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Abstract

Identifying genetic interactions for a given microorganjssuch as yeast, is difficult.
Quantitative Fitness Analysis (QFA) is a high-throughpxperimental and computa-
tional methodology for quantifying the fitness of microbeailtures. QFA can be used
to compare between fitness observations for different gpestand thereby infer genetic
interaction strengths. Current “naive” frequentist statal approaches used in QFA do
not model between-genotype variation or difference in gy variation under differ-
ent conditions. In this thesis, a Bayesian approach isduoired to evaluate hierarchical
models that better reflect the structure or design of QFA exyeats. First, a two-stage
approach is presented: a hierarchical logistic model idfito microbial culture growth
curves and then a hierarchical interaction model is fittefith@ss summaries inferred
for each genotype. Next, a one-stage Bayesian approackssmied: a joint hierarchi-
cal model which simultaneously models fithess and genetcantion, thereby avoiding
passing information between models via a univariate fitsessmary. The new hierarchi-
cal approaches are then compared using a dataset exanmaiefject of telomere defects
on yeast. By better describing the experimental struchew,evidence is found for genes
and complexes which interact with the telomere cap. Varedsnsions of these models,
including models for data transformation, batch effectsiatrinsically stochastic growth
models are also considered.



Acknowledgements

First and foremost | would like to thank both Prof Darren Wikon and Prof David
Lydall for their support and encouragement during the mapan of this thesis. Thanks
also go to Dr Conor Lawless for his invaluable support andadvFurther, thanks to the
staff and students from both the School of Mathematics aatisBts and the Institute of
Cellular and Molecular Biosciences.

Special thanks go to my family and friends for the support mnadivation they have
provided me throughout my studies. In particular, | woulelto express my love and
gratitude to my partner Christina for her encouragementipatiénce.

Finally, 1 would like to acknowledge the financial supporbyided by the Biotech-
nology and Biological Sciences Research Council and theiddeResearch Council.



1

Contents

Introduction 1
1.1 Quantitative Fitness Analysis . . . . . . . . . ... ... . ... 4
1.1.1 Quantifyingfitness . . . . . . .. . ... ... .. ... ... 6
1.1.2 Thelogisticgrowthmodel . . . . ... ... ... .. ...... 8
1.1.3 Fitnessdefinitions . . . . ... .. .. ... .. ... ... 9
1.2 Epistasis. . . . . . . e e 10
1.2.1 Definingepistasis. . . . .. .. .. .. ... o 10
1.2.2 Addinallet al. (2011) Quantitative Fitness Analysis screen com-
parison . ... . e e 11
1.2.3 Fitnessplots . .. . .. . . .. .. .. 13
1.3 The stochastic logistic growthmodel . . . . .. ... .. ....... 15
1.4 Outlineofthesis. . . . . . . . .. . . 16
Background 17
2.1 Yeastbiology . . ... .. ... 17
211 Telomeres . . . . . . . e 17
2.1.2 Theendreplicationproblem . ... ... ... .......... 18
2.1.3 CDCl13andcdcl3-1 . .. .. .. . . . it 19
2.1.4 URA3 . . . . e 20
2.1.5 High-throughput methodology for Quantitative Fgaé\nalysis . 20
2.2 Comparinglistsofgenes . . . . . ... . ... . ... 12
221 Jaccardindex . . . . .. ... 22
2.2.2 Spearman’s rank correlation coefficient . . . .. ... ...... 23
2.2.3 Gene ontology term enrichmentanalysis. . . . . ... . ... 23
2.3 Bayesianinference . . ... . ... ... 23
2.3.1 MarkovchainMonteCarlo . . . . ... .. ... ... ...... 24
2.3.2 Metropolis-Hastings algorithm . . . . . . ... .. ... .. .. 25
233 Gibbssampling . . . . . .. ... L 26
2.34 ConvergencCeissuUES . . . . . v v v v i e e e 27
2.3.5 Convergencediagnostics . . . ... ... ... ... .. ... 27
2.3.6 Computer programming . . . . . . . . . ..o 28



Contents

2.4 Hierarchicalmodelling . . . ... ... .. ... .......

2.4.1 Distributional assumptions . . . . .. ... ... ..

2.4.2 Indicatorvariables . .. .. ... ... ........
2.4.3 The three parametedistribution . . . . ... ... ..
2.5 Generalisations of the logistic growth model . . . . . . ... .. ..
2.5.1 Richards’growthmodel . . ... ... ........
2.5.2 Generalised logistic growth model . . . . . ... ..
2.6 Statespacemodels . ... ... ... ... ... ... ...
2.6.1 Stochastic differential equations . . . . . . ... ... ...
2.6.2 The Euler-Maruyamamethod . . . ... ... ...
2.6.3 Kalmanfilter . . .. ... ... ... ... . ...

2.6.4 Linear noise approximation . . .. ... .. .. ..

Modelling genetic interaction

3.1 Introduction . . . . . . . ...
3.2 Bayesian hierarchical model inference . . . . . ... ... .. ......
3.3 Two-stage Bayesian hierarchical approach . . . . . . . ..
3.3.1 Separate hierarchicalmodel . . .. ... ... ...
3.3.2 Interaction hierarchical model . . . .. ... .. ..
3.4 One-stage Bayesian hierarchical approach . . . . .. ... ... ..

3.4.1 Joint hierarchicalmodel . . . ... ... .. .. ..

3.5 Random effectsmodel . . . ... ... .. .. ... ....

Case Studies

4.1 Introduction . . . . . . . . . ...

4.2 c¢dcl13-127°C vsura3A 27°C suppressor/enhancer data set

4.2.1 Frequentistapproach . . ... ... ... ... ...
4.2.2 Two stage Bayesianapproach . . . . ... ... ..

4.2.3 One stage Bayesianapproach . . .. ... .. ..

4.3 Comparison with previousanalysis . . . . .. .. .. .. ... ...
4.3.1 Significant genetic interactions . . . . . .. .. ...
4.3.2 Previously known genetic interactions . . . . . ... . ... ...
4.3.3 Hierarchy and model parameters . . . . ... .. ..
4.3.4 Computingrequirements . . . .. ... ... ....
4.3.5 Convergencediagnostics . . . ... ... .. ....

4.3.6 Simulationstudy . . ... .. ... ... .. ...,



Contents

4.4 Bayesian inference code comparison . . . . ... .. ... .. ... 69
45 Furthercasestudies . . . . . . . . . ..o 2 7
4.6 Extensions of the joint hierarchicalmodel . .. ... .. ....... 80

Fast Bayesian parameter estimation for stochastic logist growth models 88

5.1 Introduction . . . . . . . . .. 88
5.2 The Roman-Roman & Torres-Ruiz (2012) diffusion pexce. . . . . . . 89
5.3 Linear noise approximation with multiplicative noise. . . . . . . . .. 89
5.4 Linear noise approximation with additivenoise . . . . .. ... ... 91
5.5 Simulation and Bayesian inference for the stochaggistic growth model

and approximations . . . . . . ... 93

5.5.1 Bayesian parameter inference with approximate nsodel . . . 95

5.5.2 Applicationto observed yeastdata . . . . ... .. ... ... 98
Conclusions and future work 104

QFA data set sample, solving the logistic growth model andandom effects

model R code 110
A.1 cdcl3-1Quantitative Fitness Analysis datasetsample . . . . . . . .. 110
A.2 Solving the logistic growthmodel . . . . . .. .. ... ....... 111
A.3 Random effects modelRcode . ... ... ... ... ......... 311
Bayesian hierarchical modelling 114
B.1 Hyper-parameter values for Bayesian hierarchical iiode . . . . . . . 114
B.2 ¢dcl13-127°C vsura3A 27°C fitness plots with gene ontology terms
highlighted . . . . . . . . . . . . ... .. . . 115
B.3 Lists of top genetic interactions for the two-stage ané-stage Bayesian
approaches . . . . . . .. 119
B.4 c¢dc13-127°C vsura3A 27°C fitness plots for the joint hierarchical model
in terms of carrying capacity and growth rate parameters . . . . .. 121
B.5 Gene ontology term enrichment analysisinR . . .. .. .. ....... 123
B.6 Code for Just Another Gibbs Sampler software . . . . ... ... . 124
B.6.1 Separate hierarchical modelcode . .. ... ... ...... 124
B.6.2 Interaction hierarchical modelcode ... .. .. .. .. ... 124
B.6.3 Joint hierarchical modelcode . .. ... ... ......... 251

B.7 Additionalcdc13-127°C vsura3A 27°C fitness plots . . . . . . . . .. 126



Contents

B.8 Correlation betweenmethods . . . . . . . ... ... .. ... 131
Stochastic logistic growth modelling 133
C.1 Linear noise approximation of the stochastic logistmagh model with

multiplicative intrinsic noise solution . . . . . . . ... ... ... ... 133
C.2 Zero-order noise approximation of the stochastic tagggowth model . 136
C.3 Linear noise approximation of the stochastic logistmagh model with

additive intrinsic noise solution . . . . . .. .. ... L. .. 138
C.4 Prior hyper-parameters for Bayesian state space models. . . . . . . 140
C.5 Kalman filter for the linear noise approximation of thecstastic logistic

growth model with additive intrinsic noise and Normal measoent error 141



List of Figures

1.1 Example 384-spot plate image from a yeast quantitativess analysis

SCIEEN . . . . . o e e e e 7
1.2 Cropped image of 15 out of 384 spotted yeast cultures &88v-spot plate 7
1.3 Observed yeast data and fitted logistic growth curves . . . . . . .. 8
1.4 Fitness plot taken from Addinadt al.(2011) . .. ... ... .. .. .. 14
2.1 Telomereatachromosomeend . . . ... ... ... .......... 8 1
2.2 Theendreplicationproblem . . ... ... ... ... ......... 19
2.3 Thespottingprocedure . . . . .. ... ... .. ... 2 2
3.1 Plate diagram for the separate hierarchicalmodel . . ... ... .. 43
3.2 Plate diagram for the interaction hierarchical model..... . . . . ... 46
3.3 Plate diagram for the joint hierarchical model . . . .. ..... ... 49
4.1 Separate hierarchical model logistic growth curvefits... . . . . . . . 54
4.2 Fitness plots witlorf A posterior mean fitnesses . . . . . . ... ... .. 56
4.3 Joint hierarchical model logistic growth curve fits . . . .. . ... .. 60
4.4 Convergence diagnostics for the separate hieraramicdél . . . . . . . 65
4.5 Convergence diagnostics for the interaction hieraedimodel . . . . . . 66
4.6 Convergence diagnostics for the joint hierarchicalehod . . . . . . . . 67

4.7 Density plots for posterior samples from the joint hiehécal model us-

ing the C programming language and Just Another Gibbs Sampisvare 71
4.8 cdcl3-1lexol\ 27°C vscdcl3-127°C joint hierarchical model fithess plot 76
4.9 cdcl3-1lradQ\ 27°C vscdcl3-127°C joint hierarchical model fithess plot 77

4.10 yku7QA 37°C vsura3A 37°C joint hierarchical model fithess plot . . . . 78
4.11 ura3A 37°C vsura3A 20°C joint hierarchical model fitness plot . . . . . 79
4.12 cdcl13-127°C vsura3A 27°C joint hierarchical model with batch effects
fitnessplot. . . . . . . . . . 86
4.13 cdc13-127°C vsura3A 27°C joint hierarchical model with transforma-
tionsfitnessplot. . . . . . . . . . ... 87



List of Figures

5.1 Forward trajectories for the stochastic logistic gtomtodel and approx-

IMations . . . . . . . . 94
5.2 Forward trajectories of logistic growth models and B&stic logistic data

with Log-normal measurementerror . . . . . . . ... ... ... ... 99
5.3 Convergence diagnostics for the linear noise appraiomaf the stochas-

tic logistic growth model with additive intrinsic noise . .... . . . . . . 100
5.4 Forward trajectories of logistic growth models and ststic Ioglstlc data

with Normal measurementerror . . . . . ... .. ... ... ...... 101
5.5 Forward trajectories of logistic growth models and obse yeast data . . 103

Al cdcl3-1QFAdatasetsample . . . . .. . . ... .. ... .. .. 110

B.1 Alternative fitness plots witbrf A posterior mean fithesses and labels for

the “telomere maintenance” gene ontology term . . . . . . ... 115
B.2 Alternative fitness plots witbrf A posterior mean fitnesses and labels for

the “ageing” gene ontologyterm . . . . . . .. . ... ... ... ..., 611
B.3 Alternative fitness plots witbrf A posterior mean fithesses and labels for

the “response to DNA damage” gene ontology term . . . . . . . . ... 117
B.4 Alternative fitness plots witbrf A posterior mean fitnesses and labels for

the “peroxisomal organisation” gene ontology term . . . . ...... .. 118
B.5 Joint hierarchical model carrying capacity fithessplat. . . . . . . .. 121
B.6 Joint hierarchical model growth rate fitnessplot . . . ...... .. ... 122
B.7 Alternative non-Bayesian, hierarchical random effenbdel fithess plot . 126
B.8 Alternative interaction hierarchical model fitnesstplo. . . . . . . . .. 127
B.9 Alternative joint hierarchical model fitnessplot . . . . . . ... ... 128
B.10 Alternative joint hierarchical model carrying caggditness plot . . . . . 129
B.11 Alternative joint hierarchical model growth rate figseplot . . . . . . . . 130
B.12 M DR x M D P genetic interaction correlation plot of the joint hierarch

cial model versus Addinall etal. (2011) . . ... ... ... ... .. 132

Vi



List of Tables

3.1 Description of the separate hierarchicalmodel . . . . ...... .. ... 41
3.2 Description of the interaction hierarchicalmodel . .. .. ... ... 45
3.3 Description of the joint hierarchical model . . . . . .. .. ... ... 48
3.4 Description of the random effectsmodel . . . . ... .. .. ....... 50
4.1 Number of genes interacting witdc13-1at27°C . . . . . . . ... ... 57
4.2 Overlap between methods for genes interacting edtii3-1at27°C and

gene ontology terms over-represented in lists of intevasti . . . . . . . 59
4.3 Bayesian model convergence statistics . . . . .. ... ... .... 64
4.4 Simulation study with a joint hierarchical model sintathdataset. . . . . 69

4.5 Unpaired t-test and Kolmagorov-Smirnov p-values camgaposterior
samples from the joint hierarchical model using both C paiagning lan-

guage and Just Another Gibbs Sampler software . . . . . .. ... .. 70
4.6 Number of interactions identified for further case stgdind applications

of the joint hierarchical model extensions . . . .. ... ... .... 73
4.7 Overlap between different QFA comparisons for genesrasting and

gene ontology terms over-represented in lists of intevasti . . . . . . . 75

4.8 Overlap with joint hierarchical model extensions fongg interacting
with cdc13-1at 27°C and gene ontology terms over-represented in lists

ofinteractions . . . . . . . . .. .. ... 83
4.9 Description of the joint hierarchical model with batdfeets . . . . . . . 84
4.10 Description of the joint hierarchical model with tréorsnations . . . . . 85

5.1 Bayesian state space model parameter posterior m¢andasd devia-
tionsandtruevalues . ... .. ... ... .. .. ... . 102
5.2 Total mean squared error for 10 observed yeast growthd¢oarses . . . 102

B.1 Hyper-parameter values for Bayesian hierarchical rtiodeof quantita-

tive fitnessanalysisdata . . . . . . ... .. ... ... ... ..., 411
B.2 Sample of interaction hierarchical model top genetieriactions with
Ccdcl3-1at27°C . . . . . . e 119

Vil



List of Tables

B.3

B.4

C1l

Sample of joint hierarchical model top genetic inteat withcdc13-1

at27°C . e
Spearman’s rank correlation coefficients for magnisuidem genetic in-

dependence, between approaches . . . . . . .. ... ... ... ...

Prior hyper-parameters for Bayesian sate space models ... . . . . . 140

viii



Nomenclature

cdc13A A null allele (or gene deletion) c2DC13
cdc13-1 A point mutation of the wild type genéDC13
CDC13 A wild type gene

H. sapiens Homo sapiens

orf A Open reading frame deletion

S. cerevisiae Saccharomyces cerevisiae

ACF Auto-correlation function

BUGS Bayesian inference Using Gibbs Sampling
Cdcl13 A wild type protein

DAVID Database for Annotation, Visualization and Integ@Discovery
DDR Deoxyribonucleic acid damage response
DNA Deoxyribonucleic acid

DSB Double-strand break

dsDNA Double-stranded deoxyribonucleic acid
E-MAP Epistatic Miniarray Profiling

FN  False negative

FP False positive

GO Gene ontology

IHM Interaction hierarchical model

IOD Integrated optical density



List of Tables

JAGS Just Another Gibbs Sampler
JHM Joint hierarchical model
LNA Linear noise approximation

LNAA Linear noise approximation of the stochastic logigirowth model with additive
intrinsic noise

LNAM Linear noise approximation of the stochastic logiggiowth model with multi-
plicative intrinsic noise

MCMC Markov chain Monte Carlo

MDP Maximum doubling potential

MDR Maximum doubling rate

ODE Ordinary differential equation

ORF Open reading frame

QFA Quantitative Fitness Analysis

RNA Ribonucleic acid

RRTR Roman-Roman & Torres-Ruiz (2012) logistic growtfiudiion process
SDE Stochastic differential equation

SGA Synthetic Genetic Array

SGD Saccharomyces Genome Database

SHM Separate hierarchical model

SLGM Stochastic logistic growth model

SLGM+L Stochastic logistic growth model with Log-normal aseirement error
SLGM+N Stochastic logistic growth model with Normal measuent error

ssDNA Single-stranded deoxyribonucleic acid



Chapter 1. Introduction

High-throughput screening of microbial culture fitnesses ipowerful tool in biology
that can be used to learn about the interaction between g&wgsroteins in living cells.
Fitness, the ability of organisms to survive and reproduca specific environment, is
of fundamental importance to every living organism. Measucomponents of fitness
(such as population growth rate) in microbial cultures isaywo directly assess and
rank the health of such populations. Genome-wide Quaigt&itness Analysis (QFA)
Is a robot-assisted high-throughput laboratory workfloambining systematic genetic
techniques to generate arrays of genetically distinctobied cultures with quantification
and modelling of growth curves to estimate fithesses (Banhks, 2012; Addinallet al.,,
2011). An important reason for carrying out QFA is to compgaeefitnesses of cultures
with distinct genotypes in order to quantify epistasis @eninteraction).

In Addinall et al.(2011), a frequentist statistical approach is used to maxeimake
inference for significantly interacting genes in a QFA sareemparison. Other large-
scale quantitative genetic interaction screening ap@smexist, such as Epistatic Miniar-
ray Profiling (E-MAP) (Schuldineet al., 2006) and Synthetic Genetic Array (SGA) (Tong
& Boone, 2006), but we expect QFA to provide higher qualitydgs estimates by using
a culture inoculation technique which results in a widegeaof cell densities during cul-
ture growth and by capturing complete growth curves instdagsing single time point
assays. QFA and alternative genetic interaction screemppgoaches mentioned above
use frequentist statistical methods that cannot accounalfesources of experimental
variation or estimate evidence of genetic interaction siameously and do not partition
variation into population, genotype and repeat levels.tHeuy the frequentist statistical
approaches used in the methods above cannot account feanefgior information.

The first aim of this thesis is to develop new Bayesian modeswill better deter-
mine genes which significantly interact than the currergdentist approach. Accounting
for more sources of variation than the frequentist approBakesian QFA will be able to
find genetic interactions within QFA with less error and gased confidence. The new
Bayesian QFA will be used to help locate genes that are celatéelomere activity in
suppressor/enhancer analysis as well as other high thpotiglperiments such as drug
screening.

Analysis of high throughput genetic screen data involvedelimg both the experi-
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mental structure and its sources of variation. Many undaglgources of variation within
the data can be identified in the experimental design. Withdly modelling variation
within the experiment, a model may not be able to identifyrtiiee subtle interactions.
With a Bayesian approach (Bernardo & Smith, 2007) there iserflexibility of model
choice, allowing model structure to reflect experimentalctire or design. Currently
there is no standard frequentist approach which can dedl iwierence for a hierar-
chical model that simultaneously models logistic growthapaeters and probability of
genetic interaction. Using Bayesian hierarchical modgl({Gelman & Hill, 2006), this
study looks to extract as much information as possible fratnable QFA data sets. The
Bayesian hierarchical approach also allows the borrowingtrength across subjects,
helping identify significantly interacting open readingrire deletionsqrfAs) which oth-
erwise may have been given low significance and overlooked.

Prior distributions are used to incorporate the existirfgrination known about the
possible values for parameters. Bayesian analysis cam tiduse of Boolean indicators
to describe the evidence that eamtiA interacts with the query mutation in terms of
probability. During the model fitting procedure, we find tlatA fithesses have a long-
tailed distribution around their population mean due toswally fit, dead or missing
orf As. In these instances, the scatetistribution is used to describe these features.

Following the approach for determining epistasis from tbmparison of two QFA
screens presented by Addinatl al. (2011), the present study develops a two-stage ap-
proach to this problem:) the separate hierarchical model (SHM) is fitted to cell dgnsi
measurements to estimate fitness, thrfitness estimates are input to the interaction
hierarchical model (IHM). Next, a unified approach, refdrte as the joint hierarchical
model (JHM), is developed. The JHM models mutant straingges and genetic interac-
tions simultaneously, without having to pass informatietween two different models.
The JHM can also allow two important, distinct, microbiah&ss phenotypes (population
growth rate and carrying capacity) to provide evidence freajic interaction simultane-
ously.

Applying the new Bayesian approaches to QFA screen datapréent study is
able to identify new genes and complexes that interact watietjc mutatiorcdc13-1
in yeast.cdc13-1is a genetic mutation which results in dysfunctional teloenmainte-
nance. Telomeres are repetitive regions of deoxyribomueleid (DNA) at the end of
linear chromosomes. They have been of great interest imrgears as they have been
shown to have a role in ageing and cancer (Shay & Wright, 2005)
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Current approaches (Addinadt al, 2011) fit a deterministic logistic growth model to
yeast QFA data. For logistic growth data sets where stoichfaisttuations are observed,
the deterministic model fails to account for the intrinsiése. To better describe observed
yeast QFA data, a stochastic model can be used. Stochadiielsreimultaneously de-
scribe dynamics and noise or heterogeneity in real syst€menet al., 2010). For exam-
ple, stochastic models are increasingly recognised assagetools for understanding
the behaviour of complex biological systems (Wilkinson1202009) and are also used
to capture uncertainty in financial market behaviour (Kgird013; Koller, 2012). Many
such models are written as continuous stochastic diffedeequations (SDEs) which of-
ten do not have analytical solutions and are slow to evatuateerically compared to their
deterministic counterparts. Simulation speed is oftenraquaarly critical issue when in-
ferring model parameter values by comparing simulateduwuwtjth observed data (Hurn
et al, 2007).

For SDE models where no explicit expression for the tramsitiensity is available, it
is possible to infer parameter values by simulating a |gpemtess using a data augmen-
tation approach (Golightly & Wilkinson, 2005). Howeverigimethod is computationally
intensive and not practical for all applications. When fagtrence for SDEs is important,
for example real-time analysis as part of decision suppatesns or big data inference
problems where simultaneous model fits are made to many dhdssof datasets (e.g.
Heydariet al. (2012)), an alternative approach is needed (Heyetaal.,, 2013).

The second aim of this thesis is to present a fast approacstdohastic modelling
of processes with intractable transition densities andyajys approach to a SDE de-
scribing logistic population growth for the first time. Onech approach is demonstrated:
developing an analytically tractable approximation to éhniginal SDE, by making lin-
ear noise approximations (LNAs) (Kurtz, 1970, 1971; Van kam 2011). The present
study introduces two new first order LNAs of a stochasticdtigigrowth model (SLGM)
(Capocelli & Ricciardi, 1974), one with multiplicative arahe with additive intrinsic
noise, which are labelled LNAM and LNAA respectively. The AMeduces a SDE to a
linear SDE with additive noise, which can be solved to givesplicit expression for the
transition density.

The Bayesian approach can be applied in a natural way to oatrgarameter infer-
ence for state space models with tractable transition esgWest & Harrison, 1997).
A state space model describes the probabilistic dependeieeen an observation pro-
cess variableX; and state proces$. The transition density is used to describe the state
processS; and a measurement error structure is chosen to describel#t®nship be-
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tweenX, and.S;. Transition densities are derived for the LNA approximatadeis and
measurement noise is chosen to be either multiplicativelditige in order to construct
a linear Gaussian structure and allow fast inference thrdbg use of a Kalman filter.
The Kalman filter (Kalman, 1960) is typically used to infeethidden state process of
interestS; and is an optimal estimator, minimising the mean square efrestimated
parameters. The main assumptions of the Kalman filter atétteaunderlying system is
a linear dynamical system and that all noise is Gaussiarh@drthe mean and standard
deviation of the noise is known). Here the Kalman filter isdus®ereduce computational
time in a parameter inference algorithm by recursively cotimg the marginal likelihood
(West & Harrison, 1997).

It is shown that both of the new diffusion equation modelsehanore realistic growth
characteristics at the saturation stage when compared étated model by Roman-
Roman & Torres-Ruiz (2012) (an approximate model appraeuich is labeled RRTR)
and it is shown that a zero-order LNA of the logistic growthES@ith multiplicative
intrinsic noise is equivalent to the RRTR.

This study compares the utility of each of the approximatel@®during parameter
inference by comparing simulations with both synthetic eral datasets. After inference
it is shown that the fast approximate methods give similatgror distributions to the
slow arbitrarily exact models. Of the approximate modelssodered, the RRTR model
is shown to be the worst at recovering true parameters asticgirowth data.

The LNA models are an improvement over the RRTR and so shaulcéd for better
parameter inference of logistic growth data, as they aregsidast but more accurate.
The stochastic modelling approach presented in this stutdiMA followed by a Kalman
filter recursion for marginal likelihood computation, isphigable to a range of popula-
tion growth models or stochastic processes, where fasteinée is of importance. The
approach presented in this study enables stochastic nmgdédr a big data genome-
wide analysis, where previously a deterministic model blm#o capture the information
within the stochasticity of a process, is assumed due todhstrints in computational
time associated with large volumes of data. The problemsgadidta (Boyd & Crawford,
2011) are relatively new and part of an expanding field ofaedethat involves large and
complex collections of data sets, typically with large caments of noise.

1.1. Quantitative Fitness Analysis

Genome-wide Quantitative Fitness Analysis (QFA) is a redssisted high-throughput
laboratory workflow, combining systematic genetic techie|to generate arrays of ge-

4
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netically distinct microbial cultures with quantificatiand modelling of growth curves to
estimate fitnesses (Banksal, 2012; Addinallet al,, 2011). A QFA screen can be used
to compare the fitnesses of cultures with distinct genotyp@sder to quantify genetic
interaction.

Genetic interaction strengths are typically estimated tygaring fithesses in two
QFA screens: a control screen and a query screen. QFA ouidutles fithess estimates
for all microbial cultures in an arrayed library includingplicate cultures. For example,
such a library could be a systematic collection of all nogeesial, single gene deletion
strains in the model eukaryof&accharomyces cerevisié®. cerevisiagbrewer’s yeast).
All strains within a query screen differ from their contrareen counterparts by a com-
mon condition such as a background gene mutation, drugnesdf temperature or other
treatment. To identify strains that show interaction with uery condition, correspond-
ing fitness responses for each strain in the library undeqtieey and control conditions
can be compared.

An example of the procedure to create mutant strains to tesjdnetic interaction
using QFA screens is as follows. First a suitable query rartas chosen, which is rele-
vant to an area of biology of particular interest (eedc13-1for its relevance to telomere
capping processes). Next, a library of strains is chosehjmvhich to search for strains
interacting with the query mutation (e.g. a genome-widealyp of independent strains
with individual, non-essential genes deletedtAs). Finally, an appropriate, neutral con-
trol background mutation is chosen (ewga3A) to allow the separation of the effect of
background condition from that of the library strains. Inshoases, control and query
mutations are crossed with the chosen library using Syictsnetic Array (SGA) tech-
nology (Tong & Boone, 2006). Independent replicate culiuaee inoculated and grown
across several plates for each strain under each conditmapture biological and techni-
cal heterogeneity. Cultures are grown simultaneously iamel¢ourse images captured by
photography. Robotic assistance is required for both plnoculation and image cap-
ture during genome-wide screens which can include apprabeiy 5,000 independent
genotypes.

Raw QFA data (photographs) are converted into cell densttgnates using the image
analysis software Colonyzer (Lawless al., 2010). Observed changes in cell density
over time are converted to fithess estimates for both theaantd query strain by fitting
logistic growth curves to data. Genetic interactions aeaitied by finding mutants in the
query screen whose fitnesses deviate significantly fromigireds given by a theoretical
model of genetic independence.
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Addinall et al. (2011) describe using QFA to infer genetic interactiondiglomere-
specific query mutations. They use least squares methodddgifitic growth curves to
culture time courses, then generate a univariate fitneissastfor each time course. They
use a linear model predicting query strain fithess givenrobstrain fitness, consistent
with Fisher’s multiplicative model of genetic independenio test for genetic interaction
between the query mutation and eachA. Deviation from the predicted linear relation-
ship between the query and control fitnesses is evidencesfwety interaction between
orfA and the query mutation. The significance of observed intierasis assigned us-
ing a simple frequentist linear modelling approach. Onehefrnajor limitations of the
statistical model used in Addinadt al. (2011) is that it assumes eaolfA fitness has
the same variance. It is expected that explicit modellingedérogeneity will allow more
robust identification of interactions, particularly wheegiability for a particular strain is
unusually high (e.g. due to experimental or technical diffies).

1.1.1. Quantifying fithess

Observing changes in cell number in a microbial cultureéstiost direct way to estimate
culture growth rate, an important component of microbidtige fitness. Direct counting
of cell number on a high-throughput scale is not practical sm cell density estimates
are made instead from culture photographs taken during @#mates of the integrated
optical density (IOD) generated by the image analysis taab@yzer (Lawlesst al.,
2010) are used to capture cell density dynamics in indepencldtures during QFA.
Density estimates, scaled to normalise for camera resoludre gathered for each culture
and a dynamic model of population growth, the logistic madel rx(1—x/ K') (Verhulst,
1845) (see Section 1.1.2), is fit to the data. Example phapigc images of two yeast
colonies inoculated by QFA, growing over time, along withresponding quantitative
measures of growth can be seen in Figure 1.3.

For a QFA screen, cultures are typically grown on 384-spatiegl over time, where a
process callegpottingis used to inoculate microbial cultures on the plates. Tiudtisy
process involves a stage where microbial cultures are fitsted and then the diluted
culture is spotted to the plate. Section 2.1.5 describesgbting process and alternatives
in further detail. An example 384-spot plate of yeast celéus given in Figure 1.1. Yeast
cultures in Figure 1.1 are all alive and have similar culize. A cropped image of 15
yeast cultures from a 384-spot plate is given in Figure 1.2asY cultures in Figure 1.2
have different culture sizes, the smaller cultures havestadgrowth relative to the larger
cultures. An example of the raw time series data is given énAppendix, Figure A.1.
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Figure 1.1: Example 384-spot plate image from a yeast quantitativesitia@alysis screen, taken
approximately 3 days after inoculation. Yeast culturesspated and grown in regular arrays on
solid agar plates.

