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Abstract 
______________________________________________________________________ 

 

Environmental conditions such as temperature have a large impact on the growth and 

development of plants. Lettuce and carrot contain phytochemicals (secondary 

metabolites) with high nutritional value. The temperature conditions that the plant is 

grown in may affect the content of phytochemicals, which in turn affects the quality of 

crops. In view of climate change this may be important for the supply of human food 

resources for a growing population, if the increase of temperature systematically affects 

food quality. 

 

The objective of this study was to determine the effects of different growth temperatures 

on plant growth parameters and nutritionally relevant phytochemicals in different 

varieties of lettuce and carrots. 

Plants of two varieties each of carrots and lettuce were grown in controlled 

environments at different day/night temperatures: 12/8, 17/13, 22/18, 27/23 and 32/28 

℃ for lettuce and 12/8, 17/13, 22/18 and 27/23 ℃ for carrots. Each temperature 

treatment was applied at a separate time and the plants were harvested after having 

produced 10-12 leaves (lettuce) and 6-8 leaves (carrots). The light was constant 150 

µmol /m
2
/s with an 11-hr-light/13-hr-dark cycle, approximately corresponding to winter 

outdoor conditions in Southern Europe. 

 

Growth parameters such as number of leaves, plant height, leaf area of lettuce, 

fresh and dry weight were recorded. The sugar levels, nitrate concentration, 

phenolic compounds, carotenoids and chlorophyll pigments were determined in 

leaves and root of both species, in addition to polyacetylene compounds

in carrot roots. 

 

The results showed that temperature had a highly significant effect on growth 

parameters. The lowest temperature (12/8 °C) produced the highest dry matter content 

of both shoots and roots; the biomass of both species peaked at 17/13 ℃ and the leaf 

area of lettuce was greatest at 22/18 ℃. The rate of leaf production was more rapid at 

higher temperatures than below 18 °C. Lettuce varieties responded more positively to 

high temperature than the carrots. Carrot root growth was inhibited with increasing 

temperatures above (22/18 ℃). 



II 

 

Concentrations of phytochemicals were also affected significantly by growth 

temperature.  Polyacetylenes in carrot roots increased by at least 50 % when grown at 

the lowest temperature of 12/8 ℃. The accumulation of phenolic compounds in both 

carrots and lettuce leaves was associated with both low and high temperatures over the 

range tested, while the levels at 22/18 ℃ were only 3-50 % of the highest values. High 

temperatures (17, 22, 27 ℃) also more than doubled nitrate contents, particularly in 

lettuce. In contrast there were higher levels of sugar in plants grown at low temperature 

compared with high temperature.  Temperatures above 22 °C  increased accumulation 

of chlorophylls in lettuce leaves. Contents of carotenoids (lutein, α-carotene and β-

carotene) were relatively unaffected by temperature, although contents of β-carotene 

and lutein in lettuce leaves were slightly higher at 22/18 ℃ than other regimes. Growth 

temperature had a greater effect on the composition of carrots and lettuce than variety 

(genotype).   

 

The directions of the effects on composition were as expected from the physiological 

mechanisms involved. However for most of the measured compounds, the present study 

is the first to determine magnitudes of the effects. Such information could be useful to 

growers as it may help them to make decisions about variety choice or fertilizer 

application rates dependent on the temperature regimes experienced or applied during 

growth. 

 

These effects could become increasingly important aspects as climate change and global 

warming proceeds with potentially substantial implications for the links between diet 

and human health. 
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1.  Introduction 
 

 

Temperature is an environmental factor that has large effects on growth, development, 

yield and quality of food crops. Currently, relatively little is known about the extent to 

which temperature influences the phytochemical composition and concentration of plant 

tissues. However, many researchers have previously shown the major importance of 

phytochemicals in the human diet. Some phytochemicals have beneficial health effects 

and may help to resist diseases such as some forms of cancers, whilst others may 

actually encourage disease.  

Clearly therefore, the effects of temperature on growth yield and phytochemical content 

of important vegetable crops such as lettuce and carrot, which have high nutritional 

value and are widely consumed, may have very important implications. This is 

becoming more significant in view of a) global warming – temperature changes and 

stresses will undoubtedly influence plant composition - and b) the increasing interest in 

the link between diet and human health. Appropriate investigations to improve our 

knowledge and understanding of the inter-relationships should make it possible to 

identify the impact of increasing temperature on the functionality of these foods.   

 

The research programme reported in this thesis aims to investigate the effects of 

different temperature regimes, on a) The growth and development of lettuce and carrot 

in growth chambers, b) Concentrations of different components such as sugar content, 

chlorophyll, nitrate, carotenoids, phenolic acids, and polyacetylene compound levels. 

These are important characteristics in terms of food quality, and may be manipulated to 

advantage by growing plants at appropriate and desirable temperatures. 

 

 Carrot and lettuce were chosen for this project, because both are widely cultivated and 

consumed around the world, and have high nutritional value. On a more practical note, 

these two species were easy to manage as test plants by growing them in modules in 

growth chambers over relatively short periods of time.  
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1.1  Plant growth and development  

The growth environment of plants, particularly the combination of solar radiation, water 

supply and temperature affects their survival, development, productivity and quality 

(Stringer and Dennis, 2000). The combination of biotic (associated with living-

organisms’ functions, processes and interactions) and abiotic (physical) factors (e.g. 

temperature, water supply) affect plants from the molecular to the whole-plant level. 

Therefore, an understanding of the different balances of these different types of factors 

is necessary to allow a precise analysis of the plant condition in different growth 

environments (Rojdestvenski et al., 1999; Hirt and Shinozaki, 2003; Souza and 

Cardoso, 2003; Pinheiro and Chaves, 2011; Vítolo et al., 2012)  

The climatic conditions play a significant role on plant growth, yield, maturation and 

quality, (Chormova, 2010). Moreover, Khoo et al. (2011) have reported that the 

growing conditions, maturity stage, carotenoid concentration and food processing are 

considered to be the primary factors affecting  the compositional characteristics of 

vegetables and fruits.   

Temperature, light intensity, CO2, humidity, water and mineral supply are abiotic 

factors and are the main environmental factors that can affect a plant’s development. At 

sub-optimal levels,  stress occurs with  negative impacts on the plant, (Galindo et al., 

2007). Most of the development processes of plants and their rates, are controlled 

primarily by temperature, while other  environmental factors have less marked effects 

(Fitter and Hay, 2002). Moreover responses to environmental changes differ between 

the cultivated species, especially between C3 and C4 plants, (Vitolo et al., 2012). 

Vegetables are an important part of the human diet and increasing their consumption is 

highly recommended. They are a major source of dietary fibre and micronutrients, 

including, the antioxidant compounds, such as carotenoids and polyphenols: 70-90 % of 

carotenoids are provided by fruits and vegetables in the diet (Granado-Lorencio et al., 

2007; Singh et al., 2012). In their raw state, alliums (onions and garlic), green 

vegetables, carrots and tomatoes are known to be protective against cancer,  (Barbosa-

Filho et al., 2008). However, there are large variations in antioxidant contents 

(phytochemical) between the different fruits and vegetables, which reflect species 

differences in  response to the environmental conditions under which the crop is 

produced (Hayashi et al., 2012).   
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The World Health Organization (WHO, 2003) recommends that at least five portions of 

fruit and vegetables are eaten per person day (80 g is a typical portion, resulting in 5×80 

= 400 g per day and 2800 g per week).  However the consumption rate in England is 

still below the required  levels (Doyle and Hosfield, 2001), at about 3 portions a day.  

