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Abstract 

One in three people over a life time will develop a stroke, dementia or both but little is 

known about stroke - related cognitive impairment despite current epidemiologic 

transition in sub - Saharan Africa. The CogFAST Study was established in Newcastle to 

unmask risk factors, pathological substrates and cellular mechanisms underlying 

cerebral injury and cognitive impairment following stroke. The overall aim of this thesis 

was to establish a comparative cohort in Nigerian African stroke survivors and explore 

mechanisms in post - mortem brains accrued from the Newcastle cohort. 

Two hundred and twenty Nigerian African stroke survivors were screened three months 

after index stroke out of whom 143 eligible participants underwent cognitive assessment 

in comparison with 74 stroke - free healthy controls. We found a high frequency 

(49.3%) of early vascular cognitive impairment and significant association with older 

age and low education. Pre-stroke daily fish intake and moderate – to - heavy physical 

activity were inversely associated. The frequency of vascular cognitive impairment no 

dementia (vCIND) in the cohort (39.9%) was relatively higher than earlier report from 

Newcastle (32%) but neuroimaging studies revealed significant findings of MTLA and 

correlative white matter changes in tandem with previous reports from the Newcastle 

cohort.  

Given these, we investigated neurodegenerative hippocampal Alzheimer pathology and 

synaptic changes, as well as frontal and temporal white matter abnormalities in post - 

mortem brain tissue from the Newcastle cohort.  We found increased Alzheimer 

pathology in the post - stroke groups but largely this did not differ between the 

demented (PSD) and non - demented (PSND) sub - groups. However, we found 

significantly higher hippocampal expression of synaptic markers (vesicular glutamate 

transporter – 1 and Drebrin) but lower expression of microglial, astrocytic and axonal 

injury markers in PSND compared to PSD subjects. The protective effect of educational 

attainment, pre-stroke physical activity and fish intake have public brain health 

implications.  
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Chapter 1. Introduction 

 

1.1. The Global Burden of Stroke and Dementia 

 

1.1.1. Global Burden of Stroke  

 

Stroke is a disease that has been recognized since antiquity. Hippocrates (circa 400 BC) 

and others used the word “apoplexy” to describe sudden non-traumatic brain events, 

while the terminology ‘stroke’ is believed to have been introduced only late in the 

seventeenth century (Cole, 1869).   

Stroke had been traditionally defined as “a rapidly developing focal or global 

disturbance of cerebral function resulting only from a vascular cause with dysfunction 

lasting more than 24hrs or leading to death (Aho et al., 1980) .   However, in a recent 

updated definition of stroke for the 21st century, “Central nervous system infarction is 

defined as brain, spinal cord, or retinal cell death attributable to ischemia, based on 

neuropathological, neuroimaging, and/or clinical evidence of permanent injury. Central 

nervous system infarction occurs over a clinical spectrum: Ischemic stroke specifically 

refers to central nervous system infarction accompanied by overt symptoms, while 

silent infarction by definition causes no known symptoms. Stroke also broadly includes 

intracerebral haemorrhage and subarachnoid haemorrhage”(Sacco et al., 2013). This 

new definition is both time and tissue-based and builds on various advances in 

knowledge about stroke and has potential implications for measuring the epidemiology 

and impact of stroke and its associated morbidities in the future. 

Stroke remains a major public health problem as the leading cause of adult disability 

and second leading cause of death worldwide (Donnan, 2008; Feigin et al., 2013).  

Every year, 16 million people experience a stroke and 5.7 million die from it. Stroke is 

associated with 43.7 million lost disability – adjusted life years [DALY] annually 

around the world (Strong et al., 2007) In 2010,  there were 16.7 million first ever stroke, 

33 million stroke survivors, 5.9 million stroke – related deaths and 102 million lost 

DALYs (Feigin et al., 2013) . Stroke has huge economic impact, especially in 

developing nations where people in the prime of life are often affected. 
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Whereas stroke incidence rates declined by 42 % in high-income countries over a period 

of four decades (1970 – 2008), they doubled (100% increase) in low- and middle-

income countries (Feign et al., 2009).  For instance, in a time –trend analysis of stroke 

in the United Kingdom over a ten year period (1999 – 2008), stroke incidence fell by 

30%, from 1.48/1000 person-years in 1999 to 1.04/1000 person years in 2008. .Over the 

same period,  56-day mortality after first stroke reduced from 21%  to 12% resulting in 

an increased prevalence of 12.5%, from 6.40/1000 in 1999 to 7.20/1000 in 2008. . Over 

this study period, a stable increase in the prescription of cardiovascular medications, 

especially lipid lowering agents and antihypertensive agents was also reported (Lee et 

al., 2011b).  This is in sharp contrast to the situation in LMIC where population ageing, 

changes in diet, physical inactivity, associated increase in vascular risk factors, 

especially hypertension, diabetes and obesity, as well as low awareness, under-detection 

and under-treatment of these factors are driving forward the burden of stroke (Strong et 

al., 2007; Akinyemi et al., 2009).  

Stroke mortality and disability rates are disparately higher in low- and middle-income 

countries with 87% of global stroke deaths occurring in these regions (Kim and 

Johnston, 2013). Gaping differences in the availability of, and access to effective acute 

and chronic stroke care – including rehabilitation and secondary prevention may explain 

this wide disparity between  HIC and LMICs (Norrving and Kissela, 2013). 

Recent epidemiologic data from Africa suggest a rising burden of stroke (Connor et al., 

2007). In the Hai district (rural) and Dar-es-salaam (urban) Tanzania, age-standardized 

incidence rates of stroke were 108.6/100,000 and 315.9/100,000 respectively (Walker et 

al., 2010).  Nigeria, the most populous black nation with 167 million people, 

particularly exhibits a high burden. A  recent community-based survey in Lagos, 

southwestern Nigeria put the prevalence rate at 114 per 100,000 in the general 

population and 224 per 100,000 in persons above the age of 65 years(Danesi et al., 

2007) .  Stroke accounts for up to 45% of all neurological admissions and up to 17% of 

medical deaths in Nigeria. Thirty - day case fatality rate is as high as 40% (Ogun et al., 

2005).  Stroke affects predominantly persons in the late middle age with a mean age of 

occurrence of about 60 years(Owolabi and Agunloye, 2013).  

The INTERSTROKE Study provides the most comprehensive and global evidence of 

traditional and emerging risk factors for stroke. Undertaken in 22 countries – including 

high, middle and low income nations – and using a case- control study design, 10 key 
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risk factors were found to be responsible for up to 90% of the population-attributable 

risk for stroke. These were hypertension, diabetes, smoking, history of cardiac disease, 

alcohol use, poor diet  (low intake of fruit and vegetables), elevated waist-to-hip ratio, 

physical inactivity, elevated apolipoprotein B to A1 ratios and depression . 

Hypertension alone accounted for 54% of the population-attributable risk (O'Donnell et 

al., 2010b). 

Hypertension is the most common risk factor noted in 79% - 98% of Nigerian stroke 

patients. Ischaemic stroke accounts for 49% - 64% among Nigerian stroke patients 

compared to 80% - 93% recorded among Caucasians. Cerebral and subarachnoid 

haemorrhages constitute the remaining percentages, cerebral haemorrhages accounting 

for at least 75% of the remainder (Ogun et al., 2005; Owolabi, 2011). 

 

1.1.2. Global Burden of Dementia 

 

Dementia is characterized by significant decline in cognitive functioning that is 

sufficiently severe to impair independent social and occupational functioning.  It is a 

growing public health problem worldwide and the World Health Organization Mental 

Health Gap (mhGAP) document   considers  dementia a priority mental health disorder 

earmarked for scaled-up action on account of its huge economic cost and social  burden 

(World Health Organization, 2010). 

In a very recent systematic review and meta analysis of the global prevalence of 

dementia, the age-standardized prevalence rate of dementia in persons older than 60 

years ranged between 5 and 7 %. Prevalence rates were higher in Latin America (8.5%) 

but lower in sub-Saharan Africa (2 - 4%). It was estimated that 35.6 million people 

worldwide lived with dementia in 2010, while the numbers are expected to double every 

20 years to 65.7 million in 2030 and 115.4 million in 2050, the growth being driven by 

population growth and demographic ageing (Prince et al., 2013). 

Furthermore, much of the projected increase in the number of people with dementia will 

occur in the low and middle income countries, especially those in Southeast Asia and 

Latin America. In 2010, 57.7 % of all dementia cases lived in the LMIC regions but this 

is projected to increase to 63.4% and 70.5% in 2030 and 2050 respectively (Prince et 

al., 2013). (Table 1.1) 
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Major dementia subtypes include Alzheimer’s disease (AD), vascular dementia (VaD), 

Dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD).  Given the 

difficulties in diagnosing vascular dementia (VaD), methodological and other 

differences, there is considerable variation in its epidemiology. Much of the information 

available today on VaD accrued from studies done in the developed world.  A 

systematic analysis of previous studies obtained a prevalence ranging from 4.5 to 39% 

in clinical studies while in memory clinic- and population-based series VaD constituted 

8 – 15.8% of dementias with standardized incidence rates between 0.42 and 2.68 per 

100,000 world population. This, however, increased with age with rates being up to six 

times higher above age 85.  Analysis of data from 12 centres for which neuroimaging 

findings were available indicate that 26% of cases of dementia fulfilled the National 

Institute of Neurological Disorders and Stroke-Association Internationale pour la 

Recherché et l’Enseignement en Neurosciences (NINDS-AIREN) criteria for VaD 

(Roman, 2008). 

 

 Region Over 60 

population 

(million, 

2010) 

Crude 

estimated 

prevalence 

% (2010) 

No of people living with dementia 

(millions) 

2010 2030 2050 

Western 

Europe 
97.3 7.2 6.9 10.0 13.4 

North 

America 
63.7 6.9 4.4 7.1 11.0 

Latin 

America 
52.0 6.1 3.1 7.0 15.0 

Asia 406.6 3.9 15.9 33.0 60.9 

Africa 71.1 2.6 1.9 3.9 8.7 

 

Table 1.1: Total population > 60, estimated prevalence of dementia (2010) and estimated 

number of people with dementia in 2010, 2030 and 2050. (source: Prince et al. Alzheimer’s & 

Dementia 2013; 9: 63 -75)  
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There are limited reports on the epidemiology of VaD in sub - Saharan Africa 

(Ogunniyi and Akinyemi, 2010). Prevalence estimates of VaD are low ranging from 

0.6% to 2.1% for ages over 65 years although VaD accounts for 1/3 of Chinese patients 

with dementia(Kalaria et al., 2008) . Data available from the Ibadan – Indianapolis 

Dementia Project showed an overall dementia prevalence rate of 2.29% among > 65 

year old community-dwelling Yoruba Nigerians compared with 8.24% among African 

Americans. The prevalence of VaD among the Yoruba cohort was 0.72% (Ogunniyi et 

al., 2000).  Related data from the Assuit region of Egypt showed an overall dementia 

prevalence rate of 5.93% and 1.25% for VaD (Farrag et al., 1998)(Farrag et al., 1998). 

More recent data from  selected francophone African countries  still show similarly very 

low prevalence of VaD (Guerchet et al., 2009; Guerchet et al., 2010; Paraiso et al., 

2011; Mbelesso et al., 2012).The possibility of under-diagnosis of VaD in the 

developing regions exists due to lack of neuroimaging facilities, bias of existing survey 

instruments and diagnostic criteria, and higher stroke mortality. The population 

structure of most sub- Saharan Africa shows the elderly constituting less than 5% in 

most countries (Dotchin et al., 2013).  Progress in the field however has led to changes 

in the annotation of the vascular dementia construct to encompass milder cognitive 

changes without full dementing features. The subsequent section will discuss this in 

more detail. 

 

1.2. Vascular Cognitive Impairment 

 

The term ‘vascular cognitive impairment’ (VCI) describes a spectrum of cognitive 

disorders arising as a consequence of diseases related to blood vessels in the brain 

(O'Brien et al., 2003). Synonymous with ‘vascular cognitive disorder’(Sachdev, 1999), 

the VCI construct encompasses a whole range of levels of cognitive decline from mild 

deficits in one or more cognitive domains to a broad dementia syndrome (Moorhouse 

and Rockwood, 2008). It also integrates the interactions between vascular risk factors, 

cerebral vascular disorders of varying aetiologies and their accompanying cellular and 

molecular changes associated with the cerebral injury underlying the processes of 

cognitive dysfunction (Erkinjuntti and Gauthier, 2009). Thus VCI is an umbrella term 

that includes VCI –no dementia, vascular dementia and cognitive impairment of mixed 

(degenerative and vascular) origin (Moorhouse and Rockwood, 2008). 
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1.2.1. Historical aspects 

 

The link between cerebral vascular disorders (CVD) and cognitive dysfunction has been 

recognized since the days of Willis (1672) who first described“dullness of mind……”  

“forgetfulness”……and “foolishness” as a sequelae of apoplexy (stroke)(Roman, 1999).  

During the 18
th

 and early 19
th

 centuries, “brain congestion” most probably attributed to 

high blood pressure was most frequently diagnosed for conditions including stroke, 

anxiety and cognitive decline. Emil Kraeplin and Alois Alzheimer, during this period, 

used the concept of “arteriosclerotic dementia” to describe dementia resulting from 

chronic strangulation of blood supply to the brain. Alzheimer’s description of the 

neuropathology found in Auguste D also had evidence of significant small vessel 

disease (Alzheimer, 1907). Subsequent developments in the understanding of VCI could 

be attributed to the works of Otto Binswanger, who with Alzheimer seperated vascular 

dementia from dementia paralytica attributable to neurosyphilis. Binswanger also 

described subcortical arteriosclerotic encephalopathy which is now better known to be 

due to small vessel disease (Kalaria and Erkinjuntti, 2006).  

In the 1960s, the seminal clinico - neuropathological studies in Newcastle by Tomlinson 

and colleagues challenged the historical concepts of  ‘hardening of the arteries’ and 

provided concrete evidence that senile dementia of the Alzheimer type was the 

commonest cause of dementia (Tomlinson et al., 1970). They also provided evidence 

that destruction of brain tissue by ischaemic injury producing multiple infarctions is 

associated with cognitive impairment when a certain threshold is exceeded (Tomlinson 

et al., 1968). Following the works of Tomlinson and colleagues, Hachinski described 

‘multi-infarct dementia’ in a landmark 1974 paper stating that “...when vascular disease 

is responsible for dementia it is through the occurrence of multiple small or large 

cerebral infarcts”. He subsequently introduced the Hachinski Ischaemic Score 

(Hachinski et al., 1974; Hachinski et al., 1975). 
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However, over the last two decades, the evolution of the concept of VCI has witnessed 

the publication of several sets of diagnostic criteria for vascular dementia (Chui et al., 

1992; Roman et al., 1993; World Health Organization, 1993; American Psychiatric 

Association, 1994).  These have expanded the concept to include variations in the size 

and distribution of brain vascular pathologies. Now included are multiple cortical and/or 

subcortical infarcts, strategic single infarcts, non-infarction white matter lesions, 

haemorrhages and hypoperfusion as possible causes of vascular dementia. 

 It however became necessary to introduce the ‘vascular cognitive impairment’ (VCI) 

construct because the vascular dementia construct and its diagnostic criteria were 

heavily biased towards memory impairment, not recognizing the early manifestation of 

executive dysfunction. The ‘vascular dementia’ construct was insufficient to describe 

the heterogeneity of clinical profiles and pathologies seen in cognitive impairment and 

dementia associated with cerebral vascular disorders. Generally, the dementia construct 

was heavily biased by the predominance of impairment in the memory domain in AD 

whereas the pattern in VCI differs. It thus became necessary to introduce a construct 

which captured both the severity and specific cognitive domains affected (Sachdev, 

1999; O'Brien et al., 2003; Hachinski et al., 2006b). 

 

1.2.2. Diagnostic Criteria 

 

The five commonly used sets of criteria for vascular dementia (VaD) are: the Hachinski 

Ischaemic Score (HIS)(Hachinski et al., 1975) , the National Institute of Neurological 

Disorders and Stroke-Association Internationale pour la Recherché et l’Enseignement 

en Neurosciences (NINDS-AIREN) criteria (Roman et al., 1993), the State of California 

Alzheimer’s Disease Diagnostic and Treatment Centers (ADDTC) criteria (Chui et al., 

1992) , the DSM-IV criteria (American Psychiatric Association, 1994) and the ICD-10 

criteria (World Health Organization, 1993), with the latter two being more general and 

not as well operationalised as the first two. The DSM –V criteria were only recently 

released (American Psychiatric Association, 2013) while the eleventh revision of the 

ICD is still in progress.  

 

The Hachinski Ischaemic Score (HIS) was developed as a checklist of vascular risk 

factors and clinical features which contribute to cerebrovascular disease (Hachinski et 

al., 1975). Although the HIS and its modifications have been widely used to diagnose 

VaD, it was not designed for this purpose. The HIS recorded less than 70% accuracy 
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(Swanwick et al., 1996), moderate sensitivity (0.43) but high specificity (0.88) in 

confirmatory neuropathological studies (Gold et al., 1997) and remains the most widely 

used scale (with > 2200 citations) for identifying the cerebrovascular component of 

cognitive impairment and dementia. Recent efforts have been made to optimize the HIS 

and enhance its clinical utility (Hachinski et al., 2012) .  

 

The State of California Alzheimer Disease Diagnostic and Treatment Centers criteria 

for ischaemic vascular dementia (IVD) was developed in 1992 (Chui et al., 1992). It 

excludes dementia resulting from haemorrhagic cerebral injury and requires cognitive 

deficit in more than one domain (of any type), at least one infarct outside the cerebellum 

on neuroimaging, evidence of at least 2 strokes from history, clinical signs or 

neuroimaging or a single stroke with evident temporal link to the onset of dementia.  

Possible VaD is diagnosed in the absence of a definite temporal link to dementia onset 

or clinical and neuroimaging evidence of extensive sub-cortical white matter disease. 

These criteria recorded a sensitivity of 0.63 and specificity of 0.64 in the 

neuropathological confirmatory study (Gold et al., 1997). 

 

The National Institute of Neurological Disorders and Stroke-Association Internationale 

pour la Recherché et l’Enseignement en Neurosciences (NINDS-AIREN) criteria for 

vascular dementia was published in 1993 (Roman et al., 1993). These criteria require 

impairment in memory plus at least 2 other cognitive domains, cerebrovascular disease 

evident through clinical signs and relevant neuroimaging abnormality, temporal 

relationship of dementia onset within 3 months of stroke or an acute deterioration of 

cognitive function. A diagnosis of Possible VaD is made if neuroimaging evidence or a 

clear temporal association is absent. Neuropathological validation studies yielded 

sensitivity and specificity of 0.58 and 0.80 respectively in a geriatric cohort (Gold et al., 

1997). The specific requirement for neuroimaging abnormality probably accounts for its 

high specificity and low sensitivity 

 

The International Classification of Diseases – tenth revision (ICD -10) was published in 

1993 by the World Health Organization (World Health Organization, 1993) and requires 

patchy distribution of cognitive deficits, focal neurological signs and clinical or 

laboratory evidence of significant cerebrovascular disease (CVD) as well as evidence of 

a temporal link. The WHO is currently revising the International Classification of 
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Diseases towards the ICD -11 due for release in 2015 

(http://www.who.int/classifications/icd/revision/en/retrieved 11 -09-2013) 

 

The DSM – IV required the presence of impairment in memory in addition to one other 

cognitive domain for dementia, focal neurological symptoms or signs, or neuroimaging 

evidence of vascular injury and historical temporal relationship.  

The ‘Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM –V) 

has just been released (American Psychiatric Association, 2013), improving upon the 

DSM –IV (American Psychiatric Association, 1994) which had, hitherto, been widely 

used in routine clinical practice and epidemiological studies.  

 

These criteria share a number of conceptual weaknesses haven been developed largely 

based on consensus without gold standard neuropathological confirmation (Kalaria et 

al., 2004; Hachinski et al., 2006b; Jellinger, 2008a; Deramecourt et al., 2012) although 

a general consensus is yet to be achieved on the neuropathological criteria for VCI. 

They also demonstrate differential utility and accuracy with DSM –IV tending to give 

the highest rate of VaD diagnosis, the NINDS –AIREN the lowest and the ICD -10 and 

ADDTC intermediate rates.  DSM –IV proved useful for epidemiological studies 

because of its high sensitivity and absence of neuroimaging requirement while the 

NINDS-AIREN criteria has been useful in clinical trials because of high specificity 

(Wetterling et al., 1996; Pohjasvaara et al., 1997; Chui et al., 2000). 

 

Other specific shortcomings of these criteria include:  

[1] The emphasis on ‘dementia’ prejudices against the growing understanding that these 

impairment lie on a continuum rather than occurring as discrete entities(Viswanathan et 

al., 2009). This precludes the recognition of early and potentially reversible mild 

cognitive impairment. Besides, the term ‘dementia’ is primarily used in older 

individuals whereas cognitive disorders can affect individuals at all ages (Sachdev, 

2000) .  These led to repeated calls to abandon the VaD construct in favour of an 

overarching description of vascular cognitive impairment (VCI)
 
to overcome this 

limitation (Hachinski and Bowler, 1993; O'Brien et al., 2003). 

 

[2] The majority of these criteria sets require memory impairment as necessary for the 

diagnosis of VaD, thus using a definition of dementia based on clinical features of AD. 

Substantial evidence have, however, accrued  suggesting that disturbance in frontal-

http://www.who.int/classifications/icd/revision/en/retrieved%2011%20-09-2013
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executive functions, rather than memory, is the predominant feature of VaD  and 

memory impairment may in fact be absent in some cases with significant cognitive 

deficits or its characteristics may be different from those seen in AD(Looi and Sachdev, 

1999; Ballard et al., 2003b; Ballard et al., 2004a). 

 

[3] These criteria sets differ significantly on the requirements for levels of cognitive 

impairment, number and location of strokes, neuroimaging abnormalities and 

neurological features, such that when applied to the same data set, the prevalence 

estimates vary as much as fourfold between criteria (Wetterling et al., 1996; 

Pohjasvaara et al., 1997) (Chui et al., 2000)).  

 

[4] These criteria do not take due cognizance of the fact vascular cognitive disorder is 

not just one disease but one of diverse aetiologies (Kalaria et al., 2004; Jellinger, 2013) . 

  

[5] These criteria do not recognize the co-existence of vascular and neurodegenerative 

pathologies and their additive/synergistic effect (Kalaria, 2002b; Kalaria et al., 2004; 

Iadecola and Davisson, 2008) which is sometimes referred to as ‘mixed’ dementia. 

Furthermore, there is increasing recognition that vascular and neurodegenerative 

processes may interact, so that risk factors for CVD also increase the risk of AD 

(Skoog, 2000; Kalaria et al., 2012a; Kalaria and Ihara, 2013). 

 

In response to the aforementioned failings of  the  VaD criteria and in an attempt to 

move the field forward, the last decade has witnessed efforts to harmonize the standards 

of assessment of various aspects of vascular cognitive impairment in order to set the 

pace for establishment of globally acceptable criteria for clinical practice and research 

(Hachinski et al., 2006b). Recently, recommendations for diagnosis of VCI have been 

published (Gorelick et al., 2011)  while the recently published fifth revision of the 

Diagnostic and Statistical Manual (DSM- V) and the ICD -11 in preparation reflect 

significant changes that attempt to address the shortcomings.  
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The 20006 NINDS-CSN Harmonization standards    

 

The NINDS and the Canadian Stroke Network convened a workshop in 2006
 
to 

harmonize the standards of assessment of various aspects of cognitive impairment due 

to vascular factors and made a number of recommendations to guide the conduct of 

studies .  Whilst the harmonization standards do not currently  include specific criteria, 

research using these standardized methods of assessment should yield  valid results 

suitable for consideration in the generating diagnostic criteria with excellent clinimetric 

properties. The assessment recommendations covered different aspects including 

clinical assessment, neuropsychological, neuroimaging, neuropathological, genetic 

evaluation as well as animal models (Hachinski et al., 2006a) . Validation studies of the 

recommended standards are now being published (Pendlebury et al., 2012) including 

Chinese (Wong et al., 2013)(Wong et al, 2012) and Korean versions (Yu et al., 2013).  

 

AHA/ASA 2011 Criteria 

 

Recently, the American Stroke Association (ASA) and the American Heart Association 

(AHA) have published a joint statement on vascular contribution to cognitive 

impairment and dementia (Gorelick et al., 2011). The statement provided an overview 

of the evidence on vascular contributions to cognitive impairment and dementia. 

Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and 

pathophysiological aspects, role of neuroimaging and vascular and other associated risk 

factors, and potential opportunities for prevention and treatment were reviewed and 

criteria for VCI were advanced building on the earlier work of the NINDS-CSN Group 

(Hachinski et al., 2006a). The proposed criteria recognized the occurrence of vascular 

cognitive disorder as a continuum and thus included criteria for VaD (probable and 

possible) as well as VaMCI (probable and possible). 

Similar to previous criteria, impairment in at least one and two cognitive domains was 

required for VaMCI and VaD respectively, although this domain does not necessarily 

have to include memory. The criteria require objective assessment of cognitive 

functions covering at least four major domains of executive function, memory, language 

and visuospatial function. A clear temporal relationship between vascular event (eg 
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stroke) and onset of cognitive impairment is required while functional impairment must 

be independent of motor/sensory deficit resulting from the vascular event.   

 However, the co- occurrence of mixed vascular and degenerative pathologies was  not 

adequately teased out as cases with such co-existence were recommended to be 

classified as possible VaD or possible VaMCI without a clear statement on how such 

degenerative pathologies can be diagnosed in live as well as the required diagnostic 

threshold, since the utilization of advanced neuroimaging techniques such as Pittsburg 

Compound B (PIB) may not be universally available. Besides, there is also the 

questionable category of ‘unstable VaMCI’ to capture those subjects whose cognition 

improves as symptoms revert to normal. The instability connoted by this term would 

suggest that the cognitive trajectory can move in either directions of improvement or 

worsening.   

 

The 2013 DSM – V Neurocognitive Disorders Criteria  

 

In the DSM –V, a major change from the DSM – IV is the introduction of the diagnosis 

of ‘mild neurocognitive disorder’. This accords recognition to the concept of ‘mild 

cognitive impairment’ (MCI)(Petersen et al., 1999) or ‘cognitive impairment no 

dementia’ (CIND) as  diagnostic entity of scientific, clinical and epidemiological 

significance. With the emergence of different biological markers such as  CSF –beta 

amyloid  and tau, platelet tau(Arai, 1996) (Schoonenboom et al., 2004) (Mukaetova-

Ladinska et al., 2013a)and positron emission tomography (PET) evidence of  β – 

amyloid deposition (Klunk et al., 2004) there is fast progress in the understanding of 

neurobiology of cognitive disorders. Thus, it is becoming increasingly possible to 

identify individuals in ‘pre – clinical stage’ of disease with the possibility of 

interventions that can retard or reverse the progression of the disease. This argument 

was a major justification for the inclusion of ‘mild neurocognitive disorder’ in the DSM 

– V (Ganguli et al., 2011). The other diagnosis ‘Major neurocognitive disorder’ covers 

the ‘dementia’ construct in previous versions. Other neurocognitive disorders associated 

with traumatic brain injury, Parkinson’s disease, Huntington’s disease, prior diseases, 

HIV and substance abuse have also been incorporated. 
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1.3.Post – Stroke Vascular Cognitive Impairment 

 

Cognitive changes are common, though not universal in patients with stroke.. This 

results in increased care giver burden, higher cost of care, impaired quality of life and 

higher mortality (Jaracz and Kozubski, 2003). Given the discussion of diagnostic 

criteria in the last section, what is the evidence regarding the frequency of  post – stroke 

VCI ? 

 

1.3.1. Prevalence  

 

Up to 64% of stroke survivors have some degree of cognitive impairment while up to a 

third develop frank dementia (Hachinski et al., 2006b). The prevalence rates of post-

stroke vascular cognitive impairment vary with study design, study population, test 

batteries and diagnostic criteria. It also varies between hospital-based and population-

based studies as well as whether post-stroke vascular cognitive impairment no dementia 

(vCIND) or post-stroke dementia (PSD) is measured. A review of the extant literature 

on post-stroke cognitive impairment (1950- 2013) reveals vCIND rates ranging between 

21.8 % and 71.4%  and PSD rates between 2.9% and 41.5 % in twenty-eight hospital-

based studies while in six community-based studies, vCIND rates range from 6.1% to 

37.5% and PSD  rates vary between 7.0% and 19.3% (Table 1.2). 

In a systematic review and meta analysis of 22 hospital-based and eight community-

based studies, Pendlebury and Rothwell (2009) obtained a pooled prevalence of post-

stroke dementia ranging from 7.4% (4.8 -10.0) in population – based studies of first – 

ever stroke in which pre-stroke dementia was excluded to 41.3% (29.6 – 53.1) in 

hospital –based studies of recurrent stroke in which pre-stroke dementia was included. 

The analysis demonstrated much  heterogeneity in the prevalence figures of post-stroke 

dementia arising from marked variation in  patient characteristics (including cut off 

age), inclusion criteria, test batteries and diagnostic criteria and inclusion/exclusion of 

pre-stroke dementia and recurrent strokes versus first-ever strokes (Pendlebury and 

Rothwell, 2009b). Generally, however, up to a 9 –fold increased risk of dementia is  
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                                                                                                 Hospital-based Studies 

No Authors Location 

Date of 

cohort 

collection 

Study  

design 

Sample  

size 

Mean 

age 

(yrs) 

% 

female 

Stroke  

type 

Diagnostic  

criteria 

%  

vCIND 

% 

PSD Risk factors 

1 
(Tatemichi 
et al., 1990) 

Columbia, 
USA 1988-90 X 251 70 53 IS DSM-IIIR ND 26.3 

Age, previous stroke, previous MI, cortical atrophy, 
large vessel disease  

2 

(Gorelick et 

al., 1993) 

Chicago,  

USA 1987-90 X 147 72 49 

multipl

e IS DSM-III ND 41.5 

Low education, low income, family history of 

dementia, proteinuria, worse neurological status 

3 

(Andersen 

et al., 1996) 

Farsoe and 
Aalborg, 

Denmark 1991 -92 L 142 72  ND IS,H 

Mattis Dementia 

Rating Scale ND 26.1  Older age, female gender, stroke severity 

4 
(Censori et 
al., 1996) 

Bergamo,  
Italy 1993 -94 X 125 65 35 IS NINDS-AIREN ND 13.6 

Older age, DM, aphasia, MCA territory infarction, 
frontal lesion 

5 

(Pohjasvaar

a et al., 

1997) 

Helsinki, 

Finland 1993 -95 X 451 71 49 IS DSM III ND 31.8 

Dysphasia, major dominant stroke syndrome , history 

of prior cerebrovascular disease , and low educational 

level .  

6 

(Inzitari et 

al., 1998) 

Florence,  

Italy 1993-94 X 339 71 48 IS, H   ND 16.8 

Older age, female gender, stroke severity, atrial 

fibrillation, aphasia 

7 

(Linden et 

al., 2004) 

Gothenburg

, Sweden 1993-94 X 149 80 65 IS,H DSM-IIIR ND 28 not stated 

8 

(Barba et 

al., 2000) 

Madrid,  

Spain 1994-95 

X,L (FU at 

3,6,24 

mths) 326 69 47 IS, H 

DSM -IIIR, 

DSM IV ND 30 

Age, nephropathy, atrial fibrillation, previous mental 

decline, and stroke  severity 

        9 

(Hoffmann, 

2001) 

Durban, 

 South 

Africa 1992-98  X 1000 

 -
NDND

DNNN

DND 44 IS, H 

Clinical 

judgement 

63.5  
( 2 weeks 

post-

stroke) ND 

increasing age, black race, overweight body habitus, 

and recent infection 

10 

(Henon et 

al., 2001) 

Lille,  

France 1995-96 

L (6 

months, 

yrly × 3 yrs 202 72 46 IS, H 

ICD-10; DSM -

IIIR ND 28.5 

ageing, pre-existing cognitive decline, severity of 

deficit at admission, diabetes mellitus, and silent 

infarcts. 

11 

(Madureira 

et al., 2001) 

Lisbon, 

Portugal 1995-97 X 237 59 45 IS, H DSM IV 55 6 

female gender (P=0.01), older age (P=0.01) and lower 

education level 

12 

(Lowery et 

al., 2002) 

Newcastle,  

UK  ND 

L (FU at 1, 

6, 12 mths) 360 74 52 IS,H DSM IV ND 23 age > 75 years 

13 

(Ballard et 

al., 2002) 

Newcastle,  

UK 1999 -2000 X 150 ND ND IS,H 

DSM IV, 

CAMCOG, 

COGDRAS-D 32 ND ND 

14 
(Stephens et 
al., 2004) 

Newcastle,  
UK 1999 – 2003 X 384 80 48 IS,H DSM -IIIR 24 8.6 ND 

15 

(Lin et al., 

2003) Taiwan 1995-99 X 283 64 34 IS ICD-10   ND 9.2 

age > 65 yrs, low occupational attainment, prior stroke, 

left carotid vascular territory, moderate to severe stroke 

16 
(Sachdev et 
al., 2004a)  

Sydney, 
Australia 1997-2000 X,L 170 72.2 39 IS, Consensus 39.4 19.1 premorbid functioning and stroke volume 
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No Authors Location 

Date of 

cohort 

collection 

Study  

design 

Sample  

size 

Mean 

age 

(yrs) 

% 

female 

Stroke  

type 

Diagnostic  

criteria 

%  

vCIND 

% 

PSD Risk factors 

17 

(Zhou et al., 

2005) 

Chongqing, 

China 1999-2000 X 434 68 47 IS DSM IV 37.1 27.2 

age, low educational level, everyday drinking, prior 
stroke, dysphasia, atrial fibrillation, and left carotid 

territory infarction 

18 

(Klimkowic

z et al., 
2002)  

Cracow, 
Poland 2000-01 X 220 66 55 IS,H 

DSM 
IV/IQCODE ND 31.4 age, DM, neurological deficit on admission 

19 
(Tang et al., 
2004) 

Hong Kong, 
China 2000-02 X 280 71 55 IS,H DSM IV  ND 20 

Premorbid level of cognitive function, severity of 

stroke, leukoaraiosis, level of education, and bilateral 
lesions. 

20 

(Tang et al., 

2006) 

Hong Kong, 

China 2000-02 X 280 71 55 IS,H DSM IV 21.8 ND 

female sex, education, National Institutes of Health 

Stroke Scale dysarthria score, urinary incontinence, and 

atrial fibrillation 

21 

(de Koning 

et al., 2000)  

Rotterdam-

Rijnmond, 

Netherlands 1993-96 X 300 70 40 IS,H DSM -IIIR ND 23.7 ND 

22 

(de Koning 

et al., 2005) 

Rotterdam-
Rijnmond, 

Netherlands 2000-02 X 121 70 38 IS,H DSM -IV ND 28.9 ND 

23 

(Rasquin et 

al., 2005a) 

Maastricht, 

Netherlands 2000-01 L 156 68 45 IS DSM IV 

72.4 (at 1 
month 

post-

stroke) 9.6 Psychiatric symptoms 

24 

(Fatoye et 
al., 2007) 

Ile Ife,  

Nigeria 2006 X 109   41.3 IS, H MMSE  17.4 ND ND 

25 
(Khedr et 
al., 2009) 

Assiut,  
Egypt ND X 81 58 33 IS,H DSM IV ND 21 

increasing age, low educational level, large vessel and 

lacnar infarction, severity of stroke, prolonged P300 
latency, smoking, hypertension, elevated Hcy levels. 

26 
(Delgado et 
al., 2010)  

Santiago, 
 Chile  ND X, L 164 72  ND IS, H DSM IV 39 22 

 Higher functional impairment at hospital admission, 

left-hemisphere large-vessel infarction, and a larger 
amount of white matter changes. 

27 

(Dong et 

al., 2012) Singapore 2009 -2011 X,L 239 60 32.4 IS,H DSM IV 54.8 2.9 

older age, lower education, smoking, previous heart 

disease, previous stroke, stroke severity 

28 

(Yu et al., 

2013) 

Korea  
(multi-

centre 

study) 2007- 2008 

X -

multicentre 353 64 39 IS,H 

DSM IV 

(Korean VCI HS 

Protocol) 49.9 12.7 older age, smal vessel disease, poor functional status 

  

 

 

Table1. 2 : Profile of post - stroke cognitive impairment and dementia from hospital-based  studies (1950 -2013)                            

X= cross-sectional; L=longitudinal;IS=ischaemic;H=haemorrhagic;ND=not documented; DSM =Diagnostic Statistical Manual ; ICD -10= International Classification of 

Disease - 10; MMSE = Minimental State Examination; NINDS AIREN = National Institute of Neurological Disorders and Stroke and Association Internationale pour la 

Recherche et  l’Enseignement en Neurosciences ; IQCODE = informant questionnaire on cognitive decline in the elderly; VCI = Vascular Cognitive Impairment; 

CAMCOG = Cambridge Cognitive Examination; COGDRAS = cognitive drug research computerized assessment system;  
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                                                                                              Population-based studies 

No Author Location 

Date of 

cohort 

collection 

Study  

Design 

Sample  

size 

Mean 

age 

(yrs) 

% 

female 

Stroke  

type 

Diagnostic  

criteria 

%  

vCIND 

% 

PSD Risk factors 

1 

(House et 

al., 1990) 

Oxford , 

UK 1990 X,L 122 71 55   MMSE 21  ND Age 

2 

(Kokmen et 

al., 1996) 

Rochesta, 

Minnesota, USA 1960 -84 L, RPS 971 ND 50 IS 

Review of 

medical 

records ND 7 age, male gender, repeat stroke 

3 

(Ivan et al., 

2004) 

Framingham, 

USA 1982 -2001 L 212 79 61 IS,H 

DSM III, 

MMSE, DSM 

IV ND 19.3 

age < 80 years, ApoE3/E3, high school 

graduate 

4 

(Srikanth et 

al., 2004) 

Melbourne, 

Australia 1998-99 X,L 99 69 41 IS,H DSM -IV 37.5 12.5 Stroke, age, baseline cognitive ability. 

5 

(Das et al., 

2012) Kolkota, India 2006-2010 L 281  63.1   ND  IS.H  DSM -IIIR 6.1 13.9 older age, cortical atrophy 

6 

(Douiri et 

al., 2013b) London, UK 1995 -2010 P,L 4212 70 47 IS, H MMSE 22 ND 

age, black race, occupational attainment, 

small vesle disease, lacunar infarction 

 

 
Table 1.3: Profile of post-stroke cognitive impairment and dementia from community-based studies (1950 -2013)                           

X= cross-sectional; L=longitudinal;IS=ischaemic;H=haemorrhagic;ND=not documented; DSM =Diagnostic Statistical Manual ; ICD -10= International Classification of 

Disease - 10; MMSE = Minimental State Examination; NINDS AIREN = National Institute of Neurological Disorders and Stroke and Association Internationale pour la 

Recherche et  l’Enseignement en Neurosciences ; IQCODE = informant questionnaire on cognitive decline in the elderly; VCI = Vascular Cognitive Impairment; 

CAMCOG = Cambridge Cognitive Examination; COGDRAS = cognitive drug research computerized assessment system;                             
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seen in patients with stroke versus controls in the first year after stroke (Tatemichi et al., 

1994) (Kokmen et al., 1996; Desmond et al., 2002). 

Efforts to quantify the burden of post-stroke cognitive impairment without dementia 

(CIND) have gained momentum in the last two decades compared to earlier periods of 

study. Table 1.2 shows generally higher rates of post stroke – CIND than PSD thus 

revealing the high burden of this previously under- recognized and under-diagnosed 

cognitive dysfunction among stroke survivors. However, it is noted that the highest rates 

were reported in subjects who were assessed within the first month after the ictus (72.4% 

(Rasquin et al., 2005); 63.5% (Hofmann, 2001), a period during which acute post- stroke 

delirium might not have resolved fully (Desmond DW, 1996). Nonetheless,  generally 

higher rates of dementia are reported within 3 months after stroke than at 1 year or more 

later although  attrition of patients as a result of mortality need to be considered (Leys et 

al., 2005). 

 

1.3.2. Clinical Features of VCI 

 

As previously discussed, vascular cognitive impairment (VCI) is a continuum. It is 

characterized typically by the manifestations of disturbance of the subcortico-frontal 

circuitry which include early deficits of attention, slowing of information processing speed, 

mental inflexibility and impairment of working memory, planning, organization and goal-

directed behaviours. Memory impairment may be equally or less prominent but tends to 

occur later (Looi and Sachdev, 1999; Reed et al., 2007). Furthermore, the memory problem 

is more of a deficit of retrieval of stored information rather than of storage (Cummings, 

1994; Moorhouse and Rockwood, 2008).  Language and visuospatial/ visuoconstructional 

deficits also occur (Shibata et al., 2007).  

 Among stroke survivors, the pattern of cognitive impairment is generally similar between 

vCIND and PSD but more severe in PSD across multiple domains, and more especially the 

memory domain (Ballard et al., 2002; Ballard et al., 2003b; Sachdev et al., 2004a). In the 

study of 384 stroke survivors in Newcastle, a sub- group of subjects without clinically 

apparent cognitive impairment demonstrated increased simple and choice reaction time 
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signalling slowing of mental speed despite lack of apparent impairment in cognitive 

domains (Stephens et al., 2004).   

Due to disruption of  thalamocortical, striatocortical and prefrontal-basal ganglia pathways, 

and the consequent impact on cortical and limbic brain structures, post-stroke VCI may also 

be associated with behavioural and psychological disturbances (O'Brien et al., 2003).  

 

1.3.3 Natural History of VCI  

 

The classical description of multi-infarct dementia was that of an acute step-wise or 

fluctuating decline in cognition, with intervening periods of stability (Hachinski et al., 

1974; Hachinski et al., 1975; Hachinski, 1983). This pattern is usually temporally related to 

the cerebrovascular event and not difficult to establish clinically. Cognitive impairment is 

usually at its peak soon after a stroke and may show significant improvement over the next 

three months whilst associated delirium clears.
 
 Further improvement may occur beyond the 

three months, but its rate is much slower. Some individuals, however, remain stable whilst 

others experience further decline in cognitive functions.  

Findings from the Newcastle study showed improvement in global cognition in 50% of 

subjects, 41%  exhibited stable cognition, while 9% developed incident dementia between 3 

and 15months after stroke (Ballard et al., 2003a; Kalaria, 2012b).  

Over an average follow up period of 3.8 years, 24 % of survivors developed incident 

dementia giving an incidence rate of 6.3 cases per 100 person years (Allan et al., 2011). 

Other studies of post-stroke cognitive impairment have similarly documented improvement 

in 10 - 31 % of subjects and further decline and incident dementia in 21 – 36% of survivors 

(Desmond DW, 1996; Rasquin et al., 2002; Tham et al., 2002; Sachdev et al., 2009). 

Younger stroke cohorts are more likely to experience improvement (Tham et al., 2002) 

while individuals with vCIND progress to dementia at a rate of about 8% per year (Sachdev 

et al., 2009). 

 

 



19 
 

1.3.4. Determinants of Post-Stroke VCI  

 

In the systematic review by Pendlebury and Rothwell (Pendlebury and Rothwell, 2009b), 

significant predictors of dementia after stroke were identified and categorized into patient- 

and stroke-related variables. Patient-related variables include increasing age, low level of 

education, dependency before stroke and pre-stroke cognitive decline without dementia.  

Age is a strong risk factor for all types of dementia and several studies of post-stroke 

cognitive impairment also show this consistently (Kalaria, 2012b). Educational and 

occupational attainment have been described as surrogates of cognitive reserve (Stern, 

2009). Several studies on stroke survivors have demonstrated a strong association between 

low educational attainment and risk of dementia (Sharp and Gatz, 2011; Meng and D'Arcy, 

2012). Pre-stroke cognitive decline has been associated with post-stroke cognitive decline 

and is considered to be due to possible Alzheimer neuropathology which becomes 

unmasked or exacerbated after stroke (Leys et al., 2005) . However, findings from the large 

Rotterdam Study were contrary and suggested that pre-stroke cognitive function may not be 

a major determinant of post-stroke dementia (Reitz et al., 2008).  

Co - morbidities like arterial hypertension, diabetes mellitus, atrial fibrillation, myocardial 

infarction] cardiac arrhythmias, congestive cardiac failure also significantly predict post-

stroke cognitive impairment have demonstrated variable association with post-stroke 

cognitive decline. For instance, the recent meta-analysis reported that vascular risk factors 

like diabetes and atrial fibrillation but not hypertension, ischaemic heart disease, cholesterol 

levels, previous transient ischaemic attack or previous smoking were significant predictive 

factors of post-stroke dementia (Pendlebury and Rothwell, 2009a).  

 However, the combined effect of aggregated vascular risk factors may be more important 

than individual risk factors especially in putting the brain at risk over a prolonged period of 

time as recently demonstrated in the Newcastle cohort wherein aggregated number of 

vascular risk factors was a strong predictor of dementia and death in post - stroke subjects 

(Sachdev et al., 2006; Allan et al., 2011). 

 Stroke-related variables that predict cognitive decline include more severe clinical deficit 

at stroke onset, stroke recurrence, supratentorial lesions, left hemispheric lesions, multiple 
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infarcts, strategic infarcts and territorial infarcts. The meta analysis found multiple lesions 

or recurrent stroke events over the course of time to be strongly associated with the 

development of incident dementia, the risk rising up to 30% (Pendlebury and Rothwell, 

2009a) . Lacunar strokes increased the risk of post-stroke dementia by seven times that of 

other stroke subtypes in the 24 –year-population –based Dijon Stroke Registry (Bejot et al., 

2011).  

Besides, complications arising during the acute stage of stroke care such as infection, 

incontinence, aspiration, hypoxic-ischaemic episodes and early occurrence of seizures have 

also been shown to be risk factors for subsequent cognitive decline (Moroney et al., 1996; 

Hoffmann, 2001). 

NOS 3gene and ApoE genes (especially the 4 allele) have been independently associated 

with cognitive decline in stroke survivor (Jones et al., 2011; Morris et al., 2011).   

 

1.3.5. Pathological Substrates 

 

Pioneering studies from Newcastle (Blessed et al., 1968; Tomlinson et al., 1968; 

Tomlinson et al., 1970) and more recent evidence (Jellinger, 2008b; Jellinger, 2013) have 

shown that the volume, location and number of cerebrovascular lesions are important 

pathogenic factors in the development of post-stroke VCI. Besides, neurodegenerative 

changes, deep white matter lesions, hippocampal microinfarct/sclerosis, basal ganglia and 

thalamic microinfarcts and lacunes, global atrophy and medial temporal lobe atrophy are 

also important substrates of VCI especially in patients with small infarct volumes (Kalaria 

et al., 2004) (Bastos-Leite et al., 2007). 

Estimates of the proportion of PSD patients with presumed Alzheimer pathology are up to 

60% in some series, while up to 30% have a history of dementia before stroke and 

significant medial temporal lobe atrophy respectively (Pohjasvaara et al., 1999; Cordoliani-

Mackowiak et al., 2003; Leys et al., 2005). 

 Neurochemical studies in VaD have shown abnormalities in key neurotransmitter systems, 

particularly cholinergic deficits (Roman and Kalaria, 2006) (Keverne et al., 2007) which 
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may cause cerebral hypoperfusion, a critical factor in the pathogenesis of VaD. Other 

neurochemical deficits in VaD include reduction in vasopressin and histamine due to 

lesions in the supraoptic and tuberomamillary nuclei (Ishunina et al., 2004) as well as 

glutamatergic deficits (Kirvell et al., 2010). 

 

1.3.6. Neuroimaging features 

 

Evidence of significant vascular pathology in stroke is usually examined through structural 

neuroimaging techniques including computed tomography (CT) scan and magnetic 

resonance imaging (MRI) - based techniques although the latter is more sensitive. Newer 

MRI-based methods include diffusion tensor imaging (DTI). 

 Cerebrovascular diseases are aetiologically and morphologically heterogenous,  

consequently, the neuroimaging features are diverse.  In stroke, there may be single or 

multiple infarcts involving the cortical regions of the frontal, temporal, parietal or occipital 

lobes, the infratentorial structures,  the hippocampus or sub-cortical structures such as the 

thalamus or the basal ganglia. Other imaging biomarkers which are particularly important 

for small vessel strokes include white matter hyperintensities, lacunar infarcts, microbleeds 

and enlarged Virchow Robin spaces (Knopman, 2007; Mills et al., 2007).  

Cortical infarcts, multiple anterior infarcts and MCA territorial infarct have been associated 

with cognitive impairment in stroke patients (Tay et al., 2006; Nys et al., 2007; Jaillard et 

al., 2010).  Lacunar infarcts result from occlusion of perforating arteries and may appear as 

cystic lesions with signal intensity similar to that of CSF and may present as clinical stroke 

syndromes or remain silent (Derouesne and Poirier, 1999).   

Medial temporal lobe atrophy at baseline is a significant determinant of the course of 

cognition after stroke predicting further cognitive decline, dementia and death (Henon et 

al., 1998; Firbank et al., 2007; Firbank et al., 2012) while amygdala volume  correlated 

with  cognitive functions  in an Australian stroke cohort (Sachdev et al., 2007a; Sachdev et 

al., 2007b). 

White matter hyperintensities connote areas of high signal intensities best seen on T2 

weighted MRI sequences or fluid attenuated inversion recovery (FLAIR) sequences on 

magnetic resonance imaging (MRI). They  may be ‘periventricular’, seen around the 
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margins of the lateral ventricles (PVH) or ‘deep’, occurring in the deep parts of the corona 

radiata and centrum semiovale (DWMH) (Mills et al., 2007).  They represent pathologic 

ischaemic demyelination predominantly (Young et al., 2008) though seepage of CSF from 

the lateral ventricle into interstitial spaces may contribute to PVH . Using positron emission 

tomography (PET) imaging, WMH corresponds to areas of hypometabolism, reduced 

cerebral blood flow and increased oxygen extraction which are further evidence of the 

ischaemic origin (Yamaji et al., 1997; Takahashi et al., 2000).  White matter 

hyperintensities correlate with measures of executive function (Burton et al., 2004; Wen et 

al., 2004; Jokinen et al., 2012) .  Assessing white matter integrity in a cohort of 

Singaporean stroke survivors compared to controls using diffusion tensor imaging (DTI), 

subjects with vCIND and PSD revealed  an increased mean diffusivity in the white matter 

and decreased generalized fractional anisotropy in the  vCIND group and these changes 

predominated in the frontal lobes (Jin Thong et al., 2013) .  

Using arterial spin labelling MRI to determine cerebral blood flow, a recent study on a sub-

cohort from the Newcastle study found evidence of reduced grey matter/white matter 

cerebral blood flow in PSD relative to control subjects and non – demented stroke subjects 

(Firbank et al., 2011). More recently, the imaging of amyloid with compounds such as the 

radiolabeled Pittsburgh compound B (
11

C - PiB) has received much interest and is being 

proposed as a biomarker of MCI  associated with AD (Albert et al., 2011) . Amyloid 

imaging has recently been used to support the diagnosis of pure subcortical vascular 

dementia (Lee et al., 2011a) as well as post-stroke dementia (Mok et al., 2010) suggesting 

that the latter may bedue to a combination of AD pathologic changes and vascular 

pathology. 

 

1.3.7 Treatment 

 

The primary approach to the treatment of VCI has been the management of vascular risks 

and pharmacologic treatment. There is established evidence for the occurrence of 

cholinergic deficit in VCI (Roman and Kalaria, 2006; Keverne et al., 2007) based upon 

which trials of cholinesterase inhibitors were conducted (Bullock et al., 2004; Erkinjuntti et 

al., 2004). Trials have confirmed the usefulness of Donepezil (Black et al., 2003; Roman et 

al., 2010), which showed consistent modest cognitive improvements while galantamine and 
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rivastigmine have less robust effect (Craig and Birks, 2005; Birks et al., 2013). Besides 

pharmacotherapy, there is only limited evidence in support of non - pharmacological 

approaches such as cognitive stimulation and acupuncture (Quayhagen et al., 2000). 

Management of vascular risk factors follows the general principles of life style 

modification and use of specific pharamacologic agents following appropriate evidence-

based treatment guidelines (Fraser et al., 2012). 

 

1.3.8. Prevention 

 

This entails general preventive measures including lifestyle modification: cessation of 

smoking, moderation of alcohol intake, physical activity, weight control, early detection 

and proper management of hypertension, diabetes and dyslipidaemia and other vascular risk 

factors. These are discussed in details in the next section.  
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1.4. Vascular Risk Factors in Cognitive Decline and Dementia  

 

Several vascular risk factors have been found, in the last two decades, to be associated with 

cognitive decline and dementia (both degenerative and vascular). These include 

hypertension, diabetes mellitus, hypercholesterolemia, obesity and metabolic syndrome, 

smoking, atherosclerosis and apolipoprotein E (APOE).   Clinically, the risk of cerebral 

vascular disease can be assessed by the profile of vascular risk factors as demonstrated in 

the Hachinski Ischaemic Score (Hachinski et al., 1974) and the Framingham stroke risk 

score (Wang et al., 2003) . These were outcomes of clinico-epidemiologic investigations 

(Gorelick et al., 2011). 