Figure 1.2: Cropped image of 15 out of 384 spotted yeast cultures from4aspdt plate, taken
from a quantitative fithess analysis screen. Image takerogippately 3 days after inoculation.
Yeast cultures are spotted and grown in regular arrays doh aghr plates.
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Further detail on the QFA workflow and alternative 384-sgdateimages can be found
at (Bankset al., 2012) andhttp://research.ncl.ac.uk/gfa/

After logistic growth model fitting, estimated logistic gvth parameters sets can then
be used to determine the fitness of a culture. If requiredj\atiate fitness definition can
be chosen to summarise a set of logistic growth parameteessction 1.1.3).
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Figure 1.3: A) Timelapse images for two genetically modifidcerevisiaeultures with different
genotypes (indicated) corresponding to the time seriesunements plotted in panel B. B) Time
course cell density estimates derived from analysis ofithelapse images in panel A together
with (least squares) fitted logistic growth curves.

1.1.2. The logistic growth model

The logistic model of population growth, an ordinary diffatial equation (ODE) de-
scribing the self-limiting growth of a population of sizét) at timet, was developed by
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Verhulst (1845),
dx(t) x(t)
The ODE has the following analytic solution:
KPe™
x<t79) - K + P (€Tt - 1)7 (12)

whereP = z(0) andd = (K, r, P). The model describes a population growing from an
initial size P (culture inoculum density) with an intrinsic growth rateundergoing ap-
proximately exponential growth which slows as the avalighbof some critical resource
(e.g. nutrients or space) becomes limiting @ral., 1976). Ultimately, population den-
sity saturates at the carrying capacity (maximum achi@vpbpulation density)’, once
the critical resource is exhausted. Appendix A.2 shows howerive the solution of
(1.1), givenin (1.2). An example of two different logisticogvth trajectories are given by
the solid lines in Figure 1.3B. Where further flexibility isquired, generalized forms of
the logistic growth process (Tsoularis & Wallace, 2002eBel al., 2007) may be used
instead (see Section 2.5.2).

1.1.3. Fitness definitions

Culture fitness is an important phenotype, indicating thaltheof a culture. Several
distinct quantitative fitness measures based on fittedtlogieodel parameters (1.2) can
be constructed. Addinadit al. (2011) present three univariate measures suitable for QFA:
Maximum Doubling Ratg M/ D R) and Maximum Doubling Potentidl\/ D P) detailed

in (1.3), and their product/ DR x M D P, where

K
and 1pp — 129 (%)

,
 log (2£=5) log(2)

MDR

(1.3)

MDR is reciprocal of minimum doubling tim#& which a cell population takes to reach
2x(0), assuming the exponential phase begins-at:

2y

(0)
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We now rearrange to give the following expression for MDR:

1 r
MDR = — = ——————.
T log(2UD))

MDP is the number of times population size doubles beforeliieg saturation, assuming
geometric progression:
z(0) x 2MPP = K.

Rearrange to give the following:

M DR captures the rate at which microbes divide when experignaimimal inter-
cellular competition or nutrient stress. A strain’s growke largely dictates its ability to
outcompete any neighbouring straiig.D P captures the number of divisions the culture
is observed to undergo before saturation. A strain whictdoade a few more times than
its neighbours in a specific environment also has a comyettivantage.

The choice of a single overall fitness score depends on theztsspf microbial phys-
iology most relevant to the biological question at hand. iGgity the fitness definition
MDR x MDP is used in QFA to account for both attributes simultaneou€)her
fitness definitions available include cell count, expectedegation number and their ap-
proximations (Colet al.,, 2007).

1.2. Epistasis

Epistasis is the phenomenon where the effects of one gemaaitdied by those of one
or several other genes (Phillips, 1998). Besides the niigkifive model, there are other
definitions for epistasis such as additive, minimum and Magr{i et al., 2008). Minimum

is a suboptimal approach which may allow “masking” of intgi@ns (Maniet al., 2008).
For a typical yeast QFA screen comparison, Addieakl. (2011) assumes a multiplica-
tive interaction model (1.4), but when dealing with measwests on a log scale, it is
effectively assuming an additive interaction model (Ay8oZeng, 2008). This highlights
the point that multiplicative and additive models are egléant if fitness data are scaled
appropriately (Cordell, 2002).

10
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1.2.1. Defining epistasis

As presented in Addinakt al. (2011), this study assumes Fisher’s multiplicative model
of genetic independence (1.4) (Cordell, 2002; Phextial, 2011), to represent the ex-
pected relationship between control strain fithess ph@astyand those of equivalent
guery strains in the absence of genetic interaction. Irstidy, we interpret genotypes for
which the query strain fitness deviates significantly from thodel of genetic indepen-
dence as interacting significantly with the query mutat®quare bracket notation is used
to represent a quantitative fitness measure. For examplend[query] represent wild-
type and query mutation fithesses respectively. “Wild-tygigctly refers to the genotype
that is prevalent among individuals in a natural (or wildpptation. However, during
laboratory cultivation of microbes it is more usual to ituze extra gene mutations to an
ancestral lineage that is well established within the ggiercommunity. Working with
established lineages allows direct comparison with regtdim the literature without the
confounding effect of sampling genotypes from natural pajens, which are consid-
erably more heterogeneous. Thus in context of this thesigg-type” will refer to the
reference strain, before additional mutations are intceduorf A represents an arbitrary
single gene deletion strain (i.e. a mutant from the contiralirs library). query : orfA
represents an arbitrary single gene deletion from the cgteain library (e.g. crossed with
the query mutation). Fisher’'s multiplicative model of ggo@dependence is as follows:

lquery : orfA] x [wt] = [query] x [orfA] (1.4)
= [query : orfA] = lquery] x [orfA]. (1.5)
[w]

In (1.5), [qﬁj:]y} is a constant for a given pair of QFA screens, meaning thdtisf t

model holds, there should be a linear dependence betjyeery : orfA] and[orfA] for
all deletionsorfA. During genome-wide screens of thousands of indepermléds, it

can be assumed that the majority of gene mutations in tharlitito not interact with
the chosen query mutations. Therefore, even if the queryildrtype fithesses are not
available to us, the slope of this linear model can still bemested by fitting it to all
available fitness observations, before testing for stradmsh deviate significantly from
the linear model. Any extra background condition, such asreegnutation common to
both the control and query strains (e.g. triple instead aflbdi® deletion strains for the
guery and control data sets), may change the interpretatiatefinition of the type of
genetic interaction but the same linear relationship idiepiple.

11
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1.2.2. Addinallet al. (2011) Quantitative Fitness Analysis screen comparison

Addinall et al. (2011) present QFA where the logistic growth model (1.2) tisdfiex-
perimental data by least squares to give parameter esﬁr(rfﬁté) for each culture time
course (eaclbrfA replicate). Inoculum densit is assumed known and the same across
all orfAs and their repeats. After inoculating approximately 1dGsqeer culture, during
the first several cell divisions there are so few cells th#ticel cell densities remain well
below the detection threshold of cameras used for imageieaphd so, without sharing
information across albrfA repeats,” cannot be estimated directly. It is therefore nec-
essary to fixP to the same value for both screens, using an average estin&té&rom
preliminary least squares logistic growth model fits. Rgtthe model to eacbrfA re-
peat separately means there is no sharing of informatidnmatnorfA or betweerorfAs
when determinings’ and#. By developing a hierarchical model to share information
acrossorfA repeats for eachrfA and betweemrfAs, estimates for every set of logistic
growth curve paramete(ss<, ) can be improved and therefore for every strain fitness.

Quantitative fitness scoreg'(,,) for each culture were defined (1.6) (see (1.3) for
definitions of M/ DR and M D P), where

Fom = MDRey X MDP,. (1.6)

The indexc identifies the condition for a givearfA: ¢ = 0 for the control strain and
¢ = 1 for the query straimnm identifies arorfA replicate. Scaled fitness measures are
calculated for both the control and query screen such tleatnian across abirfAs for a
given screen is equal to 1. After scaling, any evidence Ehatand F},, are significantly
different will be evidence of genetic interaction.

The following linear model was fit to the control and quenasirscaled fithess mea-
sure pairs-.., for each uniquerfA in the gene deletion library:

Fon = 11+ Ve + Eem, Wherey, =0
oy Yo (1.7)

Eem ~ N(0,0?), wheree,.,, is i.i.d.

In (1.7), v, represents the estimated strength of genetic interacetmden the control
and query strain. If the scaled fitnesses for the control areygstrain are equivalent
for a particularorfA such that they are both estimated by some.e. no evidence of
genetic interaction, we would expegt= 0. The model was fit by maximum likelihood,
using the R function “ImList” (Pinheiro & Bates, 2000) witlawation assumed to be the

12
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same for all strains in a given screen and the same for botinat@md query screens. So,
for every gene deletion from the library an estimate/pfvas generated together with a
p-value for whether it was significantly different from zerealse discovery rate (FDR)
corrected g-values were then calculated to determined@fadignificance for eacbtrfA.
Addinallet al.(2011) use the Benjamini-Hochberg test (Benjamini & Hoecgb&995) for
FDR correction. This test is commonly used in genomic ara s although it assumes
independence of test statistics, even if positive conalagxists between tests, the result
is that FDR estimates are slightly conservative. Finallisedf orfA names, ranked by
~ magnitudes, was output amdfAs with g-values below a significance cut-off of 0.05
classed as showing significant levels of genetic interaatith the query mutation.

1.2.3. Fitness plots

Fitness plots are used to show whiatiAs show evidence of genetic interaction from a
QFA screen comparison. Figure 1.4 shows an example fithessagkn from (Addinall

et al, 2011). Fitness plots are typically mearfA fitnesses for control strains against
the corresponding query strainsfAs with significant evidence of interaction are high-
lighted in the plot as red and green for suppressors and ealsanespectivelyorfAs
without significant evidence of interaction are in grey.i®aind dashed grey lines are for
a simple linear model fit (corresponding to a model of gerniatiependence) and the line
of equal fitness respectively.

13
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Figure 1.4: Fitness plot taken from Addinadit al. (2011). A yeast genome knock out collection
was crossed to thedc13-1mutation, or as a control to thea3A mutation. 8 replicate crosses
were performed for the query and control straiog.As with significant evidence of interaction are
highlighted in red and green for suppressors and enharespsctively.orf As without significant
evidence of interaction are in grey and haveonfoname label. Lenient and stringent classification
of significant interaction is based on p-values0.05 and FDR corrected p-values (g-values)
< 0.05 respectively. For a further description on fitness plote, Section 1.2.3.
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1.3. The stochastic logistic growth model

To account for uncertainty about processes affecting @b growth which are not ex-
plicitly described by the deterministic logistic model, wan include a term describing
intrinsic noise and consider an SDE version of the model.eies extend the ODE in
(1.1) by adding a term representing multiplicative intrinsoise (1.8) to give a model
which we refer to as the stochastic logistic growth modelG$1), which was first intro-
duced by Capocelli & Ricciardi (1974),

X
dX, = rX, (1 - #) dt + o X,dW,, (1.8)

whereX;, = P and is independent of Wiener procés$s, ¢ > t,. The Wiener process
(or standard Brownian motion) is a continuous-time stotb@asocess, see Section 2.6.1.
The Kolmogorov forward equation has not been solved for) (bi8for any similar formu-
lation of a logistic SDE) and so no explicit expression fag thansition density is avail-
able. Roman-Roman & Torres-Ruiz (2012) introduce a diffn process approximating
the SLGM with a transition density that can be derived exjhi¢see Section 5.2).

Alternative stochastic logistic growth models to (1.8) available. Allen (2010) de-
rives the stochastic logistic growth models given in (1.8 §1.10) from Markov jump
processes (Allen, 2010; Wilkinson, 2011). Firstly,

X
dX, =rX, (1 - #) dt + /1 X, dW,, (1.9)

whereX,, = P and is independent d¥/;, ¢t > ¢,. Secondly,

X X

K K

whereX;, = P and is independent o1/;, t > t,.

Note that (1.8) (1.9) and (1.10) are not equivalent to eahbkrot(1.9) and (1.10) are
able to describe the discreteness of the Markov jump presdbsat they approximate (or
demographic noise). Demographic noise becomes less smmtifior large population
sizes, therefore (1.9) and (1.10) describe more detertitigiowth curves when popula-
tion size is large (i.e. large carrying capacity). Equation 1.8 introduces an additional
parameter, unlike (1.9) and (1.10). The additional parameter in (&l8ws us to tune
the amount of noise in the system that is not directly assediaith the noise due to
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the discreteness of the process (demographic noise). Thgoadl parameter also gives
(1.8) further flexibility for modelling intrinsic noise tima(1.9) and (1.10). As the diffu-
sion terms of (1.9) and (1.10) are functions of the logistiowgh parameters, for large
populations (1.9) and (1.10) can confound intrinsic noigh astimates of logistic growth
parameters and K. For the above reasons, the SLGM in (1.8) is the most api&pri
model for estimating logistic growth parameters of largeudations, as intrinsic noise
does not tend to zero with larger population sizes, unlik@)(@nd (1.10).

1.4. Outline of thesis

A brief outline of thesis is as follows. Chapter 2 gives backmd to the biological and
statistical methods used throughout the thesis. Yeastdpyakelated to the QFA data sets
analysed in this study is given as well as an introductionage3ian inference.

In Chapter 3 the SHM and IHM models for the new two-stage BayeQFA approach
are presented. Next, the JHM for the new one-stage BayestAra@Qproach is presented.
The chapter is concluded by introducing a two-stage fretisteQFA approach using a
random effects model.

In Chapter 4 the new Bayesian approaches are applied to mpsgvanalysed QFA
data set for identifying genes interacting with a telomezéedt in yeast. The chapter is
concluded with an analysis of further QFA data sets with th&land two extensions of
the JHM; included for further investigation and research.

Chapter 5 begins by introducing an existing logistic growifiusion equation by
Roman-Roman & Torres-Ruiz (2012). Two new diffusion edures for carrying out fast,
Bayesian parameter estimation for stochastic logistizvjr@ata are then presented. The
chapter is concluded by comparing inference between th@ajppate models considered
and with arbitrarily exact approaches.

Finally, Chapter 6 presents conclusions on the relativetenef the newly developed
Bayesian approaches and stochastic logistic growth mod@leéschapter is concluded by
discussing the broader implications of the results of theist presented and scope for
further research.
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2.1. Yeast biology

Saccharomyces cerevisigea species of budding yeast widely used to study genetics.
S. cerevisiaavas the first eukaryotic genome that was completely seqdefeeffeau
et al, 1996). Yeast is ideal for high throughout experimentatias it is easy to use and
arrayed libraries of genetically modified yeast strainsraeglily available or obtainable
for experiments (Zeyl, 2000). There are many different olzade traits available witls.
Cerevisiaesuch as size, opacity and density. There are about 6008 getieeS. Cere-
visiaegenome of which 5,800 of these are believed to be true fumatigenes (Cherry
et al, 2012).

Yeasts are ideal for genome-wide analysis of gene funcgaeaetic modification of
yeast cells is relatively straightforward and yeast celugrow quickly. Epistasis identi-
fied within a species of yeast may exist in the analogous geitkes the human genome
(Botsteinet al,, 1997). Therefore, finding genes involved in epistasis wijleast is of
great interest outside the particular experimental sganiguestion.

2.1.1. Telomeres

Telomeres are the ends of linear chromosomes and found im @udgryotic organ-
isms (Olovnikov, 1996). Telomeres permit cell division eme researchers claim that
telomere-induced replicative senescence is an importamponent of human ageing (Ly-
dall, 2003). They cap (or seal) the chromosome end to ensiretig stability and are
believed to prevent cancer (Shay & Wright, 2005).

In Figure 2.1, &. cerevisiaehromosome is shown with the telomere single-stranded
DNA (ssDNA) at the end, where DNA binding proteins such asX3dare bound. Fig-
ure 2.1 also shows how telomere maintenance compares lreawE@®mo sapiensH.
sapieny andsS. cerevisia€hromosome.

Telomere length decreases with each division of a cell tgibimere length is very short
and the cell enters senescence (Hayflick & Moorhead, 196%)ng the ability to di-
vide. Some cancerous cells up-regulate the enzyme caltetdease which can prevent
shortening of telomeres or elongate them, potentiallyatlg cancerous cells to live in-
definitely (Wright & Shay, 1992).
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Figure 2.1: Telomere at a chromosome end (diagram and legend taken feama& Lydall
(2012)). The telomere cap is evolutionarily conservedoifares are nucleoprotein caps present
at the ends of most eukaryotic chromosomes, consistingudildestranded DNA (dsDNA) with a
single-stranded DNA (ssDNA) overhang, bound by dsDNA- &faldA-binding proteins. Collec-
tively, the telomere binding proteins “cap” the telomerel @erve to regulate telomerase activity
and inhibit the DNA damage response (DDR). In budding ydasttelomeric dsDNA is bound
by Rapl, which recruits the accessory factors Rifl and Rif2humans, the telomeric dsDNA
is bound by TRF1 and TRF2 (held together by TIN2) and TRF2uiescRAP1 to telomeres. In
budding yeast, Cdc13 binds the telomeric ssDNA and rechititd and Tenl to form the CST
(Cdc13-Stnl1-Tenl) complex, while in humans, the telomssidNA is bound by POT1. In hu-
man beings, POT1 and TRF1-TRF2-TIN2 are linked together B, which may permit the
adoption of higher-order structures. In both budding yeast humans, the Ku complex, a DDR
component that binds to both telomeres and Double-strazakbr(DSBS), also binds and plays a
protective role.

It is believed that telomeres are partly responsible forrgeavithout the enzyme telom-
erase, a fixed limit to the number of times the cell can divedeat by the telomere short-
ening mechanism because of the end replication probleny(éeal., 1992).

2.1.2. The end replication problem

In eukaryote cell replication, shown in Figure 2.2, newrstiaof DNA are in thé’ to 3’
direction (red arrows), the leading strand is thereforegeted in one section whereas the
lagging strand must be formed via backstitching with smaletions known as Okazaki
fragments (Lydall, 2003). Figure 2.2 shows how the laggingnsl is left with a3’ over-
hang, with the removal of the terminal primer at the end and tie leading strand is
left with a blunt end (David Wynford-Thomas, 1997). Telowms fixes this problem by
extending the’ end to maintain telomere length (Leeyal, 1992). Without telomerase,
the leading strand is shortened (Olovnikov, 1973) and telencapping proteins such as
Cdc-13 in yeast binds to the ssDNA that remains. Most eukargells have telomerase
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activated and may maintain DNA replication indefinitely. thddl mammalian cells have
telomerase activated and it is believed this problem thaddé¢o the shortening of their
telomeres and ultimately senescence.
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Figure 2.2: The end replication problem (diagram and legend taken frguatall (2003)). (A)
Telomeres in all organisms contain a sh&froverhang on the G rich strand. (B) A replication
fork moving towards the end of the chromosome. (C) The newplicated, lagging C strand,
will generate a natural’ overhang when the ribonucleic acid (RNA) primer is removednf the
final Okazaki fragment, or if the lagging strand replicatioachinery cannot reach the end of the
chromosome. In the absence of nuclease activity the unedpt3’ strand will be the same length
as it was prior to replication. (D) The newly replicated legdG strand will be the same length as
the parentad’ C strand, and blunt ended if the replication fork reachetttkof the chromosome.
Therefore the newly replicatet! G strand will be shorter than the parentalstrand and unable
to act as a substrate for telomerase because it does notrcastaverhang. If the leading strand
replication fork does not reach the end of the chromosoriieather thar8’ overhang would be
generated, but this would not be a suitable substrate fomidase.

2.1.3. CDC13and cdc13-1

CDC13is an essential telomere-capping geneircerevisiadZubko & Lydall, 2006).
The protein Cdc13, encoded B C13 binds to telomeric DNA (see Figure 2.1), forming
a nucleoprotein structure (Lustig, 2001). Cdc13 reguligiesnere capping and is part of
the CST complex with Stnl and Tenl (Wellinger, 2009). Thisvpfes protection from
degradation by exonucleases such as BExaulc13-1is a temperature-sensitive allele of
the CDC13gene that has temperature sensitivity ab2weC, where the capping ability
of the protein is reduced (Nugeat al, 1996). By inducing the temperature sensitivity
of Cdc13-1 telomere maintenance is disrupted. A lot of research iactior telomere
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integrity focuses on the CST complex and oftatt13 mutations are considered, like
cdcl13-landcdc13-5(see, for example, Anbalaganal., 2011; Fosteet al., 2006).

2.1.4. URA3

URABSIis a gene that encodes orotidine 5-phosphate decarboxase et al., 2002).
URA3is used as a genetic marker for DNA transformations, allgviaath positive and
negative selection depending on the choice of media (Kaat&b, 2009).

In Addinall et al. (2011)ura3A is used as a control mutation because it is neutral
under the experimental conditions. For a QFA comparisomsizacting a query mutation
such axdcl3-1typically involves adding selection markers to the genofoeensure that
the same selection markers are found in both the query artdotstrains, and that the
control and query screens can be carried out in comparabieaments, a neutral mu-
tation such asira3A can be introduced to the control straldRA3encodes an enzyme
called ODCase. DeletinggRA3causes a loss of ODCase, which leads to a reduction
in cell growth unless uracil is added to the media (Jones2)L98ddinall et al. (2011)
include uracil in their media so thata3A is effectively a neutral deletion, approximat-
ing wild-type fitness. As a control deletioblRA3is not expected to interact with the
query mutation, the library adrf As in the control and query screen or any experimental
condition of interest such as temperature.

2.1.5. High-throughput methodology for Quantitative Fitness Analysis

To collect enough data to perform QFA (Addineli al., 2011), a methodology such as
high-throughput screening is required (Sagtral., 2013; An & Tolliday, 2009). High-
throughput screening is most notably used in the field ofdgglfor genome wide sup-
pressor/enhancer screening and drug discovery. The atibtontd experimental proce-
dures through robotics, software, sensors and contragvsll researcher to carry out
large scale experimentation quickly and more consistently

Hundreds of microbial strains with various gene deletioescthto be systematically
created, cultured and then have measurable traits qudntiftee repeatability of micro-
bial culture growth is ideal to give sufficient sample sizesiflentifying both variation
and significance in high throughput experimentation (Xu,®0

The quality of the quantitative data is critical for idegiifg significantly interacting
genes. To measure the phenotypes of different mutant swéaamicro-organism such as
yeast (Zeyl, 2000), a process callgabttingis used. This process is different to a typical
SGA experiment wherpinningwould be used (see, for example, Tong & Boone (2006)).
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Pinning is a quicker but less quantitative process whereniibeobial strains are typically
directly pinned to a 1536 plate and allowed to grow until imagalysis starts. Spotting
on the other hand has a stage where the cultures are dilutethan the dilute culture
is spotted in 384 format to give a more accurate reading irgeramalysis. This in turn
gives rise to much more accurate time series data for madelli

Figure 2.3 illustrates the spotting process. An image dpaceasure is typically used
as a proxy for the density of microbial colonies. Time lapketpgraphs are taken of the
384-spot plates after incubation, using high resolutigitdi cameras, to measure growth.
A software package such as Colonyzer (Lawletal., 2010) can then be used to deter-
mine a quantitative measure of fithess from the photogragentof the cultures grown
on the plates. To ensure a consistent method to capture snodgeicrobial colonies, all
cameras should be of the same make and model.

2.2. Comparing lists of genes

Upon completing a QFA screen comparison, a list of genegeddsy genetic interaction
strength can be obtained. Lists of ordered genes can be asmuhipare two different
statistical approaches for a QFA screen comparison.

A comparison of two lists can be carried out through standgatistical similarity
measures such as the Jaccard Index or Spearman’s rankatiorredoefficient. Observ-
ing only the subset of genes showing significant evidencepoétc interaction, two lists
of genes can be compared using the Jaccard Index (Cheethaazé&l,HH969), see Sec-
tion 2.2.1. The Jaccard index does not account for the orgefigenes and is dependent
on the number of interactions identified when the cut-offerigs showing significant evi-
dence of interaction is chosen or influenced by the expetieneDue to these undesirable
properties of the Jaccard index, this method is not appaigfor an unbiased compari-
son of statistical methods. The Spearman’s rank correlabefficient (Kowalczylet al.,,
2004) is able to account for the ordering of genes and is aldedount for the whole list
of genes available, see Section 2.2.2.

Gene ontology (GO) term enrichment can be used to suggeshuist of genetic
interactions has the most biological relevance (ConsortR004). There are many other
alternative approaches available for the comparison ofgeree lists (Yanggt al., 2006;
Lottazet al,, 2006).

Using both Spearman’s correlation coefficient and GO ternclkement analysis of
gene lists allows for both an unbiased statistical and biokd comparison of two lists of
ordered genes.
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Figure 2.3: The spotting procedure for robotic inoculation of yeastigs in 384-spot format (di-
agram and legend taken from Bard¢sal. (2012)). This procedure begins with 1536 independent
cultures per plate (left). In this typical example, colen& positions 1,1; 1,2; 2,1 and 2,2 (colored
red) are four replicates of the same genotypis3::KANMX cultures in yellow, growing on the
edge of the plate, have a growth advantage due to lack of diiinpeand are therefore not exam-
ined by Quantitative Fitness Analysis. One of these ref@gée.g. 1,1) is inoculated into liquid
growth media in 96-well plates using a 96-pin tool which inlates 96 out of 1536 colonies each
time. In order to inoculate one replicate for each of 384 gigietions, four different “quadrants”
(indicated as red, blue, green and purple) are inoculatedaur different 96-well plates contain-
ing growth media. After growth to saturation (e.g. 3 days@{3, cultures are diluted in water,
then the four quadrants from one repeat are spotted in 384atoonto a solid agar plate (right) in
the same pattern as the original Synthetic Genetic Arra [fkes indicated by color). The process
can be repeated to test other replicates: 1,2; 2,1 and 2gnje time-lapse images on the right
were captured 0.5, 2 and 3.5 days after inoculation.

2.2.1. Jaccard index

For two sample sets, the Jaccard index (Jaccard, 1912;l@med& Hazel, 1969) gives a
measure of similarity. Wherd and B are two sample sets of interest, the Jaccard Index

is as follows:
B |AN B|

- |AuBJ
The value of J(A,B) can range from 0 to 1, with a larger numbenifiore similarity.

J(A, B)
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2.2.2. Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient (Spearmany;1R8walczyket al., 2004)
allows comparison of two variableXs; andY;, both of sample size. First, X; andY;

are both converted into ranks andy,;. Where there are rank ties or duplicate values, the
rank equal to the average of their positions is assigned.Spearman’s rank correlation
coefficient is as follows:

_ > i@ =) (yi — ) .
\/Zz(xz —z)? 3 (yi — )

The value ofp can range from -1 to 1. As the relationship between two véegbecomes

p

closer to being described by a monotonic function, the largeagnitudep will be.

2.2.3. Gene ontology term enrichment analysis

Gene ontology (GO) term enrichment analysis can give insatne biological functions
of a list of genes (Consortium, 2004). A list of GO terms carabguired from a list of
genes. For yeast the Saccharomyces Genome Database (Si&D)y@ al., 2012) can
be used to find GO term associations for each gene in the gendsiatistical analysis
is carried out to determine which GO terms are most prevateatlist of genes. The
experimenter can then look at GO terms of interest, find outhvenes they correspond
to and how many are identified in the list.

An unbiased Gene Ontology (GO) term enrichment analysesl|st @f genes can
be carried out using the software R (R Core Team, 2013) anditttenductoR package
GOstats (Falcon & Gentleman, 2007). There are many othevad packages and online
services available to carry out a GO term enrichment sudhesBatabase for Annotation,
Visualization and Integrated Discovery (DAVID) (Huaregal, 2008, 2009) or the Gene
Ontology Enrichment Analysis and Visualization tool (Gl@yi (Edenet al., 2009, 2007).

A GO term clustering analysis is a statistical approach taat be used to follow
up a GO term analysis. Information on the relation of GO teisngsed in a clustering
analysis to find functionally related groups of GO terms. Bloenformatics tool DAVID
(Huanget al., 2008, 2009) can be used to carry out GO term clustedagifl.abcc.
ncifcrf.gov/ ).
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2.3. Bayesian inference

A classical (or frequentist) statistical approach tygicassumes model unknown param-
eters are constants and uses the likelihood function to nmd&eence. An alternative
methodology is a Bayesian approach (Bernardo & Smith, 2@¥fmanet al,, 2003),
named after Thomas Bayes (Bayes & Price, 1763). In a Bayessitlimg, a parametric
model similar to the frequentist approach can be assumeddael parameters are treated
as random variables. This feature allows g@mipr knowledge for a given parameter to
be incorporated into inference by buildingaor distribution to describe the information
available. We are interested in tipesterior distribution, that is the probability of the
parameters given the evidence. Moreover, wheris the observed datd, is the set of
parameters of interest, we are interested in calculatiagptisterior densityr(0|D). A
priori knowledge off is described byr(#) and the likelihood of data by, (D|#). Using
Bayes theorem we obtain the following:

7(0D) o 7(8)L(D|0)

or Posterior o< Prior x likelihood.

2.3.1. Markov chain Monte Carlo

In Bayesian inference we are typically interested in sangpfrom the posterior distri-
bution or one of its marginals, but often this is difficult. Mav Chain Monte Carlo
(MCMC) methods are used for sampling from probability disttions (Gamerman, 1997;
Gilks et al,, 1995). The Monte Carlo name describes the repeated ranaimpliag used
to compute results. A Markov chain can be constructed witegnlibrium distribution
that is theposteriordistribution of interest.

A Markov chain{X,,n € N°} is a stochastic process which satisfies the Markov
property (or “memoryless” property): fot C S, whereS is the continuous state space
st X, €S,

P(Xn+1 € A|Xn =2, Xp_1=Tp_1,..., X0 = IL’Q) = P(Xn+1 € A|Xn = IL’),
Ve, 2, 1,...,20 € S. The equilibrium distributionr(z) is a limiting distribution of a

Markov chain with the following two properties. First, teemust exist a distribution
7(x) which is stationary. This condition is guaranteed when trekdv chain satisfies
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detailed balance:
m(z)p(z, y) =7(y)py,z),  Va,y,
wherep(z, y) is the transition density kernel of the chain. Secondly stiationary distri-

bution7(x) must be unique. This is guaranteed by the ergodicity of thekMaprocess;
see Gamerman (1997) for a definition and sufficient condstion

2.3.2. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropoésal., 1953; Hastings, 1970) is a MCMC
method for obtaining a random sample from a probabilityrdistion of interest (or sta-
tionary distribution) (Chib & Greenberg, 1995). With thdléeving procedure a sample
from the stationary distribution of the Markov chain can Ixamned:

1) Initialise countet = 0 and initialize X, = xg

2) From the current positioX; = x, generate a candidate valyé from a proposal
densityq(z, y).

3) Calculate a probability of acceptaneér, y*), where

min {1, W} if 7(z)q(z,y) >0
a(z,y) = (2)q(z.y)

1 otherwise.

4) Accept the candidate value with probabilityz, y*) and setX;,; = y*, otherwise
reject and sek; ; = .

5) StoreX;,; and iterate = i + 1.

6) Repeat steps 2-5 until the sample size required is olataine

The choice of proposal density is important in determinirogvimany iterations are
needed to converge to a stationary distribution. There aeyrchoices of proposal dis-

tribution (Gamerman, 1997), the simplest case is the symengtain. The symmetric
chain involves choosing a proposal whefe, y) = ¢(y, x), such that step two simplifies
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to give the following:

min{l,%} if m(z) >0

1 otherwise.

a(r,y) =

More general cases are random walk chains and independeaices c

For a random walk chain, the proposed value at staggiven byy* = x; +w;, where
w; are i.i.d. random variables. The distribution foy must therefore be chosen, and is
typically Normal or Student’s distribution centred at zero. If the distribution for is
symmetric, the random walk is a special case of symmetrimsha

For an independence chain, the proposed transition is fbinadependently of the
previous position of the chain, thyse, y) = f(y) for some density (.):

min {1, %} if 7(z)f(y) >0

1 otherwise.

afr,y) =

Parameters within our proposal distribution are known asnty parameters. They
are typically used to adjust the probability of acceptancenprove mixing and must be
chosen through some automatic procedure or manually, sti®$e.3.4.

