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Abstract 

Durability is one of the major issues for the successful commercialisation of polymer 

electrolyte membrane fuel cells (PEMFCs) and it mainly depends on the stability of the 

individual cell components. In order to minimise the durability issues, the development 

of new materials or modification to replace the existing fuel cell components is required. 

The typically used proton exchange membrane (PEM) is the perfluorosulfonated 

polymer such as Nafion® and electrocatalysts for PEMFC is high surface area carbon 

supported platinum electrocatalyst (Pt/C). A higher temperature of operation (>80 
o
C) 

of PEMFC would boost their performance by enhancing the electrochemical kinetics 

and also improve the carbon monoxide tolerance of platinum catalysts. A Nafion® type 

membrane is not suitable for higher temperature operation as its proton conductivity 

mainly depends on the hydration level.  

An approach to improve the proton conductivity of Nafion® based membranes is the 

incorporation of hydrophilic inorganic oxide materials into the Nafion® polymer matrix. 

A composite membrane based on graphite oxide (GO) has been developed and 

demonstrated as an alternative PEM for high temperature operation up to 120 
o
C. GO is 

an insulator and hydrophilic in nature. GO exhibits proton conductivity due to the 

presence of acidic functional groups like, carboxylic acid, hydroxyl groups and epoxy 

groups. Further functionalisation of GO with sulfonic acid (called SGO) improves the 

proton transport properties of GO which in turn improves the composite membrane 

proton conductivity. Free standing GO and SGO papers were fabricated and evaluated 

to understand their proton transport mechanism. The in-plane and through-plane proton 

conductivities of GO paper were 0.008 and 0.004 S.cm
-1

 at 30 
o
C and 25% RH 

respectively. The in-plane and through-plane proton conductivities of SGO paper were 

0.04 and 0.012 S.cm
-1

 at 30 
o
C and 25% RH respectively. The fuel cell performance of a 

membrane electrode assembly made with SGO paper gave a maximum power density of 

113 mW cm
-2

.   

GO/Nafion composite membranes were fabricated with different GO content. The 

composite membranes with an optimum of 4 wt% GO showed better mechanical 

strength (tensile strength of 8.17 MPa) and water uptake (37.2%) compared to recast 

Nafion. A GO (4 wt%) /Nafion composite membrane gave a high ion exchange capacity 

(IEC) value of 1.38 meq g
-1

.  The proton conductivity of GO (4 wt%) /Nafion was 0.026 

S.cm
-1

 at 120 
o
C. SGO/Nafion composite membrane showed improved proton 
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conductivity (0.029 S.cm
-1

). The SGO/Nafion composite membrane gave peak power 

density of 240 mW cm
-2

, whereas GO/Nafion composite membrane gave a power 

density of 200 mW cm
-2

 at 120 
o
C and 25% RH. The stability and durability of GO and 

SGO/Nafion composite membranes was investigated under fuel cell operating 

conditions and compared with recast Nafion. 

A non fluorinated proton exchange membrane based sulfonated poly ether-ether ketone   

(SPEEK) was used to develop a composite membrane with SGO. SGO (4 wt%) 

/SPEEK composite membrane showed high IEC of 2.3 meq g
-1

 and proton conductivity 

of 0.055 S.cm
-1

 at 80 
o
C and 30% RH. SGO (4 wt%) /SPEEK composite membrane 

gave a power density of 378 mW cm
-2

 at 80 
o
C and 30% RH, which was higher than 

that of recast SPEEK (254 mW cm
-2

). 

Transition metal nitride based electrocatalyst support such as titanium nitride (TiN), has 

been used to replace carbon to support Pt and Pt-Co alloy for PEMFC cathode. Nafion® 

stabilised Pt nanoparticles supported on TiN (Pt/TiN) were prepared and evaluated as 

cathode electrocatalyst for PEMFC. Pt/TiN showed better electrocatalytic activity, 

stability and durability under fuel cell operating conditions compared to commercial 

Pt/C. Pt/TiN retained 66% of electrochemical active surface area (ECSA) after 1000 

potential cycles (cycled between the potential range of +0.6 to +1.20 V vs. RHE) under 

fuel cell operating conditions. The ECSA of the Pt/C catalyst fell by 75%. 

Pt/TiN was also evaluated for its suitability in phosphoric acid based PEMFCs. Pt/TiN 

showed better durability than Pt/C under fuel cell operating conditions. Pt/TiN showed a 

two-fold increase in mass and specific activities than Pt/C as calculated from oxygen 

reduction reaction data at 0.9 V. An improved durability of Pt/TiN resulted from a 

Nafion® layer surrounding the Pt protecting from phosphate ion adsorption. 

Alloying of Pt with 3d transition metals changes the electronic structure of Pt (Pt 

becomes e
-
 deficient) and enhances the electrocatalytic activity of PtM alloy compared 

to Pt. 3d transition metals such as Fe, Co and Ni are reported to be more active than 

other metals. Pt-Co alloy supported on TiN was prepared and evaluated. Pt-Co/TiN 

showed about +21 and +32 mV positive shifts in half-wave potential compare to Pt/TiN 

and conventional Pt/C respectively. After 5000 potential cycles, the ECSA of Pt-Co/TiN 

had decayed by about 55%, whereas Pt/TiN and Pt/C showed a greater loss in ECSA of 

70%. 
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Chapter 1.  Introduction and Overview 

1.1 Overview 

Polymer electrolyte membrane fuel cells (PEMFCs) are promising candidates for 

portable power source, electric vehicles and transport applications [1, 2]. The large scale 

commercialisation of PEMFC is hindered by durability, stability and degradation of its 

components [3, 4]. The performance of a PEM fuel cell or stack is affected by many 

internal and external factors, such as fuel cell design and assembly, degradation of 

materials, operational conditions, and impurities or contaminants present in the fuel [5, 

6]. The development of suitable materials for the PEMFC technology is more 

challenging. The typical polymer electrolyte membrane (PEM) used currently for fuel 

cells are perfluorosulfonicacid  (PFSA) based polymer electrolyte membranes such as 

Nafion® and are  limited to an operating temperature of 60 to 80 
o
C [7]. In order to 

enhance the electrochemical kinetics, and improve the CO tolerance of Pt (to reduce the 

poisoning of Pt with CO) operation of fuel cell at above 100 
o
C is required [8, 9, 10]. 

The proton transport of PFSA based membranes mainly depends on the hydration level 

and fuel cells operating above 80 
o
C with this membrane is not practical [11]. To 

improve the performance of polymer electrolyte membranes, different approaches have 

been employed. Synthesis of high temperature polymer electrolytes such as the 

phosphoric acid doped polybenzimidazole (PBI) membrane that could operate without 

humidification is widely employed [12, 13]. Another approach is to use inorganic-

organic composite materials to fabricate Nafion® based composite membranes to 

increase the proton conductivity, mechanical strength, chemical stability and durability 

for high temperature operation [14, 15]. 

The widely used electrocatalyst for fuel cells is Pt and Pt alloy nanoparticles supported 

on high surface area carbon (Pt/C). The degradation of Pt or Pt alloy based catalysts, 

caused mainly by support oxidation, and is recognized as one of the most important 

reasons for the loss of fuel cell performance [16]. The Pt nanoparticles detach from 

conventional carbon supports because of the corrosion they suffered under extremely 

harsh working environments, part of them dissolving with cationic Pt (Pt
2+

, Pt
4+

) and 

some others agglomerating into larger particles [17]. Moreover, a portion of the Pt 

particles is trapped in the microspores of porous carbon support surfaces and are 

isolated from the ionomer phase which is essential for PEMFCs. Thus, considerable 

efforts have been devoted to the development of new alternative support materials to 

improve the stability of catalysts. 
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1.2 Objectives 

The aim of the research was the fabrication, characterisation and electrochemical 

evaluation of components like composite polymer electrolyte membrane, electrocatalyst 

and catalyst support under fuel cell operating conditions.  

The research was comprised of the following aims. 

1. Preparation and characterisation of graphite oxide (GO) and sulfonated graphite 

oxide (SGO).  

2.  Preparation, characterisation and evaluation of GO/Nafion and SGO/Nafion 

composite membranes for PEMFCs.  

3. Preparation, characterisation and evaluation of SGO/SPEEK composite membrane 

for PEMFCs. 

4. Durability and degradation studies of GO/Nafion, SGO/Nafion composite 

membranes under PEMFC operating conditions. 

5. Synthesis, characterisation and evaluation of Pt and Pt-Co nanoparticles supported 

on titanium nitride (TiN) as cathode electrocatalysts for PEMFCs. 

The work is presented in the following sections as detailed below 

Chapter 1 gives introduction and the aim of the present investigation. 

Chapter 2 provides the literature survey related to the present study. 

Chapter 3 comprises experimental and theoretical methods adopted in the present work. 

Chapter 4 furnishes detailed characterisation of GO and SGO using various 

physicochemical and electrochemical techniques. Evaluation of SGO paper as a 

polymer electrolyte for PEMFCs. 

Chapter 5 details the studies on GO and SGO/Nafion composite membrane 

physicochemical characterisation, proton conductivity test, fuel cell analysis and 

degradation studies. 

Chapter 6 describes the SGO/SPEEK composite membrane physicochemical 

characterisation, proton conductivity test and fuel cell analysis. 
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Chapter 7 explains the physicochemical and electrochemical evaluation of Nafion® 

stabilised Pt and Pt-Co alloy nanoparticles supported on TiN in sulfuric acid and 

phosphoric acid medium. 

Chapter 8 gives the conclusions and future work of the study. 
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Chapter 2.  Literature review 

2.1 History of fuel cells 

Fuel cells are electrochemical devices that convert the chemical energy of a fuel into 

electrical energy. Electrochemical redox reactions on respective electrodes of fuel cells 

can provide electricity continuously, as long as the fuel is supplied. Among the three 

types of electrochemical energy systems namely, fuel cells, batteries and capacitors, the 

fuel cell occupies a special position because of the high specific energy associated with 

the device [1]. Moreover, specific energy of a fuel cell is far superior to a battery and a 

capacitor. This is further augmented from the plot of specific power (the rate at which 

energy can be released) vs. specific energy which is known as Ragone plot shown in 

figure 2.1. However, fuel cells do not possess high power density. Hence, fuel cell 

should be coupled with a capacitor when both energy density and power density 

requirements are high. 

 

 

 

 

 

 

 

 

 

Figure 2.1, Ragone plot for electrochemical energy systems [2] 

The history of fuel cell (FC) begins with Sir William Grove who started experiments on 

the hydrogen/oxygen fuel cell consisting of platinised electrodes immersed in sulphuric 

acid as shown in figure 2.2 in 1839 [3]. The basic electrochemical reactions occur in the 

fuel cells are as follows.  
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                              H2   2H
+
 + 2e

–  
                      (E

0
 = 0 V)                          (2.1) 

                              1/2 O2 + 2H
+
 + 2e

– 
    H2O    (E

0
 = 1.23 V)                     (2.2) 

Francis Bacon developed his first successful fuel cell using hydrogen and oxygen, with 

an alkaline electrolyte and nickel electrodes in 1932, finally Bacon and co-worker 

developed 5 kW fuel cell. In 1960s, NASA demonstrated alkaline polymer electrolyte 

fuel cells in their space shuttle vehicles [4]. 

 

 

 

 

 

 

 

Figure 2.2, Schematic presentation of Grove gas batteries with four cells in series [3] 

Hydrogen is an ideal fuel for all types of fuel cells however; there are different types of 

fuel cells based on electrolyte used and temperature of operation [5]. Oxygen or air is 

the oxidant used in all types of fuel cells. The major types of fuel cells are alkaline fuel 

cells (AFC), molten carbonate fuel cells (MCFC), phosphoric acid fuel cells (PAFC), 

polymer electrolyte membrane fuel cells (PEMFC), and solid oxide fuel cells (SOFC) [6, 

7,]. The Table 2.1 provides the power levels and applications of different fuel cells [8]. 

Based on this information fuel cells can be fabricated for various applications. The 

overall cell reactions can be divided in to two half cell reactions and are shown in Table 

2.2 [9]. 
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 Table 2.1, The characteristics and power levels of different fuel cells [8] 

Table 2.2, Half cell reactions of various types of fuel cells [9] 
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The direct conversion of chemical energy into electrical energy avoids the 

thermodynamic limitation such as Carnot efficiency in fuel cells [10]. What makes fuel 

cells most attractive for transport applications is the fact that they emit zero or ultralow 

emissions [11], and is what mainly inspired automotive companies and other fuel cell 

developers in the 1980s and 1990s to start developing fuel cell powered automotives 

[12]. 

Polymer electrolyte membrane fuel cells (figure 2.3) have been proposed as one of the 

most promising power sources for portable and automotive applications [13], Direct 

alcohol fuel cells (DAFCs) such as direct methanol fuel cells (DMFCs) and direct 

ethanol fuel cells (DEFCs) are attracted for very small and portable appliances such as 

mobile phones and laptops and they can replace batteries. Solid oxide fuel cells (SOFCs) 

operate at higher temperature and remove the use of noble metal catalyst and poisoning 

of catalyst, thus reducing the costs of the system [14]. However, these types of fuel cells 

need longer start up times and hydrocarbon reforming is necessary through a separate 

reformer or even within the stack module [15]. Proton exchange membrane fuel cells 

(PEMFCs) have captured the most attention and provided the strongest impetus for 

technological expansion due to their low temperature operation, fast start-up, and high 

specific power density. They are highly suitable for portable and vehicular applications 

[16]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3, Schematic representation of polymer electrolyte fuel cells [14] 



                                                                                                                                     Chapter 2                                                                                                                                        

10 
 

2.2 Thermodynamics of fuel cells 

The operation and performance of the fuel cell can be explained based on the principles 

of thermodynamics and electrochemistry. The influence of thermodynamic variables 

like pressure, temperature, and gas concentration, etc., on the fuel cell performance has 

to be analysed and understood.  

The most common reaction encountered in fuel cell is 

                                             H2 + ½ O2               H2O                                       (2.3) 

From a thermodynamic point of view, the maximum work output obtained from the 

above reaction is related to the free energy change of the reaction [17]. The above 

reaction is spontaneous and thermodynamically favoured because the free energy of 

product is less than that of the reactants. The free energy change of the fuel cell reaction 

is given by the equation   

                                                 ΔG = –nFE                                                            (2.4) 

Where ΔG is the free energy change, n is the number of moles of electrons involved, E 

is the reversible potential, and F is Faraday’s constant (96500 C). If the reactants and 

the products are in their standard states, the equation can be represented as 

 

                                                   ΔG
0
 = –nFE

0 
                                                      (2.5) 

The standard free energy change for the reaction (2.3) is -237 kJ mol
-1

, n=2, F=96500 

C/g. mole electron, using the equation (2.4) and hence the calculated value of E is 1.23 

V [18, 19]. 

The Nernst equation is a representation of the relationship between the ideal standard 

potential E
0
 for the fuel cell reaction and the ideal equilibrium potential E at other 

temperatures and pressures of reactants and products. Once the ideal potential at 

standard conditions is known, the ideal voltage can be determined at other temperatures 

and pressures through the use of equation (2.6) [20]. 

                                      E = E
0
 + (RT/2F) ln [PH2/PH2O] + (RT/2F) ln [PO2]

1/2
     (2.6) 

 

In the ideal case of an electrochemical energy conversion reaction such as a fuel cell the 

change in Gibbs free energy (ΔG) of the reaction is available as useful electric energy. 

The maximum efficiency of the electrochemical converter working under ideal 

condition is 100% of the ΔG, which is the intrinsically available work of chemical 
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reaction [21]. Therefore, fuel cells are not limited by the Carnot efficiency limit whereas 

other classical thermal energy converters are limited by the Carnot efficiency. A 

comparison has been made with the available energy in a reaction, ΔG, and it has been 

shown that the electrochemical method of energy conversion could convert to electricity 

all the energy intrinsically available as the result of a chemical reaction (independently 

of the method of conversion). However, even by the electrochemical method, because 

some of it is wasted in very fundamental processes connected with the ordering and 

disordering (i.e., the entropy losses and gains) that also occur in chemical reactions [22, 

23]. 

At standard conditions of reaction the chemical energy in the hydrogen/oxygen reaction 

is 286 kJ mol
-1

 and the free energy available for useful work is 237 kJ mol
-1

. Thus, 

efficiency of an ideal fuel cell operating reversibly on pure hydrogen and oxygen at 

standard conditions according to the equation (2.7) would be 83% [24]. 

                                                        ηe = ΔG/ΔH                                          (2.7) 

The maximum intrinsic efficiency of fuel cells based on a comparison of heat content is 

in the region of 90% compared with heat engines which have a maximum intrinsic 

efficiency of 20 to 40% [25]. In terms of Carnot expression, higher the TH better the 

efficiency of heat engines. A Carnot engine would have to have a high temperature of 

1753 K, with a corresponding low temperature of 298 K, to achieve an efficiency of 83% 

[26]. 

The fuel cell performance can be measured by the potential-current response of fuel 

cells (i-v curves) as shown in figure 2.4. 

 

 

 

 

 

 

 

Figure 2.4, Typical i-v curve of fuel cell with various losses [27]  
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Electrical energy is obtained from a fuel cell when a current is drawn, but the actual cell 

potential is lowered from its equilibrium potential because of irreversible losses. Several 

factors contribute to the irreversible losses in a practical fuel cell. The losses, which are 

generally called polarisation or over potential, originate primarily from activation 

polarisation, ohmic polarisation, and gas concentration polarisation. These losses result 

in a cell potential for a fuel cell that is less than its ideal potential is given in the 

equation 2.8 [28, 29]. 

                             Vcell = Vocv - ∆Vact - ∆Vohmic - ∆Vcon (2.8) 

Where Vcell is the cell voltage at a specific operating condition, VOCV  is the open circuit 

voltage, ∆Vact  is the  voltage loss caused by the activation of both anode and cathode, 

∆Vohmic is the ohmic voltage drop caused by resistance to electron and proton conduction 

and ∆Vcon is the voltage loss caused by mass transport limitation.      

Activation losses are caused by the slowness of the reaction taking place on the surface 

of the electrodes. A proportion of the voltage generated is lost in driving the chemical 

reaction that transfers the electrons. The ohmic losses cause the voltage drop due to the 

resistance to the flow of electrons through the material of the electrodes. This loss varies 

linearly with current density. Concentration polarisation, result from the change in 

concentration of the reactants at the surface of the electrodes. As the current density 

increases the fuel gradient increases [30]. 

The overall performance of the fuel cell is the maximum power density (W cm
-2

) at the 

peak current density (A cm
-2

) (figure 2.5). However, operation at the higher power 

densities will mean operation at lower cell voltages or lower cell efficiency. The voltage 

efficiency (Ep) can be calculated using the equation (2.8a) [31]. 

                                                             Ep = V/Ve                               (2.8a) 

Where Ep is voltage efficiency, Ve is equilibrium cell potential and V is the actual cell 

potential. 

 

 

 

 

Figure 2.5, Polarisation (i-v curve) and power density curve  
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2.3 Kinetics of fuel cells 

The kinetics of an electrochemical reaction can be described using the Butler-Volmer 

equation. 

         i = io{exp [αnFη/RT] - exp [-βnFη/RT]}     (2.9) 

Where io is the exchange current density of an electrochemical reaction at its reversible 

potential; α and β are the charge transfer coefficient; n is the number of electrons 

involved in the electrode reaction; and η is the overpotential (ε-ε
o
) [20]. The equation 

(2.9) can be simplified to the following 

                           i = io [10
η/a

-10
η/a'

]                                  (2.10) 

Where a and a' are so-called Tafel slopes and equal to 2.303 RT/αnF and 2.303 RT/βnF, 

respectively. The first term in the equation (2.10) represents the kinetics of the forward 

reaction (oxidation reaction) while the second term represents backward reaction 

(reduction reaction). Depending on the magnitude and sign of the applied overpotential, 

one of the reaction directions can be favoured. 

In case of the fuel cell, hydrogen oxidation reaction (HOR) and oxygen reduction 

reaction (ORR) exhibit different exchange current densities. Because of the very fast 

kinetics of HOR, with negligible overpotential (< 20 mV) where the exchange current 

density is on the order of ~10
-3

 A cm
-2

Pt. In contrast, the ORR is very sluggish, where 

the exchange current density is extremely small on the order of 10
-8

 A cm
-2

Pt, and 

therefore large overpotential (~300 mV) is needed to drive the reaction even on the most 

active Pt based catalysts [20]. 
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2.4 Polymer electrolyte membrane (PEM) 

Polymer electrolyte membrane is an electrolyte made from ionic sites and designed to 

conduct cations or anions.  In the fuel cells the PEM is sandwiched between an anode 

and cathode to form a so called membrane electrode assembly (MEA). The PEM plays a 

vital role in fuel cell by supporting the catalyst layer and transports the proton from 

anode to cathode and more importantly separates the oxidising and reducing 

environment of a fuel cell [32]. An excellent PEM should possess high proton 

conductivity (0.01 to 0.1 S.cm
-1

), high ion exchange capacity (0.9 to 2 meq g
-1

) and low 

gas permeability. Furthermore, it should possess good thermal, chemical and 

mechanical properties [33]. 

A most commonly used typical polymer electrolyte membrane for fuel cells are 

perfluorosulfonic acid (PFSA) based polymers such as Nafion®, developed in late 

1960s by Walther Grot from DuPont [34]. Similar PFSA membranes have been 

developed by Dow Chemical, Asahi Glass, and Solvay Solexis. Nafion® is a first class 

of synthetic polymer with unique ionic properties and is result of incorporating 

perfluorovinyl ether groups terminated with sulfonate groups onto a PTFE back bone 

[35]. Superior proton conductivity of Nafion® remains major interest of research and 

proton transport is through hopping on sulfonic acid groups. Therefore Nafion® 

membrane is widely used as proton exchange membrane for fuel cells. Nafion® can be 

manufactured with various cationic conductivities (e.g. Na
+
, K

+
 etc) for chloro-alkali 

industry [36].  

The general structure of Nafion® is shown in figure 2.6 and proton conductivity mainly 

depends on the hydration level and operating temperature [37]. The structure of 

Nafion® membrane has been explained by several models and while each model has its 

own limitations and it is generally accepted that there are distinct regions with in the 

membrane [38]. The PTFE backbone represents a hydrophobic region, whereas the 

sulfonic ester group is a hydrophilic region which is ionic in nature. There exists an 

intermediate region with some of both the phases [38]. This is called as an inverted 

micelle or ionic cluster containing hydrated ionic phase (figure 2.7), whereas increase in 

hydration level enlarges the cluster size and enhances the rate of proton transport [39]. 
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Figure 2.6, General structure Nafion® membrane [38] 

 

 

 

Figure 2.7, Hydrated region of Nafion® [40] 

 

Proton conductivity measurement of Nafion® membrane has been reported under 

various experimental conditions and the data is shown Table 2.3. The effect of operating 

conditions such as water content, operating temperature, and relative humidity on 

conductivity of the Nafion® membrane has been widely exploited [41]. The effect of 

thickness has been reported by Kolde et al. for Nafion® 117 (210 µm) and Nafion® 112 

(52µm) conductivities of 0.140 and 0.144 S.cm
-1

 respectively [42].  
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Table 2.3, Proton conductivity of Nafion® membrane [41] 

 

 

There are different types of PEM other than Nafion® membranes used in fuel cells. 

These include fluoropolymers, partially fluorinated and aromatic polymers with 

phenylene backbone [43]. Fluorinated polymer such as sulfonated polystyrene has been 

evaluated as a polymer electrolyte for fuel cells; however this type of membrane suffers 

from a short life time because the tertiary C-H bonds in the styrene chains are sensitive 

to oxidation by oxygen and hydrogen peroxide [44, 45]. Partially fluorinated polymers 

such as sulfonated poly (tetrafluoroethylene-hexafluoropropylene) films have been 

tested in fuel cells with a life time over 5000 h at 85 
o
C [46, 47]. 

Aromatic hydrocarbons are a large group of polymers available commercially and are 

inexpensive. They possess good chemical stability due to the higher C-H bond strength 

Nafion® 

membrane 

Electrolyte Technique Membrane  

Thickness 

(µm) 

Conductivity 

(S. cm
-1

) 

Resistivity 

(Ω  cm) 

      

117 Water 
vapor RH 

100%  (25 
o
C) 

AC 
impedance 

175 0.070 14.3 

      

117 1 M 

H2SO4 
(20 and 80 
o
C) 

DC current  

  Pulse 

231  0.088 and 

0.231 

11.4 and 

4.33 

      

      
117 Immersed 

in water  

(30 and 90 
o
C) 

AC 

impedance 

175 0.100 and 

0.19 

10.0 and 

5.3 

      

      
112 Water 

vapor 

100% RH 

(65 
o
C) 

AC 

impedance 

60                         0.100 10.0 

      

112 

 

 

115 

Water 

vapor 

100% RH 

(65 
o
C) 

In situ, 

humidified 

gases (95 
o
C) 

AC 

impedance 

 

 
Ac 

impedance  

52 

 

 

125 

0.140 

 

 

0.074 

6.9 

 

 

14.1 
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than aliphatic C-H bond strength. Sulfonation of these aromatic hydrocarbon based 

polymer provides proton transport. The Most widely used aromatic polymers are 

polysulfone (PSF), polyetheretherketone (PEEK) and polyetheretherketone ketone 

(PEEKK) [48, 49]. Another aromatic high performance polymer is polybenzimidazole 

(PBI) introduced by Aharoni and Litt [50] for the first time and later developed by 

Savinell, Wainright et al. as a Polymer electrolyte in its acid doped form [51]. PBI has 

good chemical, mechanical and thermal stability and can operate without humidification 

hence suitable for high temperature fuel cells (120-175 
o
C) [52, 53]. But the limitations 

of PBI membrane such as acid leaching and lower activity of catalyst [54]. The limited 

oxygen permeability and slow kinetics of oxygen reduction in phosphoric acid affects 

the overall cell performance [55]. 

PFSA based membranes are still the benchmark PEM for fuel cells, although despite 

their good proton conductivity, several limitations such as low operating temperature, 

durability; etc has lead to fabrication of composite membranes [56, 57]. 

2.5 High temperature fuel cells  

The operation of fuel cells at high temperature (>80 to 250 
o
C) has several advantages 

over low temperature fuel cells. The high temperature operation of fuel cells would 

enhance the performance by increasing the electrode kinetics, reducing the loading of 

noble metal catalyst (Pt) used in the fuel cell electrodes. Furthermore, it improves the 

CO tolerance of Pt catalyst. A non-fluorinated polymer membranes (cost effective), 

introduces the simplified water management which in turn, alleviates the cathode 

flooding. However, selection of a suitable PEM for intermediate temperature fuel cell is 

challenging. Figure 2.8 shows the temperature dependant proton conductivity of the 

existing PEM. 

 

 

 

 

 

 

 

 

 

 

Figure 2.8, Temperature dependant proton conductivity of existing PEM [58]. 
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It is very clear from figure 2.8 the PFSA based membranes can operate up to a 

maximum temperature of 80 
o
C. On the other hand, PBI (non-fluorinated) membrane 

can operate above 160 
o
C. A suitable PEM is missing to operate the fuel cell between 80 

to 120 
o
C. The PBI membrane (acid doped) exhibited best performance at 180 

o
C with 

promising proton conductivity of 0.16 S.cm
-1

(poor conductivity at low temperature). 

The PFSA composite membrane could fill the gap, where the appropriate material is 

missing (figure 2.8).  

2.6 Composite polymer electrolyte membranes 

The proton conductivity of PFSA based membrane depends on the hydration level and it 

is not practical to use this membrane above 80 
o
C [59]. In order to enhance the water 

retention capacity and proton conductivity of PFSA based membranes, considerable 

research efforts have been made to modify the PFSA membranes to enhance the proton 

conductivity under low humidification and at higher temperatures (> 80 
o
C) [60, 61]. 

The incorporation of inorganic hygroscopic oxide materials into the PFSA polymer 

matrix would enhance the water retention property and corresponding proton 

conductivity at higher temperature. The hygroscopic oxide materials such as ZrO2, SiO2, 

TiO2 and SnO2 have been incorporated into PFSA structure to make composite 

membranes for high temperature operation with low relative humidity [62-64]. It has 

been shown that the water uptake of oxide containing composite membrane is higher 

than that of pristine Nafion [65, 66]. These hygroscopic oxide materials are primarily 

single functional, they can enhance the water retention, but the proton conductivities of 

these composite membranes are less than pristine Nafion [67]. 

Several other solid inorganic materials (solid inorganic proton conductors), being both 

hydrophilic and proton conducting have also been incorporated with PFSA membranes 

[68, 69]. Among the solid inorganic proton conductors, phosphates of Zr, Ti, Ce, 

heteropolyacids and metal hydrogen sulphates have been used for the development of 

composite PFSA membranes [70, 71]. The organic derivatives of α and γ- Zirconium 

phosphates exhibit proton conductivity as high as 0.05 S.cm
-1

 at about 100 
o
C with good 

thermal stability at temperature up to 200 
o
C [72, 73]. Table 2.4, provides the list of 

proton conductivity of Zirconium phosphates and phosphonates at and above 100 
o
C. 

