A comparative study of compound words in English, Japanese, and Mainland Scandinavian

Makiko Mukai

PhD Thesis
The School of English Literature, Language, and Linguistics
University of Newcastle

Supervisor: Professor Anders Holmberg
Date of Viva: 29th September 2006
Index
Acknowledgement 4-5
Abstract 6-7
Chapter 1 8-16
1.1. Lexicon and Lexicalisation 8-11
1.2. Parallelism of morphology and syntax in Word formation 11-12
1.3. Productivity and recursion in word formation 12-14
1.4. Why is it necessary to have a structure? 14-16

Chapter 2 17-77
2.1. Common features of compound formation 17-33
2.1.1. Constituents of compound words 17-21
2.1.2. Bound morphemes and Compound word formation in the three languages 23-33
2.2. Lexical Integrity in Compound word formation 33-41
2.3. Phonological properties of compound words 41-50
2.3.1. Compound Stress Rule and Compound Accent Rule 41-48
2.3.2. Rendaku in Japanese compound words 48-50
2.4. Counter-argument for Lexical Integrity? 50-68
2.4.1. Plural as first constituent and the Lexicon 50-58
2.4.2. Genitive compound words in the three languages 58-63
2.4.3. Compound words but not lexical? 63-65
2.4.4. Phrasal compounds 65-68
2.5. Copulative (or Dvandva) compound words 68-72
2.6. Productive compounds in the three languages 72-76

Chapter 3 77-149
3.1. Structures for compound words in GB framework 77-109
3.1.1. Transformational account of compound words 77-81
3.1.2. Lexical account of compound words 81-92
3.1.3. Lieber (1992) 92-101
3.1.4. Holmberg’s analysis (1992) 101-109
3.2. Structures for compound words in the Minimalist Programme 110-149
3.2.1. Spencer’s analysis (2003) 116-121
3.2.2. The theory by Roeper, Snyder and Hiramatsu (2002) 121-136
3.2.3. Problems of Roeper, Snyder and Hiramatsu's theory 136-137
3.2.4. Josefsson's (1997) theory 136-149
3.2.4.1. Lexicon 137-142
3.2.4.2. Structure 142-143
3.2.4.3. Non-head of compound words according to Josefsson 143-149

Chapter 4 150-230
4.1. The non-head of a compound word 150-163
4.1.1. The Non-head of compound words in Japanese 150-152
4.1.2. The non-head of English compound words 152-153
4.1.3. Affix-driven vs. base-driven stratification of the lexicon 153-162
4.1.4. Criticism of the Lexicon within the framework of Lexical Phonology 162-163
4.2. Structure 163-177
4.2.1. The head of compounds in Japanese 163-168
4.2.2. Headedness? 168-177
4.3. Structures 177-199
4.3.1. Structures for 'cranberry morphemes' 177-177
4.3.2. Structures for genitive compounds, neoclassical compounds in Scandinavian and English, Complex compounds 177-181
4.3.3. Adjective-Noun/Adjective-Adjective compounds? 181-184
4.3.4. Structure for synthetic compounds 184-193
4.3.5. Recursive compounds 193-199
4.4. Recursion in other languages for Noun-Noun compound words 199-219
4.5. Phrasal compounds 219-225
4.6. Copulative compounds and Dvandva compounds in these languages 225-228
4.7. Weak points in other theories and analyses are solved in my theory 228-229
4.8. Problems in this theory 229-230

Chapter 5 231-233
Reference 234-243
Appendix 1
More tests for the anaphoric island 244-247
Appendix 2
Compound words 248-261
Acknowledgement

This thesis is about compound word formation in Japanese, Mainland Scandinavian languages and English within Minimalist Program. First, I would like to thank my supervisor, Professor Anders Holmberg. Without his support all the way and all of our stimulating discussions, this thesis would have never been born. He made me think that linguistics was much more interesting than I thought. Of course, I would like to pay special thanks to my second supervisor, Dr Maggie Tallerman and some linguists, especially Dr Gunlög Josefsson for her thesis and Professor Heinz Giegerich for their moral support. I would also like to thank Adam Nichols, Lucy Carey and my father for proof-reading this thesis.

Other people I need to thank are my ex-supervisor, Dr Mika Kizu and my ex-lecturer Dr Naomi Cross. Without Mika, I would have never started a Ph.D. in linguistics. Without Naomi, I would have never got the part-time job at University of Newcastle, which helped my finance during the PhD. I also would like to pay special thanks towards, of course, my colleagues in the Linguistics Department at University of Durham for their comments and the useful discussions during seminars, over coffees and lunches, especially Seiki Ayano, Melinda Whong-Barr, Kyoko Otsuki, Heather Marsden, Michelle Sheehan, and Aarti Nayudu.

For native speakers' judgements, I would like to thank Chisaki Fukushima, Tomoka Mukai, Hitoshi Mukai and Keiko Mukai for Japanese; Heather Marsden, Melinda Whong-Barr, Michelle Sheehan, Michael Barr, Stephen Lyon, Claire George, Adam Nichols, Fiona Robinson, Laura Allpport, Simon Quinlan and Matthew Bilnski for English; Anders Holmberg, Gunlög Josefsson and Legolas Svarlsvarr for Scandinavian languages.

Last but not least, I would like to thank my sister, Tomoka and her husband, Fergus, my friends John and Moira Morley, and all my good friends in Durham, especially Stefanie Reissner, Etsuko Yamada, Vincent Lin, Claire George, Simon Quinlan, and my choir-mates, specifically Milja Sprout, Peter Hughes, Fiona Robinson and Adam Nichols for all their moral support, the happy times and their encouragement.
I would like to dedicate this thesis to my parents, Hitoshi and Keiko Mukai. Without their generous financial support, warm encouragement and understanding throughout all my life, I would never have been so happy to start and have completed the thesis. I cannot thank them enough.
Abstract

The aim of this thesis is to propose a structure for compounds, specifically compound nouns in Japanese, English and Mainland Scandinavian within the framework of Chomsky’s Minimalist Program and Bare Phrase Structure (Chomsky 1995). The purpose is to show that words are derived in Narrow Syntax as phrases and that words must have asymmetrical structure, i.e. a head of the word should be determined.

The proposed structure of a compound noun in the languages in question is as follows:

(1) \[
\begin{array}{c}
P(\text{x}) \\
\text{root} \\
P(\text{x}) \\
\text{root} \\
P(\text{x})
\end{array}
\]

Structure (1) is derived with the following assumptions in mind.

1. The place of Morphology within the Minimalist Program is argued to be outside the Lexicon and after the Narrow Syntax. This has led several linguists to argue that a word is derived in the same way as a phrase. Moreover, linear order is redundant in the Narrow Syntax, since the structure determines the word order. As a result, it is not the Right-hand Head Rule proposed by Williams (1981) which determines the head of a compound word but the structure does. The Right-hand Head Rule may have a place in the phonology, though, in stipulating how a word derived in the Narrow Syntax is spelled out. The rule is formulated by Williams to apply in Morphology. In most current minimalist theories morphology is after spell-out. But the head must be determined before spell-out, since it determines the LF as well as determining aspects of the PF.

2. Nothing prevents us applying Merge at the level of the word as well as the phrasal level. As Williams’ (1981) Right-hand Head Rule cannot be used within the Minimalist Program, Collins (2002) definition of head is used for compound words. According to Collins, a head is a category which has one or more unsaturated features. Another stipulation taken from Collins (2002) is that when a lexical item is chosen from the lexical array and introduced to the derivation, the unsaturated features of this lexical item must be satisfied before any new unsaturated lexical items are chosen from the lexical array. The effect of these two assumptions is that when two categories \(\alpha \) and \(\beta \) are merged, only one of them, say \(\alpha \), can have an unsaturated feature (which is not saturated by \(\beta \)), so \(\alpha \) will be the head.

The structure (1) shows the following.

- First, a root without word class features is merged with a Property feature, the content of which is given by the root.

- The Property feature is represented above as \(P(\text{roperty}) (\text{x}) \) where ‘\(\text{x} \)’ represents the unvalued referential index.
There are two ways to check \(P(x) \): one is assigning \(x \) a value, that is an index, and the other is deleting \(x \). Since the \(P(x) \) feature is unsaturated in the sense that it needs a referential index from either D or DP, it is a head, and as such it percolates to the dominating node. Then, another root is merged to form a compound word. As \(P(x) \) is the only unsaturated feature before and/or after the root is merged, it is percolated and it is the head of the whole compound.

The present theory can account for the syntactic and semantic properties of a wide range of compounds, particularly noun-noun compounds in English, Japanese, and Mainland Scandinavian, within a syntactic theory based on minimalist assumptions.
Chapter 1: Parallelism between Morphology and Syntax within a Generative Framework

The main aim of this study is to find a unified structure for compound noun words in English, Japanese and Mainland Scandinavian languages within the Minimalist Program (Chomsky 1995, 2000, 2001). The main focus of this study is underived noun compound words. The reasons for undertaking this research on compounding are as follows: existing research includes many studies of compound words in many languages, but a detailed comparison of different languages has not been conducted. In addition, previous theories and analyses of compound words focus too narrowly on a specific language or a specific type of compound words. In this thesis, on the other hand, I will look at different types of noun compound words, including neo-classical compounds, genitive compounds, phrasal compound words, productive compound words, synthetic compound words, and recursive compound words in Japanese, English and Mainland Scandinavian languages.

This thesis is organised as follows. In Chapter One, I first discuss some characteristics of the lexicon of a language and ways in which a new word is lexicalised. This is followed by a consideration of the parallelism of morphology and syntax within the generative framework. This chapter will be followed by a detailed discussion of word formation in the languages in question in Chapter Two. Chapter Three criticises previously proposed theories of compound words within the Principles and Parameters approach and the Minimalist Program. Chapter Four presents a new, alternative theory. The conclusion of this thesis will be a summary of the characteristics of compound words in the languages discussed and the proposed theory which resolves the problems found in the previously proposed theories.

1.1. Lexicon and Lexicalisation

It is well known that the lexicon of a language consists mainly of morphologically simplex and complex words. Additionally, the lexicon consists of syntactic chunks that have unpredictable properties, the idioms of a language (Jackendoff 1997:161).

Another feature of the lexicon is that it is not a fixed list. One of the main functions of morphology is to expand the fund of lexical items. That is, morphological operations take words (simplex or complex) as their inputs and create more complex words. Most of these words are
existing and they are listed in the lexicon. However, non-existing but possible words can also be used as input for word-formation processes.

The operations that create complex words in English, Japanese and Mainland Scandinavian are affixation and compounding. In addition, conversion, the change of the word class of a word without overt phonological effect, is also used to create new words. Other ways of extending the lexicon include acronyms, clipping, and blending.

According to Bauer (1983), a new word, whether it is simplex or complex, is coined by a speaker or writer on the spur of the moment to cover an immediate need. Different speakers in the same language community can use the same word on different occasions with different meanings. As soon as the speakers using the new word are aware of using a term which they have already heard, it stops being a new or nonce formation. For example, consider a possible English word dunch which was used by a non-native English speaker to cover the concept of a joined meal of lunch and dinner (in analogy with brunch), and a Japanese possible compound word, huru-mori ‘old-forest’ produced by a Japanese translator (in analogy of huru-hon (old-book) ‘second-hand book’). Another type of new word is made up of non-existing words, as mentioned above.

The second stage of a new word is institutionalisation (Bauer 1983, Lipka 2002). In other words, as soon as speakers have accepted the nonce word as a known word, only some of the possible meanings of the forms are used and the meaning must be accepted by speakers in the same language community. For instance, Indian summer is not a summer in India, but it is a period of usually warm and sunny weather during the autumn. The phenomenon of institutionalisation also can happen not only for word formation, but also for metaphor (e.g. fox can be conventionally used for a cunning person).

Many researchers have argued that the final stage of a nonce word is lexicalisation (Bauer 1983, Downing 1977, Booij 2002, Lipka 2002 and many others). The word is said to be lexicalised when it cannot be productively formed anymore. There are different types of lexicalisation; phonological (change of stress patterns and phonotactic change), semantic, morphological, syntactic and mixed lexicalisation. One can see that a new word is lexicalised when it has changed its stress pattern (see Chapter 2) and segmental features, e.g. a sound change affects a morph either only in isolation or only when it appears in combination with other morphs (e.g. Japanese rendaku, see Chapter 2).

1 Lipka (2002) stresses the sociolinguistic aspects of words. In this thesis, Bauer's definition is used.
Many lexicalised forms are semantically opaque. Even though Bauer (1983) states that opacity is not a necessary prerequisite for lexicalisation, one thing which is clear is that a lexicalised compound is a compound whose meaning is stored permanently in the lexicon. Therefore, the meaning does not have to be computed each time the compound is used. Whether a compound becomes lexicalised depends on its frequency in everyday use and its significance for the hearer. The semantic criterion for lexicalisation has been discussed by many researchers, such as Booij (2002).

Morphological change in a new word is another type of lexicalisation. For instance, linking elements in Scandinavian languages (see Chapter 2 for more details) are sometimes added to a stem when that stem is combined with another one (Bauer 1983). Nevertheless, there are not any firm rules for when the linking element is used except the case when the lefthand constituent is branching (see Chapter 3 and Chapter 4 for more discussion). In addition, in English with a large learned vocabulary from different branches of Indo-European languages, there are a number of derivatives which are closely related semantically and possibly etymologically, but which have different roots. Bauer (1983: 54) cites example pairs like eat and edible, legal and loyal, opus and operation, right and rectitude and many others. Another type of morphological lexicalised form can be seen in affixes. Similar to linking elements and roots, affixes can cease to be productive, e.g. -ment (e.g. confinement, enlargement), -th2 (length, warmth). There are some constraints governing which roots these affixes can be added to.

The last type of lexicalisation, Bauer discusses, is syntactic in the sense that words are formed in the syntax (see Chapter 3). For example, when the prefix dis- is added to the verb believe, the resulting word disbelieve does not take an object, unlike its base verb. On the other hand, adding the same prefix to the verb obey does not change the syntactic function of the resulting word (e.g. I disobey my parents). Finally, Bauer argues that new words can be lexicalised with mixed features, including phonological or morphological. For example, the Danish compound word, jord-e-moder (earth-mother) 'midwife' is morphologically lexicalised because of the form with the linking element, but also, semantically lexicalised because the resulting word no longer has anything to do with the meaning of earth.

2 The morphological lexicalisation of affixes has been extensively discussed in the framework of Lexical Phonology (see Chapter 4). However, this is not the main focus of the thesis and so will not be discussed in detail.
The degree of lexicalisation is discussed in Di Sciullo and Williams (1987) from the lexicalist perspective (see below) and by Baker (1988). Baker states that a high proportion of compounds are generated 'on-line' by speakers but many would say that words such as outcast or navy blue are more highly lexicalised than soft fruit while non-compounds like hard fruit or nice man are not lexicalised at all. In other words, the former words have a more permanent storage in the brain than the latter words.

In this thesis, I will assume the theory of the lexicon in Platzack (1993) and Josefsson (1997) which is based on Halle (1973). According to this theory, a list of morphemes and lexicons are separated places and all the lexicalised words are listed, including lexicalised compounds and derived words, but also phrasal idioms, and in general everything that is idiosyncratic and has to be learnt. This means it is possible to say that all compounds, productive as well as lexicalised ones are derived in the syntax, as will be discussed in Chapter 3 and Chapter 4.

1.2. Parallelism of morphology and syntax in Word formation
Throughout the history of the generative tradition two main ideas have developed regarding the issue of how to view the parallelism between words and phrases. One school argues that syntactic principles are responsible for the formation of words. This school is called the non-lexicalist school. By contrast, according to lexicalist school, principles governing the syntactic formation of phrases and the formation of words are separate.

From the non-lexicalist perspective, early works such as Lees (1960) claimed that a compound is formed by transformations from an underlying sentence, the main idea being that material in the underlying sentence was deleted (see Chapter 3). However, as the theory developed, the deletion transformation could not be maintained. One of the reasons was given by Chomsky (1965). He stated that a deletion can eliminate only a dummy element, or a formative explicitly mentioned in the structure index (for example, you in imperatives) (1965: 144-5). Baker (1988) supported Chomsky's argument of deletion by analysing a number of constructions in terms of syntactic head movement (for example, noun incorporation). Baker argues that there is no independent morphological component and that productive word formation takes place in the syntactic component.

In contrast, in the lexicalist school, a famous article by Chomsky "Remarks on Nominalization" (1970) claimed that idiosyncratic information belongs to the lexicon, and that transformations should deal only with regular correspondences between linguistic forms. In his work, Chomsky
PhD Thesis Makiko Mukai

exemplified the English gerundive formation, which has the same meaning as the corresponding verb and is therefore assumed to be formed through a syntactic process. In contrast, however, other kinds of nominalisation with idiosyncratic meaning are not considered part of the syntactic process. Other linguists who followed Chomsky in this tradition were Di Sciullo and Williams (1987). They argued that morphology and syntax should be separated. In this study, as indicated in Section 1.1, the non-lexicalist will be the standpoint that is primarily adopted (see Chapter 2). Therefore all compounding of words is believed to be done in the syntax.

1.3. Productivity and recursion in word formation

As discussed in the above sub-section, this thesis will take the non-lexicalist approach for compound word formation. One reason for this is that in many languages, compound word formation can be productive and recursive, just as phrase formation. Recursion is 'a fundamental property of human language' which makes human beings different from other species of animals (Roepper and Snyder in press). Before continuing this discussion it is important to define the term productive.

Potential measures of productivity in previous research, such as Aronoff (1976), are rather vague. Aronoff first had the idea that an index of productivity for a word formation rule could be obtained by counting the number of actually occurring words that are formed by the rule, and comparing this with the number of words that could potentially be formed by that rule. In order to clarify the definition, Lieber (1992: 3) following Schultink (1961, cited in Lieber 1992) says:

By productivity as a morphological phenomenon we understand the possibility for language users to coin, unintentionally, a number of formations which are in principle uncountable (Lieber 1992: 3).

The main points here are the notions of unintentionality and the ability to coin new words. By unintentionality, Lieber and Schultik mean that the creation of new words can go unnoticed. Speakers of the language are not conscious of using the newly coined words. With unproductive processes, on the other hand, a new word may sometimes be coined but such coinages will always draw attention to themselves and language speakers will find them amusing, odd or even unacceptable.

Plag's (2004) definition of productivity seems to give us a clearer picture. According to this definition, a morphological process is more productive than another if it is more accepted in the
language, because it is constrained by fewer linguistic and non-linguistic factors of the language. Plag (2004) argues that extra-linguistic developments in society often referred to as ‘fashion’ make certain linguistic elements desirable, and therefore, productive to use. A typical example in Japanese is –mitaina ‘like’ which has started to be used by young speakers recently at the end of a sentence. Another constraint is blocking. The existing form blocks the creation of a semantically or phonologically identical derived form. For example, the existing word thief blocks the creation of the word *stealer.

In addition, Plag (2004) argues that the new word must denote something nameable. This is a pragmatic constraint. For example, Rose (1973: 516) gives the following example of an unlikely denominal verb-forming category: “grasp NOUN in the left hand and shake vigorously while standing on the right foot in a 2.5 gallon galvanized pail of corn-meal-mash”. It is not possible to conceptualise this action in the real world, therefore these can be no such verb.

Moreover, there are linguistic constraints, including phonology, morphology, syntax, and semantics. The new word needs to be sensitive to phonological constraints, which can make reference to individual sounds and to syllable structure or stress. For example, nominal –al in English only attaches to verbs that end in a stressed syllable (e.g. arrive → arrival, betray → betrayal, but not enter → *enteral, and promise → *promiseal). Another example of phonological restrictions is that suffixation of verbal –en in English is subject to a segmental restriction: the last segment of the base can be /k/, /t/, /θ/, /s/, /d/, /p/ but must not be /n/, /ŋ/, /l/, or a vowel.

According to a morphological constraint, a certain affix is attached to a certain base. For example, every verb ending in the suffix –ise can be turned into a noun only by adding –ation (e.g. organise → organisation, civilise → civilisation).

Semantic restrictions can also be used on bases and derivatives. For instance, derivatives in –ee (employee) must denote sentient entities, to the effect that amputee cannot refer to an amputated limb (see Barker 1998).

3 Barker (1998) argues that the derivation of nominal –ee is constrained semantically, not syntactically. For example, it is not grammatical to say ‘The doctor amputated John’ whereas it is grammatical to say ‘the doctor amputated John’s leg’. So the amputee does not refer to the syntactic object of its verbal stem. The derivation of nominal –ee is grammatical as long as the derived noun is episodically linked to its verbal stem. In other words, the derived noun has to be a member of participants who participates in the event which is characterized by the verbal stem.
Finally, the most commonly mentioned type of constraint is the one referring to syntactic properties. For example, the adjectival suffix -able normally attaches to verbs, as in readable, but not, for example, to adjectives (e.g. *dirtyable). In summary, Plag's (2004) definition of productivity is used in this thesis.

In many languages, it is possible to coin a compound noun freely and in principle there is no limit to the number of constituents a compound may have, due to the fact that a compound noun freely becomes the base of another compound noun (Namiki 1988). In this thesis, Namiki's (1988) definition of recursivity will be used (Chapter 4). In contrast to what Namiki argues, however, there is a limit for recursivity of compounding (Chapter 4). Another main aim of this thesis is to understand within the framework of the Minimalist Program why some languages do not have recursive compounding. Before understanding the reason for recursivity within the Minimalist Program, it is necessary to consider some important aspects of linguistics in terms of word formation.

1.4. Why is it necessary to have a structure?
The main goal of this thesis is to understand why it is possible for human beings to understand compound word formation. In other words, the aim of the thesis is to explain some properties of word formation within the genetically encoded linguistic structure in the human mind, Universal Grammar (Chomsky 1981). Chomsky claims that every child is born with a Universal Grammar. So with the help from the environment surrounding them, the child develops a language specific grammar. It is evident that since grammars of languages differ considerably, the Universal Grammar structure must be abstract. However, unlike what has been discussed by traditional grammarians within specific languages, the aim of generative linguistics is to find out whether at the appropriate abstract level all grammars share a common structure. Since this common structure is a biological property, grammars are constrained by it.

The basic aim of generative grammar has been to have a balance between explanatory adequacy (to explain how knowledge of the linguistic phenomena arises in the mind of speaker-hearer) and descriptive adequacy (to account for the phenomena of particular languages). In the Principles and Parameters theory, Parameters, such as head-parameters of morphology (Williams 1981, Selkirk 1982), have been proposed (see Chapter 3). For example, a child with Universal Grammar, once exposed to compounds with the head on the left-hand (Romance languages), as opposed to the right-hand (Japanese and Germanic languages), can then set their parameter to the appropriate setting. If so, a single computational system for human language and only limited
lexical variety, such as morphological properties, can be assumed. In addition, Chomsky (2000, 2001, and 2002) suggests that language is a perfect system with an optimal design in the sense that natural language grammars create structures which are designed to interface perfectly with other components of the mind, speech and thought systems.

The idea of perfection has led Chomsky to propose the Minimalist Program (1993, 1995, and 2000). The only conditions are the Bare Output Conditions, eliminating stages such as Deep and Surface Structures, unlike in the Principle and Parameters approach. According to Chomsky, Bare Output Conditions are the conditions imposed from "external systems" at the interface, i.e. PF and LF. A syntactic structure, which is combined together by a series of syntactic computations in the syntax, ends up represented at the two interfaces, LF and the PF. Whereas the LF is input into semantic representation, the PF is input into phonetic representation.

In addition, Chomsky suggests that there should not be any new objects added in the course of computations. In particular, there should be no uninterpretable features at the LF interface, such as X-bar level (Chomsky 1981). Elements interpretable at the PF interface are not interpretable at the LF interface or conversely. So there is no interaction between the two interfaces at all.

In this thesis, words are assumed to be derived in the same way as phrases. This therefore implies that there is no direct relation between the sound and meaning for word formation either, and that a computation should be involved there before a new word is derived. If words are derived by the same rules as phrases, the resulting word should have an asymmetrical structure, i.e. a head of the word should be determined.

With these assumptions in mind, a structure for compound words in English, Japanese and Mainland Scandinavian languages within the generative linguistics framework is proposed. Knowledge of language, including compound words, relies on the structural relationships in the sentences or words rather than on the sequence of words or morphemes. If no structure is proposed, it is not possible to know how we determine which real-world object, event or concept the compound refers to, i.e. its reference: the compound word must have a head.

Within the Principles and Parameters approach, an X-bar structure is constructed of projections of heads selected from the lexicon. The head of a phrase is projected from X⁰ to X' and then X' to XP. On the other hand, within the Minimalist Program, the head (or in Chomsky's (1995)

4 See Chomsky (1993, 1995) for his conceptual and empirical grounds to eliminate the Deep and Surface Structures.
terminology: label (Chomsky 1995: 244)) is constructed from the two constituents α and β, each of which has a set of features. Chomsky argues that the simplest assumption would be that the label is either:

(1)

a. the intersection of α and β.

b. the union of α and β.

c. one or the other of α, β.

He concludes that (1c) is right, because the options (1a) and (1b) cannot be right. He gives the following rationale: The intersection of α and β will generally be irrelevant to output conditions, often null; and the union will be not only irrelevant but ‘contradictory’ if α and β differ in value for some feature, which is the normal case. So the head is either α or β. Either one or the other projects and is the head of the new merged element. In this thesis, the issue of whether the head of a compound can be determined using the assumption (1c), as Chomsky claims (Chapter 4) will be discussed.

In summary, this chapter looked at the ways in which a new word is stored in the lexicon. In addition, the two main schools of thought, the lexicalist and non-lexicalist schools were discussed and it was concluded that the non-lexicalist school of thought will be followed within this thesis. This discussion was followed by the definition of the term productivity in relation to word formation. The next section looked at several reasons why it is necessary to assume that compound words have structure within the generative grammar, and why a word, like a phrase, also needs to have a head. The next chapter presents a comparative study of compound words in English, Japanese and Mainland Scandinavian.
Chapter 2: Compound Word formation

In the last chapter, the definitions of productivity, headedness within the Minimalist Program and lexicalist and non-lexicalist schools were taken into consideration. In this chapter, the main focuses will be on similar and different features of compound word formation observed in the languages in question, with a particular focus on noun-noun compound formation.

2.1. Common features of compound formation
2.1.1. Constituents of compound words
Roeper and Siegel (1978) (supported by Grimshaw 1990) define root compound words as compound words headed by underived nouns. This kind of compound word is different from the compound words headed by deverbal or deadjectival nouns. The head of the former type does not take an argument whereas the latter does.

As part of expanding the lexicon, word formation in English, Japanese and Mainland Scandinavian involves derivation and compounding. The defining criterion for compounding as opposed to derivation is that compounding is the combination of two independent words, while derivation arises when an affix is added to a base (care+ful, un+acceptable). Here, the term ‘base’ can be defined as a morpheme where an affix is added (Katamba 1993). The common feature of derivation and compounding is that they both form a new word from existing words. However, questions should be raised here: do all languages have the same compound word formation and what are the criteria for compounding in these languages?

(2) black+bird [E]
(3) match+box [E]

In Japanese, compounds can be formed in a variety of ways. For example, constituents of compounds can be merely native words or combinations of words of different origin.

(4) Native Compounds [J]
 a. aki + zora ‘autumn sky’
 b. hon + bako ‘book case’
(5) Hybrid Compounds

a. Sino-Japanese + native: dai+dokoro ‘kitchen’
b. Sino-Japanese + foreign: sekiyu+sutoobu ‘oil stove’
c. foreign + Sino-Japanese: taoru+zi ‘towel cloth’
d. native + foreign: ita+tyoko ‘chocolate bar’
e. foreign + native: garasu+mado ‘glass window’
f. foreign + foreign: teeburu+manaa: ‘table manner’

A compound word in English and Japanese is generally formed with two words (Bloomfield 1933: 227 and Bauer 1983: 53 and Kageyama 1999). Here, the term ‘word’ is defined as ‘free morpheme’, in contrast to ‘bound morpheme’. A ‘free morpheme’ is a morpheme that need not be attached to other morphemes. In contrast, a ‘bound morpheme’ is a morpheme that must be joined to other morphemes, such as un-. The definition of compound word can be applied in the above examples, (2) – (5). Both words which form the compound word in the examples are free morphemes, on the face of it, as they need not be attached to other morphemes.

However, adjectival and verbal left-hand segments of compound words show different formations in Japanese. For example, see the following.

(6)

a. the verb odouru ‘to dance’
 odori+ko
dance+child
 ‘dancer’
b. the verb nagareru ‘to flow’
 nagare+boshi
 flow+star
 ‘shooting star’
c. the verb kuru ‘to come’
 ki+hazimeru
 come+start
 ‘start coming’
As the above examples (6a) – (6c) show, the left-hand segment of these compound words is different from the free morpheme of the verb. The verbal left-hand segment is not a free morpheme, but renyookei or 'an infinitive form' (Kageyama 1983) in traditional Japanese grammar, which needs to be merged with another morpheme to occur independently as a verb.

In addition, adjective- compound words show a similar phenomenon in Japanese.

(7)

a. the adjective hurui ‘old’
 huru+hon
 old+book
 ‘second-hand book’

b. the adjective yowai ‘weak’
 yowa+ki
 weak+feeling
 ‘timidness’

c. the adjective kirei-na ‘beautiful’
 kirei+dokoro
 beautiful-place
 ‘Geisha’

d. the adjective sizuka-na ‘quiet’
 sizu+kokoro
 quiet+mind
 ‘mind with which you enjoy the present environment quietly’

The adjectives in (7a)-(7b) are called i-adjectives in traditional Japanese grammar and the last morph -i is deleted in compound words. It has its own inflectional paradigm for tense. When the past tense morpheme -katta is merged, the last morph -i is also deleted. It is assumed, therefore, that the morph is an inflectional suffix. Another type of adjective in Japanese is the na-adjective. To appear in a compound word, the last morph -na is deleted in (7c) and (7d). This type of adjective behaves more similarly to nouns in Japanese in that it does not have its own inflectional paradigm for tense. In general, if an adjective is to occur inside a compound, it cannot be inflected. An uninflected adjective cannot occur as an independent word, and is therefore not a free morpheme.
Scandinavian compound words present a similar phenomenon.

(8) te+ske
 tea+spoon
 'tea spoon'

(9) ord+bog
 word+book
 'dictionary'

(10) fred+s+konference
 peace+LINK+conference
 'peace conference'

(11) jul+e+gave
 Christmase+LINK+present
 'Christmas present'

(12) kyrk+torn
 church+ø+ tower

The examples (8) – (9) are similar to English and Japanese compound words in terms of category levels of the constituents. They are free morphemes. In contrast, the examples (10) – (12) show that the left-hand and right-hand constituents of the compounds are different. The left-hand constituent of the compound word has either a linking morpheme (example (10)), or vowel morpheme (example (11)). In the examples (10) and (11), according to Josefsson (1997), Holmberg (1992) and Mellenius (1997), the -s in the Mainland Scandinavian can be called a linking element or a liaison form and it is a morpheme without independent meaning. There are no firm rules for when the linking element is used, but it is found in the following cases: firstly, according to Holmberg (1992), requiring a linking morpheme in this way is an idiosyncratic lexical property of some nouns, subject to dialectal and idiolectal variation. Secondly, according to Delsing (1993, cited in Josefsson 1997), stems corresponding to old words are more likely to have a linking element when used in the left-hand position of compounds. Examples are the following.

5 The symbol ø shows that the last morph of the word is deleted when it is merged with another word (see below).
Another type of compound word in Scandinavian languages is shown in case (12), seen in Swedish but not in Danish or Norwegian. In Swedish, there are two types of nouns, strong and weak nouns. According to Josefsson (1997), weak nouns are defined as nouns ending in \(-a/-e\) in the nominative singular, but where the final \(-a/-e\) is absent in the left-hand segment position of a compound or derivation. The following pair illustrates this case.

(14) kyrka kyrk + torn, kyrk + lig
 church church + tower, church + LIG
 *kyrka + torn, *kyrka + lig
 hare har + steke, *hare + steke
 hare + roast

Josefsson states that the \(-a/-e\) weak nouns are inflectional, since the \(-a/-e\) is not allowed in the left-hand position of compounds and derivations, as shown above. If the \(-a/-e\) is inflectional this is expected, since inflectional features generally are allowed inside words. Other linguists such as Teleman (1969, cited in Josefsson 1997) state that the \(-a/-e\) is part of the stem. On the other hand, (Holmberg (1992) and Dahlstedt (1965, cited in Holmberg 1992) argue that the \(-a/-e\) are nominal word markers that encode the feature number.

Thus, in contrast to English, compound words in Scandinavian languages and Japanese are sometimes constituted by bound and free morphemes and elsewhere, two free morphemes.

2.1.2. Bound morphemes and Compound word formation in the three languages

The following examples are 'cranberry' words in English.

(15) cran+berry

(16) huckle+berry
If one looks at the surface of these words, they seem to be analysable as compound words, containing the word *berry* as head, preceded by a modifier. The element that precedes *berry* is a noun. In *elderberry*, the noun *elder* refers to the elder tree that produces elderberries; *elder* can be an independent word. Thus, it is a compound.

Nevertheless, it is difficult to analyze *huckleberry* and *cranberry*, since there is no *huckle* or *cran* shrub. The morphs, *huckle* or *cran* only appear in these words. According to Anderson (1990), it is not necessary to assume that *cran* or *huckle* is listed separately as a bound morpheme in the lexicon. It is only necessary to assume that there is a lexical entry for the word *cranberry* and it is a non-canonical example of compound word. Other words containing cranberry morphemes in English include *gruntle* in *disgruntle*, *couth* in *uncouth*, *ept* in *inept*, *shevel* in *dishevel*, *chalant* in *nonchalant*, and *kempt* in *unkempt*.

In Japanese, too, there are so-called cranberry morphemes. The basic unit of word formation is the single morpheme, either native or Sino-Japanese. In the case of Sino-Japanese morphemes, the smallest building block is represented by single Chinese characters like *kuu* and *koo*, which in turn are combined to form a word like *kuu-koo* ‘airport’. Examples of ‘cranberry morphemes’ would be the following. Bolded font identifies the ‘cranberry morphemes’.

(17) ton-bo
 dragon-fly+dragon-fly
 ‘dragon-fly’

(18) mi-so
 flavour-noisy
 ‘soy-bean-paste’

(19) na-su
 aubergine-child
 ‘aubergine’

(20) kai-chuu
 roundworm-insect
 ‘roundworm’

6 The symbol - shows the boundary between two morphemes, in contrast to two words.
In Scandinavian languages, too, cranberry morphemes are abundant (Josefsson: personal communication)⁷,⁸.

(21) körs+bär
 +berry
 ‘cherry’

(22) vård+tecken
 guard⁹+symbol
 ‘symbol’

(23) hövit+s+man
 head¹⁰+LINK+man
 ‘leader, captain’

(24) ba+bord
 back+board
 ‘starboard’

In Chapter 3, I will argue against Anderson’s (1990) assumption that a cranberry morpheme is a lexical entry in the lexicon (see 3.2.4.1 for more discussion).

Another argument against the claim that compounding merges two free morphemes comes from examples of neoclassical compounding in English (Bauer 1983, Plag 2003). Bauer (1983) and Plag (2003) argue that new words can be formed by applying rules to smaller units than words. Bauer also claims the formation of neoclassical compounds is a counter-argument for Aronoff’s word-based morphology (1976: 21). That is to say, a new word is not always formed by applying

⁷ I would like to thank Dr. Gunlög Josefsson for the examples in Swedish.

⁸ There are some other examples, according to Josefsson. They are be-, hisk-, -on, and some others. Be- and -on do appear in several words, though, such as bedröva ‘distress’, befrynda ‘find oneself’, begynna ‘begin’, behaga ‘please’, bekymra ‘worry’, belamra ‘cluttered’ and betyga ‘mean’. -On in hallon ‘raspberry’ lingon ‘lingonberry’, pärn ‘pear’, and plommon ‘plum’.

⁹ I would like to thank Dr. Gunlög Josefsson for her comment on this morpheme. According to her, this morpheme is a cranberry morpheme, so the meaning is opaque to everyone except to specialists in etymology.

¹⁰ I would like to thank Gunlög Josefsson for her comment on this morpheme. This morpheme is a cranberry morpheme and it does not have a meaning associated with it. Etymologically, however, the morpheme is related to the word huvud ‘head’.
a regular rule to a single already-existing word. The examples are morphemes, shown in the table below.

Table 1. Neoclassical compounds in English (Plag 2003: 156)

<table>
<thead>
<tr>
<th>Element</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>astro-</td>
<td>'space'</td>
<td>astrophysics, astrology</td>
</tr>
<tr>
<td>bio-</td>
<td>'life'</td>
<td>biodegradable, biocracy</td>
</tr>
<tr>
<td>biblio-</td>
<td>'book'</td>
<td>bibliography, bibliotherapy</td>
</tr>
<tr>
<td>electro-</td>
<td>'electricity'</td>
<td>electrocardiography, electrography</td>
</tr>
<tr>
<td>geo-</td>
<td>'earth'</td>
<td>geographic, geology</td>
</tr>
<tr>
<td>hydro-</td>
<td>'water'</td>
<td>hydroelectric, hydrology</td>
</tr>
<tr>
<td>morpho-</td>
<td>'figure'</td>
<td>morphology, morphogenesis</td>
</tr>
<tr>
<td>philo-</td>
<td>'love'</td>
<td>philotheist, philogastric</td>
</tr>
<tr>
<td>retro-</td>
<td>'backwards'</td>
<td>Retroflex, retrodesign</td>
</tr>
<tr>
<td>tele-</td>
<td>'distant'</td>
<td>television, telepathy</td>
</tr>
<tr>
<td>theo-</td>
<td>'god'</td>
<td>theocratic, theology</td>
</tr>
<tr>
<td>-cide</td>
<td>'murder'</td>
<td>suicide, genocide</td>
</tr>
<tr>
<td>-cracy</td>
<td>'rule'</td>
<td>bureaucracy, democracy</td>
</tr>
<tr>
<td>-graphy</td>
<td>'write'</td>
<td>sonography, bibliography</td>
</tr>
<tr>
<td>-itis</td>
<td>'disease'</td>
<td>laryngitis, lazyitis</td>
</tr>
<tr>
<td>-logy</td>
<td>'science of'</td>
<td>astrology, neurology</td>
</tr>
<tr>
<td>-morph</td>
<td>'figure'</td>
<td>anthropomorph, polymorph</td>
</tr>
<tr>
<td>-phile</td>
<td>'love'</td>
<td>anglophile, bibliophile</td>
</tr>
<tr>
<td>-phobe</td>
<td>'fear'</td>
<td>anglophobe, bibliophile</td>
</tr>
<tr>
<td>-scope</td>
<td>'look at'</td>
<td>laryngoscope, telescope</td>
</tr>
</tbody>
</table>

The elements are borrowed from Greek or Latin and educated speakers of English know that these elements originally had their own individual meaning. These are often called 'neoclassical elements' (Plag 2003: 74). Although there is a claim that elements in neoclassical elements are affixes (Marchand 1969, Allen 1978, Siegel 1974 and Lieber 1980, Williams 1981), in this thesis, the claim that they are 'neoclassical elements' and not affixes is assumed.
Following Scalise (1984) and Plag (2003), I argue that these elements cannot be considered affixes. They sometimes can be the second element of a word, as in *franco-phile*, but they can also be the first element as *phil-anthropist*. A true affix is not this free; if it occurs to the left it is a prefix, whereas if it occurs to the right, it is a suffix. Furthermore, the items in question can be separated. For example, it is possible to say the following.

(25) It does not matter if they are pro- or anti-Soviet (cf. Scalise 1984: 75).

However, with 'true' affixes, this is not possible to say.

(26) *I do not know if he should be dis- or en-couraged (Scalise 1984: 75).

In addition, the items in question can sometimes combine quite freely with each other as in the followings.

(27) An Anglo-Soviet production

Again, this is not the case with 'true' affixes.

Moreover, Plag (2003) convincingly argues that neoclassical elements are not affixes. According to him, an affix can combine with a bound root (not an affix and not a neoclassical morpheme) (cf. e.g. *bapt-ism, prob-able* which are not neoclassical compounds, but bound-root + affix) but cannot combine with another affix to form a new word (e.g. *re-ism, dis-ism, ism-able*). Moreover, a bound root can take an affix (cf. e.g. *bapt-ism, prob-able* which are not neoclassical compounds, but bound-root + affix), but cannot combine with another bound root (e.g. *bapt-prob*). On the other hand, neoclassical elements can combine either with bound roots (e.g. glaciology, scientology), with words (lazyitis, hydro-electric, morpho-syntax), or with another neoclassical element (hydrology, morphology) to make up a new word.

According to Bauer (1998b), neoclassical compound words show similar semantic behaviour to that of other types of compounds. As Allen (1978) states, compounds are subject to the ISA condition. This condition implies that N1+N2 is a kind of N2. For instance, *houseboat* is a hyponym of boat. In neoclassical compounds, the semantic relationship between the two

11 However, it is not possible to combine dialecto and -biolo. Thus, this kind of combination is limited.
elements shows that of the modifier and the modified. For instance, *hydro-electric* is a hyponym of electricity; *glaciology* is a hyponym of *-logy* which means ‘study’ in Greek. In contrast, a derivation such as *kind-ness* is not a hyponym of *-ness* or *foundation* is not that of *-ation*.

Another similarity between neoclassical compounds and compounds is that neoclassical compounds have a semantic value or density more similar to that of lexemes than to derivatives. Allen’s (1978) Variable R Condition “predicts that the complete semantic content of the first constituent element may fill any one of the available feature slots in the feature hierarchy of the second constituent element, as long as the feature slot to be filled corresponds to one of the features of the filler” (Allen 1978: 93). For example, the compound *fire-man* has a range of possible meanings, such as *man who worships fire, man who walks on fire, man who sets fire, man who puts out fires* and so on, although it has a conventional meaning (Scalise 1984: 91). This is also true in neoclassical compounding. Bauer gives the following examples.

(28)

<table>
<thead>
<tr>
<th>a. geology</th>
<th>study of the earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. neurogilia</td>
<td>glue that sticks the nerves together</td>
</tr>
<tr>
<td>c. photograph</td>
<td>drawing made by light</td>
</tr>
<tr>
<td>d. phytochrome</td>
<td>colour in plants</td>
</tr>
</tbody>
</table>

Bauer 1998b: 405

Finally, if the internal constituents of words such as *franco-phile* are labelled as prefix and suffix, respectively, most morphological theories would have problems in deriving the external label adjective. As a result, a structure of this type behaves more like a compound than like a derived word. This can be seen, for example, in cases where an *o* appears in the compounds in (28) as well as in combinations in which the second element is one of the items in question, and in particular, one with the strata feature of [+Greek]. Typical examples are *music +logy → musicology*, *dialect + logy → dialectology*. Scalise (1984) states that the problem raised here can be easily resolved if we consider the items in question to be ‘stems’ rather than affixes. For example, it is not necessary to identify that the item such as *phile* is a prefix or suffix. If we
consider all of the morphemes in neoclassical compounding as stems, not affixes, we do not have the above problems mentioned12.

Interestingly, Plag (2003) has found some phonological generalisations for linking elements inside neoclassical compound words in English. For example, he claims that if there is already a vowel in the final position of the first combining form or in the initial position of the final combining form, the linking element does not appear. Typical examples are tele-scope, laryngoscope and polymorph. In contrast, there is a linking morpheme when the initial combining form ends with a consonant and the final combining form begins with one. Gastronomy and gastrography are two examples and the alternate of gastro is gastr-. With the combining form, gastr-, there is no linking morpheme, e.g. gastritis. However, the generalisation does not work for all combining forms. This is the case, because there are no alternate forms of bio- and geo- (*bi-, *ge-). Thus, Plag concludes that the status of the linking element is not the same in all neoclassical compounding. The phenomenon of overt linking element is not found in other types of English compounding apart from genitive compounds (see 2.4.2 for more discussion).

In general, a characteristic of neoclassical compounding which is different from other compounding is its phonological aspect. Plag (2003) argues that the phonological properties of neoclassical compounds are not the same as those of other compound words; consider the following examples.

12 Thus, the claim that compound words consist of two free morphemes is not true in this case.
The examples in the left-hand column do not show the usual leftward stress pattern, but have their main stress on the right-hand member of the compound. In the column on the right, the first elements have stress, just like compounds in general. This phenomenon happens when the second element is -logy, -cide, -scope, -phobe, -phile, and -graphy.
In Mainland Scandinavian, too, there are a number of neoclassical compound words. The examples are very similar to those in English.

Table 3. Neoclassical compounds in Danish/Norwegian/Swedish

<table>
<thead>
<tr>
<th>Element</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>astro-</td>
<td>'space'</td>
<td>astrofysisk, astrologi</td>
</tr>
<tr>
<td>bio-</td>
<td>'life'</td>
<td>biografi, biochemi</td>
</tr>
<tr>
<td>biblio-</td>
<td>'book'</td>
<td>bibliografi, biblioterapi</td>
</tr>
<tr>
<td>elektro-</td>
<td>'electricity'</td>
<td>elektrocardiografi, elektroografi</td>
</tr>
<tr>
<td>geo-</td>
<td>'earth'</td>
<td>geografi, geologi</td>
</tr>
<tr>
<td>hydro-</td>
<td>'water'</td>
<td>hydroelektrisk hydrologi</td>
</tr>
<tr>
<td>morfo-</td>
<td>'figure'</td>
<td>morfologi, morfogenesis</td>
</tr>
<tr>
<td>filo-</td>
<td>'love'</td>
<td>filoteist, filogastrisk</td>
</tr>
<tr>
<td>retro-</td>
<td>'backwards'</td>
<td>retroflex, retrodesign</td>
</tr>
<tr>
<td>tele-</td>
<td>'distant'</td>
<td>television, telepati</td>
</tr>
<tr>
<td>teo-</td>
<td>'god'</td>
<td>teokratisk, teologi</td>
</tr>
<tr>
<td>*-cide</td>
<td>'murder'</td>
<td>N/A</td>
</tr>
<tr>
<td>-krati</td>
<td>'rule'</td>
<td>bureaukrati, demokrati</td>
</tr>
<tr>
<td>-grafi</td>
<td>'write'</td>
<td>sonografi, bibliografi</td>
</tr>
<tr>
<td>-itis</td>
<td>'disease'</td>
<td>laryngitis, meningitis</td>
</tr>
<tr>
<td>-logi</td>
<td>'science of'</td>
<td>astrologi, neurologi</td>
</tr>
<tr>
<td>-morph</td>
<td>'figure'</td>
<td>anthropomorph, polymorph</td>
</tr>
<tr>
<td>-fil</td>
<td>'love'</td>
<td>francofil</td>
</tr>
<tr>
<td>-skop</td>
<td>'look at'</td>
<td>laryngoskop, teleskop</td>
</tr>
</tbody>
</table>

Apart from few neoclassical elements, like cide and phobe, Scandinavian languages show similar elements as found in English. As they are almost the same as the English ones, it is not necessary to test whether they are different from derivational affixes.