2.3.3. Gibbs sampling

The Gibbs sampler (Gelfand & Smith, 1990; Casella & Geor@92) is a MCMC al-
gorithm for obtaining a random sample from a multivariatelqability distribution of
interestr(6), wheref = (6,62, ...,64). Consider that the full conditional distributions
(0101, ...,0;-1,0:41,...,04), 1 = 1,..., d are available. Where itis simpler to sample from
conditional distribution than to marginalize by integnatiover a joint distribution, the
Gibbs sampler is applicable. The following procedure satjakly samples from the full
conditional distribution for each parameter, resultinghie probability distribution of in-
terest. The algorithm is as follows:

1) Initialise countei = 1 and parametergq) = (6(y,, 0 .- 0, )-
i 1 1 1192 d

2) Simulated ;) from ;) ~ m(6*[67;_,y, ... 0 )
i 2 2 2|pl 3 d

(i-1)
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4) ...

5) Simulatef(,, from 6 ~ 7w (67(0{,,, ... 6(; ")

6) Stored;) = (9(1i), H(Qi), . Gfi)) and iteratg = i + 1.

7) Repeat steps 2-6 until the sample size required is olataine

To ensure the full conditional distributions for each paeten in a Bayesian model are
known and easy to handle, conjugacy can be used. Conjugadyee the prior is of
the same family as the posterior. Conjugacy can be inducdatidoghoice of prior, for
example if it is known that a likelihood is Normal with knowanance, a Normal prior
over the mean will ensure that the posterior is also a Noris#iiloution.

2.3.4. Convergence issues

To accept output from MCMC algorithms, all chains are reegiito have reached con-
vergence (Gamerman, 1997; Cowles & Carlin, 1996). Convergés a requirement to
gain unbiased samples of a posterior distribution. Visuadl statistical tests can be used
to determine if chains have converged, see Section 2.3.5.

Other issues that we must consider for MCMC sampling algor# are choice of
tuning parameters, burn-in period, sample size and thgpmimequired. Tuning parame-
ters require a good choice of proposal distribution, peddr with high acceptance rates
and good mixing. There are many schemes available for thieeldtuning parameters
(Andrieu & Thoms, 2008). Typically tuning parameters aréedained during a burn-in
period. The burn-in period is a number of iterations whichalgorithm must be run for
in order to converge to equilibrium. Sample size dependsam hany iterations from
the posterior are required for both inference and testimyegence. Thinning involves
discarding output for iterations of a MCMC algorithm, in erdo give less dependent
realizations from the posterior distribution.

Extending the length of the burn-in period, sample size himhing leads to increased
computational time. With large data sets and models withigelaumber of parameters,
computation time can become a problem. With a Bayesian riiegelpproach, computa-
tional time associated with MCMC can be much longer than amsuropler least squares
approach. This problem is exacerbated when coupled with modang and is likely to
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lead the experimenter to simplify their modelling procerjumonsequently sacrificing the
quality of inference, in order to complete their analysighm a shorter time frame.

2.3.5. Convergence diagnostics

To determine whether chains are true samples from theetdigtributions, tests for lack
of convergence or mixing problems (Gamerman, 1997; Cowl€aé&in, 1996) must be
carried out. Typically multiple tests are used to give caariick that the output has con-
vergence. There are many convergence diagnostics fangesiains for convergence, for
example the Heidelberg-Welch (Heidelberger & Welch, 13810 Raftery-Lewis (Raftery
& Lewis, 1995) tests. For many convergence diagnostics nsany statistics such as p-
values can be used to decide whether convergence has bebedead/isual inspection
of diagnostic plots can also be used to determine if convegybas been reached. Trace
plots are used to check if samples from the posterior digioh are within a fixed region
of plausible values and not exploring the whole range. AGRg®&orrelation function)
plots are used to determine serial correlation between lsavajues of the posterior dis-
tribution in order to check for the independence of obséruat Density plots are used to
check whether a sample posterior distribution is restlitigthe choice of prior distribu-
tion and determine whether choice of prior is appropriatening multiple instances of
our MCMC algorithm and comparing chains can also help usddewihether our chains
have converged.

2.3.6. Computer programming

To ensure results and inference are reproducible, it isilse€Ereate a computer package
so that an analysis can be made in the future without all te oequired being re-written.
Using freely available software such as the statisticafjm R (R Core Team, 2013),
scripts and commands can be built and shared for easy imptation of code.

Where fast inference is of importance, the choice of prognarg language is an
important consideration. The software package R can alssé@as an interface for run-
ning code in the C programming language. Statistical codlgenrin the C programming
language is typically much faster than using standard Rtioing or code written in many
other programming languages (Fourment & Gillings, 2008).
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2.4. Hierarchical modelling

Hierarchical modelling is used to is used to describe thectire of a problem where
we believe some population level distribution exists, déstg a set of unobserved pa-
rameters (Gelmaat al, 2003). Examples include pupils nested within classes$den
nested within families and patients nested within hospitalith the pupil-class rela-
tionship (2 level-hierarchy), for a given class there maylmimber of pupils. We may
believe that by being in the same class, pupils will performilarly in an exam as they
are taught by the same teacher. Further, we may have a pagd-school relationship
(3 level-hierarchy). For a given school, multiple classeisteand in each class there is
a number of pupils. We may believe that being within the sao®al, classes would
perform similarly in an exam as they share the same headdeackchool principal.

Hierarchical modelling is used to describe a parent/claldtronship (Gelman & Hill,
2006). Repeating the parent/child relationship allowstiplal levels to be described.
Where a hierarchical structure is known to exist, descgliins experimental structure
avoids confounding of effects with other sources of vaoiati

There are many different hierarchical models availablpedding on what the exper-
imenter is most interested in (Zuat al,, 2009; Goldstein, 2011). Sharing of information
can be built into hierarchical models by the sharing parametAllowing parameters to
vary at more than one level allows an individual child (sebjeffect to be examined.
A typical frequentist hierarchical model is built with raomd effects and has limited dis-
tributional assumptions available, whereas a Bayesiaratuigical model is flexible to
describe various distributions (Gelman, 2006), see Setid.1.

Plate diagrams allow hierarchical models to be represemtaehically (Lunnet al,
200(; Thulasiraman, 1992). Nodes (circles) are used to despabemeters and plates
(rectangles) to describe repeating nodes. The use of reuftiptes allows nesting to be
described.

2.4.1. Distributional assumptions

The flexibility of the Bayesian paradigm allows for modeld®built that are otherwise
not practical in the frequentist paradigm. More appropresumptions can therefore be
made to better describe experimental structure and vamiati a Bayesian setting (Gel-
manet al, 2003). For example, inference for a hierarchiedistribution or hierarchical
variable section model in a frequentist context is difficufpractise without using MCMC
methods that are a more natural fit with Bayesian approaches.
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The use of prior distributions allows information from theperimenter and experi-
mental constraints to be incorporated, for instance if ampater is known to be strictly
positive then a positive distribution can be used to enftnse Truncation can be used to
reduce searching posterior areas with extremely low pritithyab

2.4.2. Indicator variables

Indicator variables are used in variable selection modeldescribe binary variables
(O’Hara & Sillanpaa, 2009). A Bernoulli distributed indtcavariable can take the value
0 or 1 to indicate the absence or presence of an effect and can deaidescribe binary
outcomes such as gender.

2.4.3. The three parameteit-distribution

The Student’s-distribution has one parameter, namely the degrees afdragparameter
v which controls the kurtosis of the distribution (Johnsaral, 1995). The Student’s
t-distribution is as follows:

v+1

P ()
()= —2-_(1+= . €R,veRT. 2.1
1(z;v) \/ﬁf(%) ( y) x v (2.1)
Thev scale parameter has the effect of increasing the heavihéss distribution’s tails.
Adding an additional location parameteland scale parameterallows further flexibil-
ity with the shape of the distribution (Jackman, 2009). Thecale parameter does not
correspond to a standard deviation but does control theathamale of the distribution.

The three parameterdistribution (or scaled-distribution) is then as follows:

1 —
t3(.T;IM,V,O'>:;t1 (Quy) ,.TER,VERJF,

wheret; is givenin (2.1).
2.5. Generalisations of the logistic growth model

Where more flexibility than the logistic growth model is ré@gd, the logistic growth
model (1.1) can be extended by adding parameters (Tso&laNallace, 2002; Jret al,,
1976). A common extension of the logistic growth model isHaiels’ growth model
(Richards, 1959; Pelegt al., 2007), which adds a single parameter for changing the
shape of growth. A more general case to both the logistic adlaRls’ growth model is
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the generalised logistic growth model. Similarly to theisébig growth model (1.1) and
its stochastic counterpart (1.8), these more general ieagpsatan be extended to diffusion
equations if required.

2.5.1. Richards’ growth model

Richards’ Growth model (Richards, 1959) adds an extra patar to the logistic growth
equation (1.1). The parameterffects where maximum growth occurs and consequently
the relative growth rate (Tsoularis & Wallace, 2002). Ricisa Growth model is as fol-
lows:

% = rz, ll - (ﬁﬂ . 2.2)

The ODE has the following analytic solution:

K
(1+Qerot)7

B
5 — 1| &Pt
P )

(o, B) are positive real numbers and> ¢,. Whenpg = 1, Richards’ growth model is

Ty =

Y

where(Q) =

equivalent to the logistic growth equation.

2.5.2. Generalised logistic growth model

The generalised logistic growth model adds extra paraméters, ) to the logistic
growth equation (1.1). The extra parametétis 3, v) affect where maximum growth
occurs, the relative growth rate (Tsoularis & Wallace, 20&¥d give a greater selection
of curve shapes than the Richards’ growth model (2.2). Tineigdised logistic growth
model is as follows:

dl’t B o Tt B K
e )] 23

where(a, 3, ) are positive real numbers and> ¢,. The generalised logistic growth
model cannot in general be integrated to give an analytaatisn for z;. Whena = 1,

8 = 1 andy = 1, the generalised logistic growth model is equivalent to ltdggstic
growth equation.
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2.6. State space models

A state space model describes the probabilistic dependmtaeen a measurement pro-
cessY; and a state process; (West & Harrison, 1997; Durbiet al, 2004). The most
basic case of a state space model is as follows:

(Xt|Xt71 = xtfl) ~ f(ﬂ 371571),

(2.4)
(V| X = @) ~ g(t, m1),

where f andg are known. A state space model with a linear Gaussian steub@s the
advantage of allowing us to carry out more efficient MCMC btegrating out latent
states with a Kalman filter, instead of imputing all statelse probabilistic representation
and the ability to incorporate prior information makes Bsiga inference an appropriate
choice for parameter estimation of a state space model.

State space representation provides a general framewoakébysing stochastic dy-
namical systems observed through a stochastic processaté& sgiace model allows us
to include both an internal state variable and an outputiségiin our model. The state-
space representation of a stochastic process with measatennor can be given by (2.4)
where f is the transition density of the process and the assumed measurement error.
Inference methods are also readily available to carry duhasion of state space models.

2.6.1. Stochastic differential equations

An ordinary differential equation (ODE) can be used to madsystem of interest. For
systems with inherent stochastic nature we require a sstichmodel. A stochastic dif-
ferential equation (SDE) is a differential equation wherne @r more terms include a
stochastic process (Wilkinson, 2011; @ksendal, 2010). Bk Siffers from an ODE
by the addition of a diffusion term, typically a Weiner preseused to describe the in-
trinsic noise of a given process. A Wiener process (or st@hBeownian motion) is a
continuous-time stochastic process. A Wiener prod&€ss), ¢ > 0, has the following
three properties Durrett (1996):

1) W(0) = 0.

2) The functiont — W (¢) is almost surely everywhere continuous.

3) W (t) has independent increments with(t) — W (s) ~ N(0,t — s), for0 < s < ¢.

Intrinsic noise from a Weiner process perpetuates the sydigmamics of a differential
equation.The intrinsic noise is able to propagate thouglptbcess, unlike measurement
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noise. Instead of inappropriately modelling intrinsics®by measurement noise, an SDE
allows our process to model both system and measuremeiet sepgrately.
The simplest case of a stochastic differential equatiof ilseform:

dX (1) = pdt + odW (t),

wherelV denotes a Wiener process. Parameteando may depend on time and cor-
respond to the drift and diffusion coefficients respecyivelhe transition density of a
stochastic process describes the movement from one sttte text and can be found
from the solution of the process.

2.6.2. The Euler-Maruyama method

The Euler-Maruyama method provides an approximate nuadesadution of a SDE (Car-
letti, 2006). For a stochastic process of the form:

dXt = f(Xt)dt + g(Xt)th,

where functionsf andg are given andV, is a Wiener process. Given an initial condition
Xo = zo we can build an Euler-Maruyama approximation6fover an interval0, 7.
The Markov chairt” defined below is an Euler-Maruyama approximation to thesole-
tion of X. First we set the initial conditiol, = x,. Next, the interval0, 7] is partitioned
into V equal subintervals of width\¢t > 0. The Euler-Maruyama approximation is then
recursively defined for < i < N as follows:

Yip =Y+ f(Yi) At + g(Y;) AW

where AW; = W,,., — W;, ~ N(0, At). The Euler-Maruyama approximatidn will
become a better approximation to the true procésss we increase the size of.

2.6.3. Kalman filter

The Kalman filter (Kalman, 1960; Welch & Bishop, 1995) is anesive algorithm that can
be used to estimate the state of a dynamic system from a séii@somplete and noisy
measurements. The main assumptions of the Kalman filtehatétte underlying system
is a linear dynamical system and that the noise has knownaindtsecond moments.
Gaussian noise satisfies the second assumption, for example
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Inference for a state space model (2.4) (see Section 2.&reMothf and g are
Gaussian, can be carried out using a Kalman filter. If all@@szero-mean, uncorrelated
and white, then the Kalman filter represents an optimal fifikar (Simon, 2006), even
if the noise is not Gaussian. An application of the Kalmaefiis given in Section C.5 of
the Appendix.

The Kalman filter algorithm is derived as followsX;, andY;, are the state and
measurement processes respectively. and u; are the state and measurement error
respectively, wherev, andu, are IID, E[w;,] = 0, E[u)] = 0, Elw,w,’] = W, and
Elusu;T] = U,. The Kalman filter can be extended whereandu, are not zero mean.
The unobserved latent process is driven by:

Xti |Xti—1 ~ N(GtiXti_m th)

and the measurement error distribution, relating the tai@mable to the observed is given

by
}/;i |th ~ N(Ft?Xtm Uti)a

where matrices,, Gy, U, andWW,, are all given. Now, suppose that:

Xtiﬂ‘Yl:tiﬂ ~ N(mt Cti71>'

i—17
Incrementing time withX;, = G, X, , + w;,_, and condition orY;,, , to give:

Xt¢|Y'12t¢71 = Gtz'Xtiﬂ‘Yl:tiﬂ + wy, 1/11151'—1
= Gtith’—l |Yi:ti—1 + We; s

asw;, isindependent of}.;,_,. We can then show the following using standard multivari-
ate theory:
Xy

Yl:ti,1 ~ N(atm RQ)

i

whereq,, = G,;my, , andR,, = G,,C,,_,G{ +W,,. AsY,, = F{" X,, +u,,, and condition
onYy., , togive:

_ T

)/;i |Yi:ti—1 - Fti Xti D/liti—l + uti|Yi:ti—1
_ T
- Fti Xti D/liti—l + Ut

asu,, is independent ofy.;, ,. We can then show the following using standard multivari-
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ate theory:
Yi | Yi, o, ~ N(F atzaF R, Fi+Uy,)

Yi.,|Y14,_, and X, |Y1., ., are therefore jointly Gaussian with the following mean and

Xti -~ MVN ati ’ Rti Rtlﬂ :
1/1:151' }/;fl FtTRti FtTRti Ft + Uti

Finally, the following multivariate theorem is used:

it () oo () (5 2.
Y, 2 o1 Yo

thenY;|Y; = yo ~ MV N (M1 + X105 (Yo — f12), X1 — 2122521221) )

covariance:

to obtain the following:

(mtiu Cti)u
wherem;, = a;, + R, F(FTR.,F + U)'[Y;, — F"ay) (2.5)
andC;, = R;, — R, F(F'R,,F + U)"'F"R,,.

Parameters:, andC, must be initialised first, then using the equations in (2:5),and
(', can be recursively estimated.

Typically, the Kalman filter is used to make inference for dd@n state process, but
it can be used to reduce computational time in algorithmgritarring process hyper-
parameters by recursively computing the marginal likedihe(y,, ) (West & Harrison,
1997), where

N
W(ytm\r) = Hﬂ-<yt¢ '71))
=1
andﬁ(yti|yt1;<z fX (Yt T | Yy, (i-1) )dxy, = fX (Yt |ze, ) xti|yt1:<i_1))d$ti gives a

tractable Gaussmn integral. The procedure for computiegrtarginal likelihoodr (v, )
using the Kalman filter algorithm is as follows:

1) Initialise with prior knowledge foX, and set = 1.

2) Prediction step fronX;, |Y1..,—1 t0 X3, |Y1.,_, (QiVing 7 (24, |y14,_,))-
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3) Calculate and store(yy, |y1.+,_,)-

4) Update step to give;,

Y14, then iterate =i + 1.

5) Repeat steps 2-4 (and compute;, . ) ).

2.6.4. Linear noise approximation

The linear noise approximation (LNA) (Kurtz, 1970, 1971 nMaampen, 2011) reduces
a non-linear SDE to a linear SDE with additive noise, which ba solved (Wallace,
2010; Komorowsket al, 2009). The LNA assumes the solution of a diffusion process
Y; can be written ag; = v; + Z; (a deterministic part; and stochastic patt;), where

Z, remains small for alt € R-,. The LNA is useful when a tractable solution to a SDE
cannot be found. Typically the LNA is used to reduce an SDE @rrestein-Uhlenbeck
process which can be solved explicitly. Ornstein-Uhlelkh@ocesses are Gaussian, time
discretising the resulting LNA will therefore give us a largGaussian state space model
with an analytically tractable transition density availabThe LNA can be viewed as
a first order Taylor expansion of an approximating SDE abodét@rministic solution
(higher order approximations are possible (Gardiner, P0Me can also view the LNA
as an approximation of the chemical Langevin equation @@akt al, 2012). Applica-
tions of the LNA to non-linear SDEs are given in Section 5.8 &r4.
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Chapter 3. Modelling genetic interaction

3.1. Introduction

In this chapter, alternative modelling approaches areldped to better model a QFA
screen comparison than the current frequentist Addietall. (2011) approach. Sec-
tion 3.2 presents the modelling assumptions for the dewedop of a Bayesian approach.
Two Bayesian approaches are then presented in Sections@834 incorporating some
model assumptions that are not convenient in a frequemishg. So that our Bayesian
models can be compared with a frequentist hierarchical thogepproach, a random
effects model is then presented in Section 3.5.

The models in this chapter are compared using previouslyse@sS. cerevisia®QFA
screen data in the next chapter. HistdBiccerevisiadFA screen datasets are used to
shape the model assumptions adopted in the following sectio

3.2. Bayesian hierarchical model inference

As an alternative to the maximum likelihood approach pressthy Addinallet al.(2011),
we present a Bayesian, hierarchical methodology whgugori uncertainty about each
parameter value is described by probability distributi(Besrnardo & Smith, 2007) and
information about parameter distributions is shared awdz\s and conditions. Plausi-
ble frequentist estimates from across 10 different histQfA data sets, including a wide
range of different background mutations and treatment® wsed to quantify@ priori
uncertainty in model parameters.

Prior distributions describe our beliefs about parametduas. These should be dif-
fuse enough to capture all plausible values (to captureuteange of observations in
the datasets) while being restrictive enough to rule outanngble values (to ensure effi-
cient inference). Inappropriate choice of priors can taauwthains drifting during mixing
and becoming stuck in implausible regions. Although usiogjagate priors would al-
low faster inference, we find that the conjugate priors awdd for variance parameters
(Gelman, 2006) are either too restrictive at low variancedise-gamma), not restric-
tive enough at low variance (half-t family of prior distriftans) or are non-informative
or largely discard the prior information available (Unifoy. Our choice for the priors of
precision parameters is the non-conjugate Log-normal andehe distribution is only
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restrictive at extremely high and low variances.

We use three types of distribution to model parameter uaicgyt Log-normal, Nor-
mal and scaled t-distribution with three degrees of freeddie use the Log-normal
distribution to describe parameters which are requirecetondn-negative (e.g. parame-
ters describing precisions, or repeat-level fitnessespmameter distributions which are
found by visual inspection to be asymmetric. We use the Nbdis&ibution to describe
parameters which are symmetrically distributed (e.g. spnwa distributions and the
measurement error model) and we usetthestribution to describe parameters whose un-
certainty distribution is long-tailed (i.e. where using thormal distribution would result
in excessive shrinkage towards the mean). A Normal digiabhwas considered for de-
scribing the variation imrf As but was found to be inappropriate, failing to assign dgnsit
at the extreme high and low fitnesses. For example, afteaMisspection of frequentist
orfA level means about their population mean, we found there todrgy unusually fit,
dead or missin@rfA and concluded thairfA fithesses would be well modelled by the
t-distribution.

Instead of manually fixing the inoculum density paramedteas in Addinallet al.
(2011) our Bayesian hierarchical models deal with the styaof information about the
early part of culture growth curves by estimating a singlacross albrfAs (and condi-
tions in some of our models). Our new approach learns aBduvm the data and gives
us a posterior distribution to describe our uncertaintyualits value.

The new, hierarchical structure implemented in our modatddstein, 2011) reflects
the structure of QFA experiments. Information is sharectieffitly among groups of
parameters such as between repeat level parameters fgtarsintant strain. An example
of the type of Bayesian hierarchical modelling which we usmbdel genetic interaction
can be seenin Yi (2010), where hierarchical models are usacdount for group effects.

In Phenixet al. (2011) the signal of genetic interaction is chosen to bactyrON
or OFF” when modelling gene activity. We include this cortaapur interaction models
by using a Bernoulli distributed indicator variable (O’lda& Sillanpaa, 2009) to describe
whether there is evidence of anfA interacting with the query mutation; the more evi-
dence of interaction, the closer posterior expectatiotido@ito one.

Failing to account for all sources of variation within thepermental structure, such
as the difference in variation between the control and glisrgsses, may lead to inac-
curate conclusions. By incorporating more informatiomitite model with prior distri-
butions and a more flexible modelling approach, we will iase statistical power. With
an improved analysis it may then be possible for a similarmemof genetic interactions
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to be identified with a smaller sample size, saving on theifstgmt experimental costs
associated with QFA.

Inference is carried out using Markov Chain Monte Carlo (MCMmethods. The
algorithm used is a Metropolis-within-Gibbs sampler wheseh full-conditional is sam-
pled in turn either directly or using a simple Normal randordksetropolis step. Due
to the large number of model parameters and large quantdgtaffrom high-throughput
QFA experiments, the algorithms used for carrying out ierfiee often have poor mixing
and give highly auto-correlated samples, requiring timgniPosterior means are used to
obtain point estimates where required.

For the new Bayesian approaches (described in Section @.3.4)y model fitting is
carried out using the techniques discussed above, implkehém C for computational
speed, and is freely available in the R package “gfaBayetittas://r-forge.
r-project.org/projects/gfa

3.3. Two-stage Bayesian hierarchical approach

In the following sections, a two-stage Bayesian, hieraahmodelling approach (see
Section 3.3.1 and 3.3.2) is presented. The following tvegstBayesian approach gen-
eratesorfA fitness distributions and infers genetic interaction pholitees separately.
For a QFA screen comparison, first the separate hieraramicdél (SHM) given in Sec-
tion 3.3.1, is fit to each screen separately and a set of logjgiwth parameter estimates
obtained for each time-course. Secondly, each set of logjstwth parameter estimates
is converted into a univariate fithess summary and input ¢oirtkeraction hierarchical
model (IHM) given in Section 3.3.2, to determine which geslesw evidence of genetic
interaction.

3.3.1. Separate hierarchical model

The separate hierarchical model (SHM), presented in TaldlerBodels the growth of
multiple yeast cultures using the logistic function desed in (1.2). In this first hierar-
chical model, the logistic model is fit to the query and condtaains separately.

In order to measure the variation betweef\s, parametersi(?,c%) and ¢”,07) are
included at the population level of the hierarchy. WitloiriA variation is modelled by
each set 0brfA level parametersi?,7/) and ¢?,7/). Learning about these higher level
parameters allows information to be shared across pargsrieteer in the hierarchy. A
three-level hierarchical model is applied (&, K7, Kj,,,) and(r, r{, ry,,), sharing infor-
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mation on the repeat level and tbgA level. Note thabrfA level parameter&’;y andry
are on the log scalef’ ande’’ are on the scale of the observed data).

Assuming a Normal error structure, random measurement ernmodelled by the
v, parameters (one for eadrfA). Information on random error is shared across all
orfAs by drawindog v; from a normal distribution parameterised by, 6*). A two-level
hierarchical structure is also used for both tffeand s/ parameters.

Modelling logistic model parameter distributions on thg lecale ensures that pa-
rameter values remain strictly positive (a realistic bgad@al constraint). Truncating dis-
tributions allows us to implement further, realistic caasits on the data. Truncating
log r,,, values greater than 3.5 corresponds to disallowing bioklyi unrealistic culture
doubling times faster than about 30 minutes and truncatfmgmeat level parameters
log K, above 0 ensures that no carrying capacity estimate is gribate the maximum
observable cell density, which is 1 after scaling.

orfA level parameters™> ande’> are on the same scale as the observed data. Real-
istic biological constraints (positive logistic model pareters) are enforced at the repeat
level, however both’> and e, which are assumed to have scatedistributions, are
truncated below zero to keep exponentiated parametect\spositive. MostorfA level
logistic growth parameters are distributed in a bell shaparad some mean value, it is
the unusually fit, dead or missimgfAs within a typical QFA screen that require the use
of a long tailed distribution such as the scatedistribution with 3 degrees of freedom.
The non-standard choice of a truncated scatddstribution with 3 degrees of freedom
ensures that the extreme high and low values have prolyadsktigned to them regardless
of the population level location and scale parameters favengQFA screen.

For example, after visual inspection of frequentidtA level means about their popu-
lation mean, we found there to be many unusually fit, dead ssimgorfA and concluded
thatorfA fitnesses would be well modelled by the t-distribution.

Identifiability problems can arise for parametéfg, andr;,,, when observed cell den-
sities are low and unchanging (consistent with growth csifee cultures which are very
sick, dead or missing). In these cases, eitkigy or r;,,, can take values near zero, allow-
ing the other parameter to take any value without signifigaaffecting the model fit. In
the Addinallet al. (2011) approach identification problems are handled in donaated
post-processing stage: for cultures with low K estimattssgified as deady,is automat-
ically set to zero. Without correcting for identificatioropptems in our Bayesian models,
misleading information from implausible values will be sfhacross our models. Com-
puting time wasted on such identifiability problems is restliby truncating repeat level
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Table 3.1: Description of the separate hierarchical model (SHM). Deleat variabley;,,.., (scaled
cell density measurements) and independent varighle (time since inoculation) are data input
to the SHM.z(t) is the solution to the logistic model ODE given in (1.2)ndicates a particular
orfA from the gene deletion libraryp indicates a repeat for a givemfA andn indicates the time

point for a givenorf A repeat.

1=1,2,....L
m—l, .,Ml
n 1,2,. 7Nlm

Time point level

Yimn ™ N(lena (Vl)_l)
Repeat level
log K ~ N(K7, (TIK)_l)[(*oovo]
1og Tim ~ N(r, (7)) (—o03.5)
orfA level
"l ~t(KP, (67°) 7", 3) o 00)
el ~t(r?, (07) 7", 3) I jp,0)
log v ~ N(V7, (a”)_l)
Population level
log K? ~ N(K*, (n"")™")
log PNN(P“,( ) )
N(r™#, (P~
N(

Tru ( Trp) 1)

41

orfA level
Repeat level
Time point level

'glmn - x(tlmna Klmu Tim, P)

log 7" ~ N(7%, (¢™) ") ]j0.00)

log 7/ ~ N(7", (a”)_l)

log O_K,o ~ N(T/K’O
log 0™ ~
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parameters;,,, preventing the MCMC algorithms from becoming stuck in eriely low
probability regions wheri<;,,, takes near zero values. Similarlyg 7/* parameters are
truncated below 0 to overcome identifiability problems bestw parameters’;,, andr;,,
whenr;,, takes near zero values.

The SHM in Table 3.1 is fit to both the query and control straeparately. Means
are taken to summarise logistic growth parameter postdrgtributions for eaclorfA
repeat. Summarie(sf( 1ms Tims P) for eachorfA repeat are converted to univariate fitnesses
F..., wherec identifies the condition (query or control), with any giveiméiss measure
e.g. MDR x MDP (see (1.3) and Addina#it al. (2011)). A problem of the two-stage
approach is that we must choose a fitness definition mostamtido the experiment.
We choose the same definition used in Addirllal. (2011), M DRx M DP, for the
comparison of our methods. An alternative choice of fithesfindion could be used
given sufficient biological justification. Section 1.1.3@s$ the derivations oi/ DR and
MDP. The product ofM DRx M DP is used as it accounts for the attributes of two
definitions simultaneously.

The flow of information within the model and how each parameteelated to the
data can be seen from the plate diagram in Figure 3.1 (letiiah, 200M).
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orfA
Repeat

Time Point

NN

SN

LR

Vi

Population
Figure 3.1: Plate diagram for the separate hierarchical model, destiifp Section 3.3.1. This
figure shows the four levels of hierarchy in the SHM model,papon, orfA (1), repeat {n) and
time point (z). Prior hyperparameters for the population parametersmitted. A circular node
represents a parameter in the model. An arrow from a sourde twa target node indicates
that the source node parameter is a prior hyperparametehdotarget node parameter. Each
rectangular box corresponds to a level of the hierarchy. edagithin multiple boxes are nested
and their parameters are indexed by corresponding levelsedfierarchy. The node consisting
of two concentric circles corresponds to the models fittddegs The rectangular node represents
the observed data.

