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Endothelial dysfunction plays a pivotal role in the development and progression of 

atherosclerosis. Atherogenic risk factors harbor the potential to injure the endothelial layer by 

promoting apoptosis, preceded by an inflammatory reaction in the vessel wall. The 

maintenance of the endothelial layer is therefore crucial to ensure its integrity. More recent 

studies suggest an important role of endothelial progenitor cells (EPCs) in contributing 

towards reendothelialization after vascular injury. These EPCs home to sites of hypoxia or 

ischemia and take part in vascular repair. Recent studies have shown that a rare population of 

EPCs called endothelial colony forming cells or ECFCs can be derived from peripheral and 

cord blood and can be transplanted into immunodeficient mice that have demonstrated the 

ability to form chimeric blood vessels. Hyperoxia has been shown to be a model of mild 

oxidative stress, and this oxidative stress is characterized by an increase in reactive oxygen 

species (ROS) levels that can lead to a wide range of chemical reactions resulting in cellular 

necrosis and apoptosis through lipid peroxidation and DNA damage. We therefore proposed 

that by growing endothelial cells in vitro in hyperoxic conditions can in turn lead to cellular 

damage and activation of pro inflammatory markers in these cells. PGC-1α belongs to a small 

family of transcriptional coactivators which have been shown to regulate reactive oxygen 

species generation and apoptosis in mature endothelial cells. The mechanisms through which 

PGC-1α activates gene expression are poorly understood. This study aims at identifying a 

molecular signature of human endothelial progenitor cells (ECFCs) so that they can be 

distinguished from mature endothelial cells (HUVEC) and identifying the role of PGC-1α 

and its downstream targets when these endothelial progenitors and mature endothelial cells 

are exposed to oxidative stress. In order to achieve that goal we isolated endothelial colony 

forming cells and mature endothelial cells from the same donor. This was followed by their 

molecular profiling at mRNA level using qPCR and at protein level using 

immunofluorescence and FACS analysis. Cells were grown till late passages to study the 

growth kinetics of ECFCs and HUVEC in normoxia and hyperoxia. Telomerase activity was 

measured using TRAP assay and telomere length measurement was done using flow FISH. 

Low density array was carried out in order to distinguish between ECFCs and HUVEC in 

terms of gene expression analysis. The results showed that ECFCs were distinguished from 

early EPCs and HUVEC. PGC-1 alpha levels were up regulated in ECFCs when exposed to 

hyperoxia and this in turn activated several other genes that are involved in angiogenesis, 

oxidative phosphorylation and electron transport chain. ECFCs and HUVEC have shown to 

behave differently under conditions of oxidative stress and we found ECFCs to be more 

resistant to stress than HUVEC as shown in their growth kinetics. 
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Chapter 1. Introduction 

 

1.1 Origin of the human vascular system  
The formation of a human vascular network can occur through vasculogenesis or 

angiogenesis, which are two mutually non-exclusive processes (Jain, 2003). Angiogenesis 

refers to sprouting of vessels from pre-existing vessels and plays a vital role in wide variety 

of pathological and physiological conditions in post natal life (Folkman, 1995; Morin and 

Tranquillo, 2013). This process is crucial to the maintenance of many physiological and 

pathological phenomenon that includes development of an embryo, carcinogenesis, wound 

healing, diabetes and several ocular disorders (Carmeliet and Jain, 2000; Carmeliet, 2005; 

Carmeliet and Jain, 2011; Zheng et al., 2013). These newly formed capillaries lead to the 

formation of a complex vascular network that eventually penetrates the tissue and provides 

direct oxygen and nutrient supply. Angiogenesis is characterized by three successive events 

before blood supply to the tissue ensues. These include initiation, extension and maturation, 

(Mantzaris et al., 2004) a brief description of which is presented below.  

In fully mature blood vessels, endothelial cells (ECs) are encapsulated by mural cells that 

include pericytes. These ECs are maintained in a resting state by continuous secretion of 

angiopoietin-1 (Augustin et al., 2009). In pathological conditions such as vascular injury this 

quiescent state is subjected to alteration by cell surface binding of proangiogenic growth 

factors mainly vascular endothelial growth factor (VEGF). This binding of VEGF results in 

production and release of angiopoietin-2 which in turn leads to activation of endothelial cells 

by detachment of mural cells so that they can move towards source of VEGF (Hegen et al., 

2004; Matsushita et al., 2005; Jang et al., 2009).  

Endothelial cells migrate through the extra cellular matrix (ECM) and remain attached to 

each other forming a new capillary bed. The tip cells perform the function of extending the 

capillary, while the stalk cells continue to proliferate adding cells to the growing sprout 

(Gerhardt et al., 2003). Endothelial cell migration and proliferation are therefore considered 

to be two of the most important steps in capillary extension (De Smet et al., 2009). 

Endothelial cells release platelet derived growth factor-B (PDGF-B) during advanced stages 

of vascular development that leads to the proliferation of pericytes and their migration 

(Gaengel et al., 2009). This is followed by pericyte production of angiopoetin-1 and  as a 
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result of that, ECs switch back towards the resting state and the capillary is stabilized 

(Augustin et al., 2009).     

On the other hand, vasculogenesis is the process in which primitive vascular networks are 

formed from angioblasts or endothelial progenitor cells (EPCs) that differentiate and give rise 

to endothelial cells (Jain 2003). During embryonic development, haematopoietic stem cells 

(HSCs) form blood whereas the endothelial progenitor cells form blood vessels in a highly 

coordinated manner. There is strong evidence shown in mammals, as shown in figure 1.1, 

that HSCs originate from a common precursor, the hemangioblast or from hemogenic 

endothelium by a process termed as endothelial-haematopoietic transition (Tavian et al., 

1996; Kattman et al., 2006; Eilken et al., 2009; Lancrin et al., 2009; Bertrand et al., 2010; 

Boisset et al., 2010; Kissa and Herbomel, 2010). Despite extensive studies, the steps involved 

in lineage development from endothelial progenitor cells to mature endothelial cells and their 

site of origin in humans postnatally still remain less well-defined (Yoder and Ingram, 2009). 

EPCs are found in umbilical cord blood, peripheral blood, bone marrow and vessel walls. 

Umbilical cord blood is known to be a rich source of these cells, and show high levels of 

CD133 and CD34 positive cells, same as in the peripheral blood of adults (Ingram et al., 

2004).                                                 

 

Figure1.1. Illustrating the proposed development programme of endothelial cells. Endothelial and 
hematopoietic stem cells originating from a common precursor, the hemangioblast.  
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1.2 Postnatal vasculogenesis in humans  
Postnatal vasculogenesis was always believed to occur by angiogenesis, until this dogma was 

challenged by Asahara and colleagues (1997). They showed for the first time that peripheral 

blood mononuclear cells (PBMNCs) could be differentiated into potential endothelial cells 

and can become incorporated at neovascularisation sites in ischemic animal models. After 

this, several studies indicated that these putative human EPCs could be differentiated in vitro 

into endothelial cells and could be incorporated at sites of active angiogenesis in NOD/SCID 

bone marrow transplantation models (Kalka et al., 2000a). These human EPCs were also 

shown to be mobilized in to the peripheral blood in response to ischemia by cytokines 

(Takahashi et al., 1999). Lin et al. showed that in allogeneic bone marrow-transplanted 

patients, the CD14ˉ cell population led to the production of late-outgrowth endothelial cell 

colonies in culture and proposed that EPCs could originate from existing vessel walls or may 

be from transplanted marrow itself (Lin et al., 2000). Endothelial precursor cells derived from 

bone marrow that were positive for Tie-2 showed postnatal induction of revascularization in 

an in vivo graded model of ischemia (Tepper et al., 2005). This proposed that cells of 

monocytic lineage could be the source of endothelial progenitors or of proangiogenic cells 

that were named as circulating angiogenic cells (CACs). 

Hill et al. proposed a clonogenic colony- forming unit „endothelial cell‟ (CFU-EC or CFU-

Hill) assay and demonstrated that there exists an inverse relationship between cardiovascular 

risk factors and number of CFU-Hill in human peripheral blood (Hill et al., 2003). But these 

cells again were classified as EPCs on the basis of expression of biomarkers such as CD31, 

CD105, CD144, CD146, CD309 and vWF, which are not specific for endothelial cell lineage. 

For instance, CD144 shows expression on foetal HSCs in both mouse and human (Fleming, 

2005; Oberlin et al., 2010). Recently, it has been shown that CD34
+
 CD45

+
 CD144

+
 cells in 

human foetal liver were able to produce hematopoietic cells but failed to give rise to 

endothelial cells (Oberlin et al. 2010). The EPCs derived by the Hill method also showed the 

expression of specific hematopoietic markers like CD14 and CD45, and demonstrated the 

uptake of AcLDL (acetylated low-density lipoprotein), a known function of macrophages and 

some endothelial cells (Yoder et al., 2007). These human cells did not form secondary 

colonies on replating and did not form chimeric vessels when transplanted into mice. They 

were shown to be clonally distinct from the endothelial colony forming cells (ECFCs) as 

shown by JAK-2 mutational analysis of cell sets (Yoder et al. 2007). Several recent studies 
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have confirmed that CFU-Hill derived cells are of monocytic/hematopoietic origin, and might 

also contain T cells (Critser and Yoder, 2010; Steinmetz et al., 2010).  

Elsheikh et al. proposed that a common monocytic-endothelial progenitor might exist. They 

identified a subset of CD14 and CD309/VEGF-2 expressing human peripheral blood 

monocytes (2% of CD14 expressing cells) and showed that they could contribute to 

revascularization in an in vivo tissue damage model (Elsheikh et al., 2005). Similarly, 

CD202b/Tie-2 and VEGF-2 expressing cells in monocytes of the peripheral blood were 

identified as proangiogenic cells and were recruited to tumours, where they lead to 

enhancement of vessel growth in these tumours but failed to differentiate in to endothelial 

cells (De Palma et al., 2007; Venneri et al., 2007; Patel et al., 2013). In summary, bone 

marrow derived monocytic subsets of cells that express biomarkers found on endothelial cells 

can promote neovascularisation, but their transcriptomic and proteomic analysis clusters them 

more with the monocytic cells, and they or their myeloid progenitors can never differentiate 

towards endothelial lineage (Watt and Fox, 2005; Rohde et al., 2006; Purhonen et al., 2008; 

Pearson, 2009; Critser and Yoder, 2010; Fantin et al., 2010; Medina et al., 2010b). 

 

 

1.3 Human endothelial progenitor cells (EPCs) 
Endothelial progenitor cells (EPCs) are progenitor cells that are considered to be unipotent 

cells, in contrast to other stem cells that are usually pluripotent. EPCs have been a matter of 

debate for a long time, and their role in postnatal vasculogenesis and angiogenesis still 

remains controversial, simply because of discrepancies in their identification. To this date, 

there is no unique marker that can identify EPCs, and it has been widely recognized now that 

the bio-markers that have been used over the years for characterizing EPCs have not been 

exclusive to the endothelium and have shown expression on other cell lineages (Crister and 

Yoder 2010). 

There has always been some controversy regarding the nomenclature used to define EPCs. 

Richardson and Yoder have recently suggested a revised terminology for different types of 

cells based on the expression or absence of certain well known markers that have been used 

to define endothelial cells (Richardson and Yoder, 2011). A brief description of these cell 

types along with the revised nomenclature is described below. 
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1.3.1 Isolation of proangiogenic or early endothelial progenitor cells (EPCs) 

Human circulating endothelial progenitor cells called CECs, CACs or CEPs or collectively as 

EPCs mainly represent the mature non-proliferative endothelial cells that in response to tissue 

damage are sloughed-off from the blood vessels (CECs) or proangiogenic cells of myeloid or 

monocytic lineage (CACs, CEPs, EPC). Both these varieties of cells are not considered the 

true EPCs and are mostly considered to be part of hematopoietic lineage. CECs have been 

reported to be increased in blood of patients with burns or cancers (Duda et al., 2007; Fox et 

al., 2008b; Lowndes et al., 2008; Strijbos et al., 2009). Phenotypically they are supposed to 

be similar to ECFCs, but they are non-proliferative mature viable endothelial cells. They 

express CD34, CD31, CD105, and CD146 and are negative for CD45 (Mancuso and 

Bertolini, 2010). Similarly, proangiogenic haemopoietic cells are defined as those that are 

positive for CD34, CD31, VEGF2, Tie2, CD45 and AcLDL uptake, but negative for CD14 

(Hirschi et al., 2008). They represent the cells for which the term EPC has been used before 

by several groups (Asahara et al. 1998; Kalka et al 2000). They also include previously 

described CFU-Hill cells that are positive for CD31, VEGF2 and Tie2, formed myeloid 

colonies in vitro and could be distinguished from ECFCs by lack of expression of BMP2 and 

BMP4 (Hill et al., 2003; Smadja et al., 2008). Similarly, cells expressing CD34, CD45, 

CD133 and CD31 have been shown to belong to hematopoietic lineage, and most likely 

represent the cells previously classified as CACs (Estes et al. 2010). 

 

1.3.2 Isolation of human endothelial colony forming cells (ECFCs) 

Endothelial colony forming cells (ECFCs) represent EPCs with differing proliferative 

potential, and although they are believed to be synonymous with the late outgrowth 

endothelial cells, their relationship with endothelial stem cells still remains unclear. Yoder et 

al. (2007) were the first group to analyse the proliferative potential of human ECFCs in 

clonogenic assays in vitro. This assay included plating of ECFCs in collagen-coated plates 

and the number of colonies developed over 14 days were enumerated. The developing cells 

displayed a typical cobblestone morphology shown in figure 1.2, and showed differing 

proliferative potential, with high proliferative potential colony-forming cells (HPP-ECFCs) 

giving rise to low proliferative potential colony-forming cells (LPP-ECFCs) and finally to 

mature non-dividing endothelial cells. The LPP-ECFCs formed colonies of less than 2000 

cells, and failed to form colonies on replating, whereas HPP-ECFCs formed colonies 

containing greater than 2000 cells and formed at least secondary colonies. Those forming 

tertiary colonies were proposed to have much higher proliferative potential (Melero-Martin et 
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al., 2007; Melero-Martin et al., 2008; Reinisch et al., 2009; Melero-Martin et al., 2010). The 

cells that showed high proliferative potential possessed the ability to form vascular tubes in 

vitro (Zhang et al., 2009a) had high levels of telomerase activity (Yoder et al. 2007) and 

could be incorporated in to the vascular endothelium or in matrigel in vivo immunodeficient 

vasculogenic models (Kung et al., 2008; Yoder and Ingram, 2009). Several phenotypic 

studies combined with culture assays have indicated that ECFC levels are several fold higher 

in human umbilical cord blood at birth than in adult peripheral blood from a normal donor, 

suggesting the former to be a much richer source of ECFCs (Watt et al., 1980; Estes et al., 

2010). According to the revised criteria ECFCs are now classified as cells that are 

proliferative and form day 14 endothelial colonies with more than 50 cells and are positive 

for CD34, CD31, CD105, CD146 and negative for CD133, CD45, CD14, CD41a and 

CD235a (Richardson and Yoder  2010).  

 

 

Figure 1.2. Schematic representation of different approaches used to isolate EPCs. Adapted from 
(Prater et al., 2007). 
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1.4 Role of EPCs and angiogenic factors in neovascularization in humans 
It has been shown that human blood consists of a small proportion of circulating 

hematopoietic stem cells (HSCs) and much more hematopoietic progenitor cells which are 

already committed to erythroid lineage (Ho et al., 1998; Cheung et al., 2007). It has been 

proposed that these circulating hematopoietic progenitors are remnants of stem/progenitor 

cell pool formed during embryonic development. Another view is that these circulating 

progenitors have the ability to rapidly enter the tissues or bone marrow in response to 

haematological stress, thereby allowing their maturation leading to oxygen delivery to tissues 

when required (Watt et al., 2010). Similarly, human non hematopoietic stem/progenitor cells 

including endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs) are 

found in adult peripheral blood in low counts under homeostatic conditions (He et al., 2007; 

Salem and Thiemermann, 2010; Yoder, 2010). It has also been shown that these ECFCs 

along with MSCs and HSCs reside in the bone marrow postnatally and are associated with 

vascular niche and can be released into the blood in response to ischemia or under the 

influence of angiogenic growth factors (Ergün et al., 2007; Watt and Forde, 2008; 

Campagnolo et al., 2010; Klein et al., 2010; Lymperi et al., 2010).  

 

 

1.5 Proangiogenic factors and their role in vascular inflammation  

One of the most important angiogenic factors that play a vital role in angiogenesis is vascular 

endothelial growth factor (VEGF). It has been shown that patients with coronary artery 

bypass grafting and burn injuries show an increased level of VEGF in plasma for 6-12 hr 

which is linked with a concomitant mobilization of proangiogenic cells in the blood stream 

along with circulating late out growth endothelial cells (Watt et al., 2010). It has recently 

been demonstrated that in normal adult blood, levels of proangiogenic growth factors 

including CXCL-12 (also known as stromal derived factor-1)  and VEGF which are ligands 

for the chemokine receptors CXCR-7 and CXCR-4 respectively, are proportional to the 

number of proangiogenic cells (Smythe et al., 2008; Thelen and Thelen, 2008; Watt and 

Forde, 2008). 

The release of VEGF in the plasma of burns patients is associated with an increase in mRNA 

level of expression of endothelial specific genes mainly ECSM2 which is also related to the 

severity of burns in terms of total surface area of the patient (Fox et al., 2008a; Fox et al., 

2008b). ECSM2 which is also referred to as endothelial restricted cell surface receptor 
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(ECSCR) is known to increase the sensitivity of VEGF during vasculogenesis (Verma et al., 

2010; Kilari et al., 2013). This suggests that in response to vascular injury and an increase in 

VEGF and CXCCL-12 circulating levels, both proangiogenic and endothelial progenitor cells 

are mobilized into the blood. As expected there is also an increase in pro- inflammatory 

markers as a result of vessel injury that include  MCP-1, MIP-1α, IL4, IL6, IL8, IL10, IL13, 

IL15, IL17 and IFN-γ (Finnerty et al., 2008). The relationships between these factors and 

ECFCs and proangiogenic levels in the blood have still not been studied in great detail. It has 

been shown that IL-8 is a cytokine that is found in abundance in ECFCs but not in HUVEC 

and could act in a paracrine manner to promote angiogenic activity of these cells as shown by 

enhanced capillary tube formation (He et al., 2005; Nagano et al., 2007). 

  

 

1.6 Angiogenic growth factors and related cardiovascular disorders 
There has been considerable amount of work done on studying the role of mobilizing factors 

and their role in cardiovascular disorders, but till now it has been a challenge to distinguish 

between the ECFCs, circulating mature endothelial cells and proangiogenic cells. The term 

EPCs has been used widely to describe these mobilizing cells collectively. First evidence for 

a relationship between cardiovascular diseases and EPCs was demonstrated by Hill et al. 

They showed that patients who are at risk of developing cardiovascular diseases have a low 

EPC (CFU-Hill) count in their circulation and the number of these cells was inversely 

proportional to the Framingham cardiovascular risk score (Hill et al., 2003). There have been 

differences in the number of cells in patients with coronary artery diseases and conflicting 

data has been demonstrated (Leone et al., 2009). As earlier documented with severe burn 

injuries, acute myocardial infarction (AMI) can also lead to mobilization of these EPCs 

(Proangiogenic cells) into the circulation with a concomitant increase in circulating 

angiogenic factors. Enhanced VEGF levels have been shown in patients with post MI 

(Shintani et al., 2001).  This is in correlation with an increase in circulating levels of cells that 

can be identified as either circulating angiogenic cells (CACs), circulating endothelial cells 

(CECs) or endothelial colony forming cells (ECFCs). However, there was no significant 

change in expression levels of IL-3, IL-6, GM-CSF, G-CSF and b FGF in these patients post-

MI,  measured for a period of over 4 weeks (Shintani et al., 2001). Other studies have shown 

a rapid increase in circulating levels of proangiogenic cells post-MI that reached a peak at 

around 7 days and the levels then gradually declined over a period of two months (Massa et 
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al., 2005). This increase in level of progenitor cells was linked with an increase in VEGF 

levels but no significant change was seen in the plasma levels of CXCL-12 and SCF. Some 

studies have reported an increase in VEGF, CXCL-12 and G-CSF in patients after MI (Leone 

et al., 2009). It has been suggested that VEGF shows two peaks during MI, the first in acute 

phase which is within 48hrs and the other is in the sub-acute phase which is within 7 days, 

although this requires further investigation (Pannitteri et al., 2006). Similarly, in patients with 

heart failure, cells with proangiogenic capacity and forming CFU-Hill were found to be 

increased in number along with an increase in VEGF and CXCL-12 at early stages of heart 

failure (NYHA I and II) and reduced in number during later stages of heart failure, (NYHA 

III and IV) (Valgimigli et al., 2004). It has also been shown that endothelial colony forming 

cells (ECFCs) have increased levels in peripheral blood following myocardial infarction (MI) 

and they are correlated with the number of CD34
+
 CD45ˉ and CD34

+
 VEGFR-2

+
 cells, but 

are not related to CD133
+ 

CD34
+
  cell population in the blood (Massa et al., 2009). Finally, 

apart from above mentioned factors angiopoeitins, PDGF, IGF-1 and some cell surface 

receptors such as CD146, N-cadherin, Notch, VEGFR-2 and EphB4 are involved in 

endothelial cell proliferation and control the mobilization of proangiogenic cells in to the 

circulation (Al Haj Zen and Madeddu, 2009; Leone et al., 2009; Azam et al., 2010; Harhouri 

et al., 2010; Kebir et al., 2010; Padfield et al., 2010; Saharinen et al., 2010; Sheldon et al., 

2010). This further confirms that following an acute cardiovascular insult both circulating 

angiogenic cells (CACs) and ECFCs are mobilized in to the peripheral blood and play their 

respective roles.  

 

1.7 Diagnostic and therapeutic potential of EPCs 
Endothelial damage following vascular injury or tissue damage requires wound healing, 

which is divided in to four phases. It starts with haemostasis which involves deposition of 

extracellular matrix followed by inflammation and proliferation in which blood vessel 

formation takes place (Nguyen et al., 2009). The remodelling phase is also known as cellular 

phase which involves proangiogenic cells including fibroblasts and monocyte/macrophages 

and smooth muscle cells. Many studies have recently focused on demonstrating the 

relationship between circulating angiogenic cells, angiogenic growth factors and progression 

of diseases and clinical outcomes. It has been suggested by Estes et al, that a ratio between 

circulating proangiogenic cells and non-angiogenic cells of less than 1 is indicative of 

vascular disorders in humans (Estes et al., 2010). On the other hand, ECFCs are present in 



 

10 
 

human blood in low numbers and are not as easily identified as their proangiogenic and non-

angiogenic counterparts which are readily detected. Very few studies have been reported that 

have analysed these recently identified subsets in the blood of patients suffering from 

vascular injury and therefore their importance as diagnostic tools to predict vascular disease 

requires more patient groups. Studies from various groups have shown that the levels of 

circulating endothelial cells or circulating endothelial progenitors change in several cancers 

and in response to chemotherapy (Strijbos et al., 2008). Proangiogenic hematopoietic cells 

and CACs levels in peripheral blood can be used as a diagnostic tool as certain advanced 

cancers show increased levels of these cells which are reduced to normal with cancer therapy. 

Similarly, higher CAC levels in blood of breast cancer patients which were undergoing 

chemotherapy was a positive  predictor of increased survival rate, and these CAC levels have 

been used as markers for anti-angiogenic drug therapy and for detecting vascular toxicity 

following long term chemotherapy (Bertolini, 2009; Watt et al., 2010).  

 

1.8 Cell therapies for cardiovascular repair 

Several studies in animal models have shown that blood or bone marrow derived endothelial 

progenitor cells can be used for vascular repair. This was instrumental in rapid translation of 

this research into clinical scenario and clinical research settings (Watt et al., 2010). These 

included use of mononuclear cells or CD34
+
/CD133

+
 selected cells from peripheral blood or 

bone marrow. Several groups have carried out randomized clinical cellular therapy trials for 

treating acute myocardial infarction and ischemia performing intracoronary or 

intramyocardial infusion of mononuclear cells (Brunskill et al., 2009; Martin-Rendon et al., 

2009). In a more recent study it was shown that late outgrowth endothelial cells were much 

more effective than mesenchymal stem cells (MSCs) in cardiac revascularization in a swine 

model of AMI (Stevens et al., 2009; Dubois et al., 2010). Other strategies that have been 

employed  include application of induced pluripotent stem (iPS) and ES-derived cells in 

scaffolds, or use of drugs to assess the effects on vascular repair and cardiac revascularization 

(Jujo et al., 2010; Kong et al., 2010a; Maltais et al., 2010; Qian and Srivastava, 2010; 

Shrivastava et al., 2010; Evans et al., 2013). 
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1.8.1 Clinical trials for cardiovascular disorders using EPCs  

Several randomized clinical trials targeting cellular therapy for acute myocardial infarction 

and ischemic heart diseases have been carried out recently. These trials were limited to intra- 

coronary or intra- myocardial infusion of MNCs derived from peripheral blood or bone 

marrow. This resulted in an improvement in left ventricular ejection fraction (LVEF) 

particularly in those cases where ≥ 10
8
 cells were infused into the heart. This requires further 

follow up in patients to study the persistence of this positive effect over a longer period of 

time (Martin-Rendon et al., 2008a; Martin-Rendon et al., 2008b; Brunskill et al., 2009; 

Assmus et al., 2010; Chavakis et al., 2010). In another study, intracoronary cellular therapy 

after percutaneous coronary intervention for acute myocardial infarction showed signs of 

improvement in patients (Lipinski et al., 2007). In cases of non-randomized clinical trials 

some adverse effects of the cellular therapy have been observed. High number of cases with 

in-stent restenosis or denovo stenosis following intracoronary infusion of  granulocyte colony 

stimulating factor (G-CSF) mobilized MNCs or CD133
+

  progenitor cell population derived 

from bone marrow suggested an increased risk of progression of atherosclerosis (Bartunek et 

al., 2005; Mansour et al., 2006). Therefore, further analysis of randomized clinical trials is 

required to assess the efficiency of these therapies. One of the consequences of 

atherosclerosis which affects lower extremities and often referred to as peripheral artery 

occlusive disease (PAD) has been attempted to treat with these cellular therapies using 

mobilized PBMNCs and bone marrow derived cells and applying them directly to the injured 

site (Martin-Rendon et al., 2009).  

 

1.8.2 Limitations of cell therapies used for cardiovascular repair  

These studies have been carried out in non-randomized clinical trials and long term pain 

relief along with some adverse effects being reported. Randomized clinical trials, along with 

well-defined and sorted cell populations are needed to confirm the safety and efficacy of 

these therapies for PAD. All these cell therapies that have been attempted so far have some 

limitations. The trials that have been conducted in animal models of MI indicate that some of 

the cell populations derived from bone marrow such as mesenchymal stem cells do not 

remain in the heart and the improvement that occurs is due to hormonal or paracrine effects 

that limit inflammation and also prevents scar formation. This effect is also responsible for 

increased neovascularization and promoting the proliferation of stem/progenitor cells 

(Stuckey et al., 2006; Carr et al., 2008; Martin-Rendon et al., 2008c; Quevedo et al., 2009; 
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Sato et al., 2010). It has also been shown that ECFCs contributed more towards 

neovascularization than mesenchymal stem cells (MSCs) in a swine model of acute 

myocardial infarction (Dubois et al., 2010).  

1.9 Clinical applications of ECFCs 
There are three strategies that can be used once ECFCs are successfully isolated from either 

peripheral or umbilical cord blood. 

 

1.9.1 ECFCs as neovascularizing agents for cell therapy  

The first strategy involves using ECFCs as neovascularization agents for cellular therapy, 

which in a clinical scenario can be implicated for the promotion of wound healing or rescuing 

of critical ischemia in patients or may be as a source for delivering angiogenic factors. 

Intracoronary infusion of VEGF and bFGF (basic fibroblast growth factor) has been 

attempted that led to an improved blood flow but the effects were transient and patients 

presented with hypotension (Al Haj and Madeddu 2009). Gene therapy techniques have also 

been tested to deliver angiogenic factors. Adenoviral vector encoding VEGF injected in to 

ischemic tissue led to an increase in systemic VEGF. Similarly gene transfer of naked DNA 

encoding VEGF resulted in improved lower extremity blood flow demonstrated by magnetic 

angiography (Isner and Asahara, 1999; Critser and Yoder, 2010; Dubois et al., 2010; Medina 

et al., 2010a). Conversely, an anti-angiogenic strategy to suppress excess proliferation of 

endothelial cells as required in some ocular diseases has been attempted successfully 

(Anderson et al., 2010; Rajappa et al., 2010). Cells can also be used as vehicles for gene 

delivery. It has been shown that retrovirally induced myoblasts resulted in VEGF productions 

which in turn lead to 30 fold increase in the capillary density with in few days (Padfield et al., 

2010). It has been suggested that the cells involved in vascular regeneration including 

proangiogenic and mesenchymal cells can be used for controlled delivery of growth factors 

(Padfield et al., 2013). 

 

1.9.2 ECFCs as progenitor cells for vascular repair 

The second strategy involves using capacity of colony derived cells/ECFCs to differentiate 

into endothelial cells that can be used as a tool to re-endothelialize damaged blood vessels 

and maintain an intact endothelium. Prosthetic vascular grafts or stents that are coated with 

endothelial cells have been proposed as an approach to decrease the incident of neointimal 
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formation and premature graft failure and drug-eluting stents have shown to be more 

effective in that regard (Padfield et al., 2010). The implantation with cells of  left ventricular 

assist devices and grafts in human and animal models have been reported recently (Yoder, 

2010). As shown earlier, it has been suggested that proangiogenic cells that are mobilized 

from bone marrow in response to vascular injury also promote the mobilization of ECFCs 

and their proliferation and re-endothelialization of stents (Watt et al., 2010). This 

endothelialization can also be enhanced by use of proangiogenic factors that can mobilize 

these cells from bone marrow and peripheral blood and include statins, G-CSF and 

peroxisome proliferator activator antagonists. Cellular therapies involving infusion of ECFCs 

and proangiogenic cells directly to the affected area and stent-based treatments have been 

tested before and include VEGF gene-eluting stents and CD34 cell capture stents (Padfield et 

al., 2010; Watt et al., 2010). 

 

1.9.3 ECFCs for tissue engineering applications  

Third strategy involves using the ECFCs for tissue engineering applications, and as a source 

of endothelium in forming a microvasculature. The scarcity of transplantable tissues and 

organs has led researchers to think in terms of creating an organ or a tissue that can be a 

suitable replacement for human transplantation. For this to happen, a source of vascular 

supply is the most important issue along with specific progenitor cells, since in vivo, oxygen 

and nutrient supply is essential for maintaining a three-dimensional tissue construct. In an in 

vitro system various attempts have been made to form a vasculature which mainly involved 

culturing endothelial cells in collagen gels, which formed tubular structures spontaneously. 

Similarly, human umbilical vein endothelial cells have been co-cultured with fibroblasts and 

keratinocytes resulting in a graft containing properly developed capillaries with a basement 

membrane (Black et al., 1998). Endothelial cells, when cultured together with mesenchymal 

cells have been shown to play a role in stabilizing the micro vessels by recruiting pericytes to 

their luminal surface. Human umbilical vein endothelial cells have also been used after 

transfection with bcl2 in fibrinogen or collagen gels in order to achieve long term survival 

with the formation of HUVEC lined micro vessels (Zheng et al., 2004). Human umbilical 

vein endothelial cells have also been cultured together with mouse myoblasts along with 

embryonic fibroblasts to produce skeletal muscle constructs in an in vitro system. This 

construct was implanted  in vivo and it was observed that the developed vasculature was 

successfully maintained (Levenberg et al., 2005). It has been reported that HUVECs along 
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with 10T1/2 mesenchymal progenitors when seeded in fibronectin type I collagen gel and 

implanted in to SCID (severe combined immunodeficiency) mice resulted in the formation of 

blood vessels that became connected to the circulation and survived in vivo for more than a 

year (Koike et al., 2004). The use of human bone marrow derived mesenchymal stem cells 

(hMSCs) and EPCs have been attempted by Au and colleagues who showed that these cells 

(MSCs)  can be successfully used as vascular progenitors and played an important role in 

stabilizing newly formed blood vessels by functioning as perivascular progenitors (Au et al., 

2008b). The blood vessels formed remained stable in vivo for more than four months. More 

recently, it has been shown that blood derived ECFCs and human dermal fibroblasts can lead 

to the formation of micro vessels in dermal substitutes in vitro (Hendrickx et al., 2010). They 

further extended this study to produce an in vivo model of wound healing (Hendrickx et al., 

2010; Watt et al., 2010). ECFCs and hMSCs have been shown to be cultured in animal serum 

free cultures in an in vitro system producing a microvasculature in immunodeficient mice 

(Reinisch et al., 2009). More recently, it has been shown that human cord blood derived 

ECFCs when administered together with MSCs resulted in an increase in in vivo 

vasculogenic response and ECFCs were found to be incorporated into neovessels  (Schwarz 

et al., 2012).  

 

1.9.4 Limitations in using ECFCs for vascular repair  

As reviewed by kirton and Xu most of the studies conducted so far for vascular repair have 

been conducted in animal models or have used ECFCs in human clinical trials which have 

been difficult to obtain in large numbers (Kirton and Xu, 2010). This is important in the 

context that cellular therapies for cardiovascular repair that have used blood or bone marrow 

derived mononuclear cells, and CD34
+ 

and CD133
+
 cells have resulted in very low level of 

improvement in left ventricular ejection fraction (Martin-Rendon et al., 2009). This is 

therefore essential to study in detail the source of origin of ECFCs. As till now, this is unclear 

whether ECFCs that reside within vessel wall and close to the damaged vasculature take part 

in the repair or the cells that are mobilized from the bone marrow in response to vascular 

injury and home into sites of damaged endothelium take part in this process. 

One of the approaches that have been suggested are to use autologous ECFCs and support 

proangiogenic cells with or without scaffolds to promote neovascularization, as this will 

decrease the risk of transplant rejections by overcoming human leukocyte antigen systems. 
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Another challenge is that the ECFCs occur in low counts postnatally, and it is important to 

generate sufficient proliferating ECFCs in vitro. These ECFCs have been expanded in 

specialized and defined protein conditions and have maintained their phenotypic 

characteristics. More recently, an exciting attempt with varying degree of success has been 

made to generate endothelial cells from induced pluripotent cells (Taura et al., 2009). These 

cells and factors that are involved in the regulation of revascularization and maintenance of 

an intact endothelium can be used as a future source of autologous cell therapy or in drug 

discovery. Grafting of a human donor trachea that was precolonized with chondrogenic and 

epithelial cells in to a patient suffering from tuberculosis has been shown to produce a 

functional trachea that was vascularized by patients own cells (Hollander et al., 2009). 

 

1.10 The role of oxidative stress and endothelial progenitor cells  
Oxidative stress has been shown to be involved in wide range of pathogenic diseases due to 

weakened antioxidative mechanisms or overproduction of free radicals that overcome body 

scavenging mechanisms. To study cardiovascular diseases mainly atherosclerosis several 

experimental models have been proposed that support the fact that reactive oxygen and 

nitrogen species play a role in atherosclerosis and other vascular diseases. The main models 

that have been used include using extracellular sources of superoxide (O2
-
) and hydrogen 

peroxide (H2O2), normobaric hyperoxia (elevated oxygen levels) and oxidized low-density 

lipoprotein induction. All these methods have been used to induce oxidative stress in cell 

culture systems. Induction of oxidative stress can be achieved by two different approaches, 

either by increasing the free radical load or by disrupting anti oxidative defence mechanism.  

Hydrogen peroxide can be added directly to the culture medium that results in rapidly 

decreasing concentration of H2O2. It is mainly stable in most culture systems but in the 

presence of cells its concentration declines quickly depending upon cell density and presence 

of catalase enzyme. Its main advantage is that it readily penetrates the cellular envelope. 

Superoxide can also be added directly in the culture medium in the form of potassium 

superoxide. It also leads to rapidly decreasing concentrations but is converted to hydrogen 

peroxide by enzymatic reaction which can also produce hydroxyl ion. The effects are similar 

to hydrogen peroxide but it does not readily penetrate the cellular envelope. Also, catalase 

needs to be added to the media in order to avoid hydrogen peroxide and subsequent hydroxyl 

formation. Exposure to hyperoxia is mainly performed by incubating cells for several days 
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and the main effect is produced by direct interaction of oxygen with the cells instead of 

oxygen reacting with the media producing substances that can affect the cells. The main 

difference between extracellular hydrogen peroxide and superoxide in comparison to 

hyperoxia is that the later requires prolonged exposure. We, therefore chose hyperoxia as we 

required to grow cells for long term culture and with hydrogen peroxide there is this issue of 

rapid decrease in concentration. 

It has been shown recently that endothelial progenitor cells play an important role in postnatal 

neovascularization and are involved in re-endothelialization of disrupted endothelium 

(Asahara et al., 1999; Griese et al., 2003; Zampetaki et al., 2008; Wang et al., 2013). These 

EPCs have been isolated from several sources that include bone marrow, peripheral blood 

and cord blood derived mononuclear cells (Murohara et al., 2000; Kawamoto et al., 2001). 

Animal models of hind limb ischemia and myocardial infarction have shown improved blood 

flow as a result of endogenous mobilization of EPCs (Takahashi et al., 1999; Kawamoto et 

al., 2003). Several clinical studies have mentioned that EPC numbers have been affected by 

various risk factors that also account for coronary artery diseases thus causing a challenge for 

promotion of neovascularization by these EPCs (Vasa et al., 2001; Taniyama and Griendling, 

2003; Werner and Nickenig, 2006). It has been proposed and shown that oxidative stress that 

leads to an increase in reactive oxygen species (ROS) production and a decrease in 

antioxidant enzyme expression, can promote vascular senescence and is considered to be one 

of the main factors involved in coronary artery disease (CAD) along with smoking, aging, 

diabetes and hypertension (Cai and Harrison, 2000).  Oxidative stress has been implicated in 

a wide range of vascular disorders leading to DNA damage, decreased nitric oxide (NO) 

availability and change in redox state as a result of increased ROS production (Sugamura and 

Keaney Jr, 2011; Higgins et al., 2012; Williamson et al., 2012). Oxidative stress has been 

shown to be involved in the progression of atherosclerosis as ROS has shown to directly 

result in endothelial dysfunction (Cai and Harrison, 2000; Taniyama and Griendling, 2003; 

Touyz, 2004). It is suggested that ROS plays a key role in the progression of atherosclerosis, 

as oxidative stress affects EPC survival and mobilization (Torsney et al., 2005; Yao et al., 

2006). ROS has been shown to directly affect the endothelium and increased superoxide 

accumulation decreases EPC activity and survival (Griendling and FitzGerald, 2003a; Thum 

et al., 2007). Treatment of EPCs with high levels of hydrogen peroxide has shown induced 

oxidative stress and progression towards apoptosis and reduced EPC count (Kao et al., 2001; 

Hung et al., 2003; Urbich et al., 2005). In an animal model of myocardial infarction, 
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increased ROS production has been associated with reduced EPC level (Thum et al., 2006). 

Oxidative stress has also led to the mobilization of dysfunctional EPCs which has reduced 

capacity to migrate and home to sites of vascular injury   (Schatteman et al., 2000; Tepper et 

al., 2002). This oxidative damage can be linked to vascular aging, as this cellular damage due 

to increased aging can reduce EPC function resulting in an increased risk of vascular 

pathologies. It has been shown that both early and late EPCs are more resistant to this 

oxidative stress than mature endothelial cells (HUVEC) as they express higher level of 

antioxidant enzymes (Dernbach et al., 2004; He et al., 2004a; Cai et al., 2006; Williamson et 

al., 2012). This suggested that these EPCs can be more efficient cells involved in vascular 

repair as a result of an ischemic insult, owing to this improved resistance to oxidative stress. 

However, it has been shown recently that early EPCs or circulating angiogenic cells (CACs) 

are cells of myeloid origin and express certain monocyte-macrophage lineage markers 

including CD45, CD14 and CD115 and are proangiogenic but do not take part in vascular 

repair directly, whereas late EPCs or endothelial colony forming cells (ECFCs) have been 

shown to be the EPCs involved in vascular repair although they themselves are not shown to 

be completely resistant to oxidative stress, but are better suited to these conditions as 

compared to mature endothelial cells (Ingram et al., 2007; Yoder et al., 2007). Hydrogen 

peroxide induced oxidative stress has shown to impair EPC function although they are known 

to have better equipped intracellular mechanisms to combat oxidative stress but they are still 

not resistant to this stress (Dernbach et al., 2004; He et al., 2004a; Ingram et al., 2007).  

However, this antioxidative capacity of EPCs has been shown to diminish with aging, and 

early EPCs isolated from young subjects have shown higher levels of antioxidant enzyme 

glutathione peroxidase (GPx-1) as compared to old ones (He et al., 2009) and were found to 

be more resistant to stress induced apoptosis. There has been some conflicting data in terms 

of effect of oxidative stress on EPCs, but it is mainly due to the fact that these EPCs are better 

classified as early and late EPCs depending upon their appearance in an in vitro culture 

system. These two EPC types are different from each other morphologically and in terms of 

clonogenic and proliferative capacity (Hur et al., 2004; Deschaseaux et al., 2007). These 

early and late EPCs have been used by researchers for testing the effect of oxidative stress by 

exposing these cells to hydrogen peroxide after culturing in an in vitro system. It has been 

reported that early EPCs have shown to express both endothelial and monocyte/macrophage 

cell surface antigens and were found to be tolerant to oxidative stress, whereas late EPCs or 

ECFCs have shown to be sensitive to oxidative stimuli, do not express monocyte/macrophage 

markers and show much higher proliferative potential (Dernbach et al., 2004; Ingram et al., 
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2004; Ingram et al., 2007). In a more recent study, late EPCs have been used to test the effect 

of hydrogen peroxide induced oxidative stress and it has been shown that it leads to a 

decrease in cell survival and causes increased apoptosis which was dependent  on hydrogen 

peroxide dosage (Wang et al., 2013). 

