best Agents’ and ‘All Agents’. The herding statistic for a given 

day is defined as            , , / , , ,H i t B i t B i t S i t p t AF i t    where  ,B i t is the number of traders who increase their GE 

holdings in the day (net buyers),  ,S i t is the number of traders who decrease their GE holdings (net sellers),  p t is the 

expected proportion of traders buying in that day, and  ,AF i t is the adjustment factor explained in the text. The herding 

measures are computed for GE in each day and then averaged across ‘Best Agents’ and ‘All Agents’.   
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My observations suggest that the price formation caused by the collective behaviour 

(competition and co-evolution) of the entire market is more cohesive than that of any small 

subset of agents. This is due to the greater genetic diversity that is represented in the total 

population leading to more diverse (heterogeneous) trading rules and behaviour. Moreover, 

greater genetic diversity means greater flexibility in the virtual market clearing price 

mechanism. At a broad level my results do not support the Marginal Trader Hypothesis 

(MTH) which explains market efficiency as a consequence of the actions of a small pool of 

traders such as ‘Best Agents’ who are capable of setting prices and acting without bias. In 

fact, it seems that the virtual market populated by ‘All Agents’ reacts to price changes in a 

timely manner.  

All my experiments indicate that there is no tendency towards price crashes or bubbles. 

Hence, herd behaviour causes no long-run mispricing of assets because the market is 

consistent with the steady flow of information. It is a well-known fact that bubbles and 

herding behaviour are difficult to be appropriately identified and their magnitude cannot be 

determined until after the fact. This limits the ability of policymakers to respond to them in 

efficient manner. Both phenomena have an indirect effect on the economy, because 

investors and firms alter their behaviour in response to the price changes. For instance, 

when a particular corporation’s asset price rises, the corporation may respond by increasing 

its physical capital investment spending higher than it otherwise would have. This suggests 

that herding behaviour and bubbles may cause a misallocation of resources leading to 

economic inefficiencies. The inflation and growth is likely to rise above a sustainable level, 

forcing central government intervention such as raising interest rates. On the other hand, 

high interest rates increase a firm’s borrowing costs, leading to reduced profitability.  The 

convergence of action of traders in my experiment provides valuable information to the 

policymakers about whether they should be concerned about the presence of bubbles and 

herding and their destabilising effects. I found evidence of herd behaviour over daily time 

intervals to be much stronger, revealing the short-term nature of the phenomenon.  

My experimental results are in line with the theories of Avery and Zemsky (1998) and 

DeLong et al. (1990) that herding causes asset prices to deviate from fundamentals. 

Decamps and Lovo (2002) argue that herding behaviour prevents agents from learning the 

market fundamentals.  
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However, there is no evidence of a price-destabilising process in place, as the market 

discounts the informativeness of trades during herding (Avery and Zemsky, 1999). 

Generated Dow Jones prices do in general follow fundamentals in the long run, but they 

periodically depart from them, which is more evident in the case of the ‘Best Agents’ price 

series.  

My results confirm the claim of Decamps and Lovo (2002) that asset prices ultimately 

converge to fundamentals in the long run: 

                                            Pr(lim ) 1t
t

E V H V


                                                  (31) 

Where V  represent the true value of the security at time t , E  is the expected value of the 

asset at time t , tH
 describes the history of agents actions up until time t . 

Tables 8.0, 9.0 and 10.0 empirically show that the presence of herding in individual stocks is 

broadly consistent with the findings of Lakonishok, Shleifer and Vishny (1992) and 

Bikhchandani and Sharma (2001), which claim that the possibility of observing intentional 

herding behaviour at the level of individual stocks is relatively low.  

My artificial stock market observations indicate that herding is more likely to occur at the 

level of investment in a group of stocks, such as Dow Jones than at the level of individual 

stocks. Lakonishok et al. (1992) suggest that this is due to swings in demand for a group of 

stocks which have a large effect on stock prices than swings in demand for individual stocks. 

Moreover, the authors argue that companies might also be more apt to herd in industry 

groups as opposed to individual stocks. Bikhchandani and Sharma (2001) argue that is 

unlikely that investors observe each other’s holdings of individual stock soon enough to 

change their own portfolios. This is the reason why according to the authors one is more 

likely to find herding in a group of stocks. The other reason for the presence of more 

herding in a group of stocks is that different companies within the group migh try to infer 

information about the quality of investments from each others’ trades and herd as a result 

(Shiller and Pound, 1989; Banerjee, 1992; Bikhchandani et al., 1992). However this does not 

exclude the possibility of more extensive herding behaviour in particular categories of 

stocks, such as stocks of a specific size or performance record (Lakonishok et al., (1992).  
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There has been an argument that herding should be more persistent within particular 

industry groups of stocks, such as technology ones, due to their uncertain cash flows. From 

this point of view, one might expect to record significantly more herding in IBM stocks than 

General Electric stocks. Experimental tests with IBM assets indicate that there is weak 

presence of herding behaviour observed in price series generated by both ‘Best Agents’ and 

‘All Agents’ at all different group sizes.  

Artificial traders simulate a dynamic and competitive market based on the survival-of-the-

fittest principle. This type of stock market is characterised by large order flow and small 

price fluctuations. My findings correspond to the well-known empirical fact that large 

fluctuations in prices are highly likely to emerge in less active markets with small order flow 

(Cont and Bouchaud, 2000).  

Cont and Bouchaud (2000) quantified this process using the statistic:   

                                         
    
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2 1
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
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 
                                          (32) 

               

where k measures the kurtosis, ordern is the order flow;  A c is a normalisation constant 

with a value close to 1. The equation above explains that kurtosis  k of the price change is 

inversely proportional to the order flow ordern . 

In other words a market with small order flow (illiquid market) is more likely to experience 

large price fluctuations with higher frequency than a market where there are substantially 

more orders processed per unit time as is the case in my artificial stock market.    
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5.3.2 Volatility analysis of price series generated by ‘Best Agents’ and ‘All Agents’. Is the 

Virtual Market price based on the behaviour of ‘All Agents’ less volatile in comparison 

with a price based on the behaviour of a small subset of agents? 

 

Various studies related to the fluctuations in stock prices revealed that distributions of 

returns and prices series have fat tails, which characterise non-Gaussian distributions (Pagan 

1996; Mandelbrot, 1963 and 1997). Bollerslev et al. (1992) argue that leptokurtosis is still 

present even after empirically testing for heteroskedasticity.   To answer this particular 

research question, I needed to look at return distributions and moments. The return series 

were estimated by using the following equation: 

                                                        1ln lnt t tr p p                                                            (33) 

Tables 11.0, Table 12.0 and Table 13.0 provide the basic econometric statistics of Dow 

Jones, General electric and IBM return series.  

 

                                                                                                     Dow Jones 

Best Agents 

Size Std.dev SK KU JB ADF* ARMA BDS GARCH DLOG 

1% 4016.13 1.32 3.14 5135.98 -127.00 (1,1) 157.46 (4,1) 0.99 

5% 4034.42 1.33 3.23 5222.58 -140.98 (2,1) 163.94 (2,1) 1.00• 

10% 3938.21 1.33 3.18 5195.23 -113.23 (0,1) 138.63 (2,1) 1.00• 

20% 3937.30 1.32 3.17 5147.76 -115.29 (1,1) 145.70 (4,1) 0.60 

All Agents 

99% 4016.32 1.32 3.14 5126.05 -107.57 (2,1) 138.97 (3,1) 0.99 

95% 4031.71 1.33 3.20 5187.56 -103.92 (0,1) 160.09 (2,1) 0.99 

90% 3938.97 1.33 3.18 5191.12 -101.94 (1,3) 139.84 (2,1) 0.98 

80% 3937.12 1.32 3.17 5148.99 -103.75 (1,1) 150.72 (4,2) 0.97 

SK-skewness; KU-kurtosis; JB-the Jarque-Bera test. 

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

•The IGARCH model has been used to restrict α+β (ARCH term + GARCH term) to one. 

Table 11.0 Econometric statistics for Dow Jones price series generated by ‘Best Agents’ and ‘All Agents’.  
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                                                                                              General Electric 

Best Agents 

Size Std.dev SK KU JB ADF* ARMA BDS GARCH DLOG 

1% 25.02 0.86 4.31 1921.86 -81.89 (0,1) 53.02 (1,2) 0.90 

5% 24.99 0.85 4.27 1857.56 -66.71 (1,1) 8.14 (1,1) 0.98 

10% 24.95 0.84 4.25 1815.05 -68.38 (0,1) -0.05** (3,1) 1.00• 

20% 25.17 0.86 4.31 1933.54 -74.42 (0,1) 45.68 (1,2) 1.00• 

All Agents 

99% 25.01 0.86 4.32 1929.79 -68.63 (0,0) -0.10** (1,1) 0.88 

95% 24.99 0.86 4.29 1890.46 -69.05 (0,0) 48.40 (1,1) 0.74 

90% 24.94 0.84 4.25 1810.36 -69.49 (0,0) -0.01** *** *** 

80% 25.21 0.86 4.30 1923.99 -73.92 (1,1) 47.81 (1,1) 1.00• 

SK-skewness; KU-kurtosis; JB-the Jarque-Bera test. 

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

**Failed to reject the Null hypothesis that series are identically and independently distributed (IID). 

***No presence of ARCH effect. 

•The IGARCH model has been used to restrict α+β (ARCH term + GARCH term) to one. 

Table 12.0 Econometric statistics for General Electric price series generated by ‘Best Agents’ and ‘All 

Agents’.  

 

 

                                                                 IBM 

Best Agents 

Size Std.dev SK KU JB ADF* ARMA BDS GARCH DLOG 

1% 75.95 1.79 6.14 9324.13 -69.13 (0,0) 55.85 (2,1) 1.00• 

5% 75.98 1.78 6.12 9267.37 -67.71 (0,0) 54.61 (2,1) 0.56 

10% 75.92 1.79 6.11 9221.44 -68.44 (0,1) -0.09** (1,1) 0.99 

20% 75.91 1.79 6.12 9245.56 -74.10 (1,0) -0.02** *** *** 

All Agents 

99% 75.93 1.79 6.13 9299.25 -69.10 (0,0) -0.08** (1,3) 0.35 

95% 75.99 1.79 6.13 9289.91 -67.27 (1,0) -0.08** (1,1) 1.00• 

90% 75.90 1.79 6.11 9228.27 -69.23 (0,0) -0.02** (2,1) 0.58 

80% 75.92 1.79 6.12 9253.98 -68.49 (0,0) 56.33 (2,1) 1.00• 

SK-skewness; KU-kurtosis; JB-the Jarque-Bera test. 

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

**Failed to reject the Null hypothesis that series are identically and independently distributed (IID). 

***No presence of ARCH effect. 

•The IGARCH model has been used to restrict α+β (ARCH term + GARCH term) to one. 

Table 13.0 Econometric statistics for IBM price series generated by ‘Best Agents’ and ‘All Agents’.  
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The first empirical property to analyse is volatility. When volatility of returns is considered 

for all three securities, there is little variation in observed volatility as the proportions of 

‘Best Agents’ and ‘All Agents vary. My volatility findings thus closely match the research 

done by Chen and Yeh (1999) who claim that price fluctuations are not affected by different 

degrees of agents sophistication.  The price series generated by ‘Best Agents’ and ‘All 

Agents’ of the Dow Jones, General Electric, and IBM show that the mass of the distribution 

is skewed to the right, suggesting that the dataset is not normally distributed (positive 

deviations from the mean). Moreover, all skew values of the Dow Jones and IBM are greater 

than 1, indicating the presence of substantial skewness and distribution which is far from 

symmetrical. 

 Another empirical property is normality. A common econometric tool to test normality is 

the Jarque-Bera statistics.  According to the test results, the null hypothesis that the price 

series generated by the artificial traders is normally distributed is rejected in all periods and 

in all different ‘Best Agents’ group sizes (see Table 11.0, Table 12.0 and Table 13.0). This 

result confirms an important fact in empirical finance: most financial return series are not 

normally distributed, which means that the tails are too fat compared to the normal 

distribution. The fat-tail (excess kurtosis) presence is obvious in all experiments. In other 

words, the probability of the occurrence of a large return is significantly higher than the 

normal distribution predicts. The General Electric and IBM return series show greater 

kurtosis than that of the Dow Jones. Furthermore, the series generated by ‘All Agents’ 

exhibit slightly higher values of excess kurtosis than ‘Best Agents’.  
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5.3.3 Artificial stock markets and the Efficient Market Hypothesis. Is the price series 

generated by Best Agents more likely to converge with the Efficient Market Hypothesis, 

and therefore more efficient?  

 

The Efficient Market Hypothesis (EMH) states that stock prices should always incorporate 

and reflect all relevant information. Thus, securities always trade at their fair value. In the 

econometric literature, a financial market is efficient when its return series  tr is 

unpredictable. Return series are unpredictable when they are identically and independently 

distributed (IID). I applied a number of tests to determinate whether a series is 

characterised by IID properties.  

First, the Augmented Dickey-Fuller (ADF) test has been applied to test for the presence of a 

unit root. My ADF test settings include running a regression of the first difference of the log 

price series against the series lagged once (a sufficient condition to eliminate 

autocorrelation in the residuals) combined with a drift and a time trend: 
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The null hypothesis of the ADF test is that   lnt tp p contains a unit root  1 0  . The 

alternative hypothesis of no unit root presence is rejected when 1 0  . The null of the 

presence of a unit root has been rejected for the Dow Jones, General Electric, and IBM price 

series (Table 11.0, Table 12.0, Table 13.0). Hence, the returns generated by both ‘Best 

Agents’ and ‘All Agents’ are stationary at the 95% significance level, indicating that the 

process is orientated around a constant long-term mean and has a constant variance 

independent of time. Stationarity is a significant condition for standard econometric theory, 

otherwise we cannot achieve consistent estimators.  

Then I proceed further to filter the linear process. The seventh columns of Tables 11.0, 12.0 

and 13.0, show the ARMA (p,q) process obtained from the return series rt . Nearly all 

General Electric and IBM series generated by ‘All Agents’ are linearly independent (p=0, 

q=0). Lack of linearity helped me to formulate an important preliminary finding that the 

agent-based artificial stock market populated by ‘All Agents’ is so efficient that there are 

hardly any linear signals left.  
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Therefore, in terms of ARMA statistics, series generated by ‘All Agents’ are more likely to 

converge to the Efficient Market Hypothesis than ‘Best Agents’. While the vast majority of 

other test results are either AR(1) or MA(1), some of the Dow Jones series exhibit higher 

order of linear dependence such as ARMA(2,1) and ARMA(1,3).  

The next econometric property to test is whether price series are identically and 

independently distributed (IID). First, I estimated the most appropriate ARMA (p,q) model 

and fitted it to the data to eliminate all linearity from the sample. Once I have identified the 

linear series, any other series left should be nonlinear. I applied the Brock, Dechert and 

Scheinkman (BDS) test to the ARMA residuals in order to test for remaining dependence. 

Under the null hypothesis, the series are identically and independently distributed (IID). The 

fitted model is the best linear ARMA time series model, and rejection of the null indicates a 

nonlinear time series process. The test statistic was developed by Brock, et.al. (1996): 
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Where m represents the embedding dimension;   is the value of the radius (the distance 

parameter);  ,m nW  is the variance of  ,m nT  , and  

                                              , , , ,1,
m

m nT C N m C N                (36) 

 Critical BDS test parameters are the distance parameter     and the embedding dimension 

(DIM). My qualitative result proved not to be sensitive to the choice of epsilon and DIM 

parameters. Therefore, I only report experimental results with the distance parameter ‘ ’ 

equal to 0.7 standard deviations and embedding dimension of 6. Based on the test results in 

column 8 of Table 11.0, the null hypothesis that the residuals of the Dow Jones return series 

are IID is significantly rejected in all subperiods. The result indicates nonlinear dependence 

in both the ‘Best Agents’ and ‘All Agents’ for the Dow Jones series. The picture is different 

for the BDS test results for IBM and General Electric. In the case of IBM, the price series 

generated by ‘All Agents’ at 90%, 95%, and 99% levels are identically and independently 

distributed (the null cannot be rejected). The ‘All Agents’ series at 90% and 99% in the 

General Electric case characterise with the IID class too.  
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The BDS test results suggests that the residuals of ‘All Agents’ in the IBM and General 

Electric series seem to be less nonlinearly dependent and therefore more random than 

those of ‘Best Agents’. Overall, in terms of nonlinear dependence, the price series generated 

by ‘All Agents’ are more random and hence more efficient. This result can be considered in 

line with the classical version of the Efficient Market Hypothesis.  

Moreover, the BDS test statistic shows that a richer dynamic structure such as an artificial 

stock market populated by 10,000 agents may help to describe the findings of complex 

nonlinear dependence in financial market data. However, according to the econometric 

literature, a large part of the nonlinearity in financial data is located in their second 

moment. In order to capture the regularities in volatility fluctuations, I implemented the 

Lagrange multiplier test for the presence of ARCH effects. Evidence of the ARCH effect has 

been found in 22 series out of 24 in total. The two series without ARCH effects are General 

Electric, ‘All Agents’ at 90% level and IBM, ‘Best Agents’ at 20% level. Logically, those two 

series failed to reject the null hypothesis of the BDS test. As the ARCH effect is present in 22 

series, I further determinated the GARCH structure of the series by using the Bayesian 

Information Criterion (BIC). The results are exhibited in column 9 of Tables 11.0; 12.0 and 

13.0. The existence of ARCH effect suggests that volatility clustering is quite ubiquitous in all 

three experiments, especially the Dow Jones one. These empirical results only confirm my 

findings so far.   

Furthermore, in order to investigate any presence of volatility clustering and persistence, I 

fitted GARCH(p,q) models to the first difference of log daily Dow Jones, General Electric and 

IBM by using backcast value of 0.7 for the initial variances.  

The last column of Table 11.0 indicate that the sum of ARCH and GARCH     in Dow 

Jones series is very close to 1 in almost all size levels, suggesting substantial persistence of 

volatility clustering. There is slightly less volatility clustering in IBM and General Electric 

series, confirmed initially by minor fluctuations in the standard deviation coefficients. The 

series generated by ‘All Agents’ in both General Electric and IBM are less likely to experience 

volatility clustering due to the fact that some of their coefficients have a value of less than 1.  
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If the sum of    is less than 1, the volatility shock is time decaying and mean-reverting 

(specific periods of high changeability do not persist indefinitely and continually decrease to 

its long-run mean level at a rate equal to the sum of    coefficients). Some of the 

coefficients in my experiment were larger than 1, indicating that the variance is not 

stationary. This is more prevalent in the Dow Jones series generated by ‘Best Agents’, where 

volatility clustering might have a permanent effect due to the fact that the sum of the ARCH 

and GARCH coefficients equals unity (the conditional variance does not converge on a 

constant unconditional variance in the long run). In this case, I applied the IGARCH model to 

restrict the ARCH + GARCH term to sum to 1. The IGARCH modelling restriction was 

introduced in order to prevent the parameters violating a significant empirical assumption 

of the GARCH, model such as: 

(the long-run variance constant/(1-(ARCH term+GARCH term))                     (37)                                              

If the sum of ARCH and GARCH term is greater than 1, the quantitative result above would 

have negative dimension. 

To sum up, all my empirical results suggests that the price series generated by ‘All Agents’ 

are more likely to conform to the Efficient Market Hypothesis. All my evidence suggests that 

the presence of more artificial agents in my market corresponds to an enhanced variety of 

trading rules and greater market efficiency.  

 

 

 

 

 

 

 

 

 



127 
 

5.4 Conclusions 
 

This chapter investigates and analyses the behavioural foundations of the stylised facts of 

empirical data such as leptokurtosis, non-IIDness and volatility clustering that characterise 

the real-world financial markets. The main contribution of this chapter is the trade-off 

between reality (real historical data of the three financial instruments) and calibration of the 

mechanisms and processes (artificial and empirical models developed) and the explanatory 

power of the stylised facts analysed through STGP techniques. My experimental results 

show that an artificial stock market populated by a small subset of best-performing agents 

behaves differently from a market with greater genetic diversity. Although there is no 

discernible difference in terms of volatility, the market based on the behaviour of ‘All 

Agents’ exhibits less herding and is more efficient than the segmented market populated by 

‘Best Agents’. Hence, the price formation process caused by the collective behaviour 

(competition and co-evolution) of the entire market is a better predictor than any small 

fraction of agents. This is a result of the greater genetic diversity that is presented in the 

total population. Enhanced diversity means more heterogeneous trading rules and 

behaviour leading to greater flexibility in the virtual market clearing price mechanism. In 

simple economic terms this refers to an improved manner in submitting market orders, 

balancing supply and demand, and setting the stock prices. Also, with the presence of more 

traders, the market is more competitive, and more of the information is reflected in the 

order flow. In considering my results one might draw an analogy with the situation in many 

physical systems where the state of the system at given time is dependent on previous 

states and on random noise (for example, an AR(1) or red noise system where 

( 1) (1) ( ) ( )xx t r x t t   with (1)xr being the autocorrelation function at lag 1 and ( )t

being random noise). A high level of random noise can act to dampen the situation where 

the system goes out of control with high values of x being amplified through time.  

In my case, having a large number of agents with different attributes acts to dampen 

excessive herding.In this particular case, I found no support for the Marginal Trader 

Hypothesis which holds that a small group of traders such as ‘Best Agents’ keep an asset’s 

market price equal to its fundamental value and steer markets to efficient levels.  
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Moreover, in line with previous research, there is some evidence of more herding in a group 

of stocks than in individual stocks, but even there the magnitude of herding is far from 

dramatic and does not exhibit the long-run mispricing of assets and bubble formation. There 

is no consensus about the presence of asset price bubbles. Most academics argue that all 

historical bubbles can be described by fundamentally justified expectations related to the 

future returns on the respective underlying asset. I found evidence to support this claim, 

because herding behaviour detected in my experiments cannot be classified as being 

excessive.  

Greater genetic diversity (‘All Agents’ groups) also means less nonlinear dependence, more 

unpredictability and therefore an enhanced level of randomness in the return series. Hence, 

these series can be considered more efficient. Unlike small groups of artificial agents where 

substantial volatility clustering persists, the presence of more agents has led the market to 

lower levels of localised bursts in the amplitude of price fluctuations. My results are 

consistent with the findings of Caram et al.(2010), who demonstrated the complex nature of 

the markets. The authors showed that agents of equal size are not only in market 

competition with those of bigger or smaller sizes, but are also in strong competition with 

each other at their own level.   

The existence of herding behaviour in financial markets represents a classic example of the 

need for regulatory intervention. Herding can lead to systemic risks in financial markets. For 

instance, investors are likely to copy what others are doing and buy or sell what others are 

selling, and own what others own. Regulatory troubles caused by systemic risks are likely to 

occur, due to the fact that investors are rewarded by relative performance, and therefore 

risk-averse individuals follow the pack. From another point of view, investors are more 

vulnerable to be dismissed for being wrong and alone than being wrong and in company 

(Persaud, 2000). The growth of investment institutions over the years has increased the 

possibility of herding. For example, the percentage of the UK stock market held by 

individuals alone dramatically decreased from 54% in 1963 to 12.8 % in 2006 (Hudson and 

Atanasova, 2009). Herding behaviour is more likely to occur in markets dominated by 

institutions because managers employed by institutions operate in the market to make 

money and retain their jobs. Their performance is often based on large compensation 

packages.  
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The intuition behind this claim is that the profit condition-particularly a mandate to achieve 

a minimum benchmark return-could lead to weaker incentives for individuals to deviate 

from the benchmark, and hence it effectively reduces the competition among them. The 

lack of competition may lead to the convergence of opinions and the adoption of similar 

investment strategies. Hence, herding behaviour is encouraged causing potential long-term 

market reverses and relaxed risk-management controls (Gompers and Metrick, 2001;  

Wermers, 1999;  Scharfstein and Stein, 1990).  

 

5.4.1 Limitations of the use of artificial markets in measuring herding 

behaviour. 
 

As Lakonishok et al. (1992) caution, the exact occurrence and impact of herding is difficult to 

measure and evaluate without precise knowledge of the demand elasticities for Dow Jones, 

IBM and GE. This is based on the fact that even mild herding behaviour could have large 

price effects.  

 

 

 

 

 

 

 

 

 

 

 



130 
 

Chapter 6 

The implications of trader cognitive abilities for stock market 

properties 

6.1 Introduction 
 

The empirical results regarding the extent to which individuals’ intelligence or market 

structure influence market performance and market efficiency have been controversial. 

There is no consensus as to whether market performance and efficiency can be improved 

through the structural (institutional rules and regulatory) aspects of the market or whether 

it is the intelligence of the traders that matters. Some research emphasises the importance 

of the intelligence of traders in market performance (Yeh, 2007; 2008). This perspective is 

contradictory to other research that claims that market structure is the main driving force of 

efficiency, in that Zero Intelligence (ZI) agents have the same impact as intelligent agents on 

market performance and, thus, the intelligence of the agents has no significant impact on 

efficiency relative to market structure (Gode and Sunder, 1993; Chen and Tai, 2003). 

The reason behind this divergence in the literature is that the essence of individual 

cognition and its interaction with the market has not received the attention of financial 

scholars. Because environments are constructed and shaped by the cognitions of the 

decision makers who act in them, one can conclude that the emergent structure of the 

market corresponds to the structure of the individuals’ cognitions. Subsequently, the 

emergent structure of the market interacts with the cognitions of the individuals. In her 

heterogeneous learning experiment with agents’ limited rationality, Giannitsarou (2003) 

argues that the representative agent is often a good approximation of the agents in an 

economy. Therefore, both intelligence and market structure must be included when 

examining market performance.  Todd and Gigerenzer (2003), in their challenge to the 

perfect rationality of individuals, stress the importance of including both the environment 

and the agents’ cognition. In their discussion, they introduce ecological rationality which 

builds on the perspective of Simon’s bounded rationality.  
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Applying the essence of ecological rationality can provide me with a better understanding of 

how both the environment and the agents’ cognition are determinants and driving forces of 

market performance and can help me to understand the reasons for the divergence in the 

results when I include only one aspect, intelligence or environmental structure.  

Widiputra et al. (2009) describe the behaviour of multiple stock markets within the 

framework of a dynamic interaction network (DIN) capable of developing various dynamic 

interactions between genes and predicting their future expressions. The DIN model revealed 

complex dynamic relationships between stock markets that went beyond the scope of 

traditional econometric models. In this chapter, I follow Yeh (2007), who supports the 

importance of intelligence as a driving force in market performance albeit he recommends 

the interpretation of the results with certain caveats because he applied the artificial data 

framework of the Santa Fe Artificial Market (SF-ASM).  

Using real historical data of the S&P 500 and stocks in the Coca Cola Company and a 

different computational technique, this chapter provides a new perspective on the research 

in this field by explaining the reason for the divergence of the results in the literature, as 

neither intelligence nor market structure individually dominates in driving market 

performance. As expected, the results for my tests, using real data, are different from the 

results of Yeh (2007, 2008), who uses simulated market SF-ASM and fixed artificial data. I 

obtain a mixture of positive and negative impacts from individual intelligence on market 

performance. My empirical results indicate that using only individual intelligence provides 

us with an incomplete picture. Consistent with Todd and Gigerenzer (2003), I suggest that 

both intelligence and market structure are equally important and consistent with Yeh (2007, 

2008), I suggest that further research should include both intelligence and market structure.  
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6.2 Background 
 

The topics of market structure and individual rationality have been at the centre of research 

into markets for many years. Academics have been divided into two main camps. One camp 

believes that market structure is the main driving force behind market performance and 

argues that adequate market rules are of prime importance and individual rationality plays 

an insignificant role in the formation of market properties. Some argue that markets are 

everywhere and claims that markets emerge spontaneously when a set of required 

conditions, such as well-defined property rights, is fulfilled (Aslund, 1995; EBRD,1996). 

Others believe that even the formation of intimate social relations such as marriage is based 

on markets (cf. Becker, 1996). The other camp believes that individual rationality is the most 

important factor in market performance. These authors emphasise the role of intelligence 

and contend that market structures are less dominant.  

In a seminal paper, Gode and Sunder (1993) investigated the relationship between 

individual motivations and market efficiency. The authors implemented zero intelligence (ZI) 

traders of a type that ‘does not seek to maximise profits, and does not observe, remember, 

or learn’. Then, they designed two types of market structure-the first type imposes budget 

constraints on traders that forbid them from making a trade that will run them a loss. The 

budget-constrained artificial traders never engage in selling below their costs or purchasing 

above their values. The second type of structure does not have these financial limitations on 

traders. Their results suggest that the financially constrained ZI traders are able to 

effectively allocate market resources. It is assumed that ZI traders do not bargain in an 

intellectual manner, but their interactions through the market leads to a high level of 

allocative efficiency. Hence, the authors concluded that allocative efficiency is not 

dependent on individual rationality or trader strategy but that market structure is the main 

driving force.  

Sunder (2006a, 2006b) suggested a new direction of research that is entirely concentrated 

on institutions and structures instead of individual human behaviour. Sunder (2007) 

highlighted the Sonnenschein-Mantel-Debreu theorem, which states that individual 

rationality is unnecessary to obtain regularity properties at the macro level.  
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In the early 1960’s, Becker adopted the ZI approach to study a simulated market populated 

by irrational traders. He concluded that individual rationality does not matter as the 

movements of the upward slope of the market supply curve and the downward slope of the 

market demand curve are not affected by individual motivations. All in all, the market 

mechanism governed the trader’s interactions (Becker, 1962). In a paper produced eleven 

years later, Simon (1973), emphasised the prime importance of market structure rather 

than the rationality of individuals. In a more recent paper, Chen and Tai (2003) investigated 

the effect of learning and intelligence on price dynamics and allocative efficiency. The 

empirical results suggested that ‘mediocre’ traders achieved a higher allocative efficiency 

(96%) for the potential social surplus compared to 88% for the ‘smart’ traders. Hence, 

intelligence is not vital for market performance.  

In contrast, the proponents of the individual rationality doctrine criticised the work of Gode 

and Sunder (1993) on the basis of inadequate market structure. Cliff and Bruten (1997) 

argued that Gode and Sunder’s experiment is biased on a very specific condition of 

symmetric supply and demand. If the condition of symmetry is violated, then the zero 

intelligence market not longer allocates resources in an efficient manner. Brewer et al. 

(2002) went even further, suggesting that the experiment achieved high allocative efficiency 

only because the process that they implemented follows a Marshallian path. This type of 

market dynamics was developed by Alfred Marshall, who argued that dynamics tend to 

follow a path that leads trading prices to the competitive equilibrium price and that the last 

trade is necessarily at the equilibrium. When this particular path is present, convergence to 

the competitive equilibrium and the forecasts of the law of supply and demand certainly 

follows.  

Brewer et al. (2002) eliminated the Marshallian path in their experiment to observe at a low 

level of allocative efficiency in a zero intelligence market and a relatively high level in a 

market consisting of humans. The empirical results of Cliff and Bruten (1997) and Brewer et 

al. (2002) demonstrated the role of intelligence and its positive effect.  
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Hayek (1945; 1968) argued that markets can operate in an efficient manner even when the 

participants have a limited knowledge of the surrounding environment or of the other 

participants (similar to ZI). Hayek’s hypothesis contains three main propositions related to 

market properties: 1-Real competitive markets lead to allocations that fully exhaust the 

available gains from trade; 2-Competition as a coordination mechanism is superior to the 

other mechanisms (according to Hayek competition is the main coordination driver that 

dominates individual activities and determinates the trader’s access to societal 

information); 3- Competition encourages individuals to search, discover and even create 

new information sets (Beckmann and Werding, 1994).   

It is very difficult to investigate the role of the traders’ intelligence in a general stock market 

environment where thousands of individuals with different risk attitudes, expectations, 

wealth preferences and even pleasure in trading operate.  Traders may adopt a 

fundamentalist strategy, a technical strategy or a combination of both to predict the future 

behaviour of stocks. The nature of these trading strategies changes over time, and 

individuals often implement a strategy which is influenced by their own emotions or gut 

feelings. Hence, it is difficult to control the behaviour of traders and analyse the individual 

decision-making process. Furthermore, researchers experience great difficulties in 

interpreting how groups of these strategies behave in a general market environment 

(Oberlechner, 2001).  The agent-based modelling approach and zero intelligence markets, in 

particular, appear to be an appropriate tool for examining the market mechanism in 

isolation from the traders who populate the market. An important addition is that 

researchers are able to investigate the relationship between the market mechanism and 

trading activities and therefore analyse the efficiency of a trader’s strategy (Ladley, 2004). In 

a market simulation model that I created using Altreva Adaptive Modeler, artificial traders 

receive information about the value of a real security and observe the history of past trades. 