=
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3.3.2. Interaction hierarchical model

After the SHM fit, the IHM, presented in Table 3.2, can then bedito model estimated
fitness scores,;,,, and determine, for eaarfA, whether there is evidence for interaction.
Fitnesses are passed to the IHM where query screen fithessesnapared with con-
trol screen fitnesses, assuming genetic independenceatioed from predicted fithesses
are evidence for genetic interaction. The flow of informatiithin the IHM and how
each parameter is related to the data can be seen from tkeedgram in Figure 3.2.
The interaction model accounts for betweshA variation with the set of parameters
(Z?,0,) and withinorfA variation by the set of parameters; {;). A linear relationship
between the control and queoyfA level parameters is specified with a scale parameter
a1. Any deviation from this relationship (genetic interactjas accounted for by the term
dv14- 07 1S @ binary indicator of genetic interaction forf A [. A scaling parameted;
allows any effects due to differences in the control and yjdata sets to be scaled out,
such as differences in genetic background, incubator teatyre or inoculum density.
The linear relationship between the control and query farse®res, consistent with
the multiplicative model of genetic independence, degctiim (1.5), is implemented in
the IHM as: F' = e tZtona — eoceZitdne Strains whose fitnesses lie along the linear
relationship defined by the scalaf show no evidence for interaction with the query
condition. On the other hand, deviation from the lineartreteship, represented by the
posterior mean of;y, ; is evidence for genetic interaction. The larger the postenean
for ¢, is the higher the probability or evidence there is for intéicmn, while v, ; is a
measure of the strength of interaction. Where the queryitonchas a negative effect
(i.e. decreases fitness on average, compared to the coatrdition), query fithesses
which are above and below the linear relationship are sggpre and enhancers of the
fitness defect associated with the query condition respaytiA list of gene names are
ordered byd;v., posterior means and thosefAs with 51 > 0.5 will be classified and
labelled as showing “significant” evidence of interaction.
The Bernoulli probability parameter is our prior estimate for the probability of a
givenorfA showing evidence of genetic interaction. For a typical y€3sA screenp
is set to 0.05 as the experimenter’s belief before the exyani is carried out is thdt%
of our orfAs exhibit genetic interactions. Observational noise istjtiad by v.,;. The
v, parameter accounts for difference in variation betweerditmm i.e. the query and
control data sets and for difference in variation betwedn\s.
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Table 3.2: Description of the interaction hierarchical model (IHM},,,, are the observed fithess
scores, where identifies the condition for a givearfA, [ identifies a particulanrfA from the
gene deletion library anth identifies a repeat for a givesrf A.

c=0,1 Condition level
l=1,.., L. orfA level
m=1,.., My Repeat level
Repeat level
Fclm ~ N( Acla (Vcl)_l) Fcl - eaC+Zl+6md
orfA level
eZ o t(27,(67) " 3) j0.00) log o7 ~ N(n?, %)
log v ~ NP, (0’”)71) log 0" ~ N(n", ")
0 ~ Bern(p)
1 |f C = 0 1
el = ’ log o7 ~ N(n7, ()
{t(l, (0") " 3)[pmy ifc=1. g e 7))

Condition level

0 if c=0;
Qe = .
N(a#*,n®) ifc=1.
Population level

1

log Z" ~ N(Z", (") ") P~ N, (7))

45



Chapter 3. Modelling genetic interaction
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Figure 3.2: Plate diagram for the interaction hierarchical model, dbed in Section 3.3.2. This
figure shows the four levels of hierarchy in the IHM model: plagion, orf A (1), condition ¢) and
repeat {n). Prior hyperparameters for population parameters arétemiPlate diagram notation

as in Figure 3.1.
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3.4. One-stage Bayesian hierarchical approach

Following from Section 3.3, a one-stage approach for imgrfitness and genetic inter-
action probabilities separately is presented. All of thevB&hd IHM modelling assump-
tions described in Section 3.3, such as distributionalegsand hierarchical structure are
inherited by the one stage approach known as the joint leieiaal model (JHM).

3.4.1. Joint hierarchical model

The JHM given in Table 3.3 is an alternative, fully Bayesiarsion of the two-stage
approach described in Section 3.3.1 and 3.3.2. The JHMpocates the key modelling
ideas from both the SHM and the IHM with the considerable athge that we can learn
about logistic growth model, fitness and genetic interacparameters simultaneously,
thereby avoiding having to choose a fithess measure or psimaes for passing in-
formation between models. The JHM is an extension of the SHi the presence or
absence of genetic interaction being described by a Bdrmodicator and an additional
level of error to account for variation due to the query ctiodi Genetic interaction is
modelled in terms of the two logistic growth paramet&randr simultaneously. Similar
to the interaction model in Section 3.3.2 in Chapter 3.%&dnrelationships between con-
trol and query carrying capacity and growth rate (insteafitoéss score) are assumed:
(eac+K P+617er 7 eBetri+oiwe ) _

By fitting a single JHM, we need only calculate posterior nsgameck model diag-
nostics and thin posteriors once. However, the CPU timentédkeeach convergence for
any given data set is roughly twice that of the two-stage @ggr for a genome-wide
QFA.

The flow of information within the model and how each parameteelated to the
data can be seen from the plate diagram in Figure 3.3.
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Table 3.3: Description of the joint hierarchical model (JHM). The degent variabley ;..
(scaled cell density measurements) and independent iatiah,, (time since inoculation) are
input to the JHM .c identifies the condition for a giveorfA, [ identifies a particulaprfA from
the gene deletion libraryp identifies a repeat for a givemfA andn identifies the time point for
a given condition andrfA repeat.

c=0,1 Condition level

l=1,.... L, orfA level
m=1,..., M Repeat level
n=1,..., Num Time point level

Time point level

Yelmn ™~ N(?)clmna (Vcl)_l) ?)clmn - x(tclmn; Kclma Tclm, P)
Repeat level
log Kclm ~ N<ac + K[O + 5lfycl7 (Tc[l(>71)[(*00,0} lOg Tc[l( ~ N(TcK,p7 (O-ZJ()il)[[O,oo)
log 7eim ~ N(Be + 17 + 01w, (TZZ)_l)I(_oQgﬁ} log 71 ~ N(77°F, (O'Z’T)_l)
orfA level
eKlO ~ t(Kp’ (O'K’O)_l, 3)[[0700) log 0_K7o ~ N(’I’]K7O, (¢K,o)—1)
erl" ~ t('f’p, (0.7“,0)717 3)[[0700) lOg 0_7",0 ~ 1\I<nr,o7 (wr,o)fl)
log vy ~ N7, (a”)*l) log o ~ N(n", (1/1”)*1)
0, ~ Bern(p)
1 if c=0;
et = 1 . log 07 ~ N(n",47)
t(1,(07) 7, 3) 0,00y ifc=1.
1 if c=0;
et = -1 T log 0 ~ N(n“, ")
t(l,(O'w) ,3)1[0700) if c=1.
Condition level
0 if c=0; 0 if c=0;
Qe = . Bc = .
N(a*,n*) ifec=1. N(B*,n?) ifc=1.
TP o N(rRH, rien) ) log o7 ~ N~ (475) )
7 o NG, (1777) ) log 07" ~ N(™", (477) )

Population level

log K? ~ N(K*, (n™?)™") log r? ~ N(r#, (n"?)~")
VP~ N*, ("?) ") log P ~ N(P*, (n")~")
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Figure 3.3: Plate diagram for the joint hierarchical model, describe8eéction 3.4.1. This figure
shows the five levels of hierarchy in the JHM model, poputatmfA (/), condition ¢), repeat

(m) and time point §). Prior hyperparameters for the population parametersmuited. Plate
diagram notation is given in Figure 3.1.
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3.5. Random effects model

To improve on the Addinakt al. (2011) modelling approach whilst remaining within the
frequentist paradigm, by accounting for the hierarchitalcdure of the data, a random
effects model (Zuuet al,, 2009; Pinheiro & Bates, 2000) can be used. The random sffect
model (REM) given in Table 3.4 is used to model estimatedsgrseores,,, from (1.6)
and estimate evidence of interaction for eachA simultaneously with a single model
fit. Introducing a random effect; allows us to account for between subject variation by
estimating a single ;2. Unlike the Addinallet al. (2011) approach, observed valués,,

are not scaled and instead a parameter to model a conditest gf is introduced.

v. represents the estimated strength of genetic interacebnden arorfA and its
query mutation counterpart. For a multiplicative model pistasis, an additive model
is used to describe the log transformed data = log(F.., + 1), whereF,,, are the
observed fitnesses. We use the Benjamini-Hochberg testitectdor multiple testing in
order to make a fair comparison with the (Addingtlal, 2011) approach.

Inference for a frequentist random effects model can beszhaut most simply with
the R package “Ime4” (Batext al,, 2013). For the R code to fit the REM see Section A.3
of the Appendix. In the frequentist paradigm some pararsatannot be modelled as
random effects since computational difficulties assodiati¢h large matrix computations
arise with multiple random effects and very large data stitsilarly, a more appropriate
model with a log-link function in order to model repeat lewakiation with a normal
distribution cannot be fit, due to computational difficudtteat arise with non-linear model
maximum likelihood algorithms and large data sets. Suchpedational difficulties cause
algorithms for parameter estimation to fail to converge.

Table 3.4: Description of the random effects model (REM)dentifies the condition for a given
orfA, [ identifies a particulaorfA from the gene deletion library and identifies a repeat for a
givenorfA.

fclm = e+ Zl + Yo + Ecim

_Jpta ife=0; )0 ife=0;
fe = 1 ifc=1. el = v ife=1.
Z NN(Oaazz) Eelm ™ N(O,a2)
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4.1. Introduction

In this chapter, the new Bayesian models developed in Ch&paee applied to previ-
ously analysed QFA screen data. The one-stage and twoBtagsian approaches are
compared with the two-stage Addinalial. (2011) and random effects model (REM) ap-
proaches for a QFA screen comparison designed to informxierienenter about telom-
ere biology inS. cerevisiae

After comparing the approaches developed, the one-stageska joint hierarchical
model (JHM) is found to best model a QFA screen comparisor.JHM is then applied
to further examples 0%. cerevisia®FA screen data to demonstrate the JHM’s ability to
model different experiments. Two extensions of the JHM hea tconsidered, to account
for a batch effect and a transformation effect within a QFAesa comparison. Fitness
plots for the further case studies and extensions of the JKMnaluded for further in-
vestigation and research.

The new one-stage Bayesian QFA will be used at first to helptiiyegenes that are
related to telomere activity, but the analysis is generalugh to be applicable to any
high-throughput study of arrayed microbial cultures (itthg experiments such as drug
screening).

4.2. cdcl13-1 27°C vsura3A 27°C suppressor/enhancer data set

The following analysis is for a QFA experiment comparing iquedc13-1 srains with
controlura3A strains a7°C, previously analysed by Addinadt al. (2011), to identify
genes that show evidence of genetic interaction with theygoritationcdc13-1 The
ability of the Cdc13 protein produced lzylc13-1strains to cap telomeres is reduced at
temperatures aboa$ °C (Nugentet al,, 1996), inducing a fitness defect.

The experimental data used are freely availabletiqt//research.ncl.ac.
uk/colonyzer/AddinallQFA/ . Addinall et al. (2011) present a list of interaction
strengths and p-values for significance of interactionetiogr with a fitness plot for this
experiment. We will compare lists of genes classified agacsteng withcdc13-1by the
non-hierarchical frequentist approach presented by Aadidet al. (2011) and the hierar-
chical REM with those classified as interacting by our hignaral Bayesian approaches.
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4,294 non-essentialfAs were selected from the yeast deletion collection and wsed t
build the corresponding double deletion query and contralrss. Independent replicate
culture growth curves (time course observations of celsdghwere captured for each
query and control strain. The median and range for the nuf@plicates peorfA is
8 and|8, 144] respectively. There are GifA strains that have greater than 8 replicates
(for both the control and query screen). More replicateshmaen tested for this subset
of orfAs as a quality control measure to check if 8 replicates argcmuit to generate
a stable fitness summary for eaoHA. orfAs with high replicate number include a
small number of mutations whose phenotypes are well uratssh a telomere-defective
background, together with some controls and a range of lontatandomly selected from
the deletion library. Including genotypes with well chaeatsed phenotypes allows us to
leverage expert, domain-specific knowledge to assess Hi#ygof experimental results.
The modelling approaches considered can accommodateetiffieumbers of replicates
for eachorfA, therefore we don't expect systematic bias from the numbespeats. The
range for the number of time points for growth curves captimehe control experiment
is [7,22] and|9, 15] in the query experiment. Raedc13-127°C time series data is given
in Figure A.1, for example.

As in the Addinallet al. (2011) analysis, a list of 159 genes are stripped from our
final list of genes for biological and experimental reasdrsor hyper-parameters for the
models used throughout this chapter are provided in Talde Blthough our priors are
informed by frequentist estimates of historical QFA datis s&e ensure our priors are
sufficiently diffuse that all plausible parameter values &ell represented and that any
given QFA data set can be fit appropriately.

The Heidelberg-Welch (Heidelberger & Welch, 1981) and &gH_ewis (Raftery &
Lewis, 1995) convergence diagnostics are used to deterwlia¢her convergence has
been reached for all parameters. Posterior and prior densite compared by eye to
ensure that sample posterior distributions are not réstriby the choice of prior distri-
bution. ACF (auto-correlation) plot diagnostics are clegtkisually to ensure that serial
correlation between sample values of the posterior digioh is low, ensuring that the
effective sample size is similar to the actual sample size.

To assess how well the logistic growth model describes ezlbdy observations we
generate plots of raw data with fitted curves overlaid. Fegut.1A, 4.1B and 4.1C show
time series data for three different mutant strain repea23°&L, together with fitted lo-
gistic curves. We can see that eamth curve fit well represents the repeat level esti-
mates as eacbrfA level (red) curve lies in the region where most repeat lelvlsok)
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curves are found. Sharing information betweshAs will also affect eaclorfA curve

fit, increasing the probability of therfA level parameters being closer to the population
parameters. Comparing Figures 4.1A, 4.1B and 4.1C showthihaeparate hierarchical
model (SHM) captures heterogeneity at both the repeabédntllevels.

Figure 4.1D demonstrates the hierarchy of information &alioel logistic model pa-
rameter X' generated by the SHM for the@d50A control mutant strain (variation de-
creases going from population level down to repeat levafjuie 4.1D also shows that
the posterior distribution foK™ is much more peaked than the prior, demonstrating that we
have learned about the distribution of both the populatiwhaaf A parameters. Learning
more about the repeat level parameters reduces the vaonéaonce orfA level estimates.
The posterior for the first time-course repeft,,, parameter shows exactly how much
uncertainty there is for this particular repeat in termsafying capacityi'.
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Figure 4.1: Separate hierarchical model (SHM) logistic growth curnve fidata fororf A repeats
have been plotted in A, B and C, with SHM fitted curves overlaitllack for repeat level param-
eters and red for therfA level parameter fit. A) SHM scatter plot for 14s3A ura3A repeats
at 27°C. B) SHM scatter plot for 48ad50A ura3A repeats aR7°C. C) SHM scatter plot for
56 exolA ura3A repeats aR7°C. D) SHM density plot of posterior predictive distributsifor
rad50A ura3A carrying capacityK hierarchy. The prior distribution fof(? is in black. The
posterior predictive foe’! is in blue and fork;,,, in green. The posterior distribution of the first
time-course repedk ,;,,, parameter is in red. Parametéd(8, e/ and K, are on the same scale
as the observed data.

4.2.1. Frequentist approach

Figure 4.2A is aM DR x M DP fitness plot from Addinalket al. (2011) where growth
curves and evidence for genetic interaction are modelledyuke non-hierarchical fre-
quentist methodology discussed in Section 1.2.2. Fig@B & aM DR x M DP fitness
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plot for the frequentist hierarchical approach REM, désstiin Table 3.4, applied to the
logistic growth parameter estimates used in Addieatl. (2011). The number of genes
identified as interacting withdc13-1by Addinallet al. (2011) and by the REM are 715
and 315 respectively (Table 4.1). The REM has highlightedyrstrains which have low
fitness. In order to fit a linear model to the fitness data aredpnét results in terms of the
multiplicative model we apply a log transformation to thedi$ses, thereby affecting the
distribution oforfA level variation.

The REM accounts for between subject variation and allowshe estimation of a
query mutation anarfA effect to be made simultaneously, unlike the model presente
by Addinallet al. (2011). Due to the limitations of the frequentist hieracethimodelling
framework, the REM model assumes equal variances fasréll\s and incorrectly de-
scribesorf A level variation as Log-normal, assumptions that are noessary in our
new Bayesian approaches.
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Figure 4.2: Fitness plots wittorf A posterior mean fithesses. MearfA level fithess are plot-
ted for the control strains against the corresponding gs@gins. orfAs with significant evi-
dence of interaction are highlighted in red and green fopeegsors and enhancers respectively.
A) Non-Bayesian, non-hierarchical fithess plot, based dnelr&6 from Addinallet al. (2011)
(FF= MDR x MDP). B) Non-Bayesian, hierarchical fitness plot, from fitting fREM to data
in Table S6 from Addinalkt al. (2011) (F = M DR x M DP). C) IHM fitness plot withorfA
posterior mean fitnesarfAs with significant evidence of interaction are highlightedtbe plot
as red and green for suppressors and enhancers respe¢fively M DR x M DP). D) JHM
fitness plot withorfA posterior mean fithesse®rfA strains for the JHM plot are classified as
being a suppressor or enhancer based on analysis of grovameterr, meaning occasionally
strains can be more fit in the query experiment in term8/dDR x M D P but be classified as
enhancers (green). For panels A and B significant intemctoe classified as those with FDR
corrected p-values: 0.05. For panels C and D significant interactors have posteriobadility

A > 0.5. To compare fitness plots, labelled genes are those belpihgithe following GO terms
in Table 4.1: “telomere maintenance”, “ageing”, “respots®NA damage stimulus” or “perox-
isomal organization”, as well as the genes identified asaot®ns only inK” with the JHM (see
Figure 4.3) (blue), genes interacting onlyrinvith the JHM (cyan) and the MRX complex genes
(pink). Solid and dashed grey fitted lines are for the 1-1 énd linear model fits respectively.
Alternative fitness plots with each of the GO terms highkghaire given in Section B.2 of the
Appendix.
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Table 4.1: Number of genes interacting wittdc13-1at 27°C identified using each of four ap-
proaches: Add (Addinalét al, 2011), REM, IHM and JHM. Number of genes annotated with
four example GO terms (telomere maintenance, ageing, mespi® DNA damage stimulus and
peroxisome organisation) are also listed. For the Addietadil. (2011) and REM approach, sig-
nificant interactors are classified as those with FDR cagtbptvalues (g-valuesy 0.05. The
label “half data” denotes analyses where only half of thelavie experimental observations
are used. The JHM uses®M DR x M DP summary after model fitting to classify suppres-
sors and enhancers, comparable with the other three ap@®acThe full lists of GO terms
for each approach considered are given in a spreadsheemdaotufreely available online at
http://research.ncl.ac.uk/gfa/HeydariQFABayes/
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JHM 665 274 939 475 177 601 18 8.22E-05 0.0155 21 0.0015 0.0986 76 3.52E-09 1.99E-07 24 0.002 0.019

4.2.2. Two stage Bayesian approach

Figure 4.2C is an interaction hierarchical model (IHM) féaglot withorfA level fitness
measures generated using the new Bayesian two-stage rakthpavith fithess in terms
of MDRx M DP. 576 genes are identified by the IHM as genetic interactidaislé 4.1).
Logistic parameter posterior means are used to generatgditneasures. For a geibg
from the gene deletion librarye?) is the fitness for the control an@+#:+%) for
the query in the IHM. For a geng) in the query screen, with no evidence of genetic
interaction i.ed; = 0, fitness will be a linear transformation from the control etarpart
(e>121), Similar to Figures 4.2A and 4.2B, Figure 4.2C shows how tlagonity of con-
trol strains are more fit than their query strain countegyavith a mean fitted line lying
below the line of equal fithess. Comparing the fitted linesiguFes 4.2A and 4.2B with
Figure 4.2C, the IHM shows the largest deviation betweerfittezl line and the line of
equal fitness, is largely due to the differencé’irstimated with the SHM for the control
and guery data sets being scaled out by the parametelf we fix P in our Bayesian
models, similar to the frequentist approach, genetic atgons identified are largely the
same, but we then have the problem of choogmd\Ve recommend estimating simul-
taneously with the other model parameters because if theeld P is not close to the
true value, growth rate estimates must compensate and don’t give accurate essifoate
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time courses with low carrying capacify.

It can be seen that many of the interactorfAs have large deviations from the genetic
independence line. This is because of the indicator variathe model, used to describe
genetic interaction. When there is enough evidence forant®n the Bernoulli variable
is set to 1, otherwise it is set to 0. It is interesting to ndtat hon-significanbrfAs,
marked by grey points, lie amongst some of the significarirssr Many such points
have high variance and therefore we are less confident tese tinteract with the query
mutation. This feature of our new approach is an improverogat that presented in
Addinall et al. (2011), which always shows evidence for an epistatic effdetn mean
distance from the genetic independence line is large, dégss of strain fitness variability.
An extract from the list of top interactions identified by M is included in Table B.2.

4.2.3. One stage Bayesian approach

Figure 4.2D is a JHMVI D R x M D P fitness plot using the new, unified Bayesian method-
ology. TheM DR x M D P fitness plot given in Figure 4.2D is for visualisation and eom
parison with theM DR x M DP fitness plots of the other approaches considered: the
JHM does not make use of a fithess measure. 939 genes ardigdkehyi the JHM as
genetic interactions (Table 4.1). Posterior means of mpdelmeters are used to obtain
the following fithess measures. With the JHM we can obtaimi\ level estimate of
the carrying capacity and growth rat&’, r) for a gene ). For a genelj from the gene
deletion library, carrying capacity and growth rét&’ '’ are used to evaluate the fit-
ness for the control angke: 57 +0e: efrtri+awer) for the query. For a gen@) in the
query screen, with no evidence of genetic interactiond;,e= 0, carrying capacity and
growth rate will be linear transformations from the controunterpare®: %7 ef1+r7),

Instead of producing a fitness plot in terms/fDR x M DP, it can also be use-
ful to analyse carrying capaciti{ and growth rate- fithess plots as, in the JHM, evi-
dence for genetic interaction comes from both of these petens simultaneously, see
Figures B.5 and B.6. Fitness plots in terms of logistic gropdérameters are useful for
identifying some unusual characteristicsoofAs. For example, aarfA may be defined
as a suppressor in terms &8fbut an enhancer in terms of To enable direct comparison
with the Addinallet al. (2011) analyses we generated/@ R x M D P fitness plot, Fig-
ure 4.2D. An extract from the list of top interactions idéet by the JHM is included in
Table B.3.
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Table 4.2: Genes interacting withdc13-1at 27°C and GO terms over-represented in the list of
interactions according to each approach A) Number of gatheastified for each approach (Add
Addinall et al.(2011), REM, IHM and JHM) and the overlap between the apgresc4135 genes
from theS. cerevisiaaingle deletion library tested overall. B) Number of GO terighentified for
each approach (Add Addinadit al. (2011), REM, IHM and JHM) and the overlap between the
approaches. 6103. cerevisiagds0 Terms available.

A REM:0 REM:1 B. REM:0 REM:1
Add:0 Add:1 Add:0 Add:1 Add:0 Add:1 Add:0 Add:1
.~ JHM:0 3097 54 31 10 .~ JHM:O 5813 21 58 7
IHM:0 JHM:1 231 78 29 29 IHM:0 JHM:1 46 8 6 10
.. JHM:O 1 2 1 0 .. JHM:O0 20 15 3 12
IHM:1 JHM:1 30 327 0 215 IHM:1 JHM:1 13 54 2 147

4.3. Comparison with previous analysis
4.3.1. Significant genetic interactions

Of the genes identified as interacting witthic13-1(1038, see Table 4.2A) some are iden-
tified consistently across all four approaches (215 out 88168ee Table 4.2A). Of the hits
identified by the JHM (939), the majority (639) are commorhwitose in the previously
published Addinalkt al. (2011) approach. However, 231 of 939 are uniquely identified
by the JHM and could be subtle interactions which are thelre$previously unknown
biological processes.

To examine the evidence for some interactions uniquelytified by the JHM in more
detail we compared the growth curves for three examples thengroup of interactions
identified only by the JHM. These examplehz1A, pre9A andpex6A) are genetic in-
teractions which can be identified in terms of carrying cégak’, but not in terms of
growth rater (see Figure 4.3). By observing the difference between thedfgrowth
curve (red) and the expected growth curve, given no intenaggreen) in Figure 4.3A,
4.3B and 4.3C we test for genetic interaction. Since the &egegrowth curves in the
absence of genetic interaction are not representativeledreihe data or the fitted curves
on the repeat andrf A level, there is evidence for genetic interaction.

We chose a prior for the probabilipyof a gene interacting with the background muta-
tion as 0.05. We therefore expected to find 215 genes iniegacthe Bayesian models,
for which a prior is applicable (IHM and JHM), find more genkar expected (576 and
939 interactions respectively, Table 4.1), demonstratiag information in this dataset
can overcome prior expectations. The JHM identifies thedsgproportion of genes as
hits out of all methods considered, particularly identfyisuppressors afdc13-1(Ta-
ble 4.1). In fact, the JHM identifies more hits than the Addird al. (2011) approach,
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Figure 4.3: Joint hierarchical model (JHM) logistic growth curve filin JHM data fororfA
repeats have been plotted in A, B and C, with fitted curveslaicein black for repeat level
parameters, red for thafA level query parameter fit and green for the expecigd level query
parameter fit with no genetic interaction. A) JHM scattert fitw 8 chz1A cdcl3-1repeats. B)
JHM scatter plot for re9A cdcl3-1repeats. C) JHM scatter plot forpexeA cdcl3-1repeats.

even when constrained to using only half of the availabla.dah important advantage to
our new Bayesian approach is that we no longer have the diffiofichoosing a g-value
threshold. For the Addinadt al.(2011) approach to have similar numbers of interactions
to the JHM, a less stringent g-value threshold would haveetubtifieda posterioriby

the experimenter.

4.3.2. Previously known genetic interactions

In order to compare the quality of our new, Bayesian hieiiaethmodels with existing,
frequentist alternatives, we examined the lists of geneteractions identified by all the
methods discussed and presented here. Comparing resthitexpected or previously
known lists of interactions from the relevant literatures find that genes coding for the
MRX complex MRE11, XRS2& RAD5Q, which are known to interact witbdc13-1
(Fosteret al.,, 2006), are identified by all four approaches considereccante seenin a
similar position in all four fitness plots (Figure 4.2A, 4.282C and 4.2D).

By observing the genes labelled in Figure 4.2A and 4.2B wesearthat the frequen-
tist approaches are unable to identify many of the intergggenes identified by the JHM
as these methods are unable to detect interactions for géoes to the genetic inde-
pendence line. The JHM has extracted more information fretatobn strain fithesses
observed with high variability than the Addinat al. (2011) approach by sharing more
information between levels, consequently improving oulitgto identify interactions
for genes close to the line of genetic independence (sutiteactions)CTI6, RTC6and
TGSlare three examples of subtle interactors identified onlyhieyJHM (interaction in
terms ofr but notK’) which all have previously known telomere-related funeti¢Franke
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et al, 2008; Keoglet al,, 2005; Addinallet al., 2008).

We tested the biological relevance of results from the veri@pproaches by carrying
out unbiased Gene Ontology (GO) term enrichment analysakeohits (lists of genes
classified as having a significant interaction wattc13-1 using the bioconductoR pack-
age GOstats (Falcon & Gentleman, 2007). For the GO termtangat analysis R code
used, see Section B.5 of the Appendix.

All methods identify a large proportion of the genes in thastegenome annotated
with the GO terms “telomere maintenance” and “response té\ Rimage stimulus”
(see Table 4.1), which were the targets of the original sgrdemonstrating that they all
correctly identify previously known hits of biological eslance. Interestingly, the JHM
identifies many more genes annotated with the “ageing” G@,tevhich we also ex-
pect to be related to telomere biology (though the role afnteres in ageing remains
controversial) suggesting that the JHM is identifying npweevant interactions not pre-
viously identified by the Addinalét al. (2011) screen (see Table 4.1). Similarly, the
JHM identifies a much larger proportion of the PEX “peroxisdircomplex (included
in GO term: “peroxisome organisation”) as interacting wittc13-1(see Table 4.1) in-
cluding all of those identified in Addinabt al. (2011). Many of the PEX genes show
large variation in bothK" and », an example can be seen in Figure 4.3C pexA.
Members of the PEX complex cluster tightly, above the fittee lin the fithess plot
Figure 4.2D (fitness plots with highlighted genes for GO tiim Table 4.1 are given
in Section B.2 of the Appendix), demonstrating that altHotlgese functionally related
genes are not strong interactors, they do behave congysteith each other, suggest-
ing that the interactions are real. The results of testsifprificant over-representation
of all GO terms are given in a spreadsheet document, freeljade online athttp:
/lresearch.ncl.ac.uk/gfa/HeydariQFABayes/ :

Overall, within the genes interacting wittdc13-1lidentified by the Addinalkt al.
(2011), REM, IHM and JHM approaches, 274, 245, 266 and 286 €2@< were signif-
icantly over-represented respectively (out of 6235 pdsddO terms, see Table 4.2B).
147 were common to all approaches and examples from the groG® terms over-
represented in the JHM analysis and not in the Addieghl. (2011) analysis seem in-
ternally consistent (e.g. “peroxisome organisation” Gfnjeand consistent with the bi-
ological target of the screen, telomere biology (significa@® terms for genes identified
only by the JHM are also included in the spreadsheet docyment

Extracts from the list of top interactions identified by bdke IHM and JHM are
provided in Section B.3. Files including the full lists of rgeic interactions for the
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IHM and JHM are freely available online http://research.ncl.ac.uk/qgfa/
HeydariQFABayes/ . Alternative fithess plots to Figure 4.2A, B, C & D with gene
labels for those showing significant evidence of genetieraxdtion are provided in Fig-
ure 1.4 and Section B.7. As suppressors and enhancers idkhendy be in terms of both
K andr, fitness plots in terms ok andr with gene labels for those showing significant
evidence of genetic interaction are given in Figure B.10Rigdre B.11 respectively.

To further compare the similarity of the Bayesian hieratahmodels and frequentist
analysis, a table of Spearman’s rank correlation coeffisi€@pearman, 1987) between
genetic strengths and DR x M DP correlation plot of the JHM versus the Addinall
et al.(2011) are given in Section B.8 of the Appendix.

4.3.3. Hierarchy and model parameters

The hierarchical structure and model choices included enBayesian JHM and IHM
are derived from the known experimental structure of QFAfdpent levels of variation
for differentorfAs are expected and can be observed by comparing distrilsutidine-
guentist estimates or by visual inspection of yeast cultneges. The direct relationship
between experimental and model structure, together whitdhness of detail and num-
ber of replicates included in QFA experimental design,seees us that overfitting is not
an issue in this analysis. For tlea3A 27°C andcdc13-127°C experiment with 4294
orfAs there are 1.25 times the number of parameters in the 3+#0@,000) compared to
the two stage REM approack 160,000) but when compared to the large number of pairs
of data points{-830,000) there are sufficient degrees of freedom to justifyppoposed
Bayesian models.

4.3.4. Computing requirements

Our Bayesian hierarchical models require significant camamnal time. As expected,
the mixing of chains in our models is weakest at populatioeli@arameters such as
K, anda.. For theura3A 27°C andcdc13-127°C dataset, the JHM takes2 weeks
to converge and produce a sufficiently large sample. The tagesBayesian approach
takes one week (with the IHM part takingl day), whereas the REM takes3 days and
the Addinallet al. (2011) approach takes3 hours. A QFA experiment can take over a
month from start to finish and so analysis time is acceptabmparison to the time
taken for the creation of the data set but still a notablenmeaience. We expect that
with further research effort, computational time can bereased by using an improved
inference scheme and that inference for the JHM could be [metpin less than a week
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without parallelisation. MCMC algorithms are inherentgsiential so, parallelisation
is not completely trivial and may be considered for futurgaedepment. Parallelisation
may reduce computational time by partitioning the statecspato segments that can
be updated in parallel (Rosenthal, 2000). For the JHM it maypabssible to partition

by QFA screens to reduce computational time. Further, lgdisgtion may be possible
acrosrfAs for even further reduction to computational time.

4.3.5. Convergence diagnostics

Evidence of convergence for our Bayesian models in Sectib2 4nd 4.2.3 can be shown
by observing posterior samples from the MCMC samplers uSeplires 4.4, 4.5 and 4.6
show evidence of convergence for a subset of populatioh parameters from the SHM,
IHM and JHM respectively. Posterior samples of 1000 parsiere obtained after a burn-
in period of 800k and a thinning of every 100 observationgtierSHM, IHM and JHM.

Population level parameters are found to have the worstngixi our models due
to the large number of lower level parameters that popuidBoel parameter sampling
distributions are conditioned upon. We demonstrate howpopulation parameters have
converged with Trace plots, ACF and density plots in Figdrds4.5 and 4.6. Trace plots
show that the posterior samples are bound between a fixee @neplues, indicating
convergence. Auto-correlation functions do not have anyelgpeaks above the dashed
blue line for significant evidence of dependence, showirsg &ach sequential sample
value from the posterior distributions are largely unclated with previous values and
ensuring that the effective sample size is similar to thealcample size. ACF plots in
Figures 4.5 and 4.6 do show some dependence within our pyssamples but as the
ACF decays rapidly before a lag of 5, there is only a small amhéloat will not be a
problem for inference. Density plots show that that therensugh information within
the models to give sufficiently peaked single modes, coingrground a fixed region of
plausible values.