Aging also leads to an up regulation of Angiotensin II which is known to promote 

atherosclerosis by enhancing ROS production and associated cell death (Baylis et al., 1997; 

Wang et al., 2003; Imanishi et al., 2005). Similarly, it has been shown recently that EPC 

number was increased in a coronary artery disease patient when treated with an angiotensin II 

receptor antagonist (Endtmann et al., 2011). It has been shown that forkhead hemeobox type 

O (FoxO) family of transcription factors 1, 3a and 4 are involved in apoptosis and cell 

survival (Puig and Mattila, 2011). The activity of foxOs is mainly dependent on their nuclear 

localization and are phosphorylated by Akt kinase in the presence of serum and growth 

factors leading to their nuclear removal and deactivation (Accili and Arden, 2004; Zhang et 

al., 2011). However, in the presence of oxidative stress localization of the foxOs to the 

nucleus occurs resulting in activation of foxO target genes that include a pro-apoptotic gene 

Bim that promotes apoptosis (Dijkers et al., 2000; Storz, 2011). More recently, role of 

foxO3a has been studied and it has been shown that oxidative stress reduces tube forming 

ability of EPCs and this occurs through a foxO3 dependent mechanism (Wang et al., 2013). It 

has been shown that in mammals all three above mentioned foxO proteins are present in 

EPCs performing different functions (Potente et al., 2005; Marchetti et al., 2006; Spinetti et 

al., 2013). There have been studies that reported insights into mechanisms involving 

oxidative stress induced EPC dysfunction and revealed that foxOs transcription factors 

mainly work by inhibition of cell growth eventually leading to apoptosis (Dejana et al., 

2007). 

 

1.11 Redox control mechanisms and angiogenesis 
Redox control and signalling remains a topical area in vascular research. Endothelial cells 

mediate ROS production in the form of superoxide and hydrogen peroxide which act as 

messengers leading to a growth factor dependent response,  promoting angiogenesis (Case et 

al., 2008). NADPH oxidase is considered to be the most important source of ROS in 

vasculature (Griendling et al., 2000; Lassègue et al., 2012). NADPH oxidase (NOX) derived 

ROS has been shown to be implicated in several cardiovascular diseases and increased ROS 
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levels have been found in both human and animal models (Lacy et al., 2000; Touyz and 

Schiffrin, 2001; Álvarez et al., 2008; Brandes et al., 2010; Lassègue and Griendling, 2010). 

Interestingly, it has been shown that two important angiogenic factors vascular endothelial 

growth factor (VEGF) and angiopoeitin-1(ANG1) promote endothelial cell migration via 

activation of NOX2 expressing NADPH oxidase (Ushio-Fukai et al., 2002; Harfouche et al., 

2005). It has been shown that increased expression of Nox2 is linked with enhanced 

production of ROS in murine angiogenic models of hind limb ischemia and retinopathy (Al-

Shabrawey et al., 2005; Tojo et al., 2005). Similarly, Nox2 null mice have shown inhibition 

of angiogenesis in response to ischemia and VEGF signalling.  

ASK1 protein is another important regulator of angiogenesis that is controlled by redox 

signalling. This protein belongs to the family of mitogen-activated protein kinase (MAP 

kinases) and is involved in activation of P38 kinase pathway. ASK1 is known to play a role in 

regulating oxidative stress induced apoptosis and cellular senescence (Tobiume et al., 2001). 

ASK1 is also involved in cytokinesis and proliferation and a hyperglycaemia induced ASK1 

activation leads to cell senescence in endothelial cells (Izumi et al., 2003; Matsuzawa et al., 

2005; Yokoi et al., 2006). ASK1 is also involved in activation of plasminogen activator 

inhibitor-1 (PAI-1) expression in endothelial cells. PAI-1 is an important protein involved in 

fibrinolysis and aging-related thrombosis (Juhan-Vague et al., 1989). ASK1 deficient mice 

has  also been shown to be involved in endothelial dysfunction caused by nitric oxide (NO) 

deficiency (Yamashita et al., 2007). ASK1 is therefore, proposed to be a therapeutic target in 

patients to combat vascular aging (Case et al., 2008). 

Glutathione peroxidase 1 (GPx-1) is another important protein involved in redox signalling 

that plays a role in vascular homeostasis. GPx-1 has been shown to play a protective role in 

preventing oxidative damage to the endothelium by reducing both lipid peroxides and 

hydrogen peroxide (Raes et al., 1987; Maiorino et al., 1995). Vascular injury has been 

demonstrated to be linked with a reduction in GPx-1 activity and atherosclerotic plaques 

isolated from carotid arteries have shown decreased expression of GPx-1 (Lapenna et al., 

1998). More importantly, over expression lead to restoration of endothelial function in 

endothelial cells treated with high levels of homocysteine (Weiss et al., 2001). Several mice 

studies have demonstrated that loss of GPx-1 is implicated in endothelial dysfunction and 

several other vascular abnormalities and renders them vulnerable to ischemic insult (Forgione 

et al., 2002a; Forgione et al., 2002b). 
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1.12 Tumour angiogenesis and its role in carcinogenesis 

Tumour progression requires orchestration of a micro vascular network and in order to 

achieve that goal tumour cells secrete wide range of cytokines and angiogenic growth factors 

thus promoting angiogenesis and in turn tumorigenesis (Folkman, 1971; Hanahan and 

Folkman, 1996; Nör and Polverini, 1999; Naumov et al., 2006). There are several signalling 

pathways and growth factors that are involved in coordinating and regulating this complex 

process, but three main growth factor/receptor systems play a central role that include 

VEGF/VEGFR2, ANG1/TIE2 and PDGF-B/PDGFR-β (Cébe-Suarez et al., 2006; Naumov et 

al., 2006; Augustin et al., 2009; Gaengel et al., 2009). Role of VEGF as an angiogenic 

growth factor is well documented as it is expressed by most tumour cell types and has shown 

to promote endothelial cell migration and proliferation (Dvorak, 2002; Ferrara, 2005). VEGF 

has also shown involvement in EC survival by up regulation of Bcl-2 expression mediated 

through its receptor VEGFR-2 (Gerber et al., 1998). VEGF along with angiopoeitins (1 and 

2) seem to play a coordinated and complementary role in the development of blood vessels. 

The ANG/TIE2  pathway is considered to be  the gateway of angiogenesis, as the endothelial 

cell phenotype is determined by regulation of the balance between ANG1 and ANG2 

expression (Tait and Jones, 2004). When ANG1 levels are increased with respect to ANG2 

endothelial cells shift to quiescent state and maturation and stabilization of blood vessels take 

place along with promotion of interaction between endothelial cells and supportive cells 

mainly pericytes (Zheng et al., 2013). On the other hand, overexpression of ANG2 relative to 

ANG1 leads to active migration and proliferation of ECs in the presence of VEGF. Pericytes 

are mural cells that play a supportive role in angiogenesis by extending cytoplasmic 

projections over ECs surface so that they become interconnected. This interaction between 

pericytes and endothelial cells is essential for the maturation and remodelling of the vascular 

system. PDGF-B is involved in proliferation of pericytes and also acts as a chemotactic factor 

that promotes the migration of pericytes to the site of blood vessel formation (Gaengel et al., 

2009).  
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1.13 Hallmarks of aging 

Aging is normally defined as a gradual and time-dependent decline in body functions 

associated with cellular damage that affects every living organism (Kirkwood, 2005; Vijg and 

Campisi, 2008; Gems and Partridge, 2013). In addition to cancer, there are several clinically 

important pathologies including vascular inflammation and atherosclerosis which manifest 

themselves as age-related diseases and are characterized by uncontrolled cell growth and 

hyperactivity (Blagosklonny, 2008). More recently, effort has been attempted at 

characterizing the molecular and cellular hallmarks of aging and nine candidate processes 

have been categorized as contributors towards aging. These include  as shown in figure 1.3, 

genomic instability, telomere dysfunction, epigenetic modifications, stem cell exhaustion, 

altered intercellular communications, cellular senescence, mitochondrial dysfunction, 

abnormal nutrient regulation and loss of proteostasis (López-Otín et al., 2013). The processes 

which have been relevant to our area of research are discussed in detail below. 

 

 

      Figure 1.3. Schematic representation of hallmarks of aging. Adapted from (López-Otín et al., 2013). 
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1.13.1 Telomere attrition and dysfunction 

There is strong evidence that aging encompasses genomic damage and factors that promote 

this damage can lead to accelerated aging. It has been shown recently that enhancement of 

chromosomal segregation can lead to extended longevity in mammals (Baker et al., 2013). In 

cases of progerias which are linked nuclear defects there is enough evidence to show that 

treatments can prevent premature aging (Fong et al., 2006; Varela et al., 2008; Gregg et al., 

2012; Kane et al., 2013). This suggests that exploring ways to stabilize nuclear and 

mitochondrial genome by having a better control on  aspects that govern them such as DNA 

repair mechanisms can have a positive effect on normal aging (López-Otín et al., 2013). 

DNA damage that accumulates with normal aging seems to affect the genome randomly, but 

there are specific region known as telomeres that are more susceptible to these age-related 

changes (Blackburn et al., 2006).  

DNA polymerases do not have the capacity to completely replicate the terminal ends of the 

linear DNA molecule, and this function is the characteristic of a specialized DNA polymerase 

known as telomerase. The telomerase is however, not expressed by most mammalian somatic 

cells causing gradual loss of telomere-protective sequences from chromosome ends. This 

explains the phenomena of replicative senescence, which allows limited proliferative 

potential of cells grown in an in vitro culture system, also termed as Hayflick limit (Hayflick 

and Moorhead, 1961; Olovnikov, 1996). Overexpression of telomerase has been shown to 

confer immortality to cells without even leading to oncogenic transformation (Bodnar et al., 

1998). Telomere shortening is therefore considered as a part of normal aging process in both 

mice and humans (Blasco, 2007). Telomeres are bound by a multiprotein complex known as 

shelterin which prevents the access of DNA repair proteins to them and blocks the repair of 

telomeres when DNA stands break, resulting in fusion of chromosomes (Palm and De Lange, 

2008). As a result of this restricted DNA repair, when telomeres are succumbed to DNA 

damage, this usually is persistent and leads to senescence and apoptosis (Fumagalli et al., 

2012; Hewitt et al., 2012).  Human telomerase deficiency is associated with premature 

disease progression, mainly in pulmonary fibrosis, dyskeratosis congenita  and also aplastic 

anaemia all of which are related to reduced regenerative capacity of the tissues (Armanios 

and Blackburn, 2012).  
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1.13.2 Mitochondrial dysfunction and reactive oxygen species (ROS) 

 

The relationship between mitochondrial dysfunction and aging has been discussed and 

studied for a long time but still most aspects are not well understood. It has been proposed 

that as cells undergo aging, the respiratory chain loses its efficiency and leads to electron 

leakage causing reduced ATP production (Green et al., 2011). These findings stem from the 

mitochondrial free radical theory of aging, first proposed by Harman et al.1965. In the recent 

past, there has been a lot of development in re-evaluating this free radical theory and 

considerable amount of work has been done to investigate the links between ROS and 

mitochondrial damage (Hekimi et al., 2011). Several studies have come up in last few years 

that have reported interesting but conflicting data in terms of the effect of ROS production 

and aging in different species. This includes the observation that increased ROS production 

plays a role in prolonging the life span of yeast and C. elegans (Doonan et al., 2008; Van 

Raamsdonk and Hekimi, 2009; Mesquita et al., 2010). In mice however, genetic alterations 

causing an increase in ROS production and subsequent mitochondrial damage did not prevent 

aging (Van Remmen et al., 2004; Zhang et al., 2009b). Similarly, an increase in antioxidative 

defence mechanisms did not cause an extension of life span in mice (Pérez et al., 2009) and 

interestingly, genetic alterations that damaged mitochondrial activity but did not increase 

ROS levels lead to accelerated aging (Trifunovic et al., 2004; Kujoth et al., 2005; Vermulst et 

al., 2008; Edgar et al., 2009; Hiona et al., 2010). These studies have resulted in researchers 

moving towards re-evaluating the role of ROS in aging and several studies have recently 

reported that intracellular signalling mechanisms have shown enough evidence that ROS  

activation  occurs in response to physiological stress and result in cell proliferation and 

survival (Ristow and Schmeisser, 2011; Sena and Chandel, 2012). Hekimi et al, 2011 have 

recently proposed a conceptual framework to redefine the role of ROS in aging. According to 

this hypothesis, as the chronological age increases the cellular stress and damage increases as 

well and ROS functions to balance this damage in order to maintain the survival. This is 

referred to as a compensatory homeostatic response, but after reaching a certain limit this 

counteracting mechanism becomes weak and instead of preventing this damage it causes 

aggravation of this   age-associated destruction (Hekimi et al., 2011).  
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 Figure 1.4. Mitochondrial life cycle involving biogenesis and mitophagy. Adapted from (Kluge et al., 
2013). 

 

It has been shown recently that in DNA polymerase γ deficient mice, mitochondrial 

dysfunction can accelerate the aging process on its own and independently of any damage 

caused by ROS production (Edgar et al., 2009; Hiona et al., 2010). Several mechanisms have 

been proposed for this to occur which include disrupted apoptotic signalling due to 

mitochondrial dysfunction resulting in permeabilization of mitochondria in response to 

physiological stress (Kroemer et al., 2007) and promoting inflammatory response by 

triggering ROS or permeabilization mediated  activation of inflammatory cytokines (Green et 

al., 2011). Another implication of mitochondrial dysfunction is its impact on cell signalling 

pathways by affecting the links between endoplasmic reticulum and outer mitochondrial 

membrane (Raffaello and Rizzuto, 2011). Telomere dysfunction in telomerase deficient mice 

has been shown to be a consequence of p53-mediated reduction in the expression of PGC-1α 

and β resulting in repression of mitochondrial biogenesis (Sahin and DePinho, 2012). This 

mitochondrial compromise also occurs in physiological aging but can be partially reversed by 

activation of telomerase, as shown recently in wild type mice (Bernardes de Jesus et al., 

2012). The NAD
+
-dependent histone deacetylase SIRT1, which is the human ortholog of Sir2 

(Silent information regulator), has a potential role in longevity and metabolic functions in 

mammals and  interacts with PGC-1α and deacetylates it at 13 lysines in different domains of 

the protein (Rodgers et al., 2005). SIRT1 has also been shown to play a role in modulation of 

mitochondrial biogenesis through regulation of this transcriptional coactivator, PGC-1α and 

is also involved in regulating autophagy that removes degraded mitochondria (Rodgers et al., 

2005; Lee et al., 2010). Similarly, SIRT3 which is a recently identified downstream target of 
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PGC-1 alpha (Kong et al., 2010b) is a mitochondrial deacetylase (In et al., 2008) that targets 

several important enzymes which play a key role in energy metabolism (Lombard et al., 

2007). SIRT3 has been shown to be involved in regulating enzymes that form part of the 

respiratory chain, β oxidation of fatty acids, TCA cycle and ketogenesis (Giralt and 

Villarroya, 2012). More importantly, SIRT3 is involved in controlling the rate of ROS 

production by deacetylating an important antioxidative enzyme MnSOD in response to stress 

(Qiu et al., 2010; Tao et al., 2010). This suggests that telomeres along with sirtuins are 

involved in regulation of age associated diseases by controlling mitochondrial function. 

Mitochondrial biogenesis and metabolism can also be altered by various other mechanisms 

that include mtDNA mutations, mitochondrial protein oxidation, derangement of respiratory 

chain complexes and alterations in mitochondrial membrane lipid composition and defective 

functioning due to improperly managed fission and fusion events (Wang and Klionsky, 

2011). Defective mitophagy also leads to impaired mitochondrial biogenetics resulting in low 

mitochondrial turn over contributing towards aging, although it has recently been shown that 

alternate day fasting can improve health by reducing mitochondrial degradation (Castello et 

al., 2011; Safdar et al., 2011). It is interesting to note that this increase in health span occurs 

in part due to activation of autophagy which is triggered by fasting and endurance training  

(Rubinsztein et al., 2011). Activation of autophagy however, is not the only pathway that can 

improve health span and counteract aging and additional mechanisms promoting longevity 

play a role (Kenyon, 2010). More recently a concept has evolved that has gained wide 

interest explaining mitochondrial dysfunction during aging process termed as mitohormesis. 

This suggests that toxic treatments trigger a beneficial compensatory  response and this 

overcomes the existing mitochondrial damage and over repairs the organelle leading to 

improvement in overall cellular fitness much more than that of the predamaged condition  

(Calabrese et al., 2011). This further explains the earlier observation that mild respiratory 

deficiencies can help in improving the lifespan of an individual if they do not lead to severe 

mitochondrial damage that can be pathogenic (Haigis and Yankner, 2010). As shown in C. 

elegans these hormetic responses can ensue this defence mechanism in tissues that have 

defective mitochondria as well as in those distant tissues which do not have this 

mitochondrial dysfunction (Durieux et al., 2011). There is strong evidence that compounds 

such as resveratrol and metformin act as triggers leading to mild mitochondrial damage 

causing low energy state by activation of AMPK and increasing adenosine 

monophosphate(AMP) levels (Hawley et al., 2010). Metformin has shown to increase the 

lifespan in C. elegans by activation of AMPK mediated compensatory stress response that 
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proved to be beneficial and also involved antioxidant regulator NRF2, which is considered to 

be an important player in regulating and combating oxidative stress (Onken and Driscoll, 

2010). More recently, it has been shown that metformin promotes longevity in worms by 

inhibiting methionine and folate metabolism of their intestinal flora (Cabreiro et al., 2013). 

Regarding the effects and impact of metformin usage in mammals not a lot has been shown in 

terms of life span improvement, although early administration of metformin has been 

reported to extend the life span in mice (Anisimov et al., 2011). Resveratrol and an important 

sirtuin activator SRT1720 have been shown to activate PGC-1 alpha and improve 

mitochondrial function and prevent the metabolic damage (Baur et al., 2006; Lagouge et al., 

2006; Feige et al., 2008; Minor et al., 2011). Resveratrol unlike metformin has shown to have 

no effect in promoting longevity in mice under normal dietary conditions (Pearson et al., 

2008; Strong et al., 2013). The role of PGC-1 alpha in improving mitochondrial activity has 

further been confirmed, as PGC-1 alpha overexpression leads to an extension of life span in 

Drosophila (Rera et al., 2011). Increase in lifespan of flies and mice has also been achieved 

recently by chemical administration of uncoupler 2-4- dinitrophenol and by genetically 

engineered overexpression of potent uncoupler protein UCP1 (Gates et al., 2007; Caldeira Da 

Silva et al., 2008; Fridell et al., 2009; Mookerjee et al., 2010). Finally, this has now been 

confirmed by several studies that there exists an important relationship between 

mitochondrial activity and aging and mitochondrial damage can lead to acceleration in the 

progression of aging. This still remains to be seen if  by improving mitochondrial activity, an 

extension in the lifespan of mammals can be achieved successfully and already several 

evidence exists that provide a link to that possibility (Trifunovic et al., 2004; Kujoth et al., 

2005; Vermulst et al., 2008; Ristow and Schmeisser, 2011; Ivanova and Yankova, 2013). 
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Figure 1.5. Illustration of mitochondrial contents in endothelial cells. Electron transport chain 
complexes are shown in relation to reactive oxygen species generation. Adapted from (Kluge et al., 
2013).  

            

 

1.13.3 Cellular senescence and age progression  

 

Cell senescence is simply referred to as the cell cycle arrest which is linked to well defined 

phenotypic changes (Campisi and D'Adda Di Fagagna, 2007; Collado et al., 2007; Kuilman 

et al., 2010; López-Otín et al., 2013). This term was first coined by Hayflick who cultured 

human fibroblasts in vitro for several passages (Hayflick and Moorhead, 1961). It has now 

been shown that this senescence occurs as result of telomere shortening (Bodnar et al., 1998). 

More recently, it has been suggested that apart from telomere shortening there are other 

factors that promote cell senescence that include non telomeric DNA damage and 

derepression of INK4/ARF  loci both of which are key players involved in chronological 

aging and induce aging (Collado et al., 2007). DNA damage is a good indicator of 

accumulation of senescent cells in tissues undergoing aging process and several studies have 

shown that these cells can be identified using senescence-associated β-galactosidase (SABG) 

staining that  has been confirmed in young and old mice liver (Dimri et al., 1995; Wang et 

al., 2009). Several other tissues showed similar result patterns with staining for senescent 

cells including lung, spleen and skin and involved detailed quantification of DNA damage 

and β-gal staining showing high percentage of senescent cells in old mice as compared to 

young ones (Wang et al., 2009). It was interesting to note that no change was observed in 

heart, muscle and kidney tissues suggesting that cell senescence is not a feature of all aged 
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tissues and as shown in tumour senescent cells, an extremely efficient immune system 

regulates removal of senescent cells regularly by phagocytosis (Wang et al., 2009; Hoenicke 

and Zender, 2012). It has been proposed for a long time that as the number of senescent cells 

keeps on increasing with advancing age there has to be some relationship between aging and 

cell senescence. This could be due to a decrease in rate of elimination of senescent cells as a 

result of attenuated immune system, a consequence of aging  or due to an increase in 

generation of senescent cells because of aging (Xue et al., 2007; Kang et al., 2011). More 

recently it has been suggested that as senescence mainly serves the purpose of preventing the 

propagation and promoting the clearance of damaged cells by maintaining a strict 

surveillance of immune system, an efficient cell replacement system is required that 

eliminates senescent cells and at the same time mobilizes progenitor cells to compensate for 

the number of lost senescent cells and re-establishing the cell count (Kuilman et al., 2010; 

Rodier and Campisi, 2011). It has recently been shown that senescent cells acquire a specific 

type of secretome which is a mixture of proinflammatory cytokines and metalloproteinase    

referred to as senescence-associated secretory phenotype and promotes aging process 

(Kuilman et al., 2010; Rodier and Campisi, 2011). Apart from DNA damage there are several 

other important factors that can lead to senescence, and mitogenic signalling is one such 

factor that plays a vital role in progression of senescence (Gorgoulis and Halazonetis, 2010). 

A recent study has mentioned that more than fifty oncogenes and mitogens can induce cell 

senescence as a result of the compensatory response to this form of stress and mainly involve 

on of these two pathways namely p16INK4a/Rb and p19ARF/p53 (Serrano et al., 1997). 

These two important pathways that are involved in aging are related to the chronological age 

of tissues as shown in humans and in mice (Krishnamurthy et al., 2004). Levels of p16
INK4a

 

and p19
ARF

 have been used to assess the age of tissues in both mice and humans (Ressler et 

al., 2006). To date there has not been any other gene or protein identified that is so closely 

associated with chronological aging as these two genes. This relationship has been so robust 

that it has been tested across species and tissues and proves to be the most validated means to 

distinguish between young and old cells (Jeck et al., 2012). Both these genes are encoded by 

the same locus which is INK4a/ARF locus and a recent analysis has revealed that genome 

wide association study of more than 300 has identified this locus to be genetically linked and 

involved in several important age-associated pathologies namely Alzheimer‟s disease, 

diabetes mellitus and most of  the cardiovascular  diseases (Jeck et al., 2012). This confirms 

the status of this gene as the most well documented gene locus that is involved in regulation 

of human aging and associated age-related human pathologies. The role of p16
INK4a

 and p53 



 

29 
 

in promoting senescence has been studied in detail and it has been proposed that senescence 

induced due to these two can lead to physiological aging. In several mouse models, mutant 

mice that show signs of premature aging due to persistent cell damage undergo further 

deterioration when either p16
INK4a

 or p53 are eliminated (Varela et al., 2005). Similar results 

have been obtained with mice having chromosomal aberration due to BubR1 mutation (Baker 

et al., 2011). It has been shown that overexpression of either p16
INK4a

, p19
ARF

, or p53 in mice 

can lead to extended longevity (Matheu et al., 2007; Matheu et al., 2009). Similarly, 

amelioration of progeroid phenotypes have been observed in mice that are p53 deficient 

(Calderwood et al., 2009; Ruzankina et al., 2009). To summarize this, the induction of p53 

and INK4a/ARF occurs as a compensatory response to prevent accumulation of damaged 

cells and progression of aging and cancer, but this can in certain advance conditions  exhaust 

tissue regenerative capacity and might result in accelerated aging (Matheu et al., 2007; 

Matheu et al., 2009; Baker et al., 2011).   

 

 

1.13.4 Energy sensing network and role of AMPK and sirtuins  

 

Growth hormone (GH) produced from anterior pituitary gland is the main somatotrophic axis 

in mammals and its most important mediator is insulin like growth factor-1(IGF-1) which is 

secreted in response to different cell types, most specifically by hepatocytes in the liver. As 

the name suggests IGF-1 acts in the same manner as insulin and uses the same intercellular 

signalling pathway informing cells of the presence of glucose. Due to this reason, insulin and 

insulin like growth factor-1signalling is collectively known as “insulin and IGF-1 signalling 

(IIS) pathway” (Kluge et al., 2013). This IIS pathway is considered to be the most important 

and evolutionary conserved aging-controlling pathway and mainly targets two of the aging 

associated complexes including FOXO family of transcription factors and mTOR complexes   

(Fontana et al., 2010; Kenyon, 2010; Barzilai et al., 2012). It has been interesting to note that 

genetic mutations or polymorphisms that affect growth hormone (GH) or its mediator IGF-1 

and any of its downstream targets including Akt, FOXO or mTOR  results in longevity, and 

again emphasizing the impact of energy pathways on extension of life span (Colman et al., 

2009; Fontana et al., 2010; Mattison et al., 2012). As deranged nutrient signalling is 

considered to be a sign of aging, dietary restriction has therefore shown to have a positive 

impact on health and life span of all eukaryotes from yeast to humans (Fontana et al., 2010). 



 

30 
 

Genetic alterations that affect the IIS signalling pathway at different levels has been 

consistently shown to improve longevity in worms, flies and mice and the most important 

effector system has been FOXO signalling (Kenyon et al., 1993; Slack et al., 2011). In mice, 

FOXO1 is responsible for carrying out the tumour suppressive effect of dietary restriction, 

but if this effect leads to the extension of life span still remains to be seen (Yamaza et al., 

2010). It has been shown recently that mice that are treated with tumour suppressor PTEN 

have undergone down regulation of IIS pathway and show an increase in oxidative 

metabolism with enhanced activity of brown adipose tissue (Garcia-Cao et al., 2012; Ortega-

Molina et al., 2012). Increased lifespan has been observed in these PTEN-induced mice 

coupled with decreased IIS activity. Similar results have been reported with hypomorphic 

PI3K mice (Ortega-Molina et al., 2012; Foukas et al., 2013). Growth hormone and IGF-1 

levels are known to decline as part of normal aging as well as in mouse progeroid models, 

therefore decreased activity of IIS is considered to be a hallmark of both physiologic and 

accelerated aging and extends lifespan (Garinis et al., 2008; Schumacher et al., 2008). When 

IIS activity declines to an extremely low level it can become lethal as has been reported in 

cases of mice with null mutations of PI3K and Akt kinases, and alternatively supplementation 

with IGF-1 has shown to improve symptoms of premature aging (Renner and Carnero, 2009; 

Mariño et al., 2010).  

 

 

Figure 1.6. Schematic representation of energy sensing network. A) Showing nutrient regulation mechanisms 
involving mTOR, AMPK and Sirtuins. Adapted from (López-Otín et al., 2013). 
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Apart from IIS pathway which mainly focuses on glucose sensing mechanisms, there are 

three important nutrient sensing pathways. Increased amino acid levels are instantly detected 

by mTOR signalling, whereas low energy states which mainly manifest as high AMP 

concentrations are detected by AMPK signalling mechanisms and finally sirtuins, which 

sense low energy status by high NAD
+
 levels (Houtkooper et al., 2010; Houtkooper et al., 

2012).  

The mTOR kinases are involved in the regulation of anabolism and consists of two protein 

complexes, namely mTORC1 and mTORC2 (Laplante and Sabatini, 2012). Genetic 

mutations resulting in down regulation of mTORC1activity has shown to increase lifespan of 

worms, flies and mice (Johnson et al., 2013). Rapamycin treatment in mice which involves 

binding to mTORC1complex has shown to extend longevity and still remains the drug of 

choice that has enhanced life span in mammals (Harrison et al., 2009). It has been interesting 

to note that mice that are genetically altered to have low levels of mTORC1but have normal 

mTORC2 levels show an increase in longevity and a genetic knockout of S6K1, which is an 

mTORC1substrate results in mice having increased life span (Selman et al., 2009; Lamming 

et al., 2012). These findings further validate that a decrease in expression of mTORC1 or 

S6K1 can signal a progression towards longevity in mammals in relation to mTOR (Yang et 

al., 2012). This suggests that mTORC1and associated pathways are promoters of aging 

process and inhibition of TOR activity can have beneficial effects on aging, although certain 

undesirable effects have been observed in mice as a result of this mTOR inhibition that 

include insulin resistance, testicular degeneration, development of cataract and abnormal 

wound healing (Wilkinson et al., 2012; López-Otín et al., 2013).  

The remaining two nutrient sensing networks including sirtuins and AMPK mainly respond 

to nutrient deprivation and works through catabolism as opposed to the anabolic approach 

used by IIS and mTOR signalling pathways and therefore, up regulation of the sirtuins and 

AMPK promotes health span (Alers et al., 2012). AMPK activation has multiple 

consequences and most importantly it leads to deactivation of mTORC1signalling and has 

also shown to improve life span in worms and mice following metformin treatment (Onken 

and Driscoll, 2010; Anisimov et al., 2011; Mair et al., 2011). SIRT1 is involved in 

deacetylation of PGC-1 alpha leading to its activation which in turn encompasses a wide 

range of metabolic responses, including mitochondrial biogenesis, increased fatty acid 

metabolism and improved antioxidant mechanisms (Rodgers et al., 2005; Fernandez-Marcos 

and Auwerx, 2011). Both AMPK and SIRT1 are activated by nutrient scarcity and when there 
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is high energy demand, so they are sometimes unified in their response creating a positive 

feedback loop and activating PGC-1 alpha through phosphorylation and deacetylation 

respectively (Price et al., 2012).  

 

1.13.5 Inflammatory response involving altered intercellular communications 

Age progression is linked with several other changes that take place simultaneously and can 

be attributed towards signs of aging and include intercellular communications disruptions at 

endocrine, neuroendocrine and neuronal level (López-Otín, 2013). It has been shown that 

neurohormonal signalling declines as aging occurs and secretion of proinflammatory 

cytokines from senescent cells leads to inflammatory response causing attenuation of the 

immune response and decreased defence mechanisms against pathogens creating an overall 

change in extracellular environment (Russell and Kahn, 2007; Zhong et al., 2010; Rando and 

Chang, 2012). Inflammaging is the term that has been used recently to describe age related 

alterations in the intercellular communication which manifests itself as having a 

proinflammatory phenotype  (Salminen et al., 2012; López-Otín et al., 2013). This 

inflammation can result from previously accumulated damaged tissue that has been affected 

by proinflammatory cytokines or a failure of immune system to eliminate senescent cells and 

pathogens allowing senescent cells to keep on secreting proinflammatory secretome or due to 

reduced autophagy response and finally inflammaging can also occur due to activation of  NF 

κB transcription factor (Green et al., 2011; Salminen et al., 2012). These changes result in the 

activation of several important proinflammatory pathways that result in the production of 

inflammatory interferons TNFα and IL-1β (Green et al., 2011). Human aging is closely 

linked and correlated with two inflammation associated pathologies  namely obesity and 

diabetes mellitus in which inflammation plays  a major role in acceleration of aging (Barzilai 

et al., 2012). Impaired inflammatory response is the hallmark of atherosclerosis and 

Inflammaging has recently been shown to disrupt epidermal stem cell function and has led to 

gradual decline in adaptive immune system (Tabas, 2010; Deeks, 2011; Doles et al., 2012). 

This associated immunosenescence further aggravates aging process due to the failure of 

elimination of dead and infected cells promoting their malignant transformation (Davoli and 

De Lange, 2011; Senovilla et al., 2012). Several large scale studies have confirmed the 

importance of inflammatory processes in the progression of aging and overexpression of 

NFκB signalling mechanism is a vital sign of aging (de Magalhães et al., 2009; Lee et al., 

2012). Transgenic mice have shown reversal of aging symptoms to varying degree of extent 



 

33 
 

when NFκB inhibition has been achieved through conditional expression in aged skin tissue  

(Adler et al., 2007). Similar results have been obtained recently by inhibition of NFκB 

signalling activity in mouse models through genetic and pharmacologic interventions (Osorio 

et al., 2012; Tilstra et al., 2012). More recently, it has been suggested that hypothalamus is 

involved in mediating aging, as inflammation activates NFκB in hypothalamus which 

responds by decreasing the production of gonadotropin releasing hormone (GnRH) by 

neurons which results in muscle weakness, skin atrophy, reduced neurogenesis and other age-

related symptoms (Zhang et al., 2013). Recent studies on mRNA decay factor AUF1 has 

further revealed links between inflammatory response and aging, as a deficient mice shows 

signs of premature aging coupled with cell senescence (Pont et al., 2012). AUF1 has been 

shown to promote cytokine mRNA degradation thereby promoting inflammatory response 

and has been involved in maintaining telomere length by the activation of TERT so a 

deficiency of this factor can accelerate aging through different pathways (Pont et al., 2012) 

Sirtuins have long been shown to have an impact on inflammation associated aging. SIRT 

1has shown to down regulate inflammation related genes by deacetylation of histones and 

inhibition of NFκB signalling (Xie et al., 2013). Similarly, a decrease in expression of SIRT1 

results in progression of several inflammatory pathologies and mice studies have confirmed 

the anti-inflammatory response to pharmacologic activation of SIRT1 (Zhang et al., 2010; 

Gillum et al., 2011; Yao et al., 2012). SIRT2 and SIRT6 are the other two sirtuins that have 

shown to reduce inflammatory response by deacetylation of NFκB (Kawahara et al., 2009; 

Rothgiesser et al., 2010). It has been reported recently that age-associated changes can be 

transferred from one tissue to another referred to as inter organ communication in which 

senescent cells are able to induce senescence to adjacent cells via gap junction mediated 

signalling that also involves reactive oxygen species   (Nelson et al., 2012). Conversely, it 

has been shown that life span enhancing alterations attempted in one tissue can have an 

adverse and retarding effect in the other  (Tomás-Loba et al., 2008; Durieux et al., 2011; 

Lavasani et al., 2012).  

 

1.13.6 Summary and perspectives  

Studying pathways involved in aging in different cell types can help in building a structured 

format to investigate molecular mechanisms underlying aging and can help in interventional 

research aimed at improving human health (Martin, 2012). Next-generation sequencing 

technologies have recently established a special impact in aging research by making it 
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possible to evaluate genetic and epigenetic changes in individual cells of an aged subject (de 

Magalhães et al., 2010; Gundry and Vijg, 2012; Miller, 2012). More recently, there has been 

great advancement in aging research and whole genome sequencing analysis has been carried 

out in individuals having exceptional longevity and comparative genome studies along with 

in depth study of age-related epigenetic alterations have been underway (Kim et al., 2011; 

Heyn et al., 2012; Sebastiani et al., 2012). This is essential to have more in vivo studies and 

analysis with gain or loss of function experimental models to validate the importance of these 

hallmarks of aging and understand the mechanics involved in progression of aging and age-

related diseases (Kirkwood, 2008; Gems and Partridge, 2013).  

 

1.14 Role of PGC-1 alpha coactivators in biological systems  
Coactivators are considered as proteins that are involved in regulation of gene expression but 

they do not directly interact with the DNA, instead they regulate this by interacting with 

transcription factors. Peroxisome proliferator activated receptor gamma coactivator 1- alpha 

(PGC-1α) belongs to a family of transcriptional coactivators that has been shown to bind with 

numerous transcription factors and includes most nuclear receptors (Handschin and 

Spiegelman, 2006; Rowe et al., 2010; Patten and Arany, 2012). These transcriptional 

coactivators have recently been shown to be involved in regulation of mitochondrial biology 

in different tissues including heart, liver and brain (Handschin and Spiegelman, 2006). PGC-

1 alpha has shown reduced expression in various models of failing heart and considered to be 

important contributors towards abnormal oxidative metabolism and as oxidative 

phosphorylation mainly occurs in mitochondria, heart and all these tissues maintain high 

mitochondrial content (Rowe et al., 2010). Apart from being a master regulator of 

mitochondrial activity, PGC-1 alpha is also involved in the regulation of several biological 

functions in different tissues that includes angiogenesis in skeletal muscle, gluconeogenesis 

and fatty acid metabolism (Patten and Arany, 2012). Reduced PGC-1 alpha expression has 

recently been implicated in neurodegenerative disorders like Parkinson‟s disease and in 

transgenic mouse model of Huntington‟s disease (Chaturvedi et al., 2010; Zheng et al., 2010; 

Shin et al., 2011).  

 



 

35 
 

1.14.1 PGC-1 alpha regulation and its role in cardiovascular system 

Mitochondrial biogenesis and mitophagy which refers to the elimination of damaged 

mitochondrial content by means of a strict immunosurveillance mechanisms are two 

processes that work in tandem and maintain a balance so that the mitochondrial content 

remains in check. It has been shown that peroxisome proliferator-activated receptor-γ 

coactivator (PGC-1α) plays a central role in coordinating this mitochondrial biogenesis which 

is an extremely complex process and several aspects of which are still not completely 

understood (Nisoli et al., 2003; Patten and Arany, 2012). This formation of new mitochondria 

involves replication of mitochondrial DNA (mtDNA) along with expression and activation of 

several mitochondrial and nuclear genes. PGC-1 alpha being a transcriptional coactivator 

activates mitochondrial factors A and B commonly known as transcription factor A 

mitochondrial (TFAM) and transcription factor B mitochondrial (TFBM) which in turn 

activate the mitochondrial genes encoded by mitochondrial DNA (mtDNA) and include 

genes involved in regulation of electron transport chain (Handschin et al., 2003; Rowe et al., 

2010). 

PGC-1 alpha is known to be activated by several stimuli which have high energy demands 

and in order to achieve that they require mitochondrial synthesis. These stimuli include 

exercise, cold exposure, caloric restriction and hypoxia (Nisoli et al., 2003; Patten and Arany, 

2012). On the other hand, the expression of PGC-1 alpha is regulated by several factors that 

include nitric oxide (NO), activation of sympathetic nervous system, cyclic adenosine 

monophosphate (cAMP), AMP-activated protein kinase (AMPK), calcineurin, 

calcium/calmodulin -dependent protein kinase and tumour suppressor p53 (Li et al., 2007; 

Trausch-Azar et al., 2010).  In addition to that, PGC-1 alpha is also regulated through 

posttranslational modifications. Most important of these modification include deacetylation 

by sirtuins (SIRT1) which increases PGC-1 alpha activity and acetyltransferase GCN5 which 

leads to a decrease in PGC-1 alpha expression (Olson et al., 2008; Dominy Jr et al., 2010). 

Phosphorylation of PGC-1 alpha by AMPK, p38 mitogen-activated protein kinase, Akt and 

glycogen synthase kinase-3 causes an increase in expression of PGC-1 alpha (Li et al., 2007; 

Miura et al., 2007; Pogozelski et al., 2009). More recently identified modifications include 

O-GlcNAc and phosphorylation by S6 and Clk2 kinases which mainly modify PGC-1 alpha 

activity in liver (Housley et al., 2009; Rodgers et al., 2010; Lustig et al., 2011). 

PGC-1 alpha is considered to be a master regulator and in addition to mitochondrial 

biogenesis, it controls the expression of several genes that are involved in regulation of 
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glucose and fatty acid metabolism in cardiac myocytes as well as many other cell types.    

(Leone and Kelly, 2011; Riehle et al., 2011). Mitochondrial content is much lower in 

endothelium as compared to cardiac myocytes, the latter being highly oxidative and has high 

energy demands. It has been shown that in rats mitochondria covers nearly 5% of the 

cytoplasmic volume in endothelial cells, whereas more than 30% is occupied by 

mitochondria in cardiac myocytes (Oldendorf et al., 1977; Barth et al., 1992). This further 

explains that PGC-1 alpha is mainly activated in conditions that require more energy in the 

form of ATP production. PGC-1 alpha is known to play an important role in angiogenesis by 

regulating the expression of vascular endothelial growth factor-1(Valle et al., 2005; Arany et 

al., 2008). It also plays a role in regulating metabolism in cardiac myocytes and genetic 

deletion of PGC-1 alpha can contribute towards heart failure. Diabetes patients show an 

increase in cardiac PGC-1 alpha expression which again promotes heart failure (Leone and 

Kelly, 2011; Riehle et al., 2011).  

 

1.14.2 PGC-1 alpha and its role in endothelial cells  

Mitochondrial content is much lower in endothelial cells as compared other cell types with 

high energy demands including oxidative tissues of heart, lung, brain and liver. 

Mitochondrial distribution within a cell has also been very interesting to note, as active 

endothelial cells at blood-brain barrier show much higher mitochondrial content as compared 

to endothelial cells in other capillary beds (Oldendorf et al., 1977; Park et al., 2011). In 

normal conditions, energy requirements are much lower in endothelial cells therefore, PGC-1 

alpha is suggested to play a different role in endothelial cells although it is well known that it 

is expressed in endothelial cells and regulates mitochondrial synthesis (Nisoli et al., 2003). 