Based on this information, they decide whether they want to buy or sell one or more units 

of the security. The modelling software that I use provides a rich environment to examine 

the implications of zero intelligence on stock market properties. Artificial traders make 

independent decisions creating a heterogeneous market structure (the market is populated 

by 10,000 boundedly rational artificial agents, each with different trading rules and 

behaviour).  
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Bounded rationality is a realistic assumption to apply to traders’ behaviour. Traders have 

neither perfect information nor perfect information processing cognitions. In computational 

terms, intelligence represents an artificial agent’s learning ability and adaptability to 

simulated market conditions. Todd and Gigerenzer (2003) provides a new and inclusive 

perspective on bounded rationality that places emphasis on both internal (individual 

cognition) and external (environment) aspects and their interactions from which emerges a 

definition of rationality. In this definition of rationality, an adaptive learning style 

contributes to individual rationality.  

In this paper, I develop seven stock markets populated by artificial traders with different 

levels of intelligence. I empirically evaluate the price series of a group of stocks represented 

by the S&P 500 and individual stocks represented by the Coca-Cola Company to investigate 

the following topics: 

(i)Whether the efficiency of markets is primarily a function of their rules or whether the 

effect of human motivations and cognitive abilities dominates. How much of the market 

efficiency is attributable to individual rationality, and how much is attributable to market 

discipline? That is testing the Hayek’s hypothesis.  

(ii)Whether the price series generated by the most intelligence agents is more likely to 

conform to the Efficient Market Hypothesis, and therefore be more efficient? 

Yeh (2007) developed a model allowing greater flexibility than previous artificial stock 

market models for the traders in choosing between buying and selling assets. Most of the 

empirical findings of the author were consistent with the theories of Cliff and Bruten (1997) 

and Brewer et al. (2002). The introduction of intelligence resulted in reduced levels of price 

volatility and supported the process of discovery of the intrinsic value of the stock. 

However, enhanced intelligence caused an increase in the price and the return volatility of 

the assets.  
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In another paper, Yeh (2008) investigates the effect of speculation, under various 

intelligence levels, on price discovery and market efficiency. For the sake of analysis, the 

author enabled each trader to individually determine the intrinsic value of the assets and 

prohibited communication between agents. The paper concluded that the impact of 

speculation on the market properties depends on intelligence levels. The introduction of 

intelligence improved price discovery and enhanced market efficiency. Hence, intelligence 

plays a prime role in the influence of market performance. Both papers produced by Yeh are 

a good starting point for further research. However, I suggest several extensions to Yeh’s 

approach based on the following important factors:  

-The modelling software I use for my experimental tests uses a special adaptive form of 

STGP. In this form, the process of estimating the agent’s fitness does not include any re-

execution of their trading rules based on historical data. This is due to the fact that the 

artificial traders have already executed their trading rules on the same historical data set 

once and the software is looking only at the realistic returns that they have already made, 

rather than any hypothetical returns that agents could have made if there were sent back in 

time. Also, while in conventional GP, the agent’s trading rules are evaluated by the same 

fitness function in every generation, Adaptive Modeler evaluates the fitness of agents 

through a dynamic fitness function. The dynamic nature of the fitness function enables the 

return estimation period to move forward and include the most recent historical quotes. 

Another important difference between conventional GP and Adaptive Modeler is that 

conventional GP replaces the entire genetic population through crossover and mutation 

techniques in every generation. Adaptive Modeler replaces only a small proportion of the 

entire population at a time in order to enable the population to change gradually, which is 

essential for maintaining a certain degree of model stability (Witkam, 2011).  

-I use a greater number of artificial agents. While both models produced by Yeh in 2007 and 

2008 consist of only 100 traders, I employ 10,000 traders. A larger population means 

increased model stability and reduced sensitivity to random factors. Various experiments 

using the software demonstrated that bigger populations reduce sensitivity to random 

factors (results of multiple runs will show less variation).  
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The presence of substantially more artificial agents creates a competitive environment 

where more different trading rules compete and evolve in parallel simultaneously. A greater 

number of agents open up the opportunity to implement a wider variety of trading 

strategies programmed within the agents’ trading rules (Witkam, 2011). 

-Rather than using a fixed intrinsic value for the stock, I feed the software with real historical 

asset prices. I use real prices to prevent the preliminary development of herding conditions 

(herding behaviour by design). Cipriani and Guarino (2002) argue that when the price is 

fixed, individuals tend to disregard their own information and strictly follow the decisions 

made by previous agents, resulting in herding behaviour.  

-I have developed seven different markets instead of six (Yeh’s case). The availability of an 

extra market allows me to experiment with a wide variety of tree depths. The genome 

depth represents the highest number of hierarchical levels in an agent’s genome (trading 

rule) indicating its complexity. The depth enables the artificial agents to look back further in 

history and develop more complex and sophisticated trading rules. I gradually increase the 

depth of the tree from zero intelligence to a maximum of 20. While Yeh (2007, 2008) 

created a market with maximum depth of 15 in terms of the functions that a trader can 

perform, my Market G has been set with a maximum genome depth of 20 based on 

maximum software availability.  

- Another important difference is that the orders of each agent and also their bid/ask price 

in my experiment are determined by their own specific trading rule, not according to a 

predefined general model described by Yeh (2007), Yeh (2008) and Yen and Young (2010).  
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6.3 Artificial stock market structure for this particular experiment 
 

For the purpose of my experiments I consider the degree of intelligence to be proportional 

to the level of complexity of the trading rule. I control the complexity of trading rules by 

varying the maximum genome depth. This framework is similar to Yeh’s (2007) model, 

where the traders are not able to observe each other during the process of developing 

forecasting rules. Individuality ensures that the intelligence of each artificial agent is not 

manipulated by any other agent’s intelligence via imitation. Table 9.0 illustrates the main 

parameters of the GP-based artificial stock market model.  

                                                                       Artificial stock market parameters 

Total population size (agents)  10,0000 

Initial wealth(equal for all agents) 100,000 

Average bid/ask spread 0.01% 

Significant Forecasting range 0% to 10% 

Number of decimal places to round quotes on importing 2 

Minimum price increment for prices generated by model 0.01 

Minimum position unit 20% 

Maximum genome size* 4096 

Maximum genome depth** 0 (Market A); 5 (Market B); 6 (Market C); 8 (Market D); 10 

(Market E); 15 (Market F); 20 (Market G) 

Minimum initial genome depth 2 

Maximum initial genome depth 5 

Breeding cycle frequency (quote) 1 

Minimum breeding age (quote) 80 

Initial selection type random 

Parent selection (percentage of initial selection that will 

breed)  

5% 

Mutation probability (per offspring)  10% 

Total number of quotes processed- S&P 500 17,353 

Total number of quotes processed-CC 17,355 

Trading hours (open/close) 09:30/16:00 

Seed generation from clock Yes 

Creation of unique genomes Yes 

Offspring will replace the worst performing agents of the 

initial selection   

Yes 

 

                                                            Table 14.0 Artificial Stock Market Parameter Settings. 

*Maximum genome size measure the total number of nodes in an agent’s trading rule. A node is a gene in the genome 

such as a function or a value.  

**Maximum genome depth measures the highest number of hierarchical levels that occurs in an agent’s genome (trading 
rule). The depth of a trading rule can be an indicator of its complexity.     
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I have run 1,250 simulations and report the average values in all tables. I study traders’ 

behaviour within the context of the artificial stock market populated by 10,000 boundedly 

rational agents. All of the agents are characterised by adaptive learning behaviour 

represented by the genetic programming algorithm. The artificial traders all have different 

trading rules. Hence, the agents in the model are not orientated towards predetermined 

formation of strategies, and therefore are free to develop and continually evolve new 

trading rules.  

I develop seven different markets, which are denoted as Market A to Market G. Market A is 

populated by zero intelligence traders who randomly form bid and ask prices if they are 

buyers or sellers. Zero intelligence agents are implemented by enabling only the genes 

‘RndPos’ and ‘RndLim’. With these genes the position advice and order limit price are 

established randomly. ‘RndPos’ is a function which returns a random position value ranging 

from -100% to 100% sampled from a uniform distribution. ‘RndLim’ represents a function 

which returns a random limit price generated by a method partly based on Raberto et al. 

(2001) with the difference that m=1 instead of 1.01, so that no spread is added/subtracted 

for increasing the likelihood of an order being executed. The rationale behind this logic is 

that at the time the ‘RndLim’ gene is evaluated, it is unknown whether the agent will place a 

buy or sell order and thus whether I should add or subtract the spread. Raberto’s et al. 

(2001) method works by taking the last closing price from a market which has been initially 

chosen at random and then multiplying it by a normally distributed random value with 

1  and 3.5 m   , where m is the standard deviation of the log returns of the last 20 

quotes of the chosen market (Witkam, 2011). The artificial traders in Market A do not learn 

strategies or even examine the market-their behaviour is completely random. These are 

agents with diffuse beliefs who do not remember or learn.  

The zero intelligence market operates under closed economy conditions-there is no 

breeding process in place and no broker commissions so that, no money is going in or out of 

the population during the process of evolution. Hence, the total amount of cash in the zero 

intelligence market stays constant and thus the average amount of cash per agent.  
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The total net number of shares in the model is zero and will stay zero because no shares will 

be added or removed through agent replacement. This is because agents initially don’t get 

assigned any shares but only cash but can then either go long or short in the security 

causing the total net number of shares to remain zero. This means that changes in the share 

price have no implications on the total wealth of the population in Market A, because any 

potential profits from long positions are offset by losses from short positions of other 

agents. Hence, under conditions of zero intelligence, the total wealth of the population in 

Market A (and thus the average wealth per agent) will stay constant. The traders’ 

forecasting rules in markets B to G are represented and evolved by GP. The traders in 

markets B to G possess different levels of intelligence. The insight from zero intelligence 

traders comes not directly from the results of their simulation, but rather from the 

difference between those results and the results of more intelligent traders populating the 

other six markets. The actual difference between the levels of intelligence is modelling the 

complexity of the forecasting expectations that the artificial agents are able to evolve. The 

complexity of the forecasting expectations is measured by the depth of the GP tree. The 

maximum tree depth is 5 in Market B; 6 in Market C; 8 in Market D; 10 in Market E; 15 in 

Market F and 20 in Market G (Table 14.0).  

Artificial agents in each market are heterogeneous in their genome depth as only the 

maximum genome depth is specified per market. Hence, in each market, the genome depth 

of particular agents varies between minimum and maximum genome depth. Moreover, 

even agents with equal genome depth are heterogeneous because their trading rules are 

different and can cause very different trading behaviour. The various genome depths affect 

the memory length of traders. Greater genome depth means that more complex trading 

rules can be developed that look back further in history. Hence, the artificial traders in 

Market G, use the widest range of information available.  According to LeBaron (2004), 

traders use different amounts of past information to evaluate trading strategies, and 

therefore they possess various memory lengths when evaluating forecasting rules. 

Additionally, markets composed of agents with different intelligence levels offer the 

opportunity to analyse market efficiency in depth, rather than examining whether 

intelligence improves market properties where zero intelligence is present.  
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The agents’ trading rules evolve and adapt through a breeding process. Breeding, in 

essence, is a process of creating new artificial traders to replace the poorly performing ones. 

It involves the selection of well performing traders and the production of new trading rules 

by a recombination of the parent genomes trough crossover and mutation operations 

(Witkam, 2011).  

6.4 Simulation results 
 

The mean absolute error (MAE), the return series, the average stock price and the trading 

volume of the S&P 500 and stocks in the Coca-Cola Company are examined using standard 

statistical methods. The empirical differences between the variables have been investigated 

to determine market efficiency at different levels of intelligence. Interestingly, there is a 

substantial difference between the econometric properties of the groups of stocks 

represented by the S&P 500 and an individual stock as represented by those in the Coca-

Cola Company.  

5.4.1 Whether the efficiency of markets is primarily a function of their rules or whether 

the effect of human motivations and cognitive abilities dominates. How much of the 

market efficiency is attributable to individual rationality, and how much is attributable 

to market discipline? That is testing the Hayek’s hypothesis.  

 

(i) Mean Absolute Error (MAE) analysis. 

Investigating the mean absolute error (MAE) is the most efficient way to measure the 

effectiveness of intelligence. Willmott and Matsuura (2005) argue that evaluations and 

inter-comparisons of average model-performance error should be based on MAE. The MAE 

is an average of the absolute errors 
i i ie f y  , where

if is the prediction and 
iy is the 

true value in the mean absolute error equation (Coyle, 1988): 

                                           

1 1

1 1n n

i i i

i i

MAE f y e
n n 

                                               (38) 

In terms of the S&P 500 analysis, Table 15.0 clearly indicates that the MAE significantly 

decreases when the intelligence level is raised.  
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                                                                                                S&P 500** 

Type Market A Market B Market C Market D Market E Market F Market G 

MAE 7.54* 5.98* 5.43* 5.37* 5.24* 5.12* 5.06* 

SD 7.76 5.99 5.92 5.91 5.82 5.77 5.58 

SK 1.21 1.39 1.44 1.44 1.45 1.47 1.48 

K 3.77 4.73 4.75 4.77 4.79 4.81 4.91 

                                                                                               Coca Cola** 

MAE 1.08* 0.89* 0.85* 0.79* 0.77* 0.72* 0.69* 

SD 0.60 0.58 0.50 0.49 0.42 0.42 0.37 

SK 1.44 1.54 1.59 1.66 1.73 1.83 1.94 

K 5.43 5.47 5.49 5.82 5.89 6.01 6.03 

MAE is the value of the Mean Average Error. The * means that, based on the t statistic, the value is statistically different 

from the previous value at the 5% significance level. For instance, 7.54  in Market A is statistically different from 5.98 in 

Market B at the 5% significance level. **measures the average values based on 1,250 simulations.                            

         Table 15.0 Econometric statistics of S&P 500 and Coca Cola Company Mean Absolute Error.   

 

The empirical results suggest that the MAE decreases from 7.54 in Market A to 5.06 in 

Market G, which is populated by the most intelligent traders in my experiment. The 

important role of intelligence is confirmed by a substantial decrease in the standard 

deviation value- from 7.76 in Market A to 5.58 in Market G. The Coca Cola empirical results 

in Table 15.0 experience the same pattern with- the MAE decreasing from 1.08 in Market A 

to 0.69 in Market G. Again the standard deviation of the MAE decreases when the level of 

intelligence is raised. All results are statistically significant at the 5% level confirming my 

findings that more intelligence reduces the mean absolute error and improves the 

forecasting function. Thus my results indicate that increased intelligence has a positive 

effect on the forecasting function. My findings are consistent with Good et al. (1999), which  

argue that to take advantage of learning agents, those agents must be designed to 

accommodate dynamic learning habits rather than random (zero intelligence) strategies. In 

their experiment, the model with the highest accuracy (lowest MAE) avoided making large 

errors and performed better than random.     
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 (ii)Stock returns analysis. 

I use logarithmic returns to estimate the returns of the two financial instruments: 

                                                           1ln lnt t tR P P                                                (39) 

Where tP is the price of the stock in period t .  

For the S&P 500 the standard deviation increases from 0.004186 in the zero intelligence 

market to 0.010715 in Market G, which is populated by the most intelligent artificial traders 

(Table 16.0). The Coca Cola Company return series experiences a similar increase in volatility 

as the intelligence level increases in the market (from 0.011624 in Market A to 0.020120 in 

Market G, Table 16.0). My findings show that in terms of return volatility, intelligence plays 

a more negative role in the market. Furthermore, the volatility of Market G is much closer to 

the real S&P and Coca Cola volatility reported in Table 17.0. My findings are consistent with 

LeBaron (2004), who constructed an artificial stock market populated with traders with 

different memory lengths between 6 months and 30 years and compared the simulations 

with data from the S&P 500. The author demonstrated that the heterogeneous memory 

framework amplified volatility.    

                                                                                                     S&P 500** 

Type Market A Market B Market C Market D Market E Market F Market G 

R 0.000047*
 

0.000361* 0.000366* 0.000377* 0.000498* 0.000514* 0.000602* 

SD 0.004186 0.005611 0.007035 0.007534 0.008311 0.009932 0.010715 

SK -2.94 0.02 0.34 0.47 0.55 0.89 1.09 

K 12.64 23.57 31.04 39.38 47.37 49.28 51.22 

ADF• -87.19 -112.04 -129.22 -129.58 -121.77 -130.36 -126.88 

ARMA (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) 

BDS 48.34 35.56 27.82 30.32 30.54 31.61 31.76 

GARCH (1,1) (5,2) (2,1) (2,1) (4,1) (3,3) (2,1) 

                                                                                                      Coca Cola** 

R 3.41e-05* 0.000112* 0.000134* 0.000168* 0.000172* 0.000191* 0.000208* 

SD 0.011624 0.011883 0.011990 0.012598 0.017348 0.019983 0.020120 

SK -21.23 -18.29 -7.18 -9.08 -8.68 -7.20 -9.55 

K 1.69 5.15 5.77 6.31 6.96 7.38 7.44 
 

ADF• -99.16 -116.14 -125.01 -125.07 -127.05 -126.93 -126.91 

ARMA (1,1) (3,1) (1,1) (1,2) (2,1) (1,1) (1,1) 

BDS 67.54 35.81 31.20 33.15 34.32 40.07 35.51 

GARCH (3,2) (1,2) (3,1) (6,6) (3,2) (3,3) (5,2) 

• The MacKinnon (1996) one-sided critical value for rejection of the null hypothesis of a unit root at 5% level is -3.410060. 

*based on the t statistic, the value is statistically different from the previous value at the 5% significance level. **measures 

the average values based on 1,250 simulations.                            

                               Table 16.0 Econometric statistics of S&P 500 and Coca Cola return series.  
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Financial 
Instrument 

Mean R SD SK K 

S&P 500 504.74 0.000391 0.010007 0.95 50.04 

Coca Cola 65.69 0.000201 0.020114 -8.14 7.40 

SD measures the Standard Deviation of S&P 500 stock prices, SK represents the Skewness, and K value is the Kurtosis. 

            Table 17.0 Econometric statistics of S&P 500 and Coca Cola Company real return series. 

 

Various studies related to the fluctuations in stock prices reveal that the distributions of 

returns and price series have fat tails, which characterise non-Gaussian distributions (Pagan, 

(1996); Mandelbrot (1963, 1997). Bollerslev et al. (1992) argue that leptokurtosis is still 

present even after empirically allowing for heteroskedasticity. The conventional coefficient 

for kurtosis is given by: 
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



 
  

 
                                                            (40) 

Where  tE y  and  
22

tE y   , and expectation E is taken with respect to the 

cumulative distribution function F (Kim and White, 2004). If 0KR  returns follow Gaussian 

distribution and if 0KR  returns are characterised by fat tails.  

The fat-tail property (excess kurtosis) is obvious in both the S&P 500 and the Coca-Cola 

Company return series. I compare the excess kurtosis of the zero intelligence market and 

the intelligent traders markets (B-G) with the real return series of the two financial 

instruments. The comparison is made in order to determinate which market most resembles 

the real return series. The real return series (Table 17.0) reported excess kurtosis of 50.04 

for the S&P 500 and 7.40 for the Coca Cola Company. A comparison with excess kurtosis 

values listed in Table 16.0 suggest that markets composed of more intelligent agents 

resembles the real return series the most. Moreover, Table 16.0 shows that a zero 

intelligence market is characterised by substantially lower excess kurtosis than a market 

populated by intelligent traders for both the S&P 500 and the Coca Cola Company return 

series. The excess kurtosis of the S&P 500 significantly increases from 12.64 in the zero 

intelligence market to 51.22 in Market G populated by the most intelligent agents.  

In terms of the Coca Cola Company return series, the excess kurtosis increases from 1.69 in 

Market A to 7.44 in Market G.  
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Overall, all of the markets populated by the most intelligent agents experience more 

pronounced excess kurtosis in comparison with the zero intelligence markets for both the 

index (the S&P 500) and the security (the Coca Cola Company). This result suggests that the 

markets operating with more intelligence agents under a genetic based mechanism better 

replicate the stylised facts of financial returns that are observed in the real financial 

markets.  

My findings are consistent with LeBaron et al. (1999) who performed an experiment with 

fast and slow learning agents and demonstrated that fast learning agents returned higher 

excess kurtosis which is in line with real asset returns.           

(iii)Stock price analysis. 

Table 18.0 indicates that the average stock price  P of the S&P 500 increases 

monotonically with increasing agent intelligence from 503.11 in Market A, populated by 

zero intelligence traders, to 504.72 in Market G, which is composed of the most intelligent 

traders. The P of the Coca Cola Company demonstrates similar trend of an monotonic 

increase- from 64.99 in Market A to 65.68 in Market G. For both securities- all the 

differences in means are significant at the 5% level.  

                                                                                                 S&P 500** 

Type Market A Market B Market C Market D Market E Market F Market G 

P  
503.11* 504.57* 504.60* 504.65* 504.68* 504.70* 504.72* 

SD 79.87 80.63 80.98 81.50 81.87 82.33 82.73 

SK 0.51 0.52 0.52 0.53 0.53 0.54 0.54 

K 3.66 3.67 3.68 3.69 3.70 3.71 3.78 

                                                                                               Coca Cola** 

P  
64.99* 65.51* 65.59* 65.62* 65.63* 65.66* 65.68* 

SD 24.13 24.14 24.17 24.17 24.19 24.20 24.23 

SK 1.91 1.92 1.93 1.93 1.94 1.94 1.95 

K 6.79 6.81 6.88 6.92 6.97 7.00 7.05 

*based on the t statistic, the value is statistically different from the previous value at the 5% significance level. **measures 

the average values based on 1,250 simulations.                            

                   Table 18.0 Econometric statistics of S&P 500 and Coca Cola Company stock prices. 
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Yeh (2007) demonstrated that the properties of price dynamics differ substantially when 

examined at different levels of intelligence. In his experiments the price dynamics in a zero 

intelligence market were far from the homogeneous rational expectations equilibrium (REE) 

whereas the average price in the markets populated by intelligent traders was closer to the 

homogeneous REE. In traditional economic terms, the REE could be achieved if traders fully 

exploit all properties of the price dynamics. Given the validity of this claim, the intelligent 

trader should always play a stabilising role on the market by supporting the process of price 

discovery. A comparison between prices generated by zero intelligent traders of the two 

financial instruments and the real-life historical data based on 17,353 observations, reveal 

that both Markets A are characterised by underpriced securities. The average price of the 

S&P 500 in Market A is 503.11 (Table 18.0) and the real historical average price reported in 

Table 2.0 is 504.74. The zero intelligence market of the Coca Cola Company shows the same 

phenomenon of an- underpriced average stock price of 64.99 in comparison with the 

average real historical price of 65.69. The steady upward price trend in the average price of 

the S&P 500 and Coca Cola Company stocks when traders are endowed with more 

intelligence suggest a price process where prices move closer to more realistic levels. The 

price generated by the most intelligent traders of the S&P 500 in Market G is 504.72, which 

is a close match to the real historical price of 504.74. I observe the same steady upward 

trend in Market G of the Coca Cola Company- the generated price is 65.68 and the real 

historical price in Table 18.0 is 65.69. Although the price rises are characterised by a fairly 

minor increases, the empirical data indicate the positive role of intelligence in price 

discovery in individual as well as in a group of stocks.  

However, Table 18.0 illustrates that the standard deviation of the price of the S&P 500 and 

Coca Cola Company also increases at a 5% level of significance in all markets. In this 

particular case, I observe the negative effect of intelligence because the price volatility 

worsens when the intelligence level is raised. This finding is consistent with the study of Yeh 

(2007) which also documents a significant increase in volatility.  
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These results paint a mixed picture of the implications of trader cognitive abilities on stock 

market properties. In terms of the stock prices, the empirical results presented so far 

suggests that intelligence plays a significant role in price discovery and a rather negative one 

on stability of asset prices. This finding is consistent with Othman (2008), who argues that 

human qualities do not always play a significant role in price formation.  

My findings do not support the Hayek Hypothesis. Market A which is populated by zero-

intelligence agents with diffuse beliefs does not generate correct market prices. It is been 

demonstrated that Market A cannot function properly when the participants know very 

little about the environment (they receive limited amount of information about the historic 

prices based on shorter genome depth) resulting in undervalued financial instruments.   

 

(iv) Trading volume analysis. 

Table 19.0 illustrates that the average trading volume (V ) decreases monotonically from 

1,254,759  in Market A to 999,373 in Market G of the S&P 500 as the level of intelligence is 

raised. This finding suggests that trading opportunities are substantially reduced if the 

traders are endowed with more intelligence. The average trading volume of the Coca-Cola 

Company also shows a monotonically decreasing trend when the level of intelligence is 

raised- from 1,590,813 in the zero intelligence market to 1,553,273 in the market composed 

of the most intelligent agents. 

                                                                                                 S&P 500** 

Type Market A Market B Market C Market D Market E Market F Market G 

V  
1,254,759* 1,230,086* 1,194,022* 1,181,622* 1,170,452* 1,004,878* 999,373* 

SD 111.36 110.03 108.28 107.21 107.00 106.62 105.23 

SK 0.81 0.87 0.89 0.89 0.90 0.91 0.95 

K 2.99 3.17 4.72 5.01 6.22 7.05 8.14 

                                                                                                Coca Cola** 

V  
1,590,813* 1,587,933* 1,580,012* 1,572,390* 1,563,351* 1,560,120* 1,553,273* 

SD 170.21 168.30 167.25 167.00 165.54 164.89 164.00 

SK 0.12 1.66 1.66 1.68 1.69 1.70 1.72 

K 2.54 5.73 6.55 6.88 7.00 7.33 7.92 

*based on the t statistic, the value is statistically different from the previous value at the 5% significance level. **measures 

the average values based on 1,250 simulations.                           

Table 19.0 Econometric statistics of S&P 500 and Coca Cola Company trading volume.  
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As outlined in section (ii) the standard deviation of the return series (Table 16.0) increases 

when traders are equipped with more intelligence which is also similar to Yeh (2007). Thus 

as the intelligence level raises the average trading volume decreases and the standard 

deviation of returns increases. This seems an unexpected relationship given the well-

reported stylised fact of a positive relationship between volume and volatility reported in, 

for example, Cont (2009).  

There are a number of potential explanations for my findings and these are worthy of future 

investigation. Initially, for a given level of intelligence, my results do not preclude a positive 

relationship between volume and volatility and so are not necessarily inconsistent with 

those reported in Cont (2009). 

Another reason for the observed volume- volatility relation as intelligence increases may be 

that, in a similar way to financial futures markets, I do not have a short-selling restriction in 

my experiments and traders can short-sell up to 100 per cent of their wealth. Fung and 

Patterson (1999) argue that the short-selling restriction in equity markets is the key factor 

that drives the positive relationship between volume and return. Their analysis suggests 

that trading volume is not necessarily positively correlated to asset returns indicating that 

short-selling generates different impacts on price movements. Jennings et al. (1981) argue 

that under short-selling restrictions placed in equity markets, trading volume may not be 

closely related to return volatility. The increase in return volatility and the decrease in 

trading volume in the presence of short-selling is well documented in the literature. Aitken 

et al. (1998) demonstrated that transparent short sales increased return volatility. Henry 

and McKenzie (2006) reported that the market displays greater volatility following a period 

of short-selling activity. Hong et al. (2012) argue that heavily shorted stocks have increased 

price sensitivity to news flow and thus volatility. Schwartz and Norris (2012) pointed out 

that small firms experience significantly higher volatility when short-selling intensifies.  

A third potential explanation for the volume-volatility relationship is related to the different 

type of traders in my experiments. This is consistent with the findings of Bessembinder and 

Seguin (1993), who suggest that the volatility-volume relationship in financial markets 

depends on the type of trader.  
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The authors investigated the relationship between volume, volatility, and market depth in 

eight physical and futures financial markets and concluded that linking volatility to total 

volume does not represent all market information. In a study similar to mine, Daigler and 

Wiley (1999) examined whether specific types of traders distinguished by the information 

they possess have any effect on the volume-volatility relation. Their study differentiated 

traders by either the amount of information they hold or the dispersion of expectations they 

form based on that information.  

Interestingly, the authors demonstrated that the positive correlation between trading 

volume and return volatility found in some studies such as Tauchen and Pitts (1983), Gallant 

et al. (1992), Lee and Rui (2002), Cont (2007) and LeBaron and Yamamoto (2007) is driven 

by the general public (off-the-floor traders) rather than floor traders.  

Daigler and Wiley argue that the general public cannot distinguish the volume related to 

liquidity demand from the volume due to a change in fundamental value. Thus volume gives 

an inaccurate information signal combined with a greater dispersion of expectations leading 

to an increase in volatility. The most important finding of their study is that floor traders 

often exhibit an inverse relation between volatility and volume. Hence, the authors 

highlighted that using different trader categories is a better way to understand the relation 

between volatility and volume. My empirical results are also broadly in line with Shalen’s 

(1993) model, which explains the volume-volatility relation as dependent on the dispersion 

of different traders’ expectations and the negative volume-volatility correlation reported by 

Wang (2004) , who found that trading volume contributes negatively to the subsequent 

volatility. The presence of substantial trading volume in my zero intelligence markets could 

also be explained by the models developed by Harris and Raviv (1993) and Shalen (1993) 

where uninformed traders’ dispersion of beliefs creates excess volume.  
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6.4.2 Are the price series generated by the most intelligence agents more likely to 

conform to the Efficient Market Hypothesis, and therefore be more efficient? 

 

According to the EMH, financial markets are efficient when the return series  tr are 

unpredictable. On the other hand, the return series experience the presence of 

unpredictability when the returns are identically and independently distributed (IID). To 

determinate whether the series are characterised by IIDness, I applied the BDS (Brock, 

Deche, and Scheinkman, 1996) test to the residual series. 

I first applied the Augmented Dickey-Fuller (ADF) test to investigate the presence of a unit 

root. My ADF test settings include running a regression of the first difference of the log price 

series against the series lagged once (a sufficient condition to eliminate autocorrelation in 

the residuals) combined with a drift and a time trend.   

As the econometric results of the ADF test suggests, the null of the presence of a unit root 

has been rejected in both the S&P 500 and the Coca-Cola return series (Table 20.0). Hence, 

the financial time series generated by artificial agents are stationary at a 95% significance 

level, indicating that the process is orientated around a constant long-term mean and has a 

constant variance independent of time. Lee et al.(2010) discovered stationary price series in 

32 developed and 26 developing countries. Stationarity can be explained by microstructure 

biases in low-priced stocks (Conrad and Kaul, 1993 and Ball et al.,1995), the role of leverage 

(Chan, 1988 and Ball and Kothari, 1989), and the importance of stock market size and 

associated risk factors (Zarowin, 1990 and Richards, 1997). 

Then, I proceeded further to filter the linear process. Table 20.0 reports the ARMA (p,q) 

process gained from the return series tr . In terms of the ARMA statistics, there is no 

difference between the return series generated by the zero intelligence traders and those 

generated by the agents equipped with different levels of intelligence. Hence, the zero 

intelligence and the more intelligent traders are equally likely to converge to the Efficient 

Market Hypothesis. While the vast majority of other test results are either AR(1) or MA(1), 

some of the Coca Cola return series exhibit a higher order of linear dependence such as 

ARMA(2,1) ARMA (1,2) and ARMA(3,1).  
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                                                                                                      S&P 500* 

Type Market A Market B Market C Market D Market E Market F Market G 

ADF• -87.19 -112.04 -129.22 -129.58 -121.77 -130.36 -126.88 

ARMA (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) 

BDS 48.34 35.56 27.82 30.32 30.54 31.61 31.76 

GARCH (1,1) (5,2) (2,1) (2,1) (4,1) (3,3) (2,1) 

                                                                                                     Coca Cola* 

ADF• -99.16 -116.14 -125.01 -125.07 -127.05 -126.93 -126.91 

ARMA (1,1) (3,1) (1,1) (1,2) (2,1) (1,1) (1,1) 

BDS 67.54 35.81 31.20 33.15 34.32 40.07 35.51 

GARCH (3,2) (1,2) (3,1) (6,6) (3,2) (3,3) (5,2) 

• The MacKinnon (1996) one-sided critical value for rejection of the null hypothesis of a unit root at 5% level is -3.410060.  

*measures the average values based on 1,250 simulations.                            

                               Table 20.0 Econometric properties of S&P 500 and Coca Cola return series.   

 

I then investigated whether the price series are identically and independently distributed 

(IID) over time in order to capture any presence of unpredictability, and therefore efficiency. 

I have started the IID determination process by estimating the most appropriate ARMA (p,q) 

model and fit it to the data to eliminate all linearity from the sample. Once I have identified 

the linear element of the series, any other elements of the series should be non-linear. I 

applied the BDS test to the ARMA residuals to test for remaining dependence. Under the 

null hypothesis, the series are identically and independently distributed (IID). The fitted 

model is the best linear ARMA time series model and the rejection of the null indicates a 

non-linear time series process.  

The most important BDS test parameters are the distance parameter     and the 

embedding dimension (DIM). In qualitative terms my results prove not to be sensitive to the 

choice of epsilon and DIM parameters. Therefore, I only report the experimental results 

with the distance parameter ‘ ’ equal to 0.7 standard deviations and the embedding 

dimension of 6. Based on the test results in Table 20.0, the null hypothesis that the residuals 

of the S&P 500 return series are IID is significantly rejected in all sub-periods. The result 

indicates non-linear dependence in the S&P 500 and Coca Cola return series. In terms of 

non-linear dependence, there is no difference between the zero intelligence traders and the 

intelligent ones. Hence, I once again observe that intelligence plays an insignificant role 

which is consistent with the findings of Othman (2008).   
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Moreover, the BDS test statistics shows that a richer dynamic structure such as an artificial 

stock market populated by 10,000 agents can help to describe the findings of complex non-

linear dependence in financial market data.  

