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Abstract 

Abstract 

Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 

20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) play a role in the modulation and 

prevention of human diseases, in particular cardiovascular diseases. The omega-3 

family is found mainly in fish, of which wild stocks are becoming limited. Therefore 

production of omega-3 PUFAs by marine microbes may provide an alternative source 

of such componds. The diversity of marine microbes was studied using 16S/18S rRNA 

gene sequencing of different marine biota with 1500 bacterial strains and 50 microalgae 

were isolated. The diversity of culturalbe microorganisms inhabiting Mid-Atlantic 

Ridge (MAR) non-vent sediments was examined for the first time in this area with 

findings of high diversily of Gram-positive strains, good production of squalene by an 

unusual strain Bacillus sp. MAR089 and the highest yield of EPA ever recovered from 

strain Shewanella sp. MAR441. North Sea sponge associated Vibrio sp. strain NSP560 

produced considerable levels of EPA, whereas no PUFAs producers were found from 

tropic Caribbean marine sponge associated bacteria. Photobacterium sp. strain MA665, 

isolated from the coast of North Sea, was described for the first time of this genus and 

could be cultured easily under atmospheric conditions with appreciable levels of EPA 

with up to 25 % of total fatty acids (TFA) (or 10.6 mg g-1 in dried cell).  Strain 

MAR441 was identified as a new species, designated as Shewanella dovemarina sp. 

nov. (Type strain MAR441T). The level of EPA production of strain MAR441 has been 

optimized by varying fermentation conditions, and 15-25 % EPA of TFA (or 17-30 mg 

g-1 in dried cell) could be achieved with 40 % improvement. In order to understand the 

PUFAs biosynthesis pathways and better predict the maximum EPA production, EPA 

gene clusters (pfaA, pfaB, pfaC, pfaD and pfaE) were cloned and sequenced from the 

following three species Shewanella, Vibrio and Photobacterium. Great potential was 

found in marine algae Phaeodactylum tricornutum strain M7 with lipid content of 10 % 

in dry wt biomass and 22-30 % EPA of TFA when it was cultured outdoors under local 

weather conditions in UK. Under anaerobic conditions, strain MAR441 contained less 

amount of EPA and produced electricity of ~100 mW m-2. Enhanced electricity 

production using artificial consortia of estuarine bacteria grown as biofilms was 

observed with power generation of ~200 mW m-2. In conclusion, bacteria taxonomic 

resolution based on complete cell fatty acid composition is possible and marine 

microbes with considerable production of EPA could be potential candidates for 

industrial production of PUFAs. 
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Chapter 1. Introduction 

1 Chapter 1. Introduction 
 

1.1 Overview 

This section presents a brief overview of an important topic that is addressed in this 

thesis, more detailed introductions to each topic are presented later in this chapter. 

 
The Inuit, or Eskimo, people of Alaska and Greenland suffer low levels of 

cardiovascular disease, particularly heart disease, although they often appear to be 

relatively fat. The overall incidence of cancer in Eskimos is also lower than the Western 

population (Allport, 2006). Their dietary items are mainly fat and meat of seal, walrus, 

whale, caribou and fish, which are generally eaten uncooked (Ho et al., 1972). Most of 

the food has a high cholesterol content and was discovered to be rich in particularly 

beneficial omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid 

(EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) (Ho et al., 1972; Bersamin et 

al., 2007). 

 
The flood of scientific information available on EPA and DHA has significantly buoyed 

the credibility of PUFAs as essential dietary components of many animals. These fatty 

acids serve as precursors for many hormone and hormone-like regulatory molecules 

(Lauritzen et al., 2001; Sauer et al., 2001), which could benefit cardiac-health people 

(Din et al., 2004), or those with a high risk of cardiovascular disease (Angerer and von 

Schacky, 2000; Kris-Etherton et al., 2003b; Yamagishi et al., 2008; Chang et al., 2009; 

Lavie et al., 2009), and Alzheimer's disease (Connor and Connor, 2007; Yang et al., 

2010). Heightened consumer awareness of the value of omega-3s has increased the 

growth in demand for marine and algae oil omega-3 products. For example, new 

analysis from Frost & Sullivan on the European omega-3 market found that annual sales 

of omega-3 oil were above $580 million in 2008 estimated to reach $840 million in 

2013, with an annual grow rate of 10% (http://www.food.frost.com, February 08th, 

2011). 

 

The number of aquaculture industries throughout the world is increasing rapidly. The 

Food and Agriculture Organization (FAO) for instance, has reported a sustained annual 

growth rate for over 20 years of around 10% increase in volume per annum, and this 

sustained increase is also causing equally high demands for the supply of fish oil and 
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fish meal for fish feed diet in aquaculture (FAO/WHO Expert committee, 1994). The 

proportion of underexploited or moderately exploited marine fishery resources has 

declined linearly from 40 percent in the mid-1970s to 20 percent in 2007. It is for the 

first time in decades that real prices of fish have increased (FAO, 2009). The 

development of alternative lipid sources such as plant oils has been identified as an 

urgent requirement for industry in order to replace marine fish meal and fish oil 

(Sargent et al., 2002a). However, plant lipids may not be ideal as an alternative resource 

for ‘marine lipids and fatty acids’ as they are unable to produce long-chain PUFAs (LC-

PUFAs), such as EPA and DHA, and generally contain omega-6 fatty acids, such as γ-

linolenic acid (GLA, 18:3ω6). Therefore, the development of further alternative sources 

of omega-3 is needed. 

 

All living organisms: micro-organisms, higher plants and animals contain lipids. They 

occur in all cell types and contribute to cellular structure, provide stored fuel and 

participate in many biological processes, ranging from transcript of vital metabolic 

pathway to physiological responses. A major role of lipids and fatty acids is to provide 

organisms with metabolic energy. However, fatty acids play other roles and the precise 

fatty acid constituents of the total lipids in a diet may be important in this respect. 

Animals require the essential fatty acids linoleic acid (LA, 18:2ω6) and α-linolenic 

acids (ALA, 18:3ω3) in their diet to act as precursors for the ω-3 and ω-6 pathways in 

order to create long chain C20 and C22 PUFAs (Gill and Valivety, 1997; Napier, 2002). 

Plants, on the other hand, synthesize fatty acids to produce LA and ALA, without 

subsequent synthesis of long carbon chains (Napier, 2002). In general PUFAs are 

synthesized naturally by an array of desaturase and elongase enzymes present 

throughout the animal and plant kingdoms with much diversity in microorganisms such 

as algae, fungi and bacteria (Gill and Valivety, 1997; Napier, 2002). Algae, fungi, 

bacteria, insects and invertebrates are considered the primary producers of PUFAs, with 

plants and animals lacking some requisite enzymes making them unable to produce 

fatty acids over C18 (Ratledge, 1994).  For instance, certain fatty acids are essential for 

reproduction in animals, and since these can not be synthesized by the animal itself they 

must therefore be obtained from the diet. Some fatty acids such as arachidonic acid 

(AA, 20:4ω6), EPA and DHA are required in brood stock diets for the production of 

high quality eggs and larvae (Sargent et al., 1999). 
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The fatty acid composition in particular lipid classes is frequently distinctive and can 

vary markedly between species and tissues (Sargent et al., 2002b; Zhukova and 

Titlyanov, 2003). It may be dependent on the nature of the diet of the animal concerned. 

The normal growth and development of several marine fish larvae depend on the 

supplementation of omega-3 PUFAs in the diet, particularly EPA and DHA, for which 

marine fish oils are so highly prized and on which their health-benefit claims are based 

(Rodríguez et al., 1998). This is a little-appreciated fact that EPA and DHA are not 

synthesized by the fish, but are produced by marine microorganisms on which the fish 

either feed or have residing within their intestines (Tocher et al., 2006). It has been 

assumed that fatty acids in marine food webs come only from microalgae, such as 

diatoms (Pohnert, 2005). However, it has been recently reported that there are bacteria 

in the marine environment capable of the biosynthesis of LC-PUFAs, including EPA 

and DHA (Nichols and McMeekin, 2002). Such bacteria have been found in association 

Arctic invertebrates (Jostensen and Landfald, 1997) and in polychaetes and other 

invertebrates (Yazawa et al., 1992; Hirota et al., 2005). Therefore, bacterial PUFA 

producers may have an important role in the marine food web ecosystems. And finding 

alternative lipids and fatty acid sources to replace marine fish meal and fish oil is one of 

the main ways to ensure ‘sustainable aquaculture’.  

 
  

1.2 Structural diversity and physiological functions of fatty acids and 

lipids 

1.2.1 Fatty acid nomenclature 

In chemistry or biochemistry, fatty acids are hydrocarbon chains with a carboxyl group 

at one end, known as the delta (Δ) end, and a methyl group at the opposite end (methyl, 

n). The general structure of a fatty acid is shown as Figure 1.1. Each carbon atom in a 

fatty acid chain is either saturated (all four bonds are linked to a separate carbon, 

hydrogen, or oxygen), or unsaturated (2 adjacent carbons share two bonds) (IUPAC, 

1993). 

 

Figure 1.1 The general structure of a fatty acid. 
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Most naturally occurring fatty acids are unbranched and have a chain of an even number 

of carbon atoms (4-28) (Figure 1.2 and Table 1.1). They may have various degrees of 

unsaturation (0-6 double bonds). According to the international nomenclature, 

unbranched fatty acids can be described in short by y : x, where y represents the number 

of carbon atoms and x the number of double bonds. Carbon atoms are counted from the 

carboxyl terminus. The positions of the double bonds are represented by delta (Δ) and a 

number (IUPAC, 1993). For example, oleic acid (Δ9, 18:1) denotes a fatty acid with 18 

carbon atoms and with one double bound at position 9 as counted from the carboxyl 

terminus (Ackman, 1989; Hagen and Auel, 2001). 

 

 

Figure 1.2 Schematic representations to show a saturated (stearic), monounsaturated 
(oleic), n-6 polyunsaturated (linoleic), and n-3 polyunsaturated (α-linolenic) fatty acid. 
Adapted from reference (IUPAC, 1993). 

 

Table 1.1  Some naturally occurring fatty acidsa 

Common name  Systematic name* Short name 
Saturated fatty acids   
Lauric acid Dodecanoic acid  12:0 
Myristic acid Tetradecanoic acid  14:0 
Palmitic acid Hexadecanoic acid  16:0 
Stearic acid Octadecanoic acid  18:0 
Monounsaturated fatty acids   
Palmitoleic acid Δ9-Hexadecenoic acid Δ9 16:1 
Oleic acid Δ9-Octadecenoic acid Δ9 18:1 
ω-6 Polyunsaturated fatty acids   
Linoleic acid (LA) Δ12-Octadecadienoic acid ω-6 18:2 
γ-Linolenic acid (GLA) Δ6, Δ9, Δ12-Octadecatrienoic acid ω-6 18:3 
Arachidonic acid (ARA) Δ5, Δ8, Δ11, Δ14-Eicosatetraenoic acid ω-6 20:4 
ω-3 Polyunsaturated fatty acids   
α-Linolenic acid (LNA) Δ9, Δ12, Δ15-Octadecatrienoic acid ω-3 18:3 
Eicosapentaenoic acid (EPA) Δ5, Δ8, Δ11, Δ14, Δ17-Eicosapentaenoic acid ω-3 20:5 
Docosahexaenoic acid (DHA) Δ4, Δ7, Δ10, Δ13, Δ16, Δ19-Docosahexaenoic acid ω-3 22:6 

aAdapted from reference (IUPAC, 1993); *All double bonds are in cis-configuration. 
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The configuration of double bonds, generally assumed as cis (Z) in natural compounds, 

must be indicated in other cases. The positions of a methyl branch or another group is 

indicated by the number of the carbon atom on which the chain is substituted, such as 

10-methylhexadecanoic acid could be simply as 10-Me-16:0; 2-hydroxydocosanoic acid 

(2-OH-22:0) and 6-bromo-5,9-heptacosadienoic acid (6-bromo-5,9-27:2) (Berge and 

Barnathan, 2005). 

 
Long-chain PUFAs have more than one double carbon bond and 18 or more carbon 

atoms. They are classified according to the position of the first double bond as counted 

from the methyl end. An omega-3 PUFA has its first double bound at position 3 as 

counted from the methyl end. As a synonym of ω, the symbol n is often used to classify 

PUFAs (Figure 1.3). Throughout this thesis, an abbreviated nomenclature is used to 

designate the structures of fatty acids. For example, docosahexaenoic acid (DHA), the 

common term for all-cis-4,7,10,13,16,19-docosahexaenoic acid, can be designated as 

Δ4,7,10,13,16,19-22:6 or simply as n-22:6ω3, indicating a fatty acid with 22 carbon 

atoms and 6 double bonds, the first double bond being found on the third carbon atom 

from the methyl end group. Trivial names associated with omega-3 series include 

linolenic (18:3), moroctic and stearidonic (18:4), timnodonic (20:5), clupanodonic 

(22:5) and cervonic (22:6), though not all of these remain in use. 

 
In biological systems, fatty acids are mostly encountered as components of lipids. 

Lipids are organic compounds that are insoluble in water and soluble in organic 

solvents. Chemically, lipids vary to such a great extent that no structural definition is 

available (Gurr and Harwood, 1991). 

 

 

Figure 1.3 Schematic representation of eicosapentaenoic acid (EPA, 20:5ω3) and 
docosahexaenoic acid (DHA, 22:6ω3) to show the positions of the unsaturated (double) 
bonds. 
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1.2.2 Introduction to lipids 

There are two general types of lipids: the simple and the complex lipids. The simple 

lipids, for example cholesterol and other steroids, do not have the ester linkages and 

cannot be hydrolysed into smaller molecules. The complex lipids, such as the 

triacylglycerols, fats, oils, and waxes that contain an ester linkages that can be 

hydrolysed to yield smaller molecules (McMurry, 1988). Glycerophospholipids or 

phosphoglycerides are glycerol-based phospholipids, which core with fatty acids, are 

the most familiar lipids. The acylglycerols have a glycerol backbone linked to one, two 

or three fatty acids via ester bonding, yielding mono-, di- and triacylglycerols, 

respectively (Fahy et al., 2009). Phosphoglycerols consist of a glycerol backbone to 

which two fatty acids and a phosphate group could be esterified. Furthermore, 

phosphoglycerols are very diverse as the phosphate group, which can be attached to a 

great variety of groups of membrane phospholipids (Gurr and Harwood, 1991). 

 

Fats are lipid materials that stay solid at room temperature, whereas oils are liquid. 

Natural oils and fats are composed mainly of triacylglycerols (Figure 1.4). Therefore, 

they can be used to denote triacylglycerols. However, other components, such as 

monoglycerides and diacylglycerols, phospholipids, waxes, steroids and carotenoids are 

also included in small amounts in natural fats and oils. (Stauffer, 1996). 

                     

Figure 1.4 Schematic representation of triacylglycerol with in the middle the glycerol 
backbone and on the outside the fatty acyl groups (R1-CO, R2-CO and R3-CO). 

 

1.2.3 Biological functions of lipids 

Lipids are a group of molecules, including fats, waxes, sterols, phospholipids, 

monoglycerides, diglycerides, triacylglycerols and others, which naturally occur in all 

organisms. These lipid moleculaes play important roles as storage lipids, structural 

components of cell membranes and in signaling reactions, which are indispensable for 
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cell growth and survival. Triacylglycerols are major storage lipids that accumulate in 

the cells. They have a high free-energy content and tend to form aggregates in water, 

allowing for compact unhydrated intracellular packing (Stryer, 1998). During the period 

of food plenty, triacylglycerols can be stored as carbon sources or storage lipids, 

whereas in times of starvation or strong exercise this storage can be used. Mammals 

store triacylglycerols mainly in adipose tissue and can excrete them via milk as an 

energy source for newborn individuals. In plants, triacylglycerols can be stored in the 

seeds as energy reserves for the germination process (Kattner and Hagen, 1995).  

 
The acylglycerols play no or a little part in membrane structure. The lipids that 

contribute to the structure and function of biological membranes are called structural 

lipids. Widely distributed structural lipids include phospholipids, glycolipids (lipids 

containing a sugar constituent), sphingolipids and steroids. Structural lipids contain a 

(long) hydrophobic and a (shorter) hydrophilic part. They can form sheet-like double 

layers where the hydrophobic and hydrophilic parts are oriented to the inside of the 

layer and to the external water phase, respectively. In addition to lipid bilayers, 

biological membranes contain about 50% proteins by weight. The formation of lipid 

bilayers is an energetically preferred process when the glycerophospholipids are in an 

aqueous environment (Stryer, 1998). Together, structural lipids and membrane proteins 

form the boundaries of all living cells and intracellular organelles (Gurr and Harwood, 

1991). 

 

1.2.4 Physiological and medical effects of omega-3, -6 and -9 fatty acids  

Omega-3 fatty acids have three important physiological functions. First, they serve as 

major components of biological membranes and are important in membrane structure 

and function (Gawrisch et al., 2003). DHA is found with high concentrations in lipids of 

the retina, brain and sperm (Nettleton, 1993). Second, they can alter gene expression, by 

down-regulating and up-regulating some enzymes (Kitajka et al., 2004; O'Shea et al., 

2010). Third, EPA has an important role in regulating eicosanoid production from 

arachidonic acid  (AA, 20:4ω6) by competition for the metabolizing enzymes (Calder, 

2005). The eicosanoids derived from EPA and AA show different properties, and it is 

important to keep them in balance appropriately. Mostly, EPA is considered to have a 

functional role, operating through its metabolites; whereas DHA has a structural role 

(Kidd, 2007). 

 

 30



Chapter 1. Introduction 

The importance of omega-3 PUFA for human health is mostly in its physiological 

effects. It is known that blood pressure is reduced by DHA, with EPA having a lesser 

effect, that plasma total and low-density lipoprotein (LDL) cholesterol levels and serum 

triacylglycerol levels are reduced, and that thrombosis risk is decreased (Theobald et al., 

2004). The major impact of omega-3 PUFA on coronary artery disease (CAD) risk 

reduction appears to be the result of its antiarrhythmic effect, by reducing the risk of 

ventricular fibrillation and subsequent sudden cardiac death (Reiffel and McDonald, 

2006). Omega-3 PUFAs are incorporated into myocardial cell membranes (Harris et al., 

2004), in which they serve as a potent inhibitor of voltage-gated Na+/H+ channels in 

cardiac cardiomyocytes, as a result of preventing calcium overload by maintaining L-

type calcium channels during periods of ischemic stress (Leaf et al., 2003; Harris, 

2010). This effect increases the ventricular refractory period and the electrical threshold 

required to induce an action potential-depolarization, making the heart less vulnerable to 

ventricular arrhythmias as has been shown in canine models (Kris-Etherton et al., 

2003a). Epidemiologic studies showed that the relative risk for sudden cardiac death is 

significantly reduced with increasing levels of blood and red blood cell fatty acid levels 

(Burr et al., 1989; Siscovick et al., 1995; Albert et al., 1998).  

 

Omega-3 fatty acids have the first double bond between the 3rd and 4th carbon atoms 

from the methyl end, which makes their molecular structure the most flexible in all fat. 

When the cell membrane is constructed with omega-3 fatty acids, normal cell functions 

and division occur easily. In contrast, omega-6 fatty acids have the first double bond 

between the 6th and 7th carbon molecule, which makes their shape is twisty in a cell 

membrane, as result of flexible of the membrane. This allows for the proper transport of 

materials though out/in the cell, and for normal cell division. In healthy situations, 

omega-3 fatty acids compete with omega-6 fatty acids for the same materials, keeping 

the inflammatory response from continuing when it is not needed. Omega-6 fatty acids 

are released when a cell is injured (Nettleton, 1995). 

 
The omega-6 PUFA arachidonic acid (AA, 20:4ω6) is the precursor for eicosanoids like 

thromboxanes, prostaglandins and leukotrienes (Das, 2006). Eicosanoids are molecules 

that are active in regulation of critical biological functions by altering cell activities. The 

eicosanoids occur and are biologically active in virtually every mammalian tissue 

(Stanley and Miller, 1998). Furthermore, PUFAs are essential structural components of 

phospholipids in cell membranes, where they affect membrane characteristics and 
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functions such as fluidity, electrolyte transport and hormonal and immunological 

activities. 

 

The omega-9 fatty acids have the first double bond between the 9th and 10th carbon 

atoms from the methyl end. Some omega-9 fatty acids are common components of 

animal fat and vegetable oil. Two omega-9 fatty acids important in industry are: oleic 

acid (OA, 18:1ω9), a main component of olive oil and other monounsaturated fats; 

Erucic acid (EA, 22:1ω9), found in rapeseed, wallflower seed, and mustard seed. 

Rapeseed with high EA content is grown for commercial use in paintings and coatings 

as a drying oil. Unlike omega-3 and omega-6 fatty acids, omega-9 fatty acids are not 

classed as essential fatty acids (EFA). This is because they can be synthesized by the 

human body from unsaturated fat, and are not participating in producing eicosanoids 

due to the lack of an omega-6 double bond (Phinney et al., 1990). 

 

1.2.5 Omega-3 fatty acids and their metabolism in plants and animals 

In the cytoplasm of plant cell, desaturation converts oleate in the form of a 

phosphatidylcholine to linoleate with the action of a Δ12 desaturase, and converts 

linoleate as its monogalactosyldiacylglycerol derivative to linolenate by a Δ15 

desaturase. The additional double bonds have the cis configuration and are in a 

methylene-interrupted relation to other double bonds. The 1,4-diene unit is 

characteristic of the common PUFAs and is to be distinguished from the 1,3 

(conjugated) systems found in carotenoids and some less-common fatty acids, and the 

1,5 system found in polyisoprenoids (Napier, 2007). 

 
In animal systems, a Δ6 desaturase is common but less so in the plant systems. 

However, it is active in the biosynthesis of γ-linolenic acid (GLA, 18:3ω6) from 

linoleate and of stearidonic acid (SA, 18:4ω3) from α-linolenate (Napier, 2007). The C20 

and C22 polyenes characterize animal systems, in particular fish lipids, and very rare in 

plant systems. However, the leaves, stem, and whole plant of purslane (Portulaca 

oleracea) has been reported to be a vegetable source of omega-3 acids, with low levels 

of the n-20:5ω3, n-22:5ω3 and n-22:6ω3 acids (Omara-alwala et al., 1991).  

 

Plants contain relatively low levels of monounsaturated or saturated very long chain FA 

with 20 or more carbons (Voelker and Kinney, 2001). Oilseed crops rather than borage 

and primose seed have been chose for producing GLA and SDA due to the good 
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cultivate and high yielding. The expression of a Δ6-desaturase gene is required to 

produce GLA or SDA in oilseed crops (Napier, 2007). Although the production of 

important LC-PUFA such as ARA, EPA and DHA in plant systems is a challenge, the 

proof of concept has been provided in transgenic plants. The model plant species 

Arabidopsis thaliana was sequentially transformed with constitutively expressed genes 

including a Δ9 elongase from the algae Isochrysis galbana, a Δ8 desaturase from the 

protist Euglena gracilis and a fungal Δ5 desaturase from Mortierella alpina. The 

accumulation of 7 % ARA and 3 % EPA in total lipids of leaf tissues (Qi et al., 2004). 

However, much remains to be done before an economically viable system can be 

developed. 

 

In mammals, saturated FA and monounsaturated FA of the omega-9 and omega-7 series 

can be synthesized de novo from acetyl CoA. However, the omega-6 and omega-3 

PUFA cannot be synthesized by mammalian cells due to the absence of the Δ12 and 

Δ15 desaturase enzymes. These enzymes required for the insertion of a double bond at 

the 12th and 15th carbons from the carboxyl terminus of 18 carbon chain fatty acids 

respectively (Innis, 2003; Innis, 2005). Linoleic acid (LA, 18:2ω6) and α-linolenic acid 

(ALA, 18:3ω3) are the precursors to LC-FA, more highly unsaturated omega-6 and 

omega-3 fatty acids, respectively; these fatty acids, containing 20 or more carbons, are 

sometimes referred to as long chain polyunsaturated FA (Innis, 2005). Because the 

omega-3 and omega-6 PUFA are needed, but cannot be synthesized (Wiese et al., 1958; 

Benolken et al., 1973; Wheeler et al., 1975; Lamptey and Walker, 1976), they must be 

obtained from the diet and are termed essential dietary nutrients (Warwick et al., 2007). 

Once LA and ALA have been ingested they suffer a number of fates, one of which is 

metabolism by chain-extension and desaturation between existing double bonds and the 

carboxyl group to produce important polyunsaturated C20 and C22 acids including ARA, 

EPA and DHA. It is important to recognize that omega-6 fatty acids cannot be 

converted to omega-3 fatty acids, and vice versa (Laposata, 1995).  

 
Nutritional attitudes to PUFA have changed over the years. First, they were considered 

as a single group, distinct from saturated and monounsaturated acids, then they were 

subdivided into omega-6 and omega-3 PUFA and the ratio of these two was considered 

as a useful dietary index. For examples, there is some consensus that the PUFA intake 

should be at least 3 % and preferably 8-23 % of the total lipid intake (Gill and Valivety, 

1997). The British Nutrition Foundation recommended a omega-6 to omega-3 PUFA 
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ratio between 5:1 and 3:1 (British Nutrition Foundation, 1992). Today this concept is 

considered to be flawed, and separate recommendations are increasingly being given for 

ALA and for EPA/DHA. ALA is almost entirely of plant origin, while EPA and DHA 

mostly come from animal sources, particularly fish, and partially from marine biomass, 

such as microorganisms. 

 

1.2.6  Dietary sources of omega-3 fatty acids 

 

1. α-linolenic acid (ALA, 18:3ω3) 

Among the so-called commodity vegetable oils, only three contain ALA in significant 

amounts. These are: soybean oil, with 8 % ALA and an annual production of 35.9 

million tones in 2010; rapeseed/canola oil, with 10 % ALA and an annual production of 

20.4 million tones in 2010; and linseed oil, with 50 % ALA and an annual production of 

0.6 million tones in 2010. Linseed oil is used mainly for industrial purposes and only 

small amounts are used for human dietary purposes, either as the rapeseen itself or as 

cold-pressed oil. As a consequence, soybean and rapeseen oils are the major dietary 

sources of ALA (Gunstone, 2011). In 2004-2005, the agriculture industry produced 3.5 

million tones of ALA, mainly from soybean oil (1.9 million tones) and rapeseen/canola 

oil (1.4 million tones), but the true amount available for dietary intake is less than this 

because of its high-temperature deodorization to acids with trans unsaturated FA 

(Gunstone, 2005). Also, varieties of both soybean and rapeseed oils with reduced levels 

of ALA are becoming more widely available (Ghazali et al., 2003; Su et al., 2003). 

These are attractive to the food industry because they can be used for frying purposes 

without the need for prior brush hydrogenation to lower the level of ALA. Thus, 

additional consumption of other sources of ALA, in particular LC-PUFAs, such as EPA 

or DHA, is necessary as compensations regarding to promote better health care.  

 
2. Stearidonic acid 

Stearidonic acid (SDA, 18:4ω3) is the omega-3 equivalent of γ-linolenic acid (GLA; 

18:3ω6) and is available as a dietary supplement. Only a few seed oils contain SDA but 

Echium plantagineum is cultivated as a source of this acid. With over 60 % of the acids 

containing three or four double bonds the oil is highly unsaturated. Another convenient 

source of SDA is the more readily available blackcurrant seed oil, even though it 

contains only 2.5-3 % of this acid. Stearidonic acid is the first metabolite in the 

conversion of ALA to EPA and DHA, and arguments for the inclusion of GLA in 
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dietary supplements can also be applied to SDA (Clough, 2001b; Clough, 2001a). 

Soybeans with Δ6 desaturase (from borage oil) and Δ15 desaturase were reported to 

produce an oil containing around 30 % of both ALA and SDA (Eckert et al., 2006). 

 
3. EPA and DHA from fish oils 

Long-chain PUFA in the human diet are mainly obtained by consuming fatty fish, or 

supplements of fish oil enriched in EPA and/or DHA, or by eating food to which fish oil 

has been added. Table 1.2 contains similar information for a range of commercial fish 

oils. The sum of EPA, docosapentaenoic acid (DPA, 22:5ω3) and DHA ranging from 11 

% to 33 %, with DPA present only as a minor component. The major LC-PUFA is 

sometimes EPA, sometimes DHA, and sometimes both are found at similar levels 

(Hjaltason and Haraldsson, 2006a; Hjaltason and Haraldsson, 2006b). DPA is present in 

fish oils at only low levels, but levels are somewhat higher (up to 5 %) in the fats of 

marine mammals such as seals. Many fish oils contain small amounts of 

heneicosapentaenoic acid (HPA, 21:5ω3), which may result from the α-oxidation of 

DPA (Spurvey et al., 2001; Durnford and Shahidi, 2002). 

 

Table 1.2  Levels of omega-3 fatty acids in commercially available fish oilsa 

Fish  Concentration (% of total fat) 
 EPA (n-20:5ω3) DPA (n-22:5ω3) DHA (n-22:6ω3) Total 
Anchovy  22 2 9 33 
Jack mackerel 13 2 15 30 
Menhaden  14 2 8 24 
Sardine/pilchard 16 2 9 27 
Capelin  8 - 6 14 
Herring  6 1 6 13 
Mackerel  7 1 8 16 
Norway pout 9 1 14 24 
Sand eel 11 1 11 23 
Sprat  6 1 9 16 
Tuna  6 2 22 30 
Cod liver oil 8 1 11 20 
Minke whale 4 2 5 11 
Harp seal  8 3 10 21 
Greenland shark 3 2 6 11 
Farmed salmon 7 3 11 21 
Blue whiting 9 1 10 20 
aAdapted from reference (Hjaltason and Haraldsson, 2006a). 

 
4. DHA from microbial oils 

Oils containing DHA are now commercially available from microbial sources 

(Ratledge, 2004b; Ratledge and Hopkins, 2006). Three DHA-rich oils are shown in 

Table 1.3. As yet there is no single cell source of EPA. The oils are used mainly in 

infant formulas, or the dried biomass is used to feed animals to produce elevated levels 
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of DHA in eggs or meat or to feed fish larvae and shrimp. A production level of 650 

tones of single cell oils has been reported in 2003 (Ratledge, 2004a). 

 

Table 1.3  Major microbial sources of DHAa 

Product name DHA (n-22:6ω3) (%) Source  
DHASCOTM 40-45 Crypthecodinium cohnii 
DHASCO-STM 25 Schizochytirum sp. 
DHActiveTM 46 Ulkenia sp. (probably) 
aAdapted from reference (Ratledge and Hopkins, 2006). 

 

5. LC-PUFA from animal fats 

Red meat was reported to be the second-best source of LC-PUFA after fish. The levels 

of these acids in meat are dependent on the diet of the animal (Table 1.4). Pasture-fed 

animals living on forage rich in ALA produce higher levels of long-chain omega-3 fatty 

acids (especially DPA) than animals fed on grain or seed meals rich in omega-6 fatty 

acids. These factors influence the intake of LC-PUFA by Australians according to their 

dietary habits. Australian intakes are 280 and 140 mg/day of omega-3 LC-PUFA for 

high and average meat eaters, respectively (Mann, 2005).  

 

Table 1.4  Meat, total fat and LC-PUFA intakes of Australian subjects in four different 
dietary groupsa 

Intake per dietary group Dietary component 
High meat Moderate meat Ovolactovegetarian  Vegan  

White meat (g/day) 110 54 0 0 
Red meat (g/day) 270 109 0 0 
Fish (g/day) 28 26 1 1 
Total fat 
(% of energy intake) 

38 33 33 28 

Fatty acids (mg/day):     
n-20:4ω6 240 100 30 0 
n-20:5ω3 70 40 0 0 
n-22:5ω3 90 30 0 0 
n-22:6ω3 120 70 10 0 
Total omega-3 
LC-PUFA (mg/day) 

280 140 10 0 

aAdapted from reference (Mann, 2005). 

 
The pasture-fed animals had lower omega-6: omega-3 ratios and contained useful 

quantities of omega-3 LC-PUFA, though this was mainly in the form of DPA 

(Nuernberg et al., 2006). By feeding hens diets enriched omega-3 fatty acids through the 

inclusion of fish oil or of algal biomass, it is possible to produce eggs with enhanced 

levels of DHA up to about 3 %. These provide a satisfactory dietary means of 

enhancing circulating blood levels of DHA for mothers and infants during pregnancy 
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(Smuts et al., 2003). The enrichment of eggs with omega-3 PUFA through dietary fish 

oil requires vitamin E supplementation to inhibit oxidation (Grune et al., 2001). Tissue 

levels of ALA, EPA and DHA can be increased by adding each of these acids to the diet 

of the birds, though the respond to enhanced DHA intake is weaker than for either ALA 

or EPA (Rymer and Givens, 2005). However, there is little evidence that ALA or EPA 

is metabolized to other LC-PUFA in these birds. 

 
 
6. Long-chain PUFA from plant lipids 

The need for omega-3 PUFA and the problems of getting adequate supplies of these 

from fish or from algal resources has been reviewed by Heinz who, along with other 

research groups, is striving to develop plant sources of these fatty acids (Heinz, 2006). 

This has already been achieved in several ways involving gene transfer from other 

organisms. Many difficulties remain to be overcome, not least, for some countries, the 

fact that these results have only been achieved by genetic engineering (Abbadi et al., 

2004; Napier et al., 2004; Qi et al., 2004; Robert et al., 2005; Wu et al., 2005). 

 

1.3 Marine sources of PUFAs 

1.3.1 EPA and DHA from fish 

Fish are one of the major food sources for mankind, and are being used as the main 

animal protein diet in many countries. Moreover, the consumption of fish has a range of 

health benefits for humans including the reduction of coronary heart disease due to its 

high content of PUFAs. Indeed, oils from fish are characterised by a large range of FA 

from 12–26 carbon atoms and 0–6 double bonds. Table 1.5 contains information on 

widely consumed oily fish that represent valuable sources of EPA and DHA. According 

to the five species studied, the bulk of the fatty acid chains is contributed by saturated 

FA (29–41 %), monounsaturated FA (41–56 %) and polyunsaturated FA (14–23 %). 

Among them, the highest proportions of fatty acids are occur in palmitic acid (PA, 16:0) 

(20-28 %), palmitoleic acid (PA, 16:1ω7) (11-26 %), oleic acid (OA, 18:1ω9) (16-37 

%), EPA (3-8 %) and DHA (4-11 %) (Pirestani et al., 2010). Among saturated FA, 

including C12:0 up to C24:0 components, some branched chains, such as iso-16:0 and iso-

17:0, are present. Among the monounsaturated FA, various amounts of n-16:1ω7, n-

20:1ω9 and n-22:1ω11 are also found (Sargent and Tacon, 1999). More than 50 

different FA were described in marine fish oil, but eight species frequently represent 

more than 80 % of the total amount consumed. In fish tissues, the composition of FA 
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(mainly of triacylglycerols and to a lesser extend of phospholipids), is determined by 

diet composition and lipid metabolism (Sargent, 1995; Peng et al., 2003). Fish have the 

ability to synthesize de novo saturated and monounsaturated FAs and also to selectively 

absorb and metabolize dietary FA including LC-PUFA (Bell et al., 1997; Peng et al., 

2003), in order to obtain an optimal fatty acid composition (Ackman, 1980). This 

optimal composition seems to be a characteristic for each species and even each strain 

(Viga and Grahl-Nielsen, 1990; Pickova et al., 1999). Moreover, the PUFA conversion 

capacity in fish varies among species and even races (Sargent, 1995). Thus, freshwater 

fish are generally able to elongate and desaturate α-linolenic acid (ALA, 18:3ω3) to 

EPA and DHA, whereas marine fish, which lack or have a very low activity of Δ5-

desaturase, cannot and require LC-PUFA such as EPA and DHA in the diet (Peng et al., 

2003). Long-term absence of essential fatty acid (EFA), such as EPA and/or DHA from 

the diet leads to deficiency symptoms that, in fish, most often include reduced growth 

and increased mortality (Glencross, 2009; Tocher, 2010).  

 

Table 1.5  Levels of fat, EPA and DHA in selected fish tissue a 

Fish  Concentration (g/100g tissue) 
 Fat  EPA (n-20:5ω3) DHA (n-22:6ω3) 
Herring 17.8 2.04 0.68 
Sprat  16.6 1.33 1.90 
Tuna  15.5 1.08 2.29 
Salmon  13.6 0.71 2.15 
Sardines in oil 13.9 1.20 1.24 
aAdapted from reference (Trautwein, 2001). 

 

In addition to food accessibility and lipid metabolism, some environmental parameters 

also greatly influence the PUFA content (Ould El Kebir et al., 2003). The higher the 

amount of PUFA components may response to the colder the water. Poikilothermic 

animals are capable of adjusting the physicochemical characteristics of their membranes 

according to the prevailing temperatures. This inherent property of cells, known as 

homeoviscous adaptation of membrane fluidity (Fodor et al., 1995). In fish, the 

constituent of unsaturated FA increases during its adaptation to reduced temperatures, 

corresponding with the polar head group and the molecular species composition of 

membrane phospholipids being reorganized (Lahdes et al., 2000). Evidence suggests 

that the distribution of fatty acid composition is very individual from species to species 

and depends on many factors, such as temperature, season, fishing ground, fish species, 

age, gender or nutritional habits (Bandarra et al., 1997; Tanakol et al., 1999; Trautwein, 

2001; Khériji et al., 2003). 
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Familiar fish species used in the production of fish oil include among others, anchovies, 

capelin, Atlantic cod, Atlantic herring, Atlantic mackerel, Atlantic menhaden, 

salmonids, sardines, shark (liver), and tunas (Arts et al., 2001). Of the world’s fish oil 

production, 90 % is produced from fatty fish where lipids are localized mainly under the 

skin, around the intestines or in the white muscle. In such fishes, the oil content varies 

but it can reach 21 % (herring) and 18 % (sardines) of the total fat. Such oils are still the 

least-expensive natural source of preformed LC-PUFA, and several industries (e.g., 

Croda Leek Ltd, UK; Ocean Nutrition, Halifax, N.S., Canada and Pronova Biocare, 

Sandefjord, Norway) now specialize in their production and purification through cold 

pressing, further concentration by winterization (i.e., chilling), and other technologies 

(Narciso et al., 1999). 

 
There are, however, potential problems associated with fish oils as a source of PUFA 

such as: taste, odor, stability problems as well as the presence of coextracted 

contaminants, such a methyl mercury, dioxins, and polychlorinated biphenols (PCB). 

This has led to some advices to reduce fresh fish intake, especially for pregnant women 

(Bersamin et al., 2007; Domingo et al., 2007). Some of these problems could be at least 

partially solved for example by microencapsulation (Marquez-Ruiz et al., 2002) and 

deodorisation (Hilbert et al., 1998). Nevertheless, the main problem of fish oils is their 

sustainability due to the worldwide decline of fish stocks (Garcia and Rosenberg, 2010). 

A better use of raw material as well of by-catch and by-products from fisheries may be 

one solution, another is to look for other sources, such as marine microbial species.   

 

1.3.2 Marine algae 

Fatty acids in marine algae have attracted considerable attention among researchers 

because they can produce significant amounts of PUFA (Li et al., 2002). The data 

available on lipids from macroalgae have been reviewed (Dalsgaard et al., 2003). Fatty 

acid from 11 species of macroalgae from the Brittany coast were studied (Fleurence et 

al., 1994). Fatty acid compositions of 22 species of marine macrophytes have been 

reported. These strains were collected from the coast of the Bohai Sea belonging to the 

three aforementioned algal classes, with typical fatty acid patterns of red, brown and 

green algae from other regions (Li et al., 2002). In general, red algae from the Bohai Sea 

contained high levels of C20 PUFA, primarily EPA (up to 37.5 % of TFA) and 

arachidonic acid (AA, 20:4ω6) (up to 29.4 %). The main difference in the FA 

compositions between red and brown algae was that the latter were richer in C18 PUFA, 
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especially in stearidonic acid (STA, 18:4ω3) (up to 20.1 %). Seven of the ten brown 

algal species studied also contained EPA as a major component, accounting for 8.4–

24.2 %. Green algae studied had the highest level of C18 PUFA, mainly α-linoleic 

(ALA, 18:3ω3) (20.5–27.2 % of total lipids) and STA, and the lowest level of C20 

PUFA (Li et al., 2002). Red Californian algae contained AA (5.3–23.4 %) and EPA 

(27.8–45.4 %). Brown algae contained STA (3.6–18.6 %) and EPA (3.1–15.5 %). Two 

of the three green algae studied contained hexadecatetraenoic acid (16:4ω3) (13.6–16.2 

%) and STA (12.1–22.1 %). Both these studies show that red, brown and green algae 

have different FA profiles that do not depend on the geographical location of the algae 

and that have a chemotaxonomic significance for seaweeds (Khotimchenko et al., 2002; 

Li et al., 2002). A comparative study of FA composition of Arctic and Antarctic 

macroalgae considered their use as indicators of phylogenetic and trophic relationships 

(Graeve et al., 2002). Several eicosanoids, metabolites of AA, such as 

hydroxytetraenoic acids, associated with prostaglandins, were identified in a Japanese 

red alga Gracilaria asiatica (Sajiki and Kakimi, 1998). A recent comparative study on 

fatty acid composition of 12 microalgae as aquaculture food sources (Patil et al., 2007). 

For instance, Crypthecodinum cohnii (dinoflagellates) is rich in DHA (De Swaaf et al., 

2003), while another lipid made by the Mortierella elongata (phycomycetes) is with 

high content of AA (Sakuradani et al., 2004), both of the species were good candidates 

for producing oils. Currently, two American companies OmegaTech and Martek 

Biosciences have developed special extraction procedures to produce DHA-rich oils 

from zoo- or phytoplankton or algae (Barclay et al., 1994). The algae oil containing 

about 40% of EPA and DHA, can be used to enrich food and infant formulas. 

Furthermore, products based on dried algae preparations, which can be used as animal 

feed. An example for such a product is the dried algae produced from Schizochytrium 

(OmegaTech & NutraSweet, Kelco, USA). 

 

Thus, EPA producing microalgae may be used as an alternative to fish oil. However, the 

cultivation of microalgae requires strictly controlled growth conditions in terms of 

nutrients, light quantity and quality, carbon dioxide levels, which can result in 

considerable expense (Seto et al., 1984). Much effort is being devoted to developing a 

commercially feasible technology to produce EPA directly form microalgae based on 

photoautotrophic growth (Sa´nchez Miro´n et al., 2002; Molina Grima et al., 2003). 

Unfortunately, photoautotrophic growth is often limited by light caused by mutual 

shading of cells (Chen, 1996). Consequently, the EPA yield and productivity of 
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photosynthetic systems are low (Barclay et al., 1994). In contrast, most fungi or bacteria 

are not fastidious, and can often be grown on the waste products of other agricultural or 

industrial processes. Therefore, microbial heterotrophic growth process, such as 

bacteria, is desirable for enhancing EPA production. 

 

1.3.3 Marine fungi 

About 800 species of obligate marine fungi have been reported (Hyde et al., 2000). 

They grow and sporulate exclusively in sea water, and their spores are able to germinate 

in sea water. In construct, facultative marine fungi are from fresh water or a terrestrial 

milieu, they may also grow and possibly also sporulate in the marine environment after 

their physiological adaptations (Kohlmeyer and Kohlmeyer, 1979). Most of them 

belong to ascomycetes, the anamorphs and a few basidiomycetes. Among the 

straminipilan fungi, those belonging to Labyrinthulomycetes, including the 

thraustochytrids, aplanochtrids, and labyrinthulids are obligately marine and those 

belonging to the oomycetes are also fairly widespread in the marine environment 

(Raghukumar, 2002a). Marine fungi are most common in decomposing wood and plant 

detritus in coastal waters (Kohlmeyer and Kohlmeyer, 1979; Hyde et al., 2000; 

Raghukumar et al., 2004), are also common in calcareous animal shells (Raghukumar et 

al., 1992), algae (Raghukumar, 2006) and corals (Golubic et al., 2005). They have been 

isolated from deep-sea sediments (Damare and Raghukumar, 2008) and detected in 

anoxic marine sediments (Stoeck et al., 2003).  

 
Fungi play a key role in the food industry in the production of metabolites and might 

also supply essential nutrients to detritivores (Philips, 1984). For example, Penicillium 

roqueforti and Penicillium camemberti whole cells are good examples of regularly 

consumed fungi as active parts of Roquefort, Camembert and Gorgonzola cheeses 

(Carvalho et al., 2010). To obtain more suitable sources of PUFAs, Mucor fungi was the 

first species tried for PUFA production with γ-linolenic acid (GLA, 18:3ω6) as the 

target metabolites (Suzuki et al., 1981; Ratledge, 1992). Since then, various C18-22 

PUFAs have been studied with the aim of effective production. For example, 

arachidonic acid (AA, 20:4ω6), dihomo-γ-linolenic acid (DGLA, 20:3ω6), and mead 

acid (MA, 20:3ω9) are now commercially produced by using Mortierella fungi 

(Shimizu and Yamada, 1990; Yamada et al., 1992; Certik et al., 1998; Certik and 

Shimizu, 1999).  Thraustochytrids fall in the order Labyrinthulida (Raghukumar, 2002b; 

Leander et al., 2004), and are considered to be part of the Stramenopiles (Patterson, 
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1999). To date, more than six genera and 38 species have been identified molecularly 

under the Thraustochytridae, which are widely distributed in the marine environments 

(Honda et al., 1999; Harel et al., 2008). Some Thraustochytrids species have a high 

PUFA content (Lewis et al., 1999; Fan et al., 2001). DHA is now commercially 

manufactured from thraustochytrids and a large amount of literature and patents 

describe the current status of this technology (Lewis et al., 1999; Ward and Singh, 

2005). 

 

1.3.4 Marine yeast 

Yeast lipids have been studied since 1878. Fat production by a beer yeast, and the first 

report of extracellular lipid production by yeasts has been described (Stodola et al., 

1967). Yeasts have received the most attention as source of single cell oil (Hunter and 

Rose, 1971). Endomyces vernalis has been used for producing fat from carbohydrates in 

Germany during World War I (Prescott and Dunn, 1940). Yeasts capable of excreting 

lipids has been described (Lodder et al., 1958). In 1963, 65 yeast strains affiliated to 22 

species were isolated from the phyllosphere (Ruinen, 1963). 

 
In yeast, triacylglycerol (TAG) is stored in a unique organelle called lipid particle (LP), 

lipid droplet or adiposome . In these particles, a phospholipid monolayer is surrounding 

the core of non-polar lipids (Wach, 1996). Yeast LP have a size of 300 to 500 nm in 

diameter, contain TAG and steryl esters (SE) at equal amounts in the core and small 

amounts of phospholipids and proteins in the surface monolayer membrane. SE form 

several ordered shells beneath the surface phospholipid monolayer of LP, whereas TAG 

are more or less randomly packed in the center of the LP (Czabany et al., 2008). For 

many decades, TAG has been deemed only as a cellular storage molecule, but recent 

studies focusing on the relevance of TAG catabolism for cell regulation showed that this 

non-polar storage lipid is more than just an inert depot (Igal and Coleman, 1996; 

Rajakumari et al., 2008). In the yeast, long chain fatty acids (LC-FAs) and vary long 

chain fatty acids (VLC-FAs) are constituents of sphingolipids, but also of inositol 

glycerophospholipids and the phosphatidylinositol moiety of 

glycosylphosphatidylinisotol (GPI) anchors (Rajakumaria et al., 2010). All these 

molecules are important components of lipid rafts and other detergent-insoluble lipid 

microdomains (Eisenkolb et al., 2002).  

 
In general, yeast cells can grow very quickly, the highest dry cell weight concentration 

during batch fermentation can reach 14.8 g l-1 (Maharajh et al., 2008), and the 
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fermentation period is very short (Chi et al., 2003). Compared with algal cultivation, it 

is very easy to manage the large-scale yeast cell production in the fermentor. It is also 

very easy to collect and concentrate the yeast cells from liquid culture because of their 

flocculation and large cell size than bacterial cells (Gao et al., 2007). Yeast has the 

advantage over molds because their single cell mode of growth is easier than mycelial 

growth of molds and they tend to convert substrate to lipid more efficiently (Bail et al., 

1984). Generally, no wild type yeast has been reported with LC-PUFA content. 

However, genetically modified yeast, such as Yarrowia lipolytica with EPA-rich oil, 

may be an alternative source of fish oil (MacKenzie et al., 2010). Unfortunately, little is 

known about marine yeasts that have high-lipid content and can be used as aquacultural 

feed. 

 

1.3.5 Marine bacteria 

Marine microbes are fundamental regulators of biogeochemical cycles, playing 

important roles in cycling and the degradation of organic matter (Dalsgaard et al., 2003; 

Falkowski et al., 2008). Archaea, bacteria, and protists transform C-, N-, P- and S-

containing compounds in ways that affect their availability for biological production, 

while acquiring resources for metabolism and growth (Strom, 2008). These microbes 

are play important roles in marine food webs as primary food sources of protein and/or 

fat and components of the commensal microbial communities of marine animals 

(Nichols, 2003). Marine sediments are predominant with heterotrophic bacteria, which 

are colonizers of settling particulate matter followed by phytoplankton bloom (Nadjek 

et al., 2002). Bacteria incorporate fatty acid mainly in membrance phospholipid (PL) of 

the cells. Bacterial fatty acids ranging from C10 to C20 are commonly saturated fatty acid 

(SFA) and monounsaturated fatty acid (MUFA), whereas PUFA are quite rare. Bacteria 

can adapt to various environments such as high pressure, cold temperatures and toxic 

substances by modulating their membrane in a state of fluidity, and therefore maintain 

the function of membrane proteins involved in respiration and nutrient transport 

(Aguilar et al., 1998; Russell and Nichols, 1999; Chintalapati et al., 2004). These 

modifications within the cytoplasmatic membrane may include the changes in the fatty 

acid composition and interaction between proteins and lipids (Russell and Nichols, 

1999). Fatty acids, mainly phospholipid fatty acids are of importance as biomarkers of 

changes of physiological status of microorganisms caused by external factors (Kaur et 

al., 2005). Bacterial fatty acids biomarkers are typically odd-numbered, branched trans-
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unsaturated and cyclopropyl FA, such as n-15:0, n-17:0, iso- and anteiso-branched SFA 

and MUFA, 10-Me-16:0 (Dalsgaard et al., 2003). 

 

Oliver and Colwell first reported the finding of PUFAs in marine bacterial isolates 

(Oliver and Colwell, 1973). The EPA producing marine bacterium Flexibacter 

polymorphus was reported (Johns and Perry, 1977). However, only a narrow group of 

bacterial genera are capable of producing PUFA. Two bacterial phyla: the γ-

Proteobacteria (e.g., genera Shewanella, Moritella, Colwellia, Alteromonas, Vibrio, and 

Photobacterium) and the Bacteroidetes (e.g. Flexibacter and Psychroserpens), are now 

recognized as major players in producing PUFAs in the marine environment (DeLong et 

al., 1993; Gauthier et al., 1995; Rossello-Mora et al., 1995; Bowman et al., 1997b; 

Bowman et al., 1998b).  

 
Studies have noted the occurrence of similar PUFA producing isolates from deep-sea 

fish and polar invertebrates, of which the fatty acid compositions of isolates (mainly 

Colwellia and Shewanella species) were studied (Jøstensen and Landfald, 1997; Yano et 

al., 1997). A comparatively high association of EPA-producing isolates from the 

intestines of mackerel species (2.3-2.9% of isolates) has been demonstrated in 

comparison to other temperate fish species studied (0-1.5%) (Yazawa et al., 1988b). The 

association of PUFA-producing isolates may not be with any particular marine 

environment per se, but instead reflect the association of specific bacterial populations 

(Colwellia, Shewanella and Flavobacterium-Cytophaga-Bacteroides species) with 

certain environmental niches. Furthermore, the majority of these PUFA producing 

species occupy the genus Shewanella (Russell and Nichols, 1999). High proportions of 

EPA in Shewanella spp. are predominantly associated with cold adaptation mechanisms 

and the highest production levels occur in cold temperatures (Russell and Nichols, 

1999).  

 

1.3.5.1 The genus Shewanella 

The genus Shewanella comprises a group of Gram-negative, facultatively anaerobic, 

motile straight or curved rod-shaped bacteria that are nonfermentative in general, 

although a few species have been reported capable of fermenting glucose (MacDonell 

and Colwell, 1985; Bowman et al., 1997b; Ivanova et al., 2001). The type species of this 

genus is Shewanella putrefaciens, a bacterium used to be identified as Pseudomonas 

putrefaciens (Owen et al., 1978; MacDonell and Colwell, 1985). The genus includes 
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psychrophilic and mesophilic species are one of the main players of producing PUFAs, 

widely distributed in marine environments. At the time of writing, more than 45 

Shewanella species have been isolated, and half of which have been described with 

various levels of EPA production (Table 1.6). Shewanella benthica, S. abyssi, S. 

kaireitica, S. violacea, S. peizotolerans and S. psychrophila obtained from the deep 

ocean were found with 2-14 % EPA production of total fatty acids (TFA) (Deming et al., 

1984; Delong and Yayanos, 1986; Delong et al., 1997; Nogi et al., 1998b; Miyazaki et 

al., 2006; Xiao et al., 2007). Shewanella marinintestina, S. schlegeliana, S. sairae, S. 

pealeana, S. benthica, S. baltica, S. pneumatohori and S. waksmanii were isolated from 

the intestine of various marine animals capable of producing mainly 15-37 % EPA of 

TFA (Yazawa et al., 1992; Leonardo et al., 1999; Satomi et al., 2003; Hirota et al., 

2005; Amiri-Jami et al., 2006). Shewanella hanedai, S. frigidimarina and S. halifaxensis 

isolated from Antarctic marine environments were found with 7-22% EPA (Bowman et 

al., 1997a; Bowman et al., 1997b; Zhao et al., 2006). Shewanella affinis and S. japonica 

were isolated from sea bay or sea water containing 2-8 % EPA of TFA (Ivanova et al., 

2001; Ivanova et al., 2004c). Mesophiles, such as S. olleyana was obtained form 

temperate humic-rich river estuary capable of producing 24 % EPA (Skerratt et al., 

2002).  

 

Table 1.6  Shewanella strains responsible for EPA production 

Genus/species Type strain  EPA  
(TFA/%) 

Source Reference 

S. abyssi c941 9.1 Deep-sea sediments (Miyazaki et al., 2006) 
S. kaireitica c931 1.9 Deep-sea sediments (Miyazaki et al., 2006) 
S. marinintestina  JCM 11558 17.5 Squid body (Satomi et al., 2003) 
S. schlegeliana  JCM 11561 18.6 Black porgy intestine (Satomi et al., 2003) 
S. sairae  JCM 11563 15.2 Saury intestine (Satomi et al., 2003) 
S. pealeana  ATCC 700345 11 Squid Loligo pealei (Leonardo et al., 1999) 

S. gelidimarina  
ACAM 456 16 Congelation ice, Prydz Bay, 

Antarctica 
(Bowman et al., 1997b) 

S. benthica  ATCC 43992 16 Intestine, holothurianT (Bowman et al., 1997) 
S. hanedai ATCC 33224 22.2 Marine sediment, Arctic Ocean (Bowman et al., 1997) 

S. frigidimarina 
ACAM 591 6.8 Congelation ice, Prydz Bay, 

Antarctica 
(Bowman et al., 1997) 

S. baltica  MAC1 3.5 Mackerel (Amiri-Jami et al., 2006) 
S. violacea  DSS12 14 Deep-sea Ryukyu Trench (Nogi et al., 1998b) 
S. affinis KMM 3587 2.1 Sea Bay (Ivanova et al., 2004c) 
S. halifaxensis HAW-EB4 7 Atlantic Ocean (Zhao et al., 2006) 
S. japonica KMM 3299 8.3 Sea water (Ivanova et al., 2001) 
S. olleyana ACEM 9 23.6 Humic-rich river estuary (Skerratt et al., 2002) 
S. peizotolerans WP3 13.4 Pacific deep-sea sediment (Xiao et al., 2007) 
S. psychrophila WP2 7.1 Pacific deep-sea sediment (Xiao et al., 2007) 

S. pneumatohori 
SCRC-2738 36.6 The intestines of Pacific 

Mackerel 
(Yazawa et al., 1992; 
Hirota et al., 2005) 

S. waksmanii 
KMM 3823 6.7 Sipuncula (Phascolosoma 

japonicum) 
(Ivanova et al., 2003a) 

 45



Chapter 1. Introduction 

 

Deep-sea Shewanella species was taxonomically divided into two major subgenus 

branches, one group characterised as high-pressure cold-adapted species produce 

substantial amounts of EPA and the other group recognized as mesophilic pressure-

sensitive species do not produce EPA or produce only scant amounts (Kato and Nogi, 

2001). High proportions of EPA in Shewanella spp. are mainly associated with cold 

adaptation mechanisms and the highest production levels occur in the suboptimal region 

of temperature growth kinetic range (Nichols et al., 1997; Russell and Nichols, 1999). 

The psychrophilic and piezophilic Shewanella strains, including S. violacea, S. benthica 

and S. piezotolerans, produce EPA, and thus the production of such LC-PUFAs is a 

property shared by many deep-sea bacteria to maintain cell-membrane fluidity under 

conditions of extreme cold and high hydrostatic pressure (Fang et al., 2003; Wang et al., 

2008; Wang et al., 2009). A physiological basis for the production of PUFA as a 

selective adaptation to temperature and/or high pressure environments is well accepted 

(Nichols et al., 1995). However, Shewanella olleyana, S. japonica and S. pacifica were 

described to produce significant levels of PUFAs, such as EPA, at relatively high 

incubation temperatures (25-30 ºC) (Ivanova et al., 2001; Skerratt et al., 2002; Ivanova 

et al., 2004b).  

 

1.3.5.2 The genus Colwellia 

Species of the genus Colwellia are defined as facultatively anaerobic and psychrophilic 

bacteria and the type species of this genus is C. psychroerythrus, which used to be 

classified as Vibrio psychroerythrus (Deming et al., 1988). The chemotaxonomic 

markers of the genus Colwellia became clear with the publication of four new species to 

the genus (Colwellia demingiae, C. psychrotropica, C. rossensis and C. hornerae), all 

of which were isolated from Antarctic sea ice and were able to produce DHA (Bowman 

et al., 1998b). Fatty acids with n-even chain-length, such as n-14:0 and n-14:1ω7cis 

were dominated in the membrane lipids, correlated with DHA production (Russell and 

Nichols, 1999). Many Colwellia strains were originally assigned as genus Vibrio, 

however the analysis of the fatty acid compositoins could help distinguish these two 

genera by forming an atypical chemotaxonomic grouping. Thus, the majority of strains 

previously identified as Vibrio spp. that contain DHA and possess the Colwellia 

chemotaxonomic profile may be reassigned to the newly described species of Colwellia 

(Wilkinson, 1988).  
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Two significant groups are left unaccounted for by this chemotaxonomic identification 

procedure. First, strains that contain the Colwellia fatty acid markers but have a much 

higher percentage of DHA than the other identified species (Delong and Yayanos, 1986), 

and second, strains with similar to Colwellia fattt acid fingerprint but contain EPA but 

without DHA (Hamamoto et al., 1995). Further, `Colwellia' strains that produce EPA do 

not contain n-14:1ω7, unlike other species that do produce DHA (Delong and Yayanos, 

1986; Hamamoto et al., 1994; Hamamoto et al., 1995; Yano et al., 1997). Levels of LC-

PUFAs by Colwellia species are shown in Table 1.7. However, novel Colwellia species 

isolated recently were found with no production of EPA and DHA in the membrane 

layer, whereas high levels of unsaturated fatty acids (n-16:1) are produced, such as C.  

piezophila (Nogi et al., 2004), C. aestuarii (Jung et al., 2006), C. polaris (Zhang et al., 

2008), C. asteriadis (Choi et al., 2010) and C. chukchiensis (Yu et al., 2010). These 

observations suggest that the production of LC-PUFAs should not be a requirement for 

classification as a psychrophilic and/or piezophilic bacterium, although it is a common 

property of psychropiezophiles by producing unsaturated fatty acids.  

 

Table 1.7  Colwellia strains responsible for long chain PUFA production 

(–), Not detectable. 

Genus/species Type strain  DHA  
(TFA/%) 

EPA  
(TFA/%) 

Source Reference 

C. demingie ACAM 459 2.2 - Antarctic (Bowman et al., 1998b) 
C. hornerae ACAM 607 2.1 - Antarctic (Bowman et al., 1998) 
C. psychroerythraea ACAM 550 8.0 1.5 Antarctic (Bowman et al., 1998) 
C. Psychrotropica ACAM 179 0.7 0.1 Antarctic (Bowman et al., 1998) 
C. rossensis ACAM 608 6.0 trace Antarctic (Bowman et al., 1998) 

 

1.3.5.3 The genus Photobacterium 

The genus Photobacterium was one of the earliest known bacterial taxa, with the report 

of species Ph. Phosphoreum (Beijerinck, 1889). The genus Photobacterium comprises a 

group of Gram-negative, facultatively anaerobic, plump, straight and rod-shaped 

bacteria that lack an enclosing sheath in their flagelus, and require sodium ions for 

growth (Seo et al., 2005). The type species of this genus is Ph. phosphoreum. This 

genus affiliates to the Gammaproteobacteria and is particularly with high similarity to 

genus Vibrio, on the basis of 16S rRNA gene sequences comparison (Nogi et al., 

1998c). Species of the genus Photobacterium and other bioluminescent bacteria, such as 

Vibrio, belong to the family Vibrionaceae, are widespread in marine environments 

(Kimura et al., 2000; Shieh et al., 2003). Photobacterium phosphoreum, Ph. leiognathi 

and Ph. profundum were respectively isolated from sea water, the intestinal contents of 
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marine animals and deep-sea sediment (Baumann and Baumann, 1984; Nogi et al., 

1998c). Photobacterium iliopiscarium, Ph. phosphoreum, Ph. profundum and several 

other species of the genus Photobacterium are psychrophilic, with optimum growth 

temperature is lower than 20 °C. Photobacterium profundum with two type strains DSJ4 

and SS9, were the first to be re ported as psychropiezophilic species isolated from the 

Ryukyu Trench at a depth of 5110 m (Nogi et al., 1998c). Photobacterium frigidiphilum 

was reported to be slightly piezophilic requiring 10 MPa as its optimal pressure for 

growth (Seo et al., 2005). About 15 Photobacterium species have been isolated, but Ph. 

profundum and Ph. frigidiphilum are the only two species within this genus known to 

display piezophily and the only two known to be able to produce the LC-PUFA EPA 

(Table 1.8). Vary limited species of Photobacterium produces LC-PUFA. 

Photobacterium profundum strain SS9 has been well studied regarding to the molecular 

mechanisms of pressure regulation (Bartlett, 1999) and subsequently genome 

sequencing and expression analysis (Vezzi et al., 2005).  

 

Table 1.8  Photobacterium type strains responsible for EPA production 

Genus/species Type strain  EPA  
(TFA/%) 

Source Reference 

Ph. frigidiphilum SL13 6 Cold-seep area (Seo et al., 2005) 
Ph. profundum DSJ4 13 Deep-sea sediment (Nogi et al., 1998c) 
Ph. profundum SS9 7 Deep-sea sediment (Allen et al., 1999) 
 

1.3.5.4 The genus Moritella  

Moritella marina is the type species of the genus Moritella (Urakawa et al., 2000), 

which was reclassified from Vibrio marinus (Colwell and Morita, 1964). Species in this 

genus were characterised as psychrophilic and/or piezophilic. To date, seven species 

have been identified in the genus Moritella. They were mainly isolated from marine 

environments, such as fish farms, seawater, marine sediments and the abyssal ocean 

(Nogi et al., 1998a; Nogi and Kato, 1999; Benediktsdottir et al., 2000; Urakawa et al., 

2000; Xu et al., 2003). Moritella marina was classified as non-piezophiles, isolated 

from the North Pacific Ocean (Urakawa et al., 2000). Moritella japonica and M. 

yayanosii were identified as piezophiles, isolated from the Japan Trench and Mariana 

Trench respectively (Nogi et al., 1998a; Nogi and Kato, 1999). The optimal pressure for 

the growth of M. yayanosii strain DB21MT-5 is 80 MPa, and unable to grow at 

pressures of less than 50 Mpa, but grows well at pressures as high as 100 MPa. 

Moritella viscosa, pathogenic for Atlantic salmon parr, was identified as 

psychrotolerant species, isolated from the lesions or the internal organs of fish 
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(Benediktsdottir et al., 2000). Moritella profunda and M. abyssi were classified as 

psychropiezophiles, isolated from the deep sea of the eastern tropical Atlantic (Xu et al., 

2003). Moritella dasanensis was identified a psychrophile, isolated from the coast of 

Svalbard, Norway (Kim et al., 2008).  

 

The change in cellular fatty acid composition of psychropiezophilic strains in response 

to pressure changes was observed by presenting higher amount of PUFAs at higher 

growth pressures. About 70 % of the membrane lipids are unsaturated fatty acids in M. 

yayanosii, indicating its adaptation to very high pressures (Nogi and Kato 1999; Fang et 

al. 2000). Six species of Moritella were reported with variable levels of DHA 

production (Table 1.9). 

 

Table 1.9  Moritella type strains responsible for DHA production 

Genus/species Type strain  DHA  
(TFA/%) 

Source Reference 

M. abyssi 2693 NP Coast, African (Xu et al., 2003) 
M. japonica JCM 10249 6 Deep sea (Nogi et al., 1998a) 
M. marina MP-1 12 Deep sea (Nogi et al., 1998a) 
M. profunda 2674 NP African coast (Xu et al., 2003) 
M. yayanosil JCM 10263 11 Ocean floor (Nogi and Kato, 1999) 
M. dasanensis ArB 0140 NP Coast, Norway (Kim et al., 2008) 
NP, Specific data not published post-February 2011. 

 

 

1.3.5.5 The genus Psychromonas 

All species in the genus Psychromonas are Gram-negative, rod-shaped, cold-

temperature aerobic bacteria with an optimum salt concentration of greater than 0 %. 

Phylogenetically, the genus Psychromonas is closely related to the genera Shewanella 

and Moritella, and the type species is Psychromonas Antarctica (Mountfort et al. 1998). 

No piezophilic properties shown in this strain which was isolated from a high-salinity 

pond in Antarctica as an aerotolerant anaerobic bacterium. Psychromonas kaikoae is a 

novel obligatory psychropiezophilic bacterium isolated from the deepest cold-seep 

environment at a depth of 7,434 m (Nogi et al. 2002). This strain was able to synthesis 

both EPA and DHA in its cell membrane, with optimal temperature and pressure for the 

growth at 10 °C and 50 MPa. In contrast, Psychromonas antarctica and most of recent 

identified Psychromonas species, such as P. agarivorans and P. boydii do not produce 

either EPA or DHA in its membrane layer (Hosoya et al., 2009; Auman et al., 2010). 

Psychromonas profunda is a moderately piezophilic bacterium isolated from deep 
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Atlantic sediments, similar to the piezo-sensitive strain Ps. marina, which also produces 

small amounts of DHA (Xu et al., 2003). In this genus, only limited species are able to 

produce low level of PUFAs (Table 1.10). 

 

Table 1.10 Psychromonas type strains responsible for long chain PUFA production 

Genus/species Type strain  DHA  
(TFA/%) 

EPA 
(TFA/%) 

Source Reference 

Ps. kaikoae JT7304 3 2 Deep sea (Nogi et al., 2002) 
Ps. marina Apr-22 1.6 - Coast (Kawasaki et al., 2002) 
Ps. profunda 2674 NP - Deep sea (Xu et al., 2003) 
NP, Specific data not published post-February 2011; (–), Not detectable. 

 

1.3.5.6 The genus Cyanobacteria 

Cyanobacteria, a class of photosynthetic prokaryotes occurring in the phytoplankton, 

produce C18 PUFA esterified to polar lipids, but they do not biosynthesize EPA or DHA 

(Henderson, 1999). EPA production was obtained by a transgenic marine 

cyanobacterium carrying a plasmid containing pfaEABCD gene cluster involved in EPA 

biosynthesis from Shewanella sp. SCRC-2738, for EPA synthesis with 4-8% EPA of 

TFA (Table 1.11) (Yu et al., 2000). 

 

Table 1.11 Cyanobacteria strains responsible for long chain PUFA production 

Genus/species Strain  EPA 
(TFA/%) 

n-18:3ω3 
(TFA/%) 

Source Reference 

Synechococcus sp.  NKBG15041c - 6.4 Coast (Yu et al., 2000) 
Cyanobacterium Recombinant 4-8 3-7 Recombinant (Yu et al., 2000) 

(–), Not detectable. 

 

1.4 Fatty acid biosynthesis 

Essentially, all living cells are capable of de novo synthesis of fatty acids and the 

derived fatty acyl-containing lipids (the exceptions being obligate parasites that rely on 

the lipid-synthesizing capabilities of their hosts, and also a primitive group of bacteria, 

known as the Archaebacteria, that produce highly branched-chain fatty acids derived 

from isoprene units and do not biosynthesize straight-chain fatty acids). However, the 

range of fatty acids that an organism is capable of producing de novo (from acetyl 

subunits) varies enormously. For example, terrestrial plants have limited capabilities for 

the synthesis of fatty acids with chain length of >18 carbons and none contain LC-

PUFA, and therefore with simple fatty acid patterns. In contrast, animal lipids are 
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generally far more complex and varied, as the fatty acid profile is determined more by 

the dietary fat intake than by the animal`s innate ability to synthesize fatty acids. 

Although animal have the ability to synthesize saturated fatty acids, and also possess a 

whole array of fatty acid desaturases and elongase, they do no possess a complete 

complement. Specifically, all higher animals lack distal desaturases, such as the Δ15 

and Δ12 desaturases, and so animals have a strict dietary requirement for fatty acids -  

linoleic acid (LA, 18:2ω6), the precursor of the omega-6 fatty acids, and α-linolenic 

acid (ALA, 18:3ω6), the precursor of the omega-3 fatty acids are dietary requirements 

for all higher animals (Tran et al., 2003). 

 
Microbial systems are different from those of both animals and terrestrial plants in that 

species are known that not only are capable of synthesizing PUFA >18 carbons but also 

possess all the desaturases to synthesize fatty acids of the omega-3 and omega-6 

pathways de novo. As a consequence, microbial oils possess the dual benefit of having 

simple fatty acid profiles, like plant oils, while also being potentially able to contain 

LC-PUFA of the omega-3 pathway (e.g. EPA and/or DHA) like animal oils. Marine fish 

oils are of great value due to their high content of omega-3 PUFAs, on which their 

health-benefit claims are based. However, these PUFAs are not synthesized by the fish, 

but produced by marine microorganisms on which the fish either feed or have residing 

within their intestines (Tocher et al., 2006), although the fact is still being little 

appreciated.  

 

The biosynthesis of C22 PUFA from C18 unsatuarated fatty acids proceeds via a 

sequence of alternate desaturations and elongations (Figure 1.5). These reactions may 

be found, in whole or in part, in microorganisms and animals, though in animals the 

Δ15 and Δ12 desaturases do not occur so that linoleic acid (LA, 18:2ω6) and α-linolenic 

acid (ALA, 18:3ω3) must be obtained from the diet. In plants, only reactions up to the 

C18 series [including stearidonic acid (STA, 18:4ω3)] occur. Certain marine 

microorganisms (including a few bacteria and marine microalgae – dinoflagellates and 

thraustochytrids which are used commercially to produce DHA) have a completely 

separate biosynthetic mechanism for the synthesis of EPA, DHA and docosapentaenic 

acid (DPA, 22:5ω3) (Tran et al., 2003). 
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Figure 1.5 The metabolism pathways of biochemical conversion of 18-carbon 
unsaturated fatty acids by fatty acid desaturases and elongase leading to long-chain 
polyunsaturated fatty acids (LCPUFA) of the omega-3, omega-6 and omega-9 series. 
Adapted from (Tran et al., 2003). 

 
 

1.4.1 Fatty acid synthetase system (FAS) 

The enzyme system involved in de novo fatty acid synthesis, fatty acid synthase (FAS), 

is one of the household enzymes of the cell. There are two types of fatty acid synthases. 

Type I FAS is present in mammals, birds, yeasts, fungi and some special bacteria 

(Figure 1.6). In this type, multifunctional enzyme complexes harbouring catalytic 

activities as discrete functional domains are located on one or two polypeptide chains 

(Schweizer et al., 1984; Schweizer, 1989; Schweizer and Hofmann, 2004). Whereas, in 

most bacteria as well as in the organelles of prokaryotic descent, for example, 

mitochondria and chloroplasts, produce fatty acids via the type II FAS in which discrete 

enzymes encoded by separate genes catalase specific steps of the biosynthetic pathway 

(Töpfer and Martini, 1994; White et al., 2005a). The dominant cellular fatty acids 
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produced via the type II FAS typically contain between 14 and 18 carbons, such as via 

iterative reactions of the elongation and desaturation on the saturated fatty acid palmitic 

acid (PA, 16:0) (Wallis et al., 2002; Qiu, 2003; Chung et al., 2005), during which 

palmitate (16:0) can be elongated by steps of 2 carbon atoms (again provided by a 

malonyl-CoA precursor) to C18:0-C24:0 (Schweizer, 1989).  

 

 
 
Figure 1.6 Domain organization of known type I FASs and related multienzymes 
Arrows indicate open reading frames. Their subdivision into functional domains is not 
shown to scale. With the exception of FAS1 and FAS2, the indicated gene pairs are 
chromosomally linked in tandem orientation. The indicated PKS combinations encode 
putative heteromeric multienzymes comprising a complete set of FAS domains. 
Brackets indicate intramolecular FAS modules. L, acyl-CoA ligase. Adapted from (Cole 
et al., 1998; Minnikin et al., 2002; Schweizer and Hofmann, 2004). 

 
 

FAS structural variants may be assigned to three general classes. These FAS enzymes 

are contrasted by the highly integrated type I FAS multienzymes, which contain the 

various catalytic activities of the reaction sequence as discrete functional domains, 

either on a single polypeptide chain or, in some cases, on two different multifunctional 

proteins of comparable size. Type I FAS multienzymes are characteristically found in 

the eukaryotic cytoplasm (Lynen, 1980) and, as a remarkable prokaryotic exception, 

also among the mycolic acid producing subgroup of the Actinomycetales (Bloch and 

Vance, 1977). The type I systems may be further subdivided according to the domain 

organization of the multifunctional proteins and, concomitantly, according to their 

subunit stoichiometry. Microbial type I FASs are hexamers with a domain sequence of 
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AC-ER-DH-MPT/ ACP-KR-KS forming either α6β6 (fungi) or α6 (bacteria) oligomers 

(type Ia). In contrast, animal FASs are α2 dimers with the domain sequence KS-AT-DH-

ER-KR-ACP-TE (type Ib) (Schweizer and Hofmann, 2004). Occasionally, more than 

one set of FAS domains may be fused to a multimodular synthase. For instance, the 

pks12 gene of Mycobacterium tuberculosis (Cole et al., 1998; Sirakova et al., 2003) has 

two complete sets of FAS domains, and the FAS gene of the parasitic protist 

Cryptosporidium parvum  has three (Zhu et al., 2000) (Figure 1.6). Apart from these 

structural differences, type I FASs may also be functionally differentiated on the basis 

of to various parameters, individual FASs may also differ by their specific cellular 

compartmentation being localized not only in the cytoplasm but also in organelles 

(Shintani and Ohlrogge, 1994), and microsomal membranes (Gu et al., 1997; Rossler et 

al., 2003).  