Similarly, in Japanese compound words there is a type of compound word which can be considered a neoclassical compound. Both elements in these compounds are bound morphemes. As in English, they are considered compounds in Japanese (Kageyama 1983, Tsujimura 1996). In the case of Sino-Japanese morphemes, the smallest building block is represented by single
Chinese characters like kuu and koo, which in turn are combined to form two-character words like kuu-koo 'airport'.

(29)

a. min-zoku to ka-zoku
 people-family and house-family
 'the nation and family'
b. *min-to ka-zoku
 people and house-family

(30)

a. koku-doo to ho-doo
 country-road and walk-road
 'national road and pavement'
b. *koku- to ho-doo
 country- and walk-road

(31)

a. moku-roku to ki-roku
 'eye-record and write-record
 'list and written record'
b. *moku- to ki-roku

The grammatical examples, (a), show that the two-Chinese-character words stand independently, whereas the (b) examples cannot. Therefore, this type of word formation is similar to English neoclassical compounds in that we are not dealing with the formation of words from other words, but the formation words from morphemes smaller than words.

Moreover, they are similar to English neoclassical compounds, as both elements of the compound are not affixes. They can appear as the first and second element freely (see below), like morphemes in English neoclassical compounds can. Compound words made up of Sino-Japanese words are considered neoclassical compound words in this thesis (see also Mukai 2004). The English neoclassical compounds are called neoclassical compounds, as they used to be compound words in their original languages, such as Greek and Latin. In Japanese, too, the
neoclassical compound-type compounds used to be compound words in their original language, i.e. Chinese.

(32) u -ki
 rain-season

(33) ki -setsu
 season-season
 'season'

(34) setsu-bun
 season-division
 'the day before the spring day'

(35) ki -setsu
 season-season
 'season'

(36) hi -kki
 pen-record
 'writing by pen'

(37) ki -roku
 record-record
 'record'

The second elements of the examples (32), (34), and (36) are the same as the first elements in (33), (35) and (37), respectively. Thus, in both English and Japanese, the contrast between derivation and compounding is clearly seen in the aspect of neoclassical compounding.

Another similarity between neoclassical compounds and compounds in Japanese is semantic, as observed in English. It is possible to see that the above examples are subject to Allen’s Variable R condition. For example, hi-kki is a hyponym of ki ‘writing’ (a form of writing by pen) and u-ki is a rainy season, so a hyponym of season. The other examples show equal relationships between
the two, namely, that of dvandva compounds (see 2.4 for further discussion of dvandva compounds).

As discussed above, in English an affix can combine with a bound root. In Japanese, when a derivational affix (e.g. oo- 'big', ko- 'small') is combined with a bound root, its pronunciation changes to that of Chinese and thus, becomes like a neoclassical element (e.g. dai-gaku (big-study) 'university', shoo-kan (small-officer) 'I'). Further examples are given below in Table 4. According to Tsujimura (1996), bound elements like oo/dai- 'big', ko/shoo- 'small', hi- 'non', hu- 'anti-', and zen- 'all' are affixes.

Table 4. Japanese neoclassical compounds

<table>
<thead>
<tr>
<th>Affix</th>
<th>An affix with a stem</th>
<th>An affix with a neoclassical element</th>
</tr>
</thead>
<tbody>
<tr>
<td>oo-</td>
<td>a. oo-daiko 'big-drum'</td>
<td>a. dai-gaku (big-study) 'university'</td>
</tr>
<tr>
<td></td>
<td>b. oo-ame 'heavy rain'</td>
<td>b. tai-ka (big-fire) 'conflagration'</td>
</tr>
<tr>
<td></td>
<td>c. oo-yuki 'heavy snow'</td>
<td>c. tai-ga (big-river) 'large river'</td>
</tr>
<tr>
<td>ko-</td>
<td>a. ko-guma small-bear</td>
<td>a. shoo-kan (small-officer) to call oneself an officer</td>
</tr>
<tr>
<td></td>
<td>'little bear'</td>
<td>b. shoo-sei (small-student) 'me' (used by a male speaker to be modest)</td>
</tr>
<tr>
<td></td>
<td>b. ko-tori 'small bird'</td>
<td>c. shoo-koku (small-country) 'minor state'</td>
</tr>
</tbody>
</table>

Therefore, the 'affix' is more like a bound root, resulting in a neoclassical compound.

In contrast, many 'affixes' in Japanese cannot be combined with each other.

Table 5. Affixes in Japanese

<table>
<thead>
<tr>
<th>Affix</th>
<th>Combined with another affix</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu-</td>
<td>*hu-hi 'anti-non'</td>
</tr>
<tr>
<td></td>
<td>*hu-ko 'anti-small'</td>
</tr>
<tr>
<td></td>
<td>*hi-oo 'anti-big'</td>
</tr>
<tr>
<td>doo-</td>
<td>*doo-zen 'the same-all'</td>
</tr>
</tbody>
</table>
In this section, some characteristics of compound words in Japanese, English and Mainland Scandinavian languages have been discussed. As the comparison between compound words in the languages showed, all of the languages have compound words consisting of free morphemes. However, there are also compounds in Japanese and Mainland Scandinavian languages that have bound morphemes as constituents. In addition, Scandinavian languages provided a linking element. Thus, the criterion of compounding in contrast to derivation is not always that compound words are constituted of what looks like two free morphemes (I will discuss more in Chapter 4) whereas derivation is with affix attached to a base. This argument is supported when we look at 'cranberry morphemes' in English and 'neoclassical compounds' in English, Scandinavian languages and Japanese. Secondly, according to Anderson (1990) 'cranberry morphemes' are listed in the lexicon, not as derivational morphemes, but as parts of compounds (see more discussion on this in 3.2.4.1).

The next section will focus on Lexical Integrity in compound formation in English and Japanese. The main concern will be to discuss whether all compound words in the languages are formed in the lexicon, not the syntax.

2.2. Lexical Integrity in Compound word formation

Are all compounds different from their corresponding phrases? According to Di Sciullo and Williams (1987), there are three ways in which words can be distinguished from phrases. Firstly, a word is a morphological object, constructed out of morphological atoms, i.e. morphemes, by processes of affixation and compounding.

Secondly, according to Di Sciullo and Williams (1987), another criterion for words is that of listed objects. According to Lexical Integrity, no parts of a word can be separated, moved, or deleted by rules of syntax. To describe this idea, Di Sciullo and Williams (1987) coin the term listeme. Listemes can be defined as the linguistic expressions memorised and stored by speakers. However, they also admit that just because an expression is listed does not mean that it is a word. There are morphological objects which are formed by a perfectly regular and exceptionless process whose products are not therefore listed. For example, they illustrate the derivational deadjectival nouns formed by -ness affixation in English. This affixation is regular and said to be productive. On the other hand, some objects, such as idioms, are listed (Jackendoff 1997), yet, they are not words. They are items governed by syntax. For example, in the Japanese idiom neko o kaburu (cat ACC wear) 'pretend to be shy', there is accusative case, so it is a phrase, yet the
lexical elements *neko* and *o* cannot be moved from their original positions, because the idiom has Lexical Integrity.

Thirdly, words are syntactic atoms, i.e. the indivisible building blocks of syntax: Di Sciullo and Williams' Lexical Integrity (1987). According to Lexical Integrity, morphology and syntax are entirely separate domains of inquiry.

The following examples show that pronominal reference is not allowed in words, i.e. words are anaphoric islands\(^\text{13}\).

\begin{align*}
(38) & \quad \text{blackbird 'turdus merula'} \\
& \Rightarrow *\text{I wanted to see a blackbird and a blue one.} \\

(39) & \quad \text{black bird 'a bird which is black'} \\
& \Rightarrow \text{I wanted to see a black bird and a blue one.} \\

(40) & \quad \text{car salesman} \\
& \Rightarrow *\text{John went to see a car; salesman and he did not like any of them.} \\

(41) & \quad \text{a salesman who sells cars} \\
& \Rightarrow \text{John went to see a salesman who sells cars, and he did not like any of them.} \\
\end{align*}

Examples (38) and (40) are ungrammatical whereas their corresponding phrase examples (39) and (41) are grammatical. Thus, *blackbird* and *car salesman* are compound words, whereas *black bird* and *a salesman who sells cars* are phrases\(^\text{14}\).

Let us see more examples of compound words.

\begin{align*}
(42) & \quad \text{car salesman} \\
& \Rightarrow *[\text{big car}] \text{ salesman} \\
\end{align*}

\footnotesize{13 I would like to thank five English native speakers (four British and one American), three Japanese native speakers and one Swedish native speaker for their judgements on the data in each language.}

\footnotesize{14 See Appendix 1 for more example sentences.}
Words are built on a base of words and bound morphemes, not on phrases. This constraint is called the No Phrase Constraint (developed by Allen 1978; Roeper and Siegel 1978). On the other hand, the No Phrase Constraint is violated in the following examples.

(44) wine glass
\[\rightarrow \text{[red wine] glass}\]
\[\rightarrow \text{red [wine glass]}\]

Red wine glass can mean both a glass for red wine and wine glass which is red. Note that *red wine* has end-stress whereas *wine glass* has forestress (see more on Compound Stress Rule in Section 2.3.1). According to the Compound Stress Rule, *red wine* is not a compound whereas *wine glass* is a compound. However, the string *very red wine* is not grammatical. In addition, *red wine and white one* is not possible, like the example (38). So *red wine* is more similar to a compound than a phrase. Therefore, the distinction between phrases and compounds is not clear-cut in this case.

In Japanese, compound words are formed in the lexicon, therefore a similar test to that used for English compound words is applicable for assessing Japanese compound words also. It is not possible to modify one part of a compound word, as the following examples show.

(45) a. hansamu na [otoko+onna]
 handsome-ADJ [man+female]
 ‘a handsome manly female’

b. *[hansamu na otoko] onna]
 *[handsome ADJ man] female]

(46) a. ookina [kuruma hanbaiin]
 big [car salesman]
 ‘a big car salesman’

b. *[ookina kuruma] hanbaiin
big car sales-man

The adjective *hansamu-na* cannot modify the noun *otoko* in example (45). Similarly, in example (46), the noun *kuruma* cannot be modified by the adjective noun.

Moreover, in Japanese, too, pronominal reference is not allowed in words, as the following examples show. Note that in example (47), the initial sounds of the second constituents, *sara* 'tray' are voiced when they are combined with another word. This is a clear indication that the construction is a compound (see 2.3.2).

(47) **hai+zara** 'ash+tray'

a. *otite-iru hai; o hirotte sono sara ni ire-nasai.*
fallen-is ash ACC pick-and ash tray in put-IMP.
‘Gather the ashes on the floor and put them in the ashtray.

b. *otite-iru hai; o hirotte sore; -zara ni ire-nasai.*
fallen-is ash ACC pick-and it tray in put-IMP.

(48) **yama+nobori**
mountain+climb
‘mountain climbing’

a. *yama;+nobori no suki na hito wa soko; de sinde mo honmoo da to omotteiru.*
mountain; climb GEN like MOD person TOP there; at die too desire COP COMP thinking
‘People who like mountain; climbing wish to die there;’.

b. yama; ga noboru no ga suki na hito wa soko; de sinde mo honmoo da to omotteiru.
mountain; NOM climb GEN like MOD person TOP there at die too desire COP COMP thinking
‘People who like mountain; climbing wish to die there;’.
Examples (47) and (48) show that part of a word cannot hold an anaphoric relationship with another item elsewhere.

In contrast, the following examples show that a part of a word can sometimes hold an anaphoric relationship with another item elsewhere. Note that the initial sound of the second constituent, *hako* 'box' is voiced when it is combined with another word.

(49) match+bako ‘match+box’

a. table no ue ni match\textsubscript{i} no hako o mitsukete sono\textsubscript{i} naka no
 table GEN on DAT match\textsubscript{i} GEN box ACC found after that\textsubscript{i} inside GEN
 ippon ni hi o tuketa.
 one DAT fire ACC lit
 ‘When I found a box of matches\textsubscript{i} on the table I lit one of them\textsubscript{i}’.

b. table no ue ni match\textsubscript{i}+bako o mitsukete sono\textsubscript{i} naka no i-ppon
 table GEN on DAT match box ACC found that\textsubscript{i} inside GEN one-CL
 ni hi o tuketa.
 DAT fire ACC lit
 ‘When I found a match\textsubscript{i}box on the table I lit one of them\textsubscript{i}’.

The grammaticality of the sentence (b) might be because the ‘anaphor’ in this case is not a definite pronoun but an indefinite null noun, with only the classifier pronounced. There are some examples which seem to support this argument.

(50) kasi+bako
 snack+box
 ‘box for snacks’

a. kasi\textsubscript{i}+bako o mitsukete sono\textsubscript{i} naka no i-kko o tabeta.
 snack\textsubscript{i}+box ACC found-and that\textsubscript{i} inside GEN one-CL ACC ate
 ‘I found a snack-box and ate one of them’.

b. kasi\textsubscript{i}+bako o mitsukete sore\textsubscript{i} o tabeta.
snack;+box ACC found-and that; ACC ate
'I found a snack-box and ate it'.

The sentence (50b) is grammatical but *sore* does not necessarily refer to particular snack, but it can be any snack inside the box.

(51) inu+goya
dog+house
‘kennel’

a. inu;+goya no naka o mitara i-ppiki haitteita.
dog;+house GEN inside ACC looked-and one-CL entered
‘When I looked inside the kennel, one dog was there’.
b. *inu;+goya no naka o mitara sore; ga haitteita.
dog;+house GEN inside ACC looked-and that; NOM entered
‘When I looked inside the kennel, it was there’.

(52) yoohuku+dansu
clothes+wardrobe
‘wardrobe’

a. yoohuku;+dansu o akete i-cchaku o toridasita.
clothes;+wardrobe ACC open-and one-CL ACC took-out
‘I opened the wardrobe and took one piece of clothing out’.
b. *yoohuku;+dansu o akete sore; o toridasita.
clothes;+wardrobe ACC open-and that; ACC took-out
‘I opened the wardrobe and took one piece of clothing out’.

One finds a similar effect with *one* in English. These examples in Japanese are problems for the Lexicalist school of compound words. This is, however, not unexpected in the proposed theory presented in Chapter 4. Another case which shows this is that of phrasal compounds, such as *a pipe-and-slipper husband*. These will be discussed in Section 2.4.4.
Since no syntactic operation such as focusing or topicalising can take place inside a word, Kageyama (1983, 1993, 1999) argues that elements, such as sae ‘even’, mo ‘also’ and dake ‘only’, cannot be inside compound words. These elements have the function of focusing or topicalising a phrase.

(53)

a. aki+zora mo
 autumn-sky also
 ‘autumn sky, too’

b. *aki mo zora
 autumn also sky

(54)

a. dai+dokoro dake
 table+place only
 ‘only kitchen’

b. *dai dake dokoro
 table only place

According to this test, these compounds are words not phrases since no syntactic operation like focusing or topicalisation should occur inside a word.

Compound words are different from Noun Phrases or Determiner Phrases in Scandinavian languages, too.

(55) te+ske
 ‘tea+spoon’

a. *Når jeg fandt en te;+ske i York kunne jeg drikke den; efterhånd.
 When I found a tea;+spoon in York could I drink it; later.
 ’When I found a good teaspoon in York I drank it later’.

b. ske for teen
 Når jeg fandt en ske for teen; i York, kunne jeg drikke den; efterhånd.
 When I found a spoon for tea; the in York, could I drink it; afterwards
 ’When I found a spoon for the tea in York I could drink it afterwards’.
(56) fred+s+konference
 peace+LINK+conference
 ‘peace conference’

a. Der holdtes en fred+s konference i Danmark. *Mange mennesker
talte om den;.
talked about it;.
‘There was a peace; conference in Denmark. *Many people talked about it;.’

b. konference til fred
Der holdtes en konference til fred; i Danmark. Mange mennesker
There held a conference for peace; in Denmark. Many people
talte om den;.
talked about it;.
‘There was a conference about peace in Denmark. Many people talked about it’.

In many cases, compounds are more similar to words than to phrases. As discussed in Chapter 1,
lexicalisation is the final stage which a new word goes through. Usually, the meaning of the
lexicalised word becomes non-compositional or even totally idiosyncratic. Similarly, compounds
can have meanings that are related to, but not fully deduced from those of their components.
For instance, the meaning of the Japanese compound word, cha+wan ‘rice bowl’ which
originally means ‘tea-bowl’ cannot be deduced from the meaning of its constituents anymore.

Other examples are the following;

(57) te+brev (tea+letter) → teabag, dag+hjem (day+house) → nursery [D]

(58) hime+yuri (princess+lily) → star lily [J]

(59) dai+dokoro (table+place) → kitchen [J]

(60) tsuki+mi+soo (moon+look+grass) → evening primrose [J]

(61) ge+kkei (month+already) → menstruation [J]
However, as discussed in Chapter 1, semantic opaqueness is not a necessary condition for lexicalisation. There are a number of compound words in the languages in question whose meaning can be deduced from that of their components, even though they are lexicalised. For example, the lexicalised meaning of *tea pot*, *match box* or *kitchen equipment* can be deduced from that of its constituents. *Tea pot* is a pot for tea; *match box* is a box which contains matches and *kitchen equipment* is equipment used in a kitchen. Also, the meaning of a compound can be deduced from that of its components in not-fully-lexicalised compounds and the relation between their constituents has to be computable for novel ones (Clark 1993). Examples of this kind of compound will be discussed later in 2.5.

In this section, it has been argued that compounds are more similar to words than phrases according to Di Sciullo and Williams’ (1987) Lexical Integrity. However, there are some examples which indicate that Lexical Integrity is not as clear-cut as Di Sciullo and Williams claim. The lexicality of compound words is also considered in terms of the semantic idiosyncrasy of the word. The meaning of a compound cannot always be deduced completely from its constituents. It is obvious that the meaning of compound words does change over time. In the next section, the phonological properties of compounds in the languages will be compared.

2.3. Phonological properties of compound words

2.3.1. Compound Stress Rule and Compound Accent Rule

It is true of all languages that words also have phonological properties. Many linguists state that a Compound Stress Rule (Chomsky and Halle 1968) can tell us whether the word is a compound or not (in the case of a stress language, such as English and Mainland Scandinavian languages). In English and Mainland Scandinavian languages, for example, the Compound Stress Rule yields a stress pattern with the main stress on the initial element\(^\text{15}\).

\(15\) Another argument for a Compound Stress Rule has been given by Lieberman and Prince (1977). They say that in any pair of sister nodes [A B], where X is a phrasal category, B is strong. In other words, if the X is not a phrasal category, A is strong.
Similarly in Swedish, compound words are stressed with a particular stress pattern, compound stress. According to Mellenius (1997), Swedish compounds are pronounced with a particular intonation contour, characterised by two peaks. The intonation contour includes two stressed syllables: the first where the stress is placed in the first base of the compound when this is pronounced as an isolated word, and the second at the place of the stress of the last base of the compound, when it is pronounced in isolation. For example:

(70)

a. hus+nyckel
house+key

b. hus’nyck’el
As the examples demonstrate, compound words have the stressed syllable of each constituent of the compound, indicated by '. Moreover, the first stress has a falling tone, marked by a falling down arrow; the last stress has a rising tone, marked by a rising arrow. Scandinavian languages do not seem to show any exceptions in the phonological aspect of compound words.

However, the distinction between left-stress and right-stress in English is difficult to apply, and many linguists have discussed how to treat compounds with right-stress (see Lieberman and Sproat 1992, Giegerich 2003, Spencer 2003). In fact, there are compound words in English which have right-stress. Typical examples are black whale, white noise and brown bear (Giegerich 2003). Lieberman and Sproat (1992) argue that such expressions are N₁ categories. That is, one-bar level categories in the X-bar hierarchy, as opposed to ‘well-behaved’ compounds such as (64) and (65) which are N₀ categories. Nevertheless, they failed to find evidence supporting the other half of the hypothesis, whereby N₀ constructions, which they crucially but wrongly assumed to uniformly have primary stress on the first constituent, systematically arise in the lexicon.

Another explanation is given by Spencer (2003). Spencer (2003) gives examples such as cake- and street-compounding: apple pie, bakewell tart, apricot crumble, but carrot cake; London Road, Penny Lane, Peyton Place, but Oxford Street. Other good examples are terminology for organisations, such as World Bank and World Court (my analysis). Regarding these compounds with right-stress, Spencer (2003) proposes that stress patterns are determined by semantic ‘constructions’ defined over collections of similar lexical entries. Below are the examples cited by Spencer. The bolded words have primary stress.

16 For more examples, see Spencer (2003).
Spencer concludes that in English the left-stress tends to be associated with lexicalisation as much as with compounding but that individual words which regularly feature in compounds (especially as heads) can create their own islands of systematicity, sometimes in opposition to a prevailing trend for words of the same semantic field (see the Appendix). However, his semantic categorisations are limited to special fields, such as music, chess, and so on. Many linguists have attempted to systematise semantic fields for compound words, but no one has provided a conclusive result.

Giegerich (2003) states that compound words with primary stress on the second constituent are quite common, which was why Lieberman and Sproat could not provide sufficient evidence of the category of N'. Giegerich states that all fore-stressed N-Ns must be lexical as the semantic relationship between the two elements in this type of construction is not predictable. Typical examples are:

(73) battle+field seat+belt
fruit+market wind+screen
glass+case fog+horn
hand+cream hair+net
milk+bottle tea+spoon
tear+gas mosquito+net
tooth+paste shoe+horn
toy+factory hair+oil
sparrow+hawk brick+yard

(Giegerich 2003: 8)

According to Giegerich, the semantic relationships between the two constituents in these compounds demonstrate the paraphrase of 'N for N'. These compounds have primary stress on the first constituent. Their precise meanings depend on the speakers' real-world knowledge, not linguistic knowledge. For example, mosquito-net is a net used to keep mosquitoes out, not to capture them inside the net. So the lexicalised meaning of the compound words above must be listed. According to Giegerich, it is possible to state that none of these compounds have the relationship 'A that is a B'. Moreover, this type of construction is lexical according to Lexical
Integrity. For example, it is not possible to have a coordination like: *a hair-net and a mosquito one.

However, if the constructions have stress on the second constituent, the compounds have an ‘A that is a B’ relationship (Radford 1988: 197).

(74) sparrows+hawk ‘hawk that is a sparrow’
toy+factory ‘factory that is a toy’
milk+bottle ‘bottle made of milk’
glass+case ‘case made of glass’
tooth+paste ‘paste made of tooth’
hair+oil ‘oil made of hair’
hair+net ‘net made of hair’
tear+gas ‘gas made of tears’
brick+yard ‘yard made of bricks’ (Giegerich 2003: 8)

The semantic relationship between the two constituents in these examples is a default relationship and according to Giegerich, it is treated in the syntax, not in the lexicon.

Attributive NN constructions, as represented in (74) are those whose relationship between the head and modifier are those of attributes. The test for lexical status from the coordination confirms that the construction (74) is phrasal: e.g. hair net (net made of hair), it is possible to say a hair net and a strong one.

Giegerich gives other types of examples for attributive N-N constructions: the examples of N-Ns which have end-stress, not fore-stress. Typical examples are steel bridge, silk shirt, stone wall, aluminium room, plastic lawn, chocolate fence and rubber radio (Giegerich 2003: 5). The semantics of these examples are transparent, and the patterns are completely productive. So these examples are not listed. Secondly, both elements can be modified, so they are not syntactically isolated (e.g. steel suspension bridge, stainless steel bridge). Thirdly, co-ordination of these examples is possible: steel and aluminium bridges, steel and wooden bridges. Also, the head of the examples can be replaced by ‘one’ in the second part of the coordination: a wooden bridge and a steel one. As a result, Giegerich (2003) claims that these examples are phrasal in nature and probably subject to diachronic lexicalisation. In other words, in time, these examples might become lexicalised.
Nevertheless, this model also has exceptions. Giegerich himself admits this and concludes that natural language does have exceptions. I will discuss the implications of my theory for Giegerich's theory briefly in Chapter 4.

Compound words in Japanese also have special phonological properties. The Compound Accent Rule (Kubozono 1993) can tell us whether the word is a compound or not. The accent of the second element remains, whereas that of the first element is eliminated in compound words.

Compound Accent Rule

Constituents → compound

(75) sekiyu, stöove → sekiyu+stöove
‘oil stove’

(76) dai, tökoro → dai+dökoro
‘kitchen’

In Japanese, too, there are compound words which do not obey the systematic rules. Kubozono (1993) states that there are two different types of compound words. One is those compounds which fall under the Compound Accent Rule as exemplified in (75) and (76). Another group is those which cannot fall under the Compound Accent Rule. According to Higurashi (1983), this type usually consists of compound words whose second member is shorter than three morphemes. Kubozono also has examples for this type in personal names, when the two constituents show a case relation and also names of organisations. Furthermore, Kubozono claims that accent varies according to dialect and idiolect.

Higurashi (1983) demonstrates some generalisations concerning compound words with the second member shorter than three morphemes. The examples used are:

Constituents → compound with an accent

(77) inaka, miso → inaka+miso
country, soybean paste → countrystyle+bean paste

(78) sinsyuu, miso → sinsyuu+miso
Shinshu, soybean paste → Shinshu+soybean paste
The first group Higurashi describes includes short nouns, consisting of one or two morae whose initial accent survives. According to her, the second constituents, *miso* and *sora*, are included in this group. The above examples show the accentuation pattern of short compounds containing these nouns as their second constituents. From the observation above, both words have their accents on the first mora. Higurashi (1983) notes that compounds with these words as the second member maintain their accents on the first mora. However, as Higurashi states, there are a few exceptions to this generalisation. One of these exceptions is when the first constituent is a word that indicates the colour of *miso*, then the compound as a whole becomes accentless. Tsujimura (1996) notes that the accentuation pattern of *miso* in a compound may depend on the accent and length of the left-hand constituent.

Another class Higurashi discusses includes cases where the accent of the second constituent is lost. Examples are compounds comprising of *huro* ‘bath’, *ki* ‘tree’, and *su* ‘vinegar’ as their second constituents.

Thus, these compound words are unaccented.
Finally, there are compounds where an accent is placed on the last mora of the first constituent regardless of whether or not the second constituent is accented or where the accent is.

(85) ása, iti \(\rightarrow\) asä+ iti
morning, market \(\rightarrow\) morning market

(86) umä, iti \(\rightarrow\) umä+iti
horse, market \(\rightarrow\) horse market

(87) setomono, iti \(\rightarrow\) setomonó+iti
ceramics, market \(\rightarrow\) ceramics market

(88) ása, kaze \(\rightarrow\) asä+ kaze
morning, wind \(\rightarrow\) morning wind

As a result, in this group, there seems to be no generalisation as to where the accent falls in compound words. It is necessary to consider more data to analyse these kinds of compound words. Moreover, the second type also needs more consideration. Probably, no generalisation exists.

2.3.2. Rendaku in Japanese compound words

As mentioned in Chapter 1, there is another phonological feature of lexicalised words in Japanese. As one of the characteristics of ‘one-wordness’ in Japanese, compound formation shows a phonological feature which is special only to compound formation. This is *rendaku* or sequential voicing. This phenomenon is characterised by the initial consonant of the second word of the compound becoming voiced. For example, when the two words, ante! ‘stability’ and sho ‘place’ are combined together to make a compound word, the initial sound, /sh/ of the second word is voiced, resulting in /dz/. If the second word of a compound begins with a vowel followed by a consonant, however, this phenomenon is not observed (Tsujimura 1996). Although *rendaku* is observed quite extensively with compounds, researchers have noted that *rendaku* applies only under certain circumstances.

Otsu (1980) summarises the relevant conditions for *rendaku* as follows. First, the right-hand member of a compound should be a native Japanese word for *rendaku* to apply. This
immediately excludes any second member that is a Sino-Japanese word, i.e. words that are of
Chinese origin, or other loan words. Even when the right-hand member is a Sino-Japanese or
loan word, Otsu (1980: 209) assumes that the word has become ‘Japanized’. The term
‘Japanized’ is explained in terms of the frequency of its usage and/or familiarity for native
speakers of Japanese. Another explanation is ‘old’. This means that the word has a long history
as part of the Japanese lexicon. Usual cases are loanwords from Chinese and Portuguese.
Nevertheless, there are exceptions. Otsu (1980) notes that there seems to be no non-circular way
of determining whether an element is ‘Japanized’, or whether it is rendaku that determines
Japanization. As a result, Otsu proposes that it is necessary to assign a [+/- Rendaku] feature to
each lexical item, regardless of the reference to the lexical strata.

One constraint for rendaku is that rendaku does not occur when the second member of a
compound has a voiced stop, voiced fricative, or voiced affricate. Technically, the rendaku-
blocking factor is Lyman’s Law cited in Otsu (1980: 210). This phonological stipulation states
that a lexical item never undergoes rendaku if it contains a voiced obstruent (in bold), as seen in
examples below.

(89) oo, kata→oo+gata
 big, size →big size

(90) oo, kaze→oo+kaze
 big, wind→big+wind

(91) zyuzu, tama→zyuzu+dama
 rosary, ball →(prayer) beads

(92) zyuzu, tunagi→zyuzu+tunagi
 rosary, sequence→roping together

The pair in (89) and (90) shows that when the second member of a compound contains a voiced
obstruent, i.e. the voiced fricative /zi/ in (90), rendaku does not apply. In contrast, when there is
no voiced consonant in the second member, the word-initial voice-less consonant undergoes
voicing, as shown in (89). Similarly, the pair (91) and (92) indicates that it does no matter
whether the first member of a compound contains a voiced obstruent or not, as shown in (91).
The first member of the compound in this example does include a voiced affricate, as well as a
voiced fricative and yet, rendaku applies to the initial consonant of the second member, /t/, to yield /d/.

In summary, this section has compared phonological properties of compound words in the languages. All the languages show that most compounds follow a compound-specific rule, namely the Compound Stress Rule for English and Scandinavian languages and the Compound Accent Rule for Japanese. It is, therefore, concluded that compound words behave differently from syntactic phrases. There are exceptions in English and Japanese, however. Although many linguists have attempted to systematise semantic fields for compound words to explain the exceptions, there is presently no conclusive systematisation. Exceptions to the Compound Accent Rule in Japanese indicate that separation of morphology and syntax is not clear-cut. Giegerich (2003) observes that there are some systematisation for exceptions to the Compound Stress Rule in English. The semantic relationship between the two constituents in exceptions is a default relationship.

In addition, the phonological characteristic of Japanese compounds, *rendaku* has also been discussed. The next section will look at some apparent counter-examples to Lexical Integrity in these languages.

2.4. Counter-argument for Lexical Integrity?

2.4.1. Plural as first constituent and the Lexicon

Another characteristic of compounds is that neither a functional category nor a phrase can appear inside them. For example, the pairs of the following examples show the validity of the No Phrase Constraint (see Section 2.2).

(93) [shoe shop] vs. *[shoes shop]

(94) [play boy] vs. *[played boy]

(95) [car salesman] vs. *[big car] salesman

The examples (93) and (94) show that the -s and -ed cannot appear inside the compound words, *shoe shop* and *play boy*, respectively. Moreover, the example (95) cannot have the phrase, *big car*, embedded inside the compound.
If the above characteristics of compounding in English are observed, compounding seems to be different from the corresponding phrases. However, compounding in English is not that straightforward. The following are some examples.

(96) clothes+shop vs. cloth shop

(97) arms+ race vs. arm race

(98) feet+ massager

(99) mice+ eater

(100) parks+ commissioner

(101) awards+ ceremony

(102) pilots+union

(103) weapons+ inspector

(104) buildings+investor

It is obvious that the first constituents of (96) – (97) are not plural nouns of a base without the plural inflection. They are pluralia tantum nouns which lack a base. According to the level-ordering account proposed by Kiparsky (1982), a pluralia tantum noun should be stored in the lexicon because it is an idiosyncratic form. The following tests will shows that the compound words (96) – (97) can be considered words in terms of Lexical Integrity.

(105) clothes+ shop

*I went to the clothes; shop yesterday and found some nice ones;.

(106) shop for clothes
I went to the shop for clothes yesterday and found some nice ones.

(107) arms + race

*There was an arms race. Who was quicker to produce more dangerous ones?

(108) race to arms

There was a race to arms. Who was quicker to produce more dangerous ones?

The examples (98) and (99) constitute another type of compound words in English. The left-hand constituent is an irregular plural. Pinker (1999) and Haskell, Maryellen, MacDonald and Seidenberg (2003) argue that irregular nouns are acceptable as modifiers of compound words, although they are significantly less acceptable modifiers than singular nouns.

The following tests will show that the compounds (98) and (99) are more similar to words than phrases.

(109) feet + massager

*After I bought the feet massager SWINGER, they are not aching anymore.

(110) massager for feet

After I bought SWINGER, the massager for feet, they are not aching anymore.

(111) mice + eater

*When the mice eater approached they ran away.

(112) cat that eats mice

When the cat that eats mice approached they ran away.

Examples (100) – (104) appear more similar to phrases than to words, because their left-hand constituent has a plural inflection. In the level-ordering account of the lexicon, Kiparsky (1982) claims that compound words with a regular plural inflection are stored at Level 3 (see (113) after compound word formation (Level 2). With this in mind, Kiparsky (1982) and Selkirk (1982) claim that the cases like the examples (100) – (104) are explained by a semantic factor: the left-hand constituent has an ‘idiosyncratic’ meaning, therefore, the left-hand member is stored in the
lexicon. Kiparsky (1982) proposed the following structure for the English lexicon in level-ordering.

(113) English Lexicon

Level 1: irregular inflection as first constituent, including pluralia tantum and irregular inflection.

Level 2: compound word formation

Level 3: Regular inflection

Level-ordering presents the organisation of derivational and inflectional processes of a language as in a series of levels. Each level is associated with a set of phonological rules. According to this, pluralia tantum can appear in compound words, as they are irregular plurals, listed in the lexicon at Level 1. Moreover, according to this level-ordering, the pluralia tantum are marked inherently [+Plural]. However, Kiparsky (1982) admits that not all pluralia tantum are possible as modifiers in compound words. Examples that are not possible include trouser press vs. *trousers press, scissor case vs. *scissors case, and spectacle pincer vs. *spectacles case (Kiparsky 1982: fn 3). In this case, then, English speakers do need to memorise that the pluralia tantum counterpart does not exist in their language.

On the other hand, compound words with a regular plural inflection inside are listed in the Level 3. This means that there is no clear boundary between compound words and phrases.

Haskell et al (2003) reject Selkirk (1982) and Kiparsky's (1982) hypothesis that cases like (100) – (104) are explained by semantic factors. Instead, they argue that their hypothesis was consistent with some of the exceptions, but it did not explain why some are idiosyncratic and not others. Haskell et al's findings from seven studies show that compounds with regular plural inside compound words are less acceptable to native speakers of English than those with irregular plurals or pluralia tantum as modifiers.

Alegre and Gordon (1996) also attempt to identify semantic bases for the exceptions of plural inflections inside compound words. Considering the contrast between the examples, a store carries paint and a store carries several paints, they argue that rather than showing multiple instances, this use of paints highlights diversity among the things being referred to. They noted that heterogeneity seems to be a necessary condition for regular plural modifiers to be acceptable. Moreover, they also had abstractness as well as heterogeneity as necessary
conditions (also supported by Booij 1993). An example of this would be the compound word *publications catalogue*. In this example, *publications* is highly abstract relative to more specific terms like *book* or *magazine*. However, this argument cannot be true for an example, such as *buildings investor*. *Building* is not abstract but concrete. If one considers that modifiers of compound words in English are not able to have specificity, but only generality, *buildings investor* is acceptable. This claim is true for (101) - (104), as native speakers\(^\text{17}\) prefer the compound with a plural marker inside and they all agree that they mean the same as the ones without a plural marker. This is due to the modifier of compound words in English not being able to have specificity, but only generality (also supported by Booij 1993, Agathopoulou 2003)\(^{18}\). In other words, the left-hand element with a regular plural marker inside (101) – (104) does not refer to specific plurality (contra. generic) of the objects. Thus, I propose that the \(-s\) morpheme is not an inflection, but a linking morpheme (see Chapter 3 for the structure of this type) and in this thesis, I will not follow the lexicon with level-ordering, represented in (113) (see Chapter 3 for more reasons for not taking the theory of the lexicon, using level-ordering).

According to native speakers' judgements (6 native speakers)\(^{19}\), the example (100) is an exception: both *parks commissioner* and *park commissioner* exist and there is meaning difference between the two compounds. Thus, there is a real plural marker inside this compound. This kind of example with plural meaning is not productive and the example *parks commissioner* seems to be an exception in English compounding (see Chapter 4 for the structure of this type of compound).

It is well known that the equivalent of the singular and plural distinction in English is generally not available in Japanese: that is, there is no plural marking similar to the English ending – *(e)s*. Although the root which means a group –*tati*, as in *kodomo-tati* 'children' and *gakusei-tati* 'students', is available, its use is extremely limited in that it can apply only to human beings (see 4.2.1 for more details) and there are no compounds with this root in Japanese. Therefore, a left-hand constituent with plural marker or pluralia tantum is out of the question in Japanese compound words. If a lexicon with the idea of level-ordering is taken into consideration,

\(^{17}\) I would like to thank the 6 native speakers (two American English speakers and four British English speakers) for their judgments on these words.

\(^{18}\) Another possible generalisation is given by Montgomery (2001). This generalisation states that the modifier element in a compound is an abstract, not a concrete noun upon which a count interpretation is imposed. Then, the element takes the plural inflection. The examples are *admissions, departments, promotions, innovations, publications*. However, it is obvious that *park* is not an abstract, but a concrete. Therefore, I do not agree with Montgomery's generalisation.

\(^{19}\) I would like to thank the 6 native speakers (two American English speakers and four British English speakers) for their judgments on these words.
Kageyama's (2001) proposal for the Japanese lexicon can be used. As discussed in the section 2.1, compounds can be formed in a variety of ways which include merely native words or a combination of words of different origin. Using and elaborating on Selkirk's (1982) distinction between the terms Word and Stem, Kageyama formulates a theory of Japanese word formation which sets up three types of building blocks: Root, Stem, and Word. It should be noted that in his paper (Kageyama 2001), he uses only Sino-Japanese words.

(114) Root: single morphemes like hoo+ 'visit' and bei 'America'

(115) Stem: two-morpheme constructs like hoo+bei 'a visit to America'

(116) Word: constructs that can be used independently, typically with more than two morphemes

Kageyama (2001: 15)

Based on these definitions above, Kageyama (2001) proposes the following rules of compound formation in Japanese.

(117)

a. Root (+ Root) \(\rightarrow\) Stem
b. Stem (+ Stem) \(\rightarrow\) Word
c. Word (+ Word) \(\rightarrow\) Word

The representations above show that these building blocks are combined with each other to make larger and larger units. According to Kageyama, the difference between the complex words formed by the rules (117a) or (117b) on the one hand and (117c) on the other is that in the former, Lexical Integrity plays a role, whereas in (117c), it does not. For example, the conjunction oyobi ‘and’ can appear inside Word-level (117c) compounds, but not inside (117a) or (117b).

(118)

a. Root-level
 hoo-bei, hoo-chuu\(^{20}\)
 visit-America, visit-China
 ‘a visit to America’, ‘a visit to China’

\(^{20}\) These examples are counter-examples of the Righthand Head Rule.
with the conjunction 'oyobi' inside
*[hoo-[bei oyobi chuuy]
visit-America and China
‘a visit to U.S. and China’

b. Stem-level
chuu-goku+zin, kan- koku +zin
China-country+person, Korea-country+person
‘Chinese people’, ‘Korean people’

with the conjunction ‘oyobi’ inside
*[chuu- goku oyobi kan- koku] +zin
Chinese-country and Korean-country+person
‘Chinese person and Korean person’

c. Word-level
hoo-bei+yotei, hoo-chuu+yotei
visit-America+schedule, visit-China+schedule
‘schedules of a visit to U.S.’, ‘schedules of a visit to China’

with the conjunction ‘oyobi’ inside
[hoo-bei oyobi hoo-chuu] +yotei
visit-America and visit-China+schedule
‘schedules of a visit to U.S. and a visit to China’

The (118a) and (118 b) on the one hand and (118 c) on the other hand show that there is no clear boundary between ‘morphology’ and ‘syntax’. In fact, the word-level complex words behave more like words than phrases with respect to the following points.

(119)

a. Word-level
Backward gapping cannot delete part of a word (strike through = gapping).
*koizumi shusoo wa [hoo+bei +yotei]——-happyoo-
Koizumi Prime-Minister TOP[visit+America+schedule] ACC announce-

'Mr Koizumi announced his schedule of a visit to America and the Foreign Minister a visit to China.'

b. Stem-level

Backward gapping cannot delete part of a word.

[Korea+ person DAT meet-Past.

'John met a Chinese person and Naomi, a Korean'.

c. Root-level

Backward gapping cannot delete part of a word.

*Koizumi shusoo wa [hoo+bei]——o——happyoo—si, Bush Koizumi Prime-Minister TOP[visit+America] ACC announce-do, Bush
daitooryoo wa [hoo+nichi] o happyoo si-ta.

President TOP [visit+Japan] ACC announce do-Past.

'Mr Koizumi announced his visit to America and President Bush did to China.'

Backward gapping

Ken wa [NP huransu no kuruma]——o——kai, naomi wa [NP itaria no Ken TOP [France GEN car] ACC buy, Naomi TOP [Italy GEN kuruma] o ka-tta.

car ACC buy-Past

'Ken bought a car made in France, and Naomi, one made in Italy.'

The above test shows that just like stem-level and root-level words, backward gapping cannot delete part of the word-level word. Gapping in Japanese deletes one consecutive string.
In summary, the above evidence suggests that there is phrase-like compounding in Japanese. The boundary between the syntax and the morphology is not clear-cut in this sense. However, the phrase-like type of compound is still a ‘word’ in some respects, such as gapping.

On the other hand, in Scandinavian languages, there are no regular-looking plural compound words (see Bauer 1978 on Danish). As a result, if the theory of a level-ordering is taken into consideration, there are only two levels involved in compound formation the Lexicon of Scandinavian languages21.

2.4.2. Genitive compound words in the three languages

There are genitive compounds in English and whether they are formed in the lexicon or in the syntax is a controversial issue. They are regarded as counter-examples to the generalisation shown below.

(120) No syntactically relevant elements can occur inside a word (Anderson 1982).

This means that inflection cannot feed word derivation. However, in addition to the compounds with plural discussed in the previous section, there are some compound words which seem to have inflection inside. The following examples are possessive compounds22.

(121) woman’s magazine, women’s college, children’s book, Mother’s Day, collector’s item, child’s play, spider’s web, devil’s advocate, driver’s license, farmers’ association

The expressions can be considered either as phrases or as compounds and the pronunciations differ accordingly. When they are considered compound words, they are words in terms of Lexical Integrity.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>(122) the [torn [woman’s magazine]]</td>
<td></td>
</tr>
</tbody>
</table>

21 For more discussion on Lexical Phonology, see 4.1.3.

22 Frequent use of possessive compounds as popular names of plants: Old man’s beard, goat’s beard, traveller’s joy, elephant’s ear, daisy (day’s eye), lamb’s lettuce. Many speakers appear to interpret cowslip as cow’s lip (Taylor 1996).
(123) [the woman's] torn magazine

(Taylor 1996:29, Shimamura 1986)

Thus, adjectives cannot occur inside the compound, in contrast to in its corresponding phrase.

Similarly, considered as compounds the expressions obey the notion of an anaphoric island (like root noun-noun compound words in (2)-(5)).

(124) *I found those [woman's magazines], but as far as I know she has not read them.

(125) I found [that woman's] magazines, but as far as I know, she has not read them.

(Taylor 1996: 29)

The anaphoric islandhood of the compound does not allow the pronoun she to be coreferential with the noun woman inside it.

In that case, what is the level of the first constituent? There are two views. One is that the first constituent is a maximal phrase and the second constituent is non-maximal. Then, genitive compounds are regarded as incompatible with the generalization that 'no syntactically relevant elements can occur inside a word'.

Taylor (1996) and Shimamura (1986) argue that genitive compounds are similar to compound words. Firstly, they argue that the semantics of genitive compounds follow from their status as a noun, not as a noun phrase. A possessive compound denotes a type of entity, not an instance of a type. Generally, the designated type is a subcategory of the type denoted by the second constituent. Another characteristic is that the -s morpheme is not equivalent to that in prenominal possessives. Shimamura states that it is neither a derivational nor an inflectional suffix. It is not a derivational suffix, as it does not affect the category of the first constituent as a normal derivational suffix does. On the other hand, it is not inflectional suffix, as an inflection cannot go inside a word.