To capture the regularities in volatility fluctuations, I implemented the Lagrange multiplier 

test for the presence of ARCH effects. Evidence of the ARCH effect is found in all the S&P 

500 and Coca Cola series. Because the ARCH effect is present in all series of both financial 

instruments, I further determinate the GARCH structure of the series by using the Bayesian 

Information Criterion (BIC). The existence of the ARCH effect suggests that volatility 

clustering is quite ubiquitous in all markets. 
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6.5 Conclusions 
 

Studies that support market structure as the driving force behind market performance have 

been significantly challenged in the literature. The studies of Yeh (2007, 2008) support the 

significance of individual intelligence in market performance with the caveat that he uses 

SF-ASM rather than market prices. I apply the approach of Yeh (2007) by using Adaptive 

Modeler’s special adaptive form of STGP to create artificial traders with different learning 

styles. I apply this approach using real data (S&P 500 and Coca-Cola). I investigate market 

properties such as mean absolute error (MAE), stock returns, stock price and trading volume 

to determine the role of intelligence.  

The MAE and its standard deviation values for both the S&P 500 and the Coca-Cola 

Company indicate the positive implications of intelligence because the markets populated 

with more intelligent artificial traders show reduced levels of MAE and improved forecasting 

functions, respectively. In terms of stock prices, traders endowed with more intelligence do 

help price discovery but the relationship of intelligence with price stability seems to be 

ambiguous. The price stability of the S&P 500 and the Coca-Cola Company deteriorates if 

the traders are more intelligent. This finding is consistent with the findings of Chen and Tai 

(2003), who argue that smart traders do not necessarily bring improvements to the market. 

Trading volume comparison reveals that trading opportunities are reduced if traders are 

equipped with more intelligence. This result clearly demonstrates that intelligence does not 

necessarily improve market properties. Trading volume comparison reveals that trading 

opportunities are reduced if traders are equipped with more intelligence. Moreover, I found 

as the intelligence level raises the average trading volume decreases and the standard 

deviation of returns increases. 

In terms of the stock returns, all markets of the index and the security that were populated 

by the most intelligent agents experience a significant increase of excess kurtosis in 

comparison with the zero intelligence markets.  This empirical result suggests that all of the 

markets operating under a genetic based mechanism better replicate the stylised facts of 

financial returns than markets composed of traders with random behaviour.  
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In terms of the econometric tests such as the ARMA statistics and non-linear dependence 

(the BDS test), there is no difference between the zero intelligence traders and the more 

intelligent ones.  Hence, more research needs to be performed to better understand the 

formation and the actual role of individual decision rules, the structure of the decision task, 

and the surrounding decision-making environment in determining the process of market 

efficiency. If human qualities such as learning and reasoning are driving prices towards 

efficiency, then, Othman (2008) posed the question of ‘why should they stop at an 

inefficient result’? It appears to be very likely that no single factor such as individual 

motivation, market structure or the level of familiarity with a particular task will suffice to 

explain in great detail the observed variation in the market performance. While market 

structure appears to have more observable properties, individual behaviour appears to be 

more complex and less predictable.  

The conclusions as to whether intelligence plays a significant role in market performance are 

somewhat blurred. There is no definite answer as to whether the market mechanism or the 

trading strategies (individual rationality) matters the most. This conclusion is consistent with 

Todd and Gigerenzer’s (2003) findings that both intelligence and market structure are highly 

important. I suggest a new perspective for future research that includes investigating the 

sensitivity of models to parameters determining intelligence and market structure.  

 

6.5.1 Limitations of the use of artificial tradesr in evaluating cognitive 

abilities. 
 

It should be noted that there is a difference between human intelligence and artificial trader 

intelligence. Artificial traders are programmed to obey orders and perform certain tasks as 

per the commands given to them. Moreover, artificial traders are lacking feelings and 

emotions while human beings can feel various emotions and also express these emotions to 

others. The major drawback of this particular experiment in comparison to experiments 

with real-life humans is the use of specific genome length to manipulate memory length as 

proxy for cognitive ability and intelligence.  
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The main limitation comes from the fact is that computational memory is rather short-term 

in nature. Short-term memory is the type of memory that characterise with a sort of 

workspace that is used to manipulate information (Seamon and Kenrick, 1994). However, 

Engle et al. (1999) demonstrated a weak relationship between short-term memory and 

human intelligence indicating the limitations of cognitive abilities of artificial traders.   
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Chapter 7 

Using Strongly Typed Genetic Programming for profitable stock 

market forecasts. 

 

7.1. Introduction 
 

Forecasting stock market returns is not an easy task because many factors, including 

political events, economic conditions, and investor’s trading expectations, influence 

securities. Stock market predictability remains a topic of continuous controversy. Some 

academics argue that predictability is due to some irrational phenomenon, such as noise 

trading or speculative bubbles, which makes stock prices deviate from tier fundamental 

values. This deviation is associated with negatively autocorrelated and therefore predictable 

returns. Both researchers and investors have made incredible efforts to predict the future 

movements of the stock market and develop trading strategies to transfer the forecasts into 

profits. The application of Genetic Programming (GP) to stock market forecasts has been 

rather scarce with fewer than thirty papers found in the literature. At the same time, the 

application of Strongly Typed Genetic Programming (STGP), developed by Montana in 1995, 

to financial time series forecasts has not been published yet.  

I developed forecasting models on STGP basis to present completely new evidence 

suggesting that there is limited evidence of random walk in financial time series and then 

describe a concrete measure of predictability of stock prices based on one-day-ahead 

forecasts. In the market simulation models that I created, artificial traders receive 

information about the value of a real security and observe the history of past trades. Based 

on this information, they decide whether they want to buy or sell one or more units of the 

security. The STGP technique provides a rich environment to examine the heterogeneity and 

complexity of the trading rules as well as the implications of trader cognitive abilities on 

forecasting accuracy.  
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I developed two different stock markets each populated by 10,000 artificial traders and one 

stock market populated by ‘Low Intelligence Traders’. In the first stock market similarly to 

the vast majority of the previous forecasting literature I did not take into account 

transaction costs. In the second stock market, I included 1.25 per cent or 125 basis points as 

transaction costs. Finally, in the third stock market, I created a market composed of ‘Low 

intelligence Traders’ with a half genome depth of 10 (out of 20 maximum) in order to 

investigate their forecasting abilities.     

I then compared the four different in-sample and out-of-sample STGP models to traditional 

econometric forecasting models, such as Box-Jenkins (ARIMA) and the Holt-Winters 

exponential smoothing, based on five performance measures to investigate the following: 

I.Whether, to what extent and in which form the stock returns in excess of the risk free rate 

were indeed predictable and profitable. This was done by measuring and quantifying the 

exact level of generated profit, taking into account the transaction costs.  

II.Experimentally testing the Optimism Principle developed by Picard and Cook (1984).  

III.Whether intelligence and trader cognitive abilities matter in the formation of more 

sophisticated trading rules. This was done by testing the Adaptive Expectations Hypothesis 

in the laboratory artificial stock market settings populated with ‘Low Intelligence Traders’ in 

the fourth stock market.   

No known study accesses the heterogeneity of trading rules and trader cognitive abilities 

when transaction costs are taken into account. Specifically, the major contributions of this 

chapter are: 

•To demonstrate and verify the predictability and profitability of stock returns when 

transaction costs are included.  

•I have performed very rare laboratory experimental tests of the Adaptive Expectations 

Hypotheses as well as the Optimism Principle.  

•To provide evidence that the level of traders’ intelligence plays a significant role in the 

process of formation of more sophisticated trading rules and improvements in the quality of 

forecasts.  
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My research confirms that stock returns in excess of the risk free rate are indeed 

predictable, as other scholars have also concluded (e.g., Stambaugh,1986; Campbell,1987; 

Breen et al.,1990; Fama, 1991; Brock et al., 1992; Sullivan et al., 1997). Furthermore, I have 

empirically proven that traders’ intelligence plays a significant role in the formation of more 

sophisticated forecasting rules.   

 

7.2. Background 
 

For the last twenty years, econometric models have expressed the common assumption 

that the appropriate modelling of financial returns should allow for non-linearity. The failure 

of the traditional linear models promoted the development of non-linear models, such as 

autoregressive conditional heteroskedasticity, general autoregressive conditional 

heteroskedasticity and self-exciting threshold autoregression (Chan and Ng, 2004; Clements 

and Smith, 1997) which were used in the forecasting of stock returns.  More recently 

combined forecasts from different models have been studied for forecasting purposes 

(Fang, 2005; Pai and Lin, 2005; Qian and Rasheed, 2006). The reason for combining forecasts 

from different models is the important assumption that forecasters are not able to identify 

the true process in full capacity, but different prediction models might complement the 

approximation of the data generation process.  

It is a well-known fact, however, that both linear and non-linear forecasting models perform 

poorly out-of-sample (Diebold and Nason, 1990; Meese and Rose, 1991). Another option 

would be to implement a non-parametric model, such as Genetic Programming (GP) or 

Strongly Typed Genetic Programming (STGP) in particular.  

Koza (1995) and Iba and Nikolaev (2000) proved that GP is a valid approach to finding 

suitable models to describe financial time series. The advantage of the GP approach, in 

comparison with linear and non-linear models, is that it enables the researcher to be 

relatively agnostic about the general form of the optimal trading rule and to fully explore 

the non-differentiable space of trading rules. 
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Allen and Karjalainen (1995) were the first to apply GP in order to establish profitable 

trading rules in the stock market. The authors argue that profitable trading rules exist even 

after taking into account transaction costs. They found significant evidence that there are 

trading rules that are able to generate significant excess returns over a buy-and-hold 

strategy during the period 1970-1989.  By using monthly data as opposed to daily data, 

Becker and Seshadri (2003) developed trading rules that were able to outperform a buy-

and-hold strategy when dividends are excluded from stock returns.   

Neely et al. (1997) applied GP techniques to the foreign exchange market to investigate 

profitable trading rules. They found strong evidence of economically significant ex-ante 

excess returns to technical trading rules for six different exchange rates over the period 

1981-1995. 

Chen et al. (1998) even used GP to derive option pricing formulas. They obtained real data 

of the S&P 500 index options for the training and testing of their model. The comparison 

with the traditional model (the Black-Scholes formula) indicated the superiority of the GP 

pricing mechanism. Chidambaran et al. (1998) also implemented GP to investigate the 

relationship of the price of CBOE index and equity options, the terms of the option contract 

and various properties of the underlying security price. Again in comparison with the Black-

Scholes formula, they demonstrated the advantage of GP in pricing the CBOE index and 

equity options.  

Iba and Sasaki (1999) applied GP to the forecasting of the Nikkei225. They used 33,177 real 

data observations to compare the forecasting abilities of GP and neural networks. The 

experimental results showed the superiority of the GP measured by the low values of the 

Mean Squared Errors (MSE). However, the authors did not include any transaction costs in 

their models to offset the profit gain. Also, their prediction accuracy needed improvement 

because they focused on long-term forecasts rather than short-term or real-time forecasts.   

Kaboudan (1999) measured time series predictability by applying GP to eight Dow Jones 

stock return series. The author introduced a new measure of time series predictability 

designed to reduce model search space and generate more accurate forecasts.  
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The new measure, which quantified the probability of predictability, consisted of two fitness 

values-one taken from the GP subject series and the other one from the same GP series 

after it has been shuffled randomly. The boundaries of the new measure were between zero 

and one hundred (zero suggested a random walk process and 100 suggested predictability).  

Kaboudan (2000) used GP to produce reasonable one-day-ahead forecasts and develop a 

single day-trading strategy (SDTS) in which trading decisions were based on GP forecasts of 

daily highest and lowest prices. SDTS returned high profits when executed for fifty trading 

days.  

However, there are some SDTS restrictions: first, the predicted spread (the difference 

between predicted daily high and low prices) has to be large, otherwise there is no profit to 

be made; Second a large volume of shares must be traded in order to reduce transaction 

costs and increase profits; and third the proposed strategy is profitable only for heavily 

traded securities to increase the probability of occurrence of expected high or low prices.   

For more realistic forecasting purposes I implemented an innovative evolutionary STGP 

technique with no over-fitting of the S&P 500, IBM and GE historical data and the additional 

important factors: 

-I developed more realistic real-life models taking into account transaction costs to offset 

the profit gained. Most forecasting studies have not included transaction costs, which I 

believe are important obstacles in applying forecasting models to real stock exchange 

trading.  

-I performed my experimental tests under a special adaptive form of Strongly Typed Genetic 

Programming (STGP). In STGP the process of estimating the agent’s fitness does not include 

any re-execution of their trading rules based on historical data (over-fitting). This is due to 

the fact that the artificial traders have already executed their trading rules on the same 

historical data set and the software is looking only at the realistic returns that they have 

already made, rather than any hypothetical returns that agents could have made if they 

were sent back in time again. Therefore I avoided over-fitting of the data which seems to be 

one of the biggest forecasting pitfalls.  
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-I used a greater number of artificial agents. While both models produced by Kaboudan ( 

1999; 2000) consisted of 2,000 traders, the experiment conducted by Iba and Sasaki (1999) 

employed only 1,000 traders. I developed models with 10,000 traders.  

-My model, developed within the Altreva Adaptive Modeler settings, was built incrementally 

(walk-forward with no over-fitting of historical data). The model constantly evolved and 

adapted to market changes, instead of being static. Ten thousand different trading 

strategies competed simultaneously and evolved in the artificial stock market in real time. 

Hence, the model was more resilient to changing market conditions and the model’s 

performance was significantly more consistent and reliable (Witkam, 2011).   

-I have developed three different markets to determine the forecasting accuracy of ‘Low 

Intelligence Traders’ (genome depth of 10). The maximum possible genome depth in the 

other three experiments was 20. Changing the genome depth level enabled me to observe 

how further the artificial traders look back further in history in order to develop more 

complex and sophisticated trading rules.    

The in-sample period in my experiment consisted of 11,405 daily quotes (24/05/1962-

14/09/2007) for the S&P 500 index, IBM and General Electric. The out-of-sample included 

1261 real data observations (17/09/2007-14/09/2012). The study period was chosen on the 

basis of rich data availability, and because the software I used requires a long time series in 

orders to develop more stable and reliable models. There are various other reasons for the 

inclusion of these three particular financial instruments in my study.  

Harris and Gurel (1986) highlighted that the composition of the S&P 500 list of companies 

does not depend on forecast security returns. Moreover, many large index funds mimic the 

performance of the S&P 500 by creating a portfolio of the 500 stocks using the same 

weights as in the real index. IBM is included because tech stocks tend to be more volatile in 

nature. I also wanted to investigate and distinguish the level of profitability generated by 

trading a group of stocks and two well established individual stocks.   
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7.3. Artificial stock market structure for this particular experiment 
 

Table 21.0 illustrates the main parameters of the STGP-based artificial stock market model 

for this particular experiment.  

                                                                       Artificial stock market parameters 

Total population size (agents)  10,0000 

Initial wealth(equal for all agents) 100,000 

Transaction costs 1.25% (125 bsp) 

Significant Forecasting range 0% to 10% 

Number of decimal places to round quotes on importing 2 

Minimum price increment for prices generated by model 0.01 

Minimum position unit 20% 

Maximum genome size 4096* 

Maximum genome depth 20**; 10 in ‘Low Intelligence Traders’ 

Minimum initial genome depth 2 

Maximum initial genome depth 5 

Breeding cycle frequency (bars) 1 

Minimum breeding age (bars) 80 

Initial selection type random 

Parent selection (percentage of initial selection that will 
breed)  

5% 

Mutation probability (per offspring)  10% 

Total number of quotes processed- S&P500 12,666 (11,405 in-sample, 1261 out-of-sample) 
24/05/1962-13/09/2007; 17/09/2007-14/09/2012 

Total number of quotes processed-IBM 12,666 (11,405 in-sample, 1261 out-of-sample) 
24/05/1962-13/09/2007; 17/09/2007-14/09/2012 

Total number of quotes processed-GE 12,666 (11,405 in-sample, 1261 out-of-sample) 
24/05/1962-13/09/2007; 17/09/2007-14/09/2012 

Seed generation from clock Yes 

Creation of unique genomes Yes 

Offspring will replace the worst performing agents of the 
initial selection   

Yes 

 

                                                       Table 21.0 Artificial Stock Market Parameter Settings 
*Maximum genome size measure the total number of nodes in an agent’s trading rule. A node is a gene in the genome 
such as a function or a value.  

**Maximum genome depth measures the highest number of hierarchical levels that occurs in an agent’s genome (trading 
rule). The depth of a trading rule can be an indicator of its complexity.  
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7.3.1. Benchmark models and measures of forecasting accuracy.  

 

I chose the Box-Jenkins and Holt-Winters models as benchmarks for comparison to the STGP 

technique. The Box-Jenkins or ARIMA approach was introduced in the 1970s, and since then 

has become one of the most popular tools for time series forecasting. The technique has 

been successfully applied to some of the most difficult forecasting problems. Reid (1969, 

1972) argues that the Box-Jenkins technique generates the most accurate one-step-ahead 

forecasts for most time series when more than 50 observations are available. Granger and 

Newbold (1972) provided further evidence by examining 50 macro-economic time series. 

They concluded that Box-Jenkins produce better forecasts than both Holt-Winters and step-

wise autoregression.  

Lilien and Kotler (1983) suggest that 13 per cent of the financial services industry use 

exponential smoothing models. The Holt-Winters multiplicative (additive trend, 

multiplicative seasonality) method represents a weighted average of past data, in which the 

actual weights decline geometrically over a time horizon in order to capture short-term 

fluctuations in the values.  Granger (1980), and Wilson and Keating (1990) argue that the 

accuracy of the forecasts generated from exponential smoothing models reflect the 

conformity of reality with the assumptions of historical patterns in the data set. The most 

recent observations have the most relevance for forecasting the future values. In view of 

this evidence I implemented the Box-Jenkins and Holt-Winters techniques in my 

experiments. Time series forecasting analyses historical data and projects estimates of 

future data values. This technique develops models of nonlinear functions by a recurrence 

relation obtained from past data. The same recurrence relation is applied to predict new 

values in the time series that are good approximation of the actual values.   

As is standard in the forecasting literature, I estimate the Mean Absolute Percent Error 

(MAPE), Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE). The lower 

the output of the error statistics obtained, the better the forecasting accuracy of the model 

concerned. Mean Absolute Percent Error and Maximum Absolute Percentage Error 

(MaxAPE) measure how much a dependent series varies from its model-forecasted level. By 

examining the mean and maximum across all possible scale-independent models, the 

researcher can get an indication of the uncertainty of the forecast values.  
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Examining the percentage errors is advisable because the dependent series represents 

subscriber numbers for stock markets of different sizes. MaxAPE quantifies the largest 

possible percentage error indicating the worst-case scenario in forecasting terms.  

Mean Absolute Error and Maximum Absolute Error (MaxAE) measures how close the 

forecasts are to the eventual outcomes. Ther Root Mean Squared Error is the square root of 

the second moment related to the frequency function of a given random variable. RMSE is 

positioned on the same scale as the data and measures the differences between forecast 

values and the actual observed values. I use RMSE to compare the forecasting errors within 

S&P 500, IBM and GE individual datasets, but not between them. This is because this 

measure of accuracy is scale-dependent (Hyndman and Koehler, 2006). The measures of 

forecasting accuracy are quantified as follows: 
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where N is the number of forecasting periods, id is the actual price of the S&P 500, IBM 

and GE at period t , and tz is the forecasting stock price at period t (Pai and Lin, 2005).  
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7.4. Simulation results 

7.4.1.An investigation into whether, to what extent and in which form the stock returns in 

excess of the risk free rate are indeed predictable and profitable. Evidence of in-sample 

and out-of-sample predictability with and without transaction costs taken into account. 

 

According to the test results, the null hypothesis that the price series generated by the 

artificial traders is normally distributed is rejected in all in-sample and out-of-sample periods 

(Table 22.0).  

 S&P 500 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Daily mean 0.0375 0.9481 

Daily standard deviation 0.0390 0.1484 

Skewness 1.116063 -0.5066127 

Kurtosis 2.731443 2.551086 

J-B 2401.945 (0.0000)
 p

 64.42563 (0.0000) 
p
 

ADF• -29.27921 (0.0000) 
p 

-40.18580 (0.0000) 
p 

IBM 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Daily mean 0.0170 0.1099 

Daily standard deviation 0.0122 0.0275 

Skewness 1.103778 0.412542 

Kurtosis 3.159781 2.064995 

J-B 2327.967 (0.0000) 
p
 81.70225 (0.0000) 

p
 

ADF• -107.4095 (0.0001) 
p 

-36.25800 (0.0000) 
p 

GE 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Daily mean 0.0058 0.0160 

Daily standard deviation 0.0021 0.0060 

Skewness 0.627540 1.288965 

Kurtosis 3.151968 3.804897 

J-B 759.5347 (0.0000) 
p
 383.2167 (0.0000) 

p
 

ADF• -107.5242 (0.0001) 
p 

-38.44100 (0.0000) 
p
 

• The MacKinnon (1996) one-sided critical value for rejection of the null hypothesis of a unit root at 5% level is -3.410060; 

J-B: the Jarqu-Bera test; ADF: Augmented Dickey-Fuller Unit Root Test; p: the p value 

Table 22.0 Descriptive statistics for the S&P 500, IBM, and GE in-sample and out-of-sample daily returns.  

This result confirms an important fact in empirical finance: most financial return series are 

not normally distributed, which means that the tails are too fat compared to the normal 

distribution. Tables 23.0-28.0 report the in-sample and out-of-sample performance of Box-

Jenkins and Holt-Winters forecasting models under conditions of no transaction costs and 

with transaction costs added on for the three financial instruments.  
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                                                   Box-Jenkins (without transaction costs) S&P500 statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Box-Jenkins model type ARIMA(1,1,2) ARIMA(0,1,18) 

RMSE 6.541 17.703 

MAE 3.123 12.464 

MAPE 0.660 1.105 

MaxAPE 25.811 9.621 

MaxAE 84.728 106.414 

Normalized BIC 3.759 5.764 

                                                 Holt-Winters (without transaction costs) S&P500 statistics 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 6.543 17.768 

MAE 3.126 12.463 

MAPE 0.663 1.106 

MaxAPE 25.916 9.60 

MaxAE 84.550 106.062 

Normalized BIC 3.757 5.766 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 23.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (without 

transaction costs) forecasting models on S&P 500 daily stock return series.  

                                       Box-Jenkins (without transaction costs) IBM statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Box-Jenkins model type ARIMA(0,1,1) ARIMA(1,1,1) 

RMSE 5.384 2.028 

MAE 2.144 1.468 

MAPE 1.208 1.140 

MaxAPE 300.123 9.729 

MaxAE 308.193 9.904 

Normalized BIC 3.368 1.425 

                                     Holt-Winters (without transaction costs)  IBM statistics 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 5.385 2.028 

MAE 2.144 1.469 

MAPE 1.208 1.140 

MaxAPE 300.125 9.749 

MaxAE 308.200 9.960 

Normalized BIC 3.369 1.426 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error.  

Table 24.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (without 

transaction costs) forecasting models on IBM daily stock return series.  
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                                              Box-Jenkins (without transaction costs)  GE statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Box-Jenkins model type ARIMA(0,1,2) ARIMA(0,1,4) 

RMSE 1.862 0.594 

MAE 0.756 0.365 

MAPE 1.167 1.963 

MaxAPE 203.670 22.900 

MaxAE 105.909 4.722 

Normalized BIC 1.244 1.030 

                                     Holt-Winters (without transaction costs)  GE statistics 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 1.862 0.595 

MAE 0.756 0.367 

MAPE 1.167 1.964 

MaxAPE 203.671 22.901 

MaxAE 105.910 4.805 

Normalized BIC 1.244 1.031 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 25.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (without 

transaction costs) forecasting models on GE daily stock return series.  

 

                                    Box-Jenkins (transaction costs included) S&P500 statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Box-Jenkins model type ARIMA(0,1,12) ARIMA(0,1,18) 

RMSE 7.192 19.464 

MAE 3.437 13.697 

MAPE 0.661 1.104 

MaxAPE 25.933 9.639 

MaxAE 93.808 117.308 

Normalized BIC 3.949 5.954 

                                  Holt-Winters (transaction costs included) S&P500 statistics 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 7.198 19.535 

MAE 3.430 13.700 

MAPE 0.665 1.105 

MaxAPE 26.052 10.133 

MaxAE 93.605 116.880 

Normalized BIC 3.949 5.950 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 26.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (transaction 

costs included) forecasting models on S&P 500 daily stock return series.  
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                                   Box-Jenkins (transaction costs included) IBM statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Box-Jenkins model type ARIMA(0,1,1) ARIMA(0,1,5) 

RMSE 5.922 2.199 

MAE 2.316 1.603 

MAPE 1.199 1.128 

MaxAPE 200.739 10.904 

MaxAE 340.208 11.013 

Normalized BIC 3.558 1.582 

                                    Holt-Winters (transaction costs included) IBM statistics 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 5.920 2.206 

MAE 2.307 1.594 

MAPE 1.193 1.123 

MaxAPE 200.619 10.817 

MaxAE 340.000 11.001 

Normalized BIC 3.558 1.588 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 27.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (transaction 

costs included) forecasting models on IBM daily stock return series.  

 

                                    Box-Jenkins (transaction costs included) GE statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

Box-Jenkins model type ARIMA(0,1,1) ARIMA(0,1,1) 

RMSE 2.040 0.627 

MAE 0.830 1.963 

MAPE 1.173 1.765 

MaxAPE 129.751 24.490 

MaxAE 75.855 5.0520 

Normalized BIC 1.427 0.927 

                                    Holt-Winters (transaction costs included) GE statistics 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 2.040 0.627 

MAE 0.834 0.363 

MAPE 1.183 1.624 

MaxAPE 119.770 20.491 

MaxAE 75.866 5.0530 

Normalized BIC 1.427 0.928 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 28.0 In-sample and out-of-sample performance of Box-Jenkins and Holt-Winters (transaction 

costs included) forecasting models on GE daily stock return series.  

 

Tables 29.0-31.0 represents the in-sample and out-of-sample performance of STGP 

forecasting models on S&P 500, IBM and GE daily stock return series.  
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            Strongly Typed Genetic Programming (without transaction costs)  S&P500 statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

RMSE 6.225 13.387 

MAE 2.817 9.507 

MAPE 0.581 0.823 

MaxAPE 15.138 6.260 

MaxAE 77.907 70.929 

           Strongly Typed Genetic Programming (transaction costs included)  S&P500 statistics 

RMSE 7.760 14.000 

MAE 3.439 9.787 

MAPE 0.797 0.837 

MaxAPE 100.985 7.093 

MaxAE 174.289 79.367 

            Strongly Typed Genetic Programming (‘Low Intelligence Traders’)  S&P500 statistics 

RMSE  6.830 11.862 

MAE 3.898 8.291 

MAPE 0.696 0.702 

MaxAPE 36.979 6.154 

MaxAE 107.539 86.466 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 29.0  In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models on S&P 500 daily stock return series.  

  

                           

               Strongly Typed Genetic Programming (without transaction costs)  IBM statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

RMSE 5.378 1.978 

MAE 2.084 1.395 

MAPE 1.164 1.087 

MaxAPE 207.120 9.678 

MaxAE 308.103 9.843 

             Strongly Typed Genetic Programming (transaction costs included)  IBM statistics 

RMSE 8.756 1.897 

MAE 2.423 1.370 

MAPE 1.310 1.062 

MaxAPE 207.572 8.712 

MaxAE 595.706 8.904 

               Strongly Typed Genetic Programming (‘Low Intelligence Traders’)  IBM statistics 

RMSE  6.465 2.016 

MAE 2.284 1.458 

MAPE 1.220 1.136 

MaxAPE 307.323 9.709 

MaxAE 378.362 8.926 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 30.0  In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models on IBM daily stock return series.  

  

                          



170 
 

                Strongly Typed Genetic Programming (without transaction costs)  GE statistics 

Forecasting range In-sample Out-of-sample 

Dates 24/05/1962-14/09/2007 17/09/2007-14/09/2012 

Number of observations 11405 1261 

RMSE 1.849 0.548 

MAE 0.741 0.320 

MAPE 1.163 1.744 

MaxAPE 133.806 16.979 

MaxAE 86.554 3.929 

                Strongly Typed Genetic Programming (transaction costs included)  GE statistics 

RMSE 2.134 0.560 

MAE 0.836 0.333 

MAPE 1.252 1.794 

MaxAPE 253.344 22.205 

MaxAE 116.607 4.005 

                 Strongly Typed Genetic Programming (‘Low Intelligence Traders’)  GE statistics 

RMSE  1.914 0.548 

MAE 0.785 0.311 

MAPE 1.213 1.667 

MaxAPE 235.348 22.217 

MaxAE 117.255 4.002 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 31.0  In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models on GE daily stock return series.  

 

To test whether the forecasts from two competing models are equally accurate, I 

implemented Wilcoxon signed-rank (WSR) tests, because the time series in my experiment 

are non-normally distributed. The null hypothesis of the WSR test is that the two 

populations represented by the respective members of the matched pairs are identical. 

When the null hypothesis is true, then each of the 2N
possible sets of signed ranks 

estimated by arbitrarly assigning plus or minus signs to be ranks 1 through N is equally 

likely (DeFusco et al., 1990). The test statistic is:  
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Where ( )trank d denotes the rank of the absolute value of td (Alon et al.,2001). 
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First, I compare the in-sample and out-of-sample one-step-ahead forecasting accuracy of 

STGP and the traditional econometric models for the S&P 500, IBM and GE without taking 

into account any transaction costs. All five performance measures (MAPE, MAE, RMSE, 

MaxAPE and MaxAE) suggested that the STGP technique outperforms Box-Jenkins and Holt-

Winters in absolutely all in-sample and out-of-sample experiments for the three financial 

instruments (first row of Tables 32.0-37.0). 

 

           STGP vs. B-J in-sample forecasting models based on S&P500  daily stock returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP 
without 
transaction 
costs 

65.398 
(0.0000) 

p 
Difference 

b
 -0.316* -0.306* -0.079* -10.673* -16.821* 

STGP with 
transaction 
costs 

92.430 
(0.0000) 

p 
Difference 

b
 0.568* 0.002* 0.136* 75.052* 80.481* 

STGP for 
‘Low 
Intelligence 
Traders’ 

71.407 
(0.0000) 

p
 

Difference 
b
 0.289* 0.775* 0.036* 11.168* 22.811* 

          STGP vs. B-J out-of-sample forecasting models based on S&P500 daily stock returns 

STGP 
without 
transaction 
costs 

25.800 
(0.0000) 

p 
Difference 

b
 -4.316* -2.957* -0.282* -3.361* -35.485* 

STGP with 
transaction 
costs 

30.747 
(0.0000) 

p
 

Difference 
b
 -5.464* -3.892* -0.267* -2.546* -37.941* 

STGP for 
‘Low 
Intelligence 
Traders’ 

25.772 
(0.0000) 

p
 

Difference 
b
 -5.841* -4.173* -0.403* -3.467* -19.948* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

Table 32.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting models 

of the S&P 500 daily stock returns. 
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             STGP vs. H-W in-sample forecasting models based on S&P500 daily stock returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP 
without 
transaction 
costs 

76.398 
(0.0000) 

p 
Difference 

b
 -0.318* -0.309* -0.082* -10.778* -6.643* 

STGP with 
transaction 
costs 

92.435 
(0.0000) 

p 
Difference 

b
 0.562* 0.009* 0.132* 74.933* 80.684* 

STGP for 
‘Low 
Intelligence 
Traders’ 

79.621 
(0.0000) 

p
 

Difference 
b
 0.287* 0.772* 0.033* 11.063* 22.989* 

          STGP vs. H-W out-of-sample forecasting models based on S&P500 daily stock returns 

STGP 
without 
transaction 
costs 

26.639 
(0.0000) 

p 
Difference 

b
 -4.381* -2.956* -0.283* -3.340* -35.133* 

STGP with 
transaction 
costs 

30.757 
(0.0000) 

p
 

Difference 
b
 -5.535* -3.913* -0.268* -3.040* -37.513* 

STGP for 
‘Low 
Intelligence 
Traders’ 

25.995 
(0.0000) 

p
 

Difference 
b
 -5.906* -4.172* -0.404* -3.446* -19.596* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

Table 33.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of the S&P 500 daily stock returns. 
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            STGP vs. B-J in-sample forecasting models based on IBM daily stock returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP 
without 
transaction 
costs 

8.057 
(0.0000) 

p 
Difference 

b
 -0.006* -0.060* -0.980* -93.003* -0.090* 

STGP with 
transaction 
costs 

92.230 
(0.0000) 

p 
Difference 

b
 2.834* 0.107* 0.111* 6.833* 255.498* 

STGP for 
‘Low 
Intelligence 
Traders’ 

16.346 
(0.0000) 

p
 

Difference 
b
 1.081* 0.140* 0.012* 7.200* 70.169* 

         STGP vs. B-J out-of-sample forecasting models based on IBM daily stock returns 

STGP 
without 
transaction 
costs 

5.216 
(0.0000) 

p 
Difference 

b
 -0.050* -0.073* -0.053* -0.060* -0.061* 

STGP with 
transaction 
costs 

30.747 
(0.0000) 

p
 

Difference 
b
 -0.302* -0.233* -0.066* -2.192* -1.109* 

STGP for 
‘Low 
Intelligence 
Traders’ 

19.224 
(0.0000) 

p
 

Difference 
b
 -0.012* -0.010* -0.004* -0.020* -0.978* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

Table 34.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting models 

of the IBM daily stock returns. 