 

1.4.2 Polyketide (anaerobic) pathway 

Eckhart and Hofmann (2004) have proposed that FASs may be considered the forebears 

of most members of the large family of polyketide synthases (PKSs). PKS and FAS 

systems contain basically the same set of component enzymes. However, in contrast to 

FASs, the typical PKS pathways are not “iterative” reaction sequences. Instead, they 

catalyze one or several rounds of FAS-like reaction sequences, each specifically missing 

one or even more of the canonical FAS reactions. Usually, different enzyme 

combinations are used in successive PKS cycles ranging from complete to more or less 

incomplete FAS sequences (Hopwood and Sherman, 1990). Thus, polyketides retain, at 

distinct positions, the characteristic functional groups of certain FAS intermediates such 

as keto groups, hydroxyl groups, or double bonds (Schweizer and Hofmann, 2004). 

 
PKS systems have been known for many years in both bacteria and eukaryotic 

microorganisms as carrying out a wide variety of biosynthesis, with products ranging 

from relatively simple molecules, such as 6-methylsalicylic acid, to much more 

complex structures as may be found in the tetracycline and macrolide range of 

antibiotics (Pfeifer and Khosla, 2001). However, many PKS systems are like FAS in 

that they use acetyl-CoA as the basic building unit, which is initially converted to 

malonyl-CoA followed by a condensation of these two molecules. For the biosynthesis 

of the LC-PUFA, and unlike ‘conventional’ fatty acid biosynthesis using the FAS 

system, the product of the condensation reaction between the growing acyl chain and 

malonyl-ACP in the PKS-catalysed system does not always undergo complete 
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reduction, but may selectively retain some of the double bonds formed in situ. Some 

rearrangement of the configuration and position of these double bonds may occur in 

order to create the final methylene-interrupted cis-double-bonded fatty acids. The 

molecular size of the PKS system (about 500-600 kDa) is, however, much less than that 

of the FAS (~2000 kDa), which might suggest that, evolutionarily, the PKS may have 

been derived from genes of the FAS system undergoing some losses as well as 

additional modifications acid (Hopwood and Sherman, 1990). 

 

Yazawa et al. (1988) observed the production of LC-PUFA (either DHA or EPA) from 

certain marine bacteria, such as Vibrio, Shewanella and Moritella, resulting in the 

discovery of this new biosynthesize pathway of fatty acids. Previously, the ability to 

synthesize significant amounts of LC-PUFA was not associated with prokaryotic 

systems, with the exception of the cyanobacteria. Furthermore, these prokaryotic LC-

PUFA producers were often isolated from environments that were anoxic (without 

oxygen) and were able to produce LC-PUFA even under these conditions (Bowman et 

al., 1997b). Although the production of LC-PUFA under anaerobic conditions was 

apparently at odds with the involvement of oxygen-requiring desaturases, the large 

cluster of genes that was isolated from one of the LC-PUFA synthesizing bacteria was 

still assumed to encode conventional fatty acid elongases and desaturases with activities 

equivalent to those in other systems. These bacterial genes could be isolated and shown 

to confer the ability to synthesize LC-PUFA when transferred into a host bacterium, 

such as Escherichia coli, not normally able to synthesize such fatty acids (Allen and 

Bartlett, 2002; Orikasa et al., 2004; Orikasa et al., 2006a; Orikasa et al., 2006b), only a 

few studies were successful (Valentine and Valentine, 2004; Amiri-Jami and Griffiths, 

2010). 

 

Metz et al. (2001) concluded that EPA production shares many features with polyketide 

synthesis  The combined activities of these domains include condensation reactions (KS 

domains), acyl CoA:ACP transfer reactions (AT), multiple acyl carrier protein domains 

(ACP), ketoacyl reduction reactions (KR), chain length factor domains (CL) 

presumably involved in decarboxylation reactions, dehydratase/isomerase reactions 

(DH/I), and enoyl reduction reactions (ER) (Tanaka et al., 1999; Metz et al., 2001). 

These domains presumably catalyze the repetitive steps in building the growing acyl 

chain and molecular oxygen is not involved in any of these steps (Allen and Bartlett, 

2002). The presence of repetitive ACP domains is unique to EPA and DHA synthases, 

 55



Chapter 1. Introduction 

as shown in Figure 1.7, with SS9 pfaA possessing five ACP domains, Shewanella sp. 

six, Moritella five, and Schizochytrium nine (Cronan and Rock, 1996). The growing 

acyl chains are presumably bound covalently to these ACP groups as thioesters with AT 

domains being required for the loading of the starter and extender units. The ability to 

introduce multiple double bonds into a single acyl chain in the absence of O2 highlights 

a major difference with desaturase systems. The ability to produce double bonds 

anaerobically likely arises from the activities of the DH/I domains present in the 

microbial synthases, for example, bacterial PfaC homologues and Schizochytrium ORF 

C. Such dehydration/isomerization reactions might be analogous to those catalyzed by 

FabA (b-hydroxydecanoyl-ACP dehydratase) in bacterial monounsatured fatty acid 

synthesis, in an anaerobic process (Cronan and Rock, 1996). 

 

 

 

Figure 1.7 Organization of the core regions of PUFA biosynthetic gene clusters. A: 
Shewanella sp. SCRC-2738 (GenBank accession no.: U73935.1); B: Moritella marinus 
strain MP-1 (GenBank accession no.: AB025342.1); C: Photobacterium profundum 
strain SS9 (GenBank accession no.: AF409100, unpublished data); D: Schizochytrium 
(GenBank accession nos.: AF378327, AF378328, AF37832); Adapted from (Kaulmann 
and Hertweck, 2002). 

 

 

Therefore, a novel alternative pathway for the biosynthesis of C20+ PUFAs has been 

suggested in a narrow group of predominately marine Gamma-Proteobacteria that 

includes species of the Shewanella, Photobacterium, Moritella, Colwellia and Vibrio 
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genera (Yazawa, 1996; Morita et al., 2000; Kaulmann and Hertweck, 2002; Gutierrez et 

al., 2003). This system is responsible for the specific de novo synthesis of the long-

chain omega-3 PUFAs EPA and DHA, and the omega-6 PUFA arachidonic acid (AA, 

20:4ω6) (Russell and Nichols, 1999). The mechanism of Pfa Synthase for PUFA 

synthesis proceeds via a novel type I iterative fatty acid synthase/polyketide synthase 

(FAS/PKS) enzyme complex (Metz et al., 2001).  

 

Metz et al (2001) have proposed plausible schemes of this novel Pfa Synthase for PUFA 

synthesis system as shown in Figure 1.8. The first elongation step from a putative 

acetyl-CoA starter molecule and alonyl-CoA as well as a complete cycle of reduction is 

catalyzed by KS, KR, DH, and ER. The second elongation step occurs by a keto 

reduction to the β-hydroxyester. The FabA-like bifunctional dehydratase/isomerise 

would then catalyze dehydration as well as the trans-2,3-cis rearrangement of the acyl 

intermediate. In analogy to the requirement of a special β-ketoacyl-ACP synthase in E. 

coli for the elongation of the 3-cis-acyl-ACP intermediate, a designated KS might be 

responsible for chain propagation. After subsequent reduction and dehydration steps, a 

methylene- interrupted double-bond pattern would require that a trans-2,2-cis 

isomerization occurs. A similar reaction is known for the regeneration of 11-cis-retinol. 

For EPA biosynthesis, such set of reactions is then repeated twice, with the last 2,3-

isomerization being followed by an elongation in which a full reductive cycle is 

employed. Similarly, only minor modifications occur during the formation of DHA and 

AA. However, this proposed pathway needs to be verified and studied by further 

biochemical analyses. As for fungal iterative type I PKSs, it is completely unresolved 

how chain length and degree of reduction is controlled at specific steps. The multiple 

ACPs (5-9 copies) contain a conserved Ser residue that is post-translationally modified 

with the phosphopantetheinyl moiety of CoA by a phosphopantetheinyl transferase 

(PPTase) (Rahman et al., 2005), providing a free thiol for tethering the starter and 

extender units and channeling the intermediates during fatty acid and polyketide 

biosynthesis (Lambalot et al., 1996; Sanchez et al., 2001). 
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Figure 1.8 Proposed biosynthetic pathway of EPA in Shewanella sp. with putative 
intermediates and key catalytic activities employed. Mal-CoA: malonyl-CoA; KS: keto 
synthase; KR: keto reductase; DH: dehydratase; ER: enoyl reductase; 2,3I: 2,3-
isomerase; 2,2I: 2,2-isomerase. Adapted from (Kaulmann and Hertweck, 2002). 

 

1.4.3 PUFAs Polyketide synthase gene 

So far EPA and DHA genes have been found only in Gram-negative bacteria, which 

synthesize an inner and outer membrane structure similar to E. coli (Metz et al., 2001; 

Valentine and Valentine, 2004). The distribution pattern of DHA and EPA in the 

biosphere studies is that genes for anaerobic production of EPA or DHA are virtually 

always found in the marine environment (Heidelberg et al., 2002) raising the obvious 

possibility that these genes have selective advantage in and are tailor-made for this 

environment. However, as mentioned above, the marine-only rule seems to be broken 

with the finding of EPA genes in a freshwater isolate called Shewanella oneidensis, 

although this is the only exception to date (Metz et al., 2001). Also, one of the biggest 

surprises is the presence of the anaerobic pathway in certain marine fungi (Delong and 

Yayanos, 1986; Jøstensen and Landfald, 1997; Russell and Nichols, 1999).  

 

The classification of omega-3 bacteria has shed light on another interesting aspect 

regarding the vertical distribution pattern of EPA versus DHA bacteria in seawater. The 

point is that DHA bacteria were first thought to be found only in the deep sea, compared 

to EPA strains which are found in both deep and shallow seas (Jøstensen and Landfald, 
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1997). However, later studies showed that DHA strains are present in high levels in the 

guts of marine invertebrates living in cold, shallow seas or on sea ice (Gunstone, 1996). 

There is possible that omega-3 bacteria living the gut might be involved in symbiotic 

associations with their hosts, as Δ6 desaturase appears to be barely functional in cod 

under nutritional regulation (Tocher et al., 2006), and therefore essential fatty acids 

(EFA) are required in ontogeny of marine and freshwater fish (Tocher, 2010). However, 

further studies are needed to determine the biochemical and molecular basis of EFA 

requirements and metabolism of fish. 

 

Therefore, in some way, PUFAs genes will help in bacterial taxonomy to redefine old 

classifications, to create new groupings, and to trace-back evolution (Nichols et al., 

1997; Nichols et al., 1999). And, new strains with active and silent copies of the PUFA 

genes can be tracked by using molecular biology tools, and more might be learned about 

the world-wide distribution of strains with PUFA-biosynthesis gene clusters and their 

ecological importance (DeLong and Yayanos, 1985; Nichols et al., 1996b). The genes 

for PUFA biosynthesis are distinct from previously recognized PKS in both structure 

and mechanism as well as the novel putative dehydrases/isomerases, and may thus 

provide new tools for combinatorial biosynthesis of polyketide antibiotics (Leadlay, 

1997; Chartrain et al., 2000; Rohlin et al., 2001). 

 

The high degree of sequence similarity between the bacterial (Shewanella sp. SCRC-

2738, Moritella marina strain MP-1 and Photobacterium profundum strain SS9) and the 

eukaryotic microbe Schizochytrium pfa genes suggests the possible involvement of 

horizontal gene transfer in the acquisition of the pfa gene clusters in the marine 

environment, which demonstrated that EPA or DHA polyketide biosynthesis gene 

clusters from different genera were with high degree of sequence similarity. The result 

also provided evidence of the common distribution of the novel PUFA synthease 

pathways among marine microorganisms regardless of their biogeographic variability, 

which has recently been further testified by the investigation of genetic capacity for 

production of long-chain fatty acids using a culture-independent approach (Shulse and 

Allen, 2011). Therefore, possible horizontal transfer of these genes may be an 

interesting evolutionary question for ecologist to study, as there is no apparent guanine-

cytosine (GC) bias among the pfa A–D genes nor is there indication of flanking genes 

possessing functions which could facilitate horizontal transfer. 
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There are further reasons also for studying bacterial PUFAs. Their occurrence in a 

selected group of marine psychrophilic, halotolerant bacteria raises questions about their 

role in membrane structure and stabilization at low temperatures in saline conditions. 

Their distinctive taxonomic distribution can also be used for classification and 

identification. Evolutionary relationships may not be confined to bacterial groupings, 

because the structural similarity of bacterial PUFAs to those that are typical of 

mammals raises the possibility of lateral gene transfer. 

 

1.5 Bacteria adaptive to low temperature 

Psychrophilic and psychrotrophic bacteria are capable of developing over a wide 

temperature range and they can grow and survive at temperatures close to or below 

freezing. This ability requires specific adaptative strategies in order to maintain 

membrane fluidity, the continuance of their metabolic activities, and protein synthesis at 

low temperature. These strategies are mainly as (i), by altering the size and charge of 

the polar head groups; (ii), by changing the proportion of short and long chain fatty 

acids; (iii), by modification the extent of fatty acid desaturation; (iiii), by changing the 

proportion of cis and trans fatty acids and changing the composition of carotenoids 

(Chattopadhyay et al., 1997; Kiran et al., 2004; Zhang and Rock, 2008). However, not 

all the above strategies are effective. For instance, changes in the polar head groups are 

less frequent and less effective in modifying the membrane fluidity (Hasegawa et al., 

1980; Suutari and Laakso, 1994) and changes through chain length modification is 

possible only in growing cells (Denich et al., 2003) and therefore may not be the 

universal method of modulating membrane fluidity. Furthermore, proteins by 

interacting with lipids contribute to the overall stability of the membrane bilayer, but the 

interaction itself is dependent on head group acylation, membrane fluidity and 

membrane thickness, implying that it does not cause the primary effect on fluidity 

(Takeuchi et al., 1978; Takeuchi et al., 1981; Heipieper and de Bont, 1994; Epand, 

1998). Compared to the above strategies, changes in fatty acid desaturation, changes in 

fatty acid isomerisation and changes in composition of carotenoids appear to be the 

common modes of modulation of membrane fluidity in cells growing or exposed to low 

temperatures.  
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1.5.1 The role of PUFA in the bacterial cold adaptive response 

The role of EPA or DHA in bacterial membranes is of great interest and has 

implications for understanding the biochemical functions of these unique fatty acids in 

plants, animals and humans. Production of EPA by some bacteria increases as 

temperature decreases, leading to the hypothesis that these molecules may be important 

for growth at low temperatures (Delong and Yayanos, 1986; Valentine and Valentine, 

2004; Amiri-Jami et al., 2006). Cells must cope with decreases in temperature by 

modulating the lipid composition of their membrane, which can crystallize or enter 

nonbilayer phases at low temperatures (Russell and Nichols, 1999). A class of EPA 

minus mutants of Shewanella sp. were isolated, by using a mutational approach 

involving chemical mutagenesis followed by screening of large numbers of cold-

sensitive mutants. Growth of the mutants, such as cs-22 and cs-52 which lack EPA, was 

found to be dependent on supplying EPA in the medium at 4 °C (Yazawa et al., 1988b). 

Similar results on requiring EPA for bacterial low temperature growth were also 

achieved in other Shewanella species (Sato et al., 2008; Wang et al., 2009). However, 

EPA was not required for low-temperature growth in the deep-sea bacterium 

Photobacterium profundum (Allen et al., 1999). Therefore, it is unclear why these 

bacteria produce omega-3 fatty acids. 

 

A novel EPA recombinant of E. coli used as a “reporter” for EPA function 

demonstrated that EPA is the only significant fluidizing fatty acid available to the cells 

(Valentine and Valentine, 2004). This confirms earlier studies with yeast, which shows 

that DHA/EPA are able to fluidize the membranes of a eukaryotic cell (Williams et al., 

1973; Walenga and Lands, 1975). About 40 % EPA of the total fatty acids presented in 

the membrane of the EPA recombinant whereas other potential fluidizing components 

are largely missing with only n-16:0 which pairs with EPA (Yazawa et al., 1988a). This 

is the highest level of EPA yet reported in bacteria and also represents the most highly 

unsaturated membranes seen in E. coli. Some n-14:0 is also made (5–9 %) and might 

contribute some fluidity. It is still unclear that unsaturated fatty acid-requiring mutant of 

E. coli fails to incorporate significant levels of EPA fed exogenously. It may be that 

EPA generated internally enters the membrane and contributes properties essential for 

growth of E. coli even on strictly respiratory substrates such as proline or succinate 

(Valentine and Valentine, 2004). The result suggests that EPA-enriched membrane 

clearly supports proton bioenergetics in E. coli. However, other polyunsaturated fatty 

acids common in marine oils, including n-18:3ω3 and n-20:4ω6, are also effective, for 
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example, Linoleic acid (LA, 18ω2) shows only traces of activity whereas n-16:1ω7, n-

18:1ω9 and n-18:1ω11 are not effective (Watanabe et al., 1994). Preliminary 

experiments showed that DHA supports growth, but in later studies it was found that 

this effect is due to preferential uptake of EPA present in trace amounts in the DHA 

preparation. There is also a possibility that DHA is taken up and then converted to EPA 

in the cell (Nikaido, 1994). Unsaturated fatty acid auxotrophs of E. coli accept fatty acid 

chains with 1–3 double bonds, but not more. The levels of EPA needed to satisfy the 

maximum growth requirement are comparable to the values reported for E. coli. 

However, the EPA/DHA recombinant does not behave like a typical E. coli cell 

(Nakano et al., 2000), such as growth occurs around 0.2 M NaCl and restricted to about 

12–22 °C (Valentine and Valentine, 2004). 

 

1.6 The importance of PUFAs in marine food web 

Many marine organisms lack the capability of synthesizing omega-3 PUFA de novo and 

rely on a dietary supply of EPA, DHA or closely related C18 precursors (Kanazawa et 

al., 1979; Intriago and Jones, 1993). At the pelagic producer–consumer interface, the 

presence of EPA level in marine food web has been demonstrated of importance in 

transferring energy and biomass (Muller-Navarra et al., 2000). Microalgae have long 

been known to be rich in lipids and de novo PUFA biosynthesis in marine food webs 

(Gonzalezbaro and Pollero, 1988) although DHA-rich thraustochytrids have been 

included as further sources to make an appreciable contribution (Lewis et al., 1999). 

Marine bacteria with the ability to produce PUFA has been well studied (Russell and 

Nichols, 1999), and may possible involve in the importance of PUFA in the marine food 

chain (Delong and Yayanos, 1986). 

 

Energy transferability between trophic levels and the limitation of essential nutrients in 

marine food webs has gained attention widely. Ecologically, the investigation of 

prokaryotes is mainly focus on their role in organic matter remineralisation and nutrient 

cycling. However, only certain bacterial roles in marine food webs have been studied. In 

particular, bacteria may serve as potential providers of essential nutrients such as B-

complex vitamins (Lovley and Phillips, 1994), as a food source in aquaculture-based 

food chains (Intriago and Jones, 1993). Thus, bacteria server as main food source for 

sestonivorous, omnivorous and filtering deep-sea animals (Sorokin, 1993) and as 
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components of the commensal microbial communities of marine animals, were 

considered to be  importance in the marine environment (Nichols, 2003). 

 

To date, only two bacterial phyla: the Gamma-Proteobacteria and the Bacteroidetes, 

have been reported as main players for PUFAs production. These PUFAs producing 

Gamma-Proteobacteria are mainly characterised as being psychrophilic, halophilic and 

predominantly piezophilic or piezotolerant as most of them were isolated from deep-sea 

ocean or polar zones (Russell and Nichols, 1999; Kato and Nogi, 2001), and few of 

them are identified as mesophiles isolated from a temperate estuary or shallow seawater 

(Ivanova et al., 2001; Skerratt et al., 2002; Ivanova et al., 2003b; Frolova et al., 2005). 

CFB group PUFAs producers are unable to grow at high pressure but they are similarly 

psychrophilic and halophilic (Kato, 1999). Therefore, these physiological characteristics 

may contribute to the ecological distribution of bacterial PUFA producers in the marine 

environment. 

 

The abyssal environment is of great interesting regarding to the de novo production of 

PUFA and transfer to higher trophic levels. High levels of PUFA has been found in the 

benthic fauna (Ginger et al., 2000), for which the source of dietary is still unclear. 

Phytodetritus and faecal pellets represent the most common carbon and original PUFA 

inputs into abyssal environments (Kiriakoulakis et al., 2001), whereas particle-

associated populations of flagellates with bacterial communities from surface waters 

may be considered as PUFA providers (Vanucci et al., 2001). Only limited studies were 

focused on the ecological diversity of psychrophilic and/or piezophilic bacteria in the 

benthic ocean (Delong et al., 1997; Yanagibayashi et al., 1999; Eardly et al., 2001). 

These studies still could not confirm that the existence of piezophiles in abyssal 

sediment could provide a de novo dietary source of PUFA for filtering benthic animals. 

However, these PUFA-producing piezophiles may act as an inoculum for the intestinal 

communities of abyssal filter feeders and hence they can benefit from higher nutrient 

contents (Deming and Colwell, 1982; Delong and Yayanos, 1986; Roberts et al., 2001). 

Non-detection of PUFA by lipid biomarker study is a common result in surface 

sediment samples from the Porcupine Abyssal Plain region of the North Atlantic 

(Eardly et al., 2001), and in abyssal sediments from diverse areas (Kiriakoulakis et al., 

2001). There results may suggest that the limited growth and activity of cultivated 

piezophilic bacteria in abyssal sediment. 
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The annual sea ice surrounding Antarctica is a habitat where PUFA producers can be 

isolated. Various microalgae, mostly diatoms present in the bottom of the hard 

congelation ice (Bunt, 1963; Palmisano and Sullivan, 1983). Up to 50 % of the PUFAs 

including arachidonic acid (ARA, 20:4ω6), EPA and DHA were produced by 

microalgae in certain areas (Grossi et al., 1987). Ice-associated bacteria were found 

mainly psychrophiles containing both free-living Gamma-Proteobacteria and epiphytic 

CFB group (Grossi et al., 1984; Bowman et al., 1997a). Most of these isolates including 

many new species similar to those isolated from deep sea, were able to produce PUFAs 

(Kottmeier et al., 1987). However, little is known on the predominant of bacterial PUFA 

producer within the psychrophilic bacterial population that dominate the Antarctic 

prokaryotic sea ice community. The PUFA producers with 100 % 16S rDNA identity as 

Shewanella frigidimarina were isolated from the Arctic and Antarctica (Junge et al., 

2002). This suggests that bacterial PUFA producer may play an important role in the 

food web of global polar marine ecosystems. 

 

The intestinal contents of marine fish and invertebrates are commonly reported with 

isolation of bacterial PUFA producers. About 112 bacterial PUFA producers were 

found by comparing 7000 bacterial strains from the intestinal contents of temperate fish, 

zooplankton, shellfish and surrounding seawater/sediment (Nichols, 2003). In total 98 

from 258 isolates produced EPA or DHA (38 % average) rising to 50 % of isolates for 

two bivalve and one amphipod species. In some invertebrates, PUFA-producing 

bacteria were found to be predominant of the culturable bacteria (Jøstensen and 

Landfald, 1997). It was estimated that DHA-producing bacteria accounted for 14 % and 

EPA containing bacteria 30 % of total cell counts in the intestinal contents of seven 

deep-sea fish. In contrast, no DHA producers but 40 EPA-producing strains were 

isolated from 112 strains of intestinal bacteria from 10 shallow-sea animals (Yano et al., 

1997). It was concluded that PUFA-producing bacteria accounting for a large 

proportion of the bacterial community actively grow in the intestines of deep-sea fish 

(Iwanami et al., 1995; Watanabe et al., 1997). 

 

Nichols (2003) suggested that the potential benefit of the association between PUFA 

bacterial producer and certain animals must be considered in order to establish a 

hypothetical rationale for their ecological role in the marine food web. The rate of 

survival and growth of detritovors may be enhanced by feeding microbial enriched 

detritus, which may contain bacterially derived vitamins or other micronutrients (Lovley 
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and Phillips, 1994). It has been demonstrated that the transfer of bacterially derived 

fatty acids, and specifically PUFA, between marine bacteria and higher trophic levels 

was possible (Ederington et al., 1995; Nichols et al., 1996b). However, it is still unclear, 

whether such transfer occurs in the intestinal environment of marine organisms 

harbouring PUFA-producing bacterial populations, has ecological significance (Nichols, 

2003). 

  

PUFA-producing bacteria could be used as feedstock for organisms, such as rotifers, by 

which introduce them into a marine food web for PUFA-rich oils production by 

aquaculture. By varying the primary bacterial feedstock, specific PUFA enrichment can 

be achieved, and several studies have now demonstrated the trophic transfer of both 

EPA and DHA from bacteria to the rotifer Brachionus plicatilis, which is used in the 

cultivation of smallmouthed larval fish (Watanabe et al., 1992; Nichols et al., 1996b; 

Lewis et al., 1998). 

 

Therefore a better understanding of the biosynthetic pathway and its regulation in 

bacteria would pave the way for increasing levels of PUFAs, and the relative ease of 

genetic manipulation in bacteria makes them attractive for studying enzyme regulation 

and also gives the potential for gene transfer into other organisms to enhance or modify 

their PUFA-producing capacity. 

 

1.7 Advantages of microbial omega-3 PUFAs 

More attention has been given to the dietary importance of omega-3 PUFAs. Currently, 

fish oils are the primary and cheapest source of DHA and EPA, which may not be the 

best long-term solution to the increasing demand for these desirable fatty acids. 

Biomass from microbes grown under very closely controlled conditions could be a 

possible way to sustainable produce PUFAs (Spolaore et al., 2006). Their production 

can permit very close regulatory scrutiny from a range of regulatory bodies. Therefore, 

PUFAs from microbes can be certified as vegetarian or even vegan, as well as being 

potentially kosher and halal. DHA produced by Martek Biosciences are currently 

certified kosher by the Jewish Orthodox Union and halal by the Islamic Food and 

Nutritional Council of America. These oils can be incorporated into a wide range of 

food products without any risk of making the products unsuitable for any consumer 

group as a result of dietary restrictions. Moreover, the cost of biological production of 

DHA by using Schizochytrium sp. by Marteck biosciences has been demonstrated lower 
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than those of certain fish oils. These may be contributed by the advantages of microbial 

fatty acids: simple fatty acid profile; not affected by climatic, geographical or 

environmental factors; quality and supply can be guaranteed; vary rich in fatty acid of 

interest; Kosher, halal and vegetarian source; and, superior sensory and stability profile 

(Abril et al., 2003; Raghukumar, 2008; Fedorova-Dahms et al., 2010). Although, the 

microbial biomass production capacity might be limited and microbial PUFAs may 

potentially adverse public perception (Hammond et al., 2002). 

 

1.8 Thesis aims and objectives 

In this thesis, a number of hypotheses have been developed: 1, marine bacteria isolated 

from cold marine environments, such as Mid-Atlantic Ridge deep-sea sediments, North 

England coastal water, North-sea sponges and algae, may be able to produce PUFAs; 2, 

strains isolated from tropical marine environments such as Caribbean marine water and 

sponges may produce less or not produce PUFAs; 3, bacterial cells FA 

composition/patterns may be modified responding to the changes of temperature; 4, 

PUFA biosynthesis, speciation and the interaction of PUFA with other fatty acid types 

in the adaptive responses of bacteria to changing environmental conditions could be 

manipulated; 5, the phytoplanktonic diatoms isolated from the North Sea may highly 

produce EPA/DHA under local weather conditions; and 6, microbial PUFAs may play 

important role in marine food web. 

 

The aims of the thesis were to: 1, study culturable microbial communities and their fatty 

acid composition from different marine environments; 2, biotechnological production of 

PUFAs under various fermentation conditions; 3, molecular analysis of bacterial PUFA 

biosynthesis pathway; and 4, bio-electrochemically study power generation by bacteria 

under anaerotic conditions. 

 

The thesis had 9 objectives: 1, bacterial diversity and their fatty acid composition of 

Mid-Atlantic Ridge non-vent sediments; 2, fatty acid composition marine bacteria 

associated with North-sea and Caribbean marine sponge; 3, fatty acid composition 

marine algae associated with North-sea macro algae and microalgae; 4, taxonomic 

identification of novel PUFA producing bacteria; 5, study the bacterial cold-adaption 

mechanism by observing the modification of cell fatty acid compositions responding to 

temperatures; 6, optimization of EPA production under various fermentation conditions 
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using novel bacterial strains; 7, molecular identification of bacterial PUFA biosynthase 

genes in order to understand microbial EPA/DHA biosynthesis via the PKS-like 

pathway; 8, EPA production by marine microalgae indoors/outdoors in Northern 

England; and 9, electricity production by marine bacteria and estuary bacteria.  

 

Chapter 2 presents a full study on the fatty acid production by microbial communities 

from Mid-Atlantic Ridge non-vent sediments; Chapter 3 reveals marine sponge-

associated bacteria community from North Sea and Caribbean as sources for omega-3 

fatty acid; Chapter 4 the characterization of marine macro/micro algae and their 

associated bacteria community from North Sea as sources for omega-3 fatty acid study; 

Chapter 5 presents a study on Shewanella dovemarina sp. nov., a psychrotrophic 

bacterium producing high level of polyunsaturated fatty acid and electricity, isolated 

from deep-sea sediments; Chapter 6 describes the optimization of eicosapentaenoic acid 

production by deep-sea strain Shewanella sp. MAR441; Chapter 7 elaborates the 

biosyntheses of polyunsaturated fatty acids by polyketide synthases in 

Gammaproteobacteria; Chapter 8 provides the outdoor production of eicosapentaenoic 

acid by marine micro algae in the UK; Chapter 9 an approach for the enhanced 

electricity production using reconstituted artificial consortia of estuarine bacteria grown 

as biofilms; and finially, Chapter 10 integrates the results of the studies described in the 

thesis and presents the conclusion. 

 
References and Appendix for the work are attached at end of the thesis. 
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2 Chapter 2. Fatty acid production by microbial communities 
from non-vent Mid-Atlantic Ridge sediments 
 

2.1 Abstract 

Little is known about the diversity or ecology of microorganisms inhabiting Mid-

Atlantic Ridge (MAR) sediments found away from hydrothermal vent systems. We 

isolated 312 strains of psychrotrophic bacteria from non-vent habitats, at depths 

between 2,400 m and 2,750 m. Gram-positive bacteria were found to be the most 

abundant, followed by Gamma-Proteobacteria and Alpha-Proteobacteria based on 16S 

rRNA gene analysis. Twenty seven strains representing different genera within the 

Alpha and Gamma subgroups of the Proteobacteria, Firmicutes and CFB group were 

analyzed for temperature-induced changes in their whole cell fatty acid (FA) 

compositions. Principal coordinates analysis resulted in hierarchical grouping of the 

bacterial community which matched the relationship revealed by molecular analysis. FA 

composition altered strongly with temperature. Gram-positive strains, mainly the 

Firmicutes, employed anteiso-15:0 and iso-15:0 FA, whereas Alpha-, Gamma-

Proteobactria and CFB strains synthesized unsaturated fatty acids in response to a 

temperature drop. One strain, Shewanella sp. strain MAR445, which was 

phylogenetically unusual, and was found to produce 21 % eicosapentaenoic acid (EPA) 

in total fatty acid (TFA). Furthermore, we observed the production of squalene in a 

marine Gram-positive Bacillus strain MAR019. 

 

 

2.2 Introduction 

Psychrophiles and psychrotrophs are important in global ecology as a large proportion 

of our planet is cold (below 5 °C). Psychrophilic microorganisms are able to grow at 0 

°C or lower with an optimal growth temperature at about 15 °C and a maximal growth 

temperature at about 20 °C, whereas, psychrotrophic microorganisms may have a 

maximum temperature for growth above 20 °C (Morita, 1975; Gow and Mills, 1984). 

There is a growing interest in studying the psychrotrophic bacteria based on their 

possible biotechnological applications (Aguilar, 1996). One such application is to 

produce polyunsaturated fatty acids (PUFAs), especially dietetic important omega-3 

PUFAs, such as eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 
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22:6ω3). They were well documented for providing beneficial effects on human being 

and prevention of human diseases (Connor and Connor, 2007). EPA and DHA are 

natural substances mainly extracted from fish oils. However, potential problems 

associated with fish oils as a source of PUFA such as: taste, odor, stability problems as 

well as the presence of coextracted contaminants (Bersamin et al., 2007; Domingo et al., 

2007). Nevertheless, the crucial problem of those oils is their sustainability due to the 

worldwide decline of fish stocks (Garcia and Rosenberg, 2010). Therefore natural 

production of omega-3 by marine microbes is a possible way to find alternative sources 

of nutrients. Psychrophiles and psychrotrophs may constitute an economic alimentary 

source recently analysed for aquaculture industries (Nichols and Russell, 1996; Yazawa, 

1996). The studies have demonstrated the trophic transfer of both EPA and DHA from 

bacteria to the rotifer Brachionus plicatilis, which is used in the cultivation of 

smallmouthed larval fish (Watanabe et al., 1992; Nichols et al., 1996b; Lewis et al., 

1998).  

 

Gamma-Proteobacteria and the Bacteroidetes are the two main bacterial phyla 

containing PUFAs producers in the marine environment (Nichols and McMeekin, 

2002). Ecologically, the most commonly reported are the Gram-negative Alpha-, Beta- 

and Gamma-Proteobacteria and the Cytophaga–Flavobacterium–Bacteriodes (CFB) 

phylum. Coryneforms, Arthrobacter sp. and Micrococcus sp. are the most frequently 

found Gram-positive bacteria (D'Amico et al., 2006), however, there are limited reports 

on the diversity and ecophysiology, and secondary metabolite production by Gram-

positive psychrotrophic bacteria from deep sea environments. So far, bacterially derived 

PUFAs were mainly from Gram-negative strains (Valentine and Valentine, 2004). 

However, partially due to the difficulty of collecting samples, such comparative 

information on deep sea bacteriology is rare. 

 

Psychrophiles and psychrotrophs may adjust their enzymes and cellular membranes in 

order to be metabolically active in cold environments. They can decrease their 

membrane fluidity by altering the lipid composition to reduce the melting point of its 

constituent phospholipids, and have been suggested as a homeoviscous adaptive 

response (Kato and Nogi, 2001), which may be achieved by increasing the degree of 

monounsaturated fatty acids (MUFAs) and PUFAs (Melchiodr, 1982; Russell, 1990; 

Skerratt et al., 2002). The finding is supported by Shewanella mutants deficient in EPA 

production, showing cold and/or pressure sensitive (Sato et al., 2008; Wang et al., 
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2009). However, EPA defective mutants in Photobacterium profundum SS9 show no 

appreciable growth deficit at elevated pressure or reduced temperature (Allen et al., 

1999). Thus, the function of PUFAs in the microbial membrane remains enigmatic. 

Therefore, more different bacterial species including no-PUFAs producing bacteria 

should be included for the cold-adaption study.  

 

Mid-Atlantic Ridge (MAR) is a unique ecosystem in the deep sea, with large expanses 

of hard substrate, complex topography and oceanography, hydrothermal activity and an 

absence of a terrigenous input of sediment and organic matter. Microbial communites 

associated with hydrothermal vent sites on the MAR have been studied in hydrothermal 

plumes, bacterial mats, as endo- and ectosymbionts, and in suspension (Polz and 

Cavanaugh, 1995; Chin et al., 1998; Reysenbach et al., 2000; Lopez-Garcia et al., 

2003a; Nercessian et al., 2005).  However, relatively little attention has been given to 

the ecology and diversity of the free-living microbial communities that occupy the 

“non-vent” sites. Northern sections of the MAR (>41 ºN) are believed to be devoid of 

hydrothermal activity (German et al., 1994; Søilanda et al., 2008). Three sites from this 

region were chosen and their bacterial diversity and the fatty acid content of isolated 

strains were examined, in order to obtain cold adapted bacteria capable of PUFA 

production. In this chapter, the diversity and fatty acid metabolism of cultured 

psychrotrophic bacteria from MAR “non-vent” sites, were studied for the first time in 

this area. 

 

2.3 Materials and Methods 

2.3.1 Sample collection 

Sediment samples were collected between 48° and 54°N using a megacore from three 

stations on the Mid-Atlantic Ridge (MAR) north and south east of the Charlie-Gibb 

Fracture Zone (CGFZ) on board the R.R.S James Cook from 13th July to 18th August 

2007 (Table 2.1). These stations are located at depths between 2400 m and 2750 m, 

oceanographically separated by the Arctic Sub-polar Front and physically by the CGFZ 

and the ridge axis.  They are remote from any islands and seamounts, with no known 

hydrothermal activity. Cores with intact surface sediments were chosen for sampling. 

One core was selected from each station and sectioned at 0 to 5 mm (surface) and 5 to 

10 mm (subsurface) depth horizons. The sediment was then frozen and stored in glass 

vials at -80 ºC. 
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Table 2.1 Locations of MAR non-vent sites sediment sample collection 

Station Date Lat Long 

Depth 

Water (m) 

Sediment 

Depth (cm) 

Number  

of isolates 

Southeast 2007/7/22 49°05.40’N   27°50.22’W 2734 0-5 21 

Southeast 2007/7/22 49°05.40’N   27°50.22’W 2734 5-10 133 

Northwest 2007/8/4 54°01.00’N 36°13.3’W 2566 0-5 19 

Northwest 2007/8/4 54°01.00’N 36°13.3’W 2566 5-10 47 

Northeast 2007/8/9 54°00.65’N 34°10.42’W 2500 0-5 17 

Northeast 2007/8/9 54°00.65’N 34°10.42’W 2500 5-10 75 

 

2.3.2 Isolation of psychrophilic and psychrotrophic bacteria 

The sediments (1 g wet sediment) were subsequently diluted with 4 ml autoclaved 

seawater passed through a 0.2 um-pore-size filter. After vigorous shaking for 30 s, the 

sediments were allowed to settle for 5 min before 50 µl was inoculated onto different 

marine agar plates and spread with an alcohol sterilized glass rod. Processed samples 

were inoculated onto 9 different isolation marine agar media (MA1 to MA9), which 

consisted of the following: MA1, Difco™ Marine Broth 2216E; MR2 (modified 

Zobell’s agar), 10 g agar,  10 g peptone, 10 glucose, 1 g yeast extract and 1 g meat 

extract in 1000 ml natural seawater; MA3, 10 g agar, 10 g glycerol, 1 g yeast extract and 

1 g peptone in 1000 ml natural seawater; MA4, 10 g agar, 10 g triacylglyceride, 1 g 

yeast extract and 1 g peptone in 1000 ml natural seawater; MA5, 10 g agar, 10 g tween 

80, 1 g yeast extract and 1 g peptone in 1000 ml natural seawater; MA6, 10 g agar, 10 g 

casein, 1 g yeast extract and 1 g peptone in 1000 ml natural seawater; MA7, 10 g agar, 

10 g soluble starch, 1 g yeast extract and 1 g peptone in 1000 ml natural seawater; MA8, 

10 g agar, 1 g soluble starch, 0.5 g yeast extract, 0.5 g peptone and 0.2 g 

glycerophosphate (disodium pentahydrate) in 1000 ml natural seawater; MA9, 10 g agar 

in 1000 ml natural seawater. Plates were incubated in the dark at 4 and 15 ºC for about 

45 days, for isolating anaerobic bacteria, the plates were placed in an anaerobic 

container system (GasPak™ EZ, BD, Maryland) containing anaerobic GasPaks (Oxoid), 

and 312 cold-adapted (psychrotrophic) strains were isolated consequently, 52 of which 

were isolated under anaerobic conditions. Base on the morphological differences, such 

as colony color, edge-shape, etc, 36 morphologically distinct bacterial strains were 

found. All these strains were cultivated at both 4 °C and 37 °C in marine broth medium, 
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strains grew well at 4 °C but did not grow at 37 °C, were further cultured at 4, 15 and 25 

°C to get enough cells for lipid extraction. 

 

2.3.3 MFC construction and operation 

The glass dual-chamber MFC was constructed from two 250 ml bottles (Corning Inc.) 

with H2315 carbon cloth (4×5 cm) (Freudenberg FCCT KG, Germany) electrodes. A 

proton exchange membrane (inner diameter: 1.3 cm, NafionR 117, Dupont Co., 

Wilmington, USA) was installed between two chambers as described in Chapter 9. 

 

2.3.4 Strain growth 

For biomass production, strains were inoculated into 10 ml of Zobell’s broth (ZB) 

(ZoBell, 1946), and incubated at 15 °C until turbidity was apparent. The 10 ml cultures 

were then used to inoculate 90 ml volumes of marine 2216E broth contained in 500 ml 

conical flasks pre-rinsed in chloroform. Flasks were incubated at 4, 15 and 25 °C 

respectively with agitation provided by a magnetic stirrer or orbital shaker (180 rpm) for 

24-48 h until sufficient mass of estimated late-log phase cells were present for harvest. 

The bacterial growth curved was measured as methods mentioned in Chapter 6. 

 

Cell mass from broth cultures was collected by centrifugation at 4500 g for 20 min. Cell 

pellets were resuspended in 200 ml M9 solution (22mM KH2PO4, 22mM Na2HPO4, 85 

mM NaCl, 1mM MgSO4) and recentrifuged followed by rinsing with 0.1 % ammonium 

acetate and frozen. The washed cell pellets were suspended in 2.0 ml saline and 

lyophilised in preweighed containers prior to lipid extraction. 

 

2.3.5 Lipid extraction, transesterification, gas chromatography (GC) and gas 

chromatography–mass spectrometry (GC–MS) 

Samples were harvested by centrifugation (4500 g, 4 °C) and frozen at -20 °C followed 

by -80 oC, before freeze-drying. The dry weights of pellets were determined. Fatty-acyl 

methyl esters were prepared by using the method sulfuric-acid-catalysed trans-

esterification (Komagata and Suzuki, 1987; Christie, 1989). After the transmethylation, 

fatty acid methyl esters were extracted with n-hexane, concentrated under a stream of 

oxygen-free dry nitrogen at 37 °C. Analyses of the FAME preparations were performed 

with a Hewlett-Packard model 7890A gas chromatograph (Varian CP-3800, Varian, Inc. 

2700 Mitchell Drive Walnut Creek, CA 94598-1675/USA) equipped with type DB225 
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capillary column (BPX70, 10 m x 0.1 mm, 0.2 µm; J & W Scientific, Folsom, Ca, USA) 

with programmed temperature of 170 °C–220 °C, a linear increase at 5 °C min-1, 

injection and detection temperature maintained at 250 and 260 °C, respectively, and 

helium as the carrier gas. GC/MS analysis was carried out with Agilent 5975 GC/MS 

(Agilent Technologies Co., Ltd., Palo Alto , USA) equipped with HP-5ms Capillary 

GC-MS Column (Agilent, 19091S-433, 30 m x 0.25 mm, 0.25 µm), temperature 

programme 120 °C for 1 min, increased at 8 °C min-1 to 260 °C, which was maintained 

for 10 min with He as the carrier gas. MS operating conditions were as follows: electron 

multiplier, 2,000 V; transfer line, 250 °C; electron impact energy, 70 eV; scan 

threshold, 50; 1.3 scans s21 with a mass range of 50 to 500 atomic mass units; and 

solvent delay, 2.35 min. Compounds were identified by comparison of their retention 

times with those of known standards, and sample mass spectra data were compared to 

the mass spectra data of 275, 000 compounds in the Wiley 275 spectra library. 

 

2.3.6 Preparation of genomic DNA and 16S rRNA gene analysis 

Genomic DNA was extracted from the strains using the PureLink™ Genomic DNA 

Mini Kit (Invitrogen Ltd, Paisley, U.K) and used as templates for PCR amplification of 

the 16S rRNA  gene fragments according to the methods described previously (Rainey 

et al., 1996). The Primers used were Eubac27F (5’-AGAGTTTGATCCTGGCTCAG-

3’) and Eubac1492R (5’-GGTTACCTTGTTACGACTT-3’) (DeLong, 1992). The PCR 

products were sequenced by Eurofins MWG Operon after purification with PureLink™ 

PCR Purification Kit (Invitrogen Ltd, Paisley, U.K) following the manufacturer’s 

protocol.  

 

2.3.7 Phylogenetic analysis and diversity estimates 

The 16S rRNA gene sequences determined were checked for similarities to DNA 

sequences in the NCBI database (http://www.ncbi.nlm.nih.gov/) and RDPII 

(http://rdp.cme.msu.edu) database using the Basic Local Alignment Search Tool 

(BLAST). The alignment and phylogenetic analysis of sequences were achieved with 

the neighbour-joining method by DNAMAN software package (Version 5.1), cluster 

and molecular evolutionary genetics Analysis (MEGA) Version 4.0. 
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2.3.8 Nucleotide sequence accession numbers 

The nucleotide sequences of 16S rRNA gene have been deposited in EMBL under the 

accession numbers: FR744769-FR744821 (MAR003-MARG45). 

 

2.3.9 Multivariate analyses 

Relative abundances of major FAs after whole cell hydrolysis (Tables 2.3–2.6) were 

used for statistical analysis; compounds representing <1 % of total FAs were excluded. 

The fatty acid patterns similarities were numerically analyzed with a classification using 

an unweighted pair group average method (UPGAM) clustering method. Principal 

coordinates analyses (PCO) and box and whisker plots was used to analyze the 

distribution of fatty acid patterns in relation to the bacterial species. The classification 

and ordination analyses were carried out using the statistical software Multi-Variate 

statistical Package (MVSP) version 3.2 (Kovach Computing Service, Pentraeth, UK) 

(Kovach, 1999). Then, an eigenanalysis was performed on the matrix, resulting in 

different CA axes. A scatter plot was performed on the first and the second CA axis, 

representing the highest eigenvalues. The number of axes to extract was identified by 

Kaiser's rule (Kaiser, 1974).  

 

 

 

2.4 Results 

2.4.1 Location of sediment sampling sites 

Deep-sea sediments were collected, between 49ºN and 54ºN (Table 2.1). Previous 

investigations have found high-temperature venting between 12°N and 41°N (Chin et 

al., 1998), while no hydrothermal vents have been located from the northern sections of 

the MAR (>41 ºN). The MAR-ECO expedition in June and July 2004, undertook 39 

deep CTD stations at uneven spacing along the MAR between 41ºN and 61ºN and 

detected no buoyant hydrothermal plumes. Meanwhile lots of valuable data have been 

well provided from this research for our selected sections, e.g. the North Atlantic 

Current (NAC) crosses the MAR in a minimum of two and a maximum of four branches 

between 45ºN and 52ºN; stations south of 56º30`N are dominated by Sub-Arctic 

Intermediate Water (SAIW); and photographic evidence demonstrated the deposition of 

phytodetritus at depths between 2000 to 4000 m at the temperate latitudes of the 
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Northeast Atlantic (Billett et al., 1983; Lampitt, 1985). Analysis of the material 

collected by a Multiple Corer showed that it was typical of the spring bloom in the 

overlaying waters, which also suggested the material sank rapidly at a rate of 100-150 m 

day-1 (Billett et al., 1983). The phenomenon was supported in other regions of the world 

which had collected sinking organic matter in sediment trapss (Deuser and Ross, 1980). 

The transport of organic matter in the form of faecal pellets is important because they 

contain smaller particles that would not sink unless they became incorporated into 

something heavier (Dunbar and Berger, 1981) and are sites for bacterial growth (Azam 

et al., 1994). The rapid nature by which these faecal pellets sink, means the organic 

matter arriving at the sea floor is less degraded than aggregations of slow sinking 

phytodetritus (Pfannkuche, 1993). 

 

2.4.2 Strains isolation 

From a total of 6 deep-sea sediment samples, 312 bacteria were isolated at low 

temperatures under aerobic condition, using 9 different isolation marine agar media 

(MA1 to MA9). Of these strains, 49.3 % was from southeast station (49°05.40’N, 

27°50.22’W), 21.2 % was from northwest and 29.5 % from northeast (54°01.00’N, 

36°13.3’W). Base on the morphological differences, such as colony color, edge-shape, 

etc, 36 morphologically distinct bacterial strains were found. Psychrophilic strains were 

seldom isolated as most of the strains could still grow from 20 °C to 30 °C, although 

108 strains, most of which isolated from subsurface, grew fast at 4 °C and with optimal 

growth temperature at 15 °C (e.g. Figure 6.1 in Chapter 6), whereas at lest 152 strains 

have some growth at 4 °C with optimal growth temperature at around 25 °C, therefore 

all the strains isolated could be assigned as psychrotrophs. Gram-positive bacteria 

accounted for 68 % of the strains based on the gram staining technique and further 

confirmed by molecular identification. Gram-positive strains were for the most part 

brightly pigmented, psychrotrophic, and some of them possessed an oxidative 

metabolism. About 82 % of the isolates were found to be presented in most surface 

sediment samples (0-5 mm depth) and relative less from the subsurface sediments (5-10 

mm depth), for example, about 43 % of isolates from subsurface in Southeast station, 

only 15 % from subsurface sediments in Northeast and about 24 % from subsurface 

sediments in Northwest (Table 2.1).  
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2.4.3 Phylogenetic groups and identification of the benthic bacteria  

From a total of 6 deep-sea sediment samples, 312 bacteria were isolated, of which, 105 

were chosen for phylogenetic analysis based on colony colour and morphology 

difference. They fell into nine major lineages of the domain Bacteria (Hugenholtz et al., 

1998). Their ratios in each bacterial community were shown in Figure 2.1. Gram-

positive bacteria with low G+C content (Firmicutes) constituted the most abundant 

division of the bacterial populations, followed by Gamma-Proteobacteria in these deep-

sea sediments. Only a few strains fall into Gram-positive with high G+C content 

(Mcicrococcaceae), Alpha-Proteobacteria and Cytopahga-Flexibacteria-Bacteroides 

(CFB) group.  NCBI nucleotide BLAST searches using the partial 16S rRNA gene 

sequences of these 105 strains revealed that 73 (69.5 %) of the isolates were Gram 

positive and shared a phylogenetic affiliation with members of the Bacillaceae, 

Planococcaceae, Nocardiaceae and Micrococcaceae. These results were further 

confirmed by gram staining and microscope pictures. Sixty-seven strains belonged to 

the phylogenetic group of as “low G+C Gram positive” representatives of the family 

Bacillaceae including 11 taxonomic units and showed B. pseudofirmus (19.7 %), B. 

safensis (15.2 %), Jeotgalibacillus marinus (13.6 %), B. pumilus (12.1 %), B. 

sonorensis (10.6 %) and B. decolorationis (7.6 %) as major isolates (8-20 %) and 

contained less B. licheniformis, B. tequilensis, B. horneckiae, B. hwajinpoensis, B. 

circulans, B. simplex and Thalassobacillus devorans (2-5 %), by exhibiting similarity 

values with representative type strains of this family ranging from 93.4 to 99.9 % (Table 

2.2).  

 

 

Strain MAR899 was most closely affiliated with 16S rRNA gene reference sequences of 

the family Planococcaceae by exhibiting the highest similarity value of 98.8 % with 

type strain Paenisporosarcina quisquiliarum SK 55T. Two families Micrococcaceae 

and Nocardiaceae were felled into high G+C Gram positive bacteria division, 

containing 4 different species: MAR443 showing the highest similarity value of 97.2 % 

with Micrococcus terreus V3M1T; MAR806 showing most closely affiliated (99.6 %) 

with Micrococcus yunnanensis YIM 65004T; MAR387 and MAR801 exhibiting 99.6 % 

similar to Kocuria marina KMM 3905T and Kocuria rhizophila DSM 11926 

respectively; and anaerobic isolates MARG10 and MARG12T exhibiting the highest 

similarity (99.6 %) with Rhodococcus erythropolis NBRC 100887. 
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Figure 2.1 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of 53 representative strains observed in this study (indicated 
in bold) and their nearest type strains.  
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Table 2.2 Bacterial strains isolated from Mid-Atlantic Ridge non-vent sedimentsa 

 

aStrains chosen for phylogenetic analysis were indicated in bold text.  

Phylogenetic group 
(family) 

Representative isolates 
 

No. of 
strains 
in OTU 
 

Nearest type strain in Bank  
(accession number) 
 

Similari
ty (%) 

Sedimen
t Depth 
(cm) 

Source of nearest 
type strain 
 

Firmicutes       
MAR886 1 Bacillus tequilensis NRRL B-41771T 

(EU138487) 
99.951 5-10 Culture Collection 

MAR282;  MAR285;  MAR289; 
MAR802;  MAR834;    MAR835;  
MAR840 

7 Bacillus sonorensis NRRL B-23154T 
(AF302118) 

96.275 5-10 Soil in the Sonoran 
Desert, Arizona 

MAR898;  MAR850 
2 Bacillus licheniformis ATCC 14580T 

(CP000002) 
99.176 

0-5 Persian petroleum 
reservoir 

MAR003; MAR001; MAR002; 
MAR804; MAR805 

5 Bacillus decolorationis LMG 19507T 
(AJ315075) 

97.915   
5-10 Mural paintings 

MAR807;  MAR836;  MAR837;  
MAR839;  MAR841;  MAR845; 
MAR846  MAR859;  MAR860;  
MAR861 

10 Bacillus safensis FO-036bT (AF234854) 99.568 5-10 Sspacecraft and 
assembly-facility 
surfaces 

MAR847; MAR849;  MAR851;  
MAR853;  MAR854;  MAR855;  
MAR856;  MAR857 

8 Bacillus pumilus ATCC 7061T 
(ABRX01000007) 

99.646 5-10  

MAR808;  MAR820;  MAR821;  
MAR825; MAR826;  MAR827;   
MAR828;        MAR829 

8 Bacillus pseudofirmus DSM 8715T (X76439) 99.240 5-10 pig skins/bovine bones 

MAR809; MAR810; MAR814;  
MAR816; MAR818; 

5 Bacillus pseudofirmus DSM 8715T (X76439) 99.101 5-10 pig skins/bovine bones 

MAR283 ;   MAR288 ; MAR302;  
MAR303;  MAR305;        
MAR306 

6 
Jeotgalibacillus marinus DSM 1297T 
(AJ237708) 

96.931 
5-10 deep sea sediments 

MAR454;  MAR455;  MAR456 
3 Jeotgalibacillus marinus DSM 1297T 

(AJ237708) 
97.992 

5-10 deep sea sediments 

MAR287, MARG7 
2 

Bacillus horneckiae 1P01SCT (EU861362) 98.327 
5-10 spacecraft-assembly 

clean room 
MAR870; MAR871 2 Bacillus hwajinpoensis SW-72T (AF541966) 99.723 0-5 sea water 
MAR015; MAR016; MAR017 3 Bacillus circulans ATCC 4513T (AY724690) 99.053 5-10 Soil 
MAR019; MAR020 2 Bacillus simplex NBRC 15720T (AB363738) 93.376 0-5 Mural paintings 

Bacillaceae 

MARG1, MARG2 
2 Thalassobacillus devorans G-19.1T 

(AJ717299) 
98.538 

5-10 phenol enrichment 

Planococcaceae MAR899 
1 Paenisporosarcina quisquiliarum SK 55T 

(DQ333897) 
98.812 

0-5 landfill soil 

high GC Gram+       
MAR443 1 Micrococcus terreus V3M1T (FJ423763) 97.156 0-5 forest soil 
MAR806 1 Micrococcus yunnanensis YIM 65004T 

(FJ214355) 
99.638 0-5 Polyspora axillaris roots 

MAR387 1 Kocuria marina KMM 3905T (AY211385) 99.583 0-5 marine sediment 
Micrococcaceae 

MAR801 
1 

Kocuria rhizophila DSM 11926T (Y16264) 99.582 
5-10 rhizoplane of the 

narrow-leaved cattail 

Nocardiaceae 
MARG10, MARG12 2 Rhodococcus erythropolis NBRC 100887 

(AP008957) 
99.643 5-10 Pacific Ocean 

Alpha-proteobacteria       

Phyllobacteriaceae MAR866 
1 Hoeflea phototrophica DFL-43T 

(ABIA02000018) 
99.852 

5-10 cultures of marine 
dinoflagellates 

Rhodobacteraceae MAR824 1 Paracoccus marcusii DSM 11574T (Y12703) 99.926 0-5 agar plate 
CFB group bacteria       

MAR430 1 Formosa agariphila KMM 3901T (AY187688) 98.253 5-10 Sea water 
Flavobacteriaceae 

MAR448 
1 

Algibacter lectus KMM 3902T (AY187689) 99.790 
5-10 sea urchin  in Troitsa 

Bay 
Gamma-proteobacteria       
Xanthomonadales; 
Xanthomonadaceae 

MAR386 
1 Stenotrophomonas rhizophila e-p10T 

(AJ293463) 
99.237 

0-5 various patient sites 

Oceanospirillaceae MAR442 
1 

Amphritea balenae JAMM 1525T (AB330883) 98.084 
0-5 sediment adjacent to 

sperm whale 
MARG5 1 Halomonas alkaliphila 18bAGT (AJ640133) 98.897 0-5 salt pool 
MAR300 1 Cobetia marina DSM 4741T (AJ306890) 96.637 0-5 Marine water Halomonadaceae   
MAR913 1 Cobetia marina DSM 4741T (AJ306890) 97.697 5-10 Marine water 

Shewanellaceae MAR441, MAR444 ; MAR445 3 Shewanella olleyana ACEM 9T (AF295592) 97.874 0-5 temperate estuary 
MARG3, MARG8, MARG11,  
MARG13 

4 
Hafnia alvei ATCC 13337T (M59155) 90.571 

5-10  

Enterobacteriaceae 
MARG45 

1 Serratia proteamaculans DSM 4543T 
(AJ233434) 

99.794 
5-10 Soil 

Idiomarinaceae MARG4 1 Idiomarina loihiensis L2TRT (AE017340) 99.787 5-10 Hydrothermal vent 
MAR005;  MAR025;  MAR026;  
MAR027;  MAR029;   

5 Pseudoalteromonas paragorgicola KMM 
3548T (AY040229) 

98.643 
5-10 A sponge 

Pseudoalteromonadace
ae 

MAR880;  MAR908 
2 Pseudoalteromonas paragorgicola KMM 

3548T (AY040229) 
99.788 

0-5  

MAR446 1 Acinetobacter lwoffii DSM 2403T (X81665) 98.955 0-5  
MAR009;  MAR010;  MAR028;  
MAR705  

4 
Psychrobacter fozii NF23T (AJ430827) 99.864 

0-5 Antarctic coastal marine 
environments Moraxellaceae 

MAR701; MAR703 
2 

Psychrobacter arcticus 273-4T (CP000082) 99.128 
0-5 A terrestrial 

environment 
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The remaining bacteria cultured, 32 strains (30.5 % of the 105 isolates) were divided 

into three groups: Gamma-Proteobacteria (26.7 %), Alpha-Proteobacteria (4 %) and 

CFB group bacteria (4 %).  Of these Gram-negative sequences identified, 2 (6.3 %), 

MAR886 and MAR824 were phylogenetically affiliated with Alpha-Proteobacteria 

phylum and the order Rhizobiales, which are most closely related to 2 separate family 

level groupings: Phyllobacte and Rhodobacteraceae. MAR886 was exhibited 99.8 % 

the highest similarity with Hoeflea phototrophica DFL-43T and MAR824 was 99.9 % 

similar to Paracoccus marcusii DSM 11574T. Another two isolates (6.3 %), MAR430 

showing most closely affiliated (98.2 %) with Formosa agariphila KMM 3901T and 

MAR448 exhibiting 99.7 % similarity with Algibacter lectus KMM 3902T, were 

phylogenetically affiliated with the same family Flavobacteriaceae of Cytopahga-

Flexibacteria-Bacteroides (CFB) group. Then the most dominant Gram negative group 

was Gamma-Proteobacteria with 14 different species (87.5 %). These isolates formed 

highly diverse clades (8 families): Xanthomonadaceae with 1 isolate MAR386, showing 

99.2 % the highest similarity with Stenotrophomonas rhizophila e-p10T; 

Oceanospirillaceae with 1 isolate, MAR442, both exhibiting 98.1 % the most closely 

affiliated with Amphritea balenae JAMM 1525T; Halomonadaceae with 3 isolates, 

MAR300 and MAR913 showing the highest similarity (96.6 % and 97.7 %) to Cobetia 

marina DSM 4741T, and anaerobic isolate MARG5 showing 98.9 % to Halomonas 

alkaliphila 18bAGT; Shewanellaceae with 3 isolates, MAR441, MAR443 and 

MAR445, showing 97.9 % to Shewanella olleyana ACEM 9T; Enterobacteriaceae with 

5  strains isolated under anaerobic conditions, MARG3, MARG8, MARG11 and 

MARG13 exhibiting the closest similarity (90.6 %) to Hafnia alvei ATCC 13337T, and 

MARG45 showing 99.8 % to Serratia proteamaculans DSM 4543T; Idiomarinaceae 

with 1 anaerobic isolate MARG4, 99.8 % to Idiomarina loihiensis L2TRT; 

Pseudoalteromonadaceae with 7 isolates, MAR005, MAR025, MAR026, MAR027, 

MAR029, MAR880 and MAR908 showing 98.6-99.7 % similarities to 

Pseudoalteromonas paragorgicola KMM 3548T; and Moraxellaceae with 9 isolates, 

MAR446 showing 98.9 % homology to Acinetobacter lwoffii DSM 2403T, MAR009, 

MAR010, MAR028 and MAR705 exhibiting 99.8 % similarity to Psychrobacter fozii 

NF23T, MAR701 and MAR703 exhibiting 99.1 % homology to Psychrobacter arcticus 

273-4T. 

 

Among the above isolates, 72 strains (68.6 %) showed 98.0-99.9 % the highest 

similarities with their nearest type strains, whereas 33 strains (31.4 %) exhibited <98 % 
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homology. These strain may be considered as separated species in that 16S rRNA gene 

sequence showing <98 % sequence similarity according to previous studies (Fry et al., 

1991; Dighe et al., 2004; Janda and Abbott, 2007). 

 

2.4.4 Fatty acid composition of MAR benthic isolates 

2.4.4.1 Alpha-Proteobacteria 

The Alpha-Proteobacteria Hoeflea sp. strain MAR886 and Paracoccus sp. strain 

MAR824 showed the highest sequence similarities to Hoeflea phototrophica DFL-43T 

(ABIA02000018) (99.8 %) and Paracoccus marcusii DSM 11574T (Y12703) (99.9 %) 

respectively on the basis of the levels of 16S rRNA gene sequence similarity. They both 

had a very simple pattern, with the n-18:1ω7c component accounting for >70 % of the 

FAs (Table 2.3). Among the remaining FAs, for strain MAR886, only n-16:0, n-18:0 

and n-18:1ω9c was present in significant abundance (3-9 %), whereas only traces 

(<1.4 %) of n-14:0, n-16:1ω7 and n-16:1ω9 acids were detected (Table 2.3); for strain 

MAR824, contained less proportion of n-10:0, n-16:0, n-16:1ω7 and n-18:0 acids (4-8 

%). These patterns strongly resembles those of other Hoeflea species (Biebl et al., 2006) 

and closely related Alphaproteobacteria-like members of the Paracoccus sp. (Harker et 

al., 1998; Freese et al., 2008). Cells of Hoeflea sp. MAR886 showed no remarkable 

shift in FA composition and average chain length with changing growth temperature. 

The relative amounts of monounsaturated FAs (MUFAs) and saturated straight chain 

fatty acids (SCFAs) remained almost constant at ca. 88-90 % and 7-10 %, respectively 

(Table 2.3 and Figure 2.3). Traces of branched chain FAs (BCFAs), such as i-15:0, ai-

15:0 and i-17:0 were detected only in cells grown at 4 °C and 15 °C. 

 

 

2.4.4.2 Cytophaga–Flavobacterium–Bacteroides (CFB) bacteria 

CFB group bacteria Formosa sp. strain MAR430 exhibited 98.3 % homology to 

Formosa agariphila KMM 3901T (AY187688) based on 16S rRNA gene phylogenetic 

studies. The cellular fatty acid composition of strain MAR430 was found with various 

branched-chain fatty acids, such as i-13:0, i-15:0 and ai-15:0 (Table 2.3). The branched-

chain fatty acids formed at stable level with a fraction of 15 % when growing at 4 and 

15 °C, while only 9 % at 25 °C. Among the remaining FAs, n-15:0, n-16:0, n-16:1ω9, 

n-17:1ω6, n-18:1ω7c and n-18:1ω7c were present in significant abundance (8-23 %). 

The pattern of the predominant fatty acids are comparable with those from Formosa 
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agariphila KMM 3901T and Formosa algae (Ivanova et al., 2004a; Freese et al., 2008), 

mainly iso-15:0, n-15:0, i-15:1, ai-15:0 and i-17:0. When compared with another strain 

of CFB genus, Aquiflexum balticum strain BA160T, the number of fatty acid compounds 

detected in strain MAR430 is similar and the composition differs considerably (Brettar 

et al., 2004). The major difference is the lower abundance of iso-15:0 and ai-15:0 in 

strain MAR430 (strain BA160T, 22.6 and 18.5 %). However, strain BA160T with more 

BCFAs, such as i-16:1, iso- and ai-17:0. Cells of strain MAR430 showed remarkable 

shift in FA composition with changing growth temperature from 25 to 4 ºC, the 

increasing amounts of MUFAs was at the expense of saturated analogues and the 

average chain length remained constant (Figure 2.2). 

 

 

2.4.4.3 Gamma-Proteobacteria  

The isolates affiliated with the Gamma-Proteobacteria showed remarkable variations in 

FA compositions. The strain affiliated with the genus Psychrobacter had patterns 

dominated by n-18:1ω9 acid (30–70 %), a FA found only in comparatively small 

amounts (<15 %) in the other gammaproteobacterial isolates (Table 2.4). In fact, the 

dominance of the n-18:1ω9 acid appears to be typical of Psychrobacter species 

(Bowman et al., 1996; Romanenko et al., 2004; Shivaji et al., 2004; Yoon et al., 2005b; 

Freese et al., 2008). 16S rRNA gene phylogenetic studies confirmed that Psychrobacter 

sp. strain MAR701 was most closely related to Psychrobacter arcticus 273-4T 

(CP000082) (99.1 %). Strain MAR701 contained significantly lower amounts (5–10 %) 

of n-14:1ω7, n-16:0, n-17:1ω8 and n-18:0 acids. The temperature modulation of the FA 

patterns in strain MAR701 did not follow a unidirectional trend. An increase in growth 

temperature from 4 ºC to 25 ºC led to a decrease in MUFAs (83–30 %) in favour of 

SCFAs (5–25 %), also with the compensation of BCFAs (12–44 %). Cells grown at 25 

ºC showed almost the same pattern as cells grown at 10 ºC. The average chain length 

remained more or less constant between 4 ºC and 15 ºC, but with 1 carbon less at 25 ºC 

due to a great level decreasing of long chain fatty acids, MUFAs (Figure 2.2).  
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Table 2.3 Major FAs after whole cell hydrolysis (% of total FAs) in bacterial strains 

affiliating with the Proteobacteria and CFB Group bacteria 

 
  

Hoeflea 
phototrophica 

Paracoccus 
marcusii 

Formosa agariphila   
Stenotrophomonas 
rhizophila 

Amphritea balenae  
Pseudoalteromonas 
paragorgicola 

  MAR866   MAR824   MAR430   MAR386   MAR442   MAR005   
  4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 
n-10:0 - - - 4.4 4.5 7.8 - - - - - - - - - - - - 
n-12:0 - - - - - - 1.9 1.5 5.1 2.7 2.5 3.4 0.5 2 3.7 1.7 1.8 1.6 
i-13:0 - - - - - - 9.5 8.7 6.1 19.7 18.8 20.5  - - - - - - 
n-13:0 - - - - - - 1.3 1.1 2.1 0.8 0.4 1.2 - - - 0.1 0.1 0.5 
n-14:0 0.5 0.4 0.4 0.6 1.1 1.6 2.2 2.9 5.5 3.3 4.1 7.4 0.7 2 2.1 - - - 
n-14:1ω7c - - - - - - - - - - - - 2.8 1.2 1.5 0.8 0.4 0.2 
i-15:0 0.1 0.2 - - - - 1.2 2.7 1.7 11.4 12 13.5 - - - 0.4 0.3 0.5 
ai-15:0 0.2 0.1 - - - - 3.9 3.4 1.1 0.5 0.3 0.4 - - - - - - 
n-15:1ω6 - - - - - - 1.4 2.5 2.2 4.6 4 3.5 - - - 2.5 2 1.7 
n-15:0 0.1 0.2 0.1 0.2 0.5 0.3 8.0 11.6 13.9 11.8 13.1 14.5 - - - 0.4 2.6 3.5 
n-16:1ω9 1.4 0.7 0.5 - - - 23.7 18.7 14.8 26.5 21.2 12.9  49.2 43 38.7 3.7 1.2 0.5 
n-16:1ω7 1.2 2.2 2.1 4.5 6.6 5.5 - - - - - - - - - 56 41.4 25 
n-16:1ω5 - - - - - - 0.6 2.1 1.7 - - - - - - 3.1 1.3 0.3 
n-16:0 3.5 4.0 4.2 2.1 4.2 5.3 10.2 12.5 15.4 10.4 11.6 13.3  16.3 29 34.8 7.8 26.6 28.5 
ai-17:1ω7 - - - - - - - - - - - - - - - 5.7 3.3 1.6 
i-17:0 0.2 0.1 0.3 - - - - - - 6.1  6.5 6.3  - - - 1.2 1.9 1.3 
n-17:1ω8 - - - - - - - - - 2.2 5.5 3.1 - - - 5.2 5.8 6.3 
n-17:1ω6 - - - - - - 13.7 9.2 8.5 - - - 0.9 0.8 0.5 1 0.5 0.2 
n-17:0 - - - - - - 7.2 9.5 11.5 - - - - - - 2.5 3.3 3.7 
n-18:1ω9c 9.1 7.1 5.5 - - - 1.0 1.4 1.1 - - - 29.6 22 18.7 0.5 0.2 0.2 
n-18:1ω7c 80.2 79.4 80.8 82.9 77 71.0 11.7 8.5 5.4 - - - - - - 7.4 6.7 24 
n-18:0 3.5 5.6 6.1 5.3 6.6 8.5 1.9 2.9 3.4 - - - - - - 0.3 0.6 0.4 
n-19:0 - - - - - - 0.5 0.8 0.5 - - - - - - - - - 
Σ TFA 100 100 100 100 100 100 100 102 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 7.6 10.2 10.8 13 17 24 31.9 41.7 55.3 29 31.7 39.8 17.5 33 40.6 13 35 38.2 
Σ BCFA 0.5 0.4 0.3 - - - 14.6 14.8 8.9 37.7 37.6 40.7 - - - 7.3 5.5 3.4 
Σ MUFA 91.9 89.4 88.9 87 83 77 52.1 42.4 33.7 33.3 30.7 19.5 82.5 67 59.4 80 59.5 58.4 
ACLa 17.8 17.8 17.8 18 17 17 15.9 15.8 15.6 15 15.1 14.8 16.5 16 16.2 16 16.2 16.5 

a Average chain length (ACL) calculated after (White et al., 2005a); Values are means 
of three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids;  TFA, total 
fatty acids; and (–), not detectable. 
 

Pseudoalteromonas sp. strain MAR005 was most related to Pseudoalteromonas 

paragorgicola KMM 3548T (AY040229) based on 16S rRNA gene identification with 

98.6 % similarity. FA patterns of strain MAR005 were dominated by the n-18:1ω7, n-

17:1ω8, ai-17:1ω7, n-16:1ω7 and n-16:0 acids and showed minor (1–4 %) contributions 

from n-12:0, n-14:0, n-15:0, n-15:1ω6, n-16:1ω5, n-16:1ω9, i-17:0, and n-17:0 acids 

(Table 2.4). Similar patterns have been found in other Pseudoalteromonas strains 

(Romanenko et al., 2003b; Al Khudary et al., 2008). Strain MAR005 also showed a 

relatively remarkable response to changing growth temperature. With increasing 

temperature from 4 ºC to15 ºC, the proportion of MUFAs decreased (80–60 %), also 

BCFAs decreased slightly (7.3–5.5 %) whereas SCFAs increased (13–35 %). However 

the differences on MUFAs and SCFAS between 15 ºC and 25 ºC were very slightly 

(Figure 2.2).  
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Figure 2.2 Change in average chain length (inverted triangles) and relative proportion 
of whole cell FAs in Alpha-, Gamma-Proteobacteria and CFB group strains grown at 4, 
15 and 25 oC. Straight chain fatty acids (SCFAs, filled circles), branched chain fatty 
acids (BCFAs, filled boxes), monounsaturated fatty acids (MUFAs, open diamonds), 
eicosapentaenoic acid (EPA, open circles) and nearest type strains were indicated below 
the isolates. Values are means of three samples based on Table 2.3 and Table 2.4. 

 

Shewanella sp. strain MAR445 exhibited 97.8 % the highest similarity on 16S rRNA 

gene sequence level with Shewanella olleyana ACEM 9T (AF295592). FA patterns of 

strain MAR445 was dominated by n-13:0, i-15:0, n-16:0, n-16:1ω9 and n-20:5ω3 acids 

(10-40 %) as usual for this genus, with minor contributions (1-7 %) of n-12:0, i-13:0, n-

14:0 and n-15:0 acids (Table 2.4). The Shewanella strain differed from the other 

Gammaproteobacteria by the presence of i-13:0 and i-15:0 branched FAs. Strain 

MAR445 contained the unusual polyunsaturated eicosapentaenoic acid (EPA), n-

20:5ω3 (up to 18 %), which was supposed to be fell in the group 1 Shewanella species 
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which were subdivided based on the temperature range for growth and lipid pattern 

(Kato and Nogi, 2001). Group 1 species were characterised as high pressure and/or 

cold-adapted species that produce substantial amounts of EPA (11–16 %), whereas 

group 2 species comprised mesophilic, pressure-sensitive species that produce no or 

only low levels of EPA (3–5 %). Shewanella sp. strain MAR445 grew well at the range 

between 4 to 25 °C with optimal growth temperature at 15 °C, exhibiting sigmoidal 

growth even at 0 °C. The effect of growth temperature on the percentage composition of 

individual fatty acids in MAR445 grown between 4 ºC and 25 ºC is shown in Table 2.3. 

Growth within the optimal region (4 ºC and 15 ºC) resulted in the highest percentage of 

i-13:0, i-15:0 and EPA, while n-16:1ω9 and the sum of MUFAs were at their lowest 

level. At growth temperatures above the optimal region, the percentage of n-13:0 and n-

16:0 and SCFAs were maximal, while the percentage of n-14:0 decreased with 

increasing growth temperature. Overall the increase the percentage of PUFAs and 

BCFAs were with the expense of SCFAs and MUFAs. The average chain length 

decreased apparently at 25 °C due to the decreasing production of PUFAs (Figure 2.2). 

These findings are agreeable to the previously research on EPA which is a very 

distinctive feature of psychrophilic and piezophilic bacteria (Nichols et al., 1997; Yang 

et al., 2007).  