Similarly, in Scandinavian languages, as discussed in Section 2.1, there are some compound words whose first constituent is marked with the linking element, such as -s or -e. The phonetic form of the linking element corresponds to the possessive marker.
In Japanese, too, there exists genitive compound words.

Genitive compounds

(129) haha+ no+hi
Mother+GEN+day
'Mother’s day’

(130) chichi+ no + hi
Father+ GEN+ day
'father’s day’

(131) ama+ no + gawa
heaven+ GEN + river
‘milky way’

(132) na + no + hana
rape+ GEN+ flower
‘rape blossoms’

(133) mago+ no+ te
Grandchild+ GEN+ hand
‘back scratcher’

The following examples show that those compounds are considered words in terms of Lexical Integrity.
(134) haha+ no+ hi 'Mother's day'
 Watashi no haha wa go-gatu no haha no hi o
 I GEN mother TOP May GEN mother GEN day ACC
 tanosimi ni siteiru.
 look-forward-to.
 'My mother is looking forward to Mother's Day in May'.

This sentence is not the same as the following in meaning.

(135) Watashi no haha wa go-gatu no azibun no hi o
 I GEN mother TOP May GEN self GEN day ACC
 tanosimi ni siteiru. a
 look-forward-to
 'My mother is looking forward to her day in May'.

This test shows that the haha in the compound haha-no-hi in (134) does not specify someone's
mother (my mother) and that the sentence (134) does not mean the same as the sentence (135).

Consider also the following examples.

(136) genitive compounds
 ama+ no+ gawa
 heaven+ GEN+ river
 'milky way'

 [kirei na ama] no gawa]
 *[beautiful heaven] GEN river]
 'beautiful milky river'

 [kirei na [ama no gawa]
 [beautiful[heaven GEN river]
 'beautiful milky river'

The corresponding Noun Phrase of the example (136) is (137).
Ama is an allomorph of the morpheme ten and in general, it appears in compound words. The initial sound of the second constituent in (136), kawa (river) has undergone rendaku, which, as discussed, is a particular phenomenon in compounding. This proves that no in Japanese is not an inflectional morpheme. The grammaticality contrast between the compound and its equivalent phrase shows that whereas the adjective, kirei na, in the phrase can be interpreted as modifying both the words ama ‘heaven’ and kawa ‘river’, it cannot be interpreted as modifying ama in the compound word. This shows that the compound word signifies only a general concept.

(138)

a. genitive compound
mago + no + te
grandchild GEN hand
‘back scratcher’

chiisai mago no te
small grandchild GEN hand
*’small grandchild’s hand’
‘small back scratcher’

In the corresponding phrase, the adjective chiisai ‘small’ modifies both mago and the whole phrase mago no te.

b. corresponding phrase
mago no te
The intonation of the compound word in (138a) and its corresponding phrase (138b) is different. The phonological difference also shows that the former is a compound word, whereas the latter is a noun phrase. These tests show that these kinds of compounds are also lexicalised words in Japanese as in English.

In conclusion, this subsection has shown some characteristics of genitive compound words in these languages. The left-hand constituent of genitive compound words seems to be always generic, not specific, and this leads me to believe that the genitive marker-looking morpheme is a linking morpheme which has the function of checking a categorical feature on the left-hand constituent (see 4.3.2 for more discussion). In addition, the meaning of these compounds seems to have lexicalised.

2.4.3. Compound words but not lexical?
Contrary to what has been established in the previous sections and what Di Sciullo and Williams (1987) state, it is well known that there are no unequivocal criteria for distinguishing compounds from phrases in English and many other languages. Bauer (1998a) argues that it is not possible to distinguish between a class of noun + noun compounds and a class of noun + noun syntactic constructions by the criteria which were discussed in Section 2.2. Firstly, he argues that the phonological criterion for compound words fail to show the distinction. Some authors, like Fudge (1984) and Ladd (1984) and Lieberman and Sproat (1992) and, as discussed above in section 2.3.1, Giegerich (2003) argue that stress patterns are associated with particular semantic relationships between the two nouns involved. ‘B made of A’ as in stone wall result in phrase stress, while ‘B used for A’ as in pruning shears results in compound stress. In contrast, Bauer (1998a) states that it is not clear that the semantic relationship between the two constituents would show a distinction between a lexical construction and a syntactic one. Moreover, he questions whether the ‘made of’ relation is in any sense less lexical than the ‘for’ relation. So Bauer (1998a) would argue against Spencer’s (2003) and Giegerich’s (2003) analyses.
Secondly, it was argued in Section 2.2 that it is not possible to refer back to a constituent of a compound word. Examples of (38) – (39) and (47) are repeated below.

(139) black+bird
→*I wanted to see a black+bird and a blue one.

(140) black bird (a bird which is black)
→I wanted to see a black bird and a blue one.

(141) hai+zara
 a. otite-iru hai, o hirotte hai+zara ni ire-nasai.
 Fallen-is ash ACC pick, and ash+tray in put-IMP.
 b. *otite-iru hai, o hirotte sore; zara ni ire-nasai.
 fallen-is ash, ACC pick, and it, tray in put-IMP.
 ‘Gather the ashes on the floor and put them in the ashtray.’

This criterion can distinguish compound words from phrases. One difference between compound words and phrases is that the left-hand segments in compounds in these languages are not D or DP. That is why a pronoun, such as it cannot be substituted for or refer to the left-hand segment. In contrast, a maximal projection can have definite reference (Scalise 1984)\(^{23}\).

However, according to Bauer (1998a), there are certain examples where ‘the letter of the lexicalist hypothesis is broken, even with derivatives’ (Bauer 1998a: 72).

(142)what sharply distinguishes Chomskyan practice from that of his structuralist forebears is...

In this example Bauer claims that his refers back to Chomsky, even though Chomsky was the root in a derivative, and argues, following Lieberman and Sproat (1992) and Ward, Sproat and Mckoon (1991) state that there is no grammatical problem with the use of anaphora, but there

\(^{23}\) It is not clear why one could not refer back to a bare noun (see Appendix 1). Perhaps it can but the left-hand segment is not a bare noun: it is a root without word class features (see Section 3.2.4.3).
may be pragmatic constraints which need to be satisfied. Nevertheless, Bauer's argument does not change the fact that the left-hand segment of compounds in the languages in question does not refer to specific elements, in contrast with their corresponding phrases.

2.4.4. Phrasal compounds

Phrasal compounds have been discussed widely in the recent literature on word formation (Wiese, 1996a, Selkirk 1982, Kiparsky 1982, Lieber 1992). NP-N compounds such as the following are words according to Lieber (1992). The Lexical Integrity test for each example is as follows.

(143) English
a. a pipe-and-slipper husband
 Lexical integrity: *a [pipe-and-slipper docile] husband
b. a slept-all-day look
 Lexical integrity: *a [slept-all-day-today] look
c. over-the-fence gossip
 Lexical integrity: *[over-the-fence-in the garden] gossip
d. God-is-dead theology
 Lexical integrity: *[God-is-dead-already] theology
e. an off-the-rack dress
 Lexical integrity: *an [off-the-rack-in the shop]-clothes
f. a connect-the-dots puzzle
 Lexical integrity: *[connect-the-dots-on the paper] puzzle
 Wiese (1996a)
g. the Obscene Publications Act
 Lexical integrity: the *[Obscene Publications in the book] Act
h. a strict-word-order language
 Lexical integrity: *a [strict-word-order and head-final] language
i. hot sausage and mashed potato soup
 Lexical integrity: *[hot sausage and mashed potato and chicken] soup
j. between-meal snacks
 Lexical integrity: *[between-meal and after meal] snacks
k. the save-the-whales campaign
 Lexical integrity: *the [save-the-whales in the ocean] campaign
l. 'all-you-can-eat' specials
Lexical integrity: *[all you can eat for five pound] specials

Kageyama (1993)

(144) Japanese

a. i) [huruhonya no nyoobo] gorosi
 [second-bookstore GEN wife] killing
 ‘killing of the wife in the second bookstore’
ii) Lexical integrity: *[huruhonya no nyoobo, goshuzin] goroshi
 second-bookstore GEN wife, husband killing
 ‘killing of wife and husband in the second bookstore’

b. i) [terebi no supeciaru bangumi] huu
 TV GEN special programme style
 ‘Special TV programme style’
ii) Lexical integrity: *[terebi no supeciaru bangumi futsuu hutuu
 TV GEN special programme style normal
 bangumi] fuu
 programme] style

c. i) [maborosi no chosha] sagasi
 phantom GEN author research
 ‘research of an phantom author’
 Kageyama 1993
ii) Lexical integrity: *[nihon no maboroshi no chosha] sagasi
 Japan GEN phantom GEN author research

d. i) [[konpa no sosikiryokou] [bastsugun]] no Y-san
 party GEN organising-ability distinguished GEN Mr. Y
 ‘Mr Y who is distinguished in the ability to organise a party’
ii) *[konpa no sosikiryokou] [batsugun de genki]] no Y-san
 party GEN organising-ability distinguished and cheerful]] GEN Mr. Y

e. i) [[zibun ga motte umareta] sainoo] soooo] no sigoto
 he NOM innately gifted talent suitable GEN job
the job which is suitable to the talent with which he was innately gifted

ii) *[zibun ga motte umareta] sainoo] soooo, tekioo] no sigoto

self NOM innately gifted] suitable, appropriate] GEN job

Namiki (2001)

(145) Swedish

a. ett jag-längtar-efter-dig-brev
 a I long for you letter
 'an I-long-for-you-letter'
 Lexical integrity: *ett jag längtar-efter-dig hemligt-brev secret

b. ett skicka-mera-pengar-brev
 a send more money letter
 'a send-more-money-letter'
 Lexical integrity: *ett skika-mere-pengar-eftersänt-brev forwarded

c. en rakt-på-sak-fråga
 a right on issue question
 'a question that goes right to the point'
 Lexical integrity: *en rakt- på-sak-stor-fråga big

These kinds of compound words also exist and are quite productive in other languages, including Afrikaans, German, and Dutch. It is important to state that it is always the non-head of compound words which is the phrase and not the head (Namiki 2001). Lieber (1992) proposes to modify the word syntax of compounds. Both words (Y^0) and maximal phrases (Y^{max}) are allowed as non-heads in compounds. The argument that such compounds exist originates from the fact that stress patterns are exactly as expected for phrases and for compounds: the embedded phrases bear the stress patterns exhibited by the same phrases in isolation, and the whole compound displays the stress pattern of compounds, namely, with main stress on the initial part. Another criterion for compound words met by phrasal compounds, as Lieber (1992) notes, is that the interpretation of phrasal compounds parallels that of compounds in general. The rough

24 I would like to thank Prof. Anders Holmberg for his examples in Swedish.
characterisation that 'A compound XY refers to a Y that is further specified by X' holds for phrasal compounds just as well as for most other compounds.

In summary, this section has discussed compounds, such as compounds with a plural inflection inside in English, genitive compounds, and phrasal compounds. What they have in common is that the left-hand constituent looks like a noun phrase. However, the left-hand constituent does not refer to specific things, and they obey Lexical Integrity. Also, it was argued that the plural affix as the left-hand constituent of a compound is not actually semantically plural, and it was concluded that it was a linking morpheme.

In addition, I have discussed whether it is possible to distinguish between a class of noun + noun compounds and a class of noun + noun syntactic constructions by the criteria discussed in Section 2.2. I have concluded that the left-hand segment of compounds does not refer to specific elements, in contrast with their corresponding phrases.

2.5. Copulative (or Dvandva) compound words

The previous four sections have looked at compound words whose two constituents form a modifier-modified relationship. In this section, by contrast, another type of compound word in these languages is considered. The semantic relationship between the two constituents is that of coordination. In other words, one entity is characterised by both members of the compound. Let us see some examples in Japanese, English and Danish.

(146) Japanese
 a. saru + kizi
 monkey+ pheasant
 'monkey and pheasant'
 b. zisin + kazi
 earthquake+ fire
 'earthquake and fire'
 c. oya + ko
 parent+ child
 'parent and child'
 d. yama + kawa
 mountain+ river
 'mountain and river'
e. ame+kaze
rain+wind
‘river and wind’
f. ama+tsuchi
heaven+earth
‘heaven and earth’
g. kusa+ki
grass+tree
‘grass and tree’
h. ta+ hata
paddy-field+field
‘paddy-field and field’

(147) English (from Plag 2003: 146)
a. mother+daughter relationship
b. the doctor+patient gap
c. the nature+nurture debate
d. a modifier+head structure
e. the mind+body problem

(148) Scandinavian
a. moder+datter forhold
 mother+daughter relationship

(149) English
a. mother+daughter
b. blue+black
c. poet+translator
d. singer+songwriter
e. scientist+explorer
f. hero+martyr
g. dunch (dinner and lunch combined together) 25

(150) Scandinavian

25 More examples of copulative compounds are in the Appendix.
These compounds are called copulative (or dvandva) compounds (Bauer 1983, Olsen 2000, Plag 2003). Copulative compounds fall into two types, depending on interpretation. Firstly, as Olsen (2000) and Plag (2003) state, the type represented in the examples (146) – (148) is known as a coordinative compound. There are a number of coordinative compounds in Japanese as the above examples show. They always refer to a set of two (or more) individuals. For example, oya+ko 'parent+child' refers to a set of one parent and one child. According to Olsen (2000), the constituents of a copulative combination are marked with the dual inflection and retain their individual accents. Japanese coordinative compounds also have the same accents as those of their individual constituents. The following examples demonstrate the accentual patterns in Japanese.

(151)

a. coordinative compound
 sa’ru+ kizi
 monkey+pheasant
b. corresponding phrase
 sa’ru to kizi
 monkey and pheasant

(152)

a. coordinative compound
 zi’sin+kazı
 earthquake+fire
b. corresponding phrase
zi’sin to kazi
earthquake and fire

(153)
a. coordinative compound
 o’ya+ko
 parent+child
b. corresponding phrase
 o’ya to ko
 parent and child

(154)
a. coordinative compound
 ya’ma+kawa
 mountain+river
b. corresponding phrase
 ya’ma to kawa
 mountain and river

As the above examples show, the accentual patterns in Japanese coordinative compounds (a) are the same as their corresponding phrases (b). Moreover, the example (154a) is clearly coordinative, since the initial sound of the second constituent /k/ is not voiced (see 2.3.2).

On the other hand, there are appositional compounds (Bauer 1983, Plag 2003), shown in the examples (149) and (150). This type refers to an entity with two facets. For example, the compounds such as mother+daughter and poet+translator refer to one person with two characteristics of being mother and daughter, and poet and translator, respectively. According to Olsen (2000), in English and Scandinavian languages (Germanic) appositional compounds are morphological in nature, as they denote a single entity which can be described in both ways, as opposed to a collective entity (pair). Another reason for these appositional compounds being morphological in nature is that they show similar characteristics to normal lexical compounds. In particular, the plural marker is only on the second constituent only and not on the first. The definite article in Scandinavian languages is only on the third element (e.g. moder+datter

26 Other examples are in the Appendix.
forhold+et (mother+daughter relationship+the), in contrast to occurring on both elements in the example bond+en-advokat+en (farmer-the-lawyer+the). The latter example is a counterexample to Olsen. In other words, this example is an appositional compound but more similar to a phrase than a compound word.

2.6. Productive compounds in the three languages

All of the types of compounds discussed in the previous subsections are productively formed or lexicalised. Some examples of productively formed compounds are shown below.

(155) Examples (a) – (d) from Spencer 2003: 2
a. Chomsky hierarchy
b. song bird
c. London bus
d. capsicum leaf
e. broom-cupboard baby (Boris Becker's illegitimate baby after him having a relationship in a broom-cupboard) (from a magazine)

The above examples are productively formed. Therefore, it is possible, for example, to say 'a bus which runs in London', 'a bird which sings', 'leaf of capsicum', and so on.

As in English, productive compound words exist in Japanese (Namiki 1988). Examples are presented below and taken from Namiki (1988).

Japanese children

(156) kame+pan
 turtle+ bread
 ‘bread in the shape of a turtle’

káme no katachi o sitsa pan
turtle GEN shape ACC did bread
‘bread in the shape of a turtle’

The interpretations for kuma tokei and kuma dokei are the same.

(157)

a. kúma+tokei
 bear+clock
 kúma no katachi o sita tokei
 bear GEN shape ACC did clock

Spencer analyses these examples as compound words in English and some of them are stressed on the 'left-hand' constituent and the others are stressed on the second. For these kinds of words, it is necessary to have tests to see whether they are lexicalised compound words.
b. kuma+dokei (the underlined has undergone rendaku)
bear+clock
‘a clock in the shape of a bear’

(158)
húusen+zoosan
balloon+elephant
‘an elephant made of balloons’
húusen de dekita zoosan
balloon in made elephant
‘an elephant made of balloons’

(159) koöri+panda
ice+panda
‘a panda made of ice’
koöri de dekita panda
ice in made panda
‘a panda made of ice’

(158) – (159) from Sugisaki and Isobe 2000: 500)

(160) sáme+kan
‘shark+can’
‘shark can’
sáme no kan
shark GEN can

(161) tára+kan
cod+can

(162) ebi+kan
shrimp+can

(163) mäsu+kan
tROUT+ can

(161 -163) from Miyoshi 1999)

(164) gakusei+ eiga+ kurabu
student+ film+ club

(165) tsuri+baka
fishing+stupid
a person who is keen on fishing

(166) tori+influenza
bird+influenza
‘chicken flu’

(167) tairyoo+kagaku+heiki
mass+chemical+weapon
‘weapons of mass destruction’

(168) tatari+gami
curse+god
‘cursed god’

The following compounds are from Mellenius (1997) and they are all productively formed.

Swedish children

(169) vatten+s+våda, in analogy with eld+s+våda (‘fire’)
water+LINK+accident fire+LINK+accident

(170) örn+tross, in analogy with alba+tross
eagle+tross

(171) klack+skav; fot+skav; both in analogy with sko+skav (‘chafed feet’)
heel+chafed foot+chafed

(172) fel+ vist, in analogy with rätt+vist (‘fair’)
wrong+way right+way

(173) bläks+filibabba, in analogy with mums+filibabba (‘yum-yum’)
yack+yum

(174) klänning+daler, in analogy with sandaler (sandals)
dress+dals
In summary, this chapter has considered some characteristics of compound words in English, Japanese and Mainland Scandinavian languages. Firstly, the constituents of compound words in
these languages were compared and it was concluded that, whereas the compounds in English are constituted of what looks like two free morphemes, those in the other languages often are not. Also, the traditional view is that compounds are formed by combining free morphemes, while derivational word formation is attaching an affix to a base (a root or a stem). It was argued that this view is wrong. This argument is supported especially if we look at 'cranberry morphemes' and neoclassical compounds. Some differences between neoclassical elements and derivational affixes were considered in the languages in question.

In addition, this chapter has observed some characteristic differences between compounds and their corresponding phrases with regard to Lexical Integrity. The examples show that compounds are in general more similar to words than phrases. However, these compounds have other properties which show clearly that they really are compounds, not phrases. For example, the left-hand constituent of these compounds never refer to specific things, and they obey Lexical Integrity. In the case of the compounds with a plural affix inside it was argued that apart from one or two exceptions, the affix is not actually semantically plural, and it was concluded that it is not an inflection, but a linking morpheme. This will be further discussed in Chapter 4. I also gave examples of compounds which clearly have a phrase as left-hand constituent and coordinative compounds. All of these show that the borderline between compounds and phrases is not clear-cut. I will come back to these compounds in Chapter 4.

The next chapter will look at previously proposed structures in both the Principles and Parameters approach and the Minimalist Framework approach. After the illustration, a proposed structure for all types of compound words in all the languages in question will be presented.
Chapter 3: Structure of compound words

The last chapter looked at the common and distinct characteristics of compound word formation in Scandinavian languages, English and Japanese and found that there are a number of common characteristics between these languages. I have also shown that neoclassical compounds and cranberry morphemes exist in Japanese and Scandinavian languages, just as in English. One distinction between English on the one hand and Scandinavian languages and Japanese on the other is that the left-hand constituent of compound words in English does look like a free morpheme whereas in the other two languages, it is often not a free morpheme and so cannot appear independently in the syntax.

In addition, the last chapter looked that some examples of compounds in the languages in question show that the borderline between compounds and phrases is not clear-cut, unlike what Di Sciullo and Williams (1981) say.

This chapter is organised as follows. In the first section, structures for compound words proposed by other researchers within the GB framework will be discussed. This section will be followed by a discussion of structures for compound words proposed within the Minimalist Program. The aim of this chapter is to find out which structure is the best for compound words in the languages investigated.

3.1. Structures for compound words in the GB framework

3.1.1. Transformational account of compound words

As discussed in Section 1.2, the first account of compound words in English in a transformationalist framework was given by Lees (1960). However, his analysis of compound words has been rejected by many researchers, including Chomsky (1970) and Baker (1988). Lees' analysis of compound words is considered first.

Lees analysed compound words in English with their sentential paraphrase as a basis and claimed that compound words derived by transformations from an underlying sentence, the main idea being that material in the underlying sentence was deleted. For instance, the compound
word, *steam boat* is derived from an underlying structure, 'steam powers the boat' in the following steps.

(183)

a. steam powers the boat →

b. boat (which is) powered by steam →

c. steam-powered boat →

d. steam-boat

This analysis is sufficient in that it provides different deep structures for the same surface form, which accounts for the semantic ambiguity in compound words. Using this kind of derivation, he analyses the relationship between constituents of productive compound words in six ways, including subject-predicate, subject-middle object, subject-verb, subject-object, subject-prepositional object, verb-prepositional object and object-prepositional object. However, if all compound words in English are taken into account, there will be too many semantic relations between the two constituents in compounds (Downing 1977, Lieberman and Sproat 1992). Another criticism is that the relationships between the constituents of some examples of compound words in his analysis are not analyzed correctly. For example, he claims that the compound word, *hardware* is derived from an underlying structure, 'ware which is hard'. However, it is obvious that *hardware* is tools and equipment that are used in the home or garden and it cannot mean ware which is hard. In other words, the meaning of the whole compound is not semantically composed from its constituents. An unusual feature of Lees' theory is that he analyses the genitive construction, as in *John's book* as a compound.

At the time when Lees analysed compound words, no other linguists had claimed that there is a difference between deriving sentences and compound words. Chomsky (1970) concluded that gerundive constructions are formed in the syntax while derived nominalizations are listed in the lexicon. Along with Chomsky (1970), then, Lees would presumably have claimed that his theory is a theory for productive compounding only, and that the lexicalised compounds are listed in the lexicon. They are not derived from sentences in the syntax. However, the lexicalised compounds, although listed, have structure, too. They are constructed in the same way as productive compounds. In Lees' approach, lexicalised compounds are then ignored completely and cannot be derived in the same ways as productive compounds, since they are not derived from phrases.
A similar analysis to that of Lees was proposed by Levi (1978). He claimed that compound words which are semantically transparent can be derived from an underlying structure by deleting a recoverable predicate. For example, the word *malaria mosquito* is derived as follows.

(184)

```
NP
  |______Adj
  |       | N2
  |______|
N1  V  mosquito
    | malaria  CAUSE (ing)
```

(185)

```
N
  | N1  N2
  | malaria  mosquito
```

The structures (184) – (185) show that the compound is derived from 'malaria CAUSE mosquito', the Cause being a predicate which shows the semantic relationship between the two constituents, *malaria* and *mosquito*. The predicate CAUSE is deleted. The deleted predicate is recoverable; thus, this process is known as Recoverable Predicate Deletion. Levi has nine predicates which are recoverable, namely CAUSE, HAVE, MAKE, USE, BE, IN, FOR, FROM and ABOUT (Levi 1978: 76). He claims that these are the only predicates which may be deleted in the process of transforming an underlying relative clause construction into the typically ambiguous surface configuration of the complex nominals. Examples of complex nominals derived by deletion of these nine predicates are given in Figure 1. The abbreviation RDP in the first column stands for Recoverably Deletable Predicate.
<table>
<thead>
<tr>
<th>RDP</th>
<th>N1 < direct object of relative clause</th>
<th>N1 < subject of relative clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>tear gas</td>
<td>drug deaths</td>
</tr>
<tr>
<td></td>
<td>disease germ</td>
<td>birth pains</td>
</tr>
<tr>
<td></td>
<td>malarial mosquitoes</td>
<td>nicotine fit</td>
</tr>
<tr>
<td></td>
<td>traumatic event</td>
<td>viral infection</td>
</tr>
<tr>
<td></td>
<td>mortal blow</td>
<td>thermal stress</td>
</tr>
<tr>
<td>Have</td>
<td>picture book</td>
<td>government land</td>
</tr>
<tr>
<td></td>
<td>apple cake</td>
<td>lemon peel</td>
</tr>
<tr>
<td></td>
<td>gunboat</td>
<td>student power</td>
</tr>
<tr>
<td></td>
<td>musical comedy</td>
<td>reptilian scales</td>
</tr>
<tr>
<td></td>
<td>industrial area</td>
<td>feminine intuition</td>
</tr>
<tr>
<td>Make</td>
<td>honeybee</td>
<td>daisy chains</td>
</tr>
<tr>
<td></td>
<td>silkworm</td>
<td>snowball</td>
</tr>
<tr>
<td></td>
<td>musical clock</td>
<td>consonantal patterns</td>
</tr>
<tr>
<td></td>
<td>sebaceous glands</td>
<td>molecular chains</td>
</tr>
<tr>
<td></td>
<td>song birds</td>
<td>stellar configurations</td>
</tr>
<tr>
<td>Use</td>
<td>voice vote</td>
<td></td>
</tr>
<tr>
<td></td>
<td>steam iron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>manual labour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>solar generator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vehicular transportation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>soldier ant</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>target structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional friends</td>
<td></td>
</tr>
<tr>
<td></td>
<td>consonantal segment</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>mammalian vertebrates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>field mouse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>morning prayers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>marine life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>marital sex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>autumnal rains</td>
<td></td>
</tr>
<tr>
<td>For</td>
<td>horse doctors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>arms budget</td>
<td></td>
</tr>
<tr>
<td></td>
<td>avian sanctuary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aldermanic salaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nasal mist</td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>olive oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>test-tube baby</td>
<td></td>
</tr>
<tr>
<td></td>
<td>apple seed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rural visitors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>solar energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tax law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>price war</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abortion vote</td>
<td></td>
</tr>
<tr>
<td></td>
<td>criminal policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>linguistics lecture</td>
<td></td>
</tr>
</tbody>
</table>

80
According to Levi, the division of the examples in the Figure 1 into two columns reflects the fact that the prenominal modifiers in these complex nominals can be derived from either the subject or the direct object of the underlying predicate. Thus, *disease germ* is derived from an underlying sentence, 'germ which causes disease' but *birth pains* is derived not from an underlying sentence, *pains which causes birth* but rather from *pains which birth causes*. Levi explicitly rules out the relation 'similarity' because of its pragmatic nature.

However, Levi's analysis of deletion is not compatible with present generative grammar. He states that a predicate such as CAUSE or ABOUT is deleted and recoverable. However, according to Chomsky and Lasnik's (1977) definition of the Recoverability Condition, the predicate should not be deleted. The Recoverability Condition prevents deletion of any element which has semantic content unless there is an antecedent. Moreover, how can the predicate in Levi's structure be recoverable if it is not projected after the deletion? Even in terms of generative grammar of the 1970ies, the structure in question violates the Structure Preserving Principle (Emonds 1970), i.e. all categories presented in the D-structure must be the same in the S-structure. So it is not possible to change the category of V to N after the deletion.

Another criticism against the two transformationalist views of the derivation of compound words concerns the headedness of the word. Just like in the case of phrases, it has been argued extensively that it is necessary to have a head in the word, as the head represents the core meaning and the category of the whole word (Williams 1981). In the following subsection, a lexicalist view of compound words will be discussed. Moreover, the important notion of the headedness of compound words will be presented.

3.1.2. Lexical account of compound words

In reaction to the transformationalist account, the argument formed by the lexicalist tradition is that it is necessary to define the head of a word, just like in phrases. If the head is not defined in morphology, it is not possible to interpret what the meaning and the category of the whole word is for compounds as well as derived words. In other words, without any head in morphology, it is not possible to tell for a N-N compound which real-world object the compound refers to, i.e. its reference. Williams (1981) claims that in morphology, it is the right-hand constituent of a complex word that decides the category of the whole word by percolating its features to the dominating node. Williams claims the following.
In morphology, we define the head of a morphologically complex word to be the right-hand member of that word. (Williams 1981:248)

Thus, in the words below, the element in bold in each is the head:

(187)

<table>
<thead>
<tr>
<th></th>
<th>a.</th>
<th>N</th>
<th>b.</th>
<th>V</th>
<th>c.</th>
<th>N</th>
<th>d.</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>instruct</td>
<td>ion</td>
<td>re instruct</td>
<td>high school</td>
<td>un</td>
<td>happy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The features of each right-hand element percolate to the node above and decide the category of the word as noun, verb, noun, and adjective, respectively. On the empirical level, compounding in Germanic languages such as English and Scandinavian languages is directly accounted for. Moreover, this can be applied to compound words in Japanese, as well. Japanese, English and Mainland Scandinavian choose the right-most element of a compound as the head (English; Williams 1981, Selkirk1982, Japanese; Kageyama 1983, Namiki 2001; Mainland Scandinavian languages; Josefsson 1997 and Holmberg 1992)28.

Namiki (2001) gives evidence for the Right-hand Head Rule with many examples of “reversible compounds” in Japanese and English, such as *hatchi-mitsu* ‘bee-syrup’ (honey) and *mitsu bachi* ‘syrup-bee’ (honey bee)29. In these cases, they refer to different entities. In either order, the right-hand constituent is the head of the compound. More examples are cited below (the element in bold in each is the head).

(188) Japanese

<table>
<thead>
<tr>
<th></th>
<th>a.</th>
<th>tsutsumi+gami</th>
<th>kami+zutsumi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wrapping+paper</td>
<td>paper+wrapping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘wrapping paper’</td>
<td>‘something wrapped in paper’</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>mizu+deppoo</td>
<td>teppoo+mizu</td>
<td></td>
</tr>
</tbody>
</table>

28 The relation between the elements of compound words can be defined in terms of semantics, according to Allen (1978)'s IS A condition: N1 + N2 is a kind of N2 (see 2.1.2). Allen's condition is proposed in reaction to Levi and Lees' claims concerning the semantic relationship between the two constituents of compound words. By the condition, Allen means that there is a semantic relationship, but not a clear-cut one.

29 The initial sound of *hachi* ‘bee’ is voiced when it is merged with another word and it occurs as a second element of the compound word.
water+ gun	gun+ water
'water pistol'	'flash flood'
taru+zake	sake+daru
cask+sake	sake+ cask
'sake in a cask'	'cask for sake'
doku+gumo	kumo+doku
poison+spider	spider+poison
'poisonous spider'	'spider poison'

(189) English
a. house+dog | dog+ house |
b. sugar+ maple | maple+ sugar |

Another consequence of the assumed definition for headedness in morphology is given by Williams (1981) and Josefsson (1997). They observe that inflections encoding tense, case etc. are suffixes. This means that they are heads according to the Right-hand Head Rule. And this is a desirable consequence, since tense is a property of the V (and case of the N) from where it percolates to VP (NP) in the syntax.

These structures show that the feature [tense] occurs strictly in head position.

(190)

```
(1)
 a.
 VP[+tense]
    /
   V[+tense]  NP
      /
     af  V  the answer
        |
        under stood [+tense]
```

30 For more examples in Japanese, see the Appendix.
It is a head both above and below the word level; the feature percolation is determined by the RHR up to the word level. Above the word level, it is determined by the rules of syntax/X'-theory.

In the same way, in Scandinavian languages, too, Williams’ Right-hand Head Rule assumes that the inflection both above and below the level of the word is the head.

(191)

a. VP[+tense]
 \[\text{V[+tense]} \quad \text{NP}\]
 \[\text{af} \quad \text{svaret} \quad \text{answer-the}\]
 \[\text{for} \quad \text{stod} \quad \text{stand}\]
 \[\text{for} \quad \text{stood} \quad [+tense]\]
 ‘understood the answer’

b. VP[+tense]
 \[\text{V[+tense]} \quad \text{NP}\]
 \[\text{V[+tense]} \quad \text{NP}\]
 \[\text{citere} \quad \text{svaret} \quad \text{answer-the}\]
 \[\text{cite} \quad \text{ed} \quad [+tense]\]
In contrast to English, Japanese and Mainland Scandinavian languages, compounding in Romance and Vietnamese (Lieber 1992) presents another class of rather fundamental problems. They present the left-hand constituent as the constituent which decides the category of the whole compound. Thus, the RHR needs to be somewhat modified. Criticising Williams' RHR, Selkirk (1982) formulates the RHR in a different way.

(192) In a word-internal configuration:

\[
\begin{array}{c}
X^n \\
\downarrow \\
P X^m Q
\end{array}
\]

Where X stands for a syntactic feature complex and where Q contains no category with the feature X, X' is the head of X^n.

According to (192), it is possible that a word has a head which is not the rightmost morpheme. This is when all morphemes to the right of the word lack the relevant features to determine the category of the word as a whole. For instance, in verb-particle sequences such as grow up or step out, the head is not the rightmost element (i.e. up in grow up and out in step out), but it is the verbs, grow and step which determine the category of the sequences.

In this rule, Selkirk (1982: 21) defines the notion 'head' as follows;

(193) If a constituent a is the head of a constituent ß, a and ß are associated with an identical set of features (syntactic and diacritic) (1982:21).

Her analysis works with an X-bar rule system, which works in a "top-down" manner. Eventually, it is this top-down property that enables Selkirk to account for category-changing prefixation and a number of Romance compounds. Presumably languages choose either the left- or the right-most morpheme as the head. So (192) applies in languages which have right-headed words. Japanese, English and Danish choose the right-most element of a compound as the head (English; Williams, Selkirk1982; Japanese; Kageyama 1983, Namiki 2001, Mainland Scandinavian languages; Josefsson 1997 and Holmberg 1992).

In Di Sciullo and Williams' (1987) relativised RHR, they defend another formulation of RHR, based on Selkirk's. This version, too, allows features to come from a morpheme which is not
rightmost just in case the morpheme to the right lacks those features. Again, languages with strongly left-headed morphology are not accommodated. Scalise (1988) suggests that the position of the head in compounds is simply stipulated, i.e. Italian compounds are left-headed.

Romance languages (Roepke, Snyder and Hiramatsu 2002: 2, Scalise: personal communication) and Vietnamese (see Gil to appear on Malayan languages), do not seem to have recursive compound words, whereas English, Scandinavian languages and Japanese do, as do many other right-headed compound word languages. Typical examples of recursive compounds are restaurant coffee cup and student film committee. Recursive compounds in Romance languages (e.g. *restaurant café tasse (French), *teatro billet buro ‘theatre ticket office’ in Spanish and sera computer corso ‘evening computer class’ in Italian) do not exist. There might be a correlation between recursiveness of compounding and right-handedness in a given language. Spencer (1991) claims that all of the examples of Vietnamese compounds seem to have the structure of syntactic phrases and lexicalisation of phrases rather than true compounding. Moreover, Romance languages also show similar phenomena. In French, for example, there are two main types of compound-like constructions. One is formed from syntactic phrases, such as les hors d’oeuvres (the ‘hors d’oeuvre), le cessez-le-feu (cease-the-fire) 'ceasefire', and la mise-au-point (the put-to-point) ‘focus’. The second type consists of a verb followed by its object. Typical examples are le porte-parole (carries word) ‘spokesman’, le pince-nez (pinches-nose) ‘pince-nez’ (Spencer 1991: 312). These constructions in French and Vietnamese might suggest that headedness plays some role in recursiveness of compounding in a given language. However, in Malay (Othman and Atmosumarto 1995), a member of the Indonesian language family, compounding is recursive but is left-headed. Thus, it is not possible to maintain the correlation between headedness and recursivity. Evidently, further research needs to be done to establish whether there is a relation between recursiveness and direction of headedness.

Selkirk has the following structure for compound words in English.

(194)

\[
\begin{align*}
N & \rightarrow N \ N \\
N & \rightarrow A \ N
\end{align*}
\]
(195) shows that it is the noun with inflectional features which is the head. The right-hand head's features percolate to the immediately dominating node, and decide the category as Noun. In her work, Selkirk concludes that compound words in English are composed of two words, instead of stems (see section 2.4.1), because of the existence of plural marked constituents inside compound words on heads and non-heads.

This structure seems adequate for English compound words. Even though Selkirk does not consider neoclassical compound words, there is no reason not to assume that this type of compound has the same kind of structure as normal compound words. This is especially true in Japanese and English neoclassical compounds, where both constituents are the same. However, some English neoclassical compounds (as discussed in 2.1.2) have a linking morpheme inside them. Thus, there needs to be a projection for the morpheme. Similarly, for genitive compound words in all the language in question, there needs to be a projection for the genitive-like linking morpheme inside the compound word.

Another disadvantage of the structure proposed by Selkirk is that it does not explain why compound words with a plural non-head constituent are in general ungrammatical. Furthermore, as discussed in section 2.4, the occurrence of the plural marker -s found in some English compound words is not actually semantically plural.

Moreover, this analysis does not apply to all compound words in Japanese (contra Kageyama 1993) and Scandinavian languages (see (6) (7), (10)-(12)). There are compounds where the non-head constituent does not look like a free morpheme.

Another criticism of this structure for compound words is that it will massively overgenerate, allowing noun heads in compounds to themselves consist of A-N:

(196) *lion young tamer 'young tamer of lions'
(197) *house incompetent builder 'incompetent house-builder'
(198) *hotel cheap room 'cheap room in a hotel'
The above examples appear to be uniformly excluded, thus adding weight to the view that there should be no such structure as (194).

Lieber (1980) along similar lines as Selkirk and Williams, proposed a somewhat different structure and analysis of compound words. She takes one step further than Selkirk and Williams and proposes that it is not necessary to repeat lexical information like Selkirk's. Unlike Selkirk's analysis, Lieber (1980) argues that free morphemes and affixes alike have lexical entries which show their syntactic category, semantic and phonological representations and subcategorisation frames. Lieber proposes that morphemes are inserted into unlabeled, binary-branching trees according to their subcategorisation frames. Category and other information are then percolated up the structure in accordance with a series of Feature Percolation Conventions.

In this theory, trees are labelled by means of the following four conventions.

(200) Feature Percolation Conventions

Convention 1
All features of a stem morpheme, including category features, percolate to the first nonbranching node dominating that morpheme. For example:

```
N
 |  
___|___
[standard]N  ize] v
```

Lieber (1980) proposes that all morphemes, including words, affixes, and roots, and lexicalised words and idioms are listed in the lexicon. Each lexical entry has its syntactic category (e.g. verb), its Lexical Conceptual Structure (e.g. EVENT or THING) (Jackendoff 1990), Predicate Argument Structure, which gives the mapping between Lexical Conceptual Structure and syntactic structure. Bound morphemes have their morphological subcategorisation (i.e. the category of the items to which they attach) (e.g. the affix un- attaches to an adjective). Also, she assumes that bound roots like neoclassical elements (see Chapter 2) have lexical entries, too.
Convention 2
All features of an affix morpheme, including category features, percolate to the first branching node dominating that morpheme. For example:

```
               V
              /\  
             N   
            /\   
           [standard] N  ize] v
```

Convention 3
If a branching node fails to obtain features by Convention 2, features from the next lowest labelled node automatically percolate up to the unlabeled branching node. For example:

```
               V
              /\  
             V   
            /\   
           counter attack] v] v
```

Where `counter-` lacks a category feature.

Convention 4
If two stems are sisters (i.e. they form a compound), features from the right-hand stem percolate up to the branching node dominating the stems. See the following for derivation of an English compound.

(201)
a.

unlabeled binary-branching tree
b. \[\text{branch}_N \quad \text{brown}_A \] insertion of morphemes into tree

c. \[\text{branch}_N \quad \text{brown}_A \] labelling of nonbranching nodes by Convention 1.

d. \[\text{branch}_N \quad \text{brown}_A \] labelling of branching nodes dominating stems by Convention 4.

Lieber states that convention 4 is language-particular: English, German and other Indo-European languages and languages with right-hand head elements make use of it, but some languages, like Vietnamese and Thai, instead label compounds on the basis of the leftmost stem.

Lieber herself admits that her analysis does not limit the type of lexical category which can be inserted into a word tree as a sister to a stem of any other lexical category to form a compound. To apply this framework to compound words in any languages, it is necessary to have strict restrictions for selections in the lexicon for each stem.

In her article, Lieber (1983) considers that the lexical entries of verbs and prepositions contain argument structures and that nouns and adjectives are non-argument taking lexical items. With this in mind, she proposes the Argument Linking Principle for compound words (Lieber 1983).

(202)

Argument-linking Principle

a. In the configuration \[\{v, p\} \{a\} \{a\} \{v, p\} \], where \(a \) ranges over all categories, \(\{V, P\} \) must be able to link all internal arguments.
b. If a stem \[]_a is free in a compound which also contains an argument-taking stem, \(a \) must be interpretable as a semantic argument of the argument-taking stem, i.e. as a Locative, Manner, Agentive, Instrumental, or Benefactive argument.

(Lieber 1983: 238)

It is necessary to interpret the Argument-linking Principle in connection with the Feature Percolation Conventions given in (200). Given the Feature Percolation Conventions, the right-hand stem of a compound percolates up to the branching node dominating the stems and determines the lexical category of the whole compound. According to the Argument-linking Principle (202), the argument structure of the right-hand stem in the compound is adopted to that of the compound as a whole. For example, a compound handwash adopts the argument structure of the verb stem wash. Having passed its argument structure onto the compound handwash, the verb stem wash then usually satisfies its argument structure in a sentence into which the verb handwash has been inserted (e.g. I handwashed my jumper yesterday). In principle, the Argument-linking Principle is applicable for prepositions as a right-hand stem of a compound word (e.g. A-P and N-P are predicted to be possible). However, such compounds do not seem to exist.

According to (202), the first stem in a compound does not pass any of its features onto the compound as a whole. It is predicted, therefore, that if the first stem is an argument-taking stem, the second stem must satisfy the argument structure of the first. Typical examples of compounds predicted to be possible by the Argument Principle are P-N, V-N and V-A compounds (e.g. between-class, above-ground, drop-curtain, push-bicycle, be-good, play-dead). In contrast, it is predicted that P-A compounds would be unlikely. An adjective cannot serve as an argument to a preposition. Thus, compounds like *among-legal and *during-happy are not allowed, as predicted.

Moreover, according to the Argument-linking Principle, if the argument-taking stem in a compound lacks an internal argument entirely, it must have a semantic argument interpreted as a Locative, Instrumental, Manner, Agentive argument, etc. For example, N-V compounds are possible only if the N is the internal argument of the V or a semantic argument of the V (e.g. mallet-crack, knife-slice, steam-wade where the noun stems can easily be interpreted as Instruments (mallet, knife) or as Locatives (steam). In contrast, A-V compounds such as *green-
dry, *high-walk and *blue-shave are predicted to be unacceptable because the adjective stem cannot be given semantic interpretation.

Lieber does not provide an analysis of genitive compound words and Scandinavian compounds with a linking element inside. Nevertheless, it is possible to analyse them within Lieber's theory. As discussed in Section 2.4.2, the case-like linking morpheme in genitive compounds in the languages in question is devoid of features. It is neither a case nor a derivational affix, since it makes the first constituent behave differently from the corresponding NP phrase with a genitive case marker. Under Lieber's Convention 3, if the linking morpheme has no feature, then the features of both of the constituents percolate up to the higher node. The right-hand element is the head by virtue of Convention 4.

A criticism against the Argument Linking Principle is that it is not clear why languages like Japanese, Korean and Chinese allow V-V compound words whereas Germanic languages do not. It is clear that both stems in V-V compounds can be argument-taking. Lieber claims that the Argument Linking Principle can account for the impossibility of transitive-intransitive/intransitive-transitive verb compounds in English. The rightmost argument-taking stem will supply the compound as a whole with its argument structure, and this argument structure will therefore be satisfied outside the compound. In contrast, the leftmost argument-taking stem will have to satisfy its argument structure within the compound. Any V which has an internal N argument is predicted to be impossible in this position. If this type is impossible in English, it should be also in other languages. However, in Japanese this type of compound is productive, especially when the second stem is unergative (Hirakawa 2000). Typical examples of transitive-unergative compounds are sagasi-mawaru 'look-go-around' (to look for) and omoi-komu 'think-crowded' (to assume) and many others. So the Argument Linking Principle should be re-considered.

Moreover, Lieber does not explain explicitly why plural inflection cannot appear between two constituents. However, she seems to argue that compounding always applies to stems in her Argument-linking Principle. In that case, plural is excluded in compounding.

3.1.3. Lieber (1992)

Lieber (1992) claims that there are some degrees of interaction between morphology and syntax (also discussed in Chapter 2). Rules of word formation must at least be allowed to refer to phrasal categories. Firstly, Lieber states that recursion is allowed at least at the X^0 level. This
claim comes from analysing derivation of words in English. Let us look at the following structures.

(203)

a. \[
\begin{array}{c}
 \text{N}^0 \\
 \text{A}^0 \quad \text{N}^{-1}
\end{array}
\]

\[
\text{happy} \quad \text{ness}
\]

(Lieber 1992: 35)

It is the case in phrases that 'the head characteristically carries one-bar level less than the phrasal node which dominates it' (Lieber 1992: 35). In contrast, this is not true in words. Therefore, complex words have the recursive structure of (b) rather than that of (a).

b. \[
\begin{array}{c}
 \text{N}^0 \\
 \text{A}^0 \quad \text{N}^0
\end{array}
\]

\[
\text{happy} \quad \text{ness}
\]

The structure (203b), according to Lieber, is true if we consider prefixation and more complex structure. For prefixation, if a head always has one bar-level less than the node dominating it, then, the following structure should be assumed.