PGC-1 alpha regulates reactive oxygen species and provides defence against oxidative stress. 

It has been shown that induction of PGC-1 alpha by viral transfection leads to an increase in 

expression of antioxidants including catalase, MnSOD and thiroredoxin-2 along with 

uncoupling protein-2 (UCP-2) all of which are involved in combating oxidative stress 

mechanism. PGC-1 over expression has been shown to decrease inflammatory activity, 

increase NO bioavailability and prevent endothelial cell apoptosis (Valle et al., 2005; Schulz 

et al., 2008). It has recently been reported that PGC-1 alpha promotes antioxidative 

mechanisms by inducing mitochondrial synthesis and providing fresh and undamaged 

mitochondria that are prone to produce much less reactive oxygen species (Twig et al., 2008). 
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1.14.3 PGC-1 alpha and its clinical significance     

Recent studies have focused on using PGC-1 alpha as a therapuertic strategy to overcome 

atherosclerosis, as it imparts positive effects on endothelial phenotype, but how effective this 

endothelial specific PGC-1 alpha overexpression can prove still remains to be seen. 

Interestingly, it has been shown recently that PGC-1 alpha null mice with an apolipoprotein 

E
-/-

 background showed decreased lesion formation, but this could be due to the fact that 

PGC-1 alpha null mice are thin and show signs of hyperactivity that could naturally limit 

athersosclerosis progression (Stein et al., 2010). Similarly, PGC-1β has shown a 

compensatory increase in expression due to loss of PGC-1α (Mitra et al., 2012). It has been 

suggested to have mouse models having  double knockouts of PGC-1α and β so that issues 

can be sorted (Patten and Arany, 2012). Endothelial –specific overexpression of PGC-1 alpha 

has recently been shown to have protective effect against hypertension.  

In a clinical setting, it is well known that PGC-1 alpha expression and associated 

mitochondrial content are lower in patients suffering from diabetes mellitus manifested by 

insulin resistance and disrupted energy metabolism (Kelley et al., 2002; Mootha et al., 2003; 

Petersen et al., 2004). In patients diagnosed with pulmonary hypertension lower 

mitochondrial mass in endothelial cells has beeen reported (Xu et al., 2007). A biopsy taken 

from subcutaneous tissue of a diabetic patient has revealed lower than normal mitochondrial 

content in the arterioles (Kizhakekuttu et al., 2012). Epidemiological data suggests that PGC-

1 alpha is closely asssociated with vascular pathologies and linkage analysis confirm that 

PGC-1 alpha polymorphisms are linked with coronary artery disease, carotid atherosclerosis 

and hypertensive disorders (Oberkofler et al., 2003; Iglseder et al., 2006; Zhang et al., 2008). 

As a result of this convincing data, more research is now directed towards developing drugs 

that can activate PGC-1 alpha which in turn would improve mitochondrial biogenesis and 

provide defence against cardiovascular diseases (Kitami et al., 2012).  
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Chapter 2. Aims and objectives 
 

Aim 1: To characterise the phenotype of endothelial colony forming cells (ECFCs) 

isolated from cord blood compared to human umbilical vein endothelial cells (HUVECs) 

isolated from the same donor. 

In order to achieve these goals human umbilical cord mononuclear cells (day 0 MNCs) were 

isolated from cord blood using ficoll based lymphoprep. They were differentiated towards 

endothelial lineage by growing in endothelial specific EBM- 2 media. This resulted in 

isolation of early EPCs from these cord blood mononuclear cells (day 7). The same 

mononuclear cells were grown in macrophage specific media (RPM1 + Human monocyte 

colony stimulating factor) and were differentiated towards macrophage lineage (day 7). This 

was done to distinguish between early and late EPCs as the former are known to be related to 

monocyte-macrophage lineage. Cells were frozen down and RNA was extracted. The 

remaining mononuclear cells were further cultured under normoxic conditions (20% O2) for 

2-3 weeks resulting in isolation of late EPCs also known as endothelial colony forming cells 

(ECFCs) or out growth endothelial cells (OECs).  Once an endothelial colony was observed, 

it was picked and grown under normal conditions for 4-6 weeks in order to get late EPCs or 

ECFCs. In order to have a better comparison all these early and late EPCs and macrophages 

were isolated from same mononuclear cells (day 0 MNCs) derived from the cord blood of the 

same donor. Once isolated, morphological analysis of the isolated cell types was carried out 

which was followed by molecular profiling of these cells. RNA extraction was carried out 

from all these cell types at different point times followed by qPCR analysis. The mRNA 

expression level of cell surface markers including CD34, CD31, CD14, CD45, CD105, 

CD144, CD146 and vWF was carried out. In order to validate these results and to 

differentiate them from mature endothelial cells (HUVEC) at protein level, FACS analysis 

with cell surface markers including CD34, CD14, CD146, and CD144 and direct 

immunofluorescence analysis with vWF antibody was performed comparing early and late 

ECFCs and HUVEC.  
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Aim 2: To elucidate the effects of hyperoxia as a model of oxidative stress on ECFCs vs 

HUVECs, focusing on telomere length, telomerase activity and PGC-1 alpha expression. 

One of the aims of this project was to study the effect of mild oxidative stress on the 

expression of PGC-1α and its downstream targets in human endothelial progenitor cells 

(ECFCs) and mature endothelial cells (HUVEC). Hyperoxia has already been established as a 

model of mild oxidative stress, as it leads to increased intracellular generation of hydrogen 

peroxide and reactive oxygen species (ROS) accelerating the accumulation of DNA single 

strand breaks causing cellular senescence. In addition to that, hyperoxia increases MCP-1, a 

crucial molecule which is involved in the initiation and development of atherosclerosis 

(Harrington, 2000).  

Recently, it has been shown that telomere dysfunction in the nucleus leads to deactivation of 

PGC-1 proteins in the mitochondria via activation of p53 (Sahin et al., 2011). They showed 

that a mice null in either Tert or Terc genes leads to p53- mediated apoptosis and growth 

arrest in several tissues and repression of PGC genes and their downstream networks leading 

to impaired mitochondrial biogenesis, oxidative phosphorylation and gluconeogenesis (Sahin 

et al., 2011). We, therefore, hypothesized that mild oxidative stress would lead to telomere 

dysfunction in human endothelial cells, and as a consequence of that a decrease in the 

expression of PGC-1α in endothelial progenitor cells (ECFCs) and mature endothelial cells 

(HUVEC). As PGC-1α is a key regulator of mitochondrial biogenesis and oxidative 

metabolism, a decrease in its expression would lead to an impairment of mitochondrial 

activity in these cells. This could in turn lead to a decrease in the angiogenic potential of 

these cells as mitochondrial deregulation has already been linked with several vascular 

dysfunctions.  

In order to achieve this goal, we isolated late endothelial progenitor cells (ECFCs) and 

mature endothelial cells (HUVEC) from human cord blood and human umbilical vein, 

respectively. Following subculture of cells for 2 passages, we exposed them to conditions of  

mild oxidative stress (40% O2). This was be followed by extraction of RNA at different time 

points from these cells followed by cDNA synthesis. Real time quantitative PCR was used to 

assess the mRNA expression level of PGC-1α and its downstream targets including ERR-

alpha and G6- Phosphatase. Our initial results indicated that ECFCs grow much better than 

HUVEC under conditions of mild oxidative stress (40% O2). HUVEC grew at a slower rate 

and did not grow well after few passages in hyperoxic conditions, and we therefore 

hypothesized that ECFCs are much more resistant to stress than HUVEC. In order to test this, 
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we isolated ECFCs from human umbilical cord blood and HUVEC from the umbilical cord. 

Cells were grown for 2 passages in normoxia (20% O2) and then split and cultured 

simultaneously in both normoxic and hyperoxic conditions (40% O2). This was followed by 

comparing the growth kinetics of both these cell types and measurement of telomerase 

activity and telomere length under normal and hyperoxic conditions. 

 

Aim 3: To determine the effect of oxidative stress on the expression of PGC-1 alpha and 

its downstream targets involved in regulating reactive oxygen species (ROS), oxidative 

metabolism and angiogenesis in ECFCs and HUVEC 

Cellular stress has been shown to be one factor leading to increased ROS production resulting 

in activation and up regulation of PGC-1 alpha (Wareski et al., 2009). The cellular response 

to this oxidative stress is an increased ATP production and availability by transcription of 

oxidative phosphorylation (OXPHOS) regulated genes (Pascual et al., 2005; Stravodimou et 

al., 2012). We therefore, proposed that exposing these endothelial progenitor cells to mild 

oxidative stress (40% O2) would lead to an increase in ROS production and an increase in 

PGC-1 alpha expression. This in turn would lead to ROS regulation by PGC-1 alpha and 

increased expression of genes involved in oxidative phosphorylation.  

Similarly, PGC-1 alpha coactivators have been shown to be involved in regulation of wide 

range of metabolic programs including gluconeogenesis and responses to fasting in liver, 

fatty acid oxidation and import mechanisms and angiogenesis in skeletal muscle (Yoon et al., 

2001; Chinsomboon et al., 2009). We therefore investigated the role that oxidative stress 

could play in ECFCs and HUVEC when grown in hyperoxic conditions. It has been shown 

before that PGC-1 alpha is activated by lack of nutrients and oxygen and regulates VEGF 

expression and angiogenesis by co activating nuclear receptor ERR alpha (Arany et al., 

2008). Hypoxia has been known to induce VEGF expression and angiogenesis, but role of 

hyperoxia in angiogenesis has not been well understood and is an emerging area of research.  

Our earlier results showed that ECFCs were much more resistant than HUVEC when exposed 

to oxidative stress (40% O2). We proposed that ECFCs would behave differently in terms of 

gene expression analysis and both these cell types might be using different pathways to 

counteract stress environment. In order to test this hypothesis, we carried out gene expression 

analysis using low density array in ECFCs and HUVEC grown in normoxia and hyperoxia 

and checked for genes involved in oxidative phosphorylation, genes involved in antioxidative 

mechanisms, genes involved in DNA damage and inflammatory response, oxidative 
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metabolism and angiogenesis. This was followed by qPCR validation for genes that showed 

significant change in expression when ECFCs or HUVEC were grown in hyperoxia. 

Hypothesis: 

We, therefore hypothesized that endothelial colony forming cells (ECFCs) that have been 

derived from an endothelial colony would behave differently in conditions of oxidative stress 

as compared to mature endothelial cells (HUVEC). As they have shown to be more resistant 

to oxidative stress they would up regulate genes involved in different pathways as compared 

to HUVEC. The difference would be evident both in terms of gene expression analysis and 

functional assays.  
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Chapter 3. Materials and Methods 
 

3.1 Isolation of human endothelial progenitor cells (early EPCs) from cord 

blood mononuclear cells 
Before starting the isolation, 6 well plates were coated with fibronectin in order to provide an 

attachment surface for the cells. 1 ml of fibronectin which was diluted in phosphate buffer 

solution (PBS) 1:100 was used per well of a 6 well plate. Fibronectin was removed after 30 

min, and the plates were allowed to dry under the hood. 

Once collected, the cord blood was mixed with PBS (1:1) and the mix was layered on to 

equal volume of ficoll solution in a way that the blood was not mixed with the ficoll but it 

continued to swim on it. This was allowed to centrifuge for 20 min without brakes at 800 × g. 

After the centrifugation was complete, three different phases could be seen as shown in the 

figure 3.1. The white blood cells were carefully removed using a pipette along with some 

plasma which could not be avoided. It was important that no ficoll was taken along with the 

WBCs as this could damage the cells. This mix of WBC and serum was transferred to a new 

50 ml falcon and PBS was added to make it to 50 ml. This was subjected to centrifugation at 

800 x g for 10 min with brakes. The supernatant was aspirated and the pellet was resuspended 

in 50 ml of PBS. At this point cells were counted with a dilution of 1:20 and then cells were 

resuspended in EBM- 2 media containing single Quots, 10% FBS and Pen/Strep at a 

concentration of around 8 million cells/ml. 2 ml of this cell suspension was added to each 

well of the 6 well plate. Some cells were frozen down the same day as human cord blood 

mononuclear cells (HUCBC) also known as day 0 MNCs at -80˚C.                                  
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Figure 3.1. Showing lymphoprep preparation using ficoll. Adapted from (current protocols.com). 

 

3.2 Isolation and differentiation of human cord blood mononuclear cells 

(HUCBC) in to macrophages 
Macrophages are the resident phagocytic cells found in lymphoid and nonlymphoid tissues 

and are derived from hematopoietic stem cells. Cord blood was received from donors from 

Queen Elizabeth Hospital Gateshead and was subjected to lymphoprep separation 

using ficoll. WBC layer was obtained and PBS was added to that, followed by centrifugation 

at 800 x g for 20 min without brakes. Supernatant was removed and the cells were again 

resuspended in 50 ml of PBS. Cells were counted at this stage and around 15 million cells 

were plated per well of a 6 well plate. The plates did not require coating with fibronectin. The 

cells were grown in RPMI media and human monocyte colony stimulating factor was added 

in the media so that the mononuclear cells could be differentiated towards macrophage 

lineage. After 3 days cells started to change their morphological appearance and resembled 

macrophages. RNA was extracted from cells at day 7 and kept frozen at -80°C. 
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3.3 Isolation and culture of Human endothelial colony forming cells (ECFCs) 

derived from cord blood 
 

Human endothelial colony forming cells (ECFCs) were derived from human cord blood. 

Before starting the isolation, well plates were coated with Type 1 rat tail collagen (BD 

Biosciences), which was diluted in 0.02N acetic acid, as collagen is insoluble at neutral PH. 

0.02 N acetic acid was prepared by adding distilled water to glacial acetic acid. Plates were 

coated with collagen for an hour at room temperature and then the solution was aspirated, and 

the plates were washed once with PBS, so that the acid was completely removed which could 

damage the cells. Plates were allowed to air dry for 30 min. 

Fresh cord blood (50-120ml) once received from the hospital, was diluted with PBS 1:1, and 

then a lymphoprep separation of blood: PBS was performed as explained earlier. The 

mononuclear cells collected as a result were transferred to a new 50 ml falcon and PBS was 

added to make it a 50 ml suspension. This mix was subjected to centrifugation at 800 × g for 

5 min without brakes to gently pellet the cells. Supernatant was removed and dilution with 

PBS and centrifugation was repeated. Again the supernatant was aspirated and cells were 

resuspended in 50 ml PBS. At that point, cells were counted using a haemocytometer with 

1:20 dilution and also using Vi-Cell XR 2.03 (Beckman Coulter) using 1:10 dilution. In all, 

400-700 million cells were obtained depending upon the volume of cord blood received. The 

supernatant was removed and the cells were then resuspended in 12 ml of complete EBM- 2 

media (with single Quotes) that additionally contained 20% FBS and 2% Pen/Strep. 2 ml of 

this suspension was added to each well of the collagen-coated 6 well plate. Around 60 million 

cells were seeded per well. After 48-72 hr non adherent cells were removed by changing the 

culture media. The media was changed on alternate days and at around 3 days of culture big 

round cells started to appear, which were proposed to be early EPCs or circulating angiogenic 

cells (CACs). An endothelial colony was observed after 3-4 weeks of culture, and this was 

picked up using a pipette tip and grown in T25 flask. Once confluent enough, the cells were 

split and the cells were grown for several passages till P5 and kept frozen down and stored at 

-80˚C.  
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3.4 Isolation and culture of human umbilical vein endothelial cells (HUVEC)  
Human umbilical vein endothelial cells (HUVEC) were isolated from the umbilical cord of 

the new born. Once received, the umbilical cord was washed with 1× PBS using a 50 ml 

syringe several times so that the cord was clean and there was no blood or clot visible. The 

two ends of the cord were tidily cut with a sterile scalpel and a cannula was introduced at one 

end of the vein, which was the widest vessel having a thick lumen as shown in figure 3.2 B. 

Once inside the vein, the cannula was tightly maintained by stitching around the cord using 

surgical needle. Cord was then washed from inside with PBS using a 50 ml syringe. This was 

followed by injection of collagenase (0.2% in PBS) at the end of the vein that contained the 

cannula, and leakage at the other end was stopped by using a clamp with a surgical clip. The 

cord was then incubated for 30 min at 37°C. After incubation, the cord was gently squeezed 

and the cells were collected in a sterile falcon tube by washing with 40 ml of PBS. This was 

followed by a centrifugation at 500 × g for 5 min. The supernatant was carefully discarded 

and the pellet was resuspended in 12 ml of culture media containing M199 Earle 1×, 0.2M 

Glutamine, 1M HEPES, 7.5% NAHCO3, Penicillin/Streptomycin (10000/10000) and 20 % 

foetal bovine serum (FBS). The cells were dissociated by aspiration and repulsion using a 

pipette. 2ml of the cell suspension was added to each well. Cells were incubated at 37°C in 

humidified air (95%) with 5% CO2. After 48 hr non-adherent cells were removed by changing 

the culture medium. The culture medium was changed on alternate days and attached 

endothelial cells were visible after 48 hrs. These cells reached confluence at around 3-5 days 

of culture and showed “cobblestone” appearance on observation under microscope. They 

were split when around 70-80% confluent, using Trypsin-EDTA and then regularly passaged 

till P5.  

             A                                                   B 

 

Figure 3.2. Showing human umbilical cord and human umbilical vein. Adapted from 

www.mothersofchange.com.  
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3.5 Passaging of endothelial cells 
The cells were examined routinely under the microscope for sub confluence. Once the cells 

reached a confluence of around 70-80%, normally after 3-5 days, they were split. Cells were 

split using Trypsin-EDTA in a ratio of 1:4. Medium was aspirated, and the cells were washed 

with PBS. Trypsin was added to the flask and incubated for 5 minutes and the flask was 

tapped with both hands in order to detach the cells. A scraper was used to detach the cells that 

were firmly attached. An equal volume of medium containing FBS was added to neutralize 

the Trypsin and the resulting mixture was transferred to a 15 ml falcon tube. Centrifugation 

was carried out at 500 × g for 5 min. The supernatant was sucked and the cell pellet thus 

obtained was resuspended in fresh medium and transferred to each of the four T25 flasks. The 

flasks were put in an incubator at 37˚C, with 5% CO2 in humidified conditions (>95%). 

 

3.6 Culture of ECFCs and HUVEC in conditions of normoxia and hyperoxia 
 

Normoxia (20%O2): 

ECFCs were isolated from cord blood and for the purpose of having a better comparison 

mature endothelial cells were isolated from the umbilical vein of the same donor. ECFCs 

were derived from cord blood by differentiation of Human cord blood mononuclear cells 

(HUCBC) by growing them in endothelial specific media (EBM-2). Cells were grown on 

collagen coated plates. These mononuclear cells were allowed to differentiate in endothelial 

media and cells were washed with PBS regularly followed by change of media every 

alternate day. It took 3-4 weeks before an endothelial colony appeared and in some cases 

there was no colony formation observed even after 1 month of cell culture and for some 

isolations more than one colony was obtained from the same isolation. Once a colony was 

observed, it was picked using a pipette tip and allowed to grow in smaller volumes either in a 

T25 flask or in 1-2 wells of a 6 well plate. The cells obtained from these colonies were grown 

again in EBM-2 media and were named as endothelial colony forming cells (ECFCs) as 

shown before. These ECFCs were sub cultured and split regularly using Trypsin-EDTA or 

some times by using cell scraper when cells became too adherent. Cells were split in a ratio 

of 1:3. ECFCs were grown till late passages (P16-P18) in normoxia (20% O2). Cells were 

frozen down at -80°C in freezing media containing DMSO. Cells were used for downstream 

applications for experiments including RNA extraction followed by qPCR, Telomerase 
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activity measurement using TRAP assay, measurement of telomere length across passages 

using flow-FISH, direct immunofluorescence analysis, multicolour flow cytometry and gene 

expression analysis using low density array (LDA) followed by qPCR validation (same donor 

analysis). 1million cells were replated and two million cells were frozen down with each 

passage. Cells were split every 3-7 days and passage 10 corresponds to around 8 weeks of 

culture.  

Mature endothelial cells (HUVEC) were derived from the umbilical cord of the same donor 

in some cases (n=6). Apart from that, most HUVEC were isolated and grown but for several 

samples no endothelial colony was obtained from the same cord blood sample. HUVEC were 

grown in 6 well plates coated with human fibronectin. 1ml of fibronectin diluted in PBS 

(1:100) was used to coat the plates. Plates were allowed to dry down after coating for 30 min. 

HUVEC were grown till late passages (P16-P18) and cells were regularly passaged using 

Trypsin-EDTA in a ratio of 1:3. HUVEC were initially used as a positive control for the 

study to differentiate endothelial progenitor cells from mature endothelial cells. HUVEC 

were isolated from umbilical vein of the cord using collagenase. Cells were grown in 

normoxia (20% O2) and cells were regularly washed with PBS and media was changed on 

alternate days. HUVEC were grown in endothelial specific media (EBM-2) and showed no 

further change in morphology. 1 million cells were plated each time, both for ECFCs and 

HUVEC. Once they were around 70% confluent they were split using trypsin in a ratio of 1:3. 

1 million cells were replated and 2 million cells were frozen down with each passage. This 

was carried out till passage 16-18. Cells were passaged after every 3-5 days and passage 10 

corresponds to around 8-10 weeks of culture.  

Hyperoxia (40%O2): 

Hyperoxia can lead to oxidative stress and this has been shown before. We therefore exposed 

the cells to hyperoxia in order to study their behaviour under stress conditions and to test if it 

was different for ECFCs and HUVEC. Both ECFCs and HUVEC were grown in normoxia 

till P2 and then were split and incubated in hyperoxic conditions (37°C with 5% CO2 and 

40%O2). ECFCs were grown in either T25 flasks or 6 well plates coated with rat tail collagen 

in hyperoxia and as shown in growth curves grew well. HUVEC were grown in either T25 

flasks or 6 well plates and showed much less resistance to stress conditions. Cells were split 

using Trypsin-EDTA in a ratio of 1:3. 2 million cells were frozen down with each passage 

and stored at -80°C in freezing media containing 20 % DMSO. 
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3.7 RNA extraction from EPCs, macrophages, ECFCs and HUVEC 
RNA isolation was carried out using Trizol method in 1 ml volume. Cells were trypsinized 

using 0.1% Trypsin-EDTA. An equal volume of EBM-2 media containing 20 % FBS was 

added to neutralize the trypsin. This was followed by centrifugation at 1000 rpm for 5 min. 

Cells were washed twice with Phosphate Buffer Solution (PBS without Ca
++

 and Mg
++

). 

After washing, the supernatant was removed and the cell pellet was resuspended in 1 ml of 

Trizol, and left for incubation at room temperature for 5 min. This suspension was then 

transferred to an eppendorf   tube and 1/5 Volume (200 µL) of chloroform was added and the 

suspension was shaken vigorously for 15s. After incubation at room temperature for 2-3 min, 

cells were centrifuged at 12000 × g for 15 min, and the upper aqueous layer was then 

transferred to another eppendorf tube. A half volume (500 µL) of isopropanol was added and 

the cell sample was incubated at room temperature for 10 min. This was followed by another 

centrifugation at 12000 × g for 15 min, and a small pellet was obtained as a result. The 

supernatant was removed and 1 volume of 70% ethanol was added. A vortex for 30s was 

followed by centrifugation at 7500 × g for 5 min. Ethanol was removed and the pellet was 

allowed to air dry for about 15 min. Around 30 µL RNase free water was added and then 

incubated for 10 min at 60˚C. Eluted RNA was quantified using Nanodrop and then kept at -

80˚C. 

RNA extraction was also carried out using the RNeasy Mini kit (Qiagen). Frozen cell pellet 

was taken from -80˚C and then subjected to homogenization in 600 µL of Buffer RLT. The 

lysate was centrifuged for 3 min at high speed and the supernatant was carefully removed by 

means of a pipette and transferred into a new eppendorf   tube. An equal volume of 70% 

ethanol was added to the cleared lysate, and mixed well by gentle pipetting. The mixture thus 

produced along with any precipitate formed was transferred into an RNeasy spin column 

which was placed in a 2 ml collection tube. This was subjected to Centrifugation at 13000 

rpm for 15s. This was followed by DNase digestion to eliminate any genomic DNA 

contamination. 350 µL of Buffer RW1 was added to the spin column. After centrifugation 80 

µL DNase (10 µL DNase mixed with 70 µL Buffer RDD) was directly added to the column 

membrane, and incubated for 15min at room temperature. 350 µL of Buffer RW1 was added 

to wash the spin column. After the DNase digestion the spin column was twice washed by 

500 µL of Buffer RPE. Finally the RNA was eluted in around 20-25 µL of RNase-free water. 

The eluted RNA was quantified using the Nanodrop and kept frozen at -80°C. 
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Table 3.1 Primer sequences and annealing temperatures designed for qPCR 

Gene Name 

 

Primer Sequence Product 

Size 

 

Annealing Temp 

 

1 CD31 

NM_000442.4 

F 

R 

AACAGTGTTGACATGAAGAGCC 

TGTAAAACAGCACGTCATCCTT 

148 bp 

 

55˚C 

2 CD34 

NM_001773.2 

F 

R 

GCGCTTTGCTTGCTGAGTTT 

GCCATGTTGAGACACAGGGT 

183 bp 55˚C 

3 CD144 

NM_001795.3 

F 

R 

GATCAAGTCAAGCGTGAGTCG 

AGCCTCTCAATGGCGAACAC 

114 bp 55˚C 

4 vWF 

NM_000552.3 

F 

R 

AGCCTTGTGAAACTGAAGCAT 

GGCCATCCCAGTCCATCTG 

154 bp 55˚C 

5 CD 133 

NM_001145852.1 

F 

R 

TGGCTGGGTGGCCTGGTCAT 

GACACAGCCTCGGGTGGTCG 

123 bp 60˚C 

6 CD146 

NM_006500.2 

F 

R 

TCCCGCAGCCCCTGAGAGAC 

CAGCGATAGCCGCCTCCTGC 

174 bp 60˚C 

7 CD105 

NM_000118.2 

F 

R 

GCCGTGCTGGGCATCACCTT 

CACTGTGGGGGCCTGGGGTA 

107 bp 60˚C 

8 CD309 

NM_002253.2 

F 

R 

GCGGGCCAATGGAGGGGAAC 

AAGGCACCACGGCCAAGAGG 

165 bp 60˚C 

9 CD14 

NM_001174105.1 

F 

R 

CGGCGGTGTCAACCTAGAG 

GCCTACCAGTAGCTGAGCAG 

142 bp 60˚C 

10 CD115 

NM_005211.3 

F 

R 

TCCAAAACACGGGGACCTATC 

TCCTCGAACACGACCACCT 

133 bp 

 

60˚C 
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11 CD45 

NM_002838.3 

F 

R 

CTCCGCCGCCAATGCAAAACT 

GAGCTGTGGTGTGCAAGGCTGAG 

144 bp 61˚C 

12 ACTA 2 

NM_001613.2 

F 

R 

TGCTGAGCGTGAGATTGTCCGG 

AGGGTCTCTCTGGGCAGCGGAA 

176 bp 

 

60˚C 

13 BMP4 

NM_130851.2 

F 

R 

GCGGGACTTCGAGGCGACAC 

GCCGGGCGCTCAGGATACTC 

171bp 63˚C 

14 TBP 

NM_001172085.1 

F 

R 

TCAGTGCCGTGGTTCGTGGC 

GCCACGCCAGCTTCGGAGAG 

184 bp 

 

60˚C 

15 PGC-1 α 

NM_013261.3 

F 

R 

TGTTTTTGACGACGAAGCAG 

AATGAATAGGATTGCGTGCC 

183 bp 60˚C 

16 CAT 

NM_001752.3 

F 

R 

GCTTCAGGGCCGCCTTTTTGC 

ATCGGGCCGTCACGCTGGTA 

126 bp 60˚C 

17 SOD3 

NM_003102.2 

F 

R 

GCCTCCTGCACTCGCGCTAA 

GAGTCGGGCACCTTTCCAGCTC 

123 bp 60˚C 

18 GPX1 

NM_000581.2 

F 

R 

TGGGCATCAGGAGAACGCCA 

CGCACCGTTCACCTCGCACT 

118 bp 60˚C 

19 G6PC 

NM_000151.3 

F 

R 

TGTGAGACTGGACCAGGGAGCC 

AGCTGCACAGCCCAGAATCCC 

167 bp 60˚C 

20 ERRα 

NM_004451.3 

F 

R 

AGGACCATCCAGGGGAGCATCG 

TTGAGCATGCCCACCCGCAG 

125 bp 60˚C 

21 SIRT1 

NM_012238.4 

F 

R 

CTCCAAGGCCACGGATAGGTCCA 

TCAGGTGGAGGTATTGTTTCCGG

CA 

112 bp 60˚C 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=118582274
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=41406083
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=393537030
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=18860919
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=215982795
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22 PGC-1β 

NM_001172699.1 

F 

R 

CTCACTGGCGGACAGCACCC 

GGGAGAGGCTGGAGCTGGCT 

217 bp 60˚C 

23 GLUT4 

NM_001042.2 

F 

R 

GGGGCCTGCCAGAAAGAGTCTG 

AGCTGCAGCACGACCGCAAT 

177bp 60˚C 

24 CD105 

NM_001278138.1 

 

F 

R 

GGTGACCCGCGCTTCAGCTT 

 

CTTGCTGGGGACGCGTGTG 
 

291 bp 60˚C 

25 CD241 

NM_000324.2 

F 

R 

TGGGCGCCTCCAACACGTCTAT 

GGTTCCAGCTGGCTGTGGTCA 

226 bp 60˚C 

26 CD235 

NM_002099.6 

F 

R 

CGGGACACATATGCAGCCACTCC 

GGCAAGTTGTACCCTTTCTCCGGT 

105 bp 60˚C 

27 TEK/TIE2 

NM_000459.3 

F 

R 

TCACTTCGCTGCCGACGTGG 

CGCACTGGGAGCCTTCCCATT 

183 bp 60˚C 

28 SYK 

NM_001174167.1 

F 

R 

TGTGCCTGCTGCACGAAGGG 

GGGGAGGACGCAGGATGGGA 

241 bp 60˚C 

29 CD146 

NM_006500.2 

F 

R 

AACGTCAACGGCACGGCAAGT 

CCGGCTCCGGCAGCTTTCTC 

274 bp 60˚C 

30 SIRT3 

NM_001017524.2 

F 

R 

GCTTGGCGGCAGGGACGATTA 

CCCCGGCGATCTGAAGTCTGG 

221 bp 60˚C 

31 PGC-1 α 

NM_013261.3 

NM_013261.3 

F 

R 

F 

R 

ACTGCAGGCCTAACTCCACCCAC 

AACTCGGATTGCTCCGGCCC 

AGACGTCCCTGCTCGGAGCTT 

TGGGTGGAGTTAGGCCTGCAGT 

191 bp 

 

283 bp 

60˚C 

 

60˚C 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=83722278
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=497240516
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=156627564
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=298286505
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=183396798
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=293332584
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=71274106
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=157671925
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=116284374
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=116284374


 

52 
 

3.8 Primer optimization  

 

Figure 3.3. Showing RT-PCR results for primer testing. N stands for negative control where H20 was used 
instead of cDNA. P stands for the positive control used which for macrophage markers (CD14, CD115) was day 
7 macrophage cDNA, and for all other markers was HUVECS. TBP was used as a house keeping gene. 100 bp 
DNA ladder was used. 

 

3.9 Reverse Transcription PCR 
RT-PCR allows the formation of cDNA fragments from RNA. These fragments are then 

amplified using specific set of primers. Up to 500 ng of RNA was mixed with 1 µL oligo dt 

primer and 10mM of dNTP, and dH2O was added to adjust the total volume to 13 µL. This 

mixture was incubated at 65˚C for 5 min, and then immediately put on ice for 1 min. This 

chilling was followed by addition of 4 µL of 5 x FSB (first strand buffer) along with 2 µL of 

DTT, and the mixture was allowed to incubate at 42˚C for 2 min. 1 µL reverse transcriptase 

(Superscript III) was added. Incubation was carried out at 42ºC for 1 hr to synthesize the 

cDNA, followed by incubation at 70˚C for 15 min in order to inactivate the enzyme. PCR 

was then carried out using a reaction setup with a final volume of 50 µL, and the annealing 

temperature was set specifically for each primer. The duration of extension was set according 

to the expected size of the product. 

 

3.10 Quantitative polymerase chain reaction (qPCR) 

Quantitative PCR refers to a laboratory technique based on PCR, which is used to amplify 

and at the same time quantify a targeted DNA molecule. This leads to both the detection and 

quantification of one or more sequences in a DNA sample. There are two main methods used 

for detection of PCR products in real-time PCR. These include, use of non-specific 

fluorescent dyes that intercalate with any double-stranded DNA and use of sequence-specific 
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DNA probes that have a fluorescent reporter tagged to them that allows detection only when 

the probe hybridizes with its complementary DNA target. 

The gene expression analysis for the comparison between early and late EPCs and mature 

endothelial cells (HUVEC) was done using fast SYBR Green fluorescent chemistry. The 

method followed was real-time reverse-transcription PCR which is often referred to as qRT-

PCR. RNA was extracted from the cells at different point times and was reverse transcribed 

to synthesize cDNA. For all the cDNA preparations, 100- 500 ng of RNA was used. Expected 

product size was around 100-200 bp. SYBR Green master mix was used and once the 

samples were prepared they were put in the light cycler (7500 Fast Real–time PCR system 

Applied Biosystems). Each sample contained 33 µL of fast SYBR Green master mix, 24.75 

µL of dH2O, .875 µL of each of the primer and 3.3 µL of cDNA prepared from total RNA. 

All the samples were run in triplicates. An increase in DNA product during the PCR lead to 

an increase in fluorescence intensity and was measured at each cycle allowing DNA 

concentrations to be quantified. As shown in the figure 3.4, the results are shown like this 

plot, where cycles are shown against ∆Rn. Rn value or the normalized reporter value 

represents the fluorescence signal from SYBR Green normalized to the signal of the passive 

reference dye for a given reaction. ∆Rn represents the difference between Rn values of an 

experimental reaction and Rn values of the baseline signals generated by the machine. As 

shown in the figure 3.5, a higher gene expression shows signals at earlier PCR cycles, 

whereas the negative control used for the reaction showing no expression of the gene is 

shown at higher cycles having high CT value. Quantitative PCR was carried out in triplicates 

for each sample and n represents the number of donors. 

 



 

54 
 

 

Figure 3.4. An amplification plot for a qPCR showing gene expression in terms of number of cycles 
and corresponding CT values. 

 

In order to confirm the specificity of the primers that were designed for the PCR and to make 

sure that the SYBR Green is not detecting any nonspecific double-stranded DNA including 

primer dimers and contaminating DNA and PCR product from misannealed primer, a melt 

curve was analysed for all the primers. Melt curve analysis is a tool to assess the dissociation-

characteristics of double-stranded DNA during heating. As more than one peak on a melt 

curve would indicate that the primers are producing nonspecific products. As shown in the 

figure there was only one peek seen in the melt curve, confirming that the primers were 

specific for the DNA target. 
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                              Figure 3.5.  Showing melt curve stage during qPCR reaction. 

 

3.11 Agarose gel electrophoresis 
The concentration of agarose and applied electrical field depends upon the size of DNA 

sequences. Usually 3gm of agarose was added in 150 ml of 1 × TBE Buffer, and allowed to 

mix thoroughly by heating in microwave for around 2-3 min. The mixture was then allowed 

to cool down at around 60˚C, and then 150 µL of Gel Red (10 mg/ml) was added. This 

agarose mixture was poured into the gel chamber and allowed to solidify. 1× TBE was used 

as the electrophoresis buffer. 6× loading buffer was added to the samples and these were then 

loaded in to the gel. Electrophoresis was carried out at a voltage of around 80-110v, current 

of 400 mA for about 60-120 min. Sizes of the DNA fragments were determined by 

comparison with a 100 bp DNA ladder. The gel was observed under UV light. 
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Figure 3.6. Schematic representation of the methods used for low density array (LDA). 
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3.12 Taqman array micro fluidic cards background 
Taqman array micro fluidic cards are 384-well cards which are loaded with dried down gene 

expression assays. These cards allow gene expression measurement using comparative ∆∆CT 

method and using relative quantification for gene expression analysis. These cards are 

provided in different formats and the format used included using one sample per card and 192 

genes to be analysed together including endogenous controls. Taqman array custom 

microfluidic cards were used that allowed selecting target genes (Taqman assays) and 

appropriate endogenous controls.  

                          A 
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                                                           B 

 

                                                          

 

Figure 3.7. A), B) Showing Taqman array micro fluidic card design and channels containing Taqman 
assays in dried down form. (Adapted from applied Biosystems). 

 

3.12.1 Assay selection strategy 

The assays were selected based on three different criteria. We proposed that ECFCs are the 

endothelial progenitor cells that must be at an earlier stage of differentiation as compared to 

mature endothelial and as there is still no marker that can distinguish between these cells and 

mature endothelial cells (HUVEC). Therefore, several genes were picked that were expected 

to show expression in progenitor cells and absence in mature endothelial cells and vice versa. 

We needed to test whether we can find genes that show high and low level of expression in 

ECFCs and HUVEC and could differentiate these cells on the basis of gene expression 

analysis.  

Secondly, as our earlier results indicated that there was an up regulation of antioxidative 

genes in ECFCs and HUVEC when grown in hyperoxia (40% O2) and also there was an up 

regulation of PGC-1 alpha and its downstream targets. As PGC-1 alpha is a transcriptional co 

activator we needed to investigate its downstream targets to establish if growing these cells in 

hyperoxia can have an effect on its downstream transcriptional factors that are known to be 
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involved in angiogenesis, electron transport chain assembly and mtDNA transcription as 

shown in figure below.  

 

Figure 3.8. Showing schematic representation of PGC-1α and its downstream targets. Adapted from 
(Arany et al. 2010). 

 

Thirdly, as we proposed that oxidative stress (40% O2) could be used as a model to study 

atherosclerosis in ECFCs so we checked for genes that were involved in DNA damage, 

telomere dysfunctioning and inflammatory response and angiogenesis and if this leads to 

change in expression as a result of exposure to oxidative stress and if this response was 

different in mature endothelial cells grown in hyperoxia. 

 

3.12.2 Endogenous controls used for the array 

All the data were analysed using relative quantification method (∆∆CT) and the data were 

normalized to three housekeeping genes that were used an endogenous control. These 

included: 

18s rRNA  

Hypoxanthine phosphoribosyl transferase (HPRT1)   

TATA box binding protein (TBP)  
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3.12.3 Low density array (LDA) gene map 
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Schematic representation of the low density array (LDA). In all, 192 assays were used. 3 assays were used as 
endogenous controls. The assays were run in duplicates. 
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3.12.4 Isolation of total RNA from ECFC and HUVEC samples and DNase treatment 

RNA was extracted from ECFC and HUVEC samples using Qiagen RNeasy mini kit. Cells 

were kept frozen down at -80°C in freezing media containing DMSO. Cells were taken out 

from the freezer and quickly thawed and then transferred to a new eppendorf tube. This was 

followed by centrifugation at 800 x g for 5 min. Supernatant was removed and the cell pellet 

was disrupted by adding buffer RLT. The volume of lysis buffer used depended upon the no 

of cells: 

 

Table 3.2. Showing volume of lysis buffer to be used for extraction of total RNA 

Number of cells Volume of RLT Buffer 

1-5 x 10
6 

350 µL 

5 x 10
6
-1 x 10

7 
600 µL 

  

Cells were mixed well by gentle vortex or pipetting and the resulting cell lysate was directly 

transferred into a QIA shredder spin column which was placed in a collection tube. The 

column was subjected to centrifugation at 13000 x g for 2 min. This step was performed in 

order to homogenize the lysate as improper homogenization can lead to reduced RNA yield. 

Equal volume (350 µL) of  70% ethanol was added to the homogenized lysate and mixed 

well by pipetting. The resultant 700 µL of the sample along with some precipitates that were 

formed were transferred to the RNeasy spin column which was placed in a collection tube. 

This was allowed to centrifuge for 15s at 13000 x g. The flow-through was discarded. The 

next step was to treat the samples with DNase in order to avoid genomic DNA contamination. 

350 µL of wash buffer RW1 was added to the RNeasy spin column and lid was gently closed. 

This was followed by centrifugation for 15s at 13000 x g. Flow-through was discarded. 

DNase mix was prepared separately by adding 10 µL of DNase 1 from the stock to 70 µL of 

RDD buffer followed by gentle mixing. This DNase mix was added to the RNeasy column 

and incubated at room temperature for 15 min. After this incubation, 350 µL of buffer RW1 

was added to the column and centrifuged at 13000 x g for 15s. Flow-through was discarded. 

This was followed by addition of 500 µL of buffer RPE to the RNeasy spin column and 

centrifugation at 13000 x g for 15s. This step was repeated with an additional centrifugation 

for 2 min at 13000 x g so that no residual ethanol is carried over that can affect downstream 

reactions. An optional step was performed by placing the RNeasy spin column in a separate 
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and new 2ml collecting tube and centrifugation for 1 min at full speed. This was done to 

avoid any carryover of buffer RPE. The spin column was finally placed in a 1.5 ml eppendorf 

tube and 10-20 µL of RNase free water was added to the column membrane directly. This 

was followed by a final centrifugation for 1 min at 13000 x g. RNA was eluted and quantified 

using Nanodrop.  The quality of RNA was assessed by measuring A260/A280 ratio which 

was found to be around 1.7 - 2.1. 
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3.13.5 Samples used for Taqman low density array (LDA)  

                        

Same donor analysis 

Batch 1:   ECFC 1, ECFC H1, HUVEC 1 and HUVEC H1  

Batch 2:   ECFC 2, ECFC H2, HUVEC 2 and HUVEC H2    

Batch 3:   ECFC 3, ECFC H3, HUVEC 3 and HUVEC H3  

ECFC 1, 2, 3 = ECFCs grown in normoxia (20%O2) till P5. 