 

Stenotrophomonas sp. strain MAR386 showed the highest 16S rRNA gene sequence 

similarity (99.2 %) to Stenotrophomonas rhizophila e-p10T (AJ293463), and with i-

13:0, i-15:0, n-15:0, n-16:1ω9 and n-16:0 as major FAs (10-20 %) and contained less n-

12:0, n-14:0, n-15:1ω6, i-17:0 and n-17:1ω6 acids (2-5 %). Only minor proportions of 

n-13:0 and ai-15:0 acids (0.5-1.5 %) were found (Table 2.3). Strain MAR386 showed a 

relatively weak response to changing growth temperature, and the average chain length 

remained constant. With increasing temperature, the proportion of MUFAs decreased 

slightly with the rise of SCFAs and BCFAs whereas BCFAs remained stable at 4 ºC and 

15 ºC (Figure 2.2).  

 

Amphritea sp. strain MAR442 was most closely related to Amphritea balenae JAMM 

1525T (AB330883) (98.1 %) based on 16S rRNA gene phylogenetic studies. Strain 

MAR442 showed only n-16:1ω9, n-16:0 and n-18:1ω9 as major FAs (16-50 %) and 

only minor proportions of n-12:0, n-14:0, n-14:1ω7 and n-17:1ω6 acids (0.5-5 %) 

(Table 2.3). The FA profiles of the strain MAR442 indicated similarity to the type strain 

of A. atlantica M41T which was also isolated from Mid-Atlantic Ridge at Logatchev 
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hydrothermal vent field (Gartner et al., 2008; Miyazaki et al., 2008). Strain MAR442 

showed a relatively strong response to changing growth temperature. With increasing 

temperature from 4 ºC to 25 ºC, the proportion of MUFAs decreased from 82 % - 59 % 

with the increasing of SCFAs, and the average chain length remained constant (Figure 

2.2). 

 

Table 2.4 Major FAs after whole cell hydrolysis (% of total FAs) in bacterial strains 
affiliating with the Proteobacteria 

  
Shewanella 
olleyana 

Idiomarina 
loihiensis 

Serratia 
proteamaculans 

Cobetia marina 
Psychrobacter 
arcticus 

  MAR445   MARG4   MARG45   MAR913   MAR701   
  4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 
n-10:0 - - - 0.6 0.5 0.9 - - - 0.7 0.8 1.3  1 0.3 1.7 
n-12:0 2.1 1.9 2.3 0.9 1.1 3.2 0.8 1 1.4 1.2 1.7 1.9  0.2 1 3 
i-13:0 7.2  7.3  1.2  1.5 1 1.1 - - - - - - 0.1 0.4 1.6 
n-13:0 20.9 23.0 47.5 - - - - - - - - - - - - 
i-14:0 0.7 0.7 0.1 - - - - - - - - - - - - 
n-14:0 4.1 3.9 2.1 - - - 4.2 8.5 9.1 2.6  3.4  4.6  - - - 
n-14:1ω7c - - - - - - - - - - - - 0.2 6.8 4.2 
i-15:0 12.3 10.3  1.8  24.5 35.3 39.2 1.1 0.8 0.5 - - - - - - 
ai-15:0 0.2 0.1 0.3 0.6 0.4 0.5 - - - - - - - - - 
n-15:1ω6 0.1 0.0 0.0 2.5 2.3 1.4 - - - 2.5  2.3  1.9  - - - 
n-15:0 2.3 2.6 0.3 0.5 1.8 2.5 0.4 0.5 0.9 3.5  4.8  5.8  0.1 - 6.2 
n-16:1ω9 13.7 14.8 18.1 10.5 7.2 4.5 29.5 27.8 22 - - - - - - 
n-16:1ω7 1.1 0.3 0.85 - - - - - - 33.1 31.6  27.1  - - - 
n-16:1ω5 - - - 6.2 6.3 8.1 16.3 26.1 33.1 - - - - - - 
n-16:0 11.0 12.1 14.7 15.8 14.3 9.1 - - - 18.2 21.7 23.6  2.3 0.8 11 
i-17:1ω7 - - - - - - - - - - - - 12 21 38.9 
ai-17:1ω7 - - - 11.2 10.5 13.5 - - - - - - - - - 
i-17:0 - - - 1.6 0.9 0.8 21.5 15.2 11.9 - - - 0.1 1.1 3.7 
n-17:1ω8 0.3 1.5 0.8 1.6 1.5 1.8 - - - 14.9 11.7 12.1  9.3 5.3 - 
n-17:1ω6 - - - - - - 0.2 0.5 0.5 - - - - - - 
n-17:0 0.6 0.7 0.5 8.4 5.4 2.5 - - - 8.5 9 9.0  - - - 
n-18:1ω9c 0.5 0.6 0.2 11.9 8.3 6.1 23.7 19.6 18.5 - - - 73 59 26.2 
n-18:1ω7c 4.9 5.1 4.7 0.6 1.8 4.2 0.6 0.6 0.9 14 10.7 9.3  - - - 
n-18:0 0.4 1.3 1.0 1.1 1.4 0.6 - - - 0.8 2.3 3.4  1.3 3.7 3.5 
n-18:2ω6t 0.1 - - - - - - - - - -  - - - 
n-18:3n3 0.1 0.3 0.9 - - - - - - - - - - - - 
n-18:4n3 0.3 0.6 0.0 - - - 1.7 1.4 1.2 - - - - - - 
n-20:4n3 0.6 0.7 0.1 - - - - - - - - - - - - 
n-20:5ω3 16.6 11.9 2.4 - - - - - - - - - - - - 
n-22:5ω3  - 0.4 0.3 - - - - - - - - - - - - 
Σ TFA 100 100 100 100 100 100 100 102 100 100 100 100 100 100 100 
Σ SCFA 41.4 45.3 68.3 8.8 11.5 18.9 6.2 11.1 12.8 35.5 43.7 49.6 4.9 5.8 25.4 
Σ BCFA 21.5 18.8 4.3 53.6 61.5 63.4 1.1 0.8 0.5 - - - 13 22 44.2 
Σ MUFA 19.4 22 23.7 37.6 27 17.7 92.7 88.1 86.7 64.5 56.3 50.4 83 71 30.4 
Σ PUFA 18.2 13.9 3.6 - - - - - - - - - - - - 
EPA 16.6 11.9 2.4 - - - - - - - - - - - - 
ACLa 15.6 15.6 14.6 16.3 16.1 15.8 15.8 15.4 15 16.3 16.2 16.1 18 17 16.6 

a Average chain length (ACL) calculated after  (White et al., 2005a). Values are means 
of three samples;  SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids;  TFA, total 
fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); and (–), not detectable. 
 

 

The nucleotide sequence of the 16S rRNA gene in Idiomarina  sp. strain MARG4 

shared 99.8 % similarity over 1408 nt with that of Idiomarina loihiensis L2TRT 
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(AE017340), its nearest cultivated neighbour in this respect. The fatty acid profile of 

strain MARG4 displayed the same dominance by iso-branched fatty acids that 

characterizes other members of the genus Idiomarina (Donachie et al., 2003). A high 

contribution of isobranched fatty acids has previously only been seen for the 

Xanthomonas-branch Proteobacteria (Finkmann et al., 2000), and has been observed 

for genera closely related to the genus Idiomarina (Brettar et al., 2003). Indeed, anteiso-

branched fatty acids comprised <1 % of the total fatty acid pool. The dominant fatty 

acids for cells of strain MARG4 grown anaerobically   at 4, 15 and 25 ºC were i-15:0 

(31-35 %), i-17:1 (11-17 %), i-17:0 (10-15 %), n-18:1ω7 (6-10 %), n-18:1ω9 (2-6 %), 

n-16:1ω7 (5-9 %) and n-16:0 (4-8 %) (Table 2.4). The composition of the fatty acids of 

strain MARG4 was analysed after cultivation at lower (4 ºC) and higher (25 ºC) 

temperatures in comparison to the standard cultivation at 15 ºC. At 4 ºC, the proportion 

of SCFAs decreased while the proportion of MUFAs increased, with n-16:1ω7, 18:1ω7 

and n-18:1ω9 showing increasing of their contribution. At 25 ºC, the proportion of 

BCFAs increased and the proportion of MUFAs decreased. With the decrease in the 

growth temperature from 25 to 4 ºC, the proportion of MUFAs increased from 17 to 37 

% and the average chain length showed slightly decreased at the same time (Figure 2.2). 

 

Halomonas sp. strain MAR913 exhibited 97.7 % the highest similarity with Cobetia 

marina DSM 4741T (AJ306890) based on 16S rRNA gene phylogenetic studies, and 

showed n-16:1ω7, n-16:0, n-17:1ω8 and n-18:1ω7 as major FAs (10-30 %) and 

contained less n-14:0, n-15:1ω6, n-15:0, n-17:0 and n-18:0 acids (1-9 %), and not 

branched FAs were detected (Table 2.4). FA profiles of strain MAR913 was not 

resembled that of type strain of H. desiderata DSM 9502T, of which the n-18:1ω7c 

component accounting for 70 % in the TFAs, and with n-10:0, n-12:0, n-14:0 and n-

16:0 as major FAs (Kim et al., 2007a). Strain MAR913 showed a relatively response to 

changing growth temperature. With increasing temperature, the decreasing proportion 

of MUFAs (64-50 %) was mirrored by increasing of SCFAs increased (35-49 %), and 

the average chain length showed slightly decreased (Figure 2.2). 

 

The nucleotide sequence of the 16S rRNA gene in Serratia sp. strain MARG45 shared 

99.8 % similarity with that of Serratia proteamaculans DSM 4543T (AJ233434). And 

the fatty acid profile of strain MARG45 consisted of n-16:1ω7, n-16:0, n-17:1ω8 and n-

18:1ω7 as major FAs (10-30 %) and contained less n-14:0 and i-15:0 acids (1-9 %) 

when anaerobically cultured at temperatures ranging from 4 to 25 ºC (Table 2.4). The 
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major cellular fatty acids profile of strain MARG45 was compared with those of other 

members of the same Serratia genus (Bhadra et al., 2005).  The composition of the fatty 

acids of strain MARG45 was analysed after cultivation at lower (4 ºC) and higher (25 

ºC) temperatures in comparison to the standard cultivation at 15 ºC. At 4 ºC, the 

proportion of SCFAs decreased while the proportion of MUFAs increased, with n-

16:1ω7 and n-18:1ω9 showing increasing of their contribution. At 25 ºC, the proportion 

of BCFAs increased and the proportion of MUFAs decreased. With the decrease in the 

growth temperature from 25 to 4 ºC, the proportion of MUFAs increased from 86 to 92 

%. The average chain length showed slightly with decreaing temperature (Figure 2.2). 

 

2.4.4.4 Temperature modulation of the whole cell FA patterns of low-GC Firmicutes 

The patterns for the strains affiliated with the Firmicutes generally appeared more 

complex than those of the Gram-negative isolates. A striking feature of strain MAR846 

similar to Bacillus safensis, strain MAR886 homology to Bacillus tequilensis, strain 

MAR285 similar to Bacillus sonorensis, strain MAR015 homology to Bacillus circulan, 

strain MAR287 similar to Bacillus horneckiae, strain G2 homology to Thalassobacillus 

devorans, strain MAR019 homology to Bacillus simplex, strain MAR283 similar to 

Jeotgalibacillus marinus, strain MAR808 homology to Bacillus pseudofirmus, strain 

MAR870 homology to Bacillus hwajinpoensis, strain MAR804 similar to Bacillus 

decolorationis. 

 

Bacillus safensis strain MAR846 showed i-15:0, ai-15:0, n-16:0 and i-17:0 as major 

FAs (11-30 %) and contained less i-14:0, n-14:0, i-16:0 and ai-17:0 acids (3-7 %), and 

only minor proportions of LCFAs, such as n-18:1ω9 and n-18:0 acids (0.8-2 %). Not n-

18:1ω9 was detected at 25 ºC (Table 2.5). With decreasing temperature from 25 ºC to 4 

ºC, the proportion of MUFAs and BCFAs increased slightly with the expense of 

SCFAs, while the average chain length remained constant (Figure 2.3). 

 

The major FAs of Bacillus tequilensis strain MAR886 were the branched i-15:0 (25–

30 %), ai-15:0 (40-42 %), ai-17:1ω7 (~8 %) and i-17:0 acids (~10 %) as well as the 

monounsaturated chain n-18:1ω9 acid (3-6 %). Several other FAs were present in 

relatively small amount (<3 %) such as, i-14:0, i-16:0, i-17:1ω7, ai-17:0 acids.  BCFAs 

account for 93-98 % of the TFAs (Table 2.5). Strain MAR886 showed a relatively week 

response to changing growth temperature and the average chain length remained 

constant at all temperatures (Figure 2.3). 
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Bacillus sonorensis strain MAR285 showed i-14:0, i-15:0, ai-15:0, i-16:0, i-17:0, ai-

17:0 and n-18:1ω9 as major FAs (9-25 %) and contained minor proportions of n-14:0, 

n-17:1ω6 and n-18:0 acids (0.5-3 %) (Table 2.5). With decreasing temperature from 25 

ºC to 4 ºC, the proportion of BCFAs and MUFAs increased slightly with the expense of 

SCFAs, whereas the average chain length remained more or less constant (Figure 2.3). 

 

Bacillus circulan strain MAR015 showed i-15:0, ai-15:0 and n-18:1ω9 as major FAs (9-

25 %) and contained less proportions of n-16:0, i-17:0, ai-17:0 and n-18:0 acids (1-6 %) 

(Table 2.5). With decreasing temperature from 25 ºC to 4 ºC, the proportion of MUFAs 

increased slightly with the expense of SCFAs, while BCFAs stayed similar between 4 

ºC and 25 ºC, and less at 15 ºC, and the average chain length showed apparently 

decreased at 25 ºC (Figure 2.3).  

 

Bacillus horneckiae strain MAR287 showed only i-15:0 (16-25 %) and ai-15:0 (42-60 

%) as major FAs and contained minor proportions of i-14:0, n-14:0, n-15:0, i-16:0, n-

16:1ω9, n-16:1ω7, i-17:0, ai-17:0, n-17:1ω6 and i-18:0 acids (1-8 %) (Table 2.5). With 

decreasing temperature from 25 ºC to 4 ºC, the proportion of BCFAs increased slightly 

with the expense of SCFAs. The proportion of MUFAs was higher at 15 ºC than that at 

4 ºC and 25 ºC, while the average chain length remained constant (Figure 2.3). 

 

Strain MARG2 falls within the radiation of the cluster comprising members of the 

genus Thalassobacillus based on 16S rRNA gene sequence analysis. The predominant 

fatty acids of this strain anaerobically cultured under temperature ranging from 4 to 25 

ºC were ai-15:0 (24-57 %), i-16:0 (7-23 %), i-15:0 (5-11 %), ai-17:0 (7-9 %), ai-17:1ω7 

(2-14 %), n-18:1ω9 (5-7 %) and iso-14:0 (4-6 %) (Table 2.5). Strain MARG2 and the 

phylogenetically related genera contained similar fatty acid profiles, having ai-15:0 as a 

major fatty acid (Garcia et al., 2005), but with production of LCFAs of n-18:0 and n-

18:1ω9. With decreasing temperature from 25 ºC to 4 ºC, the proportion of MUFAs 

increased slightly with the expense of SCFAs, whereas the proportion of BCFAs was 

remained stable. The average chain length was slightly increased with increasing 

temperature due to higher lever of i-16:0 and ai-17:1ω7 at 25 ºC (Figure 2.3). 
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Figure 2.3 Change in average chain length (inverted triangles) and relative proportion 
of whole cell FAs in Gram-positive strains grown at 4, 15 and 25 oC. Straight chain fatty 
acids (SCFAs, filled circles), branched chain fatty acids (BCFAs, filled boxes), 
monounsaturated fatty acids (MUFAs, open diamonds) and nearest type strains were 
indicated below the isolates. Values are means of three samples based on Tables 2.5 and 
2.6. 

 89



 
 
 
 
 

Chapter 2. Fatty acid production by microbial communities from non-vent Mid-Atlantic Ridge sediments 

Table 2.5 Major FAs after whole cell hydrolysis (% of total FAs) in bacterial strains affiliating with the Firmicutes 

  Bacillus safensis Bacillus tequilensis Bacillus sonorensis Bacillus circulans  Bacillus horneckiae 
Thalassobacillus 
devorans 

Bacillus simplex   
Jeotgalibacillus 
marinus 

  MAR846   MAR886   MAR285   MAR015   MAR287   MARG2   MAR019   MAR283   
  4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 
i-14:0 6.5 4 2.1  2.6 1.8 1.1 15.6 12 7.9  0.7 0.3 0.4  2.6 2.5 2.1 6.1 4.8 5.3 2.3 3.0 2.5 26.9 17.7 10.2 
n-14:0 3.1 5.5 7.6  0 0.2 0.5 0.3 0.9 3.6  0.3 0.5 1.8  0.4 0.5 2.5 - - - 2.1 2.9 8.5 2 2.6 5.5 
i-15:0 18.5 19.1 22.2  25.4 28.5 29.5 8.7 10.1 17.0  27.2 25 32.9  60.7 52.3 41.5 5.5 9.2 11.4 4.4 6.7 8.9 19.6 26 32.7 
ai-15:0 28.5 25.3 20.6  39.2 41.3 42.0 26 25.2 24.8  42.8 41 35.5  15.9 17.6 25.8 57.4 48.1 23.9 35.0 29.5 22.1 2.5 2.1 1.5 
n-15:0 - - - - - - 0.8 - - - 1.8 2.2  0.8 1.3 3.4 - - - - - - 1.2 1.4 1.3 
i-16:1ω8 - - - - - - - - - - - - - - - - - - 18.7 22.9 26.0 - - - 
i-16:0 5.5 6.5 7.2  1.9 1.5 1.1 3.6 13.5 5.0  1.2 1.5 2.1  3 2.9 3.5 7.7 12.5 23.7 7.8 9.5 9.0 6.9 19 23 
n-16:1ω9 - - - - - - - - - - - - 3 3.7 3.2 - - - - - - 8.2 5.4 3.5 
n-16:1ω7 - - - - - - - - - - - - 2.8 6.7 7.8 - - - 2.1 2.5 3.2 13 6.9 2 
n-16:0 19.5 26.1 29.5  0.5 0.9 1.1 3.8 9 15.9  0.6 1.9 5.7  0.2 1 2.8 3.2 4.3 6.7 - - - 2.4 1.8 1.1 
i-17:1ω7 - - - 2.9 3 3.3 - - - - - - - - - - - - - - - - - - 
ai-17:1ω7 - - - 11.6 9.8 10.9 - - - - - - - - - 2.6 5.1 14.8 - - - 2.7 6.5 8.5 
i-17:0 11.4 6 2.3  7.8 8.8 8.7 9.2 7.9 7.5  2.9 3.3 4.1  2 1.9 2.5 - - - 1.2 2.0 0.5 0.8 0.4 0.6 
ai-17:0 4.2 6.2 7.6  1.5 1 1.1 16.8 10 8.9  3.2 4.7 5.6  1.1 4.2 2.9 9.6 8.3 7.8 6.8 8.9 12.2 4.6 6.5 9 
n-17:1ω6 - - - - - - 1.5 0.5 - 0.8 - - 4.4 3.3 1.4 - - - - - - - - - 
i-18:0 - - - 0.2 0.2 0.5 - - - - - - 3.1 2.1 0.6 - - - - - - 1.7 0.3 0 
n-18:1ω9 2 0.7 0.0  6.6 3 0.2 13.2 10.1 8.8  17.3 14 4.5 - - - 7.6 6.8 5.3 12.6 5.6 0.6 7.5 3.4 1.1 
n-18:0 0.8 0.6 0.9  - - - 0.5 0.8 0.6  3 6.1 5.2 - - - 0.3 0.9 1.1 - - - - - - 
n-30: 6ω2 - - - - - - - - - - - - - - - - - - 7.0 7.5 6.5 - - - 
Σ TFA 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 23.4 32.2 38 0.5 1.1 1.6 5.4 10.7 20.1 3.9 10 14.9 1.2 2.8 8.7 3.5 5.2 7.8 2.1 2.9 8.5 5.6 5.8 7.9 
Σ BCFA 74.6 67.1 62 93.1 95.9 98.2 79.9 78.7 71.1 78 76 80.6 88.6 83.5 78.9 88.9 88 86.9 76.2 82.5 81.2 64 78.2 85.5 
Σ MUFA 2 0.7 0.0  6.6 3 0.2 14.7 10.6 8.8  18.1 14 4.5 10.2 13.7 12.4 7.6 6.8 5.3 21.7 14.6 10.3 28.7 15.7 6.6 
anteiso/iso 0.8  0.9  0.8  1.3  1.2  1.2  1.2  0.8  0.9  1.4  1.5  1.0  0.2  0.3  0.5  3.6 2.3 1.2 0.8  0.6  0.4  0.2  0.2  0.3  
ACLa 15.4 15.4 15.4 15.5 15.3 15.3 15.6 15.6 15.5 15.7 16 15.4 15.3 15.2 15.2 15.5 15.6 15.9 15.9 15.8 15.6 15.4 15.4 15.4 
a Average chain length (ACL) calculated after (White et al., 2005a). Values are means of three samples; SCFA, straight chain fatty acids; BCFA, 
branched chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids;  TFA, total fatty acids; Squalene, C30 H50 (n-
30:6ω2); and (–), not detectable. 
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Bacillus simplex strain MAR019 showed ai-15:0, i-16:1ω8, i-16:0, ai-17:0 and n-

18:1ω9 as major FAs (10-35 %) and contained less i-14:0, n-14:0, i-15:0, i-16:0, n-

16:1ω7, i-17:0 acids and n-30:6ω2 (Squalene) (2-9 %). Higher amount of LC-PUFA, n-

18:1ω9 was produced at 4 ºC (Table 2.5). The production of Squalene was contant at all 

temperatures with 6-7 % in the TFAs. With decreasing temperature from 25 ºC to 4 ºC, 

the proportion of MUFAs increased slightly with the expense of SCFAs and BCFAs. 

The proportion of BCFAs was stable at 15 ºC and 25 ºC, and the average chain length 

showed slightly decreased with increasing temperature (Figure 2.3). 

 

Jeotgalibacillus marinus strain MAR283 showed i-14:0, i-15:0, i-16:0, ai-17:0 and n-

18:1ω9 as major FAs (7.5-32 %) and contained minor proportions of n-14:0, ai-15:0, n-

15:0, n-16:0 and n-18:0 acids (1-5 %) (Table 2.5). With decreasing temperature from 25 

ºC to 4 ºC, the proportion of MUFAs increased slightly with the expense of SCFAs and 

BCFAs, while the average chain length remained constant (Figure 2.3). 

 

Bacillus pseudofirmus strain MAR808 showed i-15:0, ai-15:0, i-16:0 and ai-17:0 acids 

as major FAs (10-30 %) and contained less i-16:1ω8 and n-18:1ω9 acids (2-8 %) (Table 

2.6). With increasing temperature from 4 ºC to 25 ºC, the proportion of SCFAs 

increased slightly with the expense of BCFAs and MUFAs, while the average chain 

length showed slightly decreased (Figure 2.3). 

 

Bacillus hwajinpoensis strain MAR870 exhibited only i-14:0, i-15:0, ai-15:0 and n-

16:1ω9 acids as major FAs (10-38 %) and contained less i-16:0, n-16:1ω7, n-16:0, and 

n-18:1ω9 acids (2-8 %) (Table 2.6). With decreasing temperature from 25 ºC to 4 ºC, 

the proportion of BCFAs increased slightly with the expense of SCFAs and MUFAs, 

while the average chain length remained more or less constant (Figure 2.3). 

 

Bacillus decolorationis strain MAR804 showed only ai-15:0 as major FA (62-65 %) 

and contained less i-15:0, i-16:0, ai-17:0 and n-18:1ω9 acids (5-11 %), and only minor 

proportions of i-14:0, n-14:0, n-16:1ω7, n-16:0 and ai-17:1ω7 acids (1-4 %) (Table 2.6). 

With decreasing temperature from 25 ºC to 4 ºC, the proportion of MUFAs increased 

slightly with the expense of SCFAs and BCFAs. The proportion of BCFAs was stable at 

15 ºC and 25º C, while the average chain length remained constant (Figure 2.3). 
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Paenisporosarcina quisquiliarum strain MAR899 showed i-14:0 (11-12 %), ai-15:0 

(35-40 %), i-16:1ω8 (23-25 %) and ai-17:0 acids (6-13 %) as major FAs and contained 

less proportions of i-15:0, i-16:0 and i-17:0 acids (3-5 %). BCFAs were the main 

composition of the TFAs (92-95 %) (Table 2.6). With decreasing temperature from 25 

ºC to 4 ºC, the proportion of BCFAs increased slightly with the expense of SCFAs, 

whereas the proportion of MUFAs was higher at 15 ºC than that at 4 ºC and 25 ºC while 

the average chain length remained constant (Figure 2.3). 

 

Bacillus decolorationis strain MAR287, Paenisporosarcina quisquiliarum strain 

MAR899, Kocuria rhizophila strain MAR801, Micrococcus yunnanensis strain 

MAR806 and Micrococcus terreus strain MAR443 was the dominance of saturated and 

monounsaturated branched chain iso and anteiso FAs with carbon numbers ranging 

from 14 to 18, a pattern typical for Bacillus and related genera (Haque and Russell, 

2004; Lopez et al., 2006; Kim et al., 2007b).  

 

 

2.4.4.5 Temperature modulation of the whole cell FA patterns of high-GC 

firmicutes 

Strain MARG10 falls within the radiation of the cluster comprising members of the 

genus Rhodococcus based on 16S rRNA gene sequence analysis, the predominant fatty 

acids of Rhodococcus sp. strain MARG10 anaerobically cultured under temperature 

ranging from 4 to 25 ºC were n-16:0 (23-39 %), n-18:1ω9 (17-28 %), n-16:0 (11-21 %), 

n-16:1ω5 (11-18 %) and n-16:1ω7 (6-13 %) (Table 2.6). The fatty acid profile of strain 

MARG10 displayed the same dominance by MUFAs that characterizes other members 

of the genus Rhodococcus (Gutierrez et al., 2003). The composition of the fatty acids of 

strain MARG10 was analysed after cultivation at lower (4 ºC) and higher (25 ºC) 

temperatures in comparison to the standard cultivation at 15 ºC. At 4 ºC, the proportion 

of SCFAs decreased while the proportion of MUFAs increased, with n-16:1ω5, n-

16:1ω7 and n-18:1ω9 showing increasing of their contribution. With the increase in the 

growth temperature from 4 to 25ºC, the increase of SCFAs was mirrored by the 

decreasing of MUFAs, while the average chain length showed slightly increased (Figure 

2.3).  

 

Kocuria sp. strain MAR801 showed 99.6 % 16S rRNA gene sequence similarity to 

Kocuria rhizophila DSM 11926T (Y16264) based on 16S rRNA gene phylogenetic 
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studies, and with only ai-15:0 as major FAs (57-67 %) and contained less i-15:0, n-

16:1ω9 and ai-17:1ω7 acids (5-15 %). Only minor proportions of i-14:0, n-14:0, i-16:0, 

i-17:0 and n-18:1ω7 acids (1-5 %) were found (Table 2.6). The fatty acid profile 

showed high levels of similarity to those of reference strains were of the branched-chain 

saturated isoanteiso type and showed ai-15:0 as the predominating component (Kovacs 

et al., 1999). Strain MAR801 showed a relatively weak response to changing growth 

temperature. The proportion of MUFAs increased slightly at 4 ºC with the expense of 

SCFAs and BCFAs whereas SCFAs, BCFAs and MUFAs, as well as the average chain 

length remained constant at 15 ºC and 25 ºC (Figure 2.3). 

 

Micrococcus sp. strain MAR806 exhibited 99.6 % 16S rRNA gene sequence similarity 

to Micrococcus yunnanensis YIM 65004T (FJ214355) and showed only ai-15:0 (60-67 

%) and ai-17:1ω7 (11-12 %) as major FAs and contained less proportions of i-14:0, n-

14:0, i-15:0, i-16:0, n-16:0 and i-17:0 acids (2-6 %). BCFAs were the main composition 

of the TFAs (85-93 %) (Table 2.6). The FAs composition remained stable between 4 ºC 

and 21 ºC, and some n-16:1ω9 (8.5 %) and minor proportion of n-15:0 were found at 25 

ºC. The average chain length remained more or less constant at all temperatures (Figure 

2.3). 

 

Arthrobacter sp. strain MAR443 was most related to Micrococcus terreus V3M1T 

(FJ423763) based on 16S rRNA gene identification with 97.2 % similarity and showed 

i-C15:0, ai-15:0, i-16:0, i-17:0 and n-16:0 as major FAs (10-43 %) and contained less n-

14:0 and n-16:1ω9 acids (1-4 %). Only minor proportions of n-15:0, i-17:1ω7 and n-

17:1ω8 acids were found (Table 2.6). The fatty acid profile showed fair levels of 

similarity to those of reference strains, such as Arthrobacter sp. strain Sphe3 and 

Arthrobacter halodurans strain JSM 078085T (Chen et al., 2009; Kallimanis et al., 

2009). Strain MAR443 showed a relatively weak response to changing growth 

temperature, and the proportion of MUFAs was relative higher at 4 ºC and stable at 15 

ºC and 25 ºC, while SCFAs and BCFAs were higher at 25 ºC, and the average chain 

length showed higher at 15 ºC (Figure 2.3). 
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Table 2.6 Major FAs after whole cell hydrolysis (% of total FAs) in bacterial strains affiliating with the Firmicutes 

  
Bacillus 
pseudofirmus 

Bacillus 
hwajinpoensis   

Bacillus 
decolorationis 

Paenisporosarcina 
quisquiliarum 

Rhodococcus 
erythropolis 

Kocuria rhizophila  
Micrococcus 
yunnanensis   

Micrococcus  
terreus 

  MAR809   MAR870   MAR804   MAR899   MARG10   MAR801   MAR806   MAR443   
  4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 4ºC 15ºC 25ºC 
i-14:0 1.7 1.9  1.1 14.3 11 7.2 2.1 2.9  3 12.1 11.5 12.3 - - - 2.3 2.0 1.2 2.8 2.5 1.4 - - - 
n-14:0 1.2  1.1  1.2 0.4 1.2 1.6 1 1.1  1.2 0.5 1 1.5 11.3 16.6 21.5 3.2 1.7 1.9 3.9 3.5 2.9 1.1 1.4 5.2 
i-15:0 19.1  24.4  26.5 21.9 30 38.3 5.7 4.4  2.7 5 4.5 4.1 - - - 7.4 8.5 14.5 6.3 5.7 17.0 15.3 14.3 19 
ai-15:0 24.3 27.6 30.3 38.5 32 21.3 65 63.9 61.8 40.4 37.6 35.1 0.4 0.7 0.8 57.5 68.2 66.7 64.2 67.7 59.5 28.7 36.2 43 
n-15:0 0.4  0.6  0.5 - - - 0.2 0.6  1.1 0.6 0.9 1.1 0.3 0.6 0.5 0.2 1.2 0.3 - - 0.4 0.7 0.6 1.2 
i-16:1ω8 8.3  4.8 1.1 - - - 0.4 - - 25.3 25.5 23.0 - - - - - - 1.2 1.1 - - - - 
i-16:1ω6 - - - - - - - 0.3 - - - - - - - - - - - - - - - - 
i-16:0 13.6 13.9  8.7 3.2 1.8 2.5 5.3 4.3  4.5 4.4 3.8 3.3 - - - 3.4 1.8 1.4 2.7 2.4 1.7 19.6 17.7 9.2 
n-16:1ω9 0.5  0.5 0.9 7.5 8.9 11.7 0.3 0.5 0.2 - - - - - - 6.8 6.6 6.9 - - 8.5 6.9 2.5 3.8 
n-16:1ω7 0.7  0.6 0.7 2.1 2 2.4 2.2 1.6 1.2 1.2 1.5 1.1 13.5 9.6 6.4 - - - - - - - - - 
n-16:1ω5 - - - - - - 0.9 0.6 0.4 - - - 18.3 13.9 11.5 1 - - - - - - - - 
n-16:0 9.6  14.1 18.5 5.4 6.9 8.0 1.8 2.2 2.1 1.2 1.7 1.6 23.1 29.6 39.5 0.1 1.8 2.6 2.7 2.4 3.2 5.1 8.3 9.6 
i-17:1ω7 0.8  - - - - - 0.7 - - - -  - -    -   - -  -    - -   -   -   2.1 2.5 1.2 
ai-17:1ω7 0.3  0.3 0.2 1.1 1.5 1.6 2.2 3.5 3.8 - - - - - - 10.4 4.8 2.5 12.4 11.3 3.1 - - - 
i-17:0 0.2  0.8 0.6 1.3 1.6 1.5 0.7 0.6 0.5 3.2 3.5 3.1 - - - 3.1 3.4 2.0 3.8 3.4 2.3 19.6 16 7.9 
ai-17:0 10.2  4.6 3.7 0.8 0.9 1.1 3.4 7.6 11.5 6.1 8.6 13.8 0.5 1.8 0.9 - - - - - - - - - 
n-17:1ω8 0.8  0.7 1.2 - - - 0.5 0.2 - - - - 1.9 1.2 0.9 - - - - - - 0.9 0.5 0.1 
n-17:1ω6 0.3  0.4 0.5 - - - - - - - - - - - - - - - - - - - - - 
n-18:1ω9 7.0  1.9 0.8 2.2 1.4 0.5 6.2 4.1 3.5 - - - 28.6 25.4 17.6 4.6 - - - - - - - - 
n-18:0 1.0  1.8 3.5 1.3 2.1 2.3 1.4 1.6 2.5 - - - 2.1 0.6 0.4 - - - - - - - - - 
Σ TFA 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 12.2 17.6 23.7 7.1 10 11.9 4.4 5.5 6.9 2.3 3.6 4.2 36.8 47.4 61.9 3.5 4.7 4.8 6.6 5.9 6.5 6.9 10.3 16 
Σ BCFA 78.5 78.2 72.2 81.1 78 73.5 86 87.5 87.8 96.5 95 94.7 3 3.1 2.1 84 88.7 88.3 92 93 85 85.3 86.7 80 
Σ MUFA 9.3 4.1 4.1 11.8 12 14.6 10 7 5.3 1.2 1.5 1.1 62.3 50.1 36.4 12 6.6 6.9 1.2 1.1 8.5 7.8 3 3.9 
anteiso/iso 0.8 0.7 0.9 1.0  0.7  0.5  3.7  3.4  3.0  0.7  0.7  0.6  - - - 4.2 4.6 3.6 4.9  5.6  2.8  0.5 0.7 1.2 
ACLa 15.8 15.6 15.5 15.2 15 15.3 15.4    15.3 15.4 15.3 15.3 15.3 16.4 16.2 15.9 16 15.2 15.2 15 15 15.1 19.1 19.9 19 
a Average chain length (ACL) calculated after  (White et al., 2005a). Values are means of three samples; SCFA, straight chain fatty acids; BCFA, 
branched chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids;  and TFA, total fatty acids; and (–), not 
detectable. 
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2.4.5 Electrochemical properties of the isolated deep-sea bacteria 

Among these 52 bacteria isolated under anaerobic condictions, 4 strains were found 

with the ability of electricity production, such as Strains MARG5, MARG6 and 

MARG9 were homology to Halomonas were found with the highest power density of 

75-90 mW/m2 when growing in a fresh anaerobic corresponding growth medium with 

10 mM peptone as the electron donor in the above mentioned MFC units, and MARG45 

with high similar to Serratia was found with the ability of reducing Fe(III) and higher 

electricity production of 210 mW/m2. Strain MAR445 identified as Shewanella species, 

although it was isolated under aerobic condition, could grew very well under anaerobic 

condition with ability of reducing Fe(III) and power generation of 115-150 mW/m2 (See 

Chapter 5, Figure 5.3). 

 

 

2.5 Discussion 

2.5.1 Deep sea sediments and the density of the bacterial isolates 

The deep sea is a vast habitat that covers approximately 62 % of the world’s surface 

and 79 % of the volume occupied by living organisms which live below a depth of 

1000 m (Childress, 1995). Food availability in the deep sea, declines with depth and 

distance from the continental shelf edge (Warrant and Locket, 2004). The benthic 

environment of the deep sea is nearly entirely heterotrophic with the majority of 

organisms’ dependent of food sources descending from higher up in the water 

column (Danovaro et al., 2008). The supply of food to the deep sea depends on 

primary production in the photic zone, except for hydrothermal vent areas 

(Thingstad and Rassoulzadegan, 1999). 

 

The depth profile indicated that the bacterial community structure in the MAR 

“non-vent” sites shifted with increasing depth in the sediment, and the microbial 

diversity in shallow (0-5 mm) sediments was greater than that in deep (5-10 mm) 

sediments. Among the 312 isolates from the six deep sea sediments, 82 % were 

found isolated from surface sediments. It may be that the locations of surface (core-

top) sediment samples contain planktonic foraminiferal faunas (Morey et al., 2005). 

The finding is agreeable to other benthic life studies in deep-sea sediments, such as 

a marginal decrease in the number of bacteria from surface to 30 cm depth of the 
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Central Indian Ocean Basin in the Indian pioneer area (Raghukumar et al., 2001), 

the highest numbers of stained foraminifera are invariably found at the sediment 

surface, whereas numbers decrease exponentially deeper in the sediment in the 

southern Adriatic Sea (De Stigter et al., 1998). This may indicate that the 

productivily of the benthic sediments is generally differred by several orders of 

magnitude.  

 

The southeast station was found to have higher microbial density than those from 

another two, Northeast and Northwest, both of which are north of the Charlie Gibbs 

Fracture Zone (CGFZ). It may be that Southeast (Lat 49°05.40’N ) with more 

organic matters transported by North Atlantic Current (NAC) which crosses the 

MAR in a minimum of two and a maximum of four branches between 45ºN and 

52ºN, and therefore the core sediment might be affected by the currents across the 

ocean floor which carrying the surface sediments along in the water flow; whereas 

the sedimentary organic carbon contents of Northeast (Lat 54°01.00’N) and 

Northwest (Lat 54°00.65’N) remained about constant at less levels (Billett et al., 

1983; Lampitt, 1985). 

 

2.5.2 Phylogenetic diversity of MAR bacterial isolates 

 

It was interesting was that the bacteria belonging to the Protobacteria group, Gram-

positive and CFB group formed a site-specific microbial ecosystem of MAR non-

vent sites based on phylogenetic analysis of 16S rRNA gene sequences, which were 

different from other microbial diversity studies. For example, the genus 

Pseudomonas which seemed highly prevalent in other oceans (Hengstmann et al., 

1999; Bano and Hollibaugh, 2002), and many Colwellia strains have been isolated 

from the deep sea as common in the deepest oceanic regions, containing 

psychrophilic and barophilic species (Bowman et al., 1997a; Delong et al., 1997). 

However, these two species were not present in these MAR regions or seldom 

isolated by using the above mentioned culture techniques in this study. Whereas, 

our study revealed that in deep-sea sediments from the MAR, members belonging 

to genus Bacillus were dominant not only in Gram positive, but also in the whole 

bacteria communities. 
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The identification results assigned 69.5 % of the isolates to the Gram-positive 

species in the MAR sediments. Gram-positive bacteria have been cultivated from 

seawater and marine invertebrates (Ivanova et al., 1999; Han et al., 2003; Yi et al., 

2004; Montalvo et al., 2005), but marine sediments (Takizawa et al., 1993; Jensen 

and Fenical, 1995; Moran et al., 1995; Mincer et al., 2002; Jensen et al., 2005; 

Gontang et al., 2007), including deep-sea sediments (Weyland, 1969; Li et al., 

1999a; Ruger et al., 2000), are the primary oceanic habitat from which they have 

been recovered (Austin, 1988).  

 

In this study, isolates related to low-G+C Gram-positive formed the largest cluster 

in terms of diversity and abundance, with 12 phylogenetically distinct organisms 

predominant in subsurface sediments. Psychrotrophic Bacillus species consisted 

mainly of B. pumilus (27.3 %), B. pseudofirmus (19.7 %) and B. licheniformis (12.1 

%), with spore-forming ability according the previous reports (Bonde, 1981). This 

would be the first record of Bacilli and their associated high diversity level from 

MAR deep-sea sediments, which resembled that of previously reports in other 

marine environments, such as deep sea (Gontang et al., 2007; Ettoumi et al., 2009). 

 

While it is probable that some marine-derived Gram-positive bacteria are 

terrigenous microorganisms, washed or blown into the marine environment, species 

occurring exclusively in the sea have been described (Helmke and Weyland, 1984; 

Han et al., 2003; Yi et al., 2004). Among the Bacilli strains isolated in this study, 

only species of B. pumilus, B. subtilis, B. lichenifirmis, B. marinus were reported to 

have been isolated from marine environments (Ivanova et al., 1999). Bacillus 

baekryungensis is a provisional species isolated from the Yellow Sea (Yoon et al., 

2004). Strain GSP77 related to B. pseudofirmus was a facultatively alkaline isolated 

from the deep sea (Caton et al., 2004). Bacillus decolorationis and B. simplex, were 

used to be isolated from wall paintings (Heyrman et al., 2003), and B. pseudofirmus 

and B. longiquaesitum were used to be isolated from soil samples (Das-Bradoo et 

al., 2004; Kojima et al., 2006). Bacillus horneckiae was isolated from spacecraft 

(Vaishampayan et al., 2010). Thalassobacillus devorans was reported to have been 

isolated from hypersaline habitats (Garcia et al., 2005). Therefore, Bacillus 

decolorationis, B. simplex, B. longiquaesitum, B. horneckia and Thalassobacillus 

devorans were the first reported to have been isolated from marine environment in 

this study.  Strain MAR019 homology to Bacillus simplex species was found with 
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high production of squalene. This is another report on squalene production by a 

marine Gram-positive bacterium after a Gram-negative strain Rubritalea 

squalenifaciens HOact23T, which was isolated from the marine sponge 

Halichondria okadai and was reported with the production of such natural organic 

compound (Kasai et al., 2007).  

 

Isolates related to high G+C Gram-positives formed a small cluster in terms of 

diversity, with 2 phylogenetically distinct organisms: Arthrobacter-Micrococcus 

lineage and genera of the Nocardiaceae. 

 

The Cytophaga–Flavobacterium–Bacteroides (CFB) group of bacteria is considered 

to be of special relevance for aquatic environments, and is an especially dominant 

component of the microbial assemblage in anaerobic marine sediments (Coleman et 

al., 1993; Brettar et al., 2004). However, only few CFB species were isolated in this 

study.  

 

Indigenous marine bacteria occurring in most marine sediments belong mainly to 

different subclasses of Proteobacteria and are actively involved in geobiochemical 

cycles (Teske et al., 2000; Lopez-Garcia et al., 2003b), which may highlight the 

sediment structure and characteristics, organic matter loading and punctual changes, 

as well as the extent of grazing and viral infection in particular marine sediments 

(Bowman and McCuaig, 2003; Weinbauer et al., 2006). 

 

Most microbial diversity studies showed the ubiquitous presence of marine Alpha-

Proteobacteria in the water column of all oceans and in marine snow (Fuhrman et 

al., 1993; Mullins et al., 1995; Rath et al., 1998), and are especially abundant in 

coastal seawater (Teske et al., 2000).  Our study found that Alpha-Proteobacteria 

only occanted for 4 % of total bacteria isolated in the MAR sediments. These 

bacteria in the sediments could be derived from those coastal populations. An 

important ecological role of several members of the marine subclass is to degrade 

and decompose organic sulfur compounds produced mostly by eukaryotic 

phytoplankton and salt marsh plants (Pakulski and Kiene, 1992; Gonzalez et al., 

1999). 
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High prevalence of Gamma-Proteobacteria has been reported from various marine 

environments, including different geographic areas and ecosystems. Members of the 

group have been found in clone libraries, denaturing gradient gel electrophoresis 

bands, and isolates retrieved from the Pacific Ocean (Crump et al., 1999; Beja et 

al., 2000; Suzuki et al., 2001; Connon and Giovannoni, 2002; Cho and Giovannoni, 

2004), Atlantic Ocean (Britschgi and Giovannoni, 1991; Rappe´ et al., 1997; 

Gonzalez et al., 2000; Kelly and Chistoserdov, 2001), North Sea (Eilers et al., 

2001; Zubkov et al., 2001), Arctic Ocean (Bano and Hollibaugh, 2002), Antarctic 

Sea (Bowman et al., 2000), Mediterranean Sea (Schafer et al., 2001), Gulf of Elat 

(Weidner et al., 1996), Tokyo Bay (Urakawa et al., 2000), Suruga Bay (Li et al., 

1999a) and Tyrrhenian Sea (Ettoumi et al., 2010). Only few of these isolates 

originated from shallow or deep marine sediments (Li et al., 1999a; Li et al., 1999b; 

Bowman et al., 2000; Urakawa et al., 2000). Most cultured members have been 

obtained from temperate environments (Eilers et al., 2001; Connon and Giovannoni, 

2002). Our study found that Gamma-Proteobacteria was accounted for 26.7 % of 

total bacteria isolated in the MAR sediments. Isolates related to Gamma-

Proteobacteria formed the second largest cluster in terms of diversity and high 

abundance, with 11 phylogenetically distinct organisms distinguished by 8 main 

subclusters. MAR441 and MAR445 were most closely related to Shewanella 

species found with high production of EPA and can grow anaerobically by 

dissimilatory Fe(III) reduction, as well as generating electricity by utilizing peptone 

or glucose. 

 

Though predominantly aerobic, some of the deep sea bacteria develop anaerobically 

as reported previously (Lovley and Phillips, 1994; Teske et al., 2002; Wery et al., 

2002; Prokofeva et al., 2005; Byrne et al., 2009; Bruck et al., 2010). In this study, 

of the 52 anaerobic isolates, 46 were isolated from core sediment samples. All these 

52 strains were phylogenetically divided into 7 distinct organisms: Thalassobacillus 

devorans, Hafnia alvei, Idiomarina loihiensis, Halomonas alkaliphila, Bacillus 

horneckiae, Rhodococcus erythropolis and Serratia proteamaculans. Strains 

MARG5, MARG6 and MARG9 were homologous to Halomonas, and MARG45 

with, high similarity to Serratia proteamaculans, were found with the ability of 

reducing Fe(III) and electricity production.  Strain MARG10 and MARG12 were 

homology to Rhodococcus erythropolis, which is involved in desulfurisation 

(Denome et al., 1994; Matsui et al., 2001). Idiomarina loihiensis related strains 
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were also isolated from the sediments, which might be related to biomineralization 

processes as it was reported with mineral precipitation (González-Muñoz et al., 

2008). 

 

2.5.3 Comparison of temperature-induced changes among representatives of 

different phyla 

Whole-cell FA patterns of 27 isolates grown at different temperatures were analyzed. 

The dataset indicates that there is no unequivocal response in FA pattern to changing 

temperature. Significant differences were found among single organisms, not only 

between those belonging to different bacterial phyla, but sometimes even between 

representatives of a single genus. Such intrageneric variability appears to be quite 

common. Similar results were obtained with Arthrobacter (White et al., 2000), Bacillus 

(Haque and Russell, 2004), and Sphingomonas spp. (Mannisto and Puhakka, 2001).  

 

For many isolates, changes in composition with temperature corresponded with 

literature data, such as monounsaturated FAs decreasing with increasing temperature, 

whereas saturated fatty acids increased (Hazel and Williams, 1990), for example in the 

Stenotrophomonas sp. MAR386, Paracoccus sp. MAR824, Amphritea sp. MAR442, 

Idiomarina sp. MARG4, Halomonas sp. MAR913, Psychrobacter sp. MAR701, 

Rhodococcus sp. MARG10 and in a few of the Bacillus strains (e.g. MAR886, 

MAR285, MAR015, MAR019 and MAR283). In some cases, however, the results were 

inconsistent, for example for Bacillus sp. MAR287 and MAR870 and Micrococcus sp. 

MAR806. For these strains the expected changes were observed over one temperature 

range, whereas over another opposite effects occurred. Currently we do not know 

whether these organisms employ other adaptation mechanisms besides FA side chain 

modification.  

 

Equivocal results were obtained for BCFAs. These are generally attributed to 

maintaining membrane fluidity at lower temperature (Haque and Russell, 2004). This is 

supported by a number of isolates affiliated with the Firmicutes or 

Gammaproteobacteria. However, in the strains Idiomarina sp. MARG4, Psychrobacter 

sp. MAR701, Bacillus sp. (MAR886, MAR283 and MAR804), BCFAs often decreased 

with decreasing temperature. In these strains BCFAs often mirrored straight chain FAs. 

Some of the isolates showed almost no or only very little temperature-driven variation 
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(Hoeflea sp. MAR866, Thalassobacillus sp. MARG2, Sporosarcina sp. MAR899 and 

Bacillus sp. MAR870). This may indicate that they adjust membrane viscosity using 

other mechanisms (e.g. hopanoid or protein content or phospholipid head groups). 

Alternatively, it is possible that, in the temperature range over which the organisms 

were grown, an adjustment in membrane viscosity was not necessary. Therefore, it is 

apparently more advantageous for the organisms not to need to alter the FA chains and 

can be seen as an example of being well adapted to their habitat.  

 

Likewise, for many other isolates changes did not appear gradually over the whole 

temperature range. For example, in strain Stenotrophomonas sp. MAR386 almost no 

differences in FA pattern were found between cells grown at 4 or 15 ºC, whereas for 

cells grown at 25 ºC the relative proportion of MUFAs decreased from about 30 % to 

more than 19 %. Whereas, as another example, in strain Pseudoalteromonas sp. 

MAR005 almost no differences in FA pattern were found between cells grown at 15 or 

25 ºC, whereas for cells grown at 4 ºC the relative proportion of MUFAs increased from 

about 59 % to more than 80 %.  

 

The bacterial isolates originating in MAR sediments, where the biogeography patterns 

have not been characterised, will experience temperature as low as 4 ºC. The alteration 

in FA side chains is the most effective and energy saving method (Hazel and Williams, 

1990) for adapting membrane viscosity to temperature change. We assume that it is also 

the quickest method in that we found some Gram-negatives, such as Stenotrophomonas 

sp. MAR386, Idiomarina sp. MARG4 and Psychrobacter sp. MAR701; CFB group, 

e.g. Formosa sp. MAR430; and most of Gram-positives including genus Bacillus in this 

study with branched-chain fatty acids as major constituents, especially ai-15:0, i-15:0, 

ai-17:0, i-17:0 and i-16:0 acids.  This branched-chain fatty acid family occurring in 

bacteria is very significant (Kaneda, 1977; Lechevalier, 1977), membranes with this 

family are manipulated mainly by 12-methyltetradecanoic acid (ai-15:0) and 13-

methyltetradecanoic acid (i-15:0) and subsequently their membrane fluidity is modified 

(Kaneda, 1991). For example, fatty acids of strains Idiomarina sp. MARG4 and 

Shewanellas sp. MAR445 were partly controlled by i-15:0, while most of the genus 

Bacillus (e.g strains MAR846, MAR886, MAR285, MAR015, MAR287, MARG2, 

MAR019 and MAR283) were mainly manipulated by ai-15:0 and i-15:0 acids.  

 

 101



Chapter 2. Fatty acid production by microbial communities from non-vent Mid-Atlantic Ridge sediments 

The branched-chain fatty acid family is not nearly as common as that of the straight-

chain fatty acid family. The fluidity of membranes composed of straight chain fatty 

acids is adjusted to the proper level by the inclusion of MUFAs and/or PUFAs, such as 

in Shewanellas sp. MAR445, with increasing temperature from 4 ºC to 25 ºC, the 

proportion of MUFAs (mainly n-16:1ω9 and n-18:1ω7c) and PUFAs (mainly n-20:5ω3) 

decreased, with the increasing of SCFAs (mainly n-13:0 and n-16:0), whereas in strains 

Paracoccus sp. MAR824, Amphritea sp. MAR442 and Cobetia sp. MAR913, the 

variation of MUFAs was only mirrored by SCFAs.  

 

2.5.4 Phylogenetic resolution of FA patterns 

In many cases, the patterns of fatty-acid variables have been analyzed by many classical 

multivariate data analyses methods, such as principal coordinates analysis (PCO) 

(Freese et al., 2008), correspondence analysis (CA) (Malmgren et al., 1978), principal 

component analysis (PCA) (Viga and Grahl-Nielsen, 1990; Patil et al., 2007), Multiple 

correspondence analysis (MCA). In this study, the FA patterns at 15 ºC were subjected 

to PCO (Figure 2.4), which allowed separation of isolates representing different phyla: 

Firmicutes groups mainly Bacillus, Paenisporosarcina, Kocuria, Micrococcus and 

Rhodococcus; Gamma-Proteobacteria including Stenotrophomonas, Amphritea, 

Halomonas, Hafnia, Cobetia, Shewanella, Obesumbacterium, Serratia, Idiomarina, 

Pseudoalteromonas and Psychrobacter; Alpha-Proteobacteria comprising Hoeflea and 

Paracoccus; (Figure 2.4). The ordination pattern clearly separated the 27 genus, and 

segregated all Firmicutes genus expect Rhodococcus in Group (I); most of Gamma-

Proteobacteria and Rhodococcus in Group (II); and Alpha-Proteobacteria with two 

Gamma-Proteobacteria (Hoeflea and Pseudoalteromonas) in Group (III). The result 

was agreeable to the data clustered by using hierarchical UPGMA analysis (Figure 2.5), 

which was divided into three groups as mentioned above. This indicates that a 

taxonomic resolution on the basis of complete FA patterns is possible if isolates 

belonging to different phyla were not sometimes dominated by the same FAs. However, 

different isolates belonging to diffient phyla were sometimes dominated by the same 

major fatty acids and therefore resulting in unsuccessfully separation. For example, 

Rhodococcus sp. MARG10 affiliated with the Firmicutes phylum and Formosa sp. 

MAR430 belonged to CFB group based on phylogenetic analysis of 16S rRNA gene 

sequences, but they were clustered into Gamma-Proteobacteria based on fatty acid 

composition. As it was indicated that the diversity of FA patterns among representatives 

of a single sub-phylum greater than the differences between representatives of different 
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phyla might be possible in that the patterns of isolates belonging to different phyla were 

sometimes dominated by the same FAs (Freese et al., 2008). In this case, the problem 

could be solved by distinguishing the presence of the fatty acids in lower abundance. 

Examples for such ‘marker FAs’ for the individual isolates exhibited the same major 

FAs, are n-16:1ω7 for the Rhodococcus strain, and n-19:0 for the Formosa strain. 

 

Generally, FAs patterns obtained at 4, 15 and 25 ºC showed different variation after 

PCO. Some of them clustered closely at all these three temperatures, such as Hoeflea sp. 

MAR866, Amphritea sp. MAR442, Idiomarina sp. MARG4, Bacillus sp. MAR846, 

Bacillus sp. MAR886, Bacillus sp.MAR809, Bacillus sp. MAR804, Rhodococcus sp. 

MARG10 and Micrococcus sp. MAR806 (nos. 1, 5, 8, 12, 13, 20, 22, 24 and 26); a few 

of them clustered closely at both  15 and 25 ºC, such as Formosa sp. MAR430, 

Stenotrophomonas sp. MAR386, Pseudoalteromonas sp. MAR005, Bacillus sp. 

MAR285 and Micrococcus sp. MAR443 (nos. 3, 4, 6, 14 and 27), and some only 

clusted closely at 4 and 25 ºC, such as Paracoccus sp. MAR824, Amphritea sp. 

MAR442, Halomonas sp. MAR913, Bacillus sp. MAR015, Thalassobacillus sp. 

MARG2, Bacillus sp. MAR019, Bacillus sp. MAR870, Paenisporosarcina sp. MAR899 

and Kocuria sp. MAR801 (nos. 2, 5, 10, 15, 17, 18, 21, 23 and 25), while patterns in the 

PCO plot varied significantly on strains Shewanella sp. MAR445, Serratia sp. 

MARG45, Halomonas sp. MAR913, Bacillus sp. MAR287 and Bacillus sp. MAR283 

(nos. 7, 9, 10, 16 and 19), they  gave separate clusters at all three temperatures.  FA 

patterns among representatives of different phylum at different temperature clustered 

closely or overlapped, such as Serratia sp. MARG45 at 4 ºC and Psychrobacter sp. 

MAR701 at 15 ºC (nos. 9 and 11), Kocuria sp. MAR801 at 15 ºC and Bacillus sp. 

MAR283 at 25 ºC (nos. 19 and 25). Therefore taxonomic identification on the basis of 

complete FA patterns need to be very careful on isolates belonging to the same phyla in 

that more or less of temperature change might result in some change of branched, 

saturated or monounsaturated FAs. 
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Figure 2.4 Principal coordinates analyses (PCO) of major FA abundance data from 
Tables 2.3-2.6 measuring Bray Curtis distance. Numbers indicate bacterial strains (see 
Figure 2.5) 

 

 
Figure 2.5 Similarity analysis based on whole cell fatty acid composition at 15 oC from 
27 bacterial species. The phylogenetic tree was constructed by unweighted pair group 
average method (UPGAM) clustering method using the programs of MVSP package. 
Numbers indicated in the figure are the same as in Figure 2.4 and nearest type strains 
were indicated beside the isolates. 

 

Both the distribution and the percentage contribution of each fatty acid to the total fatty 

acid across taxa at species level of Gamma-Proteobacteria, Alpha-Proteobacteria and 
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Gram-positive bacteria were plotted respectively shown in Figures 2.6, 2.7 and 2.8. The 

trends and relationships of fatty acid composition of each group under different 

temperautres or each species within Gamma-Proteobacteria, Alpha-Proteobacteria and 

Gram-positive bacteria respectively could be presented using this method. Within 

Gamma-Proteobacteria, wide distribution of fatty acid composition was observed, 

ranging from short-chain FAs (e.g. i-12:0, n-13:0, i-15:0 and n-15:0); middle-chain FAs 

(e.g. n-16:1ω9, n-16:1ω7, n-16:0, i-17:0, n-17:1ω8 and n-17:0 and n-18:1ω9c), to long-

chain FAs (e.g. n-20:5ω3), in which EPA was found. The fatty acids of Alpha-

Proteobacteria were dominated by middle-chain FAs, such as n-18:1ω9c and n-

18:1ω7c. Similarly, both Alpha- and Gamma-Proteobactria strains synthesized 

unsaturated fatty acids in response to a temperature drop (Figures 2.6 and 2.7). Most of 

the Gram+ species contained i-15:0, ai-15:0, i-16:0, ai-17:1ω7, i-17:0, ai-17:0 and n-

18:1ω9c as their major fatty acids, and mainly employed mainly i-15:0 and ai-15:0 acids 

in response to a temperature drop (Figure 2.8).  
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Figure 2.6 Box plots representing the distribution and variability in the percentage 
contribution of each fatty acid to the total fatty acids within Gamma-Proteobacteria at 
4, 15 and 25 oC. The triangles represent the presence of each fatty acid (Axis X) from 
different species analyzed, with percentage of TFA indicated by Axis Y. 
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Figure 2.7 Box plots representing the distribution and variability in the percentage 
contribution of each fatty acid to the total fatty acids within Alpha-Proteobacteria at 4, 
15 and 25 oC. The triangles represent the presence of each fatty acid (Axis X) from 
different species analyzed, with percentage of TFA indicated by Axis Y. 
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Figure 2.8 Box plots representing the distribution and variability in the percentage 
contribution of each fatty acid to the total fatty acids within Gram+ (Firmicutes) at 4, 15 
and 25 oC. The triangles represent the presence of each fatty acid (Axis X) from 
different species analyzed, with percentage of TFA indicated by Axis Y. 
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2.6 Conclusions 

In conclusion, the comparison between the bacterial community and the distribution and 

the percentage contribution of their fatty acid composition is helpful in studying 

bacterial taxonomy and recognizing their important role in certain marine food web, 

such as in MAR “non-vent” sites sediments. 

 

Although marine microorganisms have only recently become a target for natural 

product drug discovery and energy production (Bernan et al., 1997; Reimers et al., 

2001; Bond et al., 2002; Blunt et al., 2006), it has become increasingly clear that Gram-

positive strains are a rich source of new structures that possess promising antimicrobial 

and anticancer activities (Bernan et al., 2004; Blunt et al., 2006; Kwon et al., 2006) and 

that a better understanding of microbial diversity will provide important insight into 

how to devise intelligent strategies for discovering natural product (Bull, 2004), and 

environmental power sources (Tender et al., 2002; Lovley, 2006). The present research 

firstly reports the microbial biodiversity of MAR “non-vent” sediments with findings of 

Gram-negative EPA producers, and Gram-positive squalene producers and bacterial 

electricity producers. The work helps to establish a fundamental understanding of the 

diversity of culturable deep-sea bacteria in the MAR sediments and provides a diverse, 

marine environment-derived assemblage of cultured bacteria whose chemical and 

biosynthetic diversity can be investigated. 

 

Furthermore, FA compostion of certain isolates could be well defined under certain 

conditions, e.g. temperature, pressure or grown medium. However, some strains 

strongly modify their FA patterns when their culture temperature changes and several 

strains did not show any modifications. FA patterns of microbial communities could 

represent their taxonomic structure in certain environmental nitch. However, it should 

be done with great care if strains were identified on the basis of fatty acid compositions. 

The FA patterns of MAR non-vent microbial communities in reponse to changing 

temperature showed that, Gram positive strain, mainly Firmicutes affiliated with 

branched-chain fatty acid family, employed anteiso-15:0 and iso-15:0 acids to adjust 

their membrane viscosity, whereas other strains, such as Alpha, Gamma-Proteobactria 

and CFB group belong to straight-chain fatty acid family which required unsaturated 

fatty acids for growth and membrane ciscosity manipulation. 
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3 Chapter 3. Marine sponge-associated bacteria as sources for 
omega-3 fatty acids 
 
 

3.1 Abstract  

Sponge associated bacteria are of great interest in that highly diverse microbes and 

novel biologically active chemical compounds (e.g. glycosphingolipids) could be found. 

However, sponge associated bacteria as a source for omega-3 fatty acids has received 

little attention. In this study, we investigated biogeographic variability of bacterial 

communities and fatty acid compositions between temperate and tropical sponges by 

isolating bacteria from the temperate North-sea sponge Halichondria panicea and the 

tropical Caribbean sponge Agelas clathrodes. Phylogenetic analysis of the sponge 

associated bacterial communities based on 16S rRNA gene sequences indicated an 

abundance of Gamma-Proteobacteria (90 %) in Halichondria panicea, whereas Gram-

positive bacteria mainly occured in Agelas clathrodes. Fatty acid analysis indicated that 

Vibrio and Shewanella, isolated from Halichondria panicea, were able to produce 

eicosapentaenoic acid (EPA) (2-10 % of total fatty acids), and no strains capable of 

producing EPA were isolated from Agelas clathrodes. Principal coordinates analysis 

(PCO) on the marine sponge associated bacteria by whole cell fatty acid compositions 

indicated that taxonomic resolution on the basis of complete FA patterns is possible.  

 

3.2 Introduction 

Polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5ω3) and 

docosahexaenoic acid (DHA, 22:6ω3), are essential to human health and nutrition, 

providing important visual, mental, and cardiovascular benefits throughout life (Heird 

and Lapillonne, 2005; Brouwer et al., 2006; Muskiet and Kemperman, 2006). Microbial 

omega-3 PUFAs have raised attention from vegetarians as an alternative source for EPA 

or DHA, instead of fish oil, which is limited (Garcia and Rosenberg, 2010). 

Furthermore, bacteria could be used as a primary PUFA-rich feedstock in artificial food 

chains in the aquaculture industry, thereby protecting natural fish stocks (Watanabe et 

al., 1992; Nichols et al., 1996b). Several EPA-producing bacteria have been isolated, 

such as psychro- or piezophiles from polar regions and the deep sea (Delong and 

Yayanos, 1986; Bowman et al., 1997b; Russell and Nichols, 1999; Gentile et al., 2003), 
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from a temperate estuary (Skerratt et al., 2002), from shallow seawater samples 

(Ivanova et al., 2001; Ivanova et al., 2003a; Frolova et al., 2005), and from an intertidal 

flat (Freese et al., 2008; Freese et al., 2009). However, little research has been 

undertaken on bacteria from marine sponges producing omega-3 PUFAs.  

 

Marine invertebrates, especially sponges, have a two layer structure of outer and inner 

endosomal membrane, and sequester food by filtering seawater, making sponges an 

ideal habitat for microorganisms. Sponges harbour dense and diverse microbial 

consortia, which may contribute up to 40 % of sponge tissue volume and exceed the 

numbers of microorganisms in seawater by two to three orders of magnitude 

(Wilkinson, 1978). Sponge microbes span all three domains of life, of which at least 18 

bacterial and archaeal phyla have been described from sponge hosts (Taylor et al., 

2007). Various unprecedented chemical structures of fatty acids, and lipid-containing 

fatty acids, have recently been discovered from sponges (Berge and Barnathan, 2005). 

For example, marine glycosphingolipids, chiefly isolated from sponges, such as Agelas 

clathrodes (Ding et al., 2006), show interesting biological activities such as 

immunomodulation and antitumoral activity (Fattorusso and Mangoni, 1997). The fatty 

acyl chains linked to these classes of compounds are common but several new and 

original structures have been reported recently (Costantino et al., 1999; Costantino et 

al., 2003). A novel series of α-methoxylated FA have been reported from Caribbean 

sponges from the genera Amphimedon, Callyspongia and Spheciospongia (Carballeira 

and Colon, 1999; Carballeira and Alicea, 2002). Biosynthesis genes encoding 

polyketide synthases (PKSs) or nonribosomal peptide synthetases (NRPSs) were 

presented in Halichondria panicea associated Actinobacteria, indicating the existence 

of natural products (Schneemann et al., 2010). Therefore, it would be interesting to find 

sponge associated bacteria which produce bioactive compounds. 

 

In the present investigation an attempt has been made to examine the variability of 

bacterial communities and fatty acid patterns between temperate and tropical sponges 

by isolating bacteria from North-sea sponge Halichondria panicea and Caribbean 

sponge Agelas clathrodes. The taxonomic analysis of sponge associated bacterial 

community structure based on complete FA patterns was also conducted.  
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3.3 Materials and Methods 

3.3.1 Sample collection  

The sponge sample Halichondria panicea was collected by the author at low tide in the 

coastal area off the Dove Marine Laboratory, Cullercoats, North Sea (54°54'25"N, 

1°21'35"W) by scraping the rocks. The sponge sample Agelas clathrodes (the Orange 

Elephant Ear Sponge) inhabiting the depths of 22 to 55 m, was collected from the coast 

of Grenada near St. George’s University Caribbean by snorkelling from the reef. 

Collected sponge samples (100 g) were transferred in zip-lock bags on ice to UK. 

Portions of these specimens were thoroughly washed three times with autoclaved 

seawater passed through a 0.2 µm-pore-size filter to remove loosely attached bacteria.  

 

3.3.2 Isolation of sponge associated bacteria 

For the isolation of the sponge associated bacteria, one 1 cm3 of sponge tissue was 

excised from the middle of the whole sponge using a pair of sterile scissors. The excised 

portion was thoroughly washed three times with filtered sea water to remove any 

bacteria within current canals and then the tissue was homogenaised using a sterile 

mortar and pestle. The resultant homogenate was serially diluted with filtered sea water 

and pre-incubated at 15 °C for 1 h. The aliquot was plated on marine agar plates (Difco) 

and incubated at 4 and 15 °C in dark aerobic conditions until visible colonies appeared. 

Colonies with different morphologies on this medium were selected and purified 

through the third generation. Gram staining was used for initial bacterium classification; 

after staining the bacteria were stored in glycerol broth 15 % v/v (-80 °C). Altogether 53 

marine sponge associated bacterial isolates were obtained, all of which were further 

analysed for fatty acid production. 

 

3.3.3 Strain growth 

For biomass production, strains were inoculated into 10 ml of Marine Broth 2216E 

(Difco), and incubated at 15 °C until turbidity was apparent. The 10 ml cultures were 

then used to inoculate 90 ml volumes of marine 2216 broth contained in 500 ml conical 

flasks pre-rinsed in chloroform. Flasks were incubated at 15 °C respectively with 

agitation provided by a magnetic stirrer or orbital shaker (180 rpm) for 24-48 h until 

sufficient mass of estimated late-log phase cells were present for harvest.  
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Cell mass from broth cultures was collected by centrifugation at 4500 g for 20 min. Cell 

pellets were resuspended in 200 ml M9 solution (22 mM KH2PO4, 22 mM Na2HPO4, 85 

mM NaCl, 1mM MgSO4) and recentrifuged followed by rinsing with 0.1 % ammonium 

acetate and frozen. The washed cell pellets were suspended in 2.0 ml saline and 

lyophilised in preweighed containers prior to lipid extraction. 

 

3.3.4 Fatty acids analysis as methods mentioned in Chapter 2 

 

3.3.5 16S rRNA gene identification as methods mentioned in Chapter 2 

 

3.3.6 Nucleotide sequence accession numbers 

The nucleotide sequences of 16S rRNA gene have been deposited in EMBL under the 

accession numbers: FR750928-FR750956 (NSP480-NSP683) and FR750957-

FR750980 (CMS161-CMS382). 

 

3.3.7 Multivariate analyses as methods memtioned in Chapter 2 

Relative abundances of major FAs after whole cell hydrolysis (Tables 3.3–3.7) were 

used for statistical analysis as memtioned in Chapter 2.  

 

 

3.4 Results 

3.4.1 Phylogenetic identification of the North-sea sponge (Halichondria panicea) 

associated bacteria 

From the North-sea marine sponge (Halichondria panicea), a total of 29 

morphologically distinct heterotrophic associated bacterial colonies were isolated and 

identified on the basis of 16S rRNA gene sequence analysis (Table 3.1). Phylogenetic 

analysis of these 29 strains revealed that Gamma-Proteobacteria was the most abundant 

division of the bacterial component (86.2 %), followed by Gram positives (10.3 %) and 

high CFB group bacteria (3.5 %). Gamma-Proteobacteria was phylogenetically 

affiliated with 6 members of Pseudoalteromonadaceae, Vibrionaceae, 

Alteromonadaceae, Shewanellaceae, Halomonadaceae and Gilvimarinus, including 17 

taxonomic units of Pseudoalteromonas carrageenovora, Ps. marina, Ps. prydzensis, Ps. 
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arctica, Ps.undina, Ps. tetraodonis, Ps. issachenkonii, Ps. prydzensis, Ps. aliena, Vibrio 

tasmaniensis, V. splendidus, Alteromonas stellipolaris, Glaciecola mesophila, 

Shewanella pealeana, Sh. piezotolerans, Gilvimarinus chinensis and Cobetia marina. 

Gram positive contained 3 taxonomic units of Arthrobacter parietis, Bacillus 

stratosphericus and Paenisporosarcina quisquiliarum. And one strain identified as 

Cellulophaga baltica belonged to CFB group bacteria (Figure 3.1).  

 

Table 3.1 List of North Sea sponge (Halichondria panicea) associated bacterial strains  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phylogenetic group 
(family) 

Representative 
isolates 

No. of 
strains 
in OTU 

Nearest type in the  GenBank  
 (accession number ) 

Sequence 
identity 
(%)b 

Source of nearest 
type strain 
 

Gamma-Proteobacteria      
NSP482 1 Pseudoalteromonas carrageenovora ATCC 12662T 

(X82136) 
99.112 ATCC collection 

NSP507; NSP508; 
NSP513; NSP517; 
NSP562 

5 Pseudoalteromonas marina Mano4T (AY563031)   99.5-99.9 Yellow Sea 

NSP511; NSP558 2 Pseudoalteromonas prydzensis MB8-11T (U85855) 98.3-99.9 Antarctic sea ice 
NSP519 1 Pseudoalteromonas arctica A 37-1-2T (DQ787199) 99.378 Spitzbergen 
NSP530 1 Pseudoalteromonas undina NCIMB 2128T (X82140) 99.614 ATCC collection 
NSP541; NSP549   2 Pseudoalteromonas tetraodonis IAM 14160T (AF214730) 99.899 Red alga 
NSP542 1 Pseudoalteromonas issachenkonii KMM 3549T 

(AF316144) 
100.000  
 

Brown algae 

Pseudoalteromonadace
ae 

NSP681 1 Pseudoalteromonas aliena KMM 3562T (AY387858) 99.856 Sea-water 
NSP501; NSP560 2 Vibrio tasmaniensis LMG 21574T (AJ514912) 99.4-99.5 Atlantic salmon Vibrionaceae 
NSP559 1 Vibrio splendidus ATCC 33125T (X74724) 99.326 ATCC collection 
NSP481 1 Alteromonas stellipolaris LMG 21861T (AJ295715) 99.635 

 
Antarctic sea Alteromonadaceae 

NSP683 1 Glaciecola mesophila KMM 241T (AJ488501) 99.509 
 

Halocynthia 
aurantium 

NSP523 1 Shewanella pealeana ATCC 700345T (CP000851)  99.653 Atlantic squid Shewanellaceae 
NSP561 1 Shewanella piezotolerans WP3T (CP000472) 98.695 West Pacific deep-

sea sediment 
Gilvimarinus NSP500 1 Gilvimarinus chinensis QM42T (DQ822530)  94.975 Coastal seawater 

NSP484; NSP488 2 Cobetia marina DSM 4741T (AJ306890) 99.381 ATCC collection Halomonadaceae 
NSP520  1 Cobetia marina DSM 4741T (AJ306890) 99.098 ATCC collection 

High GC Gram+      
Micrococcaceae NSP487  1 Arthrobacter parietis LMG 22281T (AJ639830) 99.781 Mural paintings 
Firmicutes      
Bacillaceae NSP483   1 Bacillus stratosphericus 41KF2aT (AJ831841) 99.498 Air samples 
Planococcaceae NSP480  1 Paenisporosarcina quisquiliarum SK 55T (DQ333897)   98.529 Landfill soil 
CFB group bacteria      
Flavobacteriaceae NSP516  1 Cellulophaga baltica NN015840T (AJ005972) 99.151 Seawater samples 
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Figure 3.1 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of 29 bacteria associated with North-sea sponge 
(Halichondria panicea) in this study and their nearest type strains.  The phylogenetic 
tree was constructed by neighbour-joining method using the programs of MEGA 
package. 1000 trials of bootstrap analysis were used to provide confident estimates for 
phylogenetic tree topologies. Bars: 0.05 nucleotides substitution per site. 

 

3.4.2 Phylogenetic groups and identification of bacterial associated with the 

Caribbean sponge (Agelas clathrodes) 

Twenty-four bacterial strains were isolated and identified on the base of 16S rRNA gene 

sequence analysis (Table 3.2). Phylogenetic analysis of these 24 strains revealed that 

Gram positive was the most abundant division of the bacterial populations (75 %), 

followed by Gamma-Proteobacteria (16.6 %), Alpha-Proteobacteria (4.2 %) and CFB 

group bacteria (4.2 %). Gram-positive strains were phylogenetically affiliated with 7 

 115



Chapter 3. Marine sponge-associated bacteria as sources for omega-3 fatty acids 

members of the Bacillaceae, Paenibacillaceae, Planococcaceae, Aerococcaceae, 

Cellulomonadaceae, Nocardiaceae and Micrococcaceae. Gamma-Proteobacteria 

contained 3 members of Moraxellaceae, Granulosicoccaceae and Rhodobacteraceae, 

including 3 taxonomic units of Psychrobacter nivimaris and Granulosicoccus 

coccoides. One strain has homology to Labrenzia alba, affiliated with Alpha-

Proteobacteria, and one strain, identified as Algibacter lectus, belonged to CFB group 

bacteria (Figure 3.2).  