Some of the mixed zirconium alkyl-sulphophenyl phosphates exhibit proton 

conductivity as high as 0.02 S.cm
-1

 at about 100 °C [73].  
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Table 2.4, Proton conductivity of Zirconium phosphates and phosphonates  

 

Another class of solid inorganic proton conductors with high proton conductivity are 

heteropolyacids. The typical compounds of heteropolyacids (HPAs) include 

H3PW12O40.nH2O (PWA), H3PMo12O40.nH2O (PMA) and H4PSiW12O40.nH2O (SiWA) 

has been widely studied [74]. The origin of proton conductivity of HPAs could be 

explained based on their structural properties. HPA possess several levels of structure 

called primary, secondary and tertiary. The primary structure is the building block of the 

HPA. The most common and thermally stable structure is the Keggin structure (figure 

2.9a) [75]. The Keggin unit consists of a central atom (usually P, Si or Ge) in a 

tetrahedral arrangement of oxygen atoms, surrounded by 12 oxygen octahedral 

containing addenda atoms (W or Mo) [76]. There are four types of oxygen atoms found 

in the Keggin unit, the central oxygen atoms, two types of bridging oxygen atoms and 

terminal oxygen atoms. In phosphotungstic acid (H3PW12O40), each Keggin unit has a (-

3) charge and thus has 3 protons to balance this charge [77]. Heteropolyacids possess 

waters of crystallization that bind the Keggin units together in the secondary structure 

by forming water bridges as shown in figure 2.9b. The water combines with the protons 

in the HPA to form H5O2
+
 acidic water clusters. These water molecules are hydrogen 

bonded to the terminal oxygen atoms of the Keggin unit [78]. The amount of hydration 

in the solid is critical in determining the crystal structure. The most common form of the 

Keggin-type HPAs at ambient conditions is the hexahydrate, which has a BCC crystal 

structure. The tertiary structure of the heteropolyacids can be found in partially 

neutralized materials containing heavy metal cations [79, 80]. 

 

 

 

 

 

Compounds Proton conductivity (S.cm
-1

) 

α-Zr(O3POH) 2.H2O                                             5x10
-6

, 100 °C, 60% RH 

α-Zr(O3PC2H5)1.15(O3PC6H4SO3H)0.85 5-12 x10
-6

, 180 °C, dry N2 

α-Zr(O3PCH2OH)1.27(O3PC6H4SO3H)0.73 .nH2O 8x10
-3

, 100 °C, 60% RH 

α-Zr(O3PC6H4SO3H)2
.
3.6H2O 2.1x10

-2
, 105 °C, 85% RH 
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Figure 2.9, a) primary structure (Keggin unit) of HPA and b) secondary structure 

(hydrated) of HPA [80].  

 

Among the HPAs, PWA exhibits high proton conductivity of 0.18 S.cm
-1

[81]. As these 

HPAs have low surface area (less number of acid sites) and highly soluble in water [82]. 

Several research attempts have been made to modify HPAs by incorporating large 

monovalent ions, such as Cs
+
, results in unique changes in the surface acidity and 

solubility. Ramani et al [83] reported the effect of size of these HPAs in the composite 

membranes. Among CsPWA and CsPMA, CsPMA/Nafion® composite membranes 

exhibit higher proton conductivity and stability [84]. The comparison of proton 

conductivities at various temperatures is shown in figure 2.10.  

 

 

 

 

 

 

 

 

 

 

Figure 2.10, Proton conductivity values of HPA/Nafion composite membranes [84] 

a) b) 
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Although, CsPMA exhibited higher proton conductivity value compared to CsPWA, the 

fuel cell performance of CsPMA is lower than that of CsPWA [85]. Additives 

containing molybdenum were less stable in the membrane environment than those 

containing tungsten. Molybdates migrated into the catalyst layers, where they had a 

detrimental effect on performance by undergoing parasitic redox reactions on the 

surfaces of carbon and platinum, resulting in increased activation overpotential [86]. 

Also hydrogen sulphates such as CsHSO4.CsH2PO4 and 2CsHSO4.CsH2PO4 have been 

reported with high proton conductivity [87, 88]. But they possess poor mechanical 

stability and water solubility, as well as volume expansion at elevated temperatures [89].  

Anhydrous inorganic proton conductors such as metal diphosphates (MP2O7, where M= 

Sn, Ti, Ce and Zr) exhibit a monotonic decrease in proton conductivity with decreasing 

temperature from 250 °C to room temperature [90]. These proton conductors have also 

been explored as electrolytes for intermediate-temperature PEMFCs. For example, a 

PEMFC with a Sn0.9In0.1P2O7 electrolyte exhibited stable performance with non-

humidified hydrogen and air [91]. However, the proton conductivities reported were in 

the range of 0.001-0.1 S.cm
−1

, which is not sufficiently high to provide good PEMFC 

performance [92]. Y. Shen et al recently reported that Fe0.4Ta0.5P2O7 exhibits higher 

proton conductivities at 100–250 °C than those for Sn0.9In0.1P2O7. The proton 

conductivities of Fe0.4Ta0.5P2O7 are the highest among all other proton conductors 

reported to date in the same temperature range as shown in figure 2.11 [93]. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11, Temperature dependant proton conductivity of different proton conductors 

[93] 
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The highest proton conductivity of Fe0.4Ta0.5P2O7 is explained based on their crystalline 

structure and characterised by the presence of intersecting zigzag tunnels delimited by 

pentagonal windows [94]. The unique crystalline structure of Fe0.4Ta0.5P2O7 provides 

many proton exchange sites and transport pathways. 

In the composite membrane, the presence of hydrophilic inorganic compounds reduces 

the chemical potential of water and therefore creates an alternative means for proton 

transport. At the same time, they facilitate hydrogen–bonding sites for water in the 

membrane; so that the hydration level of the membrane will be enhanced and eventually 

transport and evaporation of water will be lower [95]. The enhanced water retention 

enables low humidification and high temperature operation of fuel cells. 

The inorganic additive materials are of two kinds one is single functional, as a means 

for water retention and the second is bifunctional, being both proton conducting and 

hydrophilic. The composite membrane fabricated with these inorganic additives shows 

significant improvement over PFSA membrane for high temperature operation of fuel 

cells. However, the proton conductivity of these composite membranes is still lower 

compare to Nafion® membrane because the incorporation of inorganic additives (an 

increase in inorganic particle agglomeration at higher concentrations of inorganic 

additives) [96]. The effects of additive particle size on the morphology of parent 

polymer govern the properties of resulting composite polymer [97]. 

Graphite oxide (GO) has been considered attractive for many applications due to its 

unique structural properties [98]. Graphite is a 2-D material upon chemical oxidation, 

and introduction of acidic functional groups (COOH, COC, OH) results in an insulating 

graphite oxide [99]. GO has high surface area (acidic sites) and exfoliate (Graphene 

oxide) in water as well as some organic solvents [100]. GO is hydrophilic in nature and 

it holds more water even at lower humidification, and the presence water between the 

GO nanosheets, presumably hydrogen bonded, provides the proton conducting channels 

[101]. The acidic functional groups (figure 2.12a) on edges and basal plane are a means 

of additional proton transport channels [102]. Sulfonic acid (SO3H) is a key functional 

group of many polymers to transport the protons [103]. GO was further functionalised 

with sulfonic acid to make sulfonated graphite oxide (figure 2.12b) and this is more 

proton conducting than GO [104]. GO and SGO PFSA composite membranes have been 

reported for DMFCs with improved performance (reduced methanol crossover) [105]. 

These composite membranes have been reported for other applications such as sensors, 

actuators etc [106]. 
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Figure 2.12, Structure of a) graphene oxide and b) sulfonated graphene oxide [103] 

2.7 Polymer electrolyte membrane degradation 

Polymer electrolyte membrane degradation significantly affects the life time of fuel 

cells. During the fuel cell operation several parameters such as temperature, pressure, 

humidity, and reducing and oxidising environments causes the membrane degradation. 

The membrane degradation is classified into three categories such as mechanical, 

thermal and chemical degradation. Among all degradation categories of membrane, 

mechanical degradation causes an early life failure due to perforations, pinholes, and 

tears which may results in improper membrane electrode assembly fabrication process 

[107]. Interface between channels of flow fields or sealing edges in a PEM fuel cell 

which are subjected to excessive or non-uniform mechanical stresses, are also 

vulnerable to small perforations or tears. The effect of relative humidity cycling (RH), 

low humidification, and non-humidification which are detrimental to mechanical 

stability have been reported by X. Huang et al. and they performed 1000 cycles from 0 

to 100% RH at 80 
o
C. The test results showed that RH cycling creates number of 

discrete and localized defects, these defects results in reactive gas cross over into 

respective reverse electrodes consequently exothermic combustion of reactants on 

electrode surface creates local hotspots and accelerates the membrane degradation. The 

constrained membrane in an assembled fuel cell experiences in-plane tension resulting 

from shrinkage under low RH and in-plane compression during swelling under wet 

conditions. Mechanical failure of the membrane caused by local imperfections, leads to 

catastrophic failure of system [108, 109]. In order to enhance the electrochemical 

kinetics and reduce the CO poisoning, fuel cells need to be operating above 100 
o
C and 

also it is necessary to operate at subfreezing temperature for different types of 

a) b) 
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applications [110]. The proton conductivity of PFSA membrane depends on water 

content and usual operating temperature is limited to 60 to 80 
o
C, above this 

temperature the critical break down of PFSA membrane [111]. Several studies show 

that these membranes exhibit a fall in proton conductivity with decrease in water 

content when the cell is operated at higher temperature and under low humidity. Wilkie 

et al. reported that the stability of PTFE backbone until beyond 150 
o
C due to strong 

interaction of C-F bond and at higher temperature membrane starts decompose via its 

side sulfonate groups [112]. Kim et al. reported the freezing effect, and they suggested 

that there are three different states of water and only the “free water” would freeze 

below 0 
o
C and increase the contact resistance of the membrane and affects the proton 

conductivity [113]. The thermal cycling between +80 to -40 
o
C significantly affects the 

membrane property but no catastrophic failures were detected. 

Chemical stability of polymer membrane in a strong reducing and oxidising 

environment is a very important factor to have good durability. The major factor for the 

chemical degradation is the effect of free radicals, generated on the electrode surface by 

reactant gas crossover [114].   

                           H2 + O2       X          (X = HO•, HOO•)                              (2.11) 

The free radicals such as peroxy (
.
OH) and hydro peroxy (

.
OOH) are active oxygenated 

species that attack the polymer and chemically degrade the membrane [115]. Sulfonic 

acid and carboxylic end groups in the side chain are key to mechanism by which radical 

species can attack the polymer (SO3H dominate the COOH). Depending on the types of 

membrane radicals can attack α-carbon atom of an aromatic group or the branching 

point of polymer.  An example of radical attack on the polymer is shown below [103]. 

 

                         Rf –CF2COOH + •OH →Rf –CF2• + CO2 +H2O                     (2.12) 

                         Rf –CF2• + •OH →Rf –CF2OH →Rf –COF + HF                   (2.13) 

                         Rf –COF + H2O →Rf –COOH + HF                                       (2.14) 

This mechanism shows the polymer decomposes into low molecular weight compounds, 

and eventually accelerates the membrane degradation. The effect of metal ion impurities 

(Fe
2+

, Cu
2+

) from corrosion of bipolar plates, end plates and also from water generates 

the free radicals by decomposing H2O2 which is formed at cathode [116]. 
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M. Inaba et al. proposed a mechanism of H2O2 decomposition in the presence of Fe2
+
 in 

PEM fuel cell is shown below. 

                       H2O2 + Fe
2+

→ HO• + OH
−
 +  Fe

3+                                                          
(2.15) 

                       Fe2+ + HO• → Fe
3+ 

+ OH
− 

                                                  (2.16)  

                       H2O2 + HO• → HO2• + H2O                                                (2.17) 

                       Fe
2+ 

+ HO2• → Fe
3+  

+  HO2
− 

                                               (2.18) 

                       Fe
3+

 + HO2• → Fe
2+ 

+  H
+
 +O2                                             (2.19) 

This mechanism leads to membrane thinning or formation of pinholes and eventually to 

the catastrophic failure of the system. On the basis of above mechanism, the formation 

of free radicals from H2O2 decomposition is assumed to be the principal degradation 

mechanism of PEMFC membranes. The Fenton test was widely used for testing the 

polymer electrolyte membrane degradation by oxidative radicals, a Fenton solution of 3% 

H2O2 containing 4 ppm Fe2
+
 was added as (NH4)Fe(SO4)2.6H2O for accelerating the 

effect to produce hydroxide radicals [117].  

2.8 Mitigation strategies for membrane degradation 

Based on the degradation studies of polymer electrolyte membranes, it is important to 

prevent the mechanical failure of the membrane in order to avoid the catastrophic 

failure of the fuel cell. Careful designing of MEA and flow field structure can avoid the 

local drying of the membrane. To enhance the mechanical stability of the Nafion® 

membrane, Gore fuel cell technologies developed expanded PTFE reinforced membrane 

(incorporation of ePTFE into the Nafion® membrane called reinforcement to enhance 

the mechanical stability) and the results showed that reinforced membranes have longer 

relative life time than non-reinforced membrane (figure 2.13) [118]. 

Modified PFSA membranes are developed to enhance the operating temperature and 

durability by incorporating the hydrophilic oxides and inorganic proton conductors. 

Alternative to fluorinated polymers, several other membranes are developed such as 

SPEEK, PVDF and PBI based membranes. Recently, functionalised carbon nanotube 

(CNTs), Fullerene and graphene based PFSA composite membranes are developed to 

enhance the mechanical, thermal and ionic conductivities for hydrogen oxygen fuel cells 

[119]. 
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Chemical stability of PEM is another important factor to withstand a strong oxidising 

and reducing environment. Radiation grafted FEP-g-polystyrene membranes are 

developed to improve chemical stability against free radical affect, in addition to this 

introduction of radical stabilizers and inhibiters such as amines or antioxidants reported 

by Curtin et al [120]. 

Hydrogen peroxide produced at cathode by 2 electron reduction of oxygen and 

decomposed by the presence of metal ion impurities generates the free radicals 

eventually to membrane degradation. It was reported that the Nafion® polystyrene 

sulfonic acid (PSSA) composite membrane, when positioned at cathode of the fuel cell 

could successfully prevent the oxidative degradation of the PSSA membrane. V. 

Ramani and Haugen et al. proved the introduction of peroxide-decomposing 

(decomposing H2O2 into H2 and O2) catalyst like heteropoly acids within the membrane 

eliminate the membrane deterioration [121]. 

 

 

Figure 2.13, Comparison of Gore reinforced membranes and non-reinforced membranes 

[118] 
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2.9 Electrocatalyst 

Electrodes are the main pillars of electrochemical devices, where electrochemical 

reactions occur. Electrochemical reactions are driven by electrocatalysts in order to 

speed up the kinetics of reaction [122]. In the case of fuel cells the anode is where 

hydrogen oxidation and the cathode oxygen reduction reaction (ORR) occur. The most 

commonly used electrocatalysts for fuel cells are platinum (Pt) and platinum based 

transition metal alloys [123]. Pt is the most active electrocatalyst for ORR compared to 

other metals [124]. The activity (exchange current density) is based on the electronic 

structure of metal and surface energy of metal towards adsorption and dissociation of O2 

[125]. The electronic structure of Pt (Pt d-band vacancy) and Pt-Pt interatomic distance 

can strongly affect the O2 adsorption, dissociation and binding energies [126]. The 

theoretical calculations of O2 binding energies on different metals have predicted that Pt 

has the highest ORR activity compared to Pd, Ir and Rh. The ORR catalytic activity of 

Pt and other metals are shown in the figure 2.14. The ORR on other metals such as Ir, 

Rh, Au, Cu, Ni, Co etc has been studied [127]. However, these metals show lower 

activity and electrochemical stability towards ORR compared to Pt [128].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14, Oxygen reduction activity (Activity on the Y-axis represents exchange 

current density and ∆EO (eV) on the X-axis represents oxygen binding energy) plotted 

as a function of the oxygen binding energy [127] 
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2.10 Development of fuel cell catalyst  

Platinum black was the first catalyst used in PEMFCs as the anode and cathode 

electrocatalyst. The typical particle size of 50-100 nm and the physical surface area of 

Pt black is about10 m
2
 g

-1
pt. Due to the lower physical surface area, higher Pt loadings (> 

4 mgpt. cm
-2

) were required to achieve useful power densities [129].      

In the 1970s, most important development in the area of electrocatalyst was the advent 

of carbon supported electrocatalyst [130]. The support plays a major role in the 

electrocatalyst. The high surface area of carbon black is (300-1500 m
2
 g

-1
), allowing 

excellent dispersion of Pt nanoparticles up to metal loadings of 60 wt%. The Pt 

nanoparticles supported homogeneously on the carbon support, avoiding agglomeration 

of Pt results and an increased physical surface of Pt (up to 120 m
2
 g

-1
pt). Although, the 

Pt is supported on the high surface area carbon the electrocatalytic activity remained 

relatively low. This is because reactions only occur at the reactant gas-catalytic surface-

electrolyte interface. Such regions are called as triple-phase boundary [131]. Even 

though, reactions occur at the bulk of the electrocatalyst layer, due to the absence of an 

ionomer in the catalyst layer, proton transfer to the PEM relies on water alone through 

the catalyst layer. 

A major breakthrough in the development of PEMFC electrocatalysts was achieved 

with the incorporation of proton-conducting ionomer within the pore structure of the 

catalyst layer in late 1980s [132]. By forming catalyst layers from inks containing 

dispersions of Pt/C catalyst along with Nafion® ionomer, the triple-phase boundary 

(figure 2.15) could be extended throughout the thickness of the catalyst layer, resulting 

in far more of the physical Pt surface area becoming electrochemically active. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15, Schematic representation of three-phase boundary of Pt supported on 

carbon [132] 
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2.11 The mechanism of oxygen reduction reaction on Pt 

The Pt shows better ORR activity and stability in relation to all other metals [133]. 

Figure 2.16 shows the free-energy diagram for ORR at the equilibrium potential 

(E=1.23 V) over Pt and other metals. It is seen from the figure, why metals that have 

either stronger or weaker bonding of oxygen than Pt are poorer oxygen-reduction 

catalysts. Pt balances O2 adsorption strength to allow e
-
 transfer, and intermediates are 

sufficiently unstable for the reaction to complete. At the equilibrium cell potential, Ni 

binds O and OH so strongly on the surface such that an irreversible surface oxide is 

formed. Therefore, the proton-transfer steps become strongly activated, and thus e
-
 

transfer is very slow. For Au, however, the proton transfer is exothermic and should be 

fast, but oxygen on the surface is considerably less stable than it is in the gas phase; 

therefore, no transfer of protons and electrons to oxygen can occur. The weak bonding 

of atomic oxygen is an indication that the barrier for oxygen dissociation is large [134].  

 

 

Figure 2.16, Free-energy diagram for oxygen reduction at the equilibrium potential 

E=1.23 V over Pt, Au, and Ni [133] 
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The mechanism of ORR on Pt surface has been widely studied. The ORR involves a 

multi-electron process in which O2 is converted into H2O or OH
-
.  

 

                                          O2 + 4H
+
 + 4e

– 
    2H2O                            (2.20) 

                                          O2 + 2H
+
 + 2e

– 
    H2O2                             (2.21a) 

                                          H2O2 + 2H
+
 + 2e

– 
    H2O                         (2.21b) 

 

Reactions 2.20, 2.21a and 2.21b show ORR in an acidic electrolyte. O2 can be converted 

directly into H2O by 4e
-
 process or O2 may also undergo a partial 2e

-
 reduction to form 

hydrogen peroxide (H2O2), followed by another 2e
-
 reduction to convert H2O2 into H2O.  

Reactions 2.22, 2.23a and 2.23b show ORR in an alkaline electrolyte.                                             

 

                                         O2 + 2H2O + 4e
– 
    4OH

-                                            
(2.22) 

                                         O2 + H2O + 2e
– 
    HO2

-  
+ OH

-                              
(2.23a) 

                                         HO2
-
 + H2O + 2e

– 
    3OH

-                                          
(2.23b) 

 

O2 can be reduced by 4e
-
 process to form OH

-
 or by 2e

-
 reduction to form HO2

-
, 

followed by another 2e
-
 reduction to convert OH

-
. 

O2 may be converted into different intermediates, such as oxygenated (O*), hydroxyl 

(OH*) and superhydroxyl (OOH*) species, which are very difficult to analyse 

experimentally [135, 136]. Based on the density functional theory (DFT) calculations, 

two mechanisms have been proposed for ORR on Pt surface (figure 2.17a and 2.17b). 

The first one is, at high oxygen coverage that the ORR tends to follow an associative 

mechanism, in which OOH* is first formed and then the O-O bond is cleaved. The 

second is at lower oxygen coverage, ORR follows a dissociative mechanism in which 

the O-O bond is cleaved before OH* is produced [137]. In general ORR on a Pt catalyst 

surface usually follows a 4e
-
 pathway, the mechanism is complicated and not well 

understood [138]. 
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Figure 2.17, Free-energy diagram for oxygen reduction at two different potentials and at 

two different oxygen coverages, a) dissociative mechanism and b) associative 

mechanism [135] 

 

2.12 The Oxygen reduction reaction on MPt alloys 

Owing to its electronic structure, Pt electrocatalyst exhibited highest ORR activity 

compared to other metals [139]. However, studies reveal that the addition of transition 

metals to Pt can change the electronic structure of Pt and enhance the ORR catalytic 

performance [140, 141]. The improvement in catalytic activity when Pt is alloyed with 

transition metals is attributed to the increased Pt d-band vacancy and Pt-Pt interatomic 

distance [142]. The DFT calculations further indicate that the alloying of Pt with 

transition metals downshift the d-band centre of the Pt, leading to a lower degree of 

adsorption of oxygenated species and increases the number of active sites accessible to 

O2 [143]. Transition metals such as Fe, Co and Ni show a volcano-type relation with 

alloy d-band centre position (Figure 2.18). The PtM alloys, with M=Fe, Co and Ni 

exhibited better ORR activities than any other PtM or pure Pt [144]. 

 

 

 

 

 

 

a) 
b) 
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Figure 2.18, Volcano plots of PtM alloys [144] 

 

2.13 Electrocatalyst layer degradation 

The detailed examination of platinum catalyst degradation under long term operating 

condition has been reported. The contamination of pure catalyst by impurities present in 

the reactants or the fuel cell system [145]. Another important issue pertaining to the 

catalyst degradation is corrosion of the carbon support, due to the migration of Pt 

catalyst particles detached from the carbon support lose the catalyst activity [146, 147]. 

Several mechanisms have been proposed to explain coarsening of the catalyst particle 

during the fuel cell operation. (1) Small Pt particles may dissolve in the ionomer phase 

and redeposit on the larger particle leading to particle growth, called Ostwald ripening. 

Also the dissolved Pt particles may diffuse into the ionomer phase and subsequently 

precipitate in the membrane, via reduction by the crossover hydrogen, which affects the 

membrane stability and conductivity [148, 149]. (2) Agglomeration of the Pt particle on 

the carbon support leading to the higher particle size eventually decreases the surface 

area and activity of catalyst [150]. 
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2.14 Carbon support and its corrosion 

The electrocatalyst are supported on electronically conducting high surface area support 

to provide high electrochemical active area. The most commonly used catalyst support 

is carbon. The oxidation of carbon to carbon dioxide in the presence of water at 0.207 V 

vs. RHE shown in equation 2.24 and 2.25 called carbon corrosion [151].  

 

                          2H2O ↔ O2 + 4H
+
 + 4e

−
                 E

◦
 = 1.229 vs. RHE                   (2.24) 

 

                          C + 2H2O → CO2 + 4H
+
 +4e

− 
        E

◦
 = 0.207 vs. RHE                   (2.25) 

Carbon support corrosion is one of the major issues for catalyst degradation [152]. In 

PEM fuel cells carbon corrosion is induced by two reasons: 1) during transition between 

start up and shutdown, carbon is exposed to electrochemical potential more than 1.4 V 

which accelerates the carbon corrosion. 2) Fuel starvation, caused by the non-uniform 

distribution of fuel on the anode, in an overall stack induces the water and carbon 

oxidation according to the above equations [153, 154]. 

Carbon corrosion in a normal PEM fuel cell is negligible at potentials lower than 1.1 V 

vs. RHE due to its slow kinetics, however recent experiments have proved that the 

presence of the electrocatalysts like Pt/C or Pt-Ru/C can enhance the carbon corrosion 

by reducing oxidation potential of carbon to 0.55 V vs. RHE [155, 156]. Carbon can 

protected from corrosion by virtue of water oxidation providing sufficient supply of 

water to the fuel cell, is maintained. Depletion of water or if the cell is subjected to high 

current density can mean that water oxidation alone cannot sustain the high current 

density and eventually carbon corrosion occur. Figure 2.19 depicts carbon corrosion and 

loss of active catalyst material during electrochemical reactions in fuel cells [157]. 

 

 

                                

 

 

 

 

 

Figure 2.19, Schematic representation of carbon corrosion [157] 
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Carbon oxidation was investigated using highly oriented Pyrolytic graphite as 

carbonaceous material by Ogumi et al [158]. The Carbon surface is oxidised to different 

oxygen functionalities in sulphuric acid solution at potential lower than 1.0 V. Figure 

2.20 shows the mechanism of oxidation of highly oriented pyrolytic graphite (HOPG) to 

carbon dioxide at potential > 0.75 V which is the accessible potential for cathode of 

PEMFC. Due to the presence of oxygen functionalities hydrophilicity of HOPG was 

increased and results in flooding of the cathode layer which affects the fuel cell 

performance [159, 160]. 

 

 

 

 

 

 

 

 

 

Figure 2.20, Mechanism of HOPG oxidation [158] 

2.15 Mitigation strategies for electrocatalyst degradation 

Several strategies have been employed to enhance catalyst durability. The dissolution 

and sintering of Pt can be controlled by employing capping surfactants, as is common in 

the synthesis of colloidal nanoparticles to control growth and prevent agglomeration via 

a steric and electrostatic stabilisation mechanism [161]. Surfactant based nanoparticles 

stabilisers are usually inert and must be removed to obtain good performance. Nafion® 

is used to stabilise the Pt nanoparticles, as Nafion® is an active component in the 

catalyst layer and thus it is not necessary to remove it from Pt [162]. 

 2.16 Transition metal nitrides in electrochemistry 

Transition metal compounds of the type MX, where M denotes a transition metal 

element and X denotes the non-metallic elements such as N are known to be very hard 

materials crystallizing in rock salt structure [163]. Transition metal nitrides (TMNs) are 

produced by incorporating nitrogen atoms into the interstitial sites of the parent metals, 
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which typically include all 3d elements and 4d/5d elements of group 3 to 6 early 

transition metals [164]. Table 2.5 shows the list of transition metal nitrides. 

  

Table 2.5, Transition metal nitrides [163]  

 

These compounds have great scientific and technological interest. The type of bonding 

found in the MX systems is not typically ionic but more covalent and the occurrence of 

an ionic-like structure in combination with covalent like hardness is very interesting 

[165]. In addition, they show metallic conductivities comparable with those of pure 

transition metals. TMNs of group 4 to 6 are thermodynamically more stable and 

catalytically more active. Thermodynamic stability decreases with increasing group due 

to decrease in size, as they cannot accommodate interstitial nitrogen atom [166]. TMNs 

behave like noble metals for electrochemical reaction [167-170]. The formation of 

nitrides increases the metal-metal distance, and causes contraction of d-band. 

Contraction would give greater density of states near the Fermi level which resembles 

the electronic structure of noble metals [171, 172]. Therefore TMNs exhibit similar 

catalytic properties to that of noble metals. 

Among TMNs, TiN has attracted attention as a promising material and it has been 

mainly devoted to establish corrosion and oxidation resistance under various conditions 

[173, 174]. The TiN coating on glass substrates shows the onset for corrosion at +0.6 V 

(vs. SSE) in 0.5 M H2SO4 electrolyte. This indicates that TiN is stable up to +0.6 V (vs. 

SSE) without electrochemical redox reaction. The corrosion resistance in neutral ~3 M 

NaNO3 solutions is extended up to +3.0 V for TiN [175]. TiN has a significantly lower 
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rate of electrochemical oxidation than carbon due to its inert nature and presence of 

native oxide or oxynitride layer on its surface [176-178]. 