ECFC H1, H2, H3 = ECFCs grown in normoxia till P2 and then grown in 

hyperoxia (40%O2) till P5.  

HUVEC 1, 2, 3 = HUVEC grown in normoxia till P5.  

HUVEC H1, H2, H3 = HUVEC grown in normoxia till P2 and then grown 

in hyperoxia (40%O2) till P5. 

LDA samples were run in duplicates and n represents the number of donors. Three donors 

each (n=3) for ECFC normoxia, ECFC hyperoxia, HUVEC normoxia and HUVEC 

hyperoxia. One day 0 MNC sample was used that was a calibrator or reference sample and all 

the gene expression analysis was plotted relative to that. In all, thirteen array cards were used. 
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                                     Table 3.3. Showing RNA purity analysis 

LDA Sample A260/280 Ratio 

ECFC  1 2.07 

ECFC H1 2.04 

HUVEC 1 2.08 

HUVEC H1 2.07 

ECFC 2 2.06 

ECFCH 2 1.71 

HUVEC 2 2.08 

HUVEC H2 2.07 

ECFC 3 2.11 

ECFC H3 2.07 

HUVEC 3 2.06 

HUVEC H3 1.96 

                                    

 3.12.6 RNA integrity analysis using bioanalyzer 

After RNA extraction and quantification it was important to evaluate the integrity of RNA 

samples that would be used for the low density array (LDA). 

RNA evaluation is the first and most important step involved in gene expression analysis. 

This RNA evaluation was carried out using Agilent RNA 6000 Pico kit.  By using 

electrophoretic separation, the RNA samples were separated on micro fabricated chips and 

detected through laser via fluorescence detection. The bioanalyzer provides an 

electropherogram for the RNA sample along with a gel image and gives the RNA 

concentration and the ribosomal ratio (28s/18s). RNA integrity number (RIN) was developed 

to assess the RNA quality and grades from 1 -10 in increasing order of integrity. 

 

Figure 3.9. Showing an electropherogram with the regions indicative of RNA quality. (Adapted from Agilent 
technologies).  
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3.12.7 Preparation of RNA ladder 

RNA ladder was spun down and allowed to heat denature for 2 min at 70°C. It was 

immediately put on ice to get cooled down. 90 µL of RNase-free water was added to the 

ladder and thoroughly mixed. Once prepared, the ladder was aliquoted into several RNase 

free vials and kept at -80°C.  

 

Figure 3.10. Showing RNA 6000 Pico ladder. Seven well resolved peaks are illustrated including the first 
marker peak and the six RNA peaks.            
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Table 3.4. Showing gene names and assay ID information used for LDA 

Gene Symbol Assay ID Location on Array 

Card 
PPARGC1A Hs01016719_m1 A01 

PRKAA1 Hs01562315_m1 A02 

PPARGC1B Hs00991677_m1 A03 

UCP1 Hs00222453_m1 A04 

UCP2 Hs01075227_m1 A05 

FOXO1 Hs01054576_m1 A06 

RPS6KB1 Hs00177357_m1 A07 

PCK2 Hs00388934_m1 A08 

G6PD Hs00166169_m1 A09 

AKT1 Hs00178289_m1 A10 

AKT3 Hs00987350_m1 A12 

CLK2 Hs00241874_m1 A13 

STK11 Hs00176092_m1 A14 

CAB39 Hs00212451_m1 A15 

MTOR Hs00234508_m1 A16 

PPARGC1A Hs00173304_m1 A17 

MT-ATP6 Hs02596862_m1 A18 

HNF4A Hs00230853_m1 A19 

MT-ATP8 Hs02596863_m1 A20 

MT-CO3 Hs02596866_g1 A21 

MT-CO2 Hs02596865_g1 A22 

MT-CO1 Hs02596864_g1 A23 

NOS3 Hs00167166_m1 A24 

THPO Hs00171249_m1 C01 

TEK Hs00176096_m1 C02 

TERF1 Hs00744634_s1 C03 

TERF2 Hs00194619_m1 C04 

RAD50 Hs00990023_m1 C05 

HNRNPF Hs00359014_m1 C06 

TNKS Hs00186671_m1 C07 

TINF2 Hs00173291_m1 C08 

FIGF PIR-FIGF Hs00189521_m1 C09 

TGFB1 Hs00171257_m1 C10 

TGFB2 Hs00234244_m1 C11 

CCL2 Hs00234244_m1 C12 

VCAM1 Hs00174239_m1 C13 

CD68 Hs00154355_m1 C14 

ICAM1 Hs00164932_m1 C15 

MPO Hs00924296_m1 C16 

SIRT1 Hs00202021_m1 C17 

SIRT2 Hs00247263_m1 C18 

SIRT3 Hs00202030_m1 C19 

SIRT4 Hs00202033_m1 C20 

HIF1A Hs00936376_m1 C21 
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BRCA1 Hs01556193_m1 C22 

ATR Hs00354807_m1 C23 

SOD2 Hs00167309_m1 C24 

CAT Hs00156308_m1 E01 

AIFM1 Hs00269879_m1 E02 

GPX1 Hs00829989_gH E03 

ABCG2 Hs00184979_m1 E04 

KDR Hs00176676_m1 E05 

CDH5 Hs00174344_m1 E06 

ENG Hs00923996_m1 E07 

GYPA Hs00266777_m1 E08 

ITGA2B Hs01116228_m1 E09 

SRXN1 Hs00607800_m1 E10 

CD34 Hs00990732_m1 E11 

PECAM1 Hs00169777_m1 E12 

PROM1 Hs01009250_m1 E13 

PTPRC Hs04189704_m1 E14 

CD36 Hs01567185_m1 E15 

MCAM Hs00174838_m1 E16 

BMPR2 Hs00176148_m1 E17 

KIT Hs00174029_m1 E18 

CASP3 Hs00234387_m1 E19 

TERT Hs00972656_m1 E20 

TERC Hs03454202_s1 E21 

TEP1 Hs00200091_m1 E22 

PINX1 Hs00363223_m1 E23 

MEN1 Hs00365720_m1 E24 

PPARG Hs01115513_m1 G01 

RFC1 Hs01099126_m1 G02 

POLE2 Hs00160277_m1 G03 

SMC6 Hs00226378_m1 G04 

SLC2A4 Hs00168966_m1 G05 

ESRRA Hs01067166_g1 G06 

PPRC1 Hs00209379_m1 G07 

GSK3A Hs00997938_m1 G08 

GSK3B Hs01047719_m1 G09 

PPARGC1A Hs00173304_m1 G10 

PPARGC1A Hs01016722_m1 G11 

PPARGC1A Hs01016721_m1 G12 

PPRC1 Hs00209379_m1 G13 

TFAM Hs01082775_m1 G14 

TFB1M Hs00274971_m1 G15 

TFB2M Hs00915025_m1 G16 

MEF2A Hs01050409_m1 G17 

MEF2B Hs01021286_m1 G18 

MEF2C Hs00231149_m1 G19 

MEF2D Hs00954735_m1 G20 

CAMKK2 Hs00198032_m1 G21 
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CREBBP Hs00231733_m1 G22 

CPT1A Hs00912671_m1 G23 

DGAT1 Hs00201385_m1 G24 

FGF21 Hs00173927_m1 I01 

DNM1L Hs00247147_m1 I02 

FOXO3 Hs00818121_m1 I03 

GPAM Hs01573680_m1 I04 

LDHB Hs00929956_m1 I05 

MFN2 Hs00208382_m1 I06 

NRF1 Hs00192316_m1 I07 

PDGFA Hs00964426_m1 I08 

PDK4 Hs01037712_m1 I09 

PPARA Hs00947539_m1 I10 

TNF Hs99999043_m1 I11 

ZFYVE9 Hs00245109_m1 I12 

AIFM1 Hs00377585_m1 I13 

CCL2 Hs00234140_m1 I14 

PROX1 Hs00896294_m1 I15 

ANGPT2 Hs01048043_m1 I16 

ANGPT4 Hs00907078_m1 I17 

ANGPT1 Hs00375822_m1 I18 

VEGFB Hs00173634_m1 I19 

VEGFC Hs00153458_m1 I20 

TGFA Hs00608187_m1 I21 

FGF1 Hs00265254_m1 I22 

FGF2 Hs00266645_m1 I23 

FGF4 Hs00999691_m1 I24 

CXCL12 Hs00171022_m1 K01 

PTN Hs00383235_m1 K02 

CXCL2 Hs00601975_m1 K03 

LECT1 Hs00993254_m1 K04 

HEY1 Hs01114113_m1 K05 

AMOT Hs00611096_m1 K06 

NRP1 Hs00826128_m1 K07 

NRP2 Hs00187290_m1 K08 

PDGFRA Hs00998018_m1 K09 

PDGFRB Hs01019589_m1 K10 

CCL3 Hs00234142_m1 K11 

PLA2G4A Hs00233352_m1 K12 

SMPD1 Hs01086851_m1 K13 

POT1 Hs00209984_m1 K14 

MRE11A Hs00967443_m1 K15 

XRCC5 Hs00221707_m1 K16 

NBN Hs01039836_m1 K17 

ACTA2 Hs00909449_m1 K18 

MAPK3 Hs00946872_m1 K19 

ITPKB Hs00176666_m1 K20 

MAPK14 Hs00176247_m1 K21 
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PIK3R5 Hs01046353_m1 K22 

RAF1 Hs00234119_m1 K23 

CASP9 Hs00154261_m1 K24 

BAD Hs00188930_m1 M01 

PXN Hs01104424_m1 M02 

SOS1 Hs00362308_m1 M03 

MTMR12 Hs00539666_m1 M04 

PTK2 Hs01056457_m1 M05 

STAT3 Hs00374280_m1 M06 

TNFSF10 Hs00921974_m1 M07 

INS Hs02741908_m1 M08 

BCL2 Hs00608023_m1 M09 

TAF6 Hs00425763_m1 M10 

VEGFA Hs00900055_m1 M11 

FLT1 Hs01052961_m1 M12 

SIRT5 Hs00978335_m1 M13 

SIRT6 Hs00213036_m1 M14 

SIRT7 Hs01034735_m1 M15 

TP53 Hs01034249_m1 M16 

TERT Hs00972651_m1 M17 

GPX4 Hs00157812_m1 M18 

VWF Hs01109446_m1 M19 

BMP4 Hs00370078_m1 M20 

IGF1 Hs01547656_m1 M21 

FLT4 Hs01047677_m1 M22 

TNFRSF10B Hs00366278_m1 M23 

KLF4 Hs00358836_m1 M24 

CXCR4 Hs00237052_m1 O01 

HMOX1 Hs01110250_m1 O02 

PTGS2 Hs00153133_m1 O03 

EDN1 Hs00174961_m1 O04 

HPRT1 Hs02800695_m1 O05 

HDAC5 Hs00608366_m1 O06 

TBP Hs00427620_m1 O07 

MT-ND3 Hs02596875_s1 O08 

MT-CYB Hs02596867_m1 O09 

OGT Hs00269228_m1 O10 

PRMT1 Hs01587651_m1 O11 

NAT10 Hs01120371_m1 O12 

NFATC1 Hs00542678_m1 O13 

KITLG Hs00241497_m1 O14 

NFKB1 Hs00765730_m1 O15 

PON1 Hs00166557_m1 O16 

TXN2 Hs00912509_g1 O17 

PRDX5 Hs00201536_m1 O18 

ROCK1 Hs01127699_m1 O19 

ROCK2 Hs00178154_m1 O20 

ESSRG Hs00155006_m1 O21 
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1L10 Hs00961622_m1 O22 

1L1A Hs00174092_m1 O23 

CSF1R Hs00911250_m1 O24 

 

 

3.12.8 Electropherogram showing RNA integrity analysis of samples used for LDA 
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3.12.9 cDNA synthesis using high capacity RNA-to-cDNA Kit 

After extraction of total RNA from ECFC and HUVEC samples next step was to reverse 

transcribe it to produce complementary cDNA. High capacity kit was used to do this 

synthesis. The kit contained RT buffer mix (2X) that was stored at 4°C and RT enzyme mix 

(20X) that was kept at -20°C.  

 

Preparation of RT reaction: 

All the kit components were thawed on ice. RNA samples were taken out from -80°C and 

kept on ice. The following table was used to calculate the exact volume of the components to 

be used for the desired number of reactions. In all, 13 samples and array cards were used for a 

total of 8 reactions per card making it a total of 104 reactions for this LDA experiment. 

Table 3.5. Showing reverse transcription preparation 

Components Volume/Reaction 

2 X RT Buffer 10 x 8 = 80 µL 

20 X RT Enzyme mix 1x8 =8 µL 

Nuclease-free H2O To make it to 400 µL 

RNA Sample Up to 9 µL 

Total per reaction  400 µL 

 

The reaction was mixed well by pipetting and kept on ice. 

 

Reverse transcription of the samples: 

RT reaction mix was aliquot in to Eppendorf tubes and the tubes were sealed with appropriate 

caps. In order to remove the air bubbles, the tubes were briefly centrifuged. Reverse 

transcription was started by incubating the tubes at 37°C for 60 min. The reaction was 

stopped by heating at 95°C for 5 min and immediately put on ice. The cDNA samples were 

kept at -20°C until they were used to perform the PCR. 

 

Preparation of PCR mix: 

Taqman fast advanced master mix was used for this purpose. cDNA samples that were kept at 

-20°C were taken out and thawed by at room temperature. Sample tubes were briefly 
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vortexed followed by centrifugation. The following table represents the calculations that were 

used for this array. 

 

Table 3.6. Showing final calculations for the PCR to be loaded in fill reservoir  

Component Volume per fill reservoir 

cDNA Sample (50 ng) + nuclease-free H2O 50 µL 

Taqman Fast advanced master mix 50 µL 

Total volume 100 µL 

  

 

3.12.10 Loading the PCR reaction mixes in to array card reservoirs 

For each card one cDNA sample was used. Taqman array card was removed from 4°C and 

kept at room temperature for about 30 min. Sample was removed from -20°C and thawed at 

room temperature. Each sample contained 400 µL of cDNA and nuclease free water. Equal 

volume of Taqman fast advanced master mix was added to the sample and mixed well by 

pipetting. 100 µL of sample specific master mix was loaded in to each reservoir.  

3.12.11 Centrifugation of array cards 

After loading the PCR master mix to all 8 fill reservoirs, the next step was to centrifuge the 

cards so that the cDNA sample could be distributed evenly across the wells. Centrifugation 

was carried out using Heraeus centrifuge machine and bucket type was set to 15679. The card 

was centrifuged using settings shown below in the table. 

 

Table 3.7. Showing centrifugation settings used for LDA  

Parameter QUIKSet (Knob-operated) 

Up Ramp rate  3 

Down Ramp rate  N/A 

Rotational speed 1200 rpm 

Centrifugation time 2 x 1 min 

                                                             

Once the centrifugation was completed, the card was removed and checked properly if filling 

was complete. It was confirmed that the amount of cDNA sample left in each fill reservoir 

was uniform and consistent. If it was not found to be like that, an additional 1 min 

centrifugation was performed.  
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3.12.12 Sealing of array cards 

After centrifugation was complete, the next step was to seal the array cards. This was a very 

important step because sealing of the card allows the isolation of wells after cDNA samples 

were evenly distributed following centrifugation. The sealer works by using a carriage to seal 

the fluidic channels of the array. It was important to check that the sealer‟s carriage was in 

starting position which could otherwise damage the card if allowed to seal in that position. 

Taqman array card was inserted in to the sealer in such a way that the end with fill reservoir 

was closest to the arrows at the base of the sealer. Array card was gently pushed until it was 

fixed securely in the insert plate. The carriage was pushed across the sealer‟s base in the 

direction of the arrows indicated on the sealer. It was important to perform this step slowly 

and steadily to finish the sealing smoothly. 

Once the card was sealed the last step was to trim the filling reservoirs from the array card 

using scissors. The card was run on ABI prism 7900 sequence detection system.  

 

3.12.13 Real time data analysis 

Data analysis was carried out using SDS 2.3 software and RQ manager version 1.2. 
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3.13 qPCR Validation for low density array 

                                    

Batch 4: ECFC4, ECFC H4, RNA extracted from samples from Batch 2 

but at different passages. P4 for normoxia and P2 for hyperoxia samples. 

HUVEC4, HUVEC H4 RNA extracted from samples from an additional 

batch at P5 and P3.   

Batch 5: ECFC5, ECFC H5, HUVEC5 and HUVEC H5. RNA extracted 

from different samples from Batch 1 but at same passages. P5 for normoxia 

and P3 for hyperoxia. 

Batch 6: ECFC 6, ECFC H6, HUVEC 6, HUVEC H6. RNA extraction from 

an additional batch. All from same donor.  P5 for normoxia and P3 for 

hyperoxia.    

 

3.13.1 Rationale for qPCR validation 

After finishing the LDA experiments, the next step was to validate the results. There were 

several genes that showed up regulation in ECFCs when grown in hyperoxia (40% O2) and 

several genes that showed down regulation in HUVEC when gown in hyperoxia (40% O2). 

So it was important to see if this difference persists with different samples and if this changes 

across passages. In order to do that we picked the genes that showed statistically significant 

difference amongst samples and used Taqman gene expression assays to validate these results 
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across different samples. Samples were run in triplicates and n represents the number of 

donors.  

Taqman gene expression assays are pre-optimized primer and probe based assays designed 

for qPCR analysis. The primers are formulated at a concentration of 20 µm. Each assay 

contains three target-specific oligonucleotides. They include: 

Unlabelled PCR Primer pair 

Taqman probe with FAM dye label and minor groove binder (MGB) moiety on the 5ʹ end 

non fluorescent quencher (NFQ) on the 3ʹ end. Taqman gene expression assays are used to 

amplify cDNA in the qPCR step in RT–PCR. We used two step RT-PCR approach using 

total RNA isolated from samples. RNA was quantified using Nanodrop. 

 

                                  Table 3.8. Showing RNA purity analysis  

qPCR Sample A260/280 Ratio 

ECFC 4 2.03 

ECFCH4 2.18 

HUVEC 4 2.12 

HUVEC H4 2.03 

ECFC 5 2.03 

ECFC H5 1.93 

HUVEC 5 1.91 

HUVEC H5 1.95 

ECFC 6 2.07 

ECFC H6 1.96 

HUVEC 6 2.12 

HUVEC H6 2.10 

 

3.13.2 qPCR using Taqman gene expression assays 

These assays are based on 5ʹ nuclease activity of Taq DNA polymerase. Taqman probes 

hybridize to the target DNA between two unlabelled primers. Signal from the fluorescent dye 

on the 5ʹ end of the probe is quenched by NFQ on its 3ʹ end. This occurs through 

fluorescence resonance energy transfer (FRET). During PCR, Taq polymerase extends the 

unlabelled primer using template as a guide. When the polymerase reaches the Taqman 

probe, it cleaves the molecule, separating the dye from the quencher and allowing it to 

fluoresce. This fluorescence is detected by the PCR machine using nonquenched FAM dye. 
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With each PCR cycle, there is a release of dye molecules which results in an increase in 

fluorescence intensity that is proportional to the amount of amplicon synthesized.                  

 

Table 3.9.  Showing Taqman gene expression assay IDs and transcript accession information 

Gene 

Symbol 

Gene 

ID 

Assay ID Transcript 

Accession 

Location 

on NCBI 

Genome 

Assembly 

Location 

on 

Transcript 

or Gene 

Size 

of 

Amp 

(bp) 

ITPKB 3707 Hs00176666_m1 NM_002221.3 226819391 2583 71 

PRDX5 25824 Hs00201536_m1 NM_181651.2 64085560 299 128 

PPARGC1A 10891 Hs01016721_m1 NM_013261.3 23793644 2413 80 

MT-ATP8 4509 Hs02596863_g1 NC_012920.ATP8.0 NA 38 120 

MT-CYB 4519 Hs02596867_s1 NC_012920.CYB.0 NA 692 151 

MT-ND3 4537 Hs02596875_s1 NC_012920.ND3.0 NA 118 150 

VEGFC 7424 Hs00153458_m1 NM_005429.2 177604691 1140 126 

GPX4 2879 Hs00157812_m1 NM_001039847.1 1103936 197 123 

PON1 5444 Hs00166557_m1 NM_000446.5 94927669 1010 122 

PECAM1 5175 Hs00169777_m1 NM_000442.4 NA 2376 65 

CXCL12 6387 Hs00171022_m1 NM_199168.3 44872506 273 77 

KIT 3815 Hs00174029_m1 NM_001093772.1 55524095 154 64 

IL1A 3552 Hs00174092_m1 NM_000575.3 113531488 1578 69 

KDR 3791 Hs00176676_m1 NM_002253.2 55944426 2567 84 

ABCG2 9429 Hs00184979_m1 NM_004827.2 89011416 1027 92 

NRP2 8828 Hs00187290_m1 NM_018534.3 206547224 863 81 

SIRT4 23409 Hs00202033_m1 NM_012240.2 120740124 559 106 

FGF2 2247 Hs00266645_m1 NM_002006.4 123747863 649 82 

ANGPT1 284 Hs00375822_m1 NM_001199859.1 108261710 925 74 

PCK2 5106 Hs00388934_m1 NM_001018073.1 24563483 405 73 

TBP 6908 Hs00427620_m1 NM_001172085.1 170863421 578 91 

TGFA 7039 Hs00608187_m1 NM_001099691.2 70674410 614 70 

PROX1 5629 Hs00896294_m1 NM_002763.3 214161860 2301 74 

VEGFA 7422 Hs00900055_m1 NM_001025366.2 43737946 1352 59 

CDH5 1003 Hs00901463_m1 NM_001795.3 66400525 1994 63 

ACTA2 59 Hs00909449_m1 NM_001141945.1 90694831 455 64 

TEK 7010 Hs00945146_m1 NM_000459.3 27109147 3742 123 

PDGFRA 5156 Hs00998018_m1 NM_006206.4 55095264 2481 84 

PROM1 8842 Hs01009250_m1 NM_002609.3 15969849 2864 75 

PDGFRB 5159 Hs01019589_m1 NM_002609.3 149493400 3374 62 

TP53 7157 Hs01034249_m1 NM_001126112.2 7571720 1301 108 

PDK4 5166 Hs01037712_m1 NM_002612.3 95212807 1098   74 

FLT1 2321 Hs01052961_m1 NM_001159920.1 28959688 1387 72 

PPARG 5468 Hs01115513_m1 NM_138711.3 12330436 812 90 

NOS3 4846 Hs01574659_m1 NM_001160109.1 150690892 266 107 

HPRT1 3251 Hs02800695_m1 NM_000194.2 133594175 297 82 

18S HSRN Hs99999901_s1 X03205.1 109078 604 187 

ANGPT2 285 Hs01048043_m1 NM_001118888.1 6357172 973 113 

MT-C01 4512 Hs02596864_g1 NC_012920.CO1.0 NA 613 94 

VWF 7450 Hs01109446_m1 NM_000552.3 6058040 308 56 
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Table 3.10. Showing statistical analysis for the samples used for LDA and qPCR 

validation using two way ANOVA 

Gene Name 

 

ECFC 

20%Vs40% 

HUVEC  

20%Vs40% 

ABCG2 *P ˂ 0.05 ns P ˃ 0.05 

ACTA 2 ***P ˂ 0.001 ns P ˃ 0.05 

ANGPT1 ***P ˂ 0.001 ns P ˃ 0.05 

ANGPT2 ***P ˂ 0.001 * P ˂ 0.01 

CDH5 *P ˂ 0.05 ns P ˃ 0.05 

CXCL12 ***P ˂ 0.001 ns P ˃ 0.05 

FGF2 *P ˂ 0.05 ns P ˃ 0.05 

FLT1 **P ˂ 0.01 ns P ˃ 0.05 

GPX4 *P ˂ 0.05 ns P ˃ 0.05 

IL1A *P ˂ 0.05 **P ˂ 0.01 

ITPKB *P ˂ 0.05 ns P ˃ 0.05 

KDR ***P<0.001 ns P > 0.05 

KIT *P < 0.05 ns P > 0.05 

MT-ATP8 ***P<0.001 ns P < 0.05 

MT-C01 *P < 0.05 ns P > 0.05 

MT-CYB *P < 0.05 ns P > 0.05 

MT-ND3 *P < 0.05 ns P > 0.05 

NOS3 *P < 0.05 ns P > 0.05 

NRP2 ns P > 0.05 ns P > 0.05 

PCK2 ns P > 0.05 * P < 0.05 

PDGFRA *P < 0.05 ns P > 0.05 

PDGFRB *P < 0.05 ns P > 0.05 

PDK4 ns P > 0.05 *P < 0.05 

PECAM1 *P < 0.05 ns P > 0.05 

PPARG **P<0.01 ns P > 0.05 

PPARGC1A *P < 0.05 ns P > 0.05 

PRDX5 ns P > 0.05 ns P > 0.05 

PROM1 ***P<0.001 ns P > 0.05 

PROX1 *P < 0.05 ns P > 0.05 

SIRT4 ns P > 0.05 ***P<0.001 

TEK ns P > 0.05 ns P > 0.05 

TGFA ns P > 0.05 ***P<0.001 

TP53 ns P > 0.05 *P < 0.05 

VEGF A ***P<0.001 ns P > 0.05 

VEGF C ***P<0.001 *P < 0.05 

VWF ns P > 0.05 ***P<0.001 
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3.14 Telomerase activity measurement using telomeric repeat 

amplification protocol (TRAP) assay 
 

 

Figure 3.11. Showing TRAP assay used for the measurement of telomerase activity. (Adapted from De Cian 

et al., 2007).  

 

TRAP assay also known as telomeric repetition amplification protocol is used to measure 

telomerase activity in desired cell types. Telomerase is an enzyme, belonging to ribonucleo 

protein family. It acts as a reverse transcriptase and has its own RNA molecule which is used 

as a template for telomere elongation, which is shortened with each replicative cycle. The 

main function of telomerase is to add DNA sequence repeats (TTAGGG) at 3’ end of the 

telomeric DNA strands located in regions at the extreme ends of eukaryotic chromosomes 

called telomeres.  

Human telomerase consists of two main catalytic subunits, a protein component that has 

reverse transcriptase activity called human telomerase reverse transcriptase (TERT or 

hTERT), being encoded by the same gene and the telomerase RNA (TERC), that acts as a 

template for this telomere repeats. Telomerase therefore elongates telomeres in DNA strands 

allowing senescent cells to exceed the Hay flick limit (number of times a cell population can 

divide before the cell division stops) and potentially becomes immortal, as seen in cancer 

cells. 
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ACX (HPLC purified) 100ng/ µL    5‟- GCGCGGCTTACCCTTACCCTTACCCTAACC-3‟ 

TS (HPLC purified) 100ng/ µL       5‟- AATCCGTCGAGCAGAGTT-3‟ 

 

TRAP assay was carried out on two cell types endothelial progenitor cells ECFCs and mature 

endothelial cells HUVEC while cord blood mononuclear cells (HUCBC) were used as 

reference samples to which relative telomerase activity was measured.  

Endothelial colony forming cells (ECFCs) were obtained from umbilical cord blood and 

allowed to differentiate in endothelial specific media (EBM-2). The cells were grown in 

normoxia (20% oxygen) and hyperoxia (40% oxygen). In normoxia cells were grown till 

passage 10 (P10) and were passaged regularly once they became around 70-80% confluent. 

Trypsin–EDTA was used to split the cells. Once the cells were grown for passage 2 (P2) in 

normoxia they were incubated in hyperoxia for an additional passage (P1). Cells were frozen 

down with each passage in freezing media containing DMSO. Mature endothelial cells 

HUVEC were isolated from human umbilical vein and were grown in normoxia (20% 

oxygen) till passage 10 (P10). The cells were split regularly once they grew to 70-80% 

confluence.  

Frozen cells were thawed quickly and spun down at 800 x g for 5 min. Supernatant was 

aspirated and the cell pellet was resuspended in NP40 cell lysis buffer to produce 50,000 

cells/ µL suspensions. The resultant cell suspension was incubated for 30 min on ice. This 

was followed by a centrifugation at 16000 x g at 4°C for 20 min. The supernatant as 

transferred to a pre-cooled eppendorf and the sample was ready to use for the assay. 

No of cells used for telomerase activity measurement (TRAP assay) 

100,000 cells/triplicate 

300,000 cells/sample 
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Table 3.11. Showing calculations used for telomerase activity measurement 

Material Volume per tube in µL Volume per triplicate in µL 

Sybr Green PCR Master mix 12.5 37.5 

ACX primer 1 3 

TS primer 1 3 

dH2O 8.25 24.75 

EGTA .25 .75 

 

Final volume used per tube was 75 µL, so 69 µL of this master mix was used and 6 µL of 

sample was added. The resultant mixture was divided in to three triplicates of 25 µL each and 

samples were placed in the PCR machine rack and the TRAP assay programme was run.  

There were five controls used for the TRAP assay, to make sure that it has worked well. 

These controls included the following as shown in the table below: 

Table 3.12. Showing controls used for TRAP   

1 Distilled water (dH2O) 

2 No primers (ACX and TS) 

3 NP40  

4 R8 1: 100 

5 R8 1: 1000 

 

The PCR programme used for the TRAP assay was as follows: 

Table 3.13. Showing PCR programme used for the assay 

Elongation 25°C for 30 min 

Denaturation 95° C for 10 min 

Denaturation 95° C for 10 sec 

Annealing 60 ° C for 1 min 

PCR cycles 40 

 

 

 

 

 

 

 



 

85 
 

3.15 Direct immunofluorescence analysis 
Immunofluorescence refers to the labelling of antigens by using fluorescent dyes. This 

technique is widely used to detect subcellular distribution of specific biomolecule targets with 

in a cell. Immunofluorescence-stained cells or tissue sections can be studied in detail using 

light microscopy, confocal microscopy and flow cytometry analysis. The first step is to 

prepare cells and making them attached to a solid support. The next step is to fix and 

permeabilize the cells in order to ensure proper access of the antibody to its specific antigen. 

The third step involves incubation with the antibody. Antibody which is not bound is 

removed by washing and unbound antibody is detected either directly (if primary antibody is 

fluorochrome-labelled) or indirectly using a secondary antibody, labelled with a 

fluorochrome. Finally, the staining is evaluated by using fluorescent microscopy. 

3.15.1 Experimental design 

We needed to test whether endothelial colony forming cells (ECFCs) were at an earlier stage 

of differentiation than mature endothelial cells (HUVEC). As it was shown in our earlier data 

that mRNA expression analysis confirmed that the ECFCs showed much lower expression of 

vWF transcripts than mature endothelial cells which had much higher expression of vWF. In 

order to test this, ECFCs and HUVEC were grown in special chamber slides (Lab-TEK II Cat 

# 154526). Around 10,000 cells were plated in each well. For a better comparison early (P5) 

and late passage (P15) cells were used both for ECFCs and HUVEC. IgG matched isotype 

control (Human IgG (Normal) Life technologies (Molecular Probes) Cat # 12000C) was used 

as a negative control.  

 

Figure 3.12. Showing cells stained with human IgG antibody used as an isotype control for the direct 
Immunofluorescence analysis. Images taken at 10 X magnification. Scale on the bar represents 100 µm. DAPI 
was used to stain the nuclei. 
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3.15.2 Staining procedure  

Cells were grown in chambered slides and incubated at 37°C at 5% CO2 in normoxia. Cells 

were checked for attachment the next day. Cells were attached well and washed briefly with 

PBS. Fixation of cells was carried out using methanol (Sigma Aldrich Cat # 179337). 500 µL 

methanol was added and cells were kept at -20°C for 10 min. Methanol was removed using a 

sucking pump. Permeabilization was carried out by adding 500 µL cooled acetone (Sigma 

Aldrich Cat # W332607) and cells were kept at -20°C for 1 min. Cells were rinsed twice in 

wash buffer (0.05% Tween 20 in PBS) for 2 min. This was followed by incubation in 

blocking buffer (2% BSA diluted in PBS) for 30 min in order to avoid nonspecific binding of 

the immunoglobulin. Primary antibody (Sheep PAb to vWF, Applied Biosciences Cat #8820) 

was diluted in antibody buffer (2% BSA in PBS). The final concentration used was 1:2000. 

Cells were incubated with primary antibody diluted in buffer for 60 min at room temperature 

in a humidified chamber. After this incubation cells were washed 5-6 times with the wash 

buffer. Excess buffer was removed and cells were counterstained with mounting media 

containing DAPI (Vectashield Cat # H-1200). Chambers were removed and slides were 

mounted using glass cover slips. 

Axio imager fluorescent microscope B162 was used to inspect the slides. Images were taken 

at 10 X magnification and Image J software (Fiji) was used for analysing and counting the 

FITC positive cells required for statistical analysis that was done using unpaired t tests. 

3.15.3 Limitation of the Experiment 

Human IgG (Normal) was used as a negative control for the experiments. A better control 

would have been Human IgG (FITC).  

 

3.16 Flow FISH (Fluorescent in situ hybridization)  
Flow FISH is rapidly emerging as a powerful tool to measure length of telomere repeats in 

cells. This technique allows using fluorescent in situ hybridization (FISH) in conjunction 

with a labelled peptic nucleic acid (PNA) probe which is specific for those telomere repeats 

along with measurement of fluorescence using flow cytometry. This method to measure the 

lengths is working on the fact that, at decreased ionic strength, PNA can anneal to 

complementary single stranded DNA sequences. Hybridized PNA probe used (C3TA2)3 

(FITC-conjugated) for these experiments was based on the principal that low levels of 

fluorescent signals could be detected  by a  laser flow cytometer (FACS Canto II in this case) 

and  Propidium Iodide was used a counter stain. So, only those cells were gated which took 
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up propidium iodide as shown in figure 3.13. Only those samples were included in which at 

least 1000 events were obtained with the desired gate. Figure 3.1 shows the gating strategy 

and the control used for the experiment for measuring telomere lengths ECFCs and HUVEC 

across passages. Thymocytes were used as a control and a reference telomere length.    

 

 

 

 

Figure 3.13. Showing histogram of the analysis of thymocytes which were used a control for flow FISH 
experiments used to measure the telomere length of ECFC and HUVEC samples across passages. Thymocytes 
were used as reference telomere length which was nearly 1.5 times longer than found in human endothelial 
cells.  
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3.16.1 Telomere length measurement using flow FISH 

After measuring the telomerase activity of ECFC and HUVEC samples in both normoxia and 

hyperoxia it was needed to measure telomere lengths of ECFC and HUVEC samples across 

passages. This was to test whether telomere length is decreasing with each replicative cycle 

in both these cells. Secondly, to check if these progenitor cells (ECFCs) are different from 

mature endothelial cells in terms of preserving their telomere lengths and if there was a 

difference in hyperoxia conditions. ECFCs were derived from cord blood and cells were 

passaged regularly using Trypsin-EDTA. Cells were split in a ratio of 1:3. ECFC samples 

used were grown in normoxia (20% O2) and early to late passage samples were used (P2-

P16). HUVEC were isolated from umbilical vein of the cord and cells were grown in 

normoxia. Cells were split regularly in a ratio of 1:3. Measurement of telomere lengths was 

done across passages in HUVEC samples (P2-P16). Bovine thymocytes were used as an 

internal control for the study, and used as a reference being a sample with known telomere 

length. 

 

3.16.2 Flow FISH Assay 

Bovine thymocytes were frozen down at -80°C. They were thawed at room temperature. 500 

µL of FBS was added to the cells and freezing media. This suspension was mixed well by 

pipetting and transferred to an eppendorf tube. This was subjected to centrifugation at 300 x g 

for 5 min. Supernatant was sucked down and the pellet was resuspended in 1 ml of PBS 

containing 5% FBS and mixed well by pipetting. This cell mix was transferred to a 15 ml 

falcon tube and 2 ml of this PBS was added. This was kept on ice till other samples were 

ready for cell count. 

HUVEC samples were frozen down at -80°C. Cells were taken out and thawed at room 

temperature. 2 ml of PBS containing 5 % FBS was added to the cell mix containing freezing 

media. Cells were counted using Vi-Cell XR 2.03 (Beckman Coulter). 300,000 cells were 

used per triplicate for PNA
+ 

samples. 300,000 cells were used for 1 PNA
-
 sample. 

ECFC samples were kept at -80°C. Cells were thawed by rolling fingers and 2 ml of PBS 

with 5% FBS was added. Cells were counted and 300,000 cells were used per duplicate. 

Viable cell count was used for calculations for all cell types. Cell mix was centrifuged for 10 

min at 2000 x g. Supernatant was aspirated and cells were resuspended in 300 µL of 

hybridization mix in separate tubes. 
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3.16.3 Preparation of hybridization mix 

Ultra-pure formamide was taken out from -20°C and thawed at room temperature. Water bath 

was set at 87°C. Hybridization mix was prepared using following calculations. 

 

Table 3.14. Showing hybridization mix preparation for flow FISH 

Material End Concentration Volume for 6 

PNA
- 
Tubes 

Volume for 12
 

PNA
+
  Tubes 

1M Tris PH 7.1 20mM 50 µL 90 µL 

1M NaCl 20mM 50 µL 90 µL 

BSA 10% 1% 250 µL 450  µL 

Ultra pure Formamide 75% 1876 µL 3376 µL  

dH2O  249 µL 449  µL 

PNA Probe 30µg/ml 0.3µg/ml  45 µL 

Negative Control (TE 

Buffer) 

 45 µL   

 

Cells were incubated in dark for 10 min after resuspension in hybridization mix. This was 

followed by 15 min of placement in water bath at 87°C. Cells were removed from water bath 

and kept at room temperature in dark for approximately 2 hrs. 

After this incubation, cells were washed using two different washing solutions. Cells were 

vortexed and centrifuged for 5 min at 2000 x g. Supernatant was sucked till around 100 µL 

still remained. This wash was repeated for two additional times. Table below shows the 

content and concentration of wash solution I. 

 

Table 3.15. Showing wash buffer I preparation 

Materials End Concentration Volume for 12 Tubes 

Formamide  75% 45 ml 

1M Tris PH 7.1 10 mM 600 µL 

BSA 10% 1% 6 ml 

Tween20 10% 1% 6 ml 

dH2O  2.4 ml 

 

This wash was followed by a second wash and table below shows the content and 

concentrations of the materials used. 
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Table 3.16. Showing wash buffer II preparation 

Materials End Concentration Volume for 12 Tubes 

BSA 10% 1% 1.5 ml 

Tween20 10% 1% 1.5 ml 

1M HEPES 10mM 150 µL 

Glucose  11.9 ml 

 

1 ml of wash solution 2 was added to each tube and cells were centrifuged for 10 min at 2000 

x g. Supernatant was sucked till 50 µL remained. 

 

Table 3.17. Showing DNA counterstain mix preparation 

Material End Concentration 12 Tubes 

Propidium Iodide 0.06 µg/ml 45 µL 

RNase A 10 µg/ml 4.5 µL 

BSA 10% 0.1 % 45 µL 

PBS  4405.5 µL 

 

Telomere length measurement calculation: 

Relative telomere length was measured using following method. 

Mean fluorescence measurements were obtained for both PNA
+
 and PNA

–
 samples. An 

average was taken for the positively stained samples used in duplicates (ECFC) and 

triplicates (HUVEC). This value was subtracted from the PNA
–
 mean fluorescence values 

obtained. Thymocytes were used as a reference telomere length and telomere length 

measurements were calculated relative to the mean fluorescence values obtained for 

thymocytes. 

 

3.17 Multicolour flow cytometry 
Multicolour flow cytometry involves using several antibodies together each having a 

different fluorochrome to stain them followed by analysis using a flow cytometer. In order to 

confirm the expression of cell surface markers at protein level, several important markers 

were checked. This included FACS analysis with antibodies for markers that showed 

expression at mRNA level in earlier experiments in human cord blood mononuclear cells, 

ECFCs and HUVEC samples. Unstained cells were used for gating and used as a negative 

control. The analysis was carried out using antibodies as shown in the table below. 
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                 Table 3.18. Showing set up used for Multicolour flow cytometry  

Antibodies Fluorochrome Volume Used 

Mouse Anti Human 

CD34 

APC Conjugate 5 µL 

Mouse Anti Human 

CD144 

FITC 10 µL 

Mouse Anti Human 

CD14 

Pacific Blue 

Conjugate 

5 µL 

Mouse Anti Human 

CD146 

PE 10 µL 

 

One million cells were used per sample. Cells were resuspended in 500 µL of PBS and 

transferred to a labelled FACS tube. Antibodies were added and cells were incubated at room 

temp for 20-30 min. This was followed by a wash and then cells were analysed for FACS 

using FACS Canto II. Gating strategy for this experiment was devised using unstained 

samples. All the gates were set using that as shown in figure below. For all the samples 

including cord blood mononuclear cells (MNCs), ECFCs and HUVEC a negative (unstained) 

sample was used to set up the gates. 