 

 

 

 

 

 

 

 

 

 

 

 



174 
 

            STGP vs. H-W in-sample forecasting models based on IBM daily stock returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP 
without 
transaction 
costs 

8.057 
(0.0000) 

p 
Difference 

b
 -0.007* -0.060* -0.044* -93.005* -0.097* 

STGP with 
transaction 
costs 

92.227 
(0.0000) 

p 
Difference 

b
 2.836* 0.116* 0.117* 6.953* 255.706* 

STGP for 
‘Low 
Intelligence 
Traders’ 

41.199 
(0.0000) 

p
 

Difference 
b
 1.080* 0.140* 0.012* 7.198* 70.162* 

         STGP vs. H-W out-of-sample forecasting models based on IBM daily stock returns 

STGP 
without 
transaction 
costs 

5.216 
(0.0000) 

p 
Difference 

b
 -0.050* -0.074* -0.053* -0.071* -0.117* 

STGP with 
transaction 
costs 

30.741 
(0.0010) 

p
 

Difference 
b
 -0.309* -0.224* -0.061* -2.105* -1.097* 

STGP for 
‘Low 
Intelligence 
Traders’ 

24.372 
(0.0000) 

p
 

Difference 
b
 -0.012* -0.011* -0.004* -0.040* -1.034* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level.  

Table 35.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of the IBM daily stock returns 
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            STGP vs. B-J in-sample forecasting models based on GE daily stock returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP 
without 
transaction 
costs 

22.455 
(0.0000) 

p 
Difference 

b
 -0.013* -0.015* -0.004* -69.864* -9.355* 

STGP with 
transaction 
costs 

91.898 
(0.0000) 

p 
Difference 

b
 0.094* 0.006* 0.079* 23.593* 20.752* 

STGP for 
‘Low 
Intelligence 
Traders’ 

33.017 
(0.0000) 

p
 

Difference 
b
 0.052* 0.029* 0.046* 32.000* 11.346* 

         STGP vs. B-J out-of-sample forecasting models based on GE daily stock returns 

STGP 
without 
transaction 
costs 

8.280 
(0.0000) 

p 
Difference 

b
 -0.046* -0.045* -0.219* -5.921* -0.793* 

STGP with 
transaction 
costs 

30.747 
(0.0000) 

p
 

Difference 
b
 -0.067* -0.030* -0.169* -2.285* -1.047* 

STGP for 
‘Low 
Intelligence 
Traders’ 

9.638 
(0.0000) 

p
 

Difference 
b
 -0.046* -0.054* -0.296* -0.683* -0.720* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

Table 36.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting models 

of the GE daily stock returns. 
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            STGP vs. H-W in-sample forecasting models based on GE daily stock returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP 
without 
transaction 
costs 

40.128 
(0.0000) 

p 
Difference 

b
 -0.013* -0.015* -0.004* -69.865* -19.366* 

STGP with 
transaction 
costs 

91.895 
(0.0000) 

p 
Difference 

b
 0.094* 0.002* 0.069* 33.574* 20.741* 

STGP for 
‘Low 
Intelligence 
Traders’ 

37.443 
(0.0000) 

p
 

Difference 
b
 0.052* 0.029* 0.046* 31.677* 11.345* 

         STGP vs. H-W out-of-sample forecasting models based on GE daily stock returns 

STGP 
without 
transaction 
costs 

9.134 
(0.0000) 

p 
Difference 

b
 -0.047* -0.047* -0.220* -5.922* -0.876* 

STGP with 
transaction 
costs 

30.740 
(0.0000) 

p
 

Difference 
b
 -0.067* -0.030* -0.170* -1.714* -1.048* 

STGP for 
‘Low 
Intelligence 
Traders’ 

11.337 
(0.0000) 

p
 

Difference 
b
 -0.047* -0.056* -0.797* -0.684* -0.803* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

Table 37.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of the GE daily stock returns. 

 

I observed even bigger out-of-sample differences between the competing forecasting 

models, indicating higher ex-ante STGP accuracy. Statistically speaking, the STGP 

outperformed both econometric models at the 99% significance level based on the WSR p-

values (in parenthesis) reported in Tables 32.0-37.0. Moreover, all test results indicate a 

statistical significance, thereby rejecting the null hypothesis of equality in the forecasting 

difference between the competing models.   I included transaction costs in my next 

experiment in order to develop a more realistic trading scenario. If transaction costs are 

very high, predictability is no longer ruled out by arbitrage because it would be too 

expensive to take advantage of even a substantially large and predictable component in 

returns. Hence, I suggest that forecasting stock markets approaches have to be seen in 

relation to the transaction costs of the stocks.  
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Each of the three financial instruments was estimated and validated by the in-sample data. 

This model estimation process was then followed by an empirical evaluation based on the 

out-of-sample data covering 1,261 observations from the 17th of September 2007 to the 14th 

of September 2012. In-sample empirical results (the paired differences) expressed in Tables 

32.0-37.0, suggests that both the Box-Jenkins and Holt-Winters models slightly outperform 

STGP forecasting models in terms of all performance measures for the S&P 500, IBM, and 

GE.  

Figures 20.0, 21.0 and 22.0 graphically compare the in-sample forecasting performance of 

the STGP, Box-Jenkins and Holt-Winters modes for the three financial instruments. The 

graphs illustrate the difference of forecasting direction suggested by the WSR test.  

 

Figure 19.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. 
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Figure 21.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. 

 

 

Figure 22.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns. 

  

When I plotted 11,405 in-sample observations of real S&P 500, IBM, and GE data (Figures 

23.0, 24.0 and 25.0), I observed that the Box-Jenkins model seems to perform better than 

both STGP and Holt-Winters (B-J curve does not deviate significantly from the real data 

curve). This is in line with Newbold and Granger (1974), who claim that the Box-Jenkins 

procedure markedly outperforms Holt-Winters. However, the out-of-sample validation 

illustrates the superiority of STGP in absolutely all experiments. The out-of-sample paired 

comparisons indicate that the STGP substantially outperforms the traditional econometric 

models. The results are significant at the 99% level, including the WSR tests.  
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Figure 23.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. A plot of real data has 

been added on 

 

 

Figure 24.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. A plot of real data has been 

added on for comparison purposes.  
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Figure 25.0 In-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns. A plot of real data has been 

added on for comparison purposes.  

 

Figures 26.0, 27.0, and 28.0 clearly illustrate the difference in forecasting direction of the 

competing models.  

 

 

Figure 26.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. 
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Figure 27.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. 

 

 

Figure 28.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns. 

 

To obtain a more realistic forecasting comparison picture, I plot 1,261 out-of-sample real 

data quotes (Figures 29.0, 30.0, and 31.0) and observe that the STGP curve overleaps with 

the real data curve suggesting a superior out-of-sample predictability of the STGP 

technique. It is clearly visible that there is a substantial difference in the out-of-sample 

forecasting performance of STGP and the more traditional econometric models.  
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Figure 29.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the S&P 500 daily stock returns. A plot of real data has 

been added on for comparison purposes.  

 

 

 

Figure 30.0  Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the IBM daily stock returns. A plot of real data has been 

added on for comparison purposes.   
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Figure 31.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the GE daily stock returns. A plot of real data has been 

added on for comparison purposes.   

 

My results are consistent with the findings of Bossaerts and Hillion (1999) and Chatfield 

(1996), who argue that forecasting models with high in-sample explanatory power do not 

usually  have high out-of-sample fit (external validity) due to model over-fitting or data 

snooping. The out-of-sample tests in my experiment controlled the over-fitting of data and 

represented a more powerful framework to evaluate the performance of the competing 

forecasting models.  

The Optimism Principle developed by Picard and Cook (1984) provides an explanation as to 

why traditional econometric models generate a better in-sample fit, but worse ex-ante 

predictions. The authors developed the Optimism Principe in the light of the standard linear 

model denoted as: 

                                                             Y X                                                               (45) 

where X is an n p full rank matrix of known constants,  is a p vector of unknown 

parameters and the error ( )i  is independently and identically distributed (IID class) 

with mean 0 and variance 
2 . The model described above is called the full model with 

some of the elements of  equalling 0 . The residual mean square (RMS), 
2

full from the 

least squares fit to the null model is in fact an unbiased estimator of 
2 . 
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However, the same assumption is not valid for the RMS from fitted forecasting models 

selected on the basis of in-sample and out-of-sample comparisons. For instance, if all 

2 1p  least squares in-sample and out-of-sample are taken into account and the subset 

associated with the smallest possible RMS, 
2

min has been chosen.  

Due to the fact that 
2 2

min full  for all values of Y and 
2

full has expectation
2 , it is 

logical that
2

min does not. Obviously, 
2

min is optimistic with significantly high bias in some 

cases. As a result, some forecasters believe that their predictions are more accurate than 

they are in reality (Picard and Cook, 1984). The consequences of possible data over-fitting of 

Box-Jenkins and Holt-Winters forecasting models in my experiment could potentially lead to 

underestimated MAPE, MAE and RMSE. The result of this underestimation is narrow 

prediction intervals and model uncertainty. Hjorth (1989) argues that model selection based 

on minimising various criterions will lead to underestimation of the same criterions.  One of 

the negative implications of the Optimism Principle is that forecasters often assume that the 

fit is better than it really is. According to Chatfield (1996), empirical diagnostic tests rarely 

reject the best-fitting model exactly because it is the best fit, thereby leading to inaccurate 

forecasts.   

In this chapter I confirmed the empirical findings of Kaboudan (2000), who presented 

scientific evidence that GP models are in fact able to forecast out-of-sample price levels 

better. The author compared GP forecasts of daily closing prices with simple baseline price 

forecast strategy where tomorrow’s price is simply equated to today’s price 1( )t tP P . 

The most important consequence of my analysis so far is that forecasting comparisons of 

different methods and models should predominantly be made on the basis of genuine out-

of-sample (ex-ante) predictions. This result is consistent with the findings of Armstrong 

(1995) and Chatfield (1996), suggesting that the real test of a forecasting model or method 

is its ex-ante forecasting ability.  

MAPE, MAE, and RMSE are all important error measures, yet they may not constitute the 

best criterion in terms of profitability. Satisfactory low forecasting errors of MAPE, MAE and 

RMSE do not necessarily guarantee that the model is generating a profit.  
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For instance, RMSE is an artificial measure of performance, because the root mean squared 

error is just a quantitative expression of the current model and does not measure the actual 

profitability of the forecasting model. Moreover, gaining profits requires more accurate 

forecasts for the critical tendency change of the stock when the asset price suddenly falls 

reversely after the price rises before.  

At this stage, I measured the actual profitability of the most realistic model for trading 

purposes- the STGP with transaction costs included for the S&P 500, IBM, and GE. I measure 

profitability by two primary criteria-the number of correct hits (forecasts) and the generated 

excess return from trading the three financial instruments. By implementing the hit ratio I 

test the percentage of time that the model has good sign of predictability is quantified by: 

                         
Number of correct forecasts

Sign rate (%)= 100
Number of generated buy / sell orders

                     (46) 

The excess return represents the amount received from trading in excess of the risk free 

rate. It is the continuously compounded return on the S&P 500, IBM and GE price minus the 

value of daily continuously compounded rate converted from the annualised investment 

yield on a three month US Treasury bill: 

                                                      
1

1

ln t
t t

t

P
R r

P




 
  

 

                                                        (47) 

where tP is the price of the S&P 500, IBM, and GE traded at period t , and tr is the risk free 

rate set at the value of daily continuously compounded rate converted from the annualised 

investment yield on a  three month US Treasury bill (data up to 14/09/2012 was 

downloaded from the Federal Reserve statistical release website at 

www.federalreserve.gov/releases/h15). Dividends are not included in my study. Moreover, I 

trade American financial instruments and this is the reason why I adopted the US risk free T 

bill rate, instead of employing other risk free instruments in deriving the excess returns.  On 

the other hand, the reason for forecasting the excess return is because it provides a 

measure of how well my models perform relative to the minimum returns gained from 

depositing the money in a risk free manner. The number of correct out-of-sample forecasts 

of the sign of return for each of the three financial instruments is reported in Table 38.0.  

http://www.federalreserve.gov/releases/h15
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Financial instrument            S&P 500                IBM                  GE 

Number of generated 
buy/sell orders 

247 298 271 

Number of correct forecasts 
(hits) 

145 162 151 

Successful hits ratio 58.7%* 54.4%* 55.7%* 

Excess return 8.12%
b 

4.93%
b 

6.01%
b 

a
 The table reports the number of times a STGP forecasting out-of-sample model correctly predicts the direction of S&P 

500, IMB and GE returns and profitability of 1,261 observations (17/09/2007-14/09/2012) for each financial instrument. A 

ratio market with asterisk (*) indicates a 95% significance based on a one-sided test of H0:p=0.50 against Ha:p>0.50. 
b
The 

risk-free rate is set at the value of daily continuously compounded rate converted from the annualized investment yield on 

a 3-month US Treasury bill (up to 14/09/2012). 

Table 38.0 Out-of-sample comparison of the predictive strength and profitability of the STGP with 

included transaction costs of 1.25% for the S&P 500, IBM, and GE forecasting models a. 

 

The corresponding hit ratios are also given. A hit ratio above 50% is a sign of actual 

profitability from trading. The S&P 500 reports a hit ratio of 58.7%, IBM has 54.4% and GE 

has 55.7%, with all transaction costs included. Table 39.0 represents the hit ratios for the 

three financial instruments over the entire sample of 12,666 observations- S&P hit ratio is 

57.3%, IBM hit ratio is 53.7% and GE hit ratio is 54.8%. 

Financial instrument            S&P 500                IBM                  GE 

Number of generated 
buy/sell orders 

2,354 3,186 2,944 

Number of correct forecasts 
(hits) 

1,349 1,711 1,613 

Successful hits ratio 57.3%* 53.7%* 54.8%* 

Excess return 7.98%
b 

4.62%
b 

5.81%
b 

a
 The table reports the number of times a STGP forecasting model correctly predicts the direction of S&P 500, IBM and GE 

returns and profitability for the entire sample of 12,666 observations (24/05/1962-14/09/2012) for each financial 

instrument. A ratio market with asterisk (*) indicates a 95% significance based on a one-sided test of H0:p=0.50 against 

Ha:p>0.50. 
b
The risk-free rate is set at the value of daily continuously compounded rate converted from the annualized 

investment yield on a 3-month US Treasury bill (up to 14/09/2012). 

Table 39.0 Comparison of the predictive strength and profitability of the STGP (over the entire sample) 

with included transaction costs of 1.25% for the S&P 500, IBM, and GE forecasting models a. 

 

Additionally I performed another test to investigate whether the hit ratio of the S&P 500, 

IBM and GE is significantly different from the benchmark of 0.5 (a 95% significance level 

based on a one-sided test). Under the null hypothesis that the test has no predictive 

effectiveness power 0( : 0.50H p  against 0 : 0.50)H p  .  
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The statistical test shows that the hit ratios of the S&P 500, IBM and GE are significantly 

different from 0.50, which confirms the ability of these forecasting models in the prediction 

of the returns of the three financial instruments.  

Tables 38.0 and 39.0 also reports the excess return gained from trading the index and the 

two securities. The out-of-sample excess return of S&P 500 is 8.12%, followed by GE with 

recorded profitability of 6.01% and IBM with 4.93%. The excess returns based on the whole 

sample generated slightly lower values- S&P 500 has excess return of 7.98%, followed by GE 

with 5.81% profitability, and IBM with 4.62% excess return. The excess returns differences 

between out-of-sample and the whole sample can be explained by the initial chaotic 

behaviour of the STGP models. The very first years of historical data serve as training period 

leading to lower in-sample profitability of the STGP forecasting models.  

Jones (2002) reported that when summed together, bid-ask spreads and commissions for 

trading US equities account for 0.84%. I chose higher transaction costs of 1.25%, or 125 

basis points, in order to assess the economic significance of the profits earned. There are 

two reasons for the selection of this particular level of transaction costs.  

First, while the level of 1.25% may be relatively high by current standards, it appears 

reasonable for the earlier period of the experiment. Second, I used higher transaction costs 

to guard against over-fitting in-sample, which seems intuitively reasonable. My results are 

consistent with the findings of Kaboudan (2000), who claims that stocks are not equally 

profitable. His empirical results suggested that low priced stocks ($50 or less) are more 

profitable only when their daily spread average is fairly high (>$1.75). One of the reasons for 

the difference in profitability in my case might be the high price of the index (an out-of-

sample average of $1.195) comparing to only $20 of the GE.  

Overall, I believe that stock returns in excess of the risk free rate are indeed predictable, as 

many other studies have also concluded e.g. Keim and Stambaugh (1986); Campbell (1987); 

Breen, Glosten, and Jagannathan (1990); Fama (1991); Brock, Lakonishok, and LeBaron 

(1992) Sullivan, Timmermann, and White (1997). Moreover, have I expanded upon these 

studies by the inclusion of appropriate transaction costs making my models more realistic 

for stock exchange trading purposes.  
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7.4.2.An investigation into whether intelligence and trader cognitive abilities matter in 

the formation of more sophisticated trading rules or if the market mechanism is the main 

driving force.  

 

Logically, the in-sample results generated by the STGP for ‘Low Intelligence Traders’ has 

been outperformed in the three experiments of the S&P 500, IBM and GE time series. 

Although the ‘Low Intelligence Traders’ generated decent out-of-sample forecasts, their 

predictive ability has a bias, judging by the forecasting measurement errors of the other 

three experiments.  

While the ‘Best Performing Traders’ group investigated the complexity and heterogeneity of 

the trading rules, the pool of ‘Low Intelligence Traders’ with half genome depth examined 

the emergent behaviour of traders. I have achieved relatively stable ‘Low Intelligence 

Traders’ out-of-sample forecasting accuracy.  

Surprisingly, the market populated by ‘Low Intelligence Traders’ returned low MAPE, MAE, 

and RMSE (Tables 29.0-31.0) in comparison with some of the S&P 500, IBM and GE markets 

composed of traders equipped with more intelligence (genome depth of 20).  

The low measuring forecasting errors demonstrated by the ‘Low Intelligence Traders’ in 

some of the markets is because artificial traders with reduced levels of intelligence generate 

forecasts that tend to stay relatively close to the previous real price. This trader cognitive 

behaviour is consistent with the Adaptive Expectations Hypothesis, where decision-makers 

rely predominantly on recent trends in forming their future forecasts (Weigand et al.,2004).  

In my experiment traders with lower levels of intelligence tended to develop their forecasts 

extrapolatively, that is, based mainly on the past history of the data under consideration. 

The current expectations of ‘Low Intelligence Agents’ seem primarily based on a 

geometrically weighted moving average of past observations: 

                                           
, 1

0

(1 )

j

it i t j

j

y y 




 



                                                     (48) 

where ty is the endogenous variable, ity
 represents unobservable anticipations, formed in 

period t-1 and represents the smoothing data weight parameter (Wallis, 1980). 
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The forecasting price generated by the ‘Low Intelligence Traders’ averages out to give an 

artificial stock market price close to the previous real market price. This in turn causes the 

forecasts to also be relatively close to the next real price, compared with traders with 

enhanced intelligence (the first experiment) that generate forecasts that tend to deviate 

more from the previous and next real price but have improved forecasting errors. This 

experiment also demonstrates the emergent consequences of traders trying to make 

money.  

 

7.5. Conclusions 
 

Developing and selecting a plausible model are the two most important ingredients of the 

forecasting process. My empirical results suggest that the comparison and selection of 

forecasting models should be based entirely on the basis of genuine out-of-sample (ex-ante) 

predictions. Generally speaking it is impossible to specify a forecasting evaluation criterion 

that is universally acceptable (Diebold, 1998). However, I applied formal statistical model 

selection criteria to establish the most accurate forecasting model to predict the stock 

returns of an index and two stocks. The STGP forecasting performance was compared with 

that of traditional econometric approaches, which demonstrated the superiority of the 

STGP-based algorithm.  I found significant evidence that excess returns in my experiment 

are both statistically and economically significant, even when transaction costs are taken 

into account. Such evidence does not appear to have been caused by model over-fitting 

because I implemented an evolutionary STGP technique which does not use the same data 

set for forecasting purposes. My incremental walk-forward (out-of-sample tested) 

forecasting approach does not over-fit historical data, thereby leading to a more resilient 

and stable forecasting model. The possible dangers of data over-fitting emerge in many 

areas of finance and economics, such as the predictability of stock returns (Foster et 

al.,1997). Although my in-sample forecasts seem less impressive, there are certainly more 

reliable and more indicative of future predictive performance when market behaviour 

changes.  The round-trip transaction costs level of 125 basis points suggests that significant 

opportunities for excess returns can be exploited in an efficient manner, regardless of 

transaction costs.  
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Bearing in mind the fact that the level of excess returns I achieved is not negligible, investors 

may want to consider the forecasting model described in this paper. Taking into 

consideration the fact that transaction costs are more likely to continue to decrease over 

time, one should expect the actual profitability of my model to grow accordingly. However, I 

think that no single investment strategy no matter how accurate is able to achieve a hit ratio 

approaching 100% and therefore constantly beat the stock market. Stock markets never 

stop their evolution and trading rules need to evolve in order to stay profitable.    

The ‘Low Intelligence Traders’ emergent trading behaviour analysis emphasised the 

importance of intelligence in the trading and decision-making processes.  I found empirical 

evidence that trader cognitive abilities play an important role in the formation of trading 

rules. Lack of sufficient levels of intelligence led towards more extrapolative formation of 

trading rules that rely on more recent data observations. Although my findings are 

consistent with the Hayek and the Adaptive Expectations hypotheses, I think that the 

presence of greater intelligence have beneficial forecasting effects and leads to more 

complex trading rules. Hence, traders equipped with increased intelligence demonstrate 

enhanced complexity of trading rules and forecasting accuracy.  To summarise, this chapter 

makes several important contributions to the literature- first, I have provided new evidence 

of significant stock market predictability and profitability, even when substantial transaction 

costs are taken into account, and second I have provided detailed analysis of the impact of 

trader cognitive abilities on the accuracy of forecasting rules. Third and finally, this study 

conducted very rare experimental tests of the Adaptive Expectations, and the Optimism 

Principle.   

I believe further research should include a direct comparison of the forecasting abilities of 

Genetic Programming and Strongly Typed Genetic Programming. Another possible avenue 

of future research could be the comparison of STGP with a combination of forecasts. It has 

been established that a weighted linear combination of different forecasts is more accurate 

than any individual forecast (Clement, 1989).  

The existing literature also provides a number of results suggesting that small cap stocks are 

characterised with higher predictive ability than large cap stocks. This is clearly worth a 

detailed empirical analysis and, will be the subject of forthcoming research.  
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Chapter 8  

New evidence of small-cap stocks profitability and price-volume 

relation  

 

8.1. Introduction 
 

Stock market forecasting remains a topic of continuous controversy. Some academics argue 

that stock price predictability is due to irrationalities, such as noisy trading or bubbles which 

make stock prices deviate temporarily from their fundamental values and lead to negatively 

autocorrelated and therefore predictable returns. In terms of equity forecasting, the 

question of how much to invest in large-or small-capitalisation companies is often seen as a 

vitally important decision due to the risk implications associated with returns in the long-

term.  

It is more than thirty years since the publication of two seminal papers- Banz (1981) and 

Reinganum (1981) on the performance of small cap companies. Banz (1981) found that 

market equity (ME) explains the cross-section of average returns provided by market  . 

The author demonstrated that the average returns on small stocks are too high given their

 calculations and the corresponding average returns on large stocks are too low, leading 

to the misspecification of the capital asset pricing model (CAPM). He divided the stocks on 

the NYSE into quintiles based on market capitalisation data. Stock returns for the smallest 

quintile during 1926-1980 dominated the other quintiles and indexes. Reinganum (1981) 

argued that small-cap stocks systematically indicate average rates of return that are 

substantially greater than those of large-cap stocks with equivalent beta risk for at least two 

years. The author highlighted CAPM misspecification due to omitted risk factors from the 

same model leading to small-cap stock outperformance for at least two years.  
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My research focuses on the dynamic relation (causality) between daily stock returns and 

trading volume, taking into account the notion of Granger causality proposed by Wiener 

(1956) and Granger (1969). Many studies report uni-directional (Smirlock and Starks, 1988; 

Saatcioglu and Starks, 1998; Antoniewicz, 1992) and bi-directional (Copeland, 1976; 

Jennings et al., 1981) Granger causality price-volume relationships. The findings of these 

studies highlight the predictability of stock returns based on trading volume. The dynamic 

nature of the price-volume relation is an important indicator of whether information about 

trading volume is useful in improving the predictability of stock returns.    

I used a Strongly Typed Genetic Programming (STGP) technique, developed by Montana in 

1995, to present a new type of laboratory evidence in the small-cap equity puzzle. No 

known study has investigated the small-cap phenomenon through the application of STGP 

modelling. I developed two stock markets populated by 10,000 traders each and one market 

with 1,000 traders only, where traders receive information about the value of the Russell 

1000, the Russell 2000 and the Russell 3000 and generate forecasting orders. The Russell 

3000 consists the top 3,000 US small-and large-cap companies representing 98% of the US 

stock market. The other two indices on my study- the Russell 1000 index and the Russell 

2000 index- are subsets of the Russell 3000 index. The Russell 1000 index represents the 

1,000 largest stocks in the Russell 3000 index. The Russell 2,000 index consists of 2,000 of 

the smallest stocks based on a mixture between market capitalisation and current index 

membership. While the Russell 1000 is reconstructed annually to ensure the inclusion of 

new and growing equities, the Russell 2000 is reconstructed annually to ensure larger stocks 

do not distort the characteristics of the pool of small-cap stocks.   

The traders then decide whether they want to buy or sell one or more units of the index. 

The artificial traders in my experiment possess different trading rules and behaviours. 

Traders make independent forecasts creating a heterogeneous market structure.  I 

uploaded each market with real-life historical data of the Russell indices. Consistently with 

the vast majority of the forecasting literature published to date, in the first stock market 

containing 10,000 traders I did not incorporate any transaction costs.  

 



193 
 

To determinate whether small- or large-cap stocks dominate the market in a more realistic 

trading scenario, I included transaction costs to my second market containing 10,000 traders 

of 0.25% or 25 basis points for Russell 1000 and Russell 3000 and 0.60% or 60 basis points 

for Russell 2000. My last stock market was populated by 1,000 artificial traders and had no 

transaction costs. 

I then compared the in-sample and out-of-sample STGP models to traditional econometric 

forecasting techniques such as Box-Jenkins and Holt-Winters. The forecasting performance 

is evaluated through five measures in order to investigate the following: 

I.Whether small-cap stocks are more predictable than large-cap stocks. An investigation into 

whether the three indices returns in excess of the risk free rate are predictable and most 

importantly profitable (quantifying the precise level of generated profit after taking 

appropriate transaction costs into account).   

II.The dynamic causal relationship between trading volume and index returns. An 

investigation into whether the level of in-sample trading volume is a good predictor for the 

out-of-sample stock returns.  

III.Whether a market with a reduced population of only 1000 traders is capable of 

generating accurate and profitable forecasts.  

Specifically, the major contributions of this chapter to the field are: 

•To show the index returns and the exact level of profitability when appropriate transaction 

costs are taken into account.  

•To shed light on the ‘size effect’ equity puzzle which generated a lively debate on market 

efficiency and asset pricing.  

•To empirically demonstrate the impact of trading volume on the future direction of stock 

returns.  

•To conduct unique experimental tests of the errors-in-expectations hypothesis and the 

visibility hypothesis within laboratory-based artificial stock market settings. 
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•To demonstrate that genetic diversity plays a vitally important role in forecasting accuracy 

and stock market behaviour.  

My findings are consistent with the recent wave of research suggesting that small-cap stocks 

are more predictable and tend to cyclically outperform large-cap stocks. Moreover, I 

demonstrate that small-cap stocks generate higher returns after transaction costs and 

therefore they are more profitable in overall terms.  

I showed that enhanced genetic diversity and the presence of more artificial traders have 

beneficial effects on forecasting accuracy. My investigation on the dynamic price-volume 

causal relationship revealed a very weak presence of bi-directional and a few cases of uni-

directional relationships. 

 

8.2. Background 
 

By approximate definitions, small-cap stocks have a smaller market capitalisation within the 

range of $250 million and $2 billion. Small-cap stocks often outperform large-cap stocks, but 

their dominance is characterised by a rather cyclical nature. From 1925 to 1964, small-caps 

and large-caps had identical returns. In the next four years to 1968, the small-cap asset 

returns doubled compared to the large-cap ones. During the following five years this 

advantage disappeared. The period from 1973 to 1983 is characterized by the largest small-

cap stocks outperformance (Bogle, 2000). However, from an historical point of view, small-

cap stocks delivered higher Earnings Per Share (EPS) growth rates than large-cap stocks 

(about 50% higher on average).  

Recent data released by Russell Investments shows that in the last decade small-cap stock 

returns exceeded those of large-cap stocks seven times (Oharazawa, 2010). The small-cap 

Russell 2000 index outpaced the large-cap Russell 1000 index by nearly fifty percentage 

points during the last decade (Opdyke, 2010). For the last fifty years (up to December 31, 

2011), $1 invested in large-cap stocks would have grown to $83. The same investment in 

small-cap stocks would have grown to $263 (Standard and Poor’s, 1957-2011). Moreover, 

small-cap stocks appear more predictable than large-cap stocks (Avramov, 2001).  
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Although the dominance of the small-cap stocks has not been constant and steady, recent 

studies have continued to document the importance of size in determining asset returns.  

Johnson et al. (1999) argued that the returns to small-cap stocks are over four times higher 

(about 2,000 basis points) than the returns to large-cap stocks during US Democratic 

administrations. Siegel (2002) suggested that relatively young markets are more likely to 

reject the weak form of market efficiency. Ready (2002) and Qi and Wu (2006) demonstrate 

that more arbitrage opportunities exist in young markets than in mature ones.  

Hansen et al. (2005) found significant calendar effects in small stock indices. Hsu and Kuan 

(2005) reported the existence of significantly profitable trading rules in young markets 

proxied by NASDAQ Composite and Russell 2000 from 1989 to 2002, but not in mature 

markets such as the DJIA and S&P 500 for the same period.  

Switzer and Fan (2007) suggested that the small-cap stock outperformance is country 

dependent and demonstrated this by adding Canadian small-cap stocks for international 

investors in enhancing their risk-return performance. In another study, Switzer (2010) 

investigated the small-cap premium in US and Canada. The author demonstrated that since 

2000, economically and statistically significant abnormal performance has been observed in 

small-cap stocks in both countries. Hsu et al. (2010) used S&P SmallCap 600/Citigroup 

Growth, Russell 2000, and NASDAQ Composite to proxy for the small and growth segments 

of the US stock markets and found significant predictive power for those stock portfolios in 

the pre-exchange trading periods. Shynkevich (2012) found profitable technical trading rules 

for a number of small-cap sector portfolios after adjusting for data-snooping bias, but only 

before the inclusion of transaction costs.  

Allen and Karjalainen (1999) were the first to implement a Genetic Programming (GP) 

approach to create trading rules for the S&P index from 1928 to 1995. Kaboudan (1999) 

achieved more reliable forecasting results by the introduction of a new GP probability 

measure of the time series’ predictability. Kaboudan (2001) used a GP approach to generate 

reasonable one-day-ahead forecasts of stock prices. Lawrenz and Westerhoff (2003) applied 

GP techniques to design a simple but efficient exchange-rate model to understand the 

driving forces of the foreign exchange markets. Zhou (2004) used GP to develop an effective 

emerging markets stock selection model.  
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Potvin et al. (2004) generated positive excess returns (without considering transaction 

costs) by applying GP on 14 Canadian companies for 1992-2000. Fyfe et al. (2005) found that 

basic GP returns are higher than buy-and-hold returns for three different S&P indices. How 

et al. (2010) used a GP approach to find substantial evidence that technical trading rules 

have a higher predictive ability for the Russell 2000 index than the Russell 1000 index. 

However, once transaction costs were included the small-cap (Russell 2000 index) 

disappeared. The positive excess returns for the Russell 2000 index turned into large 

negative annual average excess returns of up to 9.9%.  