 

Table 3.2 List of Caribbean sponge (Agelas clathrodes) associated bacterial strains

No. of 
strains Nearest type in the  GenBank  

 (accession number ) 
 

Similarity 
 (%) 

Source of 
nearest 
type strain 

Phylogenetic group 
(family) 

Representative 
isolates 

 

Firmicutes      

Bacillaceae 
CMS179  1 Bacillus licheniformis ATCC 14580T 

(CP000002) 
98.962 Soil 

 
CMS176  1 Brevibacterium frigoritolerans  

DSM 8801T (AM747813) 
98.689 N/A 

 
CMS178;   CMS187 2 Bacillus hwajinpoensis SW-72T 

(AF541966) 
99.5-99.9 Yellow Sea 

 
CMS188  1 Halobacillus salinus HSL-3T 

(AF500003) 
98.653 East Sea 

 
CMS190; CMS193;  
CMS195; CMS206 

4 Oceanobacillus profundus CL-MP28T 
(DQ386635) 

99.7-99.9 Deep-sea 
sediment 
core 

Paenibacillaceae 
CMS172  1 Paenibacillus pinihumi S23T 

(GQ423057) 
98.440 Rhizospher

e of Pinus 
densiflora 

Planococcaceae 
CMS223   1 Sporosarcina psychrophila IAM 12468T 

(D16277) 
99.863 N/A 

Aerococcaceae 

CMS378; CMS380 2 Aerococcus viridans ATCC 11563T 
(M58797) 

99.6-99.9 Spanish 
Type 
Culture 
Collection 

High GC Gram+      

Cellulomonadaceae 
CMS382  1 Demequina aurantiaca YM12-102T 

(AB522641) 
98.139 Algae 

Nocardiaceae 
CMS164 1 Rhodococcus maanshanensis M712T 

(AF416566) 
99.357 Soil 

 
CMS166;   CMS199  2 Rhodococcus erythropolis NBRC 

100887 (AP008957) 
99.8-99.9 Pacific 

Ocean 

Micrococcaceae 
CMS197  1 Micrococcus luteus NCTC 2665T 

(CP001628) 
99.582 N/A 

      
Gamma-Proteobacteria      
Moraxellaceae CMS161; CMS165; 

CMS185 
3 Psychrobacter nivimaris 88/2-7T 

(AJ313425) 
99.5-99.8 South 

Atlantic 

Granulosicoccaceae 
CMS377  1 Granulosicoccus coccoides Z 271T 

(FJ535355) 
99.135 Leaves of 

seagrass 
Alpha-Proteobacteria      

Rhodobacteraceae CMS163  
1 

Labrenzia alba CECT 5094T (AJ878875) 99.355 
Mediterran
ean oysters 

CFB group bacteria      

Flavobacteriaceae 
CMS186   1 Algibacter lectus KMM 3902T 

(AY187689) 
98.693 Green algae 
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Figure 3.2 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of 24 bacteria associated with Caribbean marine sponge 
(Agelas clathrodes) in this study and their nearest type strains. The phylogenetic tree 
was constructed by neighbour-joining method using the programs of MEGA package. 
1000 trials of bootstrap analysis were used to provide confident estimates for 
phylogenetic tree topologies. Bars: 0.02 nucleotides substitution per site.  
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3.4.3 Fatty acid composition of sponge associated bacteria	

3.4.3.1 Fatty acid composition of Gamma-Proteobacteria 
 
Strains NSP482, NSP511, NSP513, NSP519, NSP530, NSP541, NSP542, NSP558 and 

NSP681 exhibited the highest homology (98-99 % 16S rRNA gene identity) to type 

strains Pseudoalteromonas carrageenovora, Ps. prydzensis,  Ps. marina,  Ps. arctica, 

Ps. undina,  Ps. tetraodonis, Ps. issachenkonii,  Ps. prydzensis and Ps. aliena 

respectively. FA patterns of these Pseudoalteromonadaceae strains were dominated by 

n-16:0, n-16:1ω7 and n-18:1ω7c (8-45 %), with minor contributions (1-7 %) of n-12:0, 

3-OH-12:0, n-14:0, n-15:1ω8, n-17:0 and n-17:1ω8 acids. Low levels of saturated iso-

branched fatty acids and 3-OH fatty acids were also detected, but these were at levels 

too low to be reliable for differentiation of the groups. The lipid profiles were very 

similar to those found for other Pseudoalteromonas species and Alteromonas macleodii 

(Ivanova et al., 2002; Nam et al., 2007; Al Khudary et al., 2008). No BCFA and PUFA 

were detected of the species, and the ACL was variable (15.5-16) (Table 3.3).  

 

Strains NSP484 and NSP520 exhibited the highest homology (99.1-99.4 % 16S rRNA 

gene identity) to the type strain Cobetia marina. FA patterns of these Halomonadaceae 

strains were dominated by 3-OH-12:0, n-16:0, n-16:1ω7, cyclo-17:0 and n-18:1ω7c 

acids (9-26 %), with minor contributions (1-7 %) of n-10:0, n-12:0, i-15:0, n-18:0 and 

cyclo-19:0 acids (1-7 %), and ACL of 14.9-15.6 (Table 3.3). The FA profiles were 

comparable with those from type strains (Yumoto et al., 2004). 

 

Strains NSP560 and NSP559 showed the highest sequence similarities (99.3-99.9 % 

16S rRNA gene identity) to type strains Vibrio tasmaniensis and V. splendidus 

respectively. FA patterns of these Vibrionaceae strains were dominated by n-14:0, n-

16:0, n-16:1ω7 and n-18:1ω7c (8-40 %), with minor contributions (1-6 %) of n-12:0, 3-

OH-12:0, i-15:0, n-16:1ω11 and i-16:1ω6 acids. The major cellular fatty acids profile of 

these strains was compared with those of other members of the same Vibrio genus 

(Thompson et al., 2003). MUFAs were the most dominance, and PUFAs, such as EPA, 

was only in trace level (1-4 %) and ACL was between 15.2-15.8 (Table 3.4). 
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Table 3.3 Major FAs after whole cell hydrolysis (% of TFAs) in the bacteria associated 
North-sea sponge (Halichondria panicea)  

aAverage chain length (ACL) calculated after (White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids; TFA, total fatty acids; and (–), not detectable. 

Pseudoalteromonas sp. Cobetia sp. 
 Fatty acids 

NSP482 NSP511 NSP513 NSP519 NSP530 NSP541 NSP542 NSP558 NSP681 NSP484 NSP520 

n-10:0 - - - 1.1 - - - - - 2.3 3.1 

n-12:0 0.3 1.2 0.9 2.7 2.2 1.7 1.8 1.1 2.1 4 5.5 

3-OH-12:0  0.6 0.5 6.1 6.7 6.2 3.5 0.4 1.6 0.1 12.6 20.3 

n-13:0 0.5 0.5 0.1 0.3 0.2 0.1 0.2 0.3 0.5 - - 
i-14:0 - - - - - - - - - - - 
n-14:0 1.7 2.2 1.1 1.2 1.1 1.9 1.7 1.5 1.2 1.5 1.7 

n-14:1ω7c 0.6 1.1 - - - - 1.3 - 0.5 - - 
i-15:0 - - - - - - - - - 2.5 1.8 

n-15:1ω6 0.6 0.7 0.8 0.2 0.5 0.6 - 0.4 - - - 

n-15:1ω8 3.7 6.3 8.6 1.6 2.1 6.4 5.1 3.6 6.7 - - 
n-15:0 8.6 12.5 17.1 11.9 16.4 7.5 8.5 7.2 15.5   
n-16:1ω7 39.5 40.5 24.7 41.1 42.5 37.4 46.5 40.2 41.5 15.1 18.5 

n-16:1ω5 0.4 0.1 0.5 0.3 0.1 0.3 0.1 - - - - 
n-16:0 19.8 15.4 22.5 15.8 10.8 16.7 15.3 23.7 15.7 23.4 22.3 

ai-17:1ω7 0.8 - 0.2 - - - 0.5 0.4 0.1 - - 
n-17:1ω8 9.2 6.2 4.7 6.9 6.5 13.1 8.5 8.8 4.2 - - 
n-17:0 6.7 4.6 5.2 1.2 4.1 4.4 2.5 3.1 0.7 13.6 9.6 

n-18:1ω9c - 0.7 0.8 0.5 0.3 0.2 0.2 0.3 0.5 - - 
n-18:1ω7c 4.5 5.5 5.1 6.6 5.8 4.1 6.3 6.5 8.5 19.7 11.5 

n-18:0 0.9 0.3 0.2 0.3 0.3 0.5 0.4 0.2 0.4 0.5 1.7 

cyclo-19:0 - - - - - - - - - 3.6 2.5 

Others 1.6 1.7 1.4 1.6 0.9 1.6 0.7 1.1 1.8 1.2 1.5 

Σ TFA 100 100 100 100 100 100 100 100 100 100 100 

Σ SCFA 39.1 37.2 53.2 41.2 41.3 36.3 30.8 38.7 36.2 61.5 66.7 
Σ BCFA - - - - - - - - - 2.5 1.8 
Σ MUFA 59.3 61.1 45.4 57.2 57.8 62.1 68.5 60.2 62 34.8 30 
ACLa 15.8 15.6 15.4 15.4 15.4 15.6 15.9 15.8 15.6 15.6 14.9 

 

 

Strain NSP481 and NSP683 exhibited the highest homology (99.5-99.6 % 16S rRNA 

gene identity) to type strains Alteromonas stellipolaris and Glaciecola mesophila. Both 

species showed very similar fatty acid profiles, of which the major constituents included 

n-16:1ω7, n-16:0, n-17:1ω8, n-18:1ω9c and/or n-18:1ω7c (7-45 %). Hydroxylated fatty 

acids and alcohol derivatives of the fatty acids n-16:0 and n-16:1ω7c were also present 

as minor components or at trace levels. The fatty acid profiles of these two strains 

clearly resembled those determined for other Alteromonas and Glaciecola species (Van 

Trappen et al., 2004; Yong et al., 2007). The ACLs of these two species were the 

highest (16.0 and 16.1) among the North-sea isolates due to the high content of MUFAs 

(Table 3.4). 
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Table 3.4 Major FAs after whole cell hydrolysis (% of TFAs) in the bacteria associated 
North-sea sponge (Halichondria panicea)  

Shewanella Vibrio Alteromonas Glaciecola Gilvimarinus Arthrobacter Bacillus 
Paenispo- 
rosarcina Cellulophaga Fatty 

acids NSP523 NSP561 NSP560 NSP559 NSP481 NSP683 NSP500 NSP487  NSP483   NSP480  NSP516  

n-10:0 - - 3.1 3.5 1.5 - 3.4 - - - - 
n-12:0 3.7 4.6 - - 3.1 2.7 8.2 - - - - 
3-OH-12:0  1.2 - 7.5 9.2 1.1 - 3.2 - - - - 
i-13:0 15.1 9.5 - - - - - 0.8 - 1.6 - 
n-13:0 1.8 1.2 - - - - - 0.5 - - - 
i-14:0 1.2 - - - - - - - 0.5 4.8 - 
n-14:0 5.5 3.5 11 9.5 2.2 1.5 2 2.3 - - 0.7 
n-14:1ω7c - - - - - - - - - - - 
i-15:0 16.8 10.5 3.5 1.2 - - 4.2 29.5 14.7 37.8 14.4 
ai-15:0 - - - - - - - 46.7 24.6 18.2 1.7 
i-15:1ω10c - - - - - - - - - - 7.5 
n-15:1ω6 - - - 0.5 - - - - - - 2.1 
n-15:1ω8 - - - - 0.8 0.7 - - - - - 
n-15:0 2.7 2.8 - - 3.1 1.6 0.8 3.7 - 1 10.2 
i-16:0 - - - - 2.2 - - 2.6 4.2 6.2 7.5 
i-16:1ω6 - - 1.2 2.7 - - - - - 1.5 0.5 
3-OH-16:0  - - - - - - - - - - 1.5 
3-OH-i-16:0  - - - - - - - - - - 14.5 
n-16:1ω11 - - 2.5 1.4 - - - - 10.5 2.3 - 
n-16:1ω7 19.6 25.6 36.7 30.5 30.5 44.4 22.3 2.7 2.3 10.5 15.6 
n-16:0 17.5 12.8 20.2 29.5 21.5 22.2 21.4 2.5 5.7 1.8 3.2 
i-17:0 1.2 - - - - 1.2 - 1.2 28.8 1.5 0.3 
ai-17:0 - - - - - - - 5.8 3.9 3.6 - 
i-17:1ω9c - - - - - - - - - 2.5 7.1 
ai-17:1ω9c - - - - - - - - - 5.3 0.8 
3-OH-i-17:0  - - - - - - - - - - 11.5 
n-17:1ω8 3.1 5.6 - - 12.5 7.7 - - - - - 
n-17:0 1.2 2.3 - - - 2.2 1.1 0.5  0.6 - 
n-18:1ω9c 2.5 2.1 - - - 14.1 - - - - - 
n-18:1ω7c - 9.5 6.7 8.9 18.3  21.2 - 2.2 - - 
n-18:0 0.3 1.6 0.8 0.5 2.1 0.5 11.2 - 1.5 - - 
n-20:5ω3 5.6 7.5 5.8 1.2 - - - - - - - 
Others 1 0.9 1 1.4 1.1 1.2 1 1.2 1.1 0.8 0.9 
Σ TFA 100 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 33.9 28.8 42.6 52.2 34.6 30.7 51.3 9.5 7.2 3.4 14.1 
Σ BCFA 34.3 20 3.5 1.2 2.2 1.2 4.2 86.6 76.7 73.7 35.4 
Σ MUFA 25.2 42.8 44.6 42.6 62.1 66.9 43.5 2.7 4.5 19.8 33.6 
Σ PUFA 5.6 7.5 5.8 1.2 - - - - - - - 

ACLa 15.2 15.8 15.5 15.2 16 16.1 15.8 15 15.8 15.3 15.7 
aAverage chain length (ACL) calculated after  (White et al., 2005);  Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids; TFA, total 
fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); and (–), not detectable.  
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Table 3.5 Major FAs after whole cell hydrolysis (% of TFAs) in the bacteria associated 
Caribbean marine sponge (Agelas clathrodes) 

Algibacter Labrenzia 
Granulo-
sicoccus 

Psychro-
bacter Rhodococcus Demequina Aerococcus  Fatty acids 

CMS186  CMS163  CMS377  CMS161 CMS166 CMS164 CMS382  CMS378 
3-OH-10:0  - - - 1.8 - - - - 
3-OH-12:0  - - - 2.8 - - - - 
n-12:0 0.6 - 1 2.6 1.5 1.1 - 1.1 
n-13:0 - - 2.5 - 1.5 2.1 - - 
i-14:0 0.4 -  - - - 1.2 - 
n-14:0 1.1 1.1 0.7 - 8.2 6.9 1.6 4.5 
3-OH-14:0   3.2  - - -  - 
i-15:0 16.7 - - - - - 3.5 - 
ai-15:0 6.8 - - - - - 44.2 - 
i-15:1ω10c 14.2 - - 3.8 - - 1.5 - 
ai-15:1 - - - - - - 11.3 - 
n-15:1ω6 12.7 - - - - -  - 
2-OH-i-15:0  - - 0.8 3.3 11.7 15.5  - 
n-15:0 25.3 - - - 8.4 6.7 4.3 3.2 
i-16:0 2.1 - - - - - 5.7  
3-OH-16:0  - 1.6 - - - - - - 
i-16:1ω6 0.8 - - 1.5 - - -  
n-16:1ω9c - - - 1.3 1.4 4.5 - 13.7 
n-16:1ω7 2.3 0.7 29.7 6.5 - - - 5.8 
n-16:0 0.8 2.2 16.7 2.4 26.7 25.5 11.4 19.5 
i-17:0 - - - - - - 0.8 - 
ai-17:0 - - - - - - 12.5 - 
i-17:1ω9c 1.2 - - - - - - - 
ai-17:1ω9c 0.6 - - - - - - - 
3-OH-i-17:0  9.6  1.6 - - - - - 
n-17:1ω6 2.1 - - - - - - - 
n-17:1ω8  - - 11.2 4.5 1.7 - - 
n-17:0 0.7 - 0.6  0.6 - 0.7 - 
n-18:1ω9c 0.6 3.1 3.2 57.8 6.6 6.5 - 16.6 
n-18:1ω7c - 68.7 40.5 - - - - 3.5 
10-OH-18:0  - - - - - - - 0.5 
n-18:0 0.2 5.9 1.6 1.6 3.8  - 3.2 
10-Met-18:0 - - - - 12.4 20.3 - - 
11-Met-18:6t - 3.4 - - - - - - 
n-19:1ω9c - - - 2.5 - - - - 
n-19:0 cyc 9,10 - - - - 7.2 2.8 - 15 
n-20:1ω7c - 8.6 - - - - - 12.5 
n-20:0 - - - - 4.7 5.4 - - 
Others 1.2 1.5 1.1 0.9 0.8 1 1.3 0.9 
Σ TFA 100 100 100 100 100 100 100 100 
Σ SCFA 28.7 14 23.1 11.2 75 70.8 18 47 
Σ BCFA 35.6 - 2.4 3.3 11.7 15.5 67.9 - 
Σ MUFA 34.5 84.5 73.4 84.6 12.5 12.7 12.8 52.1 
ACLa 15.2 17.6 16.6 16.8 16.3 16.2 15.2 17.1 
aAverage chain length (ACL) calculated after (White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  TFA, total fatty acids; and (–), not detectable.  
 

Strains NSP523 and NSP561 exhibited the highest homology (98.7-99.6 % 16S rRNA 

gene identity) to type strains Shewanella pealeana and Sh. piezotolerans respectively. 

The predominant cellular fatty acids of these Shewanellaceae strains were i-13:0, i-15:0, 

n-16:1ω7 and n-16:0 acids (10-20 %), with more or less n-12:0, n-14:0, n-17:1ω8 and n-
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20:5ω3 acids (Table 3.4). The proportion of EPA varied inversely with species of these 

strains as reported previously (Leonardo et al., 1999; Xiao et al., 2007).  

 

Strain NSP500 exhibited the highest homology (95.0 % 16S rRNA gene identity) to the 

type strain Gilvimarinus chinensis. The main cellular fatty acids of species Gilvimarinus 

were n-12:0, n-16:1ω7, n-16:0, n-18:1ω7c and n-18:0 acids (8-22 %), which are similar 

to those of Gilvimarinus species (Du et al., 2009), mainly composed of SCFAs and 

MUFAs, with ACL of 15.8 (Table 3.4). 

 

Strain CMS377 showed the highest similarity (99.1 % 16S rRNA gene identity) with 

Granulosicoccus coccoides. The main cellular fatty acids are n-16:1ω7, n-16:0 and n-

18:1ω7c (17-40 %) (Table 3.5), and with ACL of 16.6, as was described on this genus 

(Kurilenko et al., 2010). 

 

Strain CMS161 homology to Psychrobacter nivimaris (99.8 % 16S rRNA gene identity), 

with predominating fatty acid component of n-18:1ω9c (57.8 %), and less of i-15:1ω10c, 

2-OH-i-15:0, n-16:1ω7 and n-17:1ω8 (4-11 %). This fatty acid profile was similar to 

those of other Psychrobacter species shown previously, although there were differences 

in the proportions of some fatty acids that might have been caused by different 

cultivation conditions (Yoon et al., 2005a; Yoon et al., 2005b). The fatty acids were 

predominated by MUFAs (85 %), with ACL of 16.8 (Table 3.5). 

 

3.4.3.2 Alpha-proteobacteria  

Strains CMS163 showed the highest 16S rRNA gene sequence similarities (99.4 %) to 

the type strain Labrenzia alba, with fatty acid n-18:1ω7c as the main component (68 

%), and minor amount of others, namely 3-OH-14:0, n-16:0, n-18:1ω9c, n-18:0, 11-

methyl-18:6t and n-20:1ω7c acids. Fatty acids dominated by n-18:1ω7c is consistent for 

virtually all members of the Alpha-proteobacteria, a fact usually missed in the majority 

of species descriptions relating to members of this major evolutionary group (Biebl et 

al., 2007). The fatty acids were dominated by MUFAs (85 %), with ACL of 17.6 (Table 

3.5). 
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3.4.3.3 Cytophaga–Flavobacterium–Bacteroides (CFB) bacteria  

Strain NSP516 and CMS186 showed the highest homology (98.7-99.5 % 16S rRNA 

gene identity) to Cellulophaga baltica and Algibacter lectus. The predominant cellular 

fatty acids of strain NSP516 were branched-chain saturated and unsaturated fatty acids 

and straight-chain saturated and monounsaturated fatty acids, namely i-15:0, i-

15:1ω10c, n-15:0, i-16:0, 3-OH-i-16:0, n-16:1ω7c, i-17:1ω7c and 3-OH-i-17:0 acids (7-

16 %) (Table 3.5). The results support the affiliation of the sea water isolates to the 

family Flavobacteriaceae, all members of which are characterised by the predominance 

of fatty acids n-15:0, i-15:0 and 3-OH-i-17:0, whereas The fatty acids i-15:1ω10c, i-

15:0, ai-15:0, n-16:1ω7c, i-17:1ω7c and 3-OH-i-17:0 appear to be the most useful for 

the discrimination of Cellulophaga species from other members of the 

Flavobacteriaceae (Bowman, 2000). The novel isolates contained a high proportion of 

BCFAs (35 %) and MUFAs (35 %), with ACL of 15.2 and 15.7, which is a 

characteristic feature of the family.  

 

3.4.3.4 Gram Positive 

Strain NSP487 showed the highest homology (99.1 % 16S rRNA gene identity) to 

Arthrobacter parietis. The predominant fatty acids were mainly composed of i-15:0 and 

ai-15:0 acids (30-46 %), with less of n-14:0, n-15:0, i-16:0, n-16:1ω7, n-16:0, i-17:0 and 

ai-17:0 (1-5 %), as described on this genus (Heyrman et al., 2005). The fatty acids were 

predominated by BCFAs (87 %), with ACL of 15. 

 

Strain NSP483 showed the highest homology (99.5 % 16S rRNA gene identity) to 

Bacillus stratosphericus, with i-15:0, ai-15:0, n-16:1ω11c, n-16:0 and i-17:0 acids as 

the predominant fatty acids, which supported the strain as a member of the genus 

Bacillus, as reported on similar genus (Shivaji et al., 2006). The fatty acids were mainly 

BCFAs (77 %), with ACL of 15.8. 

 

Strain NSP480 showed the highest homology (99.5 % 16S rRNA gene identity) to 

Paenisporosarcina quisquiliarum, contained the fatty acids ai-15:0, i-15:0, n-16:1ω7c 

alcohol and ai-17:1ω9c as major components (5-38 %), similar to that reported 

previously (Krishnamurthi et al., 2009), although some minor fatty acids were present at 

different levels. This could be attributed to the different cultivation conditions and 

methods used for the analyses. The fatty acids were mainly BCFAs (74 %) and MUFAs 

(20 %), with ACL of 15.3. 
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Strain CMS166 and CMS164 homology (99.4-99.8 % 16S rRNA gene identity) to 

Rhodococcus erythropolis and Rh. maanshanensis respectively. The cellular fatty acid 

profile containing straight-chain saturated, unsaturated and 10-methyl-branched fatty 

acids, and had n-16:0 as the major fatty acid (27 %) and relatively high proportions of 

n-14:0, 2-OH-i-15:0, n-15:0, n-18:1ω9c, 10-Me-18:0, n-19:0 and n-20:0 (5-20 %). 

Branched saturated and hydroxy fatty acids were not detected. This is also similar to the 

composition of other species of Rhodococcus (Yoon et al., 2000), with predominant of 

SCFAs (70-75 %) and considerable of BUFAs and MUFAs, with ACL of 16.2-16.3. 

 

Strain CMS382 exhibited the highest similarity (98.1 % 16S rRNA gene identity) to 

Demequina aurantiaca, contained straight-chain saturated, iso-methyl-branched, and 

anteiso-methyl-branched saturated fatty acids with ante ai-15:0 (4 4 %), ai-15:1 (11 %) 

and n-16:0 (11 %) representing the major fatty acids, and less of i-15:0, i-16:0 and i-

17:0 acids (3-6 %). The fatty acid  profiles were similar to other members of the genus 

Demequina (Yi et al., 2007), mainly with BCFAs (68 %) and considerable of SUFAs 

and MUFAs, with ACL of 15.2. 

 

Strain CMS378 showed the highest similarity (99.6 % 16S rRNA gene identity) to 

Aerococcus viridans. The predominant fatty acids of the Aerococci were as follows: n-

16:1ω9c, n-16:0, n-18:1ω9c, cyco-19:0 and n-20:1ω7 (12-20 %), with smaller amounts 

of n-14:0, n-15:0, n-16:1ω7, n-18:1ω7c and n-18:0 acids (3-6 %). The FA patterns were 

agreeable to those from similar genus described previously (Bosley et al., 1990), only 

constituted by SCFAs and MUFAs, with ACL of  17.1. 

 

Strain CMS223 was identified as Sporosarcina psychrophila. The major fatty acids of 

this isolate were ai-15:0 (65 %), i-15:1ω10c and i-17:1ω9c, being similar to those 

present in recognized species of the genus Sporosarcina (Kwon et al., 2007), with 

mainly BCFAs (76 %) and ACL of 15.1 (Table 3.6). 

 

Strain CMS172 exhibited the highest similarity (98.4 % 16S rRNA gene identity) with 

Paenibacillus pinihumi. The major cellular fatty acids were i-15:0 (14 %), ai-15:0 (50 

%) and i-16:0 (15 %) with less of i-14:0, n-14:0, n-16:1ω7, n-16:0 and i-17:0 acids (2-7 

%). The fatty acid content of strain CMS172 is similar to that of closely related type 
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strains of Paenibacillus (Kim et al., 2009), predominated by BCFAs (89 %) with ACL 

of 15.2 (Table 3.6). 

 

Strain CMS176, CMS178, CMS179, CMS188, CMS190 and CMS197 showed the 

highest similarity (98.6-99.7 % 16S rRNA gene identity) with Brevibacterium 

frigoritolerans, Bacillus hwajinpoensis, Bacillus licheniformis, Halobacillus salinus, 

Oceanobacillus profundus and Micrococcus luteus respectively. The fatty acid profile 

was dominated by branched fatty acids, mainly by ai-15:0 (36-65 %) and less of i-14:0, 

i-15:0, i-16:0, n-16:0 and ai-17:0. The relative proportions of the predominant fatty 

acids shared somewhat similar to their type strains of the genus (Yoon et al., 2003; 

Yoon et al., 2004; Kim et al., 2007b; Kati et al., 2010), mainly by BCFAs (80-97 %), 

with more of less of SCFAs and MUFAs, and ACL of 15.2-15.5 (Table 3.6). 

 

Table 3.6 Major FAs after whole cell hydrolysis (% of total FAs) in Caribbean marine 
sponge associated bacteria 

Micrococcus Sporosarcina Paenibacillus
Oceano-
bacillus Halobacillus

B. 
hwajinpoensis Brevibacterium B.licheniformis Fatty acids 

CMS197  CMS223   CMS172  CMS190 CMS188  CMS178 CMS176  CMS179  

n-10:0 - - 0.9 - - - - - 
n-13:0 - 0.9 - - - - - - 
i-14:0 3.7 3.5 3.5 5.8 8.9 8.7 1.2 12.1 
n-14:0 3.8 1.2 2.1 1.1 - 0.5 - 0.7 
i-15:0 6.5 6.8 13.6 5.9 16.7 4.4 11.5 12.5 
ai-15:0 60.5 65.3 49.5 57.8 35.8 50.2 52.5 28.7 
2-OH-15:0  - - - 0.6 - - - - 
n-15:0 - 0.6 - 0.5 1.6 2.2 2.3 1.8 
i-16:0 3.5 - 15.2 7.2 17 17.9 3.2 13.5 
3-OH-i-16:0  1.3 - - - - - - - 
n-16:1ω11c - 1.9 0.3 0.3 - - - - 
n-16:1ω7 - 2.5 - 0.5 5.5 3 - - 
n-16:0 3.7 1.3 6.5 9.7 1.7 - - 7.8 
i-17:0 3.5 0.2 2.8 0.8 3.5 0.7 1.1 8.5 
ai-17:0 0.9  4.5 8.8 8.6 10.5 27.5 13.2 
i-17:1ω9c 11.5 13.8 - - - 0.7 - - 
n-17:0 -  0.4 - - - - - 
n-18:1ω9c - 0.5 - - - - - - 
n-18:0 - 0.2 - - - - - - 
Others 1.1 1.3 0.7 1 0.7 1.2 0.7 1.2 
Σ TFA 100 100 100 100 100 100 100 100 
Σ SCFA 7.5 4.2 9.9 11.9 3.3 2.7 2.3 10.3 
Σ BCFA 79.9 75.8 89.1 86.3 90.5 92.4 97 88.5 
Σ MUFA 11.5 18.7 0.3 0.8 5.5 3.7 - - 
ACL a 15.2 15.1 15.2 15.2 15.3 15.2 15.5 15.3 

 a Average chain length (ACL) calculated after (White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids; TFA, total fatty acids; and (–), not detectable. 
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3.4.3.5 Phylogenetic resolution of FA patterns 

In this study, all the bacterial cell were obtained from 15 ºC marine broth cultures for 

FAs patterns analysis, and were subjected to principal coordinates analysis (PCO), 

which allowed separation of isolates representing different phyla. For examples, in the 

case of FAs from North-sea sponge-associated bacteria, different groups, such as FAs of 

Gamma-Proteobacteria (I), FAs of CFB group bacteria (II) and FAs of Firmicutes (III) 

(Figure 3.3). The result of the ordination pattern was agreeable to the data clustered by 

using hierarchical UPGMA analysis, which clearly separated the 20 isolated bacteria 

associated with Halichondria panicea (Figure 3.4), and grouped them into the three 

phyla as above. Similarly, the analysis of FAs from bacteria associated with Caribbean 

sponge (Agelas clathrodes) showing that four FA groups were divided: Gamma-

Proteobacteria (I), CFB group bacteria (II), Firmicutes (III) and Alpha-Proteobacteria 

(IV) (Figure 3.5). All 16 bacterial strains associated with Agelas clathrodes were 

hierarchically separated into four phyla analyzed by UPGMA (Figure 3.6).  

 

PCO analysis on FA composition of all 38 strains from Agelas clathrodes and 

Halichondria panacea associated bacteria exhibited the separation by 4 groups: 

Gamma-Proteobacteria (I), CFB Group bacteria (II), Firmicutes (III) and Alpha-

Proteobacteria (IV) (Figure 3.7), although, the Bray Curtis distance of each bacterial 

FA changed due to larger data set analysis. However, all these FA compositions were 

hierarchically separated into four phyla analyzed by UPGMA (Figure 3.8), as presented 

above (Figures 3.4 and 3.6). Both the distribution and the percentage contribution of 

each fatty acid to the total fatty acid across taxa at species level were plotted shown in 

Figure 3.9. The trends and relationships of fatty acid composition of each species within 

Gamma-Proteobacteria, CFB Group, Gram+ (Firmicutes) and Alpha-Proteobacteria 

respectively could be presented using this method. Within Gamma-Proteobacteria (I), 

wide distribution of fatty acid composition was observed, ranging from short-chain FAs 

(e.g. n-12:0 12:0 3-OH and n-14:0); middle-chain FAs (e.g. n-16:1ω9, n-16:1ω7, n-

17:1ω8, n-17:0, n-18:1ω9c and n-18:1ω7c), to long-chain FAs (n-20:5ω3), in which 

EPA was found only in this group. For CFB Group bacteria (II), the predominant fatty 

acids are middle-chain FAs (e.g. i-15:0, i-15:1ω10c, n-15:1ω6, n-15:0, i-16:0 3-OH, n-

16:1ω7, i-17:1ω9c and i-17:0 3-OH), in which most of the branched-chain FAs were 

analyzed. Similar to CFB Group bacteria, Gram+ bacteria (Firmicutes) (III) mainly 

contained branched-chain FAs (e.g. i-14:0, i-15:0, ai-15:0, i-16:0, n-16:1ω11, n-16:1ω7, 
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n-16:0, i-17:0, ai-17:0 and i-17:1ω9c), and dominated by i-15:0 and ai-15:0. The fatty 

acids of Alpha-Proteobacteria (IV) were dominated by middle-chain FAs, such as n-

16:1ω7, n-16:0, n-18:1ω7c, and contained less of long-chain FA (n-20:1ω7). Thus, n-

16:1ω7 and n-16:0 of Gamma-Proteobacteria, i-15:0 and n-15:0 of CFB Group, i-15:0 

and ai-15:0 of Gram+ (Firmicutes), and n-18:1ω7c of Alpha-Proteobacteria, may be 

chose as fatty acid markers in each group respectively. 

 

 

 
Figure 3.3 Principal coordinates analyses (PCO) of major FA abundance data from 
bacteria associated with North-sea sponge	 (Halichondria panicea) from Tables 3.3-3.4 
measuring Bray Curtis distance. Numbers indicate bacterial strains (see Figure 3.4).  

 

 
Figure 3.4 Similarity analysis based on whole cell fatty acid composition from bacterial 
species associated with North-sea sponge (Halichondria panicea). The phylogenetic 
tree was constructed by unweighted pair group average method (UPGAM) clustering 
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method using the programs of MVSP package. Numbers indicated in the figure are the 
same as in Figure 3.3 and nearest type strains were indicated beside the isolates. 

 

 

Figure 3.5 Principal coordinates analyses (PCO) of major species FA abundance data 
from bacteria associated with Caribbean marine sponge	 (Agelas clathrodes) from Tables 
3.5-3.6 measuring Bray Curtis distance. Numbers indicate bacterial strains (see Figure 
3.6) 

 

 

Figure 3.6 Similarity analysis based on whole cell fatty acid composition from bacterial 
species associated with Caribbean marine sponge (Agelas clathrodes). The phylogenetic 
tree was constructed by unweighted pair group average method (UPGAM) clustering 
method using the programs of MVSP package. Numbers indicated in the figure are the 
same as in Figure 3.5 and nearest type strains were indicated beside the isolates. 
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Figure 3.7 Principal coordinates analyses (PCO) of major species FA abundance data 
from bacteria associated with North-sea sponge (Halichondria panicea) and Caribbean 
marine sponge (Agelas clathrodes) from Tables 3.3-3.6 measuring Bray Curtis distance. 
Numbers indicate bacterial strains (see Figure 3.8) 

 
Figure 3.8 Similarity analysis based on whole cell fatty acid composition from bacterial 
species associated with North-sea sponge (Halichondria panicea) and Caribbean marine 
sponge (Agelas clathrodes). The phylogenetic tree was constructed by unweighted pair 
group average method (UPGAM) clustering method using the programs of MVSP 
package. Numbers indicated in the figure are the same as in Figure 3.7 and nearest type 
strains were indicated beside the isolates. 
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Figure 3.9 Box plots representing the distribution and variability in the percentage 
contribution of each fatty acid to the total fatty acids within Gamma-Proteobacteria, 
CFB Group, Gram+ (Firmicutes) and Alpha-Proteobacteria. Groupings are as indicated 
in Figures 3.7 and 3.8. The triangles represent the presence of each fatty acid (Axis X) 
from different species analyzed, with percentage of TFA indicated by Axis Y.  
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3.5 Discussion 

3.5.1 Phylogenetic diversity of sponge associated bacterial isolates 

Sponges (phylum Porifera) are excellent models for the study of marine host-associated 

bacteria. For understanding the community and diversity of sponge-associated 

microorganisms, electron microscopic techniques were used to obtain morphological 

data (Manz et al., 2000; Usher et al., 2001); standard isolation and cultivation methods 

were employed to identified some sponge bacteria (Burja et al., 1999); due to the 

sponge-associated microorganisms are not easily cultivated and isolated (Lopez et al., 

1999), culture-independent  technique, such as 16S rRNA gene-Denaturing gradient gel 

electrophoresis (DGGE) fingerprinting has been used to monitor changes in a sponge-

associated microbial community over time (Friedrich et al., 1999; Taylor et al., 2004) 

and transplantation (Thoms et al., 2003).  

 

Phylogenetic diversity of North-sea marine sponge (Halichondria panicea) associated 

bacteria showed the abundant presence of Gamma-Proteobacteria, in accordance with 

the early culture-based studies of marine microbiology, approximately 95 % of bacterial 

isolates were found to be Gram negative (ZoBell, 1946). However, high proportion of 

gram-positive bacteria found in Caribbean marine sponge (Agelas clathrodes) as it has 

recently been underestimated (Jensen and W., 1994). Biochemical characterization of 

culturable sponge-associated microorganisms from Ceratoporella nicholsoni revealed 

that at least 78 % of these bacteria were members of the Gamma-Proteobacteria genera 

Vibrio and Aeromonas (Santavy et al., 1990). However, evidence for uniformity in 

sponge microbial communities between different oceans and host species were also 

presented by choosing sponges Aplysina aerophoba and Theonella swinhoei for 

construction of the bacterial 16S rRNA gene library (Hentschel et al., 2002). Therefore, 

the structure of microbial communities from the same sponge species or two different 

sponge species may be varies according to different analysis techniques employed.   

 

Deep-sea microorganism, such as Shewanella piezotolerans, used to be identified as 

psychropiezophiles model strain (Xiao et al., 2007; Wang et al., 2008). Interestingly, 

similar species, such as strain NSP561 was isolated from North-sea sponge, and with 

the ability of EPA production under the atmospheric conditions. Furthermore, most of 

the nearest type strains of these sponge-associated bacteria were most marine origin, 

such as from sea water or marine algae. 
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3.5.2 Phylogenetic resolution of FA patterns 

Fatty acids are one of the most important building blocks of cellular materials. In 

bacterial cells, fatty acids occur mainly in the cell membranes as the acyl constituents of 

phospholipid (Goldfine, 1984). It has become practical to use gas chromatography of 

whole cell fatty acid methyl esters to identify a wide range of organisms (Henis et al., 

1966; Larsson et al., 1978; Athalye et al., 1985; Freese et al., 2008). In this study, the 

fatty acid composition of North-sea and tropical Caribbean sponge associated bacteria 

was demonstrated by employing multivariate data analyses methods, such as principal 

coordinates analysis (PCO), which has been used for analyzing the patterns of fatty-acid 

variables (Freese et al., 2008). The studies indicated that a taxonomic resolution on the 

basis of complete FA patterns is possible, as the cultivation conditions for all the 

bacteria cultures were consistent. When isolates belonging to different phyla were not 

sometimes dominated by the same FAs, or different isolates belonging to different phyla 

were sometimes dominated by the same major fatty acids, and unsuccessfully separation 

may be happened (Freese et al., 2008), as fatty acid compositions will be variable 

according to their culture conditions (e.g. temperature and medium) (Yumoto et al., 

2004). For example, Granulosicoccus sp. CMS377 affiliated with the Firmicutes 

phylum based on phylogenetic analysis of 16S rRNA gene sequences, but it was 

clustered into Alpha-proteobacteria based on fatty acid composition. Whereas, 

Psychrobacter sp. CMS161 and Aerococcus sp. CMS378 belonged to the Firmicutes 

phylum were similar to Gamma-Proteobacteria based on fatty acid composition. 

 

Most of Gram Positives including genus Bacillus in this study with branched-chain fatty 

acids as major constituents, especially ai-15:0, i-15:0, ai-17:0, i-17:0 and i-16:0. This 

branched-chain fatty acid family occurring in bacteria is very significant (Kaneda, 1977; 

Lechevalier, 1977), membranes with this family is controlled mainly by 12-

methyltetradecanoic acid (anteiso-15:0) and 13-methyltetradecanoic acid (iso-15:0) and 

subsequently their membrane fluidity is modified (Kaneda, 1991). For example, fatty 

acids of strains Vibrio sp. NSP559 and Shewanellas sp. NSP561 were partly controlled 

by i-15:0, while most of the genus Bacillus (e.g. strains NSP483, CMS197, CMS188, 

CMS178 and CMS172) and CFB Group bacteria (e.g. strains NSP487, NSP516 and 

CMS186) were mainly manipulated by ai-15:0 and i-15:0. However, no branched-chain 

fatty acids were detected from Alpha-proteobacteria (strain CMS163) and all the 

Pseudoalteromonas strains. Most of these Alpha-, Gamma-Proteobactria and CFB  
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Group bacteria, contained considerable amount of MUFAs or PUFAs, which may be 

required for their growth and membrane viscosity manipulation. The change of the 

degree of PUFAs may result in the modification of membrane fluidity by altering the 

lipid composition of the membrane (Melchiodr, 1982; Russell, 1990).  

 

3.6 Conclusions 

In conclusion, the function and physiology of sponge-associated microbes are 

increasingly important research topics, reflecting our current paucity of knowledge 

about many of the microbial associates of sponges. In this study, bacterial symbionts in 

sponges were isolated as pure cultures and phylogenetically identified on the basis of 

16S rRNA gene sequences and complete FA patterns, both of which successfully 

separated different bacterial genus/species hierarchically for bacterial community 

structure study. Furthermore, North-sea sponge associated bacteria was found with 

dominant of Gamma-Proteobacteria, containing EPA producing bacteria, whereas 

Caribbean sponge associated bacteria was mainly Gram positives, with no PUFAs 

producing bacteria was found. The variance might be due to geographic temperatures 

and difference of phytoplankton hosts, as well as the metabolism difference between 

Gram Negatives and Gram Positives. It will be interesting to examine how the sponge 

associated bacteria cooperate with their host during their metabolism for PUFAs 

production and/or by investigating their PUFA biosynthesis pathway, which so far 

remains a black box, should also be aided by our ongoing experiments including 

genomic analysis. Models of sponge-associated bacterial structure and a better 

understanding of their fatty acid compositions will help us better predict the 

biogeographic variability of bacterial communities among different sponges from 

different latitudes, due to which certain marine food web/chain characterizations may be 

speculated. 
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4 Chapter 4. Marine algae and algae associated bacteria from 
the North Sea as sources of omega-3 fatty acids 
 

4.1 Abstract  

Macro/micro algae provide valuable nutrients due to the high content of omega-3 fatty 

acids, such as eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 

22:6ω3), therefore bacteria associated with their surface might also be a good source for 

obtaining omega-3 fatty acids. We collected different macro algal samples and cultured 

micro algae isolated from North Sea. These algal samples were identified as brown 

algae (Ascophyllum nodosum, Egregia menziesii and Fucus serratus), green algae 

(Codium fragile), red algae (Palmaria palmata), green micro algae (Tetraselmis sp.) 

and diatoms (Phaeodactylum tricomutum and Bacillariophyta) based on 18S rRNA 

gene sequence analysis. Fatty acids analysis showed that these algal samples are most 

with high content of EPA (10-43 % of total fatty acids), and only some macro algae are 

with trace level of DHA. Bacterial communities associated with micro algae and macro 

algae were phylogenetically identified respectively based on 16S rRNA gene sequences, 

indicating that the abundance of Gamma-Proteobacteria (90 %). Macro algae 

associated bacteria responsible for EPA or DHA production were mainly members of 

genera Vibrio and Colwellia, whereas genera Vibrio, Photobacterium and Shewanella 

were presented in the micro algal culture as bacterial EPA producers. Principal 

coordinates analysis (PCO) on the algal and bacterial whole cell fatty acid 

compositions, indicating that taxonomic resolution on the basis of complete FA patterns 

is possible.  

 

4.2 Introduction 

Polyunsaturated fatty acids (PUFAs), in particular omega-3 fatty acids such as 

eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3), have 

received much attention for their remarkably wide range of physiological (Fontani et al., 

2005) and clinical effects (Siddiqui et al., 2004; MacLean et al., 2006). For instance, 

DHA is essential for the proper visual and neurological development of infants because 

of its roles as structural lipid component (Nettleton, 1993), while EPA plays a role in 

cardiovascular health, can reduce inflammation and may have a role in mental disorders 

(Kelly, 1991). Currently, the main sources of dietary EPA and DHA are marine fish. 
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However, the fish population of some commercially targeted species is declining and 

extracted products from fish oil may have an undesirable fishy odour and is expensive 

(Arts et al., 2001; Garcia and Rosenberg, 2010). All these factors have led to an interest 

in alternative sources of EPA and DHA. These sources include fungi, marine algae, 

diatoms, and some bacteria. 

 

Seaweeds are of ecological importance in their role as one of the primary producers in 

the marine food chain. They provide a good source of bioactive compounds such as 

carotenoids, dietary fibre, protein, essential fatty acids, vitamins and minerals (Faulkner, 

1984; Faulkner, 1986). 60 % of these metabolites are reported to be terpenes, 20 % are 

fatty acids and 10 % are mixed biosynthesis (Van Alstyne and Paul, 1988). Extracts 

from edible/common marine algae, such as Undaria pinnatifida, Laminaria and 

Sargassum species were found to have potential antitumor promoting properties 

(Ohigashi et al., 1992). However, there may be problems with heavy metal 

contamination in seaweeds due to the natural environment or industrial discharges 

(Giusti, 2001; Caliceti et al., 2002). Thus, new generation technologies in the area of 

seaweed cultivation and utilization may be developed by using in vitro cell culture 

technology (Reddy et al., 2008). Nevertheless, seaweed associated microbes may be an 

alternative source for obtaining similar bioactive compounds. 

 

Marine microalgae have several advantages over conventional (energy) crops for 

converting carbon dioxide into biofuel. They are the primary producers of omega-3 

PUFAs and fish usually obtain EPA via bioaccumulation in the food chain. Much effort 

has been devoted to developing a commercially feasible technology to produce EPA 

directly form microalgae based on photoautotrophic growth (Sa´nchez Miro´n et al., 

2002; Molina Grima et al., 2003). Unfortunately, photoautotrophic growth is often 

limited by insufficiency of light caused by mutual shading of cells (Chen, 1996). 

Consequently, the EPA yield and productivity of photosynthetic systems are low 

(Barclay et al., 1994). Therefore, microbial heterotrophic growth process, such as 

bacteria, is desirable for enhancing EPA production. 

 

Microbes adapt to their habitat, react to external pressure and, in turn, interact with 

biogeochemical cycles of carbon and nutrients, especially in aquatic environments 

(Azam and Worden, 2004). Some of the metabolites produced by marine bacteria can be 

used for drug development, especially those bacteria associated with living surfaces are 
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rich sources of bioactive metabolites (Fenical, 1993; Grossart et al., 2004). For example, 

bacteria living in complex associations with animals are often proposed to be the real 

producers of ‘invertebrate’ metabolites (Proksch et al., 2002). Marine epibiotic bacteria 

growing on the surface of seaweeds and other invertebrates live in a highly competitive 

environment where space and access to nutrients are limited. Bioactive compound 

production in these bacteria could be attributed to the competition among them for 

space and nutrition (Burgess et al., 1999). Studies have been focused on the 

antibacterial activity of the seaweed associated bacteria (Lemos et al., 1986; Steinberg 

and de Nys, 2002; Bull, 2004; Kanagasabhapathy et al., 2006; Rungprom et al., 2008), 

algal toxins production from microalgae associated bacteria (Crocia et al., 2006), or 

toxicity modulation between bacteria and diatoms (Bates et al., 2004). However, the 

comparison on fatty acid compositions between algae and their associated bacteria has 

not been investigated. 

 

In the present investigation, we collected algal samples (including seaweeds, micro 

algae and diatoms) from the coast of North Sea and cultured micro algae indoors and 

outdoors in the laboratory. Phylogenetic taxonomy study was conducted on these 

marine planktons and their associated bacteria, on the basis of 16S rRNA or 18S rRNA 

gene sequences. The analysis of algal and bacterial community structure based on 

complete FA patterns was also conducted. 

 

4.3 Materials and Methods 

4.3.1 Sample collection  

The macro algae (seaweed) Ascophyllum nodosum (SW1), Palmaria palmata (SW2), 

Fucus serratus (SW3), Egregia menziesii (SW4), Codium fragile (SW5) and micro 

algae (green micro algae and diatoms) were collected at low tide in the coastal area off 

the Dove Marine Laboratory, Cullercoats, North Sea (54°54'25"N, 1°21'35"W). 

Collected seaweed samples (100 g) were transferred in zip-lock bags on ice. Portions of 

these specimens were thoroughly washed three times with autoclaved seawater passed 

through a 0.2 µm-pore-size filter to remove loosely attached bacteria. Bacterial samples 

were taken from the surface seaweeds with a sterile cotton swab. Once the sample had 

been taken, the macro-algal surface was rinsed again with AFSW, dried with sterile 

paper, and stored in a sterile flask.  

 

 136



Chapter 4. Marine algae and algae associated bacteria as sources of omega-3 fatty acids 

Collected sea water contained micro algae/diatoms were cultured in sea water 

supplemented with F/2 solution (Sigma). The algae were subjected to purification by 

serial dilution followed by plating. The microscopic observations of the isolated algae 

revealed its colonial existence. The individual colonies were isolated and inoculated into 

F/2 medium and incubated at 15 ± 1 ºC under natural light-night period in the UK, for 

biomass accumulation. The purity of the culture was ensured by repeated plating and by 

regular observation under microscope. The stock culture was maintained on F/2 

medium. Bacterial colonies were isolated during purification of the micro algae culture 

on the agar plates. 

 

4.3.2 Isolation of macro/micro algae associated bacteria 

A sterile swab was used to rub the seaweed surface and inoculating the removed 

bacteria on marine agar plates (Difco). The inoculated plates were incubated for 3 days 

at 15 °C until colonies were observed. Bacterial colonies were isolated during 

purification of the micro algae culture on the agar plates. Colonies with different 

morphologies on this medium were selected and purified through the third generation. 

Gram stain was used for initial bacterium classification; after staining the bacteria were 

stored in glycerol broth 15 % v/v (-80°C). Altogether 74 isolates were obtained from the 

surfaces of a range of marine seaweed and micro algae. All obtained isolates were 

further scored for fatty acids production. 

 

4.3.3 Strain growth as methods mentioned in Chapter 3 

 

4.3.4 Fatty acid analysis as methods mentioned in Chapter 2 

 

4.3.5 Preparation of genomic DNA and 18S/16S rRNA gene analysis 

Algal genomic DNA was extracted from the strains using the PureLink™ Genomic 

Plant DNA Purification Kit (Invitrogen Ltd, Paisley, U.K) and used as templates for 

PCR amplification of the 18S rRNA gene fragments based on the published methods 

(Goff and Coleman, 1988). Gene fragments sequencing and phylogenetic analysis were 

conducted as methods mentioned in Chapter 2. The nucleotide sequences of 18S/16S 

rRNA gene have been deposited in EMBL under the accession numbers: FR744744, 

FR744750 and FR744763 (micro algae); FR744764- FR744768 (macro algae); 
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FR744822- FR744859 (macro algae associated bacteria) and FR744860- FR744896 

(micro algae associated bacteria). 

 

4.3.6 Multivariate analyses as methods mentioned in Chapter 2 

Relative abundances of major FAs after whole cell hydrolysis (Tables 4.3–4.7) were 

used for statistical analysis as methods mentioned in Chapter 2. 

 

4.4 Results 

4.4.1 Phylogenetic groups and identification of the macro/micro algal strains 

Based on 18S rRNA gene sequence analysis, 7 algal strains were divided into five 

different groups: brown algae (Ascophyllum nodosum, Egregia menziesii and Fucus 

serratus), green algae (Codium fragile), red algae (Palmaria palmata), green micro 

algae (Tetrselmis) and diatoms (Phaeodactylum tricomutum and Bacillariophyta) 

(Figure 4.1), which was consistent with the studies by morphology or microscopy. 

Phylogenetically, macro algae Palmaria palmate SW2 and Codium platylobium SW5 

were closer to those microalgal species, such as Tetraselmis sp. M1. 

 

Figure 4.1 Neighbour-joining distance tree based on the nearly complete and aligned 
18S rRNA gene sequences of 5 macro algae and 3 micro algae in this study and their 
nearest strains in the database. The phylogenetic tree was constructed by neighbour-
joining method using the programs of MEGA package. 1000 trials of bootstrap analysis 
were used to provide confident estimates for phylogenetic tree topologies. Bars: 0.1 
nucleotides substitution per site. 
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4.4.2 Phylogenetic groups and identification of the macro algae associated bacteria 

From the five species of marine macro algae collected, a total of 37 morphologically 

distinct heterotrophic associated bacterial colonies were isolated and identified on the 

base of 16S rRNA gene sequence analysis. Of these strains, most of the epibiotic 

bacteria were non-pigmented, 24 % (9 strains) were isolated from Ascophyllum 

nodosum (SW1), 27 % (10) from Palmaria palmata (SW2), 19 % (7) from Fucus 

serratus (SW3), 14 % (5) from Egregia menziesii (SW4) and 16 % (6) from Codium 

fragile (SW5) (Table 4.1).  

 

NCBI nucleotide BLAST searches using the partial 16S rRNA gene sequences of these 

37 strains revealed that Gamma-Proteobacteria was the most abundant division of the 

bacterial populations (83.5 %), followed by CFB group bacteria (13.5 %) and high GC 

Gram positive (3 %). Gamma-Proteobacteria was phylogenetic affiliation with 6 

members of the Vibrionaceae, Pseudoalteromonadaceae, Oceanospirillaceae, 

Halomonadaceae, Alteromonadaceae and Colwelliaceae, including 17 taxonomic units 

of Vibrio lentus, V. splendidus, V. tasmaniensis, V. splendidus, V. kanaloae, Aliivibrio 

fischeri, Pseudoalteromonas elyakovii, Ps. nigrifaciens, Marinomonas balearica, M. 

ushuaiensis, M. arenicola, Cobetia marina, C. crustatorum, Amphritea balenae, 

Glaciecola psychrophila, G. mesophila and Colwellia psychrerythraea. CFB group 

bacteria contained 3 taxonomic units of Polaribacter butkevichii, Flavobacterium fluvii 

and Cellulophaga fucicola. And only one strain identified as Gordonia terrae belonged 

to Gram positive (Figure 4.2).  
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Table 4.1 List of bacterial strains associated with macro algae 

 

Phylogenetic group 
(family) 

Representati
ve isolates 

No. of 
strains 

Nearest type in the GenBank (accession nomber) 
 

Similarit
y (%) 

Source of nearest 
type strain 

 
Gamma-
Proteobacteria 

 
 

  
 

SW1-5 1 Vibrio lentus 4OM4T (AJ278881)   99.5 Mediterranean 
oysters 

SW2-5 1 Vibrio lentus 4OM4T (AJ278881)  99.4 Mediterranean 
oysters 

SW3-2 1 Vibrio splendidus ATCC 33125T (X74724)  99.4 ATCC Collection 
SW3-5   1 Vibrio tasmaniensis LMG 21574T (AJ514912)  99.5 Atlantic salmon 
SW2-3C1 1 Vibrio  splendidus ATCC 33125T (X74724)  99.5 ATCC Collection 
SW2-3C2 1 Vibrio  splendidus ATCC 33125T (X74724)  99.6 ATCC Collection 
SW3-8   1 Vibrio splendidus ATCC 33125T (X74724)  99.5 ATCC Collection 
SW5-2   1 Vibrio kanaloae LMG 20539T (AJ316193)  99.3 LMG  Collection 

Vibrionaceae 

SW5-1  1 Aliivibrio fischeri ATCC 7744T (X74702)  99.8 ATCC Collection 
Pseudoalteromona
daceae 

SW1-9 1 Pseudoalteromonas elyakovii KMM 162T 
(AF082562)  

99.9 Laminaria japonica 

 
SW2-3D;  
SW4-8   

2 Pseudoalteromonas nigrifaciens NCIMB 8614T 
(X82146)  

99.9 ATCC Collection 

 
SW4-2 1 Pseudoalteromonas elyakovii KMM 162T 

(AF082562)  
99.7 Laminaria japonica 

 
SW4-3 1 Pseudoalteromonas espejiana NCIMB 2127T 

(X82143)  
99.4 ATCC Collection 

 
SW4-4 1 Pseudoalteromonas espejiana NCIMB 2127T 

(X82143)  
98.1 ATCC Collection 

 
SW5-6 1 Pseudoalteromonas espejiana NCIMB 2127T 

(X82143)  
99.2 ATCC Collection 

Oceanospirillaceae 
SW1-3 1 Marinomonas balearica IVIA-Po-185T 

(EU188441)  
98.7 Seagrass 

 SW1-7   1 Marinomonas ushuaiensis U1T (AJ627909)  97.3 Coastal sea water 
 SW3-1 1 Marinomonas arenicola KMM 3893T (AB467281)   99.5 Marine sediment 
 SW3-3 1 Marinomonas arenicola KMM 3893T (AB467281)  99.3 Marine sediment 

 
SW3-7; 
SW5-4 

2 Marinomonas arenicola KMM 3893T (AB467281)  99.7 Marine sediment 

 SW2-3B   1 Amphritea balenae JAMM 1525T (AB330883)  98.4 Marine sediment 
Halomonadaceae SW1-1 1 Cobetia marina DSM 4741T (AJ306890)  99.4 Culture collections 
 SW1-8   1 Cobetia marina DSM 4741T (AJ306890)   99.4 Culture collections 
 SW3-9 1 Cobetia crustatorum JO1T (EU909460)  99.8 Fermented seafood 
 SW4-5   1 Cobetia crustatorum JO1T (EU909460)  99.4 Fermented seafood 
Alteromonadaceae SW1-13 1 Glaciecola psychrophila 170T (DQ007436)   97.3 Arctic 
 SW5-3 1 Glaciecola mesophila KMM 241T (AJ488501)  99.5 Marine water 

Colwelliaceae 
SW2-3A 1 Colwellia psychrerythraea 34H (CP000083)  97.7 Arctic marine 

sediments 

 
SW2-3E   1 Colwellia psychrerythraea 34H (CP000083)  98.9 Arctic marine 

sediments 
CFB group 
bacteria 

     

Flavobacteriaceae SW2-4   1 Polaribacter butkevichii KMM 3938T (AY189722)  99.0 N/A 
 SW2-7 1 Polaribacter butkevichii KMM 3938T (AY189722)   98.1 N/A 

 
SW1-18; 
SW2-1 

2 Flavobacterium fluvii H7T (EU109724)   96.8 Stream sediment 

 SW5-7 1 Cellulophaga fucicola NN015860T (AJ005973)  99.6 Fucus serratus 
High GC Gram+      
Gordoniaceae SW1-11   1 Gordonia terrae DSM 43249T (X79286)  96.6 N/A 
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Figure 4.2 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of 37 macro algae associated bacteria in this study and their 
nearest type strains. The phylogenetic tree was constructed by neighbour-joining 
method using the programs of MEGA package. 1000 trials of bootstrap analysis were 
used to provide confident estimates for phylogenetic tree topologies. Bars: 0.05 
nucleotides substitution per site. 
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4.4.3 Phylogenetic groups and identification of the microalgae associated bacteria 

From the three species of marine micro algal sea water cultures, 37 bacterial strains 

were isolated and identified on the base of 16S rRNA gene sequence analysis. Of these 

strains, 62 % (23 strains) were isolated from Tetraselmis sp. (strain M1), 22 % (8) from 

Amphora Montana (strain A2) and 16 % (6) from Phaeodactylum tricornutum (strain 

M7) (Table 4.2).  

 

NCBI nucleotide BLAST searches using the partial 16S rRNA gene sequences of these 

37 strains revealed that Gamma-Proteobacteria was the most abundant division of the 

bacterial populations (91 %), followed by Gram positive (4 %), Alpha-Proteobacteria 

(2 %) and CFB group bacteria (2 %). Gamma-Proteobacteria was phylogenetic 

affiliation with 8 members of the Pseudoalteromonadaceae, Vibrionaceae, 

Shewanellaceae, Pseudomonadaceae, Oceanospirillaceae, Alteromonadaceae, 

Halomonadaceae and Rhodobacteraceae, including 22 taxonomic units of 

Pseudoalteromonas elyakovii, P. undina, P. elyakovii, P. tetraodonis, P. atlantica, 

Vibrio gigantis, V. fortis, Photobacterium profundum, Ph. frigidiphilum, Shewanella 

algae, S. pacifica, S. gaetbuli, S. japonica, S. abyssi, S. colwelliana, Flavimonas 

oryzihabitans, Pseudomonas poae, Amphritea atlantica, A. japonica, A. balenae, 

Cobetia marina and Sulfitobacter pontiacus. Gram positive group contained 2 

taxonomic units of Arthrobacter agilis and Bacillus simplex. One strain identified as 

Sulfitobacter pontiacus affiliated with Alpha-Proteobacteria and one strain identified as 

Lacinutrix mariniflava belonged to CFB group bacteria (Figure 4.3).  
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Table 4.2 List of bacterial strains associated with marine microalgae 

Phylogenetic group 
(family) 

Representative 
isolates 

No. 
of 
strain
s 

Nearest type strain in the GenBank (accession 
number) 
 

Similarit
y (%) 

Source of nearest 
type strain 
 

Gamma-
Proteobacteria 

 
 

  
 

Pseudoalteromonad
aceae 

A2B1 1 Pseudoalteromonas elyakovii KMM 162T 
(AF082562)  

99.9 Laminaria japonica 

 
A2B10  1 Pseudoalteromonas elyakovii KMM 162T 

(AF082562) 
99.6 Laminaria japonica 

 
A2B8  1 Pseudoalteromonas undina NCIMB 2128T 

(X82140) 
99.6 Sea water 

 
MA63 1 Pseudoalteromonas tetraodonis IAM 14160T 

(AF214730) 
99.8 Sea water 

 
MA64 1 Pseudoalteromonas atlantica IAM 12927T 

(X82134) 
99.7 Deep sea 

Vibrionaceae 
A2B2  1 Vibrio gigantis CAIM 25T (EF094888) 99.5 Biocorrosion 

phenomena 
 A2B5  1 Vibrio fortis LMG 21557T (AJ514916) 99.8 Aquatic animals 
 MA66 1 Photobacterium profundum DSJ4T (D21226) 97.7 Coastal water 

 
MA665 1 Photobacterium frigidiphilum SL13T 

(AY538749) 
99.2 Deep-sea sediments 

Shewanellaceae 
MA667 1 Shewanella algae ATCC 51192T (AF005249) 99.8 Gut microflora of 

abalone 

 
MA321; MA325; 
MA357 

3 Shewanella pacifica KMM 3597T 
(AF500075) 

98.8-
99.3 

Sea water 

 MA322 1 Shewanella gaetbuli TF-27T (AY190533) 97.1 Tidal flat 

 
MA323  1 Shewanella japonica KMM 3299T 

(AF145921) 
99.4 Sea water 

 MA327 1 Shewanella abyssi c941T (AB201475)  99.9 Deep-sea sediment 

 
MA342  1 Shewanella colwelliana ATCC 39565T 

(AY653177) 
99.8 ATCC 

Pseudomonadaceae 
A2B3 1 Flavimonas oryzihabitans IAM 1568T 

(D84004) 
98.3 Rice Paddy 

 
A2B7 1 Pseudomonas poae DSM 14936T (AJ492829) 98.9 Phyllosphere of 

grasses 

Oceanospirillaceae 
MA68; MA326 2 Amphritea atlantica M41T (AM156910) 99.1-

99.8 
Deep sea 
hydrothermal vent 

 
MA324 ; MA328 2 Amphritea japonica JAMM 1866T 

(AB330881) 
99.2-
99.9 

Deep-sea sediment 

Alteromonadaceae 

MA58; MA320; 
MA458; MA462; 
MA463; MA466;  
MA467; MA468;  
MA471 

9 Amphritea balenae JAMM 1525T 
(AB330883) 

98.3-
99.5 

Maine sediments 

Halomonadaceae MA669 1 Cobetia marina DSM 4741T (AJ306890) 99.2 Sea water 
Alpha- 
Proteobacteria 

     

Rhodobacteraceae 
MA69 1 Sulfitobacter pontiacus DSM 10014T 

(Y13155) 
99.7 Marine 

High GC Gram+      
Micrococcaceae MA319 1 Arthrobacter agilis DSM 20550T (X80748) 99.2 Filtration substrate 
Firmicutes      
Bacillaceae A2B4  1 Bacillus simplex NBRC 15720T (AB363738) 97.1 N/A 
CFB group bacteria      

Flavobacteriaceae 
MA343 1 Lacinutrix mariniflava AKS432T 

(DQ167239) 
99.6 Marine algae 
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Figure 4.3 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of 37 micro algae associated bacteria in this study and their 
nearest type strains. The phylogenetic tree was constructed by neighbour-joining method 
using the programs of MEGA package. 1000 trials of bootstrap analysis were used to provide 
confident estimates for phylogenetic tree topologies. Bars: 0.05 nucleotides substitution per site.
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4.4.4 Fatty acid composition of seaweeds and their associated bacteria 

4.4.4.1 Fatty acid composition of seaweeds and micro algal cultures 
Seaweed samples SW1, SW2, SW3, SW4 and SW5 were identified as Ascophyllum 

nodosum, Palmaria palmate, Fucus serratus, Egregia menziesii and Codium fragile 

respectively based on morphology study and partial 18S rRNA gene sequences analysis. 

The fatty acid profiles of these seaweed isolates were mainly n-14:0, n-16:0, n-18:1ω9c, 

n-18:2ω6t and n-20:5ω3 acids (10-43 % in TFAs), with minor contributions of n-13:0, 

n-18:3ω3, n-18:4ω3 and n-22:6ω3 acids (Table 4.3).  

 

Table 4.3 Major FAs after whole cell hydrolysis (% of TFAs) in algal strains 

Ascophyllum 
nodosum 

Palmaria 
Fucus 
serratus 

Egregia 
menziesii 

Codium 
fragil 

Tetraselmis 
sp. 

Amphora 
Montana 

Phaeodactylum 
tricornutum  Fatty acids 

SW1 SW2 SW3 SW4 SW5 M1 A2 M7 
n-13:0 4.7 5.3 1.7 5.7 4.6 1 - - 
n-14:0 12.5  8.2 13.1 3.3 0.7 2.7 1.4 7.8 
n-14:1ω7c 1.3 1.4 0.4 - - - - - 
n-15:0 0.9  0.3 0.4 0.3 - - - - 
n-16:1ω9 1 1.8 0.9 3.2 1.4 - - - 
n-16:1ω7 2.7  3.2 2.3 0.4 1.7 1.4 2.2 16.4 
n-16:1ω5 0.7 0.7 0.7 - - - - - 
n-16:2ω4 - - - - - 4.9 18.4 4.4 
n-16:3ω4 - - - - - 1.7 2.2 12.9 
n-16:4 - - - - - 3.2 2.4 - 
n-16:0 17.7 25.4 16.6 29.5 28.7 17.2 19.3 15.5 
n-17:1ω8 1.1 0.8 0.7 0.4 8.5 - - - 
n-17:0 - - - - 2.2 - - - 
n-18:1ω9c 0.2 5.1 20.9 12.3 11.4 16.3 15.3 2.1 
n-18:1ω7c - 0.2 - 0.3 - 10.9 0.9 1.1 
n-18:0 9.9 0.9 - 0.8 - 0.4 7.5 1.3 
n-18:2ω6t 5.5 0.5 12.2 1.2 7.3 7.7 2.5 3.5 
n-18:3ω6 0.5 0.4 0.8 0.2 1.5 - - - 
n-18:3ω3 6.5 0.6 5.5 - 12.9 20.9 2.6 1.3 
n-18:4ω3 6.5 - 3.9 - 11.1 3.2 0.6 0.6 
n-20:1ω9 0.3 - 0.2 0.2 0.2 1.6 2.1 1.2 
n-20:2ω2 0.8 1 0.2 - - - 0.5 0.7 
n-20:3ω6 2.3 0.3 0.2 23.2 0.5 - - - 
n-20:3ω3 11.7 - 11 - 1.3 - - - 
n-20:4ω6 1.7 - - - 0.4 0.8 0.5 0.6 
n-20:4ω3 0.3 - - - - 0.6 1.8 2.2 
n-20:5ω3 10.2 43.2 7.8 18.7 3.1 6.5 18.7 28.4 
n-24:1n9 0.3 - 0.1 - 0.5 - - - 
n-22:2 - - - 0.2 2 - - - 
n-22:5ω3 - - - - - - 1.1 - 
n-22:6ω3 0.7 0.7 0.4 0.1 - - - - 
Σ TFA 100 100 100 100 100 100 100.0 100 
Σ SCFA 45.7 40.1 31.8 39.6 36.2 20.3 28.2 24.6 
Σ MUFA 7.6 13.2 26.2 16.8 23.7 30.2 20.5 20.8 
Σ PUFA 46.7 46.7 42 43.6 40.1 49.5 51.3 54.6 
ACLa 17.325 17.63 17.356 17.762 17.219 17.51  17.57  17.37  

a Average chain length (ACL) calculated after (White et al., 2005a); Values are means 
of three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, total 
fatty acids; EPA, eicosapentaenoic acid (20:5ω3); DHA, docosahexaenoic acid 
(22:6ω3); and (–) not detectable. 
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These five species of seaweed were all with high level of PUFAs (40-46 %). SW2 and 

SW4 were with high content of EPA (43 and 19 % respectively), while DHA was 

seldom detected from SW5. The average chain lengths of the TFAs of these seaweeds 

were similar (17.2-17.6).  Marine micro algal cultures M1, A2 and M7 were identified 

as Tetraselmis sp., Amphora Montana and Phaeodactylum tricornutum respectively 

based on 18S rRNA gene sequences analysis. The fatty acid profiles of these micro 

algal cultures were mainly n-16:1ω7, n-16:2ω4, n-16:3ω4, n-16:0, n-18:1ω9c, n-

18:1ω7c, n-18:2ω6t, n-18:3ω3 and n-20:5ω3 acids. These three species of algae were 

also with high level of PUFAs (50-54 %), especially strain M7 with high level of EPA 

in TFAs (28 %) and remarkable lipid content of 104.40 mg g-1. 

 

4.4.4.2 Fatty acid composition of Gamma-Proteobacteria 

 

Strains MA665 and MA66 also belong to Vibrionaceae, they showed the highest 

sequence similarities (97.3-99.7 %) to type strains Photobacterium frigidiphilum and 

Ph. profundum respectively. The dominant fatty acid components detected in these two 

strains extracts were n-16:1ω9, n-16:0, n-18:1ω9c and n-20:5ω3 acids (6-40 %), and 

less of n-12:0, n-14:0, n-15:0, n-16:1ω7 and n-18:0 acids, as reported of this genus 

isolated from deep sea (Nogi et al., 1998b; Seo et al., 2005). Higher lever of EPA could 

be detected from Photobacterium species than that from Vibiro, and the ACL was also 

longer of 16.2 (Table 4.4). 

 

Strains MA667, MA322, MA667, MA323, MA327 and MA342 exhibited the highest 

homology (97.1-99.9 % 16S rRNA gene identity) to type strains Shewanella algae, S. 

gaetbuli, S. pacifica, S. japonica, S. abyssi and S. colwelliana respectively. The 

predominant cellular fatty acids of these Shewanellaceae strains were i-13:0, i-15:0, n-

15:0, n-16:1ω7, n-16:0 and n-17:1ω8 acids, with more or less of n-12:0, n-18:1ω9c and 

n-20:5ω3 acids (Table 4.4). The proportion of EPA varied inversely with species of 

these strains as reported previously (Yang et al., 2007). 

 

Strains SW1-13 and SW5-3 exhibited the highest homology (97.3-99.6 % 16S rRNA 

gene identities) to type strains Glaciecola psychrophila and G. mesophila respectively. 

The predominant cellular fatty acids of these Alteromonadaceae strains were n-12:0, n-

 146



Chapter 4. Marine algae and algae associated bacteria as sources of omega-3 fatty acids 

16:0, n-16:1ω7, n-17:1ω8 and n-18:1ω7 (5-48 %) (Table 4.4), which are similar to those 

of Alteromonas and Glaciecola strains (Romanenko et al., 2003a; Zhang et al., 2006a). 

 

Table 4.4 Major FAs after whole cell hydrolysis (% of TFAs) in algae associated 
bacteria affiliating with the Gamma-Proteobacteria 

 Photobacterium sp. Shewanella sp. Glaciecola sp.  
 Fatty acids MA665 MA66 MA667 MA322 MA357 MA323 MA327 MA342 SW1-13  SW5-3 SW4-2 
n-10:0 - - - - - - - - 1.2 - 1.1 
n-12:0 2.1b 4.7 1.9 3.5 1.7 3.8 2.6 1.2 3.5 2.5 2.5 
3-OH-12:0  - - - - - - - - 6.6 - 6.5 
i-13:0 - - 3.1 9.4 9.9 6.9 23.5 7.2 - - - 
n-13:0 0.3 2.1 - 1.5 0.8 0.5 1.5 3.5 - - 0.3 
i-14:0 0.1 - 0.8 2.7 1.2 0.9 - 0.6 - - - 
n-14:0 2.8 1.5 2 5.1 3.1 4.5 3.2 2.1 7.9 1.3 0.8 
n-14:1ω5c 1 - - - - - - - - - - 
i-15:0 0.5 - 20.5 20.8 34.9 16.2 13.6 14.5 - - - 
ai-15:0 - - 0.5 1.3 2.6 2.3 - 0.3 - - - 
ai-15:1 - - - - 3.5 0.2 - 1.2 - - - 
n-15:1ω6 1 - - - 0.2 0.3 - 2.5 - - 0.7 
n-15:1ω8 - - - - 0.1 0.1 - 1.1 2.1 0.9 0.2 
n-15:0 1.3 2.3 3.7 4.5 3.6 1.1 11.6 14.1 2.3 1.8 0.8 
i-16:0 0.2 1.2 - - 0.2 0.2 - 0.5 - - - 
n-16:1ω9 40.1 35.7 1.3 - - - - - - - - 
n-16:1ω7 1.3 1.4 15.2 22.3 17.1 25.2 19.7 20.2 39.6 47.5 38.9 
n-16:0 24.3 26.1 21.6 18.4 - 15.6 11.2 8.5 18.5 21.6 13.9 
i-17:0 0.1 1.1 1.7 - 1.9 0.9 - - - - - 
n-17:1ω8 0.1 0.8 12.1 6.2 7.4 0.2 2.5 13.2 3.2 7.3 4.2 
n-17:1ω6 0.3 - - - 0.3 1.5 - 0.7 - - - 
n-17:0 0.1  2.3 - 0.8 0.4 1.5 5.3 1.2 1.7 1.3 
n-18:1ω9c 13.2 12.2 4.7 - 1.2 1.6 1.3 0.7 8.5 13.2 0.5 
n-18:1ω7c 0.4 - 4.2 2.9 2.1 9.5 - 0.5 - - 27.4 
n-18:0 2.4 3.5 3.1 1.1 0.6 0.5 - 0.6 3.1 0.7 0.5 
n-20:5ω3 7.5 6.5 - - 5.2 7.1 6.3 0.7 - - - 
Others 0.9 0.9 1.3 0.3 1.6 0.5 1.5 0.8 2.3 1.5 0.4 
Σ TFA 100 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 33.3 40.2 34.6 34.1 10.6 26.4 31.6 35.3 42 27.8 26.9 
Σ BCFA 0.9 2.3 26.6 34.2 50.7 27.4 37.1 23.1 - - - 
Σ MUFA 57.4 50.1 37.5 31.4 31.9 38.6 23.5 40.1 53.4 68.9 71.9 
Σ PUFA 7.5 6.5  -  - 5.2 7.1 6.3 0.7  -  -  - 
ACLa 16.28 16.15 15.72 15.21 15.21 15.78 14.91 15.34 15.23 16 16.1 

a Average chain length (ACL) calculated after (White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids; TFA, total 
fatty acids; EPA, eicosapentaenoic acid (20:5ω3); and (–) not detectable. 
 