 

1.4.1. Hypertension 

 

The literature is replete with studies on the relationship between blood pressure and 

cognitive function, including evidence from experimental, clinical and epidemiological 

studies. Hypertension appears to be the strongest vascular disease risk factor for dementia 

(Kennelly et al., 2009). Hypertension in mid-life predisposes to cognitive decline and 

dementia while in late life, the relationship appears to be J-shaped (Knopman, 2009).  

Although initial cross-sectional studies found both positive (Starr et al., 1993)  (Seux et al., 

1998) and negative  correlations between blood pressure and cognitive decline, longitudinal 

studies have been more informative showing positive (Skoog et al., 1996; Kivipelto et al., 

2001; Knopman et al., 2001; Bohannon et al., 2002)(Skoog et al., 1996, Kivipelto et al., 

2001, Knopman et al., 2001),U-shaped(Bohannon et al., 2002) (Bohannon et al., 2002), 

negative (Verghese et al., 2003) or no correlation (Morris et al., 2001)  with cognitive 

decline and dementia. In a recent meta-analysis, hypertension was significantly associated 

with increased risk of incident VaD (odds ratio, OR: 1.59, CI: 1.29-1.95, p < 0.001) and 

prevalent VaD (OR: 4.84, CI: 3.52-6.67, p < 0.001)(Sharp et al., 2011). Long-standing 

increase in blood pressure may increase risk of dementia by inducing small-vessel disease, 

WM changes and cerebral hypoperfusion through the disruption of vasoregulatory 

functions or atherosclerotic disease (Kalaria, 2010; Waldstein et al., 2010) .  
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Antihypertensive therapy, particularly with Angiotensin Converting Enzyme inhibitors 

/Angiotensin Receptor Blockers, has been shown to reduce the incidence of cognitive 

decline and dementia (Takeda et al., 2009; Wang et al., 2009).  In a Cochrane review of 

three trials, Mc Guiness et al showed that BP reduction resulted in 11% reduction in the 

relative risk of dementia in patients with no prior cerebrovascular disease (McGuinness et 

al., 2006)    while Haag et al (2009) also showed that antihypertensive use was associated 

with an 8% reduction of risk of dementia per year of use in persons < 75 years of age (Haag 

et al., 2009) .  A recent clinic-pathological study also revealed that persons treated for 

hypertension in mid-life were less demented clinically and had less AD pathology than 

either non-hypertensive patients or hypertensive patients who were not treated (Hoffman et 

al., 2009) .  However, blood pressure lowering in later-life may not prevent the 

development of cognitive decline and dementia in elderly hypertensives with no previous 

evidence of cerebrovascular disease (McGuinness et al., 2009b) .  

 

1.4.2. Diabetes Mellitus and Metabolic Syndrome 

 

A relationship between cognitive decline and diabetes mellitus (DM) has been well 

established.  In a review of 33 prospective studies, Brands et al found that Type 1 DM 

(T1DM) was associated with reduced mental speed and mental inflexibility while learning 

and memory were spared (Brands et al., 2005) .  Similarly, in the Atherosclerosis Risk In 

Communities study (ARIC) study, a significant association between type 2 DM (T2DM) 

and cognitive decline characterized by dysexecutive syndrome and impaired recent memory 

was found among 10,963 middle-aged people followed up over 6 years (Knopman et al., 

2001) . The increased risk of dementia in DM is attributed to cerebrovascular disease 

disease (Kalaria, 2009b; Ahtiluoto et al., 2010)  and the association of AD with DM may be 

clearer if milder cases are included in the analysis (Kopf and Frolich, 2009). For VaD, it 

was recently shown that a history of pre-morbid DM is associated with earlier onset and 

faster decline of cognitive decline and more neuropsychiatric symptoms in a cohort of 

elderly subjects (Murthy et al., 2010) . 

 DM causes ischaemic cerebrovascular disease, primarily lacunar infarcts, and is positively 

associated with AD pathology through hyperinsulinemia (causing increased secretion but 

reduced extracellular degradation of amyloid β), impaired insulin signalling, oxidative 
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stress, inflammatory mechanisms and coupling of neuronal components by advanced 

glycation end products (Luchsinger and Gustafson, 2009) . Besides, elevated morning 

cortisol has been recently implicated in cognitive impairment associated with T2DM 

(Reynolds et al., 2010) .  Features of the insulin resistance syndrome and adiposity have 

also been associated with low cognitive function (Kalmijn et al., 1995; Kalmijn et al., 

2000) and with AD (Kuusisto et al., 1997)  
 
while adipocytokines such as leptin have been 

implicated in the neurodegenerative pathway (Benoit et al., 2004).   A 27- year old 

prospective population-based study of 10,276 subjects showed that people with high BMI 

had a significantly raised risk of dementia (Whitmer et al., 2005) while a longer 36-year 

longitudinal study showed that people who were obese at mid-life had a 3 –fold increased 

risk of dementia (AD, VaD) at old age (Whitmer et al., 2007) . In contrast, a faster rate of 

decline of body mass index in late-life is suggested to be a pre-clinical marker of dementia, 

especially in subjects who were overweight (Hughes et al., 2009). 

 

1.4.3. Cholesterol and Statins 

 

The relationship between cholesterol and cognitive decline and dementia is less robust, and 

sometimes with conflicting findings. Generally, however, hypercholesterolemia in mid-life 

tends to show positive association with dementia including VaD and AD  (Notkola et al., 

1998; Kivipelto et al., 2002; Solomon et al., 2009) , while on the other hand, cholesterol 

levels assessed in late life reveal less significant association with AD (Tan et al., 2003; 

Reitz et al., 2004) (Panza et al., 2006). Statins have a broad range of properties including 

antioxidant activity, immunomodulation and regulation of inflammatory processes, all of 

which could prevent neuronal death. Simvastatin has been found to reduce the levels of 

Aβ42 and Aβ40 in vitro in the brain of guinea pigs (Fassbender et al., 2001), but the results 

of clinical studies do not show robust support for the protective effect of statins (Shepherd 

et al., 2002) .  Recent Cochrane database reviews have shown that statins given in late life 

to individuals at risk of vascular disease have no effect in preventing or treating AD or 

dementia (McGuinness et al., 2009a; McGuinness et al., 2010b). Similarly, statin use does 

not reduce VaD risk (Muangpaisan and Brayne, 2010). 
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1.4.4. Smoking, Atherosclerosis and Homocysteine 

 

Smoking predisposes to oxidative stress, atherosclerosis, plaque formation and silent brain 

infarctions (Howard et al., 1998; Armani et al., 2009). In the Honolulu-Asia Ageing Study 

[HAAS], the association between mid-life smoking and late- life dementia was assessed in 

3,734 Japanese- American men, and following adjustment for age, education and Apo E, 

the risk of AD in smokers increased with pack-years of smoking. Neuropathologic data 

from 218 men in an autopsied sub-sample of the cohort showed increased number of 

neuritic plaques with higher smoking levels (Tyas et al., 2003) . A recent Finnish study has 

also demonstrated that heavy smoking in  mid-life is associated with >100% increased risk 

of AD and VaD after over twenty years (Rusanen et al., 2010). 

Results from the Rotterdam study including 6,647 participants followed up for 9 

years revealed that atherosclerosis, predominantly of the carotid arteries, was associated 

with an increased risk of dementia [AD and VaD] (van Oijen et al., 2007).  Atherosclerosis 

predisposes to small and large infarcts and cerebral hypoperfusion leading to vascular and 

degenerative changes associated with cognitive decline and both AD and VaD. Other 

complications relating to atherosclerosis include coronary heart disease and congestive 

heart failure, and these have also been shown to have significant association with dementia, 

and AD through the causation of multiple cerebral emboli and reduced cerebral perfusion 

(Zuccala et al., 2005; Dolan et al., 2010).  

Although homocysteine is an established risk factor for cardiovascular disease, its role in 

dementia has been controversial (Seshadri, 2006).  In a recent prospective study from 

Gotheburg, mid-life homocysteine and late - life dementia were assessed in 1368 women 

after 35 years of follow up. The highest total homocysteine tertile was related to a hazard 

ratio of 1.7 for developing any dementia, 2.1 for AD and 2.4 for AD without 

cerebrovascular disease thus showing that high homocysteine in mid-life is an independent 

risk factor for the development of late-life AD in women (Zylberstein et al., 2009). 
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1.4.5. Influence of Apolipoprotein E (APO E) 

 

Apolipoprotein E (ApoE) is a major constituent of very low density lipoproteins (VLDL) 

and plays a key role in the transport of cholesterol among various cells of the body. APOE 

ε4 allele has the most consistent but varying modulating influence on  vascular risk factors, 

lacunar infarcts and  amyloid accumulation, and increases disease risk in a dose-dependent 

manner in both AD and VaD (Duron and Hanon, 2008; McGuinness et al., 2010a).  In a 

recent study of genetic association of dementia subtypes, associations were found between 

the APOE ε4 allele and mixed dementia, stroke – related dementia and subcortical ischemic 

vascular dementia (Jones et al., 2011).   

 

1.4.6. Implications for Treatment Interventions  

 

 With the growing understanding of the contributions of vascular pathology to the burden 

of dementia, there is now an increasing call for the revision of the classification of 

dementias in order to reflect the strong interplay between vascular and degenerative 

pathologies and the influence of vascular factors and vascular brain disorders on the 

neurobiology, natural history and the threshold and profile of clinical manifestations 

(Viswanathan et al., 2009).  Whereas the current classification scheme of clinical dementia 

is based on trying to separate vascular and degenerative pathologies, it is advocated that a 

new scheme be adopted based on the spectrum nature of the dementias, apportioning 

weights to the relative contributions of the vascular risk factors and vascular brain disorders 

based on available evidence such as relative or attributable risks derived from population- 

based studies (Kalaria, 2012a)..  

 

1.4.7. Prevention through diet, nutritional intervention and physical exercise 

 

Maintenance of healthy blood vessels and adequate cerebral blood flow is central to the 

goal of preventing brain vascular disorders and ameliorating vascular risk factors, and 

consequently preventing and/or reducing the incidence of VCI.  Appropriate diet, healthy 

nutrition and adequate physical exercise are important non-pharmacologic, lifestyle-related 
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interventions that could help in maintaining normal vascular tone, adequate cerebral blood 

flow and normal cognitive ageing.  

 The Mediterranean diet consists of whole grains, fish and olive oil and moderate 

consumption of alcohol and is a typical example of a healthy and brain-friendly diet(Sofi et 

al., 2008). The protective effect of fish intake against cerebral vascular disease risk 

(including stroke and VCI) and AD is fairly well established (van Gelder et al., 2007; 

Chowdhury et al., 2012; Kiefte-de Jong et al., 2012) .   

Overall, diets rich in polyphenols such as reservatrol, omega-3 fatty acids, docosahexaenoic 

and eicosapentaenoic acids as well as flavinoids and the B vitamins, especially folate, B6 

and B12 are known to enhance cognitive function in older age (Kidd, 2008) . Similarly, 

poorer cognitive function and an increased risk for vascular dementia are associated with 

lower consumption eg. milk or dairy products (Crichton et al., 2010) while polyphenols 

supplementation (eg. grape juice) have been shown to reduce inflammation, blood pressure 

and vascular pathology in individuals with cerebrovascular disease (Krikorian et al.; 

Krikorian et al., 2010).  Rich sources of polyphenols include wine, milk, cocoa, coffee, 

grape seed, blueberries, strawberries, tea, curcumin, pomegranate, fruits and vegetables. 

Polyphenols exert an anti-oxidant effect by preventing the accumulation of reactive 

oxygen-species (Craggs and Kalaria, 2010)  which could trigger atherosclerosis and chronic 

neurodegeneration that contribute significantly to the pathology of AD and other dementias 

(Zandi et al., 2004).    Reservatrol has also been implicated in the regulation of the cell 

cycle, mitochondrial energy production, vascular reactivity, oncogene suppression and 

activation of sirtuins (silent information regulator-related enzymes), as anti-ageing 

inhibitors (Marques et al., 2009). 

There is a large body of evidence on the beneficial effects of physical exercise on 

brain health across the life span (Dishman et al., 2006) .  Among humans, exercise 

improves quality of sleep (Driver and Taylor, 2000) , depression (Dunn et al., 2005)  and 

cognitive functioning including memory and executive functioning (van Gelder et al., 

2004) . In a prospective study of a cohort of community-dwelling elderly people, higher 

physical activity was found to reduce the risk of dementia (Scarmeas et al., 2009) . In a 

related study, increased physical activity in mid-life
 
was found to be associated with less 

neocortical atrophy in late life (Rovio et al., 2008). In the largest clinical trial of its kind, 

170 physically active volunteers with memory problems exhibited significant improvement 
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in cognition after a 24-week intervention (Lautenschlager et al., 2008). A most recent 

systematic analysis of 24 longitudinal studies including 1378 VaD  subjects, also points out 

the beneficial effect of physical activity in prevention of VaD, reducing the risk for 

developing dementia by 38% (Aarsland et al., 2010).  Higher aerobic fitness levels have 

been shown to be associated with larger hippocampus, increased blood flow, oxygen 

delivery and better spatial memory (Colcombe et al., 2006). 

 Physical exercise, apart from enhancing cerebral blood flow, activates the expression of 

brain neurotrophins. In rats and mice, chronic physical exercise has been accompanied by 

increased expression of brain- derived neurotrophic factor (BDNF) (Neeper et al., 1995; 

Neeper et al., 1996) , nerve growth factor(Ang et al., 2003)  and galanin (Tong et al., 2001)  

which enhance neuronal and synaptic plasticity. Reduction of infarct volume with 

concomitant increased expression of BDNF following treadmill exercise training has been 

shown in a rat model of focal ischaemia by middle cerebral artery occlusion (Ding et al., 

2004)  while reduction of caspase-dependent apoptosis in hippocampal neurons has 

similarly been reported in a gerbil model of transient global ischaemia following treadmill 

exercise training (Lee et al., 2003) . 
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1.5. The Cognitive Functions After Stroke Study 

 

1.5.1. The Cognitive Functions After Stroke (CogFAST) Study- Newcastle 

 

In an effort to understand the contribution of vascular factors to dementia and 

neurodegeneration, and the risk factors and substrates of dementia resulting from 

cerebrovascular disease, 400 stroke survivors who were 75+ years old and free of dementia 

at three months after stroke were recruited from six regional stroke registers in the 

Northeast Region of England into the Cognitive Functions After Stroke (CogFAST) 

Programme, a longitudinal cohort study which started in 1999.    

The subjects received a comprehensive baseline clinical and neurological assessment, 

neuropsychological evaluation and neuroimaging (MRI) (25% of the cohort). Subjects were 

followed up and received annual clinical and cognitive evaluation to ascertain their 

progression. Multiple assessments including neuroimaging (MRI), genetic and 

cardiovascular biomarkers were undertaken.  

Early in the study, participants were also approached for brain donation and over 50 brains 

have been donated and stored in the Newcastle Brain Tissue Resource (NBTR) so far. The 

aim was to identify critical pathological substrates and mechanisms which distinguished 

those cases who developed delayed PSD from those who maintained normal cognitive 

functioning at the time of death. 

The study has contributed significantly to the body of knowledge on the natural history of 

post-stroke cognition. These include: 

 the very early occurrence and predominance of executive dysfunction (impaired 

working memory, prolonged simple and choice reaction time etc) in stroke 

survivors and the progressive worsening of  multi -domain cognitive functions as  

dementia sets in (Ballard et al., 2002; Ballard et al., 2003a; Ballard et al., 2003b; 

Stephens et al., 2004) 
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 The cognitive trajectory of stroke survivors between 3 and 15 months 

(improvement in 50% of cases and incident dementia in about 10% (Ballard et al., 

2003a).  

 the predictive role of vascular risk factors aggregate on the progression of cognitive 

decline  and long term outcomes of dementia and death (Rowan et al., 2005; Allan 

et al., 2011).  

 MRI findings of white matter hyperintensities (WMH) correlated significantly with 

cognitive processing speed and attention measures (Burton et al., 2004) 

 MRI studies on the CogFAST cohort   showed that medial temporal atrophy rather 

than white matter hyperintensities predicted cognitive decline, progression to 

dementia, and death in stroke survivors (Firbank et al., 2007; Firbank et al., 2012). 

  The APOE epsilon4 allele was associated with the progression of cognitive decline 

(Rowan et al., 2005)  

 Identification of a single nucleotide polymorphism (SNP) at codon 298 of the nitric 

oxide synthase (NOS) gene [NOS3 gene rs1799983 polymorphism (TT genotype)] 

which increased the risk of dementia in the cohort (Morris et al., 2011).   

 Median survival rate from the incidence of stroke was 6.72 years. Over this period, 

23.9% of the subjects developed dementia and 75% of PSD cases at autopsy met 

neuropathological criteria for VaD (Allan et al., 2011). 

 By arterial spin labelling MRI, reduced global cerebral blood flow (cortex to WM 

ratio) best predicted PSD while hippocampal volume was reduced in PSD and AD 

subjects (Firbank et al., 2011). 

 In a study examining sub-cortical changes in the cohort, the number of caudate 

lacunes was higher in the PSND group, compared with AD and controls while 

putaminal volume was smaller in the stroke and AD groups  compared with 

controls. In the whole stroke group, putamen lacunes were correlated with 

impairment in memory while WMH and hippocampal volume both correlated with 

global dysfunction (Lopes et al., 2012).  

   More recently, data from the CogFAST programme using three dimensional 

morphometric techniques have shown that neuronal volume significantly decreases 

in subjects who experience cognitive decline post stroke compared to those who 

remain cognitively stable (Gemmell et al., 2012).  
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 Most recently, it was discovered that post-stroke subjects who maintained cognitive 

functions over time demonstrated sustained levels of (Hu C and D) markers of 

neuronal maintenance compared to post - stroke subjects who became demented 

(Burke et al, PhD Thesis, 2013). 

In all, the CogFAST Newcastle Study has significantly advanced knowledge on the 

neurobiology of pos t- stroke cognitive dysfunction through clinico – neuroimaging – 

neuropathological correlative approaches. Findings suggest that about 25% of persons who 

suffer a stroke progress to develop post - stroke dementia (predominantly VaD), the risk 

being higher with poor baseline performance on cognitive testing, baseline medial temporal 

atrophy, depression and higher aggregate number of vascular risk factors. The unique 

finding of hippocampal atrophy and reduced cerebral blood flow in demented post-stroke 

subjects provide eloquent support for a vascular basis of neurodegeneration among other 

vital contributions to knowledge. 

 

1.5.2. The Cognitive Functions After Stroke (CogFAST) Study - Nigeria   

 

Cross – cultural studies in dementia contribute very significantly to the understanding of 

disease variation and the influence of genes, epigenetic, environmental and cultural factors 

on the mechanisms, natural history and phenomenology of disease (Osuntokun et al., 1992; 

Kalaria et al., 1997; Hendrie, 2006; Hendrie et al., 2006). Recent scientific evidence 

suggests that the incidence of stroke is rising in the developing world including countries of 

sub- Saharan Africa, attributable to epidemiologic transition and changing lifestyles 

(Walker et al., 2010; Feigin et al., 2013). As stroke care also improves in these regions, the 

number of stroke survivors is likely to increase with attendant increased burden of long 

term consequences of stroke which includes cognitive impairment. Currently, knowledge 

gap exists on cognitive impairment and dementia in sub- Saharan African stroke survivors. 

Previous dementia studies (focusing largely on AD) generally suggest prevalence rates 

between 2 and 3% (Ogunniyi et al., 2000; Ogunniyi and Akinyemi, 2010; Prince et al., 

2013).  

The CogFAST – Nigeria study was therefore set up to evaluate the profile  and risk factors 

of stroke - related VCI  in a previously un - investigated  indigenous African population 
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given the on - going epidemiologic transition on the  continent and the enhanced 

predisposition of ethnic black persons to  cognitive impairment  from cerebrovascular 

disorders (Douiri et al., 2013b) with worse outcome (Chang et al., 2013; Roth et al., 2011).  

The  CogFAST – Nigeria study  was  established building on the principles and approaches 

of the  COGFAST –Newcastle study to generate complementary data in a multidisciplinary 

manner as far as possible in a different population with different genetic  signature, culture 

and lifestyle practices.  In addition, scientific evidence of vascular brain injury suitable for 

planning appropriate preventive and therapeutic interventions applicable to sub - Saharan 

Africa was anticipated.  Our aim is to generate the full spectrum of clinical, neuroimaging, 

neuropsychological, genetic, possibly pathological and lifestyle factors results from older 

Nigerian stroke survivors.   The pilot and baseline data from the CogFAST-Nigeria project 

have been presented at the 5th and 6
th

 VASCOG Meetings in Lille, France and Toronto, 

Canada in September 2011 and June 2013 respectively.  

 

 1.6. Mechanisms of Post - Stroke Cognitive Impairment 

 

Mechanistic approaches stemming from multiple streams of evidence from animal, 

epidemiological, neuropathologic, cellular and molecular studies are required to develop 

evidence-based therapeutic and neuroprotective interventions to combat the early and 

delayed cognitive consequences of stroke.  Although accumulating evidence has provided a 

durable link between cerebral vascular disease and cognitive impairment, and pathological 

substrates are more clearly delineated, the underlying mechanisms are not yet fully 

understood (Moskowitz et al., 2010; Gorelick et al., 2011; Kalaria, 2012b; Kalaria, 2012a).  

 

1.6.1. Neuropathological substrates of VCI 

 

Cerebrovascular pathology may be divided into two broad categories: large vessel diseases 

(infarcts, artery –to –artery embolism, occlusion of extra-cranial or intracranial arteries, 

haemorrhages) and small vessel diseases that make up to 25% of all cerebral vascular 

lesions: white matter lesions –leukoaraosis, lacunar infarcts, microinfarcts, cerebral embolic 

disease, microbleeds, hereditary disorders –cerebral autosomal dominant arteriopathy 
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subcortical infarcts and leucoencephalopathy (CADASIL), cerebral autosomal recessive 

arteriopathy subcortical infarcts and leucoencephalopathy (CARASIL), specific 

arteriopathies or haemodynamic mechanisms resulting in cerebral hypoperfusion (pulse 

wave encephalopathy and chronic heart failure) (Erkinjuntti and Kalaria, 2006; Knopman, 

2006). 

Small vessel disease (SVD) abnormalities which may lead to diffuse white matter disease 

and microinfarcts are common in VCI. SVD microangiopathy consists of arteriolosclerosis, 

lipohyalinosis, fibrinoid necrosis and microatheromas. Microinfarcts, especially when 

multiple, have been identified with very robust association with cognitive impairment 

especially in elderly subjects with CVD (Ballard et al., 2000; Vinters et al., 2000; White et 

al., 2002; Kalaria, 2012a). 

 

Pathological Substrate 

Strength of association with 

VCI 

Microinfarcts +++ 

Demyelination and oligodendrocyte changes +++ 

Cribriform change, perivascular spacing +++ 

Alzheimer pathology +++ 

Hippocampal atrophy and sclerosis +++ 

Atheromatous and occlusive disease ++ 

Lacunar infarcts ++ 

Cerebral amyloid angiopathy ++ 

Astrogliosis and microgliosis ++ 

Intracerebral haemorrhages ++ 

Atheromas + 

Macroscopic infarcts + 

  Table 1.4.: Neuropathological Substrates Associated with VCI. (+ -mild; ++ =moderate; +++ - 

strong) Adapted from Kalaria et al., 2004; Kalaria, 2012 
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Lacunar infarcts demonstrate a moderate association with VCI and may be confused with 

lacunar haemorrhages or dilated perivascular space (Kalaria et al., 2004; Kalaria, 2012a). 

White matter changes attributable to loss of myelin and axonal damage often result from 

oligaemia/ chronic hypoxic state with associated expression of hypoxia-inducible factors 

(Fernando et al., 2006; Simpson et al., 2009).  

Apart from large infarcts, microinfarcts, diffuse white matter disease and periventricular 

lesions being the predominant neuropathological substrates of  VCI, hippocampal atrophy 

and sclerosis (Gemmell et al., 2012) may  also be seen. In the general absence of significant 

degenerative neuropathology, this is believed  to provide  evidence for a vascular basis for 

hippocampal neurodegeneration in tandem with  growing neuroimaging evidence of  

medial temporal lobe atrophy in vascular dementia (Bastos-Leite et al., 2007; Scher et al., 

2011)  including CADASIL which is a classical model of ‘pure vascular dementia 

syndrome (O'Sullivan et al., 2009)..  

 

1.6. 2. Overlap of AD and VCI  

 

AD and VCI demonstrate a lot of similarity in risk factors, pathomechanisms, clinical 

features and neuropathological substrates (Kalaria, 2002a) .  In the very first documented 

case of AD reported by Alzheimer, the descriptions of autopsy findings in the index patient, 

Auguste D, showed significant vascular pathology (Alzheimer, 1907) . In a series of 300 

autopsy cases of AD from the Newcastle Prospective Dementia series, there were 98% 

cerebral amyloid angiopathy, 100% microvascular degeneration, 31% infarcts of all sizes 

and 7% intracerebral haemorrhages (Kalaria and Ballard, 1999) while in another series, 

Brun and Englund reported periventricular white matter lesions similar to Binswanger’s 

disease in up to 60 % of patients with AD (Brun and Englund, 1986).  Generally, it is 

recognized that with co-existent pathological substrates of AD and cerebrovascular lesions, 

it takes fewer AD pathologies to produce the same degree of dementia (Snowdon et al., 

1997; Esiri et al., 1999) .  

Animal models of combined AD and VCI have also been developed. A combined mouse 

model of AD and VCI expressed higher inflammatory response and more hippocampal AD  

pathology as well as larger infarcts and reduced threshold of manifesting cognitive 
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impairment (Whitehead et al., 2005; Whitehead et al., 2007).  Ageing baboons have also 

demonstrated co- existence of beta - amyloid and microvascular pathologies (Ndung'u et 

al., 2012).  

 

 1.6.3. The Neurovascular Unit  

 

An intimate developmental, structural and functional relationship exists among the cerebral  

microvascular cells (endothelium, pericytes and adventitial cells), neurons  and glial cells 

(astrocytes, microglia and oligodendrocytes).  The ‘neurovascular unit’ aptly describes this 

relationship and ‘neurovascular coupling’ maintains the delicate functional relationship 

between the neural and the vascular components that ensure a coordinated response to 

ageing or injury (Girouard and Iadecola, 2006; Iadecola, 2010).  

 

 

 

 

 

 

To maintain the integrity of the cerebral circulation and thus ensure a consistent flow of 

blood and supply of energy substrates commensurate to the needs of the different parts of  

 

Figure 1.1. The Neurovascular Unit. Microvascular cells (endothelial, pericytes), neurons and glial 

cells (astrocytic foot process), in close structural and functional relationship. (Adapted from Iadecola 

Acta Neuropathologica 2010; 120: 287 – 296).  
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the brain, mechanisms are in place which include cerebrovascular autoregulation,  

functional hyperaemia and the blood brain barrier (BBB)(Kalaria, 1996; Kalaria, 2009a).  

 Cerebrovascular autoregulation ensures that cerebral blood flow (CBF) is maintained 

independently of alterations in mean arterial blood pressure provided it is within the range 

of 50 -160 mmHg. Functional hyperaemia ensures that cerebral blood flow is increased to 

an activated brain region through the release of several vasoactive agents (including nitric 

oxide, prostanoids, adenosine, K+ ions, carbon monoxide, cytochrome p450 metabolites)  

released from neurons, astrocytes and vascular cells. The BBB limits the entry of 

potentially toxic substances into the brain through its impermeable membrane (Kalaria, 

1996; Girouard and Iadecola, 2006; Kalaria, 2009a).  

 

1.6.4. The ageing cerebral microvasculature 

 

Ageing as a biological phenomenon has measurable impact on the structural and functional 

integrity of the vasculature, and neurovascular unit. The brain depends on a continuous but 

regulated supply of oxygen and nutrient - laden blood through its dense network of the 

macro and microvasculature. The macrovasculature consisting of vessels arising from the 

circle of Willis stiffens with ageing and acquires atheromas.  The main branches emanating 

from the circle including the anterior, middle and posterior cerebral arteries and the basilar 

artery may develop up to 30% stenosis(Ferrer et al., 2008).  The pial arteries which divide 

into smaller penetrating arteries give rise to arterioles and capillaries deeper in the brain 

which undergo arteriolosclerosis, basement membrane thickening and numerous 

endothelial cell changes with ageing (Ogata et al., 2011).   

 Microemboli and thrombi originating from the cardiovascular system may cause further 

structural distortions of the ageing microvasculature and alteration of the rheology of the 

blood making the brain more vulnerable to reduced  perfusion of cerebral surfaces and 

deeper  structures (Kalaria et al., 2012b).  

Therefore, one major effect of ageing on cerebrovascular disorders and vascular risk factors 

is the breakdown of cerebrovascular defence mechanisms resulting in reduction of regional 

blood flow causing  focal cerebral hypoperfusion and breach of the BBB  thus enabling 

potentially toxic substances and metabolites to gain access into the brain (Kalaria, 1996). 
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1.6.5. Cerebrovascular Mechanisms  

 

The structural and functional changes associated with cerebral vascular disease may cause a 

reduction in cerebral blood flow at rest and during brain activation. When this reduction 

reaches a critical level, it is described as the “Critically Attained Threshold of Cerebral 

Hypoperfusion (CATCH)”(de la Torre and Mussivand, 1993; de la Torre, 2002). This 

hypothesis suggests that a critical reduction of cerebral perfusion results in the breakdown 

of the cerebrovascular defence system, uncoupling of the neurovascular unit, reduced 

clearance of by - products of brain activity, accumulation of  substances like  amyloid - β 

and activation of neuroinflammatory response (Iadecola, 2010) (Figure 1.2).  

The link between hypoxia/ischaemia, accumulation of amyloid - β and cognitive 

dysfunction has been demonstrated in experimental models and epidemiologic studies of 

ageing, AD and VaD.  Studies have shown accumulation of amyloid- β in rodent models of 

brain ischaemia (Kitaguchi et al., 2009)) as well as in brain tissue of human subjects with 

VaD (Lewis et al., 2006). Apart from this, there is a direct cognitive effect of microvascular 

pathology as seen in subjects with DM type II and  AD (Kalaria, 2009b)  and Cerebral 

Autosomal Dominant Arteriopathy Subcortical Infarcts and Leucoencephalopathy 

(CADASIL)  subjects with VaD (Yamamoto et al., 2009).  

 As part of the compromise of cerebrovascular defence mechanisms occasioned by cerebral 

vascular disease, there could be disruption of the endothelium and the blood brain barrier  

(BBB) causing a transport disequilibrium across the barrier. In rats, amyloid- β peptides 

cross a defective BBB into the brain by passive diffusion and through a shared influx 

transporter, the advanced glycation end product receptor (RAGE)  (Deane et al., 2009) 

while the low density lipoprotein receptor related protein (LRP) is a major efflux 

transporter which expression is reduced in ageing rodents, non- human primates and AD 

patients  (Shibata et al., 2000; Sagare et al., 2007) .  These alterations compromise the 

homeostasis of the cerebral microenvironment and reduce the synthesis of neuronal 

proteins involved in memory formation causing reduced formation and consolidation of 

new memories and alteration of synaptic plasticity (Klann and Dever, 2004; Ihara and 

Kalaria, 2007).  
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Oxidative stress in the brain and cerebral blood vessels has been found to play a critical role 

in the processes associated with cerebrovascular dysfunction, with NADPH oxidase being a 

major source of reactive oxygen species (ROS) involved(Iadecola, 2004; Miller et al., 

2005) .  Reactive oxygen species (ROS) alter vascular regulation through processes 

involving the formation peroxynitrite from the reaction between nitric oxide (NO) and 

superoxide radical. Peroxynitrite exerts biological effects through several processes which 

include cysteine oxidation, tyrosine nitration, altering protein function and damage to lipid 

membranes and DNA (Pacher et al., 2007)  (Girouard et al., 2007). Oxidative stress and 

reactive oxygen species resulting from mitochondrial dysfunction have, consequently, been 

strongly implicated in brain ageing, AD and VaD (Bennett et al., 2009; Massaad et al., 

2010) . 

 

 

 

          

 

 

 

 

 

 

Figure 1.2: Hypothetical scheme for cerebrovascular mechanisms of vascular cognitive 

impairment. Vascular risk factors and ageing produce arterial stiffness and endothelial 

dysfunction resulting in cerebral hypoperfusion which activates oxidative stress, 

inflammation and consequent white matter changes including ologodendrocyte loss, axonal 

abnormalities and myelin loss. (Adapted from Kalaria et al 2010, 2012a)  
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Cerebrovascular disorders (CVDs) also cause cognitive impairment and dementia through 

their impact on cholinergic neurotransmission which plays a major role in normal 

cognition, particularly in the domains of attention, emotion and memory (Roman and 

Kalaria, 2006; Keverne et al., 2007) . CVDs may affect the population of cholinergic 

neurons in the basal forebrain including the nucleus basalis of Meynert (nBM). Ischaemic 

injury resulting from cerebral hypoperfusion leads to widespread disconnection of 

cholinergic innervations from the neuronal population of the nBM to other parts of the 

brain including the neocortex, and this has been documented in both AD and VaD (Roman 

and Kalaria, 2006; Keverne et al., 2007) . Loss of glutamatergic synapses, assessed by 

vesicular glutamate transporter 1 (VGLUT 1) in the temporal cortex but preserved in the 

frontal cortex has been documented in post- stroke VCI. The preservation in the frontal 

cortex of non-demented subjects supports a role for glutamatergic synapses in the 

maintenance of cognition after stroke (Kirvell et al., 2010). 

 

1.6.6. Neurodegenerative Mechanisms  

 

Neurodegeneration is central to the pathobiology of age-associated diseases such as 

Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis 

(ALS). These are commonly characterized by the accumulation of abnormal protein 

products within neuronal cells and progressive loss of selective anatomically and 

physiologically related neurons by apoptotic and autophagic mechanisms (Bredesen et al., 

2006; Lin and Beal, 2006). AD is characterized by the accumulation of amyloid plaques in 

extracellular compartments of the brain parenchyma and vessel walls, and 

hyperphosphorylated tau proteins intracellularly. In the amyloid cascade hypothesis, 

amyloid precursor protein (APP) a transmembrane protein is sequentially cleaved by α, β 

and γ secretases. Cleavage by α and then γ secretase channels  APP into the non-

amyloidogenic pathway, while cleavage by β and then γ secretase  breaks down  APP in the 

amyloidogenic pathway  producing the amyloid β  (1 – 40) or (1 – 42) molecule (depending 

on the site of γ cleavage). Amyloid β (1 – 42) is less soluble and more toxic. Amyloid 

monomers aggregate to form soluble oligomers, toxic species, that are believed to mediate 

perturbation of synaptic connections and network dysfunction (Hardy and Higgins, 1992; 
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Hardy and Selkoe, 2002; Palop et al., 2006) ; Ultimately, insoluble amyloid fibrils are 

formed and deposited in the brain parenchyma and walls of cerebral vessels (Small, 1998). 

However, within the cell membrane are neuronal sorting proteins which control the traffic 

of proteins between the cell membrane and cytoplasmic compartments such as the Golgi 

apparatus or nucleus. The neuronal sortilin-related receptor protein  SORL1 (aka 

LR11/SORLA) is a 250kDa type -1 glycoprotein and transmembrane receptor protein 

involved in the regulation of the intracellular trafficking  and processing of amyloid 

precursor protein (APP)(Rogaeva et al., 2007). It channels amyloid precursor protein (APP) 

from amyloidogenic into non-amyloidogenic pathways (Andersen et al., 2005) . Reduction 

in the expression of SorL1 therefore leads to the formation of more amyloid, first in soluble 

forms which aggregate to be laid down as insoluble amyloid deposits (Andersen et al., 

2005; Offe et al., 2006) . Recent meta –analysis have confirmed the association of the 

SorL1 (SorLA) gene with late –onset sporadic AD (Jin et al., 2013). 

 

 

 

 

Figure 1.3: The Amyloid Cascade Hypothesis.  APP is sequentially cleaved by β and γ 

secretases to  generate  amyloid β 1- 40/42 monomers which form intermediate toxic soluble 

oligomers and insoluble amyloid fibrils that are laid down in brain parenchyma and vessel 

wall.  The dynamics of how the soluble species change to the insoluble forms and trigger tau 

hyperphosphorylation are, however, not yet clearly defined.(Adapted from Hardy and Higgins, 

1992; Selkoe and Hardy, 2002) 
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Reduced expression of SorL1 was  initially demonstrated in brain tissue from subjects with 

mild cognitive impairment (MCI) and Alzheimer’s disease (AD), showing correlation with 

the degree of cognitive impairment rather than the severity of amyloid or neurofibrillary 

pathology(Sager et al., 2007). But a recent report from the same group did not validate the 

initial findings as similar levels of SorL1 were expressed in MCI and control groups and 

reduction was reported  only in 29% of AD subjects (Sager et al., 2012). They suggested 

that the relationship between SorL1 and AD was more complex and warranted further 

investigation. The role of SorL1 and its relationship to markers of amyloid, tau and 

synaptic pathology are, however, yet unexplored in vascular cognitive impairment. 

 

1.6.7.1. Effect of cerebrovascular disease on the neurovascular unit and amyloid 

balance. 

A delicate balance is normally maintained between the production, metabolism and 

clearance of amyloid. However, in the presence of cerebral vascular disease (CVD), this 

balance could be altered resulting in accumulation of amyloid. 

 As part of the compromise of cerebrovascular defence mechanisms caused by cerebral 

microvascular disease, the endothelium and the blood brain barrier (BBB) could be 

disrupted resulting in transport disequilibrium across the barrier. These microvascular 

abnormalities may be accelerated by ageing but further degenerative changes could also be 

accentuated by amyloid deposition.  Amyloid deposition in the microvasculature impedes 

‘functional hyperemia’ during brain activation, uncouples the neurovascular unit and 

induces ‘vasoconstriction’ causing reduction of perivascular drainage and amyloid 

clearance (Iadecola, 2010). 

Besides, hypoxia resulting from hypoperfusion due to cerebrovascular disease can induce 

hypoxia-inducible factor (HIF) 1α which stimulates   upregulation of  Beta-site APP 

cleaving enzyme 1 (BACE1) expression, the major β – secretase enzyme, leading to 

increased generation of amyloid β.  Amyloid β overproduction leads to deposition of 

amyloid in plaques and vessel wall. The vasoconstrictive effect of this further potentiates 

the reduction of cerebral blood flow by worsening the pre- existing arteriosclerosis and 
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BBB disruption leading to a vicious cycle of increasing amyloid accumulation(Velliquette 

et al., 2005). 

Therefore, cerebral hypoperfusion induced by cerebral vascular disease may either initiate 

and/or accelerate the neurodegeneration cascade causing amyloid deposition, synaptic and 

neuronal dysfunction leading to cognitive impairment (Kalaria, 2000; Ihara and Kalaria, 

2007). Previous studies on rat and mice, including (transgenic APP mice) models of 

chronic cerebral hypoperfusion have shown acceleration of amyloid deposition, cortical 

microinfarcts and hippocampal atrophy (Kalaria et al., 1993b; Kalaria, 2000) ; (Kitaguchi 

et al., 2009; Nishio et al., 2010; Yamada et al., 2011; Okamoto et al., 2012).  

 

1.6.7. Synaptic integrity and cognitive functioning 

 

The regulation of neural communication depends upon alterations in the structure and 

chemistry of synapses, the formation of new synapses and elimination of old ones. This 

underscores the concept of ‘synaptic plasticity’ which underpins the neurobiology of 

learning and memory (Kandel, 2001; Di Maio, 2008) .  

 

1.6.7.1. Molecular architecture of synapses 

The mammalian synapse consisting of the pre – synaptic axon terminal delimited by the pre 

–synaptic terminal button and the post –synaptic region (often on dendrites) described as 

the post – synaptic density. The pre – and post – synaptic membranes are separated by a 

gap of 20 to 25 nm,known as the synaptic cleft and held together at the appropriate 

separation by cell adhesion molecules including N – cadherin, neuroligin, neurexin and 

other scaffolding proteins and receptors (Sheng and Hoogenraad, 2007; van Spronsen and 

Hoogenraad, 2010). Synapses may be excitatory (e.g. glutamatergic) or inhibitory (e.g. 

GABAergic) (Figure 1.4) and specific morphological or functional alterations in different 

elements of the synapse  lead to cognitive and behavioural dysfunction associated with 

ageing and different disorders of the brain (van Spronsen and Hoogenraad, 2010; Morrison 

and Baxter, 2012). 
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1.6.7.2. Pre – synaptic structure and function. 

Action potential travels down the axonal membrane of the pre –synaptic axonal terminal. 

Synaptic vesicles ‘dock’ and make contact with the ‘active zone’ of the pre –synaptic 

membrane, fuse with the membrane and then release neurotransmitters which diffuse into 

the synaptic cleft. This process involves Ca
2+

 dependent mechanisms and the interaction of 

several proteins which form the soluble N – ethylmalamide – sensitive factor attachment 

protein receptor (SNARE) complex (Sudhof, 2004). The SNARE complex mediates vesicle 

fusion and exocytosis and are responsible for ‘docking’ of the synaptic vesicle. Members of 

the SNARE complex include sytaxin -1, synaptosomal – associated protein of 25 kDa 

(SNAP – 25) and synaptobrevin (Deak et al., 2004). Pre – synaptic functioning may be 

influenced by the amount of neurotransmitters stored in the released vesicles, the structure 

of the fusion pores, Ca
2+ 

 ion dynamics and glutamate recycling mechanisms (van Spronsen 

and Hoogenraad, 2010; Penzes and Vanleeuwen, 2011). 

 

Figure 1.4. Molecular architecture of inhibitory and excitatory synapses.  Inhibitory 

shaft is present along the dendritic shaft while excitatory synapse is present on mush –

room shaped dendritic spine. (from van Spronsen and Hoogenraad. Curr Neurol Neurosci Rep 

(2010) 10: 207 -214) 
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1.6.7.3. Post - synaptic structure and function 

Following release, neurotransmitters bind to receptors on the post – synaptic membrane 

which may be ligand - gated ion channels (ionotropic receptors) or G protein - coupled 

(metabotropic) receptors. Beyond the post – synaptic membrane is a complex of interlocked 

proteins known as the post – synaptic density.  This includes cell adhesion molecules, α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartic 

acid or N-Methyl-D-aspartate (NMDA) glutamate receptors, Ca
2+ 

/Calmodulin dependent 

kinase II, actin and other signaling proteins (Sekino et al., 2007).  The post – synaptic 

density  is an electron – dense structure consisting of various scaffolding proteins of which 

PSD – 95 is a prototype. Post – synaptic density plays a central role in excitatory synaptic 

plasticity working in synergy with microtubular structural proteins to regulate the 

morphogenesis and function of dendritic spines (Kojima and Shirao, 2007; Sekino et al., 

2007; van Spronsen and Hoogenraad, 2010).   

 

1.6.7.4. Dendritic spine morphology structure and function. 

Dendritic spines are small membraneous protrusions on the post- synaptic side of excitatory 

synapses (Kojima and Shirao, 2007).  

Dendritic spines may have different shapes but generally consist of a bulbous head and a 

thin neck that connects them to the dendritic shaft. Spine contents include neurotransmitter 

receptors, ion channels, scaffolding proteins, actin, actin – binding cytoskeletal proteins and 

intracellular signaling molecules (Kojima and Shirao, 2007; van Spronsen and Hoogenraad, 

2010). Dendritic spines are extremely dynamic structures that change size and shape 

continuously in relation to the changing dynamics of synaptic connections (Yuste and 

Bonhoeffer, 2001). 
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Spine morphology changes rapidly in tandem with neuronal activity and glutamate receptor 

activation such that induction of long –term potentiation (LTP)  causes spine head 

enlargement while long – term depression causes spine head shrinkage (Yuste and 

Bonhoeffer, 2001; Kasai et al., 2003). The continuous dynamic relationship of the actin 

cytoskeleton and its binding proteins such as gelsolin, cofilin, adducing, profiling, fascin, 

neurabin , myosin and drebrin is the major factor in dendritic spine morphogenesis. Drebrin 

A is a neurone specific side actin - binding protein that plays a critical role in spine 

morphogenesis, morphology and function (Sekino et al., 2007). 

Fig 1. 5. Dendritic spines are located along dendritic shafts of excitatory 

synapses.Their dynamic characteristics are determined by a balance of actin 

cytoskeleton, scaffolding proteins, adhesion molecules and receptors. (from van 

Spronsen and Hoogenraad. Curr Neurol Neurosci Rep (2010) 10: 207 -214) 
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Marker  

 

 Localisation 

 

    References 

 

                     Described Changes 
 

Synaptosomal –associated 

protein 25 kDa 

(SNAP – 25) 

 

First identified in hippocampal 

mossy fibers. Part of SNARE 

complex (Soller et al.,1993)  

Plays a role in pre-synaptic 

vesicular traffick and 

processing (Sudhof et al., 

1995) 

 

 

Greber et al., 1999 

Sze et al., 2000 

Downes et al.,2008 

Mukaetova – Ladinska et al., 2009. 

Connelly et al., 2011 

Honer et al., 2012 

Beeri et al, 2012 

Mukaetova – Ladinska et al., 2013 

 

 Down syndrome and AD 

 AD and control subjects 

 In Downs Syndrome 

 Lewy  variant of AD 

 selective in  FTLD 

  dementia by SNAP -25 – syntaxin interaction  

 In AD vs controls 

 DLB visual cortex compared to AD and controls  
 

Synaptophysin 

(SY -38) 

 

Labels synaptic vesicle 

membranes. Part of SNARE 

complex. Role in transmitter 

release (Clare et al., 2010) 

 

Heinonen et al., 1995 

Kirvell et al., 2006 

Downes et al.,2008 

Mukaetova – Ladinska et al., 2009. 

Mukaetova – Ladinska et al., 2013 

 AD 

 AD 

 Down Syndrome 

 In Lewy variant of AD 

 In  DLB visual cortex compared to AD and  Ctrs 

 

Vesicular Glutamate 

Transporter -1 

(VGLUT -1) 

Loads glutamate, the principal 

excitatory neurotransmitter of 

cortical and hippocampal 

neurons, into vesicles 

(Fremeau et al.,2004) 

Kirvell et al.,2006 

Kashani et al., 2008 

van der Hel et al.,2009 

Kirvell et al., 2010 

 VGLUT-1  in parietal and occipital cortex  in 

AD 

 VGLUT-1 in prefrontal cortex in AD 

VGLUT- 1 predominant in human hippocampus 

 VGLUT-1 in frontal cortex  in AD and VaD but  

preserved in post –stroke no dementia 

 

Post-synaptic density – 95 

(PSD – 95) 

Neuronal scaffolding protein 

localized at PSD of excitatory 

synapses(Hart et al.,1996; 

Aoki et sl.,2001) 

Gylys et al.,2004 

Love et al.,2006 

Leuba et al., 2008 

Sultana et al, 2010 

Li and Xin, 2013 

 PSD – 95 in AD brain 

 PSD- 95 in human temporal cortex 

 PSD -95  in AD 

 PSD – 95 in hippocampus of MCI subjects 

 PSD – 95 expression in Wistar Rat stroke model 

exposed to nitrogen dioxide  

 

Drebrin  A 

Neurone –specific F- actin 

binding protein, regulates 

dendritic spine structure  and 

function (Hayashi et al., 1996) 

Harigaya et al., 1996 

Hatanpaa et al.,1999 

Counts et al., 2006 

 

Counts et al., 2012 

 Drebrin in hippocampus  in AD 

 Drebrin in normal ageing and AD 

 Drebrin  in  MCI and AD temporal cortex but  

 Drebrin in MCI frontal cortex 

 Drebrin in hippocampus of MCI  and AD 

 

Table 1.5. Pre – and Post – synaptic markers, their cellular localization and described changes in previous human studies 
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1.6.7.5. Synaptic changes in cognitive impairment and dementia 

Synaptic, molecular, morphological and functional alterations are hallmarks of disease 

processes causing cognitive dysfunction in several brain disorders and these often occur 

before neuronal loss and other obvious pathological changes are seen. 

Correlation between synaptic loss and AD was first established in 1987 through the seminal 

ultrastructural electron microscopic studies undertaken by Davies and colleagues (Davies et 

al., 1987) . Their findings were subsequently substantiated by other investigators (DeKosky 

and Scheff, 1990; Scheff et al., 1990) who further showed that synaptic loss was the best 

correlate of AD severity. This view was subsequently accepted by the larger community of 

AD researchers with Selkoe declaring AD as a synaptic failure (Selkoe, 2002).  Subsequent 

studies investigated the relationship between the traditional neuropathologic susbtrates of 

AD ie neurofibrillary tangles and amyloid deposits and severity of synaptic decline but the 

findings revealed that synaptic markers only correlated with the degree of severity of 

dementia and not necessarily the  traditional AD pathologies (Callahan and Coleman, 1995; 

Blennow et al., 1996).  However, soluble amyloid oligomers have since shown clear 

relationship with synaptic dysfunction   in different models (Selkoe, 2002; Mucke and 

Selkoe, 2012). 

 To date, several deficits in different pre- and post – synaptic markers have been reported in 

AD as well as in mild cognitive impairment (Table.1.5). These include synaptophysin 

(Heinonen et al., 1995; Ishibashi et al., 2006; Kirvell et al., 2006; Kashani et al., 2007; 

Downes et al., 2008) ;  syntaxin  (Sze et al., 2000; Clare et al., 2010) (Mukaetova-Ladinska 

et al., 2013b) (Mukaetova-Ladinska et al., 2009; Honer et al., 2012) , SNAP – 25 

(Shimohama et al., 1997; Greber et al., 1999; Bailey and Lahiri, 2006; Connelly et al., 

2011; Beeri et al., 2012; Honer et al., 2012);vesicular glutamate transporter (Fremeau et al., 

2004a; Fremeau et al., 2004b) (Kirvell et al., 2006; Kashani et al., 2007; van der Hel et al., 

2009; Kirvell et al., 2010); PSD –95 (Gylys et al., 2004; Love et al., 2006) (Leuba et al., 

2008; Sultana et al., 2010; Li and Xin, 2013) as well drebrin (Harigaya et al., 1996; 

Hayashi et al., 1996; Hatanpaa et al., 1999; Counts et al., 2006; Counts et al., 2012).  
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Synaptic alterations have similarly been reported in other dementia phenotypes including 

frontotemporal dementia and dementia with Lewy bodies (DLB) (Ferrer, 1999; Clare et al., 

2010); (Mukaetova-Ladinska et al., 2013b). 

Few studies, however, have been reported on synaptic dysfunction in vascular dementia. 

Perdahl and colleagues reported no significant change in the expression of synapsin -1 in 

subjects with multi –infarct dementia (MID) (Perdahl et al., 1984) and similarly no change 

in the level of synaptophysin was seen in MID in another study (Heinonen et al., 1995).  

However, decreased synaptic proteins were reported in the frontal, hippocampal and 

occipital regions of patients with Binswanger’s disease (Zhan et al., 1993a; Zhan et al., 

1993b; Zhan et al., 1994) while more recently reduced expression of  VGLUT-I was 

reported in subjects with vascular dementia (Kirvell et al., 2010). 

1.6.8. Role of white matter pathology 

 

White matter (WM) is composed largely of myelinated  and unmyelinated axons, glial cells 

(microglia, astrocytes, oligodendrocytes) and blood vessels. The integrity of WM is critical 

to the regulation and efficiency of neuronal communication as well as  maintenance of 

cognitive functioning.  Loss of WM integrity which often manifests as hyperintensity on 

MRI  occurs in the settings of  ageing, cerebrovascular diseases  and their  associated 

dementias (Pantoni and Garcia, 1995; Moskowitz et al., 2010). White matter lesions consist 

of demyelination, axonal loss, enlarged perivascular spaces, astrogliosis, microglial 

activation and oligodendrocyte shrinkage or loss (Pantoni and Garcia, 1995; Fernando et 

al., 2006; Simpson et al., 2007a).  In addition, arteriolar wall may be thickened by the 

accumulation of hyaline material (hyalinosis) or completely disrupted by fibrinoid material 

(fibrinoid necrosis)  causing microhaemorrhages (Fisher, 1968). In addition, hypoxia- 

inducible genes and  markers (hypoxia –inducible factors -1 α and β are upregulated 

suggesting hypoxia – ischaemia (Simpson et al., 2009). 

Disruption of the blood brain barrier associated with the elaboration of  matrix 

metalloproteinases  (2, 3 and 9) leads to  perivascular  oedema  and microhaemorrhages. 