This represents a low daily intake according to UK government recommendations with 

an increased risk factor of contracting certain diseases as a consequence (Block, 1992; 

Sanders, 2007). However, Figure 1.1 below shows an average household’s fruit and 

vegetables consumption in the UK during the period (1990-2010).  According to  (UK 

household purchased quantities of food and drink, 2011), it shows an increasing rate of 

fruit consumption from 1990-1998, increasing and decreasing until 2004 then increasing 

to the highest consumption level (1313g/person/week)  in 2006 before decreasing again 

until 2010. Vegetables also show variable consumption levels during the ten years while 

1990 -1992 had the highest consumption rate (~1200 g/person/week). One of the top ten 

factors affecting the global mortality rate is the low consumption of fruit and vegetables 

(WHO, 2003). 

 

Figure 1.1  Average household consumption of fruit and vegetables 1990-2010 in the 

UK, UK household purchased quantities of food and drink (2011). 
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1.1.1  Carrot (Daucus carota L) 

 

The carrot (Daucus carota L.) storage root vegetable belongs to the Umbelliferae group. 

In many countries it is considered a primary vegetable in a person’s diet all-year-round 

(Nicolle et al., 2004; Gajewski et al., 2010; Singh et al., 2012).  It has a pleasant flavor 

and contains a high concentration of minerals, vitamins and fibre which provide health 

benefits (Alasalvar et al., 2001). Over the past few decades the consumption of carrots 

has been increasing in the U.S (Lucier and Lin, 2007) and  the  UK (Wright, 2005) 

relative to  most other commonly consumed vegetables. Annual carrot production 

equates to approximately 28 million tonnes globally (FAOSTAT, 2009). 

Carrot crops are grown in temperate and subtropical regions (Macko and Grzebelus, 

2008). They are  direct seeded (not transplanted) and establishment is sensitive to both 

low or high temperatures which can cause poor stands and low yields (Nascimento et 

al., 2008).  Carrots have a deeper root system than almost all other vegetables (Thorup-

Kristensen, 2006) and require deep fertile soil with  good water holding capacity,  free 

of stones and loose consistency for optimum development (Munro and Small, 1997). 

There are different sizes and shapes of carrot roots such as cylindrical or tapering roots. 

The Nantes, conical Chantenays, Autumn King and Berlicum varieties are the main 

types in the UK, (Stringer and Dennis, 2000).  The common varieties of carrot available 

in the United States are Imperator (most common), Nantes, Chantenay and Danvers 

(Lucier and Lin, 2007). They can be eaten raw or processed into a range of foods, 

including, cooked, canned, frozen and dehydrated products (Kreutzmann et al., 2008).  

Unlike some other vegetables, an important feature of carrots is the possibility of being 

harvested at different times during the growth cycle to achieve high prices, depending 

on the size and conditions of the market. The crop may be harvested early when roots 

are small although it is often harvested when it has grown to its full size and may be 

stored for long periods prior to consumption (Martin et al., 2009).  

In general, concentrations of bioactive compounds found in the storage roots of carrots, 

which are the basic content for both human nutrition and taste,  are  mostly affected by 

growing conditions and crop agronomy (Singh et al., 2012). The carrot contains a 

number of mineral elements and other micronutrients (Nicolle et al., 2004). 

The phytochemicals include anthocyanin, phenolic acids and carotenoids, which are 

responsible for various colours in carrot varieties such as orange, yellow, red, and 
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purple and white.  However, the colour of some plants is determined by the 

concentration of phytochemicals.  

High concentrations of α- and β-carotene present in carrots gives the characteristic 

orange colour, while increased lycopene gives the red colour.  Yellow carrots contain 

increased lutein concentrations while white carrots have lower concentrations of all 

carotenoids, as observed by (Poudyal et al., 2010). The genotype, plant development 

(growth stages) and growth temperature are the main influences that determine the 

colour of the carrot (Nicolle et al., 2004). 

However,  Nicolle et al. (2004) conclude that there are high correlations between the 

carrot root colour and carotenoid levels, with high carotenoid concentration correlated 

(associated) with the dark orange carrot roots. 

Krinsky and Johnson (2005) have reported that the β-carotene concentration of raw 

carrots and cooked carrots are 18.3 and 8.0 mg/100 g fresh weight respectively. This 

provides an indication of the effect of food processing on carotenoid concentrations. 

  
 

1.1.2   Lettuce (Lactuca sativa L) 

 

Lettuce is an important worldwide, dietary, leafy vegetable that is primarily cultivated 

and consumed as a fresh product or in salad mixes. It is an important source of 

phytonutrients, (Liu et al., 2007; Khoo et al., 2011; Cruz et al., 2012). Lettuce is an 

annual herbaceous plant belonging to the Compositae (Asteraceae family). It is 

abundant and there are many types that probably originated in Mediterranean areas. 

Now it is commercially distributed throughout the world. Within the European Union,  

lettuce is the fourth most important vegetable  crop in a human’s diet (Boo et al., 2011; 

Baslam and Goicoechea, 2012), but fifth in the United States (Lucier and Jerardo, 

2005). There are different types of lettuce cultivars such as head romaine (cos) and leaf 

(loose), with diverse colours, shapes and textures, (Hedges and Lister, 2005; Koike et 

al., 2006). Specific types of lettuce grown in the UK are called round, cos, iceberg, baby 

leaf, little gem and coloured lettuce. Green leafy vegetables are a good source of 

vitamins and minerals, (Raju et al., 2007) and  lettuce particularly so. In addition to 

these nutrients, the phenolic antioxidants are one of the most important components 

present in lettuce (Romani et al., 2002). Whereas the most important pigments which  

most lettuce cultivars contain are β-carotene, lutein, zeaxanthin, green cultivars contain 

chlorophyll, and red cultivars anthocyanin, (Hedges and Lister, 2005).  
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 It has been shown by (DuPont et al., 2000; Manach et al., 2004) that the phenolic 

components in lettuce are probably affected by genotype, crop agronomy and 

environmental factors. Since lettuce is shallow rooting, irrigation is required for 

improvement of growth and development (Baslam and Goicoechea, 2012). Lettuce is a 

cool temperature crop, growing best within a range between 10-20 °C, (Joy and Roger, 

2003) although Kimball et al. (1967) report that the optimum temperature ranges are 

17-28 ℃ day temperature and 2-11 ℃ night temperature. However, lettuce seeds fail to 

germinate at 25 ℃, as they are small-seeded and hence they rapidly dehydrate, 

(Fountain and Bewley, 1976). According to FAOSTAT, (2010) the production of 

lettuce and chicory was 133,900 tonnes in the United Kingdom and 4,105,580 tonnes in 

the United States of America respectively in 2010.  

 

 

1.2  Abiotic environmental stress of plants  

 

Temperature (low or high), drought, light, and salinity are among the common 

environmental factors that cause abiotic stresses, (Rao et al., 2006; Toivonen and 

Hodges, 2011). Abiotic stresses are considered to be major factors that negatively affect 

plant growth and productivity at different stages of growth (Levitt, 1972; Haferkamp, 

1987; Gao et al., 2007; Hodges and Tolvonen, 2008). Moreover, prolonged exposure to 

stress can cause plant death, (Rao et al., 2006).  According to Cramer et al. (2011) it is  

the sub-optimal environmental conditions that cause  abiotic stresses which can cause a 

reduction of plant growth and yield  

Plant growth, productivity and many morphological, physiological and molecular 

processes respond and adapt to abiotic stresses through various mechanisms (Cao et al., 

2011; Sanghera et al., 2011). For example, plants exposed to abiotic stress may 

stimulate some genes to initiate a metabolic process and hence increase protein levels to 

provide protection against these stresses, (Sanghera et al., 2011). Various plant species 

differ in their response to abiotic stress which may have more damaging effects at 

certain plant  growth stages (Jones et al., 1989) . 
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1.2.1  Effect of temperature on plant growth and development  

 

Temperature is one of the major  ecological abiotic factors that limits the geographical 

distribution of plants (Berry and Bjorkman, 1980; Kopsell, 2010) and has an effect on 

plant growth, development and function (Morison and Lawlor, 1999) with important 

implications for agricultural crop production. Furthermore, the genetic adaption of 

plants to different temperature regimes is considered a key factor to growth and survival 

of a species in their environment, (Criddle et al., 1997).  For each plant species there are 

defined minimum (below 0 ℃), optimum and maximum (above 40 ℃) temperatures for 

growth (Figure1.2). Therefore the temperate and tropical plant classification is based on 

the response to different temperatures. On this basis the overall physiology component 

processes can be varied in response to temperature and thus determine the net 

photosynthesis (Fitter and Hay, 2002; Qin et al., 2007). 