 
Strains SW4-2, SW4-4, SW4-8, MA63 and A2B8 exhibited the highest homology (98-

99 % 16S rRNA gene identity) to type strains Pseudoalteromonas elyakovii, P. 

espejiana, P. nigrifaciens, P. tetraodonis and P. undina respectively. FA patterns of 

these Pseudoalteromonadaceae strains were dominated by n-16:0, n-16:1ω7 and n-

18:1ω7c (8-45 %), with minor contributions (1-7 %) of n-12:0, 3-OH-12:0, n-14:0, n-

15:1ω8, n-17:0 and n-17:1ω8 acids (Table 4.5). The pattern of the predominant fatty 

acids are comparable with those from P. elyakovii, P. haloplanktis, P. tetraodonis, P. 
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agarivorans and P. atlantica (Al Khudary et al., 2008). No BCFA and PUFA were 

detected of the species, the ACL was variable (15.5-16). 

 

Strain SW2-3A and SW2-3E exhibited the highest homology (97.3-98.9 % 16S rRNA 

gene identity) to type strains Colwellia psychrerythraea. The predominating fatty acid 

components detected in these Colwelliaceae strains extracts were n-14:0, n-14:1ω7c, n-

15:0, n-16:1ω9, n-16:1ω7, n-16:0 and n-22:6ω3 acids (Table 4.5). Both strains 

contained DHA with trace levels of EPA as the type strains isolated from Antarctic sea 

water samples (Bowman et al., 1998a).  

 

Strains SW1-3, SW1-7, SW3-1, SW2-3B, MA68 and MA324 showed the highest 

sequence similarities (97.3-99.7 % 16S rRNA gene identity) to type strains 

Marinomonas balearica, M. ushuaiensis, M. arenicola, Amphritea balenae, A. atlantica 

and A. japonica. The fatty acid profiles of these Oceanospirillaceae strains were 

characterised by mainly 3-OH-10:0, n-16:0, n-6:1ω7c and n-8:1ω7c acids (Table 4.5 

and Table 4.6), which were comparable with those from type strains isolated from 

seagrass or sediment (Miyazaki et al., 2008; Romanenko et al., 2009; Lucas-Elio et al., 

2010).  

 

Strains A2B3 and A2B7 exhibited the highest homology (98.2-99.0 % 16S rRNA gene 

identity) to type strains Flavimonas oryzihabitans and Pseudomonas poae respectively. 

The major cellular fatty acids of these Pseudomonadaceae strains contained large 

amounts of even-numbered straight-chain, such as n-16:1ω9, n-16:0 and n-18:1ω9c 

acids (17-40 %), small amounts of even-numbered straight-chain, n-12:0 and n-18:0 

acids, and the hydroxy acids 3-OH-10:0, 2-OH-12:0 and 3-OH-12:0 were also detected 

(Table 4.5), as reported on this genus (Verhille et al., 1999). 

 

Strains SW1-1 and SW3-9 exhibited the highest homology (99.4-99.8 % 16S rRNA 

gene identity) to type strains Cobetia marina and C. crustatorum respectively. FA 

patterns of these Halomonadaceae strains were dominated by 3-OH-12:0, n-16:0, n-

16:1ω7, n-17:0 cyclo and n-18:1ω7c acids (9-26 %), with minor contributions of n-10:0, 

n-12:0, i-15:0, n-18:0 and cyclo-19:0 acids (1-7 %) (Table 4.6). The FA profiles were 

comparable with those from type strains (Choi et al., 2010). 
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Table 4.5  Major FAs after whole cell hydrolysis (% of TFAs) in algae associated 
bacteria affiliating with the Gamma-Proteobacteria 

 
Colwellia sp. 

Pseudoalteromonas sp. Marinomonas sp. 
Pseudomonas 
sp. 

 Fatty acids SW2-3A SW2-3E SW4-4 SW4-8 A2B1 MA63 A2B8 SW1-3 SW1-7 SW3-1  A2B3 A2B7 

n-10:0 - - - - 1.2 - 1.1 6.5 9.7 8.8 2.1 2.5 
n-12:0 - - 3.1 2.9 2.3 1.6 2.8 9.7 4.6 10.8 5.4 4.5 
2-OH-12:0  - - - - - - - - - - 2.7 2.6 
3-OH-12:0 - - 4.1 - 5.9 3.7 2.4 - - 3.4 4.5 5.8 
n-13:0 - - - 0.2 0.3 0.3 0.1 - - - - - 
n-14:0 4.8 6.7 2.7 1.3 0.7 1.7 0.5 1.3 3.7 1.1 - 0.2 
n-14:1ω7c 7.5 10.1 3.3 - - - - - - - - - 
n-15:1ω6   0.7 0.3 0.5 0.4 0.5 - - - - - 
n-15:1ω8 0.2 1.7 6.7 3.1 0.3 6.1 2.1 - - - - - 
n-15:0 8.5 5.3 3.5 - 0.9 7.2 1.3 - 0.8 - - - 
n-16:1ω9 7.3 7.5 - - - - - - - - 39.5 37.8 
n-16:1ω7 37.5 30.3 45.1 39.7 35.1 36.9 40.5 19.6 23.5 19.3 - - 
n-16:1ω5 - - - - - 0.1 0.2 - - - - - 
n-16:0 23.5 27.1 14.2 28.5 12.3 17.5 25.6 17.5 15.8 16.5 27.1 25.5 
ai-17:1ω7 - - - - 3.8 13.2 4.6 - - - - - 
n-17:1ω8 0.7 0.8 3.2 6.3 - - - - - - - - 
n-17:0 1.1 1.5 2.1 7.2 1.2 4.9 0.6 2.8 - - - 0.7 
n-18:1ω9c 0.6 0.3 0.3 0.3 0.6 0.3 0.7 - - - 17.2 19.5 
n-18:1ω7c 0.5 1.6 9.4 8.5 32.6 4.3 14.7 37.7 39.5 35.5 - - 
n-18:0 1.5 2.2 0.4 0.8 0.7 0.5 1.1 4.1 2.3 4.1 0.6 0.5 
n-20:5ω3 0.2 0.1 - - - - - - - - - - 
n-22:6ω3 5.1 4.2 - - - - - - - - - - 
Others 1 0.6 1.2 0.9 1.6 1.3 1.2 0.8 0.9 0.5 0.9 0.4 
Σ TFA 100 100 100 100 100 100 100 100 100.8 100 100 100 
Σ SCFA 39.4 42.8 26.6 40.9 24.6 30.2 34.2 41.9 36.1 44.7 42.4 42.3 
Σ MUFA 54.3 52.3 65.4 58.2 72.9 61.3 63.3 57.3 63 54.8 56.7 57.3 
Σ PUFA 5.3 4.3 - - - - - - - - - - 
ACLa 15.89 15.86 15.55 16 16.03 15.68 15.86 15.93 15.97 15.59 15.58 15.67 

a Average chain length (ACL) calculated after (White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids; TFA, total 
fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); DHA, docosahexaenoic acid (n-
22:6ω3); and (–) not detectable. 
 

 

Strains SW1-5, SW3-2, SW3-5, SW5-2, SW5-1, A2B2 and A2B5 showed the highest 

sequence similarities (99.1-99.8 %) to type strains Vibrio lentus, V. splendidus, V. 

tasmaniensis, V. kanaloae, Aliivibrio fischeri, V. gigantis and V. fortis respectively. FA 

patterns of these Vibrionaceae strains were dominated by n-14:0, n-16:0, n-16:1ω7 and 

n-18:1ω7c (8-40 %), with minor contributions (1-6 %) of n-12:0, 3-OH-12:0, i-15:0, n-

16:1ω11 and i-16:1ω6 acids. The major cellular fatty acid profile of these strains was 

compared with those of other members of the same Vibrio genus (Lambert et al., 1983; 

Faury et al., 2004), MUFAs were the most dominance, and PUFAs, such as EPA, was 

only in trace level (1-4 %) and ACL was between 15.2-15.8 (Table 4.6). 
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Table 4.6 Major FAs after whole cell hydrolysis (% of TFAs) in algae associated bacterial strains isolated from North Sea 

 Vibrio sp. Amphritea sp. Cobetia sp. 
Fatty acids SW2-3C SW3-2 SW5-2 SW3-5 SW1-5 A2B2 A2B5 MA68 MA324 MA58 SW2-3B SW1-1 SW3-9 MA669 

n-10:0 4.9 3.6 4.3 2.9 2.4 4.8 4.2 2 2.4 0.5 0.8 2.2 4.1 2.3 
n-12:0 - - - - - - - 2.2 0.2 0.2 - 3.7 7.5 3.8 

3-OH-12:0 3.4 8.8 2.2 6.8 5.5 2.1 0.3 2.5 3.1 4.2 4.1 12.1 26.7 12.7 
n-14:0 - 9.3 5.1 10.5 9.2 4.7 5.8 - - - - - 1.5 0.7 

n-14:1ω7c 4.7 1.2 - - - 2.1 3.4 - - - - - - - 
i-15:0 - 0.8 3.2 3.6 2.8 - 2.9 - - - - 2.2 1.4 2.6 

i-16:1ω6 2.2 3.5 6.8 0.8 0.9 2.2 9.5 - - - - - - - 
n-16:1ω11 8.4 1.6 2.2 2.8 3.2 - 0.8 - - - - - - - 
n-16:1ω7 41.1 31.6 39.7 34.7 39.7 40.5 37.6 40.5 38.5 44.2 45.5 14.9 18.7 14.1 

n-16:0 15.3 28.7 24.7 26.9 25.5 24.5 19.5 27.7 17.6 15.5 14.5 25.7 22.5 24.7 
n-17:0 - - - - - - - - - - - 14.8 8.9 15.8 

n-18:1ω7c 14 8.1 9.8 7.9 8.5 13.7 11.9 23.2 36.6 33.5 33.2 18.5 5.5 19.2 
n-18:0 2.8 0.3 0.8 0.5 - - 1.3 0.7 0.8 0.9 1.1 0.3 1.2 0.5 
n-19:0 - - - - - - - - - - - 3.5 0.5 2.7 

n-20:5ω3 2.7 1.1 - 0.8 1.7 3.5 1.5 - - - - - - - 
Others 0.5 1.4 1.2 1.8 0.6 1.9 1.3 1.2 0.8 1 0.8 2.1 1.5 0.9 
Σ TFA 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 23 41.9 34.9 40.8 37.1 34 30.8 35.1 24.1 21.3 20.5 62.3 72.9 63.2 
Σ BCFA - 0.8 3.2 3.6 2.8 - 2.9 - - - - 2.2 1.4 2.6 
Σ MUFA 70.4 46 58.5 46.2 52.3 58.5 63.2 63.7 75.1 77.7 78.7 33.4 24.2 33.3 
Σ PUFA 2.7 1.1  0.8 1.7 3.5 1.5 - - - - - - - 
ACL a 15.84 15.2 15.4 15.22 15.57 15.6 15.64 16 16.34 16.32 16.35 15.51 14.34 15.65 

a Average chain length (ACL) calculated after (White et al., 2005); Values are means of three samples; SCFA, straight chain fatty acids; BCFA, 
branched chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids; TFA, total fatty acids; EPA, eicosapentaenoic 
acid (n-20:5ω3); and (–) not detectable. 
 
 

 150



Chapter 4. Marine algae and algae associated bacteria as sources of omega-3 fatty acids 

4.4.4.3 Alpha-Proteobacteria  

Strain MA69 exhibited the highest homology (99.6 % 16S rRNA gene identity) to 

Sulfitobacter pontiacus. The major cellular fatty acids of strain MA69 are unsaturated 

fatty acids such as n-18:1ω7c (70 %) and 11-methyl 18:1ω7c (8.3 %) (Table 4.7). The 

fatty acid composition was similar to that observed in other members of the genus 

Sulfitobacter. The presence of n-18:1ω7c as the dominant fatty acid is representative of 

several major phyletic groups within the Alphaproteobacteria (Labrenz et al., 2000). 

 

4.4.4.4 Cytophaga–Flavobacterium–Bacteroides (CFB) bacteria  

CFB bacteria strains SW2-4 and SW2-7 exhibited 98.1-99.0 % 16S rRNA gene 

sequence homology to Polaribacter butkevichii KMM 3938T (AY189722) based on 16S 

rRNA gene phylogenetic studies, while strains SW1-18 and SW2-1 were the most 

related to Flavobacterium fluvii (96.8 %), and strain SW5-7 exhibited 99.6 % the 

highest similarity with Cellulophaga fucicola. The cellular fatty acid composition of 

these Flavobacteriaceae strains showed  more branched chain fatty acids, mainly with i-

13:0, i-14:0, n-15:0, i-15:0, i-15:1, n-15:1ω6, 2-OH-15:0, 3-OH-15:0 and i-16:1ω6 acids 

(Table 4.7), similar to the reports on related type strains previously (Bowman, 2000; 

Nedashkovskaya et al., 2005; Lee et al., 2010). 

 

Strain MA343 showed 99.5 % similarity (16S rRNA gene identity) to Lacinutrix 

mariniflava. The main cellular fatty acids of strain MA343 were i-15:0, ai-15:0, 3-OH-i-

15:0, n-16:1ω7c, 3-OH-i-16:0 and 3-OH-i-17:0 acids (8-13 %). Despite the existence of 

differences in culture conditions and analytical methods, fatty acid composition and the 

proportion of most components were similar to that observed in other members of the 

genus Lacinutrix (Nedashkovskaya et al., 2008). 

 

4.4.4.5 Gram Positive 

Strain SW1-11 showed the highest 16S rRNA gene sequence similarity (96.6 % 16S 

rRNA gene identity) to Gordonia terrae, and with 2-OH-i-15:0, n-16:0, n-18:1ω9c and 

10-OH-18:0 as major FAs (16-28 %) and contained less n-14:0, n-15:0, n-15:1ω6, n-

16:1ω9, n-17:0 and n-18:0 acids (1-2.7 %) (Table 4.7), which possessed similar whole-

cell fatty acid profiles and the dominant fatty acids with those from the type strains 

(Yoon et al., 2000). 
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Strain MA319 showed the highest homology (99.2 % 16S rRNA gene identity) to 

Arthrobacter agilis. The predominant fatty acids were ai-15:0, i-16:0, ai-17:0 and n-

17:0 acids (7-49 %), with less of n-15:0, n-14:0, n-16:1ω7, n-16:0, n-18:0 and n-20:1 

acids (0.5-4 %) (Table 4.7), as described on this genus (Reddy et al., 2000). 

 

Table 4.7 Major FAs after whole cell hydrolysis (% of total FAs) in algae associated 
bacteria affiliating with the Alpha-Proteobacteria, Firmicutes and CFB group bacteria 

Polaribacter Flavobacterium Cellulophaga Gordonia Lacinutrix Bacillus Arthrobacteri Sulfitobacter  Fatty acids 
SW2-4 SW2-7 SW1-18 SW2-1 SW5-7 SW1-11 MA343 A2B4  MA319 MA69 

3-OH-10:0  - - - - - - - - - 8.1 
3-OH-12:0  - - - - - - - - - 2.4 
i-13:0 10.1b 16.9 2.1 0.5 - - - - - - 
n-13:0 0.6 0.7 - - - - - - - - 
i-14:0 3.1 8.5 0.3 0.1 - - 0.2 0.7 - - 
n-14:0 1.2 0.8 0.5 0.6 0.8 2.7 0.2 - 2.3 - 
i-15:0 8.1 6 10.2 24.4 22.7 - 13.5 19.2 - - 
ai-15:0 6.4 2.1 17.8 15 4.7 - 17.3 30.5 48.5 - 
i-15:1ω10c 7.5 8.7 3.7 5.5 9.9 - 10.9 - - - 
ai-15:1 - - - - - - 8.5 - - - 
n-15:1ω6 15.7 10.2 8.7 6.9 1.5 1.1 1.5 - - - 
2-OH-15:0 9.2 17.5 2.4 1.6 - - 2.6 - - - 
3-OH-15:0  8.5 5 0.8 2.1 2.1 - - - - - 
2-OH-i-15:0  - - - - - 16.2 - - - - 
3-OH-i-15:0  3.4 2.1 0.8 1.3 7.9 - 13.2 - - - 
n-15:0 8.8 7.8 9.4 6.7 10.6 1.3 1.5 - 3.7 - 
i-16:0 0.7 0.5 0.7 0.5 1.4 - 3.1 4.3 16.5 - 
3-OH-16:0  1.2 - 5.6 4.7 7.5 - - - - - 
3-OH-i-16:0  4.2 5.4 12.1 0.7 5.5 - 7.2 - - - 
i-16:1ω6 6.8 3.7 16.3 19.5 1.9 - - - - - 
n-16:1ω11c - - - - - - - 8.9 - - 
n-16:1ω9c - - - - - 1.5 - 2.1 - - 
n-16:1ω7 - - - - 16.7 - 7.8 - 0.6 - 
n-16:0 0.7 0.6 3.8 4.5 5.2 28.2 - 3.5 2.5 8.8 
i-17:0 - - - - - - - 25.2 - - 
ai-17:0 - - - - - - - 3.3 7.3 - 
i-17:1ω9c - - - - - - 1.5 - - - 
ai-17:1ω9c - - - - - - 1.8 - - - 
3-OH-i-17:0  - - - - - - 8.1 - - - 
n-17:1ω6 2.3 1.8 3.9 4.2 0.8 - - - - - 
n-17:0 - - - - - 1.5 - - 12.9 - 
n-18:1ω9c - - - - - 22.5 - - - - 
n-18:1ω7c - - - - -  - 1.2 - 69.5 
10-OH-18:0  - - - - - 21.4 -  -  
n-18:0 0.4 0.2 - - - 2.5 - 0.2 3.5 1.4 
11-Me-18:1ω7c - - - - - - - - 8.3 
n-20:1 -  - - -  - - 0.5 - 
Others 1.1 1.5 0.9 1.2 0.8 1.1 1.1 0.9 1.7 1.5 
Σ TFA 100 100 100 100 100 100 100 100 100 100 
Σ SCFA 30.6 32.6 22.5 20.2 26.2 57.6 4.3 3.7 24.9 20.7 
Σ BCFA 36 41.5 44 42.5 42.2 16.2 62.6 83.2 72.3 - 
Σ MUFA 32.3 24.4 32.6 36.1 30.8 25.1 23.5 12.2 1.1 77.8 
ACLa 14.77 14.47 15.28 15.19 15.27 16.53 15.24 15.66 15.45 16.76 

a Average chain length (ACL) calculated after (White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids; TFA, total fatty acids; and (–) not detectable.  
 
 

Strain A2B4 showed the highest similarity (97.2 % 16S rRNA gene identity) to Bacillus 

simplex. The major fatty acids were mainly i-15:0, ai-15:0, n-16:1ω11c and i-17:0 acids 
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(9-30 %), with less of i-16:0, n-16:1ω9 cis, and ai-17:0 (2-4 %) (Table 4.7), similar to 

the sutdy on this sepcies reported (Sikorski et al., 2008). 

 

4.4.4.6 Phylogenetic resolution of FA patterns 

In this study, all the bacterial cell were obtained from 15 ºC marine broth cultures for 

FAs patterns analysis, and were subjected to principal coordinates analysis (PCO), 

which allowed separation of isolates representing different phyla. For examples, in the 

case of macro algae and their associated bacteria, different groups, such as FAs of 

Gamma-Proteobacteria, FAs of Firmicutes, FAs of CFB group bacteria and FAs of 

macro algae (Figure 4.4). The result of ordination pattern was agreeable to the data 

clustered by using hierarchical UPGMA analysis, which clearly separated the 30 genus 

including 5 algal species (Figure 4.5), and divided them into four phyla as mentioned 

above. The result was further confirmed by the analysis of FAs from micro algae and 

their associated bacteria (Figure 4.6), in which six groups has been divided: Gamma-

Proteobacteria, Gram positive (Firmicutes), Alpha-Proteobacteria, CFB group bacteria, 

micro algae and Photobacterium (Figure 4.7), all 22 species including the micro algae 

and their associated bacteria were hierarchically separated into six phyla, from which 

FAs pattern of Photobacterium was fall into Gamma-Proteobacteria and showed close 

evolutionary distance to micro algae and diatoms (Figure 4.8).  

 

PCO analysis on FA composition of all 56 strains including marine macroalgae and 

microalgae and their associated bacteria exhibited a separation by 7 groups: Gamma-

Proteobacteria (I), CFB Group bacteria (II), Gram+ (Firmicutes) (III), Alpha-

Proteobacteria (IV), algae (V), Photobacterium (VI) and high GC Gram+ bacteria 

(VII) (Figure 4.9). All these FA compositions were hierarchically separated into four 

phyla analyzed by UPGMA (Figure 4.10), as presented above (Figures 4.6 and 4.8). 

Both the distribution and the percentage contribution of each fatty acid to the total fatty 

acid across taxa at species level were plotted shown in Figures 4.11 and 4.12. The 

trends and relationships of fatty acid composition of different groups or each species 

within Gamma-Proteobacteria, CFB Group, Gram+ (Firmicutes), Alpha-

Proteobacteria, algae, Photobacterium and high GC Gram+ bacteria respectively were 

found to be similar using this method. Within Gamma-Proteobacteria (I), wide 

distribution of fatty acid composition was observed, ranging from short-chain FAs (e.g. 

n-12:0, 12:0 3-OH, n-14:0 and n-15:0); middle-chain FAs (e.g. n-16:1ω9, n-16:1ω7, n-

16:0, n-17:1ω8, n-17:0, n-18:1ω9c and n-18:1ω7c), to long-chain FAs (e.g. n-20:5ω3 
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and n-22:6ω3), in which EPA and DHA were found. For CFB Group bacteria (II), the 

fatty acids were mainly short-chain (e.g. i-13:0 and i-14:0) and middle-chain FAs (e.g. 

i-15:0, i-15:1ω10c, n-15:1ω6, n-15:0, i-16:0 3-OH, n-16:1ω7, i-17:1ω9c and i-17:0 3-

OH), predominant by branched-chain FAs. Similar to CFB Group bacteria, Gram+ 

bacteria (Firmicutes) (III) mainly contained branched-chain FAs (e.g. i-15:0, ai-15:0, i-

16:0, n-16:1ω11 and i-17:0), and dominated by i-15:0, ai-15:0 and i-17:0. The fatty 

acids of Alpha-Proteobacteria (IV) were dominated by middle-chain FAs, such as ai-

15:0, i-16:0 and n-17:0. In marine macroalgae and microalgae (V), highly diverse of 

middle-chain and long-chian FAs were found with much more unsaturated, for example, 

n-16:1ω7, n-16:2ω4, n-16:3ω4, n-16:0, n-17:1ω8, n-18:1ω9c, n-18:1ω7c, n-18:2ω6t, n-

18:3ω3, n-18:4ω3, n-20:3ω6 and n-20:5ω3. Similar to algal FA composition, but simply 

presented in Photobacterium species (VI) with mainly middle-chain FAs (e.g. n-

16:1ω9, n-16:0 and n-18:1ω9c) and long-chain FAs (e.g. n-20:5ω3). In high GC Gram+ 

bacteria (VII), i-15:0 2-OH, n-16:0, n-18:1ω9c and n-18:0 10-OH acids were mainly 

found. Comparatively, n-16:1ω7, n-16:0 and n-18:1ω7 acids may serve as FA markers 

for Gamma-Proteobacteria, while n-16:0, n-18:1ω9 and n-20:5ω3 acids for algae. 

 

 

 

Figure 4.4 Principal coordinates analyses (PCO) of macro algae and their associated 
bacterial major FA abundance data from Tables 4.3-4.7 measuring Bray Curtis distance. 
Numbers indicate bacterial strains (see Figure 4.5) 
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Figure 4.5 Similarity analysis based on whole cell fatty acid composition from macro 
algae and their associated bacterial species. The phylogenetic tree was constructed by 
unweighted pair group average method (UPGAM) clustering method using the 
programs of MVSP package. Numbers indicated in the figure are the same as in Figure 
4 and nearest type strains were indicated beside the isolates. 

 

 
Figure 4.6 Principal coordinates analyses (PCO) of microalgae and their associated 
bacterial major FA abundance data from Tables 4.3-4.7 measuring Bray Curtis distance. 
Numbers indicate bacterial strains (see Figure 4.7) 
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Figure 4.7 Similarity analysis based on whole cell fatty acid composition from 
microalgae and their associated bacterial major species. The phylogenetic tree was 
constructed by unweighted pair group average method (UPGAM) clustering method 
using the programs of MVSP package. Numbers indicated in the figure are the same as 
in Figure 4.6 and nearest type strains were indicated beside the isolates. 

 

 

Figure 4.8 Principal coordinates analyses (PCO) of macroalgae, microalgae and their 
associated bacterial major FA abundance data from Tables 4.3-4.7 measuring Bray 
Curtis distance. Numbers indicate bacterial strains (see Figure 4.9) 
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Figure 4.9 Similarity analysis based on whole cell fatty acid composition from 
macroalgae, microalgae and their associated bacterial major species. The phylogenetic 
tree was constructed by unweighted pair group average method (UPGAM) clustering 
method using the programs of MVSP package. Numbers indicated in the figure are the 
same as in Figure 4.8 and nearest type strains were indicated beside the isolates. 
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Figure 4.10 Box plots representing the distribution and variability in the percentage 
contribution of each fatty acid to the total fatty acids within Gamma-Proteobacteria, 
CFB Group, Gram+ (Firmicutes) and Alpha-Proteobacteria. Groupings are as indicated 
in Figures 4.8 and 4.9. The triangles represent the presence of each fatty acid (Axis X) 
from different species analyzed, with percentage of TFA indicated by Axis Y. 
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Figure 4.11 Box plots representing the distribution and variability in the percentage 
contribution of each fatty acid to the total fatty acids Gamma-Proteobacteria, CFB 
Group, Gram+ (Firmicutes) and Alpha-Proteobacteria. Groupings are as indicated in 
Figures 4.8 and 4.9. The triangles represent the presence of each fatty acid (Axis X) 
from different species analyzed, with percentage of TFA indicated by Axis Y. 
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4.5 Discussion 

4.5.1 Phylogenetic diversity of seaweed associated bacterial isolates 

Both studies on phylogenetic diversity of macro and micro associated showed that the 

abundant presence of Gamma-Proteobacteria with fewer CFB group bacteria and Gram 

positive, which is consistent with the previous bacterioplankton studies have shown that 

the majority of marine bacteria are Gram negative. However, Gram positive bacteria as 

main population were also reported from other algal samples (Wahbeh and Mahasneh, 

1984; Jensen and Fenical, 1995; Kanagasabhapathy et al., 2006). The variation in the 

distribution pattern of the bacterial genera may be related partly to inhibiting substances 

such as flavones, phenolic acids and tannins, excretion of metaboloytes which can act as 

nutrients for bacteria, and partly to differences in the quantity and quality of soluble 

organic exudates released by the plants (Wahbeh and Mahasneh, 1984), or could be 

variable according to the external climatic conditions (Martin and Bianchi, 1980).  

 

Deep-sea microorganisms, such as Photobacterium profundum and Ph. Frigidiphilum, 

were used to be identified as psychropiezophiles model strains (Nogi et al., 1998b; Seo 

et al., 2005). Interestingly, similar species, such as strains MA665 and MA66 were 

isolated from the marine micro algal cultures, and with the ability of EPA production 

under atmospheric conditions. Meanwhile, Colwellia psychrerythraea was the only 

species in the genus Colwellia reported capable of producing DHA, isolated from 

Antarctic sea ice (Bowman et al., 1998a). Similar strains like SW2-3A and SW2-3E 

were isolated from seaweed surface and with the ability to produce DHA. 

 

4.5.2 Algae–bacteria interactions 

Marine biofouling communities are complex, highly dynamic ecosystems consisting of 

a diverse range of organisms. The development of such communities begins with 

bacterial attachment followed by the colonization of higher organisms such as 

invertebrate larvae and algal spores. Studies have examined bacterial attachment to 

algae (Droop and Elson, 1966; Rausch de Traubenberg and Soyer-Gobillard, 1990; 

Bowman et al., 1998a; Alavi et al., 2001; Biegala et al., 2002; Grossart et al., 2004), to 

diatoms (Rosowski, 1992; Bates et al., 2004), and to seaweeds (Shiba and Taga, 1980; 

Wahbeh and Mahasneh, 1984; Lemos et al., 1986; Nedashkovskaya et al., 2004; 

Rungprom et al., 2008).  
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The interactions between algae and bacteria in aquatic environments are numerous, 

possibly by the following reasons: (a) competition for available organic substrates or 

inorganic nutrient; (b) provision of extra-cellular material by algae which are of benefit 

to bacteria or vice versa; and (c) production of toxic metabolites which retard the 

growth of bacteria and vice versa (Jolley and Jones, 1977; Cole, 1982; Grossi et al., 

1984; Grossart et al., 2004). Interestingly, bacteria may also mediate allelochemical 

interactions between different algal taxa (Keating, 1978). 

 

In all the seaweeds and micro algae studied the most abundant fatty acids was n-16:0 

and n-20:5ω3 (EPA), and the essential fatty acids such as n-18:2ω6 (linoleic acid), n-

18:3ω3 (linolenic acid) and the eicosanoid precursors n-20:4ω6 (arachidonic acid) were 

presented at various low levels as reported previously (Sánchez-Machado et al., 2004). 

The fatty acids of seaweeds generally have linear chains, an even number of carbon 

atoms, and one or more double bonds (Shameel, 1990), and particularly, they can be a 

source of EPA (Khotimchenko, 1995). The average chain lengths of algal fatty acids 

were among 17.2-17.8, longer than any bacteria isolated in this study (14.5-16.8) as 

they contained higher levers of longer chain fatty acids, such as EPA.  

 

Interestingly, genus Vibrio and Colwellia responsible for EPA or DHA production were 

among the macro algae associated bacteria, while genus Vibrio, Photobacterium and 

Shewanella were presented in the micro algal culture as EPA producers. These results 

are evidence that the presence of EPA/DHA in the genus Colwellia, Vibrio, 

Photobacterium and Shewanella might be related to the specific environment they 

attached associated with as all the algal samples were found with high content of EPA. 

Whereas DHA could only be detected both from the macro algae, such as Palmaria 

palmata (SW2) and its associated bacteria (Colwellia), and bacterial EPA producers 

(Vibrio, Photobacterium and Shewanella) are general exist as all the algal samples were 

found with high content of EPA. 

 

Production of EPA/DHA is an important physiological and descriptive component that 

allows differentiation between algal/bacterial species, and may also have an important 

ecological role acting as a nutrient source for certain marine biota requiring essential 

fatty acids yet unable to synthesize omega-3 fatty acids de novo. 
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4.5.3 Phylogenetic resolution of FA patterns 

Multivariate data analyses methods, such as principal coordinates analysis (PCO) has 

been used for analyzing the patterns of fatty-acid variables (Freese et al., 2008). In this 

study, two cases, fatty acid compositions of macro algae and their associated bacteria 

and FAs pattern of micro algae and their associated bacteria, have been demonstrated. 

The studies indicated that a taxonomic resolution on the basis of complete FA patterns 

is possible, as the cultivation conditions for all the bacteria cultures were consistent. 

However, when isolates belonging to different phyla were not sometimes dominated by 

the same FAs, or different isolates belonging to different phyla were sometimes 

dominated by the same major fatty acids, and unsuccessfully separation may be 

happened (Freese et al., 2008), as fatty acid composition will be variable according to 

their culture conditions (e.g. temperature and medium) (Yumoto et al., 2004). 

Therefore, the culture conditions should be carefully controlled, when taxonomy study 

was conducted based on fatty acid compositions. 

 

4.6 Conclusions 

In conclusion, marine macro/micro algae have a high content of omega-3 PUFAs, 

providing highly valuable supplement to human diets. Marine algae associated bacteria 

is good source for omega-3 PUFAs study. The proportion of EPA bacterial producers 

varied inversely with their host, indicating that environment remains the primary 

controlling factor in PUFA synthesis. Taxonomic resolution on the basis of complete 

FA patterns could be a possible way for study bacterial community structure. 
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5 Chapter 5. Shewanella dovemarina sp. nov., a psychrotrophic 
bacterium from deep-sea sediments producing high yields of 
eicosapentaenoic acid and electricity 
 

 

5.1 Abstract  

Two strains of bacteria, MAR441T and MAR445 were isolated from Mid-Atlantic 

Ridge (MAR) sediments recovered from a depth of 2,734 m, and found to be members 

of the genus Shewanella. The strains were rod shaped, facultatively anaerobic, 

pigmented, non-motile, and capable of anaerobic growth either by fermentation of 

carbohydrates or by anaerobic respiration. Both strains can utilize a variety of electron 

acceptors, including nitrate and ferric compounds. The strains can deliver a stable power 

output of ~150-200 mW/m2 when grown anaerobically in a two-chambered microbial 

fuel cell (MFC) using peptone as substance in the anode. The major fatty acids were 

typical of the genus Shewanella; however, PUFAs mostly composed of 

eicosapentaenoic acid (EPA) were produced at high levels (9.5--21.4 % of total fatty 

acids). Sequence analysis indicated that strain MAR441T was most closely related to 

Shewanella olleyana (sequence similarity 97.9 %). Phenotypic characteristics confirmed 

that the isolate constituted a novel species of the genus Shewanella, which is designated 

Shewanella dovemarina sp. nov. (Type strain MAR441T). 

 

 

5.2 Introduction 

Shewanella was described as a new genus in 1985 (MacDonell and Colwell, 1985), 

although historically it was initially classified as Alteromonas or Pseudomonas (Derby 

and Hammer, 1931; Long and Hammer, 1941). The genus Shewanella comprises a 

group of Gram-negative, facultatively anaerobic, motile straight or curved rod-shaped 

bacteria that are nonfermentative in general, although a few species have been reported 

capable of fermenting glucose (Bowman et al., 1997b; Ivanova et al., 2001). At the time 

of writing, at least 54 members of the genus Shewanella have been reported. An 

interesting feature of species of the genus Shewanella is the ability to produce 

polyunsaturated fatty acids (PUFAs) particularly eicosapentaenoic acid (EPA). The 

genus includes psychrophilic and mesophilic species and are widely distributed in 
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marine environments. Only a narrow group of predominately marine Gamma-

Proteobacteria has the ability to produce PUFAs. 

 

The species, Shewanella benthica, S. abyssi, S. kaireitica, S. violacea, S. peizotolerans 

and S. psychrophila isolated from the deep ocean could produce EPA at the level of 2-

14 % of total fatty acids (TFA) (Deming et al., 1984; Delong and Yayanos, 1986; 

Delong et al., 1997; Nogi et al., 1998b; Miyazaki et al., 2006; Xiao et al., 2007). 

Shewanella marinintestina, S. schlegeliana, S. sairae, S. pealeana, S. benthica, S. 

baltica, S. pneumatohori and S. waksmanii were isolated from the intestinal tract of 

various marine animals, and could produce EPA at 15-37 % EPA of TFA (Yazawa et al., 

1992; Leonardo et al., 1999; Satomi et al., 2003; Hirota et al., 2005; Amiri-Jami et al., 

2006). Shewanella hanedai, S. frigidimarina and S. halifaxensis isolated from Antarctic 

marine environments were found with EPA at 7-22 % of TFA (Bowman et al., 1997a; 

Bowman et al., 1997b; Zhao et al., 2006). Shewanella affinis and S. japonica were 

isolated from marine habitats and produced EPA at 2-8 % of TFA (Ivanova et al., 2001; 

Ivanova et al., 2004c). The mesophile S. olleyana, was isolated form a temperate estuary 

and capable of producing EPA at 24 % of TFA (Skerratt et al., 2002). Although the 

proportion of EPA as a percentage of TFA is reported, the high yield of total lipid with 

considerable EPA content would be much more desirable. 

 

Deep-sea Shewanella species are taxonomically divided into two major subgenra, one 

characterised as high-pressure, cold-adapted species which produce substantial amounts 

of EPA and the other recognized as mesophilic pressure-sensitive species which do not 

produce EPA or produce only small amounts (Kato and Nogi, 2001). A high proportion 

of EPA in Shewanella isolates are mainly associated with cold adaptation (Nichols et 

al., 1997; Russell and Nichols, 1999). A physiological basis for the production of PUFA 

as a selective adaptation to reduced temperature and/or high pressure is well accepted 

(Nichols et al., 1995). However, Shewanella olleyana, S. japonica and S. pacifica could 

produce significant levels of EPA at relatively high temperatures of 25–30 ºC (Ivanova 

et al., 2001; Skerratt et al., 2002; Ivanova et al., 2004b).  

 

Members of the genus Shewanella were among the first microbes shown to grow by 

dissilimatory metal and radionuclide reduction. They may therefore influence the 

aqueous geochemical process occurring in the sea through biogeochemical reactions 

(Hau and Gralnick, 2007; Lassak et al., 2010). This genus has been extensively studied 
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in biogeochemical cycling and environmental clean-up (Moser and Nealson, 1996; 

Marshall et al., 2006b), and as also as exoelectrogens (Biffinger et al., 2007; Bretschger 

et al., 2007). Appendages of S. oneidensis were shown to be responsible for electricity 

conduction (Reguera et al., 2005; El-Naggar et al., 2010), whereas S. putrefaciens was 

reported to transfer electrons directly to an electrode (Kim et al., 2002).  

 

In this study, two novel EPA producing psychrotrophs of the genus Shewanella were 

characterised. The bacteria were isolated from Mid-Atlantic Ridge (MAR) “non-vent” 

sediments at a depth of 2,734 m, and are capable of producing high levels of EPA at 

relatively low incubation temperatures and generating electricity in peptone-fed two-

chamber microbial fuel cells (MFCs). This work was part of a taxonomic survey of 

microbial populations of the non-vent MAR deep sea sediments, to which relatively 

little attention has been given on the biological ecology study (Chapter 2).  

 

 

5.3 Materials and methods 

5.3.1 Sample collection and strain isolation as methods mentioned in Chapter 2 

 

5.3.2 Morphological and biochemical identification 

The two strains were routinely cultured on marine broth 2216E (Difco) before 

inoculation of biochemical and growth test media. Biochemical tests were performed 

with API-NE and API 20E test strips (bioMérieux, UK). For carbon and energy source 

tests, most of the test compounds were used at a concentration of 0.2 % (w/v), with the 

exception of carbohydrates, which were tested at a concentration of 0.5 % (w/v). Filled 

sea water was used for preparing medium, which was solidified with 1.4 % agar. 

Comparison of media with a control which lacked an added carbon source was used to 

assess carbon substrate use. Semi-solid agar containing triphenyltetrazolium chloride 

(TTC) was used to test motility, and compared with a positive control type strain 

Shewanella japonica KMM 3299T. Other phenotypic tests used were conducted as 

described by Bowman et al. (1997). Anaerobic growth tests used media formulated by 

Coates et al. (1998) except that the basal medium was used filled sea water instead, and 

incubated in a 2.5 l anaerobic container system (GasPak™ EZ, BD, Maryland) 

containing anaerobic GasPaks (Oxoid) and included media controls prepared without an 

electron acceptor.  
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5.3.3 Strain growth 

The temperature-growth response (4-30 °C) of strain MAR441 was conducted for 

growth in marine 2216E broth 2216E (MB) (Difco). Growth was observed and samples 

collected every day for five days, centrifuged and washed with sterile solution. For 

biomass production, strains were inoculated into 10 ml of Zobell’s broth (ZB) (ZoBell, 

1946), and incubated at 15°C until turbidity was apparent. The 10 ml cultures were then 

used to inoculate 90 ml volumes of marine 2216E broth in 500 ml conical flasks. Flasks 

were incubated at 15 °C with agitation provided by a magnetic stirrer or orbital shaker 

(180 rpm) for 24-48 h until sufficient mass of late-log phase cells were present for 

harvest.  

 

5.3.4 16S rRNA gene analysis as methods mentioned in Chapter 2 

The GenBank accession numbers for the 16S rRNA gene sequences of MAR441T and 

MAR445 are FR744784 and FR744787. 

 

5.3.5 Scanning electron microscopy 

The cells were processed for scanning electron microscopy (SEM) (Cambridge 

Stereoscan 240).  The samples were fixed in 2 % glutaraldehyde in 0.2 M sorensons 

phosphate buffer (pH 6.8) for 12 hrs, then rinsed in sorensons phosphate buffer twice 

for 15 mins and dried in alcohol series up to 100 %. The electrode samples were then 

CO2-critical point dried by a Samdri 780 Critical Point Dryer, mounted on an 

aluminium stub with Achesons Silver ElectroDag and coated with 15nm gold/palladium 

(40/60) using a polaron SEM coating unit and then observed in SEM. 

 

5.3.6 Transmission electron microscopy 

Liquid grown cells at stationary phase were collected, washed and suspended in 

potassium phosphate buffer (pH 7.0), then fixed in 2 % glutaraldehyde in 0.2 M 

sorensons phosphate buffer (pH 6.8) for 12 hrs. The morphologies of living and 

nonliving stained cells were determined by light microscopy and transmission electron 

microscopy, respectively. For negative staining, one drop of a culture was placed on a 

copper grid coated with Pioloform and carbon and stained with 1 % potassium 

phosphotungstic acid adjusted to pH 7.0 with potassium hydroxide. The negatively-
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stained cells were observed with a Philips CM100 transmission electron microscope 

(Biomedical EM Unit, Newcastle University) operating at 60 kV. Photographs were 

made on Kodak electron imaging film with type 4463 photographic emulsion.   

 

5.3.7 Fatty acid analysis as methods mentioned in Chapter 2 

 

5.3.8 MFC construction and measurement as methods mentioned in Chapter 9 

 

 

 

5.4 Results and discussion 

5.4.1 Morphological identification 

The strains demonstrated cellular and colonial morphologies and phenotypic profiles 

typical of Shewanella species. Cells were rod-shaped, Gram-negative, 1.5–4.5 μm in 

length, 0.4–0.76 μm in diameter, without flagella (Figure 5.1). Colonies on marine agar 

plates were tan-pigmented, butyrous in consistency, smooth, and circular and convex in 

shape with an entire edge. Colonies of 2-4 mm in diameter were formed following 2 

days incubation at 15 °C. The agar beneath colonies on marine 2216E agar became 

softened, but not liquefied, however became transparent and increasingly mucoid with 

prolonged incubation. Flooding the agar surface with Lugols's iodine solution revealed 

hydrolysis zones around the growth, suggesting that the strains have an agarolytic 

ability. No hydrolisis zone was formed in triacylglycerol agar plates, indicating that the 

strains are unable to produce lipase. MAR441T and MAR445 cells mobility were 

observed negative when grown on plates of semi-solid motility test media containing 

0.5 % triphenyltetrazolium chloride (TTC), whereas Shewanella japonica KMM 3299T 

showed fuzzy growth (indicated by pink color) away from the line of inoculation, which 

denoted motility. 

 

The strains were psychrotolerant and stenohaline. Growth was observed between 4 and 

30 °C with best growth at 15-20 °C. Growth on agar media at 4 °C was slower (2-4 d) 

and less prolific than that at 10-25 °C (1 d). No growth was observed for either strain 

above 30 °C. Weak growth was observed for MAR441T and MAR445 at 30 °C in 

marine broth. Strains required Na+ for growth and grew between 0.05 and 0.7 M NaCl 
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(0.3-7 %), with best growth at 0.05-0.5 M NaCl (0.3-3 %). NaCl concentrations below 

or above the optimal range slightly inhibited PUFA synthesis. No growth detected at 8 

% NaCl. However, the two strains grew very well in the medium supplemented with 

only K+ or Fe3+, but poor in the medium supplemented with only Zn2+ or Ca2+. 

 

  
 
Figure 5.1 Scanning electron microscopy (Left, Bar 500 nm) and transmission electron 
microscopy (Right, Bar 500 nm) of a negatively-stained cell of Shewanella sp. 
MAR441 

 

5.4.2 Biochemical identification 

Oxidase- and catalase-positive. Reduces nitrate to nitrite. Arginine dihydrolase and 

lysine decarboxylase are not observed. Haemolytic, produces amylase, esterase (Tween 

20, 40, 80), proteinase (gelatinase), and agarase. Chitin is not hydrolysed. H2S is formed 

from thiosulfate anaerobically. Indole is not formed from L-tryptophan. Voges–

Proskauer test is negative. D-Glucose, glycerol, starch, cellulose, agarose, L-leucine, L-

serine, L-alanine, L-proline, Tween 80, Tween 60 and Tween 40 are utilized as sole 

source of carbon for EPA production (see Chapter 6). Does not utilize D-galactose, D-

fructose, N-acetylglucosamine, succinate, D-mannose, lactose, propionic acid, fumarate 

or L-tyrosine, triacylglycerol, cellulose, chitin, dextran, casein, elastin, DNA or uric 

acid. The following substrates (according to Biolog) are utilized: dextrin, starch, 

cellulose, agarose, Tween 40, 60 and 80, L-arabinose, D-cellobiose, D-Glucose, 

maltose, c-hydroxybutyric acid, a-ketobutyric acid, aketoglutaric acid, a-ketovaleric 

acid, D-saccharic acid, succinic acid, L-alanine, L-alanyl-glycine, L-aspartic acid, L-

glutamic acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-ornithine, L-proline, L-

pyroglutamic acid, L-serine, L-threonine, L-leucine, DL-carnitine, c-aminobutyric acid, 
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urocanic acid, putrescine, pyruvate, 2-aminoethanol, 2,3-butanediol, glycerol, DL-a-

glycerol phosphate, a-D-glucose 1-phosphate and Dglucose 6-phosphate.  

 

 

5.4.3 Molecular identification 

Identification by bacterial 16S rRNA gene sequence analysis showed that strains 

MAR441T and MAR445 exhibited 16S rRNA gene sequence similarity of 92.6-97.9 % 

and 92.5-97.8 % respectively to the type strains of the other 54 Shewanella species. 

Among these, four type strains showed 16S rRNA gene sequence similarity of more 

than 97 % to strains MAR441T and MAR445. Strains MAR441T and MAR445 were 

most closely related (97.9 % and 98.0 % respectively) to Shewanella pacifica KMM 

3597T (AF500075), which were isolated from Sea of Japan, Pacific Ocean with 

production of EPA (Ivanova et al., 2004b); 97.9 % to Shewanella olleyana strain 

ACEM 9T (NR_025123) isolated from a temperate estuary with high lever of EPA 

production (Skerratt et al., 2002); 97.9 % to Shewanella japonica KMM 3299T 

(NR_025012) (Ivanova et al., 2001) and 97.5 % to Shewanella donghaensis strain 

LT17T (AY326275) isolated from deep-sea sediments with high production of PUFAs 

(Yang et al., 2007), and 95.5 % to other type strains Shewanella arctica 40-3T 

(AJ877256), Shewanella baltica OS185 (AJ000216) (Ziemke et al., 1998), Shewanella 

massilia (AJ006084) (Dos Santos et al., 1998), Shewanella gaetbuli isolate UL19 

(AM180742) (Marshall et al., 2006a). However, strain MAR441T was phylogenetically 

affiliated with type strain Shewanella olleyana strain ACEM 9 (NR_025123) in the 

same clade on the phylogenetic tree, although they only shared 16S rRNA gene 

sequence similarity of 97.9 %. Therefore strain MAR441T and MAR445 can be 

considered as a separate species in that 16S rRNA gene sequence showing <98 % 

sequence similarity according to previous studies (Fry et al., 1991; Dighe et al., 2004; 

Janda and Abbott, 2007). Thus we placed these strains in the genus Shewanella, as 

Shewanella sp. strains MAR441T and MAR445. The similarity between MAR441T and 

MAR445 is 99.8 % (Figure 5.2). 
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Figure 5.2  Phylogenetic tree based on 16S rRNA gene sequences of strains MAR441T, 
MAR445 and various most related Shewanella type species was constructed by 
neighbour-joining method using the programs of MEGA package. 1000 trials of 
bootstrap analysis were used to provide confident estimates for phylogenetic tree 
topologies. Bars: 0.005 nucleotide substitution per site.  

 

 

5.4.4 Electricity production 

The strains MAR445 and MAR441T were facultatively anaerobic. Respiratory 

anaerobic growth was supported on a variety of electron acceptors when sodium lactate 

or sodium acetate was used as the electron donor. Electron acceptors used included 

Fe(III) (50 mM ferric citrate or 10 mM amorphous ferric oxides), 10 mM sodium 

nitrate, 25 mM sodium fumarate and sodium nitrite (5 mM) and sodium sulfite (10 mM) 

also supported the growth.  

 

Both strains can grow well anaerobically in peptone-fed two-chamber microbial fuel 

cells (MFCs) when they were cultivated in a fresh anaerobic corresponding growth 

medium with 10 mM peptone as the electron donor. Generally, the microbial fuel cells 

exhibited a lag phase (about 2 days) before voltage started to increase. Figure 5.3 shows 
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the voltage output produced by one of the microbial fuel cells inoculated with 

MAR441T and MAR445 respectively, delivering a stable power output of ~150-200 

mW/m2 for 6 days, and then decreased gradually, probably due to peptone depletion. 

The control microbial fuel cell remained sterile and did not show voltage increase 

(Figure 5.3).  
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Figure 5.3 Voltage output produced by MFCs containing MAR441T culture (filled 
circles) and MAR445 culture (filled triangles). One set-up with no inoculum was also 
operated in parallel as a control (filled diamonds). The experiments were carried out in 
duplicate and values are means of two samples. 

 

5.4.5 Fatty acid compositions 

The fatty acid composition of MAR441T exhibited changes in response to growth 

temperature. Growth at temperatures within or below the optimal region resulted in an 

increased percentage of PUFAs (27.8 % at 4 °C versus 2 % at 25 °C), and a decreased 

proportion of short-chain saturated components (Table 5.1). Both the percentage and the 

quantitative level of EPA decreased markedly at growth temperatures above the optimal 

region (21.4 % at 4 °C versus 0.6 % at 25 °C), indicating that PUFA may play a critical 

role in the modulation of membrane fluidity and the homeostatic adaptation of cellular 

membrane viscosity (Russell and Nichols, 1999). As growth temperature increased, 

MAR441T also demonstrated a novel adaptational response, involving an increase in the 
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percentage of n-13:0 and i-15:0 with corresponding decrease of n-16:1ω7 and n-18:1ω7, 

which might be concerned the role of fatty acid primers selection within this bacterium 

as an adaptational response. 

 

Table 5.1 Temperature dependence of the fatty acid composition of strain MAR441T 
and MAR445 grown in marine broth 2216E medium 

MAR441T    MAR445 

Fatty acids 4 °C 15 °C 15 °Cb 25 °C 4 °C 15 °C 15 °Cb 25 °C 

n-12:0 1.3 2.2 2.2 0.3 2.1 1.9 1.8 2.3 
n-13:0 13.5 23.6 4.2 32.1 20.9 23 6.9 47.5 
n-14:0 3.9 2.9 3.3 2.7 4.1 3.9 4.2 2.1 
n-15:0 3.5 4.5 1.5 1.9 2.3 2.6 0.8 0.3 
n-16:0 5.3 14.5 20.7 12.4 11 12.1 22.5 14.7 
n-17:0 0.3 0.8 0.5 5.7 0.6 0.7 0.5 0.5 
n-18:0 0.5 1.3 0.2 1 0.4 1.3 0.3 1 
Σ SCFA 28.3 49.7 32.6 56 41.4 45.5 68.4 37 
i-13:0 11.6 4.9 6.9 11.2 7.2 7.3 7.8 1.2 
i-14:0 0.7 0.4 0.1 0.2 0.7 0.7 0.4 0.1 
ai-15:0 1.2 0.4 0.2 0.8 0.2 0.1 0.3 0.3 
i-15:0 7.2 10.2 1.2 14.2 12.3 10.3 3.3 1.8 
i-17:0 0.5 0.2 0.2 0.2 - - - - 
Σ BCFA 21.2 16.2 8.6 26.6 20.4 18.4 11.8 3.4 
n-15:1ω6 0.1 0.9 0.2 0.6 0.1 - - - 
n-16:1ω9 - - - - 13.7 14.8 14.5 18.1 
n-16:1ω7 16.9 11.2 30.5 9.3 1.1 0.3 16.4 0.85 
n-17:1ω8 0.2 2.8 9.3 4 0.3 1.5 4 0.8 
n-18:1ω7c 5.2 4.2 16.3 1.1 4.9 5.1 12.1 4.7 
Σ MUFA 23.3 19.7 56.3 15.5 20.1 21.7 47 24.45 
n-18:2ω6t 2.8 1.5 0.1 0.3 0.1 - 0.3 - 
n-18:3ω3 0.3 0.6 - 0.2 0.1 0.3 - 0.9 
n-20:5ω3 21.4 9.5 1.4 0.6 16.6 11.9 2.7 2.4 
n-22:5ω3 0.8 0.3 - 0.1  - 0.4 - 0.3 
Σ PUFA 27.8 14.4 1.5 2 16.8 12.6 3 3.6 
Others 3.9 3 1 1.2 1.3 1.8 1.2 0.1 
Total 100 100 100 100 100 100 100 100 
ACL 16.3 15.5 15.8 14.7 15.6 15.6 15.6 14.6 

EPA (mg g-1)  24.7 9.7 1.4 0.2 17.0 12.1 2.6 2.4 

TFA (mg g-1)  115.2 102.5 99.7 96.5 102.2 101.5 98.5 100.5 

Cells(g l-1) a 2.25 2.6 1.76 0.6 2.3 2.5 1.65 0.9 
aCellular dry weight; bCells were obtained from anaerobic culture; Values are means of 
three samples; ACL, average chain length (calculated after White et al., 2005); SCFA, 
straight chain fatty acids; BCFA, branched chain fatty acids; MUFA, monounsaturated 
fatty acids;  PUFA, polyunsaturated fatty acids; TFA, total fatty acids; EPA, 
eicosapentaenoic acid (n-20:5ω3); and (–), not detectable. 
 

The values of average chain length (ACL) (from 16.29-14.67) and quantitative level of 

EPA decreased with increasing growth temperature (24–0.2 mg g-1 cells dry weight) at 

all growth temperatures from 4-25 °C. When strain MAR441T was cultured 
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anaerobically in marine broth at 15 °C, the MUFAs was greatly increased to 56 % in 

TFAs with accumulating n-16:1ω7 and n-18:1ω7c, by decreasing SCFAs, BCFAs and 

PUFAs, and only with 1.4 % EPA presented. Fatty acid compositions responding to 

different temperatures (4-25 °C) in MAR445 were similar to those of MAR441T, except 

considerable amount of n-16:1ω7 was detected in MAR445. This fatty acid profile of 

both strains was similar to those of related Shewanella species. 

 

5.5 Discussion 

Morphologically, on marine agar plate, strain MAR441T shared most of the similarity 

with Estuary Shewanella species (Skerratt et al., 2002), but with more temperature 

sensitive and showed weak grow above 30 °C and can not produce lipase. 

Biochemically, strain MAR441T can utilize maltose. These are the key differences from 

the two phylogenetically close type strains: KMM 3597T and ACEM 9T (Skerratt et al., 

2002; Ivanova et al., 2004b). Generally, it was believed that flagella-based motility is 

typical of genus Shewanella (Table 5.1), however, this is not universal in that strain 

MAR441T showed no presence of flagella, but only fimbriae on the cell surface. These 

fimbriae were helpful for biofilm formation on a solid surface according to a non-

fimbriae mutant by N-methyl-N′-nitro-N-nitrosoguanidine (NTG) mutation experiment 

(Chapter 6, Figure 6.5).  

 

The presence of EPA is an important physiological and descriptive component that 

allows differentiation between Shewanella species (Skerratt et al., 2002). Strain 

MAR441T is one of the highest EPA bacterial producers by proportions and/or 

quantitative comparing to other high EPA-producing Shewanella species isolated from 

polar, deep sea and estuarine environments (Bowman et al., 1997b; Nichols et al., 1997; 

Kato and Nogi, 2001; Skerratt et al., 2002). The proportion of EPA varied inversely 

with temperature by regulating some other fatty acids, e.g. n-13:0 and i-15:0, for strain 

MAR441T (Table 5.1), indicating that temperature remains the primary controlling 

factor in PUFA synthesis. Production of EPA by some bacteria increases as temperature 

decreases, leading to the hypothesis that these molecules may be important for growth 

at low temperatures (Delong and Yayanos, 1986; Valentine and Valentine, 2004; Amiri-

Jami et al., 2006). Cells must cope with decreases in temperature by modulating the 

composition of their lipid membrane, which can crystallize or enter nonbilayer phases at 

low temperatures (Russell and Nichols, 1999). High content of unsaturated fatty acids 
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was observed from the MAR441T anaerobic culture, probably due to the activation of 

oxygen-independent (anaerobic) pathway catalysed by a fatty acid synthetase (Yano et 

al., 1998). A shortage of oxygen easily occurs in deep-sea environments where reduced 

sulfur compounds or other metals are supplied constantly as final electron acceptor for 

microbes in their respiratory pathway (Woulds et al., 2007).  

 

Strains of Shewanella, especially those metal reducing bacteria, were also found with 

active of power generation since the first direct proof of electrical current generation in 

an MFC by S. putrefaciens IR-1 (von Canstein et al., 2008), by donating electrons to the 

anode directly through outer membrane cytochromes or through the reduction of redox 

mediators (quinones and quinolines) secreted by the bacteria (Lovley, 2006). The power 

density produced by strain MAR441 was competitive comparing to that from strain S. 

oneidensis MR-1 (Watson and Logan, 2010).  

 

Strains MAR441T and MAR445 can be distinguished easily from Shewanella olleyana 

by their capacity to utilize D-glucose and maltose. They can grow at 4 °C or in the 

presence of 6 % NaCl, unlike S. japonica which does not require Na+ ions for growth, 

and unlike S. pacifica can not utilize succinate. A lack of motility and the inability to 

produce lipase also clearly differentiated strains MAR441T and MAR445 from other 

Shewanella species (Table 5.2). Therefore, on the basis of phenotypic, chemotaxonomic 

and phylogenetic data, strains MAR441T and MAR445 represent a distinct species 

within the genus Shewanella, for which the name Shewanella dovemarina sp. nov. is 

proposed. 

 

Description of Shewanella dovemarina sp. nov. 

Shewanella dovemarina (dove.ma`ri.na. N.L. fem. adj. dovemarina from Dove Marine 

Laboratory, Newcastle University, where these strains were isolated). 

 

Growth Cells are rod-shaped, Gram-negative, 1.5-4.5 µm in length, 0.4-0.8 µm in 

diameter and have no flagella. Temperature range for growth is 0-30 °C. Optimum 

temperature for growth was 15 °C. Requires Na+ ions for growth (minimum 0.05 M, 

optimal 0.1-0.5 M, maximum 1.2 M). Oxidase- and catalase positive. Facultatively 

anaerobic chemoheterotroph. Can grow anaerobically by respiration using ferric citrate, 

fumarate, amorphic ferric oxide, nitrate, thiosulfate, trimethylamine N-oxide (TMAO) 

and anthraquinone-2,6-disulfonate (AQDS) as electron acceptors and lactate as an 
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electron donor. Carbohydates are fermented with production of electricity. Nitrate is 

reduced to nitrite in the presence of oxygen. Ornithine decarboxylase, arginine 

dihydrolase and lysine decarboxylase are not observed. Hydrolyses dextrin, starch, 

cellulose, agarose, Tween 40, 60 and 80, L-arabinose, D-cellobiose, D-Glucose, 

maltose, c-hydroxybutyric acid, α-ketobutyric acid, aketoglutaric acid, α-ketovaleric 

acid, D-saccharic acid, succinic acid, L-alanine, L-alanyl-glycine, L-aspartic acid, L-

glutamic acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-ornithine, L-proline, L-

pyroglutamic acid, L-serine, L-threonine, L-leucine, DL-carnitine, c-aminobutyric acid, 

urocanic acid, putrescine, pyruvate, 2-aminoethanol, 2,3-butanediol, glycerol, DL-α-

glycerol phosphate, α-D-glucose 1-phosphate and Dglucose 6-phosphate, but not D-

galactose, D-fructose, N-acetylglucosamine, succinate, D-mannose, lactose, propionic 

acid, fumarate or L-tyrosine, triacylglycerol, cellulose, chitin, dextran, casein, elastin, 

DNA or uric acid. Agarolytic activity is positive. Production of H2S from L-cysteine is 

negative (from API 20E test strip results) but H2S was formed from thiosulfate 

anaerobically. Indole is not formed from L-tryptophan. Voges-Proskauer test is 

negative. Forms tan-pigmented, butyrous in consistency, smooth, and circular and 

convex in shape with an entire edge colonies 2-4 mm in diameter following 2 d 

incubation at 15 °C. Major fatty acids are n-13:0, iso-13:0, iso-15:0, n-16:0, n-16:1ω7, 

n-18:1ω7 and n-20:5ω3 (Table 5.2). Based on 16S rDNA nucleotide sequence analysis, 

the species belongs to the family Alteromonadaceae, order `Alteromonadales' and class 

Gammaproteobacteria'. The type strain is MAR441T isolated from Mid-Atlantic Ridge 

(MAR) “non-vent” sediments at a depth of 2,734 m. 
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Table 5.2 Characteristics that differentiate Shewanella dovemarina from the most phylogenetically related species. 

Phenotypic characteristic 
Shewanella 
dovemarina 

Shewanella 
dovemarina 

Shewanella 
pacifica 

Shewanella 
olleyana 

Shewanella 
japonica 

Shewanella 
donghaensis 

Shewanella 
baltica 

Shewanella 
gaetbuli 

Shewanella 
frigidimarina 

Shewanella 
livingstonensis  

 MAR441T 
MAR445 KMM 

3597T 
ACEM 9T 

KMM 
3299T 

LT17T 
NCTC 
10735T 

TF-27T ACAM 591T LMG 19866T  

Requires Na+ ions for growth + + +  +  - + + + - + 
Growth in NaCl at:           
0 % - - - - + - + - + + 
3 % + + + + + + + + + + 
6 % + + + + - - + - + - 
Growth at 4 °C + + + + - + + - + + 
Growth at 30 °C - + + + + - - + - - 
Growth at 35 °C - - - - + - - + - - 
Ornithine decarboxylase - - - - ND  +  ND + 
NO3          NO2 (+O2) + + + ND + + + - + + 
Production of           
DNase - - ND - + ND + ND + ND 
Amylase + + + + + - - + - - 
Lipase - - + + + + ND + ND + 
Gelatinase + + + - + + + + ND + 
Chitinase - - - - - - ND ND - - 
Utilization of:           
D-Glucose + + + - + - + - + + 
N-Acetylglucosamine - - - - + - + - + - 
Maltose + + ND - + - + - - - 
Sucrose - - ND + - - + - + - 
D-Gluconate  + + ND + - - + - - - 
DL-Lactate - - - - - - ND - + + 
Succinate - - + - - - ND - + ND 
Citrate - - - - - - + - + - 
EPA synthesis + + + + + + - - + - 
Electricity production + + ND ND ND ND ND ND ND ND 
Motile - - + + + + + + + + 
Mol % GC ND ND 40 44 43-44 38.8 46 42 45 41 

+, Test is positive; -, test is negative; d, test results vary amongst strains of the species ; ND, data not available. Data for reference species were taken 
from Bowman et al. (1997), Ziemke et al. (1998), Ivanova et al. (2001), Bozal et al. (2002), Skerratt et al. (2002), Ivanova et al. (2004), Yang et al. 
(2004) and Yang et al. (2007). 
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6 Chapter 6. Optimization of eicosapentaenoic acid production 
by deep-sea strain Shewanella sp. MAR441 
 

6.1 Abstract  

Bacteria capable of producing omega-3 fatty acids have been widely reported. However, 

biotechnological production of bacterial omega-3 is rarely studied. We isolated a strain 

from Mid-Atlantic Ridge (MAR) deep-sea sediments, Shewanella sp. strain MAR441, 

which was phylogenetically unusual, and could produce the highest recorded yields of 

eicosapentaenoic acid (EPA), to date. The strain required Na+ for growth and EPA 

synthesis, cells harvested at late exponential or early stationary phase with higher 

content of EPA. Fatty acid composition was influenced by provision of potential acyl 

chain precursor as sole carbon sources. Both the highest amounts and percentage of 

EPA occurred from growth on L-proline (15 mg g-1 and 15.6 %). The combination 

medium of L-proline and (NH4)2SO4 greatly improved the amount and percentage of 

EPA (20 mg g-1 and 18 %). In the cerulenin-treated cells, decreases in levels of middle-

chain fatty acids and remarkable increases in levels of EPA were observed. 

Monounsaturated fatty acid components and higher content of EPA were concentrated 

in phosphatidylglycerol (PG), while the proportion of branched-chain fatty acids was 

elevated in phosphatidylethanolamine (PE). EPA was also a large component (18.7 %) 

of a non-esterified fatty acid (NEFA) fraction within the total lipid extract of the 

bacterium. 

 

6.2 Introduction 

Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 

20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) play a role in the modulation and 

prevention of human diseases, in particular heart, cardiovascular and Alzheimer's 

disease (Kris-Etherton et al., 2003b). The omega-3 family is found mainly in fish. There 

are, however, potential problems associated with fish oils as a source of PUFA such as: 

taste, odor, stability as well as coextracted contaminants (Arts et al., 2001). 

Nevertheless, the crucial problem of those oils is their sustainability due to the 

worldwide decline of fish stocks (Garcia and Rosenberg, 2010). Therefore, natural 

production of omega-3 by marine microbes is a potential alternative source of nutrients.    

EPA producing microalgae such as Chlorella may be used as an alternative to fish oil, 
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but the cultivation of microalgae require strictly controlled growth conditions in terms 

of nutrients, light quantity and quality, oxygenation and carbon dioxide levels, which 

can result in considerable expense (Seto et al., 1984). In contrast, most bacteria are not 

fastidious, and can often be grown on the waste products of other agricultural or 

industrial processes. 

 

So far, bacterially derived PUFAs were mainly from Gram-negative strains (Valentine 

and Valentine, 2004), which contain limited  genera Shewanella, Moritella, Colwellia, 

Alteromonas, Photobacterium, Flexibacter and Psychroserpens (Nichols and 

McMeekin, 2002). These EPA/DHA derived bacteria include psychrophiles or 

piezophiles were isolated from polar regions and the deep sea (Delong and Yayanos, 

1986; Bowman et al., 1997b; Nogi et al., 1998a; Nichols et al., 1999; Kato and Nogi, 

2001; Gentile et al., 2003; Wang et al., 2009), as well as mesophiles isolated from a 

temperate estuary (Skerratt et al., 2002) and from shallow seawater samples (Ivanova et 

al., 2001; Ivanova et al., 2003a; Frolova et al., 2005). However, it is unclear why these 

bacteria produce omega-3 fatty acids. Production of EPA by some bacteria increases as 

temperature decreases, leading to the hypothesis that these molecules may be important 

for growth at low temperatures (Delong and Yayanos, 1986; Valentine and Valentine, 

2004; Amiri-Jami et al., 2006). Cells must cope with decreases in temperature by 

modulating the lipid composition of their membrane, which can crystallize or enter 

nonbilayer phases at low temperatures (Russell and Nichols, 1999). EPA was not 

required for low-temperature growth in the deep-sea bacterium Photobacterium 

profundum (Allen et al., 1999), but it may be required for low temperature growth in 

Shewanella (Valentine and Valentine, 2004; Sato et al., 2008; Wang et al., 2009).  

 

It has additionally been suggested that bacterial EPA may play an antioxidative role 

(Nishida et al., 2006). Whereas few studies available on the physiology of bacterial 

PUFA production under varying culture conditions (Akimoto et al., 1990; Suzuki et al., 

1991; Suzuki et al., 1992; Henderson et al., 1993; Hamamoto et al., 1994; Nichols et al., 

1994; Bowman et al., 1997b; Nichols et al., 1997; Gentile et al., 2003), which 

highlighted that PUFA biosynthesis, speciation and the interaction of PUFA with other 

fatty acid types in the adaptive responses of bacteria to changing environmental 

conditions could be manipulated. Thus, continued research utilizing a variety of 

bacterial strains is warranted to more fundamentally understand PUFA biosynthesis, 

speciation and adaptive responses.  
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In this study we describe the physiological characterization of a psychrotrophilic strain 

Shewanella sp. MAR441 isolated from the Mid-Atlantic Ridge (MAR) “non-vent” site 

at the depth of 2,500 m. MAR441 was a phylogenetically unusual Shewanella species 

based on conventional phenotypic and phylogenetic analyses (another study). 

Production of PUFA was scored under cultivation with different carbon sources, 

artificial sea water with different concentration of Na+, different time course of the 

culture and at different temperatures, as well as on the cerulenin-treating cells. The acyl 

chain speciation of the major phospholipid classes and non-esterified fatty acid (NEFA) 

fraction in MAR441 are also described. 

 

6.3 Materials and methods 

6.3.1 Bacterial strain and cultivation as methods mentioned in Chapters 2 and 5 

Strain MAR441 was isolated from Mid-Atlantic Ridge (MAR) “non-vent” site at the 

depth of 2,500 m, and was found to be a member of the genus Shewanella based on 

phenotypic characterization, biochemical studies and 16S rRNA gene sequence analysis 

with most closely related to Shewanella olleyana (sequence similarity 97.9 %) (See 

Chapter 5). Strain was routinely cultured in marine 2216E broth (MB) (Difco) before 

inoculation of following growth conditions/media. 

 

6.3.2 Cultivation conditions based on temperature 

The temperature-growth response (4-30 °C) of strain MAR441 was conducted by 

growing in marine broth (MB). Growth was observed and samples collected every day 

for five days, centrifuged and washed with sterile solution. The generation time (g) was 

used to evaluate the cell growth in the exponential phase according to previous methods 

(Zhang and Zeng, 2007). The collected samples were then stored at -20 °C followed by -

80 °C, for fatty acids analysis.  

 

6.3.3 Cultivation conditions based on carbon and nitrogen sources 

Strain MAR441 was grown on various sole carbon sources (L-alanine, L-leucine, L-

proline, L-serine, propionic acid, glucose, glycerol, Tween 80, 60 and 40) and nitrogen 

sources (Urea and (NH4)2SO4) in triplicate or duplicate (see Table 2). Modified media 

for sole carbon source cultures was (Dobson et al., 1991): 0.5 % (w/v) carbon source 
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and 0.01 % (w/v) yeast extract in 0.22 mm filtered and sterilized natural seawater. 

Cultures were incubated at 15 °C, in triplicate 50-ml ZB broths contained within 200-ml 

flasks pre-rinsed in chloroform with orbital shaker (180 rpm) for 36-48 h until sufficient 

mass of estimated late-log phase cells were present for harvest. 

 

6.3.4 Cultivation with cerulenin 

The 10 ml MAR441 seed cultures were used to inoculate 90 ml volumes of marine 

broth contained in 500 ml conical flasks pre-rinsed in chloroform, where the antibiotic, 

cerulenin (MERCK), in 50 % (v/v) ethanol was added at various concentrations (0, 0.5, 

1, 2.5, 5 and 7.5 µg ml-1)  prior to cultivation. Flasks were incubated at 4 and 15 °C 

respectively. The growth of cells was monitored turbidometrically at 600 nm.  

 

6.3.5 Induction of mutations with nitrosoguanidine (NTG)  

Freshly prepared N-methyl-N’-nitro-N-nitrosoguanidine (NTG) (1 mg ml-1 in sterile 

water) was added to the washed culture to a final concentration of 100 g/ml in Tris 

maleic acid buffer at pH 6.0. The bacteria were incubated with NTG for 30 min. The 

NTG-treated cells were grown in nutrient broth to express any mutations that were 

induced. Bacterial colonies were replica-plated in supplemented minimal agar plates. 

 

NTG obtained from Tokyo Kasei Kogyo Co., Ltd. Japan, was used as chemical 

mutagen. The chemical mutagenesis was carried out according to the literature 

(Kotchoni et al. 2003; Liu et al. 2004). Exponentially growing cells of Shewanella sp. 

strain MAR441 were harvested from 3 ml of fermentation broth by centrifuging at 1600 

g for 10 min at room temperature. The pellet was washed twice with 0.85 % NaCl 

solution and then resuspended in 5 ml 0.1 M phosphate buffer, producing a suspension 

containing 105 cfu l−1 (colony forming units l broth−1). The cells were then exposed to 

two NTG concentrations (300 µg l−1 and 500 µg l−1) for 12 hr at 4 and15 °C by adding 

appropriate volumes of NTG stock (720 µg l−1 NTG in 0.1 M phosphate buffer, pH 6.5) 

to the cell suspension in flask. One-millilitre samples of the serially-diluted culture were 

then spread on agar plates for mutant screening. The agar plates were incubated for 2 

days at 4 and 15 °C respectively, and the resulting colonies (more than 1000 colones) 

were taken off the agar plates by random selection based on morphlogy (e.g. size and 

colour), 50 colones was further chose for evaluation of their ability to produce PUFAs. 
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The transformation experiments involving the selected mutants were conducted using 

the culture methods for the parent strain. 

 

6.3.6 Scanning electron microscopy as methods mentioned in Chapter 5 

 

6.3.7 Lipid extraction, preparation of fatty acid methyl esters and analysis 

Samples were harvested by centrifugation (4500 g, 4 °C) and frozen at -20 °C followed 

by -80 °C, before freeze-drying. Freeze dried biomass was accurately weighed, an 

internal standard (2-Terthiophene triheneicosanoin, n-21:0, Sigma) was added. Fatty-

acyl methyl esters were prepared by using the method sulfuric-acid-catalysed trans-

esterification (Komagata and Suzuki, 1987; Christie, 1989). After the transmethylation, 

fatty acid methyl esters were extracted with n-hexane, concentrated under a stream of 

oxygen-free dry nitrogen at 37 °C, to give a total lipid extract (TLE). Fractionation of 

phospholipids from the TLE was accomplished by thin-layer chromatography (TLC). 