This is a distinct feature of neuroinflammation (Rosenberg et al., 2001; Candelario-Jalil et 

al., 2009; Rosenberg, 2009).  Matrix metalloproteinases are also detected in inflammatory 

cells, reactive astrocytes and microglia and can also be quantified from the cerebrospinal 
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fluid (Rosenberg, 2009).  Matrix metalloproteinases have also been demonstrated in animal 

models of chronic hypoperfusion where  ischaemic demyelination is a major  

pathophysiological mechanism (Nishio et al., 2010; Coltman et al., 2011; Horsburgh et al., 

2011).  

Axonal damage is a component of white matter damage and a key predictor of outcome in    

neurological disorders including neurotrauma, metabolic encephalopathies, multiple 

sclerosis, leucodystrophies and other white matter disorders (Medana and Esiri, 2003).  

Demyelination and axonal damage cause attenuation of cortico-cortical and cortico-

subcortical  connections  “ disconnection syndromes” (Catani and ffytche, 2005)  which 

manifest  in impairment of executive functioning and slowed information processing speed. 

MRI-based neuroimaging modalities including diffusion tensor imaging, tissue 

segmentation, magnetic resonance spectroscopy are useful for probing microstructural 

integrity of white matter (Black et al., 2009). 

In  AD, there is robust evidence from  neuropathological and neuroimaging studies using       

(Pittsburgh Compound B) showing the activation of microglia by the presence and 

accumulation of amyloid fibrils (Cagnin et al., 2001; Edison et al., 2011)..  In studies 

examining the preservation of cognitive functions despite high amyloid burden, 

compensatory mechanisms of early cellular response associated with activation of glial 

cells and neuronal nuclear hypertrophy  have also been implicated (Erten-Lyons et al., 

2009). 

1.6.9. The ‘Cognitive Reserve’ Hypothesis 

 

Several clinico - pathologic studies have demonstrated that the level of brain pathology 

does not always correlate with the degree of cognitive impairment (Erten-Lyons et al., 

2009; Nelson et al., 2009; Chetelat et al., 2010; Nelson et al., 2012) .   Although the 

concept owes its origins to the writings of Satz (Satz et al., 1993),  who described ‘brain 

reserve’ as the physiologic element that supports brain function,  Stern  has probably 

devoted more attention to develop the concept of ‘cognitive reserve’ such that while ‘brain  

reserve’ represents the hardware, ‘cognitive reserve’ represents the ‘software’(Stern, 2002; 

Stern, 2009; Stern, 2012; Stern, 2013). Stern’s concept of ‘cognitive reserve’ suggests that 

the brain enlists compensatory processes, such that a greater amount of pathology is 
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required for cognitive impairment to develop (Stern, 2002; Stern, 2012). Several 

epidemiological studies have linked persons with low educational and low occupational 

attainment with increased risk of dementia (Stern et al., 1996; Stern et al., 1999; 

Valenzuela and Sachdev, 2006; Brayne et al., 2010; Valenzuela et al., 2011; Prince et al., 

2012). In another recent study, (Wilson et al., 2013) found higher noradrenergic neuronal 

density in the locus ceruleus correlated significantly with reduced risk of cognitive decline 

(Wilson et al., 2013a; Wilson et al., 2013b). Apart from education, other factors that may 

enhance ‘cognitive reserve’ include environmental enrichment, physical activity, and social 

networking (Satz et al., 2011). 

 

1.7. Hippocampal formation and its connections 

 

1.7.1. Hippocampal circuitry and function 

 

The hippocampal formation is one of the most studied regions of the brain. Lorento de No 

provided early description of the hippocampus using the Cornu Ammonis nomenclature 

(Lorento de No, 1934; Duvernoy, 2005). There is a huge volume of robust evidence from 

neuroimaging, neuropathological and molecular studies confirming the role of the 

hippocampal formation in the processes of memory formation and consolidation, as well as 

its structural and functional changes in ageing and disease (Brickman et al., 2011; Small, 

2011; Small et al., 2011). The hippocampal formation consists of the hippocampus (CA 

regions, dentate gyrus), the subiculum and the entorhinal cortex.  The term 

“Ammonshornsklerose” was first introduced by Sommer to define loss of pyramidal cells in 

the Sommer sector of the Cornu Ammonis (Sommer, 1880). 

1.7.1.1. Anatomy 

The hippocampal formation spans the posterior –anterior extent of the base of the temporal 

lobe of the brain and consists of multiple sub-regions – the entorhinal cortex, the 

subiculum, the dentate gyrus and the Cornu Ammonis (CA) subfields.  The CA region is a 

three layered strip of archicortex consisting of polymorphic, pyramidal cells and molecular 

layers (Duvernoy, 2005). The pyramidal cells are then divided up into three or four separate 

fields (CA1, CA2, CA3, CA4). The CA1 occupies the largest proportion of the CA between 
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the dentate gyrus and the subiculum. The CA2 is a distinct, compact subfield between CA1 

and CA3 while CA3 and CA4 occupy the segment aborting the dentate gyrus. Each 

hippocampal region has a unique molecular anatomy as recent gene expression studies 

show (Zhao et al., 2001; Datson et al., 2004). This distinctive molecular anatomy provides 

a substrate for regional vulnerability of the different subfields to different toxic agents 

(Small et al., 2011). 

 

1.7.1.2. Connections 

The entorhinal cortex is the gateway into the hippocamapal formation. It receives 

monosynaptic projections from several cortical and subcortical regions including the 

amygdala, olfactory and auditory cortices, prefrontal cortex, parahippocampal and peri-

rhinal cortices (Goldman-Rakic et al., 1984). Then the layer II of the entorhinal cortex (EC) 

connects to the dentate gyrus through the Perforant Pathway, and the DG connects to CA3 

through Mossy fibres. CA3 “auto – associates” with other CA3 neurons or connects with 

CA1 through “Schaffers collaterals” while the CA1 pyramidal neurons connect to the 

subiculum. This is described as the “tri- synaptic pathway”. Besides, layer III of the 

entorhinal cortex may connect directly with CA3, and layer III of the EC can project to 

CA1 directly and the subiculum (Insausti et al., 1987; Insausti and Amaral, 2008; Insausti 

et al., 2013).  Outflow impulses out of the hippocampal formation is provided dominantly 

by the subiculum and CA1 sub-region which connect with deep layers of the EC. The EC 

then re- connects – through the parahippocampal gyrus – with neocortical sites that provide 

the original input (Amaral, 1993). However, anatomical tracing studies have also provided 

evidence that the outflow from the subiculum and CA1 can bypass the EC and 

‘monosynaptically’ connect with a broad range of brain areas including the amygdala, the 

pre-frontal and orbitofrontal cortices, the cingulate cortex and the temporal cortex (Rosene 

and Van Hoesen, 1977) (Goldman-Rakic et al., 1984). 
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1.7.1.3. Function 

There is robust evidence from electrophysiological, functional MRI and gene expression 

profiling studies suggesting an anterior –posterior functional specialization of the 

hippocampus in its longitudinal axis (Small et al., 2011). While the anterior regions are 

involved with goal –oriented activities, stress, emotion and sensori – motor coordination, 

the posterior regions are more involved with cognitive processing and memory (Bast and 

Feldon, 2003) (Moser and Moser, 1998; Bast et al., 2009; Fanselow and Dong, 2010). The 

hippocampus through the presence of ‘place cells’ also plays a major role in facilitating 

spatial localization. The neuroplastic effect of spatial localization was demonstrated in 

London taxi drivers (Maguire et al., 2000). 

   Figure 1. 6: Hippocampal sub - regions and connections.  The CA1, CA2, CA3, 

subiculum and entorhinal cortex are highlighted. 1 = the Perforant Pathway; 2 = Mossy 

fibres; 3 = Schaffers collaterals; 4 = outflow from CA1; 5 = direct EC – CA1 fibres;        

6 =  EC – Neocortical connections  
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1.7.1.4. Regional Vulnerability 

The hippocampal formation, due to regional variation in the molecular anatomy of the 

different sub-fields, shows variation in the vulnerability of its different sub- regions to 

different diseases. While the CA1 sub-field is most susceptible to vascular disease, the EC 

is differentially susceptible to AD and the DG is differentially susceptible to ageing (Small 

et al., 2011). 

1.7.2. Hippocampal changes in cognitive impairment and dementia 

 

Neuroimaging and neuropathological studies have advanced our knowledge on global and 

sub - regional hippocampal changes in the continuum of cognitive impairment and 

dementia. Hippocampal atrophy was previously considered a signature of degenerative 

pathology, particularly AD (Soininen and Scheltens, 1998; Almkvist and Winblad, 1999)  

but growing evidence suggests it may also have a vascular basis. Hippocampal atrophy 

predicted cognitive performance in a cohort of CADASIL subjects (O'Sullivan et al., 2009), 

showed significant association with midlife vascular risk factors and vascular brain injury 

(Debette et al., 2011) and vascular dementia in the Honolulu – Asia Aging Study (HAAS) 

(Scher et al., 2011).  Hippocampal atrophy has also been associated with DLB (Barber et 

al., 1999) and a positive family history of AD (Okonkwo et al., 2012). Pathologically, 

hippocampal atrophy may be due to hippocampal sclerosis (Dawe et al., 2011; Nelson et 

al., 2013) or neuronal atrophy (Gemmell et al., 2012). Impairment of episodic memory and 

even executive functions are significant neurocognitive correlates of hippocampal atrophy 

(Mormino et al., 2009; Gemmell et al., 2012; Oosterman et al., 2012). 

In degenerative dementias, particularly AD, the hallmark lesions of neurofibrillary tangles 

and extracellular amyloid plaques are seen in the hippocampal formation although the 

temporal evolution and hierarchical progression differs.  Whereas amyloid deposition 

originates in the neocortex  and only gets to the hippocampus later in its course (Thal et al., 

2002b), neurofibrillary pathology  usually involves the hippocampal formation early after 

starting off  in the entorhinal cortex (Braak and Braak, 1991). These have been incorporated 

into a recent revision of the diagnostic criteria for AD, especially as this heirachical 

progression permits the detection and diagnosis of pre-clinical stages of AD (Montine et 

al., 2012). 
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The cognitive impact of hippocampal pathologies depends on the type of pathology, the sub 

- regional location and severity, and their influence on the hippocampal circuitry (Lace et 

al., 2009). For instance, neuritic plaques and tangles show better correlation with cognitive 

scores than cored or diffuse plaques while neocortical amyloid correlates better than  

archicortical amyloid (Nelson et al., 2009; Nelson et al., 2012). Tau pathology in the 

perforant pathway particularly correlates with the onset and severity of dementia (Thal et 

al., 2000; Lace et al., 2009).  Furthermore, the CA1 sub - region, in particular, 

demonstrates high susceptibility to insult from hypoxia/ischaemia, hypoglycemia, whereas 

the CA2 region is more resistant (Duvernoy, 2005).  

 

1.8. Aims and Outline of the Thesis 

 

In view of the foregoing background, the overall aim of this thesis was to establish a 

comparative cohort in Nigerian African stroke survivors to investigate the profile and 

determinants of post - stroke cognitive impairment (VCI) and further explore the 

mechanisms of cerebral injury and cognitive impairment following stroke in post - mortem 

brains collected from the Newcastle cohort who had come to autopsy. The specific 

objectives of this thesis were: 

1. To determine the profile and determinants of cognitive impairment in a cohort of 

Nigerian African stroke survivors three months after stroke. 

 Hypothesis:  Given the general low prevalence of  vascular dementia often 

reported  from Africa, a low frequency,  multi - domain  cognitive 

impairment would be seen in a cohort of Nigerian African stroke survivors 

at three months post – stroke. 

2. To determine the neuroimaging features associated with cognitive impairment in 

Nigerian African stroke survivors 

 Hypothesis: Neuroimaging features including medial temporal lobe atrophy 

and white matter hyperintensities would be associated with cognitive 

impairment in Nigerian African stroke survivors. 

3. To quantify hippocampal Alzheimer pathology in demented and non - demented 

post stroke cases in comparison with other dementias and ageing controls.  
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 Hypothesis:  Hippocampal Alzheimer pathology would be differentially 

expressed in demented and non – demented stroke survivors in comparison 

with other dementia subjects and normal ageing controls. 

4.  To determine hippocampal synaptic changes in post-mortem brains collected from 

the Newcastle cohort. 

 Hypothesis: Differences in the expression of hippocampal synaptic markers 

would distinguish demented from non – demented post – stroke cohorts in 

relation to normal ageing controls and other dementia subjects. 

5. To assess frontal and temporal white matter abnormalities (glial activation, 

demyelination and axonal damage) in the post- stroke cohorts compared to normal 

ageing controls and other dementias..  

 Hypothesis: Markers of glial activation, demyelination and axonal damage 

would be differentially expressed in the white matter of demented and non- 

demented post – stroke cohorts compared to normal ageing controls and 

other dementia subjects. 

The following chapter describes general materials and methods used in the study, chapters 

three to seven contain results, and the final chapter contains an overall discussion.  

Chapters three and four are devoted to the profile, determinants and neuroimaging features 

associated with post-stroke cognitive impairment in the Nigerian African cohort. Stroke 

survivors were assessed with a combination of clinical, neuropsychological and 

neuroimaging approaches. 

Chapters five, six and seven report our findings in the post - mortem brain tissue from the 

Newcastle cohort, which were investigated given the significant findings from the 

neuroimaging studies in the Nigerian African cohort that were in tandem with previous 

reports from the Newcastle cohort. Using immunohistochemical and neurochemical 

approaches and a panel of different markers, we investigated neurodegenerative 

hippocampal Alzheimer pathology and synaptic changes, and frontal and temporal white 

matter abnormalities in demented and non - demented post - stroke subjects compared to 

normal controls and Alzheimer’s disease subjects. Finally, the complementary findings 

from the two major arms of the project are discussed in the context of extant literature, 

public health perspectives and anticipated future work. 



58 
 

Chapter 2. Materials and Methods 

 

2.1. Introduction 

This chapter describes the methods used in the analysis of the aims of the project reported 

in this thesis. These include a new clinico epidemiological study on cognitive function in a 

cohort of African stroke survivors in southwestern Nigeria and a post - mortem clinico - 

pathological study in Newcastle, United Kingdom. It details the design, sites, subjects, 

protocol, procedure and flow of the Cognitive Function After STroke (CogFAST) – Nigeria 

Study as well as the identification of the laboratory cohort, the diagnostic criteria for the 

CogFAST - Newcastle cohort, VaD, AD and definition of control subjects. Finally, the 

immunohistochemical procedures, image acquisition and analysis as well as statistical 

analysis of clinical, neuropsychological, neuroimaging and laboratory data from the overall 

project are described.  

 

2.2. The CogFAST- Nigeria Study 

 

2.2.1 Introduction 

Despite a growing burden of stroke in sub-Saharan Africa (Connor et al., 2007; Strong et 

al., 2007; Owolabi, 2011)with all its accompanying motor and non-motor consequences, 

there is scanty information on the cognitive sequelae of stroke on the continent. The 

Cognitive Functions After Stroke- Nigeria (CogFAST–Nigeria) Study is an extension of the 

highly successful CogFAST-Newcastle Study (Allan et al., 2011) to undertake a pioneering 

investigation of post-stroke cognitive impairment in the most populous nation of people of 

the Black race, Nigeria. 
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 2.2.2. Study Design 

The CogFAST- Nigeria Study had a mixed study design with a combination of case - 

control and longitudinal cohort approaches.  Stroke survivors were recruited and assessed 

three months after the ictus. They were subsequently rolled into a follow up programme 

with assessments conducted at 9 months, 15 months and 27 months post – stroke 

respectively.  Stroke – free healthy volunteers of comparable age, gender and levels of 

education were also recruited from representative members of the community, spouses and 

caregivers of stroke survivors without any somatic, mental or neurological illness in order 

to generate normative neuropsychological data with which data accrued from the stroke 

survivors were compared. 

 

2.2.3. Study Sites 

Stroke patients were recruited from the services of two specialist hospitals - Federal 

Medical Centre Abeokuta and the University College Hospital, Ibadan  both cities in 

southwestern Nigeria. These hospitals are the two major referral specialist centres in the 

two respective cities and staffed with one neurologist (FMC Abeokuta) and three 

neurologists (UCH Ibadan).  

 

 

Figure 2.1. Map of Nigeria showing the study area in southwestern part of the country    [A] Political 

map of Nigeria showing Abeokuta and Ibadan north of Lagos [B] An ethno – linguistic map showing the 

Yoruba – speaking southwestern region of the country within which the study centres are located. 

A B

B

B

B 
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Abeokuta, located 60 miles north of Lagos,  is the capital city of Ogun State in 

southwestern Nigeria and has a population of 593,140 (2005 Nigeria census). The principal 

inhabitants of the city are the Yoruba people of Niger-Kordofonian ancestry (Campbell and 

Tishkoff, 2010).   The Federal Medical Centre, Abeokuta is a 250–bed regional tertiary 

centre which was established in April 1993. It receives patients from Ogun and 

neighbouring states, and relates with two secondary care level facilities and smaller 

hospitals and community care clinics within and outside the Abeokuta metropolis. In 2010 

there were 6,410 admissions and 101,435 outpatient visits. There are about 50 stroke 

discharges annually. Many stroke cases are seen by complementary medicine  practitioners 

while fatal and mild strokes often remain unaccounted for within the community(Ogun et 

al., 2005).  

  Ibadan, the capital city of Oyo State also in southwestern Nigeria, is the third largest city 

in Nigeria by population, and the largest in geographical area. It had a population of 

2,550,593 in 2005 spread over 11 local government areas. The principal inhabitants of the 

city are also Yoruba people. The University College Hospital Ibadan was established in 

1952 as the first teaching hospital in Nigeria. The hospital is a tertiary institution with a 

number of affiliated community care centers where the hospital offers secondary and 

primary health care. About 150 stroke patients are discharged annually. However, the lack 

of an effective health insurance system and out – of – pocket payment by patients often 

precluded patients from following up care transfers to tertiary centres where there is a 

concentration of specialist expertise to manage conditions like stroke.  

Three other centers (Catholic Mission Hospital, Oluyoro Ibadan, Oluwaseun Physiotherapy 

Clinic, Ibadan and State Hospital, Ijaiye Abeokuta) were also included in the study. These 

were smaller secondary healthcare centers with fewer stroke patients and who wereusually 

referred to the specialist centres. These smaller centres were, however, included to ensure 

representativeness of different levels and types of healthcare facilities in the region. The 

three smaller facilities are community-based secondary healthcare facilities providing 

largely general medical care and services.  
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2.2.4 Study Subjects 

Stroke participants 

Eligible cases were stroke patients aged 45 years or older. This cut off age was adopted for 

the purpose of this study in order to better reflect the relative youthfulness of the Nigerian 

population. For instance, recent life expectancy estimates showed:  total population (46.94 

years) male (46.16 years); female (47.76 years) (2011 estimates) and only 4% of Nigerians 

are older than 60 years (www.population.gov.ng/)]. In contrast, current life expectancy  in 

Newcastle upon Tyne (2012 estimates)  is 76.2 years (male) and 81.0 years (female) 

http://www.ons.gov.uk/ons/publications). The cut off age for the CogFAST – Newcastle 

Study was 75 years (Ballard et al., 2002; Allan et al., 2011). 

Stroke patients diagnosed clinically by the most senior physician (neurologist) in the 

specialist centres were admitted to the medical wards and then logged onto the study 

register. They were subsequently screened for eligibility within three months after the ictus. 

Subjects were approached regarding participation in the study at discharge from hospital or 

during initial outpatient visit after stroke (patients who presented primarily in the outpatient 

clinic). They were subsequently invited for assessment by word of mouth or through 

mobile telephone contact. Between the point of discharge and 3 months  posts - stroke, each 

potential subject was screened for eligibility based on the criteria of: 45 years of age or 

older, duration after stroke within 3 months and clinically confirmed stroke based on 

history, physical examination  and neuroimaging as much as possible.. Stroke was defined 

according to the WHO clinical definition (World Health Organization, 1988) and classified 

using the WHO Definition, the Oxford Community Stroke Project Classification (Bamford 

J, 1991) and neuroimaging (CT scan and/ or MRI) findings when available.  Some patients 

did not have neuroimaging due to limited access and high cost in Nigeria. The WHO 

clinical definition/criteria have been shown to have a sensitivity of 73 % for haemorrhage, 

69% for infarction and an overall accuracy of 71% in Nigeria (Ogun et al., 2002).  

Exclusion criteria were: [1] subarachnoid haemorrhage [2] significant physical illness and 

motor impairment that precluded paper and computer-based neuropsychological evaluation 

(eg. visual impairment, moderate-severe aphasia, hemiparesis affecting the dexterous hand 

(MRC power grade <3) [3] any co – morbid psychiatric or neurologic illness [4] any 
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systemic disease that could impair cognition e.g. chronic liver disease, chronic kidney 

disease [5] inability or failure to give consent. 

 

Stroke-Free Controls  

For comparison with the neuropsychological data from stroke survivors, apparently healthy 

subjects who were free of clinically - evident stroke were recruited from a pool of 

community-dwelling volunteers who were unrelated to the stroke subjects and were 

participating in a community health literacy programme.   Control subjects were also 

recruited from among the spouses and, unrelated caregivers of stroke survivors as well as 

from among patients attending the general outpatient clinic for routine physical assessment. 

Individuals with background dementia (DSM IV criteria) or scoring less than  20 on the 

Community Screening Instrument for Dementia and psychiatric disorders e.g. 

schizophrenia, major depression, manic-depressive disorder; background neurological 

disorders e.g. Parkinson’s disease, (evidence from case records, informant or self report) or 

who were unable to provide consent and/or informant were excluded from being controls. 

 

2.2.5 Ethical Approval 

The local research ethics committees of the Oyo State Ministry of Health (University 

College Hospital, Ibadan , Catholic  Mission Hospital, Oluyoro Ibadan, Oluwaseun 

Physiotherapy Clinic, Ibadan ) and the  Federal Medical Centre Abeokuta) and State 

Hospital, Ijaiye  Abeokuta  granted approval for the study while written informed consent 

was obtained from each  subject.   

 

2.2.6 The Study Protocol 

The study instrument consisted of a screening proforma, case questionnaire, control 

questionnaire, informant/caregiver interview and cognitive assessment battery.  These we 
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developed following a rigorous process of reviewing tools which had been used in previous 

studies on stroke epidemiology and risk factors, ageing and dementia, and post-stroke 

cognitive dysfunction, with particular attention paid to validated tools previously used in 

the study population and other developing countries (Gureje et al., 1995; Ogunniyi et al., 

2000; Baiyewu et al., 2005; Hendrie et al., 2006; Truelsen et al., 2007; Akinyemi et al., 

2008; O'Donnell et al., 2010b). To assess cognitive function in our subjects, the Vascular 

Neuropsychological Battery was developed in step with the 60 – minute protocol suggested 

by the NINDS – CSN Harmonization Standards and in strict adherence to the  

recommendations of the group (Hachinski et al., 2006a). Thus, relevant validated tools 

previously used in the CogFAST - Newcastle Study (Ballard et al., 2002; Ballard et al., 

2003b) and the Ibadan – Indianapolis Dementia Study were adopted, or  refined  to reflect 

the  peculiarities of the Yoruba language, culture and belief systems prevalent in the study 

area. These were also all factored into the subsequent training of the staff of the project. 

Translations and back –translations from English to Yoruba language were undertaken 

where necessary.  All instruments were reviewed by a team of neurologists, 

neuropsychologist, research nurses and a biostatistician before pilot tests were conducted 

on a purposive sample of stroke survivors. 

 The screening proforma contained an essential checklist of items to determine the 

eligibility of stroke survivors on the registers for recruitment into the study and is usually 

administered within one to two weeks of the 3 months baseline assessment. The case and 

control questionnaires contained items assessing demographic information, vascular risk 

factors,other – comorbidities, lifestyle (smoking, alcohol use, physical exercise), diet, 

details of index stroke as well as findings of relevant laboratory investigations including 

(neuroimaging [CT scan/MRI].  Administration of the case questionnaire (including general 

and neurologic examination) and cognitive assessment were performed on separate days  

(not more than 48hrs apart)  to avoid excessive fatigue from a single session. Cognitive 

assessment was undertaken in a quiet room and usually in the early working hours of the 

day. Subjects were educated to avoid any stimulants within 12 hours of cognitive 

assessment.  
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2.2.6.1 Cognitive Assessment Battery  

An ideal neuropsychological battery should be robust, brief, valid, reliable, cost effective, 

sensitive enough to detect deficits but specific enough to avoid false positives. In addition, 

it should be easy to administer, be available in multiple forms, have cross cultural 

capability and have no floor or ceiling effect (Blake et al., 2002; Hachinski et al., 2006a). 

However, in reality no single tool satisfies all these requirements. New tools being devised, 

nonetheless, are to aspire to attain these ideal characteristics. 

The cognitive assessment tools utilized in this study consisted of the Community Screening 

Instrument for Dementia (CSID) – cognitive part (Hall et al., 2000; Ogunniyi et al., 2000) 

the mini-mental state examination (MMSE) (Folstein et al., 1975) and the Vascular 

Neuropsychological Battery (V – NB) (Hachinski et al., 2006b). The CSID and the MMSE 

are tests of general  cognitive functioning while the V –NB  consists of  battery of tests 

assessing functioning in specific domains of cognition including executive function, 

language, memory and visuospatial/visuoconstructive domains.  

 

2.2.6.2. Community Screening Instrument for Dementia (CSID) 

The CSID is a paper and pencil test of global cognitive performance which adaptability, 

validity and utility in populations from different cultural, educational and socio-economic 

backgrounds have been established.  From previous validation studies on the CSID, the 

maximum total cognitive score was 33 while a cut off score of 28.5 was used to define 

cognitive impairment (Hall et al., 2000; Ogunniyi et al., 2000). It has a sensitivity of 87% 

and specificity of 83% for the clinical diagnosis of dementia and has been used reliably and 

widely to assess cognition in the Yoruba speaking population of southwestern Nigeria 

wherein the present study was conducted. The CSID includes sub-scores for attention, 

orientation, calculation, short and long term memory, language comprehension and 

expression, praxis and abstract thinking. A raw score method was used for scoring resulting 

in score range of 0 – 30 with higher scores indicating better cognitive function.  
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In the current study, three items were excluded from the CSID. These were two items 

assessing constructional ability (overlapping circles and interlocking pentagons). They were 

deleted because the loss of motor function and dexterity in the dominant hand occasioned 

by stroke could impair performance on these tasks. Moreover, these two items were 

strongly influenced by education.  Also the item assessing the ‘name of local mayor’ was 

dropped because of confusion between the real names and title names of local mayors in 

the African setting. Experience had shown that some respondents to this item mentioned the 

‘real name’ of the mayor while others mentioned the ‘designated title’ and these were not 

exactly the same. With this minor revision of the CSID scores, the highest possible score 

came down to 30 while the cut off for cognitive impairment became 25.5.  

 

2.2.6.3. Mini - Mental State Examination (MMSE) 

The Mini - Mental State Examination (MMSE) is a 30 – item test of general cognitive 

functioning that includes items for assessment of  orientation, memory, attention, language 

and constructional abilities (Folstein et al., 1975). In the validated Yoruba version of 

MMSE, the attention item required the subject to state the days of the week backwards 

(from Friday to Monday) (Gureje et al., 1995). This was a substitute for spelling WORLD 

backwards in the English version. While a cut -off score of 24 or less is most frequently 

used to define the presence of dementia in the English version, this was found inappropriate 

in sample with limited education. A cut-off score of 13 or less for Yoruba-speaking 

Nigerians with no education and 16 or less for subjects with one or more years of formal 

education were used in defining possible dementia (Gureje et al., 1995). 

2.2.6.4. Vascular Neuropsychological Battery (V-NB)  

In 2006, the National Institute of Neurological Disorders and Stroke (NINDS) in 

collaboration with the Canadian Stroke Network (CSN) published the Harmonization 

Standards for a comprehensive characterization of vascular cognitive impairment 

(Hachinski et al., 2006a). Specific recommendations were made for clinical, 

neuropsychological, neuroimaging, neuropathological and animal models in the 

characterization and development of criteria for the definition of vascular cognitive 
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impairment.  The neuropsychological sub-section contained recommendations of cognitive 

tests for 60 –min, 30 – min and 5 - min assessment of the core domains of executive 

function, language and visuospatial functioning. We, therefore, devised the Vascular 

Neuropsychological Battery (V –NB) after the NINDS –CSN Harmonization Standards 60 

–minute neuropsychological protocol with relevant modifications to ensure adaptability to 

the language and culture of our predominant Yoruba study population.   

The V- NB consists of multiple test items examining specific cognitive domains (executive 

function, memory/learning, language, visuospatial function/visuoconstructive skills) (Table 

2. 1).   

 Executive function/activation and mental speed were assessed using the category (animal) 

fluency test, phonemic (letter) fluency test, verbal reasoning and visual reasoning tests.  

The number of animals listed in the first 15 sec of the animal fluency test provided an 

assessment of mental speed while all the tests differently assessed mental flexibility and 

divergent thinking.  

The verbal reasoning and visual reasoning tests were adapted from the Cambridge 

Cognitive Examination (CAMCOG), a cognitive test section of the CAMDEX assessment 

(Cambridge Mental Disorders of the Elderly Examination) designed to assess a broad range 

of cognitive functions(Blessed et al., 1991). It demonstrates excellent psychometric 

properties and has been used widely in assessing vascular cognitive impairment (de Koning 

et al., 2000; Ballard et al., 2002; de Koning et al., 2005)  

Memory/learning was assessed with the 10- item word list learning test and delayed recall 

of stick design,(Gureje et al., 1995; Baiyewu et al., 2005). The word list learning is a 3 -  

trial`, 10 – item test with free recall taken after each learning trial and after a brief delay. 

The total number of words recalled across the three trials make up the total score (range:   0 

– 30) while the delayed recall is scored ( 0 -10)`, higher scores indicating better 

performance. Language was assessed through the 15 – item Boston Naming Test 

(Hachinski et al., 2006a). In a prior validation study of the CERAD battery among Yoruba 

Nigerians, subjects were requested to name line drawings of common and uncommon 

objects. Four of the low frequency items from the standard CERAD-NB were replaced with 

items felt to be more culturally appropriate (i.e. guitar for harmonica, blacksmith tongs for 
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ice cube tongs, mosquito netting for hammock, and 'ayo' (Nigerian board game) for 

dominoes(Gureje et al., 1995). 

Visuospatial/visuoconstructive functioning was assessed through the Stick Design Test 

(Baiyewu et al., 2005) and the Modified Token Test (IU Token Test) (Unverzagt et al., 

1999; Akinyemi et al., 2008) . The Stick Design Test is a non- graphomotor test of 

visuospatial /visuoconstructive ability. The respondent is requested to use match sticks to 

reproduce four different graphical shapes with particular attention to the correctness of 

relative orientation of the match heads. Thereafter the respondent reproduces the four 

shapes without any cues to assist. The test is particularly useful in older adults with limited 

formal education (Baiyewu et al., 2005).  The Modified Token test consists of a piece of 

laminated paper with a spectrum of squares and circles of varying sizes (small and large) 

and colours (black, yellow, green and red). The interviewer reads aloud a series of 

commands that request the subject to point to the figures in different combinations. The test 

is scored based on correct identification of shapes in the required sequence (range 0 – 24) 

with higher scores indicating better performance (Unverzagt et al., 1999).   

Test items from the Cognitive Drug Research (CDR) computerized assessment battery were 

also included in the V-NB for the evaluation of attention, processing speed and executive 

function. [The constituent tests included Simple Reaction Time (SRT), Choice Reaction 

Time (CRT), Digit Vigilance (DV) and Spatial Working Memory (SWM) (Ballard et al., 

2002; Wesnes, 2002). The instructions were translated and back –translated from English 

into Yoruba Language by experienced linguists. Several of these tests were also previously 

validated and successfully utilized to evaluate cognitive functions in a cohort of Nigerian 

subjects with Parkinson’s disease (Akinyemi et al., 2008). The cognitive assessment battery 

was pilot - tested on 42 stroke survivors between January and June 2010 in order to further 

evaluate the feasibility of the methods, acceptance and adaptability in persons living with 

stroke. 
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Cognitive  

Domain  Test Reference 

Executive Function Category (Animal)  Fluency Test Gureje et al., 1995; 

/Activation 

 

Blessed et al, 1991 

  

Ballard et al, 2002 

 

Phonemic (Letter) Fluency Test Blessed et al, 1991 

  

Ballard et al, 2002 

 

Verbal Reasoning (Similarities Test) Blessed et al, 1991 

  

Ballard et al, 2002 

 

Ideational Fluency Test Blessed et al, 1991 

  

Ballard et al, 2002 

Language/ Boston  Naming Test (2nd version) Gureje et al., 1995; 

Lexical Retrieval 

 

Akinyemi et al., 2008 

Memory/ Learning Word List Test (Learning, Recall,  Gureje et al., 1995; 

 

Recognition) Akinyemi et al., 2008 

 

Delayed  Recall of Stick Design Gureje et al., 1995; 

  

Akinyemi et al., 2008 

Visuospatial/ Stick Design Test Baiyewu et al., 2005 

Visuoconstruction Modified Tokens Test Unverzagt et al., 1999;  

 

(IU Token Test) Akinyemi et al., 2008 

General Cognitive  Community Screening Instrument  Hall et al, 1993 

Functioning for Dementia (CSID Hall et al, 2000 

 

Minimental State Examination        Folstein, 1975 

   (MMSE) Gureje et al, 1995 

Table 2. 1.  The Vascular Neuropsychological Battery  devised after the 60 –minute Vascular 

Cognitive Impairment Harmonization Standards – Neuropsychological Protocol proposed by the 

NINDS – CSN (Hachinski et al, 2006). Multiple test items assessing each cognitive domain were 

selected in consonance with the recommendations of the Harmonization standards and utility of 

such tests in previous cognitive evaluations in the environment of the study population. 
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2.2.7 Study Procedure 

 

2.2.7.1 The Pilot Study 

An initial pilot study was designed to test the feasibility of the methods and procedures of 

the study. Logistic issues relating to the general conduct of the study such as clarity and 

comprehensibility of  instructions on the study instruments, cultural acceptability of 

methods, for instance computer based testing in a low literate population; correct operation 

of equipment and  duration of assessments were evaluated (Lancaster et al., 2004; Thabane 

et al., 2010; Leon et al., 2011). 

 

2.2.7.2. Baseline Evaluation 

Baseline evaluation was performed at three months post-stroke in tandem with the design 

of Desmond et al (Desmond DW, 1996)  to enable the resolution of acute post-stroke 

delirium. The evaluation included comprehensive medical history, assessment of 

neurological impairment and disability using the modified Rankin Scale (Wilkinson et al., 

1997), Stroke Levity Score (Owolabi and Platz, 2008)and Barthel Index (Wilkinson et al., 

1997), depressive symptoms (using the Centre for Epidemiologic Studies Depression Scale 

(Andresen et al., 1994) and four – item Geriatric Depression Scale(Almeida and Almeida, 

1999), and blood screens. The Stroke Levity Score is an assessment of stroke severity based  

on maximum power (0-5) in the dexterous hand + maximum power in the weaker lower 

limb + mobility score-1 (if aphasia present). It has shown excellent correlation with the 

National Institutes of Health Stroke Scale (NIHSS) (Owolabi and Platz, 2008). 

Confirmation of cardiovascular risk factors (hypertension, diabetes mellitus, atrial 

fibrillation, dyslipidaemia, cigarette smoking, alcohol use) were based on self- report, use 

of relevant medications and review of medical notes.  Nutritional lifestyles and physical 

activity were assessed according to the design of the INTERSTROKE Study (O'Donnell et 

al., 2010b).  Dietary patterns were assessed in all subjects with a food frequency 

questionnaire assessing frequency of different types of food taken by the subjects in the 

prior year before the onset of stroke (and separately in the three months period after stroke) 
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with appropriate addition of common local foods and delicacies to relevant categories.  

Physical activity was assessed at work and during leisure time and subjects were stratified 

into sedentary, mild, moderate and heavy physical activity categories (O'Donnell et al., 

2010b). Cognitive assessment was performed by experienced interviewers who received 

further two weeks training on the study instrument and had to achieve  an  inter – rater 

reliability of at least 90%  in mock assessments done with volunteers from the hospital 

community before conducting cognitive assessment on the study subjects. 

 

 

 

2.2.7.3. Follow up evaluations  

This thesis will describe the baseline data only but follow up evaluation of the cohort is 

ongoing. Evaluations are undertaken at 9 months, 15 months and 27 months respectively 

after stroke to assess the evolution of cognition and other functions in the cohort. This 

consists of cognitive assessment with the CSID, MMSE and V –NB and dementia status 

 Figure2.2. Study Flow chart showing basic study procedure  
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according to the DSM IV criteria. Also assessed are motor functions, functional status, 

cardiovascular status, quality of life and caregiver/informant assessment.  

 

2.2.7.4. Neuroimaging assessment (Magnetic Resonance Imaging) 

Brain magnetic resonance imaging (MRI) was performed on a subset of recruited stroke 

survivors 3 months after the stroke event. Two MRI scanners used operated between 0.2 

and 0.35 T. Medial temporal lobe atrophy and white matter changes were assessed using 

the Schelten’s scales (Scheltens et al., 1992; Scheltens et al., 1993). All images were 

transferred to computer workstation with Clear canvas DICOM viewer and evaluated by 

two experienced radiologists. All ratings were performed by consensus agreement. 

Assessment of brain volumes – total intracranial volume, total brain volume and ventricular 

volume - was performed by creating a mask using the brain extraction tool (Bet) from the 

FSL software (www.fmrib.ox.ac.uk fsl  ). 

 

2.2.8. Cognitive Diagnosis 

To make a cognitive diagnosis on a subject, all available datasets including cognitive 

scores, functionality and disability scores (the Barthel Index and modified Rankin score) 

coupled with the physician’s assessment were assembled and discussed by the research 

team for consensus diagnosis. Final cognitive diagnosis was made based on the VCI criteria 

proposed by the American Stroke Association/American Heart Association Vascular 

Cognitive Impairment (VCI) Guidelines (Gorelick et al., 2011) and the DSM IV criteria 

(American Psychiatric Association, 1994).  

 

2.2.8.1. Operational definitions of Vascular Cognitive Impairment 

Failure on a test was defined as individual mean score that was at least 1.5 standard 

deviations below the mean score of the control group.  Impairment in a domain was defined 

as failure on at least 50% of tests examining that particular domain (Dong et al., 2012).  
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  Vascular Mild Cognitive Impairment (Vascular MCI) or Vascular Cognitive Impairment 

No Dementia (Vascular CIND) and Post- Stroke Dementia (PSD) were defined according 

to the American Stroke Association/American Heart Association Vascular Cognitive 

Impairment (VCI) Guidelines (Gorelick et al., 2011).  

Vascular MCI (Vascular CIND) was defined as impairment in at least 1 cognitive domain 

(executive function, memory/learning, language, visuospatial/ visuoconstructive skills) and 

normal or mild impairment of instrumental activities of daily living independent of 

motor/sensory symptoms.  PSD (in accord with the DSM IV criteria), was defined as 

impairment in > 2 cognitive domains that were of sufficient severity to affect the subject’s 

activities of daily living independent of motor/sensory symptoms (Gorelick et al., 2011).  

 

2.2.9. Data Management and Statistical Analysis 

Data were analyzed using the Statistical Package for Social Sciences version 19.0 (SPSS 

Chicago Inc.). Categorical variables were examined and summarized in percentages while 

continuous variables were described using measures of central tendency (mean, median and 

semi-interquartile range) and compared using the student’s t-test, analysis of variance 

(ANOVA) and Kruskal-Wallis Test. Correlations were examined using Pearson’s 

correlation coefficient while logistic regression models were fitted to determine univariate 

and multivariate relationships between cognitive status  and  patient – related variables 

including demographic, lifestyle and vascular risk factors; stroke disability and depression 

symptoms.  Unadjusted and adjusted ORs with 95% CIs were estimated. For multivariate 

analysis, variable groups were entered incrementally so that the mediating effect of each 

could be evaluated.  Level of statistical significance was set at p < 0.05. For this sample and 

its associated sub - sample, appropriate power calculation was performed using the 

G*Power software (Faul et al, 2007), a significance level, α – level = 0.05 and assuming a 

moderate effect size Cohen’s d = 0.5. This was to determine the strength of associations 

and conclusions that would be derived from the analysis of the dataset. 
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2.3 The CogFAST- Newcastle Study 

 

2.3.1. Introduction                  

The Cognitive Functions After Stroke (CogFAST) Newcastle Study is a Medical Research 

Council (MRC) funded study which began in 1999 with the main aim of investigating 

disease mechanisms and risk factors associated with the long term consequences of stroke 

(Ballard et al., 2003b; Allan et al., 2011).  Delayed PSD is dementia that occurs in stroke 

patients over months to years, not as an immediate result of the stroke itself.  The aim was 

to identify distinct pathological features which distinguished those cases who developed 

delayed PSD from those who maintained normal cognitive functioning at the time of death. 

 

 2.3.2. Study Subjects 

Three hundred and fifty five elderly post-stroke (older than age 75) who were not demented 

at baseline (3 months after the index stroke) were recruited.  Each of these cases received 

annual clinical evaluation and cognitive testing performed by assistant psychologists using 

the Mini – Mental State Examination (MMSE), the Cambridge Cognitive Examination 

(CAMCOG) tests and the Clinical Dementia Rating (CDR) Scale (Allan et al., 2011). 

 

2.3.3. Cognitive Assessment  

2.3.3.1. Mini – Mental State Examination (MMSE) 

The MMSE test as described above was used in its original English versions (Folstein et 

al., 1975).  A cut off score of less than 24 is most frequently used to indicate presence of 

cognitive impairment/dementia (Crum et al., 1993). Participants who scored less than 24 on 

the MMSE at screening were excluded from the study.  
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2.3.3.2. Cambridge Cognitive Examination – revised (CAMCOG - R) 

The CAMCOG - R is the cognitive test section of the revised CAMDEX assessment 

(Cambridge Mental Disorders of the Elderly Examination) and was designed to assess 

cognitive performance for the detection and grading of dementia with a commonly used cut 

– off point of 79/80 (Roth et al., 1986; Blessed et al., 1991). It assesses a wide range of 

cognitive domains including orientation, language, memory, praxis, attention, abstract 

thinking, perception and calculation. The revised CAMCOG includes additional evaluation 

of executive function. 

 

 2.3.3.3. Clinical Dementia Rating (CDR) Scale 

The Clinical Dementia Rating (CDR) Scale is a numeric scale used to evaluate the severity 

of symptoms of dementia with a structured-interview protocol. Subjects’ cognitive and 

functional performance  are assessed in six domains: memory, orientation, judgment and 

problem solving, community affairs, homes and hobbies, and personal care. Scores in each 

of these domains are combined to obtain a composite score ranging from 0 to 3; 0 – normal, 

0.5 – questionable (MCI), 1 – mild dementia, 2 – moderate dementia, 3 – severe dementia 

(Hughes et al., 1982). 

 

2.3.3.4. Clinical Definition of CogFAST Groups 

Stroke survivors in the longitudinal CogFAST Study were classified based on the 

performance at the last cognitive assessment before death. They were classified as post-

stroke non-demented (PSND) if CAMCOG score was > 80 and Clinical Dementia Rating 

(CDR) was less than 1, but as post-stroke demented (PSD) if CAMCOG score was < 80 

and CDR score was > 1.  
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2.3.4. Brain Tissue Preparation 

At post-mortem examination, each brain was bisected into two hemispheres; the left 

hemisphere was fixed in 10% buffered formalin and coronal slices were taken and 

embedded in paraffin wax after standard processing with dehydrating agents. The right 

hemisphere was stored at -80
0
C.    

 

2.3.4.1. Diagnostic Neuropathological Evaluation 

Post-mortem reports were retrieved for all the cases used in this study. Primary neuro-

pathological diagnoses were made from brain tissue sampled at several coronal levels to 

check for pathological changes consistent with AD, VaD and mixed AD_VaD in 

accordance with established pathologic diagnostic criteria (Hyman and Trojanowski, 1997; 

Kalaria et al., 2004), and following macroscopic and microscopic post-mortem examination 

of the brain tissue. 

Haematoxylin and Eosin was utilized as a standard stain for a general neuropathologic 

structural evaluation of the brain, and for the detection of infarcts and rarefactions. Gallyas 

and Bielschowsky’s silver impregnation stains and AT8 immunohistochemistry were used 

to evaluate ‘CERAD’ neuritic plaques and neurofibrillary tangles according to the methods 

of Braak (Braak and Braak, 1991) and the Consortium to Establish A Registry for 

Alzheimer’s Disease (CERAD) Staging (Mirra et al., 1991). In addition, Thal staging was 

performed (Thal et al., 2002b) and there were additional stains including α-synuclein, 

ubiquitin and TDP - 43 immuno-histochemistry. 

Vascular lesions (cortical and sub-cortical infarcts, border-zone infarcts, strategic infarcts, 

lacunar infarcts (< 15 mm), microinfarcts (< 5 mm) and mild, moderate and severe cerebral 

amyloid angiopathy were recorded (Kalaria et al., 2004). In addition, a new vascular 

severity scale devised within our group was used to assess vascular pathology 

(Deramecourt et al., 2012). 



76 
 

Final diagnoses were assigned during monthly clinicopathologic consensus meetings.  A 

final diagnosis of VaD was made if there was clinical evidence of dementia (DSM IV) and 

pathologic evidence of multiple or cystic infarcts, lacunes, micro-infarcts, small vessel 

disease in the absence of severe degenerative pathology (Braak Stage < III) (Kalaria et al., 

2004). Subjects were assigned mixed AD_VaD if there was pathologic evidence of 

cerebrovascular disease in the presence of significant AD pathology (Braak Stage V or VI) 

and moderate to severe CERAD scores. A diagnosis of AD was assigned when there was 

significant Alzheimer pathology – Braak V –VI, moderate to severe CERAD score and 

absence of significant vascular pathology. Control subjects were historical subjects that had 

no significant evidence of cognitive impairment upon scrutiny of their medical records and 

whose post-mortem brain tissue was considered devoid of sufficient vascular or 

degenerative pathologies beyond the threshold for assigning a specific pathologic 

diagnosis. 

 

2.3.5. Identification of Laboratory Sample   

 

2.3.5.1. CogFAST Groups 

This consisted of cases from the prospectively assessed CogFAST cohort who had come to 

autopsy. The demographic, cognitive and diagnostic neuropathologic characteristics of the 

two broad categories of the cohort - post-stroke demented (PSD) and post-stroke non – 

demented (PSND) are described in Chapter 5. The final cognitive diagnosis was based on 

the last clinical assessment performed before death. 

 

2.3.5.2. Controls, VaD and AD groups 

Appropriate controls, and neuropathologically diagnosed cases of VaD and AD were 

selected from available archival records and after rigorous matching with the CogFAST 

cases with respect to age, gender, length of fixation and post-mortem delay. The 
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neuropathological diagnostic criteria have been described in Section 2.2.3.1. Full details of 

these groups are also described 

 2.3.6. Brain Tissue Acquisition  

Ninety-four human post-mortem formalin-fixed, paraffin-embedded brain tissue block 

samples were retrieved from the Newcastle Brain Tissue Resource (NBTR), Institute for 

Ageing and Health, Newcastle University. Ethical approval for the use of brain tissue for 

our study was granted by the local research ethics committee (Newcastle upon Tyne 

Hospitals National Health Service Trust, UK). 

The sample consisted of CogFAST demented, PSD (n =15), CogFAST non-demented, 

PSND (n=23), controls (n =12), AD (n= 14), mixed AD_VAD (n=13) all matched for age, 

gender, length of fixation and post –mortem delay. Informed consent from all subjects for 

autopsy and tissue donation were obtained from next of kin and post mortem examinations 

were undertaken at the Newcastle General Hospital (NGH).  

Autopsy was performed within 24 and 92 hrs after death and the brain fixed in 10% 

buffered formalin for 6 - 34 week. Subjects ranged from 78 – 96 years in age. There were 

no significant differences between groups of subjects with respect to age, gender, length of 

fixation and post –mortem delay. Brains with fixation period less than 40 weeks were 

selected for the project in order that differential staining intensity arising from prolonged 

fixation might be obviated. Also, cases with significant history of death arising from 

cardiovascular morbidities such as myocardial infarction were excluded from the study. 

Much of the work in this study was carried out on the hippocampal formation. Additional 

analyses were also performed on the entorhinal cortex and the temporal neocortex (BA 36) 

as required.  Analyses of neuroinflammation and axonal damage in the WM were 

performed on frontal and temporal WM of a sub-cohort of the cases. 
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2.3.7. Regions of Interest 

 

 

2.3.7.1. The Hippocampal formation and Entorhinal Cortex 

The hippocampal formation occupies the posterior-anterior extent of the base of the 

temporal lobes. It consists of multiple sub-regions of the hippocampus and the adjacent 

entorhinal cortex which include the dentate gyrus, the CA1, CA2 and CA3 subfields, and 

the subiculum (Eichenbaum, 2004; Duvernoy, 2005; Small et al., 2011). The entorhinal 

cortex is the gateway into the hippocampal formation and receives monosynaptic inputs 

from numerous cortical and sub-cortical region and then connects in a ‘trisynaptic pathway’ 

with the sub-fields and the subiculum. The CA1 subfield and the subiculum provide the 

main outflow out of the hippocampus to different subcortical and cortical regions including 

the dorsolateral prefrontal cortex and the temporal cortex. Functionally, the hippocampus 

plays a vital role in the integration of declarative and episodic memory as well as in 

visuospatial orientation .Subfields of the hippocampus have differential susceptibility to 

insult including anoxia, hypoxia, ischaemia and carbon monoxide poisoning, especially the 

CA1 subfield (Small et al., 2011).  From the Newcastle Brain Map (Perry and Oakley, 

1993), the temporal lobe tissue block was selected from coronal level 18 – 20 and from 

which the hippocampal subfields were defined (Figure 2.3a) 

 

2.3.7.2. Frontal and Temporal White Matter 

The frontal lobe is a vital region of the brain for planning, goal setting, solving complex 

problems and working memory, all of which are encompassed as executive function 

(Hoffmann, 2013) while the temporal lobe is vital for memory and language functions 

(Squire et al., 2004; Insausti et al., 2013)    

White matter (WM) is composed largely of myelinated  and unmyelinated axons, glial cells 

(microglia, astrocytes, oligodendrocytes) and blood vessels. Loss of WM integrity integrity 

occurs in the setting of ageing, cerebrovascular disease and other dementias (Ihara et al., 

2010a; Horsburgh et al., 2011). The frontal lobe is particularly susceptible to cerebral 
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vascular disorders during which ‘disconnections’ occur in the white matter as a result of 

loss of white matter integrity from hypoxic- ischaemic damage (O'Sullivan et al., 2001; 

Hoffmann, 2013).  

Frontal lobe sections at the level of the olfactory bulbs (corresponding to coronal levels 4-

6)  and temporal lobe sections at the level of the anterior hippocampus (corresponding to 

coronal levels 18 – 20 ) were selected from the Newcastle Brain Map (Perry and Oakley, 

1993) for the white matter components of this study (Figure 2.3b).
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Figure 2.3a. Newcastle Brain Map. Schematic representation of coronal slices 

from human brain, cut anterior to posterior. Large bold numbers indicate coronal 

levels of the brain. Broadmann areas are colour coded and numbered at each level. 

Sections were cut from blocks (highlighted in red )taken from the coronal levels 4 

– 6 for frontal white matter and levels 18 – 20 for the temporal white matter , 

hippocampal formation and  entorhinal cortex.(Perry and Oakley, 1993). 
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Figure 2.3b. Newcastle Brain Map. Schematic representation of coronal slices 

from human brain, cut anterior to posterior. Large bold numbers indicate coronal 

levels of the brain. Broadmann areas are colour coded and numbered at each level. 

Sections were cut from blocks (highlighted in red )taken from the coronal levels 4 – 

6 for frontal white matter and levels 18 – 20 for the temporal white matter , 

hippocampal formation and entorhinal cortex.(Perry and Oakley, 1993). 
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2.3.8. Immunohistochemistry 

 

2.3.8.1. Standard Procedure for Immunohistochemistry 

Paraffin embedded brain tissue blocks taken from relevant coronal levels of the Newcastle 

Brain Map and containing the hippocampal formation, entorhinal cortex, frontal and 

temporal white matter were cut into 10µm serial sections using a rotary microtome. 

Sections were mounted on slides coated with 2% APES (3 –aminopropyltrethoxysilane) 

solution in acetone, and dried in a pre-heated oven at 60
0
C for 30 minutes. The sections 

were de-paraffinized in two sequential solutions of Xylene for 15 minutes and then 

rehydrated using decreasing concentrations of ethanol (100%, 95%, 70% and 50%) to 

deionized water. 

 

                                                                    

 Figure 2.4. Newcastle coronal brain map reference level 20. Hippocampus block (red box) 

including entorhinal cortex was used for analysis. 