Research on the stock price-volume relationship goes back to the early 1950’s. The early 

studies on price-volume relation examined the contemporaneous relationships between 

absolute price changes and trading volume and suggested positive relationships between 

daily price changes and daily trading volume for both stocks and indices (Ying, 1966; 

Westerfield, 1977; Rutledge, 1984).  

According to Karpoff (1987), there are at least three reasons why the price-volume relation 

is important: 1) it provides a clear view of the financial markets structure; 2) it plays a 

significant role in the empirical distribution of speculative prices; and 3) it has substantial 

implications on futures markets and event studies that use a mixture of price and volume 

data from which to draw inferences.  

Several subsequent studies have found a positive price-volume relationship (Courouch, 

1970; Epps and Epps, 1976; Haris, 1986; Chen et al., 2001; Khan and Razwan, 2001; Lee and 

Rui, 2002; Pisedtasalasai and Gunasekarge, 2008).  

Chordia and Swaminathan (2000) found that daily returns of stocks with high trading 

volume lead daily returns of stocks with low trading volume. Wang (1994) investigated the 

dynamic (causal) relationships between volume and returns and stated that volume may 

provide information about expected future returns. Hiemstra and Jones (1994) and Fajihara 

and Mougoue (1997) discovered bi-directional nonlinear causality in the prices and trading 

volume. Silvapulle and Choi (1999) found strong evidence of nonlinear bi-directional 

causality between stock returns and volume series.  
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Chen et al. (2001) conducted a comprehensive study examining the dynamic stock price-

volume relation using daily data from nine major markets. The authors reported strong 

evidence for the argument that returns causes volume but no evidence to suggest that 

volume causes returns.  

Chen and Liao (2002) investigated the stock price-volume relationship from the perspective 

of an agent-based model of stock markets and found the presence of bi-directional causality 

between stock returns and trading volume in all four artificial stock markets of different 

design. Chen and Liao (2005) regarded the price-volume relationship as a genetic property 

of a financial market and its full understanding cannot be accomplished unless the causal 

relationship between individual behaviour at the bottom and aggregate phenomena at the 

top is well understood.  

The significance of all these findings is that trading volume can help predict stock returns. In 

other words, the knowledge of current trading volume improves the ability to forecast stock 

prices, because the trading volume has predictive power on stock returns enabling traders 

to develop volume-based strategies. 

 

 8.3. Artificial stock market settings for this particular experiment 
 

Table 40.0 represents the main settings of the STGP-based artificial stock market model for 

this particular experiment. 
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                                                                           Artificial stock market parameters 

Total population size (agents)  10,0000 

Initial wealth(equal for all agents) 100,000 

One way transaction costs 0.60% (60 bsp) for small cap index; 0.25% (25 bsp) for large 
cap index. 

Significant Forecasting range 0% to 10% 

Number of decimal places to round quotes on importing 2 

Minimum price increment for prices generated by model 0.01 

Minimum position unit 20% 

Maximum genome size 4096* 

Maximum genome depth 20** 

Minimum initial genome depth 2 

Maximum initial genome depth 5 

Breeding cycle frequency (bars) 1 

Minimum breeding age (bars) 80 

Initial selection type random 

Parent selection (percentage of initial selection that will 
breed)  

5% 

Mutation probability (per offspring)  10% 

Total number of quotes processed-Russell 1000 8,840 (7,306 in-sample, 1534 out-of-sample) 
21/05/1979-01/01/2007 ;  02/01/2007-16/11/2012 

Total number of quotes processed-Russell 2000 8,840 (7,306 in-sample, 1534 out-of-sample) 
21/05/1979-01/01/2007 ;  02/01/2007-16/11/2012 

Total number of quotes processed-Russell 3000 8,840 (7,306 in-sample, 1534 out-of-sample) 
21/05/1979-01/01/2007 ;  02/01/2007-16/11/2012 

Seed generation from clock Yes 

Creation of unique genomes Yes 

Offspring will replace the worst performing agents of the 
initial selection   

Yes 

 

                                                   Table 40.0 Artificial Stock Market Parameter Settings 
*Maximum genome size measure the total number of nodes in an agent’s trading rule. A node is a gene in the genome 
such as a function or a value.  

**Maximum genome depth measures the highest number of hierarchical levels that occurs in an agent’s genome (trading 
rule). The depth of a trading rule can be an indicator of its complexity.  

8.4. One-step-ahead (static) forecasts and benchmark forecasting models.  
 

I adopted one-step-ahead forecasts because it offers the opportunity to estimate a 

sequence of one-step-ahead predictions, using the actual rather than forecasted values for 

lagged dependent variables (if available). The dynamic or multi-step forecasts adopt 

previously forecasted values for the lagged dependent variables that are used in the process 

of generating forecasts of the current value. One of the most important advantages of the 

one-step-ahead forecast is the ability to avoid problems associated with cumulative errors 

from the previous period for out-of-sample forecasting (Makridakis and Winkler, 1989). I 

chose the Box-Jenkins model and Holt-Winters (three parameters) multiplicative 

exponential smoothing model as benchmarks for comparison to the STGP technique.  
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The Box-Jenkins or ARIMA approach was introduced in the 1970, and since then has become 

one of the most popular tools for time series forecasting. The technique has been 

successfully applied to some of the most difficult forecasting problems. Some studies 

suggest that 13 per cent of the financial services industry use exponential smoothing models 

such as the Holt-Winters model. The Holt-Winters multiplicative (additive trend, 

multiplicative seasonality) method represents a weighted average of past data, in which the 

actual weights decline geometrically over a time horizon in order to capture short-term 

fluctuations in the values. The most recent observations in the Holt-Winters forecasting 

model have the most relevance in forecasting the future values. 

8.5. Measures of forecasting accuracy. 
 

As is standard in the forecasting literature, I estimated the Mean Absolute Percent Error 

(MAPE), Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE). The lower 

the output of the error statistics achieved, the better the forecasting accuracy of the model 

concerned. I used the three forecasting accuracy measures to compare the forecasting 

errors within the Russell 1000, the Russell 2000 and the Russell 3000 individual datasets, but 

not between them because this measure of accuracy is scale-dependent (Hyndman and 

Koehler, 2006). The three measures of forecasting accuracy are quantified as follows: 
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Where N is the number of forecasting periods, id is the actual price of the Russell 1000, 

2000 and 3000 at period t , and tz is the forecasting stock price at period t (Pai and Lin, 

2005). Additionally I discuss the values of the Maximum Absolute Error (MaxAE) and the 

Maximum Absolute Percentage Error (MaxAPE).  
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8.6. Simulation results 

8.6.1. Comprehensive analysis of whether small-cap stocks are more predictable than 

large-cap stocks. An investigation into whether the three indices’ returns, in excess of the 

risk free rate are predictable, and most importantly profitable.   

 

The in-sample and out-of-sample summaries of the descriptive statistics of the daily returns 

for the Russell 1000, the Russell 2000 and the Russell 3000 are illustrated in Table 41.0.  

 Russell 1000 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Daily mean 0.0843 0.8492 

Daily standard deviation 0.0617 0.1367 

Skewness 0.5471 -0.6755 

Kurtosis 1.7686 2.5955 

J-B 826.0435 (0.0000) p 127.1426 (0.0000) p 

ADF* -52.5321 (0.0000) p -52.5351 (0.0000) p 

Russell 2000 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Daily mean 0.0985 1.1382 

Daily standard deviation 0.0659 0.1925 

Skewness 0.6956 -0.8539 

Kurtosis 2.4016 2.8394 

J-B 688.6519 (0.0000) p 188.0888 (0.0000) p 

ADF* -61.5108 (0.0001) p -43.3756 (0.0000) p 

Russell 3000 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Daily mean 0.0851 0.8671 

Daily standard deviation 0.0615 0.1397 

Skewness 0.5335 0.7080 

Kurtosis 1.7536 2.6286 

J-B 819.5089 (0.0000) p 136.9812 (0.0000) p 

ADF* -62.7357 (0.0001) p -43.7368 (0.0000) p 

*The MacKinnon (1996) one-sided critical value for rejection of the null hypothesis of a unit root at 5% level is -3.410060; J-B: the Jarqu-

Bera test; ADF: Augmented Dickey-Fuller Unit Root Test; p: the p value 

Table 41.0 Descriptive statistics for the Russell 1000, Russell 2000, and Russell 3000 in-sample and out-

of-sample daily index returns.  

Following the existing forecasting literature, return is defined as the natural logarithm of 

value relatives. The return series are asymmetric as illustrated by a non-zero skewness. 

While there is no presence of excess kurtosis in all of the three indices, the out-of-sample 

descriptive statistics indicate higher kurtosis than the in-sample descriptive statistics (more 

of the out-of-sample variance is the result of infrequent extreme deviations). According to 

the Jarque-Bera test results, the null hypothesis that the price series generated by the 

artificial traders is normally distributed is rejected in all in-sample and out-of-sample periods 

(Table 41.0). 
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Tables 42.0-43.0 represents the in-sample and out-of-sample forecasting performance of 

Box-Jenkins and Holt-Winters for the three indices without any transaction costs included. 

                               Box-Jenkins (without transaction costs) Russell 1000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Box-Jenkins model type ARIMA(2,1,1) ARIMA(1,1,1) 

RMSE 8.003 17.702 

MAE 4.389 12.315 

MAPE 0.663 1.1012 

MaxAPE 22.642 9.838 

MaxAE 87.379 107.190 

Normalized BIC 4.165 5.762 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 42.0 In-sample and out-of-sample performance of Box-Jenkins (without transaction costs) 

forecasting models of Russell 1000 daily index return series.  

 

                                 Holt-Winters (without transaction costs) Russell 1000 statistics 

Forecasting sample In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 8.006 17.780 

MAE 4.385 12.283 

MAPE 0.663 1.010 

MaxAPE 22.757 10.218 

MaxAE 86.929 109.107 

Normalized BIC 4.162 5.761 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 43.0 In-sample and out-of-sample performance of Holt-Winters (without transaction costs) 

multiplicative exponential smoothing forecasting models of Russell 1000 daily index return series.  

 

                                Box-Jenkins (without transaction costs) Russell 2000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Box-Jenkins model type ARIMA(1,1,5) ARIMA(0,1,1) 

RMSE 9.655 30.008 

MAE 5.346 22.064 

MAPE 0.648 1.357 

MaxAPE 13.596 13.332 

MaxAE 86.159 22.064 

Normalized BIC 4.540 6.808 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 44.0 In-sample and out-of-sample performance of Box-Jenkins (without transaction costs) 

forecasting models of Russell 2000 daily index return series.  
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                                Holt-Winters (without transaction costs)  Russell 2000 statistics 

Forecasting sample In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 9.619 29.999 

MAE 5.357 22.050 

MAPE 0.655 1.356 

MaxAPE 14.039 13.331 

MaxAE 87.431 32.469 

Normalized BIC 4.531 6.807 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error.  

Table 45.0 In-sample and out-of-sample performance of Holt-Winters (without transaction costs)  

multiplicative exponential smoothing forecasting models of Russell 2000 daily index return series.  

                                 Box-Jenkins (without transaction costs)  Russell 3000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Box-Jenkins model type ARIMA(0,1,1) ARIMA(0,1,4) 

RMSE 7.986 18.344 

MAE 4.402 12.835 

MAPE 0.654 1.034 

MaxAPE 21.676 10.098 

MaxAE 86.119 107.533 

Normalized BIC 4.158 5.833 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 46.0 In-sample and out-of-sample performance of Box-Jenkins (without transaction costs) 

forecasting models of Russell 3000 daily index return series.  

 

 

                                Holt-Winters (without transaction costs)  Russell 3000 statistics 

Forecasting sample In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 7.976 18.426 

MAE 4.390 12.800 

MAPE 0.654 1.031 

MaxAPE 22.006 10.112 

MaxAE 86.960 110.214 

Normalized BIC 1.244 5.832 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 47.0 In-sample and out-of-sample performance of Holt-Winters (without transaction costs) 

multiplicative exponential smoothing forecasting models of Russell 3000 daily index return series. 

 

Tables 48.0-53.0 illustrate the in-sample and out-of-sample forecasting statistics of both 

traditional econometric models for the three financial instruments with transaction costs 

added on. 
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                                Box-Jenkins (transaction costs included) Russell 1000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Box-Jenkins model type ARIMA(2,1,1) ARIMA(1,1,1) 

RMSE 8.804 19.472 

MAE 4.828 13.546 

MAPE 0.663 1.012 

MaxAPE 22.642 9.839 

MaxAE 96.118 117.908 

Normalized BIC 4.355 5.952 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 48.0 In-sample and out-of-sample performance of Box-Jenkins forecasting models with transaction 

costs of Russell 1000 daily index return series.  

 

                               Holt-Winters (transaction costs included) Russell 1000 statistics 

Forecasting sample In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 8.806 19.558 

MAE 4.823 13.512 

MAPE 0.663 1.010 

MaxAPE 22.757 10.218 

MaxAE 95.622 120.679 

Normalized BIC 4.352 5.952 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 49.0 In-sample and out-of-sample performance of Holt-Winters multiplicative exponential 

smoothing forecasting models with transaction costs of Russell 1000 daily index return series.  

 

                              Box-Jenkins (transaction costs included) Russell 2000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Box-Jenkins model type ARIMA(1,1,5) ARIMA(0,1,1) 

RMSE 10.620 33.009 

MAE 5.881 24.271 

MAPE 0.648 1.357 

MaxAPE 13.595 13.331 

MaxAE 94.775 178.709 

Normalized BIC 4.730 6.998 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 50.0 In-sample and out-of-sample performance of Box-Jenkins forecasting models with transaction 

costs of Russell 2000 daily index return series.  

 

 

 



204 
 

                             Holt-Winters (transaction costs included) Russell 2000 statistics 

Forecasting sample In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 10.581 32.999 

MAE 5.893 24.255 

MAPE 0.655 1.356 

MaxAPE 14.037 13.331 

MaxAE 96.175 178.716 

Normalized BIC 4.722 6.998 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 51.0 In-sample and out-of-sample performance of Holt-Winters multiplicative exponential 

smoothing forecasting models with transaction costs of Russell 2000 daily index return series.  

 

                                Box-Jenkins (transaction costs included) Russell 3000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Box-Jenkins model type ARIMA(0,1,1) ARIMA(1,1,1) 

RMSE 8.785 20.178 

MAE 4.842 14.118 

MAPE 0.654 1.034 

MaxAPE 21.676 10.098 

MaxAE 94.731 118.287 

Normalized BIC 4.394 6.024 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 52.0 In-sample and out-of-sample performance of Box-Jenkins forecasting models with transaction 

costs of Russell 3000 daily index return series.  

 

 

 

                                Holt-Winters (transaction costs included) Russell 3000 statistics 

Forecasting sample In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

Holt-Winters model type Multiplicative smoothing Multiplicative smoothing 

RMSE 8.774 20.268 

MAE 4.829 14.080 

MAPE 0.654 1.031 

MaxAPE 22.006 10.112 

MaxAE 95.656 121.235 

Normalized BIC 4.345 6.023 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

 Table 53.0 In-sample and out-of-sample performance of Holt-Winters multiplicative exponential 

smoothing forecasting models with transaction costs of Russell 3000 daily index return series.  
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Tables 54.0-56.0 report the in-sample and out-of-sample forecasting ability of the STGP for 

Russell 1000, 2000 and 3000.   

Strongly Typed Genetic Programming (without transaction costs)  Russell 1000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

RMSE 7.654 15.045 

MAE 3.930 10.435 

MAPE 0.646 0.848 

MaxAPE 19.707 8.183 

MaxAE 77.035 100.694 

Strongly Typed Genetic Programming (transaction costs included)  Russell 1000 statistics 

RMSE 9.023 17.363 

MAE 4.965 10.066 

MAPE 0.717 0.852 

MaxAPE 103.597 6.217 

MaxAE 144.407 100.202 

            Strongly Typed Genetic Programming (1000 traders)  Russell 1000 statistics 

RMSE 13.140 17.672 

MAE 5.827 11.420 

MAPE 1.252 0.936 

MaxAPE 234.955 8.882 

MaxAE 292.506 99.899 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum Absolute 

Percentage Error; MaxAE-Maximum Absolute Error. 

Table 54.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models of Russell 1000 daily index return series.  

 

Strongly Typed Genetic Programming (without transaction costs)  Russell 2000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

RMSE 9.618 28.476 

MAE 5.222 20.927 

MAPE 0.610 1.275 

MaxAPE 10.762 11.484 

MaxAE 73.904 14.123 

Strongly Typed Genetic Programming (transaction costs included)  Russell 2000 statistics 

RMSE 12.912 28.476 

MAE 6.930 20.927 

MAPE 1.145 1.275 

MaxAPE 113.639 11.484 

MaxAE 173.900 141.123 

Strongly Typed Genetic Programming (1000 traders)  Russell 2000 statistics 

RMSE 14.902 28.649 

MAE 7.678 20.716 

MAPE 1.225 1.269 

MaxAPE 101.734 12.216 

MaxAE 185.431 171.018 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error 

Table 55.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models of Russell 2000 daily index return series.                  
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Strongly Typed Genetic Programming (without transaction costs)  Russell 3000 statistics 

Forecasting range In-sample Out-of-sample 

Dates 21/05/1979-01/01/2007 02/01/2007-16/11/2012 

Number of observations 7306 1534 

RMSE 6.012 12.600 

MAE 3.111 8.950 

MAPE 0.548 0.700 

MaxAPE 20.007 6.622 

MaxAE 80.643 84.236 

Strongly Typed Genetic Programming (transaction costs included)  Russell 3000 statistics 

RMSE 9.143 12.783 

MAE 5.018 8.785 

MAPE 0.713 0.689 

MaxAPE 63.506 8.208 

MaxAE 102.986 97.347 

                Strongly Typed Genetic Programming (1000 traders)  Russell 3000 statistics 

RMSE 18.038 19.356 

MAE 6.334 13.370 

MAPE 1.284 1.005 

MaxAPE 125.980 8.762 

MaxAE 504.558 111.276 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

Table 56.0 In-sample and out-of-sample performance of Strongly Typed Genetic Programming 

forecasting models of Russell 3000 index return series.  

 

 

Prior to the main analysis of this study, the Russell 1000, 2000 and 3000 returns and trading 

volume were subjected to stationary tests. A stationary time series is a necessary condition 

for developing the Box-Jenkins forecasting models. For this purpose, the Augmented Dickey-

Fuller (ADF) test was conducted. I performed the ADF test by running a regression of the 

first difference of the log price series against the series lagged once (a sufficient condition to 

eliminate autocorrelation in the residuals) combined with a drift and a time trend. The 

process is quantified by: 

                                 
4

1 1 1 1 6 7

1

t t i t

i

t        



                            (52)                          

Under the null hypothesis of the ADF test  ln( )t tp p contains a unit root  1 0  . The 

alternative hypothesis of no unit root presence is rejected when 1 0  . The null hypothesis 

of the presence of a unit root has been rejected for both the in-sample and out-of-sample 

periods of the Russell 1000, the Russell 2000 and the Russell 3000 return series (Table 41.0). 

Hence, the returns of the three indices are stationary at the 95% significance level: 
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1ln( ) ln( )t t tr P P                                                            (53) 

 where
tr  denotes the returns of the three indices and 

tP represents the price series at time

t . This finding is consistent with Lee et al. (2010) who discovered stationary price series in 

32 developed and 26 developing countries.  

Based on non-normal distribution nature of the time series in my experiment, I apply the 

Wilcoxon signed-rank (WSR) test to determinate whether the forecasts from two competing 

models are equally accurate. The null hypothesis of the WSR test is that the two populations 

represented by the respective members of the matched pairs are identical. When the null 

hypothesis is true, then each of the 2N
possible sets of signed ranks estimated by arbitrarly 

assigning plus or minus signs to be ranks 1 through N is equally likely (DeFusco et al., 1990). 

The test statistic is:  

 

                                         

1

( ) ( )
N

t t

t

WSR I d rank d


 
                                           (54)

 

Where   
1

0
tI d


  


         if  0tD   

Where ( )trank d denotes the rank of the absolute value of td (Alon et al., 2001). 

I began my econometric analysis with a comparison of the in-sample and out-of-sample 

one-step-ahead forecasting accuracy of the STGP, Box-Jenkins and Holt-Winters models for 

the three indices, without taking into account any transaction costs.  

All five performance measures (MAPE, MAE, RMSE, MaxAPE and MaxAE) suggest that the 

STGP technique outperforms Box-Jenkins in all in-sample and out-of-sample experiments for 

the three financial instruments (Tables 57.0, 58.0 and 59.0). I detect substantially larger out-

of-sample difference between the two competing forecasting models, indicating higher ex-

ante STGP accuracy.  
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STGP vs. B-J in-sample forecasting models based on Russell 1000  daily index returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP-no 
transaction 
costs 

39.044 
(0.0000) 

p
 

Difference 
b
 -0.349* -0.459* -0.017* -2.935* -10.344* 

STGP with 
transaction 
costs 

36.397 
(0.0000) 

p 
Difference 

b
 0.219* 0.137* 0.054* 80.955* 48.289* 

STGP- 1000 
traders 

44.722 
(0.0000) 

p
 

Difference 
b
 4.336** 0.999* 0.589* 212.313* 196.388* 

STGP vs. B-J out-of-sample forecasting models based on Russell 1000 daily index returns 

STGP-no 
transaction 
costs 

28.961 
(0.0000) 

p 
Difference 

b
 -2.657* -1.880* -0.253* -1.700* -6.496* 

STGP with 
transaction 
costs 

33.913 
(0.0000) 

p
 

Difference 
b
 -2.109* -3.480* -0.249* -3.622* -17.706* 

STGP- 1000 
traders 

33.913 
(0.0000) 

p
 

Difference 
b
 -1.800** -2.126* -0.076* -0.957* -18.009* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

**Indicates significance at the 95% level. 

 

Table 57.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting models 

of Russell 1000 daily index returns. 

STGP vs. B-J in-sample forecasting models based on Russell 2000 daily index returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP-no 
transaction 
costs 

69.337 
(0.0000) 

p 
Difference 

b
 -0.037** -0.124* -0.038* -2.834* -12.255* 

STGP with 
transaction 
costs 

72.576 
(0.0000) 

p 
Difference 

b
 2.292* 1.049* 0.577* 100.041* 79.125* 

STGP- 1000 
traders 

72.623 
(0.0000) 

p
 

Difference 
b
 4.282* 1.797** 0.577* 88.139* 90.656* 

STGP vs. B-J out-of-sample forecasting models based on Russell 2000 daily index returns 

STGP-no 
transaction 
costs 

6.915 
(0.0000) 

p 
Difference 

b
 -1.532* -1.137* -0.082* -1.848* -7.941* 

STGP with 
transaction 
costs 

33.913 
(0.0000) 

p
 

Difference 
b
 -4.533* -3.344* -0.082* -1.847* -37.586* 

STGP-1000 
traders 

33.913 
(0.0000) 

p
 

Difference 
b
 -4.360* -3.555* -0.088* -1.115* -7.691* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

**Indicates significance at the 95% level. 

Table 58.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting models 

of Russell 2000 daily index returns 
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STGP vs. B-J in-sample forecasting models based on Russell 3000 daily index returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP-no 
transaction 
costs 

43.335 
(0.0000) 

p 
Difference 

b
 -1.974* -1.291** -0.106* -1.669* -5.476* 

STGP with 
transaction 
costs 

44.439 
(0.0000) 

p 
Difference 

b
 0.358* 0.176* 0.059* 41.830* 8.255* 

STGP- 1000 
traders 

46.564 
(0.0000) 

p
 

Difference 
b
 9.253* 1.505* 0.630* 104.304* 409.827* 

STGP vs. B-J out-of-sample forecasting models based on Russell 3000 daily index returns 

STGP-no 
transaction 
costs 

32.068 
(0.0000) 

p 
Difference 

b
 -5.744* -3.885* -0.344* -3.476* -23.297* 

STGP with 
transaction 
costs 

33.913 
(0.0000) 

p
 

Difference 
b
 -7.395* -5.333* -0.345* -1.890* -20.940* 

STGP- 1000 
traders 

13.403 
(0.0000) 

p
 

Difference 
b
 -0.822* -0.748* -0.029* -1.350** -7.02* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

**Indicates significance at the 95% level. 

Table 59.0 WSR test and paired comparisons of forecasting performance: STGP vs. B-J forecasting models 

of Russell 3000 daily index returns. 

A comparison between STGP and Holt-Winters reports the same phenomenon (Tables 60.0, 

61.0 and 62.0).  

STGP vs. H-W in-sample forecasting models based on Russell 1000 daily index returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP-no 
transaction 
costs 

39.329 
(0.0000) 

p 
Difference 

b
 -0.349* -0.455* -0.017* -3.050* -9.849* 

STGP with 
transaction 
costs 

36.110 
(0.0000) 

p 
Difference 

b
 0.217* 0.142* 0.054* 80.840* 48.785* 

STGP- 1000 
traders 

44.447 
(0.0000) 

p
 

Difference 
b
 4.334* 1.004* 0.589* 139.333** 196.844* 

STGP vs. H-W out-of-sample forecasting models based on Russell 1000 daily index returns 

STGP-no 
transaction 
costs 

29.579 
(0.0000) 

p 
Difference 

b
 -2.735* -1.848* -0.162* -2.080* -8.413* 

STGP with 
transaction 
costs 

33.913 
(0.0000) 

p
 

Difference 
b
 -2.195* -3.446* -0.158* -4.001* -20.477* 

STGP- 1000 
traders 

33.913 
(0.0000) 

p
 

Difference 
b
 -1.886* -2.090** -0.074* -1.336* -20.780* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 
**Indicates significance at the 95% level. 

Table 60.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 
models of Russell 1000 daily index returns. 
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STGP vs. H-W in-sample forecasting models based on Russell 2000 daily index returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP-no 
transaction 
costs 

70.910 
(0.0000) 

p 
Difference 

b
 -0.001* -0.135* -0.045* -3.277* -13.527* 

STGP with 
transaction 
costs 

72.570 
(0.0000) 

p 
Difference 

b
 2.331* 1.037* 0.490* 99.602** 77.725* 

STGP- 1000 
traders 

72.622 
(0.0000) 

p
 

Difference 
b
 4.321* 1.785* 0.570* 87.697* 89.256* 

STGP vs. H-W out-of-sample forecasting models based on Russell 2000 daily index returns 

STGP-no 
transaction 
costs 

6.915 
(0.0000) 

p 
Difference 

b
 -1.523* -1.123* -0.081* -1.847* -18.346** 

STGP with 
transaction 
costs 

33.913 
(0.0000) 

p
 

Difference 
b
 -4.523* -3.328* -0.081* -1.847* -37.593* 

STGP-1000 
traders 

33.913 
(0.0000) 

p
 

Difference 
b
 -4.350* -3.539* -0.087* -1.115* -7.698* 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 
Absolute Percentage Error; MaxAE-Maximum Absolute Error. 
WSR 

a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 
**Indicates significance at the 95% level. 

Table 61.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of Russell 2000 daily index returns. 

STGP vs. H-W in-sample forecasting models based on Russell 3000 daily index returns 

GP model WSR 
a 

Statistics RMSE MAE MAPE MaxAPE MaxAE 

STGP-no 
transaction 
costs 

43.614 
(0.0000) 

p 
Difference 

b
 -1.964* -1.279* -0.106* -1.999* -6.317* 

STGP with 
transaction 
costs 

44.144 
(0.0000) 

p 
Difference 

b
 0.369* 0.189* 0.059* 41.599* 7.330* 

STGP- 1000 
traders 

46.279 
(0.0000) 

p
 

Difference 
b
 9.264** 1.505* 0.630* 103.974* 408.902* 

STGP vs. H-W out-of-sample forecasting models based on Russell 3000 daily index returns 

STGP-no 
transaction 
costs 

32.604 
(0.0000) 

p 
Difference 

b
 -5.826* -3.850* -0.311* -3.490* -25.987* 

STGP with 
transaction 
costs 

33.913 
(0.0000) 

p
 

Difference 
b
 -7.485* -5.295* -0.342* -1.904* -23.888* 

STGP-1000 
traders 

13.403 
(0.0000) 

p
 

Difference 
b
 -0.912* -0.710* -0.026* -1.350* -9.968** 

RMSE-Root Mean Squared Error; MAE-Mean Absolute Error; MAPE-Mean Absolute Percentage Error; MaxAPE-Maximum 

Absolute Percentage Error; MaxAE-Maximum Absolute Error. 

WSR 
a
-Wilcoxon Signed Ranks Test based on positive ranks. 

p
 refers to the p-value of WSR test.  

Difference 
b
= STGP-BJ models; Negative values indicate preference to STGP models. 

*Indicates significance at the 99% level. 

**Indicates significance at the 95% level. 

Table 62.0 WSR test and paired comparisons of forecasting performance: STGP vs. H-W forecasting 

models of Russell 3000 daily index returns. 
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The WSR p-values (in parenthesis) reported in Tables 57.0 to 62.0 suggest that STGP 

outperformed both traditional econometric models at the 99% significance level, thereby 

rejecting the null hypothesis of equality in the forecasting difference between the 

competing models.  

My next experiment was performed under real-life trading conditions by the inclusion of 

appropriate transaction costs. Each of the three financial instruments was estimated and 

validated by the in-sample data. This model estimation process was then followed by an 

empirical evaluation which was based on the ex-ante data of 1,534 observations from 

02/01/2007 to 16/11/2012.  In-sample empirical results of the Russell 1000, reported in 

Tables 57.0 and 60.0, indicate that both the Box-Jenkins and Holt-Winters models slightly 

outperformed the STGP forecasting model with the following paired differences between 

them: MAE of 0.142, RMSE of 0.219 and MAPE of 0.054 (the highest values reported).  

The two econometric forecasting models for in-sample small-cap stocks outperformed STGP 

by a bigger margin with paired differences of MAE of 1.049, RMSE of 2.331 and MAPE of 

0.577 (Tables 58.0 and 61.0).  Similar to in-sample of the large-cap stocks, both Box-Jenkins 

and Holt-Winters of the Russell 3000 slightly outperformed the STGP technique with the 

following highest values of the paired differences between them: MAE of 0.189, RMSE of 

0.369 and MAPE of 0.059 (Tables 59.0 and 62.0).  

The out-of-sample validation illustrates, however, the superiority of STGP in absolutely all 

experiments. The out-of-sample paired comparisons indicate that the STGP substantially 

outperform the traditional econometric models (statistically significant results at the 99% 

level). Ex-ante, STGP significantly outperformed the Box-Jenkins model for Russell 1000 

(MAE of -3.480, RMSE of -2.109 and MAPE of -0.249) and the multiplicative exponential 

smoothing model (MAE of -3.446, RMSE of -2.195 and MAPE of -0.158). Tables 58.0 and 61.0 

demonstrate even bigger Russell 2000 out-of-sample STGP dominance over the two 

traditional econometric forecasting models. Tables 59.0 and 62.0 report a substantial ex-

ante STGP outperformance for the Russell 3000.  
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The paired differences between STGP and the other two competing models are larger: MAE 

of -5.333, RMSE of -7.395 and MAPE of -0.345 for Box-Jenkins, and MAE of -5.295, RMSE of -

7.485 and MAPE of -0.342 for Holt-Winters. Figures 32.0, 33.0 and 34.0 clearly illustrate the 

difference in forecasting direction of the competing models.  

 

Figure 32.0  Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 1000 daily index returns. 

 

 

Figure 33.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 2000 daily index returns. 
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Figure 34.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 3000 daily index returns. 

 

To obtain a more realistic forecasting comparison picture I plotted 1,534 out-of-sample real 

data quotes (Figures 35.0, 36.0 and 37.0) and observed that the STGP curve (the green 

curve) overlapped with the real data curve, suggesting the superior out-of-sample 

predictability of the STGP technique. Figures 35.0, 36.0 and 37.0 clearly illustrate the 

substantial ex-ante forecasting accuracy between STGP and the two traditional econometric 

models. 
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Figure 35.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 1000 daily index returns. A plot of real data 

has been added on for comparison purposes.  

 

Figure 36.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell 2000 daily index returns. A plot of real data 

has been added on for comparison purposes.  

 

Figure 37.0 Out-of-sample graphical comparisons of forecasting performance: STGP vs. B-J and H-W 

(transaction costs included) forecasting models of the Russell daily index returns. A plot of real data has 

been added on for comparison purposes.  
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My results are consistent with the findings of Chatfield (1996)and Bossaerts and Hillion 

(1999), who argue that forecasting models with high in-sample explanatory power usually 

do not have high out-of-sample fit (external validity) due to model over-fitting. I performed 

out-of-sample tests to guard against data over-fitting and the development of a more 

powerful framework to evaluate the performance of the three competing forecasting 

techniques. The above analysis suggests that forecasting comparisons of different methods 

and models should predominantly be made on the basis of genuine out-of-sample 

predictions. My results are consistent with the findings of Armstrong (1995) and Chatfield 

(1996), who argue that the real test of a forecasting model or method is its ex-ante 

forecasting ability.  