 

 

 

Figure 3.14. Gating strategy of unstained cells used for the detection of ECFCs and HUVEC. These 
unstained cells were used for setting gates for the positive and stained samples. 
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Table 3.19. Showing list of materials and associated information used for the study  

Product  Manufacturer Catalogue no  

 
Rat Tail Collagen BD Biosciences #354236 

 

Human  Plasma Fibronectin  Chemicon (Millipore) #FC010 

 

EBM-2 media Clonetics #CC 3156 

 

Single Quotes Clonetics #CC4176 

 

Foetal Bovine Serum Clonetics #CC 4101A 

 

Hydrocortisone Clonetics #CC 4112A 

 

h FGF Clonetics #CC 4113 A 

 

VEGF Clonetics #CC 4114 A 

 

R3- IGF Clonetics # CC 4115 A 

 

Ascorbic  Acid Clonetics # CC 4116 A 

 

GA -1000 Clonetics # CC 4381 A 

 

Heparin Clonetics #CC 4396 A 

 

RPMI 1640 Gibco (Invitrogen) #21875 

 

Medium M-199 Sigma- Aldrich #M 4530 

 

HEPES 1M Gibco (Invitrogen) #15630 

 

L- Glutamine Gibco (Invitrogen) #25030 

 

Trypsin-EDTA PAA #L11-004 

 

Penicillin/Streptomycin Gibco (Invitrogen) #15070 

 

TRizol Invitrogen #15596-026 

 

Taq DNA Polymerase Fermentas # EP0402 

 

Random Hexamer Primer Fermentas #S0142 

 

Fast SYBR Green 

 

Applied Biosciences # 4385618 

6 X Loading Dye Promega #G1881 
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RNase H Fermentas              #EN0201 

 

dNTP - mix Invitrogen #10297-117 

 

First Strand Buffer 5 X Invitrogen              #10812-014 

 

0.1M DTT Invitrogen             #18080-044 

RNase Inhibitor Fermentas #EO0381 

 

Superscript Reverse 

Transcriptase 

Invitrogen #18064-022 

 

100 bp DNA Ladder Invitrogen #10488-058 

 

Agarose Lonza SeaKem #50004 

 

Hematocytometer ROTH #T728.1 

Phosphate Buffer Solution PAA #H15-002 

 

DMSO  Sigma-Aldrich #D2650 

 

25 mM MgCl2 Fermentas #R0971 

 

Collagenase Gibco (Invitrogen) # 17101-015 

 

Ficoll-Hypaque Biochrom #L6115 

Pipette Tips  0.1-10µl Star Lab #S1111-3700 

Pipette Tips  1-200µl Star Lab #S1111-1700 

Pipette Tips  101-1000µl Star Lab #S1111-2721 

Pipette Tips  101-1000µl Star Lab #S1122-1830 

RNeasy Mini Kit Qiagen #74104 

Glucose Sigma-Aldrich #G5400 

Formamide ultra-pure Invitrogen #15515-026 

Hydrochloric acid (HCl) Sigma-Aldrich #H1758 

Sodium chloride Sigma-Aldrich #S6191 

TE buffer Qiagen #11910 
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Tris (Trizma base) Sigma-Aldrich #T-1503 

Tween 20 Sigma-Aldrich #P-1379 

Propidium iodide (PI) Molecular Probes #P-1304MP 

PNA probe (C3TA2)3 (FITC-

conjugated) 
Panagene Custom order 

Mouse anti human CD 34 APC 

conjugate 
BD Pharmingen #560940 

Human CD 14 Pacific Blue 

Conjugate 
Invitrogen #MHCD 1428 

PE Mouse Anti-Human CD146 

Monoclonal 
BD Pharmingen #561013 

Sheep pAb  vWF  Applied Biosciences #8822 

Human IgG  Molecular Probes #12000C 

Methanol  Sigma- Aldrich # 179337 

Chamber slides  Lab-TEK II # 154526 

Acetone  Sigma- Aldrich # W332607 

Mounting media containing 

DAPI 
Vectashield # H-1200 

RNase A (100 mg/ml) Qiagen #19101 

FITC Mouse Anti-Human 

CD144 
BD Pharmingen #560874 
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Chapter 4. Isolation and characterization of human endothelial 

progenitor cells (ECFCs) and comparison with mature endothelial 

cells (HUVEC) 

4.1 Introduction 
The human vasculature provides a dynamic network in the body for gaseous exchange and 

delivery of nutrients and circulation of cells. Blood vessel formation is considered as a 

fundamental aspect of development and any abnormality or irregularity in that can lead to 

fatal disease and therefore making it a therapeutic target.  It has been proposed for long that 

endothelial progenitor cells (EPCs) hold great promise in the field of vascular biology, as 

their ability to differentiate in to endothelial cells can be used as a tool to re-endothelialize 

damaged blood vessels and facilitate the process of maintaining an intact endothelium. 

Similarly, low EPC count has been associated with coronary heart diseases (CHD). But till 

now, the identification of an endothelial progenitor cell has been a matter of debate, as there 

is no unique marker that can distinguish these cells from mature endothelial cells. They are 

therefore, identified on the basis of the expression of several cell surface markers. The first 

aim of our study was to isolate endothelial progenitor cells (ECFCs) from cord blood and 

differentiate them from early EPCs and macrophages derived from the same cord blood and 

compare them with mature endothelial cells which were derived from human umbilical vein 

of the same donor. This was followed by characterization of all these cell types isolated from 

the same donor, at mRNA and protein level and comparison with mature endothelial cells. In 

order to carry out this study our first goal was to isolate the correct endothelial progenitor 

cells as there has been so many discrepancies associated with their identification. To provide 

a better comparison we decided to isolate the cells from the same donor. This meant that the 

umbilical cord blood used to isolate the endothelial progenitor cells was from the same donor 

whose umbilical cord was used for the isolation of human umbilical vein endothelial cells 

(HUVEC). The study was designed in such a way that human umbilical cord mononuclear 

cells (HUCBC) also known as day 0 mononuclear cells (MNCs) were used as a starting 

population for the comparison and they were isolated from cord blood using ficoll based 

lymphoprep separation. Macrophages were used as a control for the study for two reasons. 

Firstly, it has been shown that the early EPCs are related to monocyte-macrophage lineage 

and the endothelial progenitor cells (ECFCs) should be distinguished from them on the basis 

of expression of monocyte-macrophage markers (Yoder et al. 2007).  Secondly, macrophages 

are known to be resistant to oxidative stress (Dernbach et al. 2004) and therefore it was 
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important to make sure that the endothelial progenitor cells isolated for testing further 

hypothesis were not composed of a mix of cell populations like monocyte and macrophages. 

 

4.2 Results 

4.2.1 Isolation and morphological analysis of cell types isolated from cord blood and 

human umbilical vein of the same donor 
The human cord blood mononuclear cells (HUCBC) also known as MNCs were isolated from 

cord blood using lymphoprep. A cell pellet was obtained after centrifugation and around 5-10 

million cells were frozen down for carrying out RNA extractions. These were designated as 

day 0 MNCs or the starting population from which all the cell types were derived apart from 

mature endothelial cells (HUVEC), which were derived from the umbilical vein of the same 

donor. Morphologically, the MNCs appeared as small rounded cells as shown in figure 4.1A. 

After freezing down cells, the remaining MNCs were divided into three cultures to isolate 

early EPCs, macrophages and ECFCs from the same donor. Around 10-15 million cells per 

well were plated in order to isolate early EPCs also known as circulating angiogenic cells 

(CACs) and the cells were allowed to differentiate in endothelial specific media in normoxia. 

Cells were washed and the media was changed regularly. After 3-5 days of culture early 

EPCs were seen visible and were found to be the adherent cells. They appeared as rounded 

cells as shown in figure 4.1B.  All cells that were not attached were washed away and the 

supernatant was removed. After 7 days of culture early EPCs were frozen down and RNA 

extraction was performed. Around 10-15 million MNCs were allowed to differentiate in 

macrophage specific media and grown under the same culture conditions. After 3-5 days of 

culture in macrophage specific media these MNCs started to differentiate towards 

macrophage lineage and became elongated fibroblast shaped cells as shown in figure 4.1C. 

These cells were adherent and were washed regularly and the media was changed on alternate 

days till day 7. Cells were then frozen down at this stage and RNA extraction was carried out.  

In order to derive ECFCs, around 60-70 million MNCs were plated per well and cells were 

allowed to differentiate in endothelial specific media. Cells were washed regularly and after 

14-21 days, adherent cells forming clusters and resembling an endothelial colony were 

observed under the microscope. Figure 4.1D, shows the edge of the colony that distinguishes 

it from confluent cells that cover the entire well plate. The colony was picked and the cells 

were grown separately for a period of around 6-8 weeks, and were classified as endothelial 

colony forming cells or ECFCs as shown in figure 4.1E. Mature endothelial cells were 
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derived from human umbilical vein and were morphologically similar to ECFCs as shown in 

figure 4.1F. HUVEC demonstrated typical cobble stone appearance. The isolation of all these 

cell types from the same donor was difficult because not all isolations lead to colony 

formation and ECFCs have been shown to be a rare population of cells. 

 

A) Day 0 MNCs (HUCBC)                        B) Early EPCs (CACs)                               C) Macrophages  

            

D) Endothelial Colony                         E) ECFCs in culture                                  F) HUVEC in culture 

         

Figure 4.1. Morphological analysis of different cell types isolated from human umbilical cord blood and 

human umbilical vein. A) MNCs were isolated from cord blood after ficoll based separation. Scale = 50µm. B) 

Early EPCs were isolated from cord blood by differentiating MNCs in endothelial specific media. Scale = 50µm. 

C) Macrophages were derived from cord blood by differentiating MNCs in macrophage specific media.  D) 

Showing the edge of an endothelial colony derived from cord blood. Scale = 200µm E) ECFCs derived from an 

endothelial colony after 6 weeks of culture. Scale =100µm. F) Mature endothelial cells derived from human 

umbilical vein. Scale = 50µm. Images taken at 10 x magnification. 
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4.2.2 Gene expression analysis of hematopoietic stem cell and macrophage specific 

markers in early EPCs, macrophages, late EPCs (ECFCs) and mature endothelial cells 

(HUVEC) derived from the same donor 

 

After successful isolation and culture of early EPCs or circulating angiogenic cells (CACs), 

macrophages and late EPCs or ECFCs from cord blood and mature endothelial cells 

(HUVEC) from the same donor, the next step was to carry out the characterization of these 

cells at mRNA level. RNA extraction was carried out from frozen samples including day 0 

MNCs, day 7 EPCs, day 7 macrophages and early passage ECFCs (P4) and HUVEC (P4). 

Specific primers were designed for cell surface markers for qPCR analysis. There were 

several important markers that were chosen to be tested for expression in these cell types. 

These included the CD34 gene that encodes CD34 protein and has been used as a common 

marker for EPC identification, and has shown to be expressed in hematopoietic stems cells, 

hematopoietic progenitor cells and circulating endothelial cells. The results as depicted in 

figure 4.2A, showed high expression of CD34 in early EPCs which is consistent with the 

earlier findings, but there was no CD34 expression seen in macrophages. As EPCs 

differentiate there is a gradual decline in the levels of CD34 but it still showed some level of 

expression in ECFCs which are known to retain low expression of this cell surface marker. 

HUVEC did not show any expression of the marker at mRNA level. CACs showed more than 

2 fold higher mRNA abundance of CD34 in comparison to ECFCs and HUVEC and the 

difference was found to be statistically significant. Gene expression was plotted relative to 

day 0 MNCs that were taken as 0 or no expression. 

The next gene  to test was PECAM-1 that encodes CD31 protein also known as platelet 

endothelial cell adhesion molecule-1 (PECAM-1) and  is a type 1 trans membrane 

glycoprotein, belonging to immunoglobulin gene super family (Stockinger et al., 1990). 

CD31 shows a wide range of cellular distribution with the highest level of expression shown 

in endothelial cells (Woodfin et al., 2007). The results showed that there was much higher 

expression of CD31 in the endothelial colony forming cells (ECFCs)  obtained from the 

umbilical cord blood as shown in figure 4.2B, and there was also expression seen in mature 

endothelial cells (HUVEC).  Early EPCs and macrophages showed much lower levels of 

CD31 as compared to ECFCs and HUVEC. ECFCs showed a 2 fold increase in expression as 

compared to HUVEC, but the difference was not found to be statistically significant.  
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In order to differentiate early EPCs from ECFCs and mature endothelial cells it was 

important to confirm the expression of certain monocyte-macrophage markers which are 

known to be expressed in early EPCs and macrophages and are not expressed in ECFCs and 

HUVEC. Human CD14 gene encodes a protein that is a well-known marker to identify the 

cells of monocyte-macrophage lineage, and was first identified as a receptor for the endotoxin 

lipopolysaccharide (LPS) (Wright et al., 1990). ECFCs showed no expression of CD14, as 

shown in figure 4.2C, and there was much higher expression of the gene seen in 

macrophages. There was some expression seen in early EPCs which is consistent with what 

has been known before and EPCs are known to gain the expression of CD14 as they 

differentiate (Estes et al., 2010). As shown in figure 4.2, early EPCs showed more than 3 fold 

increase in mRNA level of expression in comparison to ECFCs and HUVEC and the 

difference was found to be statistically significant.  

Protein tyrosine phosphatase receptor type C also known as CD45 is differentially expressed 

in subsets of leucocytes, and on all differentiated hematopoietic stem cells. It is a human 

enzyme encoded by PTPRC gene. mRNA level of expression of CD45 was tested as it is not 

expressed by endothelial cells or erythrocytes (Baldwin et al., 2000). It is a leukocyte marker 

and as the MNCs differentiate, they lose the expression of CD45 as shown in figure 4.2D. 

There was no expression of PTPRC seen in ECFC or HUVEC, as shown in figure 4.2D, 

which is consistent with the previous findings and further confirmed that these colony 

derived cells are the cells of interest, as the ECFCs are known to be negative for this 

leukocyte marker (Zhang et al. 2009). 
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Figure 4.2. Gene expression analysis of hematopoietic stem cell and monocyte-macrophage specific markers 
in early and late endothelial progenitor cells and macrophages derived from cord blood and mature 
endothelial cells derived from the umbilical cord of the same donor. A) Gene expression analysis of cell 
surface marker CD34 in early and late EPCs and HUVEC showing higher expression in early EPCs (day7) and 
ECFCs still retaining CD34 expression. B) Gene expression profile of endothelial cell surface marker PECAM-1 
and comparison between early and late EPCs showing that both cell types express this marker with higher level 
of expression in ECFCs and HUVEC. C) Gene expression analysis of macrophage specific marker CD14 in cell 
types isolated from cord blood and umbilical vein confirming the expression of CD14 in macrophages and in 
early EPCs suggesting that these cells belong to monocytic-macrophage lineages. ECFCs and HUVEC did not 
show CD14 expression. D) Gene expression analysis of cell surface marker CD45 showing expression in early 
EPCs and macrophages and absence in ECFCs and HUVEC. All data are normalized to TBP (TATA box binding 
protein) which was used as a housekeeping gene. Gene expression is plotted relative to cord blood 
mononuclear cells. All values are calculated as ± SEM, n=3-5. * P < .05, **P< .01, *** P < 0.001, ns stands for 
not statistically significant. 
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4.2.3 Gene expression analysis of endothelial markers in early EPCs, macrophages, ECFCs 

and HUVEC derived from cord blood and umbilical cord of the same donor 

After the confirmation of expression of monocyte-macrophage markers in early EPCs and 

macrophages and absence of these markers in endothelial progenitor cells (ECFCs) and 

mature endothelial cells (HUVEC), it was important to check the mRNA level of certain 

endothelial markers in these isolated cell types. Endothelial progenitor cells (ECFCs) and 

mature endothelial cells were expected to show the expression of endothelial markers; 

whereas early EPCs and macrophages should not be showing these markers. In order to test 

this, we carried out gene expression analysis for certain markers that included CD105, 

CD144, CD146 and vWF. Early EPCs, macrophages and ECFCs were derived from cord 

blood samples (n=3 for EPC and macrophages, n=5 for ECFCs) and mature endothelial cells 

(HUVEC n=5) were derived from umbilical veins of the same donors. RNA was extracted 

from frozen down cells at day 7 for early EPCs (CACs) and macrophages and early passage 

ECFCs (P4) and HUVEC (P4).  

The human endoglin gene encodes endoglin protein also known as CD105, which is a type I 

membrane glycoprotein located on the surface of endothelial and haematopoietic cells, 

forming part of the TGF-β complex. It is required for extra embryonic angiogenesis and plays 

a role in cardiovascular development in mammals (Arthur et al., 2000; Conley et al., 2000).  

As shown in the figure 4.3A, there was no expression of CD105 gene in early EPCs and 

macrophages, but there was high level of expression seen in ECFCs and mature endothelial 

cell also showed expression of endoglin. There was more than 2000 fold increase in 

expression of CD105 in ECFCs in comparison to early EPCs and the difference was found to 

be statistically significant. There was significant difference between expression level of 

CD105 in ECFCs and HUVEC. 

CDH5 is a human gene that encodes a member of cadherin family of proteins namely CD144 

also known as VE-cadherin that plays an important role in maintaining newly formed blood 

vessels (Corada et al., 2001). It mainly shows expression in endothelial cells. As shown in the 

figure 4.3B, there was no expression of CDH5 seen in early EPCs and in macrophages as 

expected, but there was higher expression seen in early EPCs and ECFCs as compared to 

HUVEC.  

MCAM is a human gene that encodes the protein CD146 also known as the melanoma cell 

adhesion molecule (MCAM). CD146 is a member of Ig super family and mainly shows the 

expression in endothelial cells including ECFCs and CECs. The results were consistent with 
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the previous findings and showed high expression of CD146 in ECFCs as compared to early 

EPCs (Yoder et al. 2007). There was more than 50 fold increase in mRNA level of 

expression of CD146 in ECFCs as compared to early EPCs and the difference was found to 

be statistically significant. As expected, macrophages showed no expression of CD146 as 

shown in figure 4.3C.  

Von Willibrand factor (vWF) is a blood glycoprotein encoded by vWF gene that is 

exclusively found in endothelial cells and megakaryocytes and is produced and stored in 

weibel-palade bodies in endothelial cells and platelet granules (Mannucci, 1995).  As shown 

in figure 4.3D, there was no expression of vWF gene in early EPCs and macrophages. ECFCs 

showed low level of gene expression of vWF and mature endothelial cells HUVEC strongly 

expressed this endothelial marker. Statistical analysis was carried out that suggested that 

vWF could be used as a marker that could distinguish between endothelial progenitor cells 

(ECFCs) and mature endothelial cells (HUVEC). ECFCs showed low level of gene 

expression and as these cells differentiate towards endothelial lineage they would start 

strongly expressing this specific endothelial marker. There was several thousand fold increase 

in expression of vWF in ECFCs as compared to HUVEC. The difference between mRNA 

expression level of ECFCs and HUVEC was found to be statistically significant. 
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Figure 4.3. Gene expression analysis of endothelial markers in early and late endothelial progenitor cells and 
macrophages derived from umbilical cord blood and mature endothelial cells derived from the umbilical 
cord of the same donor. A) Gene expression analysis of cell surface marker endoglin (CD105) in early EPCs 
(day7) and macrophages showing no expression, and ECFCs showing high expression levels of CD 105. B) Gene 
expression profiling of endothelial specific marker vWF, showing a high level of expression in mature 
endothelial cells and a very low level of expression in ECFCs. There was no vWF expression seen in early EPCs 
and macrophages. C) Gene expression analysis for CD144 (VE-cadherin), showing high expression in ECFCs and 
low expression in mature endothelial cells. There was no expression seen in macrophages. D) Gene expression 
analysis of cell surface marker CD146 (MCAM), showing high expression in endothelial cells and no expression 
in early EPCs. All data are normalized to TBP (TATA box binding protein) which was used as a housekeeping 
gene. Gene expression is plotted relative to human cord blood mononuclear cells (HUCBC). All values are 
calculated as ± SEM, n=3 (CACs and macrophages) and n=5 (ECFCs and HUVEC).  * P < .05, ** P< .01, *** P < 
0.001 
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4.2.4 Multicolor flow cytometry analysis for the expression of cell surface markers CD14, 

CD34, CD144 and CD146 in endothelial colony forming cells (ECFCs) 

As shown in figures 4.2 and 4.3 there was confirmation of the expression of endothelial 

markers in ECFCs and HUVEC and no expression in early EPCs. There was expression of 

markers like CD14 and CD45 which are known to be monocyte-macrophage specific and 

leukocyte markers in early EPCs and absence in ECFCs and HUVEC. The next step was to 

validate these results and confirm the expression and absence of these markers at protein 

level. Antibodies against cell surface marker CD14, CD34, CD144 and CD146 (Mouse-anti 

human) were used to stain the cells each linked to a different fluorochrome. ECFCs were 

isolated from cord blood and were derived from an endothelial colony which was observed at 

around 3 weeks of culture and differentiation of cord blood mononuclear cells in endothelial 

specific media.  Cells were passaged and split regularly and fresh cells were used for staining. 

All four antibodies having different fluorochrome were used together to stain the cells and 

analysis was carried out using FACS. As shown in figure 4.4, ECFCs showed low level of 

expression of hematopoietic stem cell marker CD34, and very low level of expression of 

monocyte-macrophage marker CD14. ECFCs have been known to retain the expression of 

CD34 and are distinguished from early EPCs on the basis of absence of expression of 

monocyte-macrophage markers like CD14. Early EPCs retained high expression of CD14. As 

shown in figure 4.4, ECFCs showed high level of expression of CD146 also known as 

MCAM, which is known to be expressed in endothelial progenitors and endothelial cells. 

ECFCs also expressed CD144 also known as VE-cadherin which is mainly present in 

endothelial cells and known to play an important role in maintaining newly formed vessels. 
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Figure 4.4. Multicolour flow cytometry analysis showing cell surface markers in ECFCs. The analysis was 
carried out using antibodies against cell surface markers, each having a different fluorochrome. The ECFCs 
were isolated from cord blood and the cells were passaged once they reached confluence. Fresh cells were 
used for flow cytometry analysis. The figure shows the confirmation of the expression of endothelial markers 
CD146 and CD144 and absence of monocyte-macrophage marker CD14 in endothelial colony forming cells 
(ECFCs). The ECFCs as shown above retained low level of CD34 expression. n=3 n represents number of donors. 
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4.2.5 Multicolor flow cytometry analysis for the protein expression of cell surface 

markers CD14, CD34, CD144 and CD146 in mature endothelial cells HUVEC. 

Mature endothelial cells (HUVEC) were derived from the umbilical vein. Cells were grown 

in endothelial specific med and regularly passaged. After the confirmation of expression of 

endothelial markers at mRNA level, as shown in figures 4.2 and 4.3, it was important to 

validate the expression at protein level. Cells were stained with antibodies for cell surface 

markers including CD14, CD34, CD144 and CD146. Cells were stained with four antibodies 

together each having a different fluorochrome. Analysis was carried out using FACS canto II. 

As shown in figure 4.5, HUVEC strongly expressed endothelial markers CD144 and CD146. 

They showed absence of CD14 expression which is known to be a monocyte-macrophage 

marker. HUVEC also retained high level of expression of CD34. 
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Figure 4.5. Multicolour flow cytometry analysis in HUVEC. The analysis was carried out using antibodies 
against cell surface markers, each having a different fluorochrome. HUVEC are mature endothelial cells which 
were isolated from human umbilical vein. Fresh cells at early passages were used for this analysis. The figure 
shows the confirmation of the expression of endothelial cell surface markers CD146 and CD144 and absence of 
macrophage marker CD14 in mature endothelial cells (HUVEC). HUVEC have shown to retain CD34 expression. 
n=3, where n represents number of donors. 
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4.2.6 Protein expression analysis for cell surface markers CD14, CD34, CD144 and CD146 

in cord blood mononuclear cells (day 0 MNCs), endothelial colony forming cells (ECFCs) 

and HUVEC. 

After confirmation of expression of endothelial markers in ECFCs and HUVEC and absence 

of monocyte-macrophage markers CD14 and CD45, the next step was to confirm the 

expression at protein level. As shown in figure 6, FACS analysis was carried out using 

antibodies for CD14, CD34, CD144 and CD146. Cells were stained with all these antibodies 

together and a comparison was made between MNCs, ECFCs and HUVEC based on the 

percentages of cells positive for these cell surface markers. As shown in figure 6, cord blood 

mononuclear cells showed the greatest percentage of CD14
+
 cells, whereas ECFCs and 

HUVEC showed almost no expression of this monocyte-macrophage marker. Mature 

endothelial cells HUVEC showed highest percentage of CD34
+
 cells, and ECFCs still 

maintained CD34 expression. MNCs did not show any expression of CD144
+
 and CD146

+
 

cells as was expected, as these markers are expressed in endothelial progenitors and mature 

endothelial cells. ECFCs showed low expression of CD144 protein as compared to HUVEC, 

which has been shown before. CD146 which is known to be expressed in mature endothelial 

cells showed the highest percentage of positive cells in both ECFCs and HUVEC. 
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Figure 4.6. Protein expression analysis of the haematopoietic stem cell and endothelial markers in cell types 
derived from cord blood and umbilical cord. A) The figure shows the expression of monocyte-macrophage 
marker CD14 in cord blood mononuclear cells, whereas there was no protein expression of CD14 seen in ECFCs 
and HUVEC. ECFCs were derived from a colony that was observed at day 14 to day 21 of culture B) Protein 
expression analysis of haematopoietic stem cell marker CD34 showing high expression in mature endothelial 
cells HUVEC. C) Protein expression analysis of CD144 (VE-cadherin) in day 0 MNC and ECFCs and HUVEC 
confirming expression of CD144 in endothelial progenitors and mature endothelial cells and no expression in 
MNCs. D) Protein expression analysis of cell surface marker CD146 confirming the expression in ECFCs and 
HUVEC and absence in MNCs. Statistical analysis was carried out using one way ANOVA, followed by Tukeys 
multiple comparison tests. All values are calculated as ± SEM, n=3.  * P < .05, ** P< .01, *** P < 0.001. 
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4.2.7 Cell surface marker expression analysis of CD34+/CD14- cell population in mature 

endothelial cells HUVEC 

CD34 is considered to be a marker of hematopoietic cell lineage, but has been known to show 

expression in endothelial cells and endothelial progenitor cells. Our earlier FACS analysis 

showed high percentage of CD34 population in HUVEC. Therefore, we further analysed this 

cell population and as shown in figure 4.7, HUVEC were stained with antibodies for CD14, 

CD34, CD144 and CD146 and all of all them were tagged with a different fluorochrome. 

Cells were analysed using FACS and CD34
+
/CD14

-
 cell population was isolated. This 

population was further analysed and as shown in figure 4.7 E, double positives and double 

negative (CD144
+
/CD146

+
 and CD144

-
/CD146

-
) cell populations were obtained and 

statistical analysis was carried out. 
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Figure 4.7. Protein expression analysis of CD34
+
/CD14

-
 cell population sorted by FACS analysis. The analysis 

was carried out on mature endothelial cells (HUVEC) isolated from human umbilical vein. FACS analysis was 
done using antibodies for cell surface markers including heamtopoietic stem cell marker CD34, macrophage 
specific marker CD14, and endothelial markers CD144 and CD146. Fresh cells were used for the analysis. More 
than 70% of this sorted poulation was found to be double positive for CD144 and CD146 which are both 
endothelial markers. Less than 10% was double negative for CD146 and CD144. The difference between 
double positives and double negatives was found to be statistically significant. Statistical analysis was carried 
out using one way ANOVA, followed by Tukeys multiple comparison tests. All values are calculated as ± SEM, 
n=3.  * P < .05, ** P< .01, *** P < 0.001. 
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4.2.8 Immunofluorescence analysis for vWF expression in ECFCs and HUVEC comparing 

early and late passages for the protein expression of vWF 

Von willibrand factor (vWF) is a blood glycoprotein involved in platelet adhesion. Our 

earlier results indicated that at mRNA level vWF showed higher expression in mature 

endothelial cells than in endothelial progenitors (ECFCs) and the difference was found to be 

statistically significant. In order to confirm and validate this at protein level we performed 

direct immunofluorescence analysis. ECFCs were isolated from cord blood and derived from 

an endothelial colony. Cells were passaged regularly and early passage (P5) and late passage 

(P15) ECFCs were used for comparison so that the level of expression of vWF in early and 

late ECFCs could be observed. The next comparison was between HUVEC grown at same 

passages. HUVEC were isolated from umbilical vein and early (P5) and late passage (P15) 

cells were used. Cells were grown in special chamber slides and stained with vWF antibody 

and observed under microscope. As shown in figure 4.8, early and late ECFCS showed much 

lower level of expression as compared to HUVEC at same passages which was determined by 

counting FITC positive cells for both ECFCs and HUVEC. Statistical analysis was carried 

out and the difference was found to be significant. This further confirmed that ECFCs which 

are endothelial progenitors showed low level of expression of vWF as compared to mature 

endothelial cells HUVEC and could be used as a marker to distinguish between these two cell 

types. 
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 A                     HUVEC P5                               B                   HUVEC P15 
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Figure 4.8. Immunofluorescence analysis for the protein expression of vWF (von Willibrand factor) in 
endothelial progenitor cells (ECFCs) and mature endothelial cells (HUVEC).  vWF antibody was used for 
staining ECFCs and HUVEC having FITC tagged as a fluorescent marker. Human IgG isotype control was used as 
a negative control for the experiments. Figure A and B showing mature endothelial cells which were obtained 
from the human umbilical vein. Cells were passaged regularly and grown till late passage P15. 
Immunofluorescence was done using vWF antibody on early (P5) and late passage (P15) HUVEC. Figure C and 
D showing ECFCs which were derived from an endothelial colony obtained by differentiation of mononuclear 
cells from cord blood. Cells were passaged regularly and immunofluorescence was carried out on early (P5) 
and late passage (P15) ECFCs. Figure E shows lower expression of vWF in early passage ECFCs as compared to 
early passage HUVEC and late passage ECFCs as compared to late passage HUVEC. vWF positive cells were 
counted in these cells and statistical analysis was done using unpaired t test. n=3, where n represents number 
of donors. The difference was found to be statistically significant and the results as shown in the figure indicate 
that the ECFCs are at an earlier stage of differentiation as compared to HUVEC.  
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4.3 Discussion 
There has been a lot of debate regarding the identification of human EPCs as there has not 

been a single marker that can be used for their prospective isolation from peripheral or cord 

blood. The term human EPC has been used for different population subsets and cell types 

depending upon the expression of several cell surface antigens. It has now been shown that 

most of these EPCs actually belonged to hematopoietic subsets that support blood vessel 

formation but were not directly involved in the process of blood vessel formation. These 

EPCs are broadly divided in two main categories, proangiogenic haemopoietic cells for 

which the term EPC has been used, since Asahara et al. for the first time reported prospective 

isolation of these cells from peripheral blood (Asahara et al., 1997). These cells showed the 

expression of cell surface markers including CD31, CD34, CD202b (Tie2), CD309 (VEGFR-

2/KDR), CD62E, CD45, UEA-1, and the uptake of acetylated LDL. These cells lacked the 

expression of monocyte lineage marker CD14. These findings were further validated by 

several groups (Shi et al., 1998) and  it has been shown  that  these EPCs can be isolated from 

bone marrow and other sources (Takahashi et al., 1999; Kalka et al., 2000b). Similarly, 

CD34
+

, CD133
+

, CD309
+

  cell populations have been isolated from peripheral blood and 

named as circulating endothelial precursors (Peichev et al., 2000; Gill et al., 2001). CD31
+
 

CD202b
+ 

CD309
+
 cells have been isolated that form myeloid colonies in an in vitro system 

also termed as CFU-Hill and have been named as EPCs (Hill et al., 2003; Smadja et al., 

2008). It has been shown that CD45
+ 

CD133
+
 CD34

+ 
CD144

+
 and CD309

+ 
cell populations 

have been isolated and termed as EPCs (Fox et al., 2008b; Smythe et al., 2008). It has 

recently been shown that the early EPCs belong to the monocytic-macrophage lineage and 

are termed as proangiogenic cells and express several cell surface antigens including CD31, 

CD45 and in some cases CD309 and CD202b. They are further differentiated on the basis of  

additional expression of CD133, CD34 and absence of CD14 expression and are classified as 

immature progenitors (Estes et al., 2010). Circulating angiogenic cells (CACs) with further 

differentiating potential start expressing CD14 and loose the expression of  CD133 and are 

termed as cells of mature monocytic lineage (Estes et al., 2010).  
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Table 4.1. Showing analysis of the phenotypic properties of CACs and ECFC 

 

Early EPCs/CACs ECFCs 

CD45
+ 

CD45
- 

CD14
+ 

CD14
- 

CD115
+ 

CD115
- 

CD31
+ 

CD31
+ 

CD146
low 

CD146
high 

CD144
+/- 

CD144
++ 

CD105
+ 

CD105
+ 

VWF
+/- 

VWF
+ 

CD34
+/- 

CD34
+/- 

CD133
+ 

CD133
- 

CD117 (KIT)
+ 

CD117 (KIT)
+/- 

VEGFR1
+ 

VEGFR1
+ 

VEGFR2
+ 

VEGFR2
++ 

AcLDL uptake
+ 

AcLDL uptake
+ 

ALDH
+ 

ALDH
+ 

 

They are identified as supportive cells that promote but are not directly involved in vascular 

repair whereas late EPCs which are derived  from an endothelial colony and also known as 

endothelial colony forming cells (ECFCs) are true endothelial progenitors that can be 

transplanted in immunodeficient mice and have the ability to  form vascular structures in vivo  

(Yoder et al., 2007). These cells have shown to have the capacity to form chimeric blood 

vessels in a xenograft model of vessel formation (Yoder et al., 2007). Yoder et al. (2007) 

were the first group to analyse the proliferative potential of human EPCs in clonogenic assays 

in vitro. This assay included plating of single EPCs in collagen-coated plates and the number 

of colonies developed over 14 days were enumerated. The developing cells displayed a 

typical cobblestone morphology and showed differing proliferative potential, with high 

proliferative potential colony-forming cells (HPP-ECFCs) giving rise to low proliferative 

potential colony-forming cells (LPP-ECFCs) and finally to mature non-dividing endothelial 

cells. The LPP-ECFCs formed colonies of less than 2000 cells, and failed to form colonies on 
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replating, whereas HPP-ECFCs formed colonies containing greater than 2000 cells and 

formed at least secondary colonies. Those forming tertiary colonies were proposed to have 

much higher proliferative potential (Reinisch et al., 2009).  

It was therefore important to isolate the true EPCs. The first step was to isolate both early and 

late EPCs and distinguish them on the basis of expression of cell surface markers as these 

EPCs have been characterized on the basis of the expression or lack of expression of certain 

biomarkers used for their isolation. The second step was to distinguish between endothelial 

progenitor cells (ECFCs) and mature endothelial cells (HUVEC). The study was designed in 

such a way that human umbilical cord mononuclear cells (HUCBC) also known as day 0 

MNCs were used as a starting population. They were differentiated to produce early EPCs 

also known as circulating angiogenic cells (CACs) when grown in endothelial specific media 

and to macrophages when grown in macrophage specific growth media. Human umbilical 

cord mononuclear cells (HUCBC) were obtained from the umbilical cord of normal newborn 

deliveries. They are known to be a mixed population of cells including cells of hematopoietic, 

endothelial stem cell and mesenchymal origin (Henning et al., 2012). These cells have 

recently been used to overcome cell depletion in the bone marrow caused by treatment of 

several hematological malignancies and disorders including acute lymphoid and myeloid 

leukemia and aplastic anemia (Broxmeyer et al., 2011). These HUCBC lack the expression of 

the major histocompatibility complex antigen MHC ІІ which minimizes the risk of transplant 

rejection from the recipient.  Morphologically, they appeared as rounded cells as shown in 

figure 4.1A. Early EPCs also known as circulating angiogenic cells (CACs) were derived 

from these HUCBC (day 0 MNCs). They were allowed to differentiate in endothelial specific 

media and were found to be non-proliferative cells that did not form endothelial colony after 

14 days of culture. They appeared as rounded cells as shown in figure 4.1B.  

Macrophages were also derived from the same day 0 mononuclear cells which were allowed 

to differentiate in macrophage specific media. The macrophages were seen after around 5-7 

days of culture and resembled elongated fibroblast like structures as shown in figure 4.1C. 

Macrophages were used as a control for two reasons. Firstly, it has been shown that the early 

EPCs are related to monocyte-macrophage lineage and the endothelial progenitor cells should 

be distinguished from them on the basis of expression of macrophage markers (Yoder et al. 

2007) Secondly, macrophages are known to be resistant to oxidative stress (Dernbach et al., 

2004) and therefore it was important to make sure that the endothelial progenitor cells 

isolated for testing further hypothesis are not composed of a mix of cell populations like 

monocyte and macrophages.   
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We characterized them first on the basis of gene expression analysis for cell surface markers 

including PECAM-1, CD34, CD14, PTPRC, MCAM, CDH5, END and vWF.  

PECAM-1 has  shown varied level of expression in several hematopoietic cells and human 

early EPCs (Rehman et al., 2003). Our results showed that there was a decreased expression 

of this gene in early EPCs in comparison to HUVEC which is consistent with the previous 

findings (Furuhata et al., 2007). 

Strong expression of PECAM-1 in ECFCs suggests that these might be the endothelial 

progenitors that are involved in post-natal vasculogenesis, as shown before CD31 forms part 

of a mechanosensory complex that mediates endothelial cell response to shear stress (Tzima 

et al. 2005), and a recent study indicates that CD31 has a role in arteriogenesis and collateral 

remodelling (Chen et al. 2010). 

The results showed that early EPCs (CACs) derived from umbilical cord blood showed the 

expression of hematopoietic markers like CD34 and CD31and also expressed macrophage 

specific markers like CD14 and CD45 as shown in figure 4.2, and could be clearly 

distinguished from late EPCs or ECFCS and mature endothelial cells and fulfilled the criteria 

of being proangiogenic cells as has been shown before (Estes et al., 2010).   

The expression of CD34 and CD31decreases gradually as the EPC differentiation occurs, but 

ECFCs still maintain the expression of both CD34 and CD31 (Richardson and Yoder 2010). 

The results indicated that both ECFCs and HUVEC did not express macrophage specific 

markers CD14 and CD45, as shown in figure 4.2. The difference again was found to be 

statistically significant. Figure 4.3 shows the differential gene expression analysis of 

endothelial markers in these cell types. The results indicated that early EPCs and 

macrophages did not show the expression of endothelial markers as expected. There were 

several markers that showed statistically significant difference in the gene expression analysis 

of ECFCs and HUVEC. Endoglin and CDH5 can be used as markers to distinguish between 

endothelial progenitor cells and mature endothelial cells but vWF showed much higher 

expression in HUVEC as compared to ECFCs.  

The expression of cell surface markers was confirmed at protein level by using FACS 

analysis, as shown in figure 4.4 and 4.5. This was based on using multicolor flow cytometry. 

The cell surface markers CD34, CD14, CD144 and CD146 were all tagged with different 

fluorochrome, so that the expression level of each could be quantified at the same time. The 

results further confirmed that colony derived endothelial cells (ECFCs) showed the 
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expression of cell surface markers CD144 and CD146 and lacked the expression of 

monocyte-macrophage marker CD14 and could be used to function as true EPCs. We found 

that mRNA expression of CD34 and CD144 was different as compared to protein expression 

mainly in HUVEC. This could be due to the fact that different donors were used for the 

FACS analysis using multicolour flow cytometry and RNA and protein expression does not 

always match. FACS analysis was carried out on fresh cells. 

The results confirmed that we had successfully isolated the true EPCs also known as 

endothelial colony forming cells (ECFCs). These cells can be defined as proliferative cells 

that were first isolated from peripheral blood but this is no more considered a rich source of 

ECFCs. They have since then been isolated from cord blood, human aorta and umbilical vein 

and also pulmonary aorta of the rat (Ingram et al., 2004; Ingram et al., 2005; Alvarez et al., 

2008). They were identified in search of a true endothelial progenitor but till now there has 

been no specific marker that can distinguish them from other endothelial cells. ECFCs have 

shown to express cell-surface markers including CD34, CD31, CD146 and CD105 but still it 

remains unclear if these cells belong to uni or multipotent stem cell lineage or are endothelial 

cells with high level of proliferative potential as they have been shown to achieve over 100 

population doublings in vitro (Ingram et al., 2004; Ingram et al., 2005). Our results indicate 

that ECFCs can be further distinguished from mature endothelial cells by the expression level 

of vWF. It has been shown before that vWF stains for both ECFCs and mature endothelial 

cells (Doung et al., 2011). But as shown in figure 4.8 we compared early and late passage 

ECFCs with early and late passage mature endothelial cells (HUVEC) and we found that 

there was statistically significant difference between ECFCs and HUVEC compared at same 

passages (P5 and P15) in terms of number of vWF positive cells demonstrated by direct 

immunofluorescence analysis that stains for vWF intracelluarly. 

The results as shown in this section clearly indicate that we have successfully isolated the 

true EPCs from cord blood. These cells are derived from an endothelial colony and fulfil the 

criteria of being ECFCs as recently proposed by Yoder et al,. 2010. As shown in figure 4.1 

these cells are morphologically different from early EPCs also known as CACs. The 

molecular characterization of these cells showed that they are distinguished from CACs and 

also from mature endothelial cells on the basis of expression of several cell surface markers. 