 

 

 

Figure 1.2  Plant growth rate responses to minimum (T min), optimum (T opt) and 

maximum temperatures  (T max), (Fitter and Hay, 2002). 

 

Temperature is considered to have the most important influence on sensory and 

chemical aspects of crop quality although light seems to have the main effect on 

morphological growth parameters such as total leaf and root dry weight, leaf area,  

length and diameter of roots, additionally to  light intensity effects, (Albayrak and 

Çamas, 2007; Seljasen et al., 2012). However, whatever the pattern and timing of plant 
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development, the temperature parameter may be key for these processes, (Fitter and 

Hay, 2002).       

To achieve high productivity and good quality crops the whole plants require optimal 

day and night temperatures, (Kimball et al., 1967) whilst sub-optimal temperatures 

restrict the processes of plant growth and development to some extent, (Vítolo et al., 

2012). The temperature range of plant growth is from 0 to 40 °C (Figure 1.2), and 

within this range the performance of most physiological processes behaves normally, 

while very high and very low temperatures ranges can cause injury effects, (Went, 

1953). The main functions that are essential to plant growth and development are 

photosynthesis, respiration and transpiration (Llorach et al., 2008). Photosynthesis is 

strongly affected by temperature regimes and typically is near to maximal within a 

range of moderate temperatures (15-30 ℃) for most temperate species and plants 

(Atkinson et al., 2010). Due to the effect of enzymatically catalysed reactions of 

photosynthesis processes (Lambers et al., 2008), there is an instant reduction in net CO2 

exchange in   light, caused by the exposure to high  (Seemann et al., 1984) or low 

temperatures (Berry and Bjorkman, 1980).  The change of net photosynthesis with 

temperature has been summarized by (Fitter and Hay, 2002). Below 0 ℃ and above 40 

℃ gross photosynthesis stops, at high temperatures due to the increasing rate of 

respiration, and at intermediate temperatures < 20 ℃ respiration rates are slightly lower 

than at higher temperatures. Different plant species respond differently to the 

environmental variables, however many may differ in their ability to resist temperature 

extremes during their different growth stages. During each stage of growth and 

development a plant has its own specific optimum temperature range that differs with 

different species, as well as with a plant’s age, (Agrios, 2005). 

 

 

1.2.1.1  The influence of low temperature on plants  

 

Plant growth processes such as photosynthesis, water transport, survival, cell division 

and yield are affected by low temperature. Therefore low temperature is an abiotic 

factor that affects plant growth and productivity, (Gray et al., 1997; Badea and Basu, 

2009; Sanghera et al., 2011). Plant metabolism rates, growth and development slow 

down at low temperatures (Fitter and Hay, 2002).   Two stress conditions of low growth 

temperature are chilling (< 20 ℃) and freezing (< 0 ℃) and are classified under cold 

stress. This can have in some cases significant negative effects on growth and 
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development of plants and thus plays a key, limiting role in plant productivity and 

distribution (Chinnusamy et al., 2007; Badea and Basu, 2009). In contrast, some crop 

genotypes exhibit cold tolerance and have the ability to survive and perform 

considerably better than some other less tolerant genotypes under low temperature 

conditions, (Sanghera et al., 2011).       

At  low temperatures in the range  1-12 ℃,  several plant species are either injured or 

killed, whilst other species appear to be more tolerant to low temperatures and can 

survive below 0 ℃ (Lyons, 1973).   

Agrios (2005) shows that plants affected by low temperature, deteriorate or/and may at 

times stop growing when the temperature becomes near to, or in, the freezing range. On 

the other hand, the ability of plants to withstand temperature differs between growth 

stages: generally, young seedlings are less able to resist cold temperatures than older 

plants. Moreover, different organs of the same plant type may have a different  ability to 

resist low temperatures, (Badea and Basu, 2009).  The response of plants to cold stress 

has different phenotypic symptoms as described by (Yadav, 2010; Sanghera et al., 

2011). These symptoms are poor germination or growth retardation, stunted growth of 

seedlings, chlorosis (yellowing leaves) and wilting. However, the primary injury effect 

of cold stress occurs in the cellular membranes and this damage leads to dehydration. 

Protection of the plant membrane’s stability is a common defence mechanism and the 

first reaction to exposure to cold stress is via changing of membrane lipid composition 

by the increase of fatty acid unsaturation rate, (Badea and Basu, 2009; Sanghera et al., 

2011). In addition to causing  membrane injury, cold stress damages the chloroplasts 

and decreases photosynthesis, (Sanghera et al., 2011) but the extent of the adverse 

effects depends upon the intensity and duration of the stresses, (Jan et al., 2009). 

It has been demonstrated that (Chinnusamy et al., 2007) plant metabolic reactions are 

affected both directly and indirectly by low temperature. The membrane fluidity, water 

and nutrient absorption and DNA formation represent the direct effects, these reduce the 

rates of biochemical reactions immediately or by an indirect effect through the genetic 

change over the much longer term. One way of responding to cold stress is the 

expression of genes that represent increasing a number of metabolites, some of which 

are known to act as protection factors against damage caused by cold stress, (Sanghera 

et al., 2011). 
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1.2.1.2   Effects of high temperature on plant growth  

 

The other abiotic stress that belongs to extreme temperatures and has an unfavourable 

effect on plant growth and which is often associated with deficiency of water is high 

temperature. This is due to the increased demand of evaporation through transpiration. 

In general, growth occurs within the temperature range 0-40 ℃,
 
although the optimum 

growth occurs between 15-30 ℃. However, when the temperature rises above the 

maximum, plants deteriorate more rapidly than when the temperature is lower than the 

minimum, (Agrios, 2005).  Shahrzad and Bitsch (1996) and Schwarz et al. (2010)  show 

that the metabolic rates of a plant increase exponentially with temperature above 25–30 

℃. The complex process resulting from high temperature depends on duration, intensity 

and the range of change temperature. However, photosynthesis, respiration, membrane 

stability, hormone levels, and thus metabolites (primary and secondary) are possibly 

adversely affected, (Wahid et al., 2007).  Heat stress effects on photosynthetic reactions 

are the most sensitive processes (thermosensitive) of a plant function, which may cause 

growth limitations due to extremely high temperatures, whereas the damage to 

photosynthetic electron transport is one of the primary consequences caused by high 

temperature stress (Seemann et al., 1984; Taub et al., 2000). 

Carrots grown in high temperature (mainly in the summer) may establish poorly and 

show limited growth and development (Nascimento et al., 2008). Although the growth 

of lettuce root is inhibited and the root diameter increased when grown at high 

temperature e.g. 38 ℃, this is due to the limitation of enzymes metabolism activity (Qin 

et al., 2007).  