Antigen retrieval was performed using heat in the form of microwaving sections for 10 

minutes or pressure cooking them for 2 minutes in a solution of 0.01M citrate buffer (PH 

6.0). The buffer was brought to boil in the microwave, slides were added, buffer was      

microwaved at 450W for 10 min, and the solution was then allowed to cool for 20 minutes 
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following which slides were transferred to deionized water. Non-specific reaction was 

quenched with 0.9% hydrogen peroxide (unless otherwise stated.) in 5Mm Tris buffered 

Saline (TBS) solution (pH 7.6) for 15 min in order to remove endogenous peroxidise. Non-

specific antigens were blocked using normal horse serum (anti-mouse antibody) , normal 

goat serum (anti-rabbit antibody) or normal rabbit serum (anti-goat antibody) for up to 45 

mins. The slides were then incubated with the primary antibody diluted to specific 

concentration with buffer, and for a specific length of time in room temperatue or overnight 

at 4
○
C.  After washes in buffer, biotinylated secondary antibody was applied to the sections 

with the blocking serum for 30 minutes, followed by the addition of the avidin biotin 

complex (ABC) for 30 min to remove excess secondary antibody. Finally, the slides were 

immersed in a 0.025% diaminobenzidine (DAB) solution for a variable short period of time 

to visualize the positive antibody reaction. Sections were then rinsed in water and 

counterstained in haematoxylin as indicated. Sections were then dehydrated back through 

graded alcohols, cleared in xylene and mounted with glass coverslips using DPX mounting 

medium (Sigma, UK). After each step, with the exception of the blocking stage, sections 

were rinsed in buffer (TBS or PBS) three times for five minutes each. Dual labeling 

followed a similar procedure as described above. The single antibody was labeled initially 

and then the procedure was repeated for the second antibody or the two antibodies were 

applied simultaneously during a single procedure. All immunohistochemical protocols 

included a positive control and a negative control for which the primary antibody is 

omitted.  
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Antibody Nature 

/Source 
Antigen 

retrieval 
Assay 

buffer 
Block Dilution Secondary 

Antibody 
SABC Chromogen 

G48 Monoclonal 
Signet 9220-10 

Concentrated 

formic acid 
TBS  1.5% NoHoS  

  x 1hour 
1:1000 O/N Anti-mouse Yes DAB (5 min) 

T -42 Polyclonal Concentrated 

formic acid 
TBS 1.5% NoGoS 

x 1 hour 
1:5000 O/N Anti-rabbit Yes DAB ( 3min) 

T- 40  Polyclonal Concentrated 

formic acid 
TBS 1.5% NoGoS 

x 1 hour 
1:5000 O/N Anti-rabbit Yes DAB ( 3min 

APP 
(22C11) 

Monoclonal 
Chemicon MAB 

348 

Microwave/ 
Citrate buffer 

TBS 1.5% NoHoS  
  x 1hour 

1:2000 O/N Anti-mouse Yes DAB (5 min) 

NU-1  Monoclonal Concentrated 

formic acid 
TBS         - 1:3200  O/N Anti-mouse Yes DAB ( 2 min) 

AT8 Monoclonal 
Innogetics 
Autogen Bioclear 
INNX   90206 

Microwave/ 
Citrate buffer 

TBS 1.5% NoHoS  
  x 1hour 

1: 1000 
2Hrs Room 

Temperature 

Anti-mouse Yes DAB (4 min) 
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Drebrin  Monoclonal 
D029-3 Clone 

M2F6 

Microwave/ 
Citrate buffer 

TBS 1.5% NoHoS  
  x 1hour 

1:200  O/N Anti-mouse Yes DAB (3min) 

PSD-95 Polyclonal Microwave/ 
Citrate buffer 

TBS 3% NoGoS 
x 1hour 

1: 750 O/N Anti-rabbit Yes DAB (5 min) 

VGLUT-1 Polyclonal 
Synaptic Systems 
Lot 135303/ 28 

Microwave/ 
Citrate buffer 

TBS 3% NoGoS 
x 1hour 

1:1000 O/N Anti-rabbit Yes DAB (5 min) 

SY-38   Monoclonal     
Cymbus, UK                                                                                                         

Microwave/ 
Citrate buffer 

TBS 1.5% NoHoS  
  x 1hour 

1:150 O/N Anti-mouse Yes DAB (4 min) 

GFAP Polyclonal 
Dako  

Cytomation  
Lot 00045904 

Microwave/ 
Citrate buffer 

TBS 1.5% NoGoS 
x 1hour 

1: 4000 O/N Anti-rabbit Yes DAB (2 min) 

CD68   Monoclonal     
PGMI 
Lot 00027860                                                                                                         

Microwave/ 
Citrate buffer 

TBS 1.5% NoHoS  
  x 1hour 

1:400 O/N Anti-mouse Yes DAB (4 min) 

dMBP Polyclonal 
AB5864 
Lot 2138534 

Microwave/ 
Citrate buffer 

TBS 1.5% NoGoS 
x 1hour 

1: 2000 O/N Anti-rabbit Yes DAB (3 min) 

Table 2. 2:  Table of primary antibodies used for Immunohistochemistry in this Project 
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2.3.8.2. Fluorescent immunohistochemistry 

Six micron sections were cut on a rotary microtome for fluorescent staining. The 

sections were de - paraffinized and rehydrated followed by antigen retrieval by heat. 

Quenching with hydrogen peroxide was not required but blocking with normal horse 

serum was applied in all cases. Selected antibodies were then incubated overnight at 

4
0
C with the sections using a four -  fold concentration of the primary antibody (in 

comparison to single – labeling IHC). Sections were then incubated with appropriate 

secondary antibody at 1: 200 concentration, anti –rabbit IgG Dylight 549 (red) or anti-

mouse IgG Dylight 488 (green) in the dark. Excess antibody was removed and sections 

were washed in PBS in the dark. They were then mounted with Vectashield (Vector 

Labs, UK). This procedure was performed with PBS buffer adjusted to pH 7.5. 

 

2.3.8.3. Image Acquisition and Analysis 

The stained sections were examined and imaged using a Zeiss Axioplan 2 research 

grade microscope coupled to an Infinity 2 camera. Set at X10 magnifications for the 

hippocampal sub-regions CA1, CA2 and CA3, the frontal and temporal white matter, 

and X5 for the subiculum and EC.  Five images were taken at random from the CA1, 

CA3 and subiculum, 3 images from CA2 and 4 x 3 from the EC from the pial surface to 

the white matter. Between 15 and 20 images were taken from the frontal and temporal 

white matter.  An appropriate number of images was taken to ensure an adequate, 

complete and unbiased number of images to cover the regions as much as possible. 

 

2.3.8.4. In Vitro Image Analysis 

Using the software Image Pro-Plus 4.0 (Media Cybernetics, USA), the images were 

analyzed using histogram-based analysis and obtaining the variables: per area, a 

measure of the number of pixels stained within the area of interest (AOI) and expressed 

as a percentage. The integrated optical density (IOD) was also determined, and thus 

making possible the calculation of mean immunoreactivity (IR) for each image and then 

for each sub-region of the hippocampus and other brain regions analyzed 
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2.3.8.5. Confocal fluorescent image capture 

All confocal fluorescent imaging was performed at the Newcastle University Bio 

Imaging Unit using a Leica TCS SP2 AOBS (UV) microscope (Leica, Germany) and 

with the assistance of the technical staff of   the unit. Images may be acquired at 

different lens   magnifications up to X 100 on the confocal microscope with the highest 

attainable resolution with fluorescent imaging.  A laser beam travels through the ‘Z’ 

plane acquiring images at known focal depths.  Individual ‘z’ planes may be   re - 

constructed into a two – or three - dimensional image. The confocal microscope 

provides a clearer fluorescent signal compared to standard fluorescent microscopy with 

less background noise. 

 

2.2.8. Statistical analysis for in vitro imaging analysis dataset 

Data was analyzed with Statistical Package for the Social Sciences (SPSS version 19.0) 

(IBM, USA). Normality of data was tested using the Shapiro – Wilk or Kolmogorov-

SmirnovTest depending on the number of cases in the dataset. When data were 

normally distributed, one –way ANOVA with Tukey’s or Bonferenni post - hoc test 

were used as required. However, when data were non – normally distributed, non - 

parameteric Kruskal  - Wallis test was performed to tease out significant differences 

between groups. Differences in percentage mean area, mean pixel intensity and total 

immunoreactivity of disease groups and sub- regions were examined. Correlations were 

examined with Pearson’s correlation or Spearman’s correlation for normally   and non-

normally distributed data respectively. For this sample and its associated sub – samples, 

appropriate power calculation was performed using the G*Power software {Faul, 2007 

#1877}, a significance level, α – level = 0.05 and assuming a moderate effect size 

Cohen’s d = 0.4. This was to determine the strength of associations and conclusions that 

would be derived from the analysis of the dataset. 
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2.3.9. Immunoblotting  

 

At post – mortem, brains were cut coronally in slices in both right and left hemispheres. 

For the brains obtained from subjects the CogFAST – Newcastle study, alternate slices 

were fixed in formalin and frozen respectively. However, for other categories of brain 

including brains from subjects who had suffered AD during life, whole hemispheres 

were frozen and fixed in accordance with standard convention.   

 For the immunoblotting experiments, whole hippocampal formation containing the CA 

fields, the dentate gyrus and EC samples (Newcastle Brain Map level (18 -20) were 

obtained from the Newcastle Brain Tissue Resource. One hundred and twenty five (125) 

micrometer frozen sections from coronal levels 18 - 20 (Newcastle Brain Map) were cut 

with a vibratome. The whole hippocampus (CA regions and dentate gyrus) was then sub 

- dissected into microvials at 0 - 4
0
C. Approximately 100 mg of tissue was 

homogenized in 2 mls of ice-cold buffer (50 mM Tris – HCL, 5mM EGTA, 10 mM 

EDTA, pH  7.4, containing protease and phosphatase inhibitors – 2μg ml leupeptin 

hemisulphate, 2μg ml aprotonin, 1μg ml E64, 2μg ml pepstatin A and 20μg ml 

phenylmethylsulphonyl fluoride) using an Omni TH homogeniser in a Class 3 safety 

cabinet prior to being aliquoted into 200 μl aliquots and  subsequently frozen on ice and 

stored at -70
o
C.  

 

2.3.9.1. Determination of Protein Concentration 

Relative protein concentration across samples was assessed in triplicate using the DC 

Kit protein assay (Bio- Rad) in order to ensure that protein concentration was equal 

across all samples. The Bio-Rad DC Protein Assay is a colorimetric assay for protein 

concentration following detergent solubilization. The reaction is similar to the well - 

documented Lowry assay, but with the following improvements: The reaction reaches 

90% of its maximum colour development within 15 minutes thereby saving valuable 

time, and the colour changes not more than 5% in 1 hour or 10% in 2 hours after the 

addition of reagents. 

A standard curve of known protein standards was prepared using Bovine Serum 

Albumin (BSA; Sigma) diluted in BSA buffer (0.2 M TEAB and 2% SDS diluted in 

deionised water at 1:50). Sample homogenates were diluted 1: 20 in deionised water 
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(MilliQ, Millipore) Twenty-five microliter of solution A (Bio-Rad DC Protein Assay 

Kit) was added into necessary wells followed by 5ul of the sample and 200 microlitres 

of solution B (Bio-Rad DC Protein Assay Kit) and mixed well with repeat pipetting.  

Following an incubation period of 15 minutes, the plate was read at 595 nm using an 

Omega plate reader . Protein concentrations were then calculated for samples relative to 

protein standards and equalised across samples for 100 μl preparations. Aliquots were 

thawed and mixed with concentrated sample buffer [0.0625 M Tris-HCl, containing 2% 

sodium dodecyl sulphate (SDS), 5% β – mercaptoethanol, 10% glycerol and 0.002% 

bromophenol blue) and stored at -20
0
C.     

 

2.3.9.2. Immunoblotting Procedure 

Whole hippocampal homogenate samples were defrosted on ice before tissue samples of 

equal concentration were subjected to sodium dodecyl sulfate polyacrylamide gel 

electrophoresis. 10 – 20 μl of each 2 μg μl sample was pipetted into wells of a 30 lane 

1.5mm 8 - 12 % polyacrylamide gels [ratio of acrylamide to bis-acrylamide constant 

(17.5:1 acrylamide: bis - acrylamide) depending on the molecular weight of  protein to 

be investigated: 8% w/v for proteins 100 -200kDa, 10% w/v for proteins 40 – 100 kDa 

and  12% w/v for 30kDa. Ten microliter of pre-stained molecular weight marker L: 

Spectra multicolour broad range protein ladder (Thermo Scientific) was loaded at each 

end (to demonstrate distance moved by known MW protein standards, ranging from 10-

250kDa). The gel was electrophoresed at 120 V for 45 minutes to 1 hour in SDS 

running buffer.  

Following electrophoresis the separated proteins were transferred from gels to 0.45 mm 

nitrocellulose membranes using an electro - blotting trans - blot for 120 minutes at 0.35 

A.  Ponceau S solution (0.5% w/v Ponceau S, 5% (w/v) trichloroacetic acid) was used 

to confirm successful protein transfer before membranes were cut depending on the 

molecular weights of proteins of interest. Ponceau S solution was washed from 

membranes by a flash wash of deionised water (MilliQ) followed by two 10 minute 

washes in tris-buffered saline combined with 0.2% Tween 20 under gentle agitation.  
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Membranes were blocked against non - specific binding using 5% non - fat dried milk 

(Marvel) in TBS -T for 1 hour under gentle agitation. Primary antibody incubation was 

achieved by exposing the membranes to primary antibodies suspended in a  5% dry 

milk (Marvel)/TBS -T solution at previously optimised concentrations overnight (Table 

6.3). Membranes were then washed for 15 minutes (three 5 minute washes) in 1% non- 

fat dried milk (Marvel) in TBS-T. 

Target Band 

Size 

(kDa) 

      Species Dilution 

for IHC 

Dilution 

for WB 

Manufacturer 

SY -38 38 mouse/monoclonal 1:150 O/N 1:2000 

O/N 

Dako 

SNAP-25 25 mouse/monoclonal 1:1000 O/N 1:2000 

O/N 

SMI, Affinity, 

UK 

VGLUT-1 60 mouse/monoclonal 1:1000 O/N 1:1000 

O/N 

Synaptic 

Systems 

Drebrin 120 Rabbit/Polyclonal 1:200    

O/N 

1:1000 

O/N 

Cell Signalling 

PSD -95  95 Rabbit/Polyclonal 1:750    

O/N 

1:1000 

O/N 

Abcam 

beta 

tubulin III 

55 mouse/monoclonal  1:1000 

O/N 

Sigma – 

Aldrich 

Table 2.3: Panel of antibodies tested for the pre - and post – synaptic markers by 

immunoblotting 

Secondary antibody incubation was achieved by exposing membranes to horseradish 

peroxidase (HRP) conjugated secondary antibodies (anti – mouse or anti-rabbit 

depending on the primary antibody) suspended in a 5% non-fat dried milk (Marvel) in 

TBS-T solution at a dilution of 1: 2000 for 1 hour.  To enable viewing of antibody 

binding, membranes were exposed to ECL2 enhanced chemiluminescence kit (Thermo 

Scientific) for 2 minutes on a glass plate. Bands were visualized with a LAS - 4000 

Lumniscent Image Analyzer Version 1.0 (Fuji Film Cooperation, Tokyo, Japan).  

Optical density of bands were measured using Image J. Variation in signal detection 

(including gel and blotting variation) across gels was corrected for using the protein 
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standard replicate loaded on gels. Data were expressed as optical density of the band per 

weight of protein loaded per sample. 
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Chapter 3. Profile and Determinants of Vascular Cognitive 

Impairment in Nigerian African Stroke Survivors  

 

3.1. Introduction 

 

It is estimated that one in three people all over the world will, over a lifetime, develop a 

stroke, dementia or both (Seshadri and Wolf, 2007; Gorelick et al., 2011). In response 

to the growing burden of stroke and associated conditions including post-stroke 

cognitive dysfunction, a synergium was recently convened to develop strategies to 

‘prioritize stroke on the world agenda’ (Hachinski et al., 2010).  

Sub-Saharan Africa (SSA) is in epidemiologic transition and faces a growing burden of 

non-communicable diseases in addition to the persistent burden of infections, conflicts 

and poverty (Kalaria et al., 2008; Akinyemi et al., 2009)  Ageing populations, rapid 

urbanisation and lifestyle changes appear to be the main drivers of the burgeoning 

epidemic of vascular disorders (hypertension, diabetes, metabolic syndrome) which 

frequently culminate in stroke (Yusuf et al., 2001b)  

Although  physical disability is most commonly associated with stroke, cognitive 

changes and other non-motor consequences are quite frequent in survivors (Pendlebury, 

2009).  Post stroke cognitive dysfunction encompasses a multi-domain impairment of 

attention and concentration, executive function, language, memory and visuospatial 

function with executive dysfunction being the earliest and predominantly affected 

domain (Ballard et al., 2003a; Henon et al., 2006; Erkinjuntti and Gauthier, 2009) 

(Gorelick et al., 2011).  Up to 64% of stroke survivors suffer some degree of cognitive 

impairment and about 30% develop dementia (Hachinski et al., 2006b). In a recent 

meta- analysis, the pooled prevalence estimates of post - stroke dementia (PSD) within 

one year of stroke ranged from 7.4% (4.8 -10.0) in population-based studies of first-ever 

stroke excluding pre-stroke dementia to 41.3% (29.6 – 53.1) in hospital-based studies of 

all strokes including pre-stroke dementia (Pendlebury, 2009)   However, there is wide 

variation in the definition and estimates of vascular cognitive impairment (VCI) owing 

to differences in diagnostic criteria, study populations and methodologies. These have 

led to recent harmonization efforts and criteria development (Hachinski et al., 2006b). 
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Few recent studies have been undertaken utilizing the Vascular Cognitive Impairment 

Harmonization Standards (VCIHS) recommended protocol or other –related protocols 

that are enriched in assessing the executive function domain (Hachinski et al., 2006a). 

In a study of 239 Singaporean stroke survivors  assessed 3  - 6 months after stroke, 

54.8% and 2.9% were diagnosed of vascular cognitive impairment no dementia 

(vCIND) and vascular dementia (VaD) respectively(Dong et al., 2012)while a more 

recent study of 353 Korean stroke survivors assessed 3 months after stroke using the 

Korean version of the VCIHS found rates of 49.9 %  and 12.7% for vCIND and VaD 

respectively (Yu et al., 2013). It is noteworthy that the rates of vCIND were particularly 

high in these recent studies with robust cognitive assessment tools that were robustly 

sensitive to executive dysfunction. 

The cognitive trajectory that ensues after stroke may be influenced by patient-related 

variables such as age at stroke occurrence, level of educational attainment (as a 

surrogate of cognitive reserve), physical activity, dietary and nutritional lifestyles.  

Cardiovascular risk factor load, stroke-related variables, acute stroke complications and 

quality of care –related issues  are also important determinants (Pendlebury, 2009; 

Pendlebury and Rothwell, 2009a; Gottesman, 2010; Allan et al., 2011; Kalaria, 2012b)   

Little is known, however, about the burden or risk factors of post-stroke cognitive 

dysfunction in Africa as a whole and previous studies were all cross –sectional and 

patients were not assessed with appropriate standardized cognitive assessment tools 

sensitive to executive dysfunction. In a study of 1000 stroke survivors of mixed black 

and white ancestry, Hoffman reported a rate of cognitive dysfunction of  63.5% at two 

weeks after the index  stroke even though some of the  subjects might still have been  

delirious after the index stroke (Hoffmann, 2001) (Desmond DW, 1996). Fatoye et al 

(2007) examined 109 Nigerian stroke survivors at various durations after the event, 

using only the MMSE. They found a post – stroke cognitive dysfunction rate of 17.4% 

(Fatoye et al., 2007) while another study among 81 Egyptian stroke survivors found a 

post-stroke dementia frequency of 21%. No rates were cited for vCIND (Khedr et al., 

2009).  

Patterned after the project in Newcastle (Ballard et al., 2002; Ballard et al., 2003b; 

Stephens et al., 2004; Allan et al., 2011) the aim of this chapter  is to report the 

preliminary baseline frequency, pattern and factors associated with VCI in Nigerian 

African stroke survivors participating in the Cognitive Function After STroke 
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(CogFAST) Nigeria Study. This chapter describes the first comprehensive, detailed and 

prospective African study of post stroke - related cognitive dysfunction.  

 

3.2. Methods 

3.2.1. A Pilot Study 

 

Prior to the recruitment of the main study sample, an initial pilot study was conducted 

over a six month period (January – June 2010) among 42 stroke survivors purposively 

recruited from among stroke patients who were already attending the medical outpatient 

clinics of the Federal Medical Centre Abeokuta,  and the Catholic  Hospital, Oluyoro 

Ibadan, Nigeria. The purpose of this was to test the feasibility of the methods and 

procedures including study instruments, cultural adaptability and acceptance (Lancaster 

et al., 2004; Thabane et al., 2010; Leon et al., 2011).  

 

3.2.2. Study Design and Stroke Participants 

 

The study design was mixed cohort and case – control. Stroke patients (> 45 years) 

presenting consecutively were recruited from the stroke registers on the medical wards 

of two specialist  hospitals [Federal Medical Center Abeokuta and University College 

Hospital, Ibadan , southwestern Nigeria] between July 2010 and June 2012. In addition, 

three smaller centers (CatholicMission Hospital, Oluyoro Ibadan, Oluwaseun 

Physiotherapy Clinic, Ibadan and Sacred Heart Hospital, Lantoro Abeokuta) were 

included to ensure representativeness of different levels and types of healthcare 

facilities in the region to which stroke patients might present. Subjects were approached 

regarding participation in the study at discharge from hospital or during initial 

outpatient visit after stroke. They were subsequently invited for assessment by word of 

mouth or mobile telephone.  

Stroke was defined according to the World Health Organization (WHO) Clinical 

definition and classified using the WHO Clinical Criteria, the Oxford Community 

Stroke Project Classification and neuroimaging (CT scan and/ or MRI) findings (Ballard 

et al., 2003a). However, neuroimaging was performed only in 61.5% of our cohort 

because of limited access and high cost. The WHO criteria have been shown to have a 
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sensitivity of 73 % for haemorrhage, 69% for infarction and an overall accuracy of 71% 

in Nigeria (Ogun et al., 2002) Exclusion criteria were: [1] subarachnoid haemorrhage 

[2] significant physical illness and motor impairment that precluded paper and 

computer-based neuropsychological evaluation (eg. visual impairment, moderate-severe 

aphasia, hemiparesis affecting the dexterous hand (MRC power grade <3) [3] any co – 

morbid psychiatric or neurologic illness [4] any systemic disease that could impair 

cognition e.g. chronic liver disease, chronic kidney disease [5] inability or failure to 

give  consent. 

 

3.2.3. Stroke-Free Controls 

 

For comparison with the neuropsychological data from stroke survivors, apparently 

healthy subjects who were free of clinically - evident stroke were recruited from a pool 

of community-dwelling volunteers (unrelated to the stroke subjects), spouses, unrelated 

caregivers of stroke survivors and patients attending outpatient clinic for refraction or 

routine physical assessment. Individuals with background dementia (DSM IV criteria), 

psychiatric disorders e.g. schizophrenia, major depression, manic - depressive disorder; 

background neurological disorders e.g. Parkinson’s disease, (evidence from case 

records, informant or self report) or who were unable to provide consent and/or 

informant were excluded from being controls. Seventy -four stroke- free apparently 

healthy controls of comparable age, gender and education as the cohort of stroke 

survivors were recruited and included in the analysis.   

 

3.2.4. Ethical Approval  

 

The local research ethics committees of the Oyo State Ministry of Health (University 

College Hospital, Ibadan , Catholic  Mission Hospital, Oluyoro Ibadan, Oluwaseun 

Physiotherapy Clinic, Ibadan ) and the  Federal Medical Centre Abeokuta) and Sacred 

Heart Hospital Abeokuta  granted approval for the study while written informed consent 

was obtained from each subject.   
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3.2.5. Baseline Evaluation 

 

Baseline evaluation was performed at three months post-stroke in tandem with the 

design of Desmond et al (1996) to enable the resolution of acute post-stroke delirium. 

As described in Chapter 2, the evaluation included comprehensive medical history, 

assessment of neurological impairment and disability (using the modified Rankin Scale, 

Stroke Levity Score and Barthel Index, depressive symptoms (using the Centre for 

Epidemiologic Studies Depression Scale and four – item Geriatric Depression Scale, 

and blood screens (Ballard et al., 2003a; Owolabi and Ogunniyi, 2009) Confirmation of 

cardiovascular risk factors (hypertension, diabetes mellitus, atrial fibrillation, 

dyslipidaemia, cigarette smoking, alcohol use) were based on self- report, use of 

relevant medications and review of medical notes.  Nutritional lifestyles and physical 

activity were assessed according to the design of the INTERSTROKE Study (O'Donnell 

et al., 2010a).  Dietary patterns were assessed in all subjects with a food frequency 

questionnaire assessing frequency of different types of food taken by the subjects in the 

prior year before the onset of stroke (and separately in the three months period after 

stroke) with appropriate addition of common local foods and delicacies to relevant 

categories.  Physical activity was assessed at work and during leisure time and subjects 

were stratified into sedentary, mild, moderate and heavy physical activity categories. 

 

3.2.6. Cognitive assessment 

 

An ideal neuropsychological battery should be robust, brief , valid, reliable, cost 

effective, sensitive enough to detect  deficits but specific enough to avoid false 

positives, easy to administer, should be available in multiple forms , have cross cultural 

capability and have no floor or ceiling effect (Blake et al., 2002; Hachinski et al., 

2006a). However, in reality no ideal tool exists. New tools being devised, nonetheless, 

are to aspire to attain these ideal characteristics. 

The neuropsychological instrument used in this study consisted of the Community 

Screening Instrument for Dementia (CSID) – cognitive part, (Hall et al., 2000) the mini-

mental state examination (MMSE) (Gureje et al., 1995) and the Vascular 

Neuropsychological Battery, (Hachinski et al., 2006b).  Subjects were assessed by 

experienced interviewers who received further two weeks training on the study 
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instrument and had to achieve  an  inter –rater reliability of at least 90%  in mock 

assessments done with volunteers from the hospital community before conducting 

fieldwork.  

The CSID and the MMSE are tests of general cognitive functioning while the V –NB  

consists of  battery tests assessing functioning in specific domains of cognition.The 

CSID is a paper and pencil test of global cognitive performance which adaptability, 

validity and utility in populations from different cultural, educational and socio-

economic backgrounds have been established (Hendrie et al., 1995; Hall et al., 2000).  

It has sensitivity of 87% and specificity of 83% and has been used reliably and widely 

to assess cognition in the Yoruba speaking population of southwestern Nigeria where 

the present study was conducted (Ogunniyi et al., 2000). The schedule included sub-

scores for attention, orientation, calculation, short and long term memory, language 

comprehension and expression, praxis and abstract thinking. A raw score method was 

used for scoring resulting in score range of   0 – 30 with higher scores indicating better 

cognitive function. The CSID has good two – week test – retest reliability (intra-class 

correlation = 0.79) and inter –rater reliability (kappa = 1 for 94% of the items) (Hall et 

al., 2000).     

The Vascular Neuropsychological Battery [V- NB] was modeled after the NINDS – 

CSN Harmonization Standards 60 –minute neuropsychological protocol (Hachinski et 

al., 2006b) with minor modifications to ensure adaptability to the language and culture 

of the study population.  The V- NB consists of multiple validated test items examining 

specific cognitive domains (executive function, memory/learning, language, 

visuospatial/visuoconstructive skills).  Executive function/activation and mental speed 

were assessed using the category (animal) fluency test  (Gureje et al., 1995), phonemic 

(letter) fluency test, verbal reasoning and visual reasoning tests which were adapted 

from the Cambridge Cognitive Examination (CAMCOG) battery which was utilized  for 

the CogFAST – Newcastle Study (Roth et al., 1986; Ballard et al., 2002).  The number 

of animals listed in the first 15 sec of the animal fluency test provided an assessment of 

mental speed while all the tests differently assessed mental flexibility and divergent 

thinking (Hachinski et al., 2006b).  Memory/learning was assessed with the 10- item 

word list learning test and delayed recall of stick design (Gureje et al., 1995; Baiyewu et 

al., 2005). The word list learning is a 3 - trial, 10 – item test with free recall taken after 

each learning trial and after a brief delay. The total number of words recalled across the 

three trials make up the total score (range 0 – 30) while the delayed recall is scored (0 -
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10), higher scores indicating better performance.  Language was assessed through the 15 

– item Boston Naming Test. In a prior validation study of the CERAD battery among 

Yoruba Nigerians, subjects were requested to name line drawings of common and 

uncommon objects. Four of the low frequency items from the standard CERAD-NB 

were replaced with items felt to be more culturally appropriate (i.e. guitar for 

harmonica, blacksmith tongs for ice cube tongs, mosquito netting for hammock, and 

'ayo' (Nigerian board game) for dominoes (Gureje et al., 1995).  

Visuospatial/visuoconstructive functioning was assessed through the stick design test 

(Baiyewu et al., 2005) and the Modified Token Test (IU Token Test) (Ball et al., 2002; 

Akinyemi et al., 2008). The stick design test is a non-graphomotor test of visuospatial 

/visuoconstructive ability. The respondent is requested to use match sticks to reproduce 

four different graphical shapes with particular attention to the correctness of relative 

orientation of the match heads. Thereafter the respondent reproduces the four shapes 

without any cues to assist. The test is particularly useful in older adults with limited 

formal education (Baiyewu et al., 2005).  Test items from the Cognitive Drug Research 

(CDR) computerized assessment battery were also included in the V-NB for the 

evaluation of attention, processing speed and executive function. [The constituent tests 

included Simple Reaction Time (SRT), Choice Reaction Time (CRT), Digit Vigilance 

(DV) and Spatial Working Memory (SWM) (Ballard et al., 2003a) . The intructions 

were translated and back –translated from English into Yoruba Language by 

experienced linguists. Several of these tests were previously validated and successfully 

utilized to evaluate cognitive functions in a cohort of Nigerian subjects with Parkinson’s 

disease (Akinyemi et al., 2008) . 

 

3.2.7. Operational definitions of cognitive dysfunction 

 

Failure on a test was defined as individual mean score that was at least 1.5 standard 

deviations below the mean score of the control group.  Impairment in a domain was 

defined as failure on at least 50% of tests examining that particular domain.(Dong et al., 

2012)  Vascular MCI and PSD were defined according to the American Stroke 

Association/American Heart Association VCI Guidelines (Gorelick et al., 2011). 

Vascular MCI (Vascular CIND) (Gorelick et al., 2011) was defined as impairment in at 

least 1 cognitive domain (executive function, memory/learning, language, 
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visuospatial/visuoconstructive skills) and normal or mild impairment of instrumental 

activities of daily living independent of motor/sensory symptoms.  PSD, (Gorelick et 

al., 2011) (in accord with the DSM IV criteria), was defined as impairment in > 2 

cognitive domains that were of sufficient severity to affect the subject’s activities of 

daily living independent of motor/sensory symptoms (Gorelick et al., 2011).  

 

3.2.8. Statistical analysis 

 

Data were analyzed using the Statistical Package for Social Sciences version 17.0 

(SPSS Chicago Inc.). Categorical variables were examined, analyzed and compared 

using the chi square test while continuous variables were described using measures of 

central tendency and compared using the student’s t-test and analysis of variance 

(ANOVA). Logistic regression models were used to determine univariate and 

multivariate relationships between cognitive status  and  patient – related variables 

including demographic, lifestyle and vascular risk factors; stroke disability and 

depression symptoms.  Unadjusted and adjusted ORs with 95% CIs were estimated. For 

multivariate analysis, variable groups were entered incrementally so that the mediating 

effect of each could be evaluated.  Level of statistical significance was set at p < 0.05. 

 

3.3. Results 

 

3.3.1. The Pilot Study 

 

The aim of the pilot study was to test the feasibility of the methods and procedures 

including study instruments, cultural adaptability and acceptance.  A total of 42 stroke 

survivors (66.7 % males; [age; mean, 57.0 + 9.3; range, 45 – 75 years] were enrolled 

into the pilot study. Duration post-stroke ranged from 3 to 60 months, median, 5 

months; while the average number of years of education was 7.3 + 6.0; range (0 – 18 

years) (73.8 % had  at least one year of formal education). 
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                Characteristic   Value 

Age (mean + SD) years 57.0 + 9.3 

Gender: N (% Female) 14 (33.3) 

Education ( mean + SD) years 7.3 + 6.0 

Duration post-stroke (median, range) mths 5 ( 3 - 60) 

Stroke Type 

Ischaemic (N, %) 

Haemorrhagic (N, %) 

Indeterminate 

 

21 (50.0) 

4 (9.5) 

17 (40.5) 

Modified Rankin Score (median, range) 2, (1 – 3) 

Vascular Risk Factors  

Hypertension  32 (76.2) 

Diabetes Mellitus 8 (19.1) 

Dyslipidaemia  5(11.9) 

Table 3. 1. Demographic and Clinical Characteristics of the Pilot Sample (N = 42) 

3.3.1.1. Cognitive Assessment  

Subjects in this purposive sample of stroke survivors were willing and eager to 

participate in the new study after full explanation in the language best understood, 

particularly with the encouragement of a family member or caregiver who usually 

accompanied them for hospital consultations. Thus consent rate was 100 %. Thirty –

nine (93%) of these completed the full range of cognitive assessments over a test 

duration ranging from 50 – 108 minutes.  One patient had to discontinue on account of 

visual problems (diplopia) and another subject had post – stroke movement disorders 

which impaired his ability to cope with paper and pencil testing.  The CAMCOG visual 

reasoning and ideational fluency tests were found most difficult for subjects to tackle.  

Sixteen stroke survivors and six healthy stroke – free volunteers performed the pilot on 

the CDR computerized tests. Although subjects who, ordinarily, were not used to the 

computer screen and keyboard, were taken aback when told they would perform some 

computer – based test, full explanations in the language best understood coupled with 

the encouragement of the accompanying family member/caregiver and an initial trial 

run prompted by the programme helped most subjects to surmount the fear and they 

could subsequently follow through on the various sub - tests. 
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3.3.1.2. Performance on the Cognitive Assessment Battery 

Based on the CSID cut of score of 25.5(Section 2.6.2), the frequency of cognitive 

impairment in this cohort was 28.6% (12/42). Subjects who were cognitively impaired 

were slightly older, had slightly fewer years of education but shorter duration post-

stroke (Table 3.2). However, subjects who were cognitively impaired achieved lower 

performance scores on the neuropsychological test items of the Vascular 

Neuropsychological Battery (V – NB): CAMCOG animal fluency CAMCOG letter 

fluency, Boston Naming Test, Word List Learning Stick Design and Modified Token 

Test (Table 3. 2).  

  

                    Cognitive  Category   

             Variable normal (N =30) impaired (N =12) p value 

 mean ( SD) Mean (SD)  

 Age (yrs) 56.7 (9.7) 57.7 (8.7) 0.764 

Gender :  n (% female) 8( 26.7) 4 (33.3) 0.469a 

No of years of education (yrs) 7.9 (5.8) 5.7(6.6) 0.266 

Duration post-stroke (mths) 8.9 (8.3) 7.3(6.2) 0.444b 

Post stroke duration    0.483a 

<= 6 mths : N, % 16 (38.1) 8 (19.0)  

 > 6 mths: N, % 13 (31.0) 5 (11.9)  

CSID  total score 27.6(1.1) 22.6(2.7) < 0.001 

MMSE  total score 26.6(4.0) 20.3(5.2) <0.001 

CAMCOG animal fluency 12.9(4.9) 8.5 (3.7) 0.013 

CAMCOG letter fluency 6.4(4.0) 2.3 (2.6) 0.005b 

CAMCOG verbal reasoning 4.2 (2.3) 3.2 (2.3) 0.191 

CAMCOG ideational fluency 2.1(1.1) 1.6 (0.9) 0.164 

CAMCOG visual reasoning 2.1(1.1) 1.5 (1.7) 0.191b 

Boston Naming Test 9.7(3.0) 7.0 (2.4) 0.014 

Word List Learning 17.1(4.0) 11.7 (5.4) 0.001 

Stick Design 10.5(2.6) 7.7 (3.4) 0.006 

Modified Token Test 18.7(4.5) 14.2 (4.9) 0.012 

Table 3.2: Characteristics of cognitive categories of pilot sample (n = 42 ) 
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3.3.1.3. Performance on the CDR Computerized Battery  

Table 3.3. shows the comparative performance of healthy controls, cognitively normal 

and cognitively impaired stroke survivors (based on CSID cut off score) with a trend of 

performance: normal control > cognitively normal stroke survivors> cognitively 

impaired stroke survivors on simple reaction time, choice reaction time, digit vigilance 

and spatial working memory .  

 

                                     Pilot Sample   

Variable 
 Control (N = 6) 

mean (SD) 

Normal (N = 12 ) 

mean (SD) 

Impaired  (N = 4 ); 

mean (SD) 

p -

value 

SRT (reaction 

time) ms 
400.55 (91.27) 628.00 (366.92) 713.18 (315.12) 

0.008 

CRT (reaction 

time)ms 
579.55 (62.91) 835 (336.698) 911.29 (156.68) 

0.001 

SPM 

(reaction 

time) ms 

1278.57 (516.54) 2521.09 (1055.06) 2599.75 (999.55) 

< 0.001 

VIR (reaction 

time)ms 
432.85(35.64) 517.62 (68.4) 554.00 (49.82) 

< 0.001 

CRT 

(accur)% 
98.18 (2.12) 97.65 (2.81) 96.57 (3.59) 

0.378 

SPM 

(accur)% 
80.39 (23.33) 71.47 (25.20) 54.46 (33.6) 

0.071 

VIR (accur)% 96.06 (5.26) 76.81 (19.07) 58.09 (31.28) < 0.001 

  

   Table 3.3: CDR computerized neuropsychological assessment data for pilot sample 
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3.3.2 The baseline assessment at 3 months post - stroke 

 

We recorded 417 patients with a stroke, of whom 101 died in hospital, 31 were 

discharged against medical advice and 65 were lost to follow up.  The remaining 220 

were assessed for eligibility in the study, out of whom145 met the selection criteria.  

The ineligible 75 subjects were excluded due to: [1] no consent (n = 25) [2] < 45 years 

of age (n= 32), [iii] severe aphasia and motor impairment precluding computer- assisted 

cognitive impairment (n = 18).  The records of 2 stroke survivors were excluded from 

further analysis on account of incomplete assessment details.  Figure 1 shows the flow 

chart of study participation in line with the STARD (Standards for Reporting of 

Diagnostic Accuracy) guidelines.(Bossuyt and Reitsma, 2003)  

 

               

Figure 3. 1: Flow chart showing number of subjects screened and recruited at baseline.  
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3.3.2.1. Characteristics of study participants 

Sociodemographic profile 

One hundred and forty three (143) cases and 74 controls were recruited into this 

baseline assessment. Using the G*Power software (Faul et al, 2007), a significance 

level, α – level = 0.05 and assuming a moderate effect size Cohen’s d = 0.5, the 

computed power (1 – β) = 0.9352. 

Table 3.4 shows the sociodemographic profiles of stroke survivors and the stroke-free 

healthy controls.  Majority of stroke survivors were male 81 (56.6%) while their mean 

age at study onset was 60.4 + 9.5 years (58.8 + 8.6 years for the control subjects). 

Subjects over 65 years of age were 46 (32.2%) cases and 11 (14.9%) controls. Majority 

of stroke survivors (85.3%) and controls (89.2%) had at least one year of formal 

education, most cases (82.6%) and controls (86.1%) lived in nuclear families while 

93.4% of cases and 91.9% of controls had access to personal or proxy mobile phones. 

Stroke survivors and controls were largely of the Yoruba ethnic extraction and most of 

the subjects (80% of cases and 70% of controls) earned less than 50,000 naira 

(approximately 200 Pounds Sterling) per month.  

 

 Cardiovascular risk and health behaviour profile  

A significantly higher proportion of the stroke survivors were hypertensive (p < 0.001)  

and diabetic (p < 0.001). Atrial fibrillation was reported in 5 (3.6%) stroke survivors 

and none among the control subjects. Physical inactivity was prevalent among both 

cases and control population while majority of cases and controls had never smoked. A 

significantly higher proportion of stroke survivors (18.9 %) were current smokers 

compared to 6.8% controls while a higher proportion of controls (14.9%) were current 

users of alcohol in comparison with stroke survivors (2.8%). Fish intake was quite 

common among cases and controls at least on a weekly basis while a slightly higher 

proportion of controls (54.1%) took fruits at least on a weekly basis compared to stroke 

survivors (41.3%).   Depressive symptoms scores were significantly higher on the 

CESD (p = 0.015) in stroke survivors compared with controls (Table 3.5).  
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           Characteristic Stroke 

survivors 

Stroke - free 

controls 

 

  N = 143 N = 74 Significance 

Gender : N (%) female  62 (43.4) 27 (36.5)                      χ2= 0.951; p = 0.329 

Age: (mean ± SD) years  60.4 ± 9.5 58.8 ± 8.6                      0.136* 

Educational Attainment 

(years) 

  χ2 = 5.24; p = 0.264 

None 21(14.7) 8(10.8)  

Primary  (1- 6) 39(27.3) 13(17.6)  

Secondary ( 7 -12) 35(24.5) 18(24.3)  

Tertiary ( > 12) 48(33.6) 35(47.3)  

Marital Status   χ2 = 2.11; p = 0.348 

Married 122 (85.3) 65(87.8)  

Widowed 17 (11.9) 9(12.2)  

Separated 4 (2.8)      --  

Living Situation      χ2 = 4.74; p = 0.093 

Alone 9 (6.8) 8 (11.1)  

Nuclear family 109(82.6) 62(86.1)  

Extended 14(10.6) 2(2.8)  

Mobile Phone Contact 

(%) 

93.4 91.9  

Ethnicity   χ2 = 17.5; p = 0.052 

Yoruba 126 (88.1) 64 (86.5)  

Others 17 (11.9) 10 (13.5)  

Average monthly income 

(Naira) 

  χ2 = 15.4; p = 0.017 

 Less than 10 000 52 (36.4) 16 (21.6))  

10 001 - 25 000 28 (19.6)  15 (20.3)  

25 001 - 50 000 37 (25.9) 22 (29.7)  

50 001 - 100 000 13 (9.1) 10 (13.5)  

100 001 - 150 000 3 (2.1) 8 (10.8)  

150 001 and above 10 (7.0) 3 (4.1)  

Occupation    χ2 = 14.3; p = 0.157 

Professional  26 (18.2) 8 (10.8)  

Skilled  33 (23.1) 30 (40.5)  

Semi -skilled  11 (7.7) 4 (5.4)  

Unskilled 47 (32.9) 21(28.4)  

Others 26 (18.2) 11 (14.9)  

Table 3. 4. Sociodemographic characteristics of stroke survivors and stroke free  – 

apparently healthy controls. *student t - test  
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           Characteristic 

Stroke 

survivors 

Stroke – free 

controls 

 

 
 N = 143 N = 74 Significance 

Cardiovascular risk factors, n (%)  

  Hypertension 132 (93.6) 44 (59.5) < 0.001 

Diabetes Mellitus 34 (24.5) 3 (4.1) < 0.001 

Obesity (BMI > 30kg/m2) 23 (16.1) 14 (18.9) 0.131 

Atrial fibrillation 5 (3.6)    -- -- 

Health behavioural factors 

   Physical Activity: n (%) 

(Leisural) 

  

Fisher's = 5.33; p = 

0.070 

Sedentary 118 (82.5) 69 (93.2) 
 Moderate 11 (7.7) 1 (1.4) 
 Strenuous  14 (9.8) 4 (5.4) 
 Smoking: n (%) 

  
χ2 = 15.43; p = 0.017 

Never smoked 108 (75.5) 55 (74.3) 
 Currently smoking 27 (18.9)  5 (6.8) 
 Stopped smoking 8 (5.6) 14 (18.9) 
 Alcohol Use: n (%) 

  
χ2 = 19.34; p = 0.011 

Never used  70 (49.0) 33 (44.6) 
 Current user 4 (2.8) 11 (14.9) 
 Stopped 45 (31.5) 22 (36.5) 
 Fish Intake: n (%) 

  
χ2 = 1.96; p = 0.582 

Daily  59 (41.3) 24 (32.4) 
 Weekly 58 (40.6) 35 (47.3) 
 Fruit Intake: n (%) 

  
χ2 = 8.88; p = 0.031 

Daily  33 (23.1) 9 (12.2) 
 Weekly 59 (41.3) 40 (54.1) 
 Depressive symptoms 

score 

   CESD Score 6.3 + 4.8 4.8 + 3.4 0.025* 

GDS - 4  0.7 + 1.1 0.4 + 0.7 0.248+ 

   

   
    

 

Stroke characteristics 

Eighty-eight cases in our cohort (61.5%) had neuroimaging (CT and/or MRI) within 

three months of presentation while 42 cases (30%) had CT scan within one week. 

Subjects who had neuroimaging did not differ significantly from those who did not with 

respect to age [60.4 (9.4) vs 60.3(9.8), t = 0.061; p = 0.952], years of educational 

Table 3. 5: Cardiovascular and behavioural risk factors in stroke survivors and 

stroke – free apparently healthy controls 
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attainment [9.3 (5.6) vs 9.5 (5.6), t = 0.178, p = 0.859), gender [ female (45.5 % vs 

42.0%, x
2
 = 0.160, p = 0.689] and mean modified Rankin score  [ 2.32(1.1) vs 2.29(1.0), 

t = 0.150, p = 0.881].  

Using the WHO Stroke scale alone, stroke types were: ischemic stroke 113 (79%),  

haemorrhagic 16 (11.2%) and indeterminate 14 (9.8%). Table 3.6 shows the details of 

stroke types, subtypes and aetiologic classification in the subset of 88 cases who had 

neuroimaging     (brain CT scan and/or MRI). However, in the 42 cases who had CT 

scan within one week of presentation, 28 cases (66.7%) were ischaemic and 12 cases 

(33.3%) were haemorrhagic thus showing a higher relative proportion of haemorrhagic 

stroke were diagnosed when neuroimaging was done closer to the time of the event 

rather than much later.  In this subset of 42 cases, ischaemic stroke subtypes based on 

the OCSP classification and TOAST etiologic classification were:  46.4% partial 

anterior circulation, 32.2% lacunar infarction, 14.3 % total anterior circulation infarction 

and 7.1% posterior circulation infarction.  The aetiologic classes based on the TOAST 

criteria were: 39 % large vessel disease, 50% small vessel disease, 7.1% cardioembolic 

and 3.6 indeterminate respectively.  Across the total cohort of 143 stroke survivors in 

this study, most cases had mild disability (median modified Rankin score = 2, median 

stroke levity score = 12and good functional score (median Barthel index = 18) at 

baseline (3 months after stroke).  

  Stroke Type   (based on  cases with neuroimaging (CT/MRI) (N =  88)                                                                        

    Ischaemic 
 

   70 (79.5) 

   Haemorrhagic 
 

    18 (20.5) 

Stroke Location 
     Anterior circulation  
 

    83 (94.3) 

   Posterior circulation  
 

     5 ( 5.7) 

Ischaemic stroke subtypes ( n = 70) 
    OCSP Classification 
      Partial anterior circulation infarct 
 

    31 (44.4) 

    Lacunar infarct 
 

    29 (41.4) 

   Total anterior circulation infarct 
 

      7 (10.0) 

    Posterior circulation infarct    
 

  3 (4.2) 

TOAST Classification (Aetiologic) 
         Small vessel disease                                                                   41 (58.6) 

    Large vessel disease                              21 (30.0) 

     Cardioembolic                                   
 

5 (7.1) 

     Indeterminate                                       3 (4.2) 

 
Table 3.6: Stroke characteristics in subjects 
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3.3.2.2. Profile of cognitive performance across controls and cognitive groups 

At three months following the index stroke, 74 (51.7 %) stroke survivors had no 

cognitive impairment (NCI), 57 (39.9%) had VCI no dementia (vCIND) while 12 

(8.4%) had PSD. The vCIND group included 19/57 (33.3%) single domain non-

amnestic, 11/57 (19.3)% multiple domain non - amnestic, 5/57 (8.8%) single domain 

amnestic and 22/57 (38.6%) multiple domain amnestic..   Table 3.7 shows the pattern of 

performance of the controls and different cognitive sub-groups of stroke survivors on 

the various test items assessing general cognitive functioning as well as domain –

specific cognitive functioning while Figure 3.2 shows the pattern of performance on 

choice reaction time (CRT). 

 

 

 

 

 Figure 3.2. The pattern of mean choice reaction time (CRT) (milliseconds) of 

control subjects and cognitive categories of stroke survivors. 
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Table 3.7:  Demographic and cognitive performance profile of stroke survivors and control subjects  

 

        Variable Conotrol (N = 74) no vascular CIND  (N=71) vascular CIND (N = 57)     PSD ( N = 12) p -  value  

   Mean(SD) Mean(SD) Mean(SD) Mean(SD) ANOVA 

Age (years)  58.8 (8.6) 58.2 (9.3) 62.3 (8.9) 65.4 (10.2)  < 0.001 

Education (years)  9.8 (6.7) 11.6 (4.4)  7.1 (5.8) 5.9 (5.3) < 0.001 

CSID total score 27.8 (2.8) 27.3 (1.8) 25.0 (2.7) 15.9 (5.0) < 0.001 

MMSE total score 27.4 (3.0)  27.8 (2.7) 23.0 (4.1) 13.1 (4.2) < 0.001 

Animal Fluency score 13.4 (4.0) 11.3 (3.2) 7.7 (3.8) 3.8 (3.7) < 0.001 

Animal fluency ( 0-15 sec)   5.4(1.7)   4.5(2.9) 3.6(1.6) 2.1 (1.7) <0.001 

FAS total score 25.0 (15.1) 20.1 (9.7) 6.6 (6.3) 0.9 (2.0) < 0.001 

Visual Reasoning test score 3.3 (1.6) 2.6 (1.5) 1.8 (1.2) 1.2 (0.7) < 0.001 

Word List Learning total score 17.2 (3.9) 17.2 (3.1) 12.7 (3.9) 7.6 (4.5) < 0.001 

Word List Recall score 5.7 (1.9) 5.2 (1.8) 2.4 (1.9) 1.2 (1.5) < 0.001 

Boston Naming Test score 12.1 (2.7) 12.0 (1.9) 8.2 (3.3) 6.7 (6.6) < 0.001 

Stick Design total score 11.5 (1.6) 11.8 (0.6) 8.0 (3.8) 6.5 (4.1) < 0.001 

Stick Design Recall total score 6.1 (3.0) 5.9 (2.1) 3.1 (2.6) 1.9 (2.2) < 0.001 

Modified Token Test total score 20.7 (3.0) 20.5 (2.1) 14.8 (4.9) 9.8 (3.8) < 0.001 

SRT (ms)  682.6 (617.6) 647.4 (403.3) 1268.1(1017.3) 2128.6(1421.8) < 0.001 

CRT  (ms)  731.4 (204.5) 826.3 (286.7) 1360.1(766.0) 2026.9 (945.4) < 0.001 

DVRT (ms) 470.9 (65.9) 518.6 (83.6) 570.7 (76.5) 605.9 (71.4) < 0.001 

SPMRT (ms)  2201.6(1015.2) 2412.5(982.3) 3522.6(2090.6) 3802.4(2546.0) < 0.001 

VIGACC (%) 87.2 (14.3) 81.5 (19.5) 54.4 (24.2) 40.6 (26.1) < 0.001 

SPMOACC (%) 82.9 (18.3) 80.1 (20.2) 69.0 (25.6) 54.6 (31.3) < 0.001 

SPMSI 0.6 (0.4) 0.6 (0.4) 0.4 (0.3) 0.1 (0.3) < 0.001 

` 

     

 

 
 

     

      

      

      

      

Table 3.7: Demographic and cognitive performance profile of stroke survivors and control subjects. Abbreviations: CIND = cognitive impairment no 

dementia; PSD = post - stroke dementia; SRT= simple reaction time; CRT = choice reaction time; DVRT= digit vigilance reaction time; SPMRT= spatial 

working memory reaction time; VIGACC = digit vigilance accuracy; SPMOACC = spatial working memory original stimuli accuracy; SPMSI = spatial 

working memory sensitivity index. 
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Comparison of stroke survivors with no apparent cognitive impairment (no vCIND) and 

controls 

Compared to controls, stroke survivors without any apparent cognitive impairment (no 

vascular CIND) were of comparable age (t= - 0.76; p =0.450), number of years of educational 

attainment (t = 0.63; p = 0.528) and performance on cognitive test items assessing the 

domains of memory, language and visuospatial/visuoconstructive functioning (Table 3.7).  