Table 4.3 gives diagnostic statistics for the populatiorapeeters considered in Fig-
ures 4.4, 4.5 and 4.6. We can see in Table 4.3 that the lowfestieé sample size of
our model parameters ¥4, for the JHM P parameter, followed b$78 for the SHM P
parameter. Of all our model parametefswas found to have the lowest effective sample
size, but we are still able to find a large enough sample foirdarence. Heidelberg and
Welch P-values do not show evidence against the statiorfasyrochains, using a cut-
off of 0.10. The above statistics are calculated for all model parameted are used to
identify where mixing is poor and if our model has reachedveogence. All chains are
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Table 4.3: Bayesian model convergence statistics for the two-stageaph in Section 4.2.2 and
one-stage approach in Section 4.2.3. Heidelberg and Weletiues and the effective sample size
have been calculated for a subset of population level paeame

Model Parameter Effective sample size Heidelberg and Wedchlue

SHM K, 521 0.49
r 441 0.11
P 378 0.56
v, 1000 0.17
IHM Z, 677 0.35
0. 430 0.14
v, 1000 0.46
a, 914 0.59
JHM K, 473 0.72
r 566 0.12
P 324 0.12
vy 1000 0.13
o 407 0.36
B 808 0.67

accepted for parameter posterior samples in Section 42l22.3 as effective sample
sizes are found to be greater th#0 and Heidelberg and Welch P-values greater than
0.10 for every chain.
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are shown in the right hand column.
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4.3.6. Simulation study

A simulation study was carried out to compare the perforraanicthe different ap-
proaches considered for a simulated QFA screen comparnisonthe JHM. We believe
that the JHM closely models a QFA screen comparison and siowyating a QFA screen
comparison data set from the JHM we will obtain a data set tockwwe know the full
set of true genetic interactions. Simulated JHM data witlude important features of
QFA screen comparison data, such as a hierarchical steuahd genetic interaction in
terms of both/” andr.

Two simulated QFA screens where generated, a control amy gueeen with some
condition effect in the query. Each screen consists of 480@\s and 8 logistic growth
time-course repeats for eactf A. Each time-course consists of 10 measurements, evenly
distributed across 6 days. 430 genes were set as genetigdtaies in the query screen.
The true Population level parameters are chosen from fregestimates of 10 historic
data setsorf A and repeat level parameters are then generated from the trHdfuse in
Table 3.3 and growth time-course data simulated.

Table 4.4 shows the number of true genetic interactionstiftiesh suppressors and
enhancers, as well as false positives (FPs) and false negdkN) for each of the ap-
proaches considered. As expected, the JHM identifies tgedanumber of true genetic
interactions. The number of suppressors identified by thd #H-higher than the Addi-
nall et al. (2011), REM and IHM but for enhancers, all methods performy &milarly.
Performance of the different methods can be observed thrihweg-P and FN rates. From
Table 4.4 we can calculate FP and FN rates, where FP-rate“sensitivity” and FN
rate= 1—"specificity”. FP rates for the Addina#t al. (2011), REM, IHM and JHM are
0.078, 0.042, 0.006 and0.002 respectively. The JHM has the lowest FP rate when com-
pared to the other approaches available. Frequentistagipes Addinalét al.(2011) and
REM have large FP rates when compared to the two Bayesianagpes. The Addinall
et al. (2011) approach has more false positives than true gemgéicactions. FN rates
for the Addinallet al. (2011), REM, IHM and JHM ar®.488, 0.570, 0.593 and 0.270
respectively. Two-stage approaches Addiealal. (2011), REM and IHM have large FP
rates when compared to the JHM. The Addirlal. (2011), REM and IHM have-200
false negatives, approximately double the number idedtifiethe JHM ¢100). Observ-
ing the genes that have been missed by the two-stage appsaeh find that they often
fail to identify genetic interactions when evidence is waaknly K or r, even if there
is sufficient evidence in the other parameter such that tié dah identify the genetic
interaction.
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From our simulation study we have been able to show that tleestage frequen-
tist approaches have high false positives and false negativirom the number of false
positives identified for each method, we can see that thehmenarchical Addinalkt al.
(2011) approach has the worst performance, followed by ieaichical two-stage ap-
proaches. As expected, the JHM is the best approach whenngeleo a simulated hier-
archical data set with genetic interaction in termgo&ndr, as the two-stage approaches
fail to capture more subtle genetic interactions.

Table 4.4: Simulation study with a joint hierarchical model (JHM) silatied dataset. A QFA
screen comparison was generated from the JHM and 430 gemestaas genetic interactors, see
Section 4.3.6. Applications of the (Addinadt al,, 2011), REM, two-stage Bayesian (IHM) and
one-stage Bayesian (JHM) approaches are made to the JHNBas#ohaataset and performance
compared. Suppressors and enhancers are defined in tehB&x M D P.

Model True interactions  True Suppressors True EnhancersiseRaositives False Negatives Sensitivity ~ Specificity
identified (N=430) (N=274) (N=156)
Addinall et al.(2011) 220 158 62 303 210 0.922 0.512
REM 185 100 85 163 245 0.958 0.430
IHM 175 130 45 23 255 0.994 0.407
JHM 314 256 58 8 116 0.998 0.730

4.4. Bayesian inference code comparison

Inference for the Bayesian hierarchical models in thisithescarried out using code
written in the C programming language. To see how our codepeoes to commonly
used software available for carrying out inference for Bege models, we have tested
posterior samples for our C code and equivalent code ussigAhother Gibbs Sampler
(JAGS) software (written in C++) (Plummer, 2003) . We carpt our JAGS analysis
within the R package “rjags” (Plummer, 2010) which providesore familiar framework
for an R user implementing the JAGS software. The BUGS (Bapesference Using
Gibbs Sampling) language (Lurat al,, 200@) is used to describe models in JAGS. The
SHM, IHM and JHM have each been described with the BUGS lagguaSection B.6
of the Appendix.

For the following comparison we use a subset fromathel 3-127°C vsura3A 27°C
suppressor/enhancer data set described in Section 4.hs&tsof 50orf As (for both the
control and query) are chosen, each with 8 time-course tep®é4th a smaller data set
we are able to collect large posterior sample sizes, suifit@ecarry out a comparison
between posterior samples. Density plots are used to yst@inpare the similarity of
the posterior samples from the C and JAGS code. The Kolme§onarnov test (Huber-
Carol, 2002) and unpaired two-sample Student’s t-testt@/MitWitte, 2009) are used to
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Table 4.5: Unpaired t-test and Kolmagorov-Smirnov p-values comgpposterior samples from

the joint hierarchical model (JHM) using both C and Just AroGibbs Sampler (JAGS) software.
An extract of JHM parameters are given for both the C programgianguage and JAGS software.
Posterior means are also included for both approacheststdee carried out on the log posterior

samples i.ekp in place ofe’*» to assume normality.

Parameter C Code posterior mean JAGS posterior mean tiuétt [og posterior samples) Kolmagorov-Smirnov test

el 0.143 0.143 0.452 0.401
e'r 4.639 4.641 0.424 0.482
el 2.537-10% 2.517-10% 0.137 0.116
evr 7.402 - 10% 7.416 - 10% 0.250 0.190
ede 0.304 0.304 0.203 0.140
ePe 0.384 0.384 0.156 0.146

test for significant difference between posterior samplas four C and JAGS code.

A comparison of posterior samples for our most sophistccatedel, the JHM, is
given below. Posterior samples of 100k particles are obthafter a burn-in period of
1000k and a thinning of every 100 observations for both the€ JAGS code. Compu-
tational time for the C and JAGS code~s30 hours and~ 400 hours respectively. The
minimum effective sample size per second (E§/Sec) for the C and JAGS code-sl
and~0.1 respectively, demonstrating that the C code iB) x faster.

Figure 4.7 gives density plots for an extract of JHM paramsefier the C and JAGS
software. Visually there is no significant difference betwdhe posterior sample den-
sity plots in Figure 4.7. Of the parameters shown, the wedakisctive sample size
(~ 80000ESS) is for the initial inoculum paramet&r, but this is sufficiently large enough
ESS to test if posterior samples show a significant diffezefiable 4.5 demonstrates fur-
ther that there is no significant difference found betweenpghrameters shown. The
unpaired t-test for log posterior samples (for normalitguasption) and Kolmogorov-
Smirnov test p-values are all greater than 0.10 for the pat@r® given, including the
inoculum density parametd?. Overall we find no significant evidence against the C
code and JAGS code sampling from the same posterior digtitsu

As carrying out inference using C is10 times faster than the JAGS equivalent code
we prefer the C code for our Bayesian hierarchical modelgai@ing sufficiently sized
independent posterior samples of our posterior distiamgtior a larger data set 614000

orf As, we estimate our C code to be at least more th&@x faster than the equivalent
JAGS as we find the JAGS code to have exponential computatiosts as we introduce
larger data sets. JAGS is very useful for model explorat®iit & fast and simple to
describe complex models. The JAGS software is so prohdhtisiow for the JHM, that
an experimenter is likely to not carry out such inference as®l a more simple or faster
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Figure 4.7: Density plots for posterior samples from the joint hierasahmodel (JHM) using the
C programming language (red) and Just Another Gibbs Sar(ibesk) software. Density plots
for the JHM parameter posteriors (sample size = 100000nitigninterval = 100 and burn-in =

1000000).

method, justifying the use of the C programming languageatoycout inference. Fur-
ther improvements such as the introduction of parallebsanay lead to more favourable

computational times in the future.
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4.5. Further case studies

In this section we briefly introduce different data sets timaty be considered for fur-
ther investigation and research. We can also see how the XiMrms for different
experimental conditions by applying the JHM to differentA@€reen comparisons, see
MDRx M DP fitness plots in Figures 4.8-4.11. The data sets used in ésgui8-4.11
are currently unpublished from the Lydall lab. For each ef data sets, the JHM in Ta-
ble 3.3 is applied with the prior hyper-parameters in Tablke Bosterior samples of 1000
particles are obtained after a burn-in period of 800k, arfdrantng of every 100 observa-
tions. Similarly to Section 4.3.5, chains from our MCMC sden@are accepted where the
effective sample sizes are greater tBaf and Heidelberg and Welch P-values are greater
than0.10 for every chain. As in the Addinadt al. (2011) analysis, each experiment has a
list of 159 genes stripped from our final list of genes for bgptal and experimental rea-
sons. Results for thedc13-1exol 27°C vscdcl3-127°C andcdcl3-1rad 27°C vs
cdc13-127°C experiments have further genes removed for biologicalexperimental
reasons, 23 and 13 genes respectively (a total of 182 andel&&sgespectively).

Figure 4.8 is acdc13-1exol\ 27°C vscdcl3-127°C suppressor/enhancer analysis
for finding genes that interact wigxolin a telomere maintenance defective background
(cdc13-1at27°C). Similarly, Figure 4.9 is @dc13-1rad 27°C vscdcl3-127°C sup-
pressor/enhancer analysis for finding genes that interdbtrad9 in a telomere main-
tenance defective background. Figure 4.10 yka7QA\ 37°C vsura3A 37°C suppres-
sor/enhancer analysis for finding genes that interact yWttYOat high temperature. Fig-
ure 4.11 is an example of a temperature sensitivity experinfer finding genes that
interact with the high temperature 87°C. Figures 4.8-4.11 demonstrate that the JHM
can capture different linear relationships that are abousetow the 1-1 line. Curvature
of the data in Figures 4.8-4.11 suggests that the lineaigrkhips modelled by the JHM
may be improved through linearising transformations ofdha&. Extending the JHM
to account for the curvature in the data may improve our métahd allow to better
determine genes which significantly interact.

Table 4.6 compares the number of suppressors and enhastenated for each of
the experiments considered. The experiments in Table 4:© $ienilar numbers of ge-
netic interactions, ranging from 358 to 511, but much lowemt thecdc13-R7°C vs
ura3A 27°C experiment which ha$39. The experiments introduced in this section also
differ from thecdc13-127°C vsura3A 27°C experiment as they have more enhancers
than suppressors, further demonstrating the JHM’s abditgodel different experimental
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situations and the non-restrictive choice of priors (TdhlE).

Table 4.6: Number of joint hierarchical model (JHM) interactions foF® datasets given in
Section 4.5. Interactions for each dataset is split intgpeegsors and enhancers. The number of
interactions found with the extensions to the joint hiehémal model (see Section 4.6) are also
given. Each QFA screen comparison consists of 4284\s. Results for all experiments have a
list of 159 genes removed from the final list of interactiomstiological and experimental reasons.
Results for thedc13-1exol 27°C vscdcl13-127°C andcdcl13-1rad 27°C vscdcl3-127°C
experiments have further genes removed for biological apdrimental reasons, 23 and 13 genes
respectively (a total of 182 and 172 genes respectively).

Query screen Control screen Interactions Suppressors Bedra
cdcl3-1lexol 27°C  cdcl13-127°C 388 81 307
cdcl3-1lrad 27°C  cdcl3-127°C 358 73 285

yku7QA 37°C ura3A 37°C 511 104 407

ura3A 37°C ura3A 20°C 460 138 322

Model forcdc13-127°C vs Interactions Suppressors Enhancers
ura3A 27°C experiment
JHM 939 665 274
JHM-Batch 553 378 174
JHM-Transformation 901 658 243

Table 4.7A shows the overlap in genes with significant evesdef genetic interactions
between the different QFA comparisons considered. Thesingumber of overlapping
genetic interactions are found with théc13-1A 27°C vsuraA 27°C experiment, over-
lapping with 301 and 263 genes from thdc13-1lexol\ 27°C vs cdcl3-127°C and
cdcl3-1rad 27°C vscdcl3-127°C experiment respectively. Thoelc13-1A 27°C vs
uraA 27°C, cdcl3-1lexol\ 27°C vscdcl3-127°C andcdc13-1rad 27°C vscdcl3-1
27°C experiments are expected to overlap most as they are eesigriind genes inter-
acting in acdc13-1background. The smallest number of overlapping genetcations
are found with theira3A 37°C vsura3A 20°C andyku70A 37°C vsura3A 37°C exper-
iment. Theura3A 37°C vsura3A 20°C andyku7QA 37°C vsura3A 37°C experiments
are expected to have the least overlap as they are not ddsigfied genes interacting
in a cdcl3-1background. Theku7QA 37°C vsura3A 37°C experiment is designed
to look at telomeres, but instead of disrupting the telonoaygping protein Cdc13 using
cdc13-1 ayku7QA mutation is made such that the protein Yku70 (a telomereitgnd
protein which guides the enzyme telomerase to the telonfatdifall et al, 2011)) is
no longer produced by the cell. Furthera3A 37°C vsura3A 20°C is designed to
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investigate temperature sensitivity only.

Table 4.7B shows the overlap in significant GO terms betweedifferent QFA com-
parisons considered. The largest number of overlappimgfgignt GO terms are found
with thecdc13-1A 27°C experiment, overlapping witk150 GO terms for each experi-
ment. The smallest overlap wittdc13-1A 27°C vsuraAd 27°C experiment is 110 GO
terms with thaura3A 37°C vsura3A 20°C experiment. The smallest number of overlap-
ping genetic interactions are for thea3A 37°C vsura3A 20°C experiment, followed
by yku7QA 37°C vsura3A 37°C, with ~110 and~120 GO terms overlapping with the
other experiments respectively. Similarly to the overldmenes with significant evi-
dence of genetic interaction, the overlap of significant @nt shows that owdc13-1
background experiments share the most GO terms and thag¢itiy@etature sensitivity
experimenura3A 37°C vsura3A 20°C has the least overlap.

We have shown that the JHM can successfully model differgmeéemental data sets,
Figures 4.8-4.11 are included as a reference for furthezarek. Of the different ex-
periments we can see thadlc13-127°C vsura3A 27°C is the most dissimilar to the
other experiments due to the large number of genetic irtieres; 939 in total (see Ta-
ble 4.6). The next largest number of genetic interactiorflik with theyku7QA 37°C
vs emphurad 37°C experiment, which is approximately half the genes foundttie
cdcl3-127°C vsura3A 27°C experiment. Tables 4.7A and 4.7B show that the overlap
between QFA comparisons is as expected using the JHM, watleldser related exper-
iments sharing the most overlap. To account for the cureadiithe data observed in
Figures 4.8-4.11 we introduce a JHM with linearising transfations in the next section.
Further research may include developing models that campocate multiple QFA com-
parisons to find evidence of genetic interactions betweamygscreens and incorporate
more information within our models.
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Table 4.7: Overlap between different QFA comparisons for genes int@rg and gene ontology
terms over-represented in lists of interactions. For adamparison, any genes removed from the
results of a QFA comparison for biological and experimergakons are removed for all experi-
ments, therefore results for all experiments have a list9& denes (159+23+13, see Table 4.6)
removed from the final list of interactions for biologicalcaaxperimental reasons. A) Number
of genes identified for each QFA comparison and the overlapdmn QFA comparisons. 4099
genes from thé&. cerevisiasingle deletion library are considered. B) Number of GO terten-

tified for each approach and the overlap between QFA conqueriis094S. cerevisia&sO Terms
available.

A cdc13-1A 27°C  cdcl3-lexoll 27°C  cdcl3-lrad 27°C  yku70A 37°C ura3A 37°C
vsuraA 27°C vscdcl3-127°C vscdcl3-127°C  vsura3A 37°C  vsura3A 20°C
cdc13-1A 27°C vsuraA 27°C 926 N/A N/A N/A N/A
cdcl3-1exol 27°C vscdcl3-127°C 301 386 N/A N/A N/A
cdcl3-1rad 27°C vscdcl3-127°C 263 245 355 N/A N/A
yku7QA 37°C vsura3A 37°C 252 155 146 506 N/A
ura3A 37°C vsura3A 20°C 223 152 149 164 455
B. cdc13-14 27°C  cdcl3-1lexod 27°C  cdcl3-1rad 27°C  yku7QA 37°C ura3A 37°C
vsuraA 27°C vscdcl3-127°C vscdcl3-127°C  vsura3A 37°C  vsura3A 20°C
cdc13-1A 27°C vsuraA 27°C 282 N/A N/A N/A N/A
cdcl3-1exol 27°C vscdcl3-127°C 142 188 N/A N/A N/A
cdcl3-1rad 27°C vscdcl3-127°C 151 130 212 N/A N/A
yku7QA 37°C vsura3A 37°C 150 119 125 245 N/A
ura3A 37°C vsura3A 20°C 110 100 112 119 195
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Figure 4.8: cdc13-1lexoll 27°C vscdcl3-127°C joint hierarchical model (JHM) fitness plot
with orf A posterior mean fithesses. The JHM does not does not make @sétioéss measure
such asM DR x M DP but the fitness plot is given in terms & DR x M D P for comparison

with other approaches which darfA strains are classified as being a suppressor or enhancer
based on one of the two parameters used to classify gentradtion, growth parameter this
means occasionally strains can be more fit in the query expetiin terms oM DR x M DP

but be classified as enhancers (green). Further fitnessptanation and notation is given in
Figure 4.2.
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Figure 4.9: cdcl3-1rad 27°C vs cdcl3-127°C joint hierarchical model (JHM) fitness plot
with orfA posterior mean fitnesses. The JHM does not does not make asétioéss measure
such asM DR x M D P but the fitness plot is given in terms 61 DR x M D P for comparison

with other approaches which darfA strains are classified as being a suppressor or enhancer
based on one of the two parameters used to classify gentiadtion, growth parameter this
means occasionally strains can be more fit in the query expetiin terms oM DR x M DP

but be classified as enhancers (green). Further fitness ptanation and notation is given in
Figure 4.2.
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Fitness (F) of orfA yku70A double mutants at 37°C (doublingsz/ day)
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Fitness (F) of orfA ura3A double mutants at 37°C (doublingszl day)

Figure 4.10: yku7QA 37°C vs ura3A 37°C joint hierarchical model (JHM) fitness plot with
orfA posterior mean fitnesses. The JHM does not does not make asBtoéss measure such
asM DR x M DP but the fitness plot is given in terms 8 DR x M D P for comparison with
other approaches which darfA strains are classified as being a suppressor or enhancel base
on one of the two parameters used to classify genetic interagrowth parameter, this means
occasionally strains can be more fit in the query experimemerims of A/ DR x M DP but be
classified as enhancers (green). Further fitness plot eeqpiarand notation is given in Figure 4.2.
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Fitness (F) of orfA ura3A double mutants at 20°C (doublingsz/ day)

Figure 4.11: ura3A 37°C vsura3A 20°C joint hierarchical model (JHM) fitness plot witif A
posterior mean fithesses. The JHM does not does not make wsditobss measure such as
MDR x M DP but the fitness plot is given in terms 6f DR x M DP for comparison with
other approaches which darfA strains are classified as being a suppressor or enhancel base
on one of the two parameters used to classify genetic interagrowth parameter, this means
occasionally strains can be more fit in the query experimemerims of A/ DR x M DP but be
classified as enhancers (green). Further fitness plot eeqpéarand notation is given in Figure 4.2.
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4.6. Extensions of the joint hierarchical model

In this section we briefly introduce two new extensions of iR for further investiga-
tion and research. An extension to the JHM, given in Table i8.8 consider a batch
effect. Batch effects are technical sources of variatiomfthe handling of experimental
cultures (Leelet al, 2010; Cheret al, 2011). Batch effects can be confounded with the
biology of interest, leading to misleading results and ¢asions.

A QFA screen comparison is carried out between two QFA serdeach QFA screen
consists of multiple 384 plates grown over time (see Figusg &pically with eaclhorf A
repeat on a different 384 plate. For tbe#c13-127°C vsura3A 27°C experiment, each
QFA screen is built of 120 384 spot plates (240 total uniqusgs). Each 384 plate
is created sequentially and may be created by a differerdrarpnter. The 384 plates
may therefore differ due to factors that the experimentersheir best to control such
as the amount of nutrition in a plate, temperature, or otheirenmental effects. Where
orf A repeats are carried out across multiple plates, diffeseimcplates can therefore be
captured by introducing a batch effect into the model.

Through careful planning and improved experimental dedigtch effects can be re-
duced or removed. When we are unable to improve our expetahe@esign any further
we may be interested in accounting for a batch effect withinmoodel. Introducing pa-
rameters to model batch effects in our experiment we canuatdor any differences
between the 240 384 spot plates. A JHM with batch effects (BjMlescribed in Ta-
ble 4.9, will be able to improve inference by including moféh® experimental structure.
The model in Table 4.9 introduces a batch effecand \,, for a plateb, to capture any
batch effect in carrying capacityf and growth rate respectively. A batch effect will be
estimated within the model and consequently any confognaith orf A level carrying
capacityK and growth rate parameters will be removed. Using frequentist estimates of
the batch effects in the QFA screens, a normal prior was chimsdescribe batch effect
parameters, allowing either a positive or negative effedte incorporated for eaarf A
repeat in terms of{’ andr.

Another extension of the JHM is to consider a transformatfinearise the relation-
ship describing genetic independence in the JHM. When icayryut linear regression
we may be interested in linearising the data to improve theali relationship (Kutner
et al, 2005). There are many different transformations usedrieatising data, the most
common are log and power transformations. Power transtwnsare families of power
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functions that are typically used to stabilise variance arake our data more Normal
distribution-like. For a variable:, a power function is of the fornf : = — ca”, for
¢,r € R, wherec andr are constant real numbers. The Box-Cox transformation @ox
Cox, 1964) is a particular case of power transformationiggpically used to transform
data and linearise a relationship within a data set.

Without linearising our data, we may not be describing gernietiependence within
our model correctly, leading to misleading results and tsions. A JHM with transfor-
mations (JHM-T), described in Table 4.10, will be able to roye inference by ensuring a
more linear relationship is made between the control andycqg@een. Genetic indepen-
dence within the JHM is described as a linear relationstep Gections 1.2.1 and 3.4.1)
for both carrying capacitys and growth rate.. We may not believe there to be a per-
fectly linear relationship between the control and quenbfoth A andr. Introducing a
power transformation for the model of genetic independe@m¢erms of X' andr can al-
low us to linearise the relationship and better model gerinatiependence. The model
in Table 4.10 introduces the transformation parameteesd y at anorf A level for
both the carrying capaciti and growth rate- respectively, where > 0 andy > 0.
The “vanilla” JHM assumes an additive model of epistasi$\it. + K} + 6,7V, B +
ry + dwea), Wherea, and 5. are the scale parameters, as we are consideringriad
parameters. The “vanilla” JHM effectively assuming a nplitiative model on the orig-
inal scale of the data i.e(e®efi e efeeritawa) By introducing new parametets
and y to scale the control and query daéé"”Ki*‘S”d, 5C+T7;6l““l
have a power transformation with the control and query orotiginal scale of the data
[(e“cer’ +‘5Wcl)% , (e™ert +5l“cl)§]. The transformation parameters give the same trans-
formation to both the control and query screens. Our modillearn abouty and y,
adjusting the relationship of genetic independence andemurently those identified as
genetic interaction. Choosing to include a multiplicatrasformation parameter where
the model describes genetic independence (as an additidel)wall give the model the
flexibility to adjust the linear relationship between theatol and query screens. Prior

we can expect to

hyper-parameter choice for the transformation effect hastrictly positive and centred
at1 (no transformation effect) and so a gamma distribution withean ofi is chosen for
bothy and¢.

Figures 4.12 and 4.13 show JHM-B and JHMWID R x M D P fitness plots respectively,

for thecdc13-127°C vsura3A 27°C experiment. Prior hyper-parameter choices for the
models are given Table B.1. Bayesian inference and MCMC oastfor the JHM in Ta-
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ble 3.3 is carried out similarly for both the JHM-B and JHMPRGsterior samples of 1000
particles are obtained after a burn-in period of 800k, anurantng of every 100 obser-
vations. Similarly to Section 4.3.5, chains from our MCMQ@gder are accepted where
the effective sample sizes are greater tham and Heidelberg and Welch P-values are
greater thar).10 for every chain. Similarly to the other previous modelliqgpeoaches
considered (including the “vanilla” JHM), a list of 159 areigped from our final list of
genes for biological and experimental reasons.

The JHM-B fit in Figure 4.12 has many less interactions on thetpan the “vanilla”
JHM fitness plot, this may be evidence of a plate effect exgstiThe JHM-T fit in Fig-
ure 4.13 is largely the same as the “vanilla” JHM fitness pliois worth noting that the
JHM-T model fit in Figure 4.13 has posterior mean estimates-2f0.96 andy = 0.87,
2dp, suggesting that a transformation may only exist in $eofn.

Table 4.6 compares the number of suppressors and enhastenated for the two
extensions of the JHM. The JHM-B reduces the number of geimggractions from the
“vanilla” JHM from 939 to 553, and similarly reduces the number of suppressors and
enhancers. Therefore from the “vanilla” JHM to the JHM-Ber#h is approximately a
41% reduction of genes identified as showing significant evidesfagenetic interaction,
strong evidence for the presence of a batch effect. The JHM#hore similar to the
JHM with 901 interactions, reducing both suppressors and enhancersiahamount.
Therefore from the “vanilla” JHM to the JHM-T, there is apgpimately a4% reduction
of genes identified as showing significant evidence of gemaeraction, a much smaller
reduction from the JHM than that observed with the JHM-B.

Table 4.8A shows that the number of genes that overlap wélgénes identified by
the “vanilla” JHM is 531 and 886 for the JHM-B and JHM-T resipesly. Therefore the
number of genes identified as interacting by the “vanillaMJBnd now no longer iden-
tified is 408 and 53 for the JHM-B and JHM-T respectively. This further demoatds
the large reduction in genetic interactions when using Hd-B, suggesting that a batch
effect is present within the data. The number of genes nadegtified as showing signif-
icant evidence of genetic interaction by the JHM-B and JHN-12 and15 respectively.
These numbers are small relative to the number of genes ithatcalonger identified,
indicating that the biggest change from the “vanilla” JHMhat the JHM-B and JHM-T
are more stringent for determining significant geneticratgons. Table 4.8A shows that
the “vanilla” JHM and JHM-T have similar overlap with the Addll et al. (2011), REM
and IHM approaches. The JHM-B has much less overlap with thdirfall et al. (2011)
approach than the “vanilla” JHM does, reducing the overtamf649 to 498, indicating
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Table 4.8: Genes interacting withdc13-1at 27°C and GO terms over-represented in the list of
interactions according to each approach A) Number of gatheastified for each approach (Add
Addinall et al. (2011), REM, IHM, JHM, JHM-B and JHM-T) and the overlap beémethe ap-
proaches. 4135 genes from tBe cerevisiaesingle deletion library are considered. B) Number
of GO terms identified for each approach (Add Addirelhl. (2011), REM, IHM, JHM, JHM-B
and JHM-T) and the overlap between the approaches. G6l@erevisiadsO Terms available.
See Tables 4.2A and 4.2B for further details on the overlapdsen the “vanilla” models (Add
Addinall et al. (2011), REM, IHM, JHM).

A. Add REM IHM JHM JHM-B JHM-T B. Add REM IHM JHM JHM-B JHM-T
JHM 649 273 572 939 N/A N/A JHM 219 165 216 286 N/A N/A

JHM-B 498 239 468 531 553 N/A JHM-B 223 170 217 204 265 N/A

JHM-T 628 276 572 886 535 901 JHM-T 215 160 219 267 206 293

that the changes lead to an approach that is even more dessiram the Addinallet al.
(2011) approach.

Table 4.8B shows that the overlap in significant GO termsterdHM-T and JHM-B
with the JHM is 204 and 267 respectively. There are 286 (s&éeTa8B) significant
GO terms found with the “vanilla” JHM, meaning there is a rettton of approximately
29% and 7% with the JHM-B and JHM-T respectively, demonstrating thiéedénce of
our new approaches from “vanilla” JHM. Table 4.8B also shived the “vanilla” JHM,
JHM-B and JHM-T all have a similar number of overlap in sigrafiit GO terms with the
Addinall et al. (2011), REM and IHM approaches.

We have introduced two potential ways of further extendiregiHM to better model
a QFA screen comparison, Figures 4.12 and 4.13 are incluglad@ference for further
research. The JHM-B has made large changes to our resultsdoging the number
of hits, see Table 4.6. Further research may involve ingastig the behaviour of an
alternative JHM-B with tighter priors for the batch effeerameters so we can see how
the additional parameters affect the model fit in more defaitther research for the JHM-
T would involve developing an alternative JHM-T where diffet transformations are
made for the control and query screens. We find that the ledifésrence with the JHM-
B and JHM-T is that they are more stringent for determiningajie interactions than the
“vanilla” JHM. Currently we prefer the “vanilla” JHM untilfrther model exploration and
analysis such as simulation studies are carried out todurtivestigate how the JHM-B
and JHM-T affect our results.
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Table 4.9: Description of the joint hierarchical model with batch effe b identifies the batch
which anorf A repeat belongs to. Further model notation is defined in Talde

c=0,1
l=1,.., L.
m=1,... M,
=1,..., Nam
b=1,...B

Time point level

Yelmn ™~ N(Igclrmw (Vcl>71)

Repeat level

10g K ~ N(ac + Ky + K + 5lf>/cl7 ( ) )I(—oo 0]
log Telm 7 N(ﬁc"i_)\b"'_rl +5lwcl7( ) )‘[( 00,3.5]

orfA level

K0~ f;(Kp, (O’K’O)il, 3)[[0700)
e~ t(r?, (0’“’0)_1, 3)1(0,)

log vy ~ NP, (6¥)1)
0, ~ Bern(p)
el 1 if c=0;
t(1,(0") ", 3) o) ifc=1.