The length of the germination period and germination percentage for carrot genotypes 

differs when grown in high temperatures (Nascimento et al., 2008). The germination 

period decreased as temperatures increase up to 20 ºC, whilst germination percentage 

decreased with  an increase of temperature for most seed cultivars of carrot grown at 35 

ºC, (Pereira et al., 2007). Both the genotypes and environmental conditions control  

performance of lettuce germination in high temperatures when the temperature increases 

above 28 ℃, (Sung et al., 1998). This difference in ability of lettuce to grow in high 

temperatures led to two groups being identified: thermotolerant and  thermosensitive, 

(Kozarewa et al., 2006). 
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1.3  Phytochemicals  

 

Phytochemicals are natural chemical bioactive compounds present in fruit and 

vegetables. They make an important nutritional contribution to the human diet, 

providing health benefits (McCann et al., 2005). The levels of phytochemicals in 

various  vegetables and fruits change over pre and post- harvest stages , between raw 

and processed states and according to the colour of vegetables:- dark coloured 

vegetables contain higher levels compared with paler coloured vegetables (Tiwari and 

Cummins, 2011). Also several plant foods have very low levels of phytochemicals or 

none at all. On the basis of their chemical structure, function and source, 

phytochemicals have been classified in many fruit and vegetables, (Tiwari and 

Cummins, 2011).  In excess of more than 100 different phytochemicals have been found 

in plant food. Among these compounds are phenols and polyphenol, Bioflavonoids, 

Carotenoids, Flavonoids and Isoflavones distributed in a wide range of food plants 

(Figure 1.3). They are characterised by their numerous health benefits (Hark and Deen, 

2005), due to the phytochemicals’ functions that act as  antioxidants, (Lv et al., 2012), 

that are reported to have potential health effects such as  reducing cancer risk (McCann 

et al., 2005). Many researchers agree that the concentration of phytochemicals has 

strong correlations with various factors including genotype, environmental conditions, 

agricultural practices, food processes and storage conditions, (Tiwari and Cummins, 

2011). 

 

Figure  1.3  Main classification of phytochemicals according to (Tiwari and Cummins, 

2011). 

Phytochemicals 
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1.3.1  Carotenoids 

 

A very important group of pigments in fruit and vegetable-based products are called 

carotenoids, (Knockaert et al., 2012). Carotenoids are widely distributed with a 

significantly structural range and various functions. More than 600 carotenoids have 

been isolated and characterised from natural sources, with around 40 found in the 

normal human diet. The simple identification of carotenoids are lipid-soluble (insoluble 

in water) pigments present in all photosynthetic organisms: these are considered 

bioactive substances in foods for their antioxidant activities, (Paiva and Russell, 1999; 

Kopsell and Kopsell, 2006; Marinova and Ribarova, 2007). 

The central location that extends the conjugated double-bond system is considered to be 

the important characteristic which constitutes the light-absorbing chromosphere. This 

gives the colour of carotenoids as well as providing the visible absorption spectrum that 

is determined through their identification and quantification, (Hendry and Houghton, 

1996; Rodriguez-Amaya and Kimura, 2004). Carotenes act as a precursor for vitamin A, 

which is the  most important antioxidant known to play a role in the prevention of 

certain diseases, (Singh et al., 2012). The absorption spectrum (λ) of carotenoids 

ranging from 400 -500 nm, and the number of conjugated double bonds determines the 

absorption, (Berg et al., 2000). Carotenoids are classified into two main groups: the first 

is called carotenes (hydrocarbons) such as α- and β- carotene and lycopene, while the 

second group is xanthophylls (oxocarotenoids)  that contain an oxygen atom in their 

molecule structure such as lutein, zeaxanthin (Rodic et al., 2012). Due to the carotenoid 

pigments and anthocyanin present in the carrot, these create different colours such as 

orange, red, purple, black and white,  produced in roots during  maturation and  are 

present in  high concentrations  in carrots, (Kjellenberg et al., 2012; Knockaert et al., 

2012; Singh et al., 2012).  Numerous studies have been focused on carotenoids due to 

their important biological functions for humans and also as a natural pigment (Pinheiro-

Sant’Ana et al., 1998). There is a wide abundance of carotenoid pigments in many fruits 

and vegetables in diverse forms involved in photobiology, photochemistry and 

photomedicine (Dutta et al., 2005). Many epidemiological studies have shown clear 

correlation between the rich sources of carotenoids provided by vegetables and fruit in 

fresh, frozen and canned food products and cardiovascular diseases and incidence of 

cancer, (Mueller, 1997; Rickman et al., 2007). The quality and the quantity of 

carotenoid composition differ. The leafy and non-leafy green vegetables are known to  
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contain major carotenoids such as lutein, β−carotene, violaxanthin, and neoxanthin, in 

addition to small concentrations of other carotene like α-carotene, zeaxanthin 

(Rodriguez-Amaya and Kimura, 2004).  

Hendry and Houghton (1996)  considered the pigments to be quite large molecules, 

however the molecular weights of most common pigments range from 200, 300, 400, 

500 to 800 Daltons for anthraquinones, anthocyanidins, betalaines,  carotenoids and 

chlorophylls respectively.  As previously mentioned carotenes concentration is mainly 

influenced by genotype/cultivar, production area, and other environmental factors, 

biotic (e.g. oxidation) and abiotic (e.g. temperature). Due to the structure of carotenoids 

and lipophilic features, during their exposure to biotic or abiotic factors the molecules 

of carotenoids, oxidation and isomerization degradation may occur that affects the 

biochemistry and bioavailability of carotenoids, (Baranska and Schulz, 2005; Kopsell 

and Kopsell, 2006).  Within the plants, the process of biosynthesis of carotenoids occurs 

as per the following sequence: - phytoene → phytofluene →ζ-carotene → neurosporene 

→ lycopene → γ-carotene → β-carotene as observed by (Paiva and Russell, 1999). The 

carotenes have a similar chemical structure in plants, bacteria and protists but the 

synthetic make-up of carotene is different during the primary steps between different 

organisms (Kim and DellaPenna, 2006). 

 

Table  1.1 Main carotenoids identified in carrot and lettuce (Nicolle et al., 2004; Larsen 

and Christensen, 2005; Kopsell and Kopsell, 2006). 

 

Food plant Carotenoids identified 

 

Carrot  

 

All-trans β-carotene (highest concentration), all-trans α-

carotene, lutein and lycopene. 

 

Lettuce  

 

All-trans β-carotene, lactucaxanthin, all-translutein, 9-cis lutein, 

9′-cis lutein, 13-cis lutein, all-trans and cis lutein epoxide, 

neolutein, all-trans neoxanthin, 9′-cis neoxanthin, violaxanthin, 

all-trans zeaxanthin, 9-cis zeaxanthin and 13-cis zeaxanthin. 
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1.3.1.1  Beta Carotene (β-Car) 

 

α- and β- carotene shown in  Figure 1.4 are the main carotenoid compounds contained 

in fruits and vegetables, and most abundant in carrot roots that are responsible for the 

orange colour (Gajewski et al., 2010). β -carotene is located in the chromoplasts 

(surrounded by a double bilayer membrane) of the plant cells (surrounded by a cell 

membrane and a cell wall), where it is often associated with proteins and/or residual 

membranes, as found  in chromoplasts of carrot  (Knockaert et al., 2012).  Due to the 

ability of β-Carotene to convert into a vitamin A, it is considered to be one of the most 

important compounds that has health benefits, (Krinsky and Johnson, 2005). 

 

 

 

Figure  1.4  Chemical structures of β- carotene and α- carotene. (Baranska et al., 2005).  

 

The other derivatives of β-carotene are present in many vegetables and fruits, but are 

usually found at low rates compared to trans-isomer (Khoo et al., 2011). They are Cis-

isomers (9, 13 and 15-Cis- β-carotene) (O’Sullivan et al., 2010) and exist in two forms 

either naturally present in the matrix of food, or generated as solubilised substance as a 

result of diverse food processing. There is a high correlation between the high levels of 

β- carotene in blood and the low rate of some types of cancer spreading as shown in 

several Epidemiological studies,(Christensen and Brandt, 2006). There were highly 

correlated values between the intake of α and β- carotene and carrot consumption in 

North America and European countries (Christensen and Kreutzmann, 2007). 