However, they performed significantly worse than controls on cognitive measures of 

attention, mental speed and executive function [animal fluency, t = -3.17; p =0.002; letter 

fluency (FAS), t = -2.20; p = 0.03; visual reasoning, t = -0.14; p = 0.06; CRT mean, t = -2.15; 

p = 0.034; and VIGRT, t = -3.58; p < 0.001] (Table 3.7).  

 

Comparison of stroke survivors with no vascular CIND and those with vascular CIND 

Stroke patients meeting the criteria for vascular CIND were significantly older ( t= 2.54; 

p=0.012) less educated ( t= -5.02; p <0.001) and more impaired in all cognitive domains 

compared to those without vascular CIND: executive function and mental speed (animal 

fluency t = - 5.35 p < 0.001; letter fluency, t = - 8.18; p <0.001; CRT mean, t= -5.22; p 

<0.001; VIGRT mean, t = -3.42; p =0.001); language (BNT, t = - 8.15, p< 0.001), memory 

(WLL, t = - 3.31; p = 0.001) and visuospatial/visuoconstructive functioning (stick design, t = 

- 8.15; p < 0.001; modified token test, t = - 8.79; p < 0.001) (Table 3.7). 

 

Comparison of survivors with vascular CIND and those with post-stroke dementia 

Stroke survivors with vascular CIND were comparable to those with PSD with respect to age    

(t= -1.03, p =0.306), years of formal education ( t = 0.671, p=0.504) and cognitive 

performance in the domain of language (BNT, t = 1.22; p = 0.227) while the demented sub-

group had worse performance in the cognitive domains of  mental speed/ executive function 

(animal fluency, t = - 3.20; p = 0.002; letter fluency, t= - 3.08, p =0.003; CRT mean, t= - 

2.49; p = 0.016; SPMSI, t= - 2.98; p = 0.014), memory (word list learning, t = - 4.05; p < 

0.001; word list recall, t= - 2.11; p =0.039) and visuospatial/visuoconstructive functioning 

(stick design, t = - 3.33; p =0.221; modified token test, t= - 3.33; p = 0.001).  
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3.3.2.3. Factors associated with cognitive dysfunction three months after stroke 

We used various logistic regression models to estimate odds ratio (OR) for cognitive 

dysfunction (Table 3.8). Unadjusted odds of cognitive dysfunction were statistically 

significantly higher for older baseline age at stroke occurrence, female gender, alcohol use, 

and less than 6 years of educational attainment but were lower for daily pre-stroke fish intake 

and moderate to heavy pre-stroke physical activity.  Multivariate regression analysis showed 

the ORs were attenuated and no longer significant for female gender, alcohol use and 

moderate to heavy pre-stroke physical activity.  However, the ORs remained significant and 

similar for baseline age, but stronger for less than 6 years of educational attainment and daily 

pre-stroke fish intake. 

  

  Univariate analysis 
Multivariate 

analysis 

       Baseline characteristic OR (95% CI)  OR (95% CI) 

Baseline age (years)                                        1.06 (1.02 -1.10) 1.05 (1.00 - 1.09) 

Female Gender 2.27 (1.15-4.45) 1.87 (0.80 - 4.40) 

< 6 years of education 4.84 (2.36 - 9.92) 5.09 (2.17 – 11.95) 

Hypertension 1.18 (0.30 – 4.58)   

Diabetes Mellitus 1.29 (0.59 – 2.79)   

Previous Stroke 1.38 (0.51 – 3.10)   

Smoking 1.25 (0.51 – 3.10)   

Alcohol use 2.01 (1.01 – 4.00) 1.19 (0.47 – 3.00) 

Pre-stroke daily fish intake 0.42 (0.20 – 0.88) 0.37 (0.15 – 0.89) 

Pre-stroke moderate to heavy  
0.17 (0.04 – 0.84) 1.00 (0.99 -1.02) 

physical activity 

modified Rankin score 1.03 (0.53 – 1.98)   

Barthel Index score 0.98 (0.90 – 1.06)   

CESD score 1.04 (0.96 – 1.12)   
 

   

 

 

 

 
 

Table 3.8. Univariate and multivariate analysis of factors associated with 

cognitive impairment 3months after stroke.*significant results are shown in bold  

(p < 0.05). 
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3.4. Discussion 

 

To our knowledge, this study is the first in sub-Saharan Africa to examine in detail the profile 

and factors associated with vascular cognitive impairment in a cohort of stroke survivors with 

varying degrees of cognitive dysfunction using a robust cognitive battery.  Our principal 

findings are that at three months post-stroke, 51.7%  of a cohort of Nigerian African stroke 

survivors were cognitively intact, 39.9% had VCI no dementia (vascular MCI) while 8.4% 

had PSD using the AHA/ASA criteria (Gorelick et al., 2011) and a cognitive battery modeled 

after the NINDS-CSN Harmonization Standards Neuropsychological Battery(Hachinski et 

al., 2006b).  Furthermore, attention, mental speed and executive function deficits were found 

in stroke patients who were apparently categorized as cognitively normal in comparison with 

matched stroke-free controls.  In patients who met criteria for vCIND, there was further 

worsening of executive functioning with additional significant impairment in the domains of 

language, memory and visuospatial/visuoconstructive function. Survivors who were 

demented at three months had further worsening of executive function, memory and 

visuospatial/visuoconstructive function. Significant factors associated with cognitive 

dysfunction at three months post-stroke included older baseline age, female gender, lower 

educational attainment and history of alcohol use while pre-stroke daily intake of fish and 

moderate-to-heavy physical activity were protective.  

 

Frequency of  vCIND  and  PSD 

Our finding  of  vCIND frequency of 39.9%  is close to some previous reports (Ballard et al., 

2002; Patel et al., 2003; Sachdev et al., 2006; Dong et al., 2012; Pendlebury et al., 2012; Yu 

et al., 2013) but considerably higher than those reported by others (Hoffmann, 2001; 

Stephens et al., 2004; Das et al., 2012).  However, our PSD rate of 8.4% is similar to the 

findings of 8.6% by Stephens et al (Stephens et al., 2004) and lies within the range of pooled 

post-stroke prevalence of 7.4% - 41.3% within the first year reported in a recent systematic 

review (Pendlebury, 2009). Although the mean age of our cohort is about 60 years similar to 

that of Dong et al (Dong et al., 2012)
 
but younger than in other studies (Ballard et al., 2003a). 
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  It is noteworthy that recent studies that have adopted the Vascular Cognitive Impairment 

Harmonization Standards (VCIHS) and the NINDS/CSN Neuropsychological Battery similar 

to our study have   reported relatively high rates of vCIND in particular. Vascular CIND rates 

of 43.0 %, 54.8 % and 49.9 % have been reported in in studies among UK (Pendlebury et al., 

2012), Singaporean (Dong et al., 2012) and Korean (Yu et al., 2013) stroke cohorts 

respectively. This may reflect the high sensitivity of the VCIHS protocol to detecting 

vascular MCI, especially in the executive function domain.  In addition,  the high rate of 

vCIND found in this cohort of Black African stroke survivors may suggest the possibility of  

an increased susceptibility to the cognitive sequelae of stroke just as they have demonstrated 

worse cardiovascular outcomes in studies involving multiracial populations (Pendlebury, 

2009). In  a recent  report on post-stroke cognitive impairment over a fifteen year period from 

the London Stroke Registry, the risk of post-stroke VCI was twice higher among black 

subjects compared to non –blacks (Douiri et al., 2013b) . Apart from this,   a stroke injury 

may trigger/accelerate cognitive decline, (Kalaria, 2012b) the age of occurrence 

notwithstanding (Owolabi, 2011).  Poorer outcome   may also reflect sub - optimal status of 

acute stroke care, rehabilitation and secondary prevention seen in many developing countries 

(Norrving and Kissela, 2013). Appropriate and effective management of vascular risk factors 

has been associated with a reduction of risk of long – term cognitive impairment in stroke 

survivors (Allan et al., 2011; Douiri et al., 2013a). 

 

Pattern of post - stroke cognitive dysfunction 

The heterogeneity of the prevalence of post-stroke MCI and dementia from different studies 

may be due to differences in patient characteristics (sample size, cut – off age, gender, 

population structure, ethnicity), study setting (hospital vs community-based), study design 

(first ever and/or recurrent strokes, timing of assessment), differences in study instruments 

and in the diagnostic criteria for post-stroke cognitive impairment and dementia (Hachinski et 

al., 2006b; Pendlebury, 2009; Gottesman, 2010).  It is important to point out that with the 

growing understanding of the early and prominent occurrence of executive dysfunction in 

subjects with VCI, recent studies that have used cognitive tools with robust items sensitive to 

executive dysfunction have reported   more cases of MCI which hitherto might have been 

wrongly passed as normal.  
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Previous observations from Newcastle (Ballard et al., 2002; Ballard et al., 2003a; Stephens et 

al., 2004) showed varying degrees of early cognitive impairment in stroke survivors.  In this 

present study, stroke patients without significant cognitive impairment at three months after 

stroke still showed deficits in attention, mental speed and executive function compared to 

control subjects, thus confirming the early occurrence of executive dysfunction in VCI. 

Subjects with vCIND and PSD had persistence and progression of executive dysfunction in 

addition to multi-domain impairments of language, memory and 

visuospatial/visuoconstructive functioning in tandem with previous findings in literature 

(Ballard et al., 2002; Ballard et al., 2003a; Stephens et al., 2004; Sachdev et al., 2006; 

Pendlebury et al., 2012). The prominent worsening of memory and visuospatial functioning 

in patients with PSD may suggest the presence of underlying neurodegenerative pathologies 

producing an additive/ synergistic effect with vascular pathologies (Deramecourt et al., 2012; 

Kalaria, 2012b; Kalaria, 2012a).  Like previous findings,(Pendlebury et al., 2012) we also 

found non - amnestic (single and multi-domain) impairment more common than amnestic 

(single and multi-domain) impairment in the vCIND subgroup, a further  reflection of the 

sensitivity of the NINDS/CSN Neuropsychological Battery for detecting non-memory 

domain impairments in subjects with vascular MCI (Hachinski et al., 2006b). 

 

Factors associated with post- stroke cognitive dysfunction  

Our observation of older age, female gender and low educational attainment as significant 

associated factors of post-stroke cognitive dysfunction are comparable with findings in  

previous studies (Patel et al., 2003; Henon et al., 2006; Sachdev et al., 2006; Pendlebury, 

2009; Gottesman, 2010; Das et al., 2012; Kalaria, 2012b).  Older age and female gender are 

risk factors for AD thus suggesting a likely role for age-related neurodegeneration 

synergizing with stroke to cause cognitive impairment and dementia (Kalaria, 2012b).  Lower 

educational attainment is associated with lower cognitive reserve and reduced resilience to 

dementing brain pathologies (Stern, 2009).   

The protective effect of fish intake against cerebral vascular disease risk (including stroke 

and VCI) is established (Chowdhury et al.; Perez et al., 2012).  Although, omega – 3 fatty 

acids (docosahexaenoic  acid  and eicosapentaenoic acid) in fish have been largely implicated 

in the protection, other nutritional constituents of fish including vitamins D and B complex, 
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essential amino acids and trace elements in fish (for example, taurine, arginine, selenium, 

calcium, magnesium, potassium, and iodine) may have potentially favourable  effects on 

inflammation, endothelial function, vascular tone, neuronal functioning and cell death 

(Chowdhury et al.; Robinson et al., 2010).  Recently, lower red blood cell omega- 3 fatty acid 

levels were associated with smaller brain volumes, increased white matter hyperintensity and 

vascular pattern of cognitive impairment on tests of visual memory and executive function 

(Tan et al., 2012).  However, this finding should be interpreted with caution as we did not 

collect specific details on the different species of edible fish, methods of preparation -whether 

fried or boiled – and the exact quantity of fish intake. These are more specific details worthy 

of further exploration in future studies.  

Unexpectedly, cardiovascular risk factors were not significantly associated with early post – 

stroke cognitive dysfunction in this study similar to findings  in the Sydney Stroke Study at 

baseline assessment 3 – 6 months after stroke (Sachdev et al., 2006). Pendlebury and 

Rothwell (2009) had also reported in their meta analysis the lack of association of 

hypertension, and ischemic heart disease with PSD.  This paradox is explained by Allan et al 

(2011) wherein cardiovascular risk factor load predicted long term cognitive outcome and 

mortality in elderly stroke survivors.  Follow up of our cohort is currently in progress to 

further explore the evolution of cognitive functions and the determining factors. Such 

longitudinal studies are needed to tease out the influence of cardiovascular risk factors, 

genetic architecture, epigenetic factors, social engagement and other cultural influences on 

the cognitive trajectory after stroke in populations of African ancestry.   

This study is not without its limitations. The potential existence of familywise Type 1 error  

associated with multiple pairwise comparisons is acknowledged. The sample size was modest 

and complete characterization of all our stroke cases was limited by the scant availability and 

high cost of neuroimaging.  Nonetheless, cases with and without neuroimaging were quite 

similar statistically, and our cohort shares similar demographic and phenomic characteristics 

with stroke cases described earlier in Nigeria (Owolabi and Agunloye, 2013) and sub- 

Saharan Africa (O'Donnell et al., 2010a). Further studies with bigger cohorts and population-

based samples are required to validate the present findings and explore other associations.  
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3.5. Chapter Summary 

 Frequency of post –stroke VCI 

 

Cognitive Category of Stroke Survivors No (%) 

no vCIND 74 (51.7) 

vCIND 57 (39.9) 

PSD 12 (8.4) 

 

 Categories of vCIND 

 

Category  No (%) 

single domain non - amnestic 19 (33.3) 

multiple domain non - amnestic 11 (19.3) 

single domain amnestic 5 (8.8) 

multiple domain amnestic 22 (38.6) 

 

 

 Factors associated with post – stroke VCI at 3 months 

Univariate 

Risk factors 

Baseline age 

< 6 years of education 

Female gender 

Alcohol use 

 

Protective factors 

Pre – stroke daily fish intake 

Pre – stroke moderate to heavy 

physical activity 

 

 

 

Multivariate 

Risk factors 

Baseline age 

< 6 years of education 

 

 

 

Protective 

Pre – stroke daily fish intake 
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Chapter 4. Medial temporal lobe atrophy, white matter hyperintensities 

and cognitive impairment among Nigerian African stroke survivors. 

 

4.1. Introduction 

 

Although physical disability is most commonly associated with stroke, cognitive changes and 

other non-motor consequences are quite frequent in those who survive longer. Up to 64% of 

stroke survivors will develop a degree of cognitive impairment and about 30% succumb to 

dementia (Hachinski et al., 2006b).  In a recent meta- analysis, the pooled prevalence 

estimates of post-stroke dementia (PSD) within one year of stroke ranged from 7.4% in 

population-based studies of first-ever stroke excluding pre-stroke dementia to 41.3% in 

hospital-based studies of all strokes including pre-stroke dementia (Pendlebury and Rothwell, 

2009b). 

Post-stroke cognitive dysfunction characteristically encompasses a multi-domain impairment 

of attention and concentration, executive function, language, memory and visuospatial 

function, with executive function being the earliest and predominantly affected domain 

(Ballard et al., 2003a; Erkinjuntti and Gauthier, 2009; Gorelick et al., 2011).  

In Chapter 3, we established the profile and determinants of VCI in our unique cohort of 

Nigerian African stroke survivors. We found a multi – domain pattern of cognitive 

impairment with early and dominant involvement of frontal executive function. For the 

clinical determinants of post - stroke VCI, older age, - surrogate of age – associated 

neurodegeneration, female gender and low education   were robust findings. The work 

detailed in this chapter sought to relate these results to neuroimaging parameters that are 

currently associated with VCI within the context of the specific objectives of the thesis. 

There is a large body of structural brain  imaging evidence in VCI, which suggests that 

medial temporal lobe atrophy or global cerebral atrophy, white matter changes, lacunar 

infarcts, strategic  infarcts and cerebral microbleeds contribute to vascular cognitive 

impairment, although the relative contributions of each varies across studies (Firbank et al., 

2007; Burton et al., 2009; Ihle-Hansen et al., 2012; Jokinen et al., 2012; Kalaria, 2012a; 

Kalaria, 2012b; Poels et al., 2012).  However, the neuroimaging substrates of post - stroke  

VCI  have never been examined among  among  sub - Saharan Africans. The aim of the study 
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reported in this chapter was to determine the neuroimaging correlates of vascular cognitive 

impairment (VCI) three months post-ictus in older Nigerian African stroke survivors 

participating in the Cognitive Function After STroke (CogFAST)-Nigeria Study. This is the 

first comprehensive, detailed and prospective African study of stroke-related cognitive 

dysfunction.  

 

4.2. Materials and Methods 

 

4.2.1. Study Design and Participants 

 

Stroke patients ( > 45 years) presenting consecutively were recruited from the stroke 

registers of two specialist hospitals, University College Hospital, Ibadan and Federal Medical 

Center Abeokuta (Akinyemi et al., 2009), and three smaller secondary healthcare centres in 

South-western Nigeria between July 2010 and June 2012.  

Stroke was defined according to the World Health Organization (WHO) definition 

(World Health Organization, 1988) and classified using the WHO criteria, the Oxford 

Community Stroke Project Classification (OCSP) (Bamford J, 1991) and neuroimaging (CT 

scan and/ or MRI) findings,when available. Neuroimaging was not performed on some 

patients due to limited access and prohibitive cost in Nigeria. The WHO criteria have been 

shown to have a sensitivity of 73% for haemorrhage, 69% for infarction and an overall 

accuracy of 71% in Nigeria (Ogun et al., 2002). The cohort was comprehensively assessed 3 

months after stroke, allowing time for the resolution of post-stroke delirium in accordance 

with the design of Desmond et al (Desmond DW, 1996). The evaluation included a medical 

history, assessment of neurological deficits and MRI scan, where possible (n = 58). 

Cardiovascular risk factors (CVRFs) including hypertension, diabetes mellitus, 

dyslipidaemia, smoking, excessive alcohol use, atrial fibrillation and previous stroke were 

ascertained from medical history and clinical records.  

Exclusion criteria were: (i) subarachnoid haemorrhage, (ii) significant physical illness and 

motor impairment that precluded paper- and computer-based neuropsychological evaluation 

(e.g.visual impairment, moderate to severe aphasia, hemiparesis affecting the dexterous hand 

(MRC power grade <3), (iii)any co-morbid psychiatric or neurologic illness, (iv)any systemic 
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disease that could impair cognition e.g. chronic liver disease and chronic kidney disease, 

(v)non-consent to take part in the study. The local research ethics committees granted 

approval for the study (University College Hospital, Ibadan and Federal Medical Centre 

Abeokuta), while written informed consent was obtained from each subject.   

 

4.2.2. Cognitive assessment 

 

The neuropsychological instrument consisted of the Community Screening Instrument for 

Dementia (CSID) – cognitive part (Hall et al., 2000), the Mini-Mental State Examination 

(MMSE) (Gureje et al., 1995) and the Vascular Neuropsychological Battery (Hachinski et al., 

2006b). The CSID is a paper and pencil test of global cognitive performance in which 

adaptability, validity and utility in populations from different cultural, educational and socio-

economic backgrounds have been established (Hendrie et al., 1995; Hall et al., 2000).  It has 

a sensitivity of 87% and specificity of 83%, and has been used reliably and widely to assess 

cognition in the Yoruba-speaking population of south-western Nigeria, where the present 

study was conducted (Ogunniyi et al., 2000).  The schedule includes sub-scores for attention, 

orientation, calculation, short- and long-term memory, language comprehension and 

expression, praxis and abstract thinking.  Pre- stroke cognitive status was assessed using the 

CSID- informant part by trained interviewers.  

The Vascular Neuropsychological Battery [V-NB] was devised by us after the 

NINDS-CSN Harmonization Standards 60-minute neuropsychological protocol (Hachinski et 

al., 2006b), with minor modifications to ensure adaptability to the language and culture of the 

study population.  The V-NB consisted of multiple test items examining specific cognitive 

domains (executive function, memory/learning, language, visuospatial/visuoconstructive 

skills). Other details are as described in Chapter 2.   

Test items from the Cognitive Drug Research (CDR) computerized assessment battery 

were also included in the Vascular-Neuropsychological Battery for the evaluation of 

attention, processing speed and executive function [the constituent tests included Simple 

Reaction Time (SRT) – a measure of attention, Choice Reaction Time (CRT) – measuring 

processing speed, Digit Vigilance (DV) and Spatial Working Memory (SWM) – measuring 

attention and working memory, respectively (Ballard et al., 2003a). 



 

 

120 
 
 

 

 

4.2.3. Operational definitions of cognitive dysfunction 

 

Vascular mild cognitive impairment (MCI) and PSD were defined according to the American 

Stroke Association/American Heart Association Vascular Cognitive Impairment Guidelines 

(Gorelick et al., 2011). Vascular MCI (Vascular Cognitive Impairment No Dementia-CIND) 

(Gorelick et al., 2011) was defined as impairment in at least one cognitive domain (executive 

function, memory/learning, language, visuospatial/visuoconstructive skills) and normal or 

mild impairment of instrumental activities of daily living, independent of motor/sensory 

symptoms.  PSD (Gorelick et al., 2011), in accordance with the DSMIV criteria, was defined 

as impairment in two or more cognitive domains that are of sufficient severity to affect the 

subject’s activities of daily living, independent of motor/sensory symptoms. Other details of 

the operational definitions of vCIND and PSD as well details of cognitive diagnosis are as 

described in Chapter 2. 

 

4.2.4 MRI Protocol 

 

Patients underwent an MRI examination three months after the stroke event. The two MRI 

scanners operated between  0.2 and 0.35 T. Axial spin-echo T2-weighted (T2W) images 

(echo time, 80 to 120 ms; repetition time, 4000 to 6500 ms; slice thickness, 5 mm); and axial, 

sagittal and coronal spin-echo T1-weighted (T1W) images (echo time, 9 to 15 ms; repetition 

time, 350 to 500 ms; slice thickness, 5 mm) were acquired. These were complemented by 

fluid-attenuated inversion recovery (FLAIR) sequences (echo time, 90 to 120 ms; repetition 

time, 6000 to 9000 ms; inversion time, 2000 to 2200 ms; slice thickness, 5 mm) to allow for 

better separation and identification of WMHs and cerebrospinal fluid, as used in a previous 

study (Ogbole et al., 2013). All images were transferred to computer workstation with Clear 

canvas DICOM viewer and evaluated by two experienced neuroradiologists . All ratings were 

performed by consensus agreement. 
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4.2.5. Image Assessment 

 

White matter changes were assessed using the Scheltens visual rating scale for white matter 

hyperintensities (WMHs) (Scheltens et al., 1993).  Ratings were performed on MRI images 

on computer screen with T2 and FLAIR images. Periventricular WMH score was compiled as 

a summation of all three periventricular WMH scores in the frontal and occipital regions, as 

well as along the ventricles; the deep WMH score was a summation of all the deep WMH 

scores in the four regions assessed. The total WMH score for each patient was the sum of all 

ratings. Medial Temporal Lobe Atrophy (MTLA) was evaluated using the Scheltens MTLA 

visual rating scale (Scheltens et al., 1992). Both sides were assessed and the score of the 

more affected side was used in cases of severe asymmetry. Total brain volume (TBV) was 

measured from the T1-weighted axial images. Slice-to-slice variations in intensity were first 

removed. This was performed by creating a mask using the brain extraction tool (Bet) from 

the FSL software (www.fmrib.ox.ac.uk fsl  ). The mean intensity within the mask was 

determined on each slice, and the overall intensity for the whole slice scaled accordingly. We 

then used the segmentation tool in SPM8 (www.fil.ion.ucl.ac.uk/spm/) to generate gray and 

white matter segmentations. A brain mask was generated from the sum of gray + white 

matter. This brain mask was visually inspected, and manually edited, where necessary, to 

remove non - brain tissue; total brain volume was measured from the number of voxels in the 

mask. Total intracranial volume (ICV) was measured from the T2 weighted axial images in a 

similar fashion, correcting for slice intensity variations, using SPM to segment the brain, then 

manually editing the segmentation, where appropriate. Total intracranial volume was then 

taken as the sum of gray matter + white matter + CSF. Ventricular volume was measured 

from the T2-weighted axial images. We used a previously-created standard space template of 

probable location of the ventricles in older people (Firbank et al., 2003). This template was 

transformed from standard space to each subject and used to mask the CSF segmentation 

from the previous step. The resulting ventricle segmentation was manually edited, and 

volume determined. All neuroimaging evaluations were undertaken with the assessors blind 

to clinical information.
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Figure 4.1.  Magnetic resonance imaging (MRI) T1- and T2-weighted (A and B), and fluid-attenuated inversion recovery (C ) axial images from a 70 

- year old female Nigerian stroke survivor showing moderate white matter hyperintensities. 
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Figure 4. 2. Magnetic resonance imaging (MRI) T1- weighted coronal images showing different 

degrees of medial temporal lobe atrophy (MTLA) in Nigerian stroke survivors: [A] Grade 4 

MTLA in a 70 year old male; [B] Grade 3 MTLA in an 81 year female; [C] Grade 2 MTLA in 

a52 year male; [D] Grade 1 MTLA in an 48 year male; [E] Grade 0 MTLA in an 49 year female.  

4.2.6. Statistical Analysis 

 

Data were analyzed using the Statistical Package 

for Social Sciences version 19.0 (SPSS Chicago Inc.). 

Categorical variables were examined and summarized in 

percentages, while continuous variables were described 

using measures of central tendency (mean, median and 

semi-interquartile range) and compared using the 

Student’s t-test, analysis of variance (ANOVA) and 

Kruskal-Wallis Test. Correlations were examined using 

Pearson’s correlation coefficient, while logistic regression 

models were fitted to determine univariate and 

multivariate relationships between cognitive status and 

patient-related demographic, cognitive and neuroimaging 

variables. Age and years of educational attainment were 

entered as dichotomous measures and other determinants 

as continuous measures in the regression models. Number 

of CVRFs was aggregated as 0 – none; 1 –  1 or 2 CVRFs 

and 2 -  3 or more CVRFs. Age and sex were included in 

the multivariate model, even if not significant..Unadjusted 

and adjusted odds ratios (OR) with 95% CIs were 

estimated.  Level of statistical significance was set at p < 

0.05. 
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4.3. Results 

 

4.3.1. Participant characteristics 

  

 Out of 220 consecutively presenting stroke survivors assessed for eligibility in the study, 145 

met the selection criteria (Figure 3.1). Seventy-five subjects were excluded due to: no consent 

(n = 25), < 45 years of age (n = 32), severe aphasia and motor impairment precluding 

computer-assisted cognitive impairment (n = 18).  The records of two stroke survivors were 

excluded from further analysis on account of incomplete assessment details. Out of a total of 

143 stroke survivors at baseline three months after stroke, 58 had a brain MRI performed at 

three months, in addition to clinical and neuropsychological assessment.  Given a significance 

level, α = 0.05 and assuming a moderate effect size Cohen’s = 0.4, using the G*Power 

software (Faul et al, 2007), the computed power (1 – β) = 0.7599. 

Table 4.1 shows the demographic, clinical and neuroimaging characteristics of those who had 

MRI and constitute the current study group.   

Subjects who had brain MRI (n = 58) did not differ significantly from those who did not (n = 

85) with respect to age [59.6(9.6)  versus 60.8(9.5) years]  (t = 0.75, p = 0.453); gender: 

female [28(49.1%) versus 34 (39.5%)] (χ2 = 1.28, p = 0.302)  years of formal education 

[8.5(5.7) versus 9.9(5.5)], t = 1.45; p = 0.150; and stroke type [cerebral 

infarction intracerebral haemorrhage indeterminate (50 8 0 versus 64 11 8)], χ2 = 6.88, p = 

0.08) and  OCSP classification [LACI PACI TACI POCI (23 20 5 2 versus 20 33 7 4)], χ2 = 

8.39, p = 0.211). Five (8.6%) subjects had significant pre-stroke cognitive impairment from 

the informants’ rating of subjects’ cognitive function. 

Based upon our operational definition, 26 (44.8%) stroke survivors had no vascular cognitive 

impairment (vCIND), while 24 (41.4%) and 8 (13.8%) had vCIND and post-stroke dementia 

(PSD), respectively.  
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Age at baseline: (mean, SD) years 60.1(10.7) 

Sex : n (%) female                        28(50%) 

Total number of years of education :( mean, SD) years  8.6(5.6) 

CSID total score (mean, SD)  24.8(4.6) 

MMSE score (mean, SD)  23.5(5.9) 

Executive function score (mean, SD) 10.6(4.6) 

Memory score (mean, SD) 29.6(10.4) 

Simple reaction time (mean, SD) 947.5(861.0) 

Choice reaction time (mean, SD) 1170.6(763.4) 

CESD Score (mean, SD) 6.5(5.4) 

Stroke Type (diagnosed by CT and/or MRI) 

              Ischaemic 50(86.2) 

            Haemorrhagic 8(13.8) 

Cardiovascular risk factors, n (%) 

              Hypertension 53(91.4) 

           Diabetes Mellitus 13(22.4) 

            Dyslipidemia 6(10.3) 

           Atrial fibrillation 1(1.7) 

            Ever smoked 15(25.9) 

           Ever taken alcohol 28(48.2) 

           Previous stroke 7(12.1) 

*Imaging  Volumetrics (mean, SD) 

            ICV  (mls)                                                                                                   1331.0(146.7) 

           TBV (mls) 1024.9(132.2) 

            Ven vol (mls) 44.7(19.3) 

           TBV/ICV 0.77(0.06) 

            Ven vol/TBV 0.04(0.02) 

            MTLA (L+R) total score 7.06(1.67) 

Vascular lesions on MRI 

          Large vessel infarct-right [n (%)] 3(5.1) 

         Large vessel infarct-left [n (%)] 3(5.1) 

         Frontal infarct –right [n (%)] 4(6.9) 

         Frontal infarct –left [n (%)] 3(5.1) 

         Parietal infarct – right [n (%)] 17(29.3) 

         Parietal infarct – left [n (%)] 13 (22.4) 

         Basal ganglia small vessel disease – right [n (%)] 15(25.9) 

         Basal ganglia small vessel disease – left [n (%)] 9(15.5) 

  **Total brain WMHs (median, semi-interquartile range)
x
 7.00(0- 13.75) 

  * *Periventricular WMHs(median, semi-interquartile range)
x
 3.00(0- 5.00) 

  * *Deep WMHs(median, semi-interquartile range)
x
 4.00(0- 9.25) 

 

  

 

Table  4. 1. Demographic, clinical and neuroimaging characteristics of subjects (n = 58). 
**computed based on Schelten’s WMH scale; data non - normally distributed

x
; *volumetric 

analysis was done only in 54 cases.  
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4.3.2. Characteristics of cognitive sub – groups of subjects 

 

Table 4.2 presents the demographic, cognitive and  MRI  imaging characteristics of  cognitive  

sub-groups of stroke survivors, demonstrating the pattern of performance on tests of general 

cognitive functioning as well as in specific domains of  memory ( V –NB memory score), 

executive function (V –NB executive score), attention (SRT), information processing speed 

(CRT) and mental flexibility (SPMRT). There were statistically significant differences in  

performance (mean and standard deviation) across the spectrum of stroke survivors (Normal, 

vCIND and PSD) on each cognitive test.  

Regarding neuroimaging metrics, total intracranial volume (F = 0.898, p = 0.414) and 

ventricular volume (F = 1.823, p = 0.172) were similar across the subgroups, whereas total 

brain volume (F = 7.686, p = 0.001) and the ratio of total brain volume to intracranial volume 

(F = 7.950, p = 0.001) were significantly reduced in cognitively impaired and demented 

stroke survivors.  Medial temporal lobe atrophy (MTLA) scores were significantly increased 

in cognitively impaired and demented stroke survivors (F = 6.776, p = 0.003), while WMHs 

also showed a similar increasing trend, although this did not attain statistical significance (p > 

0.05).  
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  Normal (N =26) vascular CIND (N=24)   PSD (N=8)   

Variable Mean(SD) Mean(SD) Mean(SD) p -  value (ANOVA) 

Age (years) 54.9(7.8) 62.8(8.9) 68.3(15.6) 0.001 

Education (years) 11.3(4.1) 6.9(6.2) 4.6(4.1) 0.001 

CSID score 27.3(1.6) 24.9(3.3) 16.6(5.4) < 0.001 

MMSE score 27.8(2.3) 22.3(4.2) 13.4(4.5) < 0.001 

V – NB Memory score (total) 38.0(5.0) 24.5(7.6) 16.7(8.6) < 0.001 

V – NB Executive score (total) 14.1(2.6) 8.7(3.4) 4.8(2.9) < 0.001 

SRT (ms) 599.1(622.6) 1001.9(656.5) 1886.4(1283.3) < 0.001 

CRT  (ms) 826.3(442.9) 1296.8(794.8) 1899.2(920.9) < 0.001 

SPMRT (ms)  2186.0(1068.8) 2827.2(1542.9) 3741.2(2850.9) 0.06 

Log_ICV 6.12(0.05) 6.12(0.05) 6.10(0.04) 0.414 

Log_TBVa 6.02(0.05) 6.00(0.04) 5.93(0.06) 0.001 

Log_Venvol 4.56(0.17) 4.66(0.23) 4.66(0.13) 0.172 

TBV/ICVb 0.79(0.04) 0.77(0.06) 0.70(0.09) 0.001 

MTA  total (L+ R) scorec 6.28(1.49) 7.79(1.58) 8.00(1.27) 0.001 

Total WMH score 6.80(7.53) 11.52(11.78) 14.57(15.34)    0.273β 

    Periventricular WMH score  2.38(2.21) 3.31(2.38) 3.85(2.73) 0.231 

    DeepWMH score  4.42(6.20) 8.21(10.11) 10.71(13.62)   0.492 β 

 

Table  4. 2: Characteristics of cognitive  sub- groups of  subjects ( N = 58). 
Statistical comparisons: 

a
Normal  vs vCIND, t  = 1.209  p = 0.233; vCIND  vs  PSD, t = 3.160 p = 0.004; Normal  vs  PSD , t = 3.596 p = 0.001;           

b
Normal vs vCIND, t  = 1.762  p = 0.085; vCIND  vs PSD, t = 2.216 p = 0.036; Normal  vs  PSD, t  = 4.053 p < 0.001;  

c
Norma l vs vCIND, t  = -3.244  p = 

0.002;    vCIND vs PSD, t = -0.296 p = 0.770; Normal vs  PSD, t = -2.608 p = 0.014;  
β 
Kruskal-Wallis Test. Statistics:  *p value = significant p values are 

in bold.   
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4.3.3. Correlation of clinical, cognitive and neuroimaging variables 

 

Age correlated significantly with total brain volume (r= -0.393, p = 0.004), MTLA total score 

(r = 0.525, p < 0.001) but not WMH total score (r = 0.206, p = 0.144). Number of years of 

educational attainment correlated significantly with total brain volume (r = 0.324, p = 0.018) 

but not MTLA (r = 0.263, p = 0.065) or total WMH (r = -0.012, p = 0. 935). MTLA 

correlated significantly with total WMH score (r = 0.461, p = 0.002), total CSID score (r = -

0.378, p = 0.019), memory (r = -0.702, p < 0.001) and executive function (r = -0.369, p = 

0.016) but not total brain volume (r = -0.203, p = 0.157). Deep WMH frontal score correlated 

significantly with MTLA (r = 0.352, p =0.013), executive function (r = -0.350, p = 0.013) 

choice reaction time (r = 0.345, p = 0.015) and memory (r = - 0.333, p = 0.021). Deep WMH 

parietal score correlated with memory (r = -0.502, p < 0.001) and executive function (r = -

0.315, p = 0.026), while deep WMH temporal score correlated with executive function (r = -

0.303, p = 0.033) but not with memory (r = -0.226, p = 0.123). Pre-stroke informant cognitive 

score showed significant correlation with post-stroke memory score ( r = -0.321, p = 0.022) 

and a trend with post-stroke general cognitive functioning CSID total score ( r  = -0.248, p = 

0.071) but  lacked correlation with  structural MRI variables ; MTLA (p = 0.438),  TBV (p = 

0.137) total WM score ( p = 0.642). ). Presence of hypertension correlated significantly with 

total WM score (r = 0.361, p = 0.001) and total deep WM score (r = 0.375, p = 0.007). 

Aggregated vascular risk factor load correlated significantly with the female gender (r =  

0.372, p = 0.005) but showed a trend with age (r =  0.251, p = 0.064) and MTLA (r = -0.248, 

p = 0.086). Left parietal infarcts (mainly large vessel) were also significantly associated with 

cognitive dysfunction as an outcome (r = 0.780, p = 0.002). 

 

4.3.4. Univariate determinants of cognitive outcomes 

 

Table 4.3 presents univariate logistic regression analyses of statistical predictors of cognitive 

impairment in three different models. In model I (Normal vs vCIND), education < 7 years, 

and MTLA rating were significantly associated with vCIND. In model II (vCIND vs PSD), 

TBV was significantly associated with   PSD. In model III, [Normal vs (vCIND + PSD)], age 

> 60 years, educational attainment < 7 years, TBV and MTLA significantly differentiated 

normal (no vCIND) from cognitively impaired (vCIND + PSD) study subjects. 
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               Normal vs vCIND               vCIND  vs  PSD        Normal  vs (vCIND + PSD) 

 OR  95%CI  *p -value  OR 95% CI *p -

value 

OR 95% CI *p – 

value 

Age  > 60 years 3.21 0.98-10.45 0.053 2.54 0.42-15.21 0.308 3.97 1.30-12.13 0.016 

Female gender 2.24 0.72 – 6.95 0.163 1.19 0.23 – 6.17 0.835 2.34 0.81 – 6.74 0.116 

Education < 7 years 6.67 1.92–23.18 0.003 3.50 0.37 –33.56 0.277 8.52 2.58-23.12 < 0.001 

Total WMH score 1.06 0.97-1.13 0.123 1.02 0.95-1.09 0.580 1.06 1.00-1.13 0.073 

Periventricular 

WMH score 

1.20 0.92-1.57 0.181 1.10 0.76-1.60 0.610 1.22 0.96-1.56 0.102 

Deep WMH score 1.06 0.98-1.15 0.145 1.02 0.95-1.10 0.600 1.07 0.99-1.15 0.094 

Log _ ICV 0.22 0.001-5462.00 0.809 0.02 0.001 -

10385.0 

0.247 0.01 0.001 – 

1144.1 

0.439 

Log _ TBV 0.04 0.01 –137.28 0.230 

 

0.03 0.01 – 0.023 0.024 0.04 0.01 – 0.20 0.025 

Log _ VenVol 13.44 0.52 – 347.02 0.117 1.22 0.020 – 74.90 

 

0.924 18.6 0.81 – 

429.36 

0.067 

MTLA rating 1.91 1.19 – 3.06 0.007 1.10 0.59 – 2.07 0.759 2.05 1.28 – 3.27 0.003 

 

Table 4.3 . Univariate logistic regression model of demographic and imaging determinants of cognitive dysfunction among subjectsAbbreviations: 

vCIND = vascular cognitive impairment no dementia; PSD = post - stroke dementia; CSID= Community Screening Instrument for Dementia; MMSE = 

Minimental State Examination; V – NB = Vascular Neuropsychological Battery;  ICV = Intracranial volume; TBV = Total Brain Volume; VenVol = 

Ventricular Volume; MTLA = Medial Temporal Lobe Atrophy rating; WMH = White Matter Hyperintensity. OR = Odds Ratio; CI = Confidence Interval.   

*p value = significant p values are in bold.   
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4.3.5. Multivariate determinants of cognitive outcomes 

 

Multivariate logistic regression analyses were performed in the three models described above. 

Demographic and significant univariate neuroimaging predictors were fed into the models 

and following which, educational attainment < 7 years and MTLA rating remained significant 

independent statistical predictors of post-stroke vascular cognitive impairment no dementia 

(model I) and of post-stroke cognitive dysfunction (model III) accounting for up to 49%  of 

the variance of cognitive outcome (Table 4.4). 

 

4.4. Discussion 

 

The principal finding was that the presence of MTLA on neuroimaging was independently 

associated with early post-stroke cognitive dysfunction in a sample of Nigerian African 

stroke survivors, apart from the demographic variable of lower educational attainment. In 

addition, MTLA showed significant correlation with WMH, general cognitive performance, 

executive function, and memory score. Non – demented (vCIND) stroke survivors had 

significantly higher total brain volume (TBV) than the demented (PSD) group but did not 

significantly differ in medial temporal lobe atrophy (MTLA) and severity of white matter 

hyperintensities (WMHs). Stroke survivors without apparent cognitive impairment (no 

vCIND) had higher TBV and lower WMHs scores compared to PSD, and significantly lower 

MTLA score compared to vCIND and PSD. Nevertheless, we acknowledge the potential 

influence of multiple pairwise comparisons on the results of our analysis and the 

corresponding interpretations. 

Despite a modest sample size, the study is unique in being the first in sub-Saharan Africa to 

examine neuroimaging correlates of cognitive impairment. Our findings provide robust 

evidence in support of other previous studies showing the predictive role of MTLA in 

vascular cognitive impairment (Bastos-Leite et al., 2007; Firbank et al., 2007; Burton et al., 

2009). Although MTLA has often been interpreted as a signature of Alzheimer pathology 

(Burton et al., 2009), some recent studies suggest it may also have a vascular basis resulting 

from cerebral hypoperfusion (Firbank et al., 2012).  
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                Normal  vs vCIND              vCIND  vs  PSD         Normal vs (vCIND + PSD) 

    Variable OR  95%CI *p value OR 95%CI p value OR 95%CI *p value 

  

    

Nagelkerke R
2
 R

2
=  0.414                     R

2
=  0.470 R

2
=  0.490 

Age  > 60 years 1.06 0.19 – 5.92 0.945 0.50 0.05 – 5..45 0.579 0.79 0.15 - 4.27 0.787 

Female gender 1.42 0.33 – 6.17 0.641 0.25 0.02 – 3.86 0.322 0.83 0.14 - 4.79 0.834 

Education < 7 years 6.22 1.35 – 28.73 0.019 8.88 0.26 – 

306.34 

0.227 6.95 1.54 – 1.30  0.012 

MTLA rating 2.02 1.05 – 3.87 0.035    2.25 1.16 – 4.35 0.016 

Log _ TBV       0.01 0- 1996.50 0.260 

  

Table 4.4: Multivariate logistic regression model of significant univariate determinants of cognitive dysfunction among subjects
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Qui et al (Qiu et al., 2012) recently reported a significant association between 

aggregated vascular risk factors and reduced hippocampal volume in a cohort of men, 

while hippocampal neuronal atrophy was found to correlate with post-stroke dementia 

in another cohort with insignificant degenerative pathology (Allan et al., 2011; 

Gemmell et al., 2012). Although we found no correlation between pre-stroke informant 

cognitive score and MTLA in this cohort, there was a trend towards significance in the 

relationship between aggregated vascular risk factors and MTLA as well as in the 

progression of WMH measures across the cognitive groups. Thus, the relationship 

between MTLA and cognitive impairment in our cohort may suggest a bi-directional 

causality mediated by cerebral vascular disease. However, the strength of this 

interpretation is limited by the moderate power (1 – β) = 0.76 of our sample owing to 

limited availability and high cost of MRI in our study population. Further validation in a 

bigger cohort studied over time is necessary. 

The finding of a significant correlation between MTLA and WMH agrees with others 

(Oosterman et al., 2008) and further strengthens the case for a vascular basis in the 

pathomechanism of MTLA, WMH being a surrogate of small vessel disease (Kalaria, 

2012a).We also found a significant association between MTLA and WMH, executive 

function, processing speed and memory in line with previous studies(Jokinen et al., 

2005; Oosterman et al., 2012).Similarly, Jokinen et al found synergistic interactions of 

MTLA, white matter lesions, regional and cortical atrophy on cognitive performance in 

subjects with small vessel disease in the LADIS study (Jokinen et al., 2012). Our 

findings, therefore, provide further evidence that global and regional cerebral atrophy, 

cortico-cortical and cortico-subcortical disconnections and slowing of neural impulse 

transmission consequent to white matter damage from microvascular pathologies do 

have robust impact on cognitive processes (Gorelick et al., 2011; Kalaria, 2012a; 

Kalaria, 2012b). 

Executive dysfunction is an early and prominent feature of vascular cognitive 

impairment of varying aetiologies and natural history (Erkinjuntti and Gauthier, 2009; 

Gorelick et al., 2011) In previous studies, executive dysfunction had been found to 

correlate with both WMH(Jokinen et al., 2005) and MTA (Oosterman et al., 2008; 

Oosterman et al., 2012) and is thought to further mediate their relationship with 

memory and visuospatial dysfunction in the context of cerebral vascular disorders. 
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Surrogates of cognitive reserve include number of years of educational attainment (Staff 

et al., 2004)and total brain volume (Mori et al., 1997).Our finding of older age and low 

educational attainment as significant predictors of post-stroke cognitive dysfunction are 

consistent with previous studies (Patel et al., 2003; Henon et al., 2006; Pendlebury, 

2009; Gottesman, 2010; Das et al., 2012; Kalaria, 2012b). Age is the strongest risk 

factor for age-associated cerebrovascular and neurodegenerative disorders implicating a 

likely role for age-related neurodegeneration, synergizing with stroke to cause cognitive 

impairment and dementia in this cohort (Kalaria, 2012b). Lower educational attainment 

is associated with lower cognitive reserve and reduced resilience to dementing brain 

pathologies(Stern, 2009), especially in the presence of an accompanying reduction in 

total, cortical or regional brain volume (Mok et al., 2011). This study, nonetheless, has 

several limitations. Though sample size was modest, the significant findings, the first of 

its kind in sub-Saharan Africa, are worthy of note.  The CogFAST – Nigeria project is 

still in progress in ar longitudinal cohort approach   with a view to confirming the 

current findings and unraveling new associations. We assessed white matter changes 

with the Scheltens' scale (Scheltens et al., 1993). Generally, visual rating scales are not 

as sensitive as structural volumetric measures and this may also partly explain the lack 

of statistical significance in the findings of white matter changes in our cohort. 

Nevertheless, visual rating scales are cost effective, useful in clinical practice and have 

been proved to attain good reliability and correlation with volumetric measurements 

(Wahlund et al., 2000; Bresciani et al., 2005). A possibility of selection bias also exists 

because of our inability to obtain brain MRI for all the available subjects, although we 

demonstrated that those who had brain imaging did not differ significantly from those 

who did not have. 

In conclusion, this study found an independent association of MTLA and early 

cognitive decline and dementia post-stroke in a sample of Nigerian African stroke 

survivors. This pioneering study underscores the importance of considering early-and 

long-term sequelae of stroke as care improves and early stroke mortality falls in the 

developing world (Feigin et al., 2013). Acute and restorative services delivered to 

stroke survivors will need to be set up in anticipation of a rising number of people with 

long term motor- and non-motor consequences following stroke, including cognitive 

impairment. Further studies with larger samples and longitudinal design are also needed 

to unravel more associations.  
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4.5. Chapter summary 

  

 Variable Measure (n, %, mean, 

SD, median, range) 

Left parietal infarct 17 (29.3%) 

Right basal ganglia small vessel disease  15 (25.9%) 

Left basal ganglia small vessel disease  9 (15.5%) 

Total brain volume (ms) 1024.9 (132.2) 

TBV/ICV 0.77 (0.06) 

MTLA score 7.06 (1.67) 

Total brain WMH 7.0 (0 - 13.75) 

Periventricular WMH 3.0 (0 - 5.00) 

Deep WMH 4 .0 ( 0 – 9.25) 

 

Table 4. 5. Summary of neuroimaging findings (n= 58) 

 

 

 Total Brain Volume :  N =  vCIND  > PSD 

 MTLA                      : N < vCIND < PSD 

 Total WMH              : N < vCIND < PSD 

 Deep WMH              : N < vCIND < PSD 

MTLA :  <  means less medial temporal lobe atrophy 

 WMH :  <  means less white matter hyperintensities 

 

 

 Neuroimaging factors associated with post –stroke cognitive dysfunction 

Univariate 

Total brain volume 

MTLA 

 

Multivariate 

MTLA 
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Chapter 5. Hippocampal Alzheimer pathology in post – stroke 

dementia compared with other dementias and ageing controls 

 

5.1. Introduction  

The pathological hallmarks of Alzheimer’s disease (AD) include amyloid beta  (Aβ) 

protein deposits in the brain parenchyma (as amyloid plaques) and in walls of blood 

vessels (cerebral amyloid angiopathy) and neurofibrillary tangles (NFT) which 

comprise hyperphosphorylated tau protein (Querfurth and LaFerla, 2010).  The 

hippocampus plays a very strategic role in the neurobiology of memory (Eichenbaum, 

2001; Burgess et al., 2002) and appears central to the hierarchical spread of amyloid and 

NFT pathologies (Braak and Braak, 1991; Thal et al., 2002b; Thal et al., 2006). 

Whereas amyloid is deposited in the hippocampus in late stages, NFT occur quite early 

within the hippocampal formation during their natural histories, and both deposits 

appear to relate to the connections of the hippocampal circuitry (Lace et al., 2009). 

However, the precise relationship between NFT  and amyloid deposits is still a subject 

of continuing debate (Querfurth and LaFerla, 2010).  

Although Alzheimer pathology characteristically defines AD, it is often found in 

cognitively normal elderly and Aβ deposits may particularly  co - exist with other 

degenerative pathologies such as α – synuclein and TDP – 43 in  Lewy body diseases 

and frontotemporal lobal degeneration respectively (Tomlinson et al., 1968; CFAS), 

2001; Bennett et al., 2006; Bennett et al., 2012; Boyle et al., 2013b).  

The link between cerebrovascular disease, neurodegeneration and cognition has long 

been debated (de la Torre and Mussivand, 1993; Kalaria et al., 1993b). Evidence for this 

link has been provided by experimental models (Kalaria et al., 1993a; Kitaguchi et al., 

2009) and from epidemiological studies of ageing, AD and VaD (Schneider et al., 2004; 

Petrovitch et al., 2005; Okamoto et al., 2012).  Accumulation of Alzheimer pathology 

in primary vascular brain disorders occurs largely as a result of shared mechanisms of 

neurovascular unit dysfunction (Kalaria, 2000; Iadecola, 2004; Kalaria et al., 2012a). 

Experimental evidence from animal studies has accrued on how cerebral 

hypoxia/ischaemia may exacerbate amyloid production (Kalaria et al., 1993a; 

Whitehead et al., 2005; Yamada et al., 2011). This may occur through an initial 
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upregulation of amyloid precursor protein (APP) as has been shown in rat and mouse 

models of chronic cerebral hypoperfusion (Kalaria et al., 1993b; Yamada et al., 2011).  

The upregulation of APP is mediated by hypoxia inducible factor – α (HIF -1α) which 

stimulates the expression of the beta secretase enzyme that promotes amyloidogenic 

processing of APP (Zhang et al., 2007). This is balanced by the activity of the neuronal 

sorting and intracellular trafficking membrane protein (LR11) or SorL1 which, on the 

other hand, regulates APP breakdown by channelling it into non – amyloidogenic 

pathways (Dodson et al., 2008; Gustafsen et al., 2013). While the association of the 

SorL1 gene with late – onset AD is now well established (Miyashita et al., 2013), the 

cellular expression of SorL1 was recently shown to also be induced by hypoxia (Nishii 

et al., 2013). 

The introduction of Pittsburgh Compound B - positron emission tomography [PiB - 

PET] imaging has facilitated in vivo visualisation of amyloid deposition in the living 

brain (Klunk et al., 2004). Whereas a small pilot PIB – PET study found significant 

deposition of amyloid (PIB binding) in 40% of subjects with post - stroke dementia 

(Mok et al., 2010), more recent PiB - PET imaging studies examining the association 

between vascular brain injury and cerebral amyloid in cognitively normal and mild 

cognitively impaired elderly subjects failed to establish a relationship between vascular 

brain injury and amyloid β, as well as failing to detect a direct influence of amyloid - β 

on cognition (Marchant et al., 2012; Marchant et al., 2013). 

In a large post - mortem study of subjects with cerebrovascular disease (CVD) and age 

– matched normal ageing controls, Aho et al., (2006) using immunohistochemistry 

found no significant increase in amyloid load in the subjects with CVD compared to 

controls although there was a trend of increased deposition of Aβ – 42 over Aβ – 40 

(Aho et al., 2006). In contrast, in a post – mortem study of ageing controls and subjects 

with vascular dementia, evidence was found for the accumulation of total guanidine 

HCl extractable  Aβ – 42 peptide (over Aβ – 40)  in subjects with VaD as well as in the 

ageing controls (Lewis et al., 2006) although the impact on cognition was not 

examined. Whereas amyloid load was only assessed semi – quantitatively in the Aho et 

al study, more accurate quantitative determination including the use of fluorescence 

assay and mass spectrometry in the latter study showed that cerebral tissues retain 
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soluble potential toxic Aβ peptides which does not aggregate as visible amyloid plaques 

in vascular cases.  