1 if c=0;
(1, (09) 7 3) [y ife=1.
Condition level
0 if c=0;
Qe = .
N(a#,n*) ifec=1.

TP N, (767) )
7~ NG (777) )

Population level
log K” ~ N(K", (")~
v~ N, (7))
Batch
Log riy ~ N(s7, (1))
84

Condition level
orfA level
Repeat level
Time point level
Batch

'gclmn = x(tclmn; Kclm7 Telms P)
log 7 ~ N(757, (07%) 1) Jj0,00)
log 7 ~ N(72F, (077)71)

lOg O'K’O ~ N(T}K’O, (wK,o)71>

log o0 ~ N(nr,o’ (wr,o)—l)
log " ~ N(1", ("))

log o7 ~ N(n",¢")

log 0% ~ N(n*,¢*)
40 if c=0;
B N(B*,nP) ifc=1.

N( 7K ,l/}TK) )
N(n™, (@/)”) Y

2

log o]

2

log o

log 17 ~ N(r, (g"")7 1)
log P ~ N(P*, (n")™")

Log Ay ~ N(M, (7))



Chapter 4. Case Studies

Table 4.10: Description of the joint hierarchical model with transfations. Model notation is

defined in Table 3.3

c=0,1
l=1,..., L.
m=1,... M,
n=1,.... Nuym

Time point level

Yelmn ™~ N(?)clmna (Vcl)_l)

Repeat level
ae + K7+ 0. _

10g Kclm ~ N( éb & l? (TCII() 1)1(—0070}
Be 4+ 1r? + Ow. e

log Telm ™~ N( L l l7 (Tcl> 1)[(_0073-5}
X
orfA level
M~ t(KP, (0") 7 3) g 00

erlo ~ f;('/’p, ((TT’O)il, 3)[[0700)
log v ~ N(VP, (0”)_1)
0, ~ Bern(p

1 ifc=0
e’\/CZ — 1 .
t(1,(07) ", 3) o0y (fc=1.

1 if ¢ =0;
(& —=
t(1, (o), 3oy fc=1.

Condition level

0 if ¢ =0;
Qe = .
N(a#,n*) ifec=1.
8 o NG, (o 7))

T~ NG (7))
Population level

log K? ~ N(K", (7)™
VP~ N, (7))
¢ ~ F(gbshape’ ¢scale)

85

Condition level
orfA level
Repeat level
Time point level

?)clmn - x(tclmn; Kclma Tclm, P)

log 7} ~ N(757, (07%) ) 0,00
P (ol

log 72 ~ N(7/

0 if c=0;
:{ rnf) ife=1.
log o7 N (p™F) 1)
log o7" ~ N(n™, (1/1”) Y

2

log 17 ~ N(r*, (") ™)
log P~ N(P*, (n")™")
X ~ F(Xshape’ Xscale)
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Figure 4.12: cdc13-127°C vsura3A 27°C joint hierarchical model with Batch effect (JHM-B)
fitness plot withorf A posterior mean fithesses. The JHM does not does not make adéroéss
measure such a& DR x M DP but the fitness plot is given in terms 8f DR x M DP for
comparison with other approaches which dofA strains are classified as being a suppressor or
enhancer based on one of the two parameters used to classétiginteraction, growth parameter
r, this means occasionally strains can be more fit in the qugrgrament in terms of\/ DR x

M DP but be classified as enhancers (green). Further fithessyplistr&tion and notation is given

in Figure 4.2.
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Figure 4.13: cdc13-127°C vsura3A 27°C joint hierarchical model with transformations (JHM-
T) fitness plot withorfA posterior mean fitnesses. The JHM does not does not make wse of
fithess measure such 88D R x M D P but the fitness plot is given in terms &f DR x M D P for
comparison with other approaches which dofA strains are classified as being a suppressor or
enhancer based on one of the two parameters used to classétiginteraction, growth parameter
r, this means occasionally strains can be more fit in the qugrgrament in terms of\/ DR x

M D P but be classified as enhancers (green). Further fithessqplisir&tion and notation is given

in Figure 4.2.
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Chapter 5. Fast Bayesian parameter estimation for stochast
logistic growth models

5.1. Introduction

In this Chapter, fast approximations to the stochasticskogigrowth model (SLGM)
(Capocelli & Ricciardi, 1974) (see Section 1.3) are preseéntThe SLGM is given by
the following diffusion equation:

X
dX, = rX, (1 - #) dt + o X, dW,, (5.1)

whereX,, = P and is independent ¥/, ¢t > t,.

A deterministic logistic growth model (see Sectionl.1sA)mable to describe intrinsic
error within stochastic logistic growth time course dateon€equently a deterministic
model may lead to less accurate estimates of logistic grgatameters than a SDE,
which can describe intrinsic noise. So that random fluotustipresent within observed
yeast QFA data (1.1) can accounted for as intrinsic noiseaadsof being confounded
within our measurement error we are interested in using t@&\&in (5.1), instead of its
deterministic counterpart (1.1). Alternative stochaktgistic growth equations exist (see
Section 1.3) but we find (5.1) to be the most appropriate am#it noise does not tend
to zero with larger population sizes.

The SLGM (5.1) is analytically intractable and thereforierence requires relatively
slow numerical simulation. Where fast inference is of imiance such as real-time anal-
ysis or big data problems, we can use model approximationshwio have analyti-
cally tractable densities, enabling fast inference. Fogdehierarchical Bayesian mod-
els (see Chapter 3), computational time for inference igally long, ranging from one
to two weeks using a deterministic logistic growth modefetance for large hierarchi-
cal Bayesian models using the SLGM would increase compumnaltitime considerably
(computational time is roughly proportional to the numbgétime points longer) with
relatively slow numerical simulation approaches, thexefee may be interested in using
approximate models that will allow us to carry out fast iefece.

First an approximate model developed by Roman-Roman &e$eRuiz (2012) is
introduced. Two new approximate models are then presersied the linear noise ap-
proximation (LNA) (Wallace, 2010; Komorowski al., 2009) of the SLGM. The model
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proposed by Roman-Roman & Torres-Ruiz (2012) is foundei@lzero-order noise ap-
proximation.

The approximate models considered are compared agairtsoéaer for both simu-
lated and observed logistic growth data. Finally, the ayipnate models are compared to
“exact” approaches.

5.2. The Roman-Roman & Torres-Ruiz (2012) diffusion process

Roman-Roman & Torres-Ruiz (2012) present a logistic ghatvffusion process (RRTR)
which has a transition density that can be written explicéllowing inference for model
parameter values from discrete sampling trajectories.

The RRTR is derived from the following ODE:

dxy Qr

L A 5.2
dt e” +th7 ( )

where@Q = (X —1)¢™, P = 1, andt > #,. The solution to (5.2) is given in (1.2) (it

has the same solution as (1.1)).
Roman-Roman & Torres-Ruiz (2012) see (5.2) as a genatalisof the Malthusian

growth model with a deterministic, time-dependent festil(t) = er?jQ, and replace
this with eq.?jQ + oW, to obtain the following approximation to the SLGM:
dX_&th—F X dW, (5.3)
E= ot 10 t TALAW, .

whereQ = (£ —1)e™™, P = X,, and is independent dfi;, ¢ > ¢,. The process
described in (5.3) is a particular case of the Log-normat@ss with exogenous factors,
therefore an exact transition density is available (Graiet al., 2006). The transition

density forY;, whereY; = log(X}), can be written:

(Y;fz }/;i—l = ytifl> ~ N (:utw Eti) )
T
wherea = b= —
a=r, 7d 54
1+ be 9t o2 :
pir, =log(yr,_,) + log (W) — 5 (ti—ti1) and

Eti = O'Q(tl' - ti,1>.
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5.3. Linear noise approximation with multiplicative noise

We now take a different approach to approximating the SLGMNI)(Svhich will turn out
to be closer to the exact solution of the SLGM than the RRTR)(5Starting from the
original model (5.1), we apply Itd’s lemma (Itd, 1944; @kslal, 2010):

df df 1 ,d*f df

X;) = — —dt + -0’ —= — :
df (t, Xy) dtdt—i—,udxdt+ 57 dedt+adxth, (5.5)

with the transformatiory (¢, X;) = Y; = log X,. After deriving the following partial

derivatives: of of . 2/ .
— =0 — =— and — = ——
dt ' de X, dx? XY

we can obtain the following Ito drift-diffusion process:

dY; = (7’ - %a2 . %ey) dt + odW,. (5.6)
The log transformation from multiplicative to additive Bej gives a constant diffusion
term, so that the LNA will give a good approximation to (5.1Jhe LNA reduces a
non-linear SDE to a linear SDE with additive noise. The LNA ¢e viewed as a first
order Taylor expansion of an approximating SDE about a detestic solution. We
now separate the proce¥ginto a deterministic part; and a stochastic pa#; so that
Y; = v + Z; and consequentlyY; = dv; + dZ;. We choose; to be the solution of the
deterministic part of (5.6):

1 T

dvy, = (r — 502 — ?e”t) dt. (5.7)

We now redefine our notation as follows:= r — "—22 andb = . Equation 5.7 is then
solved forv,:

aPe”
v = log (bP(eaT “1 a) ’ (58)

whereT =t — t,. We now write down an expression féf;, wheredZ; = dY; — dv;:
dZy = (a — be™) dt + odW; — (a — be"") dt
We then substitute if; = v; + Z; and simplify the expression to give
dZ; = b (e" — ") dt + odW,. (5.9)
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As dZ,; is a non-linear SDE it cannot be solved explicitly, we use thNA (see Sec-
tion 2.6.4) to obtain a linear SDE that we can solve explicitVe apply the LNA by
making a first-order approximation eft ~ 1 + Z, and then simplify to give

dZt = —bevt tht + O'th (510)

This process is a particular case of the time-varying Omstlenbeck process, which
can be solved explicitly. The transition density fgr (derivation in Appendix C.1) is
then:

(Y2i|Y2i—l - yti—l) ~ N (Mtw Etz) )

redefiney;, , = v, , +2, ,,Q = (% — 1) e

14 Qe o, 14 Qeeti
= Yy, | —_— alti—ti-) - L ¥ . and
Ht; Y,y T l0g ( 1+ Qefati ) e 1+ Qefatz’ Zti-1
- _ 02 4Q(eati _ eati_1> + eQati _ eQati_l + 2@@2 (tz _ ti71>
b 2a(Q) + eati)?
(5.11)

The LNA of the SLGM with multiplicative intrinsic noise (LNK) can then be written as
dlog X; = [dv; + be" v, — be® log X dt + odWy,

whereP = X;, and is independent o1/, t > t,.
Note that the RRTR given in (5.3) can be similarly derivechgsa zero-order noise ap-
proximation ¢t ~ 1) instead of the LNA.

5.4. Linear noise approximation with additive noise

As in Section 5.3, we start from the SLGM, given in (5.1). Vet first log transforming
the process, the LNA will lead to a worse approximation to difeusion term of the
SLGM, but we will see in the coming sections that there aresrtbeless advantages.
We separate the process into a deterministic part; and a stochastic pa#; so that
X; = v + Z; and consequently.X; = dv; + dZ,. We chosey, to be the solution of the
deterministic part of (5.1):

dv; = (Tvt — %vf) dt. (5.12)
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We now redefine our previous notation as follows:= r andb = . Equation 5.12 is

then solved fow;:
aPe

bP(e?T — 1) +a

We now write down an expression fé#;, wheredZ;, = dX; — dv;:

(5.13)

V¢ =

dZt = (G,Xt — bXtQ) dt + O'Xtth — (CL’Ut — b’UtQ) dt.
We then substitute itX; = v, + Z, and simplify the expression to give
dZt = (a — QbUt)Zt — bZtht —+ (O"Ut —+ O'Zt) th

As dZ,; is a non-linear SDE it cannot be solved explicitly, we use thNA (see Sec-
tion 2.6.4) to obtain a linear SDE that we can solve explic/e now apply the LNA, by
setting second-order termbZ?2dt = 0 ando Z,dW; = 0 to obtain

dZt = (a — vat)tht + O'UthVt. (514)

This process is a particular case of the Ornstein-Uhlenpeméess, which can be solved.
The transition density foX; (derivation in Appendix C.3) is then

(Xti|Xti—1 - xti—l) ~ N(:uti? Eti)’

Where$ti_1 = U4y + Zti_1s

+ aPeT aPedTi-1
= Ty, -
M, ti—1 bP(e“Ti _ 1) +a bP(eaTi—l — 1) +a

oy (DP(E T — 1) 40
L gl >( : 1§<€an_1>>+a) Z,, and (5.15)

= 10_2ap262aT¢ 1 !
T bP(ei —1)+a
x [b*P%(e? T — 2 Ti-1) 4 4bP(a — bP) (et — e*Ti-1)
+ 2a(ti — ti_l)(a — bP)Q]

The LNA of the SLGM, with additive intrinsic noise (LNAA) cathen be written as
dXt = |:b’Ut2 + (a — 2b'Ut) th| dt + O'UthVt,

whereP = X;, and is independent o1/, t > t,.
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5.5. Simulation and Bayesian inference for the stochastiogistic growth
model and approximations

To compare the accuracies of each of the three approximatelsiom representing the
SLGM, we first compare simulated forward trajectories frdmee RRTR, LNAM and
LNAA with simulated forward trajectories from the SLGM (kige 5.1). We use the
Euler-Maruyama method (Carletti, 2006) (see Section 2\8ith very fine discretisation
to give arbitrarily exact simulated trajectories from e&fE.

The LNAA and LNAM trajectories are visually indistinguigbla from the SLGM
(Figures 5.1 A, C & D). On the other hand, population sizesusated with the RRTR
display large deviations from the mean as the populationcgmbes its stationary phase
(Figures 5.1A & B). Figure 5.1E further highlights the inases in variation as the pop-
ulation approaches stationary phase for simulated t@jestof the RRTR, in contrast to
the SLGM and LNA models.
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Figure 5.1: Forward trajectories (No. of simulations=100) for the &tmstic logistic growth
model and approximations. See Table 5.1 for parameter siahjeThe stochastic logistic growth
model (SLGM). B) The Roman-Roman & Torres-Ruiz (2012) TR® approximation. C) The
linear noise approximation with multiplicative intrinsimise (LNAM). D) The linear noise ap-
proximation with additive intrinsic noise (LNAA). E) Staadd deviations of simulated trajectories
over time for the SLGM (black), RRTR (red), LNAM (green) anNAA (blue).
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5.5.1. Bayesian parameter inference with approximate mode

To compare the quality of parameter inference using eachedet approximations we
simulated synthetic time-course data from the SLGM and éoetbthis with either Log-
normal or Normal measurement error. Carrying out Bayesierénce with broad priors
(see (5.16) and (5.17)) we compared the parameters recbusirey each approximation
with those used to generate the synthetic dataset. Theetimtime-course datasets
consist of 27 time points generated using the Euler-Marayamethod with very fine
intervals (Carletti, 2006).

We formulate our inference problem as a dynamic linear sjpéee model (West &
Harrison, 1997). The advantage of a state space formuletitirat we are then able to
build a Kalman filter to carry out fast parameter inferencee &&n take advantage of a
linear Gaussian structure and construct a Kalman filterrsemo for marginal likelihood
computation (Appendix C.5). By choosing to match the me=ment error structure to
the intrinsic error of our models we can build a linear Gaarsstructure. We therefore
assume Log-normal (multiplicative) error for the RRTR arfidAM, and for the LNAA
we assume Normal (additive) measurement error. Dependéeabley,, and independent
variable{t;,7 = 1, ..., N} are data input to the model (whetgis the time at point and
N is the number of time points)X; is the state process, describing the population size.

The state space model for the RRTR and LNAM is as follows:

log(yti> ~ N<Xti7 VZ)?

(Xti Xtiﬂ = xtiﬂ) ~N (:utw Eti) ) Wherexti =Vt t 2, (516)

wy, and =, are given by (5.4) and (5.11) for the RRTR and LNAM respedyiveriors
are as follows:

log Xo =log P ~N(up,7p""),  log K ~ N(ug, 7 "), log 7 ~ N(pr, 771),
log v ™2 ~ N(ul,,ﬂfl), log 072 ~ N(,LLG,TU*l)[[LOO].

Bayesian inference is carried out with broad priors suchébtimated parameter val-
ues are not heavily influenced by our choice. See Table C.prfor hyper-parameter
values. Log-normal prior distributions are chosen to emgasitive logistic growth pa-
rameters and precision parameters are strictly positiue p@or forlog o2 is truncated
below 1 to avoid unnecessary exploration of extremely lowbpbility regions, which
could be caused by problems identifyingfor example whenog »~2 takes large val-

95



Chapter 5. Fast Bayesian parameter estimation for stachagistic growth models

ues, and to ensure that intrinsic noise does not dominatprteess. Our choice of 1
for the truncation threshold is made by observing forwanaugations from our processes
and choosing a value fdog o2 where intrinsic noise is so large that the deterministic
part of the process is masked, consequently making the LNAdaalpproximation. We
also find that truncatingpg o2 is more preferable to truncatirigg »—2 as truncating
log 2 does not alleviate the identifiability problem without bgirery restrictive for the
measurement error structures.

The state space model for the LNAA is as follows:

Y, ™~ N<Xti7 VZ)?
(Xti|Xti_1 = xti—l) ~ N (Mti, Etl) s Whel’extl = Uti + Ztia (517)

wy, and=;, are given by (5.15). Priors are as in (5.16). Measuremeot far the observed
values is Normal so that we have a linear Gaussian strucilre state space models in
(5.16) and (5.17) have different measurement error strestuSo that a fair comparison
can be made between (5.16) and (5.17), we choose our pridhasthe marginal mo-
ments for the measurement error of our models is not toordissi particularly at the
earliest stage where most growth is observed.

To see how the inference from our approximate models corspaith slower “ex-
act” models, we consider Euler-Maruyama approximatiorle€len & Platen, 1992) of
(5.1) and of the log transformed process, using fine intsrvélVe use the approach of
(Golightly & Wilkinson, 2005) to carry out inference of oueXact” models. A single
site update algorithm is used to update model parametershanBuler-Maruyama ap-
proximation of the latent process in turn. Given these axiprations we can construct a
state space model for an “exact” SLGM with Log-normal measwent error (SLGM+L)
and similarly for the SLGM with Normal measurement error GW+N), priors are as in
(5.16).

Our inference makes use of a Kalman filter to integrate outsthge process. The
Kalman filer allows for fast inference compared to slow nupaisimulation approaches
that impute all states. The algorithm for our approximatelei®is the Metropolis-within-
Gibbs sampler with a symmetric proposal (Gamerman & Lop@86® Full-conditionals
are sampled in turn to give samples from the joint posteligrigution:

W(Ka r,P,o,v, th:N’ ytl:N)’
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whereX,, , isthe latent process ang ., is the observed data, fof observed data points.
The Metropolis-within-Gibbs sampler algorithm is as felm

1) Initialise countei = 1 and parameterk ), 7 (o), 0(0), 0, Y(0)
2) SimulateK ;) from K ~ m(K |vi_1), 7(i—1), 01y Pi-1), Ytr.)
3) Simulater ;) fromr ~ w(r|vg_1y, Ky, 0G-1), Pi-1): Y11y

4) Simulateo;y from o ~ w(o|vi-1y, K@), 76y Pi-1), Yir.n)

5) SimulateF;, from v ~ w(Plvi_1y, K@), T(); 0()s Yern )

6) Simulatev;) from v ~ m(v| Ky, 76y, 0(), Piys Yer.x)

7) Repeat steps 2-6 until the sample size required is olataine

We find the mixing for our algorithm is improved when we haveeimediate steps
between sampling from the;) andv;, full conditionals. Each update in our algorithm is
accomplished by a Metropolis-Hastings step using a Kalniin. fAcceptance ratios are
calculated for each update during a burn-in period. To im@tbe computational speed
of our inference, further research may involve using anrélgm where we jointly update
our parameters. Posterior means are used to obtain pambegss and standard deviations
for describing variation of inferred parameters. The Hisdeger and Welch convergence
diagnostic (Heidelberger & Welch, 1981) is used to deteemhether convergence has
been achieved for all parameters.

Computational times for convergence of our MCMC schemedédds available at
https://github.com/jhncl/LNA.git ) can be compared using estimates for the
minimum effective sample size per second (E&Sec) (Plummeet al,, 2006). The av-
erage ESSi/sec of our approximate model (coded in CM&00 and “exact” modei1
(coded in JAGS (Plummer, 2010) with 15 imputed states betviege points, chosen to
maximise ES§in/sec). We find that our C code is typically twice as fast as thplke
MCMC scheme used by JAGS, indicating that our inferenceigx faster than an “ex-
act” approach. A more efficient “exact” approach could spaedurther, say by another
factor of 5, but our approximate approach will at least be @®eioof magnitude faster.
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We use a burn-in of 600,000 and a thinning of 4,000 to obtaina fiosterior sample size
of 1,000 for MCMC convergence of all our models.

To compare the approximate models ability to recover pararsdrom the SLGM
with simulated Log-normal measurement error, we simulata dnd carry out Bayesian
inference. Figure 5.2 shows that all three approximate tsathn capture the synthetic
time-course well, but that the RRTR model is the least repriegive with the largest
amount of drift occurring at the saturation stage, a prgpeot found in the SLGM or
the two new LNA models. Comparing forwards trajectoriedwateasurement error (Fig-
ure 5.2), the “exact” model is visually similar to all our appimate models, but least
similar to the RRTR. Further, Table 5.1 demonstrates thatrpater posterior means are
close to the true values and that standard deviations art fmall models and each
parameter set. By comparing posterior means and standatidas to the true values,
Table 5.1 shows that all our models are able to recover thee thifferent parameter sets
considered.

To compare the approximations to the SLGM with simulatedmadrmeasurement
error, we simulate data and carry out Bayesian inferengpir€is.4 shows that of our ap-
proximate models, only the LNAA model can appropriatelyresent the simulated time-
course as both our models with Log-normal measurement, égn®@RRTR and LNAM
do not closely bound the data. Comparing forwards trajeatarith measurement error
(Figure 5.4), the “exact” model is most visually similar teetLNAA, which shares the
same measurement error structure. Further, Table 5.1 dgrates that only our models
with Normal measurement error have posterior means clofigettrue values and that
standard deviations are larger in the models with Log-nbmeasurement error. Ob-
serving the posterior means far for each parameter set (Table 5.1), we can see that the
RRTR has the largest standard deviations and that, of th@xippate models, its poste-
rior means are furthest from both the true values and thectéxaodel posterior means.
Comparing LNA models to the “exact” models with matching sy@ament error, we can
see in Table 5.1 that they share similar posterior means alydstightly larger standard
deviations. Example posterior diagnostics given in FiguBs demonstrate that posteriors
are distributed tightly around true values for our LNAA aratalfrom the SLGM with
Normal measurement error.

5.5.2. Application to observed yeast data

We now consider which diffusion equation model can bestesgmt observed microbial
population growth curves taken from a Quantitative Fitn&salysis (QFA) experiment
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Figure 5.2: Forward trajectories with measurement error for the stsh&gistic growth model
and approximations, simulated from parameter posteriorpes (sample size=1000). Model
fitting is carried out on SLGM forward trajectories with Logrmal measurement error (black),
for three different sets of parameters (see Table 5.1). %5&6)(or (5.17) for model and Table C.1
for prior hyper-parameter values. Each row of figures cpoeds to a different time course data
set, simulated from a different set of parameter values,Tabée 5.1. Each column of figures
corresponds to a different model fit: A), E) & I) SLGM+L (ora)g B), F) & J) RRTR model
with lognormal error (red). C), G) & K) LNAM model with lognaral error (green). D), H) &

L) LNAA model with normal error (blue). See Table 5.1 for paweter posterior means and true
values.

(Section 1.1) (Addinalét al, 2011; Bankst al, 2012), see Figure 5.5. The data consists
of scaled cell density estimates over time for budding y&asicharomyces cerevisiae
Independent replicate cultures are inoculated on platdghantographed over a period
of 5 days. The images captured are then converted into @ssSnod integrated optical
density (IOD, which we assume are proportional to cell papah size), by the software
package Colonyzer (Lawless al, 2010). The dataset chosen for our model fitting is a
representative set of 10 time-courses, each with 27 tim&goDnce we have chosen the
most appropriate stochastic model we can then look to applgltosen model to logistic
growth data from the QFA screens used throughout Chapteth#ifuture.

As in Figure 5.4, we see that the LNAA model is the only appmadion that can
appropriately represent the time-course and that both RieRrRand LNAM fail to bound
the data as tightly as the LNAA (Figure 5.5). Our two “exactiaels are visually similar
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Figure 5.3: Convergence diagnostics for the linear noise approximaifdhe stochastic logistic
growth model with additive intrinsic noise (LNAA) fit to sinfated stochastic logistic growth data
with Normal measurement error, see Figure 5.4D. Trace;eat@lation and density plots for the
(LNAA) parameter posteriors (sample size = 1000, thinnimgrival = 4000). Posterior density
(black), prior density (dashed blue) and true parametareg(red) are shown in the right hand
column.
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Figure 5.4: Forward trajectories with measurement error, simulatechfinferred parameter
posterior samples (sample size=1000). Model fitting isiedrout on SLGM forward trajectories
with Normal measurement error (black), for three differseils of parameters (see Table 5.1). See
(5.16) or (5.17) for model and Table C.1 for prior hyper-pagter values. Each row of figures
corresponds to a different time course data set, simulabea & different set of parameter values,
see Table 5.1. Each column of figures corresponds to a diffenedel fit: A), E) & I) SLGM+N
(pink). B), F) & J) RRTR model with lognormal error (red). @3) & K) LNAM model with
lognormal error (green). D), H) & L) LNAA model with normalrer (blue). See Table 5.1 for
parameter posterior means and true values.

to our approximate models with the same measurement eritbr tlhe SLGM+N most
similar to the LNAA and the SLGM+L to the RRTR and LNAM. Thisas expected due
to matching measurement error structures. Table 5.1 suisesgrarameter estimates for
the observed yeast data using each model. The variatioreib XA model parame-
ter posteriors is much smaller than the RRTR and LNAM, intiligga more appropriate
model fit. Comparing the LNA models and “exact” models withtoh@&g measurement
error, we can see in Table 5.1 that they share similar postereans and standard devi-
ations for all parameters and in particular, they are vamjlar for both X andr, which
are important phenotypes for calculating fitness (Addiegdl., 2011).

In Table 5.2, to compare quality of parameter inference fboliserved yeast time-
courses with each approximate model. Mean squared erroE}Nt8 1000 posterior
sample forward simulations are calculated for each yeast tiourse and summed to give
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Table 5.1: Bayesian state space model parameter posterior meandatatteviations and true
values for Figures 5.2, 5.4 and 5.5. True values for the sitedldata used for Figures 5.1, 5.2

and 5.4 are also given.

Panel Model 7 P v s
Figure 5.2, SLGM with lognormal error
A SGLM+L 0.150 0.001) 2.982 (0.014) 1.002-107% (1.112-107%) 3.860-10"% (2.127-107%) 0.017 (0.005)
B RRTR 0.150 (0.003) 2.990 (0.011) 9.931-10"% (1.069-107%) 5.684-107% (2.360-107°%) 0.012 (0.006)
C LNAM 0.150 0.001) 2988 (0.013) 9.980-107% (1.124-107°%) 4.140-10"% (2.180-107%) 0.016 (0.005)
D LNAA 0.150 0.001) 3.005 (0.020) 9.647-107% (2.946-107%%) 3.099-10~% (2.534-10"%) 0.019 (0.003)
E SGLM+L 0.110 0.001) 3.975 (0.047) 5.054-10"% (1.568-107%) 6.159-107% (5.527-107%%) 0.051 (0.014)
F RRTR 0.109 0.007) 3.984 (0.035) 5.046-107° (1.137-107°%) 5.928-10~% (4.596-107%%) 0.037 (0.009)
G LNAM 0.110 0.001) 3.985 (0.046) 5.043-107° (1.580-107°%) 6.188-10~% (5.191-107%) 0.052 (0.013)
H LNAA 0.110 0.001) 3.959 (0.067) 5.207-107% (4.310-107%%) 4.540-10"% (4.395-10"%) 0.059 (0.010)
| SGLM+L 0.300 0.001) 5.997 (0.029) 1.962-107% (4.041-107°7) 9.543-10"% (4.035-107%) 0.024 (0.015)
J RRTR 0.301 0.004) 6.015 (0.017) 1.943-107% (2.835-107°7) 1.241-107%* (2.307-107%) 0.008 (0.006)
K LNAM 0.300 (0.001) 6.015 (0.031) 1.953-107% (4.202-107°7) 8.943-107% (4.252-107%) 0.027 (0.016)
L LNAA 0.300 0.001)  6.037 (0.067) 1.895-107% (1.502-107%%) 8.122-10"% (1.596-107%") 0.047 (0.008)
Figure 5.4, SLGM with normal error
A SLGM+N 0.150 (0.002) 3.099 (0.085) 9.299-10"% (7.305-107%) 5.326-107% (1.009-107°%) 0.059 (0.030)
B RRTR 0.213 (0.123) 1.368 (0.263) 4.552-107% (2.118-107%%) 2.539-107°" (1.097-107°Y) 0.419 (0.129)
C LNAM 0.171 (0.033) 1.580 (0.271) 5.241-107% (2.048-107%%) 2.054-107°" (7.805-107%%) 0.473 (0.051)
D LNAA 0.150 0.002) 2.990 (0.262) 1.189-107% (7.099-107%) 5.490-107% (1.060-107°%) 0.053 (0.033)
E SLGM+N 0.109 (0.001) 4.183 (0.074) 4.390-10"% (4.129-107%) 9.679-10"°* (2.806-107°*) 0.057 (0.012)
F RRTR 0.157 0.087) 2.631 (0.337) 4.398-107°" (1.678-107"") 1.040-107°" (1.009-107°Y) 0.374 (0.162)
G LNAM 0.116 0.009) 3.019 (0.374) 4.967-107%" (1.397-107%1) 3.346-107°2 (4.309-107°2) 0.475 (0.044)
H LNAA 0.110 (0.001)  4.010 (0.158) 5.012-10"% (1.443-10"%) 1.093-107% (3.638-107°) 0.053 (0.013)
| SLGM+N 0.305 0.003) 5.267 (0.125) 3.263-107°" (3.407-107%) 1.119-107% (1.974-107%) 0.045 (0.031)
J RRTR 0.314 0.057) 3.030 (0.233) 1.307-107% (2.897-107%1) 2.228.107%" (3.708-107%%) 0.075 (0.086)
K LNAM 0.313 (0.020) 3.392 (0.430) 1.118-10"% (3.269-10"%1) 1.176-107°" (8.435-107°2) 0.360 (0.165)
L LNAA 0.302 0.002) 5.862 (0.523) 2.890-107" (2.599-107%) 8.774-10"% (1.466-107%%) 0.041 (0.028)
Figure 5.5, observed yeast data
A SLGM+L 0.110 0.007)  4.098 (0.299) 7.603-107° (3.206-107°%) 3.457-107°" (5.319-107°%) 0.113 (0.109)
B SLGM+N 0.110 0.003) 3.905 (0.173) 1.044-107% (3.086-107%%) 1.852-10~% (7.460-10"%) 0.167 (0.028)
c RRTR 0.114 0.026) 3.764 (0.201) 1.079-10"% (3.155-107%) 3.379-107°" (4.840-107°%) 0.078 (0.077)
D LNAM 0.110 0.011) 3.777 (0.216) 1.077-107% (3.277-107°%) 3.362-107°" (5.137-107°%) 0.104 (0.108)
E LNAA 0.109 (0.003) 3.832 (0.198) 1.069-107% (3.680-107%) 1.769-10"% (6.607-10"%) 0.164 (0.033)
True values r P v o
Figures 5.1, panels A, B, Cand D 0.11 4 0.00005 N/A 0.05
Figures 5.2 and 5.4, panels A, B, C&D 0.15 3 0.0001 0.005 0.01
Figures 5.2 and 5.4, panels E, F, G and H 0.11 4 0.00005 0.001 05 0.
Figures 5.2 and 5.4, panels |, J, Kand L 0.3 6 0.0002 0.01 0.02

Table 5.2: Total mean squared error (MSE) for 10 observed yeast gromthdourses, each with
1000 forward simulated time-courses with measurement.eRarameter values are taken from
posterior samples. Standard Deviations give the varidietwveen the sub-total MSEs for each
yeast time course fit (n=10).