Considerable research efforts have been devoted to design corrosion resistant 

electrocatalyst support based on transition metal nitrides and carbides. In general, 

transition metal nitrides exhibit more activity than transition metal carbides for oxygen 

reduction reaction (ORR) [179-183]. Of special interest, TiN shows more activity for 

ORR than titanium carbide. TiN is considered as a promising catalyst support for noble 

metal catalyst like platinum [173]. Owing to its unique properties like good electrical 

conductivity, outstanding corrosion resistance TiN can outperform the carbon support in 

stability and activity under fuel cell operating conditions. TiN has the potential to act as 

durable electrocatalyst materials [184]. 

2.3 Conclusions 

Proton exchange membrane fuel cells are attracting attention in realising the hydrogen 

economy as an alternative power sources for automotive applications. Several issues 

such as, stability, durability, and high cost of fuel cell components hinders the 

widespread commercialisation of PEMFC technology. A most important issues 

pertaining to the fuel cell performance degradation are both electrocatalyst and 

membrane degradation. The development of cost effective, sustainable materials is 

attracting much attention. The development of proton exchange membranes for high 

temperature (>100 
o
C) operation is an advantage, so this will enhance the performance 

and reduce the cost. There are several approaches to develop proton exchange 

membranes for high temperature operation. One of the approaches is the incorporation 

of bi-functional inorganic filler materials into the Nafion or SPEEK polymer matrix to 

make composite membranes. The electrocatalyst degradation can be alleviated by 

replacing carbon support with corrosion resistant titanium nitride support.  
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Chapter 3. Experimental and Theoretical Methods 

This chapter describes the experimental and theoretical methods used in this research 

3.1 Experimental section 

3.1.1 Chemicals and Reagents 

 

All chemicals and reagents were purchased from commercial chemical suppliers. 

Sulphuric acid, nitric acid, phosphoric acid and hydrochloric acid were obtained from 

Alfa aesar and used as received. Methanol, absolute ethanol, 30% w/v hydrogen 

peroxide, formaldehyde, acetone, acetic acid, were AR grade reagents and used as 

received. AR grade sulfanilic acid, sodium nitrate, potassium ferrocyanide, potassium 

ferricyanide, sodium hydroxide, potassium permanganate and sodium borohydride were 

purchased from fisher scientific and used as received. Titanium nitride powder (3 μm 

size), Pt black, PdCl2, H2PtCl6, were purchased from Sigma Aldrich and used as 

received. 20 wt% Pt supported on advanced carbon was procured from Alfa aesar.  

Natural graphite was obtained from Alfa aesar. 

All the glassware was rinsed with chromic acid followed by thorough washing with 

soap water and again with deionised water and dried. Deionised water (Millipore, 18 

MΩcm) was used to prepare all solutions. 

3.1.2 Preparation of graphite oxide 

Graphite oxide was synthesised from natural flake graphite (Graphite flake, natural, 325 

meshes (99.8%)) by the modified Hummers method [1]. In this method 200 mg of 

graphite particles were immersed in concentrated sulfuric acid (46 ml) and KMnO4 (6 g) 

was added slowly in small quantities in which temperature was maintained between the 

0 and 5 
o
c using an ice bath, after the complete oxidation of KMnO4, the mixture was 

heated to 37 
o
c and kept at this temperature about 30 min. Then 12 ml of distilled water 

was added slowly to this mixture and then the temperature of mixture was raised to 95 

o
c and it was maintained for about 15 min, this mixture was further diluted with 280 ml 

of water and later 20 ml of 30% H2O2 was added and left for 5 min, then solid was 

filtered off and washed with 5% HCl until filtrate was free from sulphate ions. Graphite 

oxide thus obtained was further washed thoroughly with water and dried in air for 24 

hours. 
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3.1.3 Synthesis of sulfonated graphite oxide (SGO) through aryl diazonium reaction 

of sulfanilic acid 

The aryl diazonium salt used for sulfonation was prepared as following [2]: To a 100 

mL beaker placed 5 mL NaOH (2%) and 0.05 g sulfanilic acid (SA), and allowed SA to 

dissolve in warm water bath. To the above solution 0.02 g NaNO2 was added at RT, 

after NaNO2 dissolved the mixed solution was added into 10 mL ice water and 1 mL of 

concentrated HCl under stirring, the temperature was kept at 0 
o
C for 15 min and 

diazonium salt was formed. Then the diazonium salt solution was added drop wise into 

50 mL of GO (1 mg/mL) solution and the mixed solution was stirred vigorously for 4 h 

in an ice water bath. After centrifuging and washing with water for several times, the 

obtained SGO was dispersed in water and stored at RT for use. 

3.1.4 GO and SGO paper polymer electrolyte membrane 

3.1.4.1 Fabrication of GO and SGO free standing paper 

Colloidal solutions of graphite oxide and sulfonated graphite oxide were prepared in 

water at a concentration of 2 mg cm
-3 

(mg/ml) using an ultrasonic water bath. Free 

standing GO and SGO papers (figure 3.1; thickness of ~35 µm) were prepared by 

filtration of the resulting colloid through a membrane filter (cellulose acetate membrane 

filter; 47 mm in diameter, 0.2 µm pore size) followed by air drying and peeling from the 

filter [3]. 

 

 

 

 

 

 

Figure 3.1, Schematics of fabrication of GO and SGO paper by vacuum filtration of 

colloidal solution GO and SGO 
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3.1.4.2 Fabrication of Nafion® laminated sulfonated graphite oxide paper 

Sulfonated graphite oxide paper prepared from vacuum filtration has been used to 

laminate the Nafion. Nafion (5% solution) is dissolved in 2-propanol and drop coated 

on both side of the surface of SGO paper and dried at 60 
o
C, the coating is continued 

until the achievement of few micrometer thickness layer of Nafion on SGO paper.  

3.1.5 Preparation of composite membranes for polymer electrolyte fuel cells 

3.1.5.1 GO and SGO/Nafion composite membranes 

Composite membranes were prepared by dissolving precast Nafion® membrane (5% 

Nafion® solution in lower aliphatic alcohols, Sigma Aldrich) in dimethylacetamide 

(DMAc) and mixing with a solution of GO in DMAc solution with a mass ratio of 2%, 

4% or 6% and 4% SGO. The mixture was stirred for 1 h and the composite membranes 

were prepared by casting this solution on a glass plate and dried at 70 
o
C. The resulting 

membranes were peeling off and dried at 120 
o
C in an oven for 2 h. Finally, membranes 

were pre-treated by boiling for 1 h in 5% H2O2, water, 0.5 M H2SO4 and water in 

sequence. The dry membrane thickness was measured at 10 random points over their 

surface using a digital micrometer. 

3.1.6 Preparation of SGO/Sulfonated poly ether-ether Ketone composite membranes 

for polymer electrolyte membrane fuel cells  

3.1.6.1 Sulfonation of poly ether-ether ketone 

Sulfonated poly ether-ether Ketone (SPEEK) was prepared by electrophilic substitution 

of poly ether-ether ketone (PEEK) using 98% H2SO4 [4]. PEEK was first dried in oven 

at 80 
o
C for 24 h before sulfonation. Then, the dried PEEK (5 g) was gradually 

dissolved into 100 mL sulphuric acid (H2SO4, 98%) in a three-neck flask for about 3 h 

at room temperature, followed by vigorous stirring at 45 
o
C for 8 h. Afterward, the 

polymer solution was gradually precipitated into ice-cold water under mechanical 

agitation. Finally, the polymer precipitate was filtered, washed several times with de-

ionized water until pH reached neutral and then dried first at room temperature for 24 h 

and then at 60 
o
C for another 24 h. The sulfonation degree (DS) was determined by acid 

base titration method. 
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3.1.6.2 Preparation of recast SPEEK, SGO/SPEEK composite membranes 

SPEEK (10 wt%) was dissolved in dimethylacetamide (DMAc) and used for 

preparation of recast and composite membranes. SGO/SPEEK composite membranes 

were prepared by mixing certain wt% of SGO in SPEEK solution and sonicated for 1 h, 

then casting this solution on a glass plate and dried at 70 
o
C followed by annealing at 80 

o
C for 12 h. The membranes were peeled off from the glass plate and soaked in 0.5 M 

H2SO4 for 2 days and washed with deionised water and stored in deionised water for 

further use. 

3.1.7 Water uptake test and Ion Exchange Capacity (IEC) measurements 

Membrane samples (Nafion and SPEEK composite membranes) with an area of 5 cm
2
 

were dried at 70 
o
C for 24 h, weigh in a dried state (Wdry), and then soaked with 

deionised water at a room temperature for 24 h. The membranes were carefully blotted 

of all surface water and weighed again (Wwet). The water uptake was calculated from 

the following equation. 

                            Water uptake (%) = 100 x (Wwet - Wdry)/ Wdry. (3.1) 

The ion exchange capacity (IEC) of the membranes was measured with the classical 

titration technique. The samples were soaked in a large volume of 0.1 mol L
-1

 HCl 

solution, washed with distilled water to remove excess HCl, and then immersed in 1 M 

NaCl aqueous solution to release protons from the membrane. The released H
+
 was back 

titrated with a 0.01 M NaOH aqueous solution using phenolphthalein as an indicator. 

The IEC value (in meq g
-1

), which is defined as milli equivalents (meq) of sulfonic 

groups per gram of dried sample, was obtained from following equation. 

                                      IEC (meq g
-1

) =VNaOH X CNaOH/ Wdry       (3.2) 

Where VNaOH is the volume of NaOH consumed, CNaOH is the concentration of NaOH 

and Wdry is the weight of the dry membrane (g). 

3.1.8 Proton conductivity measurements 

Membrane samples with an area of 0.5 x 1.5 cm
2
 were cut into pieces and used for 

measuring in-plane proton conductivity (figure 3.2). AC impedance measurements were 

carried out between frequencies of 20 kHz and 1 kHz, using a four-point probe method 

with a Frequency Response Analyzer (Voltech TF2000, UK). The method involves four 

equally spaced probes in contact with the measured material: two of the probes were 

used to source current whilst the other two were used to measure the voltage drop. The 

cell was operated at various relative humidity and temperature. 
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Figure 3.2, Schematic representation of in-plane proton transport measurement cell   

Calculation of in-plane proton conductivity using the following equation; 

                                                     σip = L/R*A (3.3a) 

 

Where σip is the in-plane proton conductivity (S.cm
-1

), L is the distance between the Pt 

electrodes (0.5 cm), R is the resistance (ohms) and A is the area of the membrane (cm
2
). 

Through plane conductivity of the membrane was measured by AC impedance 

spectroscopy from membrane electrode assembly. The resistance associated with the 

membrane at zero phase angles was used to estimate the through-plane proton 

conductivity of the membrane using the equation, (3.3b); 

           σtp = L/R*A  (3.3b) 

Where σtp is the through-plane proton conductivity (S.cm
-1

), L is the membrane 

thickness, R is the bilk resistance of the membrane and A is the area of the membrane 

(cm
2
). 

Activation energy of proton conductivity was calculated using the Arrhenius equation 

(3.3c)           

                                  
                                  

k = A e 
–Ea/RT 

(3.3c) 
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3.1.9 Preparation of membrane electrode assembly (MEAs) 

To prepare the fuel cell membrane electrode assemblies, the polymer electrolyte 

membrane was sandwiched between anode catalyst layer and cathode catalyst layer (the 

catalyst loadings in different MEA are mentioned in the results and discussion part). 

The catalyst ink was made by ultrasonicating the catalyst with 2-propanol and 20 wt% 

Nafion® ionomer, and the ink was sprayed onto gas diffusion electrodes (carbon paper) 

with a wet proofed micro-porous layer (H2315 T10AC1), purchased from Freudenberg 

(FFCCT, Germany). The MEA was hot pressed at 125 
o
C and a pressure of 60 kg cm

-2
 

for 3 minutes. 

3.1.10 Fuel cell tests 

The MEA was set between two titanium blocks and the active electrode area (1 cm
2
) 

was formed by the parallel gas flow channels area (figure 3.3). Electric cartridge heaters 

were inserted to the titanium blocks to maintain the desired temperature, which was 

monitored by imbedded thermocouples and controlled with a temperature controller. 

Gold-plated steel bolts were screwed into the blocks to allow electrical contact. The 

diagrammatic representation of fuel cell system is shown in figure 3.4. H2 and O2 

(humidified) were fed to each side of the cell at a flow rate of 0.1 and 0.07 dm
3 

min
-1

 

respectively. The cell was conditioned at 0.3 V for 1 h before polarisation studies. 
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Figure 3.3, Schematics of titanium testing fuel cell with flow channels 

 

Figure 3.4, Diagrammatic representation of fuel cell system  
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3.1.11 Preparation of cathode electrocatalyst 

3.1.11.1 Preparation of Nafion® stabilised Platinum nanoparticles supported on TiN 

(Pt/TiN) by chemical reduction  

The synthesis of Nafion® stabilised Platinum nanoparticles was carried out by chemical 

reduction method using TiN, hexachloroplatinic acid hexa hydrate (H2PtCl6.6H20), 

Nafion® (10%) and sodium borohydride (NaBH4) [5].  In brief, hexachloroplatinic acid 

is stirred with Nafion® (10%; 200 µl) for 1h. 5 ml of 87 mM NaBH4 is added drop by 

drop to produce Nafion® stabilised Pt colloid. Excess Nafion was removed by washing 

the colloid with 1:4 v/v water and acetone.  A TiN powder is added to the purified Pt 

colloid and sonicated for 1h. Finally the solvent was evaporated and dried at 60 
o
C. 

 

3.1.11.2 Preparation of Platinum nanoparticles supported on TiN (Pt/TiN) by 

impregnation  

The TiN supported Pt nanoparticles were produced using an impregnation method [6]. 

In a typical synthesis, hexachloroplatinic acid hexa hydrate (H2PtCl6.6H20) was 

dissolved in deionised water, and certain amount of TiN powder was added and 

sonicated for 30 minutes. The slurry was heated at 80 
o
C under magnetic stirrer to allow 

the solvent to evaporate. The resulting powder was heat treated in a tubular furnace at 

400 
o
C under hydrogen stream for 3 h.  

3.1.11.3 Preparation of Platinum-Cobalt nanoparticles supported on TiN (Pt-Co/TiN)   

The TiN supported Pt-Co alloy nanoparticles were produced using an impregnation 

method [7, 8]. In a typical synthesis, hexachloroplatinic acid hexa hydrate 

(H2PtCl6.6H20) and cobalt chloride hexa hydrate (CoCl2.6H2O) were dissolved in 

deionised water, and certain amount of TiN powder was added and sonicated for 30 

minutes. The slurry was heated at 80 
o
C under magnetic stirrer to allow the solvent to 

evaporate. The resulting powder was heat treated in a tubular furnace at 400 
o
C under 

hydrogen stream for 3 h. 

3.1.12 Electrochemical evaluation of cathode electrocatalyst  

3.1.12.1 Electrochemical active surface area and durability test by cyclic voltammetry 

Electrocatalytic activity and durability of catalysts were performed in a standard three 

electrode set up (figure 3.5) using rotating disc electrode (RDE) with a potentiostat 

(Autolab PGSTAT302N, Echochemie) and rotation control. A silver/silver chloride 

electrode (3 M KCl) is used as a reference electrode and potentials are referred to 
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reversible hydrogen electrode (RHE) (Appendix B). Glassy carbon electrode disc (5 mm 

diameter, 0.1962 cm
-2

) is used as the working electrode substrate. Catalyst ink was 

prepared by ultrasonically mixing the catalyst in water and ethanol (1:1 v/v) and 

pipetting 5 µl of suspension onto the glassy carbon disc electrode to achieve a catalyst 

loading of 20 µg cm
-2

. After drying, a drop of Nafion® (5%) solution is pipeted onto 

glassy carbon electrode surface as a binder to attach the catalyst and also acts as a 

proton carrier. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5, Standard three electrode set up of electrochemical system 

Cyclic voltammetry was performed at 50 mV s
-1

 between 0 to +1.2 V vs. RHE in an N2 

saturated 0.5 M H2SO4 and H3PO4 at room temperature. Electrochemical active surface 

area in m
2
 g

-1
Pt was measured from the area under the hydrogen desorption peaks of CV 

curves after double-layer corrections. Accelerated catalyst degradation test was 

performed between 0.6 to 1.2 V at 50 mV s
-1

. 

The CV recorded for Pt/C in an N2 saturated is 0.5 M H2SO4 is shown in figure 3.6 at a 

scan rate of 50 mV s
-1

. The working electrode (Pt/C) potential is scanned between 0.0 to 

1.2 V vs. RHE. The CV can be divided into three segments: H underpotential deposition 

region (~0.05 to 0.34 V vs. RHE), double layer region (0.34 to 0.8 V vs. RHE) and Pt 

oxide formation region (above 0.8 V vs. RHE). As the potential increases (forward 

scan), pre-adsorbed H atoms on Pt surface are oxidised to H
+
 and desorbs from Pt 

surface and diffuse into electrolyte; as the potential increases further (above 0.7 V vs. 

RHE) water starts to adsorb and dissociates on Pt surface forming Pt-OH and continue 

to form Pt oxides as the potential increases. On the reverse scan, as the potential 
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decreases Pt oxide is being reduced. When the potential is reached to 0.34 V vs. RHE 

the protons from the electrolyte will adsorb on Pt and be reduced. In the potential region 

of 0.34 to 0.8 V, the Pt surface is free of H or OH/O, and the current observed is mainly 

a contribution of double layer capacitance (anion adsorption from the electrolyte such as 

SO4
2-

). The large surface area of carbon is also contributing to the capacitive current. 

The electrochemical surface area (ECSA) of Pt can be calculated by integrating the 

hydrogen desorption charge (QHdes C cm
-2

). Assuming the Pt electric charge density of 

210 µC cm
-2

Pt and knowing the Pt loading, ECSA can be estimated. 

 

 ECSA = QHdes*100 /210 µC x Pt loading (3.4) 

Figure 3.6, Typical cyclic voltammogram of Pt in an N2 saturated 0.5 M H2SO4 at a 

scan rate of 50 mV s
-1

 

3.1.12.2 Oxygen reduction reaction studies 

The oxygen reduction reaction (ORR) on the rotating disc electrode (RDE) was studied 

for the electrocatalysts using linear sweep voltammetry (LSV) at a scan rate of 5 mV s
-1

 

in an oxygen saturated 0.5 M H2SO4 and H3PO4 solutions. The catalyst ink (prepared as 

per the procedure in section 3.1.12a) was drop casted onto the glassy carbon disc 

electrode. 
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3.1.13 Characterisation techniques 

3.1.13.1 FT-IR spectroscopy 

Fourier Transform infrared (FT-IR) spectroscopy is an important technique in organic 

chemistry.  FT-IR was used to identify the presence of certain functional groups in a 

molecule. In this research FT-IR spectroscopy was used to understand the chemical 

interactions between the functional groups of graphite oxide, Nafion and SPEEK. 

Fourier transform infrared spectroscopy (FTIR) was measured on Varian 800 FT-IR 

spectrometer system with wave number between 4000 and 500 cm
-1

.  

The most useful IR region lies between 4000-500 cm
-1

. IR radiation does not have 

enough energy to induce electronic transitions as seen with UV. For a molecule to 

absorb IR, the vibrations or rotations within a molecule must cause a net change in the 

dipole moment of the molecule. The alternating electrical field of the radiation interacts 

with fluctuations in the dipole moment of the molecule. If the frequency of the radiation 

matches the vibrational frequency of the molecule then radiation will be absorbed, 

causing a change in the amplitude of molecular vibration. Rotational levels are 

quantised, and absorption of IR by gases yields line spectra. However, in liquids or 

solids, these lines broaden into a continuum due to molecular collisions and other 

interaction [9, 10]. 

The positions of atoms in a molecule are not fixed; they are subject to a number of 

different vibrations. Vibrations fall into the two main categories of stretching and 

bending. Stretching causes change in inter-atomic distance along bond axis and bending 

cause change in angle between two bonds. 

Traditional infrared techniques experience difficulties due to the one wave number at a 

time nature of data acquisition. This leads to either a poor signal to noise ratio in a 

spectrum or a very long time needed to obtain a high quality spectrum. These problems 

can be overcome using Fourier transform infrared spectroscopy (FT-IR) which is based 

on the interferometer originally designed by Michelson and a mathematical procedure 

developed by Fourier that converts response from the time to the frequency domain [11]. 

Figure 3.7, shows the schematic of the FT-IR instrument. The IR source passes into the 

optical system and impinges on a beam splitter that comprises a very thin film of 

germanium. Approximately 50% of the light passes through the film and is reflected 

back along its path by a fixed mirror, where half of the light intensity (25% of the 

original light intensity) is reflected by the same beam splitter, through the sample cell, 
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to the infrared sensor. The other 50% fraction of the incident light is reflected at right 

angles to its incident path onto a moving mirror. Light from the moving mirror returns 

along its original path and half of the light intensity is transmitted through the beam 

splitter, through the sample cell, to the infrared sensor. As a result, 25% of the incident 

collimated light from the source reaches the sensor from the fixed mirror and 25% from 

the movable mirror. Now the path length of the two light beams striking the sensor will 

be different so there will be destructive and constructive interference. Actually, the 

system constitutes a form of the Michelson interferometer. 

A spectrometer measures the radiation intensity as a function of the wavelength of the 

light behind a sample. At the vibrational frequencies of the molecules an intensity 

decrease is obtained and a transmittance or absorbance spectrum is plotted. 

 

 

 

 

 

 

 

Figure 3.7, Diagrammatic representation of IR spectrometer [12] 

The intensity of IR absorption is governed by the Beer-Lambert law: 

                                                          I = Io e
-ɛcd        

(3.5)
 

Here, Io and I denote the intensities of the incident and transmitted beams, respectively, 

ɛ (mol cm
-1

) is the molecular absorption coefficient, and c and d are the concentration of 

the sample and the cell length, respectively. In IR spectroscopy, it is customary to plot 

the percentage transmission (T) versus wave number (ν): 

                                                               T (%) = I/Io*100 (3.6) 

It should be noted that T (%) is not proportional to c. For quantitative analysis, the 

absorbance (A) defined here should be used:     A = log I/Io = ɛcd (3.7) 
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3.1.13.2 Raman Spectroscopy 

Raman spectroscopy is commonly used in chemistry to observe vibrational, rotational 

and low frequency modes in a system. Since the vibrational information is specific to 

the chemical bonds and symmetry of molecules, therefore it provides a fingerprint by 

which the molecule can be identified. Raman spectroscopy was carried out using Raman 

spectrometer (HORIBA JOBIN YVON) with liquid nitrogen cooled Ge detector. A Nd-

YAG laser (with a wavelength of 1064 nm) was used as the excitation source and the 

number scans used was 1024. All the spectra were recorded with a laser power of 300 

mW with a radiation spot size of 100 μm. 

In theory, vibrational transitions can be observed in either IR or Raman spectra. In the 

former, we measure the absorption of infrared light by the sample as a function of 

frequency. 

Figure 3.8, shows the energy level diagram of states involved in the Raman signal. In 

Raman spectroscopy, the sample is irradiated by intense laser beams in the UV-visible 

region (νo), and the scattered light is usually observed in the direction perpendicular to 

the incident beam, The scattered light consists of two types: one, called Rayleigh 

scattering, is strong and has the same frequency as the incident beam (νo), and the other, 

called Raman scattering, is very weak (~ 10
-5

 of the incident beam) and has frequencies 

νo ± νm, where νm is a vibrational frequency of a molecule. The νo - νm and νo + νm lines 

are called the Stokes and anti-Stokes lines, respectively. Thus, in Raman spectroscopy, 

we measure the vibrational frequency (νm) as a shift from the incident beam frequency 

(νo). In contrast to IR spectra, Raman spectra are measured in the UV-visible region 

where the excitation as well as Raman lines appear [13, 14]. 

 

 

 

 

 

 

 

Figure 3.8, Energy level diagram [15] 
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To determine whether the vibration is active in the IR and Raman spectra, the selection 

rules must be applied to each normal vibration. Since the origins of IR and Raman 

spectra are markedly different, their selection rules are also distinctively different. 

According to quantum mechanics [16, 17] a vibration is IR-active if the dipole moment 

is changed during the vibration and is Raman-active if the polarisability is changed 

during the vibration. 

 

3.1.13.3 X-ray diffraction (XRD) 

X-ray diffraction (XRD) is widely used for determining the atomic and molecular 

structure of crystalline material. In this research powder XRD measurements were 

carried out using (Siemens D 5005 model) a diffractometer with Cu Kα source 

(λ=1.5418 Å) in the scan range between 10 and 80
o
 at a rate of 2

o
 per min.  

The X-rays (electromagnetic radiations) are generated in a cathode ray tube by heating a 

filament to produce electrons, accelerating the electrons toward a target (Cu, Al, Mg and 

Mo) by applying a voltage, and bombarding the target material with electrons [18]. 

When electrons have sufficient energy to dislodge inner shell electrons of the target 

material, characteristic X-ray spectra are produced. These spectra consist of several 

components, the most common being Kα and Kβ. The specific wavelengths are 

characteristic of the target material (Cu, Fe, Mo, and Cr). Copper is the most common 

target material for single-crystal diffraction, with CuKα radiation = 1.5418Å [19]. These 

X-rays are collimated and directed onto the sample (figure 3.9). As the sample and 

detector are rotated, the intensity of the reflected X-rays is recorded. When the 

geometry of the incident X-rays impinging the sample satisfies the Bragg Equation, 

constructive interference occurs and a peak in intensity occurs [20]. A detector records 

and processes this X-ray signal and converts the signal to a count rate.  

 

 

 

 

 

Figure 3.9, Schematic representation of X-ray instrumental set up [21]  
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In principle, XRD relies in the diffraction of light. The atoms are regularly arranged in a 

crystalline materials and the interatomic space is in the order of wavelength of X-ray 

(0.1 – 100 A
o
) [22]. Figure 3.10 shows the diffraction of X-rays from crystal planes. 

When the Bragg’s condition is satisfied, scattered X-ray constructively interfere an 

intense peak is obtained. 

                                                                2dhkl sinθ = nλ (3.8) 

Where dhkl is the spacing between the lattice plane with the Miller indices h, k and l. n is 

the order of diffraction (n=1, 2, 3 etc.) and λ is the wavelength of X-ray. 

 

 

 

 

 

 

 

 

Figure 3.10, Illustration of Bragg’s law [23] 

The XRD could be used to distinguish between crystalline and amorphous state of 

compound. A crystalline sample shows a sharp XRD peak whereas amorphous 

compound exhibits a broad peak. It was found that peaks broaden as the crystallite size 

decreases and the peak broadness is used to measure the crystallite size using the 

Debye-Scherrer formula [24]. 

                                                     t=kλ/βcosθ (3.9) 

Where λ is the wavelength of X-ray, β is the full width at half maximum (2θ), and K is 

the shape factor usually takes the value of 0.89. 
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3.1.13.4 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a quantitative technique that measures the 

elemental composition and oxidation states of the element in the material being 

analysed. XPS is also known as ESCA (Electron Spectroscopy for Chemical Analysis) 

that provides the quantitative analysis of the surface composition. In this research XPS 

data was collected using Thermo K-Alpha (Thermo Scientific, East Grinstead, UK) 

using a monochromatic AlKα source at 100W.  

XPS is based upon photo-ionisation and analysis of the kinetic energy distribution of the 

emitted photoelectrons to study the composition and electronic state of the surface 

region of a sample. The kinetic energy distribution of the emitted photoelectrons (i.e. 

the number of emitted photoelectrons as a function of their kinetic energy) can be 

measured using any appropriate electron energy analyser and an X-ray photoelectron 

spectrum can be recorded (figure 3.12) [25].  

The energy of a photon of all types of electromagnetic radiation is given by the Einstein 

relation [26] 

                                                    E = h ν                              (3.10) 

In XPS, the photon is absorbed by an atom in a molecule or solid, leading to ionisation 

and the emission of a core (inner shell) electron as shown in the figure 3.11 and is given 

by the equation. 

                                                            A + hν → A
+
 + e

- 
(3.11) 

 

 

 

 

 

Figure 3.11, Photo-ionisation of an atom [27] 
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The difference in energy between the ionised and neutral atoms is generally called the 

binding energy (BE) of the electron [28]. 

                                                  KE = hν – BE                                      (3.12) 

For each and every element, there will be a characteristic binding energy associated 

with each core atomic orbital therefore each element will give rise to a characteristic set 

of peaks in the photoelectron spectrum at kinetic energies determined by the photon 

energy and the respective binding energies [29]. The presence of peaks at particular 

energies therefore indicates the presence of a specific element in the sample under study 

furthermore; the intensity of the peaks is related to the concentration of the element 

within the sampled region. 