Cross-sectional studies examining the relationship of Aβ with cognitive function have 

also yielded conflicting results. Whereas some studies have reported significant 

correlation between metrics of AD pathology and cognitive performance (Bennett et al., 

2006; Mormino et al., 2009)  others have reported dissociation between Alzheimer 

pathologic load and cognitive status especially in subjects with presumed high cognitive 

reserve, mixed pathologies or non – AD subjects (Mufson et al., 1999; Aizenstein et al., 

2008; Stern, 2009). Similarly, the morphologic variants and anatomical localization of 

the AD pathology may be important. Neuritic plaques and neurofibrillary tangles have 

stronger impact on cognition than diffuse plaques, and pathologies in the neocortical 

region exert more influence than those in the allocortical regions (Nelson et al., 2009; 

Nelson et al., 2012).  

Neuroimaging studies in the longitudinal Newcastle post - stroke cohort had found that 

medial temporal lobe atrophy (MTLA)  predicted progression to cognitive impairment, 

dementia and death (Firbank et al., 2007; Firbank et al., 2012) while neuropathological 

studies unmasked hippocampal neuronal atrophy as an important substrate of post -

stroke dementia (PSD) in the cohort (Gemmell et al., 2012). A similar predictive role 

was also found for MTLA in relation to cognitive impairment and dementia in the 

CogFAST – Nigeria cohort (Chapter 4).  

Given the hypothesis ascribing MTLA to Alzheimer pathology (Barclay et al., 1992; 

Henon et al., 1998; Cordoliani-Mackowiak et al., 2003; Firbank et al., 2007),  the study 

described in this chapter  investigated  Alzheimer pathology  in hippocampal formation 

and entorhinal cortex in  tissue  obtained from the Newcastle post – stroke cohort who 

had come to autopsy. There were also comparative groups of ageing controls and other 

dementias all from brain tissue obtained from the Newcastle Brain Tissue Resource 

(NBTR).   

We hypothesized that hippocampal Alzheimer pathology would be differentially 

expressed in demented and non - demented stroke survivors in comparison with other 

dementias and ageing controls. Using a very unique and comprehensive approach, we 

quantified the expression of a range of markers of different species of amyloid (total 

amyloid, Aβ – 40, Aβ – 42, soluble amyloid and APP), neuronal sorting protein (SorL1) 
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as well as, a marker of hyperphosphorylated tau pathology (AT8) across groups of 

diseases and across sub - regions of the hippocampal formation and entorhinal cortex.  

5.2. Methods 

5.2.1. Subjects 

Ninety - four human post - mortem brain tissue block samples were retrieved from the 

NBTR. The samples consisted of post - stroke demented, PSD (n =15), post - stroke non 

- demented, PSND (n = 23), normal controls (n =12), AD (n = 14), mixed AD_VAD (n 

= 13) Tables 5.1 and 5.2 provide details of the demographic, cognitive and pathologic 

characteristics of the subjects. There were no significant differences in the age (p = 

0.786), gender distribution (p = 0.493), post -mortem delay (p = 0.902) and length of 

fixation of tissues (p = 0.589). Autopsies were performed between 24 and 92 hr after 

death and brains were fixed for between 6 - 34 weeks. Cognitive scores on the Mini - 

Mental State Examination (MMSE) and Cambridge Cognitive Examination 

(CAMCOG) proximate to death as well as APOE status were retrieved from clinical and 

research records of the subjects in the CogFAST- Newcastle cohort. The CogFAST - 

Newcastle Study and ancillary studies had ethical approval from the local Newcastle 

Ethical committees and participants gave written consent for brain tissue donation. Use 

of brain tissue was also approved by the local Ethical committees and the committee of 

the NBTR.  

5.2.2. Immunohistochemistry 

Detailed description of the methodological approaches are already provided in Chapter 2. In 

brief, paraffin embedded blocks taken from the Newcastle Brain Map coronal levels 18-20 

(Perry and Oakley, 1993) and containing the hippocampal formation and entorhinal cortex were 

cut into 10µm sections using a rotary microtome. Sub - regions of the hippocampal formation 

selected for analysis consisted of the CA1, CA2, CA3 and the subiculum. The adjacent 

entorhinal cortex was also included. The cut  sections were  serially immunostained in 

duplicates with primary antibodies to all amyloid -β species (4G8, 1: 1000,Monoclonal, Signet 

9220 -10), amyloid – β (42) (T - 42, 1 : 5000, Polyclonal, gift; H. Mori, Japan), amyloid – β (40) 

(T - 40, 1 : 5000, Polyclonal, gift; H. Mori, Japan), soluble amyloid oligomer (NU-1, 

Monoclonal, gift: C. Klein, US)   anti - amyloid precursor protein clone 22C11(APP, 1: 2000, 

Monoclonal, Chemicon), neuronal Sortilin A (SorL1, 1: 2000, Monoclonal, Abcam) and 

antibody to hyperphosphorylated tau (AT8, 1: 1000, Monoclonal, Innogetics) as described in  
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Variable 

 

PSND 

 

PSD 

 

Number of cases (N) 

 

 23 

 

15 

 

Age, years (mean + SD) 

 

83.7 + 3.9 

 

87.3 + 5.9 

 

Gender (M/F) 

 

13/10 

 

6/9 

 

PMD (Hours)(mean + SD) 

 

45.0 + 21.9 

 

 

45 + 25.3 

Fixation Length (Weeks) 

(mean + SD) 

 

11 + 7.3 

 

 

8 + 2.9 

 

 

MMSE score (mean + SD) 

 

27.1 + 1.6 

 

17.5 + 3.7* 

CAMCOG  total score  

(mean + SD) 

89.1+ 5.1 63.6 +  13.5* 

Braak Stage  

median (range) 

2.0 (0 - 5) 3.0 (0 – 4) 

CERAD  score 

Median (range) 

2.0 (0 - 2) 1.0 ( 0 - 3) 

Thal Stage – median 

(range) 

3.0 (2 - 4) 1.0 (0-3)+ 

Vascular Score total – 

 median (range) 

 

13.0 (7 – 16) 

 

12.0 (7 – 18) 

Vascular Score –

hippocampus 

Median (range) 

 

2.0 (1 - 3)  

 

2.0 (1 - 3) 

ApoE  Genotypes (%) €3 3(43.7; €3 4, 2 4(50.0) 

Others (6.3) 

 

€3 3 (53.8); €3 4 (23.1) 

€2 3 (16.7) Others (6.4) 

Time from stroke to death 

Mean + SD (months) 

60.7 + 47.4 59 + 21.8 

Previous Stroke 

(% of cases) 

Yes (52.6), No (42.1), 

Unknown (5. 3) 

Yes (30.8), No (61.5), 

Unknown (7.7) 

Location of lesion 

 

(% cases) 

Parietotemporal (17.4), 

deep WM (13.0), 

cerebellum (8.7%) 

unknown (60.9) 

Parietotemporal (35.7), 

deep WM (21.4), 

cerebellum (7.1), 

unknown (35.7) 

Side of Lesion %cases) Left (8.7), Right (21.7), 

Both (26.1), None (26.1), 

Unknown (17.4) 

Left (35.7), Right (21.4), 

Both (14.3), None (21.4), 

Unknown (7.1) 

Vascular territory  MCA (30.4%), PCA(8.7), 

Unknown (60.9) 

MCA(57.1), 

Vertebrobasilar (7.1), 

Unknown (35.7) 

 

Table  5. 1. Characteristics of the CogFAST non – demented (PSND) and demented   

(PSD) subjects.*p < 0.001; +p = 0.028); Abbreviations:  MCA, middle cerebral artery;  PCA,  

posterior cerebral artery. 
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 Variable Controls VaD AD AD_VaD 

No 12 17 14 13 

Age, years 

(mean + SD) 

 

79.1 + 6.8 

 

85.1 + 6.4 

 

83.5 + 5.9 

 

84.8 + 5.7 

Gender  (M/F) 7/5 7/10 8/6 6/7 

PMD (Hours) 

(mean + SD) 

26.0  + 11 42.0  + 14.1 45.0  + 26.1 41.0 +  24.5 

Fixation  

Weeks) 

(mean + SD) 

15.0 + 8.0 13.0 + 12.1 10.0 + 5.3 15.0 +10.4 

Braak Stage  

median (range) 

2.0 (1 - 4)    2.0 (1 – 4) 5.5 (4 - 6) 

 

5.0 (1 - 6)* 

CERAD  score 

median(range) 

NPD     1.0 (0 - 2) 3.0 (3 - 3)* 3.0 (1- 3)* 

Thal Stage – 

median (range) 

NPD     2 .0 (0 – 3) 4.0 (3 - 4)* 4.0 ( 3 - 4)* 

Vascular Score 

total – 

 median (range) 

NPD    14.0  (12 – 18)  NPD 12.0 (7 -15) 

 

Table 5. 2. Characteristics of the Control, VaD and AD groups. **p < 0.001; 

Abbreviations: NPD = No pathological data available. 

 

Chapter 2. To minimize variability of immunohistochemical staining quality, 

positive and negative control sections were included in assays, and experiments were 

run in duplicates for each marker, using freshly prepared buffer solutions and tinctorial 

stains. Sections were further counterstained with haematoxylin following the assays of 

NU -1, APP, SorL1 and AT8 to enhance identification of neuronal and glial cellular 

structures. Sections were numbered randomly from 1 – 100 and then analysed blind to 

the diagnoses of the cases. 

5.2.3. Microscopy and Image Analysis 

The stained sections were examined and imaged using a Zeiss Axioplan 2 research 

grade microscope coupled to an Infinity 2 camera. Magnification was set at X10 for the 

hippocampal sub - regions CA1, CA2 and CA3, and X5 for the subiculum and entorhina 

l cortex (EC).  Five images were taken at random from the CA1, CA3 and subiculum, 3 

images from CA2 and 4 x 3 from the EC from the pial surface to the white matter. 

Approximately 2820 images were taken. 
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Using the software Image Pro - Plus 4.0 (Media Cybernetics, Silver Spring, MD, 

USA), the images were analyzed using histogram-based analysis and obtaining the         

variables: per area, a measure of the number of pixels stained within the area of interest 

(AOI) and expressed as a percentage. The integrated optical density (IOD) was also 

determined, and the total immunoreactivity (IR) was derived for each image and then 

for each sub-region of the hippocampal formation and EC as described in Chapter 2.  

5.2.4. Statistics 

Statistical analysis was carried out using the IBM SPSS software (version 19.0). The 

Kolmogorov - Smirnov Test was used to establish normality of data. Comparisons 

across groups of cases and across sub - regions were performed using parametric tests 

(ANOVA for group means and Tukey post – hoc analysis for between – group 

differences) and  non - parametric tests Kruskal – Wallis and  Mann – Whitney U tests)  

for non – normally distributed dataset. The relationship among markers, and with 

demographic, cognitive and pathological variables were assessed using Pearson’s 

correlation coefficient (r) or Spearman’s correlation (rho) as necessary depending on the 

normality of the dataset. 
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5.3. Results 

 

5.3.1. Characteristics of Study Subjects 

The demographic, cognitive and pathological characteristics of the non - demented 

(PSND) and demented (PSD) subjects from the CogFAST – Newcastle study are 

detailed in Table 5.1.while the details of the control, VaD, AD and mixed AD _VaD 

groups are shown in Table 5.2. There were no significant differences across the groups 

with respect to age, gender, post - mortem delay and length of fixation period (p > 

0.05). However, the PSND group had significantly higher scores on the cognitive 

batteries MMSE and CAMCOG compared to the PSD group (p < 0.05). Similarly, 

Braak stage, CERAD score and Thal stage were significantly higher in the AD, 

AD_VaD groups compared to the VaD and post – stroke groups (PSND and PSD)       

(p < 0.05). Hippocampal vascular scores were similar among the PSND, PSD, VaD and 

AD_VaD groups. The distribution of the 3 and 4 alleles of Apo E were not 

significantly different between the PSND and PSD groups (Fisher's exact test = 2.13; p 

= 0.249).  

Given a total sample size of 94, a significance level, α = 0.05 and assuming a moderate 

effect size Cohen’s d = 0.4,   6 sub - groups and 5 degrees of freedom, the computed 

Power (1 – β) = 0.8424 using the G*Power software (Faul et al, 2007). 

 

5.3.2. Quantification of amyloid burden   

Aβ burden was quantified in this study using a panel of markers identifying different 

species as indicated in Section 5.2.2 ie 4G8, T – 42, T – 40 and NU -1. In quantifying 

amyloid burden with the Image Pro – Plus software, parenchymal, vascular as well as 

intraneuronal amyloid immunoreactivities were all incorporated in order to capture the 

total quantity of the different species of amyloid detected within the defined area of 

interest as previously performed (Lewis et al., 2006). Figure 5.1 illustrates the 

immunostaining pattern with antibodies to various Aβ species in serial sections across 

the CA1 sub – region of the hippocampal formation and entorhinal cortex. 
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5.3.2.1. Amyloid immunohistochemistry with 4G8 antibody 

Distribution of 4G8 antibody immunostaining dataset assessed by Kolmogrov - 

Smirnov test showed non – normal distribution. Figure 5.2 shows the average 

distribution of 4G8 immunostaining per area and relative total immunoreactivity across 

the entire hippocampal formation and entorhinal cortex across all disease groups. 

Kruskal – Wallis Test shows significant variation of staining intensity per area and total 

immunoreactivity (p < 0.001) across groups. Compared to the control group, there was a 

trend of progressively higher 4G8 immunoreactivity in the post- stroke groups 

(together) across to AD with statistical significance as shown in Figure 5.2 A and B 

respectively.
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Figure 5.1: illustrative images of amyloid pathology in the CA1 sub – region across different markers and across 

disease groups and ageing controls. There is higher expression of amyloid in the AD and AD _VaD groups compared 

with the VaD, PSD and PSND and control groups. The level of amyloid immunoreactivity is similar between 4G8 and T – 

42 but much lower in T – 40 and NU -1.   

NU-1 

     C                     PSND                  PSD                   VaD                   AD                AD/VaD                         

4G8 

T-42 

T-40 

Bar: 100µm 
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When the two post - stroke groups were divided into PSND and PSD groups, 

however, the significant variation across groups was still maintained (p < 0.001, 

Kruskal – Wallis Test).  Further analysis for between group differences by Mann – 

Whitney U Test showed that with respect to the control group, 4G8 staining per area 

and total IR was significantly higher in the AD (  p < 0.001), AD_VaD ( p < 0.001), 

VaD ( p = 0.013) and PSND (p < 0.001) groups. 4G8 IR was higher in the PSND group 

compared to the PSD group (p < 0.001) (Figure 5.2). 

Figure  5.2 : Bar graph showing  measures of total 4G8 immunostaining  across  the 

whole hippocampal formation and entorhinal cortex  with the post – stroke groups 

together  [A]  4G8 immunoreactivity percentage per area [B] total 4G8 immunoreactivity 

post – stroke group separated [C] 4G8 immunoreactivity percentage per area [D] ],  total 

4G8 immunoreactivity in comparison  with  Control,  , VaD, AD  and  AD _VaD.  Bars 

show ± 2 SEM * Mann Whitney U test was used to compare means of each group. *p < 

0.05; ( in comparison with the control group). 
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Further analysis of 4G8 staining per area and total IR was undertaken across sub –

regions of hippocampal formation and the entorhinal cortex across disease groups in 

comparison with the control group (Figure 5.3). 

In the CA1 region, 4G8 total IR varied significantly across groups (p = 0.008, 

Kruskal - Wallis Test). Between group differences assessed with Mann – Whitney U 

Test showed that compared to the control group, the IR was significantly higher in AD 

(p = 0.002), showed a trend with AD_VaD ( p = 0.064) and PSND (p = 0.076) but not 

significantly different from  PSD  and VaD. In the CA2 and CA3 regions, 4G8 

immunoreactivity showed no significant variation across disease groups. In the 

subiculum, 4G8 data immunostaining per area and total IR measures varied 

significantly across disease groups and controls (p < 0.001, Kruskal – Wallis Test). 

With respect to the control group, 4G8 immunoreactivity was significantly higher in the 

AD (p = 0.001), AD_VaD (p = 0.008) and PSND (p = 0.015) groups. but not 

significantly different from PSD and VaD. 

In the entorhinal cortex, 4G8 total IR showed significant variation across the sub -

region (p <0.001, Kruskal – Wallis Test) with values significantly higher in AD (p = 

0.022), AD_VaD (p = 0.016) than in controls while PSD was significantly lower than 

PSND (p = 0.019), AD _VaD (p = 0.002) and AD (p = 0.002) (Figure 5.3). 

Spearman’s rank correlation analysis revealed no significant associations between post-

mortem delay, length of fixation period and 4G8 immunoreactivity measures in the 

hippocampal sub- regions and entorhinal cortex. The semi - quantitative amyloid rating 

scales of CERAD score, Thal staging as well as Braak and tau stages showed significant 

positive correlation with the metrics of 4G8 total immunoreactivity in the entorhinal 

cortex, subiculum and CA1 sub - regions (Table 5.3) suggesting good agreement 

between the semi-quantitative and quantitative measures of amyloid and tau 

quantification.  
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Figure 5. 3: Bar graph showing the 

distribution of 4G8 IR across 

hippocampal sub-regions   [A] CA1 [B] 

CA2 [C] CA3 [D] Subiculum [E] 

Entorhinal cortex in Controls, PSND, PSD, 

VaD, AD and AD _VaD.  Bars show ± 2 

SEM * Mann Whitney U test was used to 

compare means of each group. *p < 0.05; + 

p < 0.1 (in comparison with the control 

group).* (red) showed significant difference  

from PSD group. 
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5.3.2.2. Amyloid immunohistochemistry with Aβ (42) (T – 42 antibody) 

In the CA1 region, T - 42 immunoreactivity varied significantly across groups (p < 

0.001, Kruskal - Wallis Test). Between group differences assessed with Mann – 

Whitney U Test showed that compared to the control group, T – 42 immunoreactivity 

was significantly higher in AD (p = 0.002) and AD_VaD (p = 0.005), but not 

significantly different  from VaD, PSND and PSD (Figure 5.4A). In the CA2 region, 

immunoreactivity varied across disease groups (p = 0.001, Kruskal –Wallis Test) with 

the IR being significantly higher in AD_VaD (p = 0.046) and VaD (p = 0.014) groups 

compared to the control and PSD groups respectively (Figure 5.4B). In the CA3 region, 

datum showed normal distribution by Kolmogorov – Smirnov test of normality and 

ANOVA showed significant variation of T -42 immunoreactivity across the regions (p < 

0.001). Compared to the PSND group, immunoreactivity was significantly higher in AD 

(p < 0.001) and AD_VaD (p = 0.002) groups but not significantly different from control 

PSD and VaD   groups (Fig 5.4C).  

Table 5. 3. Correlation Matrix of sub - regional 4G8  immunoreactivity, CERAD score, Thal 

stage, Braak  stage and tau stage. Statistical significance designated by the following  

 p values: ** p < 0.01; *p < 0.05 †p < 0.1. Abbreviations:  IR, immunoreactivity; CERAD, 

Consortium to Establish a Registry for Alzheimer's Disease. 
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In the subiculum, T – 42 immunoreactivity varied significantly across groups (p < 

0.001) and was significantly higher in the AD (p = 0.001) and AD_VaD (p = 0.008) 

groups compared to the control and VaD groups respectively. However, the VaD groups 

did not differ significantly from the PSND and PSD groups respectively (Figure 5.4D). 

Similarly, T – 42 immunoreactivity varied significantly across the entorhinal cortex (p < 

0.001) and was significantly higher in the AD (p = 0.001) and AD_VaD (p = 0.001) 

groups but not different from the VaD, PSND and PSD groups. 

 

 

 

Figure 5.4 : Bar graph showing  the 

distribution of T - 42 IR across 

hippocampal sub-regions   [A]  CA1 [B] 

CA2 [C] CA3 [D] Subiculum [E] Entorhinal 

cortex in  Controls,  PSND, PSD, AD, VaD  

and  AD _VaD.  Bars show ±2 SEM * Mann 

Whitney U test was used to compare means 

of each group. *p < 0.05; + p < 0.1 (in 

comparison with the control group).* (red) 

showed significant difference  from PSND 

group. 
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5.3.2.3. Amyloid immunoreactivity with Aβ (42) (T – 40 antibody) 

Figure 5.5 shows the immunostaining and distribution of T – 40 antibody across disease 

groups in the CA1, CA2 and entorhinal cortex regions. The IR varied significantly 

across the sub - regions (p = 0.001, Kruskal – Wallis Test). In CA1, the IR in the control 

group was not significantly different from that of PSND, PSD and, VaD but was 

significantly lower than AD (p = 0.004) and AD –VaD (p = 0.010). There was no 

difference between the PSND and PSD groups. In CA2, the control group IR was lower 

than AD, VaD and AD_VaD although this did not attain statistical significance (p > 

0.05). However, VaD (p = 0.005) and AD_VaD (p = 0.006) groups were significantly 

higher than the PSD group. The PSND group did not differ from the PSD group 

(Figure5.5).  In the entorhinal cortex, T – 40 IR was significantly higher in the AD and 

AD_VaD groups compared to the control and PSD groups (p < 0.05, Kruska – Wallis 

Test). There was no significant variation in the CA3 region and subiculum. 

 

 

Figure 5. 5 : Bar graph showing  the 

distribution of  T - 40 IR across 

hippocampal sub-regions   [A]  CA1 [B] 

CA2 [C] and Entorhinal cortex in  Controls,  

PSND, PSD, AD, VaD  and  AD _VaD.  

Bars show ± 2 SEM * Mann Whitney U 

test was used to compare means of each 

group. *p < 0.05; + p < 0.1 (in comparison 

with the control group).* (red) showed  

significant difference  from PSD group. 
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5.3.2.4. Soluble amyloid immunoreactivity with NU- 1 antibody 

There were no significant differences in the percentage area and total immunoreactivity 

of NU-1 across the disease groups in the CA1, CA2 and CA3 regions (p > 0.05, Kruskal 

Wallis Test). However, in the subiculum and entorhinal cortex, the immunoreactivity 

varied significantly (p < 0.05 Kruskal – Wallis Test). Mann – Whitney U analysis of 

between group differences showed significantly higher immunoreactivity in the 

AD_VaD (p = 0.007) group compared to the control group, and in the AD_VaD (p = 

0.008) and AD (p = 0.040) compared to the PSD group (Figure 5.6).The PSND and 

PSD groups showed no significant differences. 

 

 

 

Figure 5.6: Bar graph shows percentage  area   and   total immunoreactivity (IR) of  NU-1 across 

the CA1 region [ A]  and [B] and Entorhinal cortex [C] and [D] respectively   in Control, PSND, PSD, 

VaD, AD  and  AD _VaD.  Bars show ± 2 SEM * Mann Whitney U test was used to compare means 

of each group. p < 0.05 (in comparison with the * control group  and * PSD group).  There were no 

significant differences across groups in the CA1, CA2 and CA3 regions (p > 0.05, Kruskal Wallis 

Test). 
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5.3.2.5 Amyloid Precursor Protein (APP) immunoreactivity 

Figures 5.7 and 5.8 show the immunoreactivity of APP across groups in the CA regions 

and entorhinal cortex. In the CA1 region, APP immunoreactivity was slightly increased 

in the AD, AD_VaD and PSD groups compared with the control and PSND groups, 

even though the difference did not attain statistical significance (p > 0.05, Kruskal- 

Wallis Test). However, in the CA2, the APP immunoreactivity in PSD was significantly 

higher than in PSND (p = 0.043, Mann - Whitney U test).  There were no significant 

differences in the CA3 sub – region, subiculum and entorhinal cortex. 

Figure 5.7: Bar graph showing the distribution of APP IR across hippocampal sub-

regions   [A] CA1 [B] CA2 [C] CA3 and [D] Entorhinal cortex in Controls, PSND, PSD, 

VaD, AD and AD _VaD.  Bars show ±2 SEM *p <   0. 05 (PSD vs PSND). 
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APP 

SorL1 

C                    PSND                   PSD                    AD                   VaD               AD/VaD 

Bar: 100µm 

Figure 5.8: illustrative images of hippocampal pyramidal neurons in the CA2 sub – region expressing amyloid precursor 

protein (APP) (upper row) and SorL1 (lower row) across normal ageing controls and disease groups (PSND, PSD, AD, VaD, 

AD_VaD). APP expression is higher in PSD and AD compared to other groups while SorL1 expression is higher in PSD compared 

to other groups. 
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5.3.2.6. Intracellular neuronal trafficking and sorting protein (SorL1) 

Given the pattern of APP expression, particularly the relationship between PSND and 

PSD, we investigated the expression of the intracellular neuronal trafficking and sorting 

protein, SorL1 (SorLA/LRII)  which regulates cellular processes of APP trafficking and 

metabolism and enhance  its chanelling into non - amyloidogenic metabolic pathways  

(Dodson et al., 2008). 

 

 

Figure 5. 9 : Bar graph showing  the distribution of  % SorL1 per area and total 

immunoreactivity  across hippocampal sub-regions  CA1, CA2, CA3 and  entorhinal 

cortex in  Controls,  PSND, PSD, AD, VaD  and  AD _VaD.  Bars show ± 2 SEM  

*p <  0.05 (PSD vs  AD_VaD  in CA2 sub- region). 
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Figures 5.8 and 5.9 show the percentage expression of SorL1 per area and its total 

immunoreactivity across the regions CA1, CA2 CA3 and entorhinal cortex. The 

expression of SorL1 varied significantly across the sub - regions (p < 0.001, Kruskal – 

Wallis Test) being significantly higher in the CA2 (p < 0.001, Mann – Whitney U Test) 

compared to the CA1, CA3 and EC sub - regions and in CA3 than in CA1 and EC 

regions (p < 0.001, Mann – Whitney U Test). Within each region, the expression of 

SorL1 was similar across disease groups in the CA1 and EC regions while differences 

occurred across disease groups within the CA2 and CA3 regions. In the CA2 region, 

SorL1 expression was highest in the PSD group compared to other disease categories, 

the difference attaining significance with respect to AD_VaD group (p < 0.05, Mann – 

Whitney Test). 

  

5.3.3. Quantification of hyperphosphorylated tau (AT8) immunoreactivity 

Hyperphosphorylated tau  was quantified in our cohort using the semi - quantitative 

approach of tau staging (Lace et al., 2009)  of disease groups and quantification of AT8 

immunoreactivity in each of the sub - regions. Braak staging showed moderate 

correlation with tau staging (rho = 0.576; p < 0.001) and tau staging varied significantly 

across disease groups (p < 0.001) being significantly higher in AD and AD_VaD as 

expected. The slight difference in tau stage between PSND and PSD did not attain 

statistical significance (Figures 5.10 a and b). 

Figure 5.11 shows the quantification of AT8 IR across regions and disease groups. 

Across disease groups, AT8 immunoreactivity was highest in AD and AD_ VaD groups 

in comparison to each of the other groups of PSND, PSD, VaD and Controls (p < 0.05).  

There was slightly higher AT8 immunoreactivity in PSD compared to the PSND group 

in the CA2 and CA3 sub – regions (Figure 5.12) although the difference was not 

statistically significant.. CAMCOG memory score correlated significantly with the 

mean % AT8 per area in the subiculum (rho = - 0.425, p = 0.024).  
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Figure 5.10a 

Figure 5. 10b : Bar graph showing  the mean Braak stage 

and mean tau stage  of each group :Controls,  PSND, PSD, 

AD, VaD  and  AD _VaD.  Bars show ±2 SEM . Braak stage 

and tau stage showed good correlation ( rho = 0.576; p < 0.001). 

*p < 0.05 in comparison to control group. 

Figure 5.10a. Hyperphosphorylated tau (AT8) immunostaining  
showing neuropil threads, pre – tangles and tangles in hippocampal 

sub – region CA1.  AT8 immunostaining is relatively higher in AD 

and AD_VaD compared to other groups. 
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Figure 5.11: Bar graph showing the 

distribution of AT8  IR across 

hippocampal sub-regions   [A]  CA1 [B] 

CA2 [C] CA3 [D] Subiculum [E] Entorhinal 

cortex in  Controls,  PSND, PSD, AD, VaD  

and  AD _VaD.  Bars show ± 2 SEM * Mann 

Whitney U test was used to compare means 

of each group. *p < 0.05; (in comparison 

with the control group).* (red) showed  

significant difference  from PSND group. 
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Figure 5. 12 (power point) double label amyloid and tau  
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5.3.4. APOE  4 genotype: influence on amyloid and tau accumulation in post –

stroke sub - cohort 

Given the unexpected finding of a trend of higher amyloid pathologic load in the PSND 

group compared to the PSD group across some sub-regions (CA1, subiculum and 

entorhinal cortex) and some amyloid markers we investigated the possible influence of 

APO E 4 status in the post-stroke sub – cohort.  

Table 5.4: APOE 4 allele genotype in the post - stroke sub - cohort 

Variable  PSND   PSD 

 

 n= 16 

 

n = 13 

APOE 4 +ve 8 (50.0 %) 

 

3 (23.1 %) 

    APOE 4 -ve 8 (50.0 %)   10 (76.9 %) 

    (Fisher's exact test  = 2.13; p = 0.249) 

  

     There was a higher proportion of APO 4 (50.0%) in the PSND group compared to the 

PSD group (23.1%), although the difference did not attain statistical significance (Table 

5.4).  Table 5.5. shows the total amyloid burden quantified by 4G8 immunoreactivity in 

each sub – region of the hippocampal formation and entorhinal cortex and 

demonstrating statistically significant  higher amyloid load in APO E 4 positive post-

stroke tissue sample in the subiculum and entorhinal cortex respectively  (p = 0.01) 

(Figure 5.13). 

        Table 5.5.  4G8 sub - regional immunoreactivity and APO E 4 status  

 

APOE 4 present 

 

      CA1 

 

   CA2 

 

      CA3 

 

     SB 

 

     EC 

 

No        Mean 506.60 754.93 566.87 396.77 386.73 

       SEM 40.55 39.79 35.98 55.21 56.73 

Yes       Mean 611.08 774.90 588.18 655.29 676.74 

      SEM 101.93 87.66 74.47 78.21 102.57 

All       Mean 541.42 762.42 574.54 493.71 491.13 

     SEM 43.31 40.11 34.47 51.37 57.94 

MW - 

U test        F 1.31 0.06 0.08 7.65 7.28 

         p 0.26 0.82 0.77 0.01* 0.01* 
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Figure 5.14 further illustrates the influence of APO E 4 on 4G8 immunoreactivity 

(total amyloid deposition) in the subiculum showing significantly higher 

immunostaining [Figure 5.14A] in APOE 4 - positive compared to APOE 4 -negative 

post - stroke subjects. Furthermore, when the post – stroke group is split into PSD and 

PSND sub -groups, ApoE 4 positivity appears to drive higher amyloid production in 

both groups although the small number of subjects in each group precluded the 

statistical power required to demonstrate significance [Figure 5.14B].  

 

Figure 5.13: Box Plot showing  the  

influence  of  Apo E 4 on total amyloid 

deposition  across hippocampal sub-

regions   [A]  CA1 [B] CA2 [C] CA3 [D] 

Subiculum and [E] Entorhinal cortex in  the  

post-stroke sub-cohort. Mann Whitney U test 

was used to compare  the mean 4G8 total 

immuno-reactivity    between the Apo E  4  

positive and negative  groups respectively. 

*p < 0.05. 
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Figure 5.14C demonstrates that the Aβ (42): Aβ (40) ratio is slightly higher in the APO 

E 4 positive subjects within the post-stroke group all together while Figure 5.14 D 

shows that the difference is more distinct (although not significant due to lack of 

statistical power from small number in each group) and suggesting that Aβ (42) is the 

specie more related to APO 4 4 positivity. 

 

 

 

 

 

Figure 5.14: Bar graph showing  4G8 immunoreactivity in the subiculum  in relation to the 

presence  or absence of APOE 4 allele in the post- stroke cases [A]. Bars show ± 2 SEM. [B] 

Presence of APO E4  appeared to drive higher subicular amyloid deposition  in both  PSD and 

PSND groups.[C] Presence of APOE4 allele increases Aβ (42) deposition, and this appears 

relatively higher in the PSND group [D].  
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Presence of APOE 4 was also found to influence the amount of AT8 immunostaining 

in  the post – stroke cohort, the burden of tau being significantly higher in APOE 4 

positive cases compared to APOE 4 negative cases in the subiculum (Mann – Whitney 

U Test, p = 0.042) ( Figure 5.15). 

 

  

Figure 5.15: Box Plot showing the  influence  

of  Apo E 4 on total tau (AT8) deposition  

across hippocampal sub-regions   [A]  CA1 

[B] CA2 [C] CA3 [D] Subiculum and [E] 

Entorhinal cortex in  the  post-stroke sub-

cohort. Mann Whitney U test was used to 

compare  the mean AT8 total immunoreactivity    

between the Apo E  4  positive and negative  

groups respectively. *p < 0.05. 
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5.3.5. Clinico - pathological correlations  
 

We explored relationships among the various markers of AD pathology used in this 

study and between cognitive scores of the post - stroke group utilizing Spearman 

correlation analysis. 

5.3.5.1. Correlations among pathology markers 

Table 5.6 below shows a correlation matrix of markers of AD pathology used in this 

study, and demonstrates significant correlations among different markers based on their 

immunostaining in the CA1 sub-region. Significant inter – marker correlations affirm 

the agreement and sensitivities of different markers in identifying their specific 

pathologic species in relation to other markers.  

 

5.3.5.2. Aβ – 42: Aβ - 40 Ratio 

We further explored the relationship of Aβ – 42 and Aβ – 40 based on the relative 

immunoreactivities of T – 42 and T – 40 in the CA1 sub- region. The ratio varied 

between 1.17 and 748. 39 and the mean value was least in the control group and 

progressively increased in the PSND, PSD, VaD and AD groups to attain a maximum 

value in the AD_VaD group. However, the variation across groups did not attain 

statistical significance (Table 5.7). 

 

5.3.5.3. AD pathologic measures and cognitive scores in the post-stroke group. 

Measures of general cognitive functioning (MMSE and CAMCOG total) and  

functioning in the memory domain (CAMCOG memory) which were available for the 

subjects in the post-stroke group only were correlated with two measures of AD 

pathologic burden: T – 42 immunoreactivity (being the predominant β – amyloid 

species deposited in the hippocampus) and AT8 immunoreactivity measures in the CA1, 

subiculum and entorhinal cortex :  sub – regions which demonstrated the most 

consistent patterns of variation of immunoreactivity across the hippocampal formation.  
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Table 5.8 demonstrates significant correlation of AT8 immunoreactivity in the 

subiculum with CAMCOG memory (rho = 0.419, p = 0.024), otherwise, there were no 

significant correlations of T – 42 immunoreactivity.
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Spearman's rho  

4G8 CA1 IR T42 CA1 IR T40 CA1 IR NU1 CA1 IR APP CA1 IR SorL1 CA1 IR AT8 CA1 IR 
4G8 CA1 IR p 1.000       

rho .       
T42 CA1 IR p .623

**

 
1.000      

rho .000 .      
T40 CA1 IR p .377

**

 .634
**

 
1.000     

rho .001 .000 .     
NU1 CA1 IR p .730

**

 .684
**

 
.265 1.000    

rho .000 .000 .051 .    
APP CA1 IR p .245

*

 .293
**

 .227
*

 
.166 1.000   

rho .025 .008 .046 .230 .   

SorL1 CA1 IR p -.056 -.234 -.133 -.038 -.218 1.000  

rho .661 .091 .343 .810 .113 .  
AT8 CA1 IR  p .374

**

 .656
**

 .460
**

 
.068 .337

**

 -.285
*

 
1.000 

rho .000 .000 .000 .614 .002 .029 . 

Table  5. 6. Correlation matrix showing correlation among markers of AD pathology: based on their immunostaining  in the CA1     

sub – region. Statistical significance designated by the following p values: ** p < 0.01; *p < 0.05 Abbreviations:  IR, immunoreactivity. 
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Aβ (42): Aβ (40) Ratio 

            Mean       Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 
Control 16.38 3.87 5.65 27.12 7.89 29.72 
PSND 19.42 4.65 9.69 29.15 1.95 78.11 
PSD 27.42 7.38 11.60 43.24 2.34 90.33 
VaD 41.86 13.33 13.06 70.65 3.04 148.46 
AD 55.44 40.65 32.38 143.26 2.66 579.38 
AD_VaD 76.44 67.28 73.47 226.34 1.17 748.39 
Total 39.04 11.97 15.22 62.87 1.17 748.39 
 

      

       

Table  5.7. Ratio of Aβ (42): Aβ (40) across groups in the CA1 hippocampal sub-region demonstrates the mean values + SEM, 95% 

Confidence Interval, minimum and maximum values of Aβ - 42: Aβ – 40 ratios across   control and disease group 
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Spearman's rho CAMCOG  

memory 
CAMCOG 

total MMSE AT8  CA1 IR AT8 IRSB AT8  IREC T42 CA1 IR T42 SB IR T42 ECI R 
CAM_memory rho 1.000         

p .         
CAMCOG score   rho .814

**

 
1.000        

p .000 .        
MMSE rho .790

**

 .951
**

 
1.000       

p .000 .000 .       
AT8TOTAL 

IRCA1 
rho -.077 .029 .053 1.000      
p .657 .857 .754 .      

AT8TOTAL 

IRSB 
rho -.419

*

 
-.189 -.047 .793

**

 
1.000     

p .024 .301 .807 .000 .     
AT8TOTAL 

IREC 
rho -.308 -.064 -.031 .785

**

 .686
**

 
1.000    

p .091 .720 .869 .000 .000 .    
T42CA1IR rho -.046 .109 .054 .656

**

 .493
**

 .567
**

 
1.000   

p .792 .513 .759 .000 .000 .000 .   
T42SBIR rho -.080 .120 .090 .634

**

 .563
**

 .557
**

 .779
**

 
1.000  

p .646 .471 .609 .000 .000 .000 .000 .  
T42ECIR rho -.033 .087 .082 .566

**

 .457
**

 .557
**

 .566
**

 .671
**

 
1.000 

p .849 .606 .641 .000 .000 .000 .000 .000 . 

Table 5.8 Correlation matrix showing association of neuropathologic measures of amyloid and tau pathology with cognitive scores 

in selected  hippocampal sub-regions and entorhinal cortex shows significant correlation of AT8 immunoreactivity in the subiculum 

with CAMCOG memory. p  values: ** p < 0.01; *p < 0.05.  Abbreviations:  IR, immunoreactivity; CAMCOG, Cambridge Cognitive 

Examination; MMSE,  Minimental State Examination;  SB, subiculum; EC, entorhinal cortex . 
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 5.4. Discussion 

The objective in this study was to assess whether the burden of amyloid and tau pathologies in 

the hippocampal formation and entorhinal cortex differentiated post-stroke demented from 

non - demented subjects.  The analysis was also done in comparison with normal ageing 

controls and other dementias. We hypothesized that Alzheimer pathology would be 

differentially expressed in demented and non - demented post- stroke subjects in comparison 

to normal ageing controls and other dementias.  

We found 4G8 antibody immunoreactivity (a measure of immunostaining of all β - amyloid 

species) in the hippocampal formation of normal ageing controls, post-stroke subjects and 

other dementias (AD, VaD and AD_VaD). While 4G8 immunoreactivity was lowest in the 

control group as expected and highest in the AD and AD_VaD groups, it was intermediate 

and similar in the post-stroke and VaD groups (Figure 5.2). Within the sub - regions of the 

hippocampal formation, differential expression of 4G8 immunoreactivity was found in the 

CA1, subiculum and entorhinal cortex (Figure 5.3). Among amyloid markers, the pattern of T 

– 42 immunoreactivity Aβ (42)) was similar to that of 4G8, while T – 40 immunoreactivity 

(Aβ (40)) was reduced across groups. The Aβ (42): Aβ (40) ratio was greater than 10:1 across 

the control and disease groups and demonstrated an interestingly increasing trend from 

approximately 20 in the control group to approximately 80 in the AD_ VaD group. 

Immunoreactivity of the soluble amyloid marker, NU – 1 mirrored the pattern of 4G8 

although the total load was much less.     

Furthermore, the expression of APP was fairly uniform across the sub - regions and groups 

and only showed a significantly higher expression in PSD than PSND in the CA2 sub - 

region. The expression of the neuronal sorting protein, SorL1 was highest in the CA2 sub - 

region where the PSD group also had the highest expression compared to other disease 

categories. As expected, tau pathology showed highest expression in the AD and AD_VaD 

disease groups and similar level expressed in the control, post-stroke and VaD groups.  

Interestingly, we found an association between ApoE 4 allele positivity and higher load of 

amyloid and tau pathology in the subiculum and entorhinal cortex of post-stroke cases. ApoE 

4 allele positivity also appeared to be more related to Aβ (42) deposition. 
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Comparison between PSND and PSD revealed significantly higher 4G8 immunoreactivity in 

PSNS compared to PSD in the CA1, subiculum and entorhinal cortex sub- regions. There 

were no statistically significant differences between PSND and PSD in T – 42, T - 40 and NU 

– 1 immunoreactivities although APP and SOrL1 immunoreactivities were significantly 

higher in PSD than PSND. Higher proportion of Apo E 4 in PSND than in PSD was found to 

be responsible for the higher 4G8 immunoreactivity in PSND than PSD. All amyloid species 

(4G8, T – 42, T – 40 and NU – 1) were significantly higher in AD and AD_VaD in 

comparison to the control group. Hyperphosphorylated tau immunoreactivity did not differ 

between PSND and PSD, but was significantly higher in AD and AD_VaD compared to other 

groups. Nevertheless, we acknowledge the potential influence of multiple pairwise 

comparisons on the results of our analysis and the corresponding interpretations. 

 

Amyloid accumulation, ageing and cerebrovascular disease 

Consistently across all the markers of amyloid pathology, we found evidence of amyloid 

accumulation in ageing controls, post - stroke groups and other dementias, the quantity 

increasing in that order. Our finding of amyloid accumulation in normal ageing controls 

concurs with the biological phenomenon of ageing – associated accumulation of amyloid that 

has been reported  across species: in drosophilia (Rogers et al., 2012), mice (Yamada et al., 

2011), non – human primates (Ndung'u et al., 2012) and man (Tomlinson et al., 1968; 

Katzman et al., 1988; Bennett et al., 2006; Lewis et al., 2006; Boyle et al., 2013b). This 

occurs as a result of ageing-related compromise of the neurovascular unit resulting in 

increased production of amyloid and reduced clearance through the perivascular space 

(Iadecola, 2004; Kalaria, 2009a; Kalaria et al., 2012a). Amyloid accumulation in the post-

stroke group as a whole mirrored that in the VaD group and was less than in the AD and 

AD_VaD groups (Figure 5.2) in consonance with the findings of Lewis et al (2006) showing 

enhancement of amyloid accumulation in VaD possibly triggered by cerebral hypoxia 

consequent to cerebral vascular disease (Lewis et al., 2006; Kalaria, 2010). This is in tandem 

with previous findings of enhanced accumulation of amyloid in animal models of chronic 

cerebral hypoperfusion (Kalaria et al., 1993a; Yamada et al., 2011) as well as increased PIB 

uptake in a 40% of PSD subjects in a small  pilot study (Mok et al., 2010).  In addition, this 
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suggests that beyond age - associated accumulation of amyloid, cerebral vascular disorders 

including stroke do exacerbate brain amyloid deposition as previously demonstrated in brain 

tissue from hypertensive (Petrovitch et al., 2000) and diabetic subjects (Luchsinger, 2010). 

Although Marchant et al failed to establish a direct relationship between CVD and β – 

amyloid using PIB –PET approach in a cohort of  non – demented  elderly subjects (Marchant 

et al., 2012), and further suggested that  the PIB – PET amyloid measures did not influence 

cognition, the authors  admitted that the limited  statistical power of the study may have failed 

to detect any existent interaction. In addition, a neuropathological study of 484 post - mortem 

brains did not find a relationship between amyloid deposition and cerebrovascular lesions 

(Aho et al., 2006). However, the validity of this study is weakened by its utilization of semi- 

quantitative assessment of amyloid burden. The previous study of (Lewis et al., 2006) and this 

current work have utilized quantitative approaches which may be more sensitive to detect 

differences. Besides, findings from  studies in non – demented elderly subjects may not 

necessarily simulate those in demented subjects with significant CVD as the mechanisms that 

produce cognitive decline and dementia may differ in different  clinicopathological scenarios 

(Kalaria, 2012a; Kalaria, 2012b). 

 

Sub-regional variation in hippocampal amyloid accumulation 

Across the sub-regions of the hippocampal formation and entorhinal cortex, amyloid 

deposition was significantly higher in the CA1, subiculum and entorhinal cortex compared to 

the CA2 and CA3 regions respectively. This differential pattern may be related to the spatial 

localization and role of these regions in the hippocampal circuitry (Lavenex and Banta 

Lavenex, 2013),  differential susceptibility of these sub - regions to different pathologies 

(Small et al., 2011) or the temporal evolution and hierarchical progression of cerebral 

amyloidosis (Thal et al., 2006). 

The entorhinal cortex has been described as the gateway into the hippocampal formation 

whereas the subiculum and CA1 regions constitute the outflow stations (Goldman-Rakic et 

al., 1984; Suzuki and Amaral, 2004). Alzheimer pathology tends to spread along the 

hippocampal circuitry (Thal et al., 2002a) (Lace et al., 2009) and this may explain the 
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differential susceptibility and high β – amyloid load in these sub-regions.   Besides, in the 

hierarchical evolution and natural history of amyloid and tau pathologies,  these sub - regions 

are  affected  much earlier in the disease course, compared to other regions like CA2 and CA3 

(Thal et al., 2002b; Lace et al., 2009).  The later affectation of the CA2 region, in particular 

may reflect the natural course of disease or the existence of some underlying protective 

mechanisms operating in the early stages of disease and only giving way in the advanced 

stage of the disease (Caruana et al., 2012). 

The finding  of a relatively higher ratio of Aβ (42) compared to Aβ (40) which further 

increases with the degree of  accumulation of AD pathology is in concordance with previous 

findings (Selkoe, 2008) (Aho et al., 2006) demonstrating the predominance of Aβ (42) over 

Aβ (40) in brain parenchymal amyloid deposits. We have also previously demonstrated a  

preponderance of Aβ (42) over  Aβ (40) in parenchymal and vascular amyloid deposits in non 

– human primates including squirrel and rhesus monkeys and ageing baboons (Ndung'u et al., 

2012). 

Differential amyloid deposition between PSND and PSD 

Largely, there were no significant differences in the quantity of amyloid deposited across 

hippocampal regions and markers in PSND compared to PSD groups.  This suggests age - 

related deposition of amyloid in post - stroke survivors.   However, there was unexpected 

finding of significant differences in 4G8 immunoreactivity in the entorhinal cortex between 

PSD and PSND subjects. Though not statistically significant, a similar pattern was observed 

with T – 42 in the subiculum, T – 40 in the entorhinal cortex, and NU – 1 in the CA1 sub-

region. This suggest that amyloid accumulation alone in post-stroke subjects might not have 

played  a primary role in determining progression of cognitive decline to dementia as indeed 

has been found in normal elderly subjects with huge quantities of amyloid pathology, yet 

preserved cognitive functioning (Bennett et al., 2006; Chetelat et al., 2010); (Esiri et al., 

1997). It may also imply that amyloid needs the synergy of other pathologies including tau 

pathology, vascular lesions, brain atrophy, white matter pathology, medial temporal lobe 

atrophy in order to produce significant cognitive decline and dementia (Mormino et al., 

2009). In a PIB- PET study of elderly subjects – normal, MCI and AD, the investigators found 
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that whereas  amyloid load (PIB index) and hippocampal atrophy both predicted loss of 

episodic memory, amyloid deposition alone in the absence of hippocampal atrophy failed to 

predict episodic memory loss (Mormino et al., 2009). A complementary study of our current 

cohort (Gemmell et al., 2012)  found that whereas pyramidal neuronal volume was preserved 

in the CA regions and entorhinal cortex of the control and PSND groups, subjects in all the 

demented groups had significant atrophy of these neurons. This would, therefore, suggest that 

a high amyloid load in the PSND group was insufficient to produce dementia because of 

preserved neuronal volume. This, indeed, may be a signature of brain/cognitive reserve, 

preserved synaptic integrity or some other compensatory mechanisms (Stern, 2009; Boyle et 

al., 2013a) . 

The observation of similarity between the amyloid load in the PSD compared to the control 

group  could imply that  given similar quantities of amyloid pathology with respect to the 

control group, the PSD group was demented possibly because of  the presence of CVD lesions 

which lowered the threshold for dementia in the PSD group (Snowdon et al., 1997; Esiri et 

al., 1999);  the presence of neuronal atrophy (Gemmell et al., 2012) or the  slightly higher and 

more advance tau pathology in the PSD group (higher tau stage). 

 

Hyperphosphorylated Tau and NFT and accumulation 

The accumulation of hyperphiosphorylated tau and neurofibrillary tangles in this study 

showed expected distribution with highest quantities in AD and AD_VaD. However, we 

observed a relatively higher amount of AT8 immunostaining in the CA2 and CA3 sub – 

regions in the PSD compared to the PSND group. In spite of a lack of statistically significant 

difference, this may suggest relatively more advanced tau pathology in the PSD group 

compared to PSND.  
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APOE 4 status and accumulation of amyloid and tau pathologies 

 Further analysis of the post – stroke cohort suggested that the presence of the APOE 4 allele 

is responsible for driving amyloid and tau accumulation in those who possessed the allele 

(which was present in 50%) of the PSND subjects. Despite the small samples, the load of 

amyloid was significantly higher in the PSND group than the PSD group. APOE 4 has been 

associated with accumulation of amyloid and/or tau pathology ((Nagy et al., 1995; Saito et 

al., 2002) in AD but the relationship with post - stroke dementia has been conflicting and less 

well defined. Previous studies in the Newcastle cohort failed to establish a relationship 

between APOE 4  with post- stroke cognitive impairment at three months after the stroke 

((Rowan et al., 2005) but predicted decline at 1 – year follow up ((Ballard et al., 2004b), 

further pathological verification had hitherto been lacking.  Some other studies had also 

reported both positive (Packard et al., 2007; Liu et al., 2012) (McGuinness et al., 2010a) and 

negative associations (Gdovinova et al., 2006) although these were largely clinical studies. It 

is indeed plausible that the APO E 4 allele might have contributed to the higher quantity of 

amyloid in the PSND group compared to the PSD group, but studies will be needed to explore 

this relationship further. 

 

SorL1 

We found a significantly increased expression of SorL1 in the CA2 hippocampal sub-region 

compared to other regions across all disease groups in this study. And within the CA2 sub - 

region, the highest expression of SorL1 was found in the PSD group while the lowest was in 

the AD_VaD group.  Considering the resilience of the CA2 sub-region to insult (Small et al., 

2011), this finding suggests that the expression of SorL1 may have a protective role in 

addition to its traditional role of intracellular trafficking of APP (Nishii et al., 2013). In this 

context, the higher expression of SorL1 in PSD compared with PSND in the CA2 sub – 

region mirrored the finding of higher expression of APP in PSD compared to PSND also in 

the CA2 region of subjects in this cohort. APP production may be upregulated in response to 

hypoxia (Kalaria et al., 1993, 1996, 2000, 2002, 2012). In a very recent report (Nishii et al., 

2013), SorL1 was found to be upregulated /induced by hypoxic stimulus mediated by hypoxia 
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–inducible factor (HIF – α) in haematopoetic stem and progenitor cells. It is therefore 

conceivable that SorL1 expression in the hippocampal formation and entorhinal cortex occurs 

in response to hypoxic stimulus which also upregulates APP production. Evidence of 

increased levels of APP and SorL1 has been demonstrated in the cerebrospinal fluid (CSF) of 

patients with AD (Alexopoulos et al., 2012). The higher production of SorL1 in the CA2 may 

be a protective mechanism for the CA2 pyramidal neurons that channels the APP into non – 

amyloidogenic metabolic pathways resulting in a lower load of amyloid deposited  until this 

protective function becomes compromised. 