Model SLGM+N SLGM+L RRTR LNAM LNAA
Total MSE 29.847 100.165 600.601 99.397 30.959
Standard Deviation 1.689 8.391 55.720  9.263 2.030

a Total MSE for each model. It is clear that the RRTR is the woverall representation
of the 10 yeast time courses, with the highest total MSE andiehnharger total MSE
than the “exact” SLGM+L. It is interesting to see there is ayv&@milar total MSE for
the SLGM+L and LNAM, and similarly for the SLGM+N and LNAA, deonstrating that
our approximations perform well.

Once the most appropriate approximate stochastic modabisen, we can incorpo-
rate the SDE within our Bayesian hierarchical models dbsdrin Section 3. Currently
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Figure 5.5: Forward trajectories with measurement error, simulatedthfinferred parameter
posterior samples (sample size=1000). Model fitting isiedrout on observed yeast time-course
data (black). See (5.16) or (5.17) and Table C.1 for prioremgarameter values. See Table 5.1
for parameter posterior means. A) SLGM+N (pink). B) SLGM-tltgnge). A) RRTR model with
Log-normal error (red). B) LNAM model with log-normal err¢green). C) LNAA model with
Normal error (blue).

the Bayesian hierarchical models described in Section 8 lmamg computational times,
~2 weeks for the joint hierarchical model (JHMYy{ week with further optimisations)
and so extending these models using slow numerical methodklwead to prohibitively
slow computational times that we estimate to tak&6 months (with 4294rf As, ~8
repeats and-27 time points). Inference using the Kalman filter will alldlae Bayesian
hierarchical models to carry out stochastic modelling atesatly reduced computational
time (~10x faster) compared to an arbitrarily exact approach.
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We have joined a hierarchical model of microbial growth vatimodel for genetic interac-
tion in order to learn about strain fithesses, evidence foetieinteraction and interaction
strengths simultaneously. By introducing Bayesian methayy to QFA we have been
able to model the hierarchical nature of the experiment ampéired the multiplicative

model for genetic interaction to incorporate many souréesugation that previously had
to be ignored.

We proposed two new Bayesian hierarchical model approaocheplace the current
statistical analysis for identifying genetic interacsonithin a QFA screen comparison.
Both the new two-stage and one-stage approaches give smeslalts but have different
interpretations. The two-stage approach fits the SHM fatidvey the IHM, with uni-
variate point estimate fitness definitions generated astamiediate step. The two-stage
approach can therefore be regarded as a Bayesian hieadrgbision of the Addinall
et al. (2011) approach. In contrast, the one-stage approach ¢it3HM, which does not
require a univariate definition of fithess, recognising thaess is a multi-faceted concept,
allowing interaction to be identified by either growth ralegfstic parameter) or final
biomass (logistic parametéf) achievable by a given genotype. Our one-stage approach
is a new method of detecting genetic interaction that furtleeelops the interpretation of
epistasis within QFA screens.

Hierarchical methods are able to account for the many sewteariation that exist
within QFA data by accurately reflecting QFA experimentadide, which is known. A
hierarchical, frequentist approach using random effeasjely the REM is presented in
order to improve on the Addinadt al. (2011) approach. Due to the lack of flexibility
with modelling assumptions in the standard frequentist eflody paradigm, the REM
Is unsuitable for modelling the distribution off A level variation on a log scale or for
simultaneously modelling genetic interaction and logigtiowth curves.

The data from which logistic parameter estimates are dedveing QFA are the re-
sult of a technically challenging, high-throughput expesntal procedure with a diverse
range of possible technical errors. Our Bayesian, hiereatimodels allow us the flex-
ibility to make distributional assumptions that more clgseatch the data. This allows
us to switch between modelling parameter uncertainty witlini\al, Log-Normal and
Student’s t distribution where appropriate.
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QFA experimental design is intrinsically multilevel andhgrefore more closely mod-
elled in our hierarchical scheme. Consequently the JHM &hd tapture sources of
variation not considered by Addinadt al. (2011). By sharing information across lev-
els in the hierarchy, our models have allowed us to learn raboaitorfAs with weaker
genetic interaction. Our more flexible model of variance @goids misclassification of
individual genotypes with high variance as having signiftdateractions. Without fully
accounting for the variation described in the Bayesiananadical models, the previous
Addinall et al. (2011) approach may have relatively poor power to detediesuiterac-
tions, obscuring potential novel observations.

Many subtle, interesting genetic interactions may remalretinvestigated for the ex-
ample dataset we present: QFA to understand telomere gapgingcdcl13-1 The JHM
is better able to identify subtle interactions (see Figu8}.4n our two-stage approaches,
univariate fitness measures suchdd® R x M DP are used in the intermediate steps,
occasionally causing interaction in terms of one parantetbe masked by the other. For
example, strains with little evidence for interaction watthackground mutation in terms
of growth rate but with strong evidence of interaction imerof carrying capacity are
sometimes classified as interactors using the JHM (seed-§3). The JHM has iden-
tified genes that have not been identified as showing gemg&caiction in the Addinall
et al. (2011) or two-stage Bayesian analysis, for exantfiZ1, which is thought to be
related to telomere activity (Weet al,, 2011).

As expected, many genes previously unidentified by Addigtadll. (2011) have been
identified as showing evidence of interaction using both wf Bayesian hierarchical
modelling approaches. Some genes which have been identifigdby the JHM (see
Figure 4.2D), such as those showing interaction only in seofn-, are found to be re-
lated to telomere biology in the literature. Currently & not sufficient information
available to identify the proportion of identified interacts that are true hits and so we
use unbiased GO term enrichment analyses to confirm thaste®f genetic interactions
closely reflect the true underlying biology. GO term annotat relevant to telomere bi-
ology are available for well-studied genes in the currdaetditure. Unsurprisingly all of
the approaches considered closely reflect the most wellki@®O terms (see Table 4.1).

Computational time for the new Bayesian approach ranges boe to two weeks
for one of the datasets presented in Addirallal. (2011). This compares favourably
with the time taken to design and execute the experimentapooent of QFA (approx-
imately six weeks). Time and resources used to follow up @selts of a QFA screen
comparison can be saved with the Bayesian approaches segigaiéowing genes to be
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chosen for further investigation with increased confidendéth an improved analysis
it may be possible to detect more genetic interactions iighsame sample size, allow-
ing us to systematically detect and rank interactions gexade. Overall we recom-
mend a JHM or “Bayesian QFA’ for analysis of current and fat@FA data sets as it
accounts for more sources of variation than the Addiathl. (2011) QFA methodol-
ogy. With the JHM we have outlined new genes with significamndience of interaction
in theura3A 27°C andcdc13-127°C experiment. The full lists of genetic interactions
for both the two and one stage Bayesian hierarchical appesaas well as lists of sig-
nificant GO terms are freely available onlinehdtp://research.ncl.ac.uk/
gfa/HeydariQFABayes/ . The new Bayesian hierarchical models we present here
will also be suitable for identifying new genes showing @vide of genetic interaction
in backgrounds other than telomere activity. We hope thaihéu, reductionist lab work
by experimental biologists will give additional insightanthe mechanisms by which the
new genes we have uncovered interact with the telomere.

In this thesis we have also presented two new diffusion @seE® for modelling logis-
tic growth data where fast inference is required: the lime@se approximation (LNA)
of the stochastic logistic growth model (SLGM) with muligadtive noise and the LNA
of the SLGM with additive intrinsic noise (labelled as the AM and LNAA respec-
tively). Both the LNAM and LNAA are derived from the linear ise approximation of
the stochastic logistic growth model (SLGM). The new diffusprocesses approximate
the SLGM more closely than an alternative approximation{RRproposed by Roman-
Roman & Torres-Ruiz (2012). The RRTR lacks a mean revegnogerty that is found
in the SLGM, LNAM and LNAA, resulting in increasing variandering the stationary
phase of population growth (see Figure 5.1).

We compared the ability of each of the three approximate hs@ia the SLGM to re-
cover parameter values from simulated datasets usingasGMCMC techniques. When
modelling stochastic logistic growth with Log-normal messment error we find that our
approximate models are able to represent data simulatedtfie original process and
that the RRTR is least representative, with large variabioer the stationary phase (see
Figure 5.2). When modelling stochastic logistic growthnaitormal measurement error
we find that only our models with Normal measurement error a@oropriately bound
data simulated from the original process (see Figure 5.4).al8b compared parameter
posterior distribution summaries with parameter valuesius generate simulated data
after inference using both approximate and “exact” modsde (Table 5.1). We find that,
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when using the RRTR model, posterior distributions for theyang capacity parameter
K are less precise than for the LNAM and LNAA approximationse &ls0 note that it
is not possible to model additive measurement error whilmtaging a linear Gaussian
structure (which allows fast inference with the Kalman fjltghen carrying out inference
with the RRTR. We conclude that when measurement error igiaeldhe LNAA model
is the most appropriate approximate model.

To test model performance during inference with real papatedata, we fitted our
approximate models and the “exact” SLGM to microbial popatagrowth curves gen-
erated by quantitative fitness analysis (QFA) (see Figuse Ve found that the LNAA
model was the most appropriate for modelling experimenddh.d It seems likely that
this is because a Normal error structure best describepadnicular dataset, placing the
LNAM and RRTR models at a disadvantage. We demonstrate thitaaily exact meth-
ods and our fast approximations perform similarly durinfgience for 10 diverse, ex-
perimentally observed, microbial population growth cer{gee Table 5.2) which shows
that, in practise, our fast approximations are as good aactéxnethods. We conclude
that our LNA models are preferable to the RRTR for modellirfgAQlata.

It is interesting to note that, although the LNAA is not a betipproximation of the
original SGLM process than the LNAM, it is still quite reasdote. Figures 5.1A and 5.1D
show that the SLGM and LNAA processes are visually similgguFe 5.1E demonstrates
that forward trajectories of the LNAA also share similardis/of variation over time with
the SLGM and LNAM.

Fast inference with the LNAA gives us the potential to depelarge hierarchical
Bayesian models for genome-wide QFA datasets, using ssthfitequation and realistic
computational resources

Here, we have concentrated on a biological model of popriagrowth. However, we
expect that the approach we have demonstrated: generaigay hoise approximations
of stochastic processes to allow fast Bayesian inferenitel@man filtering for marginal
likelihood computation, will be useful in a wide range of ettapplications where simu-
lation is prohibitively slow.

Further work involves extending the Bayesian hierarchicadels in Chapter 3 with the
approximate stochastic logistic growth models and metfmdsarrying out inference de-
scribed in Chapter 5. By accounting for the random fluctunetiwithin the logistic growth
data we will be able to improve our logistic growth parametgimates.

We have demonstrated how to incorporate a batch effect anaformation effect to
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the joint hierarchical model in Section 4.5. Introducingaddh or transformation effect
into our models will allow us to capture even further expenntal variation. Fitness plots
for further case studies given in Section 4.5 and extensibtiee joint hierarchical model
given in Section 4.6 are included for experimental bioltgjie investigate further.

A related experiment to the QFA screen comparison analys#dnwthis thesis is
the “all-by-all” QFA experiment (in early development aettime of writing). The “all-
by-all” QFA experiment begins with a control plate consigtiof V orf As. For each
of the N orf As a new query plate is created, each query plate consists afaitrol
plate and an additional background mutation related to dn@eo N orf As. In total
there will be N + 1 unique plates (including the control plate). Where a stesh@dA
comparison looks for genes that interact with a single quaumation (or condition), the
“all-by-all” QFA experiment aims to find genetic interaat®for multiple query mutations
(V) simultaneously. The “all-by-all” experiment therefoneorporates more information
and investigates more potential genetic interactions thatandard QFA comparison.
We expect that the Bayesian hierarchical modelling and tgengeraction modelling
developed in this thesis will be used to create models foeri®ag the “all-by-all” QFA
experiment as well as many other similar experiments inuhgé.

By improving our software we may be able to reduce computatiime for infer-
ence. Currently the code for implementing the Bayesian msatkescribed in this thesis
is written in the C programming language which can be run asdstlone software or
through an R package “gfaBayes”, availableh#tps://r-forge.r-project.
org/projects/gfa . The computational speed of our C code used for inferenclel cou
be improved by parallel implementation, taking advantaga multi-core processor to
carry out tasks simultaneously. With faster computatioinas we expect to reduce the
time for a typical QFA comparison with the JHM from2 weeks to less than a week.

Currently the information available on true genetic intéi@s and biological pro-
cesses in yeast is limited and so we rely on objective ansilygeh as simulation studies
to give unbiased comparisons between the approaches ecesidThe biological pro-
cesses of many genes in the yeast genome are yet to be idkstfiwe are unable to
use GO term enrichment analysis as a “gold standard” for emimg the results of our
approaches. Information used to build a gene ontology is@ly well known and taken
from well understood experiments, we expect that subtlegemteractions which we
are interested in finding will have little information awable. QFA screen comparisons
are designed to learn biology which is not already fully ustl®od and so a biological
comparison between the different approaches considewditficult. Simulation studies
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(see Section 4.3.6) give us the ability to compare the diffeapproaches and the effects
of modelling more experimental structure.

A typical QFA comparison is a large and complex data set spoeding to around
400,000 time series, posing considerable computatiosaliedl as statistical challenges.
With a Bayesian approach we are able to evaluate complearbfgécal models to better
reflect the structure or design of genome-wide QFA experimeBayesian variable se-
lection methods embedded within a large hierarchical malii@lv us to describe genetic
interaction and use prior information to incorporate pbgbkand biological constraints
within our models. We have shown that Bayesian hierarchoadlelling of large and
complex data gives us the advantage of increased modekixigpifity compared to a fre-
guentist approach, allowing us to better describe the @xjgartal structure or design. For
the reasons above, a QFA screen comparison or any othey lsighttured experimental
dataset is better modelled using a Bayesian hierarchicdkettiog approach when com-
pared to an alternative frequentist approach.

Overall this thesis presents improved modelling apprositthéhe current non-hierarchical
frequentist approach for a QFA screen comparison. The r@dseantained in this thesis
illustrates how Bayesian inference gives us further mauglilexibility, allowing us to
better describe the known experimental structure. Furthermodelling approaches and
assumptions are transferable outside QFA screen expasmérere we wish to capture
as much experimental structure as possible. The results dtr temperature sensitive
cdc13-1QFA experiment results will give further insight to the telere and consequen-
tially aging and cancer in yeast and potentially the humanoges (Botsteiret al,, 1997).
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Appendix A. QFA data set sample, solving the logistic growth
model and random effects model R code

A.l. cdcl3-1 Quantitative Fitness Analysis data set sample

Image.Name Row Col X.0ffset Y.Offset Area Trimmed Threshold Intensity Edge.Pixels Colony.Color.R Colony.Coler.G Colony.Color.B
74 93 99

1 DLROGO12888-2069-10-20_08-14-14 3 22 3162 477 250 1595 94.51286 36215 8
2 DLRO©O12888-2009-10-20 12-45-39 3 22 3147 519 767 5515 85.42326 34187 ] 68 86 93
3 DLROGO12888-2009-10-20_16-89-30 3 22 3165 516 507 4868 84.43037 32764 4 69 86 93
4 DLRO©O12888-2009-10-21 08-42-49 3 22 3144 496 1195 37605 96.04073 58816 1 lee 117 115
5 DLROGO12888-2009-10-21 15-59-40 3 22 3145 489 2258 112046 99.54796 127655 3 118 131 128
6 DLROOO12888-2009-10-22 07-58-08 3 22 3150 481 6291 495068 98.88876 504778 ] 142 150 140
Background.Color.R Background.Color.G Background.Color.B Edge.length Tile.Dimensions.X Tile.Dimensions.Y Growth Barcode
1 71 EL) 9 138 ©.0003308422 DLROEO12888
2 64 82 EL 554 137 138 0.0011439464 DLROOO12888
3 62 8e 89 570 137 138 0.0010097427 DLROOO12888
4 72 91 95 948 137 138 ©.0078002084 DLROOO12888
5 72 EL 95 1186 137 138 0.6232410916 DLROGO12888
6 69 84 89 947 137 138 ©.1026892593 DLROOO12888
Date.Time Inoc.Time Treatments Medium
1 2009-10-20 08-14-14 2009-10-19 17-30-00 27 SD/MSG -ARG -HIS -LEU -LYS +Canavanine +clonNAT +G418 +Hygromycin +Thialysine
2 2009-16-20 12-45-39 2009-10-19 17-30-080 27 SD/MSG -ARG -HIS -LEU -LYS +Canavanine +clonNAT +G418 +Hygromycin +Thialysine
3 2009-10-20 16-09-30 2009-10-19 17-30-00 27 SD/MSG -ARG -HIS -LEU -LYS +Canavanine +clonNAT +G418 +Hygromycin +Thialysine
4 2009-16-21_08-42-49 2009-10-19_17-30-00 27 SD/MSG -ARG -HIS -LEU -LYS +Canavanine +clonNAT +G418 +Hygromycin +Thialysine
5 2009-10-21 15-59-40 2009-10-19 17-30-00 27 SD/MSG -ARG -HIS -LEU -LYS +Canavanine +clonNAT +G418 ¥Hygromycin +Thialysine
6 2009-10-22_07-58-68 2009-18-19_17-36-00 27 SD/MSG -ARG -HIS -LEU -LYS +Canavanine +clonNAT +G418 +Hygromycin +Thialysine
Screen.Name RepQuad MasterPlate.Number Timeseries.order Library.Name ORF Gene Background Expt.Time D
1 cdcl3-1 rad9D SDLv2 Rpt4 4 1 1 BooneSDLVZ YALE@2W VPS8 CDC13-1RAD9 ©.6140509 DLRO©©1288810322
2 cdcl3-1 rad3D SDLv2 Rpt4 4 1 2 BooneSDLV2 YAL@@2W VPS8 CDC13-1RADS 0.8025347 DLREG012888108322
3 cdcl3-1 rad9D SDLv2 Rpt4 4 1 3 BooneSDLV2 YALOO2W VPS8 CDC13-1RADS 0.9440972 DLRO001288810322
4 cdcl3-1 rad3D SDLv2 Rpt4 4 1 4  BooneSDLV2 YALO@2W VPSB CDC13-1RADS 1.6339685 DLREGO1288818322
5 cdcl3-1 rad9D SDLv2 Rpt4 4 1 5 BooneSDLV2 YALOO2W VPS8 CDC13-1RADS 1.9372685 DLRO0O1288810322
6 cdcl3-1 rad9D SDLv2 Rpt4 4 1 6  BooneSDLV2 YALO@2W VPS8 CDC13-1RADS 2.6028764 DLREGO1288810322

Figure A.1: cdcl3-1Quantitative Fitness Analysis data set sample. Notablenwa$ include
“ORF”, “Expt.Time” and “Growth”. “ORF” indicates whiclorfA strain the row corresponds to.
“Expt.Time” indicates the time in days from tloef A strain being spotted (Addinadit al., 2011).
“Growth” gives an adjusted measure of cell culture dengitynf the image analysis for a given
orfA strain and time point. Generated from Colonyzer output filik the gfa R package, freely
available ahttp://gfa.r-forge.r-project.org/ .
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A.2. Solving the logistic growth model

The solution to the logistic growth ODE (1.1) can be obtaiasdollows. First we factor
the right side of (1.1) and rearrange to give:

= rdt.

(1) (1 . %)

We now rearrange further using a partial fractions expamaia integrate over both sides

of the equation:
dx(t) =dx(t) .
/:c(t) + (1_%> —/ dt. (A1)

Integrating the first component on the left side of (A.1) wéadibthe following, where;

is an unknown constant: ax(t)
i
=1 t .
[ St = tostatt) + e
Integrating the second component on the left side of (A.1dktain the following, where
co IS an unknown constant:

1 dx(t) x(t)
?/1_$ = log(l- 57+

Integrating the right side of (A.1) we obtain the followingherecs; is an unknown con-

stant:
/ rdt = rt + c3.

Solving the integrals in (A.1) we obtain the following, wket, = ¢35 — ¢; — ¢ IS @n

unknown constant:
x(t
log ( (m)(t)> =rt+ cy.
1=

Rearranging our equation, we obtain the following:

.T(t) _ rttca )
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We now apply initial conditions” = x, and rearrange to obtain an expressiondor

P
c4:10g<1 P).
T K

We now substitute in our expression fqrto give:

x(t P
log (72@) =rt+ log [P
1= K

Finally, we rearrange to give (1.2).
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A.3. Random effects model R code

library(Ime4) #http://cran.r-project.org/web/package s/imed/index.html
#http://research.ncl.ac.uk/colonyzer/AddinallQFA/Lo gistic.zip and extract zip file
#alternatively http://research.ncl.ac.uk/colonyzer/A ddinallQFA/

#'Table S8 Logistic Output Files - 36MB .zip file"
aa<-read.delim("cSGA_v2_rl_Logistic.txt",header=T,s kip=1,sep="\t")

#...

bb<-read.delim("Adam_cdc13-1_SDLV2_REP1_Logistic.tx t",header=T,skip=0,sep="\t")
#...

aa<-aalaa$Treatments==27,]
bb<-bb[bb$Treatments==27,]
aa<-aa[laa$Row==1,]
aa<-aa[laa$Row==16,]
aa<-aa[laa$Col==1,]
aa<-aa[laa$Col==24,]
bb<-bb[!bb$Row==1,]
bb<-bb['bb$Row==16,]
bb<-bb[!bb$Col==1,]
bb<-bb[!bb$Col==24,]

ORFuni=ORFuni_a=unique(aa$ORF)
ORFuni_b=unique(bb$ORF)
L=length(ORFuni_a)
NoORF_a=NoORF_b=aaa=bbb=numeric()
for (i in L:L){
NoORF_a[i]=nrow(aa[aa$ORF==0ORFuni[i],])
NoORF_b[i]=nrow(bb[bb$ORF==0RFuni[i],])
aaa<-rbind(aaa,aa[aa$ORF==ORFuni[i],])
bbb<-rbind(bbb,bb[bb$ORF==0RFuni[i].])

a=b=numeric(0)

K_Im=aaa$Trimmed.K

P_a=43

r_lm=aaa$Trimmed.r

for (i in 1:length(r_Im)){

if(K_Im[i]<=2 *P_a)}{K_Im[i]=2 = P_a+0.01;r_Im[i]=0;}

a[i]=(r_Imli)/log(2 * max(0,K_Im[i]-P_a)/max(0,K_Im([i]-2 *P_a))) *(log(K_Im[i]/P_a)/log(2));

}

K_Imb=bbb$Trimmed.K

P_b=43

r_lmb=bbb$Trimmed.r

for (i in 1:length(r_Imb)){

if(K_Imb[il<=2  *P_b){K_Imb[i]=2  *P_b+0.01;r_Imbl[i]=0;}

b[i]=(r_Imbl[i}/log(2 * max(0,K_Imb[i]-P_b)/max(0,K_Imbli]-2 *P_Db))) *(log(K_Imb[i]/P_b)/log(2));
}

condition<-factor(c(rep("a",length(a)),rep("b",leng th(b))))

subject=numeric()

for (i in 1:L){

subject=c(subject,rep(i, NOORF_a[i]))

}

for (i in 1:L){

subject=c(subject,rep(i,NOORF_bl[i]))

}

subcon=subject

subcon[1:length(a)]=0

subcon<-factor(subcon)

subject<-factor(subject)

f=c(a,b)

data=data.frame(f,subject,condition,subcon)

data$lf=log(data$f+1)

data$subcon<-C(data$subcon,sum)

bk<-contrasts(data$subcon)
contrasts(data$subcon)=bk[c(nrow(contrasts(data$sub con)),1:(nrow(contrasts(datassubcon))-1)),]
modell<-Imer(If'subcon+(1|subject),data=(data),REML =F)
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B.1. Hyper-parameter values for Bayesian hierarchical modlling

Table B.1: Hyper-parameter values for Bayesian hierarchical maagléf quantitative fithess
analysis data. Hyper-parameter values for the separatartiécal model (SHM), interaction
hierarchical model (IHM) and joint hierarchical model (Jji&te provided.

SHM & JHM SHM & JHM JHM IHM JHM-B & JHM-T
Parameter Name Value Parameter Name Value Parameter Nanige \Rarameter Name Value Parameter Name Value
T 2.20 n"r 0.13 at 0.00 Z, 3.66 KP 0.00
nEp 0.02 v 19.82 n® 0.25 n#Pr 0.70 0t 1.17
nke —0.79 nP 0.02 g 0.00 n? 0.10 A 0.00
Iy 0.61 P —9.04 n? 0.25 W 0.42 s 1.17
T 3.65 np 0.47 P 0.05 n” 0.10 @shave 100.00
e 0.02 0 —0.79 o 2.45 geeale 0.01
n"e 0.47 Y7 0.61 v 2.60 X”"“’G 100.00
Pre 0.10 n* 0.47 n"P 0.05 X““a“’ 0.01
n” —0.83 (g 0.10 at 0.00
Y 0.86 n i 2.20 ne 0.31
K* —2.01 Yok 0.02 P 0.05
nfr 0.03 nor 3.65 nY 0.10
T 0.97 P 0.02 P 0.42
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Appendix B. Bayesian hierarchical modelling

B.2. cdcl3-127°C vsura3A 27°C fitness plots with gene ontology terms
highlighted

°
= C1
BMH
o EXO1
= *RAD17
s | . RAD24
s | e BN s
= 0
P

80
1
80
|

60

w
Fitness of orfA cdc13-1 at 27°C (doublingsz/ day)

60

|

Fitness of orfA cdc13-1 at 27°C (doublingszl day)

.
g € S
. *
SNF5 . HEX3
NHP10 <
«SNF5 VID21
A .o RTT
Sl i3 HORP!E. - snes- S L. el + MRET1 % XRSEGRA
Ab2 651 e, /eHDA3 ¢ kmmso T4 <
ARPBRT P . .
SIR3 * o DA1 - TGS1
i el
o o
T T T T T T T T
0 50 100 150 0 50 100 150
Fitness of orfA ura3A at 27°C (doublin952/ day) Fitness of orfA ura3A at 27°C (doublingszl day)
3 >8 o
© ! fdd « BX01
T3 . eEXO1 kel oRAD24
~ *RAD24. ~ *RAD1S
N <AHROT! ~ «BMHRDOCT
wn [%] .
EC» o
S e, S8 : .xsé':%-mw%
§ . e " § e Ry
o 2 B
o v
~ ~
o~ o~ .
® 2 ® F S
o 7 :
ul ™
. = N
) - . o K
TR . < B v
Al
2 . o oSNFES ® RTT109 e e
o | 3 « RTAMER2 . - SAC3 omms22 SSOF BRI | g T
e S"ﬁaﬂﬁg“ SMREN e s s " ° SMRETT  JCTF4 1&*:?59@25?;@‘ B
Py <RACITO TS Ei.-nc s 0 . HBAY 7650 o oRADSETKTXREZ | o Ve A 70
wn . - ol «MR . 0 SERR - . ° 1
g G2 P52 o5 < Torone MiCLaakn o SaNHPRGIRAR3
So+ 5o o 4 wa
= ic
T T T T T T T T T
0 50 100 150 0 20 40 60 80
Fitness of orfA ura3A at 27°C (doublingSZ/ day) Fitness of orfA ura3A at 27°C (doublingsz/ day)

Figure B.1: Alternative fitness plots witbrf A posterior mean fithesses. Labels for the “telomere
maintenance” gene ontology term are highlighted in blue. Nap-Bayesian, non-hierarchical
fitness plot, based on Table S6 from Addinall et al. (200A)= M DR x M DP). B) Non-
Bayesian, hierarchical fitness plot, from fitting REM to datarable S6 from Addinall et al.
(2011) (F = MDR x MDP). C) IHM fitness plot withorfA posterior mean fitnes&F' =
MDR x MDP). D) JHM fitness plot withorfA posterior mean fithessesorfA strains are
classified as being a suppressor or enhancer based on anaflygiowth parameter. Further
fitness plot explanation and notation is given in Figure 4.2.
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Figure B.2: Alternative fitness plots witlerfA posterior mean fitnesses. Labels for the “ageing”
gene ontology term are highlighted in blue. A) Non-Bayesiam-hierarchical fithess plot, based
on Table S6 from Addinall et al. (2011F = M DR x M DP). B) Non-Bayesian, hierarchical
fitness plot, from fitting REM to data in Table S6 from Addinatlal. (2011)(F = M DR x
MDP). C) IHM fitness plot withorfA posterior mean fithes§g" = M DR x M DP). D) JHM
fitness plot withorf A posterior mean fitnessestf A strains are classified as being a suppressor or
enhancer based on analysis of growth parametEurther fithess plot explanation and notation is
given in Figure 4.2.
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Figure B.3: Alternative fitness plots witbrfA posterior mean fithesses. Labels for the “response
to DNA damage” gene ontology term are highlighted in blue N@h-Bayesian, non-hierarchical
fitness plot, based on Table S6 from Addinall et al. (200A)= M DR x M DP). B) Non-
Bayesian, hierarchical fitness plot, from fitting REM to datarable S6 from Addinall et al.
(2011) (F = MDR x MDP). C) IHM fitness plot withorfA posterior mean fithesg' =
MDR x MDP). D) JHM fitness plot withorfA posterior mean fitnesserfA strains are
classified as being a suppressor or enhancer based on anaflygiowth parameter. Further
fitness plot explanation and notation is given in Figure 4.2.
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Figure B.4: Alternative fitness plots witlorfA posterior mean fithesses. Labels for the “per-
oxisomal organisation” gene ontology term are highlightiedblue. A) Non-Bayesian, non-
hierarchical fitness plot, based on Table S6 from Addina#lle(2011)(F = M DR x MDP).