MAE, RMSE and MAPE are significant forecasting error measures. However, they may not 

lead to profitable trading. Satisfactory low forecasting errors of MAE, RMSE, and MAPE do 

not necessarily guarantee that the model is generating a profit. The RMSE is a good example 

to illustrate this claim because it is just a quantitative expression of the current model and 

does not measure the actual profitability of the forecasting model. Logically, I investigate 

and quantify the actual profitability of the most realistic for trading purposes model- the 

STGP with included transaction costs for the Russell 1000, the Russell 2000 and the Russell 

3000.  

I adopted two profitability measurement criteria-the number of correct hits (forecasts) and 

the generated excess return from trading the three indices. The hit ratio detects the 

percentage of time that the model has good sign predictability: 

                  
Number of correct forecasts

Hit ratio (%)= 100
Number of generated buy / sell orders

                       (55)                                                               

The other profitability criterion- the excess return-represents the amount received from 

trading in excess of the risk free rate. It is the continuously compounded return on the 

Russell 1000, the Russell 2000 and the Russell 3000 price minus the value of the daily 

continuously compounded rate converted from the annualised investment yield on a 3-

month US Treasury bill: 
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Where tP is the price of the Russell 1000, the Russell 2000, and the Russell 3000 traded at 

period t , and tr is the risk free rate set at the value of the daily continuously compounded 

rate converted from the annualised investment yield on a 3-month US Treasury bill (data up 

to 16/11/2012 has been downloaded from the Federal Reserve statistical release website at 

www.federalreserve.gov/releases/h15).  

The number of correct out-of-sample forecasts for the Russell 1000, the Russell 2000, and 

the Russell 3000 is reported in Table 63.0. The corresponding hit ratios are also given. A hit 

ratio above 50% is a sign of actual profitability from trading.  

Financial instrument         Russell 1000         Russell 2000        Russell 3000 

Number of generated 
buy/sell orders 

698 741 766 

Number of correct forecasts 
(hits) 

378 433 427 

Successful hits ratio 54.1%* 58.4%* 55.7%* 

Excess return 3.83% 10.02% 5.11% 
a
 The table reports the number of times a STGP out-of-sample forecasting model correctly predicts the direction of the 

Russell 1000, 2000 and 3000 returns and profitability of 1,534 observations (21/05/1979-16/11/2012) for each financial 

instrument. A ratio market with asterisk (*) indicates a 95% significance based on a one-sided test of H0:p=0.50 against 

Ha:p>0.50. . 
b
The risk-free rate is set at the value of daily continuously compounded rate converted from the annualized 

investment yield on a 3-month US Treasury bill (up to 16/11/2012). 

Table 63.0 Out-of-sample comparison of the predictive strength and profitability of STGP with included 

transaction costs (0.25% for the large cap index and 0.60% for the small cap index) for Russell 1000, 

Russell 2000 and Russell 3000 a. 

The small-cap stocks reports the highest hit ratio of 58.4% (433 successful hits out of 741), 

followed by Russell 3000 with 55.7% (427 successful hits out of 766) and the large-cap 

stocks with 54.1% (378 successful hits out of 698) with all transaction costs included. Table 

25.0 reports the hit ratio of the three indices over the entire sample of 8,840 observations. 

The Russell 2000 has the highest hit ratio of 57.2%, followed by the Russell 3000 with 54.9% 

successful hits and the Russell 1000 with hit ratio of 53.8%. 
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Moreover, I conducted a one-sided test to investigate whether the hit ratios of the three 

indices are significantly different from the benchmark of 0.5 (a 95% significance level). 

Under the null hypothesis the test has no predictive effectiveness power 0( : 0.50H p 

against 0 : 0.50)H p  . The statistical tests rejected the null indicating that the hit ratios of 

the three indices are significantly different from 0.50. This important finding confirms the 

ability of my forecasting models in the prediction of the returns of the Russell 1000, the 

Russell 2000 and the Russell 3000.  

Tables 63.0 and 64.0 clearly illustrates that the excess returns gained from trading small-cap 

stocks are higher than the excess returns of large-cap stocks for out-of-sample and for the 

whole sample. The Russell 2000 reported out-of-sample excess returns of 10.02% 

comparing to 3.83% for the Russell 1000 and 5.11% for the Russell 3000. The Russell 2000 

reported 9.97% profitability for the entire sample, followed by the Russell 3000 with 5.01% 

profitability and the Russell 1000 with 3.78% excess return. The difference in hit ratio and 

excess returns between out-of-sample and the entire sample is due to the very initial 

chaotic behaviour of the STGP models leading to slightly lower in-sample values.  

 

Financial instrument         Russell 1000         Russell 2000        Russell 3000 

Number of generated 
buy/sell orders 

4,596 4,876 4,858 

Number of correct forecasts 
(hits) 

2,473 2,789 2,667 

Successful hits ratio 53.8%* 57.2%* 54.9%* 

Excess return 3.78%
b 

9.97%
b 

5.01%
b 

a
 The table reports the number of times a STGP forecasting model correctly predicts the direction of the Russell 1000, 2000 

and 3000 returns and profitability over the entire sample of 8,840 observations (21/05/1979-16/11/2012) for each 

financial instrument. A ratio market with asterisk (*) indicates a 95% significance based on a one-sided test of H0:p=0.50 

against Ha:p>0.50. . 
b
The risk-free rate is set at the value of daily continuously compounded rate converted from the 

annualized investment yield on a 3-month US Treasury bill (up to 16/11/2012). 

Table 64.0 Comparison of the predictive strength and profitability over the entire sample of STGP with 

included transaction costs (0.25% for the large cap index and 0.60% for the small cap index) for Russell 

1000, Russell 2000 and Russell 3000 a. 
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Under current stock market conditions, initial transaction costs to invest in small-cap indices 

exceed transaction costs to invest in large-cap indices worldwide. Keleher (2010) suggested 

one way transaction costs for the US large-cap indices of 0.17% (or 17 basis points) and 

0.52% (or 52 basis points) for the US small-cap indices. I assigned higher transaction costs of 

0.25% or 25 basis points for the Russell 1000 and the Russell 3000 and 0.60% or 60 basis 

points for the Russell 2000. There are two reasons for the selection of these two levels of 

transaction costs. First, while the levels of 0.25% and 0.60% may be relatively high by 

current standards, it appears reasonable for the earlier period of the experiment.  

Secondly, I applied higher transaction costs in order to guard against data over-fitting, which 

seems intuitively reasonable.  

Studies by Banz (1981), Reinganum (1981), Lakonishok and Sapiro (1986), Lo and MacKinlay 

(1990), Fama and French (1992), Hackel et al.(1994), Avramov (2001), Kaboudan (2001), 

How et al. (2010), Switzer (2010) and Shynkevich (2011) demonstrate small-cap stocks 

outperformance.  

I expanded those studies by the inclusion of transaction costs and the achievement of 

reliable profits. I found that trading rules generated by STGP have substantially higher 

forecasting ability for the small-cap Russell 2000 index.  This important finding highlights 

that small-cap stocks are less informationally efficient, which is a necessary condition for 

excess returns. This is consistent with the findings of Blume et al. (1994) and How et al. 

(2010) who argue that small-cap stocks are priced in a less efficient manner than large-cap 

stocks. As a result small-cap pricing errors can be more readily exploited. Small-cap stocks 

pricing inefficiencies could be explained by the fact that such assets are less widely 

purchased by investors and do not receive the same level of attention. On the other hand, 

the lower level of attention on small-cap stocks indicate that they are relatively more 

vulnerable to information asymmetry, experiencing gradual price adjustments because the 

news is absorbed slowly (How et al., 2010).   
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The errors-in-expectations or extrapolation hypothesis was developed by Lakonishok et al. 

(1994) and LaPorta et al. (1997). The errors-in-expectations hypothesis states that investors 

initially form overly optimistic predictions about the future earnings of growth stocks 

leading to substantial price declines when these expectations are not met (greater 

optimistic forecasting bias for growth than for value stocks). Investors make systematic 

errors in forecasting the future profitability of value stocks and their pessimism about the 

future performance of value stocks is the actual cause for the value stocks outperformance. 

Hence, the small-cap outperformance could be based on the assumption that the market 

slowly realises that earnings growth rates for small-cap stocks are higher than initially 

expected.  

My laboratory experiments can be regarded as direct tests of the extrapolation hypothesis 

because there is a clear difference in terms of excess returns between the initial forecasts 

made in-sample and the excess returns recorded out-of-sample. I compared the initial 

forecasts (in-sample) to the projected predictions (out-of-sample) to find out whether the 

stock market’s initial optimistic forecasting bias is more pronounced for large-cap stocks 

than small-cap ones. The magnitude of the forecast errors (the difference of the forecast 

errors) of the Russell 1000 and the Russell 2000 has been estimated in order to determine 

whether the forecasting expectations for large-cap stocks are significantly more optimistic 

than small-cap stocks. 

If the forecasts of the large-cap stocks are more optimistic than those of small-cap stocks, 

one would expect the actual difference to be negative (Mian and Teo, 2003).  

The magnitude of the forecast errors generated by STGP with transaction costs for the 

Russell 1000 and the Russell 2000 (the most realistic models) reveal interesting results. The 

magnitudes of the forecast errors are all negative, indicating more optimistic forecasts for 

the large-cap stocks. The magnitudes of the forecast errors in-sample are as follows: MAE of 

-1.965, RMSE of -3.88 and MAPE of -0.428 (these are the differences in forecasting errors 

between the Russell 1000 and the Russell 2000 listed in Tables 54.0 and 55.0). Out-of-

sample MAE is -10.861, RMSE is -11.113 and MAPE is -0.423. The extreme magnitude of the 

forecast errors demonstrates the same trend- MaxAPE of -10.042 and MaxAE of -29.493 for 

in-sample and MaxAPE of -5.267 and MaxAE of -40.921 for out-of-sample.  
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The comparison of the initial forecasts to the projected predictions shows that the stock 

market’s initial optimistic forecast bias is more pronounced for large-cap stocks.   

Consistent with the predictions of the errors-in-expectation hypothesis tested within 

artificial laboratory settings, I found that traders made larger forecast errors in predicting 

the excess returns for large-cap stocks than small-cap stocks. This finding implies that 

traders are excessively optimistic about large-cap stocks, rather than small-cap stocks. 

Although tested within laboratory conditions, the errors-in-expectations hypothesis has 

some practical implications and proves a possible explanation of the small-cap stocks 

outperformance.  

Individual investors could mistakenly consider the purchase of assets of well-managed 

companies to be sound investments, even if such assets are bought at a high price. 

Moreover, the individual investors might favour large-cap stocks because it is easier to 

justify such kind of investments to their clients.    
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8.6.2. The dynamic relationship between trading volume and index returns. An 

investigation into whether the level of in-sample trading volume is a good predictor for 

the out-of-sample stock returns.  

 

An objective of this study is to investigate whether the finding of a relationship between 

two variables such as the Russell 1000, 2000 and 3000 returns and their volume is a result of 

dynamic (causal) factors. I follow the standard econometric procedure and apply the ADF 

test to examine the stationarities of the in-sample and out-of-sample volume series,
tV of 

the three indices: 

                                                         1t t tv V V                                                                   (57) 

I did not accommodate the log difference transformation for volume because trading 

volume could be zero in some trading periods. The ADF test results listed in Table 65.0 

illustrate that all trading volume series are stationary.  

                                                                             Russell 1000 

Period Bid Ask Total ADF* 

In-sample 2,836 1,062 3,898 -88.02 

Out-of-sample 508 190 698 -45.11 

Grand total                                                                                                      4,596 

                                                                            Russell 2000 

In-sample 3,883 252 4,135 -91.57 

Out-of-sample 696 45 741 -51.01 

Grand total                                                                                                      4,876 

                                                                            Russell 3000 

In-sample 3,869 223 4,092 -90.79 

Out-of-sample 694 40 766 -50.38 

Grand total                                                                                                     4,858 

*The MacKinnon (1996) one-sided critical value for rejection of the Null hypothesis of a unit root at 5% level is -3.410060. 

Table 65.0 In-sample and out-of-sample trading volume recorded on the artificial stock market and ADF 

test for Russell 1000, Russell 2000, and Russell 3000.  

 

I then examined the dynamic relation between in-sample tV and out-of-sample tR to 

determinate whether trading volume has any significant predictive power for future returns. 

To test whether there is any bi-directional or uni-directional causality from one variable to 

the other, I applied the linear Granger causality test and the modified Baek and Brock (1992) 

nonlinear causality test.  

The following bivariate autoregressions are used to test for linear causality between the two 

variables: 
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                                                   (59) 

If the j coefficients in Equation 58 are statistically significant, the inclusion of past values 

of return and past history of volume generate a better forecast of future volume. Hence, I 

conclude that returns cause volume. If a standard F-test does not reject the hypothesis that 

0j  for all j ,then returns do not cause volume. If causality runs from volume- to -

returns in Equation 59, then the j coefficients will jointly be different from zero. In cases 

when both   and  are different from zero, there is a feedback (bi-directional) relation 

between returns and trading volume (Chen et al., 2001).  

The disturbances t and  t are two uncorrelated series following the conventional 

assumptions of white noises: they are identically and independently distributed (IID) with 

zero mean and common variance of
2 such that: 

                                  0t s t sE E       s t                                                   (60) 

                                                               And 

                                               0t sE      ,s t                                                                   (61) 

 

Bearing in mind the predictability of indices returns, I am primarily interested in the dynamic 

relation from in-sample trading volume to out-of-sample returns.  Hsiao (1981) argued that 

the results of the linear Granger causality tests, are sensitive to the choice of lag lengths.  

At this stage I need to choose appropriate lag lengths of tV and tR , that is, the values of m

and n in Equations 58 and 59 through several statistical search criteria such as AIC and the 

Schwarz criterion (Chen and Liao, 2005).  Table 66.0 presents the empirical results for linear 

and nonlinear causality for the whole sample of 8,840 observations.  
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Linear 
Granger 
causality test 

H0: Volume changes do not cause index returns H0: Index returns do not cause volume changes 

# of lags F-value p-value # of lags F-value p-value 

Russell 1000 12 1.346 0.1192 18 1.044 0.471 

Russell 2000 10 1.170 0.1673 17 1.388 0.225 

Russell 3000 14 1.899 0.0937 17 1.389 0.226 

Nonlinear 
Granger 
causality test 

H0: Volume changes do not cause index returns H0: Index returns do not cause volume changes 

# of lags F-value p-value # of lags F-value p-value 

 
 
 
 
 
Russell 1000 

1 1.901 0.8181 1 1.768 0.0899 

2 1.989 0.0771 2 1.488 0.0801 

3 1.380 0.0699 3 2.900 0.9993 

4 1.237 0.6771 4 1.546 0.3487 

5 2.839 0.7878 5 2.988 0.1001 

6 2.127 0.1101 6 2.011 0.0378 

7 1.892 0.9899 7 2.189 0.0378 

8 1.001 0.0000* 8 1.118 0.0085* 

9 1.120 0.3022 9 1.982 0.3287 

10 1.133 0.0001* 10 2.087 0.3898 

 
 
 
 
 
Russell 2000 

1 2.001 0.9918 1 1.110 0.0012* 

2 1.632 0.1128 2 1.190 0.1126 

3 1.781 0.2788 3 2.091 0.3899 

4 1.235 0.0066* 4 1.347 0.0947 

5 1.110 0.0788 5 1.547 0.3311 

6 1.218 0.0989 6 1.682 0.0022* 

7 1.833 0.9829 7 2.438 0.0963 

8 1.327 0.8129 8 1.349 0.9991 

9 1.237 0.1171 9 1.100 0.1891 

10 1.017 0.1278 10 1.322 0.1178 

 
 
 
 
 
Russell 3000 

1 1.276 0.0011* 1 1.433 0.2221 

2 1.437 0.9237 2 2.383 0.0810 

3 2.878 0.2366 3 1.376 0.0033* 

4 1.375 0.0178* 4 2.001 0.0395 

5 1.115 0.0001* 5 1.378 0.1982 

6 1.985 0.1200 6 1.010 0.5662 

7 1.450 0.9909 7 1.540 0.2878 

8 1.189 0.1117 8 1.578 0.2378 

9 2.225 0.2377 9 1.457 0.8989 

10 2.548 0.9873 10 1.578 0.2178 

*Rejection of the null at the 5% significant level.  

Table 66.0 Linear and nonlinear Granger causality tests for the whole sample of 8,840 observations.  

 

These empirical tests indicate no presence of linear causality in the three indices. In all 

experiments, the causal relation is not found to exist in either direction. However, relying 

only on linear Granger causality test results could lead to inappropriate conclusions, 

because these tests might overlook significant nonlinear relations.  

Baek and Brock (1992) developed a nonparametric test for determining nonlinear causal 

relations. The authors suggested filtering out linear predictive power in Equations 58 and 59 

and then the remaining predictive power between the two residual series of  t and  t

could be considered to be of a nonlinear nature.  
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I followed Hiemstra and Jones (1994), who allowed for the residuals to be weakly 

dependent (short-term temporal dependence) in order to specify the appropriate lagged 

lengths of m and n in Equations 58 and 59. In terms of the nonlinear Granger causality test, 

the existence of the causal relation is not definite. The bi-directional nonlinear causality has 

been found in only one case- the Russell 1000 with eight lags (Table 66.0). While the uni-

directional nonlinear causality from volume-to-returns is present in five cases, the returns-

to-volume causality has been detected in three other cases. Overall, the returns-to-volume 

causal relation seems slightly stronger than the volume-to-returns causality. As the trading 

volume has no predictive power on stock returns under linear conditions and very weak 

predictive power in nonlinear Granger causality tests, I cannot develop volume-based 

trading strategies. Furthermore it was interesting to analyse the implications of in-sample 

trading volume on out-of-sample index returns. The empirical results reported in Table 67.0 

clearly indicate that in-sample trading volume does not Granger cause out-of-sample index 

returns.  

Hypothesis F-value p-value 

In-sample Russell 1000 trading 

volume .G COut-of-sample 

Russell 1000 returns 

1.661 0.5710 

In-sample Russell 2000 trading 

volume .G COut-of-sample 

Russell 2000 returns 

1.920 0.1018 

In-sample Russell 3000 trading 

volume .G COut-of-sample 

Russell 3000 returns 

1.883 0.9331 

Table 67.0 Granger causality test for 7,306 in-sample and 1,534 out-of-sample observations. 
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8.6.3. An investigation into whether a market with a reduced population of 1,000 traders 

is capable of generating accurate and profitable forecasts.  

 

A market populated by 1,000 traders revealed interesting forecasting results. In line with 

the previous results both Box-Jenkins and Holt-Winters outperformed in-sample STGP for 

the Russell 1000, the Russell 2000, and the Russell 3000. Out-of-sample STGP for the Russell 

1000 outperformed Box-Jenkins with the following forecast errors: MAE of -2.126, RMSE of -

1.800 and MAPE of -0.076 (Table 57.0). Logically, the out-of-sample STGP technique 

performed better than Holt-Winters for the same index: MAE of -2.090, RMSE of -1.886 and 

MAPE of -0.074 (Table 60.0). Out-of-sample STGP for the Russell 3000 slightly outperformed 

the two traditional econometric forecasting techniques: MAE of -0.748, RMSE of -0.822 and 

MAPE of -0.029 for the Box-Jenkins comparison (Table 59.0) and MAE of -0.710, RMSE of -

0.912, and MAPE of -0.026 for the Holt-Winters comparison (Table 62.0).  

When comparing the empirical results with the other two markets populated by 10,000 

traders I found relatively accurate forecasts generated by the market with a reduced 

number of traders. However, the smaller forecasting errors of the two markets consisting of 

10,000 agents (Tables 54.0, 55.0 and 56.0) suggest that greater genetic diversity of the 

entire population is needed in order to achieve more accurate predictions. Hence, the price 

formation process caused by the collective behaviour of the market populated by 10,000 

traders is a better predictor than any small fraction of traders.  
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8.7. Conclusions 
 

Researchers have given considerable attention to the ability of firm size to explain stock 

returns. The evidence of small-cap stocks premiums has changed the investment behaviour 

of traders and investment institutions. This research contributes to the existing literature by 

investigating whether small-cap stocks provide evidence of profitability and whether trading 

volume has any predictive power on stock returns. I also performed unique test of the 

errors-in-expectations hypothesis within artificial laboratory stock markets settings.  

To a large degree, the emphasis of this paper has been on finding predictability that is 

strong enough to produce reliable trading profits after taking into account appropriate 

transaction costs. I found evidence of statistically and economically significant profitability in 

all experiments of the Russell 1000, the Russell 2000 and the Russell 3000 indices. One-step-

ahead STGP models demonstrate the superior performance of small-cap stocks compared to 

large-cap stocks. Although large-cap firms provide certain benefits due to their economies 

of scale, experimental results gained within laboratory artificial stock settings confirm the 

claim that small-cap stocks are more predictable and profitable than large-cap stocks.  

Some researchers express the view that the dominance of small-cap stocks is period- 

specific. I argue that small-cap stocks’ dominance might not be period-specific, because I 

achieved significant profits based on tests of the entire 8,840 observations (since the 

creation of the three indices- 8,840 observations up to 16/11/2012). My findings are 

consistent with the errors-in-expectations hypothesis which posits that excess returns of 

growth stocks are driven by more optimistic forecasts compared to those of value stocks. 

Switzer and Tang (2009) argue that small-cap stocks provide a vehicle for a significant 

entrepreneurship and innovation in the US, and therefore might be less prone to 

governance issues than large-cap stocks. According to the authors large board sizes have 

negative implications on operational performance and pay-for performance compensation 

for the CEO’s, which might be viewed as beneficial for small-cap stocks.  

An investigation into the price formation process revealed that the collective behaviour of 

the market populated by 10,000 traders is a better predictor than any small fraction of 

traders.  
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Tables 54.0, 55.0 and 56.0 illustrate that the forecasting errors of the three financial 

instruments generated by 10,000 traders are smaller than the forecasting errors generated 

by 1,000 traders indicating the need of greater genetic diversity to achieve more accurate 

forecasts. Hence, enhanced levels of genetic diversity leads to more heterogeneous trading 

rules and greater flexibility in the virtual market clearing price mechanism.  

I found mixed results associated with the dynamic relation between trading volume and 

index returns. Table 66.0 illustrate only one case of bi-directional nonlinear causality- the 

Russell 1000 with eight lags. On the other hand, uni-directional causality has been captured 

in five cases. Moreover, the returns-to-volume casual relation is stronger than the volume-

to-return causality. Overall, the trading volume does not have predictive power on stock 

returns under linear conditions and very weak forecasting power in nonlinear causality 

tests. Hence, I am unable to develop any volume-based forecasting strategies. My findings 

are consistent with the existing literature- while some did not find the existence of linear 

Granger causality, others reported a uni-directional relation only.   

Although small-cap stocks tend to dominate large-cap stocks in investment terms, the 

importance of the latter should not be disregarded. Investing in large-cap stocks provides 

many benefits based on their economies of scale. In a global context, large-cap firms have 

an edge because they easily transcend national boundaries to extend their production 

abilities in order to generate economic profits. However, it is difficult for any firm- small-cap 

or large-cap- to maintain its superiority for long periods. Bearing in mind the fast pace of 

technological innovations and strong market competition, I conclude that it is unlikely to get 

any easier for a firm to continue to dominate in the future. Firms that are in the forefront of 

technological innovations might continue to succeed in the future.  
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Chapter 9 

Does high frequency trading affect technical analysis and market 

efficiency? And if so, how?  

 

9.1. Introduction 
 

The extensive use of technical trading rules by currency market practitioners has long been 

a puzzle for academics. On the one hand, as Cheung and Chinn, (2001) and Gehrig and 

Menkhoff (2003) note up to 40 per cent of foreign exchange (FX) traders worldwide rely on 

technical analysis as their main trading tool. On the other hand, one of the best established 

paradigms in financial economics- the Efficient Market Hypothesis (Fama, 1970)- suggests 

that on a market with a vast trading volume and virtually non-existant private information 

about fundamentals, such as the foreign exchange (FX) market (turnover of 2,000 billion US 

dollars per day; BIS, 2005), trading rules based on historical price information should not 

yield excess gross profits to traders.  

Most academic studies related to technical trading in the FX market are not consistent with 

the real-life practice of technical analysis because they largely limited their trading 

strategies to daily data observations (Brabazon and O’Neil, 2004; Qi and Wu, 2002; Reitz and 

Taylor, 2006). However, nearly all FX traders who use technical analysis operate at a high 

frequency (Gomber et al., 2011; Ahlstedt and Villysson, 2012; Guo, 2012). In addition, more 

than 75 per cent of FX trading has been shown to take place within a single day (BIS, 1996), 

and that the applicability of technical analysis increases with the frequency of trading 

(Taylor and Allen, 1992).  

While some empirical studies of daily FX data report the existence of significant profits 

(Martin, 2001; Mathur et al., 2001; Saacke, 2002), some other studies demonstrated the 

contrary (Levich and Thomas, 1993; Lee and Mathur, 1996b; Lee et al.,2001). Studies on the 

profitability of intra-daily technical analysis also do not convey a clear picture. Some authors 

report significant net profits (Gencay et al., 2002; Gencay et al., 2003), whereas others find 

technical trading to be unprofitable even at these high frequencies (Curcio et al.,1997; 

Osler, 2000; Neely, 2003).  
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Even more intriguingly, Curcio et al. (1997) simulated some of the technical analysis rules 

shown in previous studies to be profitable on daily frequency and demonstrated that they 

would not be profitable when applied to intra-daily data. This runs contrary to the intuition 

that the currency markets need time to process information and could be inefficient at very 

high frequencies but efficient at lower frequency, e.g., daily, horizons.  

Moreover, studies on FX technical trading profitability typically fail to account for 

transaction costs, trading rule optimisation over time, out-of-sample verification, and data 

snooping issues (Park and Irwin, 2007).  

So far, I have focused on the relationship between high frequency trading (henceforth HFT) 

and technical analysis. However, the question could be reversed and the impact of HFT on 

the market’s quality can also be investigated. The vast majority of empirical evidence to 

date suggests that HFT improves market liquidity, reduces trading costs in the form of 

narrower bid-ask spreads, and makes stock prices more efficient (Jones, 2013). On 

theoretical grounds, however, HFT can also be negative because the speed of trading could 

put other market participants at a disadvantage, leading to adverse selection and reduced 

market quality. There is also a possibility for an unproductive arms race developing among 

HFT institutions competing to be fastest (Jones, 2013).  

Empirical research is limited due to the massive and complex nature of the raw datasets 

which are spread over multiple exchanges and trading platforms with academic studies 

analysing mainly the 120-stock NASDAQ HFT dataset. The apparent lack of conclusive 

evidence has enabled HFT to operate with a limited regulatory understanding. Policymakers 

around the world are still debating whether to introduce limits on HFT or even to 

completely ban it. The major empirical challenge is to measure the incremental effect of HFT 

beyond other changes in FX markets. The best published studies for this purpose disregard 

market structure changes that facilitate HFT (Jones, 2013). The ability to observe all trading 

in my experiments allowed us to investigate the impact of HFT bid and ask orders on market 

quality. In this study, I argue that the search for answers to the puzzles described above 

should be conducted on high frequency rather than daily data, as the trading and resulting 

price adjustments take place on intraday basis.  
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This paper also argues that, should the FX efficiency puzzle be reliably addressed, a correct, 

robust methodology should be employed for this task. For this purpose, I used one-minute 

currency market data for six currency pairs for time periods shorter than six months.12  

In this study, I also implemented a special adaptive form of Genetic Programming (GP), 

called Strongly Typed Genetic Programming (STGP), in order to avoid the serious technical 

analysis issues highlighted by Park and Irwin (2007).  

The scientific advantage of the STGP over the conventional Genetic Programming (GP) used 

in most studies so far is that STGP evaluates the fitness of agents through a dynamic fitness 

function which processes the most recent quotes of the six currency pairs in my experiment, 

rather than a re-execution of the same trading rules.  

Despite the voluminous literature on the topic, no other study has implemented the STGP 

technique, one-minute high frequency data, and substantially more artificial agents, which 

has enabled us to develop of a wider variety of trading rules. The presence of 10,000 

artificial agents in my experiment resulted in an increased forecasting model stability and 

significantly low sensitivity to random factors.    

To summarise, the contributions of this study are as follows. Firstly, I have investigated the 

efficiency of currency markets by analysing the profitability of technical trading rules at the 

frequency at which this trading actually takes place in the real world. I am not aware of any 

other study utilising minute-by-minute price data in this context. Secondly, I have taken into 

account all issues identified in the literature as potentially affecting the reliability of trading 

results and inference based on them: I controlled for transaction costs, allowed agents to 

learn from their experience and to switch to more profitable rules, evaluated profitability of 

rules base on their predictive power rather than in-sample fit, and avoided data-snooping 

biases by allowing all potential rules and their combinations to be traded on and evaluated 

by agents. Thirdly, I am the first to apply the STGP technique to analyse the impact of HFT 

on market quality, taking into account the market structure.  

                                                           
1
 Goodhart and O’Hara (1997) suggest that the availability of high-frequency data enables empirical 

investigations of many financial market issues. Engle (2000) claim that ultra-high-frequency data contains a 

complete record of transactions and their related characteristics. 
2
 The use of a short time period adds realism to the analysis of technical analysis: as Curcio et al. (1997) argue, 

it is yet to be shown that technical trading profits would remain if the experiments were performed in time 

periods shorter than a couple of years because investors cannot afford to experience losses during several 

months even in the long run their strategies are profitable.  
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9.2. Background 

9.2.1. Technical analysis on the FX markets 

9.2.1.1. Studies using daily and weekly data 

 

The moving average (MA) trading rules are among the most popular in technical analysis. 

Martin (2001) achieved statistically significant out-of-sample returns in the spot FX market 

of Brazil by implementing MA trading rules for daily data. Mathur et al., (2001) applied the 

MA trading rules to 13 Latin currencies and reported excess returns for four currencies 

based on daily data. Saacke (2002) reported substantial profits of MA rules in daily 

USD/DEM exchange rates from January 1979 to July 1995.   

The profitability of FX trading based on these traditional techniques has, however, been 

challenged in the literature. Levich and Thomas (1993) applied MA and filter rules to a 

number of foreign currencies over the period 1976-1990 and found no presence of 

profitable trading rules. Lee and Mathur (1996b) applied the MA trading rule to six 

European currency pairs and reported uncorrelated cross rates which were sufficiently 

transparent to eliminate MA trading rule profits. Lee et al., (2001) applied MA and channel 

trading rules on nine Asian FX rates for the period 1988-1995 and reported little evidence of 

serial correlation in the daily rates combined with lack of significant profits.  

Chart patterns are another commonly used tool by technical analysts. Chang and Osler 

(1999) examine the performance of head-and-shoulders chart patterns using daily spot 

rates for six FX currencies during 1973 and 1994, and reported statistically significant 

returns of 13 per cent and 19 per cent, respectively, for the mark and yen only.  

However, chart pattern analysts do not conduct parameter optimisation and out-of-sample 

tests, and do not examine data snooping issues.  

These problems were addressed by introducing a model-based bootstrapping technique. 

Conventional t-tests were unable to deal with leptokurtic, auto-correlated, time varying, 

and conditionally heteroskedastic financial returns. The study by Brock et al. (1992) inspired 

other researchers to also use a model-based bootstrap approach, to avoid the weaknesses 

of conventional t-tests in technical analysis.  

Maillet and Michel (2000) applied bootstrapping procedures to six daily FX rates from 

January 1974 to September 1996 and reported excess returns.  
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To account for a possible data snooping bias, Qi and Wu (2002) used White’s (2000) 

bootstrap reality check methodology in seven FX rates between 1973-1998 and generated 

substantial profits (7.2-12.2 per cent) in five FX rates after transaction costs. However, the 

bootstrapping approach poses difficulties in constructing the full universe of technical 

trading rules required by the methodology (Park and Irwin, 2007).    

The rapid development of non-linear forecasting practices partially addressed the 

shortcomings of bootstrapping. Sosvilla-Rivero et al. (2002) applied technical trading rules 

based on a nearest neighbour regression approach to the mark and yen during 1982-1996 

and generated substantial net returns. Fernandez-Rodriguez et al. (2003) also used the 

nearest neighbour predictive model to achieve annual net returns of 1.5-20.1 per cent for 

the French franc, Danish krona, Italian lira and Dutch guilder during 1978-1994.  

However, Timmermann and Granger (2004) pointed out that it may be inappropriate to use 

the non-linear methods developed in recent years to capture profitability of technical 

trading rules during the 1970s or 1980s, highlighting major disadvantage of the nearest 

neighbour forecasting method.  

The application of the Genetic Programming (GP) technique to technical analysis was aimed 

at addressing the methodological issues affecting the more traditional methods, as 

mentioned above. Most importantly, while traditional technical analysis investigates a pre-

determined parameter space of technical approaches, the GP forecasting approach fully 

examines a search space which consists of logical combinations of trading rules (Koza, 

1992).   

Neely et al. (1997) used a GP method to analyse profits from technical trading in the daily 

US dollar bid and ask quotations for the Deutsche mark, yen, pound sterling, and Swiss 

franc. The authors revealed evidence of economically significant out-of-sample excess 

returns for each of the six exchange rates during the period 1981-1995.  