(204)

\[
\begin{array}{c}
 \text{A}^0 \\
 \text{A}^{-1}
\end{array}
\]

\[
\text{un} \quad \text{happy}
\]

Happy must be \(A^{-1}\), if the structure is to conform to the X-bar template and if *happy* is the head. However, the stem is a free morpheme, so it is most likely an \(A^0\). Lieber claims that there is certainly no evidence that *happy* must be an \(A^0\), so could not be \(A^{-1}\). At the same time, she
admits that she is contradicting herself with another claim that the stem happy is surely not an A', where it is not head.

Moreover, there is evidence given by Lieber to suggest that the basic X-bar template below word level becomes even less tenable. That is clear when words that are more complex in structure are considered. For example, the verb relegalize, where -ize attaches to the A legal to create a verb and re- to the verb legalize. Since re - neither changes category nor the argument structure of the items to which it attaches, it is not the head of relegalize. As a result, it is clear that the head in the complex word is the form legalize, as shown in the structures (205).

(205)

\[
\begin{align*}
\text{a.} & & \text{b.} \\
& & \ast \\
& V^1 & & V^0 \\
& & V^0 & & * \\
& & A^0 & & V^{-1} \\
& & & & \text{re} \\
& & & & \text{legal} \\
& & & & \text{ize} \\
& & & & \text{re} \\
& & & & \text{legal} \\
& & & & \text{ize} \\
\end{align*}
\]

The above two structures are problematic, since a complex word cannot be V' in (205 a). Neither can the suffix -ize be a V'' nor the word legalize be a V' in (205 b). In conclusion, it is only possible to permit the following structure (206).

(206)

\[
\begin{align*}
V^0 & \\
& V^0 \\
& A^0 \\
& & \text{re} \\
& & \text{legal} \\
& & \text{ize}
\end{align*}
\]

As a result of the problem here, it is necessary to assume recursion in complex words at least at the X^0 level.
As a result, Lieber (1992) revises principles of X-bar theory so that it is possible to generate both well-formed phrasal and well-formed complex words in languages. Based on Stowell’s (1981: 87) foundation of X-bar theory and an argument that recursion is allowed for complex words as well as phrases, Lieber (1992: 35) proposes the following.

b. Pre- or post-head modifiers may be X^{max} or X^0.

Based on Stowell’s (1981: 87) notions of the foundation of X-bar theory, Lieber discusses the position of complements and adjunct with respect to heads. She notes that it is possible in a language for specifiers and modifiers to appear on one side of the head and complements on the other, or for specifiers to occur on one side of the head and both complements and modifiers on the other. Thus, it appears that we need three separate Head Initial/Final parameters, one concerning the position of complements, a second concerning the position of specifiers, and a third concerning the position of modifiers. These parameters apply at word-level as well as phrasal level.

(208)

a. $X^n \rightarrow \cdots X^{(n-1, n)} \cdots$, where recursion is allowed for $n=0$.

b. Licensing Conditions

 i. Heads are initial/final with respect to complements and adjuncts.
 -- Theta-roles are assigned to the left/right.
 -- Case is assigned to the left/right.

 ii. Heads are initial/final with respect to specifiers.

 iii. Heads are initial/final with respect to modifiers.

c. Pre- or post-head modifiers may be X^{max} or X^0.

Lieber 1992: 38
Lieber also defines the terms complement, modifier and specifier. The term *complement* is defined as 'internal argument (in the sense of Williams 1981) obligatorily selected by a verb'. The term *modifier* is defined as a constituent which limits potential reference typically of a noun. Lieber argues that there is ambiguity between *modifier* and *specifier* in X-bar theory and follows Stowell's definition of *restrictive modifier*. Stowell defines *restrictive modifier* as follows.

We can think of a head noun as having an indeterminate scope of reference, ranging over entities or classes of entities. The function of a restrictive clause is to fix the scope of reference of the phrase, narrowing the reference to a specific subset of the referents allowed by the head (Stowell 1981: 278).

According to Lieber, the scope of reference of categories other than N is usually fixed. Therefore, it is typically only Ns that have restrictive modifiers. The term specifier covers determiners, demonstratives, quantifiers and modals within NP structure.

This becomes clear if examples from English are examined. The position of the head in compound words is predicted from the position of head in phrases with respect to the position of modifiers in English. Usually, the setting for the Licensing Condition, (208iii) in English is as follows.

(209) Heads are final with respect to modifiers.

This claim by Lieber is in opposition to Jackendoff (1977) and Stowell (1981).

32 Stowell's claim is that restrictive modifiers follow the head and that certain types of modifiers, specifically bare adjectives are cliticised to the head noun. He also claims that there is a movement of the modifiers to the position before the head. In contrast, Lieber states that prenominal adjectives are not like clitics in Romance languages. Whereas clitics in Romance languages are closed class items, prenominal adjectives are open class items. Secondly, clitics are limited in number and phonologically part of the words which they are attached to, whereas adjectives are never part of the word. Jackendoff argues that restrictive modifiers follow the head and are generated in a position after the head, arguing against an analysis of relative clauses in Smith (1964, cited in Jackendoff 1977). Smith states that restrictive relative clauses are generated prenominally as part of the Determiner position in NP. However, Jackendoff (1977) concludes that PP modifiers and restrictive modifiers should be generated after the head, looking at the examples like *the old Paris, the Paris of my dreams, a cold manner* and *the manner of his arrival*. In contrast, Lieber says that the cooccurrence restrictions between determiners and restrictive modifiers only show that all restrictive modifiers behave alike. They do show that restrictive modifiers should not be regarded as part of determiners, but it is not necessary to follow Jackendoff's theory that modifiers follow the head. Thus, Lieber's third Licensing Condition is true.
All modifiers begin in prehead position. The relationship between the two constituents in root compounds is between restrictive modifier and its head. Thus, the third parameter presented above in the Licensing Conditions stipulates that the head is final to restrictive modifiers in root compounds in English. The following examples of English compound words demonstrate the parameters discussed above.

(210) Root compounds

[A-N] greenhouse, hard hat
[N-A] sky blue, ice cold
[N-N] file cabinet, towel rack
[A-A] red hot, worldly wise
[V-N] drawbridge, pickpocket

Lieber 1992: 55

For root compounds, it is possible to tell that they are right-headed, since semantically the right-hand stem determines the object or quality denoted by the compound as a whole. In relation to the head, the complement is the left constituent and it modifies the head. For instance, in the compound word, file cabinet, the left-hand stem restricts or limits the reference of the ‘right-hand’ head. Thus, Lieber’s proposal is valid if compound words are considered.

Lieber claims that English allows words to be formed using phrasal bases, i.e. phrasal compounds. The resulting words show that they are right-headed structures. The examples from 2.4.4 are repeated here.

(211) [N [NP a pipe-and-slipper][N husband]]
(212) [N [NP a slept-all-day][N look]]
(213) [N [PP over-the-fence][N gossip]]
(214) [N [VP God-is-dead][N theology]]

Thus, the Licensing Conditions are accurate.

The following are examples of compound words in Scandinavian languages.

(215) [A-N] våd+dragt, små+snak
wet+ suit, small+talk
These examples show that compound words in Scandinavian languages are also right-headed, as semantically the right-hand stem determines the object or quality denoted by the compound as a whole.

As for Japanese, the Licensing Conditions are somewhat hard to state. It is well known that Japanese is a head-final language, in contrast to English and Scandinavian languages. Let us see some examples in phrases and decide the position of head with respect to complements, restrictive modifiers and specifiers.

(216)

NP si no hakai
city GEN destruction
‘the destruction of the city’

PP ana no naka ni, ki no ue de
hole GEN inside IN, tree GEN up at
‘in the hole’, ‘up a tree’

VP pizza o tabeta
pizza ACC ate
‘ate the/a pizza’

The bolded words are complements. They precede their heads in all the phrases in Japanese. Thus, heads are final with respect to complements.

Specifiers, also, uniformly precede their heads in Japanese. For example, subjects of IP and NP come before Infl and N respectively:
The position of restrictive modifiers with respect to the head can be decided from the following examples.

(219) **totem o okikute sinzirarenakurai kitanai inu**
Very big-and unbelievably dirty dog
'a very big and unbelievably dirty dog'

(220) **betsu ni odorokanai hodo se no takai josei**
particularly surprising-not extent height GEN tall woman
'a not too surprisingly tall woman'

The bolded words are prenominal adverbs and adjectives and they modify their heads. Thus, in Japanese, too, like in English, the following parameters are set.

(221)

i. Heads are final with respect to complements and adjuncts.
ii. Heads are final with respect to specifiers.
iii. Heads are final with respect to modifiers.

The third parameter states, like in English and Scandinavian languages, that the heads are right-headed with respect to modifiers. Root compounds in the examples below show that this is true.

(222) Root compounds

\[[A-N]_N \] taka+ nami, kirei+ goto
high+ wave, clean+ thing
'a high wave', 'whitewash'
It is possible to determine the head since the right-hand head determines the object or quality denoted by the compound as a whole. Thus, Lieber's proposal is valid for compound words in Japanese.

I conclude that Lieber's Licensing Conditions can be applied to compound words in Japanese, English and the Scandinavian languages. The structure of a compound word in these languages is given as follows.

\[(223)\]
\[
X^0 \\
/ \ \\
Y^0 \ \\
/ \ \\
X^0
\]

Moreover, Lieber proposes a structure for phrasal compounds. Phrasal compounds in all the languages are assumed to have the following structure.

\[(224)\]
\[
X^0 \\
/ \ \\
YP \ \\
/ \ \\
X^0
\]
However, one thing needs to be said. In Scandinavian languages, there are two types of compound. As discussed in connection with Selkirk’s theory, the compound words, (10) – (12) in Scandinavian languages cannot have this structure. Examples of (10) – (12) are repeated below.

(225) fred+s+ konference
 peace+LINK+conference
 ‘peace conference’

(226) jul+e+gave
 Christmase+LINK+present
 ‘Christmas present’

(227) kyrk+tom
 church+∅+ tower

This is because the levels of the two constituents are not the same, unlike the structure (223). These compounds contain something more than just two N°s. There needs to be a projection for the linking morpheme inside compound word in Scandinavian languages.

3.1.4. Holmberg's analysis (1992)

There needs to be another analysis which can be applied to all the world’s languages and to any type of compound words, including neoclassical compounding, compounding with a linking morpheme or vowel morpheme (see 2.1.1), as in Scandinavian languages, and phrasal compound words. Holmberg (1992) analyses compound words in Swedish and English, and thus, includes compound words with a linking morpheme or vowel morpheme. This section will investigate this analysis of compound words.

The main claim in his paper is that for Swedish Noun-Noun compounds, the following generalisation can be made.

(228)

The head of a compound is a Word. A non-branching non-head of a compound is either a Root or a Casemarked word, a branching non-head is a Casemarked word.

33 The symbol ∅ shows that the last morph of the word is deleted when it is merged with another word (see below).
As discussed in Section 2.1.1, there are two types of compound words in Scandinavian languages. One is formed with two stems and the other is formed with a root and a stem. Thus, it is possible to see from morphology which is the head of the latter type of compound word in Mainland Scandinavian. Consider the examples in (229) – (230) representing a large class of nouns in Swedish. The left-hand constituent is the same form that is found in combination with derivational affixes: the stem vowel \(-a\) or \(-e\) is deleted in compound word as the following shows.

(229)

a. skol+a
 school+a

b. skol + flicka
 school+ girl

c. *skol+a + flicka

(230)

a. flick+a
 girl+a

b. flick + skola
 girl + school

c. *flick+a +skola

The b examples show that the stem vowel \(-a\) of the left-hand constituent of the compound must be deleted. Holmberg states that the stem vowel \(-a\) is a word marker which encodes the feature number. Thus, for this type of compound, the structure is as follows.

In the following structures, the Word is represented as \(W\), Root as \(R\) and Word Marker as \(WM\).
Instead of one simple structure like (231), he states that the structure is derived in a two-step process as shown in (233), just like a phrase is. In D-structure, the two roots are formed as a constituent and the singular word marker -a is merged with this constituent at the end. However, following Williams (1981), Selkirk (1982) among others, Holmberg (1992) states that if two roots are merged, all their features will be percolated to the dominating node, resulting in an uninterpretable construction. Thus, in S-structure, one of the roots moves and adjoins to the WM. The index of the Root skol percolates to the W immediately dominating R and WM. At S-structure, the tree should be ready for semantic interpretation in the S-structure. The features of the various heads should be appropriately distributed in the tree, each node having features as determined by its head and general principles of feature percolation. The two constituents are
constituents ordered in terms of their levels. This structure is based on the assumption that the root in compound word is a maximal category and a Word is a non-maximal category (Muysken 1983, cited in Holmberg 1992).

The following structure, according to Holmberg's (1992) proposal, is not possible for a compound word.

(234)

```
W1
 / \  /
W2  W3
 / \
R   WM  R  WM
flick a skol a

girl school
```

This structure is ungrammatical, as the structure has two heads, W2 and W3, projecting all their features onto W1, resulting in an uninterpretable construction34.

Another type includes compound words with a linking morpheme (as discussed in Section 2.1.1). Holmberg (1992) claims that this morpheme is a case-marker. With these three types of compound words in Scandinavian languages, Holmberg proposes the following structure for compound words.

34 Word consists of a root and a word marker in Swedish.
The \varnothing in (235) under the WM encodes the singular form of the word *ben*. In order to prevent the case-feature itself to percolate to W1, Holmberg proposes a mechanism of government by a 'case-assigning head' which in this case is W3. The case-feature is governed by the head, and the W2 is well-formed non-head by virtue of containing a governed case-feature.

When a compound itself is embedded as the non-head of a compound, the stem vowel disappears and a linking morpheme $-s$ is attached.

(236)

a. *skolflicka + dröm, *skolflick + dröm
 school+ girl+ dream
b. skol+flick+s +dröm
 school+girl+s+dream

The b example means 'school girl's dream' and it is necessary to have the linking element in order to have the interpretation.

(236b) is represented in the following structure.
In this structure, the root *flick* moves and adjoins to the linking morpheme. The case feature on W2 turns W2 into a maximal category, by virtue of containing a governed-case-feature. W3 is the head, since it assigns case.

Let us see if the structure proposed by Holmberg is appropriate for the other two languages. In fact, he discusses the structure of compound words in English. As discussed above in Chapter 2, both segments in compound words are at the same level, unlike in Scandinavian languages. They are, in fact, Word categories in this theory.

In Holmberg’s theory, the non-head of a compound should either be a Root or be case-marked, but there is no morphological evidence that the non-head is a Root in English. The fact that the non-head can be plural-marked (at least phonetically) indicates that it cannot be a Root (Section 2.4.1). If this is true, in the present theory non-heads in English compounds are always expected to have abstract case-marking. In English, it is possible to have genitive on the non-head, like in the compounds such as, *woman’s magazine, devil’s advocate* and *driver’s license*, as discussed in Section 2.4.2. Thus, within this theory, the following structure is possible in English compound words.
If abstract Case is represented as an empty head, the structure is as above. We can then assume that the phonetically empty Case on W2 is licensed by W3, simply because of W3 governing W2 leftwards in English.

Holmberg also goes on to say that in English compound words, there is no reason not to allow a plural non-head, whereas in Swedish it is not possible at all. In Swedish, the number affix is termed by Holmberg as a word marker. The word marker in Swedish takes a Root or a Stem as a complement. In contrast, however, in English, there is no selection for the plural morpheme. As a result, different structures are formed for compound words in the two languages.

In Swedish, the non-head is a Root. A plural non-head would be a Word. Then, it would require Case. But since word-internal Case is a WM (word marker), it is incompatible with the plural form. Therefore, both skol-or-katalog (school-PL-catalogue) and skol-or-s-katalog (school-PL-LINK-catalogues) are ungrammatical.

In English, it is possible to have plural marker inside a compound.
The structure shows that combining a non-head with a plural marker is not a problem in English. It is also possible to combine a plural W with abstract Case since Case is also an adjunct to W. These assumptions are, however, from a structural point of view.

In Japanese, there is no plural marker. Let us assume that a compound in Japanese has the structure (242).

(242)

The linking morpheme observed in Scandinavian languages is phonetically empty in Japanese compound words. This structure shows that the left-hand constituent is assumed to be a root and marked by the abstract case marker, whose feature is percolated to W2. However, the phonetically empty word marker on the right-hand constituent is the head, since it governs the phonetically empty case on W2.

Another advantage is that this structure can be applied to genitive compound words in all the languages. Holmberg in fact states that the suffix -s is a case marker in English and
Scandinavian languages. Thus, the structure for genitive compound words can be analysed in the same way as that of normal compound words. Japanese genitive compound words are also analysed in the same way.

(243)

\[
\begin{array}{c}
W1 \\
W2[\text{case}] \\
\vert \\
R \\
\vert \\
\text{mother} \\
\vert \\
\text{haha} \\
\vert \\
W3 \\
\vert \\
WM[\text{case}] \\
\vert \\
\text{s day} \\
\vert \\
\text{no hi} \\
\vert \\
WM \\
\vert \\
\emptyset
\end{array}
\]

Another advantage of this structure is that the levels of both constituents are marked clearly. Let us see if neoclassical compounds can be analysed in the same way. Neoclassical compounds do not seem to have any case-marking. Spencer (2003) (as discussed in Section 2.1.2), however, states that a special linking element is found in some neoclassical compounds of English, such as cyt-o-plasm. This linking element, I propose, is the same thing as the linking element in Scandinavian languages. As in the Scandinavian languages, the possibility of a linking element in neoclassical compound is in complementary distribution with plural-marking. In other words, it is not possible to have a plural marker inside them. Thus, it is possible to assume the same kind of structure for neoclassical compounds as normal compound words. The categorical features represented for each constituent would be Root and Root with WM inside.

There is no linking element involved between the constituents and there is no word-marker inside them in Japanese neoclassical compounds. However, it is possible to assume there is an abstract WM[case]. So the structure (243) is applicable also for neoclassical compounds in Japanese.

One criticism against Holmberg's analysis is that it is not necessary to have such a complicated representation. The next section will discuss a more economical analysis of compound words.
3.2. Structures for compound words in the Minimalist Programme

Before considering structures for compound words proposed within the Minimalist Program, it is necessary first to describe some basic assumptions of the Minimalist Program.

The aim of the Minimalist Program is to answer the question 'How 'perfect' is language?' In other words, we minimalists have to explain how natural language grammars create structures which are designed to interface perfectly with other components of the mind, with speech and thought systems. To answer the question, it is necessary to assume that human language has a single computational system C_{HL} and only limited lexical variety. Differences between languages are morphological in character. However, in reality, languages are not 'perfect'. Therefore, there are three choices when encountering the problem. Firstly, we can complicate the computational system, departing from maximal economy in order to accommodate the 'imperfection', concluding that language deviates from 'perfection'. Secondly, we can make the imperfections a responsibility of the speech and thought systems, affecting the two interfaces LF and PF. Finally, we can ignore the 'imperfections' saying that we do not see how to solve the problem.

With these basic assumptions in mind, this programme does require economy in the derivation of human language. Chomsky argues that the basic operation of syntax is that words are combined into phrases. Therefore, a derivation begins with a set N (the numeration) of primitive elements of the language, taken from the lexicon. The primitive operation Merge recursively combines elements of N two by two and eliminates them from N. The interface level PF must interpret the output of Merge as an ordered string of these two merged elements. This interpretation process is called Spell Out. Spell Out occurs at specific points throughout the derivation; in the Minimalist Program there is no level of S-structure that interfaces with PF, but only LF, which interfaces with the conceptual-intentional component, and PF, which interfaces with the articulatory-perceptual component.

Merge is a constituent building operation. Out of the two lexical items from the lexicon, Merge creates a new object, L.

![Diagram](244)
The new object consists of α and β, but, crucially, only one of the two determines the relevant properties of L. It is possible to say that L is an instance either of α or of β, but not of the two of them. The element of which L is an instance is the head of the structure (as discussed in 1.4). As in GB theory, the head gives its part of speech, which is called its 'label' by Chomsky, to the whole phrase or word. The head of the structure projects, i.e. determines the properties of L.

There are two different types of merger proposed by Chomsky (2000), set-merge and pair-merge. Set-merge is defined as a mechanism for structure building by combining categories drawn from the lexicon. It is symmetrical as an operation. In other words, the two lexical elements drawn from the lexicon, α and β, merge with each other and form a set of two elements, but the structure typically has an inherent asymmetry in that the operation is triggered by a selection feature of either α or β, the selector. Chomsky proposes that the selector projects, i.e. it is the head. Triggered by a selection feature, set-merge is obligatory.

On the other hand, pair-merge forms an ordered pair, α and β, and involves at least some cases of movement, i.e. remerge of a category already merged at least once. It is an asymmetrical operation in the sense that α is adjoined to β. By assumption, the target of adjunction projects, labelling $\langle \alpha, \beta \rangle$. There is no selection involved, so the operation is optional. If these two types of merge exhaust the forms that Merge can take, the label of the category formed by Merge is always predictable, therefore redundant. The redundancy of the operation Merge does obey the economy condition in Minimalist Program.

The third significant point in the operation of Merge is that the operation only applies to the root nodes of syntactic objects. This is called the Extension Condition (Chomsky (1993, 1995)). A syntactic derivation can only be continued by applying operations to the root projection of the tree. In other words, this condition prohibits setting up syntactic relations between objects which have already been constructed inside a structure. For example, let us imagine the following schematic tree:
If A is the projection of the head B, it will be possible to set up syntactic relations between B and C for checking purposes. It is also possible to set up syntactic relations between B and F, for example. However, the Extension Condition prohibits syntactic operations, including checking and merging, applying to D, since it is not the root projection of the tree. Any operation involving D must apply before B is merged. In other words, it must apply while D is the head of the root. If it is not a head, it cannot trigger any syntactic operations. Thus, merging of some object with C the category headed by D will disallow checking between D and for example F.

Another important part of Minimalist Program is the operation movement. In the Minimalist Program, unlike the GB framework, all movements are caused by feature checking requirements; movement is the Last Resort for reasons of economy. The features of lexical constituents consist of three different types: formal features (or syntactic features), such as case, Extended Projection Principle feature (henceforth EPP feature) and semantic features, such as person and number, and phonological features. Semantic and phonological features are considered to be relevant respectively at the interfaces LF and PF. Formal features are the features that cause the movements within the derivation and give rise to the particular patterning of words that we recognise as grammar. Formal features may also be accessed by the rules of morphophonology, giving rise to different morphological or phonological forms. Formal syntactic features may also be accessed by the rules of semantic interpretation. Movement is only necessary to check functional features that are uninterpretable at the LF interface. In other words, movement is regarded as a way to meet the Bare Output Conditions of an interface level.

Let us see how Merge preempts Move (Chomsky 2000). Let us observe the following examples.
a. \[T \text{ defective thought likely [to be awarded several prizes]}\]
b. \[TP \: \text{ There; are thought likely [t; to be awarded several prizes]}\].
c. \[\text{Several prizes; are thought likely [t; to be t; awarded t;]}\].
d. \[*\text{There are thought likely [several prizes; to be t; awarded t;]}\].

(the derivations of these examples are taken from Radford 2004: 316-321)

When the derivation goes onto the step (a), if the expletive *there* is in the numeration, it is merged at [Spec, TP] to satisfy the EPP feature of the embedded T. Thus, there is no need for the DP *several prizes* to be moved to the position. Example (b) demonstrates this effect. After *are* is merged, the expletive *there* is moved to satisfy the EPP feature on the matrix T. On the other hand, when the expletive *there* is not in the numeration, the DP *several prizes* is another candidate. It is moved to satisfy the EPP feature on the embedded T and moved further to the matrix [Spec, TP] to satisfy the EPP feature on the matrix T, deriving the sentence (c).

The ungrammatical construction of (d) also proves that the operation Merge preempts the operation Move. In this case, the DP *several prizes* is moved to the embedded [Spec, TP] first. Since the expletive *there* is in the numeration, it is also merged at the same place, which results an ungrammatical construction. Thus, Merge wins by economy when the expletive is in the numeration. This is the case Chomsky argues that because the operation Move is more complex than its subcomponent Merge.

Until recently, the Minimalist Program assumed that agreement of T and the subject should take place in the specifier-head relationship (specifier and T). However, this assumption has a number of problems. Firstly, the definition of agreement domain is complicated (Nakamura, Kaneko, Kikuchi 2001: 214). Secondly, there are some cases that the spec-head account of agreement fails to explain, for example: that between the auxiliary *are* and the nominal *several prizes* in passive structures such as below:

(247) There are thought likely to be awarded several prizes.

(Radford 2004: 281)

Since the auxiliary *are* occupies the head T position of TP and the expletive pronoun *there* is in spec-TP, a spec-head account of agreement would lead us to expect that *are* should agree with *there*. However, instead, *are* agrees with the in situ complement *several prizes* of the passive participle *awarded*. How can this problem be solved?
As soon as the main clause BE is merged, its features need to be checked. Here, Chomsky (2000) introduces the terms probe and goal. Probe is a head which searches for a matching lexical item. The term goal, on the other hand, represents a constituent which has features matching with those of a higher head (the probe). By virtue of being the highest head in the overall structure in (248) at this point in the derivation, BE serves as a probe which searches for a c-commanded nominal goal to agree with. The goal of the probe is the QP several prizes, since the QP is the only nominal projection c-commanded by BE with the same set of features, person and number. As a result, the construction is successfully derived. Chomsky proposes the simplest assumptions for the probe-goal system

(249)

a. Matching is feature identity.

b. D(P) is the sister of P.

c. Locality reduces to “closest c-command”.

(Chomsky 2000: 122)

where P is the probe, and D (P) is the domain where a probe looks for its goal. Moreover, structural case is what makes the goal active. Case-checking renders a DP inactive; the reverse holds for agreement-features.
Another significant point is that Merge does not specify the linear order of the elements that it merges. However, the linear order is important to natural languages in the PF. It is the order of the words that makes a sentence or a combined lexical element acceptable. Therefore, it is necessary to impose some ordering on the structures built up from Merge in some other way35. The parametric differences of word order proposed in Principles and Parameters theory can be explained by movement to check features in Minimalist Program. For example, the contrast between wh-fronting languages like English and wh-in-situ languages like Japanese is explained by the strength of the uninterpretable wh-feature of the wh element. In examples like \textit{what did John buy?}, the dependency between the interrogative C and \textit{what} in the underlying object position is established by a long-distance agreement relation, which checks off the uninterpretable wh-feature of \textit{what} and the uninterpretable [Q]-feature of the probe, C. The reason for the movement is the presence of an EPP feature of the C. On the other hand, in wh-in-situ languages like Japanese, the equivalent of \textit{what did John buy?} is as follows.

\begin{quote}
John ga nani o katta no?
\end{quote}

\begin{quote}
John NOM what ACC bought Q
\end{quote}

\begin{quote}
‘What did John buy?’
\end{quote}

The complementiser \textit{ka} appears to the right of the inflected verb. The wh-element \textit{nani} is accusative, and appears in just the normal position for an accusative object. In other words, it does not undergo wh-movement. The EPP is weak in Japanese. Accordingly, the relevant feature of the wh-element has a weak EPP feature. Then, the element need not be merged into the specifier of CP, unlike in English, but can remain in-situ. AGREE suffices to check off the uninterpretable features of the probe C and the goal (wh-element), and there is no need to invoke the more complex operation of move (Ochi 2003).

Another important fact in the Minimalist Program which should be discussed is that in the Minimalist Program, each lexical item carries the information necessary for syntactic derivation. That is, the syntactic structure and the derivation of any given sentence are determined by the features on the lexical items used in the derivation. If the lexical items which will be used in the sentence are fixed, it is not too much to state that the sentence structure is decided automatically. The derivation obeys the Inclusiveness Condition proposed by Chomsky (1995: 228). This

35 Another way of imposing order on the structure is Linear Correspondence Axiom (henceforth, LCA) (Chomsky 1995, following Kayne 1994). The LCA takes a hierarchical structure and produces a linearization of its constituents, i.e. the sentence or the structure is pronounced at PF in the order dictated by the LCA.
condition states that no features which are not present in the lexical items may be added in the derivation (as discussed in Chapter 1). Therefore, in contrast to GB theory, projection of X-bar to X'' is not possible, because the information about intermediate projection is not part of the lexical entry and to add such information about projection levels during the course of the syntactic computation violates the Inclusiveness Condition. A phrase is by definition derived by merging two categories. There cannot, therefore, be such a thing as an XP or an X' consisting of nothing but an X°. In contrast, in the derivation which carries information to the PF representation, intrusion phenomena do occur, such as intonation which does not come from the lexical items. Therefore, the PF representation does not obey the Inclusive Condition.

With these basic assumptions in mind, nothing prevents us from applying Merge below the word level too (Josefsson 1997: 17, Roeper, Snyder and Hiramatsu 2002). To be able to interpret the meaning and the category of the whole word, asymmetry must be obtained as early as possible in the derivation of morphology, since without any head in morphology, it is not possible to tell which real-world object the compound refers to, i.e. its reference. In other words, as discussed in the previous subsection, in morphology as well as in syntax, a complex category must have a head whose features are projected to the node governing the head. It should be noted however, that linear order does not matter in the narrow syntax, but only in the PF. In narrow syntax there is no right and left. Two lexical items are merged without any order. Thus, the Right-hand Head Rule, proposed by Williams (1981), has no place in the narrow syntax. It may have a place in the phonology, though, stipulating how a word derived in the narrow syntax is spelled out. Within the Minimalist Program, therefore, which member is the head must be determined in narrow syntax, because it is essential in LF.

Before discussing how structures for compound words in languages can be presented within the Minimalist Program, let us first consider structures for compound words proposed by researchers in previous works.

Within the minimalist Bare Phrase Structure (henceforth BPS) (Chomsky 1995), the words project in the following way.

36 Kayne (1994) claims that left adjunction can be applied below the word level, too.
(251) \[
\begin{array}{c}
\text{the} \\
\text{the} \quad \text{book}
\end{array}
\]

The phrase is built by merging *the* and *book*. Since the determiner selects the noun (not vice versa), *the* projects to become the label of the phrase. As discussed in 3.2, a structure formed in the computational system for human language (CHL) is formed only with the features which lexical items have. For this reason, Spencer states that productive compounds are not different at all from phrases, so the representation of a N-N compound word such as *song bird* is as follows.

(252) \[
\begin{array}{c}
\text{bird} \\
\text{song} \quad \text{bird}
\end{array}
\]

Within BPS, therefore, the two lexical items *song* and *bird* are merged. In this case, *bird* projects. Spencer (personal communication) follows the morphological definition of head proposed by Williams (1981). This is inconsistent with the Minimalist Program, and this problem will be discussed below.

Moreover, Spencer analyses productive compound words formed with adjective and noun.

(253) \[
\begin{array}{c}
\text{phrase} \\
\text{preposition (al) phrase}
\end{array}
\]

(254) \[
\begin{array}{c}
\text{bird} \\
\text{black} \quad \text{bird}
\end{array}
\]

In (253), *prepositional* is the relational adjective from *preposition*. *Prepositional phrase* is generally analysed as a syntactic phrase. However, the meaning is identical to that of *preposition*
phrase. Therefore, there is no distinction between the structures of the two constructions in phrase-structure terms. So the difference between the two constructs is phonological.

Another argument for his analysis comes from the analysis of a bare noun modifying an [A-N] phrase. As discussed in 2.2, an adjective which modifies the compound has to be placed outside the compound. However, a bare noun can modify an [A-N] phrase. The examples are as follows.

(255)
 a. London financial markets
 b. An adjunct prepositional phrase
 c. Senate Committee internal memoranda

Spencer argues that if London markets, adjunct phrase and Senate Committee memoranda were compounds formed after the syntactic modification by an adjective, then it is necessary to say that financial markets, prepositional phrase and internal memoranda are also compounds. Another alternative is to argue that the bare nouns London, adjunct, and the compound Senate Committee can serve as modifiers in the syntax (Bauer 1998a). As a result, N- N compound words are not distinguished at all from phrases.

Another argument proposed by Spencer follows Lieberman and Sproat's (1992) analysis of stress assignment in syntactic structure. Lieberman and Sproat claim syntactic structure can predict stress and word order. For example, jar in coffee jar is N⁰ and gets left-stress, whereas jar in plastic jar is N¹ and gets right-stress. For this reason it is possible to say plastic coffee jar but not *coffee plastic jar. In *coffee plastic jar it is necessary to treat plastic jar as an N⁰. However, according to Spencer, the real problem with coffee plastic jar is that a lexicalised expression is split up. In fact, the string coffee plastic jar is perfectly grammatical. It is just that it cannot be related to the non-compositional lexicalised expression coffee jar. Notice that it is possible to say kitchen sink and enamel sink and enamel kitchen sink but not kitchen enamel sink. This is because lexicalised compounds N⁰ cannot be separated by N¹, according to Spencer.

As discussed in 2.6, Japanese compound words are productively formed. Spencer's theory can predict that productive compounds in Japanese have the same structure as English compound words within BPS framework. A Japanese productive compound, such as kame-pan 'turtle bread' is structured in the following way.
Just as is seen in English compound words, the two lexical items *kame* and *pan* are merged and the right-hand head is projected. This structure is derived with the assumption that the Right-hand Head Rule is correct.

Scandinavian languages also have productive compound words, according to the discussion in 2.6.

The compound word *örntross* (eagle-tross) is formed by merging the two lexical items and the right-hand head is projected to the first dominating node.

In summary, Spencer's analysis of compound words within the BPS framework has a few advantages. It is economical. There is no movement involved in the structure, but only merging the two lexical elements numerated from the lexicon.

Moreover, what about compound words with a linking morpheme inside and three-member compounds? Do we have the merge operation for three- four member compound words without violating the Extension Condition? With the following examples, I examine whether it is possible to derive four-member compounds within Spencer's analysis.

(258)

```
    bok
   /  
  barn  bok
  
  barn+bok+s+klubb
  child+book+LINK+club
  'children's book club'
```
First, the compound word, *barn bok* is derived by merging the two elements. Then, the element, *bok* is the head. Then, another lexical item, the linking morpheme *-s* is merged on the right, and this item is the head by virtue of the Righthand Head Rule.

(259)

```
klubb
   s  klubb
   bok s
   barn  bok
```

Another lexical item, *klubb* is merged and this item is the head by virtue of the RHR. In this derivation, the Extension Condition is respected.

Another advantage of this theory is that right-branching compounds can also be analysed. The example (259) is an example of left-branching compound with a linking morpheme inside. The derivation results on a structure with the interpretation 'club for children's book', in contrast to another interpretation, 'book club for children'. The derivation of the compound with the latter interpretation, namely the right-branching compound is as follows.

(260)

```
klubb
   barn klubb
   bok klubb
```

The Extension Condition is respected. By virtue of the RHR, the lexical item *klubb* is the head of the compound.

One question regarding Spencer's analysis of productive compounds is the headedness. In his paper, Spencer assumes that the right-hand element is the head by virtue of the Right-hand Head Rule (Williams 1981). However, if there is no linear order in the narrow syntax, the Right-hand Head Rule cannot determine the head of a compound.
However, one question needs to be raised concerning lexicalised compound words. In personal communication, Spencer claims that the non-head of a lexicalised compound word, such as *blackbird* has no semantic or syntactic features. On the other hand, the non-head of productive compound, such as *London bus*, has semantic and syntactic features. Nevertheless, the present author questions this claim regarding the status of the non-head in lexicalised compound words. It is argued that the non-head of lexicalised compounds is the same morpheme as that of productive compounds. Lexicalised compounds are formed in the same way as productive compounds, and the morphemes involved are exactly the same. This will be discussed in more detail in Section 3.2.4.3.

In addition, another big question to Spencer's theory is Lexical Integrity. He does not say anything about it. There are counter-examples to Lexical Integrity, as discussed in Chapter 2, but on the whole, words are islands to a greater extent than phrases. The question is how to explain that in Spencer's theory.

Finally, how do we determine the types of morphemes involved in the derivation? For example, how do we limit the occurrence of regular plural markers inside compound words in English and Scandinavian languages?

3.2.2. The theory by Roeper, Snyder and Hiramatsu (2002)
Like Spencer (2003), Roeper, Snyder and Hiramatsu (2002) claim that the structure of compound words can be based on the Minimalist Program framework. Their theory is based on the assumption that following Chomsky (1970), Baker (1988) and Lieber (1992), compounds like those in the examples (155)-(182) (e.g. *London bus* in English, *tsuri+baka* (fishing+stupid) 'a person who is keen on fishing' in Japanese, and *örntross* (eagle-tross) in Swedish) are productively formed.

\[(261)\]

The Root Compounding Parameter (RCP)
Set-merger can (not) combine non-maximal projections.

(Roeper, Snyder and Hiramatsu 2002: 2)

Roeper, Snyder and Hiramatsu (2002) propose the above Root Compounding Parameter (RCP). According to this parameter, some languages permit set-merge of two lexical items *a* and *b*
where one is the head and the other a complement and others do not (Chomsky 2000, 2001). According to Chomsky (1995: 246) (see Chapter 1), when a and b are merged, a is the head if and only if a selects b. However, it is well known in Generative Linguistic theory that there is no selection by root nouns, unlike verbs, adverbs, determiners, and so on. Therefore, N-N compounds cannot be formed in this way. The alternative which Roeper et al proposes is that N-N compounds are derived by a noun merging with an ‘abstract clitic’, which may be a noun. For example, the compound word, *coffee cup* can be derived in the following way.

(262)

First, the compound word, *cup coffee* is derived by set-merger of the two items. *Coffee* originates in what they call the Clitic position, as in English, RCP is plus, i.e. set-merger can combine two lexical items. (The term Clitic is not the same as ‘clitic’ as we know it in morphology; see below for a more detailed exposition of the term ‘Clitic’.

Then, *coffee* is moved leftward. The trace of *coffee* is deleted. Deletion of trace can occur as long as the trace has no semantic content which needs to be recovered (the Recoverability Condition prohibits deletion of anything which has meaning). Moreover, deletion of trace is constrained by the theta-criterion and the Projection Principle, according to Government Binding theory (Chomsky 1981, Lasnik and Saito 1992). In other words, in the above structure the trace of *coffee* can be deleted as it is not theta-marked or subcategorized, since there are no selectional requirements between two nouns.

To form a three-member compound headed by *cup* in this case, a new lexical item *restaurant* is inserted in the position of the trace of *coffee* after deleting the trace, and then the new item is adjoined to the compound word already formed, as shown in (263).
Once the trace of coffee is deleted, another lexical item, restaurant, is entered in the Clitic position and moved to a higher position to make another projection. As a result, the compound word restaurant coffee cup is derived. In this theory, it is possible to derive recursive compound words with an unlimited number of lexical items involved as long as they are nouns. This is due to the fact that there is no selectional requirement for nouns, unlike other lexical categories, including verbs, determiners, adjectives and prepositions. For instance, the trace of a verb is theta-marked and thus cannot be deleted. A noun does not select any lexical categories, thus allowing recursive compound words.

In contrast, in Romance languages for example productive compounds are not allowed, since the Root Compounding Parameter is negative. Typical examples are as follows.

(264) V-Maximal Projection

partir de l'école/*partir d' école
leave from the school/leave from school

(Roeper, Snyder and Hiramatsu 2002: 4)

As the above example shows, French permits only maximal projections as complements to V. The following examples also show that it is not possible to have set-merge of non-maximal projections in French, unlike in English. The preposition à on its own is minimal since it is a lexical item and since it has a feature to check. The syntactic object containing à and café in (265) and outils in (266) is maximal since it contains no selectional features, and not minimal because it is not a lexical item.
The same phenomenon can be seen in Spanish and Italian.

The difference between French, Spanish and Italian on the one hand and English on the other hand in terms of productive compound words leads Snyder (1995) to formulate the Compounding Parameter, as following.

Compounding Parameter: The grammar does (not) freely allow open-class, non-affixal lexical items to be marked [+Affixal].

(Snyder 1995: 27).

In other words, in this parameter, languages are different according to whether their substantive categories (noun, adjective, verb, and preposition) are plus or minus [affixal]. Languages such as English whose referential categories can share the [+affixal] property with functional morphemes, N-N compounding and complex predicates are productive. Complex predicates are constructions where a main verb combines with a secondary predicate and are constructions that semantically resemble a single, complex verb (Snyder 1995). These constructions include at least
resultative (e.g. *John hammered the metal flat*), verb-particle constructions (e.g. *run up the hill*), make-causative, and double-object dative constructions\(^{37}\).

The Compounding Parameter also accounts for the fact that in languages such as French, Italian and Spanish N-N compounding or complex predication are not productive grammatical constructions. This is because the constituents which are involved in these word formations are not lexically [+affixal]. In these languages, word formation is possible only with lexically [+affixal] morphemes. In other words, in for example, French word formation with the verb stem + *-eur ‘-er’* is productive, because it has a [+affixal] feature already as part of its lexical presentation. Also, these languages have a case marking using a preposition, as represented in examples (265) – (268), where N-N compounding is preferred in languages such as English, Japanese and Scandinavian languages.

The Compounding Parameter has been shown to be valid as children's age of acquisition of productive N-N compounding and complex predicates are closely intercorrelated (Snyder 1995, 1996). Moreover, the main verb and the secondary predicate in complex predicates must, at some level, constitute a single interpretation; much like the compounding of two lexical items denotes a unified meaning. For example, in the phrase *John painted the house red*, both *painted* and *red* are syntactic predicates, but this sentence denotes only a single event of house painting.

This account of the unproductivity of compound words in Romance languages is similar to the analysis given by Roeper, Snyder and Hiramatsu. The Abstract Clitic position is proposed by Keyser and Roeper (1992). In order to explain a formal relationship between recursive compound words and resultative constructions in a given language (Snyder 1995, 1996, Snyder and Chen 1997, Slabakova 1999, Miyoshi 1999, Sugisaki and Isobe 2000), Keyser and Roeper (1992) proposed the following hypothesis.

(270) **Abstract Clitic Hypothesis**

a. All verbs in English have an invisible Clitic position that may be occupied by markers such as the one we have called *dative*.

b. *Re*-., like *dative*, is one such marker. Keyser and Roeper 1992: 91

\(^{125}\)

\(^{37}\) Snyder (1995) argues that in English, 'the compound' of the two heads *hammer/flat* in the resultative construction and *run/up* in the verb-particle construction are not visible in the PF, since they are separated by the lexical item *the metal* and *hill*, respectively. However, the interpretation of these constructions is of a single predicate.
According to (270), Keyser and Roeper (1992) argue that in every double object construction that occurs without an indirect object, there is an abstract position in which an invisible indirect object is present. Furthermore, they argue that in the case of indirect object constructions the position they have labeled Clitic is occupied by a marker that is called dative. The dative marker allows indirect objects in constructions like those in we gave him money or he left me a note.

The Clitic position has little to do with what we know of clitics in morphology. This hypothesis is based on the incompatibility of re- and compound words, indirect objects, particles, idioms and resultative constructions. The meaning of the prefix is approximately 'to do action of some verb over again' (Keyser and Roeper 1992: 89). The following examples represent the incompatibility of re- and some of these constructions.

Verbs that take double NP objects
(271)
 a. We gave him money.
 b. *We regave him money.

Verbs that take double NP objects may not take the prefix re-. In the double object construction, according to Keyser and Roeper, there is an abstract position in which an invisible indirect object is present. As a result, the above sentences have the following Structure form:

(272) we [vP [v [v give Clitic]money]]

As there is this abstract position in double object construction, it is impossible to also include the suffix re, since the position cannot be occupied by both of the lexical elements. They are in complementary distribution with one another. This is true in the following constructions.

The double object construction
(273)
 a. He rediscovered an island.
 b. *He refound an island.
 c. He repurchased a car.
 d. *He rebought a car.
 e. He re-exhibited his paintings.
Examples (b), (d), and (f) are ungrammatical. As the following sentences show, whether a sentence in (274) is ungrammatical or not correlates with whether or not its verb may take the double object construction:

(274)
- a. *He discovered me an island.
- b. He found me an island.
- c. *He purchased me an island.
- d. He bought me an island.
- e. *He exhibited me his paintings.
- f. He showed me his paintings.

So the correlation between the sentences shows that the existence of the dative marker assigned to me blocks the prefix *re-.*

Let us see some examples with particles and *re-.*

Particles and *re-*

(275)
- a. *He regave himself up.
- b. *He repushed his plan forward.
- c. *He resold his friend out.

The ungrammaticality of these sentences show that as with indirect objects, the particles, *up, forward* and *out*, and the prefix are complementary distribution with one another.

The following phrases represent examples of idioms.

Idioms

(276)
- a. *relose touch
- b. *relose face
- c. *retake risks

38 This sentence is fine if it is in passive: e.g. *these paintings will be re-shown in the summer exhibition*. I would like to thank Dr Maggie Tallerman for her comment on this point.
For idiomatic expressions, too, the same is true. In other words, the prefix and the lexical items, *face, risks and advantage of*, are in complementary distribution. However, the following idiomatic expressions can take the prefix *re-*.

(277)
a. reopen a can of worms
b. rereinvent the wheel
c. redivide the whole pie

This is due to the fact that these idioms contain a full NP direct object with an accompanying specifier (e.g. NP direct object in (a) is *a can of worms* and the specifier within the NP is the indefinite article *a*). This separates the idioms in (276) from those in (277). The full NPs are not in the Clitic position and therefore allow *re-. In contrast, the bare NPs in (276) are in the Clitic position and therefore disallow the prefix.

As predicted, resultatives also prohibit the prefix.

(278)
Resultative constructions
a. *He redrove the man crazy.*
b. *It remade my friend sick.*
c. He made my daughter well for me.
d. *He remade my daughter well.*
e. He broke the stick up.
f. He broke the stick in half.
g. *He broke up the stick in half.*
h. He broke up the stick into halves.

If sentence (a) is grammatical, it means that he drove the man crazy on more than one occasion. It is ungrammatical, because the position of *re- is already filled with the word crazy. Example
(g) is resultative and cannot occur with the particle up, whereas example (h) is a prepositional phrase and does not disallow the particle up.