There have been several studies before that have characterized these ECFCs using different 

strategies and our results further validate them. Cord blood and peripheral blood derived 

CD34
+
 cells have been used to generate ECFCs and it has been shown that its CD34

+
/CD45

-
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cell population that produces ECFCs whereas CD34
+
/CD45

-
  and CD133

+
 cells failed to 

generate ECFCs (Timmermans et al., 2007). Our results also showed that the ECFCs were 

CD34
+
/CD45

-
. Protein expression analysis was carried out using FACS and showed the 

expression of these cell surface markers in ECFCs and HUVEC. There was higher protein 

expression of CD34 seen in HUVEC and also CD144 had higher expression in HUVEC as 

compared to mRNA expression and this could be due to the fact that the FACS analysis was 

carried out in different donors and also mRNA level of expression does not always match 

with protein expression. Also, FACS analysis was carried out on fresh cells, whereas qPCR 

was performed on samples that were frozen down. Immunofluorescence analysis was 

performed with vWF and it was shown that ECFCs can be distinguished from mature 

endothelial cells (HUVEC) both at mRNA and protein level by the expression of vWF.  
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Chapter 5. Investigating the effect of oxidative stress on PGC-1 alpha 

expression and growth kinetics and telomere dynamics of ECFCs and 

HUVEC 

 

5.1 Introduction 

In eukaryotes, mitochondrial activity is responsible for controlling the cellular and systemic 

metabolism. Similarly, the energy homeostasis is maintained through regulation of tissue-

specific metabolic pathways, and at molecular level main hormonal and nutrient pathways 

depend upon the genes encoding for metabolic enzymes. One of the major players involved 

in this are the PGC transcriptional complexes. PGC-1α is one of the members of this small 

family of transcriptional coactivators, that also includes PGC-1β and PGC-related 

coactivators (PRC), all of which are promoters of mitochondrial biogenesis and oxidative 

metabolism (Wu et al., 1999). Although, apart from PRC which shows ubiquitous expression, 

both PGC1- α and PGC1-β are mainly expressed in oxidative tissues including heart, brain, 

liver, muscle, kidney, pancreas and brown adipose tissue (Uldry et al., 2006). PGC-1α also 

regulates reactive oxygen species (ROS) and apoptosis in mature endothelial cells (St-Pierre 

et al., 2006). Dysregulation of the gene encoding PGC-1α leads to a wide variety of 

pathological conditions and therefore pharmacological regulation of its expression and 

activity can be used as a novel approach to treat several diseases. 

It has been shown that PGC-1α can be induced by lack of nutrients and oxygen; leading to 

VEGF expression and promoting angiogenesis in cultured muscle cells and also skeletal 

muscle in vivo (Arany et al., 2008). Similarly, it has been shown that PGC-1α knockout mice 

fails to show neovascularisation after an ischemic insult, which in normal circumstances is 

carried out by the stimulation of VEGF and other angiogenic factors in response to hypoxia, 

leading to vascularisation as a protection against ischemic injury .  

Telomeres are DNA repeats at the ends of chromosomes, helping to maintain their integrity. 

They are widely regarded as the internal biological clock of a living organism, and shorten by 

a few base pairs with every cell division (Blasco, 2005). Telomere shortening can be 

compensated or slowed down by concomitant activation of telomerase, a DNA polymerase 

and specialized ribonucleoprotein. The catalytic core of telomerase is composed of an RNA 

subunit (TERC) serving as a template for sequence addition and a reverse transcriptase 

(TERT) subunit that facilitates the replication of telomeres. Oxidative stress is an important 
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factor that contributes to telomere attrition (Von Zglinicki, 2002). Correlative evidence from 

human population studies suggests an association of short telomeres with conditions of 

increased oxidative stress, including smoking, obesity and coronary heart disease (CHD).  

It has been shown recently, that telomerase is essential in maintaining a healthy human 

lifespan. Accumulating evidence from premature ageing (progeroid) syndromes, such as 

Werner syndrome or dyskeratosis congenita, both of which show mutations in either TERT or 

TERC, paralleled by short telomeres are a proof of this (Sahin et al., 2011). Similarly, a third-

generation telomerase knockout mouse displays an age-related phenotype with shortened 

lifespan. The reactivation of telomerase in aged telomerase-deficient mice even leads to a 

reversal of tissue degeneration, suggesting that telomere rejuvenation strategies for age-

associated diseases might prove a therapeutic alternative, especially those driven by 

accumulating genotoxic stress. Recently it has been shown that telomere abnormality in the 

nucleus leads to deactivation of PGC1 proteins in the mitochondria via activation of p53. 

Sahin et al 2011 showed that a mice null in either Tert or Terc genes leads to p53 mediated 

apoptosis and growth arrest in several tissues and repression of PGC genes and their 

downstream targets leading to impaired mitochondrial biogenesis. 

We, therefore, hypothesized that  mild oxidative stress would lead to telomere dysfunction in 

endothelial cells, and as a consequence of that a decrease in the expression of PGC-1α in 

endothelial progenitor cells (ECFCs) and mature endothelial cells (ECs). As PGC-1α is a key 

regulator of mitochondrial biogenesis and oxidative metabolism, a decrease in its expression 

would lead to an impairment of mitochondrial activity in these cells. This would in turn lead 

to a decrease in the angiogenic potential of these cells.   

Telomeres are complex DNA-protein structures located at each end of the chromosomes. 

Telomeres are shortened with each cycle of cell replication, and can be a predictor of 

organismal age (Blackburn, 2001). Telomere preservation requires intact telomerase enzyme 

activity and maintenance of telomere length itself (Edo and Andrés, 2005). Recently, it has 

been shown that critically shortened telomeres are linked to age-related cardiovascular 

diseases and promote apoptosis and cellular senescence (Samani et al., 2001; Brouilette et al., 

2003; Brouilette et al., 2008; De Meyer et al., 2008; Samani and Van Der Harst, 2008; Butt et 

al., 2010; Aviv, 2012). Similarly, it has been proposed that endothelial cells within an 

atherosclerotic plaque show signs of cell senescence, whether this is linked to shortening of 

telomere length and does this differ between endothelial progenitor cells and mature 

endothelial cells remains to be seen. Our initial results indicated that endothelial progenitor 
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cells (ECFCs) could be grown for a longer period of time and grow at a faster rate in 

comparison to mature endothelial cells (HUVEC) in conditions of oxidative stress. It has 

already been shown that chronic oxidative stress leads to telomere dysfunctioning and 

promotes cell senescence in human endothelial cells (Kurz et al., 2004). We therefore 

proposed that ECFCs are better equipped to counteract this ROS mechanism and could be the 

cells that take part in repairing damaged endothelium. 

It has been shown that oxidative stress is one of the factors associated with telomere 

dysfunction, and as a result of that cells grown in hyperoxia show telomere shortening (Von 

Zglinicki, 2002).Telomere shortening can be compensated or slowed down by concomitant 

activation of telomerase, a DNA polymerase and specialized ribonucleoprotein. The catalytic 

core of telomerase is composed of an RNA subunit (TERC) serving as a template for 

sequence addition and a reverse transcriptase (TERT) subunit that facilitates the replication of 

telomeres (Von Zglinicki, 2002).  

We had hypothesized that oxidative stress would lead to telomere dysfunction and a decrease 

in the level of PGC-1α as shown in mice recently (Sahin et al. 2011), but again instead of a 

decrease in the levels of PGC-1α, its  mRNA transcripts were increased, as shown in figure 

5.5C. Also, several downstream targets of PGC-1α showed an increase in gene expression as 

shown in figure 5.5 D. 

 

5.2 Results 

5.2.1 Growth kinetics of ECFCs and HUVEC grown in normoxia and hyperoxia 

Endothelial colony forming cells (ECFCs) were isolated from human cord blood. Cord blood 

mononuclear cells were plated at a density of 60-70 million cells per well of a 6 well plate. 

They were allowed to differentiate in endothelial media so that they could differentiate 

towards endothelial lineage. Once an endothelial colony was observed usually after 14-21 

days of culture, it was picked and grown in the same endothelial media. ECFCs were derived 

from these endothelial colonies which were observed in the culture dishes. Cells were grown 

and split once they became 70-80% confluent. 1 million cells were plated to start the ECFC 

culture and that was taken as P0 and day 0. Cells were split regularly in a ratio of 1:3 and 1 

million cells were replated and the rest were frozen down each time cells were passaged. 

ECFCs were grown till late passages in normoxia (20% O2) as shown in figure 5.1A, 

indicated by red circles. ECFCs were grown in normoxia till P2 and then cells were split and 
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1 million cells were plated and cells were placed in hyperoxic incubator (40% O2). All the 

conditions and cell culture media was same for the cells grown in hyperoxia and the only 

difference was oxygen concentration. This was counted as starting day for ECFC hyperoxia 

cell culture and cells were passaged regularly once they became confluent.1 million cells 

were plated each time and cells were split in a ratio of 1:3. One million cells were plated 

again and the rest were frozen down. As shown in the growth kinetics of ECFCs in figure 

5.1A, ECFCs grew in hyperoxia at a rate that was slightly slower than that of cells grown in 

normoxia but the difference was not found to be statistically significant.  

Human umbilical vein endothelial cells (HUVEC) were isolated from umbilical vein. Cells 

were plated and allowed to grow and observed under microscope regularly for a cobble stone 

appearance known for these mature endothelial cells. Once these cells became around 70-

80% confluent they were split and counted using a haemocytometer. 1 million cells were 

replated and this started HUVEC cell culture and this was taken as P0 as shown in figure 

5.1B, and indicated by red circles. Cells were allowed to grow in normoxia (20% O2) and 

split again once they became confluent, in a ratio of 1:3. 1 million cells were plated again and 

the rest were frozen down. Cells were passaged regularly and cells were grown over a period 

of 8 weeks as shown in figure 5.1B.  

Cells were split after P2 and 1 million cells were plated and placed in hyperoxia (40% O2). 

This was counted as P0 and then cells were allowed to grow in hyperoxic conditions. 

HUVEC grew at a much slower rate in hyperoxia as compared to cells grown in normoxia 

and were found to be much less resistant than ECFCs to oxidative stress (40% O2). The 

difference as shown in growth kinetics was found to be statistically significant. As shown in 

the figure ECFCs were found to be growing at a faster rate after 7 days than HUVEC grown 

in hyperoxia and the cells grown in normoxia almost showed similar growth pattern till day 

40 as shown in the figure.  

For both ECFCs and HUVEC, 1 million cells were plated to start the culture that was taken as 

P0. Cells were grown till they were around 70% confluent. At this stage the cells were split 

using trypsin in a ratio of 1:3. 1 million cells were replated and the rest were frozen down at -

80°C in freezing media containing DMSO to be used in later experiments. The cells were 

regularly passaged in around 3-7 days as shown in figure 5.1. Early passage cells grew faster 

and were split at around 3days in culture. Late passage cells took nearly 7 days to be 70% 

confluent. Cells at P10 correspond to around 8 weeks of culture as shown in figure 5.1. 



 

125 
 

                               A 

    

                                 B 

         

Figure 5.1. Illustrating the growth kinetics of endothelial colony forming cells (ECFCs) and mature 

endothelial cells (HUVEC) derived from cord blood and human umbilical vein of the same donor. Figure A 

and B showing the comparison between growth behaviour of ECFCs and HUVEC grown in normoxia (20% O2) 

and hyperoxia (40% O2). Statistical analysis was carried out using two sample t tests between the slopes of the 

normoxia and hyperoxia curves for both ECFCs and HUVEC. The difference was found to be statistically 

significant with a p value of .001 for the comparison between HUVEC grown in normoxia and hyperoxia, and a 

p value of .02 for the comparison between ECFCs and HUVEC grown in hyperoxia. The difference between 

ECFCs grown in normoxia and hyperoxia and ECFCs and HUVEC grown in normoxia was not found to be 

statistically significant with a p value of ≥ .05 in both cases.   
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5.2.2 Telomerase activity measurement using TRAP assay in ECFCs and HUVEC grown in 

normoxia and hyperoxia 

As shown in growth kinetics of ECFCs and HUVEC in figure 5.1, we proposed that as 

endothelial progenitor cells (ECFCs) grow much better in hyperoxia as compared to mature 

endothelial cells (HUVEC), they might show a higher level of telomerase activity when 

grown in hyperoxia that could be compensating for a shortening of telomere length due to 

oxidative stress. In order to test this, ECFCs were isolated from umbilical cord blood and 

derived from an endothelial colony. ECFCs were grown in normoxia till late passage (P9) so 

that a change in telomerase activity could be measured and to test whether these cells would 

show a change in telomerase activity across passages. Telomerase activity was measured 

using TRAP assay and as shown in figure 5.2, there was no statistically significant difference 

found between early and late passage ECFCs and also there was no change in telomerase 

activity in ECFCs grown in hyperoxia. We expected to have higher telomerase activity in 

ECFCs grown in hyperoxia, but the difference found was not statistically significant.   

Similarly, mature endothelial cells HUVEC were isolated from human umbilical vein and 

grown over a period of 2-3 weeks. The cells were then split and grown in normoxic and 

hyperoxic conditions, and cells were frozen down at different passages, early and late passage 

till P11 and telomerase activity was measured using a sensitive TRAP assay as shown in 

figure 5.2. There was no change in telomerase activity in mature endothelial cells (HUVEC) 

grown in normoxia across passages and also there was no significant change in telomerase 

activity of cells grown in hyperoxic conditions, and again the difference shown did not 

achieve statistical significance.  
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                                   A 

 

                                 B 

 

Figure 5.2. Longitudinal comparison of the measurement of telomerase activity in endothelial colony 
forming cells (ECFCs) and mature endothelial cells using a TRAP assay. Figure A showing the changes in 
telomerase activity in HUVEC grown across passages in normoxia and compared to HUVEC grown in hyperoxia. 
Figure B showing the changes in telomerase activity across early and late passages in endothelial colony 
forming cells (ECFCs) derived from cord blood and compared to ECFCs grown in hyperoxic conditions (40%O2). 
The cells were cultured over a period of 6- 8 weeks.  Statistical analysis was carried out using one way ANOVA, 
followed by Tukeys multiple comparison tests. The telomerase activity seems to go up across passages and in 
hyperoxia but the difference was not statistically significant with a p value of >.05 in all cases. ns stand for not 
statistically significant. n=6. 
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5.2.3 Telomere length measurement analysis of HUVEC grown in normoxia and 

comparison between early and late passage cells 

After measuring the telomerase activity of HUVEC samples across passages, as shown in the 

figure 5.3, we measured telomere length of HUVEC from early to late passages (young and 

old cells). Mature endothelial cells HUVEC were isolated from umbilical vein. Cells were 

grown in normoxia (20% O2) and once around 70-80% confluent they were split and 1 

million cells were plated to start the culture taken as P0. Cells were passaged regularly and 

split in a ratio of 1:3. 1 million cells were replated and the rest were frozen down.  Cells were 

grown till late passage P16 (10-12 weeks of culture) so that any change in telomere length as 

the cells grow older could be detected. As shown in figure 5.3, the results showed that the 

telomere length goes down from early passage to late passage and the difference was found to 

be statistically significant. This could be as a result of cellular senescence as telomere length 

is shortened with each replicative cycle. In order to compensate for this attrition of telomere 

length, we proposed that the telomerase activity would increase and compensate for this loss, 

but as shown in figure 5.3, the telomerase activity did not increase across passages and also 

showed no significant increase in the activity under oxidative stress conditions (40% O2). 

 

A                                                         B                                                                C 
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             D                                                              E 

 

                                   F 

 

                                                   F) 

Figure 5.3. Flow FISH data analysis for the measurement of telomere lengths in early and late passage 
mature endothelial cells (HUVEC). Flow FISH is a PNA probe based assay in which mean fluorescence based on 
FITC signal is used to measure the telomere lengths. Thymocytes were used as an internal control and as a 
reference telomere length for telomere length measurements in HUVEC. Mature endothelial cells HUVEC were 
isolated from human umbilical vein and were grown in normoxia. Cells were passaged till P16 over a period of 
5-6 weeks to compare telomere lengths of early and late passage endothelial cells. Propidium Iodide was used 
as a counter stain and cells were gated based on PI uptake. Telomere length seems to go down across 
passages, and the difference was found to be statistically significant. Statistical analysis was carried out using 
one way ANOVA followed by Dunn’s multiple comparison tests. n=3.  
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5.2.4 Telomere length measurement analysis of ECFC grown in normoxia and comparison 

between early and late passage cells 

After successful measurement of telomerase activity in ECFCs grown in both normoxia and 

hyperoxia, the next step was to measure the telomere length of ECFCs grown over a period of 

8-10 weeks till passage 16. ECFCs were obtained from umbilical cord blood by 

differentiation of cord blood mononuclear cells in endothelial specific media. Cells were 

grown till an endothelial colony was seen which was observable at around 3-4 weeks of 

culture. Once a colony was seen it was picked up and grown in culture. The cells were grown 

in normoxia and were regularly passaged. Cells were frozen down at each passage and 1 

million cells were plated each time  the cells were split using trypsin-EDTA. As shown in 

figure 5.5, there was a decrease in telomere length of ECFCs when grown from early to late 

passages. This further confirms that these ECFCs were not stem cells and have committed to 

endothelial progeny. This was shown in less than 3 samples so the statistical analysis was not 

carried out. 
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          D                                                                  E 

 

                                   F 

 

                                                   

Figure 5.4. Flow FISH data analysis for the measurement of telomere lengths in early and late passage 
endothelial progenitor cells (ECFCs). Flow FISH is a PNA probe based assay in which mean fluorescence based 
on FITC signal is used to measure the telomere lengths. Thymocytes were used as an internal control. ECFCs 
were isolated from cord blood derived endothelial colony. Cells were grown in normoxia and passaged till P16. 
As shown in the figure the telomere length decreases from early to late passage. n=1. 
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5.2.5 Gene expression analysis of PGC-1 alpha and its downstream targets in ECFC and 

HUVEC grown in normoxia and hyperoxia 

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) belongs 

to a family of transcriptional coactivators that orchestrate a wide range of genetic programs. 

PGC-1 alpha induction occurs as a result of coactivation of certain transcription factors 

including estrogen- related receptor alpha (ERR alpha), nuclear respiratory factor-1 and 2 

(NRF-1, 2) and many others (Patten and Arany, 2012). PGC-1 alpha promotes angiogenesis 

by inducing the expression of vascular endothelial growth factor (VEGF) along with other 

angiogenic factors (Arany et al., 2008). This induction of VEGF occurs through co activation 

of ERR alpha and is independent of the well-studied hypoxia- inducible factor (HIF-1 alpha) 

pathway (Arany et al., 2008). As shown in figure 5.5, we investigated the effect of oxidative 

stress (40% O2) on the gene expression analysis of PGC-1 alpha and its downstream targets 

including ERR alpha and Glucose 6 phosphate dehydrogenase (G6PD). We first compared 

the expression of PGC-1 alpha in early EPCs derived from cord blood and late EPCs or 

ECFCs derived from the cord blood to mature endothelial cells (HUVEC) derived from the 

umbilical vein of the same donor. RNA extraction was carried out followed by quantitative 

PCR analysis. As shown in figure 5.5A, there was a decrease in the expression level of PGC-

1 alpha in ECFCs as compared to early EPCs and the difference was found to be statistically 

significant. The difference between the gene expression level of PGC-1 alpha in ECFCs and 

HUVEC was not statistically significant. As shown in fig 5.5B, we compared the expression 

level of PGC-1 alpha in ECFCs and HUVEC grown in normoxia (20% O2) and in conditions 

of oxidative stress (40% O2). The cells were grown in normoxia till passage 2 (P2) and then 

exposed to oxidative stress by incubating in hyperoxia. We found that there was an up 

regulation of PGC-1alpha gene expression level in both ECFCs and HUVEC, although the 

difference was not found to be statistically significant. We then investigated, if this increase 

in gene expression level caused any change in the expression level of any of the downstream 

targets of PGC-1 alpha. As shown in figures 5.5C and D, we compared the gene expression 

level of glucose 6 phosphatase and ERR alpha in both ECFC and HUVEC. The cells were 

grown in normoxia till P2 and then exposed to oxidative stress, by growing in 40% O2. It was 

found that there was an up regulation of both these genes in ECFCs and HUVEC suggesting 

that this oxidative stress has led to an activation of PGC-1 alpha, which showed a slight but 

insignificant increase in expression which in turn co activated other transcription factors 

involved in other biological functions.   
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           A                                                                  B 

 

             C                                                                    D 

 

 

Figure 5. Gene expression analysis of PGC-1 alpha and its downstream targets in normal and hyperoxic 
conditions. The figure shows that PGC-1 alpha expression level goes down as the EPC differentiation occurs. 
The cells were exposed to hyperoxia till passage 1 (P1) that corresponds to 3-5 days of culture. Statistical 
analysis was carried out using one way ANOVA followed by Tukeys multiple comparison tests. The figure 
further shows the gene expression analysis of PGC-1 alpha and its downstream targets in ECFCs and HUVEC 
grown in normal (20% O2) and hyperoxic conditions (40% O2). The expression increases for both targets in 
hyperoxia but the difference was not statistically significant. n=3 (HUVEC 20% and 40% O2) and n=5 (ECFC 20% 
and 40% O2). All values are calculated as ± SEM. * P < .05, ** P< .01, *** P < 0.001. 
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5.2.6 Gene expression analysis of antioxidative genes in HUVEC grown in hyperoxia 

Cardiovascular risk factors are responsible for increased ROS production in the vascular wall 

which eventually leads to oxidative stress. This occurs when ROS production exceeds anti 

oxidative defence mechanism which in the vessel wall is composed of a set of antioxidative 

enzymes that can reduce this ROS damage to the endothelium. These enzymes include 

Catalases (CAT), Glutathione peroxidases (GPx), superoxide dismutase (SOD), Heme 

oxygenase (HO) and periredoxins. We therefore proposed that exposing endothelial cells to 

oxidative stress (40% O2) would lead to an increase in gene expression of these antioxidative 

genes. As shown earlier, our results indicated that there was an up regulation of PGC-1 alpha 

expression in ECFCs and HUVEC grown in hyperoxia (40% O2). We therefore investigated 

the time points when this up regulation begins and alongside PGC-1 alpha is there any 

change in level of expression of these anti oxidative genes. We chose two antioxidative genes 

namely CAT and GPx-1 that encode respective antioxidant enzymes catalase and glutathione 

peroxidase. CAT gene encodes catalase which is an important antioxidant enzyme that 

prevents the body against reactive oxygen species by degrading hydrogen peroxide to oxygen 

and water. Catalase overexpression has been shown to have positive effects in cardiovascular 

system and has been shown to play a role against atherosclerosis and angiotensin induced 

hypertrophy of the aortic wall (Zhang et al., 2005; Li et al., 2013).  

GPx-1 has been shown to play a protective role in preventing oxidative damage to the 

endothelium by reducing both lipid peroxides and hydrogen peroxide (Raes et al., 1987; 

Maiorino et al., 1995). Vascular injury has been demonstrated to be linked with a reduction in 

GPx-1 activity and atherosclerotic plaques isolated from carotid arteries have shown 

decreased expression of GPx-1 (Lapenna et al., 1998).  

Mature endothelial cells HUVEC at P0 were grown in normoxia and were split once the cells 

became confluent. 1 million cells were plated and cells were passaged till P2 and then the 

cells were exposed to hyperoxic conditions. Cells were not split till day 17 and cells were 

frozen down at specific time points as shown in figure 5.6. Cells were frozen down and RNA 

was extracted followed by gene expression analysis of PGC-1 alpha and antioxidative genes 

that we proposed would be up regulated in these cells. There was an up regulation of 

antioxidative genes CAT and GPx-1 in HUVEC when exposed to hyperoxia as shown in 

figure 5.6 B and C suggesting that HUVEC have responded to this exposure to stress 
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Figure 5.6.  Hyperoxia time point experiment showing up regulation of PGC-1 alpha and anti-oxidative genes 
in HUVEC grown in 40% Oxygen (n=1). Figure showing an increase in the level of expression of antioxidative 
genes in HUVEC. PGC-1 alpha showed a significant increase in expression of HUVEC grown in hyperoxia. 
Catalase and GPx-1 are two antioxidants and increase in their mRNA level of expression as the incubation 
period of HUVEC exposure to oxidative stress was increased suggests that antioxidative mechanisms are up 
regulated in HUVEC when they are grown in 40% O2. 
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5.3 Discussion 
Peroxisome proliferator -activated receptor γ coactivator-1α (PGC-1 α) is a transcriptional 

coactivator that is considered to be a master regulator of mitochondrial biogenesis and also 

known to suppress reactive oxygen species (ROS), thus combating oxidative stress (St-Pierre 

et al., 2006). Cell senescence has been shown to be linked with oxidative stress and 

associated telomere and mitochondrial dysfunction. Therefore, it is more than likely that there 

exists a relationship between all these factors promoting senescence and PGC-1 alpha plays 

an important role in preventing this by centrally coordinating all these processes (Xiong et 

al., 2013). It has been shown recently, that PGC-1 alpha deletion leads to increased 

mitochondrial reactive oxygen species (ROS) production as a consequence of vascular 

inflammation and dysfunctioning (Kröller-Schön et al., 2013). It was therefore important to 

find this link and investigate the effect that oxidative stress can have on ECFCs and HUVEC 

in terms of PGC-1 alpha gene expression and associated telomere dysfunction. 

Telomeres are complex DNA-protein structures located at each end of the chromosomes. 

They are shortened with each cycle of cell replication, and can be a predictor of organismal 

age (Blackburn, 2001). Telomere preservation requires intact telomerase enzyme activity and 

maintenance of telomere length itself (Edo and Andrés, 2005). Recently, it has been shown 

that critically shortened telomeres are linked to age-related cardiovascular diseases and 

promote apoptosis and cellular senescence (Samani et al., 2001; Brouilette et al., 2003; 

Brouilette et al., 2008; De Meyer et al., 2008; Samani and Van Der Harst, 2008; Butt et al., 

2010; Aviv, 2012). Similarly, it has been proposed that endothelial cells within an 

atherosclerotic plaque show signs of cell senescence, whether this is linked to shortening of 

telomere length and does this differ between endothelial progenitor cells and mature 

endothelial cells remains to be seen. As shown in figure 5.2, we measured the telomerase 

activity of ECFCs and HUVEC grown in normoxia across passages (early to late passage) 

and there was no significant change in telomerase activity. We exposed the mature 

endothelial cells oxidative stress but still there was no significant increase in telomerase 

activity that could be observed using this sensitive TRAP assay. Similarly for ECFCs as 

shown in figure 5.2, there was no statistically significant difference seen in telomerase 

activity when these cells were exposed to 40% O2. These results suggested that may be this 

stress has not induced telomere dysfunction in either ECFCs or HUVEC and there was no 

telomere shortening and as a consequence of that no concomitant increase in telomerase 

activity. 
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This now is well established that there exists a correlation between oxidative stress and 

inflammation, and several pathological conditions showing signs of both oxidative stress  and 

chronic inflammation are characterized by low EPC count and activity (Guzik et al., 2003; 

Tousoulis et al., 2008; Hulsmans et al., 2011). It has been shown that early EPCs including 

CACs and late EPCs (ECFCs) are more resistant to oxidative stress in comparison to mature 

endothelial cells (HUVEC), due to the expression of high levels of antioxidant enzymes 

(Dernbach et al., 2004; Cai et al., 2006; He et al., 2009). Recent studies have shown that 

there exists a strong interplay between EPCs, reactive oxygen species (ROS) and 

inflammation, and it has been suggested that these endothelial progenitor cells can be used as 

a tool to repair the vasculature in these atherogenic conditions (Rabelink et al., 2004; 

Tousoulis et al., 2008; Badimon et al., 2011).  

Our initial results indicated that endothelial progenitor cells (ECFCs) could be grown for a 

longer period of time and grow at a faster rate in comparison to mature endothelial cells 

(HUVEC) in conditions of oxidative stress (40% O2). It has already been shown that chronic 

oxidative stress leads to telomere dysfunctioning and promotes cell senescence in human 

endothelial cells (Kurz et al., 2004). We therefore proposed that ECFCs are better equipped 

to counteract this ROS mechanism and might have been the cells that take part in repairing 

damaged endothelium and as shown in figure 5.1, the growth kinetics of ECFCs and HUVEC 

confirms that ECFCs are much more resistant to oxidative stress. 

We had hypothesized that oxidative stress would lead to telomere dysfunction and a decrease 

in the level of PGC-1α as shown in mice recently (Sahin et al. 2011), but again instead of 

decreasing the levels of PGC-1α  mRNA transcripts were increased as shown in figure 5.5. 

We also investigated two downstream targets of PGC-1α that included ESSRA gene that 

encodes  ERR- α which is involved in angiogenesis and G6-Phosphatase gene that encodes 

the protein which is part of gluconeogenesis.  

Estrogen- related receptor alpha (ERR-α) also referred to as NR3B1 is an orphan nuclear 

receptor that has no endogenous ligand identified till date. In humans it is encoded by ESSRA 

(Estrogen related receptor alpha) gene which was initially cloned due to DNA sequence 

homology to estrogen receptor alpha but has been confirmed that  it is not regulated by 

estrogens (Giguere et al., 1988; Deblois and Giguère, 2011). This gene is involved in the 

regulation of mitochondrial biogenesis, oxidative phosphorylation and glucose and fatty acid 
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metabolism and is activated by transcriptional coactivator PGC-1 alpha (Wu et al., 1999; 

Yoon et al., 2001; Huss et al., 2004; Mootha et al., 2004).  

Glucose 6- phosphatase dehydrogenase (G6Pase) encodes an enzyme that belongs to the 

catalytic sub family of proteins involved in hydrolysis of glucose-6 phosphate which is an 

important step in gluconeogenesis and glycolysis and essential for regulation of glucose 

levels in blood. PGC-1 alpha is known to promote insulin resistance and is involved in 

inducing gluconeogenic genes including G6Pase (Yoon et al., 2003). PGC-1- deficient mice 

have reduced fasting glucose levels and reduced mRNA expression of genes encoding for 

gluconeogenic enzymes including glucose 6-phosphatase (G6Pase) and phospheonolpyruvate 

carboxy kinase (PEPCK) (Koo et al., 2004). Similarly, telomere dysfunction induced 

repression of PGC-1 alpha and its downstream targets lead to reduced expression of genes 

involved in gluconeogenesis including G6Pase (Sahin et al., 2011). 

The results showed a slight but insignificant increase in gene expression of both these 

downstream targets of PGC-1 alpha at mRNA level in ECFCs and as shown in figure 5.5C 

and D they were consistent with the previous findings in other cell types but this has not been 

shown before in ECFCs. This further confirmed that the hypothesis as it worked in mice was 

not followed in human cells and as seen in figure 5.5B, exposing the cells to 40% O2 did not 

lead to a repression in PGC-1 alpha mRNA level of expression in both ECFCs and HUVEC 

when compared with cells grown in normoxia, although the difference was statistically 

insignificant. Also, both ERR-α and G6Pase mRNA level expression was increased although 

the difference found was not statistically significant. 

It has been proposed and shown that oxidative stress that leads to an increase in reactive 

oxygen species (ROS) production and a decrease in antioxidant enzyme expression can 

promote vascular senescence. Oxidative stress has been implicated in a wide range of 

vascular disorders leading to DNA damage, decreased nitric oxide (NO) availability and 

change in redox state as a result of increased ROS production (Sugamura and Keaney Jr, 

2011; Higgins et al., 2012). This oxidative damage can be linked to vascular aging, as this 

cellular damage due to increased aging can reduce EPC function resulting in an increased risk 

of vascular pathologies. It has been shown that both early and late EPCs are more resistant to 

this oxidative stress than mature endothelial cells (HUVEC) as they express higher level of 

antioxidant enzymes (Dernbach et al., 2004; He et al., 2004a; Cai et al., 2006). This 

suggested that these EPCs can be more efficient cells involved in vascular repair as a result of 
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an ischemic insult, owing to this improved resistance to oxidative stress. However, it has 

been shown recently that early EPCs or circulating angiogenic cells (CACs) are cells of 

myeloid origin and express certain monocyte-macrophage lineage markers including CD45, 

CD14 and CD115 and are proangiogenic but do not take part in vascular repair directly, 

whereas late EPCs or endothelial colony forming cells (ECFCs) have been shown to the 

EPCs involved in vascular repair although they themselves are not shown to be completely 

resistant to oxidative stress, but are better suited to these conditions as compared to mature 

endothelial cells (Ingram et al., 2007; Yoder et al., 2007). However, this antioxidative 

capacity of EPCs  has been shown to diminish with aging, and early EPCs isolated from 

young subjects have shown higher levels of antioxidant enzyme glutathione peroxidase (GPx-

1) as compared to old ones (He et al., 2009) and were found to be more resistant to stress 

induced apoptosis. Glutathione peroxidase 1 (GPx-1) is another important protein involved in 

redox signalling that plays a role in vascular homeostasis. More importantly, over expression 

lead to restoration of endothelial function in endothelial cells treated with high levels of 

homocysteine (Weiss et al., 2001). Several mice studies have demonstrated that loss of GPx-

1 is implicated in endothelial dysfunction and several other vascular abnormalities and 

renders them vulnerable to ischemic insult (Forgione et al., 2002a; Forgione et al., 2002b). 

As shown in figure 5.6, there was an up regulation of both the antioxidative genes CAT and 

GPx-1 in HUVEC and suggested that by exposing these endothelial cells to 40% O2 meant 

that they were subjected to oxidative stress and these genes were up regulated to counteract 

this stress. 

In conclusion, we found endothelial progenitor cells (ECFCs) to be more resistant to 

oxidative stress as compared to mature endothelial cells (HUVEC) and they could be grown 

at a faster rate and over longer periods when exposed to hyperoxic conditions (40% O2).  

Exposing both these cell types to oxidative stress did not lead to telomere dysfunction and as 

we had proposed that a shortening of telomere length would be compensated by an increase 

in telomerase activity in these cells. We measured telomere lengths for both ECFCs and 

HUVEC across passages (early and late passage cells) using flow FISH which has not been 

shown before using this technique and found that the telomere length goes down for HUVEC 

(n=3) but the difference was detected at very late passage (P16). ECFCs as we expected were 

not stem cells and they were not able to preserve their telomere length and it was shortened as 

well as cells grew older (late passage P16) but this was done with one sample (n=1) and no 

statistical analysis could be carried out. There was no reduction in PGC-1 alpha gene 
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expression and instead there was an up regulation along with an increase in mRNA level 

expression for both of its downstream targets when grown in hyperoxia. There was 

statistically significant difference seen in PGC-1 alpha expression in early EPCs as compared 

to ECFCs and the former showed high level of PGC-1 alpha expression. We investigated the 

expression levels of antioxidative genes CAT and GPx-1 in cells grown in hyperoxia so that 

we could confirm that exposing cells to 40% O2 can lead to oxidative stress and an up 

regulation of these genes after 2 weeks of culture confirmed that this much time period is 

required for these endothelial cells to get affected by stress.  

The results in this section indicate that the hypothesis which we had proposed that oxidative 

stress would lead to telomere dysfunction and as a result of that repression of PGC-1 network 

has not worked in ECFCs and mature endothelial cells (HUVEC). The work done by Sahin et 

al., 2011 was done in mice and telomere dysfunction was induced by producing mice that 

were null for either telomerase reverse transcriptase (Tert) or telomerase RNA component 

(Terc) genes. This resulted in an activation of p53 in the nucleus causing a decrease in PGC-1 

alpha expression and subsequent reduced mitochondrial biogenesis, decreased 

gluconeogenesis and increased reactive oxygen species. The activation of p53 resulted in 

cellular growth arrest, apoptosis and senescence. Our results showed that there was no 

increase in telomerase activity which we proposed that would occur due to telomere 

dysfunction induced due to exposure to hyperoxia. As shown later in figure 6.14 there was 

insignificant decrease in expression of p53 in ECFCs grown in hyperoxia. Although, there 

was a significant increase in p53 expression in HUVEC grown in hyperoxia and this suggests 

that may be HUVEC could show signs of senescence and apoptosis due to its activation. In 

summary, the results suggest that exposure to 40% O2 did not lead to telomere dysfunction in 

these cells and as a result of that there was no concomitant increase in telomerase activity. 

PGC-1 alpha levels were not decreased and this could be further confirmed by functional 

assays evaluating cell senescence and measurement of extracellular ROS. 
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Chapter 6. Investigating the effect of oxidative stress on genes 

involved in mitochondrial biogenesis, oxidative metabolism and 

angiogenesis in ECFCs and HUVEC 

 

6.1 Introduction 
Vascular endothelium is the key that maintains vascular homeostasis and endothelial 

dysfunction or injury is the first step towards the progression of atherosclerosis (Chen et al., 

2006b; Lin et al., 2009; Egido et al., 2011; Liu et al., 2012). Several recent studies have 

shown that endothelial progenitor cells constitute an important endogenous mechanism that is 

instrumental in maintaining endothelial integrity and vascular homeostasis (Urbich and 

Dimmeler, 2004). In most forms of cardiovascular diseases, inflammation acts as a mediator 

of oxidative stress, endothelial dysfunction and endothelial cell senescence and inappropriate 

homage of EPCs to the site of vascular injury promotes the progression of vascular diseases 

(Imanishi et al., 2005; Mikirova et al., 2009; Ribeiro et al., 2010; Ungvari et al., 2010). As 

reendothelialization is considered to be a proinflammatory process, it has been proposed that 

it works independently and it has been shown more recently that this occurs exclusively in 

response to oxidative stress mainly due to a localized or a systemic inflammatory response 

(Reinders et al., 2006; Case et al., 2008; Watson et al., 2008).  This response is aided by and 

involves vascular and immune systems as well as several signaling mechanisms, mediators 

and various cell types. This cascade of events can initiate due to changes in microcirculation, 

starting from vessel impairment to endothelial migration of leukocytes, endothelial 

dysfunction and changes in vascular permeability finally leading to new blood vessel 

formation, a process known as angiogenesis. We, therefore proposed that in this in vitro 

system where endothelial progenitor cells (ECFCs) and mature endothelial cells (HUVEC) 

are grown in normal conditions, will be exposed to mild oxidative stress (40% O2), and this 

stress would lead to an inflammatory response in these cells and we would be able to study 

the response of these two cell types under stress conditions.  

Mitochondria are considered to be the power houses of the cell and are involved in energy 

production mainly in the form of ATP. Although, endothelial cells are mainly glycolytic and 

do not use oxidative phosphorylation as a main source of  ATP production, we proposed that 

oxidative stress (40% O2) would lead to an increase in oxidative phosphorylation and as a 
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result of that, an increase in expression level of genes involved in electron transport chain 

(ETC).  

A link between mitochondrial dysfunction leading to endothelial damage and initiating the 

process of atherosclerosis is now an emerging area of research and there is enough evidence 

that suggest that mitochondrial damage plays an important role in the progression of vascular 

diseases including atherosclerosis (Madamanchi and Runge, 2007; Victor et al., 2009; 

Harrison et al., 2011; Hulsmans et al., 2012; Xiong et al., 2013; Yu et al., 2013). PGC-1 

alpha has been shown to be a master regulator of mitochondrial biogenesis and along with 

PPAR gamma, which is transcriptionally co activated by PGC-1 alpha plays a role in 

maintaining energy metabolism (Liu and Lin, 2011). cAMP response element binding 

proteins (CREB) and Nuclear respiratory factor (NRF-1 and 2) are also involved in this 

regulation of mitochondrial biogenesis in response to an external stimuli (Jones et al., 2012). 

Reactive oxygen species (ROS) are continuously produced by mitochondria and are balanced 

by cellular defense mechanism in the form of antioxidative enzymes including catalase, 

glutathione peroxidase, superoxide dismutase and peroxiredoxins present throughout the cell. 

If this balance between ROS and antioxidative defense system is disrupted, it results in the 

production of oxidative stress.  

The significance of mitochondrial ROS production in endothelial cells is difficult to assess 

because ROS is also produced by other sources as well as other cell types within the 

myocardium. Although, it has been shown that superoxide is produced at both complex I and 

III in mitochondria obtained from bovine  aortic endothelial cells (O'Malley et al., 2006), this 

needs further investigation. Similarly, how does oxidative stress affect the pathways that 

utilizes ROS as a signal transducers, still remains to be seen in endothelial cells. 
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6.2Results 

6.2.1 Gene expression analysis of ECFCs and HUVEC grown in normoxia using low density 

array (LDA) 

 

In order to carryout gene expression analysis of ECFCs and HUVEC, cells were isolated 

from umbilical cord blood and cord of the same donor. ECFCs were isolated from 

differentiation of cord blood mononuclear cells (day 0 MNCs) in endothelial specific media. 

An endothelial colony was observed at around 3 weeks of culture that was picked and grown 

separately. This culture was grown for a period of around 4-6 weeks and cells were regularly 

passaged. Cells were grown till passage 5 (P5) and then cells were frozen down for RNA 

extraction. RNA extraction was followed by cDNA synthesis and low density array was 

performed. HUVEC were isolated from the cord of the same donor and cells were grown till 

passage 5 (P5). Both ECFCs and HUVEC were grown in normoxic conditions (20% O2). As 

shown in figure 6.1 a comparison was carried out between ECFCs and HUVEC grown in 

normoxia in terms of gene expression analysis. The data were normalized to three 

housekeeping genes individually that included TBP, HPRT1 and 18s RNA. As shown in 

figure 6.1B, ECFCs showed a down regulation of certain genes in comparison to HUVEC. 