B) Non-Bayesian, hierarchical fitness plot, from fitting REdldata in Table S6 from Addinall
etal. (2011)(F = MDR x MDP). C) IHM fitness plot withorfA posterior mean fitness
(F = MDR x MDP). D) JHM fitness plot withorfA posterior mean fithessesrfA strains
are classified as being a suppressor or enhancer based gsisnélgrowth parameter. Further
fitness plot explanation and notation is given in Figure 4.2.
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B.3. Lists of top genetic interactions for the two-stage andne-stage
Bayesian approaches

Table B.2: Sample of interaction hierarchical model top genetic atéons withcdc13-1at27°C

Type of Gene Probability of Strength of Position in
Interaction Name Interactioi  Interactione(® ) Addinall (2011)
Suppressor IPK1 1.00 2.87 10

LST4 1.00 2.77 13
RPN4 1.00 2.76 17
MTC5 1.00 2.66 20
GTR1 1.00 2.64 38
NMD2 1.00 2.62 3
SAN1 1.00 2.62 16
UPF3 1.00 2.58 21
RPL37A 1.00 2.56 121
NAM7 1.00 2.53 22
RPP2B 1.00 2.52 120
YNL226W  0.99 2.49 126
YGL218W  1.00 2.46 250
MEH1 1.00 2.45 45
ARO2 1.00 2.45 68
EXO1 1.00 2.45 1
BUD27 1.00 2.43 46
RAD24 1.00 2.39 4
RPL16B 1.00 2.39 33
RPL43A  1.00 2.39 150
Enhancer ©MRC1 1.00 0.11 35
YKU70 1.00 0.11 31
STI1 1.00 0.11 42
RIF1 1.00 0.13 36
ELP3 1.00 0.16 82
CLB5 1.00 0.17 58
MRC1 1.00 0.17 63
DPH2 1.00 0.18 24
POL32 1.00 0.19 113
MAK31 1.00 0.19 37
SWM1 1.00 0.20 25
LTE1 1.00 0.21 48
MAK10 1.00 0.22 44
ELP2 1.00 0.22 77
PAT1 1.00 0.24 144
DPH1 1.00 0.25 55
SRB2 0.99 0.25 174
THP2 1.00 0.26 67
MFT1 1.00 0.26 52
LSM6 0.97 0.26 389
Seehttp://research.ncl.ac.uk/qfa/HeydariQFABayes/IHM_s trip.txt for the full list.
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Table B.3: Sample of joint hierarchical model top genetic interadiarith cdc13-1at27°C

Type of Gene Probability of ~Strength of Strength of ~ Strength Position in
Interaction Name Interaction  Interaction Interaction émnaction Addinall (2011)
) el o) MDR x MDP
Suppressor CSE2 1.00 490.51 0.48 11.71 838
in K SGF29 1.00 273.69 0.68 14.16 580
GSH1 1.00 78.79 0.92 17.89 281
YMD8 1.00 59.31 0.65 7.05 2022
YGL024W  1.00 28.13 1.18 13.33 151
RPS9B 1.00 24.67 1.12 10.24 801
GRR1 1.00 22.51 0.67 5.99 1992
Suppressor BTS1 1.00 19.27 2.29 19.65 201
inr IPK1 1.00 5.56 2.26 44.81 10
NMD2 1.00 2.96 2.19 48.51 3
SAN1 1.00 2.37 2.17 48.70 16
LST4 1.00 5.79 2.14 44.14 13
RPN4 1.00 8.00 2.12 40.46 17
UPF3 1.00 3.16 2.07 45.25 21
Suppressor in SAN1  1.00 2.37 2.17 48.70 16
MDR x MDP NMD2 1.00 2.96 2.19 48.51 3
UPF3 1.00 3.16 2.07 45.25 21
EXO1 1.00 2.89 2.06 45.04 1
IPK1 1.00 5.56 2.26 44.81 10
LST4 1.00 5.79 2.14 44.14 13
NAM7 1.00 3.02 2.04 43.00 22
Enhancer YKU70  1.00 0.01 1.09 —23.44 31
in K STI1 1.00 0.01 1.20 —21.60 42
RIF1 1.00 0.01 0.63 —26.17 36
::MRC1 1.00 0.01 0.83 —23.15 35
MAK31 1.00 0.02 1.18 —18.19 37
CLB5 1.00 0.02 0.87 —19.54 58
MRC1 1.00 0.02 0.81 —20.40 63
Enhancer PAT1 1.00 1.71 0.28 —18.30 144
inr PUF4 1.00 2.00 0.31 —21.61 34
YKU80 1.00 2.15 0.33 —21.68 32
RTT103 1.00 2.54 0.34 —17.87 153
LSM1 0.99 2.13 0.34 —16.20 101
GIM3 0.99 0.93 0.35 —19.70 132
INP52 0.96 0.86 0.36 —14.50 345
Enhancer in RIF1 1.00 0.01 0.63 —26.17 36
MDR x MDP LTE1 1.00 0.06 0.40 —23.96 48
YKU70 1.00 0.01 1.09 —23.44 31
::MRC1 1.00 0.01 0.83 —23.15 35
DPH2 1.00 0.04 0.56 —23.11 24
EST1 1.00 0.12 0.46 —22.20 5
MAK10 1.00 0.04 0.59 —21.92 44
Seehttp://research.ncl.ac.uk/gfa/HeydariQFABayes/JHM_s trip.txt for the full list.
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B.4. cdc13-127°C vsura3A 27°C fitness plots for the joint hierarchical
model in terms of carrying capacity and growth rate parametes
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Figure B.5: Joint hierarchical model (JHM) carrying capacity fitnesst pith orf A posterior
mean fitnessesorfA strains are classified as being a suppressor or enhancet dasarrying
capacity parametek’. Significant interactors have posterior probability > 0.5. To compare
fitness plots, labelled genes are those belonging to trenfisly gene ontology terms in Table 4.1:
“telomere maintenance”, “ageing”, “response to DNA damstiy@ulus” or “peroxisomal organi-
zation”, as well as the genes identified as interactions onlif with the JHM (see Figure 4.3)
(blue), genes interacting only inwith the JHM (cyan) and the MRX complex genes (pink).
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Figure B.6: Joint hierarchical model (JHM) growth rate fitness plot witfiA posterior mean
fithessesorfA strains are classified as being a suppressor or enhancerdrageowth parameter
r. Significant interactors have posterior probability> 0.5. To compare fitness plots, labelled
genes are those belonging to the following gene ontologygen Table 4.1: “telomere mainte-
nance”, “ageing”, “response to DNA damage stimulus” or {pésomal organization”, as well as
the genes identified as interactions onlyidnwith the JHM (see Figure 4.3) (blue), genes interact-
ing only inr with the JHM (cyan) and the MRX complex genes (pink).
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B.5. Gene ontology term enrichment analysis in R

source("http://bioconductor.org/biocLite.R")
biocLite("GOstats")

biocLite("org.Sc.sgd.db")

ST

library(GOstats) # GO testing tool package
library(org.Sc.sgd.db) # yeast gene annotation package
genes=read.table("JHM_strip.txt", header=T)
UNIVSTRIP=genes|,2]
genes<-as.vector(genes[genes[,3]>0.5,2])
genes<-unique(genes)
ensembliDs=as.list(org.Sc.sgdPMID20ORF)
univ=unlist(ensemblIDs)

univ=univ[lis.na(univ)]

length(univ)

length(unique(univ))

univ=unique(univ)

all=as.vector(univ)

all=all[all%in%UNIVSTRIP]

length(all)

ontology=c("BP")

vec<-genes%in%univ

genes<-genes[vec]
params_temp=new("GOHyperGParams", genelds=genes,
universeGenelds=all,

annotation="org.Sc.sgd.db", categoryName="GO",
ontology=ontology, pvalueCutoff=1,

testDirection = "over")
results=hyperGTest(params_temp)
results=summary(results)
results$qvalue<-p.adjust(results$Pvalue,method="BH" )
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B.6. Code for Just Another Gibbs Sampler software

B.6.1. Separate hierarchical model code

model {

for (I in L:N){

for (m in 1:NoORF[I]){
for (n in 1:NoTime[(NoSum[l]+m)]){
ylm,n,l] © dnorm(y.hat[m,n,l], exp(nu_I[l]))
y.hatim,n,l] <- (K_Im[(NoSum[l]+m)]

* Px exp(r_Im[(NoSum[l]+m)] *x[m,n,[]))
J(K_Im[(NoSum[l]+m)]+P * (exp(r_Im[(NoSuml[l]+m)] *xX[m,n,1])-1))
}
K_Im[(NoSum[l]+m)]<- exp(K_Im_L[(NoSum[l]+m)])
K_Im_L[(NoSum[l]+m)] ~ dnorm(K_o_l_L[l],exp(tau_K_II N)T(0)
r_Im[(NoSum[l]+m)]<- exp(r_Im_L[(NoSum[l]+m)])
r_Im_L[(NoSum[l][+m)] = dnorm(r_o_|_L[l],exp(tau_r_I[l MT(3.5)

}

K_o_I_L[l]<- log(K_o_lI[l)

K_o_I[l] = dt( exp(K_p), exp(sigma_K_0),3)T(0,)
r_o_|_L[l]<- log(r_o_I[I])

r_o_I[l] ~ dt( exp(r_p), exp(sigma_r_o0),3)T(0,)
nu_l[l] © dnorm(nu_p, exp(sigma_nu) )
tau_K_I[lI"dnorm(tau_K_p,exp(sigma_tau_K))T(0,)
tau_r_I[l"™dnorm(tau_r_p,exp(sigma_tau_r))

_p ~ dnorm(K_mu,eta_K_p)

p ~ dnorm(r_mu,eta_r_p)

nu_p ~ dnorm(nu_mu,eta_nu_p)
P<-exp(P_L)

P_L © dnorm(P_mu,eta_P)

tau_K_p ~ dnorm(tau_K_mu,eta_tau_K_p)
sigma_tau_K ~ dnorm(eta_tau_K,psi_tau_K)
tau_r_p ~ dnorm(tau_r_mu,psi_tau_r)
sigma_tau_r ~ dnorm(eta_tau_r,psi_tau_r)
sigma_nu~dnorm(eta_nu,psi_nu)
sigma_K_o ~ dnorm(eta_K_o,psi_K_o0)
sigma_r_o ~ dnorm(eta_r_o,psi_r_o)

}

}
K
r_

B.6.2. Interaction hierarchical model code

model {
for (I in L:N){
for (c in 1:2{
for (m in 1:NoORF[l,c]){
y[m,c,I]” dnorm(exp(alpha_c[c]
+delta_l[l,c] *gamma_cl_L[l,c]) * Z_|[I],exp(nu_cl[l+(c-1) *N]))

nu_cl[l+(c-1) * N]"dnorm(nu_p,exp(sigma_nuy))

}

Z_l[II"dt(exp(Z_p),exp(sigma_Z),3)T(0,)
delta_I[l,1]<-0

delta_l[l,2]"dbern(p)

gamma_cl_L[l,1]<-0
gamma_cl_L[l,2]<-log(gamma_l[l])
gamma_l[l]"dt(1,exp(sigma_gamma),3)T(0,)

alpha_c[1]<-0
alpha_c[2]"dnorm(alpha_mu,eta_alpha)
Z_p~dnorm(Z_mu,eta_Z_p)
nu_p-~dnorm(nu_mu,eta_nu_p)
sigma_Z"dnorm(eta_Z,psi_Z)
sigma_nu~dnorm(eta_nu,psi_nu_p)
sigma_gamma“dnorm(eta_gamma,psi_gamma)

}
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B.6.3. Joint hierarchical model code

model {
for (I in 1:N){
for (c in 1:2){
for (m in 1:NoORFIl,c]){
for (n in 1:NoTime[NoSumi[l,c]+m,c])¥{

y[m,n,l,c] © dnorm(y.hat[m,n,l,c],exp(nu_cl[l+(c-1)
y.hatim,n,l,c] <- (K_cIm[(SHIFT[c]+NoSuml[l,c]+m)]
* Px exp(r_cIm[(SHIFT[c]+NoSum[l,c]+m)]

/(K_cIm[(SHIFT[c]+NoSum([l,c]+m)]+P
*x[m,n,l,c])-1))

*x[m,n,l,c]))
* (exp(r_cIm[(SHIFT[c]+NoSum(l,c]+m)]

}

K_cIm[(SHIFT[c]+NoSum[l,c]+m)]<-exp(K_cIm_L[(SHIFT[
K_cIm_L[(SHIFT[c]+NoSum][l,c]+m)] ~ dnorm(alpha_c[c]+K
+(delta_l[l,c] *gamma_cl_L[l,c]),exp(tau_K_cl[l+(c-1)

r_cIm[(SHIFT[c]+NoSum([l,c]+m)]<-exp(r_clm_L[(SHIFT[

r_cim_L[(SHIFT[c]+NoSum([l,c]+m)] ~ dnorm(beta_c[c]+r_
+(delta_lI[l,c] *omega_cl_L[l,c]),exp(tau_r_cl[l+(c-1)

*NI)

c]+NoSum([l,c]+m)])

_o L L]
*NI)T(.0)

c]+NoSum(l,c]+m)])

o I L[N
*N])T(,3.5)

tau_K_cl[l+(c-1) * N]"dnorm(tau_K_p_c[c],exp(sigma_tau_K_cl[c]))T(0,)

tau_r_cl[l+(c-1) * N]"dnorm(tau_r_p_cl[c],exp(sigma_tau_r_c[c]))
nu_cl[l+(c-1) * N]"dnorm(nu_p,exp(sigma_nu))

}
K_o_I_L[l]<- log(K_o_l[l)

K_o_l[l] = dt(exp(K_p),exp(sigma_K_0),3)T(0,)

r_o_|_L[l]<- log(r_o_lI[I])

r_o_I[l] ~ dt(exp(r_p),exp(sigma_r_o0),3)T(0,)
delta_lI[l,1]<-0

delta_lI[l,2]"dbern(p)

gamma_cl_L[l,1]<-0
gamma_cl_L[l,2]<-log(gamma_l[l])
gamma_l[l]"dt(1,exp(sigma_gamma),3)T(0,)
omega_cl_L[l,1]<-0
omega_cl_L[l,2]<-log(omega_l[l])
omega_l[l]"dt(1,exp(sigma_omega),3)T(0,)

}

alpha_c[1]<-0
alpha_c[2]"dnorm(alpha_mu,eta_alpha)
beta_c[1]<-0
beta_c[2]"dnorm(beta_mu,eta_beta)
K_p“dnorm(K_mu,eta_K_p)
r_p“dnorm(r_mu,eta_r_p)
nu_p~dnorm(nu_mu,eta_nu_p)

P <- exp(P_L)

P_L “dnorm(P_mu,eta_P)
sigma_K_o"dnorm(eta_K_o,psi_K_o0)
sigma_r_o"dnorm(eta_r_o,psi_r_o)
tau_K_p_c[1]'dnorm(tau_K_mu,eta_tau_K_p)
tau_K_p_c[2]"dnorm(tau_K_mu,eta_tau_K_p)
tau_r_p_c[1]"dnorm(tau_r_mu,eta_tau_r_p)
tau_r_p_c[2]"dnorm(tau_r_mu,eta_tau_r_p)
sigma_tau_K_c[1]"dnorm(eta_tau_K,psi_tau_K)
sigma_tau_K_c[2]"dnorm(eta_tau_K,psi_tau_K)
sigma_tau_r_c[1]"dnorm(eta_tau_r,psi_tau_r)
sigma_tau_r_c[2]"dnorm(eta_tau_r,psi_tau_r)
sigma_nu~dnorm(eta_nu,psi_nu)
sigma_gamma“dnorm(eta_gamma,psi_gamma)
sigma_omega“dnorm(eta_omega,psi_omega)
}

}
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B.7. Additional cdc13-127°C vsura3A 27°C fitness plots

Fitness (F) of orfA cdc13-1 double mutants at 27°C (doublingsz/ day)
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Figure B.7: Alternative non-Bayesian, hierarchical fithess plot, frbtiing the random effects
model (REM) to data in Table S6 from Addin&lt al. (2011)(F = M DR x M DP). orfAs with
significant evidence of interaction are highlighted in red green for suppressors and enhancers
respectively.orf As without significant evidence of interaction are in grey aade noorf name
label. Significant interactors are classified as those wWiiR Eorrected p-values 0.05.
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Figure B.8: Alternative interaction hierarchical model (IHM) fitneskotpwith orfA posterior
mean fithnessorf As with significant evidence of interaction are highlightettlee plot as red and
green for suppressors and enhancers respecti¥els M DR x M DP). Solid and dashed grey
fitted lines are for the IHM linear model fitorfAs with significant evidence of interaction are
highlighted in red and green for suppressors and enhanespgdatively. orf As without signifi-
cant evidence of interaction are in grey and haverioname label. Significant interactors have
posterior probabilityA > 0.5.
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Figure B.9: Alternative joint hierarchical model (JHM) fitness plot wibrfA posterior mean
fitnesses. The JHM does not does not make use of a fitness meaglr as\V DR x M DP
but the fitness plot is given in terms 8f DR x M D P for comparison with other approaches
which do. orfA strains are classified as being a suppressor or enhanceat basene of the
two parameters used to classify genetic interaction, dr@arameter, this means occasionally
strains can be more fit in the query experiment in terma8/dD R x M D P but be classified as
enhancers (greendrfAs with significant evidence of interaction are highlightaded and green
for suppressors and enhancers respectivafiyds without significant evidence of interaction are
in grey and have norf name label. Significant interactors have posterior prdiabd > 0.5.
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Carrying capacity (K) of orfA cdc13-1 double mutants at 27°C
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Figure B.10: Joint hierarchical model (JHM) carrying capacity fitnesst plith orfA posterior
mean fitnessesorfA strains are classified as being a suppressor or enhancet tasarrying
capacity parameteK. orfAs with significant evidence of interaction are highlightedéd and
green for suppressors and enhancers respectivélits without significant evidence of interaction
are in grey and have rmrf name label. Significant interactors have posterior prditabit > 0.5.
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Figure B.11: Joint hierarchical model (JHM) growth rate fithess plot wotthA posterior mean
fithessesorfA strains are classified as being a suppressor or enhancerdrageowth parameter
r. orf As with significant evidence of interaction are highlightadéd and green for suppressors
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B.8. Correlation between methods

The Addinall et al. (2011) approach has its highest conaatith the IHM, followed by
the JHM and then the REM. The REM correlates least well wighdHM while showing
the same correlation with both the Addinall et al. (2011)rapph and the IHM. The
correlation between the IHM and the JHM is the largest oleskihetween any of the
methods, demonstrating the similarity of our Bayesiandrhical methods.

Table B.4: Spearman’s rank correlation coefficients for magnitudemfgenetic independence,
between Addinall et al. (2011), random effects approachMREnteraction hierarchical model
(IHM) and joint hierarchical model (JHM) approaches

Method Method

Addinall et al. (2011) REM [HM JHM QFA

QFA QFA QFA (DR x MDP)
Addinall et al. (2011) QFA, 1 0.77 0.89 0.88
REM QFA, 1 0.77 0.75
IHM QFA, 1 0.95
JHM QFA (M DR x M DP), 1

The MDR x MDP correlation plot of the JHM versus the Addinall et al. (2011)
approach demonstrates the similarity (Pearson corrakfi®0) and differences between
the two approaches interms&f DR x M D P. We can see how the results differ between
the JHM and Addinall et al. (2011), with a kink at the originedio the JHM allowing
shrinkage of non-interacting genes towards the fitted line.
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Figure B.12: M DR x M DP genetic interaction correlation plot of JHM versus Addirelal.
(2011) (Pearson correlation=0.90).
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C.1. Linear noise approximation of the stochastic logistigrowth model
with multiplicative intrinsic noise solution

Firstwe look to solvelZ,, given in equation (5.10). We defirf¢t) = —be?t = —%

to obtain the following,

In order to match our initial conditions correctly, = 0. Define a new proceds; =
t
e 110 /9% 7. and solve the integral,

t t baPe™ a
/to f(s)ds /to bP(e*S —1)+a 5= 08 <bP(e“T -1+ a) ’

where,S = s — to andT =t — to. Apply the chain rule td/;,

AU, = ¢ o T4z, — f()e f 1O 7,41,
Now substitute inlZ, = f(t)Z,dt + cdW, and simplify to give
dU; = e Jia f(s)dsadVVt.
Apply the following notationy(t) = ehio T()ds Pt T)Ta andiy(t) = o to give
dU, = ¢(t)""d(t)dW,.
U;, has the following solution,

U, :U0+/ d(s) " (s)dW.

AsU; = ¢(t)~'Z;, Z; then has the following solution (Arnold, 2013),

Z= o) 2o+ /totqs(s)-lw(s)dws] .
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Finally, the distribution at time t ig,;|Z, ~ N (M,, E;) (Arnold, 2013), where
_ 2
M, = ¢(t)Zy andE; = ¢(t)? [} [6(s)""v(s)]  ds.
a a 2 t a -2
Further, M, = ppreotrye; 70 aNdE, = 0° [ prsiogysa | Jly [ppeetnysa) 05

—2
t a _ b2P2(e2¢T —1)+4bP(a—bP)(e?T —1)+2aT (a—bP)>?
As fto [bP(e“S—1)+a:| ds = 2a3 !

B, =0? { a i a} ’ {bQPQ(eM — 1)+ 4bP(a — bP)(eT — 1) + 2aT(a — bP)Q]

bP (el — 243
2 VP2 (e2T — 1) + 4bP(a — bP) (e — 1) + 2aT (a — bP)? .
2a (bP(eaT — 1) +a)?

Taking our solutions fop; (5.8) andZ;, we can now write our solution for the LNA to
the log of the logistic growth process (5.6).
AS }/;5 = Uy + Zt1

aPe”
bP(esT —1) +a

VilYy ~ A (mg [ } " ME) |

Note: mgﬂ%m has the same functional form as the solution to the detestirpart of

the logistic growth process (5.1) and is equivalent wien 0 (such thatt = r — "—22 =7).

Further, ag; is normally distributed, we know, = ¢'* will be log normally distributed

and
aPe™

bP(e'T —1)+a

Xt|X0 ~ log N(log ( ) + Mt7 Et)

Alternatively set) = (% — 1) e,

m) + Mt> Et)-

@ SIS

X¢| Xo ~ log N (log (

134



Appendix C. Stochastic logistic growth modelling

From our solution to the log process we can obtain the foliguransition density
(}/ti|)/ti—1 - yti—l) ~ N (Mtﬂ Etz) )

wherey,, , =wv, , +2, ,,Q = (% - 1) e,

1+ Qe i1 Ctr 14 Qe
= ] 1 - v a(t’L tzfl)— )
lu‘tz ytzfl + Og < 1 + Qe—ati ) te 1 + Qe—ati zt271
4Q(€at¢ _ eatifl) + e2at¢ o 62at¢,1 + 2aQ2(ti o ti—l)
2a(Q) + ei)?

and

- 2
‘_’ti_o-
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C.2. Zero-order noise approximation of the stochastic logitic growth
model

After obtaining (5.7) in Section 5.3, we can derive the RRDRBidtic growth diffusion
process as follows. First our expression dof, given in (5.7), is approximated by set-

1
dv, = <7’ — 502 — %e”t) dt = (7’ — %e”t> dt.

We now write down an expression f@¥;, wheredY; is givenin (5.6) andZ; = dY,—duv,

tingo? = 0,

1
dZ; = (r — 502 — %ey’f) dt + odW; — (r — %e”t> dt.

We can then rearrange and simplify to give the following,

T, Y, 1
dZ, = (? [e —e ] — 502) dt + odW,.

We now substitute iy, = v, + Z;,

r Ut Ut Zt 1
dZ, = (? eV — et — 502) dt + odW,.

We now apply a zero order LNA by settirg* = 1 to obtain,

r 1
Az, = (? [e” —e¥] — 502) dt + odW,.

We can then simplify to give the following,
1 2
dZt = —50' dt -+ O'th. (Cl)

Differentiatingv,, given in (5.8), with respect to t we can obtain an alterrea¢ixpression

for dUt,
a(a — bP) r(K — P)

TP — 1) +a K+ P —1)
whereT =t —t,. We now write down our new expression g, wheredY; = dv; + dZ;,
given (C.2) and (C.1),

dv, dt, (C.2)

r(K — P) 1,
Y, = — —o?) dt + cdW,
’* <K+P(eaT—1) 20) ot

136



Appendix C. Stochastic logistic growth modelling

or alternatively by setting) = (5 — 1) e*,

Qr L,
dY; = (e’"tJrQ — 50 dt + odW;.

We can then apply Itd’s lemma (5.5) (Itd, 1944) with thexstormationf (¢, Y;) = X, = e'*.
After deriving the following partial derivatives:

2
i F_ v ang EL_ow

a7 dr dx? ’
we can obtain the following Itd drift-diffusion process:

Qr
et 4+ Q

which is exactly the RRTR logistic diffusion process préednby Roman-Roman &
Torres-Ruiz (2012).

dXt = Xtdt+ O'th,
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C.3. Linear noise approximation of the stochastic logistigrowth model
with additive intrinsic noise solution

First we look to solvelZ;, given in (5.14). We defing(t) = a — 2bv, to obtain the
following,
dZt = f(t)tht + O"Utth.

In order to match our initial conditions correctly, = 0. Define a new proceds; =
e 7% 7, and solve the integral,

‘[vﬁﬂs:/%a—%uyk:aT—2bgwaﬂgl%H?’

to

as [} Vids = 1 log (W%M) whereS = s — t, andT = t — t,. Apply the chain
rule tol;,
AU, = e 0O qz, — f(t)e” S 1O 7,4,

Now substitute inlZ, = f(t)Z,dt + ov,dW; and simplify to give,
dU; =€ fio f(s)dsavthVt.
- - Ji f(s)ds 2
Apply the following notationy(t) = e’to = el (m) andiy(t) = ou, to

give,
AUy = ()~ () dW.

U, has the following solution,
t
U, = Uy +/ B(s5) " Mp(s)dW.
to
As U, = ¢(t)~'Z;, Z; has the following solution (Arnold, 2013),
t
Zy = ¢(t) [ZO +/ <Z>(S)11/1(3)dWs] .
to

Finally the distribution at time ti&;| Z, ~ N (M, E;) (Arnold, 2013), where
2
My = 6(t) Zo and By = 6(0)? [, |6(s) " "(s)| " ds.

2
a
M, = " Z
e (bP(eaT—1)+a) 0
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and
—2

o*V2ds

a (o (e es) ) [ [ Grstores)
- ( (e ))

: / [eas <bP(eaSCi i )

- < (P ))
</ [S (rerirs) |lmereayea) @

1 2\ 2 1 )
— 2 aTl 2P2 d
“ <e (bP(e“T —1)+ a) ) /to “ (bP(e“S -1+ a) ] %

-2
t 1 _ v2P%(e29T 1) 4+4bP(a—bP)(e?T —1)+2aT (a—bP)?
asj;fo (bP(eaS—l)—l—a) ds = 2a

2
aPe®

{bP(eaS “1)+ a} s

aPe®

E :lO'QG,PZeQaT 1 !
9 bP(e*T — 1) +a
x [ P*(e**" — 1) + 4bP(a — bP)(e"" — 1) + 2aT(a — bP)?] .

Taking our solutions for; (5.13) andZ;, we can obtain the following transition density

(X[ Xy =20, 1) ~ Ny =)
wherez;, | =vi, , + 2, ,,
aPeTi aPeTi-1
P =Tty ¥ (bP(e“Ti —1)+ a) a (bP(eaTil - 1)+ a)

o (bP(e T — 1) 4 a)”
a(ti—ti-1) Z, and
+e ( bP(e“Ti — 1) +a ) ti—1

= :102aP262“Ti L '
b bP(e’T: — 1) +a

x [V P?(e** T — e2Ti-1) 1 4pP(a — bP) (e — e

U«Ti—l)

+ 2a(tl — ti_l)(a — bP)Q]
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C.4. Prior hyper-parameters for Bayesian state space model

Table C.1: Prior hyper-parameters for Bayesian sate space modelsptuagal with mean ()
and precision®)

Parameter Name Value
MK log(0.1)
TK 2
i log(3)
T, 5
pp log(0.0001)
TP 01
o log(100)
Ty 0.1
Ly, log(10000)
T, 0.1
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C.5. Kalman filter for the linear noise approximation of the stochas-
tic logistic growth model with additive intrinsic noise and Normal
measurement error

To find 7(yy,. ) for the LNAA with Normal measurement error we can use theofeihg
Kalman Filter algorithm. First we assume the following:

O [y1:e, ~ N(my,, Ct,),
my; = ag; + RtiF(FTRtiF + U)_l[yti - FTa’ti]v
Cy, =Ry, — R, F(F'R,F+U)'F'R,,

and initialize withm, = P andC, = 0. Now suppose that,

0,

Yty ™ N(atm Rt¢)7
at; = Gtimti—l

anthi - GtiCtifle: —+ Wti-
The transition density distribution, see (5.15) is as oo

0y,

7

‘9151'71 ~ N<Gti9t Wtz)

or equivalently( Xy, | X, _, = x4, ) ~ N (u,, =), wherezy, | =vy, , + 24,

0 1 1 0 1
t pu— pu—
Xti Ha,ti Hﬁii Xti—l

- Gti Hti 19

1 0 0 0
Gti = ) Wti = —_
Ha,ti Hﬁ,ti 0 =

oT 2
a(ti—ti_1) bP(e?li-1 — 1) +a
bP(e*li —1)+a

i—17

whereH,;, = H,(t;,tio1) =v, — Vi_qe

bP(etTi-1 — 1) + a)2

andHgs, =Hg(t; t; 1) = e*ti—ti-1)
B.t; 5( ) 1) e bP(eaTi — 1) —
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The measurement error distribution is as follows:

Y, etiN N(FTHt“ U)

or equivalentlyy,, |6, ~ N(X,,, o2),

whereF = (g) andU = o2.

Matrix Algebra:

Q. =

i . -

(0 I 1
Ha,ti Hﬁii me; 4 Hmti + Hﬂ7timti—1
(o 0 ) o0 _ (o 0
- 0 HﬁvtiQCi’q 0 Eti B 0 H@tiQCi_l—FE&

0 0 0
R, F(FTR,F+U) ! = ) s _
0 HB,%’ Cti71 + ‘:’ti 1

0 0 0\
X (0 1) 2 o _ + o,
0 HB,%’ Cti—l + ‘:’ti ]_

1 0
= H '202 + = +O’S)]
|:< Biti ;4 ti Hﬂ,tizci’_l + =

-1
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me, =ag; + RtiF(FTth'F + U)il[yti - FTati]

1
N (Ha,ti + Hﬁﬂfimtil)

-1
* [(Hﬁ’ti%iﬂ + Eti + U’%)]

0 1
X _ Yt — (0 1)
(Hﬁ,tiQCtzi_l + :ti> [ Hoy, + Hgg e,

0
— 2 -
- Hﬂﬂi C%i,1+“ti

Hopo + Hoatey + 5 20— G550 (41, — Hox, — Hp ey, |

C,, =Ry, — R, F(FTR,F + U) 'FTR,,

(0 0
B O HﬁytiQCZ‘_l + Eti

-1
— [(Hg,tfca_l + =, + aﬁ)}

o 0 (O 1) 0 0
Hﬁvtizci‘ﬂ + Etz’ 0 Hﬁ, tiQCz%Fl + Eti

0 0

2
o g2 oz (Haid 45
Bti iy T =t T Hg 22 By +o2

With m,, andC;, for i = 1 : N, we can evaluate,,, R, andw(x, |y, ,_,,) fori =
1 : N. We are interested im(y;,,) = Hfilw(yti|ytui_l)), wherew(yti|yt1:(i_1)) =
L 7|z ) 7w (@, |y, oy, )dy, gives a tractable Gaussian integral. Finally,

N
log 7(ye, ) = Y _logm(y,

=1

yt1:(i71))

N

= Z [— log ( 27?(0}2[ + g§)> _ (hy = 11g)?

2
: 2(c} +3)

)

7

Where:uf — Mg =Yt — Aty = Yt — Hoy, — Hggomu,

andafc + 03 =0, + Ry, = 0, + Hg,’c; | + =y
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Procedure
1. Set; = 1. Initialize my = P andCy = 0.

2. Evaluate and store the following log likelihood term:

(s — ug)2]

logﬂ-(y 1|y 1:(i—1 ) = | 10g ( 27T(02 + UQ)) -
tildtuG-n e 2(0% +02)

Whereﬂf — ,LLg :yti — Ha,ti — H@timti_l anda‘? + O’; = 0-3 + HBJZ.QCZ__I + Eti'

3. Create and store both;,, andC,,

Wheremti :Ha,ti + Hﬁytimti—l + [yti - Ha,ti - Hﬁytimti—l}

2 _ 2.2 =
andcti _Hﬂiz' Cti—l + Zt

4. Increment, i=(i + 1) and repeat steps 2-3 tilg 7 (v |v:,,_,,) is evaluated.

5. Calculate the sum:

N
logw(ythz\r) = Z logﬁ(yti yth(iﬂ))'

i=1
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