 

Correlation of cognitive scores with AD pathology  

In the post – stroke cohort with available cognitive scores, very limited correlation of tau 

pathology with CAMCOG memory score was established. In this cohort, there was 

dissociation of cognitive performance and hippocampal AD pathologic burden. The 

implication of this may be that in general, AD pathology probably does not contribute very 

strongly to the substrates of dementia after a stroke event as previously hypothesized (Henon 

et al., 1997). And if there was any contribution at all, tau pathology probably contributed 

more than amyloid pathology. Recent reports also suggest that MTLA which has been widely 

ascribed to AD pathology, may have a vascular basis (Bastos-Leite et al., 2007; O'Sullivan et 

al., 2008). The lack of association may also be due to the presence of other pathologies such 

as α – synuclein, (the determination of which is beyond the scope of the current study), 

presence of robust cognitive reserve and other lifestyle and psychosocial might also offer 

reasons for the dissociation between clinical and cognitive measures in the current study. In 

conclusion, non – AD pathologic mechanisms appear to play a more dominant role in the 

neurobiology of post - stroke cognitive impairment. Further studies are, however, advocated 

to further unravel the mechanisms in order to develop better preventive and therapeutic 

interventions. 
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5.5.  Chapter Summary 

 

 

 

 

Marker 

 

                                Neuropathological Categories 

 

Control 

 

    PSND 

 

    PSD 

 

     VaD 

 

AD_VaD 

 

AD 

 

4G8 

 

    

 

  

 

  

 

          

 

     

 

 
 

T - 42 

 

          

 

         

 

        

 

           

 

     

 

  
 

T - 40 

 

  

 

  

 

  

 

  

 

     

 

  
 

NU -1 

 

  

 

  

 

  

 

  

 

       

 

   

 

 APP 

 

           

 

          

 

         

 

            

 

       

 

   
 

SOrL1 

 

           

 

          

 

        

 

           

 

       

 

   
 

AT8 

 

             

 

          

 

         

 

            

 

       

 

   
Aβ 42: Aβ 40   

ratio 

 

            

 

            

 

          

 

            

 

     

 

   

       

Table 5.9.  Summary of findings on measures of hippocampal AD pathologic 

quantification 

 

Annotation:  ( = mild increase;   = moderate increase,    = severe increase  

 = highest increase) 

 

 Correlations 

 4G8, T – 42, T – 40, NU -1 and AT8 demonstrate statistically significant 

inter - correlation with one another. 

 Hyperphosphorylated tau (AT8) immunoreactivity showed significant 

negative correlation with CAMCOG Memory Score in the CA1 sub- region. 

 

 

 APOE 4 positivity was significantly associated with higher 4G8 (total amyloid) 

immunoreactivity in the subiculum and entorhinal cortex. 
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Chapter  6. Quantification of hippocampal synaptic integrity in post - 

stroke dementia compared with AD and normal ageing controls. 

 

6.1. Introduction 

 

Progression of cognitive decline in patients with post – stroke vascular cognitive impairment 

no dementia (vCIND) to vascular dementia (VaD) has been related to the development of 

memory impairment, apart from worsening in other domains of cognition (Ballard et al., 

2002; Ballard et al., 2003a; Ballard et al., 2003b; Sachdev et al., 2004a; Sachdev et al., 

2004b; Stephens et al., 2004; Sachdev et al., 2006; Moorhouse and Rockwood, 2008; 

Gorelick et al., 2011). Neuroimaging studies in the longitudinal Newcastle cohort found that 

medial temporal lobe atrophy (MTLA)  predicted progression to cognitive impairment, 

dementia and death (Firbank et al., 2007; Firbank et al., 2012) while neuropathological 

studies unmasked hippocampal neuronal atrophy as an important substrate of post-stroke 

dementia (PSD) in the cohort  (Gemmell et al., 2012).  The hippocampus plays a major role in 

the neurobiology of learning and memory (Amaral, 1993; Kandel, 2001; Small et al., 2011). 

Given a similar predictive role of MTLA in relation to cognitive impairment and dementia  in 

the CogFAST – Nigeria cohort (Chapter 4)  and the hypothesis  ascribing MTLA  to 

Alzheimer pathology (Henon et al., 1997; Henon et al., 1998; Leys et al., 2005; Firbank et al., 

2007),  we investigated  Alzheimer pathology  in hippocampal tissue  from subjects in the 

Newcastle post – mortem cohort compared with other dementias  (Chapter 5). However, our 

findings showed that, largely, hippocampal Alzheimer pathology burden did not differ 

between demented and non - demented post – stroke survivors. Hence, Alzheimer pathology 

does not seem to provide a clear mechanistic distinction between non - demented (PSND) and 

demented (PSD) stroke survivors.  

Given the above rationale, in this study we sought to establish if alterations in synaptic 

integrity within the hippocampus could provide a mechanistic insight into the different 

cognitive trajectories that ensue after stroke. It has  been previously established that synaptic 

dysfunction correlates with cognitive profile and often precedes neuronal loss and the 

appearance of measurable  pathologies such as amyloid plaques and tangles (Hardy and 
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Selkoe, 2002; Selkoe, 2002; Ihara and Kalaria, 2007; Mucke and Selkoe, 2012). Improved 

understanding of such neurochemical changes in vascular cognitive impairment (VCI) is 

critical to the development of effective therapeutic and neuroprotective (preventive) 

interventions to prevent or delay onset or progression of disease. 

 We hypothesized that differences in the expression of hippocampal synaptic markers would 

distinguish demented from non – demented post-stroke cohorts in relation to normal ageing 

controls and other dementia subjects. Using immunohistochemistry, we evaluated the 

expression level of the pre - synaptic markers [ synaptic markers synaptosomal - associated 

protein 25 (SNAP-25); synaptophysin (SY – 38); vesicular glutamate transporter - 1 (VGLUT 

- 1)]  and the post – synaptic markers  [post synaptic density -  95 (PSD – 95) and Drebrin ] in 

hippocampal tissue  of post – stroke cases compared with AD and normal ageing controls and 

using Western Blot,  we quantified the expression of  these markers in hippocampal 

homogenates obtained from frozen brain tissue samples. 

 

6. 2. Methods 

 

6.2.1. Study Subjects 

 

Samples from a subset of 42 subjects consisting of 10 with AD, 11 post-stroke non - 

demented (PSND), 11 post - stroke demented (PSD) and 10 controls were evaluated.  Table 

6.1 shows the demographic characteristics of the subjects. There were no significant 

differences in age, gender, postmortem delay and length of fixation period across the groups 

(p > 0.05, ANOVA). However the PSND and PSD groups differed significantly on cognitive 

scores (p < 0. 001, student t – test) while neuropathological variables also showed significant 

variation across the cohort (p < 0.001, ANOVA). The CogFAST Study and ancillary studies 

had ethical approval from the local Newcastle Ethical committees and participants gave 

written consent to brain tissue donation. Use of brain tissue was also approved by the local 

Ethical committees and the committee of the Newcastle Brain Tissue Resource (NBTR). 
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    Variable 

                           Clinical Diagnosis  

Controls  PSND PSD AD All p value 

No (n) 10 11 11 10 42  

Age (years)  81.3 + 7.8 84.1 + 

4.5 

84.9 + 6.1 81.6 + 

6.9 

82.9 + 

6.4 

0.405 

Gender : (No , % 

female) 

5 (50.0) 3(27.3) 5(45.5) 6(60.0) 19(45.2) 0.493* 

MMSE score  ND 27.9 + 

1.4 

15.1 + 3.1 ND  < 0.001+ 

CAMCOG  total ND 92.9 + 

4.8 

55.7 + 

10.1 

ND  < 0.001+ 

CAMCOG memory ND 21.9 + 

2.7 

9.2 + 8.3 ND  < 0.001+ 

Post-mortem delay 

(hours) 

26.4 + 

10.7 

22.4 + 

7.3 

24.9 + 9.5 21.5 + 

10.9 

23.9 + 

9.5 

0.678 

Fixation period 

(weeks) 

9.2 + 6.5 10.2 + 

5.9 

9.9 + 6.0 7.8 + 5.3 9.3 + 5.7 0.799 

CERAD Score 0.2 + 0.4 0.9 + 0.8 1.4 +1.1 2.6 + 1.0 1.4 + 1.2 <0.001 

Braak Stage 1.7 + 0.8 2.3 + 0.8 2.9 + 1.6 5.5 + 0.7 3.2 + 1.8 <0.001 

Vascular Score ND 1.7 + 0.8 1.8 + 0.5 ND  0.826 

 

Table 6.1: Demographic, cognitive and pathological characteristics of the subjects, *chi - square 

test; + students’t – test; all others ANOVA. Subjects do not vary significantly with age, gender, post – 

mortem delay or length of fixation period. CAMCOG = Cambridge Cognitive Examination; CERAD 

= Consortium to Establish a Registry for Alzheimer’s disease; ND = No data available. 

 

6.2.2. Neuropathological examination  

 

Hippocampal sections (corresponding to coronal levels 18 – 20) were selected from the 

Newcastle Brain Map (Perry and Oakley, 1993). Formalin fixed paraffin blocks   were 

retrieved from the NBTR and processed as described in Chapter 2. Cresyl Violet and 

Haematoxyline and Eosin stains were used to evaluate general cellular and neuropathologic 

changes in accordance with standard protocol (Kalaria et al., 2004; Deramecourt et al., 2012). 
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6.2.3. Quantitative immunohistochemistry 

 

Ten micron  hippocampal  sections were immunostained with primary synaptic antibodies to  

pre –  synaptic markers : synaptosomal - associated protein 25 (SNAP - 25, 1: 1000, 

monoclonal); synaptophysin (SY – 38, 1: 150, monoclonal); vesicular glutamate transporter - 

1 (VGLUT – 1, 1 : 1000,  polyclonal;)  and  post – synaptic markers  [post synaptic density -  

95 (PSD – 95, 1 : 750, polyclonal) and Drebrin ( 1: 200, monoclonal) as described in Chapter 

2. To minimize variability of immunohistochemical staining quality, control sections were 

included in assays, and experiments were run in two batches for each marker and using 

freshly prepared buffer solutions and tinctorial stains. Sections were further counterstained 

with haematoxylin following the assays of PSD – 95 and drebrin   to enhance identification of 

neuronal cellular structures. Sections were numbered randomly from 1 – 50 and then analysed 

blind to the diagnoses of the cases.  

 

6.2.3.1. Image Acquisition and Analysis 

The stained sections were examined and imaged using a Zeiss Axioplan 2 research grade 

microscope coupled to an Infinity 2 camera. Set at X10 magnifications for the hippocampal 

sub-regions CA1, CA2 and CA3 and dentate gyrus. At least five images were taken at random 

from the CA1, CA3 and dentate gyrus and three images from CA2. Tissue sections were 

assigned random numbers and all analysis were performed blind to the pathological diagnosis 

of the subject.  

Images were first qualitatively assessed with respect to overall quality and consistency of 

staining characteristics across cases and in relation to known characteristics such as post –

mortem delay and length of fixation period. Image Pro-Plus 4.0 (Media Cybernetics, USA) 

software was used for further analysis of the images. The histogram - based method was used 

to determine the percentage of area stained over the total area analyzed (PA) and the 

integrated optical density (IOD). The area of interest was manually determined and a 

threshold of optimal staining with good signal – background ratio was established with a Red 
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– Green – Blue histogram –based method: the red and green spectra were fixed from 0 to 255 

while the blue limit was manually determined. The mean total immunoreactivity (IR) for each 

image was derived and then for each sub - region analyzed. 

 

6.2.4.  Immunoblotting 

 

Immunoblotting was performed as previously described (see section 2.3.9). Frozen sections  

containing whole hippocampal formation containing the CA fields and the dentate gyrus 

samples  (Newcastle Brain Map level 18 -20) were obtained from the Newcastle Brain Tissue 

Resource, sub-dissected,  homogenized and stored at -70
o
C . Relative protein concentration 

across samples was assessed in triplicate using the DC Kit protein assay (Bio- Rad). 

Appropriate aliquots of sodium dodecyl sulphate were then added to each sample to prepare 

samples with equalized protein concentration across all samples. 20 micrograms of protein 

was loaded into each gel and run on 10% sodium dodecyl acrylamide gel (8% gel for 

drebrin).. Whole hippocampal homogenate samples were loaded into wells and subjected to 

sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by protein transfer onto 

nitrocellulose membranes and transfer confirmed with Ponceau stain.  Membranes were 

blocked against non - specific binding using 5% non - fat dried milk (Marvel) in TBS -T and 

incubated overnight at 4
0
C with primary antibodies at previously optimized concentrations of 

each synaptic marker (Table 2.3).  Beta – tubulin was employed as a loading control. 

Secondary antibody incubation was achieved by exposing membranes to horseradish 

peroxidase (HRP) conjugated secondary antibodies (anti – mouse or anti - rabbit depending 

on the primary antibody) suspended in a 5% non - fat dried milk (Marvel) in TBS -T solution. 

Membranes were exposed to the enhanced chemiluminescence kit (Thermo Scientific) for 2 

minutes on a glass plate and bands were visualized with a LAS - 4000 Lumniscent Image 

Analyzer Version 1.0 (Fuji Film Cooperation, Tokyo, Japan). Optical density of bands were 

measured using Image J. Variation in signal detection (including gel and blotting variation) 

across gels was corrected for using the protein standard replicate loaded on gels. Data were 

expressed as optical density of the band per weight of protein loaded per sample. 
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6.2.5. Statistical analysis 

 

Statistical analysis was carried out using the IBM SPSS software (version 19.0). The Shapiro 

– Wilk Test was used to establish normality of data. Comparisons across groups were done 

using parametric tests (ANOVA for group means and Tukey post – hoc analysis for between – 

group differences) non - parametric tests Kruska – Wallis and  Mann  – Whitney U tests)  for 

non – normally  distributed dataset.  

 

6.3. Results 

 

6.3.1. Immunohistochemistry 

 

Sections immunostained with the five synaptic markers were first qualitatively assessed to 

evaluate the anatomical distribution of the markers within the hippocampal sub –regions.  As 

the length of fixation period affected the intensity of staining of markers, particularly SNA P- 

25, SY -38 and PSD – 95, it made it impracticable to fully quantify with Image Pro Plus. 

Besides, the distribution of immunoreactivity pattern   of   markers (SNAP – 25, SY – 38 , 

and VGLUT - 1) was widespread across the hippocampal sub –regions with  limited 

distinction between background staining and specific immunoreactivity.  In such instances, it 

was deemed that large number of images would be required at very high magnifications in 

order to detect very distinct differences between groups.  In such instances,  quantification  of  

immunoreactivity  was performed limited to  representative subsets of  cases with more 

accurate quantification of all  markers in all cases  performed  by immunoblotting analysis of 

hippocampal homogenates from  frozen tissue sections of the same subjects. Figure 6.1 shows 

the immunoreactivity pattern of the synaptic markers across groups. 

We computed the statistical power of this sub – sample of 42 cases of four groups using the 

G*Power software (Faul et al, 2007).  Given a significance level, α = 0.05 and assuming a 

moderate effect size Cohen’s d = 0.4, 4 sub-groups and 3 degrees of freedom, the computed 

Power (1 – β) = 0.5230. 
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Limitation with tissue availability: 

 Pilot experiments had shown that the immunoreactivity of some synaptic and white matter 

pathology markers varied with certain parameters such as fixation period. We were therefore 

constrained to use only cases which parameters fell within certain acceptable ranges such as 

fixation period less than 24 weeks.  Also, we had to ensure that cases were well matched for 

demographic variables – age and gender. Furthermore, we had to select cases that had both 

paraffin – embedded brain tissue blocks and frozen tissue for synchrony of findings from 

immunohistochemistry and immunoblotting synaptic markers experiments. All the 

afformentioned reasons limited the number of cases we could possibly select from an already 

limited pool of tissue available in the Newcastle Brain Tissue Resource (NBTR). 

 

6.3.1.1. SNAP -25 

SNAP - 25 showed strong uniform staining in the neuropil of all the hippocampal regions 

excluding pyramidal neuronal cell bodies of the CA and the granule cells of the dentate gyrus. 

It was difficult to distinguish differences in specific IR signals from background even at high 

magnifications (Figure 6.1) to detect significant differences.  Figure 6.2 shows the integrated 

optical density (IOD) and immunoreactivity of SNAP – 25 across groups of   a representative 

sub – cohort in the CAI hippocampal sub - region. The measures of SNAP – 25 were similar 

in other hippocampal sub – regions.
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PSND 

C 

PSD 

AD 

DREBRIN
NN

PSD - 95 SNAP-25 SY- 38 VGLUT-1 

Bar: 100µm 

Figure  6.1.  Representative  images showing  variation of  Drebrin, PSD – 95, SNAP – 25, SY -38, VGLUT -1 immunostaining  

across  different groups  :   C, PSND, PSD, and AD. Hippocampal sub –region CA1 (Drebrin and SNAP – 25) and CA3/4 (PSD – 95, 

SY – 38 and VGLUT – 1).   
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6.3.1.2. Synaptophysin  

Synaptophysin demonstrated expected non  - uniform staining of the neuropil that was 

very intense particularly in the outer molecular layer (OML) of the dentate gyrus, and 

the stratum moleculare and radiatum of the CA. Neuronal cell bodies were not stained. 

Furthermore, punctate immunoreactive deposits were seen in the CA3/4 sub-region 

(Figure 6.1). Quantification of immunoreactivity by Image – Pro Pus was performed on 

a subset of cases  from each group  and  this revealed no significant differences across 

groups  (p > 0.05) even after excluding long – fixed cases (Figure 6.3). 

  

 

Figure 6.2. Bar graph   showing the relative expression of SNAP - 25   across diagnostic 

categories with no significant difference (p = 0.808, Kruskal Wallis Test) 

Figure 6.3. Bar graph   showing the relative expression of –SY - 38  integrated optical 

density (IOD) and immunoreactivity (IR) in the CA3 sub – region .  There was no difference 

across diagnostic categories (p = 0.537, Kruskal Wallis Test). 
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6.3.1.3. VGLUT -1 

VGLUT- 1 demonstrated intense immunoreactivity in the neuropil of the hippocampus 

particularly in the stratum pyramidale layer but excluding the bodies of pyramidal 

neurons. Punctate deposits were seen around pyramidal neuronal cell bodies and along 

axons in the CA3/4 sub- region in particular (Figure 6.1). Quantification by Image Pro 

Plus was performed on a subset of  cases from each group and this revealed slightly 

reduced ( p > 0.05)   expression of VGLUT-1 in PSD compared to Control and  PSND 

in the CA3/4 sub – region. There were no differences in the intensity of 

immunoreactivity across groups in other sub – regions (Figure 6.4). 

 

 

 

 

6.3.1.4. PSD - 95  

PSD – 95 demonstrated low staining intensities across the hippocampal sub – regions. 

The CA1 region yielded very low specific staining .The inner and outer molecular 

layers of the dentate gyrus as well as the CA3/4 sub – region showed low and varying 

intensity of immunostaining across cases. Thus, rigorous quantification of PSD - 95 

immunoreactivity by Image – Pro Plus was precluded and further quantification was 

undertaken by protein immunoblotting.  

 

Figure 6.4: Bar graph   showing the relative expression of VGLUT - 1 integrated optical 

density (IOD) and immunoreactivity (IR) in the CA3 sub – region.  There was no difference 

across diagnostic categories (p = 0.537, Kruskal Wallis Test) 
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6.3.1.5. Drebrin  

Drebrin immunoreactivity in the hippocampus showed specific and moderately intense 

staining of pyramidal neurons of the CA and cells of the outer molecular layer of the 

dentate gyrus. The signal – noise ratio was more distinct compared to PSD – 95, the 

other post –synaptic marker (Fig 6.1) and this enabled quantification of 

immunoreactivity by Image Pro Plus. The integrated optical density of Drebrin (IOD) in 

the CA1 sub - region varied significantly (p = 0.028, Kruskal Wallis Test) and was 

higher in PSND than PSD (p = 0.027) and AD (p = 0.004) (Mann - Whiteney U), The 

percentage area was also slightly higher  in the control and PSND, but this did not attain 

statistical significance ( p = 0.183, Kruskal Wallis Test )(Figure 6.5).    

 

 

 

 

 

 

 

 

Figure  6. 5: Bar graphs displaying mean  Drebrin  immunoreactivity, a) integrated optical 

density in CA1, b)  percent area in CA1 * P < 0.05 Drebrin IR displays no significant difference 

in CA2, CA3 and DG. 
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6. 3.2.  Immunoblotting Analysis  

 

To determine the potential changes in hippocampal pre- and post- synaptic markers, we 

used immunoblotting techniques and antibodies to β – tubulin III (Figure 6.4), 

synaptophysin (Figure 6.5), SNAP -25 (Figure 6.6), VGLUT - 1(Figure 6.7), PSD -95 

(Figure 6.8) and Drebrin (Figure 6.9) as described in Section 6.2.4 

 

 6.3.2.1.β - tubulin 

β – tubulin III levels were quantitatively determined as described in previous studies 

(Nieto et al., 1989; Sze et al., 1997; Kirvell et al., 2006).  This marker has been used as 

a neuron –specific protein as a control to confirm normalization of the sample loading. 

The antibody recognized a distinct band at 55 kDa (Fig 6.6). Densitometric analysis 

revealed  a slight variation in the expression of β – tubulin  although this  was not 

statistically significant (p > 0.05, Kruskal Wallis) (Fig 6.4). 

  

 

 

Figure 6.6: Bar graph   showing  the relative expression of β – tubulin across diagnostic 

categories. with no significant difference ( p > 0.05, Kruskal Wallis Test) 
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6.3.2.2. Pre-synaptic Markers 

The expression of synaptosomal – associated protein kDa 25 (SNAP -25), 

synaptophysin and vesicular glutamate transporter 1 (VGLUT - 1) were similarly 

quantified by densitometric analysis and normalized to the expression of β - tubulin. 

 

6.3.2.2.1 SNAP -25 

SNAP -25 recognized a distinct band at 25kDa consistent with previous observations 

(Downes et al., 2008).  The expression of SNAP – 25 was similar across diagnostic  

groups (p = 0.476, Kruskal Wallis Test) (Fig 6.7). 

 

  

 

 

Figure 6.7: Bar graph   showing the expression of  SNAP -25  relative to β – 

tubulin across diagnostic categories with no significant difference ( p = 0.476, 

Kruskal Wallis Test) 
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SNAP - 25 showed significant correlation with synaptophysin (r = 0.450, p = 0.007, n = 

35) but not with age (r = -0.169, p = 0.284, n = 42) and cognitive function scores: 

CAMCOG total (r = -0.161, p = 0.567, n = 15), CAMCOG memory (r = - 0.095, p = 

0.736, n = 15).  

 

6.3.2.2.2. Synaptophysin 

Synaptophysin recognized a distinct band at 38kDa (Fig 6.8) consistent with extant 

literature (Downes et al., 2008). 

  

 

 Densitometric analysis showed that synaptophysin expression did not vary significantly 

across disease groups (p = 0.537, Kruskal - Wallis Test). Synaptophysin demonstrated 

significant correlation with SNAP -25 (ρ = 0.450, p = 0.007, n = 35) and VGLUT-1 (ρ = 

Figure 6.8: Bar graph   showing  the relative expression of  SY -38  relative to β - tubulin 

across diagnostic categories with no significant difference ( p = 0.537, Kruskal Wallis Test) 
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-.414, p = 0.013, n = 35) but not with age (ρ = -0.006, p = 0.973, n = 35) or CAMCOG 

total (ρ = 0.225, p = 0.459, n = 13) but showed a trend with CAMCOG memory scores 

(ρ = 0.530, p = 0.063, n = 13). 

 

6.3.2.2.3. VGLUT -1 

VGLUT- 1 is a specific marker of neurotransmitter - laden vesicles at excitatory 

glutamatergic synapses. In this Western Blot experiment, it was recognized as a band at 

about 60 kDa (Fig 6.9). 

                  

 

VGLUT - 1 showed statistically significant differential expression across groups, 

highest in the control group and lowest in PSD and AD groups (p = 0. 039, Kruskal – 

Wallis Test) (Fig 6.9). Further analysis for within group differences with Mann - 

Whitney U Test revealed no significant difference in VGLUT – expression between 

Control and PSND (p = 0.223) whereas significant differences occurred between 

Figure 6.9:  Bar graph showing the relative expression of VGLUT -1 across 

diagnostic categories with  significant difference ( p = 0.039, Kruskal Wallis Test). 
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Control and PSD (p = 0.020) as well as between Control and AD (p = 0.019) while the 

expression in PSD was not different from AD (p = 0.387). VGLUT-1 expression 

correlated significantly with synaptophysin (ρ = 0.414, p = 0.013, n = 35) and drebrin (ρ 

= 0.564, p < 0.001, n = 36) but not with age (ρ = 0.033, p = 0.836, n = 42). VGLUT-1 

expression, also, correlated significantly with MMSE score (ρ = 0.540, p = 0.038, n = 

15), CAMCOG memory (ρ = 0.604, p = 0.022, n = 14) and CAMCOG total (ρ = 0.518, 

p = 0.048, n = 15) in the post-stroke subset of the cohort.  

 

6.3.2.3. Post – synaptic markers 

The expression of the post-synaptic markers, PSD – 95 and Drebrin were similarly 

quantified by densitometric analysis and normalized to the expression of tubulin. 

 

 

6.3.2.3.1. PSD – 95 

This scaffolding protein is expressed in excitatory synaptic terminals. We detected it as 

a specific band at 95 kDa however, its expression relative to β – tubulin did not vary 

significantly across the groups (p = 0.694, Kruskal – Wallis Test) (Fig 6.10). 

 PSD - 95 did not correlate with age (ρ = 0.157, p = 0.384, n = 33) or cognitive 

measures: CAMCOG memory (ρ = 0.377, p = 0.283, n = 10) and CAMCOG total (ρ = 

0.103, p = 0.777, n = 10).  
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6.3.2.3.2. Drebrin 

Drebrin is an F - actin binding protein which is localized to post - synaptic dendritic 

spines at excitatory synapses. It localized to a band at 120 kDa (Harigaya et al., 1996; 

Counts et al., 2012) and its expression level varied across groups (p = 0.05, ANOVA) 

(Figure 6.11).  

Post – hoc analysis by Fisher’s LSD showed that the relative intensity of drebrin 

expression was not significantly different between PSND and control (p = 0.197) but 

higher than PSD (p = 0.009) and AD (p = 0.049). Drebrin showed significant correlation 

with VGLUT-1 (r = 0.564, p < 0.001, n = 36).There was a significant negative 

correlation with hippocampal vascular score (r = - 0.721, p = 0.028, n = 9) and  robust 

positive correlation with  the cognitive parameters: MMSE (r = 0.662, p = 0.014, n = 

13), CAMCOG memory (r = 0.683, p = 0.014, n = 12) and CAMCOG total (r = 0.825, p 

= 0.001, n = 12) in the post – stroke  sub  – cohort. 

 

Figure 6.10: Bar graph   showing the relative expression of PSD - 95  

across diagnostic categories with  no significant difference ( p = 0.694, Kruskal 

Wallis Test)  
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6.4. Discussion 

 

Given that synaptic integrity is critical to the effectiveness of neural communication, 

and its compromise is an early feature of brain disorders causing cognitive impairment 

and dementia (Scheff and Price, 2003; Di Maio, 2008; van Spronsen and Hoogenraad, 

2010), we attempted to differentiate PSD and PSND subjects.  Expression of synaptic 

markers (SNAP -25, synaptophysin, VGLUT -1, PSD – 95 and Drebrin) by 

immunohistochemical assessment showed no difference between PSND and PSD 

except for Drebrin where expression was higher in PSND than PSD. Quantification of 

synaptic markers by immunoblotting showed a non – statistically significant higher 

expression in PSND than PSD in synaptophysin, VGLUT -1 and PSD – 95 but 

significantly higher in Drebrin. Expression was lower in AD compared to the post – 

stroke groups across most markers, and comparable between the control and PSND 

across most markers.  

Figure 6.11: Bar graph showing expression of Drebrin  relative to β – 

tubulin across diagnostic categories with partial significant difference  

( p = 0.05,  ANOVA).  
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The major findings here are that there was a significant reduction in the expression of 

VGLUT -1 and Drebrin in PSD and AD subjects in comparison with control and PSND 

subjects. In addition, both markers showed significant positive correlation with 

cognitive performance measures on the CAMCOG total and memory domain as well as 

with each other. However, one – way analysis of variance revealed no significant 

differences in the level of expression of SNAP -25, synaptophysin and PSD – 95 across 

the various subject groups. The anatomical distribution of immunoreactivity of pre – 

synaptic markers (SNAP – 25, SY – 38 and VGLUT -1) was as expected in the neuropil 

excluding neuronal cell bodies. Of particular interest were the punctate concretions of 

SY – 38 and VGLUT – 1 immunoreactivity within the CA3/4 sub – regions in keeping 

with changes to the hippocampal circuitry and re – organization of synaptic networks 

occasioned by disease processes as previously reported by others (Kirvell et al., 2006; 

Kashani et al., 2007; Kashani et al., 2008; van der Hel et al., 2009; van Spronsen and 

Hoogenraad, 2010). On the other hand, drebrin and PSD -95 were more localized to 

pyramidal neuronal cell bodies due to their location in the post – synaptic density (Keith 

and El-Husseini, 2008). 

The reduction of VGLUT- 1 expression in the hippocampus of AD subjects is consistent 

with, and extends the previous findings of down regulation of VGLUT -1 expression in 

the frontal, parietal and occipital cortices of AD subjects (Kirvell et al., 2006; Kirvell et 

al., 2010). These results also corroborate the earlier findings of a dominant expression 

of VGLUT-1 in the human hippocampus as previously observed in hippocampal tissue 

sections of epileptic subjects with and without hippocampal sclerosis (van der Hel et al., 

2009). 

In a previous study, Kirvell and colleagues (Kirvell et al., 2010) had demonstrated a 

higher concentration of VGLUT – 1 in the frontal cortex of subjects who developed a 

stroke but did not progress to dementia. Their data also showed significant correlation 

between VGLUT-1 concentration and cognitive scores, especially the memory subscale 

of CAMCOG. Our data confirm and also extend these findings by demonstrating 

significant up - regulation of VGLUT-1 in the hippocampus of non - demented post –

stroke subjects (PSND) and evidence of significant positive correlation with cognitive 

performance on the MMSE, CAMCOG memory and CAMCOG total scales. 
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Taken together, these previous results (Kirvell et al., 2006; Kashani et al., 2007; 

Kashani et al., 2008; Kirvell et al., 2010) and ours provide  robust evidence in support 

of the role of glutamatergic synapses in the neurobiology of VCI and AD . Maintaining 

the glutamatergic system appears critical to the maintenance of cognitive functions after 

stroke in particular and this may be a molecular signature of cognitive reserve (Stern et 

al., 1999; Stern, 2009; Stern, 2013) or an evidence of compensatory mechanisms that 

sustain cognition after vascular cerebral injury.  

Drebrin is a neuron – specific, post – synaptic, actin – binding protein which is critical 

to dendritic spine morphogenesis, morphology and functioning. Our finding of a 

significant downregulation of Drebrin in the AD group is in tandem with previous 

studies demonstrating down regulation of drebrin in the hippocampus and temporal 

cortex of subjects with AD (Harigaya et al., 1996; Hatanpaa et al., 1999; Counts et al., 

2006; Counts et al., 2012) Counts et al., 2006, 2012) and these suggest that drebrin 

expression is an important predictor of deteriorating cognition   in AD. 

 Our results demonstrate for the first time an upregulation of hippocampal drebrin 

expression in non – demented post stroke (PSND) subjects compared to demented 

stroke (PSD) and AD in agreement with previous report of drebrin  upregulation in the 

frontal cortex of  MCI subjects (Counts et al., 2006) . In contrast, a very recent study 

found reduced expression of drebrin in the hippocampus of subjects with mild cognitive 

impairment in comparison with controls (Counts et al., 2012). This contradistinction 

suggests that different synaptic plasticity mechanisms operate in different brain regions 

(DeCarli et al., 2012) and these may also differ between vascular and degenerative brain 

disorders. 

 These findings collectively underscore the critical role of dendritic spine dynamics in 

the neurobiology of cognition (Hara et al., 2012).  Furthermore, differences in the 

expression level of drebrin appear to be a possible predictor teasing out demented from   

non – demented post-stroke subjects. Previous neuropathological data from the 

Newcastle post-stroke cohort had shown that whereas control and non – demented 

stroke subjects (PSND subjects maintained  pyramidal hippocampal neuronal volumes, 

demented post –stroke subjects (PSD) and  other dementias (mixed AD/VaD, and VaD) 

showed significant shrinkage of  hippocampal pyramidal neurons in the CA1 AND CA2 

sub –regions (Gemmell et al., 2012). It seems therefore that there may be an association 



 

 

196 
 

between the upregulation of hippocampal drebrin and the maintenance of neuronal 

volume. Perhaps, maintenance of neuronal volume and metabolic activity preserves 

synaptic connections and the dendritic network surrounding the neuron (Hara et al., 

2012; Kalaria, 2012b). 

The correlation between VGLUT – 1 (a pre – synaptic marker) and Drebrin (a post –

synaptic marker) respectively may reflect functional synergy as the two markers are 

both involved in the cascade of glutamatergic neurotransmission. It had been shown 

previously in cultured hippocampal neurons that accumulation of drebrin within 

dendritic spines depends on AMPA receptor activation by glutamate (Takahashi et al., 

2004). The magnitude of AMPA receptor activation depends on the quantity of 

glutamate released at the pre - synaptic terminal, and this in turn depends on the level 

/quantity of available vesicular transporters. Substantiating this idea, Hsieh et al (2006) 

showed reduced AMPA receptors and loss of dendritic spines (and consequently 

drebrin) with increased β – amyloid levels in neuronal cell culture (Hsieh et al., 2006). 

SNAP – 25 and SY- 38 are ubiquitously distributed in the brain as they generally mark 

synaptic membranes (Geddes et al., 1990a; Geddes et al., 1990b). Although reduced 

expression of SNAP -25 (Sze et al., 2000; Minger et al., 2001) and SY – 38 (Heinonen 

et al., 1995; Kirvell et al., 2006; Downes et al., 2008) in AD have been reported 

previously, the mild reduction of their expression in AD in our cohort did not attain 

statistical significance. Expression of SNAP -25 and SY – 38 in the post-stroke groups 

(PSND and PSD) were not significantly different from each other, or from controls. 

This may suggest that synaptic changes of significance in vascular disorders relate more 

to specific neurotransmitter systems rather than universal synapses such as SNAP -25 

and synaptophysin , especially in the early stages of disease. 

For the postsynaptic density – 95 (PSD – 95), there was a slight reduction in its 

expression in AD which did not attain statistical significance. Previous studies have 

shown conflicting results of PSD - 95 dysregulation in AD. In some instances (Gylys et 

al., 2004; Love et al., 2006) a down regulation was reported while Leuba et al 

(2008)(Leuba et al., 2008) reported an upregulation. Reduced expression of PSD – 95 

has also been reported in MCI subjects (Sultana et al., 2010) and in Wistar Rat stroke 

models exposed to nitrogen dioxide (Li and Xin, 2013). Contrary to expectations, we 

found no significant difference between controls, non – demented post-stroke and 
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demented post – stroke groups. We had expected to see a pattern similar to that of 

drebrin since they were both post-synaptic markers and related to post – synaptic 

transmission. However, drebrin plays a more strategic role in the regulation of dendritic 

morphogenesis and function than PSD – 95 (Harigaya et al., 1996; Kojima and Shirao, 

2007; Sekino et al., 2007).    

Correlation between SY – 38 and VGLUT-1 and between SY – 38 and SNAP -25 could 

imply mechanistic synergy among the three pre – synaptic markers (Geddes et al., 

1990a; Geddes et al., 1990b). However, the absence of similar correlation between PSD 

– 95 and Drebrin, both being post –synaptic markers may be due to differential modes 

of action of both markers and their susceptibility to different regulatory factors (Keith 

and El-Husseini, 2008). 

The positive correlation between hippocampal vascular score and SNAP -25, and the 

negative correlation with drebrin have not been reported before. It is intuitive that direct 

relationship with SNAP -25 may be a compensatory response or release of this marker 

in response to vascular damage.  A possible explanation for the negative correlation 

between vascular score and drebrin may be that it is due to the effect of chronic 

hypoperfusion on the neuronal cell. Evidence is growing in favour of a vascular basis of 

neurodegeneration (Kalaria, 2012b; Kalaria, 2012a). Neuroimaging studies have shown 

evidence of medial temporal atrophy of vascular origin (den Heijer et al., 2003; Bastos-

Leite et al., 2007; Qiu et al., 2012). The hippocampal neuronal atrophy described in 

Gemmell et al (2012) has also been suggested to be of vascular origin as the cases had 

little or minimal neurodegenerative pathology (Gemmell et al., 2012). Neuronal atrophy 

with accompanying reduction/loss of dendritic network and constituent dendritic spines 

could then account for a reduction in the expression of drebrin. 

 It is of note in this study that we observed some alterations (although not significant) in 

the expression of β – tubulin across diagnostic groups. Although, as in previous studies 

(Nieto et al., 1989; Sze et al., 1997; Sze et al., 2000; Kirvell et al., 2006), β – tubulin 

was included as a loading control to ensure equal amount of protein was loaded for each 

sample. Densitometric quantification of the expression of each marker in the samples 

was then normalized to the expression of β – tubulin in the specific experiment. 

Although a protein that is ubiquitously expressed, reduced expression of β – tubulin and 

other loading control markers may sometime occur because of the impact of pathologic 
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processes causing loss of neuronal cells and cerebral volume rather than just the effect 

of a disease – specific process. It is significant that similar alteration of β – tubulin has 

been reported in an immunoblotting experiment on AD cases without negating the 

integrity or interpretation of the results (Kirvell et al., 2006) 

Nevertheless, these results require independent validation in larger samples and other 

regions of the brain while we also acknowledge the potential influence of multiple 

pairwise comparisons and the impact on our conclusions. Overall, the combination of 

findings from this current study provides support for the conceptual framework that 

synaptic dysfunction is an early process in the evolution of cognitive impairment and 

may precede the appearance of gross pathologies. In addition, synaptic dysfunction 

correlates well with ante-mortem cognitive performance (especially the most proximate 

to death) and enables to distinguish different cognitive trajectories in longitudinally 

followed up patients. In our cohort, down regulation of VGLUT -1 and Drebin 

differentiated between demented and non – demented stroke survivors. 

6.5 Chapter Summary 

 

                       Neuropathological Categories 

Marker Control     PSND     PSD     AD 

SNAP -25                              
Synaptophysin                                 
VGLUT -1                                       
PSD – 95                              
Drebrin                                    

 

Table 6.2. Summary of findings on hippocampal synaptic markers  

Annotation:  ( =  little or no  change;   = increase;   = decrease ) 

 Correlations  

 Inter  - marker   correlations were significant  between : 

- Synaptophysin and VGLUT -1  

- Synaptophysin and SNAP – 25 

- VGLUT -1 and Drebrin 

 

 Correlation between markers and cognitive scores 

- VGLUT -1 showed significant positive correlation with MMSE 

score, CAMCOG memory and CAMCOG total scores. 

- Drebrin showed significant positive correlation with MMSE 

score, CAMCOG memory and CAMCOG total scores. 
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Chapter 7. Assessment of white matter pathology in post - stroke 

demented subjects compared with AD and normal ageing controls 

 

7.1. Introduction  
 

Diffuse white matter (WM) changes are common in stroke survivors. WM pathology 

was evident upon MRI in the Nigerian post-stroke survivors similar to WM burden 

previously documented in the Newcastle elderly cohort (Burton et al., 2004). The 

changes were associated with significant cognitive deficits, predominantly attentional 

impairment and executive dysfunction. There were increased reaction time (reduced 

information processing speed) and impairment of cognitive flexibility, functions 

subserved by the frontal lobe (Hoffmann, 2013).  Episodic memory dysfunction was 

also prominent in both series with a predictive value on progression of cognitive decline 

from vCIND to PSD (Ballard et al., 2002; Ballard et al., 2003a; Stephens et al., 2004). 

The temporal lobe, particularly the hippocampus, is vital to the neurobiology of 

memory formation and storage (Suzuki and Amaral, 2004). Cortico – cortical and 

cortico – subcortical connections present within the WM provide important anatomical 

connections underlying complex brain networks associated with cognitive control 

mechanisms. Disruption of these connections have been implicated in ‘disconnection 

syndromes’ with consequent cognitive and behavioural deficits (Geschwind, 1965a; 

Geschwind, 1965b; Catani and ffytche, 2005).  

The integrity of WM is critical to the regulation and the efficiency of neuronal 

communication and maintenance of cognitive functioning (Nave, 2010).  Loss of WM 

integrity demonstrated by hyperintense signal on T2W MRI occurs in the settings of 

ageing, cerebrovascular diseases and their associated dementias (VCI and AD and have 

been associated with increased risk of stroke, dementia and death (Debette and Markus, 

2010). Clinically, white matter hyperintensities (WMHs) cause reduced psychomotor 

speed, impairment of working memory and cognitive inflexibility, otherwise 

semantically referred to as executive dysfunction (DeCarli et al., 1996) (Nordahl et al., 

2006) (Debette and Markus, 2010).  Imaging studies have revealed WM abnormalities 

due to ageing (de Leeuw et al., 2001) as well as in dementing disorders particularly 

vascular cognitive impairment and Alzheimer’s disease (AD). Particularly, WMHs 

contribute significantly to cognitive deficits after stroke (Burton et al., 2004; Jokinen et 

al., 2005; Lawrence et al., 2013). More recent techniques including diffusion tensor 
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imaging (DTI)  and magnetization transfer imaging (MTI) are now being used to study 

microstructural integrity of the WM in greater detail, including ordinarily normal 

appearing WM (Gunning-Dixon et al., 2009; Kennedy and Raz, 2009a; Kennedy and 

Raz, 2009b; Vernooij et al., 2009).  

Increased mean WM diffusivity and decreased generalized fractional anisotropy have 

been observed in subjects with post - stroke VCI with the predominant changes being in 

major axonal bundles in the frontal regions and anatomically related cortical and sub - 

cortical structures (Jin Thong et al., 2013). In another study on a cohort of subjects with  

lacunar stroke and confluent  WM changes, diffusivity of normal appearing WM and 

lacunar infarct count were found to predict executive dysfunction while radial 

diffusivity (suggesting demyelination) rather than axial diffusivity ( suggesting axonal 

damage) was an important predictor of overall cognitive impairment (Lawrence et al., 

2013). 

Neuropathological correlates of WMH include myelin loss, axonal damage and gliosis 

(Kalaria and Ballard, 1999; Kalaria et al., 2004; Kalaria, 2012a). However, the exact 

mechanisms of cerebral injury leading to post - stroke cognitive impairment are not yet 

fully understood even though additive  interactions between vascular pathology 

(including WM disease) and neurodegenerative pathology are increasingly substantiated 

(Haight et al., 2013; Kalaria and Ihara, 2013). The molecular mechanisms underlying 

WM disease are complex, but there is a clear demonstration of the role of hypoxia, 

immune modulation (such as activation of glial cells), apoptosis, impaired regulation of 

ion imbalances across membranes and mitochondrial dysfunction resulting in 

demyelination and/or axonal damage (Pantoni and Garcia, 1995; Fernando et al., 2004; 

Fernando et al., 2006; Simpson et al., 2007a; Simpson et al., 2007b; Simpson et al., 

2009). Ischaemic demyelination is a major pathophysiological mechanism but the role 

of axonal degeneration is not very clear yet (Ihara et al., 2010b; Horsburgh et al., 2011).  

Neuroinflammation characterized by microglial and astrocytic activation is believed to 

contribute to the pathogenesis of dementing disorders. For instance, there is robust 

evidence from neuropathological and neuroimaging studies using Pittsburgh Compound 

B (PIB) showing the activation of microglia by the presence and accumulation of 

amyloid fibrils (Cagnin et al., 2001; Edison et al., 2008). In studies examining the 

preservation of cognitive functions despite high amyloid burden, compensatory 
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mechanisms of early cellular response associated with activation of glial cells and 

neuronal nuclear hypertrophy have also been implicated (Erten-Lyons et al., 2009). This 

has not being explored, particularly in the setting of stroke-related cognitive impairment 

in comparison with other dementing disorders. 

Neuroinflammation is associated with demyelination and the severity of WM changes 

quantified by different techniques in animal and human studies has been found to 

correlate with the level of degraded myelin basic protein (dMBP) in vascular dementia 

and models of chronic hypoperfusion (Whitehead et al., 2005; Whitehead et al., 2007; 

Ihara and Tomimoto, 2011).  Axonal damage has also been well studied in head injury, 

immune-mediated demyelinating brain disorders such as multiple sclerosis, viral and 

parasitic infections but is less well studied in dementing disorders (Medana and Esiri, 

2003). Axonal damage may be quantified by measurements of proteins transported by 

axonal transport such as the amyloid precursor protein (APP) (Akiguchi et al., 2004; 

Buttner et al., 2006) as well as the neurofilament protein SMI 32 (Lindner et al., 2009; 

Craggs et al., 2013).  

The objective of the study described in this chapter was to investigate the contribution 

of microglial and astrocytic activation, demyelination and axonal damage to the 

pathobiology of post-stroke cognitive dysfunction. We hypothesized that markers of 

glial activation, demyelination and axonal damage will be differentially expressed in the 

WM of PSND and PSD compared to AD and controls. 

 

7.2. Methods  

 

7.2.1. Subjects  
 

Forty seven subjects consisting of twelve subjects with post-stroke dementia (PSD), 

twelve subjects with stroke but no dementia (PSND), twelve subjects with Alzheimer’s 

disease (AD) and eleven controls were assessed in the study. Subjects selected Table 7.1 

provides details of the demographic, cognitive and pathological characteristics of the 

subjects. There were no significant differences in the age (p = 0.786), gender 

distribution (p = 0.493), post-mortem delay (p = 0.902) and length of fixation of tissues 

(p = 0.589). Autopsies were performed between 5 and 67 hours after death and brains 

were fixed for between 2 and 32 weeks. Subjects with as short fixation period as 
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possible ( < 24 weeks)were chosen for this study from the bigger cohort described in 

Section 5.2.1.The CogFAST Study and ancillary studies had ethical approval from the 

local Newcastle Ethical committees and participants gave written consent to brain tissue 

donation. Use of brain tissue was also approved by the local Ethical committees and the 

committee of the Newcastle Brain Tissue Resource (NBTR). 

 

Variable 

                                      Clinical Diagnosis 

Control PSND PSD AD p –value 

Number 11 12 12 12  

Age (years) 82.7 + 9.9 84.3 + 5.2 85.8  + 6.7 84.5 + 5.9 0.786 

Gender: n (% F)     6 (54.5) 5 (41.7) 5 (41.7) 7 (58.3) 0.493* 

PM delay (hours) 22.9 + 6.8 22.7 + 6.8 21.4 + 7.8 24.2 + 2.8 0.902 

Fixation (weeks) 9.2 + 4.1 10.4 + 5.7  9.4 + 6.0 7.3 + 6.3 0.589 

CAMCOG total  ND 91.5 + 5.2 53.4 + 13.5 ND < 0.001
+
 

CAMCOG exec  ND 15.9 + 4.0 5.5 + 4.8 ND < 0.001
+
 

CAMCOG mem  ND 21.50 + 2.6 9.3 + 7.5 ND < 0.001
+
 

Braak Stage 1.8 + 1.0 2.3 + 0.9 2.9 + 1.6 5.4 + 0.8 < 0.001 

CERAD score 0.2 + 0.4 1.2 + 0.8 1.4 + 1.1 2.5 + 1.2 < 0.001 

Vasc score - fron 2.7 + 0.3 4.3 + 0.8 4.6 + 1.1 2.2 + 0.3 < 0.001 

Vasc score – 

temp 

2.3 + 0.2 3.3 + 1.5 3..4 + 1.2  2.1 + 0.2 0.137 

 

Table 7.1: Demographic, cognitive and pathological characteristics of the subjects, *chi - 

square test; + students’t – test; all others ANOVA. Subjects do not vary significantly with age, 

gender, post – mortem delay or length of fixation period. CAMCOG = Cambridge Cognitive 

Examination; CERAD = Consortium to Establish a Registry for Alzheimer’s disease; ND = No 

data available; Vasc score – fron = Vascular Score – frontal; Vasc score – temp = Vascular 

score temporal. 

 

7.2.2. Neuropathological examination  

 

Frontal lobe sections at the level of the olfactory bulbs (corresponding to coronal levels 

4 - 6) and temporal lobe sections at the level of the anterior hippocampus 

(corresponding to coronal levels 18 – 20) were selected from the Newcastle Brain Map 

(Perry and Oakley, 1993). Formalin fixed paraffin blocks [frontal and temporal] were 

retrieved from the NBTR and processed as described in Chapter 2. Haematoxylin and 

Eosin (H & E) and Luxol Fast Blue (LFB) stains were used to evaluate general 

neuropathologic changes and WM changes in accordance with standard protocol 

developed by our group (Kalaria et al., 2004; Deramecourt et al., 2012). 
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7.2.3. Quantitative immunohistochemistry 

 

Ten micron tissue sections obtained from the frontal and temporal blocks were 

immunostained with primary antibodies to microglia (CD68, 1: 400, Monoclonal, 

PGMI), astrocytes (GFAP, 1 : 4000, Polyclonal, Dako), anti - amyloid precursor protein 

clone 22C11(APP, 1: 2000, Monoclonal, Chemicon) anti – nonphosphorylated  

neurofilament H (anti - SMI -32, 1: 1000,Covance, CA, USA) and degraded myelin 

(dMBP, 1: 2000, Polyclonal, AB5864)  as described in Chapter 2. To minimize 

variability of immunohistochemical staining quality, control sections were included in 

assays, and experiments were run in duplicates for each marker by the same team 

(investigator assisted by technicians) and using freshly prepared buffer solutions and 

tinctorial stains. Sections were further counterstained with haematoxylin following the 

assays of CD68, GFAP and dMBP to enhance identification of neuronal and glial 

cellular structures. Sections were numbered randomly from 1 – 50 and then analysed 

blind to the diagnoses of the cases. 

 

7.2.3.1 Quantification of glial cellular activation 

Microglia and astrocytic activation were quantified by a combination of two 

approaches:  [a] determination of percent area of region of interest, integrated optical 

density and derived total immunoreactivity using the Image Pro Plus (Version 4.0; 

Media Cybernetics; Silver Springs, MD, USA).  [b]determination of glial (microglia 

and astrocytes) cellular count per unit area. 

Images of 14 – 20 randomly selected regions of interest (ROI) within the WM of frontal 

and temporal sections were captured with a Zeiss Axioplan 2 research grade microscope 

coupled to an Infinity 2 camera at X10 magnification. Using the software Image Pro-

Plus 4.0 (Media Cybernetics, Silver Spring, MD, USA), the images were analyzed using 

histogram-based analysis and obtaining the variables: per area, a measure of the number 

of pixels stained within the area of interest (AOI) and expressed as a percentage. The 

integrated optical density (IOD) was also determined, and the mean total 

immunoreactivity (IR) derived as described in Chapter 2.For determination of glial 

cellular number per area, a grid of 0.5mm
2 

area was placed randomly over the ROI of 
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five random images. The numbers of cell bodies of microglia and astrocytes 

respectively, were counted and summed up for each case. 

 

7.2.3.2   Assessment of White Matter Severity  

 

7.2.3.2.1. White Matter Rating Scale  

  A semi-quantitative WM rating scale [0 -3] (Deramecourt et al., 2012; Smallwood et 

al., 2012) was used to assess severity of WM damage by examining H & E and LFB 

stained sections  using the  Zeiss Axioplan 2 research grade microscope at X 5 and X 10 

magnification. This was then correlated with the Myelin Index. On this scale, 0 = 

normal, 1 – mild, 2 = moderate and 3 = severe (Appendix 7.1) 

 

7.2.3.2.2. Myelin Index  

The Myelin Index was determined as a measure of normality of myelin. To determine 

the myelin index, images of sections stained with LFB were taken and converted into 

monochrome images and analysed using the gray scale of Image Pro Plus as follows. 

The WM was outlined manually using the semi-automatic trace tool taking care to 

exclude cortical tissue or areas of infarcted brain tissue. The lower and upper range of 

grey values within the entire WM was determined corresponding to the staining 

intensity which normally fell within the range 0 – white and 255 – black. This range of 

grey levels was divided up into four quartiles and the median grey level – a measure of 

staining intensity - value for each quartile further determined. The percentage area of 

each quartile was also determined and multiplied by the median grey level for that 

quartile. The sum total of this product for each of the four quartiles gave the total 

myelin index. This was an adaptation of the method described previously (Ihara et al., 

2010a)(Appendix7.2) 
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7.2.3.3. Semi-quantitative rating of dMBP immunoreactivity. 

Degraded myelin basic protein (dMBP) immunoreactivity was determined semi – 

quantitatively on a 4 – point Likert scale where 0 = none; 1 - mild; 2 = moderate and 3 = 

severe (Appendix 7. 3). 

7.2.3.4. Assessment of Axonal damage  

Axonal damage was assessed by semi-quantitative rating of two markers on a 4 – point  

Likert scale where 0 = none; 1  - mild; 2  = moderate  and 3 = severe (Appendix 7. 4). 

Amyloid Precursor Protein (APP) is a transported through axonal transport and tends to 

accumulate in conditions where there is compromise of axonal transport. It’s 

particularly useful as a marker of acute axonal damage (Hortobagyi et al., 2007). SMI -

32 is a non - phosphorylated neurofilament protein that is expressed by large pyramidal 

neurones. It is also found in association and commissural fibers which connect different 

cortical brain areas together. It has been described as useful marker of chronic axonal 

degeneration (Lindner et al., 2009). 