These included genes involved in angiogenesis like VEGF A and C, PDGFRB, FGF2 and 

TGF. Genes showing down regulation in ECFCs also included antioxidative gene SOD2 

which mainly combats against oxidative stress. As shown in figure 6.1B there have been 

several genes that showed an up regulation in ECFCs in comparison to HUVEC. These 

included pro inflammatory markers IL1A and CXCL12 and cell surface markers like 

PECAM1, KDR and KIT. There was also an up regulation of PON1 and BRCA1that was 

found in HUVEC when grown in normoxia in comparison to ECFCs grown in normoxic 

conditions. For the purpose of having a better comparison both ECFCs and HUVEC were 

derived from the same donor and cells at same passage (P5) were used.  
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Figure 6.1. An overall representation of the gene expression analysis carried out using low density 

array. ECFCs were isolated from cord blood obtained from the umbilical vein and HUVEC were 

isolated from the walls of the umbilical vein of the same donor. The comparison is carried out 

between ECFCs and HUVEC grown in normoxia conditions (20% O2). Gene expression is plotted 

relative to MNCs. The data were normalized to three housekeeping genes 18s RNA, TBP and HGPRT1. 

n=2 (ECFC 20% and 40% O2, HUVEC 40% O2) and n=3 (HUVEC 20% O2).  
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6.2.2 Gene expression analysis of ECFCs grown in normoxia and comparison with cells 

grown in hyperoxia 

 

After the gene expression analysis of ECFCs and HUVEC grown in normoxia, the next step 

was to analyse the expression pattern in ECFCs grown in normoxia to ECFCs incubated in 

hyperoxic conditions (40% O2). ECFCs were obtained from cord blood and derived by the 

differentiation of cord blood mononuclear cells. ECFCs were isolated from an endothelial 

colony that was observed and picked at around 3 weeks of growing the cells in endothelial 

specific media. The cells were cultured in normoxic conditions (20% O2) for several passages 

and grown till P5 to get the cells required for ECFCs normoxia. For the array analysis, the 

comparison was made between ECFCs grown in normoxia till P5 and in order to get 

hyperoxic cells, ECFCs were grown in normoxia till P2 and then the cells were split using 

trypsin-EDTA and 1 million cells were plated in hyperoxic conditions (40%O2). These cells 

were grown in hyperoxia till P3 and then frozen down for RNA extractions. This was 

followed by cDNA synthesis and low density array was carried out. As shown in figure 6.2B 

there have been several genes that showed down regulation in ECFCs when grown in 

hyperoxia. These included some genes that are involved in angiogenesis like ANG2, NOS3, 

CXCR4 and endoglin (CD105). The results showed a decrease in expression of several cell 

surface markers including PECAM1 (CD31), CDH5 (CD144), MCAM (CD146) and vWF 

when ECFCs were grown in hyperoxia. UCP2 showed a reduced expression when cells were 

grown in 40% O2. There have been some markers that showed higher expression when 

ECFCs were grown in hyperoxia and these included PGC-1α that showed significant up 

regulation in ECFCs grown in hyperoxic conditions. It is interesting to note that as cells were 

exposed to hyperoxia till P3 there was a significant increase in PGC-1 alpha expression in 

ECFCs whereas earlier data showed no statistically significant difference when cells were 

exposed to hyperoxia till P1. Other markers showing an increase in expression when ECFCs 

were grown in hyperoxia included angiogenic markers ANG1, FGF2, VEGF A and C, 

CXCL12, ACTA2 and PDGFRA and B.  
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Figure 6.2. An overall representation of the gene expression analysis carried out using low density 

array. ECFCs were obtained from the cord blood. The comparison is made between ECFCs grown in 

normoxia (20% O2) to the ECFCs grown in hyperoxia (40% O2). Gene expression is plotted relative to 

MNCs. The data were normalized to three housekeeping genes 18s RNA, TBP and HGPRT1. n=2 (ECFC 

20% and 40% O2, HUVEC 40% O2) and n=3 (HUVEC 20% O2).  
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6.2.3 Gene expression analysis of HUVEC grown in normoxia and comparison with HUVEC 

grown in hyperoxia using low density array (LDA) 

 

In order to compare the expression analysis of HUVEC grown in normoxia with HUVEC 

cultured in hyperoxia, HUVEC were obtained from the umbilical cord. Cells were grown in 

normoxic conditions for several passages and regularly washed and split using PBS and 

trypsin-EDTA respectively. Cells were frozen down at passage 5 (P5) and RNA extraction 

was carried out. Cells were passaged at P2 and split into two cultures. 1 million cells were 

plated and cells were incubated and grown in hyperoxic conditions (40% O2). The 

comparative analysis was carried out between HUVEC grown in normoxia and HUVEC 

grown in hyperoxia. As shown in figure 6.3, there have been some genes that are down 

regulated in HUVEC grown in hyperoxia and mainly include mitochondrial genes that form 

part of electron transport chain namely MTCO1, MTND3, MTCYB, MTCO3 and MTATP6. 

There have been some genes that are involved in angiogenesis which are down regulated and 

included ANG1, VEGFB, NOS3, TGF and PDGFRB. As shown in figure 6.3, there were 

several genes that showed an up regulation in HUVEC grown in hyperoxia. These included 

mitochondrial genes PGC-1 alpha, SIRT4 and PON1. Cell surface markers including PROM1 

and CD34 showed an up regulation in HUVEC grown in hyperoxia. Genes involved in 

angiogenesis like ANG2 and FLT4 were also up regulated in HUVEC exposed to hyperoxia.   
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Figure 6.3. An overall representation of the gene expression analysis carried out using low density 

array. HUVEC were derived from the umbilical vein. The comparison is made between HUVEC grown 

in normoxia (20% O2) to the HUVEC grown under hyperoxic conditions. Gene expression is plotted 

relative to MNCs. The data were normalized to 18s RNA, TBP and HGPRT1. n=2 (ECFC 20% and 40% 

O2, HUVEC 40% O2) and n=3 (HUVEC 20% O2).  
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6.2.4 Gene expression analysis and qPCR validation of genes involved in mitochondrial 

biogenesis, oxidative metabolism and angiogenesis in ECFCs and HUVEC grown in 

normoxia  

After analysing low density array (LDA) data, the next step was to validate the genes that 

showed statistically significant difference in ECFCs and HUVEC grown in normoxic and 

hyperoxic conditions. The validation was carried out on different samples and ECFCs were 

obtained from cord blood and HUVEC from the umbilical cord of the same donor. ECFCs 

were derived from an endothelial colony which was picked after 3 weeks of culture of cord 

blood mononuclear cells (HUCBC) in endothelial specific media. Once a colony was 

isolated, it was grown in normoxia for 4-6 weeks and the cells were termed as endothelial 

colony forming cells (ECFCs). Cells were passaged regularly till P5 and at this stage cells 

were frozen down for carrying out RNA extractions. HUVEC were isolated from the 

umbilical cord of the same donor and cells were grown in normoxic conditions and regularly 

passaged as soon as they reach around 80% confluence. This was followed by RNA 

extractions of frozen down HUVEC samples at P5. Validation was done using qPCR. As 

shown in figure 6.4, the comparative analysis was carried out between ECFCs and HUVEC 

grown in normoxia (20% O2). All data were normalized to three housekeeping genes namely 

18s RNA, HPRT1 and TBP. LDA and qPCR data were analysed together. Cells at same 

passage were used for the comparison (P5). There have been several genes that showed down 

regulation in HUVEC as compared to ECFCs grown in normoxia. These included angiogenic 

genes like ANG2, NOS3 and CDH5. Other genes showing decreased expression were 

PECAM1, PROX1, KIT and NRP2. There were genes that showed up regulation in HUVEC 

grown in normoxia in comparison with ECFCs and they included genes involved in 

angiogenesis like ANG1, TGFα, VEGFA and C, FGF2 and PDGFRB. Other genes showing 

up regulation included PCK2, PPARG and TEK. 
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Figure 6.4. Gene expression analysis of qPCR validation done on LDA genes showing significant up 

regulation or a decrease in expression. ECFCs and HUVEC were obtained from the cord blood and 

umbilical vein of the same donor. Comparative analysis is carried out on ECFCs and HUVEC grown in 

normoxia conditions (20% O2). Gene expression is plotted relative to MNCs. The data were normalized 

to 18s RNA, TBP and HGPRT1. n=4 (ECFC 20% and 40%O2) and n=5 (HUVEC 20% and 40% O2). 
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6.2.5 Gene expression analysis and qPCR validation of genes involved in mitochondrial 

biogenesis, oxidative metabolism and angiogenesis in ECFCs grown in normoxia and 

hyperoxia  

In order to validate the array results qPCR validation was carried out. ECFCs were derived 

from cord blood by differentiation of cord blood mononuclear cells grown in endothelial 

specific media. An endothelial colony was observed at around 3weeks of culture that was 

picked and grown separately. The cells derived from the colony were named as endothelial 

colony forming cells (ECFCs) and were allowed to grow for 4-6 weeks in endothelial specific 

media. The cells were grown in normoxia and regularly passaged till P5 and then the cells 

were frozen down for RNA extractions. Cells were also required to be grown in hyperoxia 

and to do so, cells were cultured in normoxic conditions till P2 and then cells were split and 1 

million cells were plated in hyperoxia (40% O2) and cells were grown in these conditions for 

three additional passages (P3) so that they are compared with normoxic cells at P5. As shown 

in figure 6.5, the comparison was carried out between ECFCs grown in normoxia to ECFCs 

grown in hyperoxic conditions and cells at same passage were used for RNA extractions. 

This was followed by cDNA synthesis and qPCR. As shown in figure 6.5, all the data were 

normalized to three housekeeping genes including 18s RNA, HPRT1 and TBP. The LDA and 

qPCR data were analysed together. There were several genes that showed down regulation in 

ECFCs grown in hyperoxia and included cells surface markers PECAM1, CDH5, KDR and 

KIT. Several angiogenic genes also showed down regulation in ECFCs cultured in hyperoxia 

included ANG2, NOS3, FLT1 and TP53. As shown in figure 6.5, there have been many 

genes that showed an up regulation in ECFCs grown in hyperoxia and mainly included 

mitochondrial genes involved in electron transport chain like MT-CYB, MT-ND3, MT-

CO1and other mitochondrial genes mainly PGC-1 alpha, PPARG and SIRT4. There were 

several angiogenic genes that showed up regulation in ECFCs cultured in hyperoxia and 

included ANG1, VEGF A and C, CXCL12, ACTA 2, PDGFR A and B and FGF2.   
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Figure 6.5. Gene expression analysis of qPCR validation done on LDA genes that showed significant 

difference in expression. ECFCs were derived from the cord blood. Comparative analysis was carried 

out between ECFCs grown in normoxia to the ECFCs grown in hyperoxic conditions. Gene expression 

is plotted relative to MNCs. The data were normalized to 18s RNA, TBP and HGPRT1. n=4 (ECFC 20% 

and 40% O2) and n=5 (HUVEC 20% O2 and HUVEC 40% O2). 
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6.2.6 Gene expression analysis and qPCR validation of genes involved in mitochondrial 

biogenesis, oxidative metabolism and angiogenesis in HUVEC grown in normoxia and 

hyperoxia 

After the low density array (LDA) analysis the next step was to validate the genes that 

showed significant difference in HUVEC grown in hyperoxia. HUVEC were isolated from 

the umbilical cord and cells were grown in normoxia. The cells were regularly passaged 

when around 80% confluent. Cells were grown till passage 2 (P2) and then culture was split 

in to two. 1 million cells were allowed to grow in normoxia and 1 million cells were 

incubated in hyperoxic conditions. The cells were allowed to grow till passage 5 (P5). As 

shown in figure 6.6 the comparative analysis was done between HUVEC grown in normoxia 

and hyperoxia. All the data were normalized to three housekeeping genes. Both LDA and 

qPCR data were analysed together. As shown in figure 6.6 there have been several genes that 

showed down regulation in HUVEC grown in hyperoxic conditions and mainly included 

mitochondrial genes that are part of electron transport chain namely, MT-CYB, MT-ND3, 

MTCO1 and MT-ATP8. Genes showing down regulation also included angiogenic markers 

ANG1 and VEGFC. As shown in figure 6.6, there were several genes that showed up 

regulation in HUVEC grown in hyperoxia and included mitochondrial genes SIRT4, PCK2 

and PGC-1 alpha. Other genes showing up regulation included cell surface markers and genes 

involved in angiogenesis including ACTA2, CDH5, NOS3, KDR, TGFα, PDK4, PECAM1, 

ANG2, CXCL12, PDGFR A and B and IL1A. 
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Figure 6.6. Gene expression analysis of qPCR validation done on LDA genes that showed significant 

difference in expression. HUVEC were isolated from the umbilical vein. Gene expression is plotted 

relative to MNCs. The comparison is made between HUVEC grown in normoxia to the HUVEC grown in 

hyperoxic conditions. The data were normalized to three housekeeping genes 18s RNA, TBP and 

HGPRT1. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% O2 and HUVEC 40% O2). 
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6.2.7 Gene expression analysis of genes involved in regulating mitochondrial biogenesis 

and comparing ECFCs and HUVEC grown in normoxia and hyperoxia 

PGC-1 alpha belongs to a family of transcriptional coactivators that are involved in 

mitochondrial biogenesis, gluconeogenesis and angiogenesis. We therefore wanted to 

investigate what effect oxidative stress can have on the gene expression levels of PGC-1 

alpha and other related mitochondrial genes. Peroxisome proliferator receptor gamma 

(PPARG) is known to be activated by PGC-1 alpha in brown fat and cardiomyocytes where it 

promotes fatty acid oxidation, so we investigated the effect in endothelial cells. The cells 

were cultured till passage 5 (P5) in normal oxygen conditions (20% O2). Cells were frozen 

down and RNA extraction was performed. To compare the gene expression analysis these 

cells were also grown in conditions of oxidative stress. RNA was isolated from these cells 

and quantitative PCR analysis was carried out. The results as shown in figure 6.7 showed that 

there was a significant up regulation of PGC-1 alpha levels in ECFCs when grown in 

hyperoxia and the difference was found to be statistically significant. There was an increase 

in PPARG expression in ECFCs when exposed to oxidative stress and this could be due to 

PGC-1 alpha co activation. In HUVEC, PGC-1 alpha levels did not show any significant 

change in expression when grown in hyperoxia. It also shows interestingly that there was no 

significant change in expression of PPARG in HUVEC and this suggests that in ECFCs the 

up regulation of PPARG was due to co activation by PGC-1 alpha. This shows that these two 

cell types namely endothelial progenitor cells (ECFCs) and mature endothelial cells 

(HUVEC) respond and behave differently when exposed to oxidative stress. 

PROX -1gene encodes prospero homeobox protein 1. PROX 1 is a transcription factor which 

is involved in the development of various tissues (Wigle and Oliver, 1999; Sosa-Pineda et al., 

2000; Dyer et al., 2003). It plays an important role in the development of lymphatic 

endothelial cells and it has been shown before that prox-1 null embryos failed to form 

lymphatic vasculature and died in utero (Johnson et al., 2008). PROX-1 is known to regulate 

activity of nuclear receptors including estrogen related receptor (ERRα) and interact with 

PGC-1 α, influencing its transcriptional activity (Charest-Marcotte et al., 2010).  PROX 1 has 

also been shown to interact with hepatocyte nuclear factor 4α (HNFα) and human liver 

receptor homolog-1 (LHR-1) and reducing the transcription of the cholesterol 7-alpha-

hydroxylase gene, suggesting its role in fatty acid oxidation and gluconeogenesis in liver (Qin 

et al., 2004; Song et al., 2006). As shown in figure 6.7D, there was a down regulation of 

around 200 fold in the mRNA expression level of PROX1 when ECFCs were grown in 

hyperoxia and as it is known to interact with PGC-1 alpha it could be possible that activation 
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of PGC-1 alpha has led to this decrease in expression of PROX1. HUVEC did not show a 

significant decrease in expression of PROX1.  

PRDX5 is a protein which in humans is encoded by mitochondrial gene PRDX5. It belongs to 

peroxiredoxins family of antioxidant enzyme whose main function is to reduce hydrogen 

peroxide (Yamashita et al., 1999). It is known to play a protective antioxidative role in tissues 

during normal and also inflammatory conditions (Knoops et al., 1999). As shown in figure 

6.7C there was no statistically significant change in mRNA expression level of PRDX5 in 

either ECFCs or HUVEC when grown in hyperoxic conditions. 
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Figure 6.7. Gene expression analysis of genes involved in mitochondrial gene regulation and fatty acid and 
glucose metabolism. Endothelial colony forming cells (ECFCs) were derived from cord blood and mature 
endothelial cells (HUVEC) were derived from the umbilical cord of the same donor. Both ECFCs and HUVEC 
were grown in conditions of normoxia (20% O2) and hyperoxia (40% O2). Figure A and B shows an up regulation 
of PPARGC1A and PPARG genes in ECFCs when grown in hyperoxia and the difference was found to be 
statistically significant. Figure C and D shows down regulation of antioxidative gene PRDX5 in ECFCs although 
the difference was not statistically significant. The data were normalized to 18s rRNA, HPRT1 and TBP which 
were used as endogenous controls. Gene expression is plotted relative to cord blood mononuclear cells. 
Statistical analysis was carried out using two way ANOVA followed by Bonferroni posttests. All values are 
calculated as ± SEM. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * P < .05, ** P < .01, ***P 
< .001 and ns stands for not significant.  
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6.2.8 Gene expression analysis of electron transport chain genes involved in oxidative 

phosphorylation (OXPHOS) and comparison between ECFCs and HUVEC grown in 

normoxia and hyperoxia 

We investigated one protein-coding gene from each of the steps involved in ETC of oxidative 

phosphorylation. MT-ND3 belongs to a group of genes that encode for NADH 

dehydrogenase enzyme complex also known as complex I which is the largest component of 

the mitochondrial respiratory chain. MT-CYB is a mitochondrially encoded gene that 

encodes  cytochrome b protein which forms part of coenzyme Q- cytochrome c reductase also 

known as complex III which is involved in biochemical production of ATP (oxidative 

phosphorylation). MT-CO1 also known as cytochrome c oxidase 1(COX1) encodes a protein 

that forms part of mitochondrial DNA (mtDNA) encoded enzyme subunit of respiratory 

complex IV which is the final enzyme of the ETC of oxidative phosphorylation. MT-ATP8 

encodes a protein that forms a subunit of enzyme mitochondrial ATP synthase and important 

enzyme required for ATP generation. We cultured the cells till passage 5 (P5) under normal 

oxygen conditions (20% O2). Cells were frozen down and RNA extraction was carried out. 

The cells were grown in hyperoxia till passage 3 (P3) and RNA was isolated from them. 

RNA extraction was followed by quantitative PCR. The results as shown in figure 6.8 

indicate that as a result of exposure to oxidative stress there was an increase in gene 

expression level of the genes involved in ETC of oxidative phosphorylation in ECFCs when 

grown in hyperoxia and the difference was found to be statistically significant. The 

expression level of ETC genes in mature endothelial cells (HUVEC) either remained same or 

there was a down regulation, although the difference was not found to be statistically 

significant. This suggests that endothelial progenitor cells and mature endothelial cell behave 

differently when exposed to oxidative stress. 
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Figure 6.8. Gene expression analysis of human mitochondrial genes which are part of the electron transport 
chain and are involved in oxidative phosphorylation. Endothelial colony forming cells (ECFCs) were derived 
from cord blood and mature endothelial cells (HUVEC) were derived from the umbilical cord of the same 
donor. Both ECFC and HUVEC were grown in conditions of normoxia (20% O2) and hyperoxia (40% O2). Figure 
shows an up regulation of the mitochondrial genes in ECFCs grown in hyperoxia, and the difference was found 
to be statistically significant. HUVEC showed down regulation of these genes under hyperoxic conditions 
although the difference was not found to be statistically significant. The data were normalized to 18s rRNA, 
HPRT1 and TBP which were used as endogenous controls. Gene expression is plotted relative to cord blood 
mononuclear cells. Statistical analysis was carried out using two way ANOVA followed by Bonferroni posttests. 
All values are calculated as ± SEM. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * P < .05, 
**P < .01, ***P < .001 and ns stands for not significant. 

 

 

 

 

 

 

 

 

 

 



 

160 
 

6.2.9 Gene expression analysis of mitochondrial genes involved in antioxidative 

mechanisms and oxidative metabolism and comparing ECFCs and HUVEC grown in 

normoxia and hyperoxia 

Phospheonolpyruvate carboxykinase also known as PEPCK or PCK2 is a human 

mitochondrial gene that encodes a protein that acts as an enzyme involved in a rate limiting 

step in gluconeogenesis. PEPCK gene transcription is induced by glucagon, retinoic acid and 

cAMP and is down regulated by insulin (O'Brien et al., 1990). 

SIRT 4 is a mitochondrial gene which encodes a member of sirtuins family of proteins that 

function as intracellular regulatory proteins and belong to a group of nicotinamide adenine 

dinucleotide (NAD) - dependent enzymes which are involved in stress responses, longevity 

and metabolism. SIRT4 is known to be involved in regulation of mitochondrial gene 

expression and fatty acid oxidation in muscle and liver cells (Nasrin et al., 2010). It has been 

shown that SIRT4 inhibits mitochondrial glutamate dehydrogenase activity resulting in a 

decrease in insulin secretion (Haigis et al., 2006). It has been shown recently that mTORc1 

pathway is involved in regulation of amino acid glutamine metabolism and it does that by 

repressing SIRT4 transcription resulting in an increase in glutamine metabolism (Csibi et al., 

2013). Both PCK2 and SIRT4 mRNA expression did not show any statistically significant 

difference in ECFCs grown in normoxia and hyperoxia. As shown in figures 6.9A and C, 

there was an increase in gene expression level of mitochondrial genes PCK2 and SIRT 4 in 

HUVEC grown in hyperoxia, and the difference was found to be statistically significant. This 

suggests that oxidative stress lead to an increase in fatty acid oxidation in mature endothelial 

cells.  

Pyruvate dehydrogenase lipoamide kinase isozyme 4 is a mitochondrial enzyme, which in 

humans is encoded by PDK4 gene. PDK4 has been shown to contribute towards regulation of 

glucose metabolism by inhibiting pyruvate dehydrogenase complex. The gene is induced by 

retinoic acid, insulin and glucocorticoids and is activated in response to fasting in muscle and 

liver (Wu et al., 1999; Pilegaard et al., 2000; Hildebrandt et al., 2003). It has been shown that 

PGC-1 α regulates the expression of PDK4 by coactivation of ERR α and PPARα and also 

directly induces PDK4 gene expression in skeletal muscle (Wu et al., 2001; Wende et al., 

2005). This leads to increased mitochondrial fatty acid oxidation and a simultaneous decrease 

in glucose oxidation. As shown in figure 6.9D there was a 4 fold increase in mRNA 

expression level of PDK4 in HUVEC grown in hyperoxia suggesting that it could be due to 

PGC-1 alpha activation and hyperoxia leads to increased mitochondrial fatty acid oxidation. 
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Glutathione peroxidase 4, also known as GPx4 is an enzyme which is encoded by GPX4 gene 

in humans. It is a phospholipid peroxidase and protects cells against lipid peroxidation. It 

protects the cells against oxidative stress by catalyzing the reduction of hydrogen peroxide at 

the expense of glutathione and is essential for embryonic development (Yant et al., 2003; 

Muller et al., 2007). As shown in figure 6.9B, there was a 10 fold decrease in the expression 

of GPX4 in ECFCs grown in hyperoxia and the difference was found to be statistically 

significant. 
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Figure 6.9. Gene expression analysis of human mitochondrial genes which are part of fatty acid and glucose 
metabolism and antioxidative mechanism. Endothelial colony forming cells (ECFCs) were derived from cord 
blood and mature endothelial cells (HUVEC) were derived from the umbilical cord of the same donor. Both 
ECFC and HUVEC are grown in conditions of normoxia (20% O2) and hyperoxia (40% O2). Figure shows an up 
regulation of the mitochondrial genes in ECFCs grown in hyperoxia, and the difference was found to be 
statistically significant. HUVEC showed down regulation of these genes under hyperoxic conditions although 
the difference was not found to be statistically significant. The data were normalized to 18s rRNA, HPRT1 and 
TBP which were used as endogenous controls. Gene expression is plotted relative to cord blood mononuclear 
cells. Statistical analysis was carried out using two way ANOVA followed by Bonferroni posttests. All values are 
calculated as ± SEM. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * P < .05, **P < .01, ***P 
< .001 and ns stands for not significant. 

 

 

 

 

 

 

 

 

 

 



 

163 
 

6.2.10 Gene expression analysis of cell surface endothelial markers involved in 

angiogenesis and comparison between changes in expression in ECFCs and HUVEC grown 

in normoxia and hyperoxia 

Von willibrand factor (vWF) is a plasma glycoprotein encoded by vWF gene which is  

involved in adhesion of platelets and plays an important role in maintaining haemostasis 

(Cheresh, 1987). It acts as a carrier for coagulation factor VIII and its deficiency can lead to 

von Willibrand disease, which is a common congenital bleeding disorder  (Huang et al., 

2009). Endothelial vWF has been shown to regulate inflammation via an  independent 

mechanisms including leukocyte adhesion and increased levels of vWF are implicated in 

acute coronary thrombosis and is considered to be a clinical marker of atherosclerotic 

progression (Spiel et al., 2008). As shown in figure 6.10, there was no significant change in 

expression of vWF in ECFCs when grown in normoxia and hyperoxia. Whereas, there was a  

significant increase in expression of vWF in HUVEC and this suggests that oxidative stress 

lead to an increase in this expression and this  can resemble an inflammatory and pro 

atherosclerotic environment.    

VE-Cadherin is a type of cadherin also known as CD144, and encoded in humans by CDH5 

gene. It has been shown to be involved in the maintenance of newly formed blood vessels and 

is essential for endothelial permeability. CD144 deficiency has shown to induce haemorrhage 

in vivo and increased monolayer permeability in an in vitro culture system (Carmeliet et al., 

1999; Corada et al., 2002; Crosby et al., 2005). As shown in figure 6.10, there was several 

thousand fold decrease in the expression of CDH5 in ECFCs grown in hyperoxia suggesting 

it is playing its role in angiogenesis. HUVEC did not show any significant change in 

expression of CDH5, although it showed an up regulation. 

Platelet cell adhesion molecule 1(PECAM-1) also called CD31 is a protein which in humans 

is encoded by PECAM-1gene. It is involved in removing aged neutrophils, leukocyte 

migration and angiogenesis (Newman et al., 1990; Gumina et al., 1996; Xie and Muller, 

1996). CD31 is mainly expressed in endothelial cells and forms part of intercellular junctions. 

It has shown the expression in several vascular tumours. As shown in figure 6.10 there was a 

statistically significant difference in the expression of CD31 in ECFCs grown in hyperoxia 

and showed more than 5 fold change in mRNA expression level. HUVEC showed an increase 

in expression but the difference was not found to be statistically significant. 

PROM1 is a glycoprotein also known as CD133 or AC133. It is mainly expressed in 

hematopoietic stem cells, early endothelial progenitor cells and glial stem cells (Horn et al., 
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1999; Corbeil et al., 2000; Sanai et al., 2005). As shown in figure 6.10 there was an increase 

in expression of PROM1 in HUVEC grown in hyperoxia. ECFCs did not show a significant 

change in expression. 
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Figure 6.10. Gene expression analysis of endothelial cell surface markers. Endothelial colony forming cells 
(ECFCs) were derived from cord blood and mature endothelial cells (HUVEC) were derived from the umbilical 
cord of the same donor. Both ECFCs and HUVEC were grown in conditions of normoxia (20% O2) and hyperoxia 
(40% O2). Figure shows down regulation of endothelial markers PECAM 1 and CDH5 (VE-cadherin) in ECFCs 
grown in hyperoxia, and the difference was found to be statistically significant. HUVEC showed an increase in 
expression of endothelial marker vWF and an up regulation of PROM 1.  The data were normalized to 18s 
rRNA, HPRT1 and TBP which were used as endogenous controls. Gene expression is plotted relative to cord 
blood mononuclear cells. Statistical analysis was carried out using two way ANOVA followed by Bonferroni 
posttests. All values are calculated as ± SEM. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * 
P < .05, ** P < .01, ***P < .001 and ns stands for not significant. 
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6.2.11 Gene expression analysis of angiogenic factors involved in promoting angiogenesis 

and comparison between changes in expression in ECFCs and HUVEC grown in normoxia 

and hyperoxia 

VEGFA gene encodes the protein vascular endothelial growth factor A in humans. The gene 

is a member of PDGF/VEGF family and has been studied in detail in vascular endothelium. 

VEGFA has been known to play many important functions in angiogenesis involving 

migration and mitosis of endothelial cells and creation of blood vessel lumen (Creuzet et al., 

2002; Stockmann et al., 2008; Mackenzie and Ruhrberg, 2012). As shown in figure 6.11 

there was more than 2 fold increase in mRNA level of expression of VEGFA in ECFCs that 

were cultured in hyperoxic conditions. This shows that ECFCs promote angiogenesis when 

they are exposed to oxidative stress. HUVEC showed no significant change in expression of 

VEGFA when grown in hyperoxia.   

VEGF C encodes vascular endothelial growth factor C in humans. VEGFC belongs to the 

PDGF/VEGF family of proteins and is involved in several important functions including 

angiogenesis, endothelial growth, blood vessel permeability and lymphangiogenesis 

(Paavonen et al., 1996; Schoppmann et al., 2002).  As shown in figure 6.11 there was several 

thousand fold increase in the expression of VEGFC in ECFCs grown in hyperoxia as 

compared to cells grown in normoxia. HUVEC showed a decrease in expression and the 

difference was found to be statistically significant. This suggests that HUVEC do not take 

part in angiogenesis when they are exposed to hyperoxia. 

Vascular endothelial growth factor (VEGF) is a key signaling protein which is involved in 

both vasculogenesis and angiogenesis. There are three main types of receptors to which 

VEGF binds which are all tyrosine kinase receptors. Two main receptors include VEGFR1 

also known as FLT-1 and VEGFR2 which is also known as FLK-1 or KDR (Holmes et al., 

2007; Stuttfeld and Ballmer-Hofer, 2009). VEGFA binds to both FLT-1 and KDR receptors 

but mainly KDR receptor mediates the cellular responses (Fujita et al., 2008). VEGFC binds 

mainly to KDR. As shown in figure 6.11 both FLT-1 and KDR showed several fold decrease 

in expression when ECFCs were exposed to oxidative stress. This could be due to receptor 

filling as both VEGFA and C showed higher expression in ECFCs grown in hyperoxia.  

HUVEC did not show any significant change in mRNA level of expression of any of these 

receptors again suggesting that these cells do not take part in angiogenesis as opposed to 

ECFCs which show up regulation of angiogenic genes when grown in hyperoxic conditions. 
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Figure 6.11. Gene expression analysis of angiogenic growth factors and angiogenesis inhibitor FLT1. 
Endothelial colony forming cells (ECFCs) were derived from cord blood and mature endothelial cells (HUVEC) 
were derived from the umbilical cord of the same donor. Both ECFC and HUVEC were grown in conditions of 
normoxia (20% O2) and hyperoxia (40% O2). Figure A and B showing an increase in expression of angiogenic 
growth factors VEGF A and C in ECFCs when exposed to hyperoxia and HUVEC showed no significant difference 
in gene expression. Figure C and D showing down regulation of angiogenic inhibitor FLT1 gene in ECFCs in 
hyperoxia, and the difference was found to be statistically significant. There was no significant difference seen 
in HUVEC for VEGF A expression, but VEGF C expression decreased under hyperoxia and the difference was 
found to be statistically significant. The data were normalized to 18s rRNA, HPRT1 and TBP which were used as 
endogenous controls. Gene expression is plotted relative to cord blood mononuclear cells. Statistical analysis 
was carried out using two way ANOVA followed by Bonferroni posttests. All values are calculated as ± SEM. 
n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * P < .05, ** P < .01, ***P < .001 and ns stands 
for not significant. 
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6.2.12 Gene expression analysis of pro-angiogenic factors and angiogenic targets 

involved in angiogenesis and comparison between changes in expression in ECFCs and 

HUVEC grown in normoxia and hyperoxia 

As shown in figure 6.12, we investigated the genes that we thought would be involved in an 

inflammatory response. This included as shown in figure 6.12 A, a cytokine belonging to 

chemokine family, CXCL12 also known as stromal cell-derived factor-1(SDF-1). This gene 

is involved in hematopoietic stem cell migration and blood vessel formation during early 

embryogenesis. It has recently been shown to be involved in EPC recruitment from bone 

marrow via CXCR4 which is its binding receptor, thus contributing towards blood vessel 

formation (Zheng et al., 2007). CXCL12 gene has been shown to be a pro-inflammatory 

genetic marker associated with atherosclerosis and encodes a chemokine which is involved in 

vascular repair (Linsel-Nitschke et al., 2010; Mehta et al., 2011). The results showed that 

ECFCs when exposed to hyperoxia show an up regulation of CXCL12 gene suggesting that 

these cells are responding to this stress environment and could be the cells involved in vessel 

repair. The difference between ECFCs grown in normoxia and hyperoxia was found to be 

statistically significant. As shown in figure 6.12 A, the mature endothelial cells HUVEC did 

not show any significant change in CXCL12 gene expression.  

Fibroblast growth factor 2 (FGF2) is a potent angiogenic growth factor involved in blood 

vessel formation, which is dependent on heparin sulphate (HS) (Ferreras et al., 2012). HS 

degrading enzymes activate FGF2 during wound healing and tumorigenesis. As shown in 

figure 6.12 B, ECFCs grown in hyperoxia show a 200 fold increase in gene expression of 

FGF2. This suggests that these cells are responding to oxidative stress and promoting 

angiogenesis. The difference was found to be statistically significant. Mature endothelial cells 

(HUVEC) did not show any significant change in expression of FGF2, when grown in 

hyperoxia. 

PDGFRA gene encodes a protein in humans which is known as alpha platelet derived growth 

factor receptor (PDGFRA). It encodes cell surface tyrosine kinase receptors for PDGF family 

of proteins. It has shown interactions with PDGFRB and both of them have been involved in 

growth and maturation being mitogens for cells of mesenchymal origin (Seifert et al., 1989; 

Rupp et al., 1994). As shown in figure 6.12 both genes showed more than 5 fold increase in 

mRNA expression level in ECFCs grown in hyperoxia. This suggests that hyperoxia 

environment provided an atherosclerotic and proinflammatory condition and ECFCs respond 
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by up regulation of angiogenic markers. HUVEC did not show any significant change in 

expression of either of these genes.  
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Figure 6.12. Gene expression analysis of angiogenesis target genes. Endothelial colony forming cells (ECFCs) 
were derived from cord blood and mature endothelial cells (HUVEC) were derived from the umbilical cord of 
the same donor. Both ECFC and HUVEC were grown in conditions of normoxia (20% O2) and hyperoxia (40% 
O2). Figure shows an up regulation of these genes in ECFCs in hyperoxia, and the difference was found to be 
statistically significant. The data were normalized to 18s rRNA, HPRT1 and TBP which were used as 
endogenous controls. Gene expression is plotted relative to cord blood mononuclear cells. Statistical analysis 
was carried out using two way ANOVA followed by Bonferroni posttests. All values are calculated as ± SEM. 
n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * P < .05, ** P < .01, ***P < .001 and ns stands 
for not significant. 
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6.2.13 Gene expression analysis of angiogenic factors involved in promoting angiogenesis 

and comparison between changes in expression in ECFCs and HUVEC grown in normoxia 

and hyperoxia. 

Endothelial nitric oxide (eNOS) is the main source of NO, which plays an important role in 

maintaining vasodilation and vasoconstriction by regulating smooth muscle cells activation 

(Ignarro et al., 1987). More importantly, NO is a competitive inhibitor of electron transport 

chain at complex IV (Moncada and Erusalimsky, 2002), thus altering the rate of oxidative 

metabolism in both cardiomyocytes and endothelial cells (Clementi et al., 1999), which is 

suggested to be inversely related to oxygen levels. As shown in figure 6.13 there was a 20 

fold down regulation in mRNA expression level of NOS3 when ECFCs were exposed to 

hyperoxic conditions and suggests that this is ECFCs response to oxidative stress.  

Alpha -actin-2 which also known as alpha smooth muscle actin is a protein that in humans is 

encoded by ACTA2 gene. It is considered to be a highly conserved protein and is involved in 

cell motility, integrity and shaping of cell structure. It forms the bulk of cells contractile 

machinery and has also been used as a marker of myoblast formation and known to be 

activated by p53 (Tomasselli et al., 1991; Comer et al., 1998). As shown in figure 6.13 there 

was a 40 fold increase in expression of ACTA 2 in ECFCs exposed to oxidative stress 

suggesting this environment promotes angiogenesis in ECFCs. HUVEC showed no 

significant change in expression of ACTA2.  

Angiopoeitin1is a protein that is encoded by ANGPT1 gene in humans. It is an important 

growth factor that plays a vital role in promoting angiogenesis and vascular development. It 

binds to and interacts with endothelial specific TEK tyrosine kinase receptor and is known to 

be involved in maintaining blood vessel maturity and stability (Maisonpierre et al., 1997). 

 ANGPT2 is a gene which encodes angiopoeitin 2 proteins in humans. It mainly acts as an 

antagonist to ANG1 and TEK tyrosine kinase and is mainly expressed at vascular 

remodelling sites (Maisonpierre et al., 1997; Cheung et al., 1998; Sato et al., 1998; Fiedler et 

al., 2003). As shown in figure 6.13 ANG1 mRNA expression level was increased 40 fold and 

as ANG2 acts as an antagonist to ANG1, its level of expression was found to be several 

thousand fold decreased in ECFCs that were exposed to oxidative stress. This shows that 

during hyperoxia angiogenesis is activated and ECFCs take part in this vascular repair. 

HUVEC did not show a significant change in expression of these angiogenic genes. 
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Figure 6.13. Gene expression analysis of pro angiogenic target genes and genes involved in regulation of 
blood vessel formation. Endothelial colony forming cells (ECFCs) were derived from cord blood and mature 
endothelial cells (HUVEC) were derived from the umbilical cord of the same donor. Both ECFC and HUVEC were 
grown in conditions of normoxia (20% O2) and hyperoxia (40% O2). Figure shows an up regulation of these 
proangiogenic genes in ECFCs grown in hyperoxia, and the difference was found to be statistically significant. 
Figure shows reduced expression of ANGPT2 and endothelial NO (eNOS) in ECFCs grown in hyperoxia and the 
difference was found to be statistically significant. HUVEC did not show any statistically significant change in 
expression of these angiogenic markers. The data were normalized to 18s rRNA, HPRT1 and TBP which were 
used as endogenous controls. Gene expression is plotted relative to cord blood mononuclear cells. Statistical 
analysis was carried out using two way ANOVA followed by Bonferroni posttests. All values are calculated as ± 
SEM. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 40% O2). * P < .05, ** P< .01, ***P < .001 and ns 
stands for not significant. 
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6.2.14 Gene expression analysis of angiogenic and anti angiogenic factors involved in 

regulating angiogenesis and comparison between changes in expression in ECFCs and 

HUVEC grown in normoxia and hyperoxia 

Transforming growth factor alpha (TGF-α) is a marker that has been found to be up regulated 

in several cancers and is mainly produced by macrophages and keratinocytes and known to 

take part in the development of epithelium. It has shown to be involved in neural cell 

development in cases of adult brain injury (Fallon et al., 2000). ECFCs showed the 

expression of TGF- α and the expression level decreased when cells were grown in 

hyperoxia, but the difference was not statistically significant as shown in figure 6.14. 

HUVEC on the other hand, showed statistically significant increase in the expression of TGF- 

α when grown in conditions of oxidative stress.  

TEK tyrosine kinase also known as angiopoeitin 1-receptor is a protein which in humans is 

encoded by TEK gene. It is exclusively expressed in endothelial cells and is known to interact 

with both ANG1 and ANG2 (Davis et al., 1996; Sato et al., 1998; Fiedler et al., 2003). As 

shown in figure 6.14 TEK levels did not show a significant change in expression of either 

ECFCs or HUVEC when these cells were exposed to oxidative stress.  

TP53 is a tumor suppressor protein in humans and is encoded by TP53 gene (Isobe et al., 

1986; Kern et al., 1991). It has been known to play key anticancer roles and is involved in 

apoptosis and inhibition of angiogenesis (Teodoro et al., 2006; Assadian et al., 2012). It is 

known to be activated by oxidative stress and DNA damage. As shown in figure 6.14 there 

was a down regulation of the mRNA expression level of the gene in ECFCs grown in 

hyperoxia, as these cells promote angiogenesis when exposed to oxidative stress. HUVEC 

showed a statistically significant increase in the expression of TP53. This again suggests that 

HUVEC do not take part in vascular repair when exposed to oxidative stress. 

NRP2 is a gene which in humans encode for neuropilin-2 protein. It plays a role in 

cardiovascular development and is known to interact with VEGF (Chen et al., 1997; Soker et 

al., 1998). As shown in figure 6.14 there was a decrease in expression of NRP2 in ECFCs 

grown in hyperoxia, but the difference was not found to be significant. HUVEC also did not 

show any significant change in expression of the gene.  
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Figure 6.14. Gene expression analysis of angiogenic growth factors and target genes. Endothelial colony 
forming cells (ECFCs) were derived from cord blood and mature endothelial cells (HUVEC) were derived from 
the umbilical cord of the same donor. Both ECFC and HUVEC were grown in conditions of normoxia (20% O2) 
and hyperoxia (40% O2). Figure shows reduced expression of these proangiogenic genes in ECFCs grown in 
hyperoxia, but the difference was not found to be statistically significant. HUVEC showed an up regulation of 
some of these angiogenic growth factors and the difference was found to be statistically significant. The data 
were normalized to 18s rRNA, HPRT1 and TBP which were used as endogenous controls. Gene expression is 
plotted relative to cord blood mononuclear cells. Statistical analysis was carried out using two way ANOVA 
followed by Bonferroni posttests. All values are calculated as ± SEM. n=4 (ECFC 20% and 40% O2) and n=5 
(HUVEC 20% and 40% O2). * P < .05, ** P< .01, ***P < .001 and ns stands for not significant. 
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6.2.15 Gene expression analysis of factors involved in proinflammatory response for 

angiogenesis and comparison between changes in expression in ECFCs and HUVEC grown 

in normoxia and hyperoxia 

Interleukin -1alpha (IL-1α) is an inflammatory cytokine that in humans is encoded by IL1A 

gene. It is known to play a central role in the regulation of immune response and is produced 

mainly by macrophages and endothelial cells (March et al., 1985). It binds to interleukin-1 

receptor and has shown to activate tumor necrosis factor (TNF- α) in endothelial cells 

(Bankers-Fulbright et al., 1996; Hu et al., 2003). As shown in figure 6.15 HUVEC showed a 

20 fold increase in mRNA level expression of IL1A and shows that exposing cells to 

hyperoxia can activate pro inflammatory markers. ECFCs showed a decrease in expression 

that was found to be statistically significant.  

c-kit or Stem cell factor receptor (SCFR) also known as CD117 is a protein which in humans 

is encoded by KIT gene (Andre et al., 1997). It is a proto-oncogene mainly expressed in 

hematopoietic stem cells and myeloid progenitors and bind to stem cell factor playing a role 

in cell survival and proliferation (Anzai et al., 2002). There was a 20 fold decrease in 

expression of KIT in ECFCs grown in hyperoxic conditions as shown in figure 6.15. HUVEC 

showed no significant change in expression. 