 

 

 

 

      

 

 

 

 

 

Figure 3.12, Schematic of XPS instrument [30] 
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3.1.13.5 Scanning electron microscope (SEM) and Energy dispersive X-ray 

spectroscopy (EDS) 

The surface and cross sectional morphology of the material can be obtained using a 

scanning electron microscope. The SEM is a microscope that uses electrons instead of 

light to form an image. In this research, JSM-5300LV (Japan) scanning electron 

microscope (SEM) was used to investigate the morphology of the membranes and 

electrocatalyst. The membrane samples were cut by nitrogen snapping and mounted on 

holder facing the membrane opposite towards the light source to see the cross section 

morphology of the composite membrane. 

In theory, electrons are thermionically emitted from a tungsten or lanthanum hexaboride 

(LaB6) cathode and are accelerated towards an anode; alternatively, electrons can be 

emitted via field emission (FE) [31]. The electron beam, which has an energy ranging 

from a few hundred eV to 100 keV, passes through a pairs of scanning coils in the 

objective lens. When the primary electron beam interacts with the sample, the electrons 

lose energy by repeated scattering and absorption within the interaction volume, which 

depends on the beam accelerating voltage the atomic number of sample and the sample 

density, extending from 100 nm to around 5 µm into the surface as shown in figure 

3.13a. Figure 3.13b shows the schematic representation of interaction of incident beam 

with the sample. The beam travels through electromagnetic fields and lenses, which 

focus the beam down toward the sample. Once the beam hits the sample, electrons and 

X-rays are ejected from the sample. Detectors collect these X-rays, backscattered 

electrons, and secondary electrons and convert them into a signal that is sent to a screen 

similar to a television screen and produces the final image. 

Energy dispersive X-ray spectroscopy (EDS) technique is used for elemental analysis of 

samples. This technique relies on interactions between incident charged particles such 

as electrons and the sample. In principle, a high energy incident beam will knock out an 

electron in an inner shell of atoms in the sample, creating an electron hole. Then an 

electron from an outer, high energy shell will fill that hole and release the energy 

differences between these two shells in the form of an X-ray. Since the energy 

differences between electron shells are closely related to the atomic structure, the X-ray 

shall be a characteristic of an atom, which allows the elemental composition of the 

sample to be measured. The systems provide limited detection of elements below C in 

the periodic table. The detection limit is around 0.1 % depending on the element [32].  
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Figure 3.13, a) Schematic representation of SEM and b) interaction of incident beam 

with the sample [33] 

3.1.13.6 Transmission electron microscope (TEM) 

The transmission electron microscopy (TEM) is used to analyse the nanosized (up to1 

nm) material for their structure, atomic columns, composition and crystallographic 

information. In this research, TEM was investigated by Philips CM 100 Compustage 

(FEI), and images are collected using an AMT CCD camera (Deben).  

In this technique, an electron beam interacts and passes through a specimen. The 

electrons are emitted by a source and are focused and magnified by a system of 

magnetic lenses. The schematic of TEM is shown in figure 3.14a. The electron beam is 

confined by the two condenser lenses which also control the brightness of the beam, 

passes the condenser aperture and hit the sample surface. The electrons that are 

elastically scattered consist the transmitted beams, which pass through the objective 

lens (figure 3.14b). The objective lens forms the image display and the following 

apertures, the objective and selected area aperture are used to choose of the elastically 

a) b) 
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scattered electrons that will form the image of the microscope [34]. Finally, the beam 

goes to the magnifying system that is consisted of three lenses, the first and second 

intermediate lenses which control the magnification of the image and the projector lens. 

The formed image is shown either on a fluorescent screen or in monitor or both and is 

printed on a photographic film. 

Different types of images are obtained in TEM, using the apertures properly and the 

different types of electrons. As a result, diffraction patterns are shown because of the 

scattered electrons. If the unscattered beam is selected, we obtain the bright field Image. 

Dark field images are attained if diffracted beams are selected by the objective aperture. 

Also TEM can be used to analyse the samples for EDX (Energy Dispersive X-ray), 

EELS (Electron Energy Loss Spectrum), EFTEM (Energy Filtered Transmission 

Electron Microscopy) [35]. 

Samples for TEM analysis were prepared by drop coating the slurry/colloid on carbon 

coated copper grid and allowing the solvent to evaporate under light. 

 

 

Figure 3.14, a) Schematic representation of TEM and b) interactions between incident 

beam and sample [36]   

a) b) 
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3.1.13.7 Thermo-gravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is widely used to study the thermal behaviour of the 

material. In this research the thermal stability of the polymer electrolyte membranes 

were measured by thermo-gravimetric analysis using a STA6000 machine over a 

temperature range of 30-700 
o
C with a scan rate of 5 

o
C min

-1
 under Helium flow (30 ml 

min
-1

). 

In this technique, mass change of the sample is monitored while heating the sample in a 

controlled atmosphere (He, N2, O2 and air etc) in a controlled temperature programme. 

The mass change versus the temperature is plotted for thermal analysis. A decrease in 

mass indicates a degradation of sample whereas an increase weight in oxidising 

atmosphere indicates an oxide formation.  

3.1.13.8 Mechanical strength measurement 

To understand the materials ability to withstand an applied stress mechanical 

measurements are widely used. In this research, polymer electrolyte membranes tensile 

strength measurement was carried out with an Instron 4505 machine with a 

displacement speed of 2 mm per minute. Membrane samples with an area of 5x2 cm
2
 

were cut and used for mechanical studies. 

Tensile strength was calculated by using the equation; 

 

Tensile strength (MPa) = (load at break) / (original width) (original thickness)     (3.13) 

 

Percentage elongation was calculated by using the equation; 

Percent elongation = (elongation at rupture) x 100 / (Initial gage length)           (3.14) 

 

Young’s modulus is calculated by drawing a tangent to the initial linear portion of the 

stress strain curve, selecting any point on this tangent, and dividing the tensile stress by 

the corresponding strain. The result is expressed in gigapascals (GPa).  

                     Young’s modulus = tensile stress / tensile strain (3.15) 
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3.2 Theoretical background of electrochemical methods  

3.2.1 Cyclic Voltammetry and Linear Sweep Voltammetry 

Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) are well known 

potentiodynamic electrochemical techniques, often used to examine the electrochemical 

properties of electrode. These techniques are based on a linear-potential waveform, 

wherein the potential is continuously varied as a linear function of time. The rate of 

change of potential with time is referred to as the scan rate (v). In LSV, the working 

electrode potential is scanned from a lower limit (Einitial) to upper limit (Efinal) linearly 

with time (figure 3.15)  In the case of cyclic voltammetry the potential of the working 

electrode is swept between two potential ends (figure 3.16) , but on reaching the 

potential (Efinal), the sweep is reversed. In both LSV and CV experiments, the cell 

current is recorded as a function of applied potential. The importance of CV is revealed 

from its ability to rapidly provide considerable information on the thermodynamics of 

redox processes, kinetics of heterogeneous electron-transfer reactions, coupled 

chemical-reactions and adsorption processes [37, 38]. 

Figure 3.15, Potential-time excitation signal in cyclic voltammetry [39]  

Consider the reaction: 

                                                                      O + ne
-
  R                       (3.16)                                                                                                            

When the working electrode is swept between the two set potentials at a fixed scan rate, 

where the electrolyte containing oxidised and reduced forms of the chemical species.  
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The Nernst equation for an ideal reversible electrode is given by the equation,                                       

                                        E = E
o 
+ (RT/nF) ln CO /CR                        (3.17) 

Where E
o
 is the formal potential, R is the universal gas constant, T is absolute 

temperature in Kelvin, n is the number of electrons transferred during the 

electrochemical reaction, F is the Faraday constant, and CO and CR represent the surface 

concentrations of oxidised and reduced forms of the species [40]. 

At equilibrium, the surface concentrations of O and R are equal. After the cathodic peak 

potential, the current decays as a result of the depletion of O in the electrode/electrolyte 

interfacial region and the current is given by, 

                                         I = DO n F A (dCO / dx)                     (3.18) 

Where DO is the diffusion coefficient of O, A is the surface area of the electrode and 

(dCO/dx) is the concentration gradient at the electrode surface. 

A typical cyclic voltammogram is shown in figure 3.8 and is predicted for an ideal, 

reversible system. The peak current ip is given by the equation (3.19) called the 

Randles-Sevick equation [41],  

                                       ip = (2.69 ×105) n
3/2

AD
1/2

 ν 
½
 C             (3.19) 

Where ip is the peak current (in amperes), n is the number of electrons involved in the 

redox reaction, A is the electrode area (in cm
2
), D is the diffusion coefficient of analyte 

(cm
2
 sec

-1
), ν is the potential sweep rate (in volts sec

-1
), and C is the concentration of 

analyte in bulk solution (in moles cm
-3

). 

 

 

 

 

 

 

Figure 3.16, Typical cyclic voltammogram recorded for reversible redox reaction [42] 

A redox couple in which both species rapidly exchange electrons with the working 

electrode is termed an electrochemically reversible couple. The formal reduction 
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potential (E
o
) for a reversible couple is centred between Epa and Epc. Therefore E

o
is 

given by the equation (3.20)  

                                 E
o
= Epa+ Epc/2                                                   (3.20) 

For a reversible electrochemical reaction the potential difference between the two 

current peaks (∆E) is given by the equation (3.21). 

                              ∆E = Epa- Epc = 2.303RT/nF = (59/n) mV                (3.21) 

For a reversible reaction the ratio of peak currents is equal to one.  

The half- wave potential E1/2 (E1/2, where the current is half of the peak current) is given 

by the equation (3.22) 

                                    Ep/2 = E1/2± (28/n) mV                                     (3.22)   

For a reversible redox system, the electron transfer rates at all potentials are 

significantly greater than the rate of mass transport and therefore, Nernst equilibrium is 

always maintained at the electrode surface [43].  

Electrochemical irreversibility and quasi-reversibility of the system is caused by slow 

electron exchange of the redox species with the working electrode. In the case of 

irreversible process, the individual peaks are reduced in size and widely separated as 

shown in the cyclic voltammogram A (figure 3.17). 

 

 

 

 

 

 

 

 

 

Figure 3.17, Cyclic voltammograms for irreversible (curve A) and quasi-reversible 

(curve B) redox processes [44] 

The irreversible systems are characterised by a shift of peak potential with the scan rate 

is given by the equation: 
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                  Ep= E
o
-RT/αnaF [0.78 – ln k

o
/D1/2 +ln (αnaFν/RT)

1/2        (3.23) 

 Where α is the transfer coefficient and na is the number electrons involved in the charge 

transfer reaction. Thus, Ep occurs at potential higher than E
o
, with overpotential related 

to k
o
 and α. Independent of value of k

o
, such peak displacement can be compensated by 

an appropriate change of scan rate. The peak potential and half-peak potential (25 
o
C) 

will differ by 48/n mV. Hence, the voltammogram become more dawn out as αn 

decreases [45]. The peak current is given by the equation (3.24), 

                                Ip = - (2.99 x 10
5
) A n ( n)

1/2
 CO DO

1/2
 

1/2
               (3.24) 

The ratio of the reversible to irreversible current peak is 1.27. 

For quasi-reversible systems the current is controlled by both the charge transfer and 

mass transport. The shape of the CV is a function of K
o
/√πaD (where a = nFν/RT). As 

K
o
/√πaD increases, the process approaches the reversible case. For small values of 

K
o
/√πaD (at very fast scan rate ν) the system exhibits an irreversible behaviour. Over all 

the voltammograms of a quasi reversible system are more dawn-out and exhibit a large 

separation in peak potentials compared to those of a reversible system (curve B, in 

figure 3.17).   

3.2.2 Origin of Tafel equation 

The kinetics of the reaction plays a vital role in understand the mechanism of any 

reaction. In the case of electrochemical reaction, electron transfer being the rate 

determining step. 

Consider the electron transfer reaction: 

                                                 O + ne
-
 <=> R                                           (3.25) 

 

At equilibrium, the exchange current (i0) is directly proportional to the standard rate 

constant and is given by the equation (3.26)   

                                    i0 = ic =ia = nFAk
o
C                                               (3.26) 

Where ic and ia are the cathodic and anodic components, respectively.  

The Butler-Volmer reaction represents the current-potential relationship for the reaction 

3.25 and is expressed in terms of exchange current density 
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                      i = i0 [exp (−αnFη/RT) − exp ((1 − α) nFη/ RT)]           (3.27)  

Where i is the electrode current density (A/m
2
; i=I/A), io is the exchange current density 

(A/m
2
), η is the overpotential (η=E-Eeq), α is the charge transfer coefficient, F is the 

Faraday constant (96500 C) and n is the number of electrons involved in the reaction, R 

is the gas constant (8.314 J K
-1

 mol
-1

) and T is the absolute temperature. 

Where η = E-Eeq is the overpotential (the extra potential beyond the equilibration 

potential leading to a net current i). The overvoltage is always defined with respect to a 

specific reaction, for which the equilibrium potential is known [46]. 

Equation (3.12) can be used for extracting information on i0 and α, which are important 

kinetic parameters. For sufficiently large overpotential (η >118 mV/n), one of the 

exponential terms in Eq. (3.12) will be negligible compared with the other. For example, 

at large negative overpotentials, ic >> ia and Eq. (3.28) becomes 

 

                  i = i0 [exp (−αnFη/RT)                               (3.28) 

and hence, we get 

 lni = lni0 - αnFη/RT                              (3.29) 

This logarithmic current-potential dependence was derived by Tafel, and is known as 

the Tafel equation. By plotting log i against η one obtains the Tafel plots for the 

cathodic and anodic branches of the current-overpotential curve (Figure 3.18). Such 

plots are linear only at high overpotential values; deviations from linearity are observed 

as η approaches zero. Extrapolation of the linear portions of these plots to the zero 

overpotential gives an intercept, which corresponds to logi0; the slope can be used to 

obtain the value of the transfer coefficient α. The value of i0 determined in this way is at 

a specific temperature and concentration of reactants. It will also be a function of the 

specific surface area. 

Another form of the Tafel equation is obtained by rearrangement of Eq. (3.29): 

 

 η = a – blogi                                           (3.30) 

with b, the Tafel slope, having the value of 2.303RT/αnF. For α=0.5 and n=1, this 

corresponds to 118 mV (at 25 °C). Equation (3.30) indicates that the application of 

small potentials (beyond the equilibrium potential) can increase the current by many 

orders of magnitude. In practice, however, the current could not rise to an infinite value 

because of restrictions imposed by the rate at which the reactant reaches the surface. 
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Figure 3.18, Tafel plots for cathodic and anodic branches of the current-potential curve 

[47] 

3.2.3 Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is an electrochemical method, employed 

to understand the interfacial behaviour of electrochemical systems. The electrode 

impedance is measured as a function of the frequency of the ac source. The theory of 

the technique is to explain the equivalent resistance and capacitance values in terms of 

interfacial phenomena. The measured total impedance of the electrochemical cell could 

be represented by an equivalent circuit comprising resistors (R) and capacitances (C) in 

series and/or in parallel. 

On applying ac voltage (e) across the cell, the corresponding current (i) passing through 

it, can be expressed as, 

                                              i = io Sin t                                            (3.31) 

where  is the angular frequency ( = 2f, f being the frequency) and io is the value of i 

at t = 0. 

The circuit containing resistance and capacitance in series are shown in figure 3.19. The 

total voltage drop across the circuit, E, is given by 

                                                    E = E1+E2                                   (3.32) 

 



                                                                                                             Chapter 3                  

79 
 

 

 

 

 

 

 

Figure 3.19, Series combination of resistance and capacitance with respective voltage 

drops    E1 and E2, across them [48] 

The impedance (Z) of the circuit is expressed as, 

                                                   Z = E/I                                                  (3.33)                                                                          

The total impedance of the circuit is given by, 

                                                 Z = R + (1/jC) = R - (j/C)                 (3.34) 

Equation (3.34) contains both real and imaginary terms, namely R and (-j/C), 

respectively, and is called the complex impedance, Z*, which is expressed as, 

                                                      Z* = Z
’
 – jZ

’’
                     (3.35) 

Where Z
’
 = R and Z

’’ 
= 1/C. 

It may be noted that the parameters such as impedance (Z), modulus of impedance |Z|, 

real part (Z
’
), imaginary part (Z’’), phase angle () are interrelated and are functions of 

frequency (f). Impedance data are represented graphically in Cartesian coordinates or in 

complex coordinates as shown in figure 3.20a. The plot of log |Z| and  versus log f is 

called Bode plot. In the Bode log |Z| plot, if the resistor and capacitor are connected in 

series, the impedance is contributed by both the elements and the magnitude of each 

contribution varies with the ac frequency as shown in figure 3.20b. If they are in parallel 

as shown in figure 3.20c, log |Z| decreases linearly with log f with a slope value of -1. 

For an electrochemical system, complex impedance spectra in the form Nyquist and 

Bode plots provide valuable information on various parameters such as bulk resistance 

of the electrolyte, charge-transfer resistance that is useful in evaluating various 

characteristics of the electrode reactions such as rate constant etc., Warburg impedance 

that provides information about the mass transport. From bulk resistance, ionic 
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conductivity (σ) of the electrolyte can be determined using the equation,                                                                                                                                                                                                                        

                                                 σ = L / RA                             (3.36)   

Where L is the distance between the two electrodes, A is the area of electrode and R is 

the bulk resistance of the electrolyte, which is evaluated from the high-frequency 

intercept on the real impedance axis of the Nyquist plot. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20, (a) Argand diagram showing relationship among resistance (R), capacitive 

reactance (Xc), modulus of impedance |Z| and phase angle (), (b) Complex plane 

(Argand) diagram for a series RC circuit and (c) Complex plane diagram for a parallel 

RC circuit [ 49] 
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3.2.4 Rotating disc electrode (RDE) 

The evaluation of electrocatalytic activity (HOR and ORR) of the electrocatalyst 

directly in the fuel device is somewhat expensive and time-consuming. The rotating disc 

electrode (RDE), which involves the use of small electrode for screening the 

electrocatalyst, is often used as an alternative tool. The schematic of three electrode 

system, including the RDE working electrode is shown in Figure 3.21.   

 

 

 

 

 

 

 

 

 

Figure 3.21, Schematic of an electrochemical cell with rotating disc electrode 

In this research, the glassy carbon (GC) based RDE electrode was employed to analyse 

the in house prepared electrocatalyst to evaluate for its stability, durability and oxygen 

reduction reaction. This allowed us to compare the electrocatalytic property with 

conventional Pt/C.    

The electrochemical reaction involves gas reactants such as hydrogen and oxygen. 

Because of the slow electrocatalytic activity and poor mass transport of the reactant gas, 

the RDE technique use convection to enhance the rate of mass transport to the electrode. 

The convection induced by the rotation of working electrode results in increased current 

compared to voltammetric measurements performed in the quiescent solution [50]. 

The fuel cell catalysts are generally evaluated for HOR and ORR activity. Using the 

RDE technique, the mechanism of the reaction and kinetic parameters can be 

determined. 
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The kinetic current (Ik) was calculated from Koutecky-Levich equation which is 

expressed by 

                               1/I = (1/Ik) + (1/Id)                              (3.37) 

Where I is the measured current, Ik is the kinetic current and Id the diffusion limited 

current. The Id term can be obtained from the Levich equation: 

 

                              Id = 0.62nFAD
2/3

υ
-1/6 

ω
1/2

CO2                (3.38) 

Where n is the number of electrons transferred; F is Faraday's constant (96,485 C mol
-1

); 

A is the area of the electrode (0:196 cm
2
); D is the diffusion coefficient of O2 in 0.5 M 

H2SO4 solution (2.1x10
-5

 cm
2
 s

-1
); υ is the kinematic viscosity of the electrolyte 

(1.01x10
-2

 cm
2
 s

-1
); ω is the angular frequency of rotation, ω =2πf/60, f is the rotation 

rate in r.p.m. and CO2 is the concentration of molecular oxygen in 0.5 M H2SO4 is 

1.03x10
-3

 M.  

Plotting 1/I vs. 1/ ω
1/2

 known as the Koutecky-Levich plot (figure 3.21) will generate 

the straight line with y-axis intercept given by the value 1/Ik and the slope being 1/B. 

From the y-axis intercept, the kinetic current (Ik) and from the slope 1/B 

(B=0.62nFCoDo
2/3

υ
-1/6

 is the Levich constant) the number of electron being involved 

during the reaction can be determined.  

                                  n = B/0.62nFCoDo
2/3

υ
-1/6 

                  (3.39) 

The kinetic current (typically at 0.9 V for ORR) can be normalised to electrochemical 

surface area obtained from cyclic voltammograms to estimate mass activities (mA/mgPt) 

and specific activities (mA cm
2

Pt) by using the following equations.  

                                                       Mass activity = I/m  (3.40) 

Where I is the current at 0.9 V and m is the Pt loading 

                  Specific activity = mass activity/ECSA*100        (3.41) 
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Figure 3.21, Koutecky-Levich plot [51] 
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Chapter 4. Functionalised Graphite Oxide Paper as Proton Conductor 

This chapter discuss the properties of graphite oxide (GO) as a bi-functional additive 

being both hydrating and proton conducting. The GO and SGO free standing paper has 

been fabricated and evaluated for its stability and proton transport mechanism. 

4.1Introduction 

Proton exchange membrane fuel cells have been the focus of interest due to ever 

increasing energy demands. A variety of polymer electrolyte membranes (PEMs) have 

been fabricated and studied for polymer electrolyte membrane fuel cells (PEMFCs) [1]. 

Most of the membranes possess limitations, which hinder the successful 

commercialisation of PEMFC technology. Perfluorinated sulfonic acid (PFSA) based 

membranes remain the benchmark due to their excellent proton conductivity under 

humidified conditions [2]. The high temperature operation (above 80 
o
C) of fuel cell 

would enhance the fuel cell performance by enhancing the electrochemical kinetics, 

improves the CO tolerance of Pt electrocatalyst and reduces the noble electrocatalyst (Pt) 

loading [3]. The proton conductivity of PFSA based membrane depends on hydration 

level and therefore, it is not practical to uses these membranes above 80 
o
C. The 

development high temperature polymer electrolyte membranes have been the most 

important areas of research in PEMFC [4]. One of the promising routes to make PEM 

for HTPEMFC is the fabrication of inorganic-organic composite membranes [5, 6]. 

Considerable amount of research efforts have been made to develop PFSA composite 

membranes with inorganic hydrophilic oxide materials [7, 8]. The improved water 

retention and proton conductivity of PFSA composite membranes enable them to 

operate at high temperature. However, the proton conductivity of these composite 

membranes is still lower than the pristine PFSA membranes [9, 10]. Functionalised GO 

(sulfonated graphite oxide) is used as a bi-functional additive being both hydrating and 

proton conducting to fabricate composite membranes for high temperature PEMFC.   
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4.2 Results and Discussion 

4.2.1 Formation of free standing graphite oxide and sulfonated graphite oxide paper 

Preparation and characterisation of graphite oxide (exfoliated graphite oxide in water 

yielding colloidal suspension of graphene oxide sheets) paper was reported by D.A. 

Dikin et al. [11] and they proposed a mechanism for the formation of free standing 

graphite oxide paper by vacuum filtration. The same mechanism applies to the 

formation of SGO paper. During the filtration, SGO sheets are assembled onto the 

surface of Anodisc membrane filter (Cellulose acetate ester used as membrane filter). 

As the deposition of SGO sheets on top of each other and the water flow decreases. The 

filtration time depends on the concentration of GO and SGO solution used for desired 

thickness and normally it can take up to 2 days. After drying, the membrane can be peel 

from the filter and it can be folded like normal paper or membrane. GO and SGO are 

hydrophilic, but a piece of these papers left in water for several hours does not 

disintegrate and maintains its shape. If the paper is handled while it is still wet, it will 

disintegrate but it will regain its mechanical strength when it is dried and it can be 

handled. This behaviour indicates that no covalent bonding was achieved between the 

GO or SGO sheets. Stiffness and flexibility is a result of unique interlocking 

arrangement of nanoscale SGO sheets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1, Schematic representation of GO and SGO paper fabrication 
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4.2.2 Physicochemical characterisation of functionalised graphite oxide 

FTIR studies confirmed the successful oxidation of graphite to graphite oxide and 

sulfonated graphite oxide, as shown in the figure 4.2. The presence of different types of 

oxygen functionalities in GO and SGO shows a characteristic peaks between 1000-3600 

cm
-1

 and are assigned as follows; the peak observed at 1717 and 1725 cm
-1

 (υC=O) from 

carbonyl and carboxylic groups. The peak observed at 1025 and 1049 cm
-1

(υC-O) is from 

carbonyl, carboxylic and epoxy groups. The peak at 1346 cm
-1

 is assigned to SO3H on 

SGO. The peak at 1621 cm
-1

 observed in SGO is due to restoration of sp
2
 carbon. 

Hydrogen bonded (Carboxyl OH) O-H stretching vibrations observed at 3160 to 3368 

cm
-1

 for GO and SGO. 

 Figure 4.2, FT-IR spectra of GO and SGO 

The elemental analysis of GO and SGO was performed by EDS on different areas of 

paper and an average wt% and at% data is presented in Table 4.1. The SGO had higher 

concentration of surface oxygen; 43.17 at. %, compared to GO, 36.22 at. %. The 

sulphur content in SGO is about 10.72 wt%; therefore the degree of sulfonation is ~11%. 

(The degree of sulfonation is directly proportional to the sulphur content). 
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Table 4.1, EDX data of graphite oxide and sulfonated graphite oxide obtained from 

ESEM 

                                                                                                                                        

Raman spectroscopy is widely used to characterise the graphene based materials. 

Raman spectra of GO and SGO are shown in figure 4.3. The D band (the symmetry A1g 

mode of sp
2
 carbon) at 1350 cm

-1
 and a G band (the E2g mode of sp

2
 carbon atom) 

observed at 1590 cm
-1

 is consistent with literature reported values [12]. After 

sulfonation the intensity ratio of the D to G band slightly increases (SGO ID/IG =0.86; 

GO ID/IG =0.84) which is due to sulfonation reducing the basal plane to produce more 

sp
2 
carbon domains. 

 

 

  

 

 

 

 

 

 

Figure 4.3, Raman spectra of GO and SGO 

Figure 4.4 shows the XRD patterns of graphite oxide, sulfonated graphite oxide and 

graphite powder. The peak observed at 26.45º in the graphite sample corresponds to the 

interplanar distance between the different graphene layers. Chemical oxidation of 

graphite disrupts the ordering of layers and introduces a variety of functional groups 

(hydroxyl, epoxide, carboxyl, etc.) as the C-C bonds are broken during the oxidation 

process. The functional groups increase the interplanar distance between the sheets 

which increases the distance between graphene oxide sheets. Therefore the XRD peak 

Material Carbon Oxygen Sulphur 
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GO 56.93 63.78 43.07 36.22 - - 

SGO 42.35 51.89 46.93 43.17 10.72 4.93 
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shifts from higher angle to a smaller angles, thus the appearance of broader peak at 

around 11.26º (001) in GO. The calculated interplanar distance (d-spacing) for GO is 

about 0.79 nm and SGO is about 0.75 nm (calculations are shown in Appendix A). 

After sulfonation, the disruption of GO structure and increased the attractive interaction 

between the GO layers occur [13]. This was confirmed by X-ray diffraction pattern of 

SGO, the shift of 2θ towards higher angle was observed in SGO. 

 

 

 

 

 

 

 

 

 

Figure 4.4, X-ray diffraction of graphite oxide, sulfonated graphite oxide and graphite 

The bonding nature is analysed using X-ray photoelectron spectroscopy (XPS) and the 

survey spectrum of GO and SGO is shown in figure 4.5a and 4.5b. A characteristic peak 

was observed for SGO (Figure 4.5b) at a binding energy of 169.03 eV, and is attributed 

to sulfur 2p component. This confirms the attachment of sulfonic acid group onto the 

graphene oxide nanosheets. Furthermore, the spectrum was deconvoluted for C 1s and 

O 1s to understand the surface functional groups and is shown in figure 4.5c-4.5f.  The 

high intensity peak observed at 285.38 eV (Figure 4.5d) is attributed to the C-S bond in 

addition to all other functional groups. The deconvoluted O 1s XPS peaks of GO in 

Figure 4.5e are composed of three components including O-C=O, C=O and C–OH with 

their binding energy at 531.2, 532.6 and 534.5 eV, respectively. The deconvoluted O 1s 

XPS spectrum (Figure 4.6f) shows a peak at 532.94 eV, assigned to a combination of 

C=O and O=S=O bonds, and confirms the presence of SO3H on graphite oxide. 
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Figure 4.5, XPS survey spectrum of a) GO and b) SGO, c and d are C 1s deconvoluted 

XPS spectra and e and f are O 1s deconvoluted XPS spectra  
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A thermogravimetric analysis of graphite oxide and sulfonated graphite oxide is given 

in figure 4.6. GO showed much lower thermal stability due to the reduced van der 

Waals interactions, and a mass loss of 15% below 150 
o
C was observed in both GO and 

SGO which could be attributed to the adsorbed water and bounded water. From 150 to 

200 
o
C mass losses of about 30% takes place by loss of oxygen containing 

functionalities such as CO, CO2 etc. The remaining mass losses of 20% up to 400 
o
C 

were due to the weakening of van der Waals forces between the GO layers which 

disrupts the stacking of graphite oxide sheets thus accelerating the process of weight 

loss in GO. 