Roeper, Snyder and Hiramatsu (2002) argue that the set of categories which can take a Clitic position should be expanded to include all lexical categories, including nouns, adjectives and prepositions. Therefore, derivation of all kinds of compound words can occur taking the Clitic position as a complement.

Another important point in their theory is that by stipulation recursion of compound words can occur only with elements of the same type. For instance, it is not possible to have verb-noun-noun or preposition-noun-noun as a recursive compound. Thirdly, only non-maximal projections can appear in the Clitic position (contra Keyser and Roeper's (1992) claim). Finally, following Kayne's (1994) and Chomsky's (1995) antisymmetry theory, all movement is leftward.

In Roeper, Snyder and Hiramatsu's theory, another type of productive compound words in English can be formed by inserting a compound into the Clitic position. It is, therefore, possible to derive a left-branching compound word as well as right-branching. The difference in the branching corresponds to the meaning difference (see also 3.2.1). For example, the above example, restaurant coffee cup means 'a coffee cup for restaurant'. In contrast, the left-branching compounding gourmet coffee cup is a cup of the kind associated with gourmet coffees.
The above derivations show that we first create the compound *gourmet coffee*. Then, the result is inserted into the Clitic position of the *N cup*, to obtain the meaning of 'gourmet coffee cup', or 'cup of the kind associated with gourmet coffees'. Then, the compound in the Clitic is moved.

The final type of compound Roeper et al discuss is synthetic compounding, such as *pen-holder*, where the deverbal noun *holder* takes a complement *pen*. In this case, in contrast to the root compounding discussed above, the derivation does not involve the Clitic position, as the Clitic position is only for a non-argument. The derivation is as follows.
In (282) the complex V pen-hold is derived first. The N pen is the complement and logical object of the V hold. Then, the compound formation rule applies to move and adjoin pen to the left of hold. The trace left by pen is an argument trace. Following Keyser and Roeper (1992), Roeper, Snyder and Hiramatsu (2002) assume that this trace is undeletable. In the structure shown in (285) the resulting complex V is inserted as the complement to the nominal suffix -er. Once again, the compound-formation rule applies, and the form pen-holder is derived. However, there is no Clitic involved in these structures. This is because the Clitic is associated specifically with modifiers, rather than arguments. The V hold takes the N pen as an argument. Similarly, the suffix -er takes complex V pen-hold as its argument. Thus, the Clitic is not there at all in this derivation.

An advantage of their theory is that both right- and left-branching compound words can be analysed in English, as the above argument demonstrates. The analysis is applicable for compound words in Japanese and Scandinavian languages in the following ways. As discussed in Section 2.4, Japanese allows productive compound words. There are also recursive compound words in Japanese (Namiki 2001), for example, gakusei eiga kurabu 'student film club'. Consider first the derivation of the two-member nominal root compound eiga kurabu.
First, *eiga* is inserted in the Clitic position, since *kurabu* does not have any selectional requirements. Then, as the following structure shows, *eiga* is moved and adjoined to make a compound word, *eiga kurabu*.

After the lexical element, *eiga* is moved, leaving its trace in the Clitic position, the trace is deleted. To form the three-member compound word, *gakusei eiga kurabu* ‘student film club’, the new lexical item, *gakusei* ‘student’ is inserted in the position of the trace of *eiga* after the trace is deleted. Then, *gakusei* is adjoined to the compound word *eiga kurabu*. As a result, the compound word *gakusei eiga kurabu* is derived.

This derivation yields the interpretation ‘film club for students’, in contrast to the interpretation, ‘club for student films’. The latter interpretation has a different derivation, just like the one in the example *gourmet coffee cup*. This demonstrates that Japanese allows insertion of a compound word in the Clitic position.

First, *gakusei* is inserted in the Clitic position, since *eiga* does not have any selectional requirements.
(288)

```
  eiga
    \  /    \\
   Clitic /     gakusei
```

(289)

```
N
  /\ \\
gakusei N
   / \    \\
eiga Clitic t
```

Then, *gakusei* is moved and adjoined to make a compound word, *gakusei eiga*.

(290)

```
N
  /\ \\
gakusei N
   / \    \\
eiga Clitic
     t
```

```
N
  /\ \\
kurabu N
   / \    \\
eiga Clitic t
```

Finally, as the above structure shows, the compound *gakusei eiga* is inserted into the Clitic of the N *kurabu*, to obtain the meaning 'student film society or 'society for student films'. Then, the compound in the Clitic is moved.

In Scandinavian languages, too, it is possible to derive productive recursive compound words (Roeper and Snyder in press). For example, it is possible to derive the compound word *barn [bok klubb]* which means book club for children.
Precisely as in the English and Japanese derivations, the trace of bok is deleted and the Clitic is used again to introduce the lexical item modifier barn in Roeper et al's terms. In Swedish a left-branching three-member compound always has a linking morpheme usually -s, between the second and the third member. Compare (294) and (295):

(294) a. vin + glass
 wine glass
b. boll + plan
 ball pitch
 'playing field'
c. skåp + dörr

39 In Norwegian and Danish, there is a linking morpheme in some compounds, but the occurrence is not as strict as in Swedish. The fact that Danish and Norwegian pattern like Swedish but only in part is a problem for the theory of Roeper et al.
Root compounds in this language are strictly right-branching. Thus, only one interpretation is possible. To obtain the other interpretation, which is 'club for children’s books’, the linking element -s must be used after the compound word barn bok. This interpretation is derived in the following way.

(296)

a. [bok Clitic barn]

b. [barn N [bok Clitic t]]

c. [s- klubb]
The compound barnbok is constructed in a parallel derivation combining klubb with the linking morpheme -s-. The linking element requires a second argument, and the compound barnbok is inserted into its external argument position. It is important to notice that the only Clitic involved in this derivation is that of the N bok, and its only occupant is the lexical element barn. The -s- selects two lexical elements and this is why there is only one Clitic position involved in this derivation.

3.2.3. Problems of Roeper, Snyder and Hiramatsu's theory

It seems that compound words in all the languages in question can be derived by this theory. However, this theory has some serious problems. First, the operation movement in the Minimalist Program should be caused by feature checking requirements involving a functional category. However, in Roeper et al’s theory, there is no feature to be checked or a functional category involved in the derivation of compounding. Nor does the noun which originates in the Clitic position have any semantic or syntactic features which should be checked by another noun in the course of the derivation.

The second problem is related to the first one. The moved noun is merged twice with the same head noun. For instance, in the derivation (293), the noun, bog is merged with klubb. Although Roeper et al do not discuss headedness (see below) the idea clearly is that klubb is the head of the compound. Then, the N bog is merged again with the same head, klubb (see the explanation under (263)).

Another criticism is that this operation violates the Extension Condition (see Section 3.2). The Extension Condition prohibits using the Clitic position to introduce another modifier to derive a compound word. For example, the derivation of a compound word restaurant coffee cup by first forming coffee cup, then moving coffee, and then introducing the new lexical item restaurant in place of coffee violates the Extension Condition. As a result, their analysis certainly does not adhere to the Minimalist theory of phrase structure rules.
Next, this analysis does not tell us anything about occurrence of regular plurals between the two constituents of the compound words (e.g. *Christmas-es cookie). However, they could claim that the lexical element in the Clitic is a root, not a stem with an inflection, for two-member compounds. However, for three-member left-branching compounds, such as gourmet coffee cup, the Clitic cannot be a root, since the Clitic is a compound word.

There is also a problem in determining the head of a noun-noun compound word. Let us assume for the sake of the argument that Chomsky’s (1995) definition of headedness being the selector is correct. Recall that deletion of the trace of the moved noun, which was crucial in recursive compounds, was possible because the moved noun (the Clitic) was not selected. So Chomsky’s definition of headedness does not work.

3.2.4. Josefsson’s (1997) theory

3.2.4.1. Lexicon

Like Roeper, Snyder and Hiramatsu, and Spencer (2003), Josefsson (1997) claims that compound words are derived in the same way as phrases are. Before analysing structure, it is important to describe the lexicon which is used by Josefsson in her theory. To derive a word, a number of items, X and Y, are enumerated from the triune lexicon, a model by Platzack (1993). This lexicon is modelled as follows.

(297)

```
LIST OF MORPHEMES

|__PF
|
|____LF
```

Josefsson 1997: 50

In this system, the syntactic component has access to the List of Morphemes of Halle (1973). All different types of morphemes, including linking morphemes, constituents involved in neoclassical compound words, ‘cranberry morphemes’ and many others are listed in the List of Morphemes. Another important fact is that there is no information about the phonetic or semantic aspects of morphemes, but only formative aspects. Josefsson (1997) argues that
different languages have a different List of Morphemes, which results in different words including compounds in different languages.

Josefsson (1997) and Platzack (1993), as non-lexicalists, state that it is also necessary to assume that the component List of Morphemes exists where words, compounds, derived words, collocations, and idioms are stored. The existence of the component is necessary, because all the elements listed may acquire a special meaning, which is not possible to be computed from the meaning of the parts.

According to Platzack (1993), in this system, only the morphemes are affected by the computational system. The derivational part of the computation performs the process of structure building, building words and phrases by means of generalised transformations Merge. At some point in the derivation, the split-off point is reached, where one part of the derivation goes to PF and one part goes to LF. The former part access the PF-lexicon, the other part the LF-lexicon.

In the LF lexicon, meaning is assigned to the syntactic constituents. The connection between the LF representation of a derivation and the syntactic structure is hierarchical, going from the top of the tree downwards:

The lexicon mediating between LF and Conceptual Structure works in a top-down fashion: it gives precedence to the entry corresponding to the largest X° before it envokes [sic] elements below this level. (Platzack 1993: 310)

In other words, in a derivation, the LF system scans for a concept related to the highest X° node. For instance, for ordinary words, the search for a connection between word A and concept A takes place. If concept A is found, then a word-meaning pairing occurs. In the case of a compound, the system scans for a connection between the whole compound and a concept, i.e., the highest node, as a first option. If there is no matching between concept and compound, the procedure of scanning for a matching takes place one level down in the hierarchy and the matching scanning begins all over again. If a connection can be established between the syntactic constituents and the conceptual system the meaning is read off.

In this system, Platzack states that 'cranberry morphemes' which are found in the lexicon as parts of full words (as discussed in Section 2.1.2), are represented as separate morphemes in the
list of morphemes. This means that the syntactic system has access to them, but they are not represented in the LF lexicon as separate entries, only as a part of the full word.

Following Halle and Marantz's (1993) Distributed Morphology, Josefsson's claim is that all generalised transformations are assumed to be of the same kind, showing that they take place in a single module. Thus, there is no single place called a 'lexicon' distinct from syntax where some generalised transformations take place. Another point is that only formative aspects of morphemes, but not phonological aspects, are contained in the list of morphemes.

As in theories proposed in the GB framework, the hierarchical head-modifier structure is certainly important in this Minimalist theory of the lexicon. The relation between the head and modifier is an input to compositional process. This process connects the meaning of the constituents to a meaning of the whole. According to this system, the meaning which is appropriate for the actual context is provided by the conceptual system, not the syntax.

This type of lexicon seems non-redundant and capable of accounting for any kind of morphemes, including neoclassical compounds, 'cranberry morphemes', productive compound words, idioms, and lexicalised compound words which may have both an idiosyncratic and a compositional reading. To my knowledge, this has not been achieved by other researchers. The theory proposed by Platzack will be assumed in this thesis.

Let us see how the triune lexicon can be applied to compound words. Take the word pancake. The compound is constructed by merging the words pan and cake, taken from the List of Morphemes. Then, the entry for the conventionalised meaning of the lexicalised compound word, pancake is searched for in the LF-lexicon. The conventionalised meaning is 'a thin, flat, circular piece of cooked batter made from milk, flour, and eggs' (Collins Cobuild English Dictionary 2001), not 'a cake made on a frying pan'. The conventionalised meaning is there in the LF-lexicon. If it is not, then the literal meaning can be deduced. The difference between the meanings depends on the context where the compound appears. As for a productive compound which does not have any conventionalised meaning, the lexical entry for the meaning is not present in the LF-lexicon. Therefore, it is necessary to rely on lexical entries corresponding to parts of the whole word. For instance, the meaning of the productive compound word London

40 Similar ideas are presented in Jackendoff (1997) and Chomsky (1993). They consider that conceptual structure must provide a formal basis for rules of inference and the interaction of language with world knowledge. Jackendoff claims that there has to be some level of mental representation at which inference is codified and it is conceptual structure, a level that is not encoded in narrow syntactic terms. See the further discussion on the complexity of the syntactic structure-conceptual structure interface in Jackendoff (1997).
bus is absent from the LF-lexicon. Therefore, only the meanings of the parts of the compound word, London and bus, are in the LF-lexicon and these meanings are relied on for the meaning of the whole compound word.

It is proposed in this thesis that the idea of scanning for meaning can be applied to neoclassical compound words, like Josefsson proposes about cranberry morphemes. Take for instance the word philosophy: neither philo nor sophy mean anything on their own. Yet, since they both occur in various compounds (see Chapter 2), they are listed in the List of Morphemes. The compound is derived by merging philo and sophy taken from the List of Morphemes, however, it is possible to assume that for a normal speaker of language, unless he/she is highly educated or a linguist, parts of meaning of neoclassical compound words do not usually have a meaning. It is, however, necessary to assume a lexical entry in the LF and PF lexicon for this type of compound word, as is assumed for ‘cranberry words’.

This system can be also applied to neoclassical compounds in Japanese. Take for example the neoclassical compound, kuu-koo ‘air-port’ (airport). First, kuu, which means ‘sky’ and koo ‘port’ are taken from the List of Morphemes and merged to make the compound. The LF-lexicon scans for a connection between the whole word, kuu-koo and the concept ‘airport’ as a first option. The concept and the compound are matched, since the meaning of the whole word airport is present in the LF-lexicon.

Josefsson briefly discusses the nature of the PF-lexicon. The phonetic properties of the lexical items involved in the generalised operations are assigned at the PF-lexicon, not the LF-lexicon. Contrary to Lieber (1992) (see 3.1.3), linear order is important in PF, so Josefsson assumes that the PF-lexicon contains principles of mapping of the hierarchical structure to a linear one, as exemplified below.
According to Josefsson (see in Section 3.2.4.2 for the discussion of how the derivation takes place in the syntax), the inflectional features, number and definiteness, could be described as features with binary values. The gender/declension of the stem (declension 2 for this example) is stored in the PF lexicon, or is assigned according to rules of default. As a result, the word hästarna is spelled-out in the string order. The spell-out of inflectional features is dependent on the string order, rather than the hierarchical structure.

As for cases without one-to-one mapping from the abstract morphological representation to the phonetic representation, such as cases of ablaut and umlaut, Josefsson states that the PF-system is assumed to allow for operations like Fusion and Fission, as proposed in Halle and Maranz (1993).

Rendaku, sequential voicing in Japanese, (as discussed in Section 2.3.2) also takes places in the PF-lexicon. Take, for example, the derivation of the compound match-bako (match-box) in Japanese.

41 Ablaut is a vowel change accompanying a change in grammatical function. E.g. the vowel change in English from I to a to u in sing, song and sung. Umlaut is a special kind of vowel modification. The process of umlaut is a modification of a vowel which causes it to be pronounced more similarly to a vowel or semivowel in a following syllable. E.g. tooth/teeth, foot/feet, man/men, goose/geese
As the above derivation demonstrates, the lexical item hako is merged with an N feature and then another lexical item match is merged (See below for the syntactic derivation). After the syntactic derivation is finished, the initial segment of hako /h/ becomes voiced in the PF-lexicon (by Lyman’s Law, as discussed in 2.3.2) and the word matchbako ‘match-box’ is Spelled Out.

3.2.4.2. Structure

With this system of LF-lexicon, Josefsson proposes structures for word and compound word in Swedish in the following way.

(300) Swedish

In these structures, the m° indicates a stem without word class feature (see below for the discussion of word class features). Josefsson (1997) defines non-affixal morphemes as ‘stems’. So one can presume that m° can be either a stem or a root in the traditional sense. In addition, Josefsson argues that the inflection is the only source for word class and is therefore referred to as N°. Inflections are carried by words, and if the inflection is a suffix, it is the head of the word.
Inflections host features like number and gender, and these features are what makes a stem a noun.

The structures (300)-(301) are constructed by the operation Merge under the approach of the Minimalist Program (Chomsky 1995). First, morphemes, \(m^0 \) and \(N^0 \) are merged together to form a word. When two zero level elements are allowed to merge, only one projects. As discussed in Section 3.2, a basic characteristic of language is the asymmetry of syntax. In the case of (300) the inflectional affix (e.g. `-ar ` `-es`) projects its features and will act as the head of the structure.

The strictly configurational definition of head, complement and specifier in Chomsky (1994) is adopted in Josefsson’s theory. Chomsky’s configurational definition is as follows: “the head-complement relation is the ‘most local’ relation of an XP to a terminal head Y, all others within YP being head-specifier (apart from adjunction)” (p.11). The following structure shows this.

(302)

```
YP
  \hspace{2cm} adjunct
   YP
     \hspace{2cm} specifier
      \hspace{2cm} Y'
        Y° complement
```

According to Josefsson, Chomsky’s definition allows us to assume that the head of the word is the inflection itself (in (300) and (301), it is \(N^0 \)), and that the stem \(m^0 \) is the complement. The inflection selects a stem in Josefsson’s terms, although it is unclear what it selects since the \(m^0 \) is not a category.

After the merge of the inflectional affix and the complement stem, another stem is merged to form a compound word. This is what the structure (301) shows. Following Kayne (1994) left adjunction is allowed at \(X^0 \) level, too. So another stem is merged, forming the more complex structure.

3.2.4.3. Non-head of compound words according to Josefsson

It is important to note that neither lexical element involved in a two-member compound word carries word class features in the traditional sense. This idea was suggested in Chomsky (1970: 190), where pairs like refuse-refusal are discussed. He proposes that refuse is a lexical entry with
fixed selectional properties, but which is free with respect to the categorical features [noun] and [verb]. Following Josefsson (1997), it is claimed in this thesis that, as a root (in the traditional sense), the ‘left-hand’ element of a compound word does not have any word class features. The traditional criteria for determining the word class of a word are meaning, morphology and syntactic function. Firstly, the meaning criterion states, for example, that nouns are thing-words, adjectives are property-words, and verbs are event words. However, there are, for example, abstract nouns, and those which denote events or properties, not things, and verbs which do not denote events but states. Thus, the conclusion Josefsson reaches is that the meaning criterion is not useful in deciding the word class of roots, in her terms stems.

Moreover, Josefsson claims that in cases where a noun, a verb and/or an adjective is derived from the same root, it is difficult to decide the word class of the left-hand segment of compounds with zero morphemes, for example res + väska (trip/travel + bag) ‘suitcase’ and res + pass (trip/travel + order) ‘order to leave’ in Swedish. Thus, the meaning criterion is not useful in deciding the word class of roots.

Another criterion is morphology. According to this criterion, nouns are words that carry nominal inflection; verbs are words with verbal inflection, etc. By this criterion the non-head of a compound is not a noun or verb etc., as it usually does not take any inflection, and as discussed in 2.1.1, the non-head of a compound in Scandinavian languages is not a free morpheme.

The third criterion is syntactic function. For example, nouns function as complements of D. Again, this criterion is not applicable for ‘left-hand’ segments of compound words and derivations in Scandinavian languages but only for full words. Josefsson concludes that none of the three criteria provide a way of deciding the word class of roots functioning as left-hand segments of compounds and derivations.

As a result, Josefsson claims that the ‘left-hand’ segments of derivation and compound words, m₀ in the structures (300) and (301), are morphemes without word class features. In her thesis, she establishes the relation between word classes and conceptual categories, which fall into a finite number of major ontological categories (Jackendoff 1985). Jackendoff claims that ontological category features are visible to the syntax-semantics interface unlike most descriptive

42 As discussed in the previous sub-section, Josefsson (1997) claims that ‘stems’ are involved in compounding. In her thesis, she defines the term ‘stem’ as a non-affixal morpheme. In this thesis, the term ‘root’ is used instead of Josefsson’s term ‘stem’ to avoid the confusion. Here, the term ‘root’ is defined as a morpheme with semantic content that cannot be analysed further. On the other hand, the term ‘stem’ is usually used for a root with derivational affixes (cf. Plag 2003: 11).
features of concepts, so they play an important role in grammar as well as perception. According to Jackendoff (1985), the world is understood in categories like [THINGS], [PROPERTIES], [EVENTS], [DIRECTIONS], [PLACES], etc and there are some differences between the world as we understand it (the projected world, experienced world, or phenomenal world) and the true world. The major ontological categories are prototypically represented in the word classes; Things are nouns, Events are verbs, Properties are adjectives.

Josefsson discusses the relation between the major ontological category [THING] and the word class noun. For example, the stem tvätt- (wash) in Swedish is used in different contexts:

(303)

a. Olle tvätt-ar.
 Olle wash-PRES
 'Olle washes'.

b. Olle sorterade tvätten.
 Olle sorted wash-the
 'Olle sorted the laundry'.

In the examples in (303), it is clear that in (303a), tvättar denotes the action/event of washing and on the other hand, tvätten in (303b) denotes an object, i.e. the laundry.

In contrast, the distinction of denotation is less clear. It is necessary for tvätt in tvätt + korg in (304c) to denote the object laundry, since baskets are designed for containing concrete objects. Similarly, tvätt - in (304c) denotes the event or activity of washing. However, for the other compounds, the major ontological category is difficult or impossible to determine. A root like tvätt is apparently able to denote both an event/activity and an object, or to ‘oscillate’ between the two possibilities.

(304)

a. Vi har köpt en tvätt-maskin.
 We have bought a wash-machine
 'We have bought a washing machine'.

b. Vårt tvätt-medel är slut.
 Our wash-agent is out
'We are out of washing powder'.

c. Lägg dina smutiga strumpor i tvätt-korgen.
 Put your dirty socks in wash-basket-the
 'Put your dirty socks in the laundry basket'.

d. Vi fick ingen tvätt-tid den här veckan.
 We got no wash-time this week-the
 'We got no washing time this week'.

e. Tvätt-processen tog två timmar.
 Wash-process-the took two hours
 'The washing took two hours'.

With these interpretations of the root in mind, the structure for the Danish word klub 'club' is derived in the following way.

\[
\begin{array}{c}
\text{N}^{0[\text{thing[#thing: klub#]}]} \\
\text{m}^{0} \quad \text{N}^{0[\text{thing[#thing: klub#]}]} \\
\text{klub}
\end{array}
\]

This structure shows the cognitive/semantic structure. The overall meaning of the noun is that of a Thing, with descriptive features relating to the concept #klub# 'club'. The notation # is used by Jackendoff (1985) to refer to the projected world, i.e. the world as we understand it. The true world is outside the embedded bracket. According to Jackendoff, the true world is not directly related to the language. The overall Thing classification derives from the inflectional part of the word, descriptive features from the root. The fact that the prototypical meaning of the concept #klub# is that of a Thing makes klub a prototypical noun.

It is not generally argued in the field of semantics that nouns ever refer to Things. The alternative is that they refer to properties, for example, the property of being a club (Higginbotham 1985, Chierchia 1998). However, in Josefsson's model N can perhaps be thought of as the morpheme which turns a property-denoting root into a thing-denoting nominal category.
Then, the stem *bog* 'book' is taken from the List of Morphemes and merged with $[^{N^0}_{N^0} \text{klub}]$ to form a more complex structure as follows.

(306)

```
+----+                  +----+
|   N[^0[thing[#thing: klub#]]]  |   N[^0[thing[#thing: klub#]]] |
+----+                  +----+
      |                  |                  |
      | bog              | N[^0[thing[#thing: klub#]]] |
      +-----------------+                  |
          |              +-----------------+  
          | klub           |   N[^0[thing[#thing: klub#]]] |
```

In the above structure, the morphemes *bog* and *klub* have no word class features. This implies that the structure has only one set of word class features, the ones represented by N^0. The interpretation in terms of major ontological category is not determined either, as long as the morphemes *bog* and *klub* in the structure do not have any inflectional features. *Klub* thus refers to a macroconcept for which the Thing interpretation is the prototypical one, which is assumed to be invoked unless an unprototypical reading is forced by the morphological context (Josefsson 1997: 56).

As a result, with both syntactic and semantic features presented, the structure for the compound word in Danish is as follows.

(307)

```
+----+                  +----+
|   N[^0[thing[#thing: klub#]]]  |   N[^0[thing[#thing: klub#]]] |
+----+                  +----+
      |                  |                  |
      | bog              | N[^0[thing[#thing: klub#]]] |
      +-----------------+                  |
          |              +-----------------+  
          | klub           |   N[^0[thing[#thing: klub#]]] |
```

The nominal inflection feature and the semantic feature Thing are percolated to the higher nodes dominating the morphemes. These features decide the categorical and semantic features of the whole compound word.

It is important, at this point in the discussion, to investigate whether Josefsson's (1997) theory is applicable to lexicalised compounds. Josefsson, following Platzack, argues that if there is no matching between concept and compound, the procedure of scanning for a matching takes place
one level down in the hierarchy. For example, the Swedish word, *tebrev* literally 'tea-letter' i.e. 'teabag' is derived in the same way as the productive compound shown above. First, the lexical item *brev* is numerated from the List of Morphemes and merged with the inflection and the semantic category, Thing. Then the lexical item *te* is numerated from the List of Morphemes and merged to form a compound word. This compound has a matching concept listed in the LF-lexicon. Therefore, there is matching between concept and compound in the highest node and the non-compositional reading is derived. The connection between the syntactic constituents and the conceptual system is read off in the LF-lexicon.

In this framework, it is possible to analyse a wide range of compound words.

\[(308)\]

a. barn+bok+klubb
 child+book+club

\[\begin{array}{c}
barn \\
\downarrow \\
N^0[\text{thing[\#thing: klub]}] \\
\downarrow \\
bok \\
\downarrow \\
N^0[\text{thing[\#thing: klub]}] \\
\downarrow \\
klubb \\
\end{array}\]

b. barn+bok+s+klubb
 child +book+ LINK+ club

\[\begin{array}{c}
N^0[\text{link}]
\end{array}\]

\[\begin{array}{c}
s \\
\downarrow \\
barn \\
\downarrow \\
bok \\
\end{array}\]

\[\begin{array}{c}
s \\
\downarrow \\
klubb \\
\end{array}\]

(taken from Josefsson 1997: 60)
The structure in (308a) indicates that the compound word has no linking element and the translation would be 'book club for children', whereas the structure (308b) has a linking element, which is required for the reading 'a club for children's books' (see 3.2.2).

As discussed in 2.1.1, the linking morpheme also exists in some compound words which consist of two constituents.

(309)

\[
\begin{align*}
stol+s+en, & \quad skov+s+bryn, & \quad sax+d+e+mark \\
\text{chair}+\text{LINK}+\text{leg}, & \quad \text{forest}+\text{LINK}+\text{edge}, & \quad \text{grain}+\text{LINK}+\text{field}
\end{align*}
\]

Danish (also in Swedish)

The structure for this type of compound words, which is called a simple mediated compound by Josefsson (1997), is different from the one for compound words with a linking morpheme, like the example (308b) (see more about the linking morphemes in Section 4.3.2 and 4.3.5). Josefsson does not propose a structure for compounds such as (309). Therefore, it is necessary to propose a new one in this thesis (see 4.3.2 for the proposed structure).

In summary, this chapter has discussed previous theories for compound words proposed by other researchers within the GB and Minimalist frameworks. It has been discussed that none of them is good enough. They seem to follow the Righthand Head Rule (Williams 1981) for determination of the head of a compound word. In addition, they focus too narrowly on specific types of compound words or languages. I have attempted to analyse these theories for the languages in question and other types of compound words, not only noun-noun compound words. As a result, I have concluded that none of them will be sufficient.

In contrast, Josefsson's (1997) theory seems applicable to various kinds of compound words in Mainland Scandinavian. One type of compound word which is not discussed by Josefsson is neoclassical compounds. Josefsson states that word class features of roots involved in compounding are not specified. In this thesis, it is proposed that there are no syntactically relevant differences between the constituents involved in the different types of compounding. Distinctions between these can be made, but they are not relevant for how words are constructed.

The next chapter will discuss how to determine the non-head of compound words in English, Japanese and other types of compounds in Mainland Scandinavian. Then, I will discuss whether Josefsson's structure for Swedish compounds is applicable in English and Japanese compounds.
4. Proposed structures of compound words

The last chapter considered the previously proposed theories for compound words within the GB and the Minimalist Program frameworks. I have found out that none of them is good enough, especially with respect to headedness of compound words. In most current minimalist theories morphology is after spell-out. However, it is necessary to determine the head before spell-out, since the head needs to be interpreted in the LF. In this chapter, I will propose an alternative theory of compound words within the Minimalist Program, showing that the head of a compound is determined in the narrow syntax.

This chapter is organised as follows. In the first section, following Josefsson's (1997) theory of the non-head in Scandinavian languages, that of Japanese and English will be discussed within the Minimalist Program. I will compare this theory with Lexical Phonology with regards to the non-head of a compound. This will be followed by a proposed structure of compound words in the languages in question within the Minimalist Program. I will argue that the proposed structure is applicable for a wide range of compound nouns in different languages. Then, a structure is proposed for phrasal compounds and copulative compounds, respectively in the languages in question. I conclude the chapter by discussing the weak points in the other theories and how my proposed theory solves the problems.

4.1.1. The Non-head of compound words in Japanese

The observation of Japanese compounds in 2.1.1 leads me to think that the left-hand element of compound words in Japanese does not have word class features, as in the case of the Scandinavian languages. Firstly, the meaning criterion states that nouns are thing-words, adjectives are property-words, verbs are event words, etc. As in Scandinavian languages, in Japanese compound words, the left-hand segment can be a deverbal noun, such as in odori-ko (dance-child) 'dancing child', odori-kuruu (dance-crazy) 'become crazy in dancing'. There is no straightforward way to determine the word class of compound words when the left-hand segment is a deverbal noun.

As in Scandinavian languages, in Japanese compounds it is also not easy to determine the word class of compound words according to the morphological criterion. The morphological criterion is not useful for the non-head of compounds and derivations in Japanese because it is not a free morpheme. The following examples illustrate this.
As discussed in 2.1.1, the verbal left-hand segment in these examples is not a free morpheme, but renyoukei ‘an infinitive form’ in traditional Japanese grammar, which needs to be merged with another morpheme to occur independently as verb. ‘Adjectival’ compound words are similar in Japanese:

(310)

a odouru ‘to dance’
odori+ko
dance+child
‘dancer’
b nagareru ‘to flow’
nagare+bosi
flow+star
‘shooting star’
c hataraku ‘to work’
hataraki+bachi
work+bee
‘worker bee’
d kesu ‘to erase’
kesi+gomu
erase+rubber
‘eraser’

(311)

a hurui ‘old’
huru+hon
old+book
‘second-hand book’
b yowai ‘weak’
yowa+ki
weak+feeling
‘timidness’
c. kirei-na ‘beautiful’
kirei+dokoro
beautiful+place
The adjectives in (a) and (b) are called *i*-adjectives in traditional Japanese grammar. In these examples, the last morph *-i* of the adjective is deleted in compound words. Another type, shown in examples (c) and (d) in Japanese is the *na*-adjective. To appear in a compound word, the last morph *-na* is deleted. Thus, adjectives and verbs as left-hand elements of compound words in Japanese show a similar phenomenon to the left-hand noun in some noun-noun compound words in Scandinavian languages. In fact, I will argue that the non-head element in Japanese compounds is never a free morpheme. In summary, the morphological criterion is not useful in deciding the word class of roots.

The third criterion is syntactic function. For example, nouns function as complements of D. Again, this criterion is not applicable for left-hand segments of compound words and derivations in Japanese, only for full words. Thus, as in Scandinavian languages, it is concluded that none of the three criteria provide a way of deciding the word class of roots, including roots functioning as left-hand segment of compounds in Japanese.

4.1.2. The non-head of English compound words

In English, as discussed in Section 2.1.1, it looks like compound words are composed of two free morphemes. Let us see if the morphemes have word class features. As in the other languages, the meaning criterion is not applicable in this case. One phenomenon found in English but not in Scandinavian languages or Japanese, which has led several scholars, such as Selkirk (1982), to believe that non-heads in compounds are (free) words, is the regular plural marker. However, with some exceptions, the left-hand segment does not have any regular plural inflection. When there is what looks like a regular plural inflection (as discussed in Section 2.4.1), it does not refer to a plurality. For example, in compounds such as *awards ceremony* and *publications catalogue*, the left-hand segment does not necessarily refer to a plurality of publications or awards. So the *-s* is not a plural inflection, but it is a linking morpheme (see below in Section 4.3.1). Thus, the morphological criterion cannot be used in English either. There is one exception: *parks commissioner*. In at least some native speakers' lexicons, both *parks/park commissioner* exist and there is a semantic difference between them, i.e. a *parks commissioner* is a commissioner
who looks after several different parks whereas a park commissioner is one who looks after parks in general. So the structure of this compound is different.

In addition, as in Scandinavian languages and Japanese, it is difficult to determine the word class of the non-head segment of compounds with zero morphemes, like travel agent, work camp, dance hall and so on. The other criterion, syntax, is not applicable, since the non-head of a compound cannot take part in any syntactic operations. As a result, it is assumed that the left-hand segment of English compounds does not necessarily have any word class features either.

If Japanese V-N compounds are translated into English, it is necessary to have derivational suffixes attached to the verbs, such as -ing or -er to appear as the constituent in compound words. Typical examples are washing machine and fighter bomber. In these cases, the ‘left-hand’ element is a full word, not a stem without word class features. Thus, the structure for this type of compound is different from those of N-N compounds (see Section 4.3).

4.1.3. Affix-driven vs. base-driven stratification of the lexicon

Within the framework of Lexical Phonology\(^{43}\), instead of the affix-driven stratification of the lexicon (Siegel 1974, Halle and Mohan 1985, Kiparsky 1982), Giegerich (1999), Wiese (1996b) and Montgomery (2001) propose base-driven stratification of the lexicon, where the English lexicon has only Root and Word strata whereas German has three strata, Root, Stem and Word (following Selkirk 1982). These categories are the bases which affixes attach to, and Giegerich (1999) gives the following definitions for these categories: the term Root is defined as a morphological category that is not specified for lexical category; stem is defined as a morphological category which is specified for lexical category but subject to further (for example, inflectional) affixation; word is a morphological category that is free as well as fully specified for lexical category. Let us see some of the characteristics of Stratum-1 and 2 affixations within the affix-driven approach and then examine the changes in the base-driven approach before discussing whether this approach can give us a clearer picture of criteria for the non-head of compounds in the languages in question.

Siegel (1974) hypothesised that in English, every affix is firmly associated with one and only one of the two classes of affixes and that a lexicon needs to be stratified. The first boundary or class of affixes, Stratum-1 affixes (for example, -ion, -ity, -ate, etc) are attached before the operation of the stress rules. In contrast, the second, Stratum-2 affixes (for example, -ness, -ly, -

\(^{43}\) See also Section 2.4.1 for Lexical Phonology.
like, etc) are attached after the operation. In addition, another difference between Stratum-1 and 2 affixes is that the former can be attached to bound or free morphemes (in the traditional sense) whereas the latter can be attached only to free morphemes. Thirdly, affixation on stratum 1 is claimed to be less productive than that on stratum 2 (Kiparsky 1982). Along the same line affixation on stratum 1 is more likely to be semantically non-compositional than affixation on stratum 2. The important characteristics of the affix-driven approach are the Blocking Effect and the Affix Ordering Generalisation. The Blocking Effect is achieved automatically in a stratified lexicon. For example, the ungrammaticality of *warm-ness (-ness is a Stratum-2 affix) is accounted for because of the existence of warm-th (-th is Stratum-1). In relation to the Blocking Effect, the output of Stratum-1 affixation tends to be less productive than Stratum-2 affixation due to the Blocking Effect. Finally, the Affix Ordering Generalisation states that, given that both types of affixation are recursive, stratum-2 cannot be 'inside' stratum 1-affixation (e.g. homelessness, tonicity and tonicness are well formed, but *homelessity is not)\(^{44}\).

In contrast, after careful scrutiny of the affix-driven approach, Giegerich (1999) argues for the base-driven approach. The base-driven stratification of lexicon is proposed due to several shortcomings of the affix-driven stratification. According to Giegerich, there are a number of affixes which cannot be pinned down to a single stratum (those which have dual membership). Moreover, there has never been a consensus as to how many strata the English lexicon should have. Thirdly, the claim that stratum-2 cannot be 'inside' stratum 1-affixation cannot be upheld for cases like - (u) ous and -ize which are both stratum 1 affixes. For example, the word *sens-ous-ize is ungrammatical. So the Affix Ordering Generalisation is not correct in this case.

Instead, Giegerich proposes Root-to-Word Conversion. There must be one class of morphological operations whose inputs are roots and whose outputs are words. In the absence of such a process, no lexical item could transit from stratum 1 to stratum 2. The following rule is proposed.

(312) Root-to-Word Conversion

\[
[_]. \rightarrow [[_]. _](L = N, V, A) \quad \text{Giegerich 1999: 76}
\]

Also, following Lieber (1981) and Kiparsky (1982), Giegerich argues that all affixation rules have the form (313) below. This rule is applied to any kind of affixation.

\(^{44}\) Other phonological differences between the two kinds of affixes within Lexical Phonology are vowel shortening and shift in the Stratum 1 affixes, but not in Stratum-2, and a syllabic base-final consonant in the Stratum-2 affixes but not in the Stratum-1 affixes. However, Giegerich argues that these two are not necessary conditions.
In rule (313), L is the lexical category specification of the base. According to ‘[Y_____Z]’ in (313), any further details of the subcategorisation frame limit the attachment of the affix A. Some examples of such frames are given in (314) below:

(314)

a. matern \rightarrow \textit{-al}
 \rightarrow \textit{-ity}
 * \rightarrow \emptyset

moll \rightarrow \textit{-ify}
 \rightarrow \emptyset

gorm \rightarrow \textit{-less}
 * \rightarrow \emptyset

b. serene \rightarrow \textit{-ity}
 \rightarrow \textit{-nade}
 \rightarrow \textit{Adj}

nation \rightarrow \textit{-al}

The roots of the frames (314a) are bound forms. Every root is marked, or not, to undergoing (312). One of the operations available is to attach \textit{-al} to \textit{[matern]}, where ‘attach’ is taken to mean the placement of a pair of brackets round the concatenated form: \textit{[[matern] al]}, the same can be said for the operation deriving \textit{[[matern] ity]}. Also, the operation (313), \textit{Insert \textit{[matern]} to rule (312)}, takes place, represented as \textit{matern} \rightarrow \emptyset in (314a). The resulting derivation is ungrammatical, as predicted.

In contrast, the roots of (314b) are free roots. Contrary to example (314a), the roots of example (314b) are marked for undergoing rule (313). Thus, it is possible to have the operation, \textit{Insert \textit{[serene]} to rule (312) and assign the lexical category Adjective}\footnote{In this approach, then, there is no problem of dual membership, which is a problem in the affix-driven approach. For instance, the affix \textit{-able} has dual membership and can be categorised as a Stratum 1-affix as well as a Stratum 2-affix, according to the phonological criteria (stress-shift/stress-neutral), as the bases can both be free (the examples in (b) below) as well as bound (the examples in (a) below).}

\begin{align*}
\text{a. affable} & \quad \text{b. debatable} \\
\text{arable} & \quad \text{dependable}
\end{align*}
Based on these assumptions, Giegerich (1999), Wiese (1996b) and Montgomery (2001) claim that German should have another stratum apart from Root and Word. Giegerich gives examples of adjective-forming -bar 'able', attaching to transitive verbs. Giegerich gives the following examples of noun-forming affix -ung 'ing' which is attached to transitive and intransitive verbs (Giegerich 1999: 89) (see Table 2). The suffix is productive and attaches only to a verbal base, so it is not a Stratum-1 affix according to the affix-driven approach. However, its base is not a Word, so there needs to be another category apart from Root or Word in affixation in German. The form in parenthesis is the infinitive form of the verb.

<table>
<thead>
<tr>
<th>capable</th>
<th>noticeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>formidable</td>
<td>perishable</td>
</tr>
<tr>
<td>probable</td>
<td>manageable</td>
</tr>
</tbody>
</table>

However, if one takes the Root-to-Word Conversion rule and the base-driven approach, it is possible to derive the above examples without considering the dual membership of the affix.

a. affable
 aff → able
 Root to Word Conversion
 *[aff], → [[aff]]L

b. debatable
 debate → able
 [debate] v → [[debate] v]

The inputs to all stratum-1 affixation are members of the category Root and those to all stratum-2 affixation are Word. In this approach, both Root and Word are recursive categories; e.g. it is possible to derive another word after the stratum-1 affixation in sensation-sensational, sensationality as well as after the stratum-2 affixation in homelessness.
The bases of both \textit{bar} and \textit{ung} are roots in the definition given by Matthews (1991: 64). Matthews' (1991) definition for the term stem is that it is morphologically complex and it underlies at least one paradigm or partial paradigm. According to Giegerich (1999), Wiese (1996b) and Montgomery (2001), the bases of the affixes are members of the lexical category Verb but lack the inflection that would enable them to enter the syntax as free forms. These bases of the affixes can be identified as verbs, because they are selected by the affix, \textit{-bar} or \textit{-ung}. These affixes cannot select other lexical categories. The same range of stems occurs in the first elements of verb-noun compounds. The following are examples.

\begin{table}[h]
\centering
\begin{tabular}{lll}
\hline
trinkbar & 'drinkable' & schöpfung & 'creation' \\
(trinken) & & (schaffen) & \\
\hline
essbar & 'edible' & zündung & 'ignition' \\
(essen) & & (zünden) & \\
\hline
brauchbar & 'useful' & lesung & 'reading' \\
(brauchen) & & (lesen) & \\
\hline
lesbar & 'legible' & trennung & 'separation' \\
(lassen) & & (trennen) & \\
\hline
analysierbar & 'analyseable' & filtrierung & 'filtration' \\
(analysieren) & & (filtrieren) & \\
\hline
opearierbar & 'operative' & finanzierung & 'funding' (N) \\
(opearieren) & & (finanzieren) & \\
\hline
\end{tabular}
\caption{\textit{bar} and \textit{ung} affixes.}
\end{table}

The above examples show that German morphology has a stem-based stratum. The stem stratum follows the root stratum. The suffix, \textit{-ier} in (315f) is a root-based derivational suffix deriving a verbal stem. The stem stratum needs to exist, because the outputs of these derivations are subjected to further affixation in order to occur independently in the syntax as a Word.
As already discussed above, Scandinavian languages show a similar pattern in derivation. The following examples clearly demonstrate this. The form in parenthesis is the infinitive form of the verb, and the L in the gloss represents a linking morpheme.

Table 3.

<table>
<thead>
<tr>
<th>English</th>
<th>Danish</th>
<th>Swedish</th>
<th>Norwegian</th>
</tr>
</thead>
<tbody>
<tr>
<td>drinkable</td>
<td>drikke+e+lig</td>
<td>drink+bar</td>
<td>Drikke+e+lig</td>
</tr>
<tr>
<td></td>
<td>drink+L+able</td>
<td>drink+able</td>
<td>drink+L+able</td>
</tr>
<tr>
<td></td>
<td>(drikke)</td>
<td>(dricka)</td>
<td>(drikke)</td>
</tr>
<tr>
<td>edible</td>
<td>spis+e+lig</td>
<td>ät+bar</td>
<td>spis+e+lig</td>
</tr>
<tr>
<td></td>
<td>eat+L+able</td>
<td>eat+able</td>
<td>eat+L+able</td>
</tr>
<tr>
<td></td>
<td>(spise)</td>
<td>(äta)</td>
<td>(spise)</td>
</tr>
<tr>
<td>useable</td>
<td>brug+e+lig</td>
<td>använd+bar</td>
<td>använd+e+lig</td>
</tr>
<tr>
<td></td>
<td>use+L+able</td>
<td>use+able</td>
<td>use+L+able</td>
</tr>
<tr>
<td></td>
<td>(bruge)</td>
<td>(använda)</td>
<td>(anvende)</td>
</tr>
<tr>
<td>readable</td>
<td>læs+e+lig</td>
<td>läs+bar</td>
<td>les+e+lig</td>
</tr>
<tr>
<td></td>
<td>read+L+able</td>
<td>read+able</td>
<td>read+L+able</td>
</tr>
<tr>
<td></td>
<td>læs+bar</td>
<td>(läsa)</td>
<td>(lese)</td>
</tr>
<tr>
<td></td>
<td>read+able</td>
<td>(læse)</td>
<td></td>
</tr>
<tr>
<td>analysable</td>
<td>analyser+e+lig</td>
<td>analyser+bar</td>
<td>analyser+e+lig</td>
</tr>
<tr>
<td></td>
<td>analyse+L+able</td>
<td>analyse+able</td>
<td>analyse+L+able</td>
</tr>
<tr>
<td></td>
<td>(analyser)</td>
<td>(analysera)</td>
<td></td>
</tr>
<tr>
<td>operable</td>
<td>anvend+e+lig</td>
<td>använd+bar</td>
<td>anvend+e+lig</td>
</tr>
<tr>
<td></td>
<td>use+L+able</td>
<td>use+able</td>
<td>use+L+able</td>
</tr>
<tr>
<td></td>
<td>(anvende)</td>
<td>(använda)</td>
<td></td>
</tr>
<tr>
<td>creation</td>
<td>skab+lse</td>
<td>skap+else</td>
<td>skap+e+lse</td>
</tr>
<tr>
<td></td>
<td>create+NOM</td>
<td>create+NOM</td>
<td>create+L+NOM</td>
</tr>
<tr>
<td></td>
<td>(skabe)</td>
<td>(skapa)</td>
<td>(skape)</td>
</tr>
<tr>
<td>separation</td>
<td>adskill+e+lse</td>
<td>skill+nad</td>
<td>atskill+e+lse</td>
</tr>
<tr>
<td></td>
<td>separate+L+ NOM</td>
<td>separate+NOM</td>
<td>separate+ L+NOM</td>
</tr>
<tr>
<td></td>
<td>(adskille)</td>
<td>(skilja)</td>
<td>(atskille)</td>
</tr>
</tbody>
</table>

46 NOM stands for nominaliser.
17 I would like to thank Jorgen Staun for his data in Danish.
As in German, the outputs of these derivations in all the Scandinavian languages are subjected to further affixation in order to occur independently in the syntax as a Word. However, in Danish and Norwegian, sometimes the left constituent is the same as the infinitive of the verb with the vowel morpheme, -e, and this looks like a problematic case. The -e is not the infinitival suffix, however. This is shown by the fact that roots which do not occur as verbs also take the -e in compounds, for example, dreng-e-tøj (boy-L-clothes) ‘boy clothes’ (Danish), gutt-e-klubb (boy-L-club) ‘boy club’ (Norwegian) and hund-e-kjeks (dog-L-biscuit) ‘dog biscuit’ (Norwegian). Drenge, gutte and hunde are morphologically possible verbs, but this possibility is not realised. Therefore, it seems clear that the -e is a linking morpheme. Moreover, nominal compounds in these two languages sometimes have a linking morpheme between the head and the non-head, as in Swedish. It seems that these languages have a three strata lexicon as German does.