ABCG2 is a gene that in human encodes the protein ATP- binding cassette subfamily G 

receptor 2 also known as ABCG2 (CD338). This protein belongs to a family of ATP- binding 

cassette (ABC) transporters, which are mainly involved in transport of substances across cell 

membranes by using energy derive from ATP hydrolysis. ABCG2 has been shown to be a 

marker of progenitor cells and unique amongst this family of transporters to have this 

expression pattern. It also shows expression (mRNA and protein) in cancer stem cells, 

epithelial cells, placenta, blood brain barrier and many other organs including liver, lung and 

brain (Gutmann et al., 2005; Visvader and Lindeman, 2008). This gene has been shown to be 

suppressed during DNA methylation (Turner et al., 2006). As shown in figure 6.15 ECFCs 

when cultured in hyperoxic conditions showed more than 5 fold decrease in expression of the 

gene suggesting that oxidative stress induced this change in expression. 

The ITPKB gene in humans encodes the protein inositol –triphosphate 3-kinase B which is an 

enzyme that regulates inositol metabolism by phosphorylation and mediates cell signaling 

(Erneux et al., 1992). The gene is involved in immune cell function and promotes T and B 

cell maturation (Sauer and Cooke, 2010). As shown in figure 6.15 there was statistically 
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significant difference in mRNA level expression of ITPKB gene in ECFCs. HUVEC showed 

no significant change in expression of the gene.   
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Figure 6.15. Gene expression analysis of proinflammatory and immunoregulatory markers and angiogenesis 
target genes. Endothelial colony forming cells (ECFCs) were derived from cord blood and mature endothelial 
cells (HUVEC) were derived from the umbilical cord of the same donor. Both ECFC and HUVEC were grown in 
conditions of normoxia (20% O2) and hyperoxia (40% O2). Figure shows down regulation of these 
proangiogenic genes in ECFCs grown in hyperoxia, and the difference was found to be statistically significant. 
HUVEC did not show any statistically significant change in expression of these markers. The data were 
normalized to 18s rRNA, HPRT1 and TBP which were used as endogenous controls. Gene expression is plotted 
relative to cord blood mononuclear cells. Statistical analysis was carried out using two way ANOVA followed by 
Bonferroni posttests. All values are calculated as ± SEM. n=4 (ECFC 20% and 40% O2) and n=5 (HUVEC 20% and 
40% O2). * P < .05, ** P< .01, ***P < .001 and ns stands for not significant. 
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6.3. Discussion 
We carried out gene expression analysis of mitochondrial, antioxidative, proangiogenic and 

proinflammatory genes and those involved in DNA damage due to oxidative stress. In order 

to understand the role of PGC-1 alpha in ECFCs and HUVEC we also analysed several 

downstream targets of PGC-1 alpha so that we could study the pathways PGC-1 alpha 

monitors when cells are grown in conditions of oxidative stress. We proposed that exposing 

cells to 40 % O2 would lead to oxidative stress, and endothelial damage will lead to an 

atherosclerotic and inflammatory environment in an in vitro system. Inflammation refers to a 

series of complex but well conserved processes that forms part of an organism‟s response to a 

harmful stimulus, including cell damage and irritants and leads to repair mechanisms 

following this tissue injury.  It has been shown recently that there exists an interplay between 

oxidative stress and inflammation which results in the initiation and progression of 

cardiovascular diseases and this combination of oxidative stress and inflammation leads to 

mobilization of EPCs (Stenvinkel et al., 2003; Haubitz and Woywodt, 2004).  

Endothelial cells mainly derive their energy from anaerobic glycolysis and it has been shown 

that more than 70 % of ATP synthesis occurs via glycolysis in porcine aortic endothelial cells 

(Spahr et al., 1989; Culic et al., 1997; Quintero et al., 2006). Endothelial mitochondria are 

thought to be involved in regulating interplay between ROS, NO and calcium ions. This is 

suggested to be important in maintaining endothelial function, and a disruption to endothelial 

mitochondria can progress towards endothelial dysfunction leading to atherosclerosis. 

An important endothelial marker Von Willibrand factor (vWF) was investigated in order to 

differentiate between endothelial progenitors and mature endothelial cells. vWF has recently 

been shown to play a regulatory role in angiogenesis in endothelial cells (Starke et al., 2011). 

Angiogenic factors mainly, Angiopoeitins (Ang) and vascular endothelial growth factor 

(VEGF) mediate cell signaling pathways involved in endothelial cell proliferation and 

migration leading to blood vessel formation. VEGF- A is known to be a key player involved 

in angiogenesis (Grothey and Galanis, 2009) and acts mainly on Kinase insert domain 

receptor (KDR) also known as the VEGFR-2 (CD309/FLK1), which is a type 3 tyrosine 

kinase receptor (Petrova et al., 1999). This leads to endothelial cell proliferation, migration 

and early angiogenic sprouting (Gerhardt, 2008). Vascular endothelial growth factor C also 

known as VEGF- C has been known to be involved in endothelial cell proliferation and 

angiogenesis (Meyer et al., 1999). It is also involved in lymphangiogenesis and mediates its 

signaling through both VEGFR-2 (KDR) and VEGFR-3 (FLT4) receptors (Joukov et al., 
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1996; Dias et al., 2002). Angiopoeitins play an important role in advanced stages of blood 

vessel formation. ANG-1 and ANG-2 binding to endothelial TEK receptor (Tie2) maintain 

vascular maturity and intact endothelium (Thomas and Augustin, 2009). It was initially 

considered that ANG-1 and ANG-2 act as antagonists. ANG-1 playing a role in vessel wall 

maturation and promoting endothelial cell migration and adhesion and ANG-2 breaking the 

links between perivascular cells and endothelium and leading to vascular regression and 

permeability (Suri et al., 1996; Lobov et al., 2002).  

Endothelial cells mediate ROS production in the form of superoxide and hydrogen peroxide 

which acting as messengers lead to a growth factor -dependent response promoting 

angiogenesis (Case et al., 2008). NADPH oxidase is considered to be the most important 

source of ROS in vasculature (Griendling et al., 2000; Lassègue et al., 2012). NADPH 

oxidase (NOX) derived ROS has been shown to be implicated in several cardiovascular 

diseases and increased ROS levels have been found in both human and animal models (Lacy 

et al., 2000; Touyz and Schiffrin, 2001; Álvarez et al., 2008; Brandes et al., 2010; Lassègue 

and Griendling, 2010). 

Reactive oxygen species (ROS) are substances produced as a result of cellular metabolism, 

and are chemically active molecules that contain oxygen. ROS produced at normal levels, as 

a byproduct of oxygen metabolism are involved in maintaining homeostasis and cell 

signaling mechanisms (Dickinson and Chang, 2011). An increase in ROS production can lead 

to significant cell damage causing oxidative stress (Mancardi et al., 2004). In order to 

counteract this ROS damage, cells defend themselves by activating certain enzymatic and 

nonenzymatic pathways leading to up regulation of anti-ROS genes (Lomri, 2008). The 

effects of oxidative stress on endothelial progenitor cells are well known and it has been 

shown that oxidative stress affects EPC activity and mobilization. ROS has been shown to 

directly damage the vascular endothelium, suggesting that it plays a role in the progression of 

atherosclerosis (Griendling and FitzGerald, 2003b; Torsney et al., 2005; Tigges et al., 2013).  

Reduced EPC levels and impaired EPC function have been implicated with increased 

superoxide production (Thum et al., 2007; Qiao et al., 2010). It has been shown that 

oxidative stress leads to increased ROS production which in turn causes Nitric oxide (eNOS) 

inactivation and DNA damage resulting in altered redox state (Laufs et al., 2004; Fike et al., 

2013). EPC migration is an essential step during angiogenesis following vascular injury or 

endothelial dysfunction. Cell migration occurs in response to chemotactic stimuli, and there is 

strong evidence to show that proangiogenic factors including VEGF and Angiopoeitin- 1are 
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involved in directing cell migration in response to ROS production (Yamaoka-Tojo et al., 

2004; Chen et al., 2006a; Kim et al., 2006; Xia et al., 2007). 

Nitric oxide is considered to be an important regulator of mitochondrial dynamics and also 

promoter of oxidant production, although its effects are dependent upon the availability of 

oxygen and associated redox cellular state (Erusalimsky and Moncada, 2007). NO is known 

to be an inhibitor of cytochrome c oxidase (complex IV) of the electron transport chain and 

competes at oxygen binding site and results in reduction of mitochondrial respiration leading 

to an increase in ROS signaling (Dranka et al., 2010; Widlansky and Gutterman, 2011). In 

conditions of oxidative stress NO inhibits complex I that further blocks mitochondrial ROS 

production (MacMillan-Crow et al., 1998). Acute inflammatory response leads to an increase 

in NO levels that shows that the capacity of endothelial cells to respond to cellular stress has 

diminished. It is therefore proposed that conditions that reduce endothelial nitric oxide 

(eNOS) bioavailability can promote mitochondrial ROS production (Doughan et al., 2008). 

This reduction in availability of endothelial NO results in the formation of peroxynitrite that 

affects complex I and III in such a way that it promotes ROS production and also inhibits 

antioxidants like MnSOD causing further mitochondrial damage (Wang et al., 2012).  

Mitochondrial ROS production and understanding the mechanisms regulating their activity 

has gained immense importance recently, as they play an important role in cell signaling and 

pathogenesis of vascular diseases (Sena and Chandel, 2012). As has been shown before the 

bulk of oxygen consumption occurs at complex IV (cytochrome c oxidase) of the electron 

transport chain and complex I and III contribute to less than 2% of the total consumption, 

although these analysis are based on studies in isolated mitochondria and an in vivo analysis 

of ROS production in endothelial cell still remains to be seen (Chance et al., 1979; Murphy, 

2009; Widlansky and Gutterman, 2011). In addition to that there are several other 

mitochondrial ROS sources that have been identified in endothelial cells and include 

nicotinamide adenine dinucleotide phosphate oxidase (NOX4) which shows high expression 

in endothelial cells, but mitochondrial localization is still uncertain whereas in most other 

tissues it is mainly present in mitochondria (Chen et al., 2012). NOX4 serves as an important 

regulator of ROS signaling mechanisms in endothelial cells and has been shown to play a 

vital role in contributing towards endothelial cell senescence, angiogenesis and migration and 

combating inflammatory response as a result of oxidative stress and hypoxia (Lassègue et al., 

2012).  



 

178 
 

An important indicator of increased mitochondrial ROS production is an altered 

mitochondrial membrane potential. It has been shown that a decrease in membrane 

depolarization can increase the activity of complexes I and III of the ETC leading to an 

increase in ROS production (Freed and Gutterman, 2013). Mitochondrial membrane 

hyperpolarization can also lead to an increase in ROS mainly in metabolic states where there 

is nutrient excess and no more ATP synthesis is required. This causes an increase in 

NADH/NAD+ ratio resulting in a decrease in electron flow leading to accumulation of 

reactive metabolites at complexes I and III of the electron transport chain causing reduction 

of oxygen and superoxide ions. Several metabolic disorders including diabetes mellitus and 

obesity that are characterized by increased glucose and fatty acid levels have been shown to 

use this mechanism resulting in increased production of mitochondrial ROS (Brownlee, 

2001).  

As shown before, availability of excess nutrients in cardiac myocytes results in alteration of 

mitochondrial metabolism and can lead to heart failure, but in endothelial cells where energy 

demands are not as higher this excess nutrient supply provides  a signal that increases 

mitochondrial ROS production that leads to a change in phenotype of endothelial cells 

(Lopaschuk et al., 2010; Algahim et al., 2012). Endothelial cells when exposed to high 

glucose or fatty acid levels leads to a decrease in eNOS activity, resulting in activation of 

transcription factor NFκB and protein kinase c (Nishikawa et al., 2000; Brownlee, 2001). 

This up regulation requires counteractive mechanisms which includes over expression of 

uncoupling protein (UCP1), mitochondrial membrane depolarization and inhibition of 

electron transport chain which bring membrane potential to lower limits (Nishikawa et al., 

2000).  

Vascular diseases are characterized in most cases by ROS- induced damage to mitochondrial 

membrane and mtDNA, lipid and proteins which further alleviate ROS damage (Algahim et 

al., 2012; Hill et al., 2012). Mitochondrial DNA (mtDNA) damage in particular has long 

term consequences as it causes either a decrease in the expression of ETC components or 

results in the production of defective components generating more ROS (Ballinger et al., 

2000). It is interesting to note that all the important risk factors that eventually progress 

towards cardiovascular diseases including smoking, hypertension, hyperglycaemia and 

hypercholesterolemia are associated with mitochondrial DNA damage (Knight-Lozano et al., 

2002). More importantly, it has been shown in several studies both in mice an in human 

tissues that the severity of atherosclerosis is directly proportional to the associated mtDNA 
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damage (Ballinger et al., 2002). A recent study has shown that glycation of mitochondrial 

proteins can increase ROS production in diabetic patients (Pun and Murphy, 2012).  

Mitochondrial antioxidant enzymes are instrumental in combating oxidative stress and there 

have been several of these that are involved in this counteracting mechanism. Manganese 

superoxide dismutase (MnSOD) is considered to be the most potent antioxidant against 

mitochondrial superoxide and takes part in conversion of superoxide ion to hydrogen 

peroxide. This antioxidative enzyme is known to play a protective role in endothelium and 

MnSOD
+/−

 mice has shown to have impaired vasodilation (Brown et al., 2007). In addition to 

that, mice with double knockout of apolipoprotein E along with MnSOD
+/− 

has been shown to 

have more mitochondrial DNA damage and as a consequence of that more severe 

atherosclerosis in comparison with same double knockout mice with MnSOD
+/+ 

, suggesting a 

vital role of MnSOD in maintaining the integrity of the endothelium (Ballinger et al., 2002). 

Catalase (CAT) along with other cytosolic peroxidases including glutaredoxin-2, 

peroxiredoxins-3and thioredoxin-2 is involved in maintaining the levels of hydrogen peroxide 

within normal limits. Glutathione peroxidase (GPx-1) is present in cytosol as well as 

mitochondria in the endothelial cells (Griendling and FitzGerald, 2003a). PGC-1 alpha 

regulates this antioxidative response and sends this signal as soon as oxidative stress in the 

form of hydrogen peroxide or as we proposed by exposure to 40% oxygen affects the 

endothelial cells. These antioxidative genes are up regulated and in turn promotes the 

translation of antioxidant proteins to protect the endothelium against these form of stress 

(Valle et al., 2005; Schulz et al., 2008). In several studies performed in mice and other 

experimental models it has been shown that loss of any of these antioxidant enzymes can 

make the endothelium vulnerable to various forms of stress leaving the endothelium prone to 

injury and progression to atherosclerosis with associated mitochondrial damage (Forgione et 

al., 2002a; Brown et al., 2007). On the other hand, overexpression of these antioxidant 

enzymes have shown to have a protective role against forms of vascular diseases (Widder et 

al., 2009).     

Uncoupling proteins (mainly UCP1 and UCP2) are localized inside inner mitochondrial 

membrane and play an important role in ROS production. The main function of UCPs is to 

promote the uncoupling of electron transport chain leading to reduction of mitochondrial 

membrane potential and ATP production (Duval et al., 2002; Mailloux and Harper, 2011). 

UCP1 is mainly expressed in brown fat, whereas UCP2 is the main endothelial isoform that 

regulates the mitochondrial membrane potential when they get activated by oxidative stress in 
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the form of superoxide ion and function to reduce the ROS (Echtay et al., 2002; Echtay et al., 

2003). There is strong epidemiological evidence that UCP2 is related to human 

cardiovascular pathologies. 866 G > A variant is linked with overexpression of UCP2 causing 

a reduction in cardiovascular disease occurrence, and a polymorphism at this locus has been 

shown to be linked with carotid artery atherosclerosis (Oberkofler et al., 2005; Cheurfa et al., 

2008). There has been no study so far that has examined the role of UCP2 in the regulation of 

endothelium-dependent vasodilation in humans, but several experimental studies have 

confirmed the importance of UCP2 in endothelial cells. UCP2 overexpression has been 

shown to decrease mitochondrial ROS and inhibit inflammatory response in cultured 

endothelial cells and improved vasodilation in rat aorta (Lee et al., 2005). UCP2 expression is 

regulated by PGC-1 alpha and AMPK mediated stress response which up regulates several 

other anti-ROS genes  (Valle et al., 2005). It has been reported that UCP2 null mice has 

shown to have impaired and defective vasodilation and increased incidence of atherosclerosis 

(Moukdar et al., 2009; Haines et al., 2010; Tian et al., 2012).  

Sirtuins are involved in longevity and regulation of metabolism with control over 

mitochondrial function mainly through PGC-1 alpha deacetylation, and have been studied 

recently as potential therapeutic targets (Abdellatif, 2012; Nogueiras et al., 2012). Sirtuins are 

NAD
+
 dependent deacetylases and mainly regulate gene expression through this activity. 

Mammals have seven sirtuins 1-7. SIRT 3,4 and 5 are mitochondrial, SIRT 1,6 and 7 are 

nuclear and SIRT 2 is cytoplasmic (Guarente, 2013). Sirtuin 1 (SIRT1) deacetylates PGC-1 

alpha affecting glucose and fatty acid metabolism along with the expression of several 

important mitochondrial genes (Vega et al., 2000; Rodgers et al., 2005; Gerhart-Hines et al., 

2007; Abdellatif, 2012). Sirtuin 3 (SIRT3) is a mitochondrial sirtuin which is specifically 

expressed in mitochondrial matrix and involved in regulation of mitochondrial function by 

deacetylating mitochondrial enzymes and importantly MnSOD, thereby decreasing 

superoxide levels in mitochondria and contributing towards antioxidative mechanisms 

(Onyango et al., 2002; Tao et al., 2010). Sirtuins have been known to play an important role 

in cardiovascular system. SIRT1 has been shown to prevent ischemic heart injury and 

hypertrophy of cardiac muscle and promotes angiogenesis by deacetylating and activating 

eNOS in the endothelium (Mattagajasingh et al., 2007; Potente et al., 2007).  It has been 

interesting to note that endothelial SIRT1 expression was found to be decreased in older 

subjects progressing towards aging and was correlated with reduced endothelium dependent 

vasodilation (Donato et al., 2011). SIRT1has been shown to regulate glucose metabolism by 
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controlling insulin secretion, gluconeogenesis and glycolysis (Abdellatif, 2012). It inhibits 

the transcription of uncoupling protein 2 (UCP2) thus regulating insulin secretion from 

pancreatic β -cells (Moynihan et al., 2005; Bordone et al., 2006).  SIRT3 is a recently 

identified downstream target of PGC-1 alpha and although no studies on humans or animal 

models have so far examined the role of SIRT3 activation on endothelial phenotype, there 

have been reports that up regulation of SIRT3 is found in vascular tissues where inhibition of 

transcription factor NFκB has shown to reduce inflammatory activity and improved 

mitochondrial biogenesis and life span (Hasegawa et al., 2012). In our study, we investigated 

for the mitochondrial SIRT, SIRT4 and found that it showed expression in ECFCs as well as 

HUVEC. ECFCs did not show a significant change in its expression when cells were grown 

in hyperoxia, whereas HUVEC showed a significant change in its expression when grown in 

hyperoxic conditions. This suggests that SIRT4 is activated in HUVEC and these cells 

undergo fatty acid oxidation in response to oxidative stress.  

In conclusion, the results obtained in this section showed that ECFCs and HUVEC behaved 

differently when exposed to oxidative stress and as shown by the gene expression analysis, 

different genes are activated in ECFCs as compared to HUVEC. As shown in figure 6.7, 

PGC-1 alpha showed a significant increase in expression in ECFCs when exposed to 

hyperoxia, whereas HUVEC did not show a significant change in expression. This suggests 

that HUVEC use a different pathway to combat stress conditions. PPARG has been shown to 

be co-activated by PGC-1 alpha in cardiomyocytes and here we show that in ECFCs there 

was a significant up regulation of PPARG in ECFCs that could be linked to the activation of 

PGC-1 alpha. HUVEC did not show a significant change and it could be due to no significant 

change in PGC-1 alpha expression in HUVEC grown in hyperoxia. PROX1 has been shown 

to be playing a role in the development of lymphatic endothelial cells and is known to be a 

negative modulator of ERR-α/PGC-1 alpha pathway. Our results showed that there was a 

down regulation of PROX1 gene in ECFCs grown in hyperoxia and this suggests that this 

could be related to an increase in PGC-1 alpha gene expression. HUVEC did not show a 

significant change in expression. PRDX5 is a mitochondrial gene that has been shown to be 

involved in reduction of hydrogen peroxide playing a role in antioxidative mechanisms. Our 

results did not show any significant change in expression of this gene in either ECFCs or 

HUVEC suggesting this gene is not activated in oxidative stress in these cells.  

As shown in figure 6.8, we investigated the genes involved in electron transport chain of 

oxidative phosphorylation. We checked for a gene from each step of this process and the 
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results showed that there was an up regulation of all these oxidative genes namely MT-ND3, 

MT-CYB, MT-CO1 and MT-ATP8 in ECFCs grown in hyperoxia. This suggests that this 

could be due to the activation of PGC-1 alpha causing an increase in mitochondrial 

biogenesis and oxidative phosphorylation. HUVEC showed an insignificant decrease in 

expression of all these genes suggesting they are not activating electron transport chain of 

oxidative phosphorylation. 

As shown in figure 6.9, we investigated several mitochondrial genes that are involved in fatty 

acid oxidation and gluconeogenesis in liver and muscle cells namely SIRT4 and PCK2. We 

found that there was significant up regulation of these genes in HUVEC that were exposed to 

hyperoxia suggesting that these cells activate metabolic pathways in stress conditions. ECFCs 

did not show a significant change in expression of these genes. Our results showed that there 

was an up regulation of PDK4 gene in HUVEC grown in hyperoxia. This gene is involved in 

glucose metabolism and did not show a significant change in ECFCs grown in hyperoxia. 

GPX4 gene is involved in protecting cells against oxidative stress by the reduction of 

hydrogen peroxide. We found a down regulation of this gene in ECFCs exposed to hyperoxia 

suggesting that may be other isoforms of GPX are activated in response to oxidative stress in 

ECFCs. HUVEC did not show a significant change in expression. 

As shown in figure 6.10, we investigated the effect of oxidative stress on several cell surface 

markers. This included vWF which as shown earlier showed high expression in HUVEC and 

is involved in platelet adhesion. High endothelial vWF expression suggests atherosclerotic 

progression and as seen in the figure HUVEC showed significant increase in its expression 

when grown in hyperoxic conditions. ECFCs did not show any significant change in 

expression. CD144 is involved in maintaining vascular permeability and shows decreased 

expression in early stages of angiogenesis which is in correlation with increased vascular 

permeability observed in angiogenesis (Corada et al., 2001). As shown in the figure, ECFCs 

showed a significant decrease in its expression when exposed to hyperoxia suggesting that 

these cells are angiogenic and exposure to oxidative stress leads to inflammatory and 

atherosclerotic environment promoting vascular repair. HUVEC did not show a significant 

change in the expression. CD31 mainly shows expression in endothelial cells and as shown in 

figure 6.10 there was a down regulation of its expression seen in ECFCs grown in hyperoxia. 

HUVEC did not show a significant change in expression of CD31. CD133 is mainly 

expressed early endothelial progenitors and hematopoietic stem cells. ECFCs showed 

insignificant change in its expression when grown in hyperoxia. HUVEC showed a 
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statistically significant change in CD133 expression and this could be further investigated as 

till now the function of CD133 is not known. 

As shown in figure 6.11, we investigated several genes that encode growth factors involved 

in promoting angiogenesis. These included VEGF A and C that are known to be involved in 

angiogenesis, mitosis of endothelial cells and their migration. The results showed that there 

was a significant increase in the expression of both VEGFA and C in ECFCs exposed to 

hyperoxia suggesting that these cells become angiogenic when exposed to oxidative stress. 

HUVEC did not show a significant change in expression of VEGFA but showed a significant 

decrease in VEGFC expression suggesting that these cells do not promote angiogenesis. 

FLT1 and KDR are VEGF receptors and both showed a significant decrease in expression in 

ECFCs grown in hyperoxia and it could be due to the filling of receptors as both VEGFA and 

C showed a significant increase in expression. HUVEC did not show any significant change 

in expression of either FLT1 or KDR. 

As shown in figure 6.12, we investigated some genes involved in proinflammatory response 

including  CXCL12 (SDF-1) that has been shown to be a proinflammatory genetic marker 

that is up regulated in atherosclerosis (Linsel-Nitschke et al., 2010). Our results showed that 

there was a significant increase in expression CXCL12 in ECFCs grown in hyperoxia 

suggesting that oxidative stress has led to an atherosclerotic environment. HUVEC did not 

show any significant change in expression. FGF2, PDGFRA and PDGFRB were the other 

genes that we investigated and the results showed that there was an up regulation of all these 

markers in ECFCs grown in hyperoxia suggesting that these cells promote angiogenesis when 

exposed to oxidative stress. HUVEC did not show any significant change in expression. 

As shown in figure 6.13, we investigated several pro angiogenic target genes involved in 

blood vessel formation. This included ANGPT1which encodes a growth factor involved in 

vascular development. ECFCs showed a significant increase in its expression when grown in 

hyperoxia suggesting that these cells are promoting angiogenesis. HUVEC did not show any 

significant change in expression. ANPT2 acts as an antagonist to ANGPT1 and shown in 

figure ECFCs showed a significant decrease in its expression when grown in hyperoxia. This 

suggests that the oxidative stress has led to an atherosclerotic environment and ECFCs are 

promoting vascular repair as shown by up regulation of ANGPT1 and down regulation of 

ANGPT2.  We also investigated for ACTA2 which is involved cell motility and forms the 

contractile machinery of the cell. ECFCs showed a significant increase in its expression and 
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HUVEC did show any significant change in expression. NOS3 is considered to be the main 

source of NO which is involved in smooth muscle regulation. It is also an inhibitor of 

electron transport chain at complex IV which is inversely related to oxygen levels. Our 

results showed that exposing cells to hyperoxia resulted in decreased NOS3 expression in 

ECFCs. HUVEC did not show a significant change in expression. 

As shown in figure 6.14, we checked for the gene expression of transforming growth factor 

alpha (TGF-α) and the results showed no significant change in expression in ECFCs grown in 

hyperoxia. HUVEC showed a significant increase in its expression when exposed to 

hyperoxia. This requires further investigation as TGF alpha is known to be up regulated in 

several cancers. TP53 showed an insignificant decrease in ECFCs grown in hyperoxia but 

showed a significant up regulation in HUVEC exposed to hyperoxia. This gene is up 

regulated in oxidative stress and DNA damage and inhibits angiogenesis. Up regulation in 

HUVEC again confirm that HUVEC do not take part in angiogenesis when exposed to 

oxidative stress. TEK encodes angiopoeitin 1 receptor. It is mainly expressed in endothelial 

cells but both ECFCs and HUVEC did not show any significant change in the expression of 

this gene when grown in hyperoxia. NRP2 is known to interact with VEGF and is known to 

play a role in cardiovascular development. Our results showed that both ECFCs and HUVEC 

showed insignificant change in expression of this gene.  

As shown in figure 6.15, we checked for the gene expression of IL-1alpha which encodes an 

inflammatory cytokine mainly produced by endothelial cells. ECFCs showed a significant 

decrease in its expression and HUVEC showed statistically significant increase in the 

expression of IL-1 alpha. This again suggests that both ECFCs and HUVEC behave 

differently when exposed to oxidative stress. KIT is a proto-oncogene expressed in 

hematopoietic stem cells and myeloid progenitors and our results showed that ECFCs 

expressed KIT but it was down regulated when these cells were exposed to oxidative stress. 

This suggests that may be ECFCs grown in hyperoxia were differentiated towards a more 

mature lineage and lost their stem cell characteristics. As expected, HUVEC did not show the 

expression of KIT gene and there was no significant change in expression when grown in 

hyperoxia. ABGC2 (CD338) has been shown to be suppressed during DNA methylation and 

ECFCs showed significant down regulation in ECFCs grown in hyperoxia. This could be the 

effect of oxidative stress on these cells. HUVEC did not show any significant change in 

expression. ITPKB gene is involved in immune cell functions and our results indicate that 
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there was a significant down regulation seen in ECFCs grown in hyperoxia. HUVEC did not 

show any significant change in expression. 

The results in this section clearly indicate that ECFCs and HUVEC behave differently when 

exposed to oxidative stress. ECFCs mainly promote angiogenesis and up regulate angiogenic 

markers suggesting that this stress environment resembles that of inflammatory and pro 

atherosclerotic conditions that promotes these cells to become angiogenic. HUVEC did not 

show up regulation of angiogenic markers suggesting that these cells do not become 

angiogenic on exposure to oxidative stress and do not take part in vascular repair. 
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Chapter 7. General discussion and limitations 

The research work carried out in the study includes successful isolation of mononuclear cells 

(day 0 MNCs) from umbilical cord blood also known as human umbilical cord mononuclear 

cells (HUCBC), based on ficoll based separation referred to as lymphoprep (n >15). These 

MNCs were used in subsequent experiments including qPCR and FACS analysis. They were 

used as a calibrator or reference sample for low density array and validation experiments. We 

have been able to isolate early EPCs or CACs both from peripheral blood and umbilical cord 

blood from more than 15 samples. Macrophages have been successfully isolated from both 

peripheral blood and cord blood n >10. Endothelial colony forming cells (ECFCs or late 

EPCs) have been successfully derived from umbilical cord blood (n >10) by differentiating 

cord blood mononuclear cells (day 0 MNCs) in an in vitro system. Mature endothelial cells 

(HUVEC) have been successfully isolated from over 15 human umbilical vein samples. We 

have successfully attempted the isolation of all the cell populations from the same donor. 

Cord blood mononuclear cells (day 0 MNCs), early EPCs (proangiogenic cells), ECFCs 

(endothelial colony forming cells) and macrophages all were derived from the umbilical cord 

blood of the donor whose umbilical cord was used for the isolation of mature endothelial 

cells (HUVEC) from the umbilical vein n=6. This has therefore provided us with a 

longitudinal comparison of the m RNA expression of hematopoietic stem cell and endothelial 

cell surface markers from mononuclear cells (day 0 MNCs) through to mature endothelial 

cells of the same donor for the first time. It was difficult to get an endothelial colony from 

each cord blood isolation and the success ratio was less than 50%. There could be different 

reasons to explain this low success rate and include  age of the donor, anaesthetics used in the 

delivery, circadian influences, (early morning births or night deliveries), nutritional 

influences, fasting, caffeine levels, vitamin D status; ethnicity of donor and many more. We 

have carried out the molecular profiling of these cells based on the expression of cell surface 

markers including hematopoietic stem cell, macrophage specific and endothelial markers. 

The results showed that early EPCs can easily be distinguished from ECFCs and mature 

endothelial cells (HUVEC). The difference found was statistically significant. Early EPCs 

were found to be related to monocyte-macrophage lineage and showed expression of 

macrophage specific markers. These findings have been confirmed at both RNA and protein 

level and were consistent with the previous findings as shown in earlier studies. Our results 

further showed that endothelial colony forming cells (ECFCs) derived from cord blood and 

mature endothelial cells (HUVEC) derived from the umbilical vein of the same donor can 
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also be distinguished on the basis of expression of cell surface markers namely CD144, 

CD105 and vWF, and the difference was found to be statistically significant (n=3-5). The 

difference was investigated further at protein level, and we performed direct 

immunofluorescence analysis with vWF antibody as it is an internal marker. The results 

confirmed that ECFCs and HUVEC derived from the same donor showed statistically 

significant difference (n=3) in terms of number of vWF positive cells when compared at same 

passages (P5 for both ECFCs and HUVEC and P15 for both ECFCs and HUVEC). FACS 

analysis was carried out for cell surface marker including CD144, CD146, CD14 and CD34. 

This way protein expression was confirmed and compared in MNCs to the expression in 

ECFCs and HUVEC based on the percentage of positive cells. This comparison at mRNA 

and protein level clearly distinguished early and late EPCs and we narrowed down our 

approach to use of late EPCs (ECFCs) which have been used for vascular repair and 

compared with mature endothelial cells. The early EPCs were distinguished from ECFCs at 

mRNA and protein level and addition of a functional assay like in vitro matrigel assay could 

have further validated the results.  

The second part of the study involved studying the behavior of these late EPCs (ECFCs) and 

mature endothelial cells (HUVEC) under hyperoxic conditions (40% O2) which has been 

shown to be a model of  mild oxidative stress. We proposed that oxidative stress would lead 

to telomere dysfunction and as a result of that a decrease in the expression of PGC-1α that 

has been shown recently in mice cells. We proposed that PGC-1 alpha being a key metabolic 

regulator would be involved in mitochondrial biogenesis and oxidative metabolism in 

endothelial cells, and a decrease in its expression would lead to an impairment of 

mitochondrial activity in these cells. This would in turn lead to a decrease in the angiogenic 

potential of these cells. We first studied the growth kinetics of these two cell types in 

conditions of normoxia and hyperoxia. The results showed that ECFCs were found to be 

much more resistant to stress conditions as compared to mature endothelial cells (HUVEC). 

They grew at a faster rate and were able to survive in oxidative stress conditions (40% O2) for 

longer period of times. The next step was to investigate the mRNA level expression of PGC-1 

alpha and its downstream targets in both ECFCs and HUVEC under normoxic and hyperoxic 

conditions. The results showed that instead of going down PGC-1 alpha levels increased in 

both ECFCs and HUVEC and also there was an increase in expression of its downstream 

targets G6- phosphatase and ERR-alpha which are known to be involved in glucose 

metabolism and angiogenesis respectively. The difference found was not statistically 
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significant (n=3-5). This suggested that oxidative stress has led to an increase in PGC-1 alpha 

expression and this in turn would activate antioxidative mechanisms by upregulting 

antioxidant genes. The next step was to confirm if oxidative stress has resulted in telomere 

dysfunction in these cells. The cells were grown till late passages in an in vitro system and 

were regularly split so that they are not overgrown. We first measured the telomerase activity 

in ECFCs and HUVEC using a sensitive TRAP assay no significant difference was found in 

either ECFCs or HUVEC as cells grew older and progressed towards aging. We expected to 

have a higher telomerase activity in these cells under conditions of oxidative stress, but again 

the difference found was not statistically significant. This was done to see if there was a 

concomitant increase in telomerase activity as a result of telomere shortening that could be 

the result of exposure of these endothelial cells to oxidative stress. In order to see the effect of 

aging on telomere length of ECFCs and HUVEC cells were grown till late passages (P2-P16) 

and as expected it was observed that telomere length was shortened as a result of growing 

these cells for long-term. The telomere length was measured using flow-FISH analysis which 

is an extremely sensitive and one of the most accurate methods of measuring the telomere 

lengths. This is a newly developed technique and we have used this assay to measure 

telomere lengths in these cells ECFCs and HUVEC for the first time as it has mostly been 

used to measure lengths of fresh blood cells mainly leukocytes. The results indicate that flow-

FISH can be used as a technique to measure telomere lengths of frozen cells and cells that are 

old and aged and have been cultured for a longer period of time in an in vitro system.  

The results obtained clearly showed that true endothelial progenitor cells have been isolated. 

They are easily distinguished from early EPCs on the basis of expression of macrophage 

marker CD14 and leukocyte marker CD45. This was important as the EPCs isolated and 

cultured were not a mixture of monocyte-macrophage lineage cells as these cells are resistant 

to oxidative stress and would have made it difficult to analyse the results. The results also 

indicated that ECFCs are better equipped to combat oxidative stress as compared to mature 

endothelial cells and could be grown for longer periods. On the basis of these findings we 

designed a low density gene array that could differentiate these cells further on the basis of 

expression of angiogenic or antioxidative markers or genes that are involved in DNA damage 

repair and electron transport chain complexes so that we can conclude on the basis of 

expression these gene if these two cell types behave differently under conditions of oxidative 

stress and perform different functions when exposed to stress. 
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The array results confirmed that these endothelial progenitors which are known to take part in 

vascular repair are much more resistant to stress environment as they home in to the sites of 

vascular injury and take part in vessel repair. There are several antioxidative genes that are up 

regulated in ECFCs when exposed to stress conditions and increased ROS production as 

evident from up regulation of genes involved in electron transport chain (ETC). ECFCs show 

increased mRNA expression of several genes that are involved in angiogenesis, including 

several growth factors that are important in initiating and maintaining new blood vessel 

formation. Similarly, in terms of metabolism ECFCs and HUVEC show differential gene 

expression analysis when compared with normoxic conditions. The overall results further 

validate our earlier findings that these are two different cell types that behave differently 

under conditions of oxidative stress. This is confirmed at both levels with functional assay 

including the growth kinetics and gene expression analysis at mRNA level using LDA and 

protein analysis using immunofluorescence and FACS. 

Limitations of the study: 

The main part of the research study was carried out in cells that were derived from the same 

donor. This provided a better comparison, so that the mononuclear cells (MNCs) from the 

same donor were differentiated in to early EPCs and macrophages by growing in different 

media but under same culture conditions. The ECFCs were isolated once a colony was 

observed which normally takes around 3 weeks to appear and in certain cases there was no 

colony formation from the culture so the results were excluded from the final analysis and 

only those cultures were included in which all cell types were isolated from the same donor. 

This reduced the sample size to around n=3-6 as all the mRNA gene expression level 

experiments were carried out as same donor analysis.  

Similarly, for a comparison between early and late passage cells for telomerase activity and 

telomere length measurements the cells were grown for a period of around 2-3 months in 

order to achieve significant results. This again was time consuming but was inevitable. 

In the earlier qPCR experiments, the data were normalized to one housekeeping gene (TBP) 

but later on for the LDA and array validation experiments this was compensated by data 

normalization to three housekeeping genes (18s RNA, TBP and HGPRT). 
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In direct immunofluorescence analysis with vWF (FITC) antibody, isotype matched control 

was used but that was not tagged with a fluorochrome. The negative control used was human 

IgG (normal) which was a good control, but a better control would have been IgG (FITC). 

There was lack of senescence assay to evaluate endothelial cell senescence and SA-β-gal 

staining or crystal violet staining could have been done to see if hyperoxia has led to vascular 

aging and senescence. 

The characterization of early and late EPCs was done at mRNA and protein level but the 

addition of in vitro tube forming assays and in vivo matrigel plug assays for evaluating in 

vivo angiogenesis would have differentiated both types of EPCs and would have added 

strength to the gene expression studies. 

 

8. Future work 

In my opinion, ECFCs are one of the best candidates for regenerative vascular therapy. At the 

first place, they have this capacity to differentiate in to endothelial cell progeny and secondly 

they are highly proliferative cells. Human ECFCs have been successfully injected into 

immunodeficient mice that took part in blood vessel formation (Au et al., 2008a; Melero-

Martin et al., 2008). More importantly, ECFCs have been shown to incorporate in damaged 

vasculature in vivo in various animal models including rabbit carotid artery injury, hind limb 

ischemia, murine retinal ischemia and porcine myocardial infarction (He et al., 2004b; Hur et 

al., 2004; Dubois et al., 2010; Medina et al., 2010a). This makes it more important to design 

and develop preclinical methods to study and evaluate the angiogenic and vasculogenic 

potential of these ECFCs. A detailed study of experimental models of revascularization can 

become a better tool to further define these cells and the pathological conditions that can be 

explored with this. Recent studies have shown the involvement of ECFCs in various 

pathological diseases including vonwillibrand disease and myeloproliferative disorders. 

ECFCs obtained from vonwillibrand disease patients have shown to have increased 

angiogenic activity (Starke et al., 2011).  There is a growing need for improving the methods 

to culture these ECFCs, as so far one of the limitations in autologous usage of these cells is 

their paucity in peripheral blood. More studies are required focusing on in vitro growth of 

these ECFCs and co-culturing them with other cell types mainly mesenchymal stem cells.  
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Endothelial senescence is an important feature of vascular aging and contributes to the 

vascular dysfunction, therefore, SA-β-gal and crystal violet staining can be performed to 

evaluate cellular senescence and proliferation in these cells under hyperoxia and that can be 

compared with mature endothelial cells. 

Western blot analysis for SIRT1 and PGC-1α, from early to late passages, specifically 

enhancement of SIRT1 phosphorylation has been shown in senescent cells. 

Measurement of telomere length under oxidative stress in ECFCs and HUVEC using flow-

FISH can be done to establish if there is a difference between these two cell types. 

Telomerase activity (TERT/TERC subunit) of ECFCs and HUVEC can be measured under 

oxidative stress. 

Another downstream organelle of PGC-1α, the mitochondria, can be assessed under oxidative 

stress by quantifying mitochondrial activity and measurement of ROS production. The 

measurement of extracellular ROS production in an in vitro culture of ECFCs can be 

achieved by the use of compounds such as luminol and lucigenin using techniques such as 

electron spin resonance spectroscopy and liquid scintillation counting. 

Cellular ATP production can be measured under conditions of oxidative stress by ELISA and 

mitochondrial membrane potential can be measured by flow cytometry using JC-1. 
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