Observations by (Mueller, 1997) indicate that the β-carotene concentration in lettuce 

1.29 mg/100g FW and for large, medium and young size carrots was 9.02, 6.50 and 4.65 

mg/100g FW respectively. In contrast (Ben-Amotz and Fishler, 1998) found that lettuce 

contained 104 µg/g DW  of β- carotene among 198 µg/g DW of total carotenoids  while 
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carrot contained 1030 µg/g DW of β- carotene among a total 1608 µg/g DW of other 

carotenoids. 

 

 

1.3.1.2   Lutein  

 

Lutein (3R, 3’R-β, ɛ-carotene-3, 3’-diol) belongs to xanthophyll carotenoids (hydroxyl-

carotenoid) and a rich source is the photosynthetic apparatus of higher plants  (Dall'Osto 

et al., 2006). The lutein in chemical terms is a Dihydroxy derivative of Alpha-carotene ( 

β-ring and ε-ring) mainly playing roles in light harvesting complex II  (LHCII), 

structure and function, while the synthesis process of lutein occurs by the sequence of 

four enzymatic reactions of lycopene, (Kim and DellaPenna, 2006).   

Kijlstra et al. (2012) have described the chemical structure of lutein as a long carbon 

chain with a single followed by double (carbon–carbon bonds) connected with methyl 

groups. Furthermore cyclic hexenyl with hydroxyl groups are both ends of this carbon 

chain, whereas the site of the double bonds in the hexenyl ring and the site of methyl 

groups on this chain are considered to be the difference between the lutein and 

zeaxanthin in terms of chemical structure. Two significant functions of lutein in plants 

and humans are present, the first function acts as a filter of blue light energy and as an 

antioxidant that is caused by reactive oxygen species (ROS), that were described by 

(Alves-Rodrigues and Shao, 2004).  Lutein is the most common of carotenoids present 

in green vegetables, leaves, (Kayser, 2012) egg yolks (Johnson, 2002) and flowers, 

whereas lutein accounts for about 45 % of carotenoids in leaves, (Rodriguez-Amaya, 

2001). The lutein appears in food supplements in two forms, either as free lutein  (green 

leafy vegetables) or a mixture of lutein diesters with saturated high fatty acids as in 

flowers (Maci, 2011; Rodic et al., 2012). All-trans-lutein, cis-lutein, epoxi-lutein, and 

lutein associated to proteins represent the different forms of lutein found in vegetables 

and fruits according to (Calvo, 2005). Lutein is either a yellow colour compound 

(Calvo, 2005) or orange depending on the concentration (Kijlstra et al., 2012). The main 

dietary source of lutein is peas in the UK and Republic of Ireland (O'Neill et al., 2001). 
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1.3.2  Chlorophylls structure and function 

 

Chlorophyll is originally a Greek word composed of two sections green (chloros) and 

leaves (phyllos) (Scheer, 2006). Chlorophylls are almost the only natural green plant 

pigment and definitely the only ones in great abundance.  Photosynthetic activity in 

organelles such as chloroplasts mainly depends on chlorophylls (mostly) and 

carotenoids (as accessory pigment). Therefore the chlorophylls act as an absorbent for 

light energy for the transfer of energy (Hendry and Houghton, 1996; Liu et al., 2012). 

Photosynthesis efficiency is affected by chlorophyll concentrations (Liang et al., 2013). 

Li et al. (2012) have reported five different forms of chlorophylls and their discovery 

through the centuries until the current time. In the 19
th

 century the following 

chlorophylls were identified:  a, b and c (Govindjee and Krogmann, 2004), more than 

70 years later, in 1943 chlorophyll d was identified (Manning and Strain, 1943).  A new 

one was reported in 2010 called chlorophyll f, whose absorption corresponds to the red 

wavelength spectrum with a maximum absorption at 706 nm, (Chen et al., 2010). All 

these chlorophylls types have different absorption properties.  In the higher plants, more 

than 17 enzymes are required for the process of chlorophyll biosynthesis to occur 

(Tripathy and Pattanayak, 2012). 

Generally, the chlorophylls contain the single Mg atom present in a central position and 

at C17 is a connection with the long-chain esterifying alcohol, with a spectral range 

between 330-800 nm (Scheer, 2006). Figure 1.5, shows the chlorophyll  structure 

Chlorophyll b structure is similar to chlorophyll a, except for the presence of formyl 

group (-CHO) instead of methyl group (-CH3) on ring B of chlorophyll a, (Nobel, 

2009). In most organisms that contain both chlorophyll a and b, the ratio between them 

is 3:1 (Nobel, 2009). 
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Figure  1.5  The chemical structure of chlorophyll a, (Nobel, 2009) 

 

The chlorophyll pigments found in plants such as chlorophyll a (Chl a) and 

bacteriochlorophyll (BChl) (Tamiaki et al., 2007), are from different groups of 

macrocyclic tetrapyrrole pigments, and play a major role in light-harvesting of 

photosynthesis (Scheer, 2006). Chlorophyll a is considered the most widespread and 

major green pigment in plants with a complex structure and is extremely reactive and 

sensitive (Woodward, 1961).  

Light, temperature, oxygen conditions and chemical degradation are considered the 

most influential factors on the sensitive structure of chlorophyll, especially during the 

extraction process, (Pocock et al., 2004). Due to the acquisition of chlorophylls and 

their unique optical properties (structure is relatively rare in nature and is likely to have 

a high photodynamic property) photosynthetic organisms have been adapt to different 

light environments (Scheer, 2006; Tsuchiya et al., 2012). 
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1.3.3  Sugar content in plants  

 

Sugars are organic compounds in plants resulting from photosynthesis, which play an 

important role in respiration by providing the energy. Sugars are condensed to store 

energy in the form of starch, whilst the energy is transported  in  sucrose form  and 

sugars play a key role  in cell wall structure, (Harborne, 1998). In addition to these 

functions, sugars perform a regulatory role in numerous mechanisms of plant growth 

and development (Rosa et al., 2009). They aid control of plant metabolism and different 

stress responses during the whole growth stages from embryogenesis to senescence, 

involving a number of sugar signals that are generated depending on the surrounding 

environmental conditions (Rolland et al., 2006). 

Physiologically, the production and consumption of sugars are performed by plants, 

whereas the environmental abiotic stresses are some of the main factors that have an 

influence on soluble sugars due to their sensitivity. However, the soluble sugar levels 

increase in a plant with   low temperature conditions (Rosa et al., 2009).  According to 

molecular size the sugars are divided into three groups: monosaccharides such as 

glucose and fructose, oligosaccharide and polysaccharides (Harborne, 1998). The main 

sugars present in carrot root are sucrose, glucose, and fructose in different ratios. The 

highest level for fresh carrot was for sucrose at 353 g/kg DM then glucose at 120 g/kg 

DM with the lowest value for fructose at 113 g/kg DM (Svanberg et al., 1997).   

Gaweda (2007) observed that sucrose formed about 80 % of the total sugar of root 

vegetables and for carrot roots, they consisted of 50.60, 14.02 and 8.22 mg/kg FM for 

sucrose, glucose, and fructose. In contrast, for leafy vegetables including lettuce, 

fructose contributed the highest concentration (about 55 %) of total soluble sugars. In a 

lettuce plant sugar content changes during the late stages of growth and development as 

plants age and continues to increase. Furthermore, sugar levels  increase from winter to 

summer when grown in greenhouses (Gent, 2012). This may be due to the light 

intensity during the growth of plants.  
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1.3.4  Plant nitrate accumulation  

 

The  consumption of  vegetables is considered to be one of the most important sources 

through which the body obtains   nitrate, (Rousta et al., 2010). A total of 70-90 % 

nitrate intake is supplied by vegetables, (Food Standards Agency, 2001). 