After sulfonation, a lower mass loss took place after 220 
o
C, which indicates that SGO 

was more thermo-stable than GO [9]. In the case of SGO, sulfonation decreased the 

disruption of GO structure and increased the attractive interaction between the GO 

layers. This was confirmed by the X-ray diffraction pattern (see the figure 4.4) of SGO, 

the shift of 2θ towards higher angle was observed in SGO. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6, Thermogravimetric analysis of GO and SGO                                   
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Figure 4.7, SEM images of GO and SGO a and c) Surface morphology, b and d) Cross 

section SEM images, c and d) TEM images of SGO 

Figure 4.7a-4.7d shows scanning electron microscopy (SEM) images of surface and 

cross section of graphite oxide and sulfonated graphite oxide. It is seen from the images 

the surface appears to be smooth. Cross section image reveals the stacking of less 

densely packed thin wavy layers through the entire cross section. A TEM image of 

sulfonated graphite oxide is shown in figure 4.7e and 4.7f, in which SGO nano sheets 

appeared relatively flat, exfoliated and wrinkled, which is in good agreement with 

literature reported morphology [11]. 

a) b) 

e) f) 
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Mechanical measurements of SGO paper samples were performed on Instron 4505 

machine and measurements were repeated for three samples (20mm X 11mm; 35µm) 

for reproducibility. Figure 4.8a shows a typical plot of stress vs. strain for SGO paper. 

The maximum tensile stress calculated is about19.46 MPa and Young’s modulus (figure 

4.8b) is 1.59 GPa. These results indicate that SGO paper is stiff and brittle. 

 

Figure 4.8, a) Stress vs. Strain curve of SGO paper and b) Young’s modulus plot 

4.2.3 Proton conductivity 

The main role of polymer electrolyte is to transport the protons being generated during 

the anodic oxidation of hydrogen from anode to cathode. GO and SGO is proposed to 

use as an additives to fabricate Nafion® based composite materials, and therefore, 

proton conductivity is measured for GO and SGO free standing paper. 

The temperature dependant proton conductivity (in-plane (σip) and through-plane (σtp)) 

of the SGO paper is shown in figure 4.9. The σip and σtp conductivity values are 0.04 

and 0.012 S.cm
-1

 at 303 K respectively and are the conductivity range of Nafion® 

between 0.01 to 0.1 S.cm
-1

 in a humid environment. The σip and σtp conductivity values 

of GO paper are 0.008 and 0.004 S.cm
-1 

at 303 K and these values are lower than SGO 

paper.  
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Figure 4.9, Temperature-dependent proton conductivity of SGO paper at 100% relative 

humidity  

The mechanism of proton conductivity in solids, is based on two methods; one is the 

vehicular model, where formation of an ion adduct with carrier molecule occurs- if it is 

water then protons form hydronium ions. In a non-vehicular model, hopping of protons 

occurs from site to site without carrier a molecule which is called a Grothus-type 

mechanism [14, 15]. Based on these mechanisms, proton transport mechanism of GO 

and SGO is discussed. The typical representation of in-plane and through-plane proton 

hopping is shown in scheme 4.1. Through-plane proton conductivity of GO and SGO 

paper is attributed to Grothus-type mechanism, in which re-organization of hydrogen 

bonds play a vital role in the presence of water between each GO and SGO layer. The 

measured layer to layer distance for GO and SGO are about 0.79 nm and 0.75 nm (from 

XRD) can be attributed to an approximate one-molecule-thick layer of water that is 

presumably hydrogen-bonded between the GO and SGO sheets [16], which 

interconnects proton conducting paths between SGO layers. The presence of sulfonic 

acid and oxygen containing functional groups (COOH, COC) on edges and basal planes 

contribute to in-plane proton transport. Arrangement of oxygen atoms in rectangular 

fashion, with a lattice constant of 0.27 nm x 0.41 nm, which in turn leads to a vehicular 

mode of proton transportation which is also contributed to in-plane proton transport [17, 

18]. The IEC value of SGO paper is 1.1 meqg
-1

 (IEC value obtained from the titration) 

which is more than that of Nafion® 115 which is about 0.93 meqg
-1 

[19].
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conductivity data reveals that σip > σtp. The presence of water between the layers is 

mainly contributes to σtp, whereas all other functional groups support σip. Furthermore, 

the activation energy calculated for the SGO paper is 7.2 kJ mol
-1

 (σip) and 16.6 kJ mol
-1

 

(σtp). The lower in activation energy of σip is explains the better proton conductivity. 

 

 

 

 

 

 

 

 

Scheme 4.1, Schematic representation of proton transport  

A thin layer of Nafion® (~3 µm) is coated on both the side of SGO paper and is called 

as Nafion® laminated SGO paper. The presence of Nafion® layer on SGO film reduces 

gas crossover and improves the mechanical stability under a humid environment. The 

in-plane proton conductivity of Nafion® laminated SGO paper is shown in figure 4.10. 

The Nafion® laminated SGO paper exhibited a proton conductivity of 0.12 S.cm
-1

.  

    

 

 

 

 

 

 

 

 

Figure 4.10, In-plane proton conductivity of SGO paper and Nafion® laminated SGO 

paper at 100% relative humidity  
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4.2.4 Fuel cell performance of SGO paper MEA 

Single cell polarisation plot shown in figure 4.11a was obtained from MEA fabricated 

with SGO paper. MEA was fabricated using 20% Pt/C (anode; 0.4 mg cm
-2

) and 50% 

Pt/C (cathode; 0.4 mg cm
-2

). The cell was operated at 40 
o
C and fed with 25% 

humidified hydrogen and dry oxygen gases at a flow rate of 0.4 and 0.7 dm
3  

min
-1

 

respectively (the relative humidity of the cell was kept at 25% to maintain the stability 

of SGO paper under fuel cell operation) . The open circuit potential (OCP) obtained 

with SGO paper MEA was 0.72 V, which was significantly lower than achieved with 

Nafion® based membrane (~1.0 V). Due to its porous nature gas crossover occurs, 

which affects the cell OCP. The H2 gas cross over measurement of SGO paper MEA 

was performed by passing hydrogen on anode and argon gas was fed with cathode. The 

measured H2 crossover current (4.3 mA cm
-2

) which was more than that of Nafion® 

membrane based MEAs (1 mA cm
-2

). The SGO paper MEA gave a maximum power 

density of 113 mW cm
-2

 at 0.39 V. Figure 4.11b shows the SGO paper MEA single cell 

durability operated at 40 
o
C galvanostatically (200 mA cm

-2
) with 25% RH. The data 

suggested that the MEA was stable in the above operating condition without failure up 

to 10 h. 

  

Figure 4.11, a) Polarisation curve obtained for SGO paper MEA at 40 
o
C with 25% RH 

and b) durability of SGO paper MEA at 40 
o
C and 200 mA cm

-2
 constant current 

loading with 25% relative humidity 
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A layer of Nafion® is laminated on both the sides of SGO paper, to reduce the gas 

crossover and improves the mechanical stability. The Nafion® lamination of SGO paper 

assumed to improves the fuel performance. The fuel cell performance of Nafion® 

laminated SGO paper is shown in figure 4.12. It is seen from the polarisation curve, the 

OCP of the MEA is about 0.98 V which is higher than that of SGO paper MEA (0.72 V). 

The layer of Nafion® on both sides of the SGO paper reduces the gas crossover and 

eventually enhances the OCP. The power density of Nafion® laminated SGO paper 

MEA is increased by about 50 mW cm
-2

, however this is not a significant improvement 

compared to the Nafion® membrane based MEAs. The through-plane conductivity of 

Nafion® laminated SGO measured from the MEA is about 0.006 S.cm
-1

 which is lower 

than that of SGO paper MEA, this is due the Nafion® layer which is not in good contact 

with SGO paper (when the Nafion® laminated SGO paper was soaked in 0.5 M H2SO4, 

the Nafion® layer became slightly separated from SGO paper), which increases the 

resistance of the MEA. Therefore the fuel cell performance of Nafion® laminated SGO 

paper is very low compare to Nafion® membrane based MEA. Due to H2 crossover, 

SGO paper based MEA was not investigated for high temperature operation. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12, Polarisation curve obtained for Nafion® laminated SGO paper MEA at 40 

o
C with 25% relative humidity 
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4.3 Conclusions 

The free standing sulfonated graphite oxide paper was used as a PEM and the proton 

transport mechanism and its fuel cell performance has been evaluated. The presence of 

different acidic functional groups (SO3H, COOH, OH, and COC) on SGO is the reason 

for the proton conductivity of SGO paper. The MEA made with the SGO paper gave 

reasonable fuel cell performance. The lower fuel cell performance (113 mW cm
-2

) of 

SGO paper MEA was due to fuel crossover. The Nafion® laminated SGO paper showed 

a higher OCP and fuel cell performance.  The direct use of SGO paper as a PEM is 

considered to be impractical, but it could be used as an additive to make composite 

membranes because SGO is bifunctional being both hydrating and proton conducting. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                         Chapter 4                                                                                                                                                                                                                     

102 
 

References   

[1] M. Z. Jacobson, W. G. Colella, D. M. Golden, Cleaning the Air and Improving 

Health with Hydrogen Fuel-Cell Vehicles, Science, 2005, 308, 1901-1905, 

[2] Wu X, Scott K, Mamlouk M. A PBI-Sb0.2Sn0.8P2O7-H3PO4, Composite Membrane 

for Intermediate Temperature Fuel Cells, Fuel Cells, 2011, 11(5), 620-625. 

[3] Hongting Pu, Lu Liu, Zhihong Chang, Junjie Yuan, Organic/inorganic composite 

membranes based on polybenzimidazole and nano-SiO2, Electrochimica Acta, 2009, 54, 

7536–7541. 

[4] A. K. Sahu, G. Selvarani, S. Pitchumani, P. Sridhar, and A. K. Shukla, A Sol-Gel 

Modified Alternative Nafion-Silica Composite Membrane for Polymer Electrolyte Fuel 

Cells, Journal of The Electrochemical Society, 2007, 154 (2), B123-B132. 

[5] V. DiNoto, R. Gliubizzi, E. Negro, G. Pace, Effect of SiO2 on Relaxation 

Phenomena and Mechanism of Ion Conductivity of [Nafion/(SiO2)x] Composite 

Membranes, J. Phys. Chem. B, 2006, 110, 24972. 

[6] D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile, High-Performance Solid Acid 

Fuel Cells Through Humidity Stabilization, Science, 2004, 303, 68–70. 

[7] K. T. Adjemian, S. Srinivasan, J. Benziger, and A. B. Bocarsly, Investigation of 

PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide 

composite membranes, J. Power Sources, 2002, 109, 356-364. 

[8] Stankovich, S. et al., Graphene-based composite materials, Nature, 2006, 442, 282–

286. 

[9] Lerf, A. et al., Hydration behavior and dynamics of water molecules in graphite 

oxide, J. Phys. Chem. Solids, 2006, 67, 1106–1110. 

[10] Stankovich, S. et al., Stable aqueous dispersions of graphitic nanoplatelets via the 

reduction of exfoliated graphite oxide in the presence of poly (sodium 4-

styrenesulfonate), J. Mater. Chem., 2006, 16, 155–158.  

[11] D.A. Dikin et al., Preparation and characterization of graphene oxide paper, 

Nature, 2007, 448, 457-460. 

[12] Voggu, R., Das, B., Routt, C. S. & Rao, C. N., Effect of charge transfer interaction 

of graphene with electron donor and acceptor molecules examined using Raman 

spectroscopy and cognate techniques. J. Phys.: Condens. Matter, 2008, 20, 472204–

472208. 



                                                                                                                         Chapter 4                                                                                                                                                                                                                     

103 
 

[13] Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M., New insights into the structure 

and reduction of graphite oxide, Nat. Chem., 2009, 1, 403–408. 

[14] Noam Agmon, The Grothus mechanism, Chemical physics letters, 1995, 244, 456-

462. 

[15] J. D. Bernal, R. H. Fowler, J. Chem. Phys., 1933, 1, 515. 

[16] Scholz, W.& Boehm, H. P. Untersuchungen am graphitoxid. VI. Betrachtungen zur 

struktur des graphitoxids. Z. Anorg. Allg. Chem., 1969, 369, 327–340. 

[17] D. Pandey, R. Reifenberger, and R. Piner, Scanning probe microscopy study of 

exfoliated oxidized graphene sheets,  Surface Science, 2008, 602 (9), 1607–1613. 

[18] 8 R. Kumar, M. Mamlouk, and K. Scott, A Graphite Oxide Paper Polymer 

Electrolyte for Direct Methanol Fuel Cells, International Journal of Electrochemistry, 

Volume 2011, Article ID 434186, 7 pages.



                                                                                                                            Chapter 5                                                                                                                                                                                                                     

104 
 

Chapter 5. Graphite oxide and Sulfonated graphite oxide-Nafion 

composite polymer electrolyte membrane for PEMFCs 

This chapter covers the physicochemical characterisation, proton conductivity 

measurements, fuel cell characterisation, stability and durability test of recast Nafion, 

graphite oxide (GO) and Sulfonated graphite oxide/Nafion composite membranes. 

5.1 Introduction 

Polymer electrolyte membrane fuel cells have been proposed as one of the most 

promising power sources for realising the hydrogen economy and for alleviating issues 

like environmental pollution. Polymer electrolyte membrane fuel cells are, however, not 

in widespread commercial use and research attempts to improve the performance and 

minimise expensive components have been triggered over recent decades [1, 2]. 

Requirements for an excellent membrane are high proton conductivity, chemical 

resistivity, thermo-mechanical stability and durability under dynamic operations [3, 4]. 

The typical membranes currently used for the PEMFCs such as Nafion® or other 

perflourosulfonic acid polymer (e.g. Aciplex® and Flemion®) show a significant loss in 

conductivity at elevated temperature due to the dehydration of water from the 

membrane [5, 6]. The proton exchange membranes used in PEMFCs are thin, to 

increase the proton conductivity, and which accelerates the membrane dehydration. In 

order to enhance the operating temperature preventing loss of water is very important, 

and several approaches have been attempted to prevent loss of water from the 

membrane [7, 8]. One approach is incorporating oxide materials into the polymer matrix 

such as ZrO2, SiO2 and TiO2 [9, 10].  

Nafion® and similar materials are made up of hydrophobic polytertrafluoroethylene 

(PTFE) backbone and hydrophilic sulfonic acid ester side chain. Nafion® also has an 

intermediate region associated with inverted micelles or ionic clusters with water at an 

approximate ratio of 70:1000
 
[11]. The proton conductivity generally increases with the 

water content in Nafion® [12]. Graphite oxide contains different kinds of oxygen 

functionalities, such as carboxylic, hydroxyl, epoxy and sulfonic acid groups. Due to the 

presence of oxygen functionalities, GO can be easily hydrated and the acidic functional 

groups and intermolecular hydrogen bonding can provide abundant proton conducting 

paths [13].  
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5.2 Results and Discussion  

5.2.1 Physicochemical characterisation of composite membranes 

FTIR of recast Nafion, GO/Nafion and SGO/Nafion composite membranes was used to 

analyse the extent of chemical interaction between GO, SGO and Nafion. FTIR spectra 

shown in Figure 5.1a, of recast Nafion, GO/Nafion composite membrane and GO shows 

characteristic of -COC- symmetric stretching bands at 968 and 980 cm
-1

, whereas 

considerable broadening occurred in -SO3- symmetric stretching vibrations bands at 

1056 cm
-1

 and asymmetric stretching of -SO3- groups at 1201 cm
-1

. The double 

broadening observed in bending vibrations of O-H deformation peak at 1724 cm
-1

 and 

peak at 3440 cm
-1

 correspond to intermolecular hydrogen bonding and indicate 

interactions between the dispersed GO and the hydrate groups of Nafion polymer matrix. 

 FTIR spectra of recast Nafion, SGO/Nafion and SGO are shown in Figure 5.1b. A peak 

observed at 1346 cm
-1

 for SO3H confirms the sulfonation of GO and at 3183 cm
-1

 for O-

H stretching vibrations. Intermolecular hydrogen bonding between dispersed SGO 

nanosheets and the hydrate groups of Nafion are observed at 3440 cm
-1

.  

 

Figure 5.1, FT-IR Spectra of a) recast Nafion, GO/Nafion composite and GO paper and 

b) recast Nafion, SGO/Nafion composite and SGO paper  
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The morphologies of recast Nafion, GO/Nafion and SGO/Nafion composite membranes 

were characterised by SEM and data are shown in Figure 5.2a and 5.2b. The cross 

section SEM image of the Nafion recast has smooth morphology [15]. In case of the 

composite membrane, nano-sized graphene oxide sheets are uniformly distributed in the 

polymer matrix (figure 5.2a). Figure 5.2c and 5.2d shows TEM images of GO and 

SGO/Nafion composite membrane. The GO and SGO nano sheets remained exfoliated 

and randomly distributed over the whole membrane and tightly held in the polymer 

matrix due to strong interfacial interactions [16]. Hence, ion conducting paths are 

interconnected between GO, SGO and Nafion which potentially enhances the proton 

conductivity. 

 

Figure 5.2, SEM cross section images of (a) GO/Nafion composite membrane; (b) 

recast Nafion, c) TEM image of GO/Nafion and d) TEM image SGO/Nafion composite 

membranes 

a) b) 

c) d) 
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Figure 5.3, shows TGA and DTA of recast Nafion, GO/Nafion and SGO/Nafion 

composite membranes. A small initial weight loss of 5% at 70 
o
C and another of 2% at 

148 
o
C was observed for recast Nafion, GO/Nafion membranes, which could be 

attributed to the loss of water. The weight loss in GO/Nafion from 149 to 259 
o
C was 

due to the loss of surface functional groups on GO and also loss of bonded water on 

both membranes. The degradation of sulfonic groups (from Nafion) in the side chains 

was observed at around 280 
o
C for both the membranes. The sharp exothermic DTA 

peak observed for recast Nafion was due to degradation of PTFE back bone (onset of 

PTFE backbone degradation at 350 
o
C and ends at 550 

o
C), whereas GO/Nafion showed 

a less intense broad peak at around 490 
o
C. An initial weight loss of 5.5% at 195 

o
C and 

another of 2% at 308 
o
C was observed for SGO/Nafion composite membrane, which 

could be attributed to the loss of water. However, recast Nafion membrane showed a 

weight loss of about twice that of the composite membrane. SGO/Nafion composite 

membrane showed 14% mass loss from 300 to 450 
o
C due to the loss of surface 

functional groups on SGO. The SGO/Nafion showed broad exothermic peak at 560 
o
C. 

The PTFE back bone degradation is increased in the sequence GO/Nafion, recast Nafion 

and SGO/Nafion. 

 

Figure 5.3, TGA and DTA of recast Nafion, GO/Nafion and SGO/Nafion composite 

membranes over a temperature range of 10 to 700 
o
C 
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The tensile properties of recast Nafion, GO and SGO/Nafion composite membranes are 

shown in figure 5.4. The membranes had the similar thickness (~50 µm).  The data 

indicate that the incorporation of GO and SGO nano sheets into Nafion polymer matrix 

can enhance the tensile strength of the composite membranes. The Tensile strength 

value reached a maximum value of 8.17 MPa for SGO composite membrane (4 wt% of 

SGO), whereas GO/Nafion showed 6.64 MPa. In contrast the recast Nafion membrane 

had only a value of 3.36 MPa. The Young’s modulus obtained from figure 5.4b is about 

0.7, 0.52 and 0.28 GPa for SGO/Nafion, GO/Nafion and recast Nafion respectively. The 

percentage elongations of composite membranes were 42.3%, 31.3% and 16.9% for 

SGO/Nafion, GO/Nafion and recast Nafion respectively. The enhanced tensile strength 

was attributed to the uniform distribution of GO or SGO nano sheets in the Nafion 

polymer matrix, which helped to distribute the stress over all the area of the membrane. 

Figure 5.4, a) Stress vs. Strain curves of recast Nafion, GO (4 wt%) and SGO (4 

wt%)/Nafion composite membrane and b) Young’s modulus plots 

The proton conductivity of PFSA based membranes depends on the hydration level and 
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with a further increase of GO, no significant increase in water uptake of the membrane 

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

S
tr

e
s

s
 (

M
P

a
)

Strain (%)

SGO/Nafion

GO/Nafion

Nafion recast

0 2 4 6 8 10 12

0

2

4

6

8

10

  Linear fit

S
tr

e
s
s
 (

M
p

a
)

Strain (%) 

SGO/Nafion

GO/Nafion

recast Nafion

a) b) 



                                                                                                                            Chapter 5                                                                                                                                                                                                                     

109 
 

occurred. The water uptake increased with increase GO content due to hydrophilic 

nature of GO, and after certain amount there was no further increase (and perhaps a 

slight decrease) in water uptake due to the amphiphilic nature of the Nafion® 

membrane. This behaviour is often attributed to the micellar nature of hydrophilic pools 

dispersed in the hydrophobic domain, which is disrupted in non-optimum 

concentrations of fillers. Similarly, the increased stiffness of the Nafion membrane 

resulted in reduced water uptake which was observed in 6 wt% of graphite oxide. 

The average number of water molecule per sulfonic acid group or the degree of 

hydration (λ; loosely bound and free water) was measured using water uptake and IEC 

values. 

                                               λ = Water uptake/Mw, H2OxIEC 

The GO and SGO/Nafion exhibited a λ value of 14.97 and 14.60, and these values are 

higher than that of recast Nafion. The composite membrane contains more weakly 

bound and free water, which could be attributed to higher concentration of sulfonic acid 

groups. The λ value of GO/Nafion is a little higher than SGO/Nafion, because GO is 

more hydrophilic than SGO. After sulfonation, some functional groups vanish, which 

could be attributed to differences in λ between the GO and SGO/Nafion composite 

membrane.  

Table 5.1, Water uptake and IEC values of recast Nafion, Nafion® 112, GO and 

SGO/Nafion composite membranes 

 

 

Membranes  Membrane 

Thickness(µm) 

Water uptake  λ (nH2O/-

SO3H) 

IEC 

Values(meqg
-1

) 

Nafion recast    50 ±2 21.2%     13.23  0.89 

GO 2%/Nafion    50 ±3 27.9%       -  1.21 

 

GO 4%/Nafion    50 ±3 37.2%    14.97  1.38 

GO 6%/Nafion    50 ±3 36.1%       -  1.26 

Nafion® 112   54 ±2 22.1%      -  0.86 

SGO4%/Nafion   50 ±2 37.8%   14.60  1.43 
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5.2.2 Proton conductivity 

The proton conductivity of GO and SGO paper was discussed in the previous chapter 

(chapter 4), and the SGO has a higher proton conductivity than GO. The effect of GO 

and SGO on the proton conductivity of Nafion membrane is evaluated and discussed in 

this section.  

In order to maintain good hydration and corresponding proton conductivity of the 

composite membrane, the filler material should be optimised without affecting the 

parent polymer structure [17]. Figure 5.5a, shows temperature dependant ionic 

conductivity (in-plane) of GO/Nafion composite membrane with different GO content 

under fully humidified conditions (~100% RH). The GO (4 wt%) /Nafion membrane 

exhibited proton conductivities higher than that of the composite membranes with GO 

content of 2 and 6 wt%.  

The proton conductivity passes through a maximum value at an optimum concentration 

of the incorporated species (GO and SGO) in composites of amphiphilic proton-

conducting polymers like Nafion® is often attributed to the micellar nature of the 

hydrophilic pools dispersed in the hydrophobic domains, which is disrupted at non-

optimum concentrations of the fillers [18]. By a similar argument, the increased 

stiffness of Nafion® membranes, which resulted in reduced water uptake, thereby 

adversely affected the proton conductivity. The SGO/Nafion composite membrane was 

made with 4 wt% of SGO (according to optimised content of GO). Figure 5.5b shows 

the proton conductivity of recast Nafion, Nafion® 112, GO (4 wt%) /Nafion and SGO 

(4 wt%) /Nafion composite membranes measured under fully humidified conditions. 

The composite membranes were found to exhibit proton conductivities higher than 

those of recast Nafion and Nafion® 112 membrane at all temperature employed in this 

study (30-80 
o
C). The SGO (4 wt%) /Nafion composite membrane had a conductivity of 

0.16 S.cm
-1

 which was higher than that of GO/Nafion, recast Nafion and Nafion® 112 

at 80 
o
C.  

The proton conductivity of these Nafion composite membranes strictly on the hydration 

level, although operating the fuel cell at high temperature it is difficult to maintain 100% 

RH. Therefore the composite membranes are designed to operate at high temperature 

with low relative humidity. The proton conductivity data vs. relative humidity at 80 
o
C 

is shown in figure 5.5c. At 30% RH recast Nafion and Nafion® 112 had proton 

conductivity of 0.0045 and 0.0091 S.cm
-1

 respectively, whereas GO and SGO 
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composite membranes had conductivities of 0.032 and 0.036 S.cm
-1

 which are far 

superior than unmodified Nafion membranes. Figure 5.5d, shows the plots of proton 

conductivity vs. relative humidity at 120 
o
C, the GO and SGO/Nafion composite 

membranes had a significant proton conductivity of 0.026 and 0.029 S.cm
-1

 at 25% RH 

which was ~6 times greater than that of commercial Nafion® 112 (0.005 S.cm
-1

). The 

improved proton conductivity of composite membranes is attributed to the content of 

GO and SGO (large amount of sulfonic acid content) nano filler that holds more water 

and consequently could facilitate proton transport. The proton conduction in solids 

(Grotthus-type mechanism) in which reorganization of hydrogen bonds plays a vital role 

in hydrated GO [19]. The presence of different acidic functional groups like carboxylic 

acid and hydroxyl groups could provide more facile hopping of protons, which in turn 

help to increase proton transport. 

Figure 5.5, Temperature and RH dependent proton conductivity plots of recast Nafion, 

GO and SGO/Nafion and Nafion® 112 membranes 
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The IEC values are shown in Table 5.1; SGO and GO/Nafion composite membrane had 

higher IEC values of 1.43 and 1.38 meq g
-1

 compared to all other membranes. The 

activation energies (figure 5.6) calculated for the recast Nafion, Nafion® 112 and GO 

and SGO/Nafion composite membranes, are 14.2, 13.26, 12.98  and 11.2 kJ mol
-1

 

respectively, which suggests that proton transport in the case of the composite 

membranes was more facile than that of recast Nafion and Nafion® 112 membranes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6, Arrhenius plot of recast Nafion, Nafion® 112, GO/Nafion and SGO/Nafion 

membranes 
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5.2.3 Fuel cell performance 

The composite membranes fuel cell performance was evaluated for low and high 

temperature (60 and 120 
o
C) H2/O2 or air fuel cells. The polarisation (i-v curves) and 

power density curves were used to evaluate the composite membrane fuel cell 

performance. The LTPEMFCs were operated under fully humidified (100% RH) 

conditions, whereas HTPEMFCs were operated under low relative humidity (25% RH). 

The fuel cell performance of composite membranes was compared with recast Nafion 

membrane of approximately the same thickness.  

Figure 5.7a, shows the single cell polarisation plots obtained with MEAs from recast 

Nafion, GO and SGO/Nafion composite membranes at 60 
o
C fed with H2/O2 at a flow 

rate of 0.2 and 0.5 standard litres per minute (slpm). The anode (20% Pt/C; 0.2 mg cm
-2

) 

and cathode (20% Pt/C; 0.5 mg cm
-2

) catalyst loading were constant for all the MEAs. 

The open circuit voltage (OCV) of the composite membrane was ~1.0 V, which 

indicates that membrane had reasonably low gas permeability and no significant 

electronic conductivity of GO or SGO which would otherwise adversely affect the OCV. 

It is seen from the figure 5.7a; at lower current density region (~0.1 A cm
-2

) the 

composite membrane based MEAs showed about 40 mV lower activation polarisation 

potential compare to recast Nafion. The SGO/Nafion showed better electrode kinetics 

compared to GO/Nafion and recast Nafion. All the MEAs showed approximately 0.5 A 

cm
-2

 difference in the limiting current density and are in the order of SGO/Nafion > 

GO/Nafion > recast Nafion. The SGO/Nafion composite membrane showed enhanced 

fuel cell performance compared to that of GO/Nafion and recast Nafion membrane. 

Further, from the conductivity data, the SGO/Nafion composite membrane had a higher 

proton conductivity compare to GO/Nafion and recast Nafion and it was expected to 

give the greatest maximum power density, i.e. of 670 mW cm
-2

 cf. a value of 400 mW 

cm
-2

 for the recast Nafion and 570 mW cm
-2

 for GO/Nafion composite membrane at 60 

o
C. 