Portions of sample TLEs were applied to silica gel plates (Silica gel 60 F254, Merck) 

that had been activated at 100 °C for 1h. Plates were developed in 

CHCl3/MeOH/CH3COOH/H2O (85:15:10:3.5, v/v/v/v). Samples were visualised by 

iodine vapour and identified by comparison with known standards which were 

identified with rhodamine-6-G, ninhydrin and Dragendorff stains (Kates, 1986). The 

lipid classes were separated by silica gel (1:30 w/w of lipid) column chromatography by 

successive elution with chloroform (1:10 m/v of lipid), acetone-methanol (9:1 v/v;1:15 

w/v of lipids) and methanol (1:10 w/v of lipid) to get neutral-(NL), glyco-(GL) and 

phospho-(PL) lipids respectively. All fractions along with total lipids were 

transmethylated using sodium methoxide (0.5 M) to obtain the fatty acid methyl esters 

(FAMEs). Analyses of the FAME preparations were performed with a Hewlett-Packard 

model 7890A GC (Varian CP-3800, Varian, Inc. 2700 Mitchell Drive Walnut Creek, 

CA 94598-1675/USA) equipped with type DB225 capillary column (BPX70, 10 m x 

0.1 mm, 0.2 µm; J & W Scientific, Folsom, Ca, USA) with programmed temperature of 

170 °C–220 °C, a linear increase at 5 °C min-1, injection and detection temperature 

maintained at 250 and 260 °C, respectively, and helium as the carrier gas. GC/MS 

analysis was carried out with Agilent 5975 GC/MS (Agilent Technologies Co., Ltd., 

Palo Alto , USA) equipped with HP-5ms Capillary GC-MS Column (Agilent 19091S-

433, 30 m x 0.25 mm, 0.25 µm), temperature programme 120 °C for 1 min, increased at 

8 °C min-1 to 260 °C, which was maintained for 10 min with He as the carrier gas. MS 
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operating conditions were as follows: electron multiplier, 2,000 V; transfer line, 250 °C; 

electron impact energy, 70 eV; scan threshold, 50; 1.3 scans s21 with a mass range of 50 

to 500 atomic mass units; and solvent delay, 2.35 min. Compounds were identified by 

comparison of their retention times with those of known standards, and sample mass 

spectra data were compared to the mass spectra data of 275, 000 compounds in the 

Wiley 275 spectra library. 

 

 

6.4 Results 

6.4.1 Fatty acid composition of phospholipid classes 

Strain MAR441 is psychrotrophic and showed good biomass production at temperatures 

10-15 °C. The amount of total lipid was 10.3 % of dry cell mass from 10 °C MB 

cultures and the content of phospholipids and neutral lipids were about 82 % and 28 % 

of total lipid, respectively (Table 6.1). As identified by TLC from fractionation of TLEs, 

phosphatidyl ethanolamine (PE) was the dominant lipid class in phospholipids (50 %) 

followed by phosphatidyl glycerol (PG) (40 %). About 5 % of diphosphoglyceride 

(DPG) and 3 % of lysophosphatidylethanolamine (LPE) were also detected with some 

unidentified phospholipids (2 %). The fatty acid compositions of TLEs and their derived 

PE, PG and DPG fractions are shown in Table 6.1. 

  

Table 6.1 Lipid composition of Shewanella sp. strain MAR441 when grown in marine 
broth medium at 10 °Ca 

Biomass (g dry cell l-1) 2.66 

Total lipid (% of dry weight) 12.5 

Neutral lipids (% of total lipids) 28 

Free fatty acid (FFA) (% of total lipids) 15 

Phospholipids (PL) (% of total lipids) 72 

Phosphatidylethanolamine (PE) (% of PL) 50 

Phosphatidylglycerol (PG) 40 

Diphosphatidylglycerol (DPG) 5 

Lysophosphatidylethanolamine (LPE) 3 

Unidentified phospholipid 2 

EPA (% of total lipids) 13.56 

EPA (mg g-1)  16.95 

Lipid g l-1 0.3325 

Lipid (mg g-1)  125 
aThe values are means of three samples. 
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Table 6.2 Distribution of major fatty acid in total and different lipid class in Shewanella 
sp. MAR441 strain when grown in marine broth medium at 10 °C 

Fatty acids TFA FFA DPG PE PG 

n-12:0 2.1 2.2 2.5 0.3 0.5 

n-13:0 22.92 17.6 28.4 24.8 19.5 

n-14:0 4.11 2.85  3.1 3.7 4.2 

n-15:0 2.25 1.3 2.8 1.8 2.7 

n-16:0 10.99 5.5 9.2 10.5 12.2 

n-17:0 0.56 0.1 0.5 0.7 0.5 

n-18:0 0.44 0.1 0.5 0.4 0.3 

Σ SCFA 43.37 29.65  47 42.2 39.9  

i-13:0 7.23 3.9 9.4 8.9 5.7 

i-14:0 0.33 0.67  0.2 0.6 0.3 

ai-15:0 0.68 0.35  1.7 0.6 0.46 

i-15:0 10.29 7.5 15.7 14.5 7.6  

i-17:0 0.2 0.1 0.15 0.4 0.5 

Σ BCFA 18.73 12.52  27.15 25.0 14.6 

n-15:1ω6 0.09 0.88  0.2 1.2 1.3 

n-16:1ω7 13.65 26.5 12.5 12.5 19.4 

n-17:1ω8 0.28 0.3 0.3 0.1 0.5 

n-18:1ω9c 0.53 0.42  0.2 0.45 0.7 

n-18:1ω7c 4.88 4.24  3.5 4.5 6.1 

n-20:1ω9 0.19 0.3 0.1 0.2 0.3 

Σ MUFA 19.62 32.64  16.8 19.0 28.3 

n-18:2ω6t 1.16 2.5 0.7 1.2 0.8 

n-18:3ω6t 0.09 0.2 0.05 - 0.1 

n-18:3ω3 0.11 0.5 0.8 0.2 0.1 

n-18:4ω3 0.31 0.4 0.1 0.6 0.3 

n-20:2 0.08 0.1 - 0.1 0.1 

n-20:3ω6 0.04 0.1 - - - 

n-20:4ω6 0.2 0.2 0.1 0.2 0.1 

n-20:3ω3 0.06 0.2 - 0.1 0.1 

n-20:4ω3 0.59 0.8 - 1.1 0.6 

n-20:5ω3 15.01 18.7 6.5 9.5 14.2 

n-22:2ω6 0.04 0.2 0.1 0.1 - 

n-22:4ω6 0.04 0.1 - - - 

n-22:5ω3 0.49 0.5 0.2 0.35 0.5 

Σ PUFA 18.22 24.5 8.55 13.45 16.9 

Others 0.06 0.69  0.5 0.45 0.34 

Total 100 100  100 100 100 

ACL
a
 15.62 16.02 14.83 15.27 15.79 

 
aACL, average chain length (calculated after White et al., 2005); Values are means of 
three samples; SCFA, straight chain fatty acids; BCFA, branched chain fatty acids; 
MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty acids; TFA, total 
fatty acids; EPA, eicosapentaenoic acid (20:5ω3); and (–), not detectable. 
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There was a near equal proportion of SCFAs within the PE and PG fractions. However, 

PE contained a higher proportion of BCFAs components (25 % PE versus 15 % PG) 

due mainly to a higher percentage of i-13:0 (9 % PE versus 6 % PG) and i-15:0 (15 % 

PE versus 8 % PG). In contrast, PG contained a greater proportion of MUFAs (28 % 

versus 19 %) which was due to slightly higher proportions of all monounsaturated acyl 

species. PUFA were present in both phospholipid classes, although PG contained a 

higher percentage of total PUFAs (17% versus 14%) and EPA (14 % versus 10 %). Free 

fatty acids (FFA) or non-esterified fatty acid (NEFA) was recovered from the TLC 

plates, and found with high content of MUFAs and MUFAs, especially the high content 

of EPA and n-16:1ω7c (18.7 % and 26.5 %, respectively) and with less SCFAs and 

BCFAs. Whereas, DPG contained higher SCFAs and BCFAs, especially n-13:0 and i-

15:0 (28.4 % and 15.7 %, respectively), and less MUFAs and PUFAs, from which 6.5 

% of EPA was also detected. Thus, a mass balance calculation of the percentage of 

EPA, based on a qualitative assessment of probable phospholipid class distribution did 

balance (Table 6.2). 

 

 

6.4.2 Effect of growth temperature 

Strain MAR441 can grow well at the range between 4 to 25 °C with optimal growth 

temperatures at 15 °C but showed poor growth conditions under 30 °C or above under 

atmospheric pressure in marine broth medium (Figure 6.1). After 72 h at 4 °C, the cells 

had reached 5.2 × 108 c.f.u. ml−1; and at 81 h, the amounts of dry cells, total lipids, and 

EPA were 2.25 g, 115.2 mg, and 24.7 mg per litre of culture, respectively. For 10 °C 

MAR441 cells culture, the biomass achieved 6.3 × 108 c.f.u. ml−1 when grown for 72 h, 

the quantitative yield of dry cells, total lipids, and EPA were 2.66 g, 103.1 mg, and 15.5 

mg respectively per litre of culture. While after 50 h at 15 °C, the cells had reached 7.5 

× 108 c.f.u. ml−1; and at 68 h, the amounts of dry cells, total lipids, and EPA were 2.6 g, 

102.5 mg, and 9.7 mg per litre of culture, respectively. Under warmer temperature 25 

°C, the cells had reached 1.2 × 108 c.f.u. ml−1 after 40 h, the amounts of dry cells, total 

lipids, and EPA at 50 h were 1.0 g, 36.5 mg, and 0.2 mg per litre of culture, 

respectively. 
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Figure 6.1 Growth curves of strain MAR441 with shaking at various temperatures 
under atmospheric pressure in marine broth medium. The experiments were carried out 
in duplicate and values are means of two samples. 

 

The effect of growth temperature on the percentage composition of individual fatty 

acids in MAR441 grown between 4 – 25 °C is shown in Table 6.3. Growth at 

temperatures 4 °C to 10 °C below the optimal growth temperature region 15–20 °C, 

resulted in a higher percentage of EPA and n-16:1ω7c, and generally a lower percentage 

of n-13:0 and n-16:0 compared to growth within 15 °C or above 20 °C the optimum 

growth temperature region. Growth within the optimal region resulted in the highest 

percentage of n-15:0 and n-16:0, while iso-tridecanoic acid (i-13:0) and the sum of 

monounsaturated fatty acids were at their lowest level. At growth temperatures above 

the optimal region, the percentage of iso-pentadecanoic acid (i-15:0), n-17:0, n-17:1ω8 

and were maximal, while the percentage of n-13:0 increased with increasing growth 

temperature. With increasing temperature from 4 ºC to 25 ºC, the proportion of 

monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) 

decreased, with the increasing of straight chain fatty acids (SCFAs), whereas, the 

branched chain fatty acids (BCFAs) at its lowest point when at 15 °C. The values of 

average chain length (ACL) (from 16.29-14.67) and quantitative level of EPA decreased 

with increasing growth temperature (24–0.2 mg g-1 cells dry weight) at all growth 

temperatures from 4-25 °C (Figure 6.2). 
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Table 6.3 Temperature dependence of the fatty acid composition of Shewanella sp. 
MAR441 grown in marine broth medium 

Temperatures Percentage composition 
Fatty acids 4 °C 10 °C 15 °C 20 °C 25 °C 
n-12:0 1.3 2.1 2.2 2.5 0.3 
n-13:0 13.5 22.9 23.6 30.4 32.1 
n-14:0 3.9 4.1 2.9 2.1 2.7 
n-15:0 3.5 2.3 4.5 2.2 1.9 
n-16:0 5.3 11.0 14.5 12.2 12.4 
n-17:0 0.3 0.6 0.8 2.5 5.7 
n-18:0 0.5 0.4 1.3 1.1 1.0 
Σ SCFA 28.3 43.4 49.7 53.0 56.0 
i-13:0 11.6 7.2 4.9 7.1 11.2 
i-14:0 0.7 0.3 0.4 0.2 0.2 
ai-15:0 1.2 0.7 0.4 0.2 0.8 
i-15:0 7.2 10.3 10.2 12.7 14.2 
i-17:0 0.5 0.2 0.2 1.2 0.2 
Σ BCFA 21.2 18.7 16.2 21.4 26.6 
n-15:1ω6 0.1 0.1 0.9 0.3 0.6 
n-16:1ω7 16.9 13.7 11.2 10.2 9.3 
n-17:1ω8 0.2 0.3 2.8 3.5 4.0 
n-18:1ω9c 0.6 0.5 0.4 0.2 0.3 
n-18:1ω7c 5.2 4.9 4.2 1.2 1.1 
n-20:1ω9 0.4 0.2 0.2 0.3 0.1 
Σ MUFA 23.3 19.6 19.7 15.7 15.5 
n-18:2ω6t 2.8 1.2 1.5 0.5 0.3 
n-18:3ω6t 0.2 0.1 0.2 - 0.4 
n-18:3ω3 0.3 0.1 0.6 0.8 0.2 
n-18:4ω3 0.7 0.3 0.3 - - 
n-20:2 0.2 0.1 0.2 0.5 0.2 
n-20:3ω6 0.1 0.0 - - - 
n-20:4ω6 0.2 0.2 0.1 - - 
n-20:3ω3 0.1 0.1 0.4 0.3 0.1 
n-20:4ω3 0.7 0.6 0.7 - - 
n-20:5ω3 21.4 15.0 9.5 5.6 0.6 
n-22:2ω6 0.1 0.0 0.3 0.8 0.1 
n-22:4ω6 0.2 0.0 0.2 0.6 0.1 
n-22:5ω3 0.8 0.5 0.3 0.4 0.1 
Σ PUFA 27.8 18.2 14.4 9.5 2.0 
Others 0.4 0.1 0.1 0.4 0.0 
Total 100.0 100.0 100.0 100.0 100.0 
ACL 16.29 15.62 15.52 15.04 14.67  
EPA (mg g-1)  24.7 15.48 9.7  5.6 0.6  
TFA (mg g-1)  115.2 103.1 102.5  100.7 96.5  
Cells(g l-1) a 2.25 2.66 2.6 2.4 0.6 

a Cellular dry weight; Values are means of three samples; ACL, average chain length 
(calculated after White et al., 2005); SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, eicosapentaenoic acid (20:5ω3); and (–), not 
detectable. 
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Figure 6.2 Change in average chain length (ACL, triangles) and relative proportion of 
whole cell FAs in Shewanella sp. MAR441 grown at 4, 10, 15, 20 and 25 °C in marine 
broth medium. Straight chain fatty acids (SCFAs, filled circles), branched chain fatty 
acids (BCFAs, filled boxes), monounsaturated fatty acids (MUFAs, open boxes); 
eicosapentaenoic acid (EPA, open circles). The experiments were carried out in 
triplicate and values are means of three samples based on Table 6.3. 

 

6.4.3 Time course of cell growth and FAs production 

Fatty acids are intracellular products in Shewanella sp. MAR441 shows a typical time 

course of EPA production by Shewanella sp. MAR441 suspension culture in MB 

medium at 15 °C (Figure 6.3, Figure 6.4 and Table 6.4). The increase in lipid and EPA 

content parallels that of cell growth (Figure 6.3).  

 
Figure 6.3 Time period of cell growth (filled circles) and quantitative yield of whole 
cell TFAs and EPA in Shewanella sp. MAR441 grown in marine broth medium at 15 °C 
during the time period. Total fatty acids (TFAs, open boxes); eicosapentaenoic acid 
(EPA, open circles) and optical density 600 nm (O.D. 600 nm, filled circles).	 The 
experiments were carried out in triplicate and values are means of three samples based 
on Table 6.4. 
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After 36 hrs of cultivation, the cells entered the late exponential or early stationary 

phase and the content of TFAs, PUFAs and EPA reached their maximum of 103.1 mg g-

1, 17.7 mg g-1and 15.48 mg g-1 respectively, when EPA in its highest content of 15 % in 

TFAs. In this experiment, 5 % culture inoculum was used, and the maximum TFAs 

concentration reached about 113 mg g-1 after 60 hrs culture, with ca. 16.8 mg g-1 of 

PUFA and 13.4 mg g-1 of EPA, when the percentage of EPA dropped to 12 % in TFAs. 

The TFAs and EPA maintained a stable quantitative yield of 90-12 mg g-1 and 11-15 mg 

g-1 for 60 hours from 24 hr to 84 hr time period culture, during which the percentage 

composition of SCFAs, BCFAs, MUFAs, PUFAs and EPA was kept at a relative stable 

levers of 41-46 %, 19-22 %, 18-20 %, 13-17 % and 10-15 % respectively, and the 

average chain length remained more or less constant from 15.21-15.73. However, an 

increase in cell growth during the exponential phase led to a decrease in SCFAs from a 

high lever of 60-43 % in favour of BCFAs, MUFAs and PUFAs, due to the great 

decrease of n-13:0 with a corresponding increase of n-16:0, i-C15:0, n-16:1ω7 and 

EPA, which contributing the increase of average chain length. Interestingly, the cell 

death during the later stationary phase and decline phase of cell culture led to a great 

increase in SCFAs from 50-73 % at the expense of BCFAs, MUFAs and PUFAs, due to 

a surprising rise of n-13:0 from 29-63 %, which was accompanied by a decrease of n-

16:0, i-15:0, n-16:1ω7 and EPA, as well as the average chain length (Figure 6.4). 

 
Figure 6.4 Change in average chain length (ACL, triangles) and relative proportion of 
whole cell FAs in Shewanella sp. MAR441 grown in marine broth medium at 15 °C 
during the time period. Straight chain fatty acids (SCFAs, filled circles), branched chain 
fatty acids (BCFAs, filled boxes), monounsaturated fatty acids (MUFAs, open boxes); 
and eicosapentaenoic acid (EPA, open circles). The experiment was carried out in 
Values are means of three samples based on Table 6.4. 
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Table 6.4  Fatty acid composition of Shewanella sp. MAR441 during the time course of 
cell growth in marine broth medium at 15 °C 

Time period Percentage composition 

Fatty acids 12hr 18hr 24hr 36hr 42hr 48hr 60hr 66hr 72hr 84hr 96hr 108hr 132hr 

n-12:0 2.76 2.16 2.2 2.1 1.8 1.7 2.6 2.7 3.3 2.9 2.7 1 0.2 

n-13:0 42.09 37.6 31.92 22.92 20.6 21.1 22.5 24.1 23.5 29.2 33.5 40 63.1 

n-14:0 3.79 3.49 5.11 4.11 4.5 4.9 4.6 4.2 4.1 4.1 4.4 3.4 1.7 

n-15:0 1.71 1.77 2.12 2.25 2.6 2.1 2.4 2.4 2.7 1.3 0.3 0.5 0.6 

n-16:0 7.76 8.5 9.6 10.99 11.2 10.8 9.7 10.9 12.5 12.7 11.7 9.5 5.3 

n-17:0 0.33 0.31 0.87 0.56 0.6 0.3 0.5 0.6 0.5 0.3 0.1 0.59 0.6 

n-18:0 1.75 1.7 0.42 0.44 0.5 0.45 0.3 0.4 0.3 0.2 0.1 1 1.5 

Σ SCFA 60.19 55.53 52.24 43.37 41.8 41.35 42.6 45.3 46.9 50.7 52.8 55.99 72.9 

i-13:0 6.34 5.12 6.1 7.23 8.23 8.5 9.1 8.2 7.1 6.5 5.1 5.3 2.7 

i-14:0 0.72 0.62 0.58 0.68 0.8 0.7 0.6 0.5 0.5 0.55 0.5 0.24 0.2 

ai-15:0 0.72 0.72 0.3 0.2 0.5 0.6 0.5 0.7 0.9 0.6 0.4 1.1 0.1 

i-15:0 5.35 4.7 6.7 10.29 12.2 11.6 11.7 12.3 11.8 9.8 8.9 4.93 4.9 

i-17:0 0.33 0.31 0.43 0.33 0.21 0.22 0.2 0.2 0.2 0.25 0.2 0.65 0.7 

Σ BCFA 13.46 11.47 14.11 18.73 21.94 21.62 22.1 21.9 20.5 17.7 15.1 12.22 8.7 

n-15:1ω6 0.12 0.11 0.07 0.09 0.1 0.2 0.3 0.3 0.2 0.2 0.2 0.1 0.1 

n-16:1ω7 10.64 14.1 12.65 13.65 14.2 15 14.4 13.2 13.5 13.3 13.4 14.3 6.1 

n-17:1ω8 0.18 0.16 0.23 0.28 0.42 0.4 0.8 0.7 0.4 0.4 0.3 0.1 0.1 

n-18:1ω9c 0.38 0.25 0.45 0.53 0.4 0.3 0.5 0.3 0.2 0.2 0.2 0.1 0.3 

n-18:1ω7c 2.43 2.11 3.88 4.88 4.7 4.7 4.3 4.1 5.2 4.8 4.5 3.3 1.5 

n-20:1ω9 0.32 0.32 0.23 0.19 0.23 0.3 0.2 0.3 0.3 0.25 0.2 0.1 0.4 

Σ MUFA 14.07 17.05 17.51 19.62 20.05 20.9 20.5 18.9 19.8 19.15 18.8 18 8.5 

n-18:2ω6t 0.36 0.38 0.23 0.11 0.21 0.22 0.25 0.3 0.2 0.3 0.5 0.5 0.7 

n-18:3ω6t - - 0.29 0.09 0.04 0.1 0.1 0.1 0.1 0.1 - - 0.7 

n-18:3ω3 0.37 0.35 0.3 0.11 0.13 0.14 0.15 0.2 0.1 0.1 0.6 0.8 0.4 

n-18:4ω3 0.21 0.24 0.28 0.31 0.27 0.3 0.5 0.45 0.3 0.3 0.4 0.2 - 

n-20:2 0.3 0.32 0.18 0.08 0.08 0.05 0.1 0.15 0.1 0.2 0.3 0.7 0.7 

n-20:3ω6 0.1 - 0.14 0.04 0.05 0.07 0.1 0.12 0.1 0.3 0.5 0.3 0.4 

n-20:4ω6 - 0.11 0.23 0.2 0.14 0.15 0.18 0.2 0.25 0.2 - - - 

n-20:3ω3 0.69 0.71 0.66 0.06 0.08 0.08 0.1 0.11 0.2 0.3 0.4 0.5 0.5 

n-20:4ω3 0.23 0.26 0.34 0.59 0.49 0.53 0.63 0.53 0.5 0.4 0.1 0.1 0.1 

n-20:5ω3 8.84 12 12.3 15.01 13.2 13.2 11.9 10.9 10 9.6 9.5 9.1 5.5 

n-22:2ω6 - - - 0.04 0.05 0.08 0.1 0.1 0.1 0.1 - - - 

n-22:4ω6 0.12 0.11 0.08 0.04 0.03 0.04 0.05 0.05 0.1 0.3 0.5 0.3 0.5 

n-22:5ω3 0.25 0.23 0.37 0.49 0.35 0.4 0.5 0.6 0.5 0.2 0.3 0.1 0.3 

Σ PUFA 11.47 14.71 15.4 17.17 15.12 15.36 14.7 13.81 12.6 12.4 13.1 12.6 9.7 

Others 0.81 0.74 0.74 1.11 1.09 0.77 0.14 0.09 0.25 0.8 0.21 0.89 0.0 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100.0 

ACL 14.9 15.2 15.42 15.73 15.63 15.67 15.6 15.55 15.5 15.21 15.1 15.04 14.5 

EPA (mg g-1)  6.9 9.6 11.1 15.48 14.1 14 13.4 12.1 11.2 10 8.5 7.7 4.7 

TFA (mg g-1)  78.1 80.2 89.5 103.1 106.8 106.6 113 111 112 105 89.5 84.6 85.4 

Cells(g l-1) a 0.6 0.8 1.4 1.96 2.42 2.66 2.7 2.68 2.7 2.6 2.5 2.2 2.2 

a Cellular dry weight; Values are means of three samples; ACL, average chain length 
(calculated after White et al., 2005); SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); and (–), not 
detectable. 
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6.4.4 Effect of Na+ on cell growth and PUFA production 

This bacterium required Na+ for growth, growth occurred at Na+ concentrations ranging 

from 0.051 M (0.3 %) to 1.197 M (7 %) with an optimum between 0.051 and 0.513 M 

(3 %), which is consistent with the sea-water environment containing about 19.45 g l-1 

Na+;  the growth was inhibited at Na+ concentrations above 1.368 M (8 %). Effects of 

different concentrations of sodium chloride were supplemented to the regular ZB 

medium and their involved in biomass formation, fatty acid biosynthesis and 

desaturation reactions were investigated (Table 6.5 and Figure 6.5).  

 

 

Figure 6.5 Quantitative yield of biomass (triangles), TFA and EPA in Shewanella sp. 
MAR441 grown in ZB medium at 15 °C with various concentration of NaCl. Total fatty 
acids (TFAs, open boxes); eicosapentaenoic acid (EPA, open circles). The experiments 
were carried out in triplicate and values are means of three samples based on Table 6.5. 

  

A change in biomass formation was observed between cultures within optimum Na+ 

concentrations and cultures without Na+ or with high Na+ concentrations. Growth 

inhibition was noted with NaCl at a concentration less of 0.3 % or with concentration 

more than 7 %. 1.7-2.2 g l-1 biomass and 2-10 mg g-1 EPA were achieved when the Na+ 

in the ZB medium were controlled between 0.051-0.684 M, while only 0.4-1.0 g l-1 

biomass and 0-0.18 mg g-1 EPA were produced when the medium were supplemented 

without or with high concentration of Na+ (>0.85 M). When the ZB medium was 

prepared using distilled water to make no any metallic ions were added, and very low 

percentage composition (0.2 %) of EPA was produced by MAR441 cells, and with high 

lever of SCFAs (64.5 %). As the ZB medium supplemented with Na+ from low 
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concentration (0.3 %), which resulting in a great decrease of SCFAs in favour of 

BCFAs, MUFAs and PUFAs, due to the great decrease of n-13:0 with a corresponding 

increase of n-14:0, n-16:0, i-13:0, n-16:1ω7, n-18:1ω7 and EPA, which contributing the 

increase of average chain length from 14.27 to 15.32. The productivity of EPA was 

significantly increased from 0.4 % to 8.6 % when only 0.3 % Na+ was supplemented. 

EPA reached its maximum when the concentration of Na+ was maintained at 0.5 % with 

proportion of 15.4 % in TFAs. However, the increasing supplemented of Na+, the led to 

a decrease in the percentages of EPA from 15.4 % to 0.4 % when 7 % of Na+ was added 

in the medium. Nevertheless, in 0.5-3 % of Na+ supplemented ZB medium, the 

percentage composition of SCFAs, BCFAs, MUFAs and PUFAs in MAR441 cells was 

more or less maintained at stable levers. However, growth on 4-7 % of Na+ 

supplemented ZB medium increased the proportion of SCFAs, which accompanied by a 

decrease in the percentages of BCFAs, MUFAs and PUFAs, and this was mirrored by a 

corresponding decrease of average chain length (Figure 6.6). 

 

 

Figure 6.6 Change in average chain length (ACL, triangles) and relative proportion of 
whole cell FAs in Shewanella sp. MAR441 grown in ZB medium at 15 °C with various 
concentration of NaCl. Straight chain fatty acids (SCFAs, filled circles), branched chain 
fatty acids (BCFAs, filled boxes), monounsaturated fatty acids (MUFAs, open boxes); 
eicosapentaenoic acid (EPA, open circles). The experiments were carried out in 
triplicate and values are means of three samples based on Table 6.5. 
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Table 6.5 Fatty acid composition of Shewanella sp. MAR441 grown on various 
concentration of NaCl in ZB liquid medium at 15 °C 

Fatty acids Percentage composition 

NaCl (%) 0 0.3 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 7.0 

n-12:0 0.7 3.0  1.9  2.8  1.7  2.3  1.8  2.0  2.8  3.5  1.7  

n-13:0 56.2  25.2  20.0  18.5  19.1  20.1  22.5  24.1  27.5  32.4  43.9  

n-14:0 0.9  4.4  3.9  4.4  2.9  3.3  3.0  2.9  3.0  3.1  0.9  

n-15:0 0.8  2.8  2.6  2.1  3.2  4.2  4.9  4.5  2.4  0.8  0.9  

n-16:0 4.2  8.4  12.1  12.4  11.3  9.1  8.3  8.1  4.7  2.2  6.7  

n-17:0 0.2  0.5  0.7  0.2  1.5  1.5  1.2  0.8  2.8  3.5  1.4  

n-18:0 1.5  2.1  1.3  2.0  2.2  1.5  1.2  1.3  2.2  2.8  2.0  

Σ SCFA 64.5  46.4  42.4  42.4  41.9  42.0  42.9  43.6  45.4  48.3  57.5  

i-13:0 5.5  6.4  7.3  6.7  6.4  7.4  7.7  7.7  4.4  0.1  0.2  

i-14:0 0.6  0.5  0.7  0.3  0.5  0.5  0.3  0.4  0.2  0.2  0.2  

ai-15:0 0.2  0.5  0.7  0.4  0.5  0.6  0.5  0.4  0.3  0.2  0.2  

i-15:0 14.2  12.0  10.5  9.8  9.7  9.6  10.5  9.4  7.9  4.0  2.0  

i-17:0 1.4  0.1  0.2  0.1  0.2  0.1  0.1  0.1  0.1  0.2  0.3  

Σ BCFA 21.8  19.5  19.3  17.3  17.2  18.2  19.1  18.1  12.9  4.7  2.9  

n-15:1ω6 1.8  - - 0.5  0.5  0.6  0.8  0.9  6.9  8.1  9.3  

n-16:1ω7 5.3  12.2  15.2  16.2  16.2  15.7  14.8  16.7  18.0  19.2  22.4  

n-17:1ω8 0.2  2.5  1.5  2.5  3.9  5.3  4.8  3.0  0.5  0.2  0.3  

n-18:1ω9c 0.5  0.2  0.6  0.5  0.5  0.2  0.5  0.4  0.3  0.2  0.2  

n-18:1ω7c 1.9  7.6  5.1  5.6  5.5  5.3  5.9  6.1  6.4  7.2  3.3  

n-20:1ω9 0.5  0.1  0.1  0.2  0.2  0.1  0.1  0.2  0.3  0.3  0.4  

Σ MUFA 10.1  22.6  22.5  25.5  26.9  27.2  26.9  27.3  32.4  35.2  35.9  

n-18:2ω6t - 0.2  0.3  0.8  0.8  0.6  0.7  0.5  1.0  1.5  0.1  

n-18:3ω6t - 0.2  0.3  0.3  0.3  0.3  0.1  0.2  0.2  - - 

n-18:3ω3 1.0  0.3  0.3  0.8  0.9  1.0  0.4  0.6  0.6  1.8  0.1  

n-18:4ω3 - 0.5  0.6  0.7  0.7  0.6  1.7  1.3  - - - 

n-20:2 1.0  0.3  0.4  0.8  0.7  0.5  0.2  0.2  1.2  1.5  1.7  

n-20:4ω6 - 0.1  0.2  0.2  0.1  0.1  0.1  0.1  0.1  - - 

n-20:3ω3 0.6  0.1  0.2  0.5  0.7  0.7  0.2  0.4  0.8  1.3  0.4  

n-20:4ω3 - 0.5  0.7  0.6  0.6  0.5  0.5  0.7  - - - 

n-20:5ω3 0.2  8.6  11.9  8.6  7.8  6.8  6.2  5.8  3.2  1.6  0.4  

n-22:2ω6 0.3  0.1  0.1  0.4  0.4  0.4  0.1  0.3  0.8  0.8  0.3  

n-22:4ω6 0.3  0.1  0.1  0.5  0.3  0.2  0.2  0.2  0.9  0.6  0.3  

n-22:5ω3 0.2  0.3  0.4  0.4  0.5  0.3  0.3  0.3  0.4  0.4  0.3  

Σ PUFA 3.6  11.3  15.4  14.6  13.9  12.0  10.7  10.6  9.2  9.5  3.7  

Others 0.0  0.2 0.4 0.2 0.2 0.6 0.4 0.4  0.2  0.1 0.0  

Total 100 100 100 100 100 100 100 100 100 100 100 

ACL 14.27 15.32 15.58 15.63 15.69 15.42 15.32 15.28 15.26 14.93 14.77 

EPA (mg g-1)  0.14 6.02 10.2 6.92 6.24 5.3 4.65 4.2  2.18 1.04 0.18 

TFA (mg g-1)  68.1 70.1 85 80.5 80 78 75 70.5  68.2  65.3 45.3 

Cells(g l-1) a 0.7 2 2.1 2.2 2.24 2 1.9 1.82 1.74 1.02 0.42 
a Cellular dry weight; Values are means of three samples; ACL, average chain length 
(calculated after White et al., 2005); SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, eicosapentaenoic acid (20:5ω3); and (–), not 
detectable. 
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6.4.5 Effect of sole carbon and nitrogen source on FAs  

To elucidate global adaptation mechanisms of membrane fatty acids in strain MAR441 

in response to growth at a low temperature on seven different carbon sources, the degree 

of saturation (i.e. saturated/unsaturated ratio), the degree of polyunsaturation (i.e. 

PUFA/MUFA ratio) and average chain length (ACL) of fatty acids were determined and 

compared. The results obtained are summarized in Table 6.6. 

 

The changes in fatty acid composition of MAR441 grown on various sole 

carbon/nitrogen sources at 15 °C are shown in Table 6.5. Growth on L-leucine, L-

alanine, L-serine, L-proline, glucose, glycerol, pyruvate, Tween 80, Tween 60, Tween 

40, urea and (NH4)2SO4 produced a fatty acid composition similar to that obtained in 

complex media MB or ZB. Only some differences in percentage composition or the 

quantitative level of TFA were apparent.  

 

Growth on complex media MB or ZB achieved high production of n-16:1ω7 (14 %) and 

EPA (13-15 %). However, MB media contributed less production of SCFAs, such as n-

13:0 (23 % versus 36 %), which was mirrored by a corresponding increase in BCFAs 

due to the higher amount of i-13:0 (7 % versus 3 % for ZB) and i-15:0 (10 % versus 3 

%), as well as by a higher quantitative yield of EPA (15.5 mg g-1 versus 14.2 mg g-1) but 

with similar value of average chain length (15.57 versus 15.49). PUFA levels produced 

by MAR441 strain in MB and ZB (0.91 and 1.11 of polyunsaturation degree) were 

substantially higher compared with other organic substrates, where almost equal 

quantities of PUFA have been observed (0.1–0.86 of polyunsaturation degree). 

 

Growth on L-alanine and L-serine produced a very similar fatty acid percentage 

composition as well as average chain length (15.39 versus 15.38), with very low 

proportion of n-13:0 (24-26 % versus 32-51 % for other carbon sources excluding 

glycerol). This was accompanied by a rise in the percentages of other fatty acids with 

different levels, especially on n-16:1ω7 (11-15 %) and EPA (11-13 %). However, 

grown on L-alanine led to higher quantitative yield of EPA (12.57 mg g-1 versus 11.13 

mg g-1). 
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Table 6.6  Fatty acid composition of Shewanella sp. MAR441 grown on various sole 
carbon/nitrogen sources at 15 °C 

Medium Percentage composition 

Fatty acids ZB1 MB ZB NC Ala Leu Pro Ser Pyr Glu Gly T 80 T 60 T 40 Urea NH4 

n-12:0 2.3 2.1 1.6 1.9 2.9 1.2 2.2 2 2.4 2.4 2.8 0.3 2.7 3.3 1 0.5 

n-13:0 25 22.92 36.4 48.4 24.6 45.7 32.2 26.7 30.1 36.3 21 23.2 25.7 23.1 42.7 51.1 

n-14:0 3.3 4.11 4.1 2.8 4.2 2.4 3.3 3.6 4.8 3.2 3.5 2.6 3.6 1.7 2.2 0.8 

n-15:0 0.7 2.25 1.4 1.1 2.3 - 1.1 2.6 1.4 2 1.1 0.2 0.4 0.1 0 1.2 

n-16:0 13.8 10.99 9.2 8.3 10.7 7.2 9.7 11.6 11.8 9.8 11.1 8.1 10.8 7.2 8.2 6.3 

n-17:0 0.6 0.56 0.3 1.9 1.5 1.5 2.2 2.5 0.5 1.5 2.9 0.6 1 0.4 1.2 2.1 

n-18:0 1.9 0.44 2.4 3.1 1.9 2.5 2.3 4.2 2.1 2.8 1.2 3.1 33.3 15.4 3.2 2 

Σ SCFA 47.6 43.37 55.4 67.5 48.1 60.5 53 53.2 53.1 58 43.6 38.1 77.5 51.2 58.5 64 

i-13:0 2.6 7.23 3.6 6.8 9.8 7.8 4.3 8.3 6.6 6.7 3.4 3 1.9 3.4 7.8 6.7 

i-14:0 0.9 0.33 0.4 0.2 0.3 0.5 0.2 0.1 0.4 0.6 0.4 0.6 0.2 0.15 0.2 0.25 

ai-15:0 0.2 0.68 0.3 0.1 0.1 0.15 0.2 0.3 0.2 0.5 0.1 0.3 0.3 0.2 0.23 0.3 

i-15:0 2.5 10.29 3 1.7 6 6.5 4.4 6 4.3 4 4.6 2.5 0.5 3.7 5.1 4 

i-17:0 0.2 0.54 0.4 0.44 0.15 0.24 0.21 0.5 0.38 0.49 0.42 1.2 0.11 0.15 0.36 0.13 

Σ BCFA 6.4 19.07 7.7 9.24 16.35 15.19 9.31 15.2 11.88 12.29 8.92 7.6 3.01 7.6 13.69 11.38 

n-15:1ω6 0.1 0.09 - 0.2 0.26 0.3 0.1 0.5 0.4 0.3 0.1 - 0.5 0.7 0.2 0.1 

n-16:1ω7 20.4 13.65 14.1 10.5 14.6 9.1 11.3 11.4 13.6 12.1 28.8 10.6 5.4 24.7 8.9 6.2 

n-17:1ω8 0.1 0.28 0.2 2.2 2.3 2.2 1.6 1.2 0.6 1.2 0.7 1.3 2 1.5 2.1 3 

n-18:1ω9c 0.3 0.53 0.3 0.1 0.3 0.2 0.1 0.1 0.2 0.3 0.2 35.3 0.4 0.6 0.2 0.5 

n-18:1ω7c 4 4.88 2.8 4.4 3.3 2.1 7.1 4.8 6.1 3.6 4.4 1.5 3.8 4.5 6.4 2.5 

n-20:1ω9 0.4 0.19 0.1 0.3 0.2 0.6 0.1 0.2 0.4 0.2 0.5 0.1 0.1 - 0.2 0.4 

Σ MUFA 25.3 19.62 17.5 17.7 20.96 14.5 20.3 18.2 21.3 17.7 34.7 48.8 12.2 32 18 12.7 

n-18:2ω6t 0.5 1.16 0.7 0.27 0.15 0.25 0.11 0.13 0.14 0.15 0.2 0.1 0.35 0.21 0.54 0.3 

n-18:3ω6t 0.5 0.09 0.7 0.2 0.25 0.38 0.31 0.27 0.3 0.5 0.45 0.35 0.24 - 0.21 - 

n-18:3ω3 0.2 0.11 0.1 0.2 0.12 0.28 0.08 0.21 0.15 0.25 0.4 0.15 0.3 0.6 0.53 0.7 

n-18:4ω3 0.4 0.31 0.8 0.15 - 0.17 0.04 0.15 0.2 0.1 0.1 0.2 0.5 0.34 0.22 0.4 

n-20:2 0.5 0.08 0.5 0.3 0.25 0.33 0.2 0.14 0.15 0.48 0.2 0.1 - 0.4 0.1 - 

n-20:3ω3 0.3 0.06 0.1 0.29 0.41 0.26 0.06 0.28 0.08 0.1 0.1 0.2 0.4 0.7 0.5 0.5 

n-20:4ω3 0.3 0.59 0.2 0.35 0.26 0.54 0.59 0.49 0.53 0.63 0.53 0.5 0.1 0.3 0.1 0.1 

n-20:5ω3 17.6 15.01 13.8 3.4 12.8 6.4 15.6 11 11.4 9.4 10.2 3.2 4.5 5.6 6.2 8.5 

n-22:4ω6 0.1 0.04 2.2 0.3 0.2 1.1 0.2 0.4 0.35 0.2 0.1 0.6 0.75 0.8 1.3 1.2 

n-22:5ω3 0.3 0.49 0.3 0.1 0.15 0.1 0.2 0.33 0.42 0.2 0.5 0.1 0.15 0.25 0.11 0.25 

Σ PUFA 20.7 17.94 19.4 5.56 14.59 9.81 17.39 13.4 13.72 12.01 12.78 5.5 7.29 9.2 9.81 11.9 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

ACL 15.91 15.57 15.49 14.53 15.39 14.73 15.58 15.38 15.32 15.03 15.62 16.16 16.03 15.79 14.91 14.79 

EPA (mg g-1)  20.28 15.48 14.2 1.9 12.57  5.68  15.23 11.13 11.00 9.94  10.66  7.26  4.06  5.18  5.90  8.19  

TFA (mg g-1)  115.2 103.1 102.5 55.3 98.2 88.7 97.6 101.2 96.5 105.7 104.5 88.5 90.2 92.5 95.1 96.3 

Cells(g l-1)a 3.1 2.66 2.6 0.75 1.95 2.1 2 1.85 2 2.3 2.2 1.65 1.7 1.5 1.8 1.85 

a Cellular dry weight; Values are means of three samples; ACL, average chain length 
(calculated after White et al., 2005); SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); and (–), not 
detectable. ZB1: ZB supplemented with L-proline and (NH4)2SO4; MB, Marine broth; 
ZB, Zobell broth; NC, Negative control; Ala, Alanine; Leu, Leucine; Pro, Proline; Ser, 
Serine; Pyr, Pyruvate; Glu, Glucose; Gly, Glycerol; T80, Tween 80; T60, Tween 60; 
T40, Tween 40; NH4

+, (NH4)2SO4. 
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Growth on L-leucine resulted in the highest production of n-13:0 (45.7 % versus 21-41 

% for other carbon sources) and i-15:0 (6.5 %) at the expense of MUFAs and PUFAs, 

e.g. n-16:1ω7, n-18:1ω7c and EPA. This was mirrored by a corresponding decrease in 

the quantitative yield of EPA (5.68 mg g-1) and the value of average chain length 

(14.73). 

 

Growth on L-proline decreased the proportion of BCFAs, such as i-13:0 (4 % versus 5-9 

% for other carbon/nitogen sources excluding glycerol and Tween medium). This was 

accompanied by a rise in the percentages of n-18:1ω7 (7.1 % versus 2–6 % excluding 

Tween 60) and EPA (15.6 % versus 4–12 %). Furthermore, the increased proportion of 

EPA was mirrored by a corresponding increase in the quantitative yield (15.23 mg g-1 

versus 4-11 mg g-1 for other carbon/nitrogen sources), which was competing with MB 

cultures (15.5 mg g-1), and the average chain length was in higher value (15.58). 

 

The fatty acid composition of glucose cultured cells was similar to that of ZB cultured 

cells. The only difference was that the former one with higher content of BCFAs (12.3 

% versus 7.7 % for ZB) and lower proportion of PUFAs (12 % versus 19 %). 

 

Growth on glycerol led to lower SCFAs and BCFAs due to the lowest proportion of n-

13:0 (21 % versus 24-51 % for other carbon/nitrogen sources) and i-13:0 (3.4 % versus 

4-9 %, excluding Tween medium), whereas n-16:1ω7 at its highest point (29 % versus 

6-15 %) which contributed a high lever of MUFAs (34.7 % versus 12-27 %), in TFAs 

(saturation degree of 0.92), and percentage of EPA production was in a sound level (10 

%) as well as the quantitative yield (10.66 mg g-1).  

 

Growth on Tween 80, 60 and 40 exhibited a marked alteration in fatty acid composition 

and the quantitative yield of EPA (4-7 mg g-1 versus 10-12 mg g-1 for other carbon 

sources) and cells (1.5-1.7 g l-1 versus 1.8-2.3 g l-1). The cultivation of strain MAR441 

cells with Tween 80 (35 % content of n-18:1ω9c oleic acid) caused the increase of 

MUFAs up to 48 % in cellular lipids (saturation degree of 0.7) and contemporary 

inhibited the PUFAs production (polyunsaturation degree of 0.113). Growth on Tween 

60 led to 10 % of n-16:0 and 33 % of n-18:0 causing the increase of SCFAs up to 77 % 

in TFAs (saturation degree of 4.0) and therefore inhibited the BCFAs, MUFAs and 

PUFAs production. Growth on Tween 40 resulted in high content of n-18:0 (15 %) and 

n-16:1ω7c (25 %), causing the increase of MUFAs up to 32 % in TFAs, the degree of 
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saturation and polyunsaturation were 1.2 and 0.29 respectively. However, the values 

average chain length from these Tween medium were among the highest levers with 

15.79-16.16 versus 14.73-15.62 for other carbon sources. 

 

The percentage of EPA from the L-leucin, L-seine and L-glucose cultures was 

comparable to that obtained when grown in ZB at 15 °C (10.2 % versus 9–11 %). And 

these higher proportions of EPA were mirrored by a corresponding the highest level in 

the quantitative yield (1-3.9 mg g-1) with higher level of TFA (4.8-9.9 mg g-1).  

 

However, when the MAR441 grown on the single nitrogen medium by supplemented 

only with urea or (NH4)2SO4, which led to low proportion of MUFAs and PUFAs and in 

favour of SCFAs, due to a great increase of n-13:0 (42.5 % for urea and 51.1 % for 

(NH4)2SO4) with corresponding decrease of n-16:1ω7, n-18:1ω7 and EPA, and less 

average chain length (14.79 for urea and 14.91 for (NH4)2SO4) in that the deficiency of 

carbon sources used for developing backbone.  

 

Thus, ZB medium (ZB1) supplemented with L-proline and (NH4)2SO4 for growing 

MAR441 cells led to a higher production of MUFAs and PUFAs with the proportion of 

20.7 % and 25.3 % respectively due to the rise of n-16:1ω7 (20.4 %) and EPA (17.6 %), 

which was mirrored by the quantitative yield of TFA (115.2 mg g-1) and EPA (20.28 mg 

g-1), as well as the higher value of average chain length (15.91). 

 

6.4.6  Effect of cerulenin treatment on the amount of biomass, lipids and EPA in 

Shewanella sp. MAR441 cells 

Biomass production, lipid and EPA yields obtained from Shewanella sp. MAR441 cells 

grown in the medium containing cerulenin up to 7.5 μg ml-1 at 4 °C and 15 °C are 

summarized in Table 6.7, Figures 6.7 and 6.8. The cell biomass was 3.2 g dry cells l-1 

when cells were grown in the medium containing cerulenin at 0.5, 1, 2.5, 5 and 7.5 μg 

ml-1. This value was 20 % increased as that of non-treated cells. The lipid yield (g l-1) 

was unchanged by the concentration of cerulenin in the range from 0 to 7.5 μg ml-1. 

However, the biomass was slightly influenced by the concentration of cerulenin to the 

medium up to 7.5 μg ml-1, indicating some effects of cerulenin to the growth of 

Shewanella sp. MAR441 cells. The highest EPA yield at 81.5 μg ml-1 was obtained 

from cells treated with cerulenin at 0.5 μg ml-1 at 4 °C. This yield was 53 % increased 

than that obtained from non-treated cells. However, at 15 °C, EPA was 93 % increased 
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when the cells was treated with 1 μg ml-1 cerulenin and the percentage of PUFAs was 

201 % increased due to n-18:2ω6t and n-18:3ω3 were also increased at high level. All 

these results clearly show that the optimization of cerulenin treatment enhances EPA or 

PUFAs production as well as the short chain fatty acids, such as n-13:0 and n-15:0, and 

most of the middle chain FAs, such as n-16:0, n-18:0, i-15:0, n-15:1ω6, n-16:1ω7, n-

17:1ω8 and n-18:1ω7c acids were inhibited in Shewanella sp. MAR441 cells when 

various concentration of cerulenin were presented in the growth medium. 

 
Figure 6.7  Change in average chain length (ACL, triangles) and relative proportion of 
whole cell FAs in Shewanella sp. MAR441 grown in marine broth medium at 15 °C 
with various concentration of cerulenin. The experiments were carried out in triplicate 
and values are means of three samples based on Table 6.7. 

 

Figure 6.8 Change in average chain length (triangles) and relative proportion of whole 
cell FAs in strain MAR441 grown in marine broth medium at 4 °C with various 
concentration of cerulenin. Straight chain fatty acids (SCFAs, filled circles), branched 
chain fatty acids (BCFAs, filled boxes), monounsaturated fatty acids (MUFAs, open 
boxes); polyunsaturated fatty acids (MUFAs, open diamonds); eicosapentaenoic acid 
(EPA, open circles). The experiments were carried out in triplicate and values are means 
of three samples based on Table 6.7. 
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Table 6.7 Fatty acid composition of Shewanella sp. MAR441 grown on various 
concentration of cerulenin in marine broth medium at 4 °C and 15 °C 

Fatty acids Cultures with Cerulenin (μg ml-1) at 15 °C Cultures with Cerulenin (μg ml-1) at 4 °C 

Cerulenin 0 0.5 1 2.5 5 7.5 0 0.5 1 2.5 5 7.5 

n-12:0 3.6 5.4 5.7 8.1 7.5 6.6 2.3 2.1 2.5 2.7 3.1 4.5 

n-13:0 16.8 17.7 19.4 20.9 17.3 16.3 13.5 14.5 17.1 18.5 19.7 21.5 

n-14:0 2.9 4.1 4.2 5.8 4.1 4.5 3.9 3.7 4.1 4.2 4.7 4.8 

n-15:0 4.7 10.8 11.6 12.1 13.5 14.3 4.5 7.3 8.5 11.5 12.3 11.1 

n-16:0 11.5 5.3 1.2 0.6 0.5 0.5 6.4 5.6 5.1 3.4 1.7 2.1 

n-18:0 2.4 0.0 0.0 0.0 0.0 0.0 0.5 0.8 0.1 - - - 

Σ SCFA 41.9 43.3 42.1 47.5 42.9 42.2 31.1 34.0 37.4 40.3 41.5 44.0 

i-13:0 5.9 8.7 8.0 12.0 14.3 15.3 12.7 17.8 20.6 22.9 23.8 25.8 

i-15:0 11.2 7.7 6.8 5.5 7.5 10.8 7.7 6.2 5.5 5.3 5.1 4.5 

Σ BCFA 17.1 16.4 14.8 17.5 21.8 26.1 20.4 24.0 26.1 28.2 28.9 30.3 

n-15:1ω6 0.9 0.2 0.6 0.2 1.7 1.6 0.1 0.6 0.6 0.3 0.2 0.3 

n-16:1ω7 18.2 10.9 6.3 8.1 10.8 8.5 16.9 13.4 12.6 9.1 7.2 4.3 

n-17:1ω8 3.8 0.1 0.1 0.0 0.4 0.0 0.2 0.1 - - - - 

n-18:1ω7c 5.9 1.8 2.0 1.8 1.5 1.3 6.0 - - - - - 

Σ MUFA 28.8 13.0 9.0 10.2 14.4 11.4 23.2 14.1 13.2 9.4 7.5 4.6 

n-18:2ω6t 0.5 6.3 9.1 7.6 7.2 7.1 2.8 0.5 0.4 0.4 0.5 0.4 

n-18:3ω3 0.6 3.8 5.4 2.9 2.7 2.1 0.3 0.2 0.7 0.7 0.8 0.7 

n-20:5ω3 9.5 16.1 18.3 13.1 9.5 9.6 20.5 25.5 20.9 19.5 19.2 18.6 

Σ PUFA 10.6 26.2 32.8 23.7 19.4 18.8 23.5 26.2 22.0 20.6 20.5 19.6 

Others 1.6 1.1 1.3 1.2 1.5 1.5 1.8 1.7 1.3 1.5 1.7 1.5 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

UFAs/SFAs 0.9 0.9 1.0 0.7 0.8 0.7 1.5 1.2 0.9 0.7 0.7 0.5 

ACL 15.3 15.4 15.5 15.0 14.8 14.8 15.65 15.5 15.2 15.0 14.8 14.7 

EPA (mg g-1)  9.7  16.7  18.7  13.3  9.7  9.8  23.6  30.2  25.5  23.5  22.9  21.9  

TFA (mg g-1)  102.5  103.5 102.0  101.5 102.1  102.2  115.2  118.6 122.0  120.5 119.1  118.0  

EPA(mg l-1) 25.2  54.3  59.8  42.6  30.9  30.6  53.1  81.5  75.2  65.8  64.1  59.1  

Cells(g l-1) a 2.6 3.25 3.2 3.2 3.19 3.12 2.25 2.7 2.95 2.8 2.8 2.7 
a Cellular dry weight; Values are means of three samples; ACL, average chain length 
(calculated after White et al., 2005); SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); and (–), not 
detectable. 
 

 

6.4.7 Fatty acid production by NTG-mutant strains (A4 and A13) 

Two mutants A4 and A13 were morphologically different from the wild type strain 

MAR441. Colonies of wild-type strain MAR441 on marine agar plates were 2-4 mm in 

diameter, tan-pigmented, butyrous in consistency, circular and convex in shape with an 
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smooth edge, and the central rough area is adherent to or embeds into the agar and is not 

easy to emulsify. Whereas, colonies of NTG-mutant strains A4 and A13 on marine agar 

plates were 3-5 mm in diameter, tan-pigmented, opaque, dull, with dentate margin or 

undulate edge, and the central rough area is attached to the agar loosely, which make it 

easily be pushed/moved away by pipette tips (Figure 6.9A). The cells of A4 and A13 

were found with absence of fimbriae after the NTG mutation under scanning electron 

microscopy (SEM) (Figure 6.9B).  

 

 

Figure 6.9 Colonies of strain MAR441 and its NTG mutants (A4 and A13) on marine 
agar plates at 15 ºC for 3 days; (B) scanning electron microscopy (Right, Bar 500 nm) 
of a negatively-stained cells of strain MAR441 and its NTG mutants (A4 and A13). 

 

The effect of growth temperature on the percentage composition of individual fatty 

acids in Shewanella sp. MAR441 and its NTG-mutants (A4 and A13) grown between 4 

°C, 15 °C and 25 °C is shown in Figure 6.10 and Table 6.8. Comparing to the fatty acid 

compositions of strain MAR441, the mutants were found with lower levers of SCFAs 

and higher percentage of BCFAs at 15 °C and 25 °C, and lower levers of EPA at 4 °C. 

However, the percentage of EPA in mutant A13 was higher than that in wild type strain 

at 15 °C, and decreasing the EPA levels 4 °C and 25 °C. By increasing temperatures 
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from 4 °C to 25 °C, the values of average chain length (ACL) in these mutants were 

decreasing. The quantitative level of lipid content of the mutants were similar to that of 

MAR441 at 4 °C and 15 °C, while increasing levels of EPA were found at 25 °C. 

Mutant A13 could reach relatively higher lever of EPA of 15.8 mg g-1 cells dry weight 

at 15 °C (Figure 6.10). 

 

Table 6.8  Fatty acid composition of Shewanella sp. MAR441 and its NTG mutants (A4 
and A13) grown on marine broth medium at 15 °C 

Fatty acids MAR441     A4     A13     
Temperatures 4°C 15°C 25°C 4°C 15°C 25°C 4°C 15°C 25°C 
n-12:0 1.3 2.2 0.3 4 4.5 5.5 3.8 3.6 4.6 
n-13:0 13.5 23.6 32.1 8.3 7.2 9.5 7.2 8.2 9.7 
n-14:0 3.9 2.9 2.7 3.7 4.4 6.1 4.5 4.7 6.5 
n-15:0 3.5 4.5 1.9 0.5 0.8 0.7 0.4 1.9 0.5 
n-16:0 5.3 14.5 12.4 14.1 17.9 9.3 12.4 12.3 16.1 
n-17:0 0.3 0.8 5.7 1 0.8 4.8 0.9 0.8 2.2 
n-18:0 0.5 1.3 1.0 3 2.2 0.3 2.1 1.7 2.3 
Σ SCFA 28.3 49.7 56.0 34.6 37.8 36.2 31.3 33.2 41.9 
i-13:0 11.6 4.9 11.2 16.5 10.1 12.2 14.2 9.1 13.1 
i-14:0 0.7 0.4 0.2 1.5 0.5 0.9 - - 0.3 
ai-15:0 1.2 0.4 0.8 - - - 0.4 0.7 0.4 
i-15:0 7.2 10.2 14.2 6.6 13.3 27.6 11.1 16.6 22.7 
i-17:0 0.5 0.2 0.2 0.4 0.3 0.5 1.7 0.5 0.4 
Σ BCFA 21.2 16.2 26.6 25 24.2 41.2 27.4 26.9 36.9 
n-16:1ω7 16.9 11.2 9.3 18.4 20.2 13.1 15.2 17.9 12.1 
n-17:1ω8 0.2 2.8 4.0 3.3 2.6 2.5 2.1 2.1 2.1 
n-18:1ω7c 5.2 4.2 1.1 6.3 6.4 3.5 4.2 2.8 1.2 
Σ MUFA 22.3 18.3 14.5 28 29.2 19.1 21.5 22.8 15.4 
n-18:2ω6t 2.8 1.5 0.3 0.3 0.4 - 0.3 0.5 0.5 
n-18:3ω3 0.3 0.6 0.2 0.5 0.3 - 0.3 0.3 - 
n-20:3ω3 0.8 0.3 0.1 - - - 5.7 - - 
n-20:5ω3 21.4 9.5 0.6 10.7 6.8 2.6 12.8 15.3 4.5 
Σ PUFA 25.3 11.9 1.2 11.5 7.5 2.6 19.1 16.1 5 
others 2.9 3.9 1.9 0.9 1.3 0.9 0.7 1 0.8 
Total 100 100 100 100 100 100 100 100 100 
ACL 16.29 15.52 14.67 15.45 15.35 14.82 15.92 15.64 14.94 

EPA (mg g-1)  24.7 9.7  0.6  10.7 6.8 2.4 12.8 15.8 4.3 

TFA (mg g-1)  115.2 102.5 96.5  112.7 100.6 91.2 110.4 103.7 95.6 

Cells(g l-1) a 2.25 2.6 0.6 2.3 2.6 0.62 2.35 2.66 0.6 

 

a Cellular dry weight; Values are means of three samples; ACL, average chain length 
(calculated after White et al., 2005); SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, eicosapentaenoic acid (n-20:5ω3); and (–), not 
detectable. 
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Figure 6.10 Change in average chain length (ACL, triangles) and relative proportion of 
whole cell FAs in Shewanella sp. MAR441 and its mutants (A4 and A13) grown at 4, 
15 and 25 °C.Straight chain fatty acids (SCFAs, filled circles), branched chain fatty 
acids (BCFAs, filled boxes), monounsaturated fatty acids (MUFAs, open boxes) and 
eicosapentaenoic acid (EPA, open circles). The experiments were carried out in 
triplicate and values are means of three samples based on Table 6.8. 

 

 

6.5 Discussion 

6.5.1 Environmental adaptation 

The fatty acid composition of MAR441 exhibited changes in response to growth 

temperature and sole carbon/nitrogen source, as have been reported on some Shewanella 

PUFAs producers (Nichols et al., 1997; Gentile et al., 2003), and non-PUFAs 

producers, such as Cobetia marina (Yumoto et al., 2004). Both the percentage and the 

quantitative level of EPA markedly changed at different growth temperatures, indicating 

that PUFA may play a critical role in the modulation of membrane (Nichols and 

Russell, 1996; Nichols et al., 1997). The mechanism why these bacteria produce omega-

3 fatty acids is still unclear, although many PUFA synthase genes responsible for 

EPA/DHA synthesis have been cloned and sequenced (Allen and Bartlett, 2002; 

Okuyama et al., 2007), and been successfully expressed in E. coli (Valentine and 

Valentine, 2004; Amiri-Jami and Griffiths, 2010). As growth temperature increased, 

MAR441 also demonstrated a novel adaptational response by increasing the percentage 

of n-13:0 and i-15:0 acids with corresponding decrease of n-16:1ω7 and n-18:1ω7 acids, 

which might due to the role of fatty acid precursors selection within this bacterium as an 

adaptational response (Jostensen and Landfald, 1996). This finding is also supported by 
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some other strains possessing similar fatty acid compositions, which sharing similar 

adaptational response, such as Shewanella gelidimarina ACAM 456T exhibited a rise 

proportion of n-15:0 and decrease of n-16:1ω7 and EPA as increasing the culture 

temperature (Bowman et al., 1997b), S. olleyana ACEM 9T showed an increase in the 

percentage of n-16:0 and i-15:0 with corresponding decrease of n-16:1ω7, n-18:1ω7 and 

EPA when growth temperature increased (Skerratt et al., 2002). 

 

Growth on the sole carbon sources L-proline, Tween 80, Tween 60 or Tween 40 

demonstrated that in this bacterium the fatty acid composition can be manipulated by 

the provision of potential acyl chain precursor (Bowman et al., 1997b). The large 

increase in the observed percentage of EPA and less of i-13:0 and i-15:0 from L-proline 

cultures. While an observed increase of i-13:0 and to a lesser extent i-15:0 from L-

alanine and L-leucine cultures that there is a preference for 4-5 cycles of chain 

elongation from the alanine- or leucine-derived primer molecule according to previously 

researches (Butterworth and Bloch, 1970; Kaneda, 1991). This is similar to S. 

gelidimarina ACAM 456T, which exhibited a similar change in fatty acid composition 

when it was grown in L-leucine medium (Bowman et al., 1997b). The degree of acyl 

chain elongation may therefore be primer-specific. L-alanine and L-proline also 

increased the level of TFA, and therefore EPA, suggesting an increase in the level of 

total lipid resulted from growth on these substrates. In contrast, FAs patterns were 

dominated by the n-18:1ω9 in Tween 80 cultures, while mainly n-18:0 in Tween 60 

cultures and with great rise of n-16:1ω7 when grown in Tween 40, which greatly 

decrease the percentage of PUFAs or polyunsaturation degree. These data are in 

agreement with the results obtained for EPA-producing Shewanella strain GA-22, the 

Tween 80-growing cells caused the increase of monounsaturated fatty acids up to 78 % 

in cellular lipids and contemporary inhibited the PUFA production (Gentile et al., 

2003). These findings were consequences of the nature of substrates added, because 

Tween 80 contains oleic (n-18:1) acid, Tween 60 has stearic acids (n-18:0) and Tween 

40 is composed of n-16:0. Although Tween 80, 60 and 40 usually served as surfactants, 

they might also be used as carbon sources. 

 

However, the strain preferred growing in the complex medium, such as marine broth 

and ZoBell broth, from which the higher level of biomass, lipid or TFA and EPA was 

achieved, instead of cultivating in single carbon/nitrogen medium. This corroborates 

previous reports that, production of PUFA at low temperature of cultivation was 
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enhanced more than two-fold and reached 5 % of total fatty acids in the strain GA-22 

cells grown on marine broth (Gentile et al., 2003). In our study, L-proline and 

(NH4)2SO4 were selected as the most suitable carbon and nitrogen sources used in 

combination for preparing ZB medium, which greatly improved the production of 

biomass (two-fold increased) and EPA (1.5-fold). The carbon-to-nitrogen ratio (C:N) in 

the substance may affect the production of biomass and EPA. 

 

MAR441 required Na+ for growth and EPA synthesis. The Na+-requiring for MAR441 

cells growth is agreeable with other marine strains, such as S. halifaxensis, S. sediminis, 

S. pealeana and S. woodyi, they required Na+ and preferred low temperatures for growth 

and thus considered as cold-adapted obligate marine Shewanella (Zhao et al., 2005; 

Zhao et al., 2006). Studies on protein coding sequences (CDS) from two obligate 

marine S. halifaxensis and S. sediminis, found that many genes coding Na+-dependent 

nutrient transporters were recruited to use the high Na+ content as an energy source. For 

example, many unique Na+-dependent nutrient symporters and Na+/nutrient symporters 

for transport of L-glutamine acid, L-proline, dicarboxylate and amino acids (Zhao et al., 

2010). Based on genome annotations of all Shewanella, L-glutamine acid was predicted 

to be an essential precursor for biosynthesis of heme, nucleobase (purine, pyrimidine), 

peptiglycan, aminosugar, and fatty acids in Shewanella (Makemson and Hastings, 1979; 

Padan et al., 2001). Requirement of Na+ as a motive force for transport of these essential 

growth substrates are consistent with the nature of strain MAR441 being obligate 

marine bacteria as strains S. halifaxensis and S. sedimini. 

 

Cerulenin specifically blocks the activity of β-keto acyl thioester synthetase, which may 

account for the inhibition of overall fatty acid synthesis (Vance et al., 1972). However, 

EPA production was greatly improved in Shewanella sp. MAR441 by treated with 

cerulenin, and middle-chian fatty acids were almost deficit. The resulted were suggested  

that cerulenin inhibited the de novo synthesis of middle-chain fatty acids, but not the 

synthesis of EPA/DHA and short-chain fatty acids (Morita et al., 2000). Therefore, 

Shewanella sp. MAR441 may similar to Moritella marina strain MP-1 and Shewanella 

marinintestina strain IK-1, using two fatty acid-biosynthetic systems, e.g. independently 

synthesize middle-chain fatty acids and LC-PUFAs, by using a common stating 

material(s) as FA precursor (Amiri-Jami et al., 2006).  

 

The NTG mutagenesis is particularly useful chemical mutagenesis of a variety of Gram-
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negative bacteria (Lewenza et al., 2005). However, NTG mutagenesis has not been 

reported as a means for increasing PUFA production from the environmental bacteria, 

although Shewanella putrefaciens strain 2738 has been treated by NTG to get cold-

sensitive EPA-requiring mutants at low temperature (Valentine and Valentine, 2004). 

Therefore, by treating NTG at higher temperatures, we got less temperature sensitive 

mutants with improved levers of lipid and EPA content at higher temperatures. 

 

6.5.2 EPA yield 

The yield of EPA from strain MAR441 ranged from 2 to 20 mg g-1 (30 mg g-1 of the 

cerulenin-treating cultures) (cells dry weight) or 6 to 63 mg l-1 while depending on 

cultural conditions, and showed the highest quantitative yield of 11 % TFA of dry cell 

weight and 20 mg l-1day-1 of EPA production in marine broth at 15 °C for 1.5 days, 

values which compare favourably with literature reports for other EPA-producing 

bacteria. Shewanella putrefaciens-like strain SCRC-8132 produced 4-15 mg g-1 (cells 

dry weight) of EPA and 2 % TFA of dry cell weight, although it was reported with high 

percentage of EPA (24-40 %) (Yazawa et al., 1988b; Yazawa, 1996). Under various 

temperatures by utilizing different carbon sources, Shewanella gelidimarina ACAM 

456T could yield 1 to 16 mg g-1 (cells dry weight) of EPA (Bowman et al., 1997b), 

whereas another Shewanella putrefaciens-like strain SCRC-2738, is presently identified 

as Shewanella pneumatophori SCRC-2738 (Hirota et al., 2005), produced 4 to 11 mg g-

1 of EPA (Yazawa et al., 1988a), while enhanced to 17 mg g-1 by Akimoto et al. 

(Akimoto et al., 1990).  

 

Many wild-type strains of autophotrophic microalgae produce similar levels of EPA to 

the bacteria mentioned above, such as P. tricornutum and Monodus subterraneus, has 

been investigated (Yongmanitchai and Ward, 1991b). By employing continuous culture, 

with the heterotrophic diatom Nitzschia laevis, resulted in the highest EPA 

productivities of 73 mg l-1 day-1 using a glucose feed (Wen and Chen, 2003). In a high 

cell density system maximum cell dry weight and EPA yields were 22.1 g l-1 and 695 

mg l-1, respectively, in a14-day incubation (Wen et al., 2002). While, the productivity of 

P. tricornutum by using batch culture was 25 mg l-1 day-1 (Yongmanitchai and Ward, 

1991a), and improved up to 40 mg l-1 day-1 by employing photobioreactor (Miron et al., 

1999), N. alba ATCC 40775 was optimized with high production EPA of 100-300 mg l-

1 day-1 (40-50 g l-1 biomass) (Boswell et al., 1992), Thraustochytrid strains were 

reported with EPA productivity of 47 mg L-1 day-1 in 50 l tubular photobioreactor 
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(Grima et al., 1994), Mortierella alpina 1S-4 and M. subterraneus were reported with 

EPA production of 30 and 50 mg l-1 day-1 respectively (Shimizu et al., 1988; Grima et 

al., 1994), and M. alpine was with high biomass production of 43 g l-1 and EPA 

productivity of 60 mg l-1 day-1 (Bajpai and Ward, 1991). However, the majority of these 

algal species generally require strictly controlled growth conditions in terms of 

nutrients, light quantity and quality, oxygenation and carbon dioxide levels; these 

factors can result in considerable expense. In contrast, MAR441 strain with high EPA 

productivity of 20 mg l-1day-1 (2 g l-1 of biomass) when grown in marine broth at 15 °C 

for 1.5 days could be a cheap and reliable source of PUFA, therefore it is of great 

interest in many industrial and health fields, although biomass yield per unit volume and 

culture time may affect production economics. 

 

6.5.3 EPA in phospholipid and non-esterified fatty acids 

The occurrence of non-esterified fatty acids (NEFA), or free fatty acids (FFA) in 

MAR441 was identified through TLC and GC, accounting for 15 % of the total lipid 

and contained 18.7 % EPA. Phospholipids were found as the main content of total lipid 

(72 % versus 28 % for neutral lipid). Major phospholipid classes exhibited phosphatidyl 

ethanolamine (PE) and phosphatidyl glycerol (PG) as the main components (50 % 

versus 40 %), appreciable levels of EPA were detected from both of them (9.5 % versus 

14.2 % for PG) and 6.5 % EPA in diphosphoglyceride (DPG) which accounted for 5 % 

of total lipid. The presence of non-esterified fatty acids within a PUFA-producing 

Vibrio sp. was reported to be 13.3 % of total lipid, and EPA accounted for 13 % of 

NEFA (Henderson et al., 1993). PE (with 5.5% of EPA) and PG (with 10.6 % of EPA) 

accounted for 61 % and 19 % of phospholipids respectively in Aeromonas sp. 3010, and 

high content of EPA and palmitoleic acid (19.7 and 50 %, respectively) in the free fatty 

acid fraction was found (Cho and Mo, 1999). For Shewanella strain ACAM 456, PG 

contained a higher in the percentage of total PUFA (14 % versus 9 % for PG) and EPA 

(13 % versus 9 %), and NEFA accounted for 9 % of total lipid and contained 22 % EPA 

(Bowman et al., 1997b). By employing the FAB-MS-MS technique, acyl chains, such as 

i-13:0/13:0 and 14:0/14:0 appeared to be associated with EPA in PE phospholipid 

species only, whereas the association of n-17:1 and acyl-18:0 chains with EPA was 

specific to PG in strain ACAM 456 (Bowman et al., 1997b). Yazawa also reported the 

presence of NEFA in the PUFA producing strain SCRC-2738, with 5–10 % of total 

EPA reported to be in the non-esterified form. This may be explained by the 

contribution of most EPA-producing bacterial genera possessing PG as their major 
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phospholipid type, MUFAs components and EPA were mostly concentrated in PG, 

while the proportion of branched-chain fatty acids was elevated in PE. Furthermore, the 

above mentioned five PUFA-producing bacteria all contain appreciable amounts of 

NEFA or FFA, of which EPA appears as a particular role of NEFA in PUFA 

metabolism. This remains an area for further investigation. 

 

6.6 Conclusions 

Our study demonstrated that Shewanella sp. strain MAR441 isolated from Mid-Atlantic 

Ridge (MAR) deep-sea sediments, could be grown easily under different conditions 

with high production of EPA. The EPA of the strain is contained within phospholipids 

(PL), mainly PE and PG, with high percentage level. For optimization EPA production, 

variable conditions such as temperature, time period, Na+, antibiotic and NTG mutation 

have been investigated. We also found that the synthesis of middle-chain fatty acids and 

the synthesis of EPA would be independently functioning by using a common starting 

material(s) as a primer. Therefore, strain MAR441 could be used as a source of oils rich 

in omega-3 PUFAs production commercially or used as feedstock for organisms, such 

as rotifers, as a way of introducing them into a marine food web for producing PUFA-

rich oils by aquaculture. 

 

It will be interesting to examine the heterogenous expression of the polyketide synthase 

genes responsible for EPA production in Gram positives, such as Bacillus subtilis, 

rather than the homologous expression in E. coli, which should also be aided by our 

ongoing experiments including genomic analysis. Models of EPA production of wide 

type strain MAR441 under different conditions, and a better understanding of the 

synergistic corporation of each individual polyketide synthase gene (pfaA, pfaB, pfaC, 

pfaD and pfaE) will help us to better predict the maximum EPA production. 
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7 Chapter 7. Biosynthesis of polyunsaturated fatty acids by 
polyketide synthases in Gammaproteobacteria 
 

7.1 Abstract  

Microbes capable of producing omega-3 polyunsaturated fatty acids (PUFAs) such as 

eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) are of 

great interesting due to their vital roles in marine food webs and dietary importance as 

an alternative resource. In this study, we reported the highest yield of EPA at 21 % of 

TFA (or 25 mg g-1) from a novel deep-sea Shewanella species, Shewanella sp. strain 

MAR441; investigated EPA production from sponge-associated bacterium Vibrio sp. 

strain NSP560; and for the first time described shallow-sea algae associated 

Photobacterium sp. strain MA665, of this genus, could be cultured easily under 

atmospheric conditions with appreciable levels of EPA (up to 25 % of TFA or 10.6 mg 

g-1). All these three gammaproteobacteria were defined as psychrotrophiles, they 

showed relative high contents of EPA (up to 15-21 % of total fatty acids at 4 °C) at low 

temperatures. Furthermore, in the cerulenin-treated cells, decreases in levels of middle-

chain fatty acids and increased levels of EPA were observed at 4 °C, 15 °C and 25 °C 

(by up to 2 fold at 15 °C). This study indicated that the synthesis of EPA and short-

chain fatty acids was separated from the synthesis of middle-chain fatty acids. The 

putative EPA synthesis gene clusters were mined from the genomic DNA from these 

three species by fosmid library construction and/ or PCR cloning. The gene cluster of 

strain NSP560 encodes a PKS-like pathway that consists of six open reading frames 

(ORFs): pfaABCDE, whereas pfaE was separated from pfaABCD in the genomic DNAs 

of strains MAR441 and MA665. The deduced amino acid sequences encoded by these 

genes reveal large multidomain proteins, with high similarity to those polyketide 

synthases capable of catalysing EPA biosynthesis by a novel polyketide synthesis 

mechanism. These findings reveal a common distribution of the novel PUFA pathways 

among psychrotrophilic marine microorganisms.  

 

7.2 Introduction 

High fish intake is associated with a decreased risk of colorectal cancer according to 

epidemiological studies (Norat et al., 2005; Geelen et al., 2007; Hall et al., 2008). Most 

of the beneficial effects have been linked to the high content of the omega-3 
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polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA, 20:5ω3) and 

docosahexaenoic acid (DHA, 22:6ω3) in some fish. They were well documented for 

their role as precursors for many hormone and hormone like regulatory molecules, such 

as the eicosanoids signaling molecule (Braden and Caroll, 1986; Abbey et al., 1990; 

Lauritzen et al., 2001; Sauer et al., 2001). Furthermore, these fatty acids provide 

beneficial effects on the heart of healthy people (Prokofeva et al., 2005), people at high 

risk of cardiovascular disease and patients with cardiovascular disease (Angerer and von 

Schacky, 2000; Kris-Etherton et al., 2003b), high blood pressure (Tresguerres et al., 

1989), inflammation (Fiocchi et al., 1994), Alzheimer's disease (Connor and Connor, 

2007) and certain types of cancer (Sauer et al., 2001). However, the fish original omega-

3 oils may have potential problems, such as fishy odor, coextracted contaminants, and 

the market is limited to the non vegetarian society (Arts et al., 2001). Nevertheless, the 

crucial problem of those oils is their sustainability due to the worldwide decline of fish 

stocks (Garcia and Rosenberg, 2010). Therefore, the development of alternative lipid 

sources such as marine microbial oils as a possible source for EPA and DHA is urgently 

required.  