Vegetables accumulate nitrate in different parts of a plant to different extents, the leaves 

have greater levels (lettuce and spinach) of nitrate accumulated than either seeds or 

tubers. Moreover the concentrations of nitrate accumulation are affected by several 

abiotic and biotic factors, (Alexander et al., 2008), among which are the growing 

conditions, season, temperature, light and fertilizer use (Dich et al., 1996).   Carrot roots 

have been classified as vegetables  that contain low nitrate levels (200- 500 mg/kg fresh 

weight) according to (Santamaria, 2006). 

Nitrate is one component of the human diet that is potentially harmful. Whilst it is 

considered a relatively  non-toxic compound in its common form, the products resulting 

from its metabolism could be the cause of a number of health effects (Santamaria, 

2006). Therefore, the European Commission adopted EC Regulation No. 1822/2005 

which determined the maximum level of nitrate permitted in lettuce and spinach (Table 

1.2) and this value depends on the season and harvest time. These levels should not be 

exceeded because they may cause possible health risks to humans. 

   

Table 1.2 Maximum levels of nitrate according to European Commission (EC) 

regulation No. 1822/2005. 

 

Vegetables Harvest period Maximum level  

(mg NO3
-
 /Kg) 

Fresh spinach (Spinacia oleracea) 1 October to 31 March 

1 April to 31 September 

3,000 

2,500 

Preserved, deep-frozen or frozen 

spinach  

   Fresh lettuce (Lactuca sativa L.) 

  (protected and open-grown lettuce) 

 Excluding “iceberg” type lettuce  

 

 

1 October to 31 March 

         - grown under cover 

         - grown in open air 

1 April to 30 September 

         - grown under cover 

         -grown in open air  

2,000 

 

 

4,500 

4,000 

 

3,500 

2,500 

Lettuce (Iceberg type) Lettuce grown under cover 

Lettuce grown in the open air  

2,500 

2,000 
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The data shown in Table 1.2 indicates that the vegetables grown during the winter 

season have potentially higher levels of nitrate than those grown during the summer. 

This could be due to exposure to sufficient light intensity in summer, as  

demonstrated by (Byrne et al., 2004).  In higher plants, the most important inorganic 

nitrogen components that the root system  absorbs are nitrate (Ruiz et al., 2000) and 

ammonium; (Lastra et al., 2009) describes the part of the nitrogen cycle that plays a role 

in the function and nutrition of plants, (Alexander et al., 2008).  

The sufficient supply of nitrogen (N) is  necessary  for the formation of proteins, amino 

acids and nucleic acids upon  which  plant growth and development  depends (Ruiz et 

al., 2000). Whereas nitrate is assimilated by the plants in a sequential process by the 

reduction of the nitrate (NO3) to nitrite (NO2), it is then converted from NO2 to 

ammonium (NH4), before finally being incorporated into organic compounds (Migge 

and Becker, 1996; Sivasankar and Oaks, 1996). The observations by Frota and Tucker 

(1972) noted that an increase of air and root temperature lead to an increase of nitrate 

and ammonium absorption in lettuce. In addition  Demsar et al. (2004) and Gent (2012) 

have demonstrated the agricultural application and use of nitrogenous fertiliser and low 

light conditions are associated with the accumulations of high concentrations of nitrate 

in lettuce.  

There is a broad and diverse distribution of nitrate in a number of the important 

vegetables in the human diet. Nitrate concentration represents a side benefit to human  

health in terms of biological activity and its role in the immune system, (Bryan and 

Grinsven, 2013). 

The detriments of nitrate concentration on human health are usually accompanied by 

toxic effects e.g. the formation of  carcinogenic nitroso compounds, as one of metabolic 

products, (Bryan and Grinsven, 2013; Gorenjak and Cencic, 2013).  

In humans it is known that the nitrite   reacts with haemoglobin in the formation of 

methaemoglobin and nitrate. Therefore, this form of methaemoglobin cans impede the 

delivery of oxygen to the tissues of the body, which can lead to death, (Bryan and 

Grinsven, 2013; Gorenjak and Cencic, 2013; Weitzberg and Lundberg, 2013). 
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1.3.5  Phenolic acids  

 

The polyphenols are one of the major groups of plant metabolites and have many 

essential functions in different species of plant  (Pandey and Rizvi, 2009).  The phenolic 

acids are one of the four polyphenol categories in addition to flavonoids, lignans and 

stilbenes that are classified on the basis of chemical structure (Spencer et al., 2008). 

Polyphenols have been identified and estimated at around 8000 polyphenolics as the 

main part of the human diet  (Pandey and Rizvi, 2009). The benzoic and cinnamic acid 

derivatives are primary structures of phenolic acids distributed and dispersed throughout 

seeds, leaves and roots of plants. They are considered mainly for their many vital 

functions such as photosynthesis and structural components (Mendoza et al., 2011) 

whereas the hydroxycinnamic acids are more  abundant and contain a less complex 

structure than hydroxybenzoic acids, (Figure 1.6) (Manach et al., 2004). 

 

 

 

Figure  1.6  Chemical structure of two main phenolic acid classes (Manach et al., 2004).  

 

Naturally, the occurrence of phenolic compounds is in three forms that are ethers, 

mixtures and free acid, (Shahrzad and Bitsch, 1996; Marques and Farah, 2009), 

however, in plant food most of the phenolic acids are found in bound form. The caffeic, 

ferulic and p-coumaric acids that belong to the  hydroxycinnamic group occur by way of 

the simple ester with quinic acid or glucose in food (Mattila and Hellstrom, 2007). 

Phenolic compounds have been found in vegetables especially in high concentration 

levels and in plants generally. For example in the UK the two main sources of phenolic 

acids present in lettuce are cichoric acid (dicaffeoyltartaric) and caffeoylmalic acid with 

(5-15 mg) and (> 3 mg) per 100g respectively, as indicated by Clifford (2000). 

 They are considered secondary metabolites and most important antioxidants: thus they 

are necessary components in humans’ nutritional diet (Jacobo-Velazquez and Cisneros-

Zevallos, 2009; You et al., 2011). Therefore, many research topics have shown the 
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relationship between phenolics and their ability to reduce the risk of some types of 

cancers and cardiovascular disease associated with the consumption of fruit and 

vegetables. Thus protection against some diseases and improvement of human health 

possibly depends on high levels of phenolics in plant food (Du et al., 2012). 

Temperature during growth is considered to be a major factor affecting phenolic acid 

concentration, in addition. But different growth stages and maturation of plants also 

have an effect (Ellnain-Wojtaszek et al., 2001; Wang and Zheng, 2001). It has been 

concluded that increase in night temperature along with a constant day temperature can 

lead to a significant increase in the phenolic acid levels,  as well as increasing flavonols, 

and anthocyanins in strawberry fruit (Wang and Zheng, 2001). However, the different 

stages of growth lead to a change of phenolic compounds: whereas at the ripening stage 

the phenolic acid decreases, in contrast, the concentration of anthocyanins increases, 

(Manach et al., 2004; Spencer et al., 2008).   

 

1.3.5.1  Chlorogenic acid (CGA) 

 

Chlorogenic acid is formed by a combination of caffeic and quinic acid which is present 

in high concentrations in numerous fruits, vegetables and coffee. It is one of the main 

antioxidant dietary polyphenols in the human diet. Chlorogenic acid is structured 

according to its  identity, number and position of the acyl residue and can be divided 

into four sub-groups which are:  mono-esters  group (most common) of caffeic acid , p-

coumaric acid  and ferulic acid, di-esters (diCQA), tri-esters (triCQA) and the single 

tetra-ester  group of caffeic acid,  mixed di-esters group of caffeic and ferulic acid, and 

the fourth group is mixed esters, (Clifford, 2000). Chlorogenic acid or (3-O-

caffeoylquinic acid/ 5-O-caffeoylquinic acid) is a phenolic acid abundant in carrots and 

has been identified in addition to other phenolics, (Kreutzmann et al., 2008). 