Figure 5.7b displays the polarisation and power density curves derived from H2/air fuel 

cell at 60 
o
C for the recast Nafion, GO and SGO/Nafion composite membrane based 

MEAs. The MEAs fed with air (1 slpm; ~21% of O2) on cathode shows the OCP of 

~1.0 V which was the same as that of O2 fed MEAs. The GO and SGO/Nafion 

composite membrane based MEAs reached the limiting current density of 1.18 and 1.26 

A cm
-2

, whereas recast Nafion reached only 0.7 A cm
-2

. The peak power density for 
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SGO/Nafion was 300 mW cm
2
 which is higher than that of GO/Nafion (260 mW cm

-2
) 

and recast Nafion (210 mW cm
-2

). The air fed MEAs fuel cell performance was 

comparatively lower than that of O2 fed MEAs due to lower concentration of O2. 

                                                                                                                                                 

Figure 5.7, (a) Polarisation curves of H2 /O2 (humidified) fuel cell at 60 
o
C (flow rate of 

0.2 and 0.5 slpm) and (b) Polarisation curves of H2/Air (humidified) fuel cell at 60 
o
C 

(flow rate of 0.2 and1slpm) 
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The internal cell conductivities estimated from the linear region of the polarisation 

curves obtained at 60 
o
C were 0.015,

 
0.018 and 0.035 S.cm

-1
 for the recast Nafion, 

GO/Nafion and SGO/Nafion composite membrane based MEAs respectively. These 

values are much lower than the membrane conductivities indicating significant voltage 

losses due to electrode polarisation and electrode layer resistances. 

Figure 5.8, shows the single cell polarisation plots of recast Nafion and GO and 

SGO/Nafion composite membrane at 120 
o
C with 25% RH fed with H2/O2. The OCV of 

all the MEAs was more than 0.9 V. It is seen from the polarisation curves, the 

composite membrane based MEAs showed better electrode kinetics compared to recast 

Nafion. The GO and SGO/Nafion based MEAs showed 2 fold increase in the limiting 

current density compared to recast Nafion. The SGO/Nafion composite membrane 

showed better fuel cell performance compared to that of GO/Nafion and recast Nafion 

membrane at 120 
o
C with 25% RH. SGO/Nafion gave the maximum peak power 

density of 240 mW cm
-2

. The GO/Nafion composite membrane gave a power density of 

200 mW cm
-2

, which was 2 times higher than that of recast Nafion (98 mW cm
-2

), and 

little lower than SGO/Nafion composite membrane.  

                                                                                                                                                  

Figure 5.8, Polarisation curves of H2 /O2 fuel cell at 120 
o
C and 25% RH fed with H2/O2 

(flow rate of 0.2 and 0.5 slpm) 
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The comparison of fuel cell peak current and power densities obtained from all the 

MEAs are shown in Table 5.2a and 5.2b provides current and power densities at 0.6 V. 

 

Table 5.2a, Fuel cell peak current and power densities  

MEAs Ipeak (A cm
-2

) 

 

60 
o
C  60 

o
C   120

o
C 

H2/O2   H2/Air     H2/O2 

Wpeak(W cm
-2

) 

 

60 
o
C  60 

o
C   120

o
C 

H2/O2   H2/Air     H2/O2 

recast Nafion  0.98        0.61  0 .24               0.4       0.21        0.098 

GO/Nafion 1.37       0.70   0.48 0.57      0.26       0.2 

SGO/Nafion 1.6        0.77    0.57 0.67      0 .30      0.24 

 

Table 5.2b, Fuel cell current and power densities at 0.6 V 

 

MEAs I (A cm
-2

) @ 0.6 V 

 
60 

o
C  60 

o
C   120

o
C 

H2/O2   H2/Air     H2/O2 

W (W cm
-2

) @ 0.6 V 

 
60 

o
C  60 

o
C   120

o
C 

H2/O2   H2/Air     H2/O2 

recast Nafion  0.39        0.23   0.11               0.24      0.14        0.066 

GO/Nafion 0.7        0.32   0.24 0.43       0.17        0.14 

SGO/Nafion 0.82        0.35    0.29 0.5      0.2             0.17 
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Achieving the operating cell voltage (V) near to the equilibrium cell voltage (Ve) is the 

key challenge in electrochemical energy conversion systems. However, one cannot 

change the Imax for a given reaction; therefore fuel cell polarisation passes through a 

maximum current. This is because of resistances associated with in the cell components.   

In order to consider the kinetics of fuel cell reactions involved in the composite 

membrane based MEAs, the iR free polarisation curves were constructed for all the fuel 

cell polarisation curves (figure 5.7 and 5.8) and analysed. Figure 5.9a, shows the iR free 

polarisation curves of recast Nafion, GO and SGO/Nafion composite membrane based 

MEAs at 60 
o
C for H2/O2 fuel cell. It is seen from the figure 5.9a, the iR free cell 

voltage is above 0.8 V for GO, SGO/Nafion based MEAs, and for recast Nafion 112 

MEA is above 0.75 V, this is due to the difference in the membrane resistance (identical 

electrode compositions). Figure 5.9b shows the Tafel plots obtained from the iR free 

polarisation curves. The GO and SGO/Nafion composite membrane based MEA 

showed a Tafel slope of ~64 mV/dec and recast Nafion showed 62 mV/dec. These 

values are close to the literarature reported value (70 mV/dec). This indicates that the 

2e
-
 transfer reactions occur at above 0.7 V.  

  

Figure 5.9, a) iR free polarisation curves of recast Nafion, GO and SGO/Nafion MEAs 

at 60 
o
C for H2/O2 fuel cell and b) Tafel plots obtained from iR free polarisation curves 

(figure 5.9a) 
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Figure 5.10a shows the iR free polarisation curves of recast Nafion, GO and 

SGO/Nafion composite membrane based MEAs at 60 
o
C for H2/Air fuel cell. All the 

MEAs showed the iR free cell voltage above 0.7 V. The recast Nafion and GO/Nafion 

composite membrane showed a Tafel slope (figure 5.10b) of 72 mV/dec, where as 

SGO/Nafion showed 78 mV/dec. The Tafel slopes are closely related to the literature 

reported value (70 mV/dec).  

 

 

 

 

    

 

 

 

Figure 5.10, a) iR free polarisation curves of recast Nafion, GO and SGO/Nafion MEAs 

at 60 
o
C for H2/Air fuel cell and b) Tafel plots obtained from iR free polarisation curves 

Figure 5.11, a) iR free polarisation curves of recast Nafion, GO and SGO/Nafion MEAs 

at 120 
o
C for H2/O2 fuel cell and b) Tafel plots obtained from iR free polarisation curves 
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Figure 5.11a shows the iR free polarisation curves at 120 
o
C for H2/O2 fuel cell. All the 

MEAs showed the iR free cell voltage above 0.7 V. The Tafel slope obtained for the 

GO and SGO/Nafion composite membranes (figure 5.11b) are 66 mV/dec, where as 

recast Nafion showed 68 mV/dec. The Tafel slopes are closely consistent with literature 

reported value. 

The AC impedance was measured at 120 
o
C for GO and SGO/Nafion MEAs in a 

frequency range of 100 KHz to 1 KHz, in order to understand the interfacial behaviour 

and it was shown in figure 5.12. The impedance spectra were recorded at 0.8 V for both 

MEAs. The cell resistance (at high frequency) values were 1.26 Ω for SGO/Nafion and 

1.67 Ω for GO/Nafion. The SGO/Nafion shows lower resistance compare to GO/Nafion 

this indicates proton transport is more facile in SGO/Nafion composite membrane than 

GO/Nafion membrane. The through-plane proton conductivity estimated using the 

resistances from the high frequency region impedance spectra for GO and SGO/Nafion 

were 0.0043 and 0.0057 S.cm
-1

 respectively. The through-plane conductivity calculated 

from the polarisation curves of GO and SGO/Nafion composite membranes were 

0.0063 and 0.0072 S.cm
-1

 and these values are slightly higher than the conductivity 

values estimated from impedance spectra.  

  

 

 

 

 

 

 

 

 

 

Figure 5.12, Nyquist plots of GO and SGO/Nafion MEAs at 120 
o
C and 25% relative 

humidity 
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Cyclic voltammetry (CV) were recorded for all the MEAs at 120 
o
C and data are shown 

in figure 5.13. The cathode was fed with N2 gas (working electrode) and anode fed with 

H2 (counter and reference electrode). The protons being generated, on the anode (H2 

oxidation) are transported through PEM to the cathode in order to complete the fuel cell 

reaction. But in this experiment the cathode is fed with N2 and thus H2 is liberated to 

measure the CV.  The CVs of all the MEAs show hydrogen adsorption/desorption 

region between 0.05 - 0.34 V which is characteristic of Pt in an acidic electrolyte. The 

GO and SGO/Nafion composite membrane MEAs shows similar current densities (~40 

mA cm
-2

) for the hydrogen desorption region, which is higher than that of recast Nafion 

(~20 mA cm
-2

). The hydrogen desorption current density is directly proportional to the 

concentration of H
+
 transported through PEM from anode to the working electrode.  

It is seen from the figure hydrogen desorption current density at 60 
o
C (figure 5.13a) is 

approximately twice the current density at 120 
o
C (figure 5.13b), this indicate that the 

rate of proton transfer is more at 60 
o
C compare to 120 

o
C and this is due to hydration 

level of membrane that provides the pathways for proton conduction. GO and 

SGO/Nafion composite membrane based MEAs gave a 2-fold increase in the hydrogen 

desorption current density at 120 
o
C compared with recast Nafion, which confirms the 

improved proton conductivity at elevated temperature.                                                                                                                           

Figure 5.13, CVs of recast Nafion, GO and SGO/Nafion MEAs at 60 
o
C and b) 120 

o
C 

and 25% RH at scan rate of 50 mV s
-1
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5.14. GO/Nafion composite membrane based MEA gave a constant potential of around 

0.69 V after an hour. SGO/Nafion composite membrane shows about 12 mV increases 

in the operating potential approximately after 4 hours of operation. The MEAs delivered 

constant performance during the 10 hours of operation.  

 

 

 

 

 

 

 

 

 

 

Figure 5.14, Durability of GO and SGO/Nafion MEAs at 120 
o
C and at constant current 

density of 100 mA cm
-2
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5.2.4 Degradation studies of composite membranes  

Durability is the major factor which determines the long term operation of fuel cells 

[20]. The fuel cell components are prone to undergo, degradation or deterioration under 

fuel cell operating conditions. Factors such as operating temperature, hydration level, 

fuel impurities and metal ions from end plates of the fuel cells. The PEM undergoes 

thermal, mechanical and chemical degradation [21, 22]. The thermo mechanical studies 

revealed that the composite membranes are more stable than the pristine Nafion 

membrane.  

A Fenton test was employed for testing the PEM degradation by oxidative radicals, a 

Fenton solution of 3% H2O2 containing 4 ppm Fe2
+
 was added as (NH4)Fe(SO4)2.6H2O 

for accelerating the effect to produce hydroxide radicals [23]. Membrane samples were 

immersed in the Fenton solution at 68 
o
C. The morphology of the membranes immersed 

in the Fenton solution was characterised by SEM. The SEM images of deteriorated 

recast Nafion membrane is shown in Figure 5.15. It is seen from the surface 

morphology (figure 5.15a) of recast Nafion; the bubbles were formed on the surface 

with pinholes and inset shows fresh surface. The cross section SEM image shows very 

clear pinholes (figure 5.15b).  

 

 

Figure 5.15, SEM images of deteriorated recast Nafion a) Surface image (inset is fresh 

surface) and b) cross sectional image 

 

a) b) 
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The SEM images of GO/Nafion membrane immersed in Fenton solution is shown in 

figure 5.16. It is seen from the fig 5.16a, that scratches appeared on the surface but not 

any bubbles or pinholes. A few tiny pinholes can be seen in the cross sectional image 

(figure 5.16b). This indicates the filler material (GO) in the Nafion polymer matrix 

inhibits the effect of H2O2. The SEM images of SGO/Nafion composite membrane 

treated with Fenton solution is shown in figure 5.16c and 5.16d. Surface morphology 

shows scratches on the surface (figure 5.16c) without any significant damage and the 

cross section shows no pinholes (figure 5.16d). 

 

 

 

   

    

 

 

 

 

 

 

 

Figure 5.16, SEM images of deteriorated GO/Nafion composite membrane a) Surface 

image, b) cross sectional image and SEM images of deteriorated SGO/Nafion 

composite membrane c) surface image and b) cross sectional image 

The polymer electrolyte membrane deterioration or degradation by H2O2 can be 

explained based on the radical attack on the functional groups.   The chemical 

degradation of polymer is a consequence of free radicals, being generated on the 

electrode surface by reactant gas cross over. The free radicals such as peroxy (
.
OH) and 

hydro peroxy (
.
OOH) are active oxygenated species that attack the polymer and 
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chemically degrade the membrane [24]. Sulfonic acid and carboxylic end groups in the 

side chain are key to the mechanism by which radical species can attack the polymer 

(SO3H dominate the COOH) [25]. The effect of metal ion impurities (Fe
2+

, Cu
2+

) from 

corrosion of bipolar plates, end plates and also from water generates the free radicals by 

decomposing H2O2 which is formed at fuel cell cathode [26]. 

One of the important factors which affect the fuel cell performance is crossover i.e. 

permeation of reactant from one electrode to the other electrode through the PEM [27]. 

Although crossover of both fuel (hydrogen) and oxidant (oxygen or air) occurs, the 

oxidant crossover occurs at lower rate and thus most often fuel crossover is the property 

of interest. This concept provides a simple in situ technique used for diagnosing the 

PEMFCs. 

The cathode was fed with N2 gas (working electrode) and anode fed with H2 (counter 

and reference electrode). The LSV was used to record the hydrogen oxidation current. 

The working electrode was scanned between 0.05 to 0.5 V vs. CE/RE at a scan rate of 5 

mV s
-1

.   

The hydrogen crossover measured for the fresh and degraded membranes are shown in 

figure 5.17. The MEAs made from the fresh membrane showed lower limiting current 

densities for hydrogen crossover (figure 5.17a) less than 2 mA cm
-2

. The degraded 

recast Nafion membrane (figure 5.17b) showed higher limiting current density of 5 mA 

cm
-2

, which is considerably more than that of GO and SGO/Nafion membranes.     

Figure 5.17, Hydrogen crossover measurements a) fresh membranes and b) degraded 

membranes at 30 
o
C and 100% relative humidity 
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The concentration of crossover hydrogen can be estimated using Faraday’s law     

                                           Jcrossover, H2 = ilim/n. F 

Where ilim is the limiting current density, n is the number of electrons and F is the 

Faraday constant (96500 C). 

The mass transfer limited current density is proportional to the rate of hydrogen 

crossover from the anode to the cathode via the PEM. The hydrogen crossover flux for 

fresh membranes at 30 
o
C was approximately 6.2x10

-9
 mole cm

2
 s for recast Nafion and 

5.8x10
-9

 mole cm
2
 s for SGO/Nafion. The degraded recast Nafion values were 2.3x10

-8
 

mole cm
2
 s in contrast, degraded GO and SGO/Nafion composite membrane values 

were 1.3x10
-8

 mole cm
2
 s. These values are closely related to literature reported values, 

for fresh Nafion based membranes hydrogen crossover flux is around 5.7x10
-9 

and 

2.9x10
-8

 mole cm
2
 s for degraded membranes [27]. This shows that composite 

membrane had lower gas crossover compare to recast Nafion. 

5.3 Conclusions 

The effect of GO and SGO on the fundamental properties of Nafion membrane as well 

as the overall fuel cell performance has been systematically demonstrated. The increase 

in proton conductivity with temperature measurements revealed that GO or SGO did not 

affect the phase separated morphology or the proton conduction mechanism, which is 

also supported by thermogravimetric analysis. The high proton conductivity of GO and 

SGO/Nafion composite membranes was due to an increased water intake of GO and 

SGO/Nafion, and also the presence of different oxygen functionalities on GO, which 

markedly enhanced proton transport. Studies on mechanical stability revealed that using 

GO, is a good strategy to increase the mechanical stability without affecting its swelling 

properties.  All the studies on fundamental properties indicated improvement in fuel cell 

performance, which was seen in a peak power density of 240 mW cm
-2

 for SGO/Nafion 

compared with that with recast Nafion; 94 mW cm
-2

. The high temperature fuel cell 

performance of composite membrane shows better performance than those of recast 

Nafion. In addition the membrane degradation studies revealed that the GO and 

SGO/Nafion composite membranes are chemically more stable than recast Nafion. The 

presence of GO and SGO in the Nafion polymer matrix reduces the fuel crossover. The 

data indicate that SGO/Nafion composite membranes to be an alternative to current 

Nafion membranes in the fabrication of PEMFCs with improved efficiency.     
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Chapter 6. Sulfonated graphite oxide-Sulfonated Poly ether-ether 

Ketone composite membranes for Polymer electrolyte fuel cell 

This chapter described the physicochemical characterisation, proton conductivity 

studies and fuel cell characterisation of sulfonated poly ether-ether ketone (SPEEK) and 

SGO/SPEEK composite membrane. 

6.1 Introduction 

Polymer electrolyte membrane fuel cells (PEMFCs) are attractive as environmental 

friendly and high energy efficiency alternative energy sources for various applications 

[1, 2]. Proton exchange membrane (PEM) is a key component of membrane electrode 

assembly, which supports the catalyst layer and act as a barrier between anode and 

cathode. Perfluorosulfonic acid (PFSA) based membrane; particularly Nafion® has 

been a material of choice due to its excellent proton conductivity under fully humidified 

environment [3]. The non-fluorinated polymer can replace the high cost Nafion® 

membrane and these polymers include poly ether-ether ketone (PEEK), 

polybenzimidazole (PBI), and polysulfone (PSF) which have received significant 

attention to meet the operating requirement for the fuel cell application [4, 5]. The 

phosphoric acid doped PBI is widely investigated for HTPEMFCs, however the acid 

leaching at higher temperature (>150 
o
C) can significantly affect the fuel cell 

performance [6]. The proton conductivities of PEEK and PSF polymers are lower than 

0.001 S.cm
-1

 and are not suitable for the fuel cell operation and thus sulfonation of these 

polymers is used to enhance the proton conductivity [7].  

Sulfonated poly ether-ether ketone (SPEEK) is an inexpensive polymer electrolyte and 

it possesses satisfactory mechanical properties, thermal properties and good chemical 

stability [8]. However, the proton conductivity of SPEEK membrane mainly depends on 

water content and limits the high temperature fuel cell operation. Incorporation of 

nanosized inorganic filler materials into polymer matrix can influence properties of the 

parent polymer, such as proton conductivity, mechanical and thermal stability [9]. The 

influence of sulfonated graphite oxide (SGO) on SPEEK polymer composite has been 

investigated and compared with a SPEEK membrane.  
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6.2 Results and discussion 

6.2.1 Physicochemical characterisation 

The chemical interactions between the functional groups of SGO and SPEEK were 

examined by FT-IR spectroscopy and the data is shown in figure 6.1. SPEEK membrane 

showed a peak at 3399 cm
-1

 arising from the presence of –OH group (from –SO3H). 

SGO/SPEEK showed a characteristic broad peak at 3391 cm
-1

 for intermolecular 

hydrogen bond. The intermolecular hydrogen bonding could be formed between –OH 

groups of SGO and SPEEK –SO3H groups as well as the -SO3H groups of SGO and 

carbonyl group of SPEEK. The peaks at 1020, 1080 and 1253 cm
-1

 were assigned to 

asymmetric and symmetric stretching vibrations of O=S=O group [10].   

                                                                                                                                            

Figure 6.1, FTIR spectra of SPEEK and SGO/SPEEK composite membrane 
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The morphology of SPEEK and SGO/SPEEK composite membrane is shown in figure 

6.2. The cross section SEM image of SPEEK (figure 6.2b) showed a smooth surface, 

whereas SGO/SPEEK (figure 6.2a) composite membrane showed a distribution of SGO 

in the SPEEK polymer matrix. The SGO nanosheets remained exfoliated and uniformly 

distributed over the polymer matrix. 

Figure 6.2, Cross section SEM images of a) SGO/SPEEK and b) SPEEK 

Water uptake is one of the most important properties of sulfonic acid based polymer 

electrolyte to be considered for fuel cell application. The water content has a direct 

influence on the mechanism of proton conductivity and also on the mechanical stability 

of the polymer; therefore it is essential to have optimal water content in order to balance 

other properties. The composite membrane showed higher water content of 60% which 

is about ~2% more than that of neat SPEEK membrane (57.58%). The state of water 

(free and loosely bound water) can be estimated by λ (degree of hydration). The 

SGO/SPEEK composite membrane exhibited λ value of 14.49 (which is higher than 

Nafion based membranes) which is lower than that of SPEEK membrane (16.57). The 

lower λ value of SGO/SPEEK composite membrane could be attributed to the 

difference in ion exchange capacity. The ion exchange capacity estimated from classical 

titration is shown in figure 6.3, the SPEEK exhibits an IEC value of 1.93 meq g
-1

 

whereas SGO/SPEEK composite showed 2.3 meq g
-1

. Sulfonic acid groups and other 

oxygenated groups on GO markedly improves the water content and IEC of composite 

membranes. However, SGO/SPEEK composite membrane exhibited lower value of λ 

compare to SPEEK, due to its high IEC value which indirectly proportional to λ [11].     

a) b) 

10 µm 100 µm 
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Figure 6.3, Water uptake and ion exchange capacity of SGO/SPEEK and SPEEK 

membrane 

6.2.2 Proton conductivity 

The fundamental property of polymer electrolyte membrane is the conduction of 

protons, and it is an important factor for operating fuel cells. The role of filler material 

in the polymer matrix is to maintain the desirable hydration level to operate at high 

temperature as these composite materials can hold more water tightly [12]. Figure 6.4a 

shows the temperature dependent proton conductivity of SPEEK and SGO/SPEEK 

composite membrane at 100% relative humidity. It is seen from the figure, as the 

temperature increases the proton conductivity of both membranes increases. The proton 

conductivity of SGO/SPEEK at 80 
o
C is about 0.23 S.cm

-1
, greater than that of SPEEK 

(0.13 S.cm
-1

). The proton conductivity values of these membranes are far superior than 

Nafion based membranes; this could be attributed to higher sulfonic acid concentration. 

It is evident from high water uptake and IEC values. Figure 6.4b, shows the proton 

conductivity measured at 80 
o
C with different relative humidity, the composite 

membrane showed significant improvement in conductivity compared to SPEEK. 

SGO/SPEEK had a conductivity of about 0.055 S.cm
-1

 at 30% RH which is higher than 

that of SPEEK membrane which is about 0.015 S.cm
-1

. Furthermore the activation 

energies calculated for SGO/SPEEK and SPEEK from figure 6.4c are 22.21 and 25.02 

kJ mol
-1

. The lower activation energy of SGO/SPEEK supports the improved proton 

conductivity of SGO/SPEEK. The high surface area SGO interconnects the proton 
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conducting network between SGO and SPEEK. Introduction of functional groups to the 

graphene layer increases the inter planar distance and the presence of water in between 

graphene oxide layers, presumably forms hydrogen bonding (as shown in schematic; 

figure 6.4d) which creates the path for proton transport [13].  

                                                                                                                                                                         

 

Figure 6.4, a) Proton conductivity at 100% RH, b) proton conductivity at 80 
o
C with 

different relative humidity and c) Arrhenius plots and d) typical representation of 

hydrogen bonding between SGO and SPEEK  
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6.2.3 Fuel cell performance 

The composite membrane and SPEEK membrane were evaluated for low and high 

temperature fuel cells. The single cell polarisation data obtained with MEAs fabricated 

from SGO/SPEEK and SPEEK at 40 
o
C with 100% RH fed with humidified hydrogen 

and oxygen at a flow rate of 0.1 and 0.09 dm
3
 min

-1
 is shown in figure 6.5. The open 

circuit voltage (OCV) of both MEAs is more than 0.95 V, indicates negligible gas 

crossover. The composite membrane showed improved fuel cell performance compare 

to SPEEK membrane based MEA. The SGO/SPEEK gave the maximum power density 

of 480 mW cm
-2

 at a current density of 1.28 A cm
-2

, whereas SPEEK gave 350 mW cm
-

2
 at 0.98 A cm

-2
. It is seen from the figure that both the MEAs delivered approximately 

same current density, up to a 200 mA cm
-2

. The SGO/SPEEK MEA showed improved 

performance as the current increases compared to SPEEK membrane based MEA. The 

performance improvement is attributed to the enhanced proton conductivity of 

composite membrane, as the electrode compositions of both the MEAs are identical. 

The internal cell conductivity estimated from the linear region of fuel cell polarisation 

curves of SPEEK and SGO/SPEEK MEAs were 0.011 and 0.0186 S.cm
-1

. These 

conductivities are lower than the membrane conductivity alone and thus indicate that 

additional “Ohmic” voltage losses occur in the electrode layers.  

Figure 6.5, Single cell polarisation curves of SPEEK and SGO/SPEEK composite 

membrane at 40 
o
C with 100% relative humidity  
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Figure 6.6 shows the single cell polarisation curves of SGO/SPEEK and SPEEK MEAs 

at 80 
o
C with 30% RH. The OCP of both the MEAs are higher than 0.95 V. It is seen 

from the figure in the lower current density region (~300 mA cm
-2

), the performance of 

both the MEA were similar. The SPEEK MEA shows significant performance loss at 

around 500 mA cm
-2

 and gave a maximum power density of 254 mW cm
-2

. The 

SGO/SPEEK composite membrane gave the maximum power density of 375 mW cm
-2

 

at 1.1 A cm
-2

. The proton conductivity of the SPEEK membrane depends on hydration 

level and evaporation of water at above 80 
o
C, and significantly affects fuel cell 

performance. The SGO present in the composite membrane enhances the water 

retention which improves the proton conductivity and thus enhances the fuel cell 

performances at high temperature with low relative humidity. 

 

Figure 6.6, Single cell polarisation curves of SPEEK and SGO/SPEEK composite 

membrane at 80 
o
C with 30% relative humidity  
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The durability data of the SGO/SPEEK based MEA obtained at constant current of 100 

mA cm
-2

 with 30% RH at 80 
o
C for 30 h is shown in figure 6.7. The data suggested that 

the MEA was stable in the above operating conditions and delivered constant 

performance. The cell potential at 100 mA cm
-2

 is approximately 0.69 V and which is 

comparable to the operating cell potential as shown in the polarisation curve (figure 6.6) 

at 100 mA cm
-2

.  

 

 

 

 

 

 

 

 

 

Figure 6.7, Durability test for SGO/SPEEK MEA. 

The AC impedance measurements were performed for both the MEAs at 80 
o
C with 30% 

RH to understand the interfacial behaviour. The Nyquist plots of SGO/SPEEK and 

SPEEK based MEAs are shown in figure 6.8. The SGO/SPEEK composite membrane 

shows a lower resistance of 0.226 Ω at high frequency region compare to SPEEK based 

MEA which is about 0.285 Ω. The through-plane proton conductivity estimated using 

the resistances from the high frequency region impedance spectra for SPEEK and 

SGO/SPEEK were 0.023 and 0.032 S.cm
-1

 respectively. The through-plane conductivity 

calculated from the polarisation curves (at 80 
o
C and 30% RH) of SPEEK and 

SGO/SPEEK composite membranes were 0.010 and 0.016 S.cm
-1

 and these values are 

slightly lower than the conductivity values estimated from impedance spectra, this could 

be due to voltage losses occur in the electrode layers.   
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Figure 6.8, Nyquist plots of SPEEK and SPEEK/SGO MEA 

6.3 Conclusions 

SGO/SPEEK composite membrane was prepared and the effect of SGO on the 

properties of SPEEK such as proton conductivity and fuel cell performance has been 

studied. The composite membrane showed high proton conductivity at 100% RH and 

also at lower relative humidity (30%) which is evident from the IEC value. Sulfonic 

acid functionalized graphite oxide enhances the proton conductivity by bridging the 

proton transport channels between sulfonic acid groups on SPEEK.  
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Chapter 7. Pt (Nafion® stabilised) and Pt-Co alloy nanoparticles 

supported on titanium nitride: an efficient and durable electrocatalysts 

for oxygen reduction reaction 

This chapter described the detailed study on physicochemical characterisation of 

Nafion® stabilised Pt nanoparticles and Pt-Co alloy nanoparticles anchored on titanium 

nitride (TiN). The stability and durability of these electrocatalysts were evaluated using 

cyclic voltammetry in an N2 saturated acidic electrolytes such as sulfuric acid and 

phosphoric acid. The accelerated degradation test (ADT) was performed to assess the 

durability of the electrocatalysts between the potential ranges of 0.6 to 1.2 V vs. RHE. 