On the other hand, as discussed in Chapter 2, except for cranberry words and neoclassical compounds English compound words always appear to consist of two free morphemes. Therefore, in English, unlike in German and Scandinavian languages, there is no need to postulate the category Stem, because a bound root can be converted to Word and the morpheme can enter the syntax independently. So unlike in German and Scandinavian languages, Giegerich and Montgomery claim that the English lexicon has only two strata, Root and Word. The regular inflection of present-day English is entirely word-based while the bases of irregular inflection are adequately analysed as roots.

I will now examine whether Japanese has a three or two strata lexicon. The ones in parenthesis are the ‘non-past tense’ and ‘root’ of the verb in traditional sense (Tsujimura 1996: 128). The term root here refers to a meaningful unit which cannot be given further morphological analysis, not the Root category defined by Giegerich (1999).

<table>
<thead>
<tr>
<th>Christmas present</th>
<th>jul+e+gave</th>
<th>jul+klapp</th>
<th>jul+e+gave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christmas+L+present</td>
<td>Christmas+present</td>
<td>Christmas+L+present</td>
<td></td>
</tr>
<tr>
<td>church tower</td>
<td>kirk+e+torn</td>
<td>kyrk+torn</td>
<td>kirk+e+torn</td>
</tr>
<tr>
<td>church+L+tower</td>
<td>church+tower</td>
<td>church+L+tower</td>
<td></td>
</tr>
<tr>
<td>churchtower</td>
<td>(kyrka)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hare roast</td>
<td>hare+steke</td>
<td>har+stek</td>
<td>hare+steke</td>
</tr>
<tr>
<td>hare+roast</td>
<td>hare+roast</td>
<td>hare+roast</td>
<td></td>
</tr>
<tr>
<td>*harestek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Japanese</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>a) drinkable</td>
<td>nomeru</td>
<td>(nomu =to drink, nom=root)</td>
<td></td>
</tr>
<tr>
<td>b) edible</td>
<td>taberareru</td>
<td>(taberu= to eat, tabe=root)</td>
<td></td>
</tr>
<tr>
<td>c) useable</td>
<td>tsukaeru</td>
<td>(tsukau=to use, tsuka=root)</td>
<td></td>
</tr>
<tr>
<td>d) readable</td>
<td>yomeru</td>
<td>(yomu=to read, yom=root)</td>
<td></td>
</tr>
<tr>
<td>e) separation</td>
<td>ware+me</td>
<td>break+eye</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘separation’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(wareru=to break, ware=root)</td>
<td></td>
</tr>
<tr>
<td>f) measurable</td>
<td>hakarareru</td>
<td>(hakaru=to measure, haka=root)</td>
<td></td>
</tr>
<tr>
<td>g) eating habit</td>
<td>tabe+guse</td>
<td>(taberu=to eat, tabe=root)</td>
<td></td>
</tr>
<tr>
<td>h) stretching exercise</td>
<td>nobi+taisoo</td>
<td>(nobiru=to stretch, nobi=root)</td>
<td></td>
</tr>
<tr>
<td>i) whitewash</td>
<td>kirei+goto</td>
<td>(kirei-na =beatiful)</td>
<td></td>
</tr>
<tr>
<td>j) wintry sky</td>
<td>samu+zora</td>
<td>(samui=cold)</td>
<td></td>
</tr>
<tr>
<td>k) highwave</td>
<td>Taka+nami</td>
<td>(takai=high)</td>
<td></td>
</tr>
</tbody>
</table>

As in German and Scandinavian languages, Japanese seems to have three strata in the lexicon, because the bases of the affixes are traditionally taken to be members of the lexical category Verb but lack the inflection that would enable them to enter the syntax as free forms (in terms of Giegerich) (the examples (a) – (h). The bases of the affixes can be identified as verbs, because they are selected by the affix, for example, -eru or -rareru. For example, the suffix -eru can only be affixed to bases which can occur as verbs, when affixed with a verb-inflection. In addition, the observations of some A-N compound words in the examples (i) – (k) demonstrates
that the adjectival element lacks the inflection that would enable it to enter the syntax as free form (also see 2.1.1).

In summary, the categorical features of the non-head of compound words in the languages in question have been discussed. By Giegerich’s analysis, there are three strata in the Scandinavian and Japanese lexicon but only two in the English lexicon.

4.1.4. Criticism of the Lexicon within the framework of Lexical Phonology

If Giegerich’s claim that the English lexicon only has two strata is correct, the non-head noun in a Noun-Noun compound is a Word. However, the Lexical Phonology does not provide further information as to how to limit the occurrence of a plural inflectional marker in compounds and in derivation in the languages in question. If either the Stem in Scandinavian languages, German and Japanese or the Word category in English is involved in compounding or derivation, it should be possible to have inflection markers, such as plural and tense inflection markers, inside compounds or derived words. Thus, examples such as *ate-able or *computers technician in English, *tabe+ta+kata (eat+Past+way) or *tabe+ru+rareru (eat+ Present+able) in Japanese and *mark +ede+bar (mark+Past+able) or *kirk+e+r+torn (church+LINK+Plural+tower) in Danish are wrongly predicted to be well formed.

An argument in favour of Giegerich’s theory is that there are affixes which appear to select verbs and nouns etc. For example, in Danish, the affix -bar appears to select a verbal element (e.g. læs+bar read+able ‘readable’), not a nominal element nor any other element. However, the selection of a specific lexical category contradicts the argument that the base is not specified for a lexical category. So according to Giegerich, it is not possible to know that the base selected by the affix -bar is a ‘verb’, for example. Bases in compounding will be discussed further below.

Another criticism of Root-Stem-Word conversion comes from the theory of the lexicon within the framework of Lexical Phonology. The theory has some advantages in connection with derived compound word formation, such as the blocking effect (see the previous sub-section48). In addition, the relationship between morphology, the lexicon and phonology is established successfully with some exceptions in this framework. However, there is no established relationship between word formation and meaning. It is clear that when one considers productivity of compound words, it is necessary to consider the connection between meaning, sound and the derivation in a non-redundant fashion. Furthermore, when lexicalised compound

48 Giegerich assumes the Blocking Effect of Kiparsky (1982) in his theory.
words are considered, the meanings of compound words are not always compositional from those of their constituents. This is successfully shown in the triune lexicon of Platzack (1993), proposed because word derivation cannot escape the rules of syntax or conceptual structure. In this thesis, as the idea of the triune lexicon is assumed, it is redundant to assume that there are strata in the lexicon. For this reason, I propose to use the word class feature criteria, observed in Section 4.1.1 and 4.1.2.

4.2. Structure

4.2.1. The head of compounds in Japanese

The non-head of a compound in Japanese and in English does not have any categorical features, as discussed in 4.1. However, it is still not clear if the structure of compound words in these languages is similar to that of the Scandinavian languages or not. The following is the structure of the Japanese compound *tenisu kurabu* `tennis club', modeled on Josefsson’s analysis of Swedish compounds:

(316) *tenisu kurabu* in Japanese

\[
\begin{array}{c}
N^0[\text{thing}[\text{thing: kurabu}]] \\
N^0[\text{thing}[\text{thing: kurabu}]] \\
n^0 \\
kurabu
\end{array}
\]

(317)

\[
\begin{array}{c}
N^0[\text{thing}[\text{thing: kurabu}]] \\
N^0[\text{thing}[\text{thing: klub}]] \\
tenisu \\
kurabu
\end{array}
\]

Let us see if the structure (316) is applicable to compounds in Japanese first. As discussed in Section 3.2.4.2, Josefsson seems to assume that a noun is number merged with a root, so the inflection is the head (Josefsson 1997: 35). However, this analysis cannot be applied to Japanese since there is no number inflection which can be merged with a stem or a root to make it a noun (e.g. *koppu* `cup' can mean either ‘one cup’ or ‘five cups’ according to the context). There is an important candidate, though, for the inflectional suffix in Japanese, `-tachi', which can be considered the equivalent of the English plural marker – *(e) s*. Let us examine the properties of this suffix in Japanese to see if it can be considered a head in the present analysis.
Firstly, unlike the English plural marker -s, the plural marker -tachi attaches mostly to animate nouns.

(318)

a. gakusei+tachi
 student+PL
 'the students'

b. inu+tachi
 dog+PL
 'the dogs'

(Ishii 2000: 1)

(319)

a. *kuruma+tachi
 car +PL
 'the cars'

b. *tsukue+tachi
 desk +PL
 'the desks'

(Ishii 2000: 1)

Another difference between the plural marker -tachi in Japanese and the English plural marker - (e) s is that the Japanese plural marker can attach to pronouns and proper nouns.

(320) watasi+ tachi, anata+ tachi, kanojo+ tachi,
I+ PL, you+PL, she+PL
'we/us', 'you' 'they/them(fem.)'

(321) yamada sensei wa taroo+ tachi o syokuzi ni syootai sita.
Yamada teacher TOP Taroo+PL ACC meal to invited
'Professor Yamada invited Taroo and those in his group'.
*'Professor Yamada invited people all named/all with the characteristics of Taroo'.

As the translation of the example (321) shows, when added to a proper noun, the suffix yields the reading of a specific group of people including Taroo, and does not mean two or more people named Taroo (Ishii 2000).
In addition, a pronoun or proper noun with - tachi can be followed, but not preceded by a quantity expression (number + classifier). The following examples support this argument.

(322) yamada sensei + tachi san+nin ga resutoran ni itta.
Yamada teacher +PL 3+CL NOM restaurant DAT went
‘Professor Yamada and two other people went to a restaurant’.

(323) *san+nin yamada sensei tachi ga resutoran ni itta.
3-CL Yamada teacher PL NOM restaurant DAT went

(324) watasi+ tachi san+nin wa nihon kara kimashita.
I +PL 3+CL TOP Japan from came
‘We three came from Japan’.

(325) *san+nin watasi+ tachi wa nihon kara kimashita.
3+CL I +PL TOP Japan from came

Moreover, another characteristic of the Japanese plural marker can be seen in the following examples.

(326) yamada sensei wa gakusei+ tachi san+nin o syokuzi ni syootai sita.
Yadama teacher TOP student+PL 3+CL-ACC meal to invited
‘Professor Yamada invited the three students for dinner’.

(327) yamada sensei ga syokuzi-ni syootai-sita no wa gakusei+ tachi san+nin da.
Yamada teacher NOM meal-to invited-NL-TOP student+PL 3+CL COP
‘The ones who Professor Yamada invited for dinner were the three students’.
NL=nominalizer

(328) *yamada sensei ga syokuzi-ni syootai-sita no wa san+nin gakusei
Yamada teacher NOM meal-to invited-NL-TOP 3+CL student
-tachi da.
-PL COP
The above examples show that common nouns are followed by a classifier, not vice versa.

The suffix – *tachi* is attached to a phrase and it is a phrasal suffix (Ishii 2000). The following examples can support this argument.

(329) [taroo to hanako] + tachi.

‘Taroo and Hanako (and those in their group)’

(330) [san-nin no taroo] + tachi

3-CL GEN Taroo PL

‘the three Taro’s’

Moreover, if the suffix –*tachi* selects a bare nominal, and a compound word-like element is formed as a result, the initial element of *tachi* should be voiced according to Lyman’s Law (see Section 2.3.2), since it is an obstruent. However, when it acts as a plural marker, as argued, it never is voiced. Thus, the following examples are ungrammatical with the voiced initial element.

(331) *jon+dachi

*gakusei+dachi

student +PL

Therefore, some of properties of the *tachi* are:

(332) – *Tachi* is suffixed to pronouns, proper names, and some common nouns.

a. Common nouns with –*tachi* must be interpreted as definite.

b. Attachment of –*tachi* to proper nouns yields only a collective reading.

c. A pronoun/proper noun with –*tachi* can be followed, but not preceded, by a quantity expression (number + classifier). In the cases with proper nouns, only the collective reading is possible. Common nouns can also be followed by a quantity expression.

d. It selects a NP, not a bare noun.

(cf. Ishii 2000; 10).
As a result, if one is to argue that -tachi is an affix, it must be identified as a phrasal affix as it selects a NP, not a bare noun, (Klavans 1982: 1985). It does not have a plural syntactic feature, but only a semantic one: i.e. it means ‘collective’ or ‘group’. It is argued here that the suffix is not a proper candidate for an inflection which turns a stem (or a root) without word class features into a word, as the plural marker in the Scandinavian languages does, according to Josefsson. Thus, the crucial feature should be more general than number.

Another candidate for the head of a noun in Japanese is the numeral classifier. As Japanese is a classifier language, numerals are not able to combine directly with nouns: a classifier is necessary to individuate an appropriate counting level. So in Japanese, one cannot say ‘two boys’, but needs to say ‘two portions of boy’. Let us see the distribution of numeral classifiers and their associated NPs in Japanese (all the examples are taken from Kawashima 1994).

(333) san+nin no gakusei ga hon o katta.
 three+CL GEN student NOM book ACC bought
 ‘Three students bought a book’.

(334) gakusei ga san+nin hon o katta.
 student NOM 3+CL book ACC bought
 ‘Three students bought a book’.

(335) *gakusei ga hon o san+nin katta.
 student NOM book ACC 3+CL bought
 ‘Three students bought a book’.

(336) gakusei ga hon (o) san+satu katta.
 student NOM book ACC 3+CL bought
 ‘A student bought three books’.

(337) gakusei ga san+satu (no) hon o katta.
 student NOM 3+CL (GEN) book ACC bought
 ‘A student bought three books’.

49 Klavans (1982, 1985) argues that there are five parameters for clitics. One of the parameters is ‘the domain of cliticization’. After observations of clitics in several languages, she claims that clitics seem to attach to entire phrases, not just to words. -tachi is also a phrasal affix just like clitics.
The above examples (333)-(338) show that the subject cannot be separated from its numeral classifier whereas the object can be. Examples (334), (336)-(338) show that the numeral classifier attaches to a NP. This argument is especially true when one considers the phonological criterion of a syntactic phrase distinct from a lexical element. In (336)-(337), even when the accusative case-marker and the genitive case-marker are optionally not assigned to the associate NP of the classifier, there is a pause, indicating the presence of a null case particle. Thus, the classifier selects a case-marked nominal, i.e. a DP, not a bare N. Also, in the examples (340)-(342), the classifier takes an NP with case as complement. I conclude that the classifier in Japanese cannot be the head of a noun either.

4.2.2. Headedness?
Josefsson’s theory of INFL works if the head of the compound word is a verb or adjective. The verbal or adjectival inflection can be merged with a verbal stem, in Josefsson’s term, and the category of the whole compound word is verb. For instance, Josefsson assumes without further discussion that a Swedish verb is derived in the following way.
The verbal stem, in Josefsson's term, böj is merged with the infinitive affix -a, which is a kind of tense affix. The value of the infinitival tense is unspecified, but it is interpreted in conjunction with the tense of the selecting verb.

In the same way, this structure, I argue, is applicable for a Japanese verb. For example, a verbal stem, in Josefsson's terms, age 'give' is merged with the inflectional marker -ru (non-past form in traditional Japanese grammar). Since -ru selects the verbal element, -ru is the head of the word and its [+tense] feature percolates up.

The allomorph of the suffix -ru is -u. If the verbal root ends in a vowel (except for -a), it is merged with -ru and if it ends in a consonant, it is merged with -u. Also, the idea that the head is an inflection is applicable in the derivation of Japanese adjectives. Similarly to the formation of verb, an adjectival root is merged with an inflection.

Josefsson claims that X is a head if and only if X has a word class feature (a non-head lacks a word class feature, as discussed in section 2.1.1.3). However, this argument cannot hold for phrasal syntax. The complement NP of a verb is not a head even though the NP as well as the head V has a word class feature. Thus, there should be another way to determine the head.
Moreover, the way to determine the head should be the same for all lexical categories, and for word syntax as well as phrasal syntax.

In this thesis, Collins' (2002) definition of head is extended to compound words. The following points discussed by Collins (2002) are assumed in this thesis.

(345)

a. A head is a category which has one or more unsaturated features.

b. If a lexical item is chosen from the lexical array (Chomsky 1995) and introduced to the derivation, the probe/selectors of this lexical item must be satisfied before any new unsaturated lexical items are chosen from the lexical array. If not, the derivation will be cancelled.

As discussed in 3.2, Chomsky (2000) introduces the terms ‘probe’ and ‘goal’. According to Chomsky, a ‘probe’ is a head which searches for a lexical item which has matching features, called a ‘goal’. The probe has one or more uninterpretable and/or unvalued features, and needs the goal, which has corresponding interpretable, valued features, to assign values to these features, or in some cases, typically the EPP feature to check and delete the feature. With these definitions in mind, Collins (2002) proposes that a head (or a probe) needs to have its features valued or checked before another lexical item chosen from the lexical array is introduced in the derivation. To put it simply, a probe is a lexical item which looks for another lexical item to check its features during the course of derivation.

As an example of assumption (b), Collins states that the combination of a complementiser with Infl' as a constituent [CP Comp Infl'] is impossible, since the EPP feature has not been satisfied when Comp is chosen from the lexical array. This is demonstrated in the following structure.

(346)
```
    *  
   / \  
  IP  C  
    / \  
   I' [Infl] [EPP]
```

Consider compounds: in the compound *teacup*, *cup* is the head. What unvalued feature does it have? One feature which NPs or DPs have, which is valued and checked when they are merged...
with a verb, is Case. This suggests that Case is the crucial feature. However, verbs and adjectives occur as heads of compounds but do not have case. They do, however, assign theta-roles. This can be expressed as an unvalued theta-feature, which is valued by the argument to which the role is assigned (represented in this thesis as Theme (x))(see 4.3.4 for discussion on the Theme (x) feature). In other words, for compound words with verb or adjective as head, respectively, case cannot be the unvalued feature, but the theta-feature can.

According to Higginbotham (1985), discharging a theta-role from simple nominals is also possible, since simple nominals also serve as predicates. He claims that simple nominals have a position accessible to a Specifier, which either receives the theta-role or acts as a binder of it. For example, a simple nominal like the word *dog* has a thematic grid as part of its lexical entry ‘dog, -V, +N, <1>’, where the position 1 is accessible to a Specifier. This may be a possessor DP, as in *John’s dog*, in which case *John* receives the theta-role, or it may be a determiner, as in *the dog* in which case the determiner binds the theta-role. In this thesis, it is assumed that the theta-role discharged from a simple nominal is the unvalued feature which needs to be assigned a value by a DP or by a D. Thus, all the lexical categories have an unassigned theta-role feature which has to be somehow saturated. I will say that the theta-feature is valued when it receives a referential index from a DP (as in the case of *John’s dog*), or from a D (as in *the dog*).

With the assumptions that have been made so far, a word would be derived as follows, taking the Japanese compound *tenisu kurabu* ‘tennis club’ as example.

(347)

![Diagram](image)

In (347) a root *kurabu* without a word class feature is merged with a theta-feature and an N categorical feature. Since the theta-feature is unsaturated when [N theta-feature] is merged with
the root, it percolates until the theta-role gets checked by another category, such as D or DP. In the terminology of Chomsky (2000) the head provides the 'label' of the category it heads. I will use the traditional term 'percolation' for the relation between the head and the category dominating the head: The features of the head 'percolates' to the dominating note. As discussed above, Higginbotham (1985) claims that simple nominals also discharge a theta-role to a DP, or have the theta-role bound by a D. In the present analysis, Higginbotham's claims imply that [N theta-feature] merged with a root percolates its theta-role feature until the theta-role feature gets checked by a D or DP. Checking of the features here means that the theta-role feature needs a referential index from either D or DP. Also, checking should occur in a sister-relation. Thus, the category of the whole word *kurabu* in the structure (347) is a Noun with a theta-role feature.

The structure (348) is derived as follows: First, a root is merged with a theta-role feature and an N-feature, and these features percolate. Then, another root is merged, and again, the theta-role feature and the N-feature percolate, so that the category of the compound is [N theta-role].

What differences are there between nouns and verbs? In her thesis, as discussed in 3.2.4.3, Josefsson (1997) establishes the relation between word classes and conceptual categories, making use of a finite number of major ontological categories (Jackendoff (1985). Jackendoff claims that ontological features are visible to the syntax-semantics interface unlike most descriptive features of concepts. So they play an important role in grammar as well as in perceptions. The world is understood in categories like [THINGS], [PROPERTIES], [EVENTS], [DIRECTIONS], [PLACES], for example, and there are some differences between the world as we understand it (projected world, experienced world, or phenomenal world) and the true world. The major ontological categories are prototypically represented in the word classes; Things are nouns, Events are verbs, Properties are adjectives.

In this case, how does one characterise the differences between the categories? Josefsson states that inflection superimposes a different major ontological category. However, as we have seen that number cannot play any such role in Japanese, there should be another criterion which distinguishes ontological categories. Let us see if it is possible to use the argument-taking properties of each category first.

50 Collins (2002) proposes to eliminate labels from the syntax, so he does not assume the idea of percolation. However, I am assuming a more traditional phrase structure theory with percolation.
There are different types of nouns. One type of noun is nouns denoting complex events. These nouns often have a corresponding verb with which they share complement-taking properties. This was first established by Chomsky (1970) and developed in Grimshaw (1990) and Kageyama (1993) for Japanese. Grimshaw argues that it is obligatory for them to take the same arguments as the ones taken by their corresponding verbs, whereas it is not for other types of nouns, such as simple and result nominals. Therefore, obligatory means the same for nouns as for verbs: capable in principle of being obligatory but perhaps subject to lexical variation. As examples of complex event nominals, Grimshaw presents the following\(^{51}\).

(349) The felling *(of the trees) \[E\]

(350) kyonen no *(ki no) bassai last-year GEN *(tree GEN) felling ‘the felling of the/a tree last year’

(351) Fældning-en *(af træ-et) felling-the *(of tree-the) ‘the felling of the trees’

(352) They felled *(the trees). \[E\]

(353) Kyonen *(ki o) bassai-sita. last-year (tree ACC) felling-did ‘last year I/we felled the trees’.

(354) De fælde-de *(træ-et). They fell-Past *(tree-the). ‘They felled the trees’.

(355) The destroying *(of the city) \[E\]

(356) kyonen no *(sono si no) hakai last year GEN *(that city GEN) destruction ‘the destroying of the city last year’

\(^{51}\) The translations into Danish and Japanese are my own.
(357) Destruering-en *(af by-en) Destroying-the *(of city-the) ‘the destroying of the city’

(358) They destroyed *(the city).

(359) kyonen *(sono si o) hakai-sita. Last year *(that city ACC) destroy-did ‘They destroyed the city last year’.

(360) De destruerede *(by-en). They destroyed *(city-the). ‘They destroyed the city’.

Grimshaw 1990: 50 for the English data

As the above examples have shown, in the case of Japanese, what linguists like Grimshaw call Light Verbs take the obligatory arguments if the corresponding verbs do. Moreover, the above examples have shown that in Mainland Scandinavian languages and in English, gerundive nominals take obligatory arguments if the corresponding verbs do. There are some complex event nominals which are ambiguous between the class of nominals that take arguments and nominals that do not. However, it is possible to disambiguate these nouns as certain modifiers occur only with the event interpretation of particular nouns. The other reading is a result reading. For example, the modifier frequent forces the event reading of expression in the following. Once they are disambiguated, it is possible to see that the object of the event nominal is obligatory:

(361) The expression is desirable.

(362) sono hyoogen wa motomerareteiru. That expression TOP desirable. ‘That expression is desirable’.
(363) Udtrykk-et er ønskeligt. Expression-the is desirable.
 ‘That expression is desirable’.

(364) The expression (on her face) [E]

(365) (kanojo no kao no) hyoogen [J]
 (her GEN face GEN) expression

(366) Udtrykk-et (i ansigt-et)
 expression-the (in face-the)
 ‘the expression on her face’ [D]

(367) *The frequent expression is desirable. [E]

(368) *sono hinpan-na hyoogen wa nozomareteiru. [J]
 That frequent expression TOP desirable.

(369) *Gentaget udtryk er ønskelig.
 repeated expression is desirable

(370) The frequent expression of one’s feelings is desirable. [E]

(371) hinpanna kanojo no hyoogen wa nozomareteiru. [J]
 Frequent her GEN expression TOP desirable
 ‘The frequent expression of her feeling is desirable’.

(372) Gentaget udtryk af ens følelse er ønskelig. [D]
 repeated expression of one’s feeling is desirable
 ‘The frequent expression of one’s feeling is desirable’.

(373) We express *(our feelings). [E]
(374) watasitachi wa *(kanjoo o) hyoogen-suru.
We TOP *(feeling ACC) express-do
‘We express our feelings’.

(375) Vi udtrykker *(vores folelser).
We express *(our feelings).
‘We express our feelings’.

Grimshaw 1990: 50 for the English data

The following is a more appropriate structure for compound words.

(376)

\[
\begin{array}{c}
\text{P}(x) \\
\text{root} \\
\text{root} \\
\end{array}
\]

Instead of Jackendoff’s Thing, I propose that a ‘noun’ denotes a property the content of which is given by the root (Chierchia 1998, Higginbotham 1985). This is derived by merging a root with a \(\text{P(roperty)} (x) \) feature\(^{52} \). The above structure is constructed as follows: First, a root without word class features is merged with a \(\text{P}(x) \). There are two ways to check \(\text{P}(x) \): one is assigning \(x \) a value that is an index, and the other is deleting \(x \). Since the \(\text{P}(x) \) feature is unsaturated in the sense that it needs a referential index from either D or DP, it percolates. Then, another root is merged to form a compound word. As \(\text{P}(x) \) is the only unsaturated feature before and/or after the root is merged, it percolates and it is thereby the head of the whole compound.

In the present theory, a noun in traditional sense is a root merged with \(\text{P}(x) \). It does not refer to a thing. It refers to a thing only when combined with a determiner. Nouns are different from adjectives, which also denote properties. Baker’s (2003) idea that nouns have an identity feature

\(^{52}\) Baker (2003) proposes a syntactic definition of the lexical categories, noun, verb and adjectives, after considering several languages. He argues that “nouns have criteria of identity, whereby they can serve as standards of sameness” (Baker 2003: 95). This is a semantic version of nouns. In short, he claims that only nouns, but not adjectives or verbs, occur in ‘X is the same as Y’. Moreover, he claims that the syntactic version is that a noun \(X \) is a noun if and only if \(X \) is a lexical category and \(X \) bears a \textit{referential index}, expressed as an ordered pair of integers. The question of whether Baker’s theory is compatible with the present theory is left here for future research.
(in addition to P(x)) may be what makes nouns different from adjectives. I leave this question for future research.

In summary, I concluded, following Josefsson's (1997) work on Swedish, that in Japanese and English as in Scandinavian languages, the 'left-hand' constituent of compound words does not have word class features. I rejected the theory of lexicon within the framework of Lexical Phonology and argued for the triune lexicon. Another proposal is that the head of a compound is a theta-feature, not inflection. The structure (376) is applicable for Japanese, Scandinavian languages and English compounds, since the non-head of compound word does not have any word class features. Structures for English compound words and genitive compound words and other types of compounds, such as neoclassical and 'cranberry morphemes' and finally, recursive compounds in English, Japanese, and Scandinavian languages will be proposed in the following section.

4.3. Structures

4.3.1. Structures for 'cranberry morphemes'

The proposed structure is applicable for 'cranberry morphemes' in the languages in question. As discussed in 2.1.2, 'cranberry morphemes' only appear in words. Unlike what Anderson (1990) claims, I follow Josefsson's (1997) claim that cranberry morphemes are represented as separate entries in the list of morphemes. It is proposed that the constituents involved in cranberry 'compounds' are roots without word class features, like the normal type of compounding. The derivation is the same and the only difference is that a root does not have meaning of its own, so the LF-lexicon accepts the meaning after the derivation. As a result, D or DP can assign a referential index to the resulting 'word'.

4.3.2. Structures for genitive compounds, neoclassical compounds and other complex compounds in Scandinavian and English

In this thesis, the following structure is proposed for genitive compounds in Scandinavian languages, Japanese and English.
As discussed in 3.2, the linking morpheme in *fred-s-konference* (peace+LINK+conference) 'peace conference' is a morpheme that lacks an independent meaning and thus is similar to a 'cranberry morpheme'. It contributes to the meaning of the whole, though. The phonetic form of the linking element corresponds to the possessive marker, in both old and modern Swedish (Josefsson 1997: 65). Similarly, in the examples (121), (126)-(133), the -s morpheme is a homophone of a genitive marker in each language. Thus, I propose that genitive compounds in the languages in question have the above structure, the linking morpheme having the function of checking the P(x) feature.

The structure (377) is derived in the following way. Two roots are merged with a P(x). They cannot be merged directly because the two P(x)s both percolate, and it is not possible for a structure to have two heads. Instead, one of the two [root, P(x)] trees is merged with a linking morpheme. This morpheme checks the P(x). Then, the two trees are merged. Because the P(x) which has not been checked by the linking morpheme is still unsaturated and needs a referential index from D or DP, it percolates. Thus, the head of the structure (377) is the unchecked P(x). The effect is that the compound is interpreted as denoting a property with the content of the root first merged with the head P(x), but modified by the other root.

The proposed structure (377) is applicable to neoclassical compounds in the languages in question, such as *astrofysisk* 'astrophysic', *television* 'televison' in Scandinavian languages; *geology, photography* in English; *kisetsu* 'season' and *uki* 'rainy season' in Japanese. As discussed in Section 2.1.2, the constituents involved in neoclassical compounds in the languages in question do have semantic value, like those involved in normal compounding. Moreover, it was argued that neoclassical compounds behave more similarly to compounds than to derivation. It is proposed in this thesis that the constituents in neoclassical compounds do not have word
class features either. The ‘right-hand’ constituent is merged with a \(P(x) \) and these features percolate to the dominating node.

This structure (377), it is proposed, is also correct for English compounds with a ‘left-hand’ element which has a derivational suffix, such as \(-ing\), \(-er\) or \(-ion\). For this type of compounds, the derivational suffix supplies a \(P(x) \). Synthetic compounds will be discussed in detail in Section 4.3.4. There needs to be a linking morpheme merged to check these features.

On the other hand, the regular plural inflection itself is a linking morpheme. Compounds with a ‘plural morpheme’ \(-s\) on the ‘left-hand’, such as awards ceremony are represented as follows:\(^{53}\)

\[
\begin{array}{c}
P(x) \\
\downarrow \\
P(x) \\
\downarrow \\
P(x) \\
\downarrow \\
P(x) \\
\end{array}
\]

\[
\begin{array}{c}
\text{award} \\
\downarrow \\
\text{s} \\
\downarrow \\
\text{ceremony} \\
\end{array}
\]

A similar structure is applicable to the compounds which have end-stress (e.g. sparrow+hawk, toy+factory) (see 2.3.1). The semantic relationship between the two constituents is that of attribution. I propose the following structure for this type of compounds.

\[^{53}\] However, as discussed in 4.1.2, there is an exception for compound words with a regular plural marker: parks commissioner. In at least some native speakers' lexicon, both park/parks commissioner exist and there is semantic difference between them: singular and plural. For this compound, the structure is as follows.

\[
\begin{array}{c}
P(x) \\
\downarrow \\
P(x) \\
\downarrow \\
P(x) \\
\downarrow \\
P(x) \\
\end{array}
\]

\[
\begin{array}{c}
park \\
\downarrow \\
P(x) \\
\text{LINK} \\
\text{s} \\
\downarrow \\
\text{commission} \\
\text{er} \\
\end{array}
\]

The category spelled out as \(-s\) is a complex morpheme, a LINK with a plural feature. If it does not have any unvalued feature, it will not percolate, so the tree [park, PL] can merge with the \(P(x) \)-headed tree [commission, \(-er\)].
The MADE OF is similar to the LINK in the structure (378) and checks the $P(x)$ feature which is merged with the 'left-hand' root. The 'right-hand' element is the head, and the existence of the category MADE OF in this structure makes it different from a compound which has fore-stress (see 2.3.1 for the differences between the two types of compounds).

Also, a similar structure is applicable to the following type of compounds in Scandinavian languages.

(380)

a. $e+poster$ vs. *poster
 $e+messages$ vs. messages
 'email messages'

b. $hover$ vs. *hest+$e+hover
 hooves vs. hors+LINK+hooves
 'hooves' vs. *'coltsfoot' but 'horsehoof'

c. *hov vs. hest+$e+hov
 hoof vs. hors+LINK+hooves
 'coltsfoots'

(Johannessen 2001: 75-76)

The righthand constituent of the type (380a) of a compound word can take a plural inflection whereas as a single word, it cannot. This is explained if there are two lexical items $post$. One of them is a mass noun meaning 'mail', and as such does not have a plural form. The other is a cranberry morpheme, lacking any meaning (that is to say, it has no corresponding concept in the LF-lexicon). When merged with the root e, another cranberry morpheme, the resulting
compound has a corresponding concept in the LF-lexicon: 'e-mail message'. This compound is a count noun with a regular plural form.

\[(381)\]

\[
\begin{array}{c}
P(x) \\
\text{er} \\
e \\
\text{post} \\
P(x) \\
P(x)
\end{array}
\]

In contrast, in (380b, c) there are two lexical items hov. One means 'hoof'. When merged with [Plural] the resulting word is assigned the form hover in the PF-lexicon. When combined with another root, for example hest `horse', the result receives a compositional reading. The other item hov is a cranberry morpheme. When combined with hest (which requires the LINK -e-), the resulting compound is assigned the meaning 'coltsfoot' in the LF-lexicon. When this compound is merged with [plural], the resulting word is assigned the form hestehov in the PF-lexicon.

\[(382)\]

\[
\begin{array}{c}
P(x) \\
[+PL] \\
heste \\
P(x) \\
hov \\
P(x) \\
P(x)
\end{array}
\]

4.3.3. Adjective-Noun/Adjective-Adjective compounds?
'Adjective-noun' (e.g. blackbird in English; hojskole 'high school' in Scandinavian languages; huruhon (old-book) 'secondhand book' in Japanese), and 'adjective-adjective' (e.g. white-hot in English; tvärbrant 'abrupt steep' in Scandinavian; atsukurushii (hot-strenuous) 'stuffy' in Japanese) compounds in these languages are productive, just like 'noun-noun' compounds are. According to Lieber (1983), these types are productive, since neither of the constituent stems (roots within the present analysis) takes arguments.

According to Higginbotham (1985), adjectives serve as predicates in the same way as nouns. It is proposed that an 'adjective' denotes a property the content of which is given by the root, as an adjective does assign a property to something. In order to distinguish the P(x) of the noun from...
the property of an adjective, the latter is represented as $A(x)^{54}$. When an adjective merges with a noun, forming an NP, and this NP merges with a D, forming a DP (e.g. *the big house*), the noun and the adjective have the same referential index from the D. However, I propose that the adjective does not get it directly from D, but gets it via the noun (cf. Higginbotham 1985).

How are 'adjective-noun' and 'adjective-adjective' compounds analysed? According to the proposed analysis, a compound word, like *black+bird* or is derived in the following way.

\[(383) \quad \begin{array}{c}
\text{black} \\
\text{bird}
\end{array} \]

The 'left-hand' member of the above compound is a root. The above structure is constructed as follows: First, a root without word class features is merged with a P (x). Since the P (x) feature is unsaturated in the sense that it needs a referential index from a D, it percolates. Then, another root is merged to form a compound word. As P (x) is the only unsaturated feature before and/or after the root is merged, it percolates and it is thereby the head of the whole compound.

Similarly, an 'adjective-adjective' compound, such as *hot-brown* is derived in the following way.

\[(384) \quad \begin{array}{c}
\text{hot} \\
\text{brown}
\end{array} \]

Baker (2003) argues that one difference between adjective and the other lexical categories, nouns and verbs is that only adjectives are gradable and can have their grade specified by a functional head that projects its own phrase. Moreover, he claims that predicates which can have degree heads, such as *too, such, or how* are not simple one-place predicates that hold of an entity; they are actually two-place relations that hold of an entity-degree pair. Thus, the sentence, *John is too hungry* is true if the person John is hungry to a degree x that exceeds the standard given in the context. This means that a degree head or comparable adverb saturates the extra position in the theta-grid of the lexical head by establishing a relationship of theta-role binding (Higginbotham 1985). Therefore, it is possible to predict the ungrammaticality of examples like, *Seven is as prime as two, or How three-legged is the stool?* These do not have a grade position in their theta-grid. Interestingly, the lexical item, *prime* cannot be a predicate. So it does not assign a theta-role feature. Although Baker's arguments about adjectives are valid, his arguments will not be used in this thesis, since there are adjectives which cannot be gradable, such as *closed, supreme, atomic, potential, three-legged, blue-eyed*. It is argued here that all these adjectives have the Property feature and they all have (x) feature which needs to be valued by agreeing with a valued P(x).
In the compound above, too, the 'left-hand' is a root without word class features. The structure above is derived in the same way as the structure (383). The head of the whole compound is the $A(x)$ as it is the only unsaturated feature before and/or after the root hot is merged.

The derivation seen above can be certainly true for Japanese and Scandinavian compounds in the same way. The followings show the derivation in these languages.

The derivation of usugitanai (thin-dirty) 'dirty' in Japanese

\[(385) \]
\[\begin{array}{c}
A(x) \\
\text{usu} \\
\text{gitana} \\
\end{array} \]

Since the derivational suffix -i is an adjectival suffix, it is proposed that it has an $A(x)$ feature. This feature percolates up until the x is assigned a value through agreement with a valued $P(x)$ 55. Moreover, as discussed in 2.1.1, there is another type of adjective in Japanese with a -na suffix. The derivation of ko-girei (small-tidy) 'neat' is as follows.

\[(386) \]
\[\begin{array}{c}
A(x) \\
\text{ko} \\
\text{girei} \\
\end{array} \]

The difference between the suffixes -na and -i is that the former cannot have a phonetical realisation when it occurs in a predicate position (*John wa ko-girei na (John TOP small-tidy) vs. John wa ko-girei da (John TOP small-tidy COP) 'John is neat', where the da is a [-Tense] particle), whereas the latter does (John no heya wa usu-gitanai (John GEN room TOP thin-dirty)

55 This type of adjective in Japanese is called an -i adjective and it has its own inflectional paradigm for tense. The suffix is a present tense feature. So if the past tense suffix, -katta is merged with the kitana-, its feature A(x) is percolated up. Since it is possible to say things like 'heya wa 5 hunkan kitanakatta' (the room was dirty for five minutes) but not possible to say it in the non-past tense, I believe that the tense feature needs to be checked by an Aspectual head. However, the difference between verbal elements and this kind of adjective is that the latter is not merged with a Theme feature (see 4.3.4). On the other hand, there is another type of Japanese adjective with the -na suffix. This suffix does not have its own inflectional paradigm for tense and behaves more similarly to nouns in Japanese.
'John's room is untidy' vs. *John no heya wa usu-gitana. (John GEN room thin-dirty). In both cases, there is an A(x) feature heading the compound.

Similarly, in Scandinavian languages, the derivation of adjectival compound words is as follows.

(387)
```
      / \               / \  
     /   \   A(x)  /   \   A(x)  
 djup  \     /   \     /   \   blå  
   deep  \   A(x) /     /     \   A(x)  
        \     \   blue  
          \    \   
            \  
              'deep blue'
```

The above structure is derived as follows. The morpheme blå 'blue' is merged with an A(x) feature. Since the A(x) feature is unsaturated, it percolates. Another morpheme, djup 'deep' is merged. Since this morpheme is a root without a word class feature, the A(x) percolates and is the head of the whole compound.

4.3.4. Structure for synthetic compounds
As discussed in 2.1.1, this kind of compound word is different from the root compound. Synthetic compounds are headed by deverbal nouns and the head usually has an argument whereas a root compound word does not (Roeper and Siegel 1978).

(388)
```
      / \               / \  
     /   \   er  /   \   er  
 tennis  \     /   \     /     \   play  
        \   er   \     
              
```

This structure shows that the derivational suffix is merged after the whole compound word is derived. The following examples have this structure.

(389)

a. book lov-er
b. picture paint-ing
c. truck-drive-r
Let us propose a more sophisticated structure for this type of deverbal compounds. Is the non-head of nominal root compound in these languages different from that of synthetic compound words involving a nominal root? For example, is the compound word *tennis club* in the languages in question different from *tennis player*? One difference between the non-head in nominal root compounds and that in the synthetic compound words is that there is no theta-role argument assigned by a 'verbal element'\(^56\), in the nominal root compounds. On the other hand, in the synthetic compound word *tennis* has a complement theta-role assigned by the base 'verb element', *play*. The interpretation of the compound word, *tennis player* is restricted to 'a person who plays tennis' and no other interpretation. According to Lieber (1983), the structure for this type of compound is as follows:

\[N \]

\[V \]

\[N \]

\[V \]

\[N \]

\[tennis \]

\[play \]

\[er \]

According to Lieber (see 3.1.2), the structure above shows that the 'verbal element'\(^57\) *play* is first merged with a lexical item. When the verbal element is merged with another lexical item, the lexical item needs to satisfy the internal argument structure or semantic argument structure of the verbal element. The lexical item can be, for example, *tennis*.

Then, the nominal suffix -*er* is attached and as a result, the interpretation of the whole compound is 'a player who plays tennis', since there is only one argument in the argument

\(^56\) In this section, the term 'verbal' or 'verbal element' is used when it is not clear whether the element involved in compounding is a root or a stem. On the other hand, the term 'verbal root' is used when it is clear that a root, not a stem or a word is used in compounding.

\(^57\) Lieber (1983) assumes that this element is a stem.
position. Thus, the non-head of synthetic compound words is different from that of nominal root compound word which requires no argument structure58.

In contrast to the type of compound seen in tennis player, where the base 'verbal element' takes its argument, there is another type where the base does not take any argument. One example Lieber cites is green-driver (Lieber 1983: 268), where the interpretation would be 'driver who wears green', but not 'someone who drives green'. For this type, Lieber (1983) proposes the following structure.

\begin{center}
(391)
\end{center}

![Diagram of (391)]

This structure shows that if the 'verbal element' is merged with the suffix -er first, it does not assign a theta-role. Moreover, since the verbal element is contained within a noun, it is not possible to for the argument structure of the 'verbal' element to percolate to any node higher in the compound tree.

Let us propose structures for synthetic compounds within Bare Phrase Structure theory. It is important to note that the standard Internal Subject Hypothesis has been rejected within the Bare Phrase Structure and instead, following Hale and Keyser (1993), the external argument is introduced by v (a light verb), the head of an upper projection in VP shell structure (see also Chomsky 1995). The internal argument is introduced and assigned a theta-role by V, the head of the lower projection in VP shell structure.

58 According to Lieber (1983), synthetic compounds with -ing are different from those with the -er suffix in that the -ing forms lexical items belong to several categories, progressive ('verb'), 'noun' and 'adjective'. In adjectival or nominal root compounds with-ing, it is not necessary to have an arguments. So in the present framework, the non-head of this type of compounds does not have any arguments either. Thus, the structure of this type of compound would be the same as the one proposed in (390). Also in the synthetic compounds with progressive, no argument is required by the progressive verb -ing. Thus, the non-head has no argument structure. Therefore, the structure is the same.
Within the proposed theory, it has been argued that the elements involved in compounding are roots without a word class feature. Henceforth, the elements will be called roots, instead of verbs. Moreover, it is also necessary to assume that a theme-role (henceforth Theme) is also a merged feature, not an inherent property of the root. This is clear when one considers compounds such as green-driver (as above), play-leader, and play-maker and so on, where the root play does not assign any theme-roles.

According to Levin and Hovav (1992), the nominal suffix -er specifies that its open position is identified with the open position in N’, yielding an N’ restricted to refer to an entity corresponding to the external argument of the base verb, play. Within the Bare Phrase Structure, since there is no N-bar projection, the open position is on the nominal suffix itself. However, within the BPS, there is no agent theta-role feature assigned by a root.

Based on these assumptions, a structure for synthetic compounds like tennis-player is as follows:

(392)

```
   P(x)
  /   \
tennis er P(x)
   \   
   play  Theme (x)
```

In the structure of the compound tennis player, first, the root play is merged with a Theme feature (x). It is assumed in this thesis that the Theme feature is an unvalued feature. It is assigned its value by the root tennis when this root is merged and the root tennis is thereby interpreted as having the theme role assigned by play. Here, there is an agreement relation between the root tennis and the Theme. Since there is no categorical feature on the resulting ‘compound’ tennis-play, a derivational suffix -er which has a P(x) is merged. This feature is unsaturated, so the head of the compound tennis player is the P(x), which needs a referential index from a D or DP.