Thomas and Sycara (1999) implemented a GP model to generate considerable excess 

returns on the daily USD/JPY rate data. Diaz and Alvarez (2007) combined neural networks 

and GP methodologies in the weekly USD/JPY and GBP/USD exchange rate returns to find 

short-term weak predictable structures.  
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9.2.1.2 Studies using intra-daily data 

 

Since the ‘flash crash’ of May 6, 2010,-  when S&P futures fell almost 10 per cent in 15 

minutes before rebounding, high-frequency trading has received massive public attention 

(Kirilenko et al., 2011). Despite the fact that over the last few years this type of trading has 

progressively become more important in FX markets, there appears to be no large scale 

empirical research related to the potential profitability and market impact of HFT (Kearns et 

al., 2010). 

Gencay et al., (2002) applied a real-time-trading (RTT) model to seven years of five minute 

high frequency data of four currency pairs and showed 3.6- 9.6 per cent annual excess 

returns. Gencay et al., (2003) implemented a RTT model and exponential moving average 

(EMA) indicator to high frequency around-the-clock data of four currency pairs and found 

profitable trading patterns. Curcio et al. (1997) analysed the profitability of technical trading 

rules based on predefined price ranges and applied to hourly rates for DEM, JPY, and GBP 

against the USD, and concluded that on average the profits were not significant, even 

before transaction costs were taken into account. Oussaidene et al. (1997) investigated the 

implications of GP on one-hour high frequency data of seven currency pairs and found the 

presence of profitable trading rules, but this was without taking into account any 

transaction costs. Dempster and Jones (2002) developed pattern recognition channels, 

which are used by technical analysts as trade entry signals for the USD/GBP one-minute high 

frequency data from 1989 to 1997, and reported rather inconsistent profitability of trading. 

Osler (2000) investigated the predictive power of support and resistance levels for high 

frequency one-minute data of three currency pairs and failed to report profitability after 

taking into account transaction costs. Overall, there does not seem to be a consensus 

regarding the profitability of intra-day technical trading on currency markets. 

The performance of GP-based technical trading in currencies using intraday data could be 

expected to be superior to other methods, based on the results in Zumbach et al. (2001). 

These authors used 13 years of hourly data of USD/CHF and USD/JPY to examine out-of-

sample forecasting performance of STGP with syntactic restrictions and ARCH-types models, 

and demonstrated the superiority of STGP’s predictive ability. Dempster et al. (2001) 

reported significant predictability of genetic algorithms applied to fifteen-minute high 

frequency GBP/USD data.  
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Dempster and Jones (2002) used a genetic algorithm to find significant profits in the 

presence of realistic transaction costs in the USD/GBP tick data, from 1994 to 1997, 

aggregated to different intraday frequencies (one-minute being the highest frequency 

used). When traded in an adaptive manner, however, the authors found that the resulting 

portfolio strategies are ultimately loss making, highlighting the penalty for over-reaction to 

short-term market behaviour. Bhattacharyya et al. (2002) applied GP to one-hour high 

frequency data for the USD/DEM currency pair and while the authors reported reliable 

predictive performance of the model, they failed to show profitability. Neely and Weller 

(2003) examined the performance of GP on half-hourly high frequency data of four different 

currency pairs and found no profitability.   
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9.2.2. HFT and its impact on market efficiency 

 

Some academics argue that HFT create risks and, increases volatility and financial fragility, 

because when a market dislocation arises HFT reacts ahead of other investors due to their 

advantage of fast access to the market. For instance, Zhang (2010) showed that HFT can 

have harmful effects for the US capital market such as it is positively correlated with stock 

price volatility among the top 3,000 stocks in market capitalisation and negatively 

associated with the stock market’s ability to incorporate news about company fundamentals 

into stock prices. Kirilenko et al. (2011) analysed the trading of S&P 500 e-mini futures 

between August 2010 and August 2012 and concluded that high frequency traders make 

profits at the expense of retail investors, e.g., small retail investors lost $3.49 for every 

single contract they traded with high frequency traders.  

Gai et al. (2012) examined the implications of two recent 2010 NASDAQ technology updates 

that reduced the minimum time between messages from 950 nanoseconds to 200 

nanoseconds, and reported that these technological improvements substantially increased 

the number of cancelled orders. As a result the bid-ask spreads and trading volume 

experienced a slight change, suggesting that there may be diminishing liquidity benefits to 

faster exchanges. Jones (2013) highlighted that HFT can intermediate trades at lower cost, 

but the speed possessed by HFT could disadvantage other investors and the resulting 

adverse selection could harm market efficiency.  

Bias et al. (2013) considered a unit mass continuum model of risk-neutral, profit maximising 

financial institutions trading in the market for one asset, and reported that fast trading 

increased adverse selection costs for all market participants creating negative externalities.  

Foucault et al. (2013) demonstrated that an investor’s optimal trading strategy is 

significantly different when he observes news faster than others, and reported that price 

changes are more correlated with news and trades contribute more to volatility when the 

investor has fast access to news. A report published by the Australian Securities & 

Investment Commission (ASIC) in 2013 revealed that some HFT algorithms contribute to 

excessive order messages, fleeting orders, and market ‘noise’. This has a disruptive impact 

on the market, resulting in damaged investor confidence.  
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Moreover, there are some recent market glitches associated with HFT. On August 1, 2012, 

Knight Capital: one of the largest market- makers in the U.S. equities: implemented a new 

trading algorithm which accumulated large positions in 148 listed stocks over approximately 

45 minutes, resulting in trading losses of $440 million. Only a few months ago, NASDAQ 

experienced substantial issues associated with a software program that was unable to 

handle the pace of order submissions and cancellations by HFT, causing tens of millions of 

dollars of losses (Jones, 2013).   

Some other scholars, on the other hand, suggest that HFT makes financial markets more 

efficient by creating more liquidity, narrowing spreads, and removing the commissions that 

drive up costs. For instance, Chaboud et al. (2009) used one-minute data of the EUR/USD, 

USD/JPY, and EUR/JPY traded in 2006 and 2007, and found that HFT is associated with lower 

volatility and enhanced liquidity. Brogaard (2011) used HFT data of 120 US stocks that took 

place in NASDAQ and BATS exchange during 2008, 2009, and 2010 and found a statistical 

relationship between HFT and volatility in a Granger causality context. The author suggested 

that after controlling for time series variation, increased HFT caused intraday volatility to 

decrease. Domowitz (2010) went even further suggesting that events such as the ‘flash 

crash’ in 2010 are generic features of equity markets and similar events occurred in manual 

markets. The author highlighted that a similar ‘flash crash’ occurred on May 28, 1962, when 

the Dow Jones fell sharply for a period of 20 minutes. Brogaard et al. (2013) used the 120-

stock NASDAQ HFT dataset to trade in the direction of permanent price changes and in the 

opposite direction of transitory pricing errors, and concluded that HFT plays a beneficial role 

for market efficiency.  

Hendershott et al. (2011) examined the implementation of an automated quote system at 

the New York Stock exchange in 2003 and concluded that after implementing the autoquote 

effective spreads narrowed, adverse selection was reduced, and more price discovery took 

place. Riordan and Storkenmaier (2012) analysed the effect of a technological upgrade on 

the market quality of 98 of the most traded German stocks and confirmed the findings of 

Hendershott et al. (2011). Boehmer et al. (2012) performed an international investigation of 

electronic message traffic and market quality across 39 different stock exchanges around 

the world between 2001 and 2009, and found that co-location improved liquidity and the 

informational efficiency of prices.  
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Jovanovic and Mankveld (2012) traded Dutch and German index stocks to analyse the 

advent of a middleman through an event study around the introduction of a new HFT 

venue. The authors reported that HFT can update limit orders quickly based on new 

information that coincided with a 23 per cent drop in adverse selection. The UK Foresight 

report (2012), a study administrated by the UK government, found no connection between 

HFT and market volatility, nor did it find any evidence suggesting an increase in market 

abuse. Martinez and Rosu (2013) developed an equilibrium model in which HFT observed a 

continuous stream of signals called news, and suggested that HFT makes the markets more 

efficient by quickly incorporating the news. Carrion (2013) reported similar results 

demonstrating that days with intense HFT activity are connected to better informational 

efficiency in terms of returns predictability measured by weaker predictive power of lagged 

order flow and information about the market index. Hansbrouck and Saar (2013) used 

NASDAQ data to investigate the market quality in the millisecond low-latency environment 

and concluded that an increased low-latency activity is leading to lower spreads and 

reduced short-term volatility. In a similar vein, Hagsrӧmer and Nordѐn (2013) examined 

individual HFTs in a sample from NASDAQ-OMX Sweden and reported that the market-

maker activity of HFTs decreased volatility in the short run. Carrion (2013) highlighted the 

limitations of the last two studies pointing out that they describe the total volatility only. 

Lastly, the ASIC report (2013) suggests that HFT does not have a significant effect on price 

formation and liquidity, and apart from rare one-off cases, there is no systemic issue related 

to predatory trading practices. To summarise, the question about whether HFT benefits or 

harms market efficiency still remains unresolved, and this is to my best knowledge the first 

study to address this question using a Genetic Programming methodology. 
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9.3. Artificial stock market structure for this particular experiment.  
 

I have developed six different currency markets each populated by 10,000 agents, to trade 

one-minute high frequency data of EUR/USD, USD/JPY, GBP/USD, USD/CHF, and USD/CAD. 

Table 68.0 illustrates the main parameters of the STGP-based artificial stock market model 

for this particular experiment.  

 

                                                                                     Artificial stock market parameters 

Total population size (agents)  10,0000 

Initial wealth(equal for all agents) 100,000 

Transaction costs 1.5 basis points 

Significant Forecasting range 0% to 10%* 

Number of decimal places to round quotes on importing 2 

Minimum price increment for prices generated by model 0.01 

Minimum position unit 20% 

Maximum genome size 4096** 

Maximum genome depth 20*** 

Minimum initial genome depth 2 

Maximum initial genome depth 5 

Breeding cycle frequency (quotes) 1 

Minimum breeding age (quotes) 80**** 

Initial selection type random 

Parent selection (percentage of initial selection that will 
breed)  

5%***** 

Mutation probability (per offspring)  10% 

Total number of quotes processed for each of the six pairs 206,413 (176,735 in-sample and 29,678 out-of-sample) 

Seed generation from clock Yes 

Creation of unique genomes Yes 

Offspring will replace the worst performing agents of the 
initial selection   

Yes 

*When the absolute forecast price change is within the specified range, the forecast is considered significant. The lower 
limit of the range prevent the generation of trading signals when price changes are being forecasted that may be too small 
to at upon. A forecast is always declared insignificant when the forecasted price change is zero. The upper limit prevent the 
generation of trading signals which differ too much from the asset’s price (i.e. when the forecasts go to extreme values or 
remain fixed for a long period of time).  

**Maximum genome size measure the total number of nodes in an agent’s trading rule. A node is a gene in the genome 
such as a function or a value.  

***Maximum genome depth measures the highest number of hierarchical levels that occurs in an agent’s genome (trading 
rule). The depth of a trading rule can be an indicator of its complexity.  

****This is the minimum age required for agents to qualify for potential participation in the initial selection. The age of an 
agent is represented by the number of quotes that have been processed since the agent was created. This measure also 
specifies the period over which agent performance will be compared. My minimum breeding age is set to 80, which means 
that the agent’s performance over the last 80 quotes will be compared.   

*****5% of the best performing agents of the initial selection that will act as parents in crossover operations for creating 
new agents.  

                                                    Table 68.0 Artificial Stock Market Parameter Settings 
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9.4. Data and parameters  
 

In this paper I follow Neely and Weller (2003) who applied a Genetic Programming (GP) 

technique to half-hourly data of USD/DEM, USD/JPY, USD/GBP, and USD/CHF during 1996, 

in order to find profitable trading rules and investigates market efficiency. The authors 

failed to report profitability after taking into account transaction costs of up to 2.0 basis 

points, demonstrating market efficiency. For more realistic forecasting purposes I 

implemented an innovative evolutionary STGP technique with no over-fitting of the FX 

historical data, as discussed above.  I included more currency pairs and a higher frequency 

premium data in my experiment. I obtained one-minute high frequency FX data of the most 

traded currency pairs- EUR/USD, USD/JPY, GBP/USD, AUD/USD, USD/CHF, and USD/CAD. 

The in-sample trading period in my experiment started on August 27, 2012 at 10pm (GMT) 

and finished on February 12, 2013 at 10.59am (GMT) and consisted of 176,735 real data 

quotes. The out-of-sample trading begun on February 12, 2013 at 11am (GMT) and finished 

on March 12, 2013 at 11am (GMT) and consisted of 29,678 real data quotes. The study 

period was chosen on the basis of maximum data availability downloaded from Bloomberg. 

Similar to the real-life FX market, my experiment allowed 24 hours of trading, except at 

weekends with trading taking place from 8.15pm (GMT) on Sunday until 10pm (GMT) on 

Friday.  Throughout this study, I impose one-way transaction costs of 1.5 basis points.  
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9.5. Forecasting methods 

9.5.1. Benchmark models 

 

The clearing price generated within the STGP framework at time t based on agents’ orders is 

used as a predicted price for the subsequent period, t+1. These STGP-based forecasts are 

compared to two traditional econometric forecasting models, one in the framework of a 

parametric model represented by AR-GARCH and one of a non-parametric model 

represented by the K nearest neighbours model. 

Firstly, I fitted linear ARMA-GARCH model to one-minute high frequency data: 

                          1 0 11 ... 1 ...p q

p t q tB B x B B                             (62) 

where 2

1t t tV    ; 2 2 2

0 1 1 1t t ta a b      , t is the information available at time t , 

and  /t t is a Student’s vt random variable (Meade, 2002). I utilise the GARCH model to 

capture the well known phenomenon of the time dependent variance in financial time 

series. An optimal model is selected from initial range of values of 3p q  , based on the 

Schwarz Bayes Information criterion. Furthermore, I implemented the Student’s t

distribution to compute the residual kurtosis, as it is known to be non-normal and have 

heavy tails. In addition, one of the properties of high frequency one-minute data was the 

relatively high presence of no price changes in the currency pairs. To account for this 

empirical phenomenon, a modified density of the standardised residuals is used, by making 

it dependable on market activity (Meade, 2002): 

 

1

0

0 0
1

t

t

if

t t
t v

t t

if

p

f g

p






 





 
 

   
   

  
  

                                                                                   (63) 

where  .vg is the Student’s t density function and t denotes market inactivity: 
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If 1t  , the forecast /
ˆ 0t i tx   for 1,2,.....i  (Meade, 2002). 
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In this way, I aim to account for intervals of market inactivity and to detect the presence of 

kurtosis and heteroskedasticity during active market times. I estimated the coefficients in 

my ARMA-GARCH models by adopting the quasi-maximum likelihood.  

The non-parametric K nearest neighbours model postulates that the lack of linearity is 

leading to repetitiveness of trends in the time series. When the previous trend is identical to 

the current trend of one-minute high frequency data, then the previous trend of the one-

minute data can predict behaviour in the imminent and very near future (Meade, 2002). In 

this particular approach, one-minute data is viewed as a continuous series of d histories, 

d

tX , which are in themselves continuous of d successive observations (with d  being an 

integer): 

                                                1 1, ,...d

t t t t dX x x x                                                           (65) 

The next step is to estimate a measure of distance between the nearest neighbour and the 

latest d historical one-minute data. I implemented the geometrically weighted Euclidean 

distance which measures the distance between d historical one-minute data at two time 

dimensions, r and s : 
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The geometrically weighted Euclidean distance detects similarities in very recent 

observations of the dataset and determinates the K nearest neighbours. I proceeded further 

to establish the forecasting model by weighting the predicting abilities of each neighbour. At 

time t , the nearest neighbours are represented by
k

d

TX where k =1,..., K . The next step 

forecast is: 
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where   
1

,
k

d d

k t Tw D X X


  , with 510  . I followed Meade (2002) to calculate the 

values of K , d and  by minimising the root mean squared error, mean absolute error, and 

per cent better than no change forecast for each of the six currency pairs. 
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9.5.2. Evaluation of point forecasts 

 

In order to measure ex-ante forecasting accuracy, I adopted root mean squared error 

(RMSE) and mean absolute error (MAE): 
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                                       1

1 N

t t

t

MAE d z
N 

 
                                                        (69)  

where N is the number of forecasting periods, id is the actual price of the six currency pairs 

at period t , and tz is the forecasted currency pairs price at period t (Pai and Lin, 2005). 

In addition to the parametric and non-parametric forecasting models, I applied Diebold and 

Mariano’s (1995) test of predictive accuracy which is based on the difference between a 

quadratic loss function   2

jt jtg e e and a linear loss function  jt jtg e e . Both loss 

functions are suitable for comparing RMSE and MAE.  

Under the null hypothesis of the test forecasting model j and forecasting model 0

characterised by identical predictive accuracy: 

                                                     0 0: jt tH E g e E g e ,                                             (70) 

where  g represents the loss function. The test statistic sS is quantified by: 
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where n is a count of the occasions where 
0jt te e is satisfied; and n is a count of the 

occasions where 
0jt te e is satisfied. PCB is related to sS because: 
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where 0n is a count of the occasions when 
0 0jt te e  is satisfied (Meade, 2002).  
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9.5.3. Evaluation of directional forecasts.  

 

In some trading situations, the direction of change in the FX rate rather than the point value 

is of prime importance. I implemented Pesaran and Timmermann’s (1994) non-parametric 

test of predictive performance to detect the direction of my forecasting models. This 

particular test is appropriate because one-minute high frequency data exhibit observations 

where there is no price change since the last observation. The null implies that: 

                                                      0 0 0
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where ii is the probability that the actual and predictive category is i ; 0i is the probability 

that the actual category is i ; and 0i is the probability that the predictive category is i .   

 

 

 

9.6. Simulation results 

9.6.1. Net profitability of high frequency trading 

 

In this section I investigate whether technical trading associated with one-minute high 

frequency data for the six most traded currency pairs is profitable in the presence of 

appropriate transaction costs.  

Table 69.0 reports the summary statistics of one-minute high frequency data for the six 

currency pairs. The distributions of returns are slightly skewed for most of the in-sample and 

out-of-sample the currency pairs. Apart from USD/JPY out-of-sample pair, the kurtosis is not 

significantly large and therefore there is no excess of absolute standardised returns: that are 

either large or close to zero: than would be expected from a normal distribution of returns.  
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                                                                                        In-sample 
Currency pair EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD 
Observations 176,735 176,735 176,735 176,735 176,735 176,735 
Mean (x10

6
) 7.37 468.12 9.13 5.89 5.26 5.68 

Std.dev (10
6
) 0.14 26.92 0.09 0.05 0.07 0.05 

Skewness 0.25 0.81 -0.48 -0.28 0.19 -0.18 

K 3.64 3.32 4.01 3.88 5.27 3.79 
·LB-lag=1(1.2) 367.11 818.10 404.12 529.53 399.97 689.49 
·LB-lag=10(16.9) 410.20 999.57 516.19 673.58 448.17 639.18 
·LB-lag=50(74.0) 494.73 1001.22 597.34 701.76 594.01 796.27 

                                                                            Out-of-sample 
Observations 29,678 29,678 29,678 29,678 29,678 29,678 
Mean (x10

6
) 44.41 3153.20 51.40 34.61 31.39 34.67 

Std.dev (10
6
) 0.53 38.25 0.72 0.18 0.35 0.34 

Skewness 0.41 0.87 0.42 -0.17 0.23 -0.71 

K 2.88 3.73 4.11 3.91 3.12 4.04 
·LB-lag=1(4.7) 500.24 998.87 612.00 681.27 499.80 745.02 
·LB-lag=10(18.3) 493.10 1091.93 586.14 698.94 515.49 899.48 
·LB-lag=50(71.4) 532.19 1187.10 658.49 749.04 683.27 999.92 

K-kurtosis;  LB-Ljunk Box. 

· The calculation of Ljunk Box statistic was modified to accommodate for ARCH effects (Diebold,1986). The numbers in 

parentheses are determined at 0.1% (0.001) significance levels for H0:pk=0 for k≥1.  

Table 69.0 Summary of statistics of FX one-minute high frequency in-sample and out-of-sample data.  

 

In his work with large data sets (Wallace, 1972) observed that there was a tendency to 

reject the null hypothesis too often unless the significance level is adjusted downward. The 

justification for this downward adjustment is that some of the increased sample size should 

be used to reduce type II errors (Klein and Brown, 1984). Lindley (1957) used different 

sample sizes and a fixed significance level and reported that the null hypothesis can be 

rejected even if the posterior odds favour the null when the sample size is increased but the 

significance level is fixed.  

Given the large in-sample size of 206,413 and out-of-sample size of 29,678 observations, 

one issue that arises in the context of my empirical analysis is Lindley’s paradox leading to 

overstatement of statistical significance and a tendency to reject the null hypothesis at 

conventional significance level even when posterior odds favour the null. To alleviate this 

issue Connolly (1989) proposed a formula for estimating sample size adjusted critical values 

for t statistics:  

                                                       
1/2

* 1/ 1Tt T k T   
 

                                                    (74) 

where T is the sample size and k is the number of parameters estimated. 
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I made large-sample adjustments to critical t -values in order to eliminate the 

overstatement of statistical significance. When absolute value of a regression t -statistic is 

greater than the value of equation (14), its absolute value is reduced by the adjustment *t

(Corrado and Truong, 2007). When the estimated standard statistic is greater than the 

critical value of *t , the null hypothesis should be rejected. I applied the Ljung Box test to the 

auto-correlation structure of returns. The null hypothesis of no-autocorrelation is rejected 

for all currency pairs at a 0.1 per cent (0.001) significance level. Hence, the rejection of the 

null hypothesis shows that an ARMA model with at least one significant coefficient can be 

detected in the series. This is also a sign of time dependent variation in the variance of 

returns of the six currency pairs.      

I modelled the properties detected in the six data sets using a linear time series model- and 

an AR-GARCH model was fitted to all available observations. The reason for selecting the 

GARCH model was because I wanted to detect the time dependent variance and some of 

the excess kurtosis observed in the six currency pairs (Table 69.0). Previously, Baillie and 

Bollerslev (1991) and Cecen and Erkal (1996) applied the GARCH model to intra-day 

currency rates. Cecen and Erkal (1996) argue that intra-day FX returns are caused by a non-

linear generating process.  

I implemented the likelihood ratio tests to investigate the significance of the AR process and 

the GARCH process. First, the AR (p) models were determined by the common 

identification/estimation/diagnostic test cycle. The selected models in my experiment have 

a p of at least 3 and are characterised by significant coefficients at a 0.1 per cent significance 

level.  

Table 70.0 reports the AR-GARCH model coefficients estimated by the quasi-maximum 

likelihood. This test demonstrated the presence of significant GARCH behaviour at a 0.1 per 

cent significance level in all one-minute data sets for the six currency pairs.  
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                                                                                        In-sample 

Parameters EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD 
p  4 3 5 6 6 5 

 6

0 10   -2.202 -1.999 0.900 0.228 -1.898 -2.001 

v  2.00 2.87 2.37 2.56 2.72 2.60 

 6

0 10a   0.006 0.011 0.009 0.005 0.010 0.004 

1a  0.99 0.074 0.101 0.092 0.080 0.079 

b  0.619 0.728 0.631 0.803 0.711 0.693 

1  -0.131 
(-6.12) 

-0.072 
(-4.53) 

-0.139 
(-6.18) 

-0.155 
(-5.98) 

-0.141 
(-6.01) 

-0.138 
(-5.69) 

2  -0.021 
(-3.75) 

-0.011 
(-3.39) 

-0.035 
(-4.68) 

-0.039 
(-4.11) 

-0.031 
(-3.31) 

-0.023 
(-4.17) 

3  -0.012 
(-3.08) 

-0.009 
(-2.18) 

-0.019 
(-4.01) 

-0.018 
(-3.79) 

-0.010 
(-3.99) 

-0.008 
(-2.92) 

 
0p  0.009 0.005 0.008 0.062 0.074 0.055 

 p values ** 0.000 0.000 0.000 0.000 0.000 0.000 

 310RMSE    0.616 0.817 0.700 0.559 0.682 0.511 

 310MAE   0.399 0.663 0.491 0.334 0.448 0.299 

*Likelihood ratio tests were performed to determine the significance of the AR process and the GARCH process. 

** p values obtained for the hypothesis 
0 : 0iH   for 1,...,i p . Robust t-statistics corrected for Lindley’s paradox 

are reported in parentheses below coefficient values. All values are estimated at 0.1% (0.001) significance level. 

Table 70.0 In-sample AR-GARCH* coefficient estimates based on the quasi-maximum likelihood method.  

 

Table 71.0 represents the AR-GARCH model coefficients based on the STGP technique and 

reports similar findings with the real historical data analysis reported in Table 70.0. The in-

sample RMSE and MAE for the AR-GARCH models of the historical data sets of six currency 

pairs are slightly higher than the RMSE and MAE for AR-GARCH models based on the STGP 

technique. This is evidence of STGP’s superiority over parametric forecasting methods. 

Moreover, when the sum of the GARCH coefficients  1a b equals unity (the conditional 

variance does not converge on a constant unconditional variance in the long-run) then the 

unconditional variance is non-stationary.  
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                                                                                        In-sample 

Parameters EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD 
p  4 2 4 6 5 5 

 6

0 10   -2.783 -2.118 0.99 0.310 -2.761 -2.381 

v  2.70 2.83 2.79 2.71 2.63 2.71 

 6

0 10a   0.006 0.010 0.005 0.005 0.010 0.006 

1a  0.091 0.078 0.100 0.097 0.091 0.087 

b  0.718 0.779 0.691 0.703 0.700 0.725 

1  -0.101 
(-5.91) 

-0.056 
(-4.15) 

-0.100 
(-6.28) 

-0.121 
(-6.72) 

-0.111 
(-6.10) 

-0.101 
(-6.00) 

2  -0.020 
(-4.61) 

-0.009 
(-2.73) 

-0.033 
(-3.82) 

-0.029 
(-4.01) 

-0.021 
(-3.95) 

-0.131 
(-2.72) 

3  -0.011 
(-3.14) 

-0.008 
(-2.68) 

-0.030 
(-4.19) 

-0.015 
(-4.00) 

-0.014 
(-3.99) 

-0.009 
(-2.97) 

 
0p  0.004 0.002 0.001 0.043 0.033 0.029 

 p values ** 0.000 0.000 0.000 0.000 0.000 0.000 

 310RMSE   0.599 0.800 0.672 0.521 0.655 0.501 

 310MAE   0.385 0.637 0.467 0.317 0.424 0.270 

*Likelihood ratio tests were performed to determine the significance of the AR process and the GARCH process. 

** p values obtained for the hypothesis 
0 : 0iH   for 1,...,i p . Robust t-statistics corrected for Lindley’s paradox 

are reported in parentheses below coefficient values. All values are estimated at 0.1% (0.001) significance level.   

Table 71.0 In-sample AR-GARCH* coefficient estimates based on the STGP method.  

 

The sum of the GARCH coefficients listed in Tables 70.0 and 71.0 are less than one, 

suggesting that volatility clustering does not have a permanent effect. Hence, the volatility 

shock is time-decaying and mean reverting (specific periods of high changeability do not 

persist indefinitely and continually decrease to its long-run mean-level at a rate equal to the 

sum of 1a b  coefficients).   

The next step is to compare the forecasting abilities of non-parametric models such as K 

nearest neighbours and the STGP technique. The reason for choosing the K nearest 

neighbour method is based on its popularity. This particular method is among the most 

popular methods used in statistical pattern recognition, with over 900 different studies 

published on the method since 1981 (Holmes and Adams, 2002). The K nearest neighbour 

procedure forecasts a new point 1ny  to be the most common class found among the K 

nearest neighbours of 1nx  in the set  
1

n

i i
x


(Holmes and Adams, 2002).The K nearest 

neighbour method highlights the importance of the similarities between recent 

observations based on the value of  1 .  
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I have chosen the following optimal K nearest neighbour model parameters: 

 10,50,100,150,200,250,300,350,400K ,  1,2,3,4,5,6,7,8,9,10d ,  1.0,1.5,2.0 . 

The values of the optimal model parameters are estimated by minimising two objective 

functions, such as RMSE and MAE.  

Tables 72.0 and 73.0 suggest that the surfaces described by the objective functions and the 

values of K , d and  are relatively flat and therefore a significant change in K and d does 

not correspond to a substantial change in the objective function.  

                                                                                          In-sample 

Pair      EUR/USD        USD/JPY    GBP/USD    AUD/USD       USD/CHF      USD/CAD 

Value* KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

K 300 350 400 300 200 300 250 350 200 250 300 400 

d 5 6 5 10 7 7 5 8 5 5 8 8 

α 1 1 1 1 1 1 1 1 1 1 1 1 

RMSE 0.703 0.721 0.981 0.996 0.812 0.867 0.707 0.723 0.798 0.812 0.636 0.650 

MAE 0.510 0.538 0.754 0.787 0.544 0.600 0.430 0.434 0.530 0.544 0.400 0.430 

*The values of K, d and α are estimated by minimizing the RMSE and MAE for each of the six currency pair series.  

Table 72.0 In-sample K nearest neighbour forecasting based on conventional non-parametric predictive 

model coefficient estimates (RMSE and MAE are shown x103) 

 

                                                                                          In-sample 

Pair      EUR/USD        USD/JPY    GBP/USD    AUD/USD       USD/CHF      USD/CAD 

Value KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

KK(1)-
RMSE 

KK(2)-
MAE 

K 250 300 400 350 250 350 400 300 300 350 250 300 

d 5 7 8 7 6 7 8 8 7 7 5 7 

α 1 1 1 1 1 1 1 1 1 1 1 1 

RMSE 0.672 0.691 0.942 0.956 0.800 0.812 0.683 0.699 0.733 0.748 0.612 0.638 

MAE 0.490 0.507 0.721 0.733 0.533 0.544 0.428 0.432 0.519 0.532 0.390 0.402 

*The values of K, d and α are estimated by minimizing the RMSE and MAE for each of the six currency pair series.  

Table 73.0 In-sample K nearest neighbor forecasting coefficient estimates based on the STGP technique 

(RMSE and MAE are shown x103) 

 

The STGP technique outperformed the non-parametric predictive model evidenced by lower 

RMSE and MAE levels. On the other hand, the RMSE and MAE of the non-parametric model 

are slightly higher than the errors of the AR-GARCH model, indicating better in-sample 

performance.  
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For ex-ante forecasting evaluation, I used summary accuracy measures and a formal 

hypothesis test, such as Pesaran and Timmermann (1994), which investigates the directional 

forecasting accuracy and therefore provides important information on the statistical 

significance of sign forecasts. I have found this particular test to be appropriate for ex-ante 

forecasting evaluation because it compares the number of observed correct forecasts with 

the estimated and expected probability of a correct forecast during conditions of 

independence between actual and forecast changes. Additionally, I investigated the market 

timing ability by performing the Henriksson and Merton (1981) test, which has a 

hypergeometric distribution under the null hypothesis of no market timing ability. This test 

provides information on market timing that is independent of any distributional 

assumptions about the return on the currency pairs. The test includes the possibility that 

the forecaster’s confidence in his forecasts can vary over time and, if such variations are 

observable, then the test can be refined to evaluate his predictive ability for each variation. 

The results of both the above tests can be found in Tables 74.0 and 75.0, and they indicate 

that the sign predictions of the forecasting models have market timing value across all 

currency pairs.  

Error 
measure 

Model 
  

                                                      Out-of-sample 

 
 
 
RMSE

• 

EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD 
AR-GARCH 0.2366 0.4385 0.3859 0.2438 0.3985 0.3287*** 

KK(1) 0.3948*** 0.5985*** 0.3011*** 0.2498*** 0.3846*** 0.3349*** 

KK(2) 0.3865*** 0.4530 0.3984*** 0.3110*** 0.3755 0.3437 

KK(3) 0.3857 0.5348*** 0.3895 0.2438*** 0.3328*** 0.3103*** 

Formal tests P-T test
a 

3.61*** 5.04*** 3.10*** 2.11*** 2.99*** 3.00*** 

H-M test
b 

0.0027*** 0.0073*** 0.0057*** 0.0081*** 0.0099 0.0001*** 

 
 
MAE 

AR-GARCH 0.2218 0.2191*** 0.2003 0.2000 0.2247 0.2524 

KK(1) 0.2537 0.2997*** 0.2007 0.1999*** 0.2338*** 0.2119 

KK(2) 0.2502*** 0.2889 0.2745 0.2110** 0.2829 0.2130*** 

KK(3) 0.2210 0.2945 0.2735*** 0.2098 0.2742 0.2538 

Formal tests P-T test 1.97 2.89 2.35*** 1.90 1.72 1.68*** 

H-M test 0.0138 0.0219 0.0004*** 0.0120** 0.0105** 0.0004*** 
P-T: Pesaran and Timmerman test; H-M:Henriksson and Merton test; 

***Significant at 0.1% (0.001) level.  

•The significance in RMSE differences is performed by using Diebold-Mariano test with quadratic loss function.  

a-The Pesaran and Timmerman test is a Husman type test with limiting distribution of the test N(0,1).  

b-In the Henriksson and Merton test, the number of forecasts has a hypergeometric distribution under the null hypothesis which 
postulates no market timing ability. The p-values of the test are reported.   