The electrocatalysts were also tested for oxygen reduction reaction using rotating disc 

electrode by linear sweep voltammetry (LSV) in an O2 saturated sulfuric and 

phosphoric acid. The mass and specific activities were calculated from ORR 

polarization curves at 0.9 V. 

7.1 Introduction 

The successful development of polymer electrolyte membrane fuel cell (PEMFC) 

technology is hindered by significant performance losses under extended operating 

conditions [1, 2]. Platinum (Pt) nanoparticles supported on carbon (Pt/C) remains the 

state-of-the-art cathode electrocatalyst in PEMFCs, despite its significant loss of 

electrocatalytic activity under long term operation, affecting the fuel cell performance 

[3]. Corrosion of carbon support results in the detachment of Pt particles leading to 

particle size growth by agglomeration, resulting in loss of active electrochemical surface 

area [4]. Carbon black (Vulcan XC-72) is the widely used support for anchoring active 

metal nanoparticles but carbon undergoes corrosion due to harsh operating conditions of 

fuel cells. Furthermore, Pt enhances carbon corrosion by reducing the oxidation 

potential, resulting in Pt sintering [5, 6]. A suitable support material should possess 

corrosion resistance properties to operate under fuel cell operating conditions [7]. In 

order to alleviate carbon support corrosion and to minimise Pt sintering and dissolution, 

an alternative support could be used to replace the carbon [8, 9]. In this regard, it is 

important to explore non carbon based materials, with corrosion resistance and good 

durability.  

Considerable research efforts have been devoted to design corrosion resistant 

electrocatalyst support based on transition metal nitrides (TMNs) and carbides. In 
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general, transition metal nitrides exhibit more activity than transition metal carbides for 

oxygen reduction reaction (ORR) [10]. The physicochemical properties of TMNs are 

similar to those of TMCs. However, the difference in the number of valence electron 

between nitrogen and carbon, resulting in the change of geometric and electronic 

structure and is closely related with catalysis [11]. Of special interest, titanium nitride 

(TiN) shows more activity for ORR and stability than titanium carbide [12]. TiN shows 

the high corrosion resistance in electrochemical system. TiN on glass substrate had the 

corrosion onset potential of +0.6 V (vs. SSE) in 0.5 M H2SO4 electrolyte. This result 

indicates that TiN is stable up to +0.6 V (vs. SSE) without electrochemical redox 

reaction. And, TiN showed enhanced onset potential (~ +3 V vs. RHE) for corrosion 

than that of TiC (~+2 V vs. SHE) in 3 M NaNO3 electrolyte carried out with a scan rate 

of 0.5 V s
-1

. TiN is considered as a promising catalyst support for noble metal catalyst 

like platinum [13]. Owing to its unique properties like good electrical conductivity, 

outstanding corrosion resistance TiN can outperform the carbon support in stability and 

activity under fuel cell operating conditions. Pt supported on TiN nanoparticles catalytic 

activity has been evaluated and showed that Pt/TiN exhibits outstanding performance 

compared to conventional Pt/C by B. Avasarala et al [14]. 

In addition to the carbon support corrosion, electrochemical corrosion of platinum 

reduces the electrochemical active surface area, which affects the performance of 

PEMFC. Stabilising the platinum nanoparticles by employing the stabilising or capping 

agent hinders the sintering and dissolution of platinum nanoparticles. Nafion® could be 

used as a stabilising agent, as an active component (Nafion® as ionomer) in the 

catalysts layer and Nafion® can increase ionomer distribution in the catalyst layer 

which eventually improves the PEMFC performance by increasing catalyst utilisation 

[15]. 

In the case of phosphoric acid based fuel cells, strong adsorption of phosphate anion 

poisoning the Pt particles is detrimental to catalytic activity. Nafion® layer surrounding 

the Pt nanoparticles could prevent the poisoning of Pt from adsorption of phosphate 

anion [16]. Pt undergoes corrosion in phosphoric acid resulting in reduced activity; 

however the presence of Nafion® layer could protect the Pt from corrosion. 

Alloying of Pt with 3d-transition metals (Fe, Co, Cr and Ni) enhance the electrocatalytic 

activity of PtM alloy due to the electronic coupling between Pt and M [17, 18]. Among 

these electrocatalyst, Pt-Co alloy systems have attracted attention because of their better 

ORR activity and stability in acidic environments [19]. The carbon support corrosion is 
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still the key challenge, in order to alleviate carbon corrosion, carbon is replaced with 

TiN.  

7.2 Results and Discussion 

7.2.1 Morphology and structural characterisation 

The SEM image of TiN powder and the EDS pattern is shown in figure 7.1. Spherical 

particles of TiN with an average size of 3 μm are observed in figure 7.1a. The presence 

of Ti and N is further confirmed from the EDS pattern (figure 7.1b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1, a) SEM image of TiN powder and b) EDS patter of TiN powder 

a) 

b) 

1 µm 
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The elemental analysis of TiN obtained from the EDS is shown in Table 7.1. The TiN 

contains 56.74 at. % of Ti and 43.26 at. % of N. 

Table 7.1, Elemental analysis of TiN 

Element Wt% At% 

Titanium 81.76 56.74 

Nitrogen 18.24 43.26 

 

Figure 7.2a and 7.2b shows TEM images of Nafion® stabilised Pt nanoparticles. 

Nafion® stabilised Pt nanoparticles forms loosely agglomerated structures with Pt 

nanoparticles covered by the Nafion® layer, it is necessary to remove the excess 

Nafion® in order to have sufficient electronic conductivity of Pt particles. The Pt 

nanoparticles were washed with mixture of water and acetone (1:4 v/v) to remove the 

excess Nafion®. After removing the excess Nafion® (figure 7.2b), platinum 

nanoparticles forms loosely agglomerated chain like-structure. The particle size, 

calculated from more than 100 nanoparticles had a mean size of 4.5 nm.  

Figure 7.2, TEM images a) Nafion® stab Pt, b) Nafion® stab Pt (washed with acetone) 
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After removing the excess Nafion®, Pt nanoparticles were supported on TiN support by 

ultrasonicating the mixture of Nafion® stabilised Pt colloid and TiN powder for 1 hr. 

The SEM image of Nafion® stabilised Pt/TiN along with EDS pattern is shown in 

figure 7.3. Pt nanoparticles are agglomerated in the Nafion® polymer matrix and are 

distributed over the TiN surface (figure 7.3a). The elemental analysis of Pt/TiN obtained 

from the EDS is shown in Table 7.2. A Nafion® stabilised Pt/TiN contains ~23% of Pt 

(from EDS data).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3, a) SEM image of Nafion® stabilised Pt/TiN, b) EDS pattern of Nafion® 

stabilised Pt/TiN  

a) 

2 µm 

b) 
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Table 7.2, Elemental analysis of Nafion® stabilised Pt/TiN 

 

 

The TEM images of Nafion® stabilised Pt (Pt/TiN) and commercial Pt/C are shown in 

figure 7.4. Platinum nanoparticles are well dispersed on carbon support (figure 7.4a). In 

comparison Nafion® stabilised Pt particles forms loosely agglomerated structures over 

TiN surface (figure 7.4b). The particle size distribution, calculated from more than 100 

nanoparticles, shows that the mean particle size is about 4.5 nm in diameter for Nafion® 

stabilised Pt/TiN as compared to Pt/C (2 to 3 nm), which is slightly smaller than the 

value calculated from XRD. 

                                                                                                                                                              

 

 

Figure 7.4, HRTEM images a) Pt/C and b) Nafion® stabilised Pt/TiN 

 

 

Element Wt% At% 

Titanium 67.71 64.15 

Nitrogen 9.43 30.53 

Platinum 22.87 5.32 

a) b) 
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Figure 7.5 shows XRD patterns of Nafion® stabilised Pt/TiN, which exhibits the sharp 

peaks for TiN. The lattice parameter of TiN ‘a’ is found to be 0.422 nm calculated from 

(111) diffraction plane of TiN (calculations are shown in Appendix A). Pt shows four 

diffraction peaks corresponding to the (111), (200), (220) and (311) planes which are 

consistent with a face centred cubic (FCC) structure.  Diffraction peaks of platinum 

were relatively broader due to smaller particle size. The crystallite size calculated for Pt 

(111) from the Scherrer formula (calculation is shown in Appendix A) is about 6.5 nm 

which is slightly more than the particle size measured form TEM images because XRD 

gives volume-weighted measurements that tend to overestimate the geometric particle 

size.  

                                                                                                                                                                

Figure 7.5, X-ray spectrum of Nafion® stabilised Pt/TiN 
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XPS analysis was performed to analyse the TiN powder, in order to understand the 

changes in surface and atomic concentration of element on the TiN support, before and 

after electrochemical oxidation. For XPS characterisation, samples of fresh TiN and 

TiN cycled (1000 cycles) between 0 and 1.2 V vs. RHE in an N2 saturated 0.5 M H2SO4 

at 100 mV s
-1

 were used. XPS survey spectra of untreated and treated TiN powder 

electrodes exhibited the characteristic Ti 2p, O 1s and N 1s peaks at 528.4, 456.4 and 

396.2 eV, and these values are consistent with literature reported values [20, 21]. 

The presence of oxygen composition on the fresh TiN electrode is attributed to the 

native oxide/oxynitride layer on its surface [22]. The atomic concentration of elements 

on the TiN obtained from the survey spectra before and after electrochemical oxidation 

and is presented in Table 7.3. The atomic concentration of Ti is slightly increased from 

its initial values, and the atomic concentration of oxygen is decreased from 39.7% to 

36.3%, the decrease in the atomic concentration of N can be attributed to the decrease in 

nitride composition due to its oxidation. The increase of Ti, with a decrease of O and N, 

suggests that the surface is not predominated by oxide layer after the electrochemical 

oxidation. 

Table 7.3, Atomic concentration of elements on the TiN before and after 

electrochemical oxidation 

Elements Untreated (at. %) Treated (at. %) 

Ti 40.2  48.2 

N 20.1 15.5 

O 39.7 36.3 

     

In order to understand the nature of surface groups formed on the TiN surface during 

the oxidation, the elemental peaks were further analysed. The deconvoluted Ti 2p peaks 

of untreated and treated TiN electrodes are shown in figure 7.6a and 7.6b. The Ti 2p 

spectra showed the spin orbit doublet Ti 2p3/2 and Ti 2p1/2 peaks. It is seen from the 

figure 7.6a, the presence of TiN, TiON and TiO2 components of Ti 2p3/2 formed due to 

oxidation and their binding energies are shown in Table 7.4. In the case of treated TiN 

electrode, the binding energies of Ti 2p3/2 and 2p1/2 are shifted to a higher values (Table 

7.4). The peaks observed at 459.9 and 464 eV (figure 7.6b) are assigned to tetravalent 

titanium ion, Ti(OH)2
2+

, where the Ti ion possibly oxidised to the states of higher 

valence during electrochemical oxidation. 
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Figure 7.6c and 7.6d shows the deconvoluted O 1s spectra for the untreated and treated 

TiN electrode. The peak at 530.2 eV, is assigned to TiO2, but for the treated electrode 

(figure 7.6d) this value is shifted to 531.5 eV, which is due to the presence of O-H 

group. The remaining components on O 1s peaks are labelled in Table 7.4.  

 

Figure 7.6, Deconvoluted spectra of Ti 2p a) untreated, b) treated TiN electrode and 

deconvoluted spectra of O 1s c) untreated and d) treated TiN electrode  
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Table 7.4, Assignments of the component peaks of high resolution XPS of untreated and 

treated TiN electrode 
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7.2.2 Electrochemical oxidation behaviour of TiN and Carbon Black   

The catalyst support plays a crucial role in the electrocatalytic activity and durability of 

fuel cell catalyst. A catalyst support should possess high surface area, good electronic 

conductivity and corrosion resistance. Carbon plays a significant role in the 

development of an efficient fuel cell catalyst (Pt/C); however it undergoes corrosion 

under fuel cell operating conditions and affects the electrocatalytic activity.    

TiN is an alternative to carbon support, and its stability in acidic electrolytes was 

evaluated. Figure 7.7a and 7.7c shows the CV curves of TiN and figure 7.7b and 7.7d 

shows the CV curves of carbon black (CB) electrodes recorded before and after 1000 

cycles in an N2 saturated 0.5 M H3PO4 and H2SO4 at a scan rate of 100 mV s
-1

. TiN 

shows significantly lower current densities than CB under same experimental conditions. 

TiN exhibits oxide or oxynitride layer on its surface, the presence of oxide or oxynitride 

creates a passivating surface on TiN resulting in lower oxidation current densities, 

whereas carbon shows higher oxidation current densities with increasing corrosion rate 

(as the cycle increases). Also the inert nature of TiN attribute to lower current densities. 

The electrochemical oxidation of TiN results in the formation and growth of 

oxide/oxynitride films on the surface of TiN (in the potential region of 0.5 V to 0.8–0.9 

V) by reaction (7.1) predominantly leads to the retardation (or passivation) of the 

oxidation processes. 

 

                                TiN + 2H2O → TiO2 +1/2N2 +4H
+
 +4e

− 
(7.1) 

 

It is seen from the figure 7.7a (0.5 M H3PO4) and 7.7c (0.5 M H2SO4), the oxidation of 

TiN in the potential region of 0.5 V to 0.9 V vs. RHE. Carbon exhibited oxidation peak 

at around 0.6 V vs. RHE which is due to the corrosion of carbon to carbon dioxide 

(figure 7.7b) (0.5 M H3PO4) and 7.7d (0.5 M H2SO4)). A drop in oxidation current 

density was observed in TiN (figure 7.7a and 7.7c) after 1000 cycles; this shows that 

TiN electrode attains a passivating surface unlike carbon (figure 7.7b and 7.7d), which 

continues to corrode.    

The XRD results confirmed the presence of native oxynitride layer, this is attributed to 

the lattice parameter ‘a’, the value of ‘a’ for TiN is 0.424 nm; whereas for TiO is 0.418 

nm. The value of ‘a’ calculated from XRD is 0.422 nm (calculations are shown in 

Appendix A); which lies in between the lattice parameter ‘a’ of TiO and TiN. 
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According to Vegard’s Law (According to the law, unit cell parameters should vary 

linearly with composition for a continuous substitution solid solution in which atoms or 

ions that substitute for each other are randomly distributed) the lattice parameter ‘a’ of 

titanium oxynitride lies between lattice parameter ‘a’ of TiO and TiN [12].  

 

Figure 7.7, CVs recorded in an N2 saturated 0.5 M H3PO4 at 100 mV s
-1

 a) TiN, b) 

carbon black. CVs recorded in an N2 saturated 0.5 M H2SO4 at 100 mV s
-1

, c) TiN and d) 

carbon black 
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7.2.3 Electrochemical characterisation 

7.2.3.1 Electrochemical characterisation of Nafion® stabilised Pt/TiN in H3PO4 

The Nafion® stabilised Pt/TiN was evaluated for its stability and durability in 

phosphoric acid and sulfuric acid medium. Figure 7.8a and 7.8b shows CV curves of 

Pt/C and Nafion® stabilised Pt/TiN before and after accelerated degradation test (ADT) 

in an N2 saturated 0.5 M phosphoric acid medium. A Nafion® stabilised Pt/TiN shows 

similar peak intensity (Hads/des) compared to Pt/C, in the hydrogen adsorption/desorption 

region (0.05 to 0.4 V). The electrochemical active surface area (ECSA) was estimated 

by using the equation (7.2) from the charge calculated under Hdes (µC cm
-2

) region 

(0.05 to 0.4 V) and is shown in Table 7.5.   

                                     ECSA (m
2
 g

-1
pt) = QHdes*100/210 *LPt  (7.2) 

The ECSA estimated for Nafion® stabilised Pt/TiN is found to be 54.90 m
2
 g

-1
pt and for 

Pt/C is 53.33 m
2
 g

-1
pt (close to the literature reported value of 51.2 m

2
 g

-1
pt) with an 

equal amount of Pt loading (40 µg cm
-2

) in the electrodes.  

Table 7.5, ECSA obtained from CVs of Pt/C and Nafion® stabilised Pt/TiN (0.5 M 

H3PO4) 

Catalyst Pt loading (LPt) µg cm
-2

 QHdes (mC cm
-2

) ECSA (m
2
 g

-1
Pt) 

Pt/C 40 4.47            0.4 53.33              4.76 

Nafion-stab 

Pt/TiN 

40 4.61            1.27 54.90             15.23 

 

 

 

 

 

 

 

 

 

 

Figure 7.8, a) CVs of Pt/C and 4b) Nafion® stabilised Pt/TiN in N2 saturated 0.5 M 

H3PO4 at 50 mV s
-1
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After 1000 cycles of ADT in the potential region between 0.6 to 1.2 V, Pt/C exhibit 

significant loss of ECSA (4.76 m
2
 g

-1
pt) compared to that of  Nafion® stabilised Pt/TiN 

(15.23 m
2
 g

-1
pt). The better stability and durability of Nafion® stabilised Pt/TiN is 

attributed to corrosion resistant behaviour of TiN and also the coordination between 

Nafion and Pt nanoparticles. Good interfacial contact is established between Nafion and 

Pt, resulting in effective ionomer distribution in the catalyst layer. The enhanced 

electrochemical stability is due to the Nafion® layer covering the Pt surface inhibiting 

the aggregation of Pt, owing to the strong steric hindrance effect of sulfonic acid groups 

on Nafion®. Presence of Nafion® layer surrounding the Pt particles could prevent 

diffusion of soluble Pt particles by redepositing at the original site. 

 

7.2.3.2 Electrochemical characterisation of Nafion® stabilised Pt/TiN in H2SO4 

Figure 7.9a and 7.9b shows CV curves of Pt/C and Nafion® stabilised Pt/TiN recorded 

before and after ADT in an N2 saturated 0.5 M H2SO4. A Nafion® stabilised Pt/TiN 

shows similar peak intensity to Pt/C, in the potential region 0.05 to 0.4 V for Hads/des. 

The ECSA (calculated using equation 7.2 and is shown in Table 7.6) of Nafion® 

stabilised Pt/TiN (74.04 m
2
 g

-1
pt) estimated from the CV curves which is higher than 

that of Pt/C (52.14 m
2
 g

-1
pt) with a pt loading of 40 µg cm

-2
 in the electrodes. 

Table 7.6, ECSA obtained from CVs of Pt/C and Nafion® stabilised Pt/TiN (0.5 M 

H2SO4) 

Catalyst Pt loading (LPt) µg cm
-2

 QHdes (mC cm
-2

) ECSA (m
2
 g

-1
Pt) 

Pt/C 40 4.37            2.03 52.14              24.28 

Nafion-stab 

Pt/TiN 

40 6.21            4.11 74.04             48.98 

 

Considering the higher density of TiN (5.4 g cm
-3

) as compared to C (1.9 g cm
-3

), the C 

to Pt particles ratio per unit mass of electrocatalyst is 1:21 for 20 wt% Pt/C where as the 

ratio is 1:61 for 20 wt% Pt/TiN. Considering that there are more Pt nanoparticles 

supported on a single TiN particle than on a C particle. The TEM analysis indicated a 

minimal amount of unsupported Pt particles suggesting that most of the Pt particles are 

bound to the substrate. From the above points, it can be reasoned that more catalytically 

active platinum sites are present in Nafion® stabilised Pt/TiN resulting in higher ECSA.  

After Before After Before 
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Accelerated durability test performed in the potential region 0.6 to 1.2 V showed that 

Nafion® stabilised Pt/TiN is more stable than Pt/C even after 1000 potential cycles. The 

comparison of ECSA before and after cycling is shown in figure 7.9c. The ECSA of 

Nafion® stabilised Pt/TiN estimated after 1000 potential cycles is about 48.98 m
2
 g

-1
pt 

(34% loss), whereas, Pt/C showed 54% loss in ECSA (24.28 m
2
 g

-1
pt). The improved 

stability and durability of Nafion® stabilised Pt/TiN compared to Pt/C is attributed to 

corrosion resistance TiN support as well as Nafion surrounding the Pt.  

 

 

 

 

 

 

 

 

Figure 7.9, a) CVs of Pt/C, b) Nafion® stabilised Pt/TiN in an N2 saturated 0.5 M 

H2SO4 at 50 mV s
-1

 and c) comparison of ECSA before and after cycling
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7.2.4 Oxygen reduction reaction (ORR) 

7.2.4.1 ORR of Nafion® stabilised Pt/TiN in H3PO4 

The ORR polarisation curves measured for Pt/C and Nafion® stabilised Pt/TiN on a 

rotating disc electrode (RDE) in an O2 saturated 0.5 M H3PO4 at 1600 rpm are shown in 

figure 7.10a.  A Nafion® stabilised Pt/TiN shows a 50 mV higher ORR onset potential 

than Pt/C. Current approaches the mixed kinetic-diffusion regime at lower 

overpotentials (+0.75 to +0.85 V) and at higher overpotentials current reaches its 

diffusion-limited value of ~5.37 mA cm
-2

. The half-wave potential of an ORR curve is 

often used to evaluate the activity of catalyst. Nafion® stabilised Pt/TiN showed a 

positive shift in E1/2 of 20 mV compare to Pt/C. The difference in E1/2 showed a marked 

improvement in ORR activity of Nafion® stabilised Pt/TiN.  The mass activity and 

specific activity was calculated from the ORR polarisation curves (figure 7.10a) using 

the equations 7.3a and 7.3b respectively. 

             Mass activity (mA mg
-1

Pt) (im) = i/mass of Pt     (7.3a) 

             Specific activity (µA cm
-2

Pt) (is) = im/ECSA       (7.3b) 

Figure 7.10b shows the comparison of mass activities at 0.8 and 0.9 V. Nafion® 

stabilised Pt/TiN (0.9 V; 9.95 mA mg
-1

) exhibited ~2 times higher value of im  than that 

of Pt/C (0.9 V; 4.95 mA mg
-1

), indicating that Nafion® stabilised Pt/TiN has better 

catalytic activity. The specific activity calculated for Nafion® stabilised Pt/TiN and 

Pt/C are 18.12 and 9.28 µA cm
-2

Pt respectively.   

                                                                                                                                                       

Figure 7.10, a) ORR curves of Pt/C and Nafion® stabilised Pt/TiN in an O2 saturated 

0.5 M H3PO4 at 1600 rpm and 5 mV s
-1 

scan rates, b) comparison of mass activities 

calculated from ORR curves (obtained from figure 7.10a) at 0.9 and 0.8 V  
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Figure 7.11 shows the ORR polarisation curves recorded before and after 1000 cycles of 

ADT, Pt/C shows a 70 mV negative shift in half-wave potential whereas Nafion® 

stabilised Pt/TiN shows about 50 mV negative shift.  

 

 

 

 

 

 

 

 

 

 

Figure 7.11, ORR curves of Pt/C and Nafion® stabilised Pt/TiN in an O2 saturated 0.5 

M H3PO4 at 1600 rpm and 5 mV s
-1 

scan rates, before and after ADT cycling 

 

The rotation rate dependant (400-1600 rpm) polarisation curves for ORR of Nafion® 

stabilised Pt/TiN is shown in figure 7.12a and they are parallel to each other.  Figure 

7.12b and 7.12c shows Koutecky-Levich plots of Nafion® stabilised Pt/TiN and Pt/C 

obtained at 0.8-0.9 V. K-L plots are linear and parallel to each other; this indicates first-

order kinetics with respect to molecular oxygen reduction. The number of electrons 

transferred (n), as calculated from (using equation 3.39) the slopes of Koutecky-Levich 

plots at 0.8 V, is 3.8 for Nafion® stabilised Pt/TiN and 3.7 for Pt/C and these values are 

close to theoretical value (n = 4), which indicates nearly complete reduction of O2 to 

H2O.                                                                                                                                                             

The Tafel plots of Pt/C and Nafion® stabilised Pt/TiN are shown in figure 7.12d. It is 

seen from the Tafel plots, there are two regions, 60 mV/dec, at lower current densities 

indicating one-electron transfer reaction being the rate-determining step and another 

region approximately, at 120 mV/dec at higher current densities indicating that two-

electron transfer reaction as the rate-determining step. The ORR exchange current 

density (i0) was calculated from the Tafel plots (figure 7.12d). In the Tafel region of 120 

mV/dec, the exchange current density for a Pt/C catalayst is 1.42x10
-8

 A cm
-2 

at 20 
o
C

 

and this value is close to the literature reported value of 1.63x10
-8

 A cm
-2

. A Nafion® 

stabilised Pt/TiN showed an exchange current density of 8.32x10
-7

 A cm
-2

 at 20 
o
C 

which is higher than that of Pt/C.  
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Figure 7.12, a) Rotation rate dependant ORR curves of Nafion® stabilised Pt/TiN in O2 

saturated 0.5 M H3PO4, b and c) K-L plots of Nafion® stabilised Pt/TiN (from figure 

7.12a) and Pt/C at different potentials and d) Tafel plots of Pt/C and Nafion® stabilised 

Pt/TiN in O2 saturated 0.5 M H3PO4 obtained from ORR polarisation curves at 1600 

rpm at 20 
o
C (figure 7.10a) 
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7.2.4.2 ORR of Nafion® stabilised Pt/TiN in H2SO4 

The ORR polarisation curves measured for Pt/C and Nafion® stabilised Pt/TiN on a 

rotating disc electrode (RDE) in an O2 saturated 0.5 M H2SO4 at 1600 rpm is shown in 

figure 7.13a.  A Nafion® stabilised Pt/TiN showed a 20 mV positive shift in ORR onset 

potential compared to Pt/C. Current approaches the mixed kinetic-diffusion regime at 

lower overpotentials (+0.78 to +0.85 V) and at higher overpotentials current reaches its 

diffusion-limited value of ~5.39 mA cm
-2 

for Pt/C and 5.11 mA cm
-2 

 for Nafion® 

stabilised Pt/TiN. A Nafion® stabilised Pt/TiN showed a 30 mV positive shift in E1/2 

compared to Pt/C. The mass activity (from ORR curves at 1600 rpm using equation 

7.3a) of Nafion® stabilised Pt/TiN (0.9 V; 9.17 mA mg
-1

Pt) which is higher than that of 

Pt/C (0.9 V; 5.75 mA mg
-1

Pt), indicating that Nafion® stabilised Pt/TiN has better ORR 

activity. The specific activity calculated (using equation 7.3b) from ORR curves (1600 

rpm) at 0.9 V for Nafion® stabilised Pt/TiN and Pt/C are 12.32 and 11.02 µA cm
-2

Pt 

respectively. The comparison of mass activities of Nafion® stabilised Pt/TiN and Pt/C 

are shown in figure 7.13b.   

                                                                                                                                              

Figure 7.13, a) ORR polarisation curves of Pt/C and Nafion® stabilised Pt/TiN in O2 

saturated 0.5 M H2SO4 at 1600 rpm and 5 mV s
-1 

scan rates and b) comparison of mass 

activities at 0.9 and 0.8 V (obtained from figure 7.13a) 
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Figure 7.14 shows the ORR polarisation curves recorded before and after 1000 cycles of 

ADT, Pt/C showed a 60 mV negative shift in half-wave potential whereas Nafion® 

stabilised Pt/TiN shows about 30 mV shifts.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14, ORR polarisation curves of Pt/C and Nafion® stabilised Pt/TiN in an O2 

saturated 0.5 M H2SO4 at 1600 rpm and 5 mV s
-1 

scan rates, before and after ADT 

cycling 

 

The rotation rate dependant (400-1600 rpm) ORR polarisation curves of Nafion® 

stabilised Pt/TiN is shown in figure 7.15a and they are parallel to each other.  Figure 

7.15b shows Koutecky-Levich plots of Nafion® stabilised Pt/TiN obtained at 0.8-0.9 V. 

K-L plots are linear and parallel to each other; this indicates first-order kinetics with 

respect to molecular oxygen reduction.  The number of electrons transferred (n), as 

calculated (using equation 3.39)  from the slopes of Koutecky-Levich plots at 0.8 V, is 

3.7 for Nafion® stabilised Pt/TiN and 3.6 for Pt/C and these values are close to the 

theoretical value (n = 4), which indicates nearly complete reduction of O2 to H2O.  
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seen from the Tafel plots, there are two regions, 60 mV/dec, at lower current densities 

indicating one-electron transfer reaction being the rate-determining step and another 

region approximately at 120 mV/dec at higher current densities indicating that two-

electron transfer reaction as the rate determining step.  
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The ORR exchange current density (i0) was calculated from the Tafel plots (figure 

7.15c). In the Tafel region of 120 mV/dec, the exchange current density for a Pt/C 

catalayst is 5.04x10
-8

 A, while that for Nafion® stabilised Pt/TiN catalyst is 1.03x10
-7

 A 

cm
-2

 at 20 
o
C which is higher than that of Pt/C. The comparison of electrochemical 

parameters of Pt/C and Nafion® stabilised Pt/TiN is shown in Table 7.7. 