59 Josefsson (1997) argues that a reason that a compound like tennis+play which projects an Event feature is not possible in English is that the root play does not assign any case to the root tennis (e.g. *I tennis+play+ed yesterday). I agree with her argument, since the verbal root does not assign any case feature to the root. Moreover, it is not necessary for the nominal root to be incorporated to the verbal root, because there is no motivation for the incorporation.

60 Within the present theory, in a case where a root like play is merged with a DP, not a root, the root play is first merged with a Theme (x) feature. Then, a DP with a referential index is merged. As a result, the (x) in the Theme feature and the referential index in the DP are exchanged. However, the ‘lefthand’ root in a synthetic compound does not need a referential index, so it is not merged with a DP.
On the other hand, the following is a structure for synthetic compounds like green-driver where no thematic argument is assigned to the 'left-hand' element.

\[P(x) \]
\[\text{green} \quad P(x) \]
\[\text{drive} \quad \text{er} \quad P(x) \]

The verbal root drive is merged with a suffix -er first. Since the suffix has a P(x) feature, which is not saturated when merged, it is percolated up. Another root of any kind can be merged. The interpretation of the resulting compound is not restricted to something like a driver who drives green, because the root, green, does not have to value a Theta feature.

Is a synthetic compound such as tennis player different from its corresponding nominalization, player of tennis? Yes, it is. According to Levin and Hovav (1992) and van Hout and Roeper (1997), the nominalization implies an event, whereas the compound with the nominal suffix does not. A player of tennis must have played tennis; a trainer of dogs is someone who has trained dogs. On the other hand, no tennis needs to have been played by a tennis player; a dog trainer is someone who may not have trained any dogs, but simply finished dog-trainer school. Thus, there is no Event or Aspect associated with the synthetic compound, whereas there is with its corresponding nominalization.

The following differences between nominalization and compounding support this argument:

\[\begin{align*}
\text{a.} & \quad \text{the destruction of the city *for hours/in an hour.} \\
\text{b.} & \quad \text{They destroyed the city *for hours/in an hour.} \\
\text{c.} & \quad \text{the destruction of cities for hours/*in an hour.} \\
\text{d.} & \quad \text{They destroyed cities for hours/*in an hour.} \\
& \quad \text{(van Hout and Roeper 1997)}
\end{align*} \]

The quantized or non-quantized nature of the object noun phrase is mapped onto the event structure as it is expressed by the predicate: telic or atelic, respectively. The distinction between telicity and non-telicity is represented with the temporal modifiers for an hour and in an hour.
Nevertheless, there is no telicity feature in the corresponding compounds, such as *city-destruction*. Thus, it is not possible to say the following with the temporal modifiers.

(395) city-destruction *for hours/*in an hour

(van Hout and Roeper 1997)

In parallel, Roeper and van Hout propose that *-er* nominals do not project any aspectual features either. It is not possible to say the following.

(396)

a. the lawn-mower *for hours/*in an hour
b. *The mower of lawn for hours needs a rest.
c. *The mower of the lawn in an hour is very swift. (van Hout and Roeper 1997)

The grammaticality is marginal, but it is possible in nominalizations, however not in compound words. To see whether a predicate entails an event, an event-modifier can be used.

(397)

a. the destruction of the city completely
b. *city-destroying completely

(cf. van Hout and Roeper 1997)

The noun phrase (397a) with a quantized object has telic aspect, and thereby admits the adverb *completely*, which modifies the end point of an event.

As a result of these observations on the differences between the synthetic compounding and their corresponding nominalizations, I argue that a synthetic compound word does not have any Event feature merged, but a P(x). On the other hand, nominalizations do have an Event (x) feature. The Event (x) percolates up until it is bound by Aspect. In the syntax-semantics interface, therefore, Event is valued as either telic denoting that the Event reaches a natural completion, or atelic, meaning that the Event does not reach such a completion. The Event (x) feature is similar to the ‘v’ in the VP-shell analysis. The proposed structure for synthetic compounding is

61 van Hout and Roeper claim that the structure of synthetic compounds is different from that of nominalization. They propose a structure based on the Abstract Clitic Hypothesis. However, since in this thesis, I have claimed that the structure based on the Abstract Clitic Hypothesis does not account for the headedness of derivation of a compounding, I am arguing the structure I have proposed is more valid. The readings that the tennis player has to be an agentitive argument and the lawn-mower could be either an agent or instrumental argument are, I claim, in effects of the LF-lexicon, not effects of the syntax.
valid for other types of derivational suffixes, such as -ing or -ion and zero suffixes. The nominal suffix is identified with the root which is merged with a Theme feature and the P(x) percolates up until it gets bound by a D or DP, not Asp since there is no Event (x) feature to bind. Whether the whole compound refers to a state or an event is an effect of the LF-lexicon.

The structure (392) can be valid if one considers Selkirk's First Order Projection Condition (1982). The First Order Projection Condition claims the following:

\[(398)\]

The First Order Projection (FOPC)

All non-SUBJ arguments of a lexical category \(X_i\) must be satisfied within the first order projection of \(X_i\).

(Selkirk 1982: 37).

The following examples show cases of synthetic compounding, some of which violate FOPC.

\[(399)\] *player off-season trading
\[(400)\] *child+making of sandcastles
\[(401)\] *boy+eat
\[(402)\] *baby+crying
\[(403)\] *girl+swim
\[(404)\] tree+felling
\[(405)\] brick+laying
\[(406)\] fund+raising

Within the proposed structure in this thesis, the ungrammaticality of the compounds (399) –(403) can be explained.
The ‘left-hand’ root *child cannot be interpreted as the subject (i.e. as the one who makes something, such as a sandcastle). The root merged with the ‘compound’ *make+ Theme has a Theme feature assigned. On the other hand, the examples (404) - (406) are grammatical, since the ‘left-hand’ root gets a Theme feature assigned. It follows from the principle that an unsaturated/unvalued feature must be valued as soon as it can (see Collins 1997, Pesetsky 1995), so that the root *child must value Theme (x). Another argument requires merge of another unvalued theta-feature. But this cannot happen before the Theme (x) feature is valued. It is not possible to wait until another root is merged.

The corresponding examples in Japanese can be analysed within the present analysis. The following are examples.

(409) *(kodomo no) oya+sodate vs. (oya ni yoru) ko+sodate
(children GEN) parent+rear (parent GEN by) children+rear
‘parent-rearing of children’ ‘child-rearing (by parents)’

(410) *kodomo+asobi vs. kodomo+damasi
child +play child+ cheat

How about ungrammatical examples like *tree-falling, *brick-lying and *fund-rising? The head roots are presumably merged with a Theme theta-feature, since they are ‘unaccusative’. In Swedish, too, there are barngråt (child-crying), or kvinnogråt (women crying) but not *barngråtande (child-crying) or *kvinnogråtande. For the moment, there is no solution for these cases.
"children playing" "mere child's play"

(411) *akanboo+naki vs. kodomo+atsukai
 baby+ cry child+ treat
 *'baby crying' 'treat me as if I were child'

The following examples have an underlying internal argument as the non-head of the compound.

(412) heart+burn
(413) rain+ fall
(414) land+ slide
(415) jord+ skælv [D] 'earth+quake'
(416) pris+stop
 price+ stop
 'price freeze'
(417) mune+yake [J]
 heart+burn
(418) ne+ sagari [J] price+drop
 'fall in price'
(419) kata+ kori [J] shoulder+grow-stiff
 'the state of one’s shoulder being stiff'

However, the above examples clearly have different characteristics from the ones represented in (399)-(403). They are 'unaccusatives' which have only an internal argument, not an external argument. The structure for these compounds is (408) except that P(x) is phonetically null.
It is also important to examine whether cases like kaeru+oyogi (frog+swim) 'swim like frog', usagi+tobi (rabbit+jump) 'jumping along in a squatting position' in Japanese and horse+laugh and cat+call in English can be accounted for within the present theory. They are perfectly grammatical. Kageyama (1999) claims that the interpretations of these examples are metaphorical. For example, the interpretation of kaeru+oyogi is not that of 'frog swims', but 'swim like frog'. This argument is supported. Within the present analysis, it is not possible to explain the ungrammaticality of the compounds in (339)- (403) on one hand and the grammaticality of compounds like the examples mentioned above on the other on the basis of syntactic structure. Presumably, the grammaticality is due to the interpretation, not the structure. It is possible to say that in these cases, the non-head is not an argument at all, so there is no theta-role. However, cases like rain+fall as opposed to *rain+fall-ing are still problematic. Is rain-fall another root compound without any Theme feature?

4.3.5. Recursive compounds

The main characteristic of 'noun-noun' compound words is that a compound noun freely becomes the base of another compound noun (Namiki 1988). This phenomenon, recursivity, can happen as there is, in principle, nothing preventing Merge from applying over and over again, merging more lexical items or trees (see Josefsson 1997, Roep, Snyder and Hiramatsu 2002). Recursivity of compounds is also accounted for within the present framework.

The structure for recursive compounds is as shown in (420). Recursive compounds can be derived merging root after root with a P(x) in the present analysis.

(420) bam-bok-klub

```
    P(x)
   /   \
root P(x)
   /   \
root P(x)
   /   \
root P(x)
```

The following are some examples of this type in the languages in question.

63 Not every kind of animal can be in the 'left-hand' position of this type of compounds, though. The unproductivity might be due to the LF-lexicon and the world knowledge. More work into this type of compound needs to be carried out.
The examples marked with the symbol # do not exist, but they are grammatical. Native speakers of the languages seem to prefer the corresponding phrases of the examples.

The above recursive compounds are right-branching. It is also possible to derive left-branching compounds. The difference in the branching corresponds to a meaning difference (Section 3.2.2). For example, the example *restaurant coffee cup* means 'a coffee cup for restaurants'. In contrast,

64 This implies that the data shown is same in all Scandinavian languages, except sometimes for spelling.
the left-branching compound *gourment coffee cup* is a cup of the kind associated with gourmet coffees. In the current analysis, the following structure is proposed for left-branching recursive compounds.

(436)

\[
\begin{array}{c}
P(x) \\
\text{P(x)} \quad \text{LINK} \\
\text{root} \quad \\
\text{P(x)} \\
\text{root} \\
\text{P(x)} \\
\text{root} \\
\end{array}
\]

The above structure is constructed in the following way: First a root without word class features is merged with a P(x). Then, another root is merged to form a compound word. The P(x) feature needs to be checked somehow. So a linking morpheme is merged and checks the P(x). The resulting structure is possible to merge with another [root + P(x)], which is constructed in parallel. As the P(x) on the 'rightmost element' is the only feature unsaturated, it percolates and as a result, it is the head of the whole compound. The existence of the linking morpheme between the constituents can be always seen in left-branching compounds in Swedish, and less consistently, in Danish and Norwegian (see Josefsson 1997). Typical examples are as follows.

(437) fot-boll-s-domare
foot-ball-LINK-referee
‘football referee’
Swedish

(438) bo-stad-s-kvarter
live-place-LINK-area
‘residential area’

(439) land-mand-s-forening
country-man-LINK-association
‘farmers’ association’

Danish
The linking morpheme is realized phonetically in Scandinavian left-branching compounds, whereas in English and Japanese left-branching compounds, it is generally not. The examples are as follows.

(440) [[gourmet coffee] cup]

(441) [[gekijoo ticket] uriba] Japanese

(442) [[theatre ticket] shop] ‘a shop for theatre tickets’

(443) [[coffee maker] maker]

(444) [[coffee maker] seigyoosya] coffee maker maker Japanese

(445) [[Labour Union] president]

(446) [[roodoo kumiai] choo] Japanese

(447) labour union president

For some reason, right-branching compounding is more restricted than left-branching compounding. It is hard to construct right-branching compounds with more than three roots. This is also the case in Scandinavian (Josefsson1997), although ambiguity is not a problem due to the presence of an overt linking morpheme. The explanation may be constraints on processing. A compound with too much recursivity without constituents (right-branching compounds) may cause processing problems. In left-branching compounds, the speaker forms a constituent out of adjacent roots earlier than in right-branching compounds, where a constituent cannot be formed until the last root is pronounced (Hawkins 1990).
Let us see structures for four-member compounds in the languages in question.

(448) [[[Water Resources] Research]] Centre

The above structure is constructed in the following way: First a root resource is merged with a P(x) feature. Since the P(x) feature is the unsaturated feature it percolates. Then, another root water is merged. The P(x) is the only unsaturated feature before and/or after the root water is merged, so it is the head of the compound water resource. Then, a linking morpheme is merged with the compound water resource. The P(x) feature of the compound is checked, so that the compound can be merged with another element. In parallel, another root research is merged with a Theme (x) feature. The Theme (x) feature is an unvalued feature. It is assigned its value by the compound water resource and the compound is thereby interpreted as having the theme role assigned by research. Here, there is an agreement relation between the compound water resource and the Theme. Since there is no categorical feature on the resulting 'compound' water-resource-research, a P(x) feature is merged. Then, a linking morpheme is merged and checks the P(x) feature. As a result, it is possible to merge another structure, centre merged with a P(x) feature. Since the P(x) merged with centre is the only unsaturated feature of the whole
compound, it percolates and needs a referential index from a D or DP. This \(P(x) \) is the head of the whole compound.

(449) \[[\text{anzen hoshoo}] [[\text{rizi}]kai]]\] Japanese

safety-security-board directors

‘Security Council’

Similarly, the above structure is constructed in the following way: a root *hoshoo* is merged with a Theme \((x)\) feature. The Theme \((x)\) feature is an unvalued feature. It is assigned its value by the root *anzen* after the root is merged, and *anzen* is thereby interpreted as having the theme role assigned by *hoshoo*. Here, there is an agreement relation between the root *anzen* and the Theme. Since there is no categorical feature on the resulting ‘compound’ *anzen+hoshoo*, a \(P(x) \) feature is merged. Then, a linking morpheme is merged to check the \(P(x) \) feature on the ‘compound’. It is now possible to merge another merged structure \([\text{rizi-kai-}P(x)]\), which has been constructed in parallel. Since the \(P(x) \) on the ‘rightmost’ element of the whole compound is the only unsaturated feature, it percolates, and thereby it is the head of the whole compound.
Similarly, in the above structure, a root boll is merged with a P(x) feature first. Since the P(x) feature is the unsaturated feature it percolates. Then, another root fot is merged to make a compound. The P(x) feature is the only unsaturated feature before and/or after the root fot is merged, so it is the head of the compound fotboll. Just like in (448), a linking morpheme is merged with the compound fotboll. The P(x) feature of the compound is checked, so that the compound can be merged with another element. In parallel, a root plan is merged with a P(x) feature. This [plan+P(x)] is merged with the [fot+boll+P(x)+LINK]. The P(x) feature merged with the root plan is unsaturated before and/or after it is merged with the [fot+boll+P(x)+LINK], so it percolates. Later, another linking morpheme is merged with the [plan+P(x)] to check the P(x) feature. In parallel, another root gräss is merged with a P(x) feature. The [grass + P(x)] is merged with the [plan+P(x)]. The P(x) feature merged with the root gräss is unsaturated before and/or after it is merged with the other elements, so it percolates and thus, it is the head of the whole compound.

The structures seem to be applicable for all types of compounds in the languages.

4.4. Recursion in other languages for Noun-Noun compound words

It is assumed in this thesis that the existence of a linking morpheme in between the constituents in compounds enables the language to have recursiveness. In Scandinavian languages, the linking morpheme is generally overt in recursive compounds. This is true only in left-branching,
not right-branching, compounds. Let us consider other languages, too, to see if this claim can be right.

In Dutch, there is sometimes a linking morpheme between the two constituents in ‘N-N’ compounds and recursivity of compounding can be seen (Booij 2002). According to Booij (2002), an extended form of noun with an additional schwa or -s exists in compounds. Typical example is schaap-s-kop (sheep-S-head) ‘sheep’s head’. Like the linking morphemes in Scandinavian languages, the schwa and the /s/ in Dutch do not contribute to the meaning of the compounds. Another similar characteristic of the linking morphemes in Dutch to those in Scandinavian languages is that they both are historically a genitive suffix.

In contrast to Scandinavian languages, plural nouns in -en can occur in the non-head of compounds in Dutch. There is a semantic opposition with similar compounds with -s. See the following contrasts.

(451)
 a. bedrijf-s-terrein ‘company’s area’
 b. bedrijf-en-terrein ‘companies’

(452)
 a. school-gemeenschap ‘school community’
 b. school-en-gemeenschap ‘schools’ community, comprehensive school’

(453)
 a. stad-s-raad ‘city council’
 b. sted-en-raad ‘cities’ council’

The semantic contrast between the above examples shows that what I have claimed about English compounds with a plural morpheme is not seen in the Dutch examples above. I will not discuss the case of the Dutch examples here. Evidently, there needs to be more research on this case to see how they can be accommodated in the present theory.

Similarly, in German, a linking morpheme occurs in ‘N-N’ compound words. Like in Dutch, the inflectional class of the ‘left-hand’ constituent decides whether a linking morpheme occurs and what kind (see more details in Montgomery 2001). For example, -er- only ever occurs in classes
where it is licensed in the nominative plural (for example (454). Let us see some typical examples of compounds with linking elements in German.

(454) Kind+er+wagen
 child+PL+cart
 ‘buggy’
 (Wiese 1996b: 143)

(455) Schwein+e+braten66
 pig +PL+roast
 ‘roast pork’
 (Collins German Dictionary 2004: 708)

(456) Frau + en+held
 woman+PL+hero
 ‘womanizer’
 (Collins German Dictionary 2004: 968)

(457) Tag+es+zeit
 day+PL+time
 ‘daytime’
 (Wiese 1996b: 143)

The ‘Plural’ morpheme in the above examples is analysed as a linking morpheme.

In Romance languages, there are no linking morphemes inside compound words. This in turn is due to the fact that the genitive in general is prepositional. Let us see first what kinds of compound words exist in these languages. When compounding exists in these languages, it appears to be a syntactic phrase rather than true compounding. In French, for example, there are two main types of construction. One is formed from syntactic phrases, such as pomme de terre (apple from tree) ‘potato’, les hors d’œuvre (outside of work) ‘hors d’oeuvre’, and la mise-au-point (put-towards-point) ‘putting in point’. For this type of compound, there is a prepositional element, such as au, de, in between the constituents. The following is the structure for this type of compounds.

66 I would like to thank Stefanie Reissner for helping me with these data in German.
I argue that the prepositional element is like a verbal element (Section 4.3.4) in that it is merged with a Theme feature. The Theme feature is an unvalued feature and assigned its value by the root terre when this root is merged. The effect of this is that terre is interpreted as having the role Theme. There is an agreement relation between the root terre and the Theme. Since there is no categorical feature on the resulting 'compound' de-terre, another root pomme is merged with a P(x) categorical feature. This feature is unsaturated, so the head of the compound pomme de terre is the P(x). As a result, these features need a referential index from a D or DP.

The second type of compounding in Romance languages consists of a verbal element followed by its object: 'V-N' compounds. Typical examples are le porte-parole (carries-word) 'spokesman', le pince-nez (pinches-nose) in French and el saca-corchos (the pull-corks) 'corkscrew' in Spanish (Spencer 1991: 312, Clements 1987, Contreras 1985). This type of compound does not have a head in the traditional sense, so it is called exocentric. How can we analyse this type of compound? Is it really headless? Let us examine the verbal constituent. This constituent looks like a verbal stem in the form of third-person indicative singular (Clements 1987, Contreras 1985). However, the verbal element is not a 'verb' (with an Event category feature) but a deverbal nominalization of some kind. This argument is supported by the following points. Firstly, if it were a verb, it should inflect like a verb in the singular and plural. However, the following shows that this is not the case.

(459)

<table>
<thead>
<tr>
<th></th>
<th>el</th>
<th>saca</th>
<th>corchos</th>
</tr>
</thead>
<tbody>
<tr>
<td>the-SG</td>
<td>pull-INDIC-3SG corks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'corkscrew'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>los</td>
<td>saca</td>
<td>corchos</td>
</tr>
<tr>
<td>the-PL</td>
<td>pull-INDIC-3SG corks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>corchos/*sacan</td>
<td>pull-INDIC-3PL corks</td>
</tr>
</tbody>
</table>
Secondly, if the 'verbal' element were a verb, it would have subject, since a normal third person singular has a subject, which may be phonetically null (except in French). But in the compound, there is no antecedent. The category of the whole compound is the P(x), unsaturated and waiting to be checked. In the proposed theory, it is possible to assume that when the root is numerated from the lexicon, it does not have any word class features of Event. When it is merged with the nominal element, the Event feature is not there. However, the issue of head has not been solved yet.

Following Zuffi (1981) and Bisetto (1994)(both cited in Guevara and Scalise 2004), Guevara and Scalise (2004) claim that this type of compounds is analysed as a special kind of endocentric compounding: the construction is headed by the 'left-hand' constituent, interpreted as a 'verbal element' plus a non-realised nominalizing suffix. The underlying form of this type of compound, such as portalettere (Italian) is actually something like porta(tore di) letter 'lit. carry(er of) letters'. The suffix -tore is equivalent of -er suffix in English and only selects 'verbal elements' with an agentive subject, but not raising verbs or verbs with a non-agentive subject. Some arguments supporting this analysis are given by Guevara and Scalise (2004). Firstly, -tore nouns often have an ambiguous semantic reading between instrumental and agentive and that is also found in 'V-N' compounds (e.g. miscelatore 'mixer', collaboratore 'collaborator', contagiri 'lit. count-turns, tachometer', portalettere). Finally, the issue of head can be solved. Following Guevara and Scalise (2004), I propose the following structure for this type of compound in Romance languages.

(460)

```
P(x)
P(x)
   TORE P(x) porta Theme(x)
```
The structure above shows that the element porta is merged with a Theme feature and the feature is assigned its value by the root lettere when the root is merged, indicated by the letter t^67. Since -tore selects a 'verbal element' which it attaches to, it attracts porta which is moved and merged with the -tore. As argued above, the verbal element is not merged with an Event categorical feature. However, it is merged with the features [indicative, 3 person singular] (the vowel -a). The -tore is similar to the English equivalent -er, so I propose that the -tore has a P(x) feature which needs a referential index from a D or DP. Thus, the head of the whole compound is the P(x) feature. Thus, the proposed theory is also applicable for compounds in Romance languages.

Latin compounding is not so productive as English, Greek or Sanskrit (Fruyt 2002). Usually, when the other languages have compounding, Latin has affixation and agglutination and fewer sub-types of compounding. For example, Latin determinative compounds (normal type) and bahuvrihi or exocentric compounds, (such as pickpocket, loudmouth, which refer to persons) are limited. When compounding exists in the language, the words are either influenced by Greek or in fields like science or created words by poets. Just like in Romance languages, compounding in Latin is not recursive. There are no genitive compounds either in this language.

Greek compound words also have a linking morpheme (Johannessen (2001)). It is similar to linking morphemes in Scandinavian languages. The 'left-hand' constituent appears in different form in compounding than from when it appears on its own. Thus, the head of the compound is the P(x) which is unsaturated and features on the non-head are checked by the linking

67 See a similar analysis of this type of compound in Italian in Gračanin-Yuksek (2005).
According to Agathopoulou (personal communication)68, Greek compounding can be recursive. Examples are as follows.

\begin{enumerate}
\item a. aghrot-o-dharni-o-dhötisi
\begin{flushright}
farmer loan giving
\end{flushright}
\begin{flushleft}
‘money-lending to farmers’
\end{flushleft}
\item b. pedh-o-odhont-fatros
\begin{flushright}
child tooth doctor
\end{flushright}
\begin{flushleft}
‘a children’s dentist’
\end{flushleft}
\item c. asvest-o-polto-piisi
\begin{flushright}
lime pulp making
\end{flushright}
\begin{flushleft}
‘lime-pulp-making’
\end{flushleft}
\end{enumerate}

What is interesting and different from compounding in Scandinavian languages is that there is a linking morpheme after each constituent, whilst in Scandinavian languages, there is a linking morpheme after embedded compounds69, not each constituent.

According to Agathopoulou (personal communication)70, for Greek native speakers, multi-stemmed compounds like the above (462) in which the two initial constituents are in a hierarchical relation are relatively rare in the language. The example (a) has been made up by Di Sciullo and Ralli (1994), cited in Agathopoulou personal communication). They maintain that it is acceptable by native speakers, and the examples in (b) and (c) are among the very few of this kind in the data given by Agathopoulou. More frequent are similar compounds in which the relation between the two initial constituents is coordinate (Joseph and Philippaki-Warburton 1989: 227, like the ones shown next.

\begin{enumerate}
\item a. ot-o-rin-o-laring-o-lóghos
\begin{flushright}
ear nose throat expert
\end{flushright}
\begin{flushleft}
‘ear, nose, and throat specialist’
\end{flushleft}
\end{enumerate}

68 I would like to thank Dr. Agathopoulou for her comments.

69 More precisely, after every left-branching constituent in a word, as derived words also require the linker (see Josefsson 1997) barn+dom+s+minne (child+hood+LINK+memory) in Swedish.

70 I would like to thank Dr Agathopoulou for her comment on nominal compounds in Greek.
b. kafe-zith-estiatörio
coffee ale restaurant
‘a coffee- and ale-shop’
c. skulik-o-mirmingh-6-tripa
worm ant hole
‘a worm- and ant-hole’

Whatever the characteristics of the linking morpheme in compounding in this language, these data support the hypothesis that when there is a linking morpheme, the language has recursive compounding.

Finnish (Karlsson 1987) has compound words similar to that of Germanic languages and Japanese. The most common type of compound word is made up of two non-derived nouns; e.g. kirja+kauppa (book+store) ‘bookshop’, vesi+pullo (water+bottle) ‘water+bottle’, pallo+pelli (ball game) ‘ball game’ and many others. However, it is not just juxtaposition of two nominal elements. The ‘left-hand’ constituent of these compounds is often in genitive case (Spencer 2003). Also, fairly common are compounds with more than two elements, such as maa+talous+tuotanto (land+cultivation+production) ‘agricultural production’, elo+kuva+teollisuus (live+picture+industry) ‘film industry’, huone+kalu+tehdas (room+thing+factory) ‘furniture factory’, koti+tarve+myynti (home+need+scale) ‘household sale’ and so on. This language seems to be a case where compounding is productive and recursive.

In Hungarian, there is a construction of ‘bare noun + verb’ sequences which behave very much like compounds (Kiefer 1990): they constitute of a single phonological unit and can easily get lexicalised, and the bare noun is non-referential and non-modifiable. At the same time, they are not syntactic islands in that they can be affected by certain syntactic rules, such as focusing and negation. Moreover, auxiliaries may split up the sequences. Typical examples are as follows.

(464)

a. Jancsi házat épít.
Johnny house-acc build
‘Johnny is engaged in house-building’.
b. Pisti levelet ír.
Steve letter-acc write
As these examples demonstrate, the bare noun in this sequence is always case-marked and theta-marked just like the corresponding constructions in Japanese and English. Also, Hungarian compounding is recursive\(^71\), just like in English, Japanese and Scandinavian languages. There seems to be a correlation between the linking morpheme and the recursiveness of compounding within a language.

Word formation in Slavic languages is similar to that of Romance languages in that word formation is from derivation rather than compounding (Clark 1993\(^72\)). This is also true in children's spontaneous speech. Children seem to prefer coining new nouns through derivation rather than compounding (Clark 1993). However, there is some compounding in these languages. For example, in Polish, when compounding takes place, a linking morpheme, similar to that in Greek and Scandinavian languages, does appear between the two constituents of compound words. If compounding in these languages is not productive, it is not recursive either.

In Latvian (Spencer, personal communication), 'N-N' compounds are formed from uninflected stem forms. For example, *gramata* 'book', *grāmat veikals* 'bookshop'. The form *grāmat-* is a stem (or a root) which cannot surface as such in the syntax. However, in addition to this construction Latvian has a wide range of NN compounds whose first member is in the genitive (either singular/plural) case. The examples are *grāmat-a veikals* 'bookshop' (literally. of-book shop), *latvieš-u valoda* 'Latvian language' (lit. of-the Latvians language) and *ziemasvētki* 'Christmas' (lit. of-winter festival) (Mathiassen 1997: 55-56, cited in Spencer 2003: 12). These are in the same form as normal genitive construction but thought of as compounds and have left-stress. The basic types are uninflected root + word and N-gen.pl + word and the examples are given below.

(465) gra'mat-a
 'book'

(466) veikal-s
 'shop'

\(^{71}\) I would like to thank Mr Fejes for his comments on this matter.

\(^{72}\) I would like to thank Prof. Wayles Browne for his comments on this topic.
Semantically these compounds do not really mean things like 'the shop of (the) books'. The genitive is used purely in a modifying function. They represent a species of compound in which the 'left-hand' member is inflected. In this respect they are like the internally inflected compound nouns of Finnish. Thus, compounding formation in Latvian is slightly similar to that of Swedish, English and Japanese genitive compounds. The genitive case marker checks the categorical feature on the 'left-hand' element of the compound.

Similarly, but a little bit differently from Latvian, Lithuanian has Greek-style compounds with a meaningless linking morpheme like the one in Greek compounds. It is not homophonous with an inflected form of the compounded word, unlike in Germanic compounds. Lithuanian also has compounds consisting of N-gen.pl + N (see briefly Mathiassen 96 p. 1179-180, 181 points (a), (f)). Thus, to translate 'Lithuanian', 'Latvian' in the sense of 'the Lithuanian/Latvian language' into these languages.

According to Spencer (personal communication) compounding in both Latvian and Lithuanian is very productive, much as in Germanic (in this respect Baltic languages are completely different from Slavic languages, but very similar to the Finnish and Germanic languages that surround them). Similarly to compounding in Germanic, therefore, the linking morpheme is there to check features on the non-head of the compound.

I would like to thank Professor Spencer for sharing his knowledge on compounding in these languages.
Let us observe compounds in non-Indo-European languages. Chinese according to Duanmu (1997) has two different kinds of nominal structures; \([\text{NN}]\) and \([\text{N de N}]\) where \(\text{de}\) is a particle. There is good evidence that \(\text{NN}\) and \(\text{N de N}\) are syntactically different. Especially, \([\text{NN}]\) is not a phrase but a compound (Duanmu 1997) (\text{gao shan} tall mountain ‘tall mountain’) vs. \text{gao de shan} tall \text{DE} mountain ‘tall mountain’). He uses productivity, conjunction reduction and adverbial modification to distinguish these two constructions\(^{74}\). Possibly, Chinese is a language where productive and recursive compounds (e.g. \text{mei5mei6 gaa3fel} \text{bull}\(^{75}\) (gourmet coffee cup), \text{huk6sang1 din6jing2 wui2} (student film club), are the norm (Packard 2000), but there is no genitive compound. The structure for compound words in this language appears to be the same as that in Japanese neoclassical compound words.

In Korean there seems to be genitive compound words. For example, there is a word such as \text{kwukkwun-uni nal} ‘soldier’s day’ with the genitive case marker \text{uni} inside functioning, I assume, as a linking morpheme. In this type of compound word, in this language, the feature on the non-head is checked by the linking morpheme. Korean ‘N-N’ compounding is very productive. I have not been able to find whether compounding in Korean is recursive or not. However, in the serial verb constructions, where two verbal roots are combined, a linking morpheme appears after the left-hand verbal root. Serial verbs are lexicalised (\textit{contra} Chung 1993), not syntactic verbs, in that the two verbal roots have the same subject, they denote one single event, not a sequence of events. Between the two constituents, the linking morpheme exists without any meaning. In the Principle and Parameters approach, the linking morpheme is argued to be inserted for the lack of fullness in the verbal root (Kang 1988, cited in Chung 1993). So presumably within the Minimalist Program, the linking morpheme is merged in the narrow syntax, just like the linking morpheme in Scandinavian languages.

In contrast, according to Chung (1993), lexical ‘compound verbs’ also exist in Korean and there is no linking element between the two verbal elements. Another difference from the serial verb construction is that the meaning of the whole compound word is usually figurative (Chung1993: 45). For example, compare the following two sentences.

(470)
\begin{enumerate}
\item lexical compound verb
Mary-ka ku kay-lul cal tol-po-ess-ta.
\end{enumerate}

\(^{74}\) As far as I know, Chinese equivalent word \textit{Mother's day} do not use the genitive marker inside them, since Chinese does not have a Case marker. \(\text{N de N}\) is a possessive construction.

\(^{75}\) The numbers show the tones. I would like to thank Ms Winnie Yiu for the data.
Mary-N the dog-A turn-around-see-Pst-Dec
‘Mary looked after the dog well’.

b. serial verb
Mary-ka ku kay-lul tol-e po-ess-ta.
Mary-N the dog-A turn around-E see-Past-Dec
‘Mary turned around and saw the dog’.

(Chung1993: 45)

In (470a) and (470b), the lexical ‘compound verb’ and the ‘serial verb’ constructions contain the same component verbal roots, tol- ‘turn around’ and po- ‘see’. The lexical ‘compound verb’ construction in (470a) has a figurative meaning, ‘look after’, but the ‘serial verb’ construction in (470b) retains the meanings of its component verbal roots, ‘turn around/see’. The meanings of the lexical ‘compound verbs’ are often not predictable from the component verbal roots, although there are cases where meaning can be predicted. Within the proposed theory, ‘serial verb’ construction and lexical ‘compound verb’ are both assumed to be derived in the narrow syntax, the difference being that the LF-lexicon has the meaning of the compound verb stored.\(^\text{76}\)

\(^{76}\) Chung convincingly claims that the Korean serial verb construction is different from the verbal coordinate construction, too. The first difference is seen in the interpretations of the negation scope.

John-N the book-A NEG read-CONJ return-Past-Declarative
‘John returned the book, without reading’ (Chung1993: 26)

In this example, the negative morpheme takes scope only over the left-hand verbal root. In contrast, however, serial verb construction sometimes shows ambiguities in the scope of negation (also supported by H.D. Ahn 1992, cited in Chung 1993: 24 footnote 24).

John-N NEG walk-E go-Pst-dec
(i) It is not the case that John went on foot.
(ii) John went, not on foot.
(Chung 1993: 39)

Another fact about serial verb construction is that it is productive. However, in contrast, Korean lexical verb compounds are not. Moreover, Chung states that the serial verb has the right-hand verbal root as its head. In order to make that argument, Chung provides the following example.

a. apeci-ka kapang-ul tul-e olli-si-ess-ta.
Father-N bag-A take-E raise-Hon-Past-declarative
‘Father took/raised the bag’.

Father-N bag-A take-HON-E raise-Hon-Past-declarative
‘Father took/raised the bag’.

The agreement (honorification) marker si appears on the ‘right-hand’ verbal root, not on the ‘left-hand’ verbal root as shown above.
In the Akan language, spoken in Ghana, compounding is recursive and there are genitive compounds, just like in the Germanic languages. It is possible to have a recursive compound, such as \([[\text{nyamesEm}] \text{kal} \text{[[[God] story] say]} \) or \([[\text{asEm} \text{pa} \text{ka}] \text{[[[story] God] say]} \) both meaning 'evangelism'. There are examples, such as \(\text{awofoda} (\text{awofoO 'mothers' + Eda 'day'})\) meaning 'mother's day'. However, since this language does not have overt case markers, the case marking does not show in genitive compounds. Again, compounding in this language shows that my claim is on the right track.

Hebrew relies mainly on derivation for word formation. According to Clark (1993), the main word-formation device is the association of consonantal roots with patterns of vowel infixes, plus prefixes or suffixes. For example, the root \(g-d-l 'grow'\) has given rise to established nouns like \(\text{gidul 'growth, tumor,' gôdel 'size', gdila 'growing, growth', gdula 'greatness', migdal 'tower', and hagdala 'enlargement'}\) (Berman 1978, Ravid 1978, both cited in Clark 1993: 172). Compound word formation does exist. However, many types of head nouns need some modification since they must appear in bound form in compounds. For instance, the free form \(\text{mexona 'machine'},\) when in a compound, occurs in the form \(\text{mxonat, as in mxonat-hiv} 'a\) type writer. The full-form \(\text{bayt 'house'}\) appears \(\text{bet-}\) in compounds like \(\text{bet-séfer 'school'}\). Compounding is more common in written Hebrew than in spoken Hebrew.

Another argument for the headship of the 'right-hand' verbal root in a serial verb construction is in the selection of adverbs. An aspectual adverb cannot conflict with the 'right-hand' verbal root head without resulting in ungrammaticality. Consider how verbal roots select aspectual adverbs:

\begin{itemize}
 \item a. John-i il cwuiil tongan kwulm-ess-ta.
 \hspace{1cm} John-N one week for go without food-Pst-dec
 \hspace{1cm} 'John went without food for a week'.
 \item b. *John-i il cwuiil tongan cwuk-ess-ta.
 \hspace{1cm} John-N one week for die-pst-dec
\end{itemize}

The verbal root \(\text{kwulm- 'to go without food'}\) may take a durational adverbial element as in (a) because it is an activity verbal root, whereas the verbal root \(\text{cwuk- 'die'}\) cannot because it is an achievement verbal root. These two verbal roots combine to form a serial verb construction as shown in the following examples. However, the serial verbal construction cannot take a durational adverb, as shown below.

\begin{itemize}
 \item a. John-i il kwulm-e cwuk-ess-ta.
 \hspace{1cm} John-N go without food-E die-Pst-dec
 \hspace{1cm} 'John went without food/died' (John died of hunger).
 \item b. *John-i il cwuiil tongan kwulm-e cwuk-ess-ta.
 \hspace{1cm} John-N one week for go without food-E die-pst-dec
 \hspace{1cm} 'John went without food/died for a week'. \hspace{1cm} (Chung 1993: 103)
\end{itemize}

As the arguments show, this construction has the 'right-hand' element as the head, since the linking morpheme checks the features of 'left-hand' element. There is no tense, aspect or honorific features on the 'left-hand' element but there is on the 'right-hand element'.

I would like to thank Dr. Charles Marfo for his comments on this language.
In contrast to Clark's claim, Pereltsvaig (1998) argues that compounding in Modern Hebrew is productive unlike in other Semitic languages. Pereltsvaig gives a list of compound types in Hebrew and the list tells us how productive each types is. It seems like 'N-N', 'N-A', 'A-N', and 'A-A' are all common and the other types, such as 'N-V', 'N-P', 'V-N', 'V-A', 'V-V', 'V-P', 'P-N', 'P-A', 'P-V', and 'P-P' types are either rare or non-existent. According to Pereltsvaig, the impossibility of 'V-V' is not due to the Argument Linking Principle proposed by Lieber (1992) but the non-concatenative nature of verbal morphology. In order to form a well-formed verb in Hebrew some non-concatenative morphology must apply. In contrast, nominal compounds are possible in Hebrew. However, as argued by Clark and Pereltsvaig, there is some derivational nominal morphology which is non-concatenative.

According to Pereltsvaig (1998) and Borer (1988), there are compound words and construct state nominals in Hebrew or Semitic languages. Compound words contrast with construct state nominals which are considered non-compound strings. Let us compare the two constructions. The (a) examples are of compounds, whereas the (b) examples are of corresponding construct state nominals.

\[(471)\]
\[
\begin{align*}
a. & \quad \text{beyt sefer} \\
& \quad \text{house book}
\end{align*}
\]
\[
\begin{align*}
a. & \quad \text{a school}'
\end{align*}
\]
\[
\begin{align*}
b. & \quad \text{beyt more} \\
& \quad \text{house teacher}
\end{align*}
\]
\[
\begin{align*}
b. & \quad \text{a teacher's house'}
\end{align*}
\]

\[(472)\]
\[
\begin{align*}
a. & \quad \text{yom tov} \\
& \quad \text{day good}
\end{align*}
\]
\[
\begin{align*}
a. & \quad \text{a holiday'}
\end{align*}
\]
\[
\begin{align*}
b. & \quad \text{yom yafe} \\
& \quad \text{day beautiful}
\end{align*}
\]
\[
\begin{align*}
b. & \quad \text{a nice day'}
\end{align*}
\]

\[(473)\]
\[
\begin{align*}
a. & \quad \text{yafe to'ar}
\end{align*}
\]
The constructions share many properties. Firstly, they both form one prosodic word. In other words, the head of both constructions does not bear main stress, but the non-head does.

Secondly, other properties shared by the constructions follow from the fact that compounds and construct state nominals form one prosodic word.

(474)

a. *beyt xadaš sefer
 house new book
 'a new school'

b. *beyt xadaš more
 house new teacher
 'a teacher's new house'

The above examples show that no other material can intervene between the head and the non-head in the constructions.

Another similarity is that the non-head is obligatory, with the weak form of the head standing alone being ungrammatical: *beyt 'house' (construct form). Also, in both constructions it is not possible for the head to bear the definite article.

(475)

a. (*ha-) beyt sefer
 the house book
 'the school'

b. (*ha-) beyt more
 the house teacher
 'the teacher's house' or 'the house of a teacher'

(Pereltsvaig 1998: 6)
Moreover, the definiteness marked on the non-head member of both compound words and construct state nominals spreads to the head member. In other words, the whole compound word and construct state nominal is understood as definite.

(476)

a. Ra' iti'et beyt ha-sefer.
 saw-I acc house the-book
 'I saw the school'.

b. Ra'iti (* 'et) beyt sefer.
 saw-I acc house book
 'I saw a school'.

c. Ra'iti 'et beyt ha-more.
 saw-I acc house the-teacher
 'I saw the teacher's house'.

d. Ra'iti (* 'et) beyt more.
 saw-I acc house teacher
 I saw a teacher's house.

(Pereltsvaig 1998: 6)

Let us see how to distinguish the two constructions. As one can see from the (a) examples of compound words and the (b) examples of construct state nominals in (471) –(473), the difference between them is semantic compositionality. Whilst construct state nominals are semantically compositional, compound words are not. In addition, construct state nominals are recursive and productive due to the compositionality.

Another interesting difference between the two constructions is that when the definiteness is marked on the non-head and spreads to the head (as shown in the examples (476)), the non-head marked with a definiteness marker in compounds but not in construct state nominals may have a non-specific interpretation. In other words, the compound beyt ha-sefer 'the school' does not refer to a particular book. On the other hand, the construct state nominal manhigey ha-kita (leaders the-class) means 'the leader of the class', but not 'the leaders of a class'.

Another interesting property of construct state nominals is that they have an exclusively left-branching structure. In other words, the head must be bare, and cannot be modified by a determiner (477a) or by an adjective (477b). Any attempt to modify the head directly must use the shel strategy of possession in (478). Alternatively, the head can be modified indirectly.

(477)

a. *ha- co if ha-yalda
 the-scarf the-girl

b. * co if (ha-) yafe ha-yalda

(Pereltsvaig 1998: 6)
(478)

(a) ha-ca if ha-yafe (shel ha-yalda)
the-scarf the-pretty of the-girl
'the girl's pretty scarf'

(b) ca if ha-yalda
scarf the-girl
'the scarf of the girl'

(c) " a scarf of the girl'
" the scarf of a girl

(d) ca if ha-yeled ha-yafe
scarf the-boy the-pretty
'the boy's pretty scarf'
'the pretty boy's scarf'

(Borer 1988:47)

Since construct state nominals sometimes behave like a word and sometimes behave like a phrase, Borer (1988) states that the construct state nominal becomes a word at a stage no later than S-Structure in the syntax. Within the Minimalist Program, since there is no S-Structure, it is possible to claim construct state nominals may be pronounced as words but have a syntax similar to phrases. This is why they can be recursive.

(479)

(a) madaf sifrey ha-yalda
shelf books the-girl
'the shelf of the books of the girl'

(b) madaf sifrey ha-yalda ha-xadash
shelf books the-girl the-new
'the new shelf of the books of the girl'

(c) madaf sifrey ha-yalda ha-yafim
shelf books the-girl the nice-pl
'the shelf of the nice books of the girl'

(d) madaf sifrey ha-yalda ha-ktana
shelf books the-girl the-little
'shelf of the books of the little girl'
The non-head of this construction is referential (Pereltsvaig 1998). Thus, the P(x) feature of the non-head noun is checked by a D within the construction. This means that it is not a compound.

Arabic is well known for not having compound words (personal communication with Peter Sells). In contrast to this claim, Emery (1998) concludes that there are a number of compound words in Arabic, just like in English. As for productivity of compounding, however, Emery has no comment. Many sources within the literature claim that compounding is a strictly morphological process distinct from the indigenous syntactic process of complex NP formation and is scarcely used in any form of Arabic (Holes 1990, cited in Pereltsvaig 1998: 22). There are some examples from Holes given below and according to Holes and Pereltsvaig, these examples are complex noun constructions, not compound words.

(480)

ahmar il-loon
red the-colour
"red coloured"

An expression like (480) is a complex phrasal noun construction, since the definite article is inside it. Pereltsvaig claims that the unproductivity of compounding in Arabic is due to its non-concatenative morphology. I conclude in this thesis that there is neither recursive compounding nor genitive compounds in Arabic.

Further support for the interaction of non-concatenativity and compounding is provided by an examination of Maltese. This is also another Semitic language with rich non-concatenative morphology (Pereltsvaig 1998: 24). There is a ‘N-N’ construction in this language. However, these constructions are generally transparent semantically, as well as syntactically (see Pereltsvaig 1998 for further details).