 

 

1.3.5.2  Caffeic acid  

 

Caffeic acid is a natural essential phenolic compound in plants (Lin and Yan, 2012).  

It belongs to hydroxycinnamic acid derivatives found commonly in the plant kingdom.  

However, it is the most abundant of phenolic acids in fruits either in the free (seldom) or 

esterified form, that  represents 75-100 % of hydroxycinnamic quantity present in fruit 

Manach et al. (2004), while coffee and beans are commonly considered the main 
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sources of caffeic acid production (Lin and Yan, 2012). In addition, Llorach et al. 

(2008) have shown that the caffeic acid derivatives are major phenolics found in green 

varieties of lettuce. Like other phenolics, the previous studies demonstrated that there 

are various biological activities and properties of caffeic acid which are represented in 

antioxidant activity (RiceEvans et al., 1996), anti-virus (Ikeda et al., 2011) and anti-

cancer (Rajendra et al., 2011). It is reported that caffeic acid has the ability to reduce the 

risk of chronic cardiovascular diseases (Park, 2009). In plants, caffeic acid is formed 

from p-coumaric acid and cinnamic acid through shikimic acid metabolism (Katsuragi 

et al., 2010). 

 

 

1.3.6  Polyacetylene compounds  

 

The aliphatic C17 -polyacetylenes are bioactive compounds belonging to the Apiaceae 

family, which has cytotoxicity against cancer cells, as many epidemiological studies 

have indicated (Kobæk-Larsen et al., 2005; Christensen and Brandt, 2006).  It may also 

exhibit antiallergenic effects (Wang et al., 2001), and some polyacetylenes have anti-

inflammatory activities (Resch et al., 2001; Zidorn et al., 2005).  Additionally for 

beneficial effects on human health, polyacetylenes are characterised by several features 

which are of great importance for the plant due to their antifungal activities, resisting 

infection and pathogens (Mercier et al., 1993; Baranska and Schulz, 2005). Some 

polyacetylenes e.g. falcarinol are classified as substances that have  toxic properties 

when present at high concentration levels,  and can become an undesirable substance in 

food (Baranska and Schulz, 2005; Christensen and Brandt, 2006).  In higher plants, 

especially the widespread families such as Apiaceae, Araliaceae, and Asteraceae, 

different polyacetylenes exceeding 1400 compounds have been isolated. The three 

common components that have been found in carrot root are called falcarinol, 

falcarindiol and falcarindiol-3-acetate, (Rawson et al., 2012), (Figure 1.7). They have 

also been found in other food plants such as celery, and parsley (Christensen and 

Brandt, 2006). In the carrot root, the falcarinol is considered the most abundant 

bioactive of polyacetylenes (Matsunaga et al., 1990; Hansen et al., 2003; Kobæk-Larsen 

et al., 2005). Moreover, the concentration of polyacetylenes in the different parts of 

carrots has been investigated and there is a different ability for the accumulation in 

upper, lower, xylem and phloem parts of the root. The distribution of Falcarindiol 
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shows the highest concentration and maximum accumulation in the upper and phloem 

parts, with a smaller amount in the lower and xylem part. Falcarinol has a similar 

amount in a whole carrot, whilst the concentration of Falcarindiol 3-acetate was higher 

in the upper part than the lower part of the carrot root (Czepa and Hofmann, 2004; 

Baranska et al., 2005). The unsaturated fatty acids are considered to be a biosynthesis of 

most of the polyacetylenes (Christensen and Brandt, 2006). 

One of the main difficulties with polyacetylene compounds studies is that they are 

sensitive to light and heat accounting for their unstable properties, which could hamper 

any research investigations of these compounds (Baranska and Schulz, 2005). 

A diverse range of other factors could have also an effect on polyacetylenes levels 

 in carrots, including cultivar (genotypes) (Baranska et al., 2005) location, climate,  

water stress, storage and processing (Hansen et al., 2003; Kjeldsen et al., 2003; 

Christensen and Kreutzmann, 2007).  

Moreover, Kjellenberg et al. (2012) have demonstrated that there is a positive 

correlation between the falcarinol ratio, root size and sucrose ratio for both fresh and 

stored carrots, while the correlation was the inverse between polyacetylenes of stored 

carrots and the total sugar. 

Polyacetylenes have been considered in many studies and indicate that they are 

responsible for the bitter taste of both fresh and stored carrot roots, whereas the bitter 

off-taste is mostly influenced by falcarindiol among other compounds (Czepa and 

Hofmann, 2003; Czepa and Hofmann, 2004). 

 

 

 

Figure  1.7  Chemical structure of the main polyacetylenes, (1) falcarinol (FaOH), (2) 

falcarindiol (FaDOH), (3) falcaridiol -3-acetate (FaDOAc) present in carrot roots. 

1 

2 

3 
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1.4  Aims and objectives  

 

Very little is known about the effects of environmental factors on phenolic acid 

concentrations and other phytochemicals, although temperature, plant growth stage and 

degree of maturity may all be important.  Increased knowledge and understanding is 

required for a number of reasons. There is an urgent need to further exploit the potential 

benefits of dietary vegetable phytochemicals, to promote human health. Climate change 

will influence future ambient conditions and therefore the composition of major plant 

foods and indications about the extent of this response would be very useful. Vegetable 

growers need to be aware how the production environment may be manipulated to 

advantage by growing plants at appropriate and desirable temperatures to influence crop 

quality 

 

The research programme aimed to investigate these issues and the objectives were to 

determine the effects of different growth temperature regimes on  

 

a) Growth and development of lettuce and carrot in growth chambers.  

 

b) Concentrations of different components including sugars, chlorophyll, nitrate, 

carotenoids and phenolic acids in both species and polyacetylene compounds levels 

in carrot roots.  
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2.1  Preliminary experiments  

 

2.1.1  Growth chamber test 

 

For this study, two different types of cabinets were available to grow the carrot and 

lettuce plants: Fisons (Fi-totron 600) growth chamber (tungsten and fluorescent light) 

and Sanyo (MLR-351) growth chamber with fluorescent light. The two cabinets 

operated in the same temperature ranges (22/18 ℃) and provided the same overall PAR 

(150 µmol/ m
2 

/s). Each growth chamber contained two trays, one tray for each species. 

Each tray contained 12 plants: - two varieties of carrot (6 of Parmex, 6 of Little Finger) 

and two varieties of lettuce (6 of Ashbrook, 6 of Dixter). Both trays were placed in the 

middle shelf to ensure uniform illumination. The lettuce varieties were harvested after 5 

weeks and the carrot varieties after 8 weeks.  

 Preliminary tests were done to determine which was the best one to use. 

In the Fisons growth cabinet the seedlings were taller and thinner than the plants in the 

Sanyo growth cabinet, mainly because of differences in light quality. This difference in 

light quality influenced the size of the leaves and roots and biomass of the plants as 

shown in Figures 2.1 and 2.2 respectively. 

The combination of tungsten and fluorescent light in the Fisons growth chamber was 

less favourable for growth than in the Sanyo growth chamber which had fluorescent 

lighting only providing better light quality. 

 

 

 

Figure 2.1  Effect of different cabinets Fisons and Sanyo on carrot growth after 8 weeks 

at 22/18 ℃. The lengths of the roots in both chambers were more or less the same about 

3 cm. 
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Figure  2.2 Effect of the different type of cabinets Fisons and Sanyo on a fresh weight of 

lettuce varieties (Ashbrook and Dixter) grown after 5 weeks at 22/18 ℃. The values 

represent the means, the error bars indicate the SEM, (n=2). 

 

 

2.1.2  Screening lettuce varieties 

 

During the preliminary experiments, six varieties of lettuce were tested: Ashbrook, 

Exbury, Osterley, Wentworth, Bridgemere and Dixter, all grown at 22/18 ℃ for 6 weeks 

(Sanyo growth chamber). The growth chamber was set to an 11-hr-light/13-hr-dark 

cycle. Levington Seed and Modular plus sand (F2+Sand) compost was used, this is a 

specialist and general purpose peat-based compost for all plant raising requirements 

(Low conductivity - 300 - 360 μs, Standard pH - 5.3 - 5.7, Levington, 2010). 