 

So far, only  limited bacterial species, such as genera Shewanella, Moritella, Colwellia, 

Alteromonas, Photobacterium, Flexibacter and Psychroserpens are reported to be able 

to produce PUFAs (Nichols and McMeekin, 2002). Most of these bacteria are 

psychrophiles or psychrotrophiles isolated from the polar regions and the deep sea 

(Delong and Yayanos, 1986; Bowman et al., 1997b; Nogi et al., 1998a; Nichols et al., 

1999; Kato and Nogi, 2001; Gentile et al., 2003; Wang et al., 2009). And some of them 

are mesophiles obtained from a temperate estuary and shallow seawater samples 

(Ivanova et al., 2001; Skerratt et al., 2002; Ivanova et al., 2003b; Frolova et al., 2005). 

Furthermore, psychrotrophilic bacteria could be used as a primary PUFA-rich feedstock 

in artificial food chains in the aquaculture industry, thereby protecting natural fish 

stocks (Watanabe et al., 1992; Nichols et al., 1996a). Meanwhile, levels of EPA 

produced by prokaryotes may significantly influence the efficiency of energy transfer 

between primary and consumer trophic levels in aquatic ecosystems (Muller-Navarra et 

al., 2000). Therefore, prokaryotic PUFA production in marine food webs is important. 

 

Increasing production of EPA and/ or DHA responses to temperature decrease by some 

bacteria lead to the hypothesis that these molecules may be important for growth at low 

temperatures (Delong and Yayanos, 1986; Valentine and Valentine, 2004; Amiri-Jami 
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et al., 2006). However, EPA was not required for low-temperature growth in the deep-

sea bacterium Photobacterium profundum (Allen et al., 1999), but it may be required 

for low-temperature growth in Shewanella (Valentine and Valentine, 2004; Sato et al., 

2008; Wang et al., 2009). Thus, the function of PUFAs in the microbial membrane 

remains enigmatic. 

 

The aims of the present study were to characterize three gammaproteobacterial strains 

Shewanella sp. MAR441, Vibrio sp. NSP560 and Photobacterium sp. MA665, isolated 

from deep-sea sediments, marine sponge and micro algae respectively; to examine the 

modulation of EPA production related to temperature and cerulenin-treatment; and to 

characterize their PUFA synthesis gene clusters responsible for EPA biosynthesis based 

on fosmid library construction and PCR cloning. 

 

7.3 Materials and methods 

7.3.1 Bacterial strains and cultivation 

Strains MAR441, NSP560 and MA665 were isolated from Mid-Atlantic Ridge (MAR) 

“non-vent” site at the depth of 2,500 m, North-sea sponge and micro algal culture 

respectively. Strains were routinely cultured in marine 2216E broth (MB) (Difco) 

according to the methods mentioned in Chapter 2 and Chapter 6. 

 

7.3.2 Cultivation conditions based on supplying with antibiotics 

The 10 ml MAR441, NSP560 and MA665 seed cultures were respectively used to 

inoculate 90 ml volumes of marine broth contained in 500 ml conical flasks pre-rinsed 

in chloroform, where the antibiotic, cerulenin (MERCK), in 50 % (v/v) ethanol was 

added at various concentrations (0, 0.5, 1, 2.5, 5 and 7.5 µg ml-1) prior to cultivation. 

Flasks were incubated at 4 °C, 15 °C and 25 °C respectively. The growth of cells was 

monitored turbidometrically at 600 nm.  

 

7.3.3 Fatty acid analysis as methods mentioned in Chapter 2 
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7.3.4 Construction of genomic fosmid libraries 

Preparation of genomic libraries of Shewanella sp. MAR441, Vibrio sp. NSP560 and 

Photobacterium sp. MA665 using CopyControl™ HTP Fosmid Library Production Kit 

(Epicentre Biotechnologies, Madison, Wisconsin, USA) according to the 

manufacturer’s protocol. Briefly, high-molecular-mass genomic DNA was isolated from 

all these three strains respectively following the published method (DiLella and Woo, 

1987). Aliquots (50 μl) of extracted DNA were randomly sheared through a 25 gauge 

needle with a series of draws. The optimal size of sheared DNA was selected for end-

repairing and then separated by pulse-field gel electrophoresis (PFGE). PFGE was 

performed for 12 h in a 0.8 % low melting point (LMP) agarose gel at a constant 

voltage of 30-35 V. The appropriate size of DNA ranging from 35–40 kb were isolated, 

electroeluted and dialyzed against 0.5×TE buffer, and then ligated into the vector 

pCC1FOS. After in vitro packaging into lambda phages and transfection into the phage 

T1-resistant Escherichia coli EPI300-T1R, the bacterial cells were plated onto LB plates 

containing 25 mg ml-1 chloramphenicol and incubated at 37 ºC for ~24 h. 

Approximately 600 fosmid clones were obtained for each library, all the clones were 

individually picked into 96-well microtiter plates containing LB medium plus 20 μg 

chloramphenicol ml−1, and grown at 37 ºC for 24 h, and then 10 % (v/v) glycerol was 

added and stored at -80 ºC until further analysis. 

 

To estimate the insert sizes, 15 clones were randomly selected from each fosmid library. 

Fosmid DNA was isolated via mini-prep using the FosmidMAX™ DNA Purification 

Kit (Epicentre Biotechnologies, Madison, WI), and treated with Plasmid-Safe™ ATP-

Dependent DNase (Epicentre Biotechnologies, Madison, WI), by following the 

manufacturer's instructions. The inserts were released from the vector by complete 

digestion with NotI. The insert sizes were estimated using PFGE and Quantity One. We 

used the following formula to check the library capacity/quality: 

                       N=ln (1−P) / ln (1− f) 

Where P is the desired probability, f is the proportion of the genome contained in a 

single clone, and N is the required number of fosmid clones. 

 

7.3.5 PCR screening of the fosmid libraries 

Colony PCR was employed for the first around screening of PUFA synthase gene on 10 

% of the clones of each library randomly by using the primer PCR primers targeting the 

keto-acyl synthase (KS) domain of the pfaA and pfaB genes involved in omega-3 
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polyunsaturated fatty acid (PUFA) biosynthesis were used to construct clone libraries to 

investigate KS sequence. pfaB 1240F: 5`- GGTGAAGCATCRATGTGGGC-3` and 

pfaB 1840R: 5`-TCSGCRCCAATTTCAACAA-3`, to detect pfaB gene which located 

in the middle position of the PUFAs synthesis gene cluster (Gentile et al., 2003). 

Positive clones from the first round screening were further sequenced by sequencing 

primers for pCC1FOS™: HTFP061, 5`- GTACAACGACACCTAGAC-3` and 

HTRP062, 5`-CAGGAAACAGCCTAGGAA-3` to get the clones containing full PUFA 

synthase gene cluster, positive clones from the second screening were further cloned by 

primer working methods and sequenced by Eurofins MWG Operon. 

 

7.3.6 Phylogenetic analysis -16S rRNA gene and EPA gene clusters analysis 

The above mentioned high-molecular-mass genomic DNA samples isolated from strains 

MAR441, NSP560 and MA665 were used as templates for PCR amplification of the 

16S rRNA gene fragments according to the methods described previously (DeLong, 

1992; Rainey et al., 1996). The EPA genes from NSP560 and MA665 were PCR cloned 

by degenerate primers, which were designed based on known PfaA KS sequences in 

NCBI’s GenBank and the Joint Genome Institute’s (JGI) Integrated Microbial Genomes 

(IMG) database (http://img.jgi.doe.gov) (Table 7.1). The PCR products were sequenced 

by Eurofins MWG Operon after purification with PureLink™ PCR Purification Kit 

(Invitrogen Ltd, Paisley, U.K) following the manufacturer’s protocol.  

 

The 16S rRNA and PUFA synthase gene sequences determined were checked for 

similarities to DNA sequences in the NCBI database (http://www.ncbi.nlm.nih.gov/) 

and RDPII (http://rdp.cme.msu.edu) database using the Basic Local Alignment Search 

Tool (BLAST). Deduced amino acid sequences of PUFA synthase enzymes were 

subjected to protein phylogenetic analysis. The alignment and phylogenetic analysis of 

sequences were achieved with the neighbour-joining method of Saitou and Nei (Saitou 

and Nei, 1987), by DNAMAN software package (Version 5.1), cluster and molecular 

evolutionary genetics analysis (MEGA) Version 4.0 (Tamura et al., 2007). The length 

of each branch pair represents the evolutionary distance between the sequences.  

 

The nucleotide sequences of 16S rRNA gene and polyunsaturated fatty acid (pfa) 

synthase gene sequences have been deposited in EMBL under the accession numbers: 

FR744784, FR744874 and FR750952 (strains MAR441, NSP560 and MA665 
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respectively); FR837656-FR837670 (pfaA, pfaB, pfaC, pfaD and pfaE from strains 

MAR441, NSP560 and MA665 respectively). 

 

Table 7.1 Primers for PCR screening on PUFAs genes in the fosmid library and 
genomic DNA 

Primer 5′→3′ nucleotide sequence Gene 
accession 
No./source 

HTFP061 GTACAACGACACCTAGAC Sequencing primer for 
pCC1FOS™ 

HTRP062 CAGGAAACAGCCTAGGAA Sequencing primer for 
pCC1FOS™ 

pfaA 422F GGTGTSGGYGGTGGTCAR (Gentile et al., 2003) 
pfaA 2100R  CTCACCRAARCTRTGRCC (Gentile et al., 2003) 
pfaB 1240F  GGTGAAGCATCRATGTGGGC (Gentile et al., 2003) 
pfaB 1840R  TCSGCRCCAATTTCAACAA (Gentile et al., 2003) 
pfaC 3525F  TTGATGGTCARATCCCTTGG (Gentile et al., 2003) 
pfaC 5075R  GTTMCGGAAGAACAGCTC (Gentile et al., 2003) 
pfaB 1240F GGTGAAGCATCRATGTGGGC (Gentile et al., 2003) 
pfaB 1840R  TCSGCRCCAATTTCAACAA (Gentile et al., 2003) 
MAR441-pfaE(P0F1) GTNAGRTTRGGNTTRAGRGCNTTRCT This study 
MAR441-pfaE(P3R1) TTRATRTANGAYTCYTT This study 
560pfaA-420F GGTGTTGGTGGTGGTCAG This study 
560pfaA-2082R CTCACCAAAGCTGTGGCC This study 
560pfaB-1182F GGTGAAGCCTCCATGTGGGC This study 
560pfaB-1756R TCGGCACCGACTTCTACAA This study 
560pfaC-3613F TTGATGGTCAGATCCCTTGG This study 
560pfaC-5136R GTTGCGGAAAAACAGTTC This study 
560pfaD-545F GGTTGAGGCTTCTGCCTTCTTA This study 
560pfaD-1095R CACGCCCATTTCGAACATGTC This study 
560pfaEF ATGAAAACTCCCGTTGTTGATT This study 
560pfaER TTAAAGGAGATGAGACGACGA This study 
665pfaA-420F GGTGTGGGTGGTGGTCAG This study 
665pfaA-2082R CTCACCGAAGCTGTGACC This study 
665pfaB-1236F GGTGAGGCATCGATGTGGGC This study 
665pfaB-1819F TTGTTGAAGTTGGTGCCGA This study 
665pfaC-3523F TTGATGGTCAAATCCCTTGG This study 
665pfaC-5070R GTTCCGGAAGAACAGCTC This study 
665pfaD-542F CGTTGAAGCGTCTGCATTCTT This study 
665pfaD-1092F GACATGTTCGAAATGGGTGTA This study 
665pfaEF ATGAATCCCCCTTATATTTCGC This study 
665pfaER TCAACTCTGAGTGAATGTTCT This study 

 

 

7.4 Results and discussion 

7.4.1 Identification of the EPA producing Gamma-Proteobacteria 

The three gammaproteobacterial strains were isolated under aerobic conditions and 

grew well by fermentation of amino acids or carbohydrates. Aerobically grown, they 

utilized a wide range of carbon sources, including biopolymers, carbohydrates, and fatty 

and amino acids (Table 7.2). All strains grew with nitrate as electron acceptor. Strain 

MAR441 also reduced manganese oxide, thiosulfate and ferric compounds (Fe(III)). 
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The temperature range for growth was similar for all strains ranging from 4 °C to 28-35 

°C, with optimal grow temperatures at 15-20 °C, defining them as psychrotrophiles. 

 

Table 7.2 Morphological and physiological properties of the EPA-containing isolates, 
their isolation substrates 

Phenotypic characteristic Shewanella sp.  Vibrio sp. Photobacterium sp. 
 MAR441 NSP560 MA665 
Isolated from Deep-sea sediments North-sea sponge North-sea microalgae 
Shape Rod Oval-rod Oval-rod 
Temperature range (°C) 4-28 4-30 4-30 
Size (μm) 0.5×1.5–4.5   0.6–0.7×1.5–4.5  0.6 × 1.5–2.8 
Requires Na+ ions for growth + +  + 
Substrates utilized    
Peptone + + + 
Cellulose + - + 
Chitin - + + 
Laminarin + + + 
Monosaccharides + + + 
Fatty acids + + + 
Alcohols - + + 
Mono- and dicarboxylic acids + + + 
Amino acids + + + 
Fermentation of    
Carbohydrates + + + 
Amino acids + + + 
Electron acceptors    
Nitrate + + + 
Nitrite - - - 
MnO2 + - - 
Fe(III) + - - 
Thiosulfate + - - 
Production of    
DNase - - - 
Amylase + - - 
Lipase - + + 
Gelatinase + + - 
Chitinase - - - 
Protease - + + 
Utilization of:    
D-Glucose + + + 
Maltose + + + 
Sucrose - + - 
Motile - + + 

 

Analysis of partial 16S rRNA gene sequences revealed that the three strains belonged to 

the Gammaproteobacteria and were closely related to those species already described. 

Strains MAR441 turned out to be a member of the genus Shewanella within 

Altermonadaceae, with 97.9 % the highest similarity with Shewanella olleyana, which 

isolated from a temperate estuary (Skerratt et al., 2002), 97.6 % to Shewanella japonica 

isolated from sea water (Ivanova et al., 2001), and 97.1 % to Shewanella donghaensis 
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isolated from deep-sea sediments of the East Sea (Yang et al., 2007); whereas strains 

NSP560 and MA665 affiliated with genus Vibrionaceae, strain NSP560 being most 

closely related to Vibrio tasmaniensis (pairwise similarity 99.4 %) isolated from 

Atlantic Salmon (Thompson et al., 2003) and 99.2 % to Vibrio cyclitrophicus isolated 

from marine sediments (Hedlund and Staley, 2001), and strain MA665 showed 

homology to Photobacterium frigidiphilum (pairwise similarity 99.2%) and to 

Photobacterium profundum (pairwise similarity 98.2 %) isolated from deep-sea 

sediments (Nogi et al., 1998c; Seo et al., 2005) (Figure 7.1). The cells of these three 

gammaprobacteria were rod-shaped, Gram-negative, 2.0–4.5 μm in length, 0.5–1.5 μm 

in diameter.  

 

 

 

Figure 7.1 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of strains MAR441, NSP560, MA665 and their nearest type 
strains in the database. The phylogenetic tree was constructed by neighbour-joining 
method using the programs of MEGA package. 1000 trials of bootstrap analysis were 
used to provide confident estimates for phylogenetic tree topologies. Bars: 0.01 
nucleotides substitution per site.  

 
 

7.4.2 Fatty acid composition 

Generally, the fatty-acid compositions of the three strains agree well with those of their 

closest relatives (Nogi et al., 1998c; Skerratt et al., 2002; Seo et al., 2005), with n-16:0 

and n-16:1ω7/n-16:1ω9 being the dominant fatty acids (Table 7.3). All strains contained 

relatively high amounts of EPA (up to 24 %). The fatty-acid patterns of Vibrio sp. 

NSP560 and Photobacterium sp. MA665 were very similar to each other but differed 

from that of Shewanella sp. MAR441 by containing higher amounts of n-13:0 and n-
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15:0 fatty acids, and much higher amount of branched-chain fatty acids (16–26 %), with 

i-13:0 and i-15:0 being the most prominent BCFAs. Trans-fatty acids (mainly trans-

16:1ω7) were found in Vibrio sp. NSP560, with the highest relative abundance of about 

40 % in the culture grown at 4 °C (Table 7.3); while, trans-16:1ω9 presented at the 

highest level of 37-41 % in Photobacterium sp. MA665 culture at temperatures from 4-

25 °C. 

 

7.4.3 Temperature dependence of whole-cell fatty-acid patterns 

All three strains changed their fatty-acid patterns with changing temperatures (Table 

7.3, Figure 7.2A). In. Shewanella sp. MAR441 and Vibrio sp. NSP560, the proportion 

of monounsaturated fatty acids (MUFAs) increased at lower temperatures, with the 

most pronounced change occurring between cells grown at 15 °C or 25 °C. In contrast, 

in Photobacterium sp. MA665, only relatively minor changes in saturated straight-chain 

fatty acids (SCFAs) and MUFAs were observed, and the ratio of MUFAs to SCFAs 

remained almost constant at higher temperatures. 

 

Relative abundances of EPA increased with decreasing growth temperature in all 

strains. In Shewanella sp. MAR441, the relative increase in EPA was the highest 

between cells grown at 15 °C to 4 °C (max. 21.4 % of total fatty acids). In Vibrio sp. 

NSP560 (maximum, 8 % of total fatty acids) and Photobacterium sp. MA665 

(maximum, 14 % of total fatty acids), largest differences in relative abundances of EPA 

were observed between cultures grown at 15 °C and 4 °C. These findings agree with 

data for other Vibrio (Ringo et al., 1992; Hamamoto et al., 1995; Jostensen and 

Landfald, 1996) and Shewanella species (Nichols et al., 1997; Skerratt et al., 2002; 

Wang et al., 2004). As in Photobacterium sp. MA665, the relative abundances of 

MUFAs in cells grown at 4 °C, 15 °C, or 25 °C vary only slightly; the relative increase 

of EPA appears to be the main mechanism of adaptation to low temperatures as 

indicated on this species (Freese et al., 2009). Likewise, a mutant strain of 

Photobacterium profundum produced little MUFAs but elevated levels of EPA and was 

neither low temperature nor high-pressure sensitive (Allen et al., 1999). Shewanella sp. 

MAR441 was seldom grown at 30 °C, and with very limited production of EPA above 

25 °C. It may be that temperature-sensitive enzymes are involved in biosynthesis in that 

EPA production of species related to some Shewanella species was limited to a 

maximum growth temperature of approximately 30 °C (Hirota et al., 2005; Freese et al., 

2009). It may be also that the amount of EPA produced exclusively depends on 
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temperature, and little affected by other environmental parameters like salinity 

(Henderson et al., 1995), anoxia (Nichols et al., 1992; Metz et al., 2001), or variations in 

nutrient composition and availability, although these were shown to influence the 

composition of other fatty acids (Jostensen and Landfald, 1996; Yumoto et al., 2004).  

 

Branched fatty acids (BCFAs) have repeatedly been reported to promote cold adaptation 

(Suutari and Laakso, 1994; Annous et al., 1997; Chattopadhyay and Jagannadham, 

2001). However, the results obtained with Shewanella sp. MAR441 are ambiguous. 

Although the relative contribution of BCFAs is higher at 4 °C than that at 15 °C, the 

highest values were observed in cells grown at 25 °C, due to the great change of i-13:0 

acid. In the latter case, however, it appears that BCFAs compensate for a strong 

decrease in MUFAs. Similarly, increasing contribution of BCFAs at lower and higher 

temperatures were observed for Shewanella gelidimarina ACAM 456 (Nichols et al., 

1997), and Desulfobacterium autotrophicum (Rabus et al., 2002). For other bacteria, no 

clear changes in BCFAs with varying growth temperature were observed (Henderson et 

al., 1993; Nichols and McMeekin, 2002). 

 

The values of average chain length (ACL) and quantitative level of EPA production of 

these three strains were decreased with increasing growth temperature in that much 

longer chain fatty acids and higher percentage of EPA were produced. The yield of EPA 

from strain MAR441 was 24.7 mg g-1 (cells dry weight) and showed the highest 

quantitative yield of 11 % TFA of dry cell weight at 4 °C, values which compare 

favourably with literature reports for other EPA-producing bacteria, such as Shewanella 

putrefaciens-like strain SCRC-8132, Shewanella gelidimarina ACAM 456T and 

Shewanella pneumatophori SCRC-2738, up to the highest production of 15-16 mg g-1 of 

EPA (cells dry weight) (Yazawa et al., 1988b; Akimoto et al., 1990; Yazawa, 1996; 

Nichols et al., 1997; Hirota et al., 2005). 
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Table 7.3 Temperature dependence of the fatty acid composition of strains MAR441, 
NSP560 and MA665 grown in marine broth medium without or with adding 1 µg ml-1 
cerulenin 

 
 Fatty acids Shewanellas sp. MAR441 Vibrio sp. NSP560 Photobacterium sp. MA665 

MB + 1 µg ml-1 Cerulenin MB + 1 µg ml-1 Cerulenin MB  + 1 µg ml-1 Cerulenin 

Temperatures 4°C 15°C 25°C 4°C 15°C 25°C 4°C 15°C 25°C 4°C 15°C 25°C 4°C 15°C 25°C 4°C 15°C 25°C 

n-10:0 -  -  -  -  - - 2.7 3.1 5.8 6.5 7.2 7.7  -  -  - - - - 
n-12:0 1.3 2.2 0.3 2.5 5.7 8.6 5.4 7.5 9.8 13.2 15.7 17.1 0.5 2.1 0.8 6.9 10.1 11.7 
n-13:0 13.5 23.6 32.1 17.1 19.4 35.6 - - - - - - 0.2 0.3 0.2 1 1.0 1.7 
n-14:0 3.9 2.9 2.7 4.1 4.2 4.5 6.5 11 13.7 17.8 18.7 19.5 1.7 2.8 3.5 12.8 10.9 15.2 
n-15:0 3.5 4.5 1.9 8.5 11.6 10.2 - - - - - - 0.5 1.3 2.1 0.5 1.9 1.8 
n-16:0 5.3 14.5 12.4 5.1 1.2 5.0 15.9 20.2 25.6 14.5 13.7 16.8 27.6 24.3 26.5 23.4 16.6 18.5 
n-17:0 0.3 0.8 5.7 - - - - - - - - - 0.2 0.1 0.3 - - - 
n-18:0 0.5 1.3 1.0 0.1 0.0 0.0 0.6 0.8 1.5 - - - 0.8 2.4 3.5 - - - 
Σ SCFA 28.3 49.7 56.0 37.4 42.1 63.9 31.1 42.6 56.4 52 55.3 61.1 31.5 33.3 36.9 45.3 40.5 48.9 
i-13:0 11.6 4.9 11.2 20.6 8.0 7.5 - - - - - - - - - - - - 

i-14:0 0.7 0.4 0.2 - - - - - - - - - 0.1 0.1 0.1 - - - 

ai-15:0 1.2 0.4 0.8 - - - - - - - - - - - - - - - 

i-15:0 7.2 10.2 14.2 5.5 6.8 8.6 1.2 3.5 3 0.5 1.2 2.7 - - - - - - 

i-16:0 - - - - - - - - - - - - 0.3 0.2 0.2 - - - 

i-17:0 0.5 0.2 0.2 - - - - - - - - - - 0.1  - - - 

Σ BCFA 21.2 16.2 26.6 26.1 14.8 16.1 1.2 3.5 3 0.5 1.2 2.7 0.4 0.4 0.3 - - - 

n-14:1ω5c - - - - - - - - - - - - 1.6 1 0.5 6.1 8.5 8.0 
n-15:1ω6 0.1 0.9 0.6 0.6 0.6 0.5 - - - - - - 1.4 1 0.6 2.2 4.1 5.4 
i-16:1ω6 - - - - - - 1 1.2 1.1 0.4 0.7 1.2 - - - - - - 

n-16:1ω7 16.9 11.2 9.3 12.6 6.3 2.3 39.5 36.7 31.2 32.3 29.8 28 1 1.3 0.6 0.8 - - 
n-16:1ω9 - - - - - - - - - - - - 37 40.1 41.2 21.1 26.2 28.9 
n-16:1ω11 - - - - - - - 2.5 - - - - - - - - - - 

n-17:1ω8 0.2 2.8 4.0 - 0.1 0.1 - - - - - - 0.1 0.1 - - - - 

n-17:1ω6 - - - - - - - - - - - - 0.3 0.3 0.4 - - - 

n-18:1ω9c - - - - - - - - - - - - 11.3 13.2 14.5 - 0.3 0.1 
n-18:1ω7c 5.2 4.2 1.1 - - - 17.9 6.7 4.4 1.5 1.2 0.6 0.5 0.4 0.6 - - - 

Σ MUFA 23.3 19.7 15.5 13.2 7.0 2.9 58.4 47.1 36.7 34.2 31.7 29.8 53.2 57.4 58.4 30.2 40.3 42.4 
n-18:2ω6t 2.8 1.5 0.3 0.4 9.1 6.3 - - - - - - - - - - - - 
n-18:3ω3 0.3 0.6 0.2 0.7 5.4 3.2 - - - - - - - - - - 0.5 - 
n-20:5ω3 21.4 9.5 0.6 20.9 18.3 6.5 8 5.8 2.5 12.3 10.5 5.5 14 7.5 3.2 24.5 17.9 7.7 
n-22:1ω9 - - - - - - - - - - - - - - - - 1.2 - 
n-22:5ω3 0.8 0.3 0.1 - - - - - - - - - - - - - - - 

Σ PUFA 27.8 14.4 2.0 22.0 22.0 16.0 8 5.8 2.5 12.3 10.5 5.5 14.0 7.5 3.2 24.5 18.4 7.7 
Others 3.9 3.0 1.2 1.3 1.3 1.1 1.3 1 1.4 1 1.3 1.2 0.4 0.9 1 0.7 0.8 1.0 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100.0 
ACL 16.3 15.5 14.7 15.2 15.5 14.4 16.0 15.1 15.0 15.1 14.8 14.5 16.6 16.2 16.2 16.3 15.89 15.1 
EPA (mg g-1) 24.7 9.7  0.6  25.5  18.7  6.5  5.4 4.0 1.7 8.4 7.2 3.7 5.8 3.0 1.3 10.6 8.2 3.5 
TFA (mg g-1)  115.2 102.5  96.5  122.0  102.0  99.6  67.3 68.5 67 68 69 67 41.5 40.5 41 43.1 46 45.7 
Cells(g l-1) a 2.25 2.6 0.6 2.95 3.2 0.75 1.8 1.9 1.8 1.8 1.9 1.8 2.1 2.2 2.1 2.15 2.42 2.1 

a Cellular dry weight; Values are means of three samples; ACL, average chain length 
calculated after reference (White et al., 2005a); SCFA, straight chain fatty acids; BCFA, 
branched chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, 
polyunsaturated fatty acids; TFA, total fatty acids; EPA, Eicosapentaenoic acid (n-
20:5ω3); and (–), not detectable. 
 



Chapter 7. Biosynthesis of polyunsaturated fatty acids by polyketide synthases in Gammaproteobacteria 

 
 

 
 

 
Figure 7.2 Change in average chain length (ACL) (triangles) and relative proportion of 
whole cell FAs in Shewanella sp. MAR441, Vibrio sp. NSP560 and Photobacterium sp. 
MA665 grown in marine broth medium at 4, 15 and 25 °C without (A) and with (B) 1 
μg ml-1 of cerulenin. Saturated straight-chain fatty acids (SCFAs, filled circles), 
branched-chain fatty acids (BCFAs, filled squares), monounsaturated fatty acids 
(MUFAs, open boxes), polyunsaturated fatty acids (PUFA,open diamonds) and 
eicosapentaenoic acid (EPA, open circles) as percentage of total fatty acids in the 
isolates investigated. The experiments were carried out in triplicate and values are 
means of three samples based on Table 7.3. The growth of cells was monitored 
turbidometrically at 600 nm and Cells were collected for fatty acid analysis during the 
exponential phase as methods mentioned in Chapter 6.  

 

7.4.4 Effect of cerulenin treatment on the amount of biomass, lipids and EPA 

Biomass production, lipid and EPA yields obtained from these three 

gammaproteobacterial  cells grown in the medium containing 1 μg ml-1 of cerulenin at 4 

°C, 15 °C and 25 °C are summarized in Figure 7.2B and Table 7.3. Addition of 1 μg ml-
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1 cerulenin in marine broth improved the production of cell biomass and EPA of 

Shewanella sp. strain MAR441, comparing to those from the medium with different 

concentration of cerulenin at 0.5, 1, 2.5, 5 and 7.5 μg ml-1 (data not shown in this study). 

In Shewanella sp. MAR441, EPA was increased to 18.3 % and 6.5 % respectively at 15 

°C and 25 °C, by cerulenin treatment, whereas not apparently changed at 4 °C (max. 

20.9% of total fatty acids). In Vibrio sp. NSP560 (maximum, 12.3% EPA of total fatty 

acids) and Photobacterium sp. MA665 (maximum, 24.5 % EPA of total fatty acids) at 4 

°C, and higher levers of EPA were also observed between cultures grown at 15 °C and 

25 °C. The result supports the other studies on enhancement of DHA production from 

Moritella marina strain MP-1 (Morita et al., 2000), and EPA production from 

Shewanella marinintestina strain IK-1 (Morita et al., 2005), by cerulenin treatment. The 

biomass was slightly influenced by adding cerulenin to the medium, with 20 % 

increased in strain MAR441, and the lever of lipid yield (g l-1) was unchanged, although 

it was reported that the antibiotic could inhibit the growth of a variety of yeasts, fungi 

and bacteria (Matsumae et al., 1964), and by inhibiting the incorporation of acetate into 

the lipids (Nomura et al., 1972; Goldberg et al., 1973). Cerulenin treatment enhanced 

EPA or PUFAs production as well as the short-chain fatty acids, such as n-13:0 and n-

15:0, and most of the middle-chain FAs, such as n-16:0, n-18:0, i-15:0, n-15:1ω6, n-

16:1ω7, n-17:1ω8 and n-18:1ω7c acids were inhibited in these three species.  

 

Cerulenin specifically blocks the activity of β-keto acyl thioester synthetase, which may 

account for the inhibition of overall fatty acid synthesis (Vance et al., 1972). However, 

our results suggest that cerulenin commonly inhibited the de novo synthesis of middle-

chain fatty acids but not the synthesis of EPA and short-chain fatty acids. Since the 

gross amount of EPA per dry weight of cells increased (e.g. from 9.7 to 18.7, 4 to 7.2, 

and 3 to 8.2 mg g-1 dry weight of cells at 15 °C for MAR441, NSP560 and MA665 

respectively), partially at the expense of the total amount of n-16:1 and n-18:1 (e.g. 

from 15.8 to 6.4, 6.3 to 0 and 21.6 to 12.1 mg g-1 dry weight of cells at 15 °C for 

MAR441, NSP560 and MA665 respectively), in the presence of cerulenin, it is 

considered that these three gammaproteobacterial strains use a common starting 

material(s) as a precursor in their two fatty acid-biosynthetic systems.  

 

7.4.5 Construction and characterisation of the fosmid library 

The purified DNA ranged in size from 24–145 kb, but was concentrated in the 40–80 kb 

range (Figure 7.3 A), suggesting that additional shear was necessary. The extracted 

 219



Chapter 7. Biosynthesis of polyunsaturated fatty acids by polyketide synthases in Gammaproteobacteria 

DNA was therefore randomly sheared through a 1 ml pipet tip with 65 times (optimal). 

After 50 repetitions, the DNA fragments were primarily in the 30–50 kb size range 

(Figure 7.3B). The sheared DNA was processed to end-repair and the 30–50 kb 

fragments were recovered by PFGE (Figure 7.4A) and confimed by PCR amplification 

on pfaB gene (Figure 7.4B). The selected DNA was ligated with the vector pCC1FOS, 

then transformed into E. coli EPI300-T1R. A total of 600 clones were isolated and 

transferred to ten 96-well microtiter plates.  

 

Figure 7.3 (A) High molecular genome DNA extracted from strains MA66, NSP560, 
MAR441 and MA665 (lanes 1-4); (B) Analysis of the size of sheared DNA fragments 
by pulsed-field gel electrophoresis (PFGE). M: Lambda DNA/EcoR I Marker; M1: the 
35 kb control DNA; Lane 1, the genome DNA of Photobacterium sp. strain MA65; 2, 
the genome DNA of Vibrio sp. strain NSP560; 3, the genome DNA of Shewanella sp. 
strain MAR441 and 4, the genome DNA of Photobacterium sp. strain MA665.		

	

Figure 7.4 (A) Genome DNA purified from pulsed-field gel electrophoresis (PFGE). M: 
Lambda DNA/EcoR I Marker; Lane1: the 35 kb control DNA; 2, the genome DNA of 
Photobacterium sp. strain MA66; 3, the genome DNA of Vibrio sp. strain NSP560; 4, 
the genome DNA of Shewanella sp. strain MAR441 and 5, the genome DNA of 
Photobacterium sp. strain MA665. (B) PCR amplification of pfaB partial gene from the 
purified genome DNA samples. M, FastRuler™ Low Range DNA Ladder; Lane 1, 
negative control; 2, PCR product from the genome DNA of strain MA66; 3, PCR 
product from the genome DNA of strain NSP560; 4, PCR product from the genome 
DNA of strain MAR441 and 5, PCR product from the genome DNA of strain MA665. 
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Primer pairs showed in Table 7.1 were used for library screening by a matrix two-step 

PCR system. For example, the first PCR screening on the fosmid clones in the library 

was conducted by using the pfaB primer pair (pfaB 1240F and pfaB 1840R) (Figure 

7.5), with a positive clone of MAR441-1. 

 

Figure 7.5 PCR screening of the pfaB partial gene from the fosmid library of 
Shewanella sp. strain MAR441 with the primer pair pfaB 1240F and pfaB 1840R. M, 
DNA size ladder; Lane 1, MAR441 genome DNA used as the positive control. Lanes 2-
27 are PCR products from fosmid clones in the library constructed by using MAR441 
genome DNA. 

 
End sequencing by  pCC1FOS™ sequencing primers confirmed that fosmid clone, 

MAR441-1 contained full length of polyunsaturated fatty acid gene clusters (pfaA-D), 

similar to Photobacterium profundum strain SS9 pfa gene cluster (pfaA-D) responsible 

for EPA synthesis. MAR441-1 fosmid DNA was digested by restriction enzymes, e.g. 

BamHI, EcoRI, NdeI, SalI and Xhol I, confirmed that the size of insert DNA from 

MAR441is about 42,000 bp (Figure 7.6). 

 

Figure 7.6 Restricted enzymes digestion patterns of recombinant fosmid MAR441-1. 
M1, DHA EcoRI ladder; M2, Lamda DNA ladder; Lane 3, MAR441-1 Fosmid DNA 
(2.5 µg); 4, MAR441 genome DNA; lanes 5 to 9, MAR441-1 Fosmid DNA digested by 
BamHI, EcoRI, NdeI, SalI, XholI respectively.	
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7.4.6 Analysis of the strains MAR441, NSP560 and MA665 pfa gene cluster 

The isolation of Shewanella sp. MAR441 genes required for EPA synthesis, designated 

as pfaABCD, involved the generation of a large insert fosmid library of MAR441 

genomic DNA and the subsequent probing of this library using published PUFA 

primers targeting conservative regions. The MAR441 pfaA-D genes span a region of 

17313 bp (Table 7.4).  

 

Two large insert fosmid libraries of NSP560 and MA665 genomic DNA were also 

constructed, however, no positive clones were found containing PUFA gene clusters. 

Thus, the full EPA synthesis gene clusters were cloned based on the primers designed 

according to the genomic sequences published on Vibrio splendidus strain LGP32 and 

Photobacterium profundum strain SS9 from NCBI database (Table 7.3). The NSP560 

pfaABCD genes span a region of 17442 bp.  The Photobacterium sp. MA665 pfaABCD 

genes span a region of 17359 bp (Table 7.4).  

 

Table 7.4 The similarity of the deduced Pfa amino acid sequences from the strains 
MAR441, NSP560 and MA665 pfa genes to those from referenced species 

Identity to the protein sequences from the referenced 
species (%) 

 
Pfa enzymes 

 
Size (bp) 

Photobacterium Vibrio Shewanella 
Pfa from Shewanella sp. strain MAR441 
PfaA 7709  98 78 66 
PfaB 2077 96 67 51 
PfaC  5877 97 79 71 
PfaD  1638 98 89 83 
PfaE 924 58-98 35-45  
Pfa from Vibrio sp. strain NSP560 
PfaA 7815 98 79 66 
PfaB 2034 93 67 49 
PfaC  5943 99 80 71 
PfaD  1638 99 89 85 
PfaE 828 41-47 91-99  
Pfa from Photobacterium sp. strain MA665 
PfaA 7722 99 78 66 
PfaB 2100 95 67 50 
PfaC  5877 96 79 71 
PfaD  1635 99 89 85 
PfaE 693 93 39  
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Figure 7.7 Phylogenetic analysis of domains of PUFA polyketide synthase and closely 
related proteins. Phylogenetic analysis was performed using the program DNAMAN 5.1. 
The referenced protein sequences with their accession numbers were retrieved from 
GenBank http://www.ncbi.nlm.nih.gov. Bars: 0.05 nucleotides substitution per site. 
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Furthermore, phosphopantetheinyl transferase gene (PPTase: pfaE) from MAR441 (924 

bp), NSP560 (828 bp) and MA665 (693 bp) were PCR cloned by primers designed 

according to the conserved regions (Nishida et al., 2006). The deduced amino acid 

sequence of the MAR441, NSP560 and MA665 pfaE genes had a high degree of 

identity to PfaE homologues in Photobacterium, Vibrio and Shewanella (% identity): 

MAR441 PfaE– 58-98 % Shewanella, 35-45 % Vibrio/ Moritella; NSP560 PfaE– 91-99 

% Vibrio, 41-47 % Shewanella; MA665 PfaE – 93 % Shewanella, 39% Vibrio (Table 

7.4). 

 

In between from MAR441, NSP560 and MA665, PfaA, PfaB, PfaC and PfaD, except 

for PfaE, were with high homology respectively, according to the phylogenetic analysis 

of domains of PUFA polyketide synthase and closely related proteins (Figure 7.7). 

MA665 PfaD along with Photobacterium profundum SS9 PfaD and Psychromonas 

ingrahmii 37 PfaE showed close to PfaB phylogenetically. PfaE and PfaB are similar in 

Moritella and Colwellia species. Interestingly, 4'-phosphopantetheinyl transferase from 

Bacillus subtilis strain 168 is similar to PfaE from Shewanella frigidimarina NCIMB 

400. PfaB in Pseudoalteromonas sp. DS-12 was grouped in the phylum of PfaC. In 

Schizochytrium sp. ATCC 20888, fabB and fabC was grouped into PfaD. 

 

Five deduced proteins from pfaABCD genes involved in EPA biosynthesis from these 

three gammaproteobacterial bacteria had domains that were conserved in fatty acid 

synthetase and/or polyketide synthases (PKSs) (Metz et al., 2001). These five 

pfaABCDE genes are generally necessary for the biosynthesis of EPA and DHA, and 

the basic structures of all pfa genes for EPA and DHA biosynthesis are very similar, the 

domain structures of some of the individual genes are slightly different (Figure 7.8 and 

Table 7.5). The pfa genes cluster from Vibrio sp. NSP560 was similar to those from 

Shewanella pneumatophori SCRC-2738 (Orikasa et al., 2004), belonging to type I pfa 

gene cluster, which includes all five pfa genes in a similar vicinity. Whereas, pfa genes 

clusters from Shewanella sp. MAR441 and Photobacterium sp. MA665 were similar to 

those type II pfa gene clusters from P. profundum SS9 (Allen and Bartlett, 2002), and 

M. marina MP-1 (Morita et al., 2000), which consists of a cluster of the four genes 

pfaABCD, with pfaE separate from the other genes. In the pfa gene clusters, pfaA 

encode a multifunction protein that includes domains for 3-ketoacyl synthase (KS), five 

repeats of malonyl coenzyme A: acyl carrier protein (ACP) acyltransferase in strains 

MAR441 and MA665, six repeats of ACP in strain NSP560, and 3-ketoacyl-ACP 
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reductase (KR). The growing acyl chains are presumably bound covalently to these 

ACP groups as thioesters with AT domains being required for the loading of the starter 

and extender units (Valentine and Valentine, 2004). ACPs contain a conserved Ser 

residue that is post-translationally modified with the phosphopantetheinyl moiety of 

CoA by a phosphopantetheinyl transferase (PPTase) (Rahman et al., 2005), providing a 

free thiol for tethering the starter and extender units and channeling the intermediates 

during fatty acid and polyketide biosynthesis (Lambalot et al., 1996; Sanchez et al., 

2001). 

 

 
Figure 7.8 Comparison genes responsible for bacterial EPA biosynthesis and genes 
responsible for bacterial EPA from strains MAR441, NSP560 and MA665 with those 
gene clusters published. 

 

The pfaC gene encodes a protein with two KS repeats and two or three 3-

hydroxydecanoyl-ACP dehydratases (HD), which were homologous to FabA when in 

PfaC for EPA, and had two HD domains similar to that of FabA and one domain in the 

centre, similar to that of FabZ/FabA when PfaC for DHA. The second KS domain in 

PfaC of was considered to be a chain length factor (Okuyama et al., 2007). Genes pfaB 

and pfaD encode proteins with acyltransferase domains (AT) and an enoyl reductase 

(ER) domain, respectively, similar to those in SCRC-2738 (Orikasa et al., 2004). 

However, in DHA derived strains M. marina MP-1 (Tanaka et al., 1999) and C. 

psychrerythraea 34H (Methe et al., 2005), KS domain is also included in PfaB. The KS 
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domain of PfaB in M. marina MP-1 lacked an active-site sequence (Allen and Bartlett, 

2002). The pfa genes of Pseudoalteromonas sp. strain DS-12 was defied as type III pfa 

gene clusters, in which PfaB was found to have two KS domains, and PfaC/E (which 

was registered as a product of the pfaD gene in the database) (Dai and Zhang, 

unpublished) has one PPTase domain and two HD domains (Figure 7.8).  

 

Table 7.5 List of known microbial pfa genesa 

 

Organism 
Product
b 

pfa genes in the 
cluster 

No. of 
ACP 
repeats 
in PfaA 

Domai
n(s) in 
PfaB HD domains in 

PfaC or PfaC/E 

pfaE (PfaE) 

Recombina
nt 
synthesis 
of the 
product 

Reference or 
source 

  Typec Cloning    Groupd Cloning   
Shewanella sp. 
MAR441 

EPA 
II Yes 

5 AT FabA-FabAe 
I Yes 

No This study 

Vibrio sp. NSP560 EPA 
I Yes 

6  FabA-FabA-
FabA I Yes 

No This study 

Photobacterium sp. 
MA665 

EPA 
II Yes 

5 AT FabA-FabAe 
II Yes 

No This study 

S. pneumatophori 
SCRC-2738 

EPA I Yes 6 AT FabA-FabA-
FabA 

I Yes Yes (Orikasa et 
al., 2004) 

S. oneidensis  
MR-1 

EPA I No 4 AT FabA-FabAe I No Yes (Venkateswa
ran et al., 
1999) 

P. profundum 
 SS9 

EPA II Yes 5 AT FabA-FabAe II No No (Allen and 
Bartlett, 
2002), 
(Vezzi et al., 
2005) 

Pseudoalteromona
s sp. strain  
DS-12 

(EPA) III Yes 5 KS, KS FabA-FabAf Ig Yes No ABF00130 

M. marina MP-1 DHA II Yes 5 KS, AT FabA-
FabZ/FabA-FabA 

I Yes Yes (Orikasa et 
al., 2006a) 

C.psychrerythreae 
34H 

(DHA) I No 6 KS, AT FabA-FabAe I No No (Methe et al., 
2005) 

a Data format adapted and updated from reference (Okuyama et al., 2007). Nucleic acid and deduced amino acid sequences were 
retrieved from databases (DDBJ/GenBank/EMBL) (http://www.ddbj.nig.ac.jp/Welcome-j.html). The name of each domain in 
individual pfa genes is described in the legend of Figure 7.4.  

b In cases of (EPA) and (DHA), the production of EPA or DHA is expected but not confirmed.  

c Type I, II, and III pfa genes are defined in references (Orikasa et al., 2006a; Okuyama et al., 2007).  

d Group I and II PPTases are defined in reference (Okuyama et al., 2007). 

e Unannotated 900- to 1,000-bp sequences are present between the two FabA-like sequences.  

f Unannotated 360- to 450-bp sequences are present between the two FabA-like sequences.  

g pfaE is included in pfaC/E. 

 

In order to understand microbial production of EPA/DHA via the PKS-like pathway, 

insight into the molecular genetics of EPA/DHA biosynthesis were gained by the 

cloning, sequencing, and complementation analysis (Yazawa, 1996; Tanaka et al., 1999; 

Allen and Bartlett, 2002; Gentile et al., 2003; Orikasa et al., 2004; Okuyama et al., 

2007). Escherichia coli has a powerful genetic tool system and is widely used in the 
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fermentation. Therefore, pfa genes were further expressed for finial EPA/DHA 

production in Escherichia coli, with 2-6 % EPA/DHA recombinant production in TFA 

(Valentine and Valentine, 2004; Lee et al., 2006; Orikasa et al., 2006b; Amiri-Jami and 

Griffiths, 2010). And, the production of EPA could be improved to 16-22 % when high 

copy-number plasmid carrying the EPA gene cluster was transformed into E. coli cell 

(Orikasa et al., 2004). However, the EPA/DHA recombinant does not behave like a 

typical E. coli cell, such as growth occurs around 0.2 M NaCl and restricted to about 

12–22 °C (Valentine and Valentine, 2004).  

 

Bacteria mostly produce fatty acids via the type II fatty acid synthase (FAS) in which 

discrete enzymes encoded by separate genes catalyse specific steps of the biosynthetic 

pathway (White et al., 2005b). The dominant cellular fatty acids produced via the type 

II FAS typically contain between 14 and 18 carbons, such as via iterative reactions of 

the elongation and desaturation on the saturated fatty acid palmitic acid (PA, 16:0) 

(Wallis et al., 2002; Qiu, 2003; Chung et al., 2005). Whereas, type I FAS systems, 

multifunctional enzyme complexes harbouring catalytic activities as discrete functional 

domains, is found in certain coryneform bacteria of the order Actinomycetales 

(Schweizer and Hofmann, 2004). Then, a novel alternative pathway for the biosynthesis 

of C20+ PUFAs has been suggested in a narrow group of predominately marine Gamma-

Proteobacteria that includes species of the Shewanella, Photobacterium, Moritella, 

Colwellia and Vibrio genera (Yazawa, 1996; Morita et al., 2000; Kaulmann and 

Hertweck, 2002; Nichols and McMeekin, 2002; Nichols, 2003). This system is 

responsible for the specific de novo synthesis of the long-chain omega-3 PUFAs EPA 

and DHA, and the omega-6 PUFA arachidonic acid (AA, 20:4ω6) (Russell and Nichols, 

1999). The mechanism of Pfa Synthase for PUFA synthesis proceeds via a novel type I 

iterative fatty acid synthase/polyketide synthase (FAS/PKS) enzyme complex (Metz et 

al., 2001), as shown in this study strains Shewanella sp. MAR441 and Shewanella sp. 

MA665 with pfaEABCD and pfaE separated, and Vibrio sp. NSP560 of with pfaEABCD 

in the gene cluster dedicated to PUFA production. The PKS-like modules were assumed 

to directly condense acetyl units to C20+ polyketides and have an advantage over the 

desaturase-elongase pathway due to the structural simplicity of enzymatic complexes. 

Each step of the two-carbon extension consists of sequential catalysis by ketoreductase, 

dehydratase, and/or enoyl reductase, resulting in the partial or complete reduction of the 

keto group. In this unique process, a cis-double bond is inserted by aerobic desaturation 
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after the complete reduction of keto group, thus conserving cellular reduction energy (1 

NADPH every double bond) (Metz et al., 2001).  

 

7.5 Conclusions 

Most of the deep-sea Shewanella species, such as S. benthica, S. abyssi, S. kaireitica, S. 

violacea, S. peizotolerans and S. psychrophila were reported to produce EPA at the 

level of 2-14 % of total fatty acids (TFA) (Deming et al., 1984; Delong and Yayanos, 

1986; Delong et al., 1997; Nogi et al., 1998b; Miyazaki et al., 2006; Xiao et al., 2007). 

Shewanella sp. MAR441 from Mid-Atlantic Ridge deep-sea sediments, taxonomically, 

was identified as a novel species (unpublished data), producing EPA up to 21 % of TFA 

(or 25 mg g-1) under atmospheric conditions, which is the highest yield published so far 

from deep-sea Shewanella. 

 

Photobacterium profundum and Ph. frigidiphilum are the only two species within 

Photobacterium genus known to be able to produce EPA at the level of 2-14 % of TFA, 

however, they require pressure for growth (Nogi et al., 1998c; Seo et al., 2005). 

Photobacterium sp. MA665, phylogenetically with high similarity with these two 

psychropiezophiles, isolated from shallow-sea algal plant from North Sea, was first time 

described of this genus could be cultured easily under atmospheric conditions with 

appreciable levels of EPA (up to 25 % of TFA or 10.6 mg g-1). 

 

Some Vibrio species may contain only silent copies of the PUFA genes, which unable to 

synthesize EPA successfully. North-sea sponge associated bacteria Vibrio sp. NSP560 

was able to produce up to 12 % EPA of TFA (or 8.4 mg g-1), while its closest type 

strains, Vibrio tasmaniensis and V. cyclitrophicus were reported no produce EPA 

(Hedlund and Staley, 2001; Thompson et al., 2003).  

 

Therefore, varied proportion of EPA from bacteria may reflect nutrient requirement of 

their host or the food web characteristics of the environment where they were isolated. 

Furthermore, EPA production greatly enhanced by cerulenin treatment has two 

indications: (i), two fatty acid-biosynthetic systems involved in PUFA producing 

bacteria, including synthesis of EPA and short-chain fatty acids, and synthesis of 

middle-chain fatty acids; (ii) the environments where the strains isolated may not be the 

primary controlling factor in PUFA synthesis, but mostly may impact the growth. 
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Therefore it suggests that the necessary of rethinking the conventional concepts/ways of 

screening strains with highly accumulate PUFAs, as well as the mechanisms of cold 

adaptation, such as the increasing levels of EPA and/or DHA responses to cold 

temperatures. 

 

EPA gene clusters (pfaA, pfaB, pfaC, pfaD and pfaE) from Vibrio, Photobacterium and 

Shewanella in this study, along with those published data from EPA/DHA derived 

prokaryotic and eukaryotic species, such as S. pneumatophori SCRC-2738, P. 

profundum SS9 and Pseudoalteromonas sp. DS-12, Moritella marina MP-1 and 

Schizochytrium, which demonstrated that EPA or DHA polyketide biosynthesis gene 

clusters from different genera showed a high degree of gene sequence similarity. The 

result also provided evidence of the common distribution of the novel PUFA synthease 

pathways among marine microorganisms regardless of their biogeographic variability, 

which has recently been further testified by the investigation of genetic capacity for 

production of long-chain fatty acids using a culture-independent approach (Shulse and 

Allen, 2011). Therefore, the study suggests the possible involvement of horizontal gene 

transfer in the acquisition of the pfa gene clusters in the marine environments, although 

no flanking genes possessing functions which could facilitate horizontal transfer have 

been observed, so far.  

 

Therefore, in some way, PUFA genes may contribute to the bacterial taxonomy by 

redefining old classifications, creating new groupings, and tracing back evolution 

(Nichols et al., 1997; Nichols et al., 1999). New strains with active and silent copies of 

the PUFA genes can be tracked by using molecular biology tools, and more might be 

learned about the world-wide distribution of strains with PUFA-biosynthesis gene 

clusters and their ecological importance (DeLong and Yayanos, 1985; Nichols et al., 

1996a). The genes for PUFA biosynthesis are distinct from previously recognized PKSs 

in both structure and mechanism as well as the novel putative dehydrases/isomerases, 

and may thus provide new tools for combinatorial biosynthesis of polyketide antibiotics 

(Leadlay, 1997; Chartrain et al., 2000; Rohlin et al., 2001). 
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8 Chapter 8. Outdoor production of eicosapentaenoic acid by 
marine microalgae in the UK 
 

8.1 Abstract  

Microalgae contain large quantities of eicosapentaenoic acid (EPA) and are therefore 

considered a potential alternative source of this important fatty acid, which currently 

comes mainly from fish oil. We investigated the natural populations of algae from 

North Sea. Among fifty strains, a green microalgae strain M1 and a diatom strain M7 

were chosen, for their ability to grow well and produce high level of EPA. These 

isolates were identified by molecular biological and morphological methods as 

Tetraselmis sp. and Phaeodactylum tricornutum respectively. Cells of strain M7 were 

able to grow indoors and outdoors under local natural weather months. P. tricornutum 

strain M7 had a lipid content of 10 % dry wt biomass and 22-30 % EPA of total fatty 

acids (TFA), whereas Tetraselmis sp. M1 produced 5 % oil content (dry wt) and 6 % 

EPA of TFA. The results indicate the potential of growing marine microalgae in 

temperate regions, rather than in tropical and subtropical areas. 

 

8.2 Introduction 

Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 

20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) have received much attention due to 

their therapeutic significance. Remarkably, they have a wide range of physiological 

functions in the human body, providing beneficial effects in the prevention and 

treatment of heart disease, Alzheimer's disease, high blood pressure, inflammation, and 

certain types of cancer (Tresguerres et al., 1989; Angerer and von Schacky, 2000; Sauer 

et al., 2002; Connor and Connor, 2007). These findings have led to considerable interest 

in developing commercial processes for EPA production from microalgae for food and 

pharmaceutical markets (Belarbi et al., 2000; Molina Grima et al., 2003).  Heightened 

consumer awareness of the value of omega-3s has increased the growth in demand for 

the omega-3 products. 

 

Currently, the main sources of dietary EPA and DHA are marine fish, and fish oil is 

used for commercial production of EPA and DHA. However, recovery of EPA from 

fish oil is expensive (Belarbi et al., 2000), declining fish populations (Garcia and 
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Rosenberg, 2010), an undesirable fishy flavor and odor in fish oil (Arts et al., 2001), 

have led to an extensive search for alternative sources such as microalgae. It has been 

assumed that fatty acids in marine food webs come only from microalgae, such as 

diatoms (Pohnert, 2005). Fish usually obtain EPA via bioaccumulation from microalgae 

in the food chain (Wen and Chen, 2003). Most diatoms contain high content of EPA, 

such as diatoms Phaeodactylum tricornutum and Nitzschia laevis have been intensively 

investigated for their EPA production potentials. However, most of these EPA 

production processes investigated to date have been based on photoautotrophic 

(Sa´nchez Miro´n et al., 2002; Molina Grima et al., 2003). Unfortunately, 

photoautotrophic growth require strictly controlled growth conditions in terms of 

nutrients, light quantity and quality, oxygenation and carbon dioxide levels (Seto et al., 

1984; Chen, 1996). Consequently, photosynthetic systems are not easy to achieve high 

level of EPA productivity (Barclay et al., 1994), and can result in considerable expense 

(Seto et al., 1984). Therefore, it would be desirable to isolate specific algal species 

which are capable of producing high level of EPA via a heterotrophic growth process 

under natural weather conditions, especially on cheap organic substrates.  

 

Currently, algal cultivation has been focused on tropical and subtropical regions, very 

little work has been done on outdoor cultures in cold climate. In this study, we 

investigated species composition and diversity from fifteen sea water samples from the 

coast of North Sea. Better algal candidates were chose for further identification by 

molecular biological, morphological methods and fatty acid compositions analysis. We 

also demonstrated the feasibility of growing these marine microalgae indoors and 

outdoors for lipid production under natural weather conditions in the northeast of the 

United Kingdom. 

 

8.3 Materials and methods 

8.3.1 Marine algae isolation and purification 

The sea water algal samples were collected from Cullercoats coast near the Dove 

Marine Laboratory (latitude 55°04' N and longitude 1°28'W) (North of England) in 

October 2008 and cultured in filtered sea water with or without adding F/2 medium 

(Sigma). The algae were subjected to purification by serial dilution followed by plating. 

The microscopic observations of the isolated algae revealed its colonial existence. The 

individual colonies were isolated and inoculated into F/2 medium and incubated at 15 ± 
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1 °C under natural light-night period in UK, for biomass accumulation. The purity of 

the culture was ensured by repeated plating and by regular observation under 

microscope. The stock culture was maintained on F/2 medium. 

 

8.3.2 Algal cultivation conditions 

Algal cells were subcultured in 50 ml F/2 medium in 250-ml conical flasks every 3 

weeks at 15 ± 1 °C, on a rotary shaker (100 rev. min-1), under natural light and dark 

cycle of North-east England. Cells in the exponential growth phase were used as 

inoculum for following experiments in shake flasks and open raceway ponds. Inoculum 

size, temperature and light intensity were denoted as in the results. Productivity (in mg 

l-1 day-1) was defined as the final yield of EPA and PUFA (in mg l-1) divided by the total 

culture period (in days).  

 

A time course study was carried out on marine micro algae and diatoms growth in 

conical flasks of 1500 ml capacity, containing 500 ml F/2 medium for a period of 3 

weeks. The culture flasks were inoculated (5 % v/v) and incubated at 15 ± 1 °C under 

natural light and dark cycle. Cultures were harvested and dry biomass was estimated at 

1-3 days of intervals for fatty acids analysis. All the experiments were carried out in 

triplicate. 

 

A time course study was carried out on marine diatoms growth in a open raceway pond. 

The equipment was facilitated with a pump pushed by two solar panels (BP Solar, 

model SX305M), to economically supply an attached battery with the needed power to 

control the motor to which the paddlewheel of the raceway is attached, creating a 

current of 0.5 m s-1. The experiment was carried out in open raceway ponds of 40 L 

capacity, containing 35 L F/2 medium for a period of 3 weeks. The raceway ponds were 

inoculated (5 % v/v) and incubated at natural conditions in summer (June and August 

2010) and winter (October and November 2010) respectively. Cultures were harvested 

and dry biomass was estimated at 1-3 days of intervals for fatty acids analysis. All the 

experiments were carried out in triplicates. 

 

8.3.3 Biomass estimation 

Algal cell density was recorded daily for 10–20 days by reading the culture absorbance 

at a wavelength of 600 nm. To combine the optical density and the dry biomass a 
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calibration curve was made. The cultures were harvested and the cells were washed with 

distilled water after centrifugation at 5000 rpm. Then the pellet was freeze dried. The 

dry weight of algal biomass was determined gravimetrically and growth was expressed 

in terms of dry weight. 

 

8.3.4 Electron microscopy as methods mentioned in Chapter 5 

   

8.3.5 Fatty acid analysis as methods mentioned in Chapter 2 

 

8.3.6 18S rRNA gene PCR amplification 

Genomic DNA was extracted from the strains using the PureLink™ Genomic Plant 

DNA Purification Kit (Invitrogen Ltd, Paisley, U.K) and used as templates for PCR 

amplification of the 18S rRNA gene fragments by using the primers pair: 18S-F1 (5’- 

CCAACCTGGTTGATCCTGCCAGTA-3’) and 18S-R1 (5’- 

CCTTGTTACGACTTCACCTTCCTCT-3’) (Goff and Coleman, 1988). The PCR 

reactions were performed on Eppendorf Master thermocycler with the program of 3 min 

at 94 °C, followed by 30 cycles of 1 min at 94 °C, 1min at 55 °C, 6 min at 72 °C and a 

final hold at 72 °C for 10 min with DreamTaq™ Green PCR Master Mix (Fermentas).  

The PCR products were sequenced by Eurofins MWG Operon after purification with 

PureLink™ PCR Purification Kit (Invitrogen Ltd, Paisley, U.K) following the 

manufacturer’s protocol. Phylogenetic analysis and diversity estimates were conducted 

according to the methonds mentioned in Chapter 2. The nucleotide sequences of 18S 

rRNA gene have been deposited in EMBL under the accession numbers FR744744-

FR744763. 

 
 

8.4 Results and Discussion    

8.4.1 Phylogeny, morphology and classification 

From a total of 15 sea water algal samples, 54 pure isolates of marine algae were 

isolated and chose for identification based on morphological and microbiological 

experiments. They were found mainly green micro algae and diatoms (Table 8.1). Of 

these 54 isolates, 20 algal strains were identified by 18S rRNA gene sequences and 

subjected to phylogenetic analysis (Figure 8.1). From these studied, green algae and 
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diatoms are the main populations, and Tetraselmis is the dominant in the group of green 

algae with following different species: Tetraselmis striata, Tetraselmis suecica, 

Tetraselmis convolutae and Tetraselmis chuii; while Phaeodactylum tricornutum is the 

dominant in diatoms group with species of Phaeodactylum tricornutum and Amphora 

Montana.  

 

 

 

Figure 8.1 Neighbour-joining distance tree based on the 18S rRNA gene sequences of 
20 representative micro algal strains observed in this study and their nearest similar 
strains. The phylogenetic tree was constructed by neighbour-joining method using the 
programs of MEGA package. 1000 trials of bootstrap analysis were used to provide 
confident estimates for phylogenetic tree topologies. Bars: 0.02 nucleotides substitution 
per site. 
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Table 8.1 List of marine micro algal isolates from North Sea 

 

Phylogenetic 
group (family) 

Representative 
isolates 

Closest identified strain in the database 
(accession no.) 

Similarity (%) 

Green micro algae    
Prasinophyceae M1 ; M2 Tetraselmis sp. KMMCC P-59 (GQ917215) 99.2-99.4 
 M3 Tetraselmis suecica KMMCC P-4 (FJ559377) 99.5 
 M4; T1 Tetraselmis chuii (DQ207405) 99.1-99.6 

 M5 Tetraselmis convolutae (U05039) 99.0 

 M6 Tetraselmis suecica KMMCC P-4 (FJ559377) 99.2 
 M16;  M18 Tetraselmis striata KMMCC P-43 (FJ559403) 99.6 
Diatoms    

Bacillariophyceae M7;  M8 Phaeodactylum tricornutum (AY485459) 99.5-99.8 

 M9 Phaeodactylum tricornutum UTEX 640 
(AJ269501) 

99.765 

 M10; M11; 
M12;  M13; 
M14;  M15 

Phaeodactylum tricornutum KMMCC B-411  
(GQ452850) 

99.95-99.9 

 M17 Phaeodactylum tricornutum strain SJ (GQ118681) 99.6 
Catenulaceae A2 Amphora montana isolate TSA2 (AJ243061) 98.5 

 

The green microalgal strain M1 is unicellular (Figure 8.2). Cells are solitary, non-

flagellate, spherical or elongate, occasionally ovoid or subspherical, widely oval before 

division and after division hemispherical, 7.0-9.0 μm in width and reaching 15 μm in 

cell length, and yellow-green in color (Figure 8.2. light microscopic picture). The 

pyrenoid, a feature of taxonomic significance in Tetraselmis (Hori et al., 1982), was 

penetrated by cytoplasmic channels and the eyespot was present (Figure 8.2. M1-TEM).  

M1 broth culture was observed with gliding movement but with not flagella, having two 

cell walls, the color of the cell is bright green and turn to greenish yellow on the fifth 

day of growth. Reproduction by solitary cells, dividing into two morphologically equal, 

hemispherical daughter cells (binary fission), which reach the original globular shape 

before next division, cells divide in two planes in successive generations in broth media, 

the envelopes around cells will split together with dividing cells.  

 

The algal strain M7 is also unicellular. Cells are fusiform, 5-18 µm long, 1.5-5 µm wide, 

rounded, margin entire, with two more or less blunt, slightly bent arms, silica wall 

absent, non-motile and golden-brown in color (Figure 8.2); in sea water F/2 medium 

culture, cells separate and tend to remain suspended, which is agreeable to the 

morphology description of the genus (Lewin, 1958). Valve weakly silicified, with a thin 

ragged margin. Girdle bands absent. Valve flat, linear lanceolate, slightly curved, 
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symmetrical about the transapical plane; one edge convex, the other more or less 

straight with a median bulge. Ends broadly rounded but not capitate. Raphe slightly 

curved. Central area small, frequently with a pore on the side of the bulge (Figure 8.2. 

M7-SEM). 

 

 

Figure 8.2 Light microscopic (A), transmission electron microscopic (B) and scanning 
electron microscopic (C) pictures of green micro algae M1 and diatom M7 

 

8.4.2 Ecophysiological characterization of the local algal isolates 

Ecophysiological characterization of the local isolates of green algae and diatoms were 

considered by growth and factor influencing growth including temperature, salinity and 

light. These local algal isolates exhibit ranges of tolerance for ecophysiological factors 

that determine their limits of growth. When the culture was tested in survival on the 

extreme temperature (30 °C and -20 °C) and without light, they still able to live. 

Although low temperatures restrict the rates of growth and enzymatic activities of 

organisms, it does not kill these organisms. Therefore, when the culture is thawed, they 
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can grow. Diatoms isolated from North Sea, such as strain M7 showed great growth 

under temperatures range from about -4 °C to 28 °C, and could still survive under 

severe temperatures, where temperatures range from about 0 °C on the bottom to -15 °C 

or less on the top. 

 

8.4.3 Fatty acid content 

The fatty acid profiles of the selected microalgal isolates are presented in Table 8.2. The 

highest lipid content was observed in Phaeodactylum tricornutum followed by Amphora 

montana and Tetraselmis sp., while Tetraselmis chuii had the lowest lipid content. The 

fatty acid profiles varied between the classes. In Prasinophyceae, Tetraselmis sp. had n-

16:0, n-18:1ω9 and n-18:3ω3 as the dominating fatty acids, which accounted for 47-55 

% of the total fatty acids, with lower amounts of n-16:1ω7, while n-16:0, n-16:2ω4, n-

18:1ω9 and n-20:5ω3 were the most abundant fatty acids (71 %) in Amphora montana. 

The diatom Phaeodactylum tricornutum was dominated by n-14:0, n-16:0, n-16:1ω7, n-

16:3 and n-20:5ω3 acids (70-73 %). The average chain lengths of these five species 

were similar (17.2-17.6). 

 

These findings reveal that n-16:0 was the major saturated fatty acid in all the algae. The 

major monosaturated fatty acids were n-16:1 in P. tricornutum; n-18:1 in Tetraselmis 

sp., Tetraselmis chui; n-16:1 and n-18:1 in Amphora Montana. The abundance of 

PUFAs showed pronounced variation between algal species and classes. The highest 

amount of EPA was found in P. tricornutum (29.7 mg g–1), followed by Amphora 

Montana (16.1 mg g–1), Tetraselmis sp. (4.2 mg g–1) and Tetraselmis chuii (3.3 mg g–1), 

while DHA was not found among these isolates. In general, our data were in good 

accordance with results from the literature.  

 

8.4.4 Fatty acids of Chlorophyceae 

Both species of Tetraselmis (M1 and T1) generally showed a pattern of fatty acid 

distribution similar to each other, and distinguished from Bacillariophyceae by 

dominated with high percentage of n-18:1ω7, n-18:2ω6 and n-18:3ω3 acids (8-20 %), 

and with only considerable amounts of n-20:5ω3 (up to 6.9 %). The fatty acid profiles 

were in accordance with those in earlier reports (Ackman et al., 1968; Volkman et al., 

1989; Reitan et al., 1994). However, in contrast to members of Chlorophyceae, the two 

Tetraselmis species examined, had a little different from other representatives of this 
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class, which have a high concentration of n-16:4ω-3 and n-18:4ω-3 (Dunstan et al., 

1992; Zlmkova and Aizdaicher, 1995). Other main components, such as n-16:0, n-

18:3ω3 and the amount of n-20:5ω3 were similar.  

 

Table 8.2 Fatty acid (FA) profile of the micro algal isolates from North Sea 

Tetraselmis 
sp. 

Tetraselmis 
chuii 

Amphora sp. 
Phaeodactylum 
tricornutum  

Phaeodactylum 
tricornutum   

Fatty acid 
M1 T1 A2 M7 M13 

n-14:0 2.7 2 1.4 7.8 8.9 

n-16:0 17.2 19.6 19.3 15.5 17.4 

n-16:1ω7 1.4 1.6 2.2 16.4 15.7 

n-16:2ω4 4.9 5.5 18.4 4.4 3.3 

n-16:3ω4 1.7 2.4 2.2 12.9 11.7 

n-16:4 3.2 5.6 2.4 - - 

n-18:0 0.4 0.7 7.5 1.3 1.6 

n-18:1ω9 16.3 12.5 15.3 2.1 3.2 

n-18:1ω7 10.9 6.9 0.9 1.1 2.9 

n-18:2 ω6 7.7 9.2 2.5 3.5 4.3 

n-18:3 ω3 20.9 14.9 2.6 1.3 1.6 

n-18:4 ω3 3.2 5.9 0.6 0.6 0.6 

n-20:1 ω9 1.6 3.1 2.1 1.2 0.2 

n-20:2 ω6 - - 0.5 0.7 0.1 

n-20:4 ω6 0.8 1.6 0.5 0.6 0.8 

n-20:4 ω-3 0.6 0.4 1.8 2.2 2.1 

n-20:5 ω3 6.5 6.9 18.7 28.4 25.6 

n-22:5 ω3 - 1.2 1.1 - - 

Σ TFA 100 100 100.0 100 100 

Σ SCFA 20.3 22.3 28.2 24.6 27.9 

Σ MUFA 30.2 24.1 20.5 20.8 22 

Σ PUFA 49.5 53.6 51.3 54.6 50.1 

EPA 6.5 6.9 18.7 28.4 25.6 

ACL 17.5 17.5 17.6 17.4 17.3 

EPA (mg g-1)  4.18 3.27 16.1 29.65  27.70  

TFA (mg g-1)  64.4 47.5 85.7 104.40  108.20  

Cells(g l-1) a 1.8 1.5 1.3 1.75  0.62  
a Cellular dry weight; Values are means of three samples; ACL, average chain length 
calculated after White et al., 2005; SCFA, straight chain fatty acids; BCFA, branched 
chain fatty acids; MUFA, monounsaturated fatty acids;  PUFA, polyunsaturated fatty 
acids; TFA, total fatty acids; EPA, Eicosapentaenoic acid (n-20:5ω3); and (–) not 
detectable. 
 

8.4.5 Fatty acids of Catenulaceae 

Catenulaceae is a Family within the order of Bacillariophyceae. The fatty acids of the 
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Amphora montana (Catenulaceae) (A2) showed different from Tetraselmis species by 

presenting high amount of n-16:2ω4, n-18:0 and n-20:5ω3 acids, and low levels of n-

18:1ω7 and n-18:3ω3 acids, whereas distinguished from Phaeodactylum tricornutum 

species with high content of n-16:2ω4, n-18:0 and n-18:1ω9 acids, and small amount of 

n-14:0, n-16:1ω7 and n-16:3ω4.  

 

8.4.6 Fatty acids of Bacillariophyceae 

The fatty acids of the Bacillariophyceae have been studied more extensively than other 

micro algal Classes. This interest is connected with the wide use of diatoms in 

mariculture. Moreover, diatoms have a worldwide distribution. The characteristic 

features of the fatty acids of Bacillariophyceae, which often represent the main food 

source in marine ecosystems, are of particular interest. The two species (M7 and M11) 

examined had a similar fatty acid composition. However, comparison of the component 

fatty acid revealed some differences. The most abundant fatty acids were n-14:0, n-16:0, 

n-16:1ω7, n-16:3ω4 and n-20:5ω3 acids (Table 8.2), which accounted for 70-73% of the 

total fatty acids. The fatty acid patterns were in agreement with previous results (Kates 

and Volcani, 1966; Ackman et al., 1968; Volkman et al., 1989; Yongmanitchai and 

Ward, 1991b; Reitan et al., 1994; Patil et al., 2007). The predominance of n-16:1ω7 

over n-16:0 has been reported with the ratio of n-16:1ω7/16:0 varied from 1.3 to 2.0 in 

previous studies (Ackman et al., 1968; Alvarez and Zarco, 1989; Volkman et al., 1989; 

Zlmkova and Aizdaicher, 1995), although Volkman et al. reported somewhat lower 

concentrations of n-16:1ω7 for Pavlova species (Volkman et al., 1991). However, our 

study showed similar value between n-16:1ω7 and n-16:0. 

 

The acid n-20:5ω3 was most abundant among PUFAs; its content varied from 12.8 

(Chaetoceros constrictus) to 28.4 % (Phaeodactylum tricornutum). A wide range of 

relative amounts of n-20:5ω3 have been reported for different diatom species (Volkman 

et al., 1989; Dunstan et al., 1994). Several factors cause this variability in diatoms. 

Variation of the nutritional and physical factors results in a change in n-20:5ω3 

production by Phaeodactylum tricornutum from several per cent to 30-40 % of the total 

fatty acids (Yongmanitchai and Ward, 1991a). The variation in fatty acid composition 

and especially n-20:5ω3 content is a function of silicate availability, light and 

temperature (Mortensen et al., 1988). 
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8.4.7 Time course of cell growth and PUFA production in shake flasks 

A typical time course of PUFA production showed by Tetraselmis sp. M1 and P. 

tricornutum strain M7 suspension culture in F/2 medium in flask indoor (Figure 8.3A 

and 8.3B). The increase in PUFA content parallels that of cell growth in doors at 15±2 

°C. After 7 days of cultivation, the M1 cells entered the late exponential or early 

stationary phase and the content of PUFA reached its maximum, from which 1.6 g l-1 

freeze dried biomass was obtained, and the maximum TFA and PUFA concentration 

reached about 101.6 mg l-1 (63.5 mg g-1) and 47 mg l-1 respectively, with ca. 5.3 mg l-1 

of EPA (3.3 mg g-1, 0.5 mg g-1day-1). For strain M7, after 6 days of cultivation, the cells 

entered the late exponential or early stationary phase and the content of PUFA reached 

its maximum, from which 1.65 g l-1 freeze dried biomass was obtained, and the 

maximum TFA and PUFA concentration reached about 170 mg l-1 (103 mg g-1) and 54 

mg l-1 respectively, with ca. 40.4 mg l-1 of EPA (24.4 mg g-1, 4.1 mg g-1day-1).  

 

8.4.8 Time course of cell growth and PUFA production in open raceway ponds 

The culture of P. tricornutum strain M7 in the open raceway ponds during the summer 

days showed a typical time course of PUFA production. The increase in PUFA content 

parallels that of cell growth in both seasons (Figure 8.3C and 8.3D). According to the 

UK climate summaries by Met Office (www.metoffice.gov.uk), the months of July and 

August 2010 in Notheast of England, a maximum temperature of 13.8-21.8 °C and a 

minimum temperature of 4.6-15.1 °C were recorded (Figure 8.3E and 8.3F).  