 

7.2.3.5. Vascular score  

Vascular score was determined for all groups according to the previously described 

methods (Deramecourt et al., 2012).  

 

7.2.4. Statistical analysis 

 

Statistical analysis was carried out using the IBM SPSS software (version 19.0). The 

Shapiro – Wilk Test was used to establish normality of data. Comparisons across groups 

were done using parametric tests (ANOVA for group means and Tukey post –hoc 

analysis for between – group differences) non- parametric tests Kruska – Wallis and  

Mann – Whitney U tests)  for non –normal distribution. The relationship between 

myelin index (MI) and WM severity score, glial markers and axonal markers and 

demographic, cognitive and pathological variables were assessed using Spearman’s 

correlation (rho). 
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7.3. Results 

 

We found that the immunoreactivities of the selected markers were expectedly localised 

in cells and axonal structures as expected (Figure 7.1).   

 

7.3.1. Glial Cell Markers 

 

7.3.1.1 CD 68 

The results showed normal distribution by Shapiro – Wilk Test.  CD68 

immunoreactivity (IR) was not significantly associated with age, postmortem delay and 

length of fixation across the groups in both frontal and temporal WM (p > 0.05). In the 

frontal WM, CD68 immunoreactivity was relatively higher in the AD and PSD groups 

compared to the PSND and control groups, although the difference did not attain 

statistical significance (p = 0.129, ANOVA)(Fig 7.2a) . However, in the temporal WM, 

there was significant variation in the CD68 per area (p = 0.031), integrated optical 

density,IOD (p = 0.019),  total immunoreactivity, IR (p = 0.045) and microglia cell 

count per 0.5mm
2 

area of tissue
 
(p = 0.002) (ANOVA). Furthermore, post- hoc Tukey’s 

test showed that CD68 IR was significantly higher in PSD compared to the control 

group (p = 0.019) while microglial cell count was significantly higher in the PSD group 

compared to other groups (p < 0.05) (Fig 7.2b and c). CD68 immunoreactivity showed 

significant positive correlation between the frontal and temporal WM (r = 0.497, p < 

0.001). Also, there were significant positive correlation with CERAD score (r = 0.480, p 

= 0.020) and negative correlations with CAMCOG total (r = - 0.562, p = 0.024) and 

CAMCOG memory (r = - 0.516, p = 0.041) scores. 

We computed the statistical power of this sub – sample of 47 cases of four groups using 

the G*Power software (Faul et al, 2007).  Given a significance level, α = 0.05 and 

assuming a moderate effect size Cohen’s d = 0.4, 4 sub - groups and 3 degrees of 

freedom, the computed power (1 – β) = 0.6569. 
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C 

PSND 

PSD 

AD 

APP cd68 GFAP dMBP SMI32 

Bar: 100µm 

Figure 7.1.  Representative images showing variation of APP, cd68, GFAP, dMBP and SMI32 immunostaining across different 

groups  :   C,PSND, PSD, and AD.  There is relative higher expression of APP, cd68, GFAP and SMI32 in PSD and AD compared to C 

and PSND 

 

PSND.  
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Figure 7. 2. Bar graph shows CD68 immunoreactivity in the frontal [A] and temporal [B] white 

matter and [C] microglial count per 0.5 mm
2 

in the temporal white matter in Control, PSND, PSD 

and AD  groups. SPSS generated p values using ANOVA, p = 0.045 [B] and p = 0.002 [C].      

post – hoc Tukey’s test was used to compare means of each group. *p  < 0.05. Bars show ± 2 

SEM. 
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7.3.1.2 GFAP 

GFAP dataset showed normal distribution and immunoreactivity measures (per area, 

IOD and total IR) were not significantly associated with age and post – mortem delay 

but were affected by fixation period; GFAP frontal PA (r = - 0.431; p = 0.005). The 

immunoreactivity was higher in AD and PSD compared to PSND and control in the 

frontal WM (p = 0.034, ANOVA). Tukey’s post – hoc analysis showed that GFAP 

frontal IR was significantly lower in PSND (p = 0.027) (Fig 7.3a). There were no 

differences across groups in the temporal WM. 

                 

 

Figure 7. 3a. Bar graph showing mean  GFAP  immunoreactivity  in[A]  frontal  and  [B] 

temporal white matter  in  Control, PSND, PSD and AD, respectively. SPSS generated p values 

using ANOVA (p = 0. 034) in the frontal WM. post - hoc Tukey’s test   was used to compare 

means of each group. *p  <  0.05. Bars show ± 2 SEM. 
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 GFAP count per 0.5 mm
2
 correlated positively with GFAP staining per unit area (Fig 7. 

3b). A significant positive correlation was also found between frontal and temporal 

GFAP IR (r = 0.500, p = 0.003).  GFAP immunoreactivity correlated positively with 

WM neuritic plaque (r = 0.398, p = 0.013). GFAP staining intensity measures correlated 

negatively with cognitive scores in both frontal [CAMCOG total (r = - 0.624, p = 0.010) 

CAMCOG executive (r = - 0.601, p = 0.014) and temporal WM (r = - 0.616, p = 

0.011)]. 

 

7.3.2. Assessment of White Matter Severity 

 

  White matter severity score showed non - normal distribution (Shapiro – Wilk Test). 

Figures 7.4 shows  the distribution of WM severity across disease groups in both frontal 

(a) and temporal (b) WM respectively, highlighting statistically significant lower WM 

scores in the AD and control groups in the frontal WM (p = 0.002, Kruska - Wallis 

Figure 7. 3b. Scatter plot showing relationship between astrocyte count 

per 0.5 mm
2 

and GFAP immunoreactivity  percentage area. *p <  0.001. 
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Test) but not in the temporal WM (p = 0.240, Kruska - Wallis Test). 

 

 

 

 

 

Figure 7. 4. Bar graph shows white matter score in [A] frontal white matter and [B] 

temporal white matter in Control, PSND, PSD and AD groups. SPSS generated p values 

using Kruskal – Wallis Test (p = 0. 002) for the frontal WM. No significant difference 

across groups in temporal WM. Bars show ±2 SEM * Mann Whitney U test was used to 

compare means of each group. *p < 0.05. 
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The WM severity score correlated positively with the vascular score (ρ = 0.674, p < 

0.001) (Table 7.1) but inversely with the Myelin Index (ρ = - 0.750, p <0.001); higher 

Myelin Index (MI) meaning better preserved myelin (Figure 7.5a) since MI in this 

context is a measure of normal myelin. Distribution of (MI) across the frontal and 

temporal WM is shown in Figure 7.5b. Myelin Index was relatively higher in the 

control and AD groups compared to PSND and PSD groups in the frontal WM, and the 

variation showed a trend towards significance (p = 0.069, Kruskal – Wallis Test). The 

difference in myelin index between controls and the pathological groups (AD, PSND, 

PSD) was surprisingly lower than expected in both frontal and temporal WM, possibly 

due to a significant amount of white matter disease in the control group.  

 

 

 

 

 

 

Figure 7.5a. Correlation between Myelin Index (MI) and WM severity rating  
(rho = - 0.745, p <0.001). The figure shows an inverse relationship with higher WM 

severity scores corresponding to lower MI scores. The WM score is graded 0 = normal; 1 

– mild; 2 – moderate and 3 = severe (Appendix 7.1) 
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Figure 7.5b. Bar graph shows  mean myelin index(MI)  in [A] frontal  white matter 

and [B] temporal white matter  in Control, PSND, PSD and AD groups. SPSS 

generated   p values using  Kruskal  – Wallis Test (p = 0. 069) for frontal WM.  Bars 

show ± 2 SEM.  
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7.3.3. degraded Myelin Basic Protein (dMBP) 

 

Degraded myelin basic protein assessed semi – quantitatively showed non – normal 

distribution and varied significantly across the groups in the frontal WM (p = 0.014, 

Kruska – Wallis Test). Immunoreactivity was significantly different between PSND and 

control (p = 0.003, Mann – Whitney U Test), but not different from PSD (p = 0.069) 

and AD (p = 0.332, Mann – Whitney U Test) (Figure 7.6). 

 

  

Figure 7.6: Bar graph shows mean dMBP score in [A] frontal   and [B] temporal  

WM  in  Control, PSND, PSD and AD. SPSS generated p values using Kruskal – Wallis 

Test (p = 0. 014) for the frontal WM.  Mann Whitney U test was used to compare means 

of each group. *p < 0.05. Bars show ± 2 SEM * 
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However, no significant variations were detected across disease groups in the temporal 

WM (p = 0.367, Kruskal – Wallis Test) (Figure 7.6b). Degraded MBP showed 

significant positive correlation with the axonal markers - APP, microglial marker - CD 

68 and myelin index (Table 7.2). 

 

7.3.4. Axonal damage 

 

Axonal damage in both frontal and temporal MW was assessed with two different 

markers, APP and SMI 32.   Although the distribution of APP immunoreactivity did not 

differ significantly across disease groups in both frontal and temporal WM (p > 0.05), in 

the frontal WM APP IR showed an increase in the PSD group compared to the PSND 

and control group (Fig 7.8). There was no correlation with age, post – mortem delay or 

length of fixation period (p > 0.05). However, APP demonstrated significant correlation 

with CD68 and dMBP (Table 7.2).  

 

 

 

Figure 7.7: Bar graph shows mean APP score in the frontal white matter 
in AD, PSD, PSND and control groups. Bars show ± 2 SEM.  
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S MI – 32 demonstrated a significant variation in immunoreactivity in the temporal WM 

(p = 0.039, Kruska –Wallis Test) but not in the frontal WM. (Figure 7.8a and b). The IR 

was significantly higher in the PSD than in the control (p = 0.013, Mann Whitney U 

Test) and AD (p = 0.013, Mann Whitney U Test) groups, but not significantly different 

from the PSND group (p = 0.244, Mann Whitney U Test). However, there were no 

significant correlations with age, post –mortem delay or length of fixation period. There 

was also no correlation with cognitive or pathologic measures. 

           

 

 

Figure 7. 8: Bar graph shows  mean  SMI32 score  in [A] frontal and [B]  

temporal  WM in  Control, PSND, PSD and AD. SPSS generated p values using  

Kruskal – Wallis Test  (p = 0. 039) for temporal  WM  Bars show ±2 SEM * 
Mann Whitney U test was used to compare means of each group*p < 0.05. 
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7.3.5. Double Fluorescent confocal imaging 

 

Confocal images of dual staining of Glial Fibrillary Acidic Protein (GFAP) with 

Amyloid Precursor Protein (APP) in the frontal white matter show a predominant GFAP 

staining of astrocytes with higher immunostaining in  AD and PSD compared to PSND 

and control group with weak APP staining in the  background (Figure 7.9) 
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7.3.6. Correlational analysis 

 

Correlational analysis of all the markers together (Table 7.2) indicated that CD68 

showed significant positive association with dMBP and APP while GFAP showed 

significant association with dMBP, APP and a trend with SMI32. Myelin Index was 

significantly associated with WM score and dMBP, and also showed a trend with APP 

while dMBP, in addition, showed significant association with APP and a trend with 

SMI32.  APP and SMI32 both showed a trend of association with each other as well as 

with the markers of WM severity. 

Table 7.3 shows the correlation analysis of cognitive scores with the two glial markers 

used in the study: CD 68 and GFAP. The table shows that both markers were 

significantly inversely associated with the measures of global cognitive functioning as 

well as measures of specific domains of memory and executive function. There were no 

significant association with the markers of demyelination, axonal damage and WM 

severity. 
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7.4. Discussion 

 

The objective of this chapter was to evaluate microglial and astrocytic activation, 

demyelination, axonal damage and severity of WM damage in post – stroke groups 

compared to AD subjects and normal controls. We hypothesized that markers of glial 

activation, demyelination and axonal damage would be differentially expressed in the 

WM of non – demented and demented post - stroke subjects compared with the control 

and AD groups. 

 We found significantly higher microglial activity in the temporal cortex of the PSD 

group compared to others, higher astrocytic activity in PSD and AD groups in the 

frontal cortex and higher WM severity in the post - stroke groups (PSND and PSD). We 

found no significant difference in the marker of acute axonal damage (APP) across 

groups whereas the marker of chronic axonal damage (SMI 32) showed differential 

expression in the temporal WM being significantly higher in the PSD group compared 

to others. Furthermore, there were significant positive associations of glial markers with 

the markers of demyelination and axonal damage, and inverse correlation with the 

metrics of global cognitive functioning, executive function and memory. Surprisingly, 

the control group despite being cognitively normal, demonstrated a relatively high level 

of WM pathology comparable to findings in the AD group. 

Significantly higher expression of microglial (CD68) and astrocytic (GFAP) activation 

in PSD compared to PSND but largely similar myelin index and white matter severity 

score between PSD and PSND.  Whereas APP expression was similar between PSND 

and PSD, SMI 32 expression was significantly higher in PSD than PSND. The 

expression of neuroinflammatory markers (CD68, GFAP), axonal markers (APP) in 

expression in AD was largely similar to PSD, while expression in controls was lower 

than in PSND. 

Our finding of significantly increased astrocytic and microglial activity with associated 

worse cognitive performance particularly in the PSD group may suggest a higher degree 

of neuroinflammation with accentuated cerebral injury leading to faster progression of 

cognitive decline to dementia status. This is consistent with previous findings in 

different models of chronic cerebral hypoperfusion with cognitive deficits associated 

with blood brain barrier dysfunction and activated glial response, especially the 
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microglia (Sloane et al., 1999; Wakita et al., 2002; Shibata et al., 2004; Whitehead et 

al., 2007; Coltman et al., 2011). Studies in man have also found microglial activation in 

the ageing WM (Fernando et al., 2006; Simpson et al., 2007a; Simpson et al., 

2007b)(Simpson et al., 2007a, 2007b; Fernando et al.,2006), AD (Englund, 1998; 

Sjobeck and Englund, 2003; Edison et al., 2008) and even systemic inflammatory state 

such as sepsis (Lemstra et al., 2007).   

Glial cells particularly, microglia, are at the centre of neuroinflammation and thus play 

important roles in the pathogenesis WM damage (Pantoni and Garcia, 1995; Pantoni, 

2010). They are also intricately involved in the aetiopathogenesis of stroke (Moskowitz 

et al., 2010), AD and vascular cognitive impairment (Levine and Langa, 2011; Zotova 

et al., 2011). In the healthy brain, microglia are involved in the process of pruning 

synapses and remodeling circuits and networks during brain development (Hughes, 

2012) (Tremblay, 2011; Tremblay and Majewska, 2011)  while in the adult brain 

microglia phagocytose apoptotic debris or breakdown products  . In an attempt to clear 

debris from the brain, microglia also release pro - inflammatory mediators such as 

tumour necrosis factor, interleukins, nitric oxide which secondarily result in 

compromise of the blood brain barrier and damage to axons and their myelin sheaths 

(Sloane et al., 1999; Edison et al., 2011; Singh et al., 2013).  

Different neuroinflammatory phenotypes of microglia have been described in AD 

(Colton et al., 2006). The M1 phenotype is associated with inflammatory cytokines that 

cause damage while the M2 phenotype is associated with wound repair (McCoy et al., 

2006). These have been found to influence the severity of pathology, natural history and 

therapeutic responsiveness in a cohort of early AD (Sudduth et al., 2013). There is a 

distinct possibility that this phenotypic difference may have influenced the trajectory of 

cognition after stroke in our cohort resulting in higher neuroinflammation in the PSD 

group.  

Myelin score was used as an index of ‘normality’ in this study. The significant negative 

correlation between the myelin index and the semi – quantitative WM score in our 

cohort suggests good concurrent validity of the two measures of white abnormality 

utilized in our study in agreement with previous findings (Sjobeck et al., 2005; Ihara et 

al., 2010b). Myelin index also showed significant correlation with the expression of 
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degraded myelin basic protein in agreement with previous findings (Akiguchi et al., 

2004; Yamamoto et al., 2009; Ihara et al., 2010a) 

Axonal damage may be a consequence of ischemia – or immune – induced 

neuroinflammation  or may occur secondary to cortical neurodegeneration (Medana and 

Esiri, 2003; Kalaria and Ihara, 2013).  In agreement with previous reports, we found 

higher chronic axonal damage in the vascular than non – vascular category of subjects 

(Craggs et al., 2013). Previous literature has shown worse axonal damage in frontal 

areas in comparison with temporal areas`, but in our study we found relatively similar 

level of axonal damage in the two areas. The heterogeneity of our cohort and a distinct 

possibility of mixed vascular and degenerative aetiology of the axonal damage might 

offer an explanation for this. The temporal location of this degenerative process is in 

tandem with recent understanding that dissociative processes consisting of predominant 

frontal vascular and temporoparietal degenerative pathways might additively drive 

dementing processes (Kalaria and Ihara, 2013) (Haight et al., 2013). Increased axonal 

damage in the temporal WM in the PSD group might thus have contributed to their 

worse performance in episodic memory compared to the PSND group.  

We found a robust association between glial activation, degraded myelin and acute 

axonal injury (APP). This would support a central role for glial cells (microglia and 

astrocytes) indicative of neuroinflammation, and possible co-occurrence of 

demyelination and acute axonal damage in the pathogenesis of WM disease.  While 

hypoxia from chronic hypoperfusion secondary to small vessel disease initiates the 

process of ischaemic demyelination, activated microglia are soon chemoattracted to the 

site to phagocytose the degraded myelin. The inflammatory mediators released by the 

microglia in the process of tissue repair might then worsen the demyelination and 

further damage the axons, especially depending on the phenotype of the glial cells 

(Sudduth et al., 2013).  The association between microglial activation and axonal 

damage is further corroborated by a recent finding of microglial nodules associated with 

degenerating axons in the WM of patients with early multiple sclerosis (Singh et al., 

2013).   These findings are further substantiated  by a recent DTI study in a cohort of 

subjects with small vessel disease where evidence was found for co-existing 

demyelination and axonal damage predicting executive dysfunction (Lawrence et al., 

2013). 
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Unexpectedly, we found a level of WM pathology in the control group comparable to 

that in the AD group. Although ageing alone is a significant risk factor for WM 

pathology (Gunning-Dixon et al., 2009; Vernooij et al., 2009) (Kennedy and Raz, 

2009a; Vernooij et al., 2009) the level found in this control group may have exceeded 

the threshold atrributable to ageing alone. This begs the question of how ‘normal’ this 

group really was. Recent attention is being focused on the subject of ‘normal controls’ 

which are meant to be a reference group providing normative data that are used as 

a‘reference range’ to a study population. At least one third of normal control samples 

may have moderate to severe WM hyperintensities  (Zylberstein et al., 2009) (Debette 

and Markus, 2010; Aine et al., 2013).  

There are distinct possibilities that these subjects may have harboured, while alive, sub-

clinical vascular disorders that did not produce overt symptoms and signs and thus 

attract specific diagnostic labels in the absence of significant clinical expression of 

disease. It is also possible that this WM pathology did not produce overt cognitive 

symptoms and deficits because of significant ‘cognitive reserve’ in the individuals that 

enabled them to maintain cognition inspite of significant brain pathology (Stern, 2009; 

Valenzuela et al., 2012). However, it is also plausible that these individuals were not 

frequent hospital attenders during their life time and never really had rigorous 

diagnostic and cognitive profiling that could have picked abnormalities of clinical 

significance. 

In all, findings in this study suggest that neuroinflammation  indicated by glial 

activation, ischemia – induced  demyelination and axonal damage are important cellular 

and tissue substrates of WM pathology and may contribute to the differential trajectory 

of cognition and speed of progress to dementia in post - stroke survivors. And, given 

that neuroimaging findings in the Nigerian African cohort shared a great degree of 

similarity with prior neuroimaging findings in the Newcastle cohort, it is intuitive to 

anticipate that similar neuropathologic findings will be unmasked in the Nigerian cohort 

in the process of time.  

The limitations of the present study include: semi - quantitative assessment of dMBP 

and axonal markers may have been less sensitive than quantitative assessments in 

detecting significant differences across groups, and of correlations with other metrics of 

WM pathology. Furthermore, the size of the sample affected the statistical power to 
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detect significant changes.  Hence, the current findings require external validation in 

independent bigger samples of a different cohort. In addition we acknowledge the 

potential influence of multiple pairwise comparisons and the impact on our conclusions 

Future work to take this work forward will include: assay of blood brain barrier markers 

to examine their roles, assay for hypoxia - inducible factors (HIF) to determine if there 

is a differential regulation between PSD and PSND groups and determination of the 

neuroinflammatory phenotypes of the cases and groups.  

7.5. Chapter Summary 

 

Marker 

                      Neuropathological Categories 

   Control     PSND     PSD      AD 

GFAP                                  

CD68                                      

Myelin Index                                     

WM severity                                    

APP                                 

SMI - 32                                     

 

Table 7.4. Summary of findings on markers of neuroinflammation, 

demyelination and axonal damage in frontal and temporal white matter 

Annotation:  ( = little or no change;   = increase;   = moderate increase ;               

                       = decrease) 

 Correlations  

 Inter  - marker   correlations were significant  between : 

- CD68 and dMBP 

- CD68 and APP 

- GFAP and dMBP 

- GFAP and APP 

- WM score and Myelin Index 

- dMBP and Myelin Index 

- dMBP and APP 

 Correlation between markers and cognitive scores 

- CD68 showed significant negative correlation with CAMCOG 

Total, Memory and Executive scores 

- GFAP showed significant negative correlation with  MMSE score, CAMCOG 

Executive and Memory scores 
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Chapter 8. General Discussion 

 

8.1. Introduction 

 

According to  the Global Burden of Disease (GBD)  Study 2010  report on the global 

and regional burden of stroke  during the period 1990 – 2010, stroke remains the second 

leading cause of death  and the leading cause of disability worldwide (Feigin et al., 

2013). The report further highlighted the absolute increase in the number of people with 

first stroke (16.9 million), stroke survivors (33 million), disability – adjusted years 

(DALYs) lost to stroke (102 million) and stroke – related deaths (5.9 million) in 2010 

compared to previous years. This implies that the population of stroke survivors (33 

million) is quite close to that of people living with dementia (36 million) (Prince et al., 

2013) and similar to that of people living with HIV/AIDS (34 million) (http://www. 

niaid.nih.gov/topics /HIVAIDS/Understanding.  Nevertheless, there is disproportionate 

public inattention to stroke and other non – communicable disorders thus warranting 

their recent description as “a public health emergency in slow motion” by the Secretary 

General of the United Nations (Ban – Ki – Moon, 2011)(www.world-heart-federation.org 

). With the ageing of populations worldwide, more especially in the developing regions 

of the world and improvements in acute and rehabilitative stroke services, it is likely 

that the absolute number of stroke survivors will continue to rise. These individuals, 

their families and caregivers will necessarily have to contend with the long term 

consequences of stroke, especially cognitive impairment and dementia (Kalaria et al., 

2008; Pendlebury and Rothwell, 2009a; Ogunniyi and Akinyemi, 2010). 

The cognitive consequences of stroke are of utmost concern to people affected by 

stroke.  In a recent Scottish survey among stroke survivors, carers of stroke survivors 

and providers of  stroke care services, the research question “What are the best ways to 

improve cognition after stroke ?” headed the list of  top ten research priorities relating 

to life after stroke (Pollock et al., 2012). Mitigating the cognitive sequelae of stroke 

requires a proper understanding of the burden and determinants as well as the 

mechanisms of causation in order to inform proper planning, policy formulation and 

development of new preventive and therapeutic interventions. This underscores the 

critical importance of this current study aimed at understanding the burden of post - 

stroke cognitive dysfunction, in a largely un – researched lower middle income sub – 

http://www/
http://www.world-heart-federation.org/
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Saharan African population  as well as the mechanisms underlying brain injury 

producing cognitive impairment after stroke.  

The primary aim of the project reported in this thesis was to establish a comparative 

cohort of Nigerian stroke survivors to investigate the profile and determinants of post – 

stroke vascular cognitive impairment (post – stroke VCI) and further explore the 

mechanisms of cerebral injury and cognitive impairment following stroke in post – 

mortem brains collected from the Newcastle cohort who had come to autopsy.    In 

Chapter 3, we evaluated the frequency, pattern and determinants of post – stroke VCI in 

a cohort of Nigerian African stroke survivors while in Chapter 4, we examined the 

neuroimaging factors associated with post - stroke VCI in a sub – sample of the cohort. 

Recognizing that medial temporal atrophy also occured in Nigerian African stroke 

survivors who developed cognitive impairment, in Chapter 5, we examined 

hippocampal Alzheimer pathology in post – mortem brain tissue of subjects with post - 

stroke dementia compared with non – demented post – stroke subjects, other dementias 

and ageing controls. In Chapter 6, we examined the synaptic integrity of hippocampal 

neurons in post – stroke dementia compared with non – demented post – stroke subjects, 

ageing controls and AD while in Chapter 7, we examined frontal and temporal white 

matter changes in the demented and non – demented post – stroke cohort compared with 

AD and normal ageing controls.   

The main findings listed below are discussed in the light of extant literature in the 

sections that follow, and providing important implications for public health and future 

research. 

 Three months after stroke, there was a high frequency of VCI of 48.3% in a 

cohort of Nigerian African stroke survivors (39.9% had vCIND and 8.4% had 

PSD). Factors associated with post – stroke VCI include older age at baseline, 

female gender and lower educational attainment while pre – stroke moderate 

– heavy physical activity and daily fish intake were protective. 

 Medial temporal lobe atrophy (MTLA) was independently associated with 

post –stroke VCI at 3 months and also correlated significantly with cognitive 

performance and white matter hyperintensities (WMHs) in Nigerian African 

stroke survivors. 
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 Increased Alzheimer pathologic changes (especially β amyloid) occurred in post 

– stroke subjects relative to controls. However, amyloid and tau pathologies 

were differentially accumulated and showed weak association with ante – 

mortem cognitive performance suggesting that non – AD pathologic 

mechanisms may be primarily responsible for driving stroke – related cognitive 

impairment and differentiating PSND from PSD. We also found a possible 

influence of APOE Ɛ4 allele on the differential deposition of amyloid and tau in 

sub – regions of the hippocampus and entorhinal cortex. In contrast, SorL1, a 

neuronal sorting protein, appeared to serve a protective role in hippocampal 

CA2 neuronal cells in response to hypoxia. 

 Significant reduction in the expression of synaptic markers: vesicular 

glutamate transporter -1 (VGLUT - 1) and Drebrin in PSD and AD compared to 

control and PSND groups and positive correlation with cognitive performance 

scores. 

 Significantly higher microglial and astrocytic activation and axonal damage 

in the temporal and frontal white matter of PSD and AD groups compared to 

PSND; significant correlation of glial markers immunoreactivity with cognitive 

performance scores and inter – correlations among markers of 

neuroinflammation, demyelination and axonal damage. 

These findings, nonetheless, were subject to a few limitations: 

 The size of the Nigerian African sample analyzed for this preliminary report 

is modest although still found some associations. A bigger sample would 

probably have generated more robust associations with improved 

generalizability. 

 The neuroimaging sub – sample was also modest due to limitation of funds 

and MRI access, and this may also have influenced the statistical power of 

the study in the detection of significant associations and differences besides 

those that were reported. 

 Rating of WMHs in the neuroimaging study were performed semi – 

quantitatively because of the nature of images produced by the limited 

magnet strength of the available MRI machine hence volumetric analysis 

could not be performed on the images. Volumetric analysis might have 
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yielded more significant associations than that found with the semi – 

quantitative assessment.  

 Semi - quantitative assessment of axonal markers (APP and SMI 32) and 

demyelination marker (dMBP) might also have affected the robustness of 

their quantification and associations.  

The CogFAST – Nigeria Study however is expected to be continued with the aim to 

undertake more rigorous evaluation of genetic and lifestyle risk factors. Subsequently, 

reports are expected to involve larger samples with longer survival data similar to the 

Newcastle CogFAST study (Allan et al., 2011)). We also anticipate performing more 

brain MRI scans with stronger magnetic fields. This should facilitate more robust 

volumetric analysis and permit identification of novel associations.  

 

8.2. Post stroke VCI in the CogFAST - Nigeria cohort. 

 

Results from the Nigerian African cohort reveal a relatively high burden of post – stroke 

VCI. The frequency of  vCIND of 39.9 % at three months post – stroke obtained is 

comparable to findings from Sydney, Australia (39.4%) (Sachdev et al., 2004a); 

Chongqing, China (37.1%) (Zhou et al., 2005); Santiago, Chile (39.0%) (Delgado et al., 

2010) but  lower than 49.9 % from Korea (Yu et al., 2013), 55% from Lisbon, Portugal 

(Madureira et al., 2001) and 54.8% from Singapore (Dong et al., 2012).  

In all these studies, subjects were assessed between 3 and 6 months after stroke. 

However, the frequency of vCIND was much higher in subjects assessed sooner after 

stroke: such as 63.5 % in a mixed ancestry cohort assessed two weeks after stroke in 

Durban, South Africa (Hoffmann, 2001) and 72.4 % in a cohort assessed at 1 month 

after stroke in Maastricht, Netherlands (Rasquin et al., 2005a). The high frequency 

found in subjects assessed very early after stroke could reflect a true high frequency of 

early post - stroke vCIND (Pendlebury, 2009)  or cases with incompletely resolved post 

– stroke delirium (Desmond DW, 1996)(Desmond et al, 1996, (Kalaria and Mukaetova-

Ladinska, 2012),  so that lower rates reported at 3 months and later would then suggest 

an improvement over time or resolution of acute post – stroke delirium (Desmond DW, 

1996; Rasquin et al., 2005b; Rasquin et al., 2013). The rates were however lower in 

Newcastle, UK ranging from 24% (Stephens et al., 2004) to 32% (Ballard et al., 2002) 

as well as  in a previous study from Hong Kong, China (21.8%) (Tang et al., 2006). The 
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prevalence of cognitive impairment three months after stroke in the South London 

Stroke Register (SLSR) cohort using the MMSE is about 22% (Douiri et al., 2013b).  

Differences in populations, study designs, cut - off ages of the cohort, the cognitive 

assessment instrument and diagnostic criteria may offer explanations for the variations 

(Pendlebury and Rothwell, 2009a). Nonetheless, it is also plausible that lower rates in 

some studies may reflect true low prevalence as a result of inherent lower risk (genetic 

or epigenetic factors), protection from cognitive reserve (Stern, 2009) or low frequency 

of  acute post - stroke complications as a result of good acute and restorative stroke 

services (Hachinski et al., 2010; Norrving and Kissela, 2013) or some other yet 

unknown factors. On the other hand,  high rates as seen in the current study may reflect 

a genetic predisposition of blacks to post - stroke cognitive impairment, unhealthy 

lifestyles or poor healthcare systems incapable of providing effective acute and post- 

discharge rehabilitative services to stroke survivors (Norrving and Kissela, 2013). It is 

also possible that cultural and religious biases against orthodox management of stroke 

as previously documented in a previous survey of Nigerian hospital workers (Akinyemi 

et al., 2009) might have had an adverse effect on the uptake of appropriate stroke care 

with resultant impact on outcomes including cognitive functions. 

 Identification of stroke patients with vCIND at three months is of clinical significance. 

This stems from the fact it is possible to institute secondary prevention and long – term 

rehabilitative measures with the potential outcome of reversal of, or slowing further 

cognitive decline. In the Newcastle cohort, at least 50% of subjects experienced 

improvement in cognitive functioning at 15 – months follow up (Ballard et al., 2003a) 

and aggregate cardiovascular risk factor load predicted long term outcome of 

progression to dementia and/or death (Allan et al., 2011).  Secondary prevention has 

been shown to improve long – term cognitive outcome in the survivor cohort of the 

South London Stroke Registry (SLSR)(Douiri et al., 2013a) .  

This also has implications for the recent 5
th

 revision of the Diagnostic and Statistical 

Manual  (DSM – V) which now has two categories of ‘Major’ and ‘Minor’ 

Neurocognitive Disorders (American Psychiatric Association, 2013). Subjects with 

vCIND fall into the category of ‘Minor Neurocognitive Disorders’, a specific diagnostic 

category that will be well captured in clinical trials and treatment guidelines. The multi 

– domain pattern of impairment identified in this cohort possibly underscores the 
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sensitivity and robustness of the NINDS – CSN VCI Harmonization  Standards 

Neuropsychological Battery in detecting impairments in the multiple domains of 

executive function, memory, language and  visuospatial/ visuoconstructive function 

(Hachinski et al., 2006a) .  

Older age, female gender and low educational attainment were significant risk factors 

while pre – stroke physical activity and fish intake were protective factors identified in 

the cohort. As populations age and life expectancy grows in the developing regions of 

the world, the burden of ageing – associated disorders including stroke and dementia 

have been projected to grow(Prince et al., 2012; Feigin et al., 2013; Prince et al., 2013). 

This calls for planning, policy formulation and promotion of preventive interventions, 

especially in the LMIC regions that are now in epidemiologic transition (Yusuf et al., 

2001b; Yusuf et al., 2001a).  

Whereas age is a non – modifiable factor, educational attainment is a modifiable factor 

and surrogate of cognitive reserve (Satz et al., 1993; Stern, 2009; Satz et al., 2011) 

.Educational attainment has been found to protect against cognitive impairment in  MCI 

(Mortamais et al., 2013), AD (Stern, 2012) vascular dementia (Meng and D'Arcy, 

2012), CADASIL (Zieren et al., 2013), HIV neurocognitive disorder (Manly et al., 

2011) MS (Sumowski et al., 2013b), Parkinson’s disease (Armstrong et al., 2012), 

traumatic brain injury (Sumowski et al., 2013a) etc. Educational attainment together 

with occupational complexity and social engagement constitute the paradigm ‘Cognitive 

Lifestyle’ (Valenzuela and Sachdev, 2006; Valenzuela et al., 2011; Valenzuela et al., 

2012) which has been associated with a reduced long – term risk of dementia 

(Valenzuela et al., 2011) and found to be associated with neurotrophic changes in the 

prefrontal lobe consistent with a compensatory process (Valenzuela et al., 2012). 

 In this current study, educational attainment significantly stratified stroke survivors into 

cognitive categories three months after stroke suggesting that education and related 

cognitive reserve might have provided some compensation against vascular brain injury 

to preserve cognitive functioning in the cognitively normal group compared to the 

impaired group.  It is not clear, however, how effective cognitive stimulation therapy is 

in improving cognitive function if applied after stroke. In recent Cochrane reviews, 

cognitive stimulation training and cognitive rehabilitation have not provided sufficient 
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evidence of efficacy in randomized controlled trials in subjects with mild to moderate 

AD and vascular dementia (Woods et al., 2012; Bahar-Fuchs et al., 2013). 

 Physical activity promotes brain health by enhancing cerebral blood flow and the 

production of growth factors (Dishman et al., 2006; Cotman and Berchtold, 2007; 

Cotman et al., 2007). Our study found pre – stroke moderate - to - heavy physical 

exercise to be protective against cognitive impairment at three months after stroke. 

There are also suggestions that physical activity after stroke may impact positively on 

cognition (Quaney et al., 2009), although a recent meta – analysis of randomized 

control trials of the effect of exercise training on  cognitive function in older adults with 

mild cognitive impairment found limited evidence of beneficial effect of exercise (Gates 

et al., 2013). In a recent study of physical activity, sedentary behavior and metabolic 

control among stroke survivors, reduced physical activity associated with poorer 

metabolic control was reported in a cohort of stroke survivors in the immediate post – 

stroke period up to 6 months (Moore et al., 2013). There was however a positive impact 

of interventional exercise therapy on metabolic profile and cerebral blood flow in the 

same cohort over a period of twenty weeks (Moore, 2013). 

The positive impact of dietary intake of fish on cardiovascular and brain health is 

supported by numerous evidence in literature (Takata et al., 2013; Virtanen et al., 2013) 

. Although, we found a positive association between pre – stroke fish intake and 

protection against post-stroke cognitive impairment in this study, it is needful to further 

characterize this protection by teasing out the specific species, quantities and modes of 

preparation. The influence of fruits and vegetable also require further exploration with a 

bigger sample of stroke patients. 

Medial temporal lobe atrophy (MTLA) and white matter hyperintensities (WMHs)  are 

important imaging biomarkers of cognitive decline  in cognitive ageing, 

neurodegenerative and vascular dementias (Knopman, 2007; Mills et al., 2007) The 

predictive role of MTLA in stratifying  cognitive categories of stroke survivors and 

predicting cognitive decline, dementia and death had  been shown in the Newcastle 

cohort (Firbank et al., 2012). Although pre - stroke cognitive decline has been 

associated with pre – existing Alzheimer disease in some studies (Henon et al., 1998) 

we found no correlation between pre – stroke cognitive decline and MTLA in the 

Nigerian cohort although the small sample size of the sub - cohort that was imaged may 
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be a factor. Nevertheless, WMHs showed significant correlation with measures of 

executive dysfunction and memory as previously documented in the Newcastle cohort 

(Burton et al., 2003; Burton et al., 2004) and by others (Jokinen et al., 2005). More 

recent studies in other post - stroke survivor cohorts utilizing diffusion tensor imaging 

(DTI) in post – stroke cohorts have provided more detailed findings of changes in mean 

diffusivity and generalized fractional anisotropy particularly in frontal white matter (Jin 

Thong et al., 2013; Lawrence et al., 2013).These findings  provided some mechanistic  

insight regarding the relative contributions of demyelination and axonal damage to the 

neurobiology of WM changes in post - stroke subjects. The combination of these two 

important neuroimaging findings (MTLA and WMHs) provided a conceptual 

framework for the subsequent laboratory studies we undertook on hippocampal AD 

pathology and on the role  of glial activation, demyelination and axonal damage in 

frontal and temporal WM of  representative samples of brain tissue from subjects in the 

Newcastle cohort who had come to autopsy in order to establish mechanistic differences 

between demented and non – demented post – stroke subjects. 

 

8.3 Are there mechanistic differences between the non – demented (PSND) and 

demented (PSD) post – stroke laboratory cohort? 

 

An important objective of the project undertaken in this thesis was to explore 

mechanistic differences between the non – demented (PSND) and demented (PSD) post 

– stroke cohort who had come to autopsy. Given the significant findings of MTLA and 

correlative white matter changes from the neuroimaging studies in the Nigerian African 

cohort which were in tandem with previous reports from the Newcastle cohort, we 

investigated neurodegenerative hippocampal Alzheimer pathology and synaptic 

changes, as well as frontal and temporal white matter abnormalities in post - mortem 

brains collected from the Newcastle cohort.  

  Our results showed increased amyloid deposition in the post – stroke group following 

cerebral hypoxic stimulation (Lewis et al., 2006; Okamoto et al., 2012) but largely no 

significant differences were observed between PSND and PSD except for 4G8 (total 

amyloid) immunoreactivity in the  subiculum and entorhinal cortex where higher 

immunoreactivity was observed in the PSND compared to the PSD group. Our results 

further revealed that this disparity was due to higher proportion of APOE 4 allele in  
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the PSND group in keeping with its propensity to drive amyloid deposition, particularly 

Aβ (42) (Schmechel et al., 1993; Nagy et al., 1995; Polvikoski et al., 1995; Saito et al., 

2002). These results are in concordance with a recent study examining the genetic 

associations of vascular dementia subtypes in which an association was found between 

APOE-ε4 allele and mixed dementia, stroke - related dementia and subcortical ischemic 

vascular dementia  (SIVD) as well as higher Aβ 1 - 42 levels (Jones et al., 2011). It is 

indeed intuitive to project that subjects in the PSND group with high amyloid burden 

might have progressed to develop mixed dementia (AD_VaD) had they lived long 

enough. Among older subjects with MCI or AD, neurofibrillary tangles load tends to 

show better correlation with cognitive scores than amyloid plaques (Nelson et al., 2009; 

Nelson et al., 2012) while a clinico –  pathologic study of a cohort of AD, DLB and 

VCI subjects showed that tangle load correlated significantly with  MTLA rather than 

plaque or Lewy body pathology (Burton et al., 2009). In this study however, AT8 

immunoreactivity due to hyperphosphorylated tau was not significantly different 

between PSND and PSD even though it correlated significantly with memory score in 

the subiculum. Therefore, hippocampal AD – pathologic mechanisms do not seem to 

separate PSND and PSD.  Neocortical AD pathology, other non – AD 

neurodegenerative mechanisms as well as other non - neurodegenerative mechanisms 

such as vascular and inflammatory/immune mechanisms require research attention. 

Exploration of hippocampal synaptic markers yielded significant differences between 

PSND and PSD in the expression of vesicular glutamate transporter (VGLUT - 1) and 

drebrin. VGLUT -1 is a pre – synaptic marker involved in glutamatergic excitatory 

neurotransmission (Fremeau et al., 2004a; Fremeau et al., 2004b) while Drebrin is a 

marker of dendritic spine morphology and functioning on the post – synaptic density 

(Hayashi et al., 1996; Sekino et al., 2007). The expression of these two markers was 

significantly higher in PSND compared to PSD and showed significant positive 

correlation with cognitive performance in general cognitive functioning and memory 

domain. The higher expression of these two markers in the PSND group would suggest 

the presence of a stronger synaptic network and correlative higher cognitive 

functioning. Synaptic markers have been described as structural correlates of cognitive 

reserve (Bennett et al., 2012; Boyle et al., 2013a; Boyle et al., 2013b) ; (Honer et al., 

2012) and reduced expression may be associated with dementia even in the oldest – old 

(Beeri et al., 2012). Significant upregulation of pre – frontal lobe VGLUT -1 expression 
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has also been previously reported in non – demented post - stroke subjects (Kirvell et 

al., 2010). Another complementary study within our research group has demonstrated 

preserved expression of  Hu C/D,  a marker of neuronal maintenance [Burke et al, 2013 

(unpublished observation)] in the CA1 and  CA2 hippocampal sub – regions of control 

and non - demented stroke (PSND) subjects compared to demented (PSD) subjects.  

Using the techniques of stereology, it has also been demonstrated within this study 

cohort that PSND and control subjects have higher neuronal volume than PSD in the 

pyramidal neurons of CA2 and CA1 (Gemmell et al., 2012). Putting all these together, 

we can surmise that the preservation of cognitive function in the PSND group depicted 

by the higher expression of synaptic markers may be related to higher neuronal volume 

and higher expression of neuronal maintenance markers (Gemmell et al., 2012); Burke 

2013 (unpublished data). Evidence is accruing on the microstructural correlates of 

cognitive reserve. In a 1988 pioneering study, Katzman and colleagues demonstrated 

that some individuals who remained cognitively intact despite significant AD pathology 

exhibited higher brain weight and greater number of neurons (Katzman et al., 1988). In 

a neuropathologic arm of the Nun Study, participants who remained cognitively intact at 

the time of death showed widespread neuronal hypertrophy which was linked to greater 

linguistic ability in early life (Iacono et al., 2009). More recently, results from the MRC 

Cognitive Function and Ageing Study (CFAS) have demonstrated an association 

between ‘high cognitive lifestyle' (educational attainment, occupational complexity and 

social engagement) and increased cortical thickness, increased neuronal volume and 

density in the prefrontal lobe (Broadman area 9) of a sub - cohort  as a result of a 

compensatory neuronal processes (Valenzuela et al., 2011; Valenzuela et al., 2012). 

Coupled with the finding of educational attainment as a determinant factor of cognitive 

impairment in the Nigerian cohort, our results from the post – mortem studies add to the 

growing body of knowledge on the strategic importance of cognitive reserve and its 

demographic, lifestyle and microstructural correlates in influencing the trajectory of 

cognitive function following brain injury, vascular in the current context. 

To further establish mechanistic differences between the PSND and PSD groups, glial 

activation, demyelination, and axonal damage were explored in the frontal and temporal 

white matter of our cohort. The results revealed higher microglia and astrocytic 

activation and axonal damage in the PSD group compared with the PSND group with 

significant inter - correlations among markers, and of glial markers with cognitive 
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scores (inverse). This difference in inflammatory mechanisms may synergize with 

synaptic changes to differentiate between the PSND and PSD groups. Further studies 

will be necessary to unmask the basis of the neuroinflammatory differences whether this 

is due to phenotypic differences in inflammatory cells (Sudduth et al., 2013) or it is 

related to systemic inflammatory processes (Arfanakis et al., 2013)  or post – stroke 

complications (Gottesman and Hills, 2010; Grube et al., 2013; Wang et al., 2013).   

 

 

8.4. Public Health Perspectives 

 

The critical role of early life education in the development of cognitive reserve has been 

well documented (Brayne et al., 2010). For instance, although educational attainment 

was not documented for the CogFAST Newcastle cohort (Ballard et al., 2002; Allan et 

al., 2011), historical records indicate that most subjects in the Newcastle cohort, the 

oldest of whom was born in 1907 (personal communication) might have had a  

minimum of  9  years of early life education  because of the promulgation of the  ‘1918 

Education Act’ http://www.legislation.gov.uk/ukpga/Geo5/8-9/39 - accessed 07 - 11- 

2013) which raised the school leaving age to 14 years,  planned expansion of tertiary 

education  and evolved plans for services to pupils with special needs.  The median age 

of  participants in the  Medical Research Council Cognitive Function and Ageing Study 

(MRC CFAS)  [1991 – 2002] (Seidel et al., 2009) which included participants from  

Newcastle was about  9 years (semi – interquartile range :  9 – 9 years).  It is therefore 

conceivable that  improved early life education might have contributed to cognitive 

reserve  in the  Newcastle cohort such that the cohort reported relatively lower rates of 

early post - stroke vascular cognitive impairment compared to other cohorts and even  

some younger cohorts such as the Nigerian cohort with a mean age of about 60 years. 

Apart from early life education, the importance of maintaining an active cognitive 

lifestyle (Valenzuela et al., 2012) across the lifespan cannot be over emphasized. This 

will invariably include adopting a lifestyle of lifelong learning and engaging in 

cognitively stimulating leisural activities with robust social engagement. It is important, 

particularly in developing countries of the world, to develop effective public policies 

and laws to encourage early life education and lifelong learning in order to build 

http://www.legislation.gov.uk/ukpga/Geo5/8-9/39
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necessary ‘mental capital’ for economic and social development, and at the same time 

build cognitive reserves to compensate for possible future brain injuries.  

Adoption of healthy lifestyle including physical activity and healthy diets including the 

consumption of omega - 3 fatty acids are also of great public health importance. The 

impact of the healthcare system as well might also have been contributory. With the 

introduction of the National Health Service (NHS) in the United Kingdom in the late 

40’s (Shapiro, 2010), citizens including subjects in the Newcastle cohort had better 

healthcare access in their youth and mid – life. It is also possible that the Newcastle 

cohort may have enjoyed relatively good cardiovascular and brain health during their 

youth and middle – age. Historical records indicate that during the great depression and 

world wars of the 1930’s and 1940’s, food was rationed in the UK , access to meat was 

limited and families resorted to, and had to grow their own supply of vegetables in lieu. 

People also probably walked more because of scarcity of fuel.  The obvious ‘caloric 

restriction’, increased intake of vegetables  and likely increased physical activity at that  

time  during early life and middle age  of the Newcastle cohort coupled with the 

introduction of the NHS in the late 40’s enhancing access to better healthcare might 

have  synergized with improved early life education to provide them with  good brain  

and cardiovascular health. The outcome  of this may have been that  the cognitive 

consequences of a stroke even after  age of 75 years was ameliorated such that  the 

proportion of the CogFAST – Newcastle cohort who had early vCIND  was  not more 

than  32 % at three months after stroke. Upon subsequent follow up, it is interesting to 

note that 50% of this cohort had improved cognitive function at 1 year follow  up 

(Ballard et al., 2003a) and over an average follow up of  5.8 years only 25%  developed 

incident dementia (Allan et al., 2011). 

 

8.5. Conclusions 
 

The project described in this thesis was designed to establish   a new cohort of Nigerian 

African stroke survivors to investigate the profile and determinants of vascular 

cognitive impairment after stroke and further explore the mechanisms underlying 

cognitive impairment after stroke in post – mortem brains from the Newcastle cohort 

who had come to autopsy. 
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Findings from this CogFAST Newcastle – Nigeria Study are contributing to the general 

fund of knowledge and advancing the field as follows: 

 

 Chapter 3 was dedicated to the determination of profile and determinants of post 

– stroke VCI in the Nigerian African stroke survivors cohort.  We have 

established a unique Nigerian African cohort of stroke survivors who will be 

studied well into the future.  This is the first comprehensive, detailed and 

prospective African study. We have used a robust cognitive assessment battery 

to detect multi – domain cognitive impairment in the cohort that is well stratified 

into categories based on clinically useful criteria. The findings of the protective 

effect of pre – stroke daily fish intake and physical activity are unique and 

important in an African population that is currently in epidemiologic transition. 

 

 Chapter 4 details the neuroimaging factors associated with post - stroke VCI in a 

sub – sample of the Nigerian cohort.  This represents the first attempt to examine 

the neuroimaging substrates of post – stroke VCI among sub – Saharan Africans. 

Despite the modest sample size of this sub – cohort, robust correlations were 

established among neuroimaging, cognitive and clinical parameters apart from 

the important finding of MTLA and WMHs, of which MTLA demonstrated 

significant association with cognitive categories. These findings provided 

support for the vascular basis of neurodegeneration from an indigenous African 

population. And since similar findings were reported in the Newcastle cohort, 

we proceeded in subsequent chapters to examine in post – mortem brain tissue 

from the Newcastle cohort immuno -  histochemical correlates of the MTLA and 

WMHs in appropriate brain regions. 

 

 In Chapter 5, given the significant findings of MTLA and correlative WM 

changes from the previous chapter, we examined hippocampal Alzheimer 

pathology in post – mortem brains collected from the Newcastle cohort. We 

evaluated subjects with post - stroke dementia compared with non – demented 

post – stroke subjects, other dementias and ageing controls. The findings in this 

chapter demonstrate for the first time that non - AD pathologic mechanisms 

were more likely responsible for driving the dementing process after stroke. 
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Besides, this chapter also demonstrates, for the first time, that differential 

upregulation of SorL1 may occur in response to hypoxia as a protective 

mechanism for the hippocampal CA2 sub – region which is known to be 

resistant to common biological insults. Based on these findings, we sought to 

explore different synaptic markers to see if they could differentiate the non – 

demented from the demented post – stroke subjects.   

 

 

 In Chapter 6, we explored hippocampal synaptic integrity in post – stroke 

dementia compared with non – demented post – stroke subjects, ageing controls 

and AD to ascertain if they could tease out the difference between demented and 

non – demented post – stroke subjects. Our results showed, for the first time, 

differential hippocampal expression of VGLUT – 1 in post-stroke subjects as 

well higher hippocampal expression of Drebrin in non – demented compared to  

demented post – stroke subjects. 

 

 In Chapter 7, we explored white matter changes in the demented and non – 

demented post – stroke cohort compared with AD and normal ageing controls. 

We found higher expression of glial markers (CD68 and GFAP) and chronic 

axonal damage ( SMI -32) in the temporal white matter of  demented post-stroke 

groups suggesting a higher level of neuroinflammation and axonal damage may 

differentiate  non – demented from demented post – stroke subjects.Taken 

together, these findings provide complementary evidence from clinico – 

epidemiological and clinico – pathological studies regarding the profile, 

determinants and mechanisms of  vascular cognitive impairment after stroke  

while opening up new vistas of further research. 

 

 

  8.6. Future Directions  

 

8.6.1. The CogFAST - Nigeria Study: 

Having established the initial studies, future efforts will be directed at: 
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 Extending the baseline recruitment and longitudinal follow up of the cohort. 

This will enable us study the natural history of post – stroke VCI in this unique 

population exposed to different genetic and lifestyle factors.  

 Further neuroimaging of the cohort will be extremely useful in order to confirm 

previous findings and establish new associations of neuroimaging factors 

associated with post-stroke VCI.  Use of MRI scanner with higher magnetic 

strength will facilitate volumetric analysis and correlation with clinical and 

neuropsychological findings. 

 Exploration of genetic and biochemical factors e.g. omega-3 fatty acids and 

vitamins associated with post - stroke VCI in this unique population are 

anticipated. 

 Future clinico - neuropathological studies of subjects extensively assessed in the 

clinic who come to post – mortem are anticipated.  

 Randomized controlled clinical trials involving the subjects are anticipated e.g.    

studies assessing intervention to slow down the progression of cognitive 

impairment. 

 

8.6.2. The CogFAST – Newcastle Study. 

 Exploration of non – AD neuropathologic mechanisms such as α – synuclein and 

TDP – 43 may be useful in order to ascertain their possible contribution to 

cognitive decline in the subjects who had come to autopsy. 

 It will be very useful as well to explore other brain regions such as the frontal, 

parietal and temporal regions in order to quantify the load of degenerative 

pathologies in these regions and correlate them with clinical and cognitive 

records. 

 Further exploration of synaptic markers in other brain regions including the 

prefrontal and temporal region and correlate with available clinical and cognitive 

dataset. 

 Further  neurochemical evaluation of the frontal and temporal white matter to 

explore markers of glial activation, demyelination and axonal damage 

 Determination of neuroinflammatory/immune phenotypes of the total cohort, 

blood brain barrier markers, blood inflammatory markers. 
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