The Table 5 is a summary of the observation of the languages above. The second column shows whether the language has productive and recursive compound words and the final column shows whether there is a linking morpheme or not in the language.
<table>
<thead>
<tr>
<th>Languages</th>
<th>Productive/Recursive?</th>
<th>Linking element?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese</td>
<td>Yes/Yes</td>
<td>Genitive compounds</td>
</tr>
<tr>
<td></td>
<td>Especially ‘noun-noun’ compounds</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Yes/Yes, especially ‘noun-noun’ compounds</td>
<td>Genitive compounds</td>
</tr>
<tr>
<td>Scandinavian languages</td>
<td>Yes/Yes, especially ‘noun-noun’ compounds</td>
<td>Genitive compounds</td>
</tr>
<tr>
<td>Dutch</td>
<td>Yes/Yes</td>
<td>A linking morpheme between ‘noun-noun’ compounds</td>
</tr>
<tr>
<td>German</td>
<td>Yes/Yes</td>
<td>A linking morpheme between ‘noun-noun’ compounds.</td>
</tr>
<tr>
<td>Greek</td>
<td>Yes/Yes.</td>
<td>A linking morpheme after each constituent involved in compounding.</td>
</tr>
<tr>
<td>Romance languages</td>
<td>Yes/Not recursive</td>
<td>Lexicalised ‘noun-noun’, ‘V-N’ and ‘noun + preposition + noun’ compounds. No genitive compounds or linking morpheme.</td>
</tr>
<tr>
<td>Latin</td>
<td>No/no</td>
<td>No</td>
</tr>
<tr>
<td>Finnish</td>
<td>Yes/yes</td>
<td>The non-head in partitive case</td>
</tr>
<tr>
<td>Hungarian</td>
<td>Yes/Yes</td>
<td>Case-marker in ‘N-V’ compounds, which is both lexical and syntactic.</td>
</tr>
<tr>
<td>Slavic</td>
<td>Not very productive/not recursive</td>
<td>Yes, in Polish with a linking morpheme in compounds. Prefers derivation</td>
</tr>
<tr>
<td>Latvian</td>
<td>Yes/recursive?</td>
<td>A case-marker-like linking morpheme</td>
</tr>
<tr>
<td>Language</td>
<td>Recursive?</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>Yes/recursive?</td>
<td>A linking morpheme</td>
</tr>
<tr>
<td>Chinese</td>
<td>Yes/Yes</td>
<td>No genitive compounds/no linking morpheme</td>
</tr>
<tr>
<td>Korean</td>
<td>Yes/Yes?</td>
<td>Genitive compounds/dummy linking morpheme in the ‘serial verb’ construction, none in compounding.</td>
</tr>
<tr>
<td>Akan</td>
<td>Yes/Yes</td>
<td>Genitive compounds</td>
</tr>
<tr>
<td>Hebrew</td>
<td>Yes in written language, but not recursive due to semantic opacity. Construct state nominals behave like a word phonologically and the head cannot be modified by a determiner or by an adjective. But the non-head is referential, so it behaves differently from ‘normal’ compound words.</td>
<td>Not so much in spoken because of disjunctive morphology. No linking morpheme or no genitive.</td>
</tr>
<tr>
<td>Arabic</td>
<td>Not recursive</td>
<td>No genitive compounds.</td>
</tr>
<tr>
<td>Maltese</td>
<td>Not productive, because of disjunctive morphology.</td>
<td></td>
</tr>
</tbody>
</table>

The table above shows that there are languages which allow and languages which do not allow recursive compounding. I have proposed above that there is a linking morpheme which checks the features of the head of the ‘first’ compound in Scandinavian languages, English and Japanese. If my claim is true, left-branching recursive compounding or more generally, recursion of the non-head of the compound must be universally dependent on the existence of a linking morpheme. The linking morpheme is there for the sake of asymmetry. If the linking morpheme does not check the categorical features of the non-head, the structure will be impossible, having two heads. Thus, in the languages without recursive compounding, there is no projection of a linking morpheme. Even though the languages do have productive two-member compounding, it is not possible to produce more than two-member compound words.
It seems that languages without productive compounding have more complex compound-like constructions without any linking morpheme inside them. However, more work needs to be done within the proposed theory for other languages.

4.5. Phrasal compounds

Within this framework, phrasal compounds in the languages in question can also be analysed. In phrasal compounds, as discussed in 2.4, the non-head is a maximal projection. Lieber (1992) proposed that there is interaction between syntax and lexicon for this type of word formation. It is also significant to state that the phrasal constituent of the compounds is always the non-head, not the head (Namiki 2001) and so it is similar to left-branching compounds (see 4.3.5). Based on the Lexical Integrity tests in Section 2.4, I assume that the whole compound is different from a DP or NP.

Let us see the derivations of some phrasal compounds in the languages in question.
Whatever the projection of the non-head of the compound is (TP or CP), there are no more features to be checked, because it is a complete main clause (for an argument that it is a main clause see footnote 89 below). Thus, the derivation is completed and it is possible to merge another head. The root message is merged with a P(x) feature and this category can merge with the TP forming a compound. The P(x) feature needs a referential index from a D, so the head of the whole compound is P(x).

Another example with phrasal non-head is as follows.

(483) a God-is-dead-theology

78 The structure of the non-head for the examples (482) and (483) are taken from Adger (2003).
Again, the non-head is a complete clause with no features to be checked, so it can merge with a head forming a compound.

Let us see some examples in Scandinavian languages.

(484) ett jag-längtar-efter-dig-brev

\[\text{a I long for you letter} \]

(485) ett skicka-mera-pengar-brev

\[\text{a send more money letter} \]

\[\text{79 The non-head has the word order of a main clause with verb-second, evident if an adverb is included (Holmberg \\& Platzack 1995): ett jag-längtar-ännu-efter dig brev (a I-long-still-after you letter). If V2 clauses are derived by subject movement to Spec CP, then the non-head is a CP.} \]
The non-head of the example above is imperative. In this example, I assume Platzack & Rosengren's (1998) theory of imperatives in the Mainland Scandinavian. According to Platzack & Rosengren, there are several positions available for the imperative subject in these languages: Spring (du) alltså (du) hem (du) meddetsamma (du)! (Run (you) thus (you) home (you) immediately (you)). Thus, it means 'you run home immediately!'. Based on this phenomenon, they argue that the subject can either stay in the Spec VP or move to intermediate positions between TP and VP (e.g. FP) and this phenomenon can be explained by the strength of EPP. Whatever the position of the subject is, just like the sentential non-head, the derivation of the non-head imperative is completed before another root is merged. This root is merged with P(x), which percolates to the dominating node.

Japanese can have sentential non-heads in compound words, too, and the structure is similar to that of Germanic languages. Let us see the structure for some examples.

(486) (boku\(^80\) ga) kimi-o-aisiteiru-message

\[
\begin{array}{c}
\text{P(x)} \\
\text{TP} \\
\text{boku-ga} \\
\text{vP} \\
\text{v'} \\
\text{VP} \\
\text{kimi-o t_j}
\end{array}
\]

As in Germanic languages, there is no more features to be checked, because it is a complete main clause. Thus, the derivation is completed and another root can be merged. Tegami is merged with

\(^80\) For the issue of pro-drop in Japanese, see Ono (2001). He argues, based on Alexiadou and Anagnostopoulou's (1998) analysis of pro-drop languages, that overt subject raising in Japanese is EPP-driven and that EPP is strong in this language. I agree with him in that the subject does raise out of VP to the IP Spec position. This argument is supported by the fact that case-marker cannot be dropped in non-theta-marked position (Ono 2001: 3); and the fact that adjuncts may intervene between floating quantifiers and the subject noun phrases, whereas internal arguments and manner adverbs may not.
a P(x) and the P(x) needs a referential index from a D, so the the head of the whole compound is P(x).

(487) (anata-ga)- nandemo-tabe-rareru-restoran
(you-NOM)-anything eat-can restaurant
‘you-can-eat-anything-restaurant’

The non-head of this compound is also TP or CP and has no more features to be checked. It is therefore possible to merge another head. I assume that a similar structure is applicable for the other examples of phrasal compounds cited in 2.4, since the non-head is a maximal projection, i.e. no more features need to be saturated. The proposed theory seems to work for a wide variety of compounds. Compound words are derived in the same way as phrases are, which is why the proposed theory is applicable for phrasal compounds.
What about examples such as below?

(488) strict-word-order-language

In the 'compound', strict-word-order (*very-strict-word-order-language), as the \(P(x) \) is the head, it percolates. It needs to be checked by a linking morpheme, since there is no D or DP inside this compound (*[a-strict-word-order]-language). Then, another root can be merged with a \(P(x) \) feature. The head of the whole compound is \(P(x) \) of the 'right-most' element.

(489) [maborosi no chosha] sagasi

phantom GEN author research

'search of a phantom author'

What makes this compound different from the other compounds represented above is that one cannot easily tell what the head is in the non-head 'maborosi-no-chosha as the individual in question can be both a kind of an author and a phantom (metaphorically). I assume that the head of this construction is the \(P(x) \) merged with maborosi. The above structure is derived in the
following way. Firstly, *chossa* is merged with a P(x) feature which is valued with *no*. The *no* is merged as a linker (den Dikken & Singhapreecha 2000) and checks the P(x) feature of *chossa*. Then, *maborosi* is merged with a P(x) which is the head of the construction *maborosi no chossa*. To check this P(x) feature, a linking morpheme is merged. Since the derivation of the non-head is not complete (it is not possible to have an accusative case marker: *maborosi-no-chossa-o-sagasi*, a linking morpheme is merged and checks the feature P(x). Then, another root, *sagasi*, is merged with a Theme (x) feature. The unvalued Theme feature is valued with the non-head, and the P(x) is merged, as there is no categorical feature on the whole compound. It is the head of the compound.

The proposed theory seems to work for a wide variety of compounds. If the non-head is not complete (i.e. not a maximal projection in the sense of Collins (2002)), a linking morpheme is merged and checks the remaining unvalued feature.

4.6. Copulative compounds and Dvandva compounds in these languages

The previous sections have looked at compound words with two constituents in a modifier-modified relationship. As discussed in 2.5, there are compounds in Japanese as well as in English and Scandinavian where the relationship between the two constituents is coordination. Examples of (146) –(148) are repeated below. (490), (491), and (492) are examples of coordinative compounds; (493) and (494) are examples of appositional compounds.

(490) Japanese
 a. saru + kiji
 monkey + pheasant
 b. jishin+ kaji
 earthquake + fire
 c. oya+ ko
 parent + child
 d. yama+ kawa
 mountain + river
 e. ame+kaze
 rain + wind
 f. ama+tsuchi

81 Scandinavian does not like compounds like *strikt-ordføljdsspråk* (strict-word-order-language). This might be due to the fact that compounds with adjectival non-head are not productive. I do not have an answer to this question at the moment.
heaven+earth

g. kusa+ki
grass+tree

h. ta+ hata
paddy-field+field

(491) English
a. mother+daughter relationship
b. the doctor+patient gap

c. the nature+nurture debate

d. a modifier+head structure

e. the mind+body problem

(492) Scandinavian
a. moder+datter forhold
mother+daughter relationship

(493) English
a. mother+daughter
b. blue+black
c. poet+translator

d. singer+songwriter

e. scientist+explorer

f. hero+martyr

g. dunch (dinner and lunch combined together) 82

(494) Scandinavian
a. nord+vest
b. North+west
c. Østrig+Ungarn

82 More examples of copulative compounds are in the Appendix.
I propose coordinative compounds are structured in the following way.

(495)

\[
D[\text{pair}] \\
D[\text{pair}] \quad \text{root} \quad \text{root} \\
\quad \quad \quad \quad P(x)
\]

The above structure accounts for coordinative compounds. Two roots are merged and then this merges with \(P(x) \). This expresses the fact that the property which is assigned to the \(D \) or \(DP \) is neither that of being a parent or that of a child, if we take (490c)\(^{83}\) as example, or a combination of being both a parent and a child assigned to one individual. Instead, it is a property assigned to a pair of individuals.

(496)

\[
D \\
\quad \text{root} \\
\quad \quad P(x) \quad \text{root} \quad P(x)
\]

On the other hand, the structure (496) is for the appositional compounds. This structure shows that the case of poet-translator in (493c) is not the property of poet or that of translator, but a combination of the two properties assigned to one person. So the \(D \) has a referential feature

\(^{83}\) After the derivation of the dvandva, it is possible to merge a classifier or plural phrasal affix –tachi (see 4.1.1). Then, the dvandva DP moves to a Spec higher DP to get a referential feature from the higher \(D \).
which is assigned the property of parent and the property of child. The interpretation of the whole compound would be 'one person with two properties'.

4.7. Weak points in other theories and analyses solved in my theory

As the previous sections have shown, many of the problems found in the other theories and analyses can be solved in by the theory proposed in this thesis. Regarding the headedness of compound words, all of the other authors rely on some version of Williams' (1981) headedness. Williams argues the following: In morphology, we define the head of a morphologically complex word to be the right-hand member of that word (Williams 1981:248). However, given that the place of Morphology is outside the Lexicon and after the Narrow Syntax, the Righthand Head Rule does not determine the head and has no place in the Narrow Syntax. It is still important to assume the asymmetry of the structure of compounds. Within the present theory, Collins' (2002) definition of head has been used. According to Collins, a head is a category which has one or more unsaturated features. Another stipulation taken from Collins (2002) is that when a lexical item is chosen from the lexical array and introduced to the derivation, the unsaturated features of this lexical item must be satisfied before any new unsaturated lexical items are chosen from the lexical array. The effect of these two assumptions is that when two categories \(\alpha \) and \(\beta \) are merged, only one of them, say \(\alpha \), can have an unsaturated feature (which is not saturated by \(\beta \)), so \(\alpha \) will be the head.

\[\text{[Diagram]}\]

It is important to note that the two ArtP do not contain any other material, such as no complement of P(x) and that the Art is there to agree with D but does not have an index of its own. On the other hand, the P(x)s have an unvalued referential index which needs to be valued by the D.
Also in the theory proposed in this thesis, the non-head of a compound is either a root without word class feature or any unsaturated feature, or it is merged with a linking morpheme, which checks its unvalued feature. The problems of headedness in transformationalist accounts in Lees (1960) and Levi (1978) and the Minimalist account in Spencer (2003), Roeper, Snyder, and Hiramatsu (2002) and Josefsson (1997), therefore, are resolved.

Another problem, the unnecessary movement in Holmberg (1992) and Roeper, Snyder and Hiramatsu's theories is also resolved by the theory proposed in this thesis, since there is no unnecessary movement involved. The Extension Condition, which is violated in Roeper et al's theory by insertion of a new item in the empty 'Clitic' position, is not violated in the proposed analysis, since every new element is merged with the top node of the tree.

Another deficiency of Williams (1981), Selkirk (1982), and Spencer's (2003) theories is that these theories do not analyse the whole range of of compound words, such as lexicalised compounds, neoclassical compound words, genitive compounds, phrasal compounds and dvandva compounds. In the theory proposed in this thesis, all these kinds of compound words can be analysed in the same way. Lexicalised compounds and productive compounds have the same structures. The List of Morphemes together with the LF-lexicon, proposed by Platzack (1993), can account for the difference between the meanings of lexicalised and productive compounds. The conventionalised meaning is there in the LF-lexicon, whereas the meaning of the productive compound is composed of the meaning of the lexical entries.

Moreover, unlike in the previous theories, the theory proposed here seems to account for compounding in a variety of languages. There are languages which allow recursive nominal compounding and in these language, it has been hypothesised that there is a linking morpheme which can be abstract, but which is sometimes spelled out as a genitive case affix, as is the case in Japanese, English and the Scandinavian languages. However, more work needs to be done in order to support the hypothesis that there is a relationship between the linking morpheme and recursive compounding in a given language.

4.8. Problems in this theory

Even though the present theory works for many types of compounds in a range of different languages, there is a problem with this theory. As has been extensively argued, the non-head of compound words is a root without word class features. However, the non-head of a 'verb-verb' compound in Japanese needs to be merged with a Theme (x) feature before it is merged with
another root, because the constituents involved in this type of compounds need to have compatible argument structures (Kageyama 1999, 2001, Matsumoto 1996 and many others). Thus, it is a problem for the present theory that the argument structure of the non-head matters. The non-head is supposed to be a root without theta-features, but in the cases of a ‘verb-verb’ compounds, it does not seem to be true.

For instance, the following examples illustrate that this claim is right.

(498) osi + taos+u
 push+topple+Present
 ‘push down’

a. John ga Bill o osi+taosi+ta.
 John NOM Bill ACC push+topple+Past
 ‘John pushed Bill down’.

b. *John ga Bill o osi+taore+ta.
 John NOM Bill ACC push+fall+Past
 *John pushed Bill and Bill fell.

The examples show that the argument structures of the left-hand and right-hand constituents need to be the same: John and Bill are arguments of the two constituents osi and taosi in the example (a), whereas John cannot be an argument of the right-hand constituent, taore+ in the example (b). This shows that the argument structures of the left-hand as well as the right-hand constituent does matter. Consequently, the former is not a root without word class features. More research is required to determine how these compounds can be accommodated in the present theory.
Chapter 5: Conclusion

The main aim of this thesis has been to propose a unified structure for compound words in Japanese, English and Mainland Scandinavian within the Minimalist Program. Chapter 2 examined some characteristics of noun-noun compound words in the languages in question and observed that the left-hand constituent of compounds in English looks like a free morpheme, whereas that in the other languages does not. In addition, I have found out that neoclassical compounds and cranberry morphemes do exist in Japanese and Scandinavian languages, like in English. Moreover, it has been observed that there are genitive compounds, phrasal compounds, coordinative compounds in the languages in question, and appositional compounds in English and the Scandinavian languages. Also, this chapter has observed that there are some differences between compounds and their corresponding phrases with respect to Lexical Integrity. However, it was also shown that there are some counter-examples to Lexical Integrity.

In Chapter 3, a number of previously proposed theories of compound words were discussed and criticised. I have presented evidence that none of them is good enough and in Chapter 4 I proposed an alternative theory for compound words in the languages in question. Following Josefsson (1997), I have presented evidence that the 'left-hand' segment of compound word in these languages has no word class features, even in English, where the non-head looks like a free morpheme. With respect to the headedness of a word, Josefsson argues the inflection is the only source for word class and is therefore referred to as N^0. Inflections are carried by words, and if the inflection is a suffix, it is the head of the word. Inflections host features like number and gender, and these features are what makes a stem a noun. However, it is hard to apply this idea to NN compounds in Japanese, since there is no number inflection which can be merged with a nominal stem or a nominal root to make it a noun in Japanese.

Instead, I have proposed to use Collins' (2002) definition of head for compound words. The crucial assumptions are: (a) A head is a category which has one or more unsaturated features; (b) if a lexical item is chosen from the lexical array (Chomsky (1995)) and introduced to the derivation, the probe/selectors of this lexical item must be satisfied before any new unsaturated lexical items are chosen from the lexical array.

I have argued that the 'right-hand' constituent of a compound in the languages in question is merged with a categorical feature. In the case of nouns, this feature is represented as $P(x)$ where
P stands for 'denotes a property', and where x represents an unvalued referential index. Since the P(x) feature is unsaturated in the sense that it needs a referential index from either a D or DP, it percolates. Then, another root is merged to form a compound word. As the P(x) is the only unsaturated feature before and/or after the root is merged, it percolates and is the head of the whole compound.

An advantage of the proposed analysis is that it is applicable to a wide range of compound types, including neoclassical compounds, phrasal compounds, recursive compounds, synthetic compounds and genitive compounds in the languages in question and compounds with a plural inflection inside in English. I have proposed that when the 'left-hand' is not merged with a categorical feature P(x), the 'right-hand' element is merged with a P(x) and the head of the whole compound is the P(x). On the other hand, when the 'left-hand' is merged with a P(x) feature, I have proposed a linking morpheme needs to be merged to check the P(x) feature merged with the 'left-hand' element. This is because a structure cannot have two heads. Before and after the P(x) feature merged with the 'left-hand' element is checked by the linking morpheme, the P(x) feature merged with another root, 'right-hand' element is unsaturated. As a result, this P(x) feature needs a referential index from a D or DP. Thus, the head of the compound word is P(x) merged with the 'right-hand' constituent.

A compound noun can freely become the base of another compound noun in the languages in question. This type of compound word is called recursive compounds, and it is possible to have both right-branching and left-branching recursive compound words. Right-branching recursive compounds are derived by merging root after root with a P(x) in the present theory. On the other hand, a left-branching compound is derived with a linking morpheme. The linking morpheme is merged after the 'left-hand' root is merged, because the P(x) merged with the 'second' root needs to be checked somehow. So the linking morpheme is merged and checks the P(x). As a result, the P(x) on the 'rightmost' element is the head.

Based on the assumption that a linking morpheme is merged if the derivation is not complete (i.e. there are still features to be checked), phrasal compounds are also analysed within the present theory. A linking morpheme is merged to check the non-head if there are features to be checked. If the derivation of the non-head is complete (e.g. the non-head is a main clause), it is not necessary to merge a linking morpheme, but it is possible to merge a root with a categorical feature, which is the head of the whole compound word.
In addition, I have argued that the proposed theory is applicable to compound words in many other languages in the world. Since recursion, particularly left-recursion, in compounds is dependent on a linking morpheme to check the $P(x)$ of the non-head, the claim is that languages with left-recursion have a word-internal linking morpheme which may or may not be overt. I have shown that many of them actually have an overt linking morpheme in at least some compounds.

As a result, in this theory, I have made a universal claim. However, a question immediately arising is why not all languages seem to be subsumed under the same rules of compound word formation. For example, why are there ‘verb-verb’ compounds in Japanese and not in the Germanic languages? More research is required to answer this question, along with many other questions.
References

Bauer, L. 1998a. When is a sequence of two nouns a compound in English? *English Language and Linguistics* 2, 65-86.

Bauer, L. 1998b. Is there a class of neoclassical compounds, and if so is it productive? *Linguistics* 36, 403-422.
Bennett, P. 1996. 'English adjective-noun compounds and related constructions'. available at www.ccl.umist.ac.uk/staff/paul/adjn.html

van Hout and Roeper T. 1997. Events and aspectual structure in derivational morphology. available: www.people.umass.edu/roeper/online-

papers/Event%20van%20Hout%2097%20mitwpl.pdf.

Pereltsvaig, A. 1998. Compounding in Semitic, and why English mice are not like Arabic ‘roofs’*. Unpublished manuscript, University of Tromsø.

The data are taken from:

Engelsk-dansk ordbog. Gyldendals rode ordboger. Copenhagen: Nordisk Forlag A/S.

www.google.co.uk, www.google.co.jp, www.google.co.dk and Google internet sites in Italy, Spanish, French and Scandinavian countries.
Appendix 1
More tests for the anaphoric island

English
The following sentences show the difference between compounds and their corresponding phrases.

(1) coffee+cup
 a. *At the Whittard I bought a coffee+cup and drank some yesterday.

(2) winebottle
 a. ?Pat had a winebottle and spilled some of it on the table.
 b. Pat had a bottle of wine and spilled some of it on the table.

(3) match+box
 a. *When I saw a match+box on the table, I lit one very carefully.
 b. When I saw a box with matches on the table, I lit one very carefully.

Interestingly, two native speakers (an American and British) said that the pronominal one refers to box in (b) example.

(4) lamp+post
 a. *When John looked at the lamp+post it had gone off.
 b. When John looked at the post which holds a lamp had gone off.

A question mark for the sentence (b) as native speakers would not say post which holds a lamp instead of lamp-post.

Japanese
The following sentences show the difference between compounds and their corresponding phrases.

(5) koohii+kappu
 coffee+cup
a. *omise de kōhii+i+kappu o kai sorei o sukoshi nonda.
shop at coffee+i+cup ACC buy-and that ACC little drank
‘I bought a coffee cup and drank a little’.

b. omise de kōhii+i no kappu o kai sorei o sukoshi nonda.
shop at coffee GEN cup ACC buy-and that ACC little drank
‘I bought a cup of coffee and drank a little’.

\[(6) \text{cha+i+wan}\]
\[\text{tea+i+bowl}\]

a. *cha+i+wan o kattekite sorei o nonda.
*Tea+i+bowl ACC bought-and that ACC drank
‘I bought a teabowl and drank that’.

b. cha+i o nomu tame no o wan o kattekite sorei o nonda.
tea+i ACC drink for GEN POL bowl ACC bought-and that ACC drank
‘I bought a bowl for drinking tea and drank that’.

\[(7) \text{hana+i}\]
\[\text{flower+i+watch}\]
‘cherry-blossom viewing’

a. *hana+i+mi ni itta-kedo sorera+i wa zenbu moo kareteita.
flower-watch GEN went-but those+i TOP all already withered
‘I went to see the cherry blossoms but they all had already withered.’

b. hana+i o mi-ni-itta-kedo sorera+i wa zenbu moo kareteita.
flower+i ACC watch-DAT went-but those+i TOP all already withered
‘I went to see some flowers but they all had already withered.’
(8)

hon+dana
book+shelf
‘bookshelf’

a. *hon\textsubscript{i}+dana o motteitaga sono\textsubscript{i} naka no ju-ssatu to mo moetteshimatta.
book\textsubscript{i}+shelf ACC possessed-and that\textsubscript{i} inside GEN ten-CL and too burned-unfortunately
‘I had a bookshelf, but ten of them unfortunately burned’.

b. *hon\textsubscript{i}+dana o motteitaga sore\textsubscript{i} wa moetteshimatta.
book\textsubscript{i}+shelf ACC possessed-but that\textsubscript{i} TOP burned-unfortunately
‘I had a bookshelf, but it unfortunately burned’.

(10) shokki+todana
tableware+cupboard
‘cupboard/sideboard’

a. *shokki+todana no naka kara i-kko toridashita.
tableware-cupboard GEN inside from one-CL took-out
‘I took one piece of tableware out from the table-ware.’

The grammaticality of the following sentences shows that anaphoric island is not violated in the compound word in question. Lexical Integrity is not clear-cut in Japanese either.

(11) rekoodo+keesu
record+case

a. rekoodo\textsubscript{i}+keesu o mituke-te sono\textsubscript{i} naka no ichi-mai o kaketa.
record\textsubscript{i}+case ACC found-and that\textsubscript{i} inside GEN one-CL ACC put-on
‘I found a record case and played one piece of record’.

b. ? rekoodo\textsubscript{i}+keesu o mitukete sore\textsubscript{i} o kaketa.
record\textsubscript{i}+case ACC found-and that\textsubscript{i} ACC put-on
‘I found a record case and played that’.

(12) hon+dana
book+shelf
‘bookshelf’

a. ? hon+dana ni te o dasite i-ssatu o toridasita.
book-shelf DAT hand ACC hand-and one-CL ACC took-out
‘I stretched my hand and took one (book) out’.

b. ？hon+dana ni te o dasite sorei o toridasita.

book+shelf DAT hand ACC hand-and thati ACC took-out

‘I stretched my hand and took that out’.
Appendix 2

Compound words

Underlined: phonological change
Bolded: neoclassical element
Bracket: not a compound in the language
Novel compound: shaded

-not accepted by native speakers of the language

<table>
<thead>
<tr>
<th>Person, people, organisation</th>
<th>Japanese</th>
<th>English</th>
<th>Scandinavian</th>
</tr>
</thead>
<tbody>
<tr>
<td>ginkoo+in</td>
<td>bank+clerk</td>
<td>bank+tjenestemand</td>
<td></td>
</tr>
<tr>
<td>hoan+tai</td>
<td>security+forces</td>
<td>sikkerhed+s+styrker</td>
<td></td>
</tr>
<tr>
<td>gaado+man</td>
<td>security+man</td>
<td>sikkerhed+s+mand</td>
<td></td>
</tr>
<tr>
<td>himitsu+keisatsu</td>
<td>security+police</td>
<td>sikkerhed+s+politi</td>
<td></td>
</tr>
<tr>
<td>bideo+kurabu+liidaa</td>
<td>video club chairman</td>
<td>video+klub+formand</td>
<td></td>
</tr>
<tr>
<td>#kodomo+hon+kurabu</td>
<td>#children+book+club</td>
<td>barn+bog+klub</td>
<td></td>
</tr>
<tr>
<td>(kodomo no hon klub)</td>
<td>children’s book club</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#otona hon kurabu</td>
<td>adult+book+club</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(otona no hon klub)</td>
<td></td>
<td>voksen+bog+klub</td>
<td></td>
</tr>
<tr>
<td>#yoru+kompyuutaa+kurasu</td>
<td>evening+computer+class</td>
<td>aften+computer+klass</td>
<td></td>
</tr>
<tr>
<td>(yoru no computer class)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gekijoo+kippu+uriba</td>
<td>theatre+ticket+office</td>
<td>teater+billet+kontor</td>
<td></td>
</tr>
<tr>
<td>yuubin+kozutumi+zeikan</td>
<td>parcel+post+customers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kokuti+choo</td>
<td>declaration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>roodoo+kumiai+choo</td>
<td>Labour+union+president</td>
<td>fag+forening+ præsident</td>
<td></td>
</tr>
<tr>
<td>coffee+meikaa+seigyoosha</td>
<td>coffee+maker+maker</td>
<td>kaffe+brygger+ fabrikant</td>
<td></td>
</tr>
<tr>
<td>indo+yooroppa+gozoku</td>
<td>(Indo-European family)</td>
<td>(den indoeuropæiske familie)</td>
<td></td>
</tr>
<tr>
<td>sekai+hoken+kikan</td>
<td>World+Health+Organisation</td>
<td>Verden+s</td>
<td></td>
</tr>
<tr>
<td>sekai+kishoo+kikan</td>
<td>World+Meteological+Orga.</td>
<td>helse+organisation</td>
<td></td>
</tr>
<tr>
<td>sekai+kokusai+hukkoo</td>
<td>(International bank of Reconstruction and Development)</td>
<td>(Det meteorologisk verdensorganisation)</td>
<td></td>
</tr>
</tbody>
</table>
PhD Thesis Makiko Mukai

sekai+ginkoo
joosetsu+kokusai+sihoo+saibansho
sekai+kankyoo+dei
sekai+renpoo+shugi
sekai+shokuryoo+rizikai

sekai+ roodoo+kumiai+renmei
sekai+booei+sentaa
sekai+kanshi+keikaku
waarudo+kappu
sekai+yasei+seibutsu+kikin
sekai+heiwa+kyoogikai
sekai+kaiyoo+hunkan
zikken
minshu +too

roodoo+too
(midori no too)
sinpo+too
chuuoo+minshu+too
roodoo+kumiai
kyoosei+roodoo+shuuyoo+jo
roodoo+ichiba
roodoo+undoo
roodoo+soogi
booei+choo
zaimu+sho

monbu+shoo

World+Bank
World+Court
World+Environment+Day
World+Federalism
World+Food+Programme

(World Federation of Trade Unions)
World+Trade+Centre
World+Weather+Watch
World+Cup
World+Wildlife+Fund
World+Peace+Council
World+Ocean+circulation +experiment
(Liberal Democratic party)

Labour+Party
Green+Party
Progress+Party
Central Democrat
Labour+association
labour+camp
labour+market
labour+movement
labour+conflict/dispute
The Defence+Minister
*Finance+Minister
(Minister of Finance)
*Education+Minister
(Minister of Education)

Verden+s+mad+vare+
Program
(Verdensforbundet af
fagforening)

Verden+s+cup
Verden+s+natur+fondet
Verdens+fred+s+rådet

Liberal+demokratiske+
partiet (two words)
(det liberaldemokratiske
partie)

Arbejder+partiet
Grøn +Partiet
Fremskridt+s+partiet
Centrum+ demokraterne
Arbejder +forening
arbejd+s+lejr
arbejder+marked
Arbejder+bevægelse
arbejd+s+konflikt
Forvar+s+ministeriet
Finans+ministeriet

Undervisning+s+ministeriet

Kirke+ministeriet
animal, person, event, object, place

mitsu+bachi honey+bee honningbi
(hachi no su) hachi+su honey+comb bikage
(old usage)
PhD Thesis Makiko Mukal

sa+doo
hanii+moon
hun+soo
tii+bureiku
u+ki
kurisumasu+paatii
yama+kazi
piisu+kyanpu
kyookai+ranchi
rei+hai
yobi+bi
zange+ kayoobi
bizin+ konkuuru
bodii+ chekku
i+sshun
taipu+raitaa
denki+ sui Hanki
match+ bako
daidokoro+ kigu
tii+ potto
tii+ baggu
(chaan no ha)
cha+papa/cha+ha
tii+kappu
cha+ zutsu
mahoo+ bin
cha+ bako	
tii+ potto+kabaa
biniiru+bukuro
tii+ booru
tii+ roozu
cha+ bon
tii+ wagon
hana+ wa
denki+ sutando
tea+ ceremony
honey+ moon
tea+ fight
tea+ break
rain+ season
Christmas+ party
mountain+ fire
peace+ camp
church+ lunch
church+ service
rain+ date
Shrove+ Tuesday
beauty+ competition
security+ check
(moment)
type+ writer
(electronic rice cooker)
match+ box
kitchen+ equipment
tea+ pot
tea+ bag
(tea+ leaf)
tea+ cup
tea+ caddy
coffee+ thermos
tea+ chest
tea+ cosy
plastic+ handbag
tea+ ball
tea+ rose
tea+ tray
tea+ wagon
flower+ garland
table+ lamp
te ceremoni
hvede+ brød+ sdage
te+ slab bearads
te+ pause
regn+ tid
jul+ e+ fest
bjerg+ e+ brand
fred+ s+ lejr
kirk+ e+ frokost
gud+ s+ tjeneste
hvid+ e+ tirsdag
skønhedskonkurrence
sikkerhed+ s+ kontrol
øjeblik
skrive+ maskine
tænd+ stik+ mappe+ æske
kok+ s+ maskin
te+ potte
te+ brev
te+ blad
te+ kop
te+ dåse
kaffe+ termos
te+ kiste/ skrin
te+ pann+ s+ össa (tea- post- hat)
plast+ handtag
te+ æg
te+ rose
te+ bakke
te+ vagn
blomster+ krans
bord+ s+ lamp
bane+juu
#ame+booshi
(ame yo no boshi)
#kaba+eda
(kaba no eda)
#kippu+nedan
(kippu no nedan)
zi+sho
(sakkaa)
si+kka+kei
si+gai
hai+en

huraido+poteto
bunka+men
otokonoko+(no)+huku
seimei+hoken
cha+bata
kissa+ten
ryoo+son
san+i
kuu+koo
hoiku+sho
gasorin+sutando
kita+airurando
o+huro+ba
kosaku+nooka
yuubin+kyoku
omocha+koojoo
kagaku+zikken+situ
spootsu+hooru
ho+kkyok+ken
chi+ka
bijutsu+kan

spring+gun
rain+hat
birch+twig
ticket+price
(diary)
foot+ball
(city+centre)
life+insurance
tea+garden
tea+shop
fishing+illage
mountain+area
air+port
nursery+school
petrol+station
North+Ireland
bath+room
peasant+cottage
post+office
toy+factory
chemistry+labatory
sport+hall
(arctic)
under+ground
art+museum

selv+skud
regn+hat
bjor+kris
billet+pris
ord+bog
fod+bold
fire+kantig
(lung+betændelse
(inflammation; swedish)
pommes+frites
kultur+side
dreng+e+toj
liv+s+forsikring
restauration+s+have+te+plantage
te+restaurant+te+salon
fiske+by
skæle+trakt (scale)
fly+plads
dag+hjem
bensin+station
Nord+irland
bad+værelse
bond+stuga
post+kontor
lege+tej+fabrikk
chemi+labotrium
sport+hall
nord+kalotten
tunnel+bane
kunst+museum
#kyookai+bochi
(kyookai no bochi)

hon+ya
rakusechin+chozoshō
huyu+gesiki
roodosha+kaikyuu+chiiki
(phrase)

#kyookai+too
(kyookai no too)

choosen+minshushugii
kyoowa+koku
#chikatetsu+eki+kiosk
(chika-tetsu no baiuten)

chika+tetsu
sakura+n+boo
haru+maki
insutanto+kohii
oranzi+juusu

shakai+men
paasonaru+sutereo
juukyo+chi
otoko+shakai
ka+gaku
shakai+kagaku
kootsu+shudan

#ki+kyookai
(mokuzai de...)
denki+kamisorī
denki+kikan+shia
netai+shokubutsu
sakkaa+tiimu
sakkaa+joo
PhD Thesis Makiko Mukal

Copulative compounds
English (from Olsen 2000)
writer+director
producer+writer
director+producer

balm of Gilead
bacon and Eggs-lotus
corniculatus
beauty of Bath—dessert apple
forget-me-not
jack-go-to-bed-at-noon
tragopogon pratensis
lily-of-the-valley—
convallaria majalis
lords-and-ladies—arum
maculatum
love-in-idleness-voila
tricolor, pansy
love-lies-bleeding-amarathus caudatus
love-in-a-mist-
pellitory-of-the-wall—
parietaria diffusa
star-of-bethlehem
tree of heaven-ailanthus
altissima Chinese,
York and Lancaster Rose-
rosa damascena

NP-N
producer+screenwriter
producer+composer+musician
screenwriter+lyricist
actor+author
actor+writer+impressionist
actor+stantman
comedy writer+performer
director+choreographer
dancer+choreographer+actor+
designer
singer+guitarist
singer+songwriter
composer+pianist+singer
dancer+singer
singer+bassist
singer+actor+entertainer
jazz composer+arranger+band leader
pianist+singer+composer
conductor+composer
rock singer+pianist
saxophonist+actor+songwriter+
screenwriter
editor+publisher
writer+performer
writer+artist+publisher
author+journalist
novelist+professor
newswoman+author
philosopher+poet
musician+poet+pop icon
poet+historian
poet+philosopher+political lawyer+author
philosopher+scientist
scientist+inventor
astronomer+author
adventurer+author+scientist
scientist+researcher
scientist+business consultant
sailor+scientist
salesman+artist
artist+photographer
artist+designer
artist+waitress
artist+explorer
philosopher+physician
explorer+linguist
hunter+scavengers
screenwriter+volunteer
actor+bodybuilder
patriot+poet
playwright+activist
singer+spy
songwriter+producer+arranger
+friend
diplomat+playboy
architect+prophet
poet+drunkard
actor+friend
producer+boyfriend
nerd+genius
scoundrel+savior
hero+martyr
participant+observer
lawyer+son
doctor+daughter
attorney+husband
lawyer+husband
producer+director+husband
engineer+father
singer+father
admiral+grandfather
actor+brother
kindergartner+brother
actress+wife
producer+cousin

Spencer's examples with stress
Technical and geographical terminology
A1. NN compounds with Compound Stress

Van der Gráaf generator, Márch band, Pürkinje cell, Wóulfe bottle, Líe algebra, Gödel number, Poisson distribution, Chómsky hierarchy, Féinman diagram, Chérnyshev polynomial, Fráüenhofer lines, Állen key, Stánley knife

X island: Wrangel island, Báffin Island, Easter Island, Virgin Islands, Christmas Island, Fálkland Islands (exceptions: Long Island, Staten Island, Treasure Island)

A2. NN compounds with Phrasal Stress (right-stress)

Wheatstone bridge, Markov cháin, Bessemer converérter, Bunsen búnner, Dyson vácuum cleaner, Rolls Royce éngine, Pirelli tyres, Phillips (or Phillips'??) scréwdriver, Magellan, Bering stráíts, Baffin báy (cf. Báffin Island), Wrangle Móunt (cf. Wrángle Island), Hudson Báy, Victória Falls, Drake Pássage

A3. N's N expressions with Compound Stress

Bróca's aphasia, Áspérger's syndrome, Parkinson's disease, Schróedinger's equation, Stóke's (Pythagoras's, Euler's, ...) theorem, Chúrch's conjuncture, Kúndt's tube, Liebig's condenser, Fresnél's lens, Van der Wáal's force, Hígg's particle (Hígg's boson), Pláto's (Órwell's) Problem.

A4. N's N expressions with Phrasal Stress;

Newton's crádle, Archimedes' (s) scréw, Descartes' (s) cógito, Halley's cómet, Beecham's pówders, Foucault's péndulum, Young's slits, Ayer's róck, Cook's stráit (cf. Cóok Island), Fisherman's cóve, the Giant's Cáuseway.
and most animal names (Lieberman and Sproat 1992: 154): Swainson’s thrush, Thomson’s gazelle

B. Chess terminology
B1. NN/AN expressions with Compound stress
Three Knights, Vienna, … Opening, King’s Índian Defence, Schéveningen Variation, Richter-Ráuzer Attack, Látvian Gambit (but Greco Cóunter Gambit—the term Cóunter Gambit is always stressed)
Quéen/Kíng Pawn; Páwn, Quéen, etc. sacrifice; páwn centre

B2. NN/AN expressions with Phrasal Stress
Queen’s/King’s side áttack; isolated páwn; minor excháñge
Note that a declined gambit always gets right-stress;
Látvian Gambit ~ Latvian gambit Declíned
King’s Gámbit ~ King’s Gambit Declíned
Greco Cóunter Gambit ~ Greco Counter Gambit Declíned

B3. N’s N expressions with Compound Stress:
Chess terms:: Lásker’s (Bénko’s, Kére’s, … Gambit; but King’s/Queen’s Gámbit), Aljoxin’s (aka Álekhine’s, Phílidor’s, Pétroff’s, …) Defence; Bírd’s (Bíshop’s, Réti’s…)
Opening; Nimzowitsch’s (Botvínnik’s, …) System; Gligóric’s (Nimzowítsch’s, …)
Variation; Romaníschin’s Line.
Note: these often appear without the possessive marker; the Phílidor, Pétroff etc. Defence, Réti Opening etc.
Quéen’s/Kíng’s side, Quéen’s/Kíng’s rook’s file

B4 N’s N expressions with Phrasal Stress:
Queen’s/King’s Gámbit; Queen’s/King’s Páwn, Bíshop, Kníght, Róok

C. musical terminology
C1. NN/AN expressions with Compound Stress
Names of symphonies, concertos etc.
Tóy (London, Farewéll, Surpríse, Prágue, Háffner, Júpiter, Pástoral, Eróica, Chórál, Resurrecíón, Mánfred, Léningrad, Tulangalíla) Symphony,
Fífths, Sún, Émperor, Díssonance, Húnt, Razumóvsky, Amérícan, ‘Intimate Létters’ quartet
(note that this compounded from a phrase, which is stressed internally as a phrase, but which bears the main stress because it is the left component of the compound).

La Folia, Goldberg, Diabelli, Enigma, Frank Bridge variations,
Frénc, English (Unaccompanied) Céllo, Pulcinella, Hómberg, Cápriol Suite.
Brandenburg, Italian, Émperor, Ébony concerto; violín, piáno, clarínét, mandolín concerto
Rósary, Gólden, Spřng, Kréutzer, Pathétique, Wáldest, Hammerklávüer sonata; violín, piáno,
flúte, Arpeggióne sonata (but Moonlight sonáta?)
Archdúke, Ghóst, Dúmky trio; piáno trio/quartet/quintet, string quartet/quintet (but string trío;
also string quartét/quintét)
Égmont, Leonóra, Fingal’s Cávé, Midsummernight’s Dréam, Lóhengrin overture
Gréensleevess, Tállis, Fantasia (but also Tallis Fantásia?),
Names of instruments: voíce flute, kétte drum (exceptions to C2 below).

C2. NN/AN expressions with Phrasal Stress:
Christmas/Easter Oratório (an exception to the general pattern seen under C1).
Specified types of instrument: B-flat clarínét, bass viol, tenor sháwm, portative órgan,
French (English) hórn, pedal hárpsichord; string trío/quartét (exceptions to pattern above)
Names of cadences, intervals and chords: Landini, Burgundian, English cádence;
Neapolitan Sécand, French Sícith, perfect fóurth, diminished sémént; G major arpéggio
Unique sets or types of work modified by a composer’s name:
a Debussy étúde, a DuParc són, a Mahler sýmphony, a Vivaldi concérto, a Haydn quartét,
a Bach cantátá (fúgue, prélude, ária...), a Telemann trío sonata, a Purcell ánthem, a Gabriéli
canzóna, a Josquin motét, a Machaut vírelai, a Mozart quintét, a Chopin balláde, a Schubert
són, a Wagner Síngspiel, a Handel ópera, a Ravel orchestráció, the Pachalbel Cánón (and
Gigue), the Mendelssohn Octét, the Schubert Quintét, the Franck Sonáta, the Bruch concérto, the
Ravel Boléro, the Verdi Réquiem, the Monteverdi Vespers, the Tallis Lamentátions, the Byrd
five-part (or the Byrd five-part máss.).

C3. N’s N expressions with Compound Stress:
These seem to be very rare. Examples are cases in which a character in an opera etc. has an aria
named after them: Sólveig’s song, the Cóuntess’s aria, the Pickled Boys’s song. However, this
does not happen with laments: the lover’s, Ariadne’s, Dido’s etc. lamént

C4. N’s N expressions with Phrasal Stress:
This seems to be the common pattern:
Beethoven's Séventh (cf Beethoven's Seventh Symphony), Schubert's Unfinished, Nielsen's Inextinguishable, Monteverdi's Vespers;
The Earl of Essex's Galliard, Sir John Smith's Álmain, the King of Denmark's Pávan, Worcester Bráwles, Mistress Winter's Jump, cf. also, Selinger's Róund, Kemp's Jígge, Ariadne's Lamént. The comparative lack of N's N expressions with Compound Stress in musical terminology stands in marked contrast to the situation with technical and chess vocabulary.

Names of bands, etc. show vacillation, determined it seems by the head noun:
Compound stress:
chámbér orchestra/ensemble/group
the Hánover Band, the Énglish Concert, the Palládian (Hilliard, etc) Ensemble, the Early Músic Consort, the Róse Consort (but the full title would be the Rose Consort of Viols), the (London) Bách Choir, the Concértegebouw orchestra

Phrasal stress
Halle Órchestra, the King's Cónsort, the King's Nóyse, Henry's Eight, the Cardinal's Musick, His Majesty's Sackbutts and Córnetts, the BBC Síngers, Vienna State Ópera
Note that the head nouns orchestra, consort and singers may give either stress pattern. Names of bands which are clearly phrases are given normal phrasal stress: the Parley of Ínstruments, the Orchestra of the Age of the Enlightenment, the Fires of Lóndón

Quartets are given phrasal stress with full name X String Quartet, but compound stress with truncated name, e.g. the Alban Bérg, Amadéus, Bórodin, Hungárían, Gabriéli, ... quartet