Table 74.0 Summary of RMSE (x103), MAE (x103), Pesaran and Timmerman and Henriksson and Merton 
tests for one period ahead forecasts based on conventional parametric and non-parametric predictive 
models 
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Error 
measure 

Model 
  

                                                      Out-of-sample 

 
 
 
RMSE

• 

EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD 
AR-GARCH 0.2305*** 0.4300 0.3799 0.2390 0.3974 0.3198*** 

KK(1) 0.3898 0.5823*** 0.3000*** 0.2425*** 0.3788*** 0.3219 

KK(2) 0.3790*** 0.4497 0.3926 0.3099*** 0.3622 0.3388*** 

KK(3) 0.3802*** 0.5267 0.3843 0.2400 0.3277 0.3001*** 

Formal tests P-T test
a 

3.08*** 4.83*** 2.99*** 1.86*** 2.15*** 2.28*** 

H-M test
b 

0.0006*** 0.0018*** 0.0016*** 0.0013*** 0.0056*** 0.0001*** 

 
 
MAE 

AR-GARCH 0.2190 0.2100 0.1989*** 0.1558 0.2179*** 0.2494 

KK(1) 0.2455*** 0.2980 0.1909 0.1881*** 0.2300 0.2090*** 

KK(2) 0.2492 0.2812*** 0.2677 0.2101 0.2788 0.2005 

KK(3) 0.2099 0.2828 0.2654 0.1766*** 0.2733 0.2401 

Formal tests P-T test 1.12*** 2.04*** 1.99*** 1.01*** 1.08*** 1.05*** 

H-M test 0.0126*** 0.0195*** 0.0001*** 0.0098*** 0.00090*** 0.0002*** 
P-T: Pesaran and Timmerman test; H-M:Henriksson and Merton test; 

***Significant at 0.1% (0.001) level.  

•The significance in RMSE differences is performed by using Diebold-Mariano test with quadratic loss function.  

a-The Pesaran and Timmerman test is a Husman type test with limiting distribution of the test N(0,1).  

b-In the Henriksson and Merton test, the number of forecasts has a hypergeometric distribution under the null hypothesis which 
postulates no market timing ability. The p-values of the test are reported.   

Table 75.0 Out-of-sample summary of RMSE (x103), MAE (x103), Pesaran and Timmerman and 

Henriksson and Merton tests for one period ahead forecasts based on the STGP technique.    

 

The Pesaran and Timmermann test of directional accuracy revealed significant predictive 

performance. Based on the RMSE and MAE values, the K nearest neighbour models- KK(1), 

KK(2) and KK(3)- are each significantly more accurate than the AR-GARCH forecasting 

models. The actual significance in the differences in RMSE was achieved by applying the 

Diebold-Mariano testing procedure with quadratic loss function. However, there is no 

consistent superiority of either parametric or non-parametric models when I consider both 

in-sample and out-of-sample periods. This finding is consistent with Meade (2002). A direct 

out-of-sample comparison between traditional econometric forecasting models and STGP 

technique indicate the superiority of the latter. The RMSE and MAE generated by STGP are 

significantly smaller than the out-of-sample errors produced by both parametric and non-

parametric models.  
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I measure profitability by two primary criteria: the number of correct hits (forecasts) and the 

generated excess return from trading of the six currency pairs. The hit ratio determinate the 

percentage of time that the model has good sign of predictability: 

                    

Number of correct forecasts
Hit ratio (%)= 100

Number of generated buy / sell orders


                       (75) 

The other profitability criterion- the excess return-represents the amount received from 

trading in excess of the risk free rate. It is the continuously compounded return on the six 

currency pairs, minus the value of the daily continuously compounded rate converted from 

the annualised investment yield on a three-month US Treasury bill: 

                                                 
1

1

ln t
t t

t

P
R r

P




 
  

 

                                                           (76) 

where tP is the price of EUR/USD, USD/JPY, GBP/USD, AUD/USD, USD/CHF, and USD/CAD 

traded at period t , and tr is the risk free rate set at the value of the daily continuously 

compounded rate converted from the annualised investment yield on a three-month US 

Treasury bill (data up to March 3, 2013 has been downloaded from the Federal Reserve 

statistical release website at www.federalreserve.gov/releases/h15). The reason for 

choosing the US Treasury bill is the fact that the US dollar participates in every currency pair 

in my experiment. The number of correct out-of-sample forecasts for the six currency pairs 

is reported in Table 76.0. The corresponding hit ratios are also given. A hit ratio above fifty 

per cent is a sign of actual profitability from FX trading.  

Currency pair EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD 
Number of 
generated 
buy/sell orders 

16,787 16,019 16,982 15,384 15,291 15,325 

Number of 
successful hits 

8,931 8,378 8,949 8,446 8,104 8,551 

Successful hit 
ratio 

53.2%* 52.3%* 52.7%* 54.9%* 53.0%* 55.8%* 

Excess return 3.63% 3.11% 3.25% 5.01% 3.52% 5.76% 
The table reports the number of times a STGP out-of-sample forecasting model correctly predicts the direction of the six 

currency pairs  returns and profitability of 29,678 observations (12/02/2012-12/03/2013) for each currency pair. A ratio 

market with asterisk (*) indicates a 95% significance based on a one-sided test of H0:p=0.50 against Ha:p>0.50. . 
b
The risk-

free rate is set at the value of daily continuously compounded rate converted from the annualized investment yield on a 3-

month US Treasury bill (up to 12/03/2013). 

Table 76.0 Out-of-sample comparison of the predictive strength and profitability of STGP in the presence of 

transaction costs of 1.5 basis points for the six currency pairs. 

http://www.federalreserve.gov/releases/h15
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The USD/CAD pair reports the highest hit ratio of 55.8% (8,551 successful hits out of 

15,325), followed by: the AUD/USD pair with 54.9% (8,446 successful hits out of 15,384), the 

EUR/USD pair with 53.2% (8,931 successful hits out of 16,787), the USD/CHF pair with 53.0% 

(8,104 successful hits out of 15,291), the GBP/USD pair with 52.7% (8,949 successful hits out 

of 16,982), and the USD/JPY pair with 52.3% (8,378 successful hits out of 16,019).  

I also conducted a one-sided test to investigate whether the hit ratios of the six currency 

pairs are significantly different from the benchmark of 0.5 (a 95 per cent significance level).  

Under the null hypothesis the test has no predictive effectiveness power 0( : 0.50H p 

against 0 : 0.50)H p  . The statistical tests rejected the null indicating that the hit ratios of 

the six currency pairs are significantly different from 0.50. This important finding confirms 

the forecasting ability of my models.   

While predictability is of considerable theoretical interest, profitability of FX trading is of 

obvious economic importance. Table 76.0 reports the out-of-sample excess return gained 

from trading the six currency pairs. The USD/CAD currency pair generated the highest 

excess return of 5.76%, followed by: the AUD/USD pair with 5.01%, the EUR/USD pair with 

3.63%, the USD/CHF pair with 3.52%, the GBP/USD pair with 3.25%, and the USD/JPY pair 

with 3.11%, in the presence of appropriate transaction costs. My profitability findings are 

consistent with Carrion (2013), who argued that there is economically significant 

predictability in intraday prices, but contrary to Menkveld (2013), who claims that HFT is 

unsuccessful at forecasting price evolutions during the day beyond the very short horizon of 

five seconds. The difference in results can be explained by the fact that Menkveld used a 

single specific HFT that pursued a market making strategy rather than an aggregate HFT in 

the NASDAQ dataset implemented by Carrion, which enabled him to detect forecasting of 

intraday prices beyond five seconds. However, Menkveld (2013) also reported that net long 

or short positions can have duration of seconds, minutes, and hours generating statistically 

significant intraday profits. Chordia et al. (2008) suggested that intraday market 

inefficiencies are present in markets that are otherwise efficient at longer horizons due to 

the fact that investors need sufficient time to process and react to information.     
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Neely and Weller (2003) investigated the effect of up to 2.0 basis points of intraday 

technical trading transaction costs for one-way transactions. Various studies have 

demonstrated that transaction costs have decreased over time (Chordia et al., 2008, 2011; 

Angel et al., 2011). I assigned transaction costs of 1.5 basis points for high frequency 

technical trading.  

The choice of 1.5 basis points is based on the real-life exchange fee structure. Euronext 

charges a fixed fee of €1.20 per trade, which represent 0.48 basis points for a trade of 

approximately €25,000. Additionally, Euronext imposes a variable fee of 0.05 basis points 

and another 0.04 basis points if the cancellation-to-trade ratio is over 5. On top of that there 

are post-trade expenses such as clearing fees and necessary trading margins (Menkveld, 

2013). LCH-Clearnet, the clearing house used by Euronext, charge clearing fees of €0.23 

(0.09 basis points). To enhance the HFT realism in my experiment, I assigned the remainder 

of 0.84 basis points to funds required to keep margin accounts with the clearer, exchange 

and clearing house membership fees, development and acquisition of trading software and 

hardware. More importantly, I used robust transaction costs that allowed protection from 

data over-fitting, which represents the biggest pitfall in forecasting. Data over-fitting can 

exaggerate minor fluctuations in the dataset of the six currency pairs leading to poor 

predictive performance. Moreover, data over-fitting can produce test sensitivities and 

specificities hardly reproducible in subsequent experiments. If the experiment is over-fitted 

forecasting models with high in-sample explanatory power may not have high out-of-sample 

fit (Bossaerts and Hillion, 1999; Chatfield, 1996).          

9.6.2. The impact of HFT on market quality 

 

Is HFT beneficial or harmful to market efficiency? The role of HFT on price discovery and 

market liquidity processes. To what extend the policymakers should control HFT? 

Recent years have witnessed a raise of computer-driven trading which is characterised by 

high speed and processing power leading to accelerated trading times. Transactions are 

executed in the blink of an eye, forcing humans out of the trading process. Determining 

whether HFT is beneficial or harmful to market efficiency is not an easy task and the debate 

so far includes many contradictory studies and claims.  
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It is a well known fact that there are no market makers in HFT. As described earlier my 

experimental settings do not have any market makers providing real-life trading conditions 

to investigate the implications of HFT on market efficiency. Similar to Brogaard et al. (2013), 

I applied a state space model to decompose FX price movements into permanent and 

transitory (temporary) components and relate those price movements to one-minute HFT. 

While the permanent component is interpreted as information, the transitory component 

represents pricing errors which is also known as temporary volatility or noise.  

I implemented the state space models in my experiment because they offer several 

advantages. First, the state space models describe how information is incorporated into 

prices and the informativeness of prices. Second, these models allowed us to observe the 

overall roles of HFT in currency prices and the differential role of active and passive HFT. 

While Hendershott and Riordan (2011) argue that the state space models explicitly 

separates short-term transitory effects from long-term permanent effects, Moody and Wu 

(1997) reported that the state space models are able to explain correlational structures in 

the high frequency data that the conventional random-walk models of efficient market 

theory do not explain. Hendershott and Menkveld (2011) provide more evidence for why 

state space models are a more appropriate tool for the investigation of the impact of HFT on 

market properties. According to the authors, the maximum likelihood calculation in the 

state space models is asymptotically unbiased and efficient, and while the conventional 

vector autoregressive models require truncation of the lag structure, the state space model 

implies an infinite lag autoregressive structure.  

Most importantly in the state space model, the Kalman smoother enables a series 

decomposition where the efficient currency price and the transitory errors are calculated at 

any point in time by using all 206,413 one-minute observations (both in-sample and out-of-

sample data sets). Price pressures caused by increased liquidity demand are leading to noise 

in prices (transitory pricing error) of the six currency pairs. To investigate whether HFT plays 

a beneficial or harmful role on price efficiency, I needed to detect the trading direction 

towards permanent price changes and transitory pricing errors. HFT will have a beneficial 

impact on the market if one-minute high frequency trading is orientated in the opposite 

direction of the transitory pricing error, thereby reducing transaction costs.  
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When HFT trading is orientated towards the direction of the transitory pricing error, 

transaction costs increase. Trading in the direction of the pricing error could be a result of 

manipulative trading strategies or predatory trading, and has a harmful effect on the 

market. 

Menkveld et al. (2007) suggest that the state space model of the currency pairs can be 

decomposed into two dinstinctive parts- permanent and transitory components: 

                                                         
, , ,i t i t i tp m s                                                                         (77) 

where ,i tp is the (log) midquote (the average of the bid and the ask quote) at time t for 

currency pair i , ,i tm is the permanent component of a martingale type- , , 1 ,i t i t i tm m w   ( ,i tw

is the innovative element in permanent price component); and ,i ts is the transitory 

component.   

To investigate the overall impact of HFT on market properties, I developed two different 

state space models. The first model analyses HFTall activity and the second model 

investigates the two elements of HFTall- HFTbid and HFTask. To estimate the aggregate model, 

I follow Menkveld (2011) and Hendershott and Menkveld (2011): 

                                         ,, ,

all
all

i ti t i i tw k HFT                                                                       (78) 

where ,

all

i tHFT is the surprise innovation factor in HFTall, which is the residual of an 

autoregressive model to eliminate autocorrelation.  

In order to calculate the state space model for each currency pair of the one-minute high 

frequency data in a trading day, I implemented the maximum likelihood via the Kalman filter 

where price changes- HFTall, HFTbid and HFTask - are non-zero. To estimate the statistical 

inference I adopted the clustering techniques of Petersen (2009) and Thompson (2011). 

Table 77.0 represents the empirical results of the HFTall space model for each of the six 

currency pairs, and the overall space model. All space models are positively correlated with 

efficient price changes (permanent price component) and negatively correlated with pricing 

errors (transitory price component). This is clear evidence of the positive role that HFT plays 

in the price discovery process.  
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                                                                       Permanent price component  
 

Measures EUR/US
D 

USD/JP
Y 

GBP/US
D 

AUD/US
D 

USD/CH
F 

USD/CA
D 

ALL 

k
all

 bps/$100,00
0 

0.21 0.48 0.17 0.29 0.44 0.38 0.32 

(t-stat)  (5.28) (12.31) (4.49) (8.37) (7.98) (8.12) (7.76) 

 2
all

HFT  
$100,000 14.11 18.28 13.01 14.43 16.49 10.35 15.9 

  
2

all
allk HFT  

bsp.2
2 

10.88 19.99 10.21 12.35 16.19 10.83 11.81 

(t-stat)  (20.11) (31.32) (19.56) (22.98) (28.12) (20.05) (22.90
) 

 2

,i tw  bsp.2
2
 219.07 328.70 201.38 255.56 290.33 203.47 299.27 

                                                                         Transitory price component 

  bps/$100,00
0 

0.36 0.45 0.27 0.34 0.41 0.30 0.33 

all   -0.03 -0.12 -0.03 -0.10 --0.11 -0.05 -0.07 

(t-stat)  (-7.01) (-13.14) (-4.49) (-8.11) (-12.74) (-8.62) (-7.21) 

 2 allHFT  $100,000 0.22 1.11 0.84 1.01 0.93 0.54 0.66 

  
2

all allHFT 

 

bsp.2
2
 3.19 6.81 3.14 5.13 5.01 3.48 5.25 

(t-stat)  (9.39) (12.27) (10.48) (11.39) (6.90) (5.58) (11.17
) 

 2

,i ts  bsp.2
2
 99.39 150.06 102.77 148.90 101.36 76.44 114.59 

The model is estimated for each currency pair, every minute, using HFT variables to decompose the observable historical 
price 

,i tp for currency pair i at time t  (in one-minute increments) into two components: the permanent price component 

,i tm and the transitory component
,i ts :      , , ,i t i t i tp m s  ;   , , 1 ,i t i t i tm m w   ;  ,, ,

all
all

i ti t i tw k HFT   ;    

, , 1 , ,

all all

i t i t i t i ts s HFT       

Where 
,

all

i tHFT is HFT overall order flow; ,

all

i tHFT is the surprise component of the order flow. T-statistics are calculated 

using standard errors double-clustered on currency pair and one-minute data.   

 Table 77.0  State Space Model for each of the six currency pairs based on the whole sample of 206,413 

one-minute high frequency data.  

 

The values of k and  are calculated in basis points per $100,000 traded. The value of 0.32 

for the overall k coefficient listed in the last column suggests that $100,000 of positive 

surprise order flow (bid minus ask orders) corresponds to a 0.32 basis points increase in the 

efficient price. My findings are consistent with Brogaard et al. (2013) and O’Hara and Ye 

(2011), but contrary to Carrion (2013), who found that an aggregate HFT makes money on 

average when providing liquidity and loses money on average when demanding liquidity. 

The conflicting findings can be explained by the sensitivity of the manner in which profits 

are described and estimated (Carrion, 2013).  
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The aggregate proportion of efficient price variance   
2

all
allk HFT correlated with 

overall HFT order flow is 11.81 basis points squared in the one-minute permanent price 

variance of 299.27 basis points squared. The negative values of  coefficients in the pricing 

errors suggest that HFT is trading in the opposite direction to the pricing errors, leading to 

reduced transaction costs. Hence, HFT is having a beneficial effect on price discovery and 

efficiency.  

To investigate the individual impact of bid and ask orders on price efficiency and the 

formation of HFT strategies, I implemented the disaggregated state space model of HFT.  

Table 78.0 illustrates that while HFT bid orders are positively correlated (kbid is positive in all 

currency pairs and overall) with changes in the permanent price component, HFT ask orders 

are negatively correlated with price changes in the permanent price component. Positive 

correlation of bid orders is associated with informed trading. The negative coefficients of 

kask indicate that passive trading occurs in the opposite direction of permanent price 

changes.  
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                                                                    Permanent price component  

 Measures EUR/USD USD/JPY GBP/USD AUD/USD USD/CHF USD/CAD All 

Kbid bps/$100,000 14.03 19.37 10.95 13.58 12.85 5.90 14.82 

t-stat  (21.48) (36.94) (19.83) (22.25) (20.26) (18.64) (24.54) 

Kask bps/$100,000 -19.02 -28.37 -18.28 -17.28 -11.12 -4.48 -19.82 

t-stat  (-21.98) (-37.29) (-20.21) (-25.49) (-22.30) (-15.19) (-26.49) 

 2
bid

HFT  
$100,000 0.91 1.10 1.03 0.98 1.01 0.45 1.05 

 2
ask

HFT  
$100,000 0.96 1.01 0.92 0.78 0.90 0.32 0.95 

  
2

bid
bidk HFT  

bps.2 28.55 39.49 29.93 30.04 28.54 20.39 31.12 

t-stat  29.91 37.47 30.39 30.03 28.92 20.21 (30.19) 

  
2

ask
askk HFT  

bps.2 26.73 37.97 29.17 28.11 26.45 17.66 28.38 

t-stat  (39.90) (50.93) (41.41) (39.17) (40.12) (24.48) (42.47) 

 2

,i tw  
bps.2 314.28 433.44 327.01 311.73 300.81 267.34 368.81 

                                                                       Transitory price component 

   0.18 0.25 0.22 0.19 0.21 0.10 0.22 

bid  bps/$100,000 -3.01 -4.11 -3.29 -4.31 -3.30 -2.22 -3.36 

t-stat  (-20.20) (-29.97) (-21.95) (-19.59) (-20.19) (-11.93) (-22.10) 
ask  bps/$100,000 5.29 6.03 4.92 5.00 3.84 2.99 5.47 

t-stat  (21.99) (37.19) (29.90) (26.60) (24.20) (19.18) (26.73) 

 2
bid

HFT  
$100,000 0.99 1.18 1.05 1.00 1.06 0.50 1.07 

 2
ask

HFT  
$100,000 0.97 1.10 0.96 0.83 0.95 0.38 0.97 

  
2

bid
bid HFT   

bps.2 9.20 16.81 10.17 9.87 10.01 5.94 10.79 

t-stat  (28.88) (41.19) (30.57) (29.92) (31.84) (20.21) (31.28) 

  
2

ask
ask HFT   

bps.2 9.05 16.77 10.73 9.80 10.00 5.90 10.66 

t-stat  (41.09) (51.57) (38.22) (34.38) (37.91) (24.26) (40.18) 

 2

,i ts  
bps.2 200.73 301.20 198.03 203.19 202.39 144.82 203.11 

The model is estimated for each currency pair, every minute, using HFT variables to decompose the observable historical price 
,i tp for 

currency pair i at time t  (in one-minute increments) into two components: the permanent price component 
,i tm and the transitory 

component
,i ts :      , , ,i t i t i tp m s  ;   , , 1 ,i t i t i tm m w   , ,, ,

bid ask
bid ask

i t i ti t i i i tw k HFT k HFT     ;  

, , 1 , , ,

bid bid ask ask

i t i t i i t i i t i ts s HFT HFT        Where 
,

bid

i tHFT and 
,

ask

i tHFT  represent bid and ask order flows; ,

bid

i tHFT

and ,

ask

i tHFT are the surprise components of those order flows. T-statistics are calculated using standard errors double-clustered on 

currency pair and one-minute data.   

Table 78.0  Disaggregated State Space Model of HFTbid and HFTask for each of the six currency pairs based 

on the whole sample of 206,413 one-minute high frequency data.  
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I observed a negative relation between bid and the transitory component across all 

currency pairs, indicating overall that HFTbid trades are orientated opposite to the transitory 

component of prices. This important finding suggests that when currency prices deviate 

from their fundamental values, HFT initiate trades to restore prices to their efficient levels. 

As a result, the distance between quoted prices of the six currency pairs and the efficient 

price has been reduced. On the other hand, the coefficients of ask are all positive, 

suggesting adverse selection of coefficients based on uninformed transitory price 

component. HFTbid trades are associated with substantially more information being 

incorporated into the prices of the six currency pairs, and smaller pricing errors in 

comparison with HFTask trades.  

Overall, I found evidence that HFT has a beneficial role in the price discovery process in 

terms of smaller pricing errors and information being incorporated into prices of the six 

currency pairs. More informative FX currency prices means a better allocation of resources.  

Also, reduced pricing errors in my experiment helped to improve the efficiency of prices and 

lowered the transaction costs.  

However, the information content of HFT in my experiment lasts for one minute only, and it 

is unlikely to become public in such a short period of time. Hence, HFT’s informational 

advantage has a short-term nature. The same principle is valid for the reduced pricing 

errors. It is still unclear whether one-minute reductions in pricing errors lead to significantly 

more efficient resource allocation and more effective investment decisions. The picture of 

whether high frequency trading is harmful to the economy is also incomplete. The overall 

HFT is negatively related to pricing errors which is a sign that no manipulation strategies are 

in place. On the other hand, HFTask is positively connected to pricing errors, indicating the 

presence of either manipulating trading strategies or inappropriate risk management 

practices. This finding is consistent with the empirical results of Brogaard et al. (2013).   

From another point of view HFT imposes difficulties for investors and pension funds to 

purchase large blocks of financial instruments, because HFT software detects and front-runs 

the order. Big institutional investors, on the other hand, have a substantial advantage based 

on their financial strength in buying HFT algorithms, their ability to locate their servers in 

close proximity to the exchanges, and eventually to manipulate the FX market.  



260 
 

Chordia et al. (2013) argue that buy-side investors could struggle to trade large positions, 

and the speed disadvantage reduces their ability to supply liquidity leading to increased 

costs. Low-latency connections to FX markets enable high frequency traders to operate at 

much faster speeds, disinclining traditional traders to invest or forcing them to spend excess 

amounts of money to keep up with all the technological innovations. Substantial 

investments in computer and communication power to reduce latency in trading posed the 

question of whether HFT adds value (Chordia et al., 2013). Hansbrouck and Saar (2013) 

found that some HFT algorithms need only 2-3 milliseconds to identify the arrival of an 

order, analyse it, and generate an order. This very high operational speed prevent human 

traders from appropriately observing the limit order book, indicating that market dynamics 

might be dominated entirely by the interplay between trading algorithms. Individual 

investors have witnessed the transformation of stock markets to more complex entities, and 

have restricted access to the same type of trading equipment as large, institutional 

investors. HFT could potentially create negative externalities on other market participants 

due to continuous generation of submissions and cancellations of limit orders that increases 

the need for costly equipment updates and worsens market regulation (Gai et al., 2012). 

Moreover, poor programming of HFT algorithms has the potential to disrupt markets (for 

instance, the Knight Capital case).   

The occurrence of HFT has forced traditional investors to conduct big transactions into ‘dark 

pools’. Nowadays, investors are extra cautious about the possibility of having their traders 

detected and headed off by high frequency traders. This is the reason why traditional 

investors allocate their orders in ‘dark pools’. ‘Dark pools’ are off-exchange trading 

platforms administrated by brokers where financial instruments are executed anonymously 

and the prices are not announced in advance. According to the recent UK Foresight report 

(2012), two-thirds of investors went into ‘dark pool’ transactions, tripling their market share 

in the last few years to 3.3% of the total trading volume. Trading in ‘dark pools’ is having 

several negative consequences, such as: increased expenses which affect the transparency 

of the market by imposing price obstacles for the other investors. The ASIC report (2013) 

suggests that HFT performed in off-market ‘dark pools’ are adversely affecting the quality of 

asset price information and widening the bid-ask spread for several assets.  

 



261 
 

Moreover, orders executed on crossing systems (automated services that match or executes 

orders away from exchange markets) are leading to uninformed investment decisions, and 

listed companies are unaware of where their assets are trading.  

I illustrate ‘dark pool’ trading by the following practical example. The currency pair GBP/USD 

is trading at a bid of $1.5231 and ask of $1.5235 and an investor would like to sell the pair. 

Under normal trading conditions an investor could generate a sell order at $1.5234 and 

hope that other investors will buy, although there is no guarantee that anyone will purchase 

at this particular price. If the same investor was to allocate a hidden offer at $1.5234 in a 

‘dark pool’, which is not prohibited by law and nobody can see it. Then he/she could 

generate a large number of public and visible bids at prices around $1.5229 and $1.5228. 

The investor does not intend to purchase at those prices and in fact does not want to 

purchase at all. But for the other market participants with access to the public order book it 

looks like there is significant interest in GBP/USD. This will create an illusion that an investor 

is making a big investment in GBP/USD greatly enhancing the buying pressure. The other 

investors put their bids at $1.5232 and $1.5233 in order to overcome the new buyer in the 

market. When all traders bid at $1.5234 they discover the hidden sell order at this particular 

price. The hidden order actually receives a very good price on its trade and counts as a 

liquidity provider. Then the unrealistic bids of $1.5229 and $1.5228 are removed from the 

market. Unfortunately the victims of the whole process are traditional investors mislead by 

unrealistic public bid orders and someone trading against these orders.  

To limit the severe consequences of ‘dark pools’, I think that policymakers need to introduce 

stricter circuit breakers that halt trading when prices experience large and sudden 

movements. Current regulatory rules include circuit breakers, but they are not tight enough- 

allowing around ten per cent drops in prices before they come into force. In the US, circuit 

breakers halt trading as soon as stocks change by ten per cent or more within five minutes 

(SEC, 2010g). To avoid the danger of systemic risks, I think that limits on the number of 

orders traded and minimum holding periods to reduce the pace of HFT are needed. I 

propose a minimum holding period of 700 milliseconds (0.7 seconds) for small orders of 

$500 or less comparing to the current holding peiod of 900 milliseconds.   
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9.7. Conclusions 
 

Over the past ten years, rapid technological advances transformed the trading of all 

financial instruments. In the last few years in particular, HFT has increased significantly and 

liquidity has experienced substantial improvement. However, correlation is not necessarily 

causation.  

This chapter represents an unusual empirical study of the efficiency of FX markets by 

investigating the profitability of HFT strategies based on one-minute historical data and 

discusses its implications on market quality. Whilst the regulatory arguments for and against 

HFT continue, I believe that my study contributes to the recent debate by providing 

appropriate empirical evidence. I investigated the efficiency of FX markets by analysing the 

profitability of technical trading rules at the frequency at which this trading actually takes 

place in the real world. I developed a real-life intraday technical trading scenario which 

involved six of the most traded currency pairs and found evidence of HFT predictability and 

profitability after taking into account appropriate transaction costs. The STGP technique 

outperformed ex-ante traditional econometric forecasting models.   

I also examined the impact of HFT on market quality and integrity. The ability to observe all 

trading activities in my experiments enabled the investigation of the impact of HFT bid and 

ask orders on market quality. Consistent with Brogaard et al. (2013), I have found evidence 

that HFT enhances the efficiency of prices and play a positive role in the price discovery 

process by trading in the direction of permanent price changes and in the opposite direction 

of transitory pricing errors. However, the fact that HFTask orders are positively associated 

with pricing errors could be a sign of manipulatory trading strategies, inappropriate risk 

management practices, or adverse order selection and anticipation. I think that further 

investigation is needed to examine the exact reason for this positive association due to the 

short-term nature of one-minute high frequency data. The information content of HFT in my 

experiment lasts for one minute only, and therefore is unlikely to become public in such a 

short period of time. Hence, it is still unclear whether the short-term nature of one-minute 

high frequency data is a good indicator of informational advantage leading to more efficient 

resource allocation or whether reduced pricing errors constitute better investment 

decisions.  
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Due to its recent emergence the HFT discussion is not supported by solid academic research 

(Chordia et al., 2013). This combined with the uncertainty surrounding HFT, the debate as to 

whether this particular type of trading is beneficial or harmful to market efficiency is likely 

to continue long into the future. HFT platforms are not machines with minds of their own. 

They have been developed by highly skilled humans who profit from advances in 

technology. Chaboud (2009) provides evidence that computer trades are more highly 

correlated with each other than human trades, indicating that strategies generated by 

machines are not as diverse as those developed by humans.    

Although there is no definite conclusion as to whether HFT plays a beneficial or harmful role 

in the market, my empirical findings are one step towards a better understanding of the 

underlying principles of HFT and its implications on market structure and performance. HFT 

offers appropriate platforms for making forecasts in just milliseconds to seize arbitrage 

opportunities and provide new frameworks and challenges for high frequency forecasting. 

Hence, I think that future research involving non-public data for long-term trading, and even 

data measured in milliseconds and nanoseconds, is needed. My next research goal is to 

investigate whether HFTs have different impact on different trader populations by 

constructing markets composed of different number of artificial traders. Meanwhile, the 

individual investor will be at an increasing disadvantage, being unable to keep up with the 

necessary investments in trading technology, and big institutional investors will to continue 

to benefit from the rise of the machines.  
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10.0 Conclusions of the thesis 
 

The aim of this thesis is to examine the behaviour of financial markets by using agent-based 

computational technique named Strongly Typed Genetic Programming (STGP). I applied this 

adaptive computational-based learning algorithm to real-life historical data of different 

stocks, indices, and currency pairs to analyse various stylised facts of financial returns, 

market efficiency and stock market forecasts.  

Chapter 4 of this thesis demonstrate that stock market dynamics and nonlinearities are 

better represented by the AMH rather than the EMH. The presence of enhanced 

heterogeneity and greater genetic diversity leads to higher market efficiency measured by 

the AMH. Moreover, individual trader learning, adaptation and evolution reinforced the 

notion of market efficiency which seems to exist simultaneously with the need for adaptive 

flexibility. In Chapter 5, I have found more herding behaviour in a group of stocks than in 

individual stocks. Moreover, the behaviour of the market populated by greater number of 

trader’s exhibit less herding. In the next chapter of my thesis I have found a mixed picture of 

positive and negative impacts from individual intelligence and market performance. Chapter 

7 illustrate the predictive ability of the STGP in comparison with traditional forecasting 

models. The STGP technique was able to generate statistically and economically significant 

excess returns after taking into account appropriate transaction costs. Chapter 8 

demonstrate that small-cap stocks are more predictable than large-cap stocks and their 

dominance is not period-specific. The same chapter highlight the very weak causal 

relationship between trading volume and stock returns. In the last empirical chapter I offer 

in depth analysis of high frequency trading profitability and market regulation. The STGP 

technique outperforms the traditional parametric and non-parametric forecasting models. I 

have also found evidence of positive impact of high frequency trading on price discovery 

and market dynamics.  

In Chapters 4 and 5, I pointed out some of the limitations in my experiments – the 

difference between human intelligence and artificial trader intelligence and the need of 

precise knowledge of the demand elasticity of the three financial instruments to measure 

herding behaviour.  
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 These limitations provided the following future areas of research. Future research could 

possibly include an investigation of the sensitivity of models to parameters in determining 

the role of intelligence and market structure. This can be combined with the degree of 

traders’ prudence – the time horizon which traders look back at while they make investment 

decisions. Social learning can also be added on in order to analyse the adaptive switch 

between social and individual learning.  

I believe further research should include a direct comparison of the predictive abilities of 

Genetic Programming and Strongly Typed Genetic Programming as well as a comparison of 

Strongly Typed Genetic Programming versus a combination of forecasts.  

Future experiments involving data measured in milliseconds and nanoseconds is needed. 

My next research goal is to obtain such data and investigate whether high frequency trading 

has different impact on different trader populations.     
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