 

Under this weather conditions, the cells entered the late exponential or early stationary 

phase and the content of PUFA reached its maximum, after 9 days of cultivation. In this 

phase 1.55 g/l freeze dried biomass was obtained, and the maximum TFA and PUFA 

concentration reached about 160 mg l-1 (103 mg g-1) and 50.4 mg l-1 respectively, with 

ca. 37.7 mg l-1 of EPA (24.3 mg g-1, 2.7 mg g-1day-1). Whereas the months of October 

and November 2010 in Notheast of England, a maximum temperatures of 5.2-14.8 °C 

and a minimum temperature of -1.2-8.7 °C were recorded. During the weather 

conditions, after 13 days of cultivation, the cells entered the late exponential or early 

stationary phase and the content of PUFA reached its maximum, from which 1.55 g l-1 

freeze dried biomass was obtained, and the maximum TFA and PUFA concentration 

reached about 160 mg l-1 (103 mg g-1) and 58.4 mg l-1 respectively, with ca. 52 mg l-1 of 

EPA (33.3 mg g-1, 2.6 mg g-1day-1). 
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The instantaneous productivity of PUFA (mg l−1 day−1) is not a constant during the 

course of the culture. As indicated in Figure 8.3, maximum productivity is seen during 

the exponential growth phase (day 7–14). For comparative purposes, the productivity 

data reported in this study were the average value based on the entire cultivation cycle. 

 

 

Figure 8.3 Algal cell growth and fatty acids productivity of Tetraselmis sp. M1 in 
flasks indoor (A), Phaeodactylum tricornutum strain M7 in flasks indoor (B),  strain M7 
in open raceway pond outdoor during the summer days (C and E) and strain M7 in open 
raceway pond outdoor during the winter days (D and F) in Nothern England. The 
weather data was provided by Met Office UK. The experiments were carried out in 
duplicate and values are means of two samples. 
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8.5 Discussion 

Algae are an extremely diverse group of organisms in the aqua system (Radmer, 1996), 

however lots of work needed to get most of the single algal cultures from the aquatic 

environment. At least 13 species of Botryococcus were reported based on morphological 

differences by omitting the chemical analyses (Komárek and Marvan, 1992), while 

within each chemical race and for the same strain the morphology of the algae could 

vary in relation to age and culture conditions (Metzger and Largeau, 2005).  However, 

in the marine water samples, there are still lots of different algal species could be seen 

under microscope. As for successful isolation onto agar, the algae must be able to grow 

on agar. Most diatoms and chlorarachniophytes grow very well on agar; some 

cryptophytes do, whereas others do not, and dinoflagellates rarely grow on agar 

(Anderson and Kawachi, 2005). For example, some flagellates (e.g., Heterosigma, 

Pelagomonas, and Peridinium) do not grow agar, but others (e.g., Chlamydomonas, 

Pavlova, Synura and Tetraselmis) grow very well on agar. Coccoid cells frequently 

grow well on or in agar, but some (e.g., Aureococcus, Aureoumbra) do not. In this 

study, we are, for the first time, reported the identification and distribution of marine 

micro algae species in North England, with limited species Tetraselmis, Phaeodactylum 

tricornutum and Amphora Montana able to grow in agar. 

 

The typical forms of green micro algae and diatoms could be easily distinguished from 

each other with light microscopes. However, the identification of micro algae or 

diatoms to species level almost always requires scanning electron microscopy (SEM)/ 

transmission electron microscopy (TEM) and more often than not the development of 

species-specific molecular probes, in order to get details of morphological features from 

external surface to inside the cell, for precise identification of species especially on 

deformed cells (Drum, 1969). For example, the use of SEM can clearly present the 

special characteristics of their cell structure known as frustules as has been observed 

(Tesson and Hildebrand, 2010), as shown in this study. Molecular techniques on the 

other hand can be used for species (Beszteri et al., 2001), and for quantification of micro 

algae abundance (Beja et al., 2000), however its development may rely on established 

and identified cultured material for probe validation. The morphological identification 

was further confirmed by molecular method based on 18S rRNA gene sequences, 

resulting in the separation all the strains hierarchically with two main groups. Mostly, 

strains with same molecular identity might be different species, and vice versa. 

Therefore, combining microscopic analysis with molecular technique may provide 
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precise results (Auinger et al., 2008). 

 

To our knowledge, this is the first report on the fatty acid composition of a species 

Amphora Montana. The diatoms Amphora sp. Amphora Montana and Amphora 

coffeaeformis were mainly isolated from the marine growing as biofilms 

(Wigglesworth-Cooksey et al., 2007; Desai, 2008; Khodse and Bhosle, 2010). As 

observed from Amphora montana strain A1, the cells were seldom suspended in the 

liquid culture and formed biofilms on the wall of the flasks. However, fatty acid profiles 

of the diatom P. tricornutum were in agreement with previous results (Kates and 

Volcani, 1966; Ackman et al., 1968; Volkman et al., 1989; Yongmanitchai and Ward, 

1991a; Reitan et al., 1994). The fatty acid profiles for Tetraselmis sp. and Tetraselmis 

chuii were in accordance with those in earlier reports (Ackman et al., 1968; Volkman et 

al., 1989; Reitan et al., 1994). These species are able to produce EPA only, which could 

minimize problems associated with downstream processing (Yongmanitchai and Ward, 

1991b). 

 

During algal cultivation and its scale up, surface area is a very important factor to be 

considered (Chisti, 2007). Open ponds with a large surface area are cost less to build 

and operate and have been in use since the 1950s (Borowitzka, 1999). Various types of 

outdoor open ponds have been employed for algal culture. For example, raceway ponds, 

circular ponds and thin layer inclined ponds,  which are shallow and lined with 

impermeable or concrete materials (Chaumont, 1993; Borowitzka, 1999; Borowitzka, 

2005a). Whereas unmixed open ponds are shallow and using only wind or convention 

as mechanical means (Benemann and Oswald, 1996). The depth the ponds need to be 

limited, usually shallow, at which the radiation of the sunlight can access and therefore 

support the growth of the diatoms. These tanks are the most popular ones and are found 

to be used for mass culture of Spirulina, Haematococcus and Dunaliella (Benemann 

and Oswald, 1996; Borowitzka, 2005b).  

 

Algal cultures have been focused in tropical and subtropical areas, such as Spain, 

Hawaii, California, Roswell and New Mexico, grown outdoors on a commercial scale 

(Borowitzka, 1999; Moreno-Garrido and Canavate, 2001; Voltolina et al., 2008; Mata et 

al., 2010). Pennate diatoms, such as Phaeodactylum tricornutum, Navicula sp., 

Amphora sp., unicellular microalgae, for example Tetraselmis marina, were the most 

commonly observed species and been successfully grown in outdoors (Olaizola et al., 
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1991; Kudo et al., 2000; Lee, 2001). However, the fluctuations in temperature were 

cited as one of the main reasons for hampering productivity rates (Sheehan et al., 1998), 

as study found that Isochrysis sp. and Tahitian Isochrysis grew very slowly at 35 °C, 

whereas Nitzschia closterium did not grow at temperatures higher than 30 °C (Renaud et 

al., 1995). It was explained that photoinhibition of the algae could have occurred due to 

high intensity and longer durations of day light hours (Lee, 2001). Therefore, tropical 

and subtropical areas are not the best places for algal outdoor culture, and the species 

chose for these areas need to be screened very carefully. Furthermore, little has been 

reported on algal culture outdoor in temperate regions. In this study, the raceway pond 

was designed with a paddle, powered by solar panel, attached for inducing agitation or 

mixing of algal cultures. The growth of a Phaeodactylum tricornutum strain M7 was 

monitored outdoors (North of England) in the raceway with sand-filtered seawater as a 

medium and no other nutrients was added though silica is one of the essential nutrients 

in seawater which controls the environment as a result of its uptake by diatoms (Tanaka 

et al., 2009). 

 

Diatoms are known to be one of the most successful class inhabiting all kinds of 

habitats (Pentecost, 1984). The distribution and abundance of diatom species in water 

column are dependent on environmental factors, such as current, light, nutrients, and 

others. Diatoms isolated from North Sea showing well adaptation to local light levels, 

temperature fluctuations and local water in a small scale raceway pond outdoors 

throughout the year, with high lipid/PUFAs content under low temperatures as 

described on those isolated from polar region (Maykut, 1986; Eicken, 1992). These 

characteristics made it possible for our diatom isolates for farming marine micro algae 

in large scare levels outdoors used only seawater, sunlight and carbon dioxide as their 

feedstocks with sustainable production of biomass (1.55 g l-1) containing high content of 

lipid and EPA (25-35 % EPA of TFA). The outdoor cultivation of Phaeodactylum sp. in 

1000 l open ponds was studied in 1963 and gave a good insight in the potential of this 

species (Ansell et al., 1963). Logically, the production of biomass may be improved by 

grow the diatoms on various nitrogen substrates such as ammonium nitrate and urea 

according to other studies on this species. For example, by increasing the concentration 

of nitrate and urea the EPA content of the total fatty acid also increased. Vitamin B12 

addition to the growth medium increased EPA production with 65 %. The highest yield 

of EPA was obtained at 1 % CO2 in the air gas inlet (Yongmanitchai and Ward, 1992). 

The outdoor cultivation of Phaeodactylum tricornutum in bioreactors resulted in a 
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steady state of ~1 kg m-3 and a biomass yield of 0.3 kg m-3 (Miróna et al., 2003). The 

mixotrophic cultivation of Phaeodactylum tricornutum as a batch culture in airlift photo 

bioreactors resulted in a 25 g l-1 maximum biomass, and EPA production was boosted to 

3 % of the dry weight with the addition of glycerol (Mann and Myers, 1968). Silicate in 

sea water may not contribute the production of biomass as Phaeodactylum tricornutum 

does not require silicate for growth (Martino et al., 2007). In contrast, most of the 

diatom species are dependent on silicate for growth. In microalgal heterotrophic 

cultures, the accumulation of triglycerides may result in a decrease or increase in fatty 

acid unsaturation, depending on the algal strains employed (Day et al., 1991; Tan and 

Johns, 1996). Therefore, optimization of culture conditions with different carbon 

sources for biomass and lipid production by this diatom should be aided by our ongoing 

experiments including genomic analysis on its cold adaption mechanism. 

 

An efficient large-scale cultivation system is needed in order to explore a process for 

commercial production of EPA (Lebeau and Robert, 2003). Microalgae are often 

considered obligate photoautotrophs that require light for growth. Nevertheless, a 

number of microalgae are capable of heterotrophic growth with one or more organic 

substrates as their sole carbon and energy source (García et al., 2000). Scalable 

cultivation of micro algae for commercial heterotrophic production of EPA will be 

further studied by employing some continual systems using the above mentioned 

isolates. 

 

8.6 Conclusions 

A local isolate of Phaeodactylum tricornutum strain M7, was able to adapt to grow 

under local climatic conditions coupled with the less need for nutrients makes them 

available to be cultured in areas inappropriate for agricultural uses autonomous of 

changes in weather, local light levels, temperature fluctuations and local water in a 

small scale raceway pond throughout the year. The strain was stable in a continuous 

biomass production system, with high production of biomass and lipid content in an 

outdoor open culturing system in the temperate climate of the UK.  



Chapter 9. Enhanced electricity production using reconstituted artificial consortia of estuarine bacteria 

9 Chapter 9. Enhanced electricity production using 
reconstituted artificial consortia of estuarine bacteria grown 
as biofilms 
 

9.1 Abstract  

Microbial fuel cells (MFCs) can convert organic compounds directly into electricity by 

catalytic oxidation and, although MFCs have attracted considerable interest, there is 

little information on the electricity generating potential of bacterial biofilms enriched 

from estuarine sediments. We have used acetate-fed MFC inoculated with sediment, 

with two-chamber bottles and carbon cloth electrodes to deliver a maximum power 

output of ~175 mW/m2 and a stable power output of ~105 mW/m2. Power production 

was by direct transfer of electrons to the anode from bacterial consortia growing on the 

anode, as confirmed by cyclic voltammetry (CV) and scanning electron microscopy 

(SEM). Twenty different species (74 strains) of bacteria were isolated from the 

consortium under anaerobic conditions and cultured in the laboratory, of which 34 % 

were found to be exoelectrogens in single species studies. Exoelectrogenesis by 

members of the genera Vibrio, Enterobacter and Citrobacter, and by Bacillus 

stratosphericus is confirmed, using culture based methods, for the first time. The 

bacterial consortia MFC showed higher power densities than those obtained using single 

strains isolated from the original biofilm. In addition, the maximum power output could 

be further increased to ~200 mW/m2 when an artificial consortium consisting of twenty-

five preselected exoelectrogenic isolates was used. Demonstrating the potential for 

increased performance of microbial fuel cells in the future. 

 

 

9.2 Introduction 

Microbial fuel cells (MFCs) can convert biodegradable and reduced compounds, such 

as glucose, acetate, lactate or waste water, directly into electricity, which offers a clean 

and renewable source of energy that could potentially contribute to current 

environmentally friendly power sources (Grant, 2003; Rabaey and Verstraete, 2005; 

Shinnar and Citro, 2006; Scott and Murano, 2007a; Scott and Murano, 2007b; Lovley, 

2008). In addition, use of MFCs may also assist environmental protection, for example 

through waster water treatment. In MFC devices, bacterial cells in the anode chamber 
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play a key role in catalyzing the oxidation of an organic substrate (i.e. fuel) and 

transferring electrons derived from metabolic processes to the electrode (Logan et al., 

2006). Thus, one primary aim of MFC research is to isolate electrogenic bacteria or 

communities with high electrochemical activity. 

 

Electricity can be produced by naturally existing consortia of bacteria without addition 

of exogenous mediators in the fuel cell systems (Kim et al., 2003; Phung et al., 2004). 

Sufficient current can also be generated in order to power subsurface devices by placing 

an anode into anoxic sediment and a cathode into overlying water (Reimers et al., 

2001). The diversity of bacteria capable of exoelectrogenic activity in anodophillic 

biofilms has been well studied (Phung et al., 2004; Logan and Regan, 2006) and some 

pure cultures that exhibit strong electrogenic activity in the MFC environment have 

been characterised (Logan et al., 2006). Work has mainly focused on pure isolates of 

two dissimilatory metal reducing genera Shewanella and Geobacter (Reguera et al., 

2005; Gorby et al., 2006). The present list of confirmed exoelectrogenic bacteria 

includes representatives of five classes of Proteobacteria, such as Rhodopseudomonas 

palustris DX-1 (Xing et al., 2008), Ochrobactrum anthropi YZ-1 (Zuo et al., 2008) (α-

Proteobacteria); Rhodoferax ferrireducens (β-Proteobacteria) (Chaudhuri and Lovley, 

2003); Escherichia coli (Lowy et al., 2006), Pseudomonas aeruginosa (Rabaey et al., 

2004),  Shewanella putrefaciens (γ-Proteobacteria) (Kim et al., 1999); Geobacter 

sulfurreducens (Tender et al., 2002; Bond and Lovley, 2003), Desulfobulbus 

propionicus (δ-Proteobacteria) (Tender et al., 2002), Arcobacter butzleri ED-1 (ε-

Proteobacteria) (Fedorovich et al., 2009), as well as representatives of the Firmicutes 

and Acidobacteria, such as Clostridium butyricum Eg3 (Peng et al., 2003), Thermincola 

sp. strain Jr (Wrighton et al., 2008); and Geothrix fermentans (Acidobacteria) (Coates et 

al., 1999). However, community analysis of electrochemically active biofilms in MFCs 

suggests a far greater diversity of exoelectrogens in these biofilms than was previously 

suspected and novel electrogenic bacteria remain to be discovered. In addition, biofilm 

communities may also produce greater power densities than individual strains, for 

example, two species were better than one in a cellulose-fed fuel cell, in which 

Clostridium cellulolyticum ferments cellulose while Geobacter sulfurreducens acts as 

an electroactive bacterium (Ren et al., 2007; Logan, 2009).  

 

We were interested in using artificially reconstituted consortia of exoelectrogens to 

enhance electricity production. Such an approach has been used previously, for 
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example, to enhance oil biodegradation (Piedad Diaz et al., 2000). In the present study, 

highly electrogenic anodophilic biofilms and their culturable microbial communities are 

described, and several novel electricity generating strains were isolated. Furthermore, 

we could enhance electricity production by deliberately choosing and reconstituting 

biofilms containing the best electricity producers. 

 

9.3 Materials and methods 

9.3.1 Sediment samples and growth media 

Estuarine sediments used for inoculating the microbial fuel cells were collected at low 

tide from the River Wear (54°54'25"N, 1°21'35"W). The sediment was obtained using a 

sterilized stainless steel corer and transported at ambient temperature intact to the 

laboratory within 60 minutes and placed in an anaerobic container system (GasPak™ 

EZ, BD, Maryland). Before inoculating sediments into the anode chambers of the 

MFCs, sedimentary bacteria were anaerobically cultured in fumaric acid medium 

(FAM)(Izallalen et al., 2008): 10 mM fumaric acid, 10 mM sodium acetate, 0.05 % 

yeast extract in 1:1 diluted sea water, at room temperature. The medium was adjusted to 

pH 7.0, and was flushed with N2 to remove oxygen before autoclaving in sealed bottles. 

The sediment samples were inoculated into FAM medium for two weeks to promote 

bacteria growth and then 10 ml of the mixed cultures was used to inoculate the sterile 

anaerobic chambers of the MFC containing a carbon cloth anode and 200 ml of growth 

medium. The growth medium was 10 mM sodium acetate, 0.05 % yeast extract in 1:1 

diluted sea water. Fresh sea water was collected from the Dove Marine Laboratory, 

Cullercoats, North Shield, Tyne and Wear, North of England (near North Sea) and 

passed through a 0.2 µm pore-size filter, for medium preparation. Acetate (5, 10 mM, 

pH adjusted to 7.0) was provided as the electron donor, and no electron acceptors other 

than the electrode were present. 

 

9.3.2 MFC construction and operation 

The glass dual-chamber MFC  was constructed from two 250 ml bottles (Corning Inc.) 

with H2315 carbon cloth (4×5 cm) (Freudenberg FCCT KG, Germany) electrodes 

(Zhang et al., 2006b) (Figure 9.1). A proton exchange membrane (inner diameter: 1.3 

cm, NafionR 117, Dupont Co., Wilmington, USA) was installed between the two 

chambers. The membrane was equilibrated by incubating in 0.1 M NaCl solution for 2 
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hours prior to use. New electrodes were pretreated by soaking in 1 M HCl to eliminate 

possible metal ion contamination. Before inoculation, the anode chamber was filled 

with 200 ml media and flushed with pure N2 gas for 10 min to create anaerobic 

conditions. The cathode chamber was filled with 200 ml electrolyte solution containing 

50 mM K3Fe(CN)6 and 100 mM KH2PO4 (pH adjusted to 7.0 with 1 N NaOH). All 

experiments were conducted at room temperature (23±2 °C), and one set-up with no 

inoculum was also operated in parallel as a control. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Two-chamber Microbial Fuel Cell design with membrane chamber, organic 
substrate is oxidized in the anodic compartment and electrons were transferred via an 
external resistor to the cathode. The voltage output was measured continuously by a 
high impedance multimeter. 

 

9.3.3 Electrochemical measurements 

MFCs were operated in batch mode and the circuit was operated with a fixed external 

resistance of 1000 Ω. The voltage across the known resistance was continuously 

measured by using a digital multimeter (SkyTronic UK). Polarization curves for MFCs 

were measured using using linear sweep voltammetry (scan rate: 1 mV s-1) from the 

open circuit potential to 0 V with a potentiostat (Autolab PGSTAT302) when a stable 

voltage production was achieved. Power and maximum power were calculated using 

data from stable voltage production and measured polarization curves, respectively, and 

then normalized to the total area (40 cm2) of the anode surface. Internal resistance was 

determined by electrochemical impedance spectroscopy. To characterize anodophilic 

biofilms in-situ, cyclic voltammetry measurements were carried out with Autolab 

ance of 1000 Ω. The voltage across the known resistance was continuously 

measured by using a digital multimeter (SkyTronic UK). Polarization curves for MFCs 

were measured using using linear sweep voltammetry (scan rate: 1 mV s-1) from the 

open circuit potential to 0 V with a potentiostat (Autolab PGSTAT302) when a stable 

voltage production was achieved. Power and maximum power were calculated using 

data from stable voltage production and measured polarization curves, respectively, and 

then normalized to the total area (40 cm2) of the anode surface. Internal resistance was 

determined by electrochemical impedance spectroscopy. To characterize anodophilic 

biofilms in-situ, cyclic voltammetry measurements were carried out with Autolab 
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PGSTAT302, with the anode in the anodic chamber as the working electrode, a 

Ag/AgCl electrode, connected to anodic solution through a lugin capillary, as reference 

electrode and a 30 mm×10 mm×0.2 mm platinum foil as counter electrode in the 

cathode chamber. Other electrochemical measurements were conducted in 50 ml three-

electrode cells with a 3 mm diameter glassy carbon electrode as the working electrode, a 

Ag/AgCl electrode as reference electrode and a Pt wire as the counter electrode. 

 

9.3.4 Scanning electron microscopy (SEM) 

Biofilms on the anode surfaces were examined by scanning electron microscope (SEM) 

(Cambridge Stereoscan 240) according to the methods published previously (Zhang et 

al., 2006b).  

 

9.3.5 Strain isolation 

An anaerobic container system (GasPak™ EZ, Becton Dickinson, Maryland) was 

employed to isolate bacteria from the anode carbon paper and sediments. Samples were 

processed in an anaerobic jar under a N2 atmosphere, and were inoculated onto different 

marine isolation media (MA1 to MA3), which consisted of the following: MA1, 

Difco™ Marine agar; MA2 (Fumaric Acid Medium (FAM)), 10 mM sodium fumarate, 

10 mM sodium acetate, 0.05 % yeast extract, 1 % agar, made up with 50 % sea water 

and 50 % fresh water; and MA3 (Ferric Citrate Medium (FCM)), 5 mM Ferric Citrate, 

10 mM glucose, 0.05 % yeast extract, 1 % agar, made up with 50 % sea water and 50 % 

fresh water. 

 

9.3.6 16S rRNA gene analysis as methonds mentioned in Chapter2 

Strains were grown for 3 days at room temperature in liquid medium anaerobically, 

using stoppered bottles which had been flushed with N2. Cell mass from broth cultures 

was collected by centrifugation at 4500 g for 15 min. Preparation of genomic DNA and 

16S rRNA gene analysis, phylogenetic analysis and diversity estimates were conducted 

according to the methods mentioned in Chapter 2. The nucleotide sequences of 16S 

rRNA genes have been deposited in the EMBL database under the accession numbers: 

from FN997605 to FN997642. 
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9.4 Results 

9.4.1 Power generation 

Generally, a long lag phase (over 10 days) occurred before voltage started to increase. 

Figure 9.2A shows the voltage output of a fuel cells inoculated with sediment bacteria, 

with a lag phase of ~13 days. The voltage began to increase exponentially, and reached 

higher stable electricity generation (> 0.6 V) which was maintained for 10 days. 

 

The recovered electrode, coated with biofilm, was used to provide inocula for new 

microbial fuel cells with fresh media. The voltage increased exponentially to a high 

stable level (> 0.6 V) after a much shorter lag phase (< 2 days). The current density at 

this point was around 175 mA m-2. High electricity generation was maintained for over 

2 weeks and subsequently fell rapidly, probably due to acetate depletion (Figure 9.2B). 

When these anodes were transferred to fresh growth medium, the voltage was rapidly 

restored to the previous stable level within a few hours. The medium replacement and 

voltage restoration of the present MFCs could be repeated without decay in electricity 

generation.  

 

 

Figure 9.2 Voltage output produced by sedimentary bacteria activated MFC (A), and 
anodophilic bacteria activated MFC (B). Symbol (■) the voltage output by controlling 
MFCs without bacteria. Arrows in figure B indicate the replacements of anodic solution 
by fresh growth medium. The experiments were carried out in duplicate and values are 
means of two samples. 

 

The presence and appearance of anodophilic biofilms was confirmed by SEM which 

confirmed coverage by biofilms consisting of different coccoid (～0.5 μm diameter), 
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and rod-shaped bacterial cells (2.0-4.0 μm long and 0.5-0.7 μm). Pilus-like appendages 

connecting the cells were also observed (Figure 9.3C and 9.3D).  

 

 

Figure 9.3 (A and B). SEM images of acetate-induced bacteria morphology on the 
anode surface recovered from the river sediment. Arrows indicate microbial pilus-like 
appendages connecting bacterial cells. 

 

The restoration of voltage after replacement of growth medium suggested that 

anodophilic biofilms could directly transfer electrons derived from acetate metabolism 

to the anode surface in the absence of any soluble electron shuttles. This characteristic 

was also supported by cyclic voltammetry measurements. Figure 9.4A shows cyclic 

voltammograms using a glassy carbon electrode for the fresh sterile medium without 

inoculum, the MFC-derived cell suspension and the cell-free suspension. No obvious 

electroactive species were detected in the above solutions within the electrode potential 

range where possible soluble electron shuttles would be detectable as redox peaks 

(Rabaey et al., 2004; Marsili et al., 2008a).  

 

9.4.2 Performance of the MFCs 

The open-circuit potentials of the double-bottle MFCs reached 0.8 V when sufficient 

quantities of acetate were present. When the electrical current became stable for acetate-

fed MFCs (voltage output 0.65 V to 0.7 V), slow cyclic voltammetry was carried out to 

determine the polarization curves of the MFC. Figure 9.4B shows a representative cell 

voltage current density polarization measurement of the MFC. The voltage fell almost 

lnearly with increase in current density which indicates that Ohmic (transport of ionic 

species through the medium) was predominant in the MFCs, and no obvious voltage 

drop caused by charge transfer resistance was observed at a lower rate of current flow. 

The voltages achieved in the MFC tests agree with values obtained during the biofilm 
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development stage (Figure 9.1A), where a voltage of around 0.65 V to 0.7 V occurred at 

current densities around 162-175 mA m-2. 

 

Electrochemical impedance spectroscopy (EIS) (data not shown) showed that the 

internal resistance (IR) of the MFCs used in this work was in the range of 120 to 145 

ohms; greater than higher specification devices reported previously (Liang et al., 2007). 

From the voltage current density behaviour of the MFC (Figure 9.4) the internal 

resistance was approximately 175 ohm in reasonable agreement with the EIS data. At 

low cell voltages there was an indication of a mass transport limitation, which may be 

associated with the oxygen reduction reaction or possibly acetate mass transport 

limitation. The acetate-fed MFC used in this study could generate a maximum power 

density of 175 mW m−2, and the maximum current density reached ~1600 mA m−2 

during stable current production (Figure 9.4B). Maximum power density and stable 

power generation were higher than similar marine and fresh water sediment-inoculated 

MFCs reported recently (Table 9.1). This could be attributed to the use of added acetate 

as a feedstock and also to use of anodophilic microbial biofilms in transporting 

electrons to the electrode, considering the high internal resistance of the MFCs. In fact 

the IR free peak power and current densities were about 130 ohms and 175 mW m−2 

respectively, indicating the potential of relatively high power generation with higher 

specification MFCs using minimal electrode separation and improved cathodes. 

 

 
Figure 9.4 Cyclic voltammetry measurement (scan rate: 50 mV s-1) with a glassy 
carbon electrode on fresh growth medium, anodic supernatant and anodic suspension 
during stable electricity generation. 2B. Current density–voltage and current density–
power density relationships for acetate-fed microbial fuel cells during stable electricity 
generation (measured using slow scan cyclic voltammetry, scan rate: 1 mV	 s‐1).	 The 
experiments were carried out in duplicate and values are means of two samples.

 253



 
 
 
 
 

Chapter 9. Enhanced electricity production using reconstituted artificial consortia of estuarine bacteria 

Table 9.1 Comparison of power density from different MFCs 

Maximum or 
sustained power 
density mW/m2 

Location of  
Inoculum used 

Electron donor Anode material Cathode material Reference 

2.2 Freshwater sediment Organic matter in sediments Bare graphite felt Bare graphite felt (Hong et al., 2009) 

10 Marine sediment Organic matter in sediments 
Pairs of platinum mesh or 

graphite fiber-based 
electrodes 

Pairs of platinum mesh or 
graphite fiber-based 

electrodes 
(Reimers et al., 2001) 

24-36 Marine sediment Organic matter in sediments Graphite discs 
Connector-silver epoxy-

graphite union 
(Tender et al., 2008) 

30 Marine sediment Organic matter in sediments Graphite discs 
Connector-silver epoxy-

graphite union 
(Tender et al., 2002) 

39 Marine sediment  Cysteine Carbon cloth 
graphite paper contained 

Pt catalyst 
(Logan et al., 2005) 

55 Marine sediment Organic matter in sediments Graphite sponge Carbon cloth (Scott et al., 2008) 

70 Fresh water sediment Acetate and glucose Carbon cloth Carbon cloth (Zhang et al., 2006b) 

100 Marine sediment Organic matter in sediments Carbon cloth Proximal seawater (Lowy et al., 2006) 

100 Coastal sediment Organic matter in sediments Carbon cloth Stainless steel (Dumas et al., 2008) 

27-140 Marine sediment  Organic matter in sediments Solid graphite 
Carbon-fiber brush 

electrode 
(Nielsen et al., 2008) 

233 Marine sediment Organic matter in sediments 
High surface area and semi-

enclosed anode 
1-m long graphite bottle 

brush electrode 
(Nielsen et al., 2007) 

150-175     Estuarine sediment Acetate Carbon cloth Carbon cloth This study 
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9.4.3 Electrochemical properties of anodophilic biofilms 

Cyclic voltammetry (CV) was performed to characterize the catalytic properties of the 

anodophilic biofilm on the carbon cloth anodes. When a new carbon cloth anode was 

placed in anodic growth medium containing excess electrode donor (10 mM acetate) 

and bacterial cells, no obvious catalytic current was observed (curve a in Figure 9.5A), 

indicating that the anode did not directly catalyze the oxidation of acetate. During 

exponential increase in voltage output, slow scan cyclic voltammetry produced potential 

waves (curves b and c in Figure 9.5A) in the range of -200 mV to 0 mV (vs SHE). The 

peak/limiting current of the wave increased with the development of the MFC voltage 

output, and eventually reached a maximum value of ~ 425 mA m-2 (curves d in Figure 

9.5A) when the MFC achieved its highest stable electricity generation (Vcell > 0.65 V). 

A mature biofilm on the anode was necessary for high stable electricity generation, 

consistent with the observations using growth medium replacement (Figure 9.2B). 

When the acetate in the anodic growth medium was depleted, the limiting current of the 

catalytic wave also decreased (Figure 9.5B).  

 

 

Figure 9.5 Cyclic voltammetry curves (scan rate: 1 mV s-1) obtained on carbon cloth 
anode with bacterial biofilms at different electricity-generating stages.  a : using a newly 
prepared carbon cloth anode in growth medium containing 10 mM acetate and 
suspended anodophilic bacteria, b and c: results with carbon cloth anode partially 
covered by anodophilic bacteria during exponential increase in voltage, d, and e: carbon 
cloth anode with a mature biofilm during stable current generation (Vcell: ~0.65 V), f:  
with acetate-depleted medium. The experiments were carried out in duplicate and values 
are means of two samples. 

 

The potential wave observed with the anodophilic bacterial biofilm was similar to 

results obtained with carbon-attached biofilms formed using a pure strain, of Geobacter 
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sulfurreducens (Marsili et al., 2008a). Geobacter sulfurreducens may directly transfer 

electrons from bacterial cells to the anode via several different redox active outer-

membrane cytochromes (Marsili et al., 2008b; Srikanth et al., 2008). It is unknown 

which microbial species or proteins in the present complex biofilm play these roles. The 

redox potentials observed (-200 ~ 0 mV versus SHE) are similar to those of reported 

strains or purified outer-membrane combined cytochromes (Magnuson et al., 2001; 

Lloyd et al., 2003; Marsili et al., 2008b). 

 

9.4.4 Phylogenetic analysis of anodophilic bacteria  

Bacteria colonizing the electrode surface were isolated and cultured under anaerobic 

conditions, 74 isolates were obtained and their 16S rRNA genes sequenced. Thirty-eight 

distinct sequences were chosen for phylogenetic analysis (Table 2 and Figure 9.6). 

NCBI nucleotide BLAST searches using the partial 16S rRNA gene sequences of these 

74 strains revealed that 44 (59.5 %) of the isolates fell into the Gamma-Proteobacteria 

group and shared a phylogenetic affiliation with members of the Enterobacteriaceae, 

Aeromonadaceae, Vibrionaceae, Shewanellaceae, Moraxellaceae and 

Alteromonadaceae. These results were further confirmed by Gram staining and 

microscopy. Twenty-two strains fell into the class Enterobacteriaceae and showed 

similarity to 4 taxonomic units: Klebsiella oxytoca, Enterobacter aerogenes, 

Citrobacter freundii and Serratia proteamaculans; 6 strains fell into the class 

Aeromonadaceae including 2 taxonomic units: Aeromonas salmonicida and Aeromonas 

hydrophila; while Shewanellaceae contained Shewanella haliotis and Shewanella algae. 

Isolates similar to Vibrio azureus, Psychrobacter nivimaris and Marinobacter 

lipolyticus were also found.  

 

The Firmicutes represented 16.2 % of the sequences with strains similar to Bacillus 

stratosphericus, Bacillus altitudinis and Exiguobacterium mexicanum. Within the 

Enterococcaceae, one strain similar to Vagococcus fluvialis was recovered. The 

remaining strains fell into the Alpha-Proteobacteria (6.8 %), Beta-Proteobacteria (10.8 

%), Epsilon-Proteobacteria (2.7 %) and Cytopahga-Flexibacteria-Bacteroides group 

(CFB) (1.4 %). Most of the strains isolated were found to have a high homology (98.3-

99.9 %) to their closest neighbours, while MS22, MS30 and TRS1-A1 showed lower 

similarities of 96.7, 95.3 and 93.3 % respectively to Rhodobacter maris, Arcobacter 

nitrofigilis and Marinifilum fragile. These strains are taxonomically unusual and worthy 

of more detailed characterisation. 
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Figure 9.6 Neighbour-joining distance tree based on the nearly complete and aligned 
16S rRNA gene sequences of 38 representative strains observed in this study and their 
nearest neighbours. The phylogenetic tree was constructed using the neighbour-joining 
method using the programs of the MEGA package. 1000 trials of bootstrap analysis 
were used to provide confidence estimates for phylogenetic tree topologies. Bar- 0.05 
nucleotides substitution per site. 
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Table 9.2 Anodophilic bacterial isolates and their individual power generation abilities 

a Strains chosen for phylogenetic analysis in bold text. The experiments on electricity 
production were carried out in duplicate and values are means of two samples. 

Phylogenetic group 
(family) 

Representative isolates 
Nearest type strains in the GenBank (accession 
number) 
 

Similarity (%) 

Max power 
density 
mW/m2 

Firmicutes     
MS10a Bacillus stratosphericus 41KF2aT (AJ831841) 99.859 87.5 (±1.3) 
MS28; MS27 Bacillus altitudinis 41KF2bT (AJ831842)  99.930 6 (±0.7) 

Bacillaceae 

MS34; MS4; MS1 Exiguobacterium mexicanum 8NT (AM072764) 99.636 0 

Enterococcaceae 
MS23; MS7; MS51; 
MS53; MS60; MS69 

Vagococcus fluvialis CCUG 32704T (Y18098) 99.853 0 

Alpha-Proteobacteria    

Rhodobacteraceae 
MS22; MS9; MS45; 
MS46; MS65 

Rhodobacter maris JA276T (AM745438) 96.726 
0 

Beta-Proteobacteria     

Alcaligenaceae 
MS11; MS13; MS14; 
MS50; MS62 

Alcaligenes faecalis subsp. faecalis IAM12369T 
(D88008) 

99.430 
0 

 MS16; MS47; MS48; 
MS52; MS61 

Alcaligenes faecalis subsp. parafaecalis GT 
(AJ242986) 

99.571 0 

Gamma-Proteobacteria     
Enterobacteriaceae MS2  Klebsiella oxytoca JCM 1665T (AB004754) 98.517 9 (±1) 

MS6 Klebsiella oxytoca JCM 1665T (AB004754) 98.593 12.5(±1.7) 
MS25 Klebsiella oxytoca JCM 1665T (AB004754) 98.742 5 (±0.6) 
MS5 Enterobacter aerogenes NCTC 10006T (AJ251468) 98.655 15 (±0.8) 
MS8 Citrobacter freundii DSM 30039T (AJ233408) 99.514 37.5 (±0.7) 
MS17 Citrobacter freundii DSM 30039T (AJ233408) 99.789 30 (±0.5) 
MS18 Citrobacter freundii DSM 30039T (AJ233408) 99.220 10 (±0.6) 
MS36;  MS39 Citrobacter freundii DSM 30039T (AJ233408) 99.507 14 (±0.5) 
TRS1-B4 Citrobacter freundii DSM 30039T (AJ233408) 99.578 9 (±1.0) 

 

TRS1-WB; MS31; MS49; 
MS59 

Serratia proteamaculans DSM 4543T (AJ233434) 99.647 
0 

Aeromonadaceae 
MS24; MS20; MS21; 
MS58; MS66 

Aeromonas salmonicida subsp. masoucida ACC 
27013T (X74680) 

99.956 
0 

TRS1-B1; MS15; MS19; 
MS33; MS70 

Aeromonas hydrophila subsp. hydrophila ATCC 7966T 
(CP000462) 

99.719 
15 (±1.0) 

 
MS12 

Aeromonas hydrophila subsp. hydrophila ATCC 7966T 
(CP000462) 

99.859 
13.5 (±1.5) 

Vibrionaceae MS26 Vibrio azureus LC2-005T (AB428897) 99.127 30 (±1.0) 
Shewanellaceae MS32 Shewanella haliotis DW01T (EF178282) 99.788 5 (±0.25) 
 MS43 Shewanella algae ATCC 51192T (AF005249) 99.531 15 (±0.7) 

Moraxellaceae 
TRS1-R2; MS42; MS56; 
MS64; MS67 

Psychrobacter nivimaris 88/2-7T (AJ313425) 99.929 
0 

Alteromonadaceae 
MS3; MS37; MS54; 
MS55; MS63 

Marinobacter lipolyticus SM19T (AY147906) 98.379 
0 

 
MS38; MS40; MS44; 
MS57; MS68 

Marinobacter lipolyticus SM19T (AY147906) 98.310 
0 

Epsilon-Proteobacteria    
Campylobacteraceae MS30; MS35 Arcobacter nitrofigilis CCUG 15893T (L14627) 95.345 8.7 (±0.4) 
CFB group bacteria     
Bacteroidetes TRS1-A1 Marinifilum fragile JC2469T (FJ394546) 93.309 12.5 (±0.5) 

 

9.4.5 Electrochemical properties of the isolated anodophilic bacteria 

Of the 44 Gamma-Proteobacteria isolates, 19 strains could produce electricity. Strains 

MS8 and MS17 similar to Citrobacter freundii and strain MS26 similar to Vibrio 

azureus produced the highest power density of 30-40 mW/m2 (Table 9.2). Three out of 

15 strains in the Firmicutes group were able to produce electricity. Strain MS10 simlar 

to Bacillus stratosphericus was found with 87.5 mW/m2 power density production 

under the above mentioned conditions, while Bacillus altitudinis similar strains MS 27 

and MS 28 generated lower power of ~6 mW/m2. 
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In the Alpha-, Beta-, Epsilon-Proteobacteria and CFB group bacteria phylum, strain 

MS11 homology to Alcaligenes faecalis was unable to produce electricity, whereas 

strain MS30 homology to Arcobacter nitrofigilis and strain TRS1-A1 tentatively 

identified as Marinifilum fragile showed relatively small power generation (3.5-17.5 

mW/m2). 

 

9.4.6 Electrogenic properties of artificial consortia 

When 74 strains were re-mixed and cultured as an artificial biofilm consortium (TRS2) 

in the MFCs, power output remained similar to the wild type consortium (TRS1). 

However, the maximum power output was increased to ~200 mW/m2 when the 

consortium biofilm (TRS3) was reconstituted using only the exoelectrogenic strains 

(Table 9.2 and Figure 9.7). 

 

 

Figure 9.7 Voltage output produced by MFCs containing: wild type biofilm (TRS1, 
open circles), an artificial consortium of all pure strains isolated from the original 
biofilm (TRS2, open triangles), an artificial consortium composed using all 
exoelectrogenic bacteria (TRS3, open diamonds).	 The experiments were carried out in 
duplicate and values are means of two samples. 

 

9.5 Discussion 

Using a two-chamber microbial fuel cell inoculated with estuarine sediments, we 

isolated anodophilic biofilms which selectively proliferated in the presence of acetate on 

carbon cloth electrodes. Our approach involved allowing the microbial community to 

adapt to this environment and as a result a power density of 175 mW/m2 was achieved, 

the highest level reported for sediment inoculated MFCs (Table 9.1A). In 2001, Reimers 
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et al. (Reimers et al., 2001) first utilized marine sediment-seawater interfaces in situ and 

obtained power generation of 10 mW/m2 using graphite fiber-based electrodes. By 

using different marine sediments and specific anodes, a range of power densities (20-

100 mW/m2) were obtained (Tender et al., 2002; Lowy et al., 2006; Dumas et al., 2008). 

By using high surface area, semi-enclosed anodes, the power generation was improved 

to 140 mW/m2 (Nielsen et al., 2008), and 233 mW/m2 (Nielsen et al., 2007). However, 

in the laboratory electricity production from sedimentary MFCs remains low, between 

40-70 mW/m2 (Logan et al., 2005; Zhang et al., 2006b). 

 

Much analysis of the composition of bacterial communities inhabiting fuel cell anode 

chambers has been carried out by culture independent methods such as denaturing 

gradient gel electrophoresis (DGGE) or restriction fragment length polymorphism 

(RFLP) of the amplified 16S rRNA gene fragments and sequencing of the dominant 

bands (Tender et al., 2002; Lowy et al., 2006; Dumas et al., 2008; Tender et al., 2008). 

However, such analysis provides no information about whether these species are 

electrogenic. A culture dependent study, though more difficult, allows relative 

contributions to the overall power generation of the various strains to be estimated. This 

is important since our work demonstrates that a significant proportion (67 %) of bacteria 

isolated from an electrogenic biofilm are not electrogenic when tested in isolation. 

 

Cytophaga/Flexibacter/Bacteroides, one of the major groups of the MFC microbial 

community has been detected using molecular methods in MFCs (Kim et al., 2004; 

Choo et al., 2006; Martins et al., 2010). However, there are fewer studies based on 

cultured CFB representatives, we report for the first time, successful isolation of a 

Bacteroides representative, strain TRS1-A1 similar to Marinifilum fragile, and we have 

demonstrated that this isolate can act as an exoelectrogenic bacterium. Epsilon-

Proteobacteria bacteria, such as Arcobacter sp. were first isolated from an MFC in 

2008 (Ha et al., 2008), and the ability of members of this genus to produce electricity 

was demonstrated (Fedorovich et al., 2009). In this study, strain MS30 was also 

confirmed as an electrogen supporting these observations. 

 

The majority of Gram-negative bacteria can produce electricity (Lovley, 2006; Logan, 

2009). However, relatively few Gram-positive strains are exoelectrogens (Logan, 2009). 

However, we report power generation by Bacillus stratosphericus (strain MS10), with 

sustained generation of electricity of 87.5 mW/m2 in acetate-fed MFC. This is novel in 
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the phylum Firmicutes. Furthermore, we have shown that members of the genera 

Vibrio, Enterobacter and Citrobacter can act as exoelectrogens. Although Vibrio has 

been detected from a cysteine-fed MFC using DGGE, strains of Vibrio were not isolated 

or shown to produce electricity (Logan et al., 2005). Citrobacter was reported in a 

bacterial consortium of a glucose/glutamate-fed MFC based on RFLP analysis (Park et 

al., 2008), and Enterobacter was first reported as part of a power generating consortium 

digesting cellulose (Rezaei et al., 2009). The genus Klebsiella has been recently 

reported as power producer in MFCs (Xia et al., 2010; Zeng et al., 2010), and also has 

been demonstrated in this study by strains MS2, MS6 and MS25. 

 

Non-exoelectrogenic bacteria were detected in the original biofilms (Table 9.2), and 

these have been suggested to play a role as helper strains for fermenting organic matter 

(Ren et al., 2007). Interestingly, maximum power output was increased and maintained 

at ~200 mW/m2 when artificial consortia were reconstituted using only exoelectrogenic 

bacteria. It may be that the presence of non-exoelectrogenic bacteria can disrupt or 

reduce the overall electrical conductivity of the biofilm. 

 

No detectable redox species were involved in electron transfer by the anodophilic 

biofilms, and isolates similar to B. stratosphericus, C. freundii and V. azureus isolated 

from the biofilms could generate considerable power in the same MFC devices using 

acetate as electron donor. Therefore, power production could be confirmed by direct 

transfer of electrons to the anode by the bacterial consortia growing on the anode as 

demonstrated by cyclic voltammetry (CV). Scanning electron microscopy of the 

biofilms showed numerous pilus-like appendages, connecting cells to form an integrated 

community (thick biofilm) on the surface of the electrode. It has been reported that 

similar appendages may serve as “nanowires” and be directly responsible for electricity 

conduction (El-Naggar et al., 2010). However, the precise biochemical composition of 

the observed nano wires observed in Shewanella oneidensis MR-1 remains unknown, 

while rigorous direct measurement of electricity conduction by pili based nanowires in 

Geobacter species has not been reported.  

 

It will be interesting to examine how bacteria cooperate with each other to efficiently 

metabolise organic carbon sources for electricity production, and to investigate whether 

the lateral appendages produced by strains isolated in this work, contribute to electron 

transfer. Models of consortium biofilm structure and its activities, and a better 
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understanding of the synergistic cooperation of each individual strain in the biofilm will 

help us to better predict the maximum power densities achievable using MFCs. 
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10 Chapter 10. Final discussion and conclusion 
 
 
This final discussion chapter will attempt to draw together the data presented in this 

thesis to further understand the diversity and biotechnological application of the 

culturable marine microbes producing omega-3 fatty acids, their importance in marine 

food web and energy research.  

 

10.1 Final discussion 

 

Fish oils are the most important source of omega-3 fatty acids, however the 

contamination of fish due to pollution, as well as unstable fish catches, has created a 

need for alternative ways to provide those PUFAs (Qi et al., 2004). Heightened 

consumer awareness of the value of omega-3 fatty acids has increased the growth in 

demand for the omega-3 products, which have led to considerable interest in developing 

commercial processes for EPA/DHA production from marine biomass rather than from 

marine fish for food and pharmaceutical markets (Belarbi et al., 2000; Molina Grima et 

al., 2003). However, one enormous challenge is to develop a range of bioprocesses, 

which can convert chemically complex biological mixtures into pure chemicals that 

industry needs. Nature already processes biological materials using complex arrays of 

enzymes, which form carefully regulated biosynthetic pathways, such as polyketide 

synthases, responsible for the production of EPA and/or DHA (Metz et al., 2001; 

Okuyama et al., 2007). The majority of known industrial enzymatic processes, which 

produce pure chemicals, are based on enzyme systems from terrestrial organisms 

(Robertson and Steer, 2004; Alcalde et al., 2006). However, not only is the sea a major 

source of biomass (for food and energy), it is becoming an increasingly significant 

source of biomass for the production of fine chemicals (Trincone, 2011), including EPA 

or DHA (Kaulmann and Hertweck, 2002). In addition, the diversity of marine 

organisms is known to be greater than any other environment and remains relatively 

untapped. Thus, this thesis has been focused on the natural processing of fatty acids in 

the marine habitat and specifically by marine microorganism. 
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10.1.1 Ecologically study microbial communities and their fatty acid composition 

 

Ecologically, PUFA producing bacteria are mainly characterised as being psychrophilic, 

halophilic and predominantly piezophilic or piezotolerant as most of them were isolated 

from deep sea or polar zones (Russell and Nichols, 1999; Kato and Nogi, 2001), and 

few of them are identified as mesophiles isolated from a temperate estuary or shallow 

seawater (Ivanova et al., 2001; Skerratt et al., 2002; Ivanova et al., 2003b; Frolova et al., 

2005). Therefore, these physiological characteristics may contribute to the ecosystem 

diversity of bacterial PUFA producers in the marine environment. 

 

Sediments from the Mid-Atlantic Ridge (MAR) north and south east of the Charlie-

Gibb Fracture Zone (CGFZ) (2,400 m and 2,750 m) are remote from any islands and 

seamounts, with no known hydrothermal activity, and are proposed to be good locations 

for isolating cold-adapted bacteria which are capable of producing PUFAs. This thesis 

reported, for the first time, the diversity of culturable microorganisms in this area, 

finding Gram-positive bacteria to be the most abundant, followed by Gamma-

Proteobacteria and Alpha-Proteobacteria. A Bacillus strain (MAR019) was observed to 

produce squalene, which is the first report squalene production in marine Gram-positive 

following by that of the marine Gram-negative bacteria Rubritalea squalenifaciens 

(Kasai et al., 2007). Strains MAR441 and MAR445 are phylogenetically unusual 

species of the genus Shewanella, and showed stable growth and production of EPA (15-

21 % EPA of TFA) under atmospheric conditions, which is the highest level reported 

among the deep-sea Shewanella species (2-14 % EPA of RFA) (Deming et al., 1984; 

Delong and Yayanos, 1986; Delong et al., 1997; Nogi et al., 1998b; Miyazaki et al., 

2006; Xiao et al., 2007). Thus, strain MAR441 was identified as a new species, 

designated as Shewanella dovemarina sp. nov. (Type strain MAR441T). This strain also 

had the ability to produce electricity at a considerable level (~150-200 mW/m2). 

 

Marine sponges are excellent models for the study of marine host-associated bacteria 

(Wilkinson, 1978; Taylor et al., 2007), from which novel biological active chemically 

compounds could be found (Berge and Barnathan, 2005; Ding et al., 2006).  

Biogeographic variability of bacterial communities and fatty acid compositions between 

temperate and tropical sponges by isolating bacteria from the temperate North-sea 

sponge Halichondria panicea and the tropical Caribbean sponge Agelas clathrodes, was 

investigated. The study showed that the temperate sponge associated bacterial 
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communities with abundance of Gamma-Proteobacteria (90%) and Gram-positive 

bacteria mainly occured in tropical sponge. Fatty acids analysis showed that Vibrio and 

Shewanella, isolated from Halichondria panicea, were able to produce EPA (2-10% of 

TFA), and no strains capable of producing EPA were isolated from Agelas clathrodes. 

Some Vibrio species may contain only silent copies of the PUFA genes, which unable to 

synthesize EPA successfully. North-sea sponge associated bacteria Vibrio sp. NSP560 

was able to produce up to 12 % EPA of TFA (or 8.4 mg g-1), while its closest type 

strains, Vibrio tasmaniensis and V. cyclitrophicus were reported no produce EPA 

(Hedlund and Staley, 2001; Thompson et al., 2003).  

 

Various species of macro/micro algal species were obtained from the coast water of 

North Sea, found with high content of omega-3 fatty acids, particularly EPA (10-43% of 

TFA). Such highly valuable nutrients could be provided as human diets. Nutritionally, 

their surface might also be a good place for obtaining omega-3 fatty acids bacterial 

producers. Bacterial communities associated with micro algae and macro algae were 

phylogenetically identified respectively based on 16S rRNA gene sequences, indicating 

that the abundance of Gamma-Proteobacteria (90%). Macro algae associated bacteria 

responsible for EPA or DHA production were mainly members of genera Vibrio and 

Colwellia, whereas genera Vibrio, Photobacterium and Shewanella were presented in 

the micro algal culture as bacterial EPA producers. Photobacterium profundum and Ph. 

frigidiphilum are the only two species within Photobacterium genus known to be able to 

produce EPA at the level of 2-14 % of TFA, however, they require pressure for growth 

(Nogi et al., 1998c; Seo et al., 2005). Photobacterium sp. MA665, phylogenetically with 

high similarity with these two psychropiezophiles, isolated from shallow-sea algal plant 

from North Sea, was first time described of this genus could be cultured easily under 

atmospheric conditions with appreciable content of EPA (up to 25 % of TFA or 10.6 mg 

g-1). 

 

It has been nearly ten years that only two bacterial phyla: the Gammaproteobacteria and 

the Bacteroidetes, with limited species are capable of producing PUFAs (Nichols and 

McMeekin, 2002). Gram-positive bacteria seldom produce PUFA, but typically 

terminal branched fatty acids (Kaneda, 1991). Varied proportion of EPA from bacteria 

reflects the geographic temperatures, nutrient content of their phytoplankton hosts or the 

food web characteristics of the environments where they were isolated. Marine bacteria 

isolated from cold marine environments, such as Mid-Atlantic Ridge deep-sea 

 265



Chapter 10. Final discussion and conclusion 

sediments, North England coast bay water, North-sea sponges and algae, were 

confirmed with finding of PUFA producers, whereas strains isolated from tropical 

Caribbean marine water and sponges were not produced PUFAs. Therefore weather or 

temperature is one of the major factors concerned for screening PUFA producers. 

 

Generally, cells must cope with decreases in temperature by modulating the lipid 

composition of their membrane, which can crystallize or enter nonbilayer phases at low 

temperatures (Russell and Nichols, 1999). According to the observation of this study, 

Gram positive strains, mainly Firmicutes affiliated with branched-chain fatty acid 

family, employed anteiso-15:0, iso-15:0 to adjust their membrane viscosity. The 

presence of these branched fatty acids has been suggested to have a functional role in 

piezoadaptation (Fang and Kato, 2007). Whereas other strains, such as Alpha, Gamma-

Proteobactria and CFB group bacteria belong to straight-chain fatty acid family which 

required unsaturated fatty acids, especially PUFAs, for growth and membrane viscosity 

manipulation. Production of EPA by some bacteria increases as temperature decreases, 

leading to the hypothesis that these molecules may be important for growth at low 

temperatures (Delong and Yayanos, 1986; Valentine and Valentine, 2004; Amiri-Jami 

et al., 2006). EPA was not required for low-temperature growth in the deep-sea 

bacterium Photobacterium profundum (Allen et al., 1999), but it may be required for 

low temperature growth in Shewanella (Valentine and Valentine, 2004; Sato et al., 

2008; Wang et al., 2009). Therefore, it is unclear why these bacteria produce omega-3 

fatty acids. 

 

10.1.2 Biotechnological production of EPA under various fermentation conditions 

 

Biotechnologically, PUFA biosynthesis, speciation and the interaction of PUFA with 

other fatty acid types in the adaptive responses of bacteria to changing environmental 

conditions could be manipulated according to previous studies (Akimoto et al., 1990; 

Suzuki et al., 1991; Suzuki et al., 1992; Henderson et al., 1993; Hamamoto et al., 1994; 

Nichols et al., 1994; Bowman et al., 1997b; Nichols et al., 1997; Gentile et al., 2003). 

The level of EPA production of strain Shewanella sp. MAR441 has been optimized 

under various fermentation conditions, and 15-25 % EPA of TFA (or 17-30 mg g-1 in 

dried cell) could be achieved with more than 40 % improvement (Table 10.1). Thus, 

strain MAR441 produced higher levels of EPA than other novel bacteria, such as 

Shewanella putrefaciens-like strain SCRC-8132 produced 4-15 mg g-1 of EPA (Yazawa 
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et al., 1988b; Yazawa, 1996), Shewanella gelidimarina ACAM 456T could yield 1-16 

mg g-1 of EPA (Nichols et al., 1997), and Shewanella pneumatophori SCRC-2738 

produced 4-17 mg g-1 of EPA (Yazawa et al., 1988b; Akimoto et al., 1990; Hirota et al., 

2005). This study reported the highest yield of EPA from bacterial strain MAR441 will 

therefore bring it closer for next step of industrial commercialization. 

 

Vibrio sp. strain NSP560 and Photobacterium sp. strain MA665 isolated from North-sea 

coast, produced lower levels of EPA than Shewanella sp. MAR441, in marine broth. 

However, the EPA production in these three species could be greatly enhanced to nearly 

the same levels by cerulenin treatment, which inhibited the synthesis of middle-chain 

fatty acids. The observation indicates that the environments where the strains isolated 

may not be the primary controlling factor in PUFA synthesis, but mostly may impact 

the growth. Therefore it suggests that the necessary of rethinking the conventional 

concepts/ways of screening strains with highly accumulate PUFAs, as well as the 

mechanisms of cold adaptation, such as the increasing levels of EPA and/or DHA 

responses to cold temperatures.  

 

Marine microalgae have several advantages over conventional (energy) crops for 

converting carbon dioxide into biomass; a high growth rate, high CO2 fixation rates, 

their lack of requirement for fertile soil and suitability for large scale production 

(Solovchenko et al., 2008). Algal cultures have been focused in tropical and subtropical 

areas, such as Spain, Hawaii, California, Roswell and New Mexico, grown outdoors on 

a commercial scale (Borowitzka, 1999; Moreno-Garrido and Canavate, 2001; Voltolina 

et al., 2008; Mata et al., 2010). However, such areas with higher temperatures and 

fluctuations in temperature are not suitable for many algal species for outdoors culture 

(Renaud et al., 1995; Lee, 2001), and therefore result in hampering productivity rates 

(Sheehan et al., 1998). The investigation of the natural populations of algae from North 

Sea was conducted with finding of Phaeodactylum tricornutum strain M7 capable of 

growing indoors and outdoors under local natural weather months (Table 10.1). Strain 

M7 had a lipid content of 10 % dry wt biomass and 22-30 % EPA of TFA among the 

highest level reported (Kates and Volcani, 1966; Ackman et al., 1968; Volkman et al., 

1989; Yongmanitchai and Ward, 1991a; Reitan et al., 1994; Patil et al., 2007). The 

results indicate the potential of growing marine microalgae in temperate regions using 

this local isolate M7, rather than in tropical and subtropical areas. 
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Table 10.1 Summary of microbes with their productivity of biomass, total fatty acids 
and EPA in this study 

Strains Biomass 
(g l-1 day-1) 

EPA/TFA 
(%) 

TFA 
(mg g-1) 

TFA  
(mg g-1day-1) 

EPA 
(mg g-1) 

EPA  
(mg g-1day-1) 

Shewanella sp. strain MAR441 (Chapter 6) 
4 °C for 3 days 0.9 25.5 118.6 39.5 30.2 10.1 
15 °C for 2 days 1.5 17.6 115.2 57.6 20.3 10.1 
Photobacterium sp. strain MA665 (Chapter 7) 
4 °C for 3 days 0.7 24.5 43.1 14.4 10.6 3.5 
15 °C for 2 days 0.8 18.4 46 23 8.2 4.1 
Vibrio sp. NSP560  (Chapter 7) 
4 °C for 3 days 0.6 12.3 68 22.7 8.4 2.8 
15 °C for 2 days 9.5 10.5 69 34.5 7.2 3.6 
Phaeodactylum tricornutum strain M7 (Chapter 8) 
Indoor (15 °C, 6 days) 0.28 24 170 28.3 24.4 4.1 
Outdoor (summer, 9 
days) 

0.17 23.5 103 11.4 24.3 2.7 

Outdoor (winter, 13 
days) 

0.12 32 103 7.9 33.3 2.6 

Tetraselmis sp.  strain M1 (Chapter 8) 
Indoor (15 °C, 7 days) 0.23 5.2 63.5 9.1 3.3 0.5 
       
Shewanella gelidimarina ACAM 456T (Nichols et al., 1997) 
6 °C  NP 16 40 NP 4.8 NP 
15 °C  NP 12.8 40.1 NP 5.2 NP 
Phaeodactylum tricornutum cultured in a photobioreactor (Patil et al., 2007) 
 20 °C, 2.1days 0.43 NP 37.2 17.7 28.4 13.5 
Tetraselmis suecica cultured in a photobioreactor (Patil et al., 2007) 
20 °C, 3.3 days 0.27 NP 18.6 5.6 4.8 1.45 

NP, Specific data not published post-February 2011. 

 

10.1.3 Molecular analysis of bacterial PUFA biosynthesis pathway 

 

Molecular analysis of microbial EPA/DHA biosynthesis via the PKS-like pathway was 

conducted by cloning, sequencing, and complementation analysis of the PUFA gene 

cluster (Yazawa, 1996; Tanaka et al., 1999; Allen and Bartlett, 2002; Gentile et al., 

2003; Orikasa et al., 2004; Okuyama et al., 2007). Thus, pfa genes were further 

expressed for finial EPA/DHA production in Escherichia coli, with 2-6 % EPA/DHA 

recombinant production of TFA (Valentine and Valentine, 2004; Lee et al., 2006; 

Orikasa et al., 2006b; Amiri-Jami and Griffiths, 2010). And, the production of EPA 

could be improved to 16-22 % when high copy-number plasmid carrying the EPA gene 

cluster was transformed into E. coli cell (Orikasa et al., 2004). However, the EPA/DHA 

recombinant does not behave like a typical E. coli cell, such as growth occurs around 

0.2 M NaCl and restricted to about 12–22 °C (Valentine and Valentine, 2004).  
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EPA gene clusters (pfaA, pfaB, pfaC and pfaD with pfaE connected or separated) from 

Vibrio, Photobacterium and Shewanella in this study, along with those published data 

from EPA/DHA derived prokaryotic and eukaryotic species, such as Shewanella 

pneumatophori, Photobacterium profundum and Pseudoalteromonas sp., Moritella 

marina and Schizochytrium, which demonstrated that EPA or DHA polyketide 

biosynthesis gene clusters from different genera showed a high degree of gene sequence 

similarity. The result also provided evidence of the common distribution of the novel 

PUFA synthease pathways among marine microorganisms regardless of their 

biogeographic variability, which has recently been further testified by the investigation 

of genetic capacity for production of long-chain fatty acids using a culture-independent 

approach (Shulse and Allen, 2011). The gene pfaE plays important role in EPA/DHA 

biosynthesis (Rahman et al., 2005), but it is still unclear why pfaE shift its position, as 

observed in this study, in the genomic DNAs of different strains/species. Furthermore, it 

is still speculated that the final PUFA product in the system may contributed by some 

cooperative interactions between domains of different Pfa proteins, rather than 

depending on the activity of any single Pfa protein. Therefore, the study suggests the 

possible involvement of gene transfer in the acquisition of the pfa gene clusters among 

different strain/species in the marine environment, although no flanking genes 

possessing functions which could facilitate horizontal transfer have been observed, so 

far.  

 

10.1.4 Bio-electrochemically study power generation by bacteria 

 

A shortage of oxygen easily occurs in deep-sea environments where reduced sulfur 

compounds or other metals are supplied constantly as final electron acceptor for 

microbes in their respiratory pathway (Woulds et al., 2007). Anaerobic microbes 

inhabiting such anoxic subsurface are able to use organic matter and eventually liberate 

electrons as a form energy (Lovley, 2008). Effective anaerobic oxidation of complex 

assemblages of organic matter, such as those found in most wastes and biomass, 

requires the fermentation products from the metabolism of sugars, amino acids and 

related compounds, in addition to other constituents, such as aromatic compounds and 

long-chain fatty acids, to be oxidized with electron transfer to an electron acceptor 

(Lovley, 2006). Based on these principles, the devices, microbial fuel cells (MFCs) 

have been set up by employing bacterial metabolism to produce an electrical current 
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from various organic substrates. Several studies found that MFCs contained diverse 

microbial communities, which was unexpected given the apparent need for cells to be 

able to respire using an electrode (Logan and Regan, 2006).  

 

In this thesis, bacteria from MAR deep-sea sediments, such as strain MAR441, could 

utilize peptone and deliver a stable power output of ~75-100 mW/m2, which is 

competitive comparing to that from strain Shewanella oneidensis MR-1 (Watson and 

Logan, 2010). However, under such anaerobic conditions, high content of middle-chain 

fatty acids (e.g. n-16:1ω7 and n-18:1ω7c), but less long-chain fatty acids, such as EPA, 

were observed from the MAR441. This is probably due to the activation of oxygen-

independent (anaerobic) pathway catalysed by a fatty acid synthetase, which contribute 

more middle-chain fatty acids production (Yano et al., 1998), or polyunsaturated fatty 

acids play its cell membrane protection role as an antioxidant (Nishida et al., 2006), and 

therefore decreased the level of EPA.  

 

The organic matter stored in anoxic subsurface environments and aquatic sediments 

represents a large potential source of energy (Bond et al., 2002). Thus, in this study, 

MFC was set up by adding estuarine sediment directly with acetate as electron donor, 

capable of producing electricity up to ~175 mW/m2, which is the highest level reported 

so far among the sediment MFCs. Various levels of electricity were observed by other 

sediment MFCs, such as marine sediment MFCs in situ with power output of 10-230 

mW/m2 (Reimers et al., 2001; Tender et al., 2002; Lowy et al., 2006; Nielsen et al., 

2007; Dumas et al., 2008; Nielsen et al., 2008; Tender et al., 2008), marine sediment 

MFC in laboratory with electricity production of 40-70 mW/m2 (Logan et al., 2005; 

Zhang et al., 2006b). Furthermore, the bacterial consortia MFC showed higher power 

densities than those obtained using single strains isolated from the original biofilm. The 

observation supports the suggestion that biofilm communities may produce greater 

power densities than individual strains (Logan, 2009), as it has been proved by the fact 

that two species were better than one in a cellulose-fed fuel cell (Ren et al., 2007). In 

addition, the maximum power output could be further increased to ~200 mW/m2 when 

an artificial consortium consisting of twenty-five preselected exoelectrogenic isolates 

was used. Non-exoelectrogenic bacteria were detected in the original biofilms, and these 

have been suggested to play a role as helper strains for fermenting organic matter (Ren 

et al., 2007). The study demonstrated the highest level of power output from estuarine 
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sediment in MFC, and its performance could be increased by combining different 

exoelectrogenic and/or non-exoelectrogenic bacteria as artificial biofilms. 

 

10.2 Conclusions 

Overall, this study helps better understand the structure of culturable bacterial 

community in the little studied deep-sea sediments, marine plants, and estuarine 

sediments, based on molecular identification and fatty acid composition; 

biotechnologically, provides potential bacterial candidates for industrial production of 

EPA, and brings it closer to the next step of commercialization on marine biomass; 

molecularly, elucidates the microbial EPA/DHA biosynthesis via the PKS-like pathway; 

and bio-electrochemically reveals the role of PUFA under anaerobic conditions and 

demonstrates the potential for increased performance of microbial fuel cells in the 

future. 
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Appendices 

Appendices	

Appendix A: Chemicals, media, kits and enzymes used in this study 

 

A1 Organic solvents 

 

VWR (Leicestershire, UK) 

2 Propanol (1 L)  

4 methoxy benzaldehyde (200 ml)  

Acetic acid (250 ml)  

Acetic acid glacial (100 ml)  

Acetone (HPLC gradient grade)  (1L)  

Butylated hydroxytoluene - Solution 1 % (in Ethanol)   

Butylhydroxytoluol (100 ml)  

Chloroform (250 ml)  

Diethyl ether  

Dimethylformamide( 1 L)  

Ethylacetate (2.5 L)  

Hydrogen chloride (2.5 l)  

Hydrogen peroxide (250 ml)  

Isoamyl alcohol (1 L)  

Methanol (HPLC gradient grade) (1.5 L)  

Methylated spriti (2 L)   

n-Hexane (HPLC gradient grade) (2.5 L)   

Orthophosphoric acid (500 ml)  

Phenol (0.5 L)  

Triethyl amine (500 ml)  

Triphenyl tetrazolium chloride (100 ml)  

Vanadomolybdate reagent(1 L)  

 

A2 Media 

BD Becton Dickinson UK Limited 

BD Difco™ Marine Broth 2216  
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BD Difco™ Marine Agar 2216  

Nutrient broth  

Difco™ LB Broth, Miller  

 

Difco 

 Bacto®tryptone  

Bacto®yeast extract   

 

Oxoid 

 Bacteriological Agar No.1  

 

 

A3 Chemicals 

Fisher Scientific Inc., UK 

 Glycerol  

Tween 80  

Tween 60   

Tween 40  

 

 

 

 

Fermentas, UK 

 X-Gal Solution, ready-to-use 10 ml (20mg/ml)  

 

Sigma 

 Ethidium bromide (10ml)  

 

Tokyo Kasei Kogyo Co., Ltd. 

 N-Methyl-N'-nitro-N-nitrosoguanidine  

 

VWR (Leicestershire, UK) 

D(+)-Glucose GPR RECTAPUR® anhydrous Calcium Chloride monohydrate 
Bactopeptone Disodium fumarate 
Meat extract  Ferric citrate 
Starch soluble Iron (iii) chloride 

Caesin hydrolysate Iron (iii) phosphate hydrate 
D-(+)-Maltose monohydrate Lithium acetate dihydrate 

L(+)-Glutamic Acid Magnesium acetate 
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3,5 – Dinitrosalicylic acid Magnesium Chloride Hexahydrate 

L-Leucine Magnesium sulphate anhydrous 

L-Alanine Monopotassium phosphate 
L-Proline Potassium acetate 
L-Serine Potassium chloride 
Iodine indicator Potassium chloride 
CTAB - Lysis buffer BioChemica, 2% (w/v) Potassium dihydrogen phosphate 
EDTA trisodium salt 0.1 mol/l (0.3 N) Potassium hydroxide 
N,N,N’,N,-Tetramethylethylene diamine 
(TEMED) Potassium ferricyanide 
Isopropyl-β-D-thiogalactoside (IPTG) Potassium nitrate 
Dithiothrietol (DTT) Sodium acetate 
Ethelene diamine tetra-aceticacid, disodium 
salt (EDTA) Sodium chloride 
Polyvinylpyrrolidone (K15) BioChemica Sodium hydroxide 
Ammonium Acetate HiPerSolv for HPLC Sodium nitrate  
Guanidine hydrochloride - Solution (8 M) 
BioChemica Sodium phosphate 
Triphenyltetrazolium chloride (TTC) Sodium phosphate monobasic 
AccuGENE® 10X PBS, 1 L Sodium succinate 
Agarose DNA grade Electran® BDA Sodium sulphate 
Coomassie Brilliant Blue G Zinc chloride 
M9 Minimal salts β-Mercaptoethanol 
Urea Streptomycin sulfate 
Ammonium chloride Kanamycin sulfate 
Calcium chloride Ampicillin 

 

A4 Enzymes 

Cambio Ltd. UK 

 Plasmid safe DNase  

 

Fermentas, UK 

Proteinase K 1 ml (20mg/ml)  

RNase T1 100000 units (1000u/µl)  

T4 DNA Ligase (supplied with PEG) 1000u (5u/μl)  

T4 Polynucleotide Kinase (T4 PNK) 500u (10u/μl)  

Calf Intestine Alkaline Phosphatase (CIAP) 5x200u (1u/μl)  

Lambda DNA/EcoRI+HindIII Marker  

Lambda Mix, 19  

DNA restriction endonucleases   
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HotStart DNA polymerase  

PfuTurbo DNA polymerase  

 

 

 
 

A5 Kits 

bioMérieux UK 

API 20 NE  test strip 

API 20E test strip 

 

 

 

Cambio Ltd. UK 

 CopyControl™ HTP Fosmid Library Production Kit  

CopyControl™ Induction Solution 400X concentrated 

solution 

 

FosmidMAX DNA Purification kit  

 

 

 

 

Fermentas, UK 

 PCR Master Mix (2X)  

GeneJET(tm) PCR Purification Kit, #K0701  

GeneJET(tm) PCR Purification Kit  

GeneJET™ Plasmid Miniprep Kit  

Rapid DNA Ligation & Transformation Kit  

 

 

 

 

 

Invitrogen Ltd UK 

 PureLink™ PCR Purification Kits  

PureLink™ Genomic DNA Mini Kit   

PureLink™ Genomic Plant DNA Purification Kit  

 

 

 

Qiagen 

 Plasmid Mini kit  

Plasmid Midi kit  

Qiaquik Gel Extraction kit  

Qiaquik PCR Purification kit  

 

 

 

 

Sigma, Aldrich 

GenElute™ Bacterial Genomic DNA Kit   
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Appendix B: Hardware/Equipment used in this Study	

 

Agilent Technologies Co., Ltd., Palo Alto , USA 

 Hewlett-Packard model 7890A gas chromatograph (Varian 

CP-3800) 

 

Agilent 5975 GC/MS  

HP-5ms Capillary GC-MS Column (19091S-433, 30 m x 0.25 

mm, 0.25 µm), 

 

DB225 capillary column (BPX70, 10 m x 0.1 mm, 0.2 µm)  

 

 

 

 

 

 

Becton Dickinson, Maryland 

 Anaerobic container system ( GasPak™ EZ)  

 

Biomedical EM Unit, Newcastle University 

 Philips CM100 transmission electron microscopy  

Scanning electron microscopy (Cambridge Stereoscan 240)  

Confocal microscope (Leica INM100)  

 

 

 

BOC Gases,UK 

 Standard Cylinder (W Size) of Oxygen  

Cylinder Oxygen Regulator (0-10 bar)   

 

Corning Inc. 

 Dual chamber glass  

 

Eppendorf, Wesseling-Berzdorf, Germany 

 Mastercycler ep gradient thermal cycler  

Mini Spin Eppendorf   

 

 

Eco Chemie, Utrecht, Netherlands 

 Autolab PGSTAT302 potentiostat  

 

Dupont Co., Wilmington, USA 

Proton exchange membrane NafionR 117   

 339



Appendices 

 

Freudenberg FCCT KG, Germany 

 H2315 carbon cloth  

 

Grant Instruments 

 Grant Water Bath SBB6  

 

GasPak™ EZ, BD, Maryland 

 2.5 L anaerobic container system  

Anaerobic GasPaks (Oxoid)   

 

Invitrogen Ltd UK 

 Xcell SureLock™ Mini Cell  

 

LEEC Limited (Laboratory Equipment & Mortuary Equipment) 

LEEC K2 Compact Oven  

Compact Microbiological Incubators  

 

 

 

MARTIN CHRIST Gefriertrocknungsanlagen GmbH 

 Freeze Dryers (Alpha 1-4LD)  

 

New Brunswicbk Scientific (UK) Ltd 

 BioFlo 3000 Fermentation system. 3.3L (F1001-1)  

Water regulator kit (4 Mani folds)   

 

 

Oxford, OX, United Kingdom 

 G Series Analytical and Semi Micro (G21002 and F31002)  

 

Sigma, Aldrich 

 Vials, screw-top V-Vials® with solid-top cap capacity 1.0 Ml 

(screw-cap size 13-425) 

 

 

Sigma Laboratory Centrifuge 2-16P  

 

 

 

 

 340



Appendices 

Scientific Laboratory Supplies Limited, UK 

 Standard Vertical Gel Unit 20x20cm  

Angle Rotor 6x50ml Falcon Tubes  

Silca gel (TLC Plates)  

Merck silica gel 60  

 

 

 

 

SkyTronic UK 

 Digital multimeter  

 

(SLS) Scientific Laboratory Supplies Ltd 

 Clifton Blockheater Thermubloc Analogue  

 

SCHOTT UK Ltd 

 Dual-chamber vials  

 

Varian Ltd, UK 

VF-WAXms FS 30x.25 (.5) (CP9222)   
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