                                                                                                                                                                    

 

 

 

 

 

 

 

                                                                                                                                              

Figure 7.15, a) Rotation rate dependant ORR curves of Nafion® stabilised Pt/TiN, b) K-

L plots of Nafion® stabilised Pt/TiN and Pt/C at different potentials and c) Tafel plots 

of Pt/C and Nafion® stabilised Pt/TiN in an O2 saturated 0.5 M H2SO4 

 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

2

4

6

8

10

12

0.9 V

0.875 V

0.85 V

 0.8 V

I 
-1
 (

m
A

-1
)

W
 -1/2

 (rad 
-1/2

 S
1/2

)

b)

-2.0 -1.5 -1.0 -0.5 0.0 0.5

0.80

0.85

0.90

0.95

1.00
 Pt/C

 Nafion stabilisedPt/TiN

E
 /

 V
 (

R
H

E
)

log I
k
 (mA cm

-2
)

60 mV / decade

120 mV / decade 

c)

0.2 0.4 0.6 0.8 1.0

-5

-4

-3

-2

-1

0

I 
/ 
(m

A
 c

m
-2
)

E / V (RHE)

 400

 800

 1200

  1600

a)



                                                                                                                            Chapter 7                                                                                                                                                                                                                   

161 
 

Table 7.7, Comparison of electrochemical parameters of Pt/C and Nafion® stabilised 

Pt/TiN 

                                                                                                                                                  

(Mass activity @ 0.9V (im; mA mg
-1

Pt), Specific activity @ 0.9V (is; µA cm
-2

Pt) obtained 

from ORR polarisation curves at 1600 rpm, exchange current density (io; A cm
-2

) and n 

is the number of electrons) 

The improved catalytic activities of Nafion® stabilised Pt nanoparticles supported on 

TiN are influenced by metal support interactions as it is reported in the literature for 

TiN supported electocatalysts [12].  

The degradation mechanism of Pt/C could be explained as shown in the figure 7.16. 

Three mechanisms are generally accepted to contribute toward the loss of ECSA for 

carbon supported Pt nanoparticles. First, electrochemical corrosion occurs on Pt metal 

particles (Position a; figure 7.16a). The Pt corrosion at the anode is  

 

                                          Pt                       Pt
4+

 4e
-                                  

(7.4a) 

Whereas at cathode is 

                                          PtO2 + 4H
+
 + 2e

-
                     Pt

2+
 + 2H2O (7.4b) 

 

Second, unsupported Pt metal particles are formed due to the corrosion of the carbon 

support (Position b; figure 7.16a). The corrosion reaction is given in equation (7.5)  

                                          C + 2H2O                    CO2 + 4H
+
 + 4e

-
 
                           

(7.5) 

 

The presence of Pt promotes this corrosion reaction (Position c; figure 16a). The 

detached Pt particles are readily agglomerated on the surface of supports or ionomer. 

Third, Pt metal particles or their aggregates grow through Ostwald ripening, that is, Pt 

                                              

Catalyst 

                0.5 M H2SO4 0.5 M H3PO4 

  ECSA   
(m2 g-1

Pt) 
im is         io              n  ECSA   

(m2 g-1
Pt) 

im is io n 

Pt/C 52.14 5.75 11.02 5.04x10-8 3.6 53.33 4.95 9.28 1.42x10-8 3.7 

Nafion®-

stab Pt/TiN 

74.04 9.17 12.32 1.03x10-7 3.7 54.90 9.95 18.12 8.32x10-7 3.8 
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atoms with Pt particles are transported onto other particles to form larger particles 

(Position d; figure 16a) [13]. Correspondingly, the degradation mechanism of Nafion® 

stabilised Pt/TiN could be well explained by figure 7.16b, where the Pt nano-particles 

are stabilized with Nafion, the electrochemical corrosion of Pt could be suppressed with 

the protection of Nafion layer (Position a1; figure 7.16b) compared to that of without 

Nafion layer (Position a; figure 7.16a). Although the carbon support can be degraded, 

the triple phase boundary always exits on the Pt particle surfaces, and this slows down 

the loss of ECSA (Position b1; figure 7.16b). In addition, the ability of Nafion molecules 

to adhere to the Pt surfaces like tentacles could anchor Pt particles on the support 

surfaces although some detachment of Pt particles does take place (Position c1; figure 

7.16b). Furthermore, the Nafion could effectively prevent Pt nanoparticles from 

aggregation on support surfaces because of a strong steric hindrance effect of PFSA 

with SO3
-
 groups (position d1; figure 7.16b). During electrochemical potential cycling, 

these factors (especially for b1, c1 and d1 positions) may play a positive role and sharply 

reduce the ECSA loss, which lead to a Pt stabilization. 

Also, it is important to consider support factors. Compared to carbon black, the TiN has 

high chemical stability and unique mechanical property, which could effectively 

decrease the support degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16, Schematic of ECSA loss a) Pt nanoparticles on carbon support and b) 

Nafion® stabilised Pt/TiN  

Nafion 

Nafion 

    b)     a) 
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7.3 Pt-Co nanoparticles supported on titanium nitride: an efficient and 

durable electrocatalysts for oxygen reduction reaction 

7.3.1 Morphology and structural characterisation 

Figure 7.17a and 7.17b shows HRTEM images of Pt-Co/TiN. Pt-Co nanoparticles are 

uniformly distributed over the TiN surface. The particle size distribution, calculated 

from more than 100 nanoparticles shows that the mean particle size is about 6.5 nm. A 

selected area electron diffraction (SAED) pattern of Pt-Co/TiN is shown in figure 7.17c. 

The ring pattern is consistent with an FCC crystal structure in which major diffraction 

peaks can be indexed to (111), (200), (220) and (311) reflections. Figure 7.17d shows 

EDS spectrum of Pt-Co/TiN and the elemental analysis revealed that an average Pt-Co 

ratio of 9.2:3.4 and these values are closely related to value obtained from XPS (9.22: 

3.21) and hence the composition is Pt3Co.   

 

                                                                     
Figure 7.17, a and b) HRTEM images of Pt-Co/TiN, c) SAED pattern of Pt-Co/TiN and 

d) EDS patter of Pt-Co/TiN 

 

(111) (200) 

(220) 
(311) 

a) 

c) 

b) 

d) 

(111) 

(200) 



                                                                                                                            Chapter 7                                                                                                                                                                                                                   

164 
 

X-ray diffraction pattern of Pt and Pt-Co nanoparticles supported on TiN are shown in 

figure 7.18. After pre-treatment at 400 
o
C, Pt-Co/TiN shows typical face-cantered cubic 

(FCC) structure for Pt. The planes (111), (200), (220) and (311) corresponding to pure 

Pt metal consistent with FCC structure. In the case of Pt-Co/TiN the peak positions are 

shifted to higher angles (inset figure), compare to Pt/TiN, this indicates the Co is 

incorporated into Pt structure to form an alloy phase. The lattice parameter ‘a’ 

calculated (calculation are shown in appendix A) from (220) diffraction plane for Pt 

(Pt/TiN) is 0.394 nm and 0.387 (Pt-Co/TiN). The particle size calculated (calculations 

are shown in appendix A for Pt-Co from the Debye-Scherrer equation using full- width 

at half- maximum of (220) plane is about 8.5 nm. This is slightly more than the particle 

size measured form TEM images because XRD gives volume-weighted measurements 

that tend to overestimate the geometric particle size. No characteristic peaks of metallic 

Co or oxides were observed, and also no distinctive superlattice diffraction peaks were 

detected around 2θ of 23.1
o
, 32.8

o
, 53.2

o
 and 58.6

o
, confirming the formation of 

disordered Pt-Co alloys. 

 
Figure 7.18, X-ray diffraction patterns of Pt and Pt-Co nanoparticles supported on TiN. 

The inset shows the enlarged region of Pt (220) diffraction peak 
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XPS analysis was performed to understand the bonding nature and oxidation states of Pt 

and Co in Pt-Co/TiN. The survey spectrum is shown in the figure 7.19a, and it is seen 

from the figure the main peaks observed are due to Pt 4f, Pt 4d, Ti 2p and O 1s. The 

deconvoluted high resolution XPS spectra of Pt 4f from Pt-Co/TiN and Pt/TiN are 

shown in figure 7.19b and 7.19c. Each spectrum exhibits a broad band that can be 

curve-fitted into three pairs of peaks, all of which have spin orbital splitting of 4f7/2 and 

4f5/2 states. In the case of Pt-Co/TiN, the binding energy (BE) of 72.11 eV is 

corresponding to pt in the zero-valent state. Pt is predominantly metallic in Pt-Co/TiN, 

but the appearance of two minor peaks with 4f7/2 at 72.18 eV and 73.28 eV, attributed to 

Pt-O and PtO2, respectively, indicates some surface oxidation [23]. The BEs of Pt-

Co/TiN shifts to lower value compared to Pt/TiN, this can be elucidated in terms of 

electronic effect of Co on Pt. The Co, being more electropositive than Pt would donate 

electrons to Pt, causing negative shift in BE of 4f7/2 signal of Pt
0
 species. The electron 

withdrawing effect of Pt on Co increases the amount of Pt
0
 in Pt-Co/TiN compared with 

that in the Pt/TiN, indicating the oxide cleansing action of Co on Pt [24]. These effects 

are expected to enhance the electrocatalytic activity of Pt in Pt-Co alloy [25]. Figure 

7.19d shows the high resolution XPS spectrum of Co. The BE of 781.2 eV is 

corresponding to Co 2p3/2 in metallic state, which seems to have a positive shift to 

higher BE compared to bulk 782.6 eV. 

 The deconvoluted XPS spectra of O 1s for the Pt-Co/TiN and Pt/TiN are shown in 

figure 7.19e and 7.19f. The deconvoluted components can be identified as Pt-O or 

physically adsorbed oxygen near 530 eV, together with titanium-oxygen species at BEs 

close to 532 and 534 eV. 
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Figure 7.19, a) XPS survey spectrum of Pt-Co/TiN, b and c) deconvoluted spectra of Pt 

4f of Pt-Co/TiN and Pt/TiN, d) high resolution XPS spectra of Co, e and f) 

deconvoluted XPS spectra of O 1s of Pt-Co/TiN and Pt/TiN 
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7.3.2 Electrochemical characterisation 

The durability of Pt/C (E-tek), Pt/TiN and Pt-Co/TiN electrocatalysts was evaluated by 

accelerated degradation test (ADT) between +0.6 and +1.2 V (Vs. RHE) for 5000 cyclic 

voltammetry potential cycles in an N2 saturated 0.5 M sulphuric acid medium at a scan 

rate of 50 mV s
-1

. Figure 7.20a, 7.20b and 7.20c shows cyclic voltammograms of Pt-

Co/TiN, Pt/TiN and Pt/C measured before and after 1000, and 5000 cycles of ADT. Pt-

Co/TiN shows well defined peaks for hydrogen adsorption/desorption (0.05 to 0.4 V) 

along with Pt oxides (>0.8V) formation and reduction peaks (~0.8 V), and indicates that 

Pt-Co has Pt rich surface. Pt-Co/TiN exhibits increased peak current densities for 

hydrogen adsorption/desorption after 1000 cycles, which is due to dissolution of Co on 

the surface, although peak current densities (Hads/des) for Pt/TiN remains unchanged. 

But after 5000 potential cycles Pt-Co/TiN shows a minimal loss in ECSA, whereas, 

Pt/TiN and Pt/C shows significant loss in ECSA (figure 7.20d). 

Table 7.8 shows the QHdes estimated from CV curves before and after ADT cycles. Pt/C 

shows increased loss of ECSA as the number of cycles increases, after 5000 potential 

cycles ECSA had decayed by about 85.33%. After 1000 cycles, ECSA of Pt/TiN 

remains unchanged but after 5000 cycles it shows about 67% loss. However, the Pt-

Co/TiN catalyst showed an increased in ECSA about 5% after 1000 cycles and then 

after 5000 potential cycles ECSA had decayed about 55%. The comparison of 

percentage loss in ECSA after 5000 potential cycles of ADT is shown in figure 7.20d. 

Table 7.8 Electrochemical parameters obtained from CV curves of Pt/C, Pt/TiN and Pt-

Co/TiN electrocatalyst.  

 

 

 

 

 

 

 

 

Catalyst Pt loading (LPt) µg cm
-2

 QHdes (mC cm
-2

) 

Pt/C 85 7.78           2.6 

Pt/TiN 85 6.14           2.1 

Pt-Co/TiN 40 0.62           0.34 

After Before 
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Pt-Co/TiN exhibits better stability and durability compared to Pt/TiN and Pt/C. This 

indicates that apart from alloying the Pt with Co, the TiN support markedly improves 

the activity, stability and durability of Pt-Co/TiN. TiN has significantly lower rate of 

electrochemical corrosion over carbon and TiN itself is an active catalyst for ORR, all 

these properties of TiN improves the overall catalytic activity of Pt-Co/TiN. 

Figure 7.20, a) CVs of Pt-Co/TiN, b) Pt/TiN, c) Pt/C in an N2 saturated 0.5 M H2SO4 

before and after ADT cycles and d) percentage loss in ECSA after 5000 potential cycles 

of ADT  
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7.3.3 Oxygen reduction reaction (ORR) 

The ORR polarisation curves of Pt-Co/TiN, Pt/TiN and Pt/C on a rotating disc electrode 

(RDE) in an N2 saturated 0.5 M H2SO4 at 1600 rpm is displayed in figure 7.21a. Pt-

Co/TiN shows a ~50 mV higher ORR onset potential compare to Pt/C. Pt-Co/TiN had 

reached a diffusion limited current of -5.68 mA cm
-2

 at higher overpotential region. The 

current approaches mixed kinetic and diffusion current region between +0.8 to +1.0 V. 

The half-wave potential (E1/2) between the mixed kinetic/diffusion regime is often used 

to measure the catalytic activity of an electrocatalyst. The half-wave potential, E1/2 is 

arranged in the sequence of increasing order Pt/C < Pt/TiN < Pt-Co/TiN. The difference 

in E1/2 between Pt-Co/TiN and Pt/C is about +32 mV; the positive shift in E1/2 indicates 

marked improvement in catalytic activity. The mass activities calculated from the ORR 

curves are shown in figure 7.21b. The comparison mass and specific activities 

calculated from ORR curves (1600 rpm) at 0.9 V are shown in Table 7.9. Pt-Co/TiN 

exhibits higher mass activity over Pt/TiN and Pt/C. The measured currents were 

corrected for mass transport to obtain the kinetic current.  The specific activities (Ik) at 

0.9 V calculated from figure 7.22b, of Pt-Co/TiN are 0.39 mA cm
-2

Pt and higher than 

Pt/TiN (0.29 mA cm
-2

Pt) and Pt/C (0.15 mA cm
-2

Pt) and these values are in good 

agreement with the literature reported values. 

  

Figure 7.21, a) ORR curves of Pt-Co/TiN, Pt/TiN and Pt/C in an O2 saturated 0.5 M 

H2SO4 at 1600 rpm and b) Comparison of mass activities at 0.85 and 0.9 V  
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  Table 7.9, Comparison of mass and specific activities 

 

The ORR polarisation curves measured before and after 5000 potential cycles are shown 

in figure 7.22. Pt-Co/TiN catalyst showed a degradation of 100 mV in its half-wave 

potential, whereas Pt/TiN shows 120 mV degradation in its half-wave potential. 

 

 

 

 

 

 

 

 

 

 

Figure 7.22, ORR curves of Pt-Co/TiN and Pt/TiN before and after 5000 cycles 

Figure 7.23a shows Koutecky-Levich plots obtained at 0.8-0.9 V. the K-L plots are 

linear and parallel to each other; indicating first-order kinetics with respect to molecular 

oxygen reduction. The number of electrons transferred (n), as calculated from the slopes 

of Koutecky-Levich plot (figure 7.23a) using equation 3.39 at 0.8 V, is 3.92 (~4), which 

indicates nearly complete reduction of O2 to H2O. The Tafel plots of Pt/C, Pt/TiN and 

Pt-Co/TiN are shown in figure 7.23b. It is seen from the Tafel plots there are two 

regions, 60 mV/decade at lower current densities indicating one-electron transfer 

reaction being the rate-determining step and another region of approximately 120 

mV/decade at higher current densities, indicating that two-electron transfer reaction as 

the rate determining step.  

The ORR exchange current density (i0) was calculated from the Tafel plots (figure 

Sample Mass activities @ 0.9 V 

(mA/mg Pt) 

Specific activities @0.9 V mA
-1

/cm
2

Pt 

Pt/C 7.5 0.15 

Pt/TiN 14.4 0.29 

Pt-Co/TiN 19.6 0.39 

0.2 0.4 0.6 0.8 1.0

-6

-5

-4

-3

-2

-1

0

I 
/ 
m

A
 c

m
-2

E / V (RHE)

 Pt/TiN Before 5000 cycles

 Pt/TiN After 5000 cycles

 Pt-Co/TiN Before 5000 cycles

 Pt-Co/TiN After 5000 cycles



                                                                                                                            Chapter 7                                                                                                                                                                                                                   

171 
 

7.23b). In the Tafel region of 120 mV/dec, the exchange current density for a Pt/C 

catalyst is 1.42x10
-8

 A cm
-2 

at 20 
o
C

 
and this value is close to the literature reported 

value of 1.63x10
-8

 A cm
-2

. Pt-Co/TiN showed an exchange current density of 1.69x10
-7

 

A cm
-2

 at 20 
o
C which is higher than that of Pt/C and Pt/TiN (2.23x10

-7 
A/cm

-2
). The 

comparison of electrochemical parameters of Pt/C, Pt/TiN and Pt-Co/TiN is shown in 

Table 7.10. 

Figure 7.23, a) K-L plots of Pt-Co/TiN and b) Tafel plots of Pt-Co/TiN, Pt/TiN and Pt/C 

 

Table 7.10, Comparison of electrochemical parameters of Pt/C, Pt/TiN and Pt-Co/TiN 
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7.4 Conclusions 

A Nafion® stabilised Pt/TiN has been prepared and evaluated for its stability, durability 

and electrocatalytic activity both in sulfuric acid and phosphoric acid medium. The 

electrochemical analysis showed that Nafion® stabilised Pt/TiN has better 

electrocatalytic catalytic activity, stability and durability compared to commercial Pt/C 

under PEMFC operating conditions. The improved durability of Nafion® stabilised 

Pt/TiN is attributed to both the corrosion resistant TiN support and to the stabilising 

effect of Nafion®. The results suggest that Nafion® stabilised Pt/TiN can be a suitable 

cathode electrocatalyst for phosphoric acid based polymer electrolyte membrane fuel 

cells as well other PEM based fuel cells. 

The electrocatalytic activity and stability of Pt-Co/TiN has been evaluated for ORR and 

compared over Pt/TiN and commercial Pt/C. The improved activity and stability of Pt-

Co alloy nanoparticles are attributed to electronic coupling between Pt and Co. 

Electrochemical corrosion of Pt and also carbon corrosion significantly affects catalytic 

activity of Pt/C. In this study we replaced carbon with corrosion resistant TiN to support 

Pt and Pt-Co nanoparticles. Pt-Co/TiN and Pt/TiN showed better stability and 

electrocatalytic activity over Pt/C; this is attributed to alloying of Pt with Co and 

corrosion resistant behaviour of TiN and synergistic effect due to metal support 

interaction.  
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Chapter 8. Conclusions and Future Work 

8.1 Conclusions 

The Nafion® or similar membrane based polymer electrolyte membrane fuel cells 

(PEMFC) are limited to low temperature operation of less than 80 
o
C. A higher 

temperature (80-120 
o
C) operation of PEMFC would enhance the electrode kinetics, 

improves the CO tolerance of Pt, reduces the noble metal catalyst loading and simplifies 

the thermal and water management. The proton conductivity of Nafion® membrane 

depends on hydration level and the operation of fuel cell above 80 
o
C results in 

dehydration of the membrane which in turn affect the fuel cell performance. The 

incorporation of inorganic hydrophilic oxide materials into the Nafion® polymer matrix 

enhances the water retention and corresponding proton conductivity to operate at high 

temperature. 

Functionalised graphite oxide is an insulator and hydrophilic in nature and exhibits the 

proton conductivity. The presence of acidic functional groups such as carboxylic acid, 

hydroxyl group, epoxy and sulfonic acid groups on edges and basal plane of the 

graphene oxide are means to achieve proton transport. The measured in-plane and 

through-plane proton conductivity values of functionalised graphene oxide paper are 

0.04 and 0.012 S.cm
-1

 at 303 K, respectively, and lie in the conductivity range of Nafion 

between 0.01 to 0.1 S.cm
-1

 in a humid environment. The in-plane proton conductivity is 

attributed to the presence of functional groups on edges and basal plane. The through-

plane proton conductivity is attributed to a Grothus-type mechanism in which 

reorganisation of hydrogen bonds play a vital role in the presence of water between each 

graphene layer. These characteristics make functionalised graphite oxide suitable for 

Nafion® composite membrane for high temperature operation. 

Graphite oxide (GO) and sulfonated graphite oxide (SGO) based Nafion® composite 

membranes offer the good proton conductivity, extending operating temperature up to 

120 
o
C. The proton conductivity of the composite membranes depends on relative 

humidity. The content of GO and SGO of 4 wt% in the Nafion® polymer matrix 

showed higher proton conductivity  of 0.026 and 0.029 S.cm
-1

 at 120 
o
C and 25% RH, 

whereas the recast Nafion had a conductivity of 0.012 S.cm
-1

. The SGO/Nafion 

composite membrane gave peak power density of 240 mW cm
-2

, whereas recast Nafion 

gave a power density of 94 mW cm
-2

 at 120 
o
C and 25% RH.  
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A non-fluorinated polymer such as sulfonated poly ether-ether ketone (SPEEK) is an 

inexpensive polymer and possesses good thermo mechanical stability. The proton 

conductivity of SPEEK depends on the degree of sulfonation as well as hydration. At a 

sulfonation of 60% the proton conductivity was less than Nafion® membrane and above 

70 % it becomes partially soluble in water. A SPEEK membrane with a sulfonation of 

60% was used to make composite membranes with SGO. A SGO/SPEEK composite 

membrane had a proton conductivity of 0.055 S.cm
-1

 at 80 
o
C and 30% RH, which was 

higher than that of SPEEK membrane (0.015 S.cm
-1

). The SGO/SPEEK composite 

membrane gave peak power density of 375 mW cm
-2

, whereas SPEEK gave a power 

density of 254 mW cm
-2

 at 80 
o
C and 30% RH.  

Nafion® stabilised Pt supported on TiN exhibited better ORR activity, stability and 

durability both in sulfuric acid and phosphoric acid medium than conventional Pt/C. 

The improved durability of Nafion® stabilised Pt/TiN is attributed to the corrosion 

resistant TiN support. Nafion® stabilisation of Pt protects the Pt from phosphate ion 

adsorption, in phosphoric acid medium and showed improved durability than 

conventional Pt/C. The Nafion® layer surrounding the Pt thought to provide enhanced 

electrochemically stability by inhibiting sintering and dissolution. Pt-Co alloy 

nanoparticles supported on TiN (Pt-Co/TiN) showed marked improvement in ORR 

activity and durability. Pt-Co/TiN electrocatalyst showed about 5% enhancement in 

ECSA after 1000 potential cycles of ADT, whereas Pt/C showed significant loss in 

ECSA. After 5000 potential cycles, the ECSA of Pt-Co/TiN decayed about 55%, 

whereas the ECSA of Pt/C had decayed about 85%. XPS analysis revealed electronic 

coupling between Pt and Co that enhanced the electrocatalytic activity of Pt-Co alloy 

catalyst. 

8.2 Future work 

The proton conductivity of the GO and SGO composite membranes are better than that 

of Nafion® based membranes, but the fuel cell performance is still lower, in order to 

achieve the maximum performance, it is required to optimise the membrane electrode 

assemblies based on the composite membranes. Future work should consider the 

following 

 The optimisation of electrocatalyst loading in the electrocatalyst layer. 

 The use of SGO as an ionomer (instead of Nafion® ionomer) in the 

electrocatalyst layer and optimisation of its content. 
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 The use of SGO/SPEEK as an ionomer instead of Nafion® ionomer in the 

electrocatalyst layer of SGO/SPEEK based MEAs. 

 The longer term stability tests of GO and SGO composite membrane based 

MEAs. 

 An alternative to Nafion® membrane, other polymers such as poly vinyl 

alcohol (PVA), functionalised Polyvinylidene difluoride (PVDF) composite 

membranes with SGO could be prepared.  

The electrochemical evaluation of the cathode electrocatalyst based on Nafion® 

stabilised Pt and Pt-Co alloy nanoparticles supported on TiN support showed enhanced 

stability, durability and electrocatalytic activity compared to commercial Pt/C. In order 

to assess these electrocatalyst in fuel cell future work should consider the following 

aspects 

 The fuel cell evaluation of Nafion® stabilised Pt/TiN as cathode 

electrocatalyst for phosphoric acid based and other PEM (Nafion and 

SGO/Nafion) based fuel cells and durability test under fuel cell operation.  

 The fuel cell characterisation of Pt-Co/TiN as cathode electrocatalyst and 

durability test under fuel cell operation.  
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Appendix A 

XRD calculations for GO and SGO 

The interplanar distances (d) for graphite oxide and sulfonated graphite oxide (001) 

diffraction plane were calculated using Bragg equation; 

According to Bragg equation 

       / 2sinθ  

Where d is the interplanar distance, n is the order of diffraction and λ is the x-ray 

wavelength (1.54 A
o
). 

 

d (graphite oxide) = 1.54/2sin(11.26) = 7.85 A
o
 = 0.785 nm 

d (sulfonated graphite oxide) = 1.54/2sin(11.36) = 7.51 A
o
 = 0.751 nm 

 

XRD calculations for TiN, Pt and Pt-Co  

Calculation of interplanar distance‘d’ and lattice parameter ‘a’ for TiN (111) peak 

                 d (TiN (111)) = 1.54/2sin(37.2) = 2.44 A
o
 = 0.244 nm 

Lattice parameter ‘a’ can be calculated using the following equation; 

                   a = d√h
2
+k

2
+l

2
 

a (TiN) = 2.44x1.73 = 4.22 A
0
 = 0.422 nm 

 

Calculation of interplanar distance‘d’ and lattice parameter ‘a’ for Pt (220) peak 

d (Pt/TiN (220)) = 1.54A
o
/2sin (67.67) = 1.38 A

o
 = 0.138 nm 

a (Pt/TiN) = 1.54A
o
x√2/sin (67.67/2) = 3.94 A

0
 = 0.394 nm 

Calculation of interplanar distance‘d’ and lattice parameter ‘a’ for Pt-Co (220) peak 

d (Pt-Co/TiN (220)) = 1.54A
o
/2sin (68.04) = 2.75 A

o
 = 0.275 nm 

a (Pt/TiN) = 1.54A
o
x√2/sin (68.04/2) = 3.87 A

0
 = 0.387 nm 

The mean particle sizes for Pt and Pt-Co nanoparticles were evaluated by Scherrer 

formula; using the full width at half maximum (FWHM) and the peak position of the 

Gaussian fitted Pt (220) peak. 
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According to Scherrer Formula: 

                                                               t = K*λ/βcosθ 

K is the shape factor with a typical value of about 0.9, λ is the X-ray wavelength, i.e., 

1.54 A
o
  here,  β is the full width at half maximum (FWHM) in radians, and θ is the 

Bragg angle. t is the mean size of the ordered (crystalline) domains, which may be 

smaller or equal to the grain size. 

               t (Pt/TiN) = 0.9 x 1.54 A0 /(0.025 x cos(67.67/2)) = 66.02 A
o
 = 6.602 nm 

               t (Pt-Co/TiN) = 0.9 x 1.54 A0 /(0.02 x cos(68.04/2)) = 83.03 A
o
 = 8.303 nm 
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Appendix B 

RHE conversion  

A saturated silver chloride electrode was used as the reference electrode in all 

electrochemical measurements. The measured potentials versus the Ag/AgCl reference 

electrode were converted to the reversible hydrogen electrode (RHE) scale via the 

Nernst equation:  

                                          =    /    +0.059   +    /      

Where E
RHE 

is the converted potential versus RHE, E
Ag/AgCl 

is the experimental potential 

measured against the Ag/AgCl reference electrode, and E
o

Ag/AgCl 
is the standard 

potential of Ag/AgCl at 25 °C (0.1976 V). The electrochemical measurements were 

carried out in 0.5 M H2SO4 and H3PO4 (pH = 0.3) at room temperature; therefore,  

                                                E
RHE 

= E
Ag/AgCl 

+ 0.059*0.3 + 0.1976 V 

                                              E
RHE 

= E
Ag/AgCl 

+ 0.0177 + 0.1976 V 

                                  E
RHE 

= E
Ag/AgCl 

+ 0.215 V 
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