 Two trays, each containing 12 plants of two varieties, were used for this test. The plants 

were watered by system A (section 2.1.3). 

The number of leaves and plant height were recorded weekly until the harvest time 

(after 5 weeks).  At the harvest time the fresh weight per plant was also recorded. 

Dixter and Exbury were chosen because they grew most rapidly under those conditions 

as shown by data on fresh weight, height and leaf number in Figures 2.2, 2.3 and 2.6. 
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Figure  2.3  Fresh leaf weight of different lettuce varieties grown at 22/18 ℃ (Sanyo 

growth chamber). Values are the mean, the error bars indicate the SEM, (n=2). 

 

Figure  2.4  Numbers of leaves per plant and height of different lettuce varieties grown at 

22/18 ℃ (Sanyo growth chamber).  Values are the mean, the error bars indicate the 

SEM, (n=2). 
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2.1.3  Watering system  

 

In the course of the first experimental year, plants were watered by two different 

systems in the same experiment (section 2.1.2). Two trays were used, containing two 

plants each of six varieties of lettuce: Ashbrook, Exbury, Osterley, Wentworth, 

Bridgemere and Dixter: 

System A: the tray was put on a water-holding mat inside a tray (direct absorption of 

water) and system B: the ends of the capillary mat hung over into the water reservoir, 

Figure 2.5. 

 

Figure  2.5  Water systems (A) and (B) tested during the preliminary experiment (section 

2.1.2) at (22/18 ℃), in the Sanyo growth chamber. 

 

The system capacity to provide sufficient water for the plants without suffering water 

stress was taken into consideration. During the testing period, the water quantity 

(ml/week/ tray) was recorded every week in each system, (Figure 2.5, and 2.6). 

 

Figure  2.6  Amount of water supplied to plants in two different watering systems at 

22/18 ℃. 
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Figure 2.7  Effect of fresh plant (FW) and dry weight (DW) per plant of different lettuce 

varieties grown after a 6 week period at 22/18 ℃ within two watering systems (A and 

B).  Values are the mean, error bars indicate the SEM, (n = 2). 

 

ANOVA (GLM) was done on data to compare efficacy of the systems. There was a 

significant effect (P < 0.05) of the watering systems on fresh weight of plants, but no 

significant effect on dry weight of plants. There seems to be more difference in the 

efficacy of both systems for some varieties than for others, including Exbury and 

Dixter.  The results showed that the plants grew better with system A than B (Figure 

2.7). This was because the direct absorption method supplied water more efficiently to 

meet plant requirements even when the rate of water demand increased, whereas system 

B was less efficient with some pots experiencing drought. Also, the type of mat did not 

allow for effective distribution of the water in the whole pots in the tray. In conclusion, 

system A was chosen. 
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2.1.4  Light and temperature test in the growth chamber 

 

A Photometer light meter (Gossen Profisix) was used to ensure the light supply was 

stable and the amount of light reaching each shelf was similar.  To avoid any effect of 

shadow and to ensure uniform illumination of plants inside the cabinet, the trays were 

moved to different shelves twice a week throughout the growing period, until the time 

of harvest.  

However, the light levels were recorded weekly in for the three shelves (for 6 weeks 

during the preliminary experiment (section 2.1.2).   

The readings were only slightly different from one shelf to another and the average 

reading was in the range of 150µmol /m
2 

/s (preliminary work on a borrowed 

photometer went missing). The results were checked with a current student using the 

same chamber (Mr Othman Qadir) and his light levels measurements  for the three 

shelves were 140, 150 and 160 µmol /m
2 

/s,  so this confirmed the average (150 µmol 

/m
2 
/s) was correct and the differences less than 8 %. 

 

The temperature regime was checked for consistency and uniformity using 

thermometers on each shelf in the cabinet at different times during the preliminary 

experiment (for 5 weeks).  

The average reading at the temperature regime (22/ 18 ℃) was between 21.7 to 22 ℃, 

there was no significant change in the adjusted regime. 
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2.2  Experimental set up 

 

 

 

Figure 2.8  Overview of experimental design beginning with planting, growing, 

harvesting and analysis stages. 
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2.2.1  Planting and growth parameters measurement 

 

2.3.1.1  Location, Design of experiments 

 

All experiments were done in the School of Agriculture, Food and Rural Development, 

Newcastle University, in growth chamber with different temperature regimes to 

determine which conditions are optimal for plant growth and composition. Three 

replications were used for each plant variety and temperature treatment.  

 

 

2.2.1.2  Plant materials and growth conditions  

 

Certified seeds of two varieties of lettuce (Lactuca sativa L.), Exbury and Dixter and 

two varieties of carrot (Daucus carota L.), Parmex and Little Finger (Nickys Nursery 

Ltd, UK) were selected based on their suitability for growth chamber experiments, 

including tolerance of low light conditions and for carrot, a miniature growth habit.   

A growth chamber, Sanyo (MLR-351 H) was purchased from Sanyo Electric Co., Ltd, 

with fluorescent light (photoperiod with a photosynthetically active photon flux: 

150µmol /m
2 

/s
)
. The growth chamber was set to an 11-hr-light/13-hr-dark cycle with 

4℃ day/night temperature difference. Plants were grown at different temperatures 

ranges 12/8, 17/13, 22/18, 27/23 and 32/28 ℃ for lettuce (5 times at the 5 different 

temperature regimes), and 12/8, 17/13, 22/18 and 27/23 ℃ for carrots (4 times at the 4 

different temperature regimes). Levington Seed and Modular plus sand (F2+Sand) 

compost was used, this is a specialist and general purpose peat-based compost for all 

plant raising requirements (Low conductivity - 300 - 360 μs, Standard pH - 5.3 - 5.7, 

Levington, 2010),  (N 150, P 200 and N 150). The plants were grown in a modular tray 

with 15 individual square (5cm×6.5cm) cells within a watering tray and on a capillary 

matting base (direct absorption of water) were purchased from VACAPOT & 

VACAPAK (H. Smith Plastics Ltd, Essex, UK).  Cell 15 was cut off and used to check 

the water level and apply water. Before sowing the compost was weighed and mixed 

with half the amount (volume: weight) of water (approx. 600 mL).  3-5 seeds per cell 

were sown 10 mm deep. The water reservoir was filled with 1L water for each tray. The 

plastic lid of the propagator was placed over the tray (to increase humidity until 

germination started). After germination, unwanted seedlings were removed from the 
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soil carefully with tweezers to leave suitable space for one plant per module. The 

experiments were performed with each treatment temperature separately and both the 

carrot and lettuce varieties were grown concurrently in the growth chamber.   

To avoid any effect of shadow and to ensure uniform illumination of plants inside the 

cabinet, the trays were moved to different shelves twice a week throughout the growing 

period, until the time of harvest.  

Due to the limitations of space, a growth chamber contained three trays of each species 

each with seven plants.  The plants were subjected to regime conditions until harvest. 

 

 

2.2.1.3  Plant growth parameters recorded and strategy of harvest 

 

Records of plant growth included number of leaves, length of shoot, which was 

measured on a weekly basis (using a ruler). The amount of water used was also recorded 

each week.  

The period from sowing until harvest ranged from 6 to 14 weeks depending on 

temperature, being shortest for the highest temperature regime with the fastest growth 

rate and longest for the lowest.  Irrespective of temperature regime and rate of plant 

growth, harvest took place when lettuce plants had between 10-12 leaves and carrots 6-8 

leaves.  This specific stage or number of leaves for harvest was determined because the 

plants had reached an appropriate size to be marketable as baby vegetables (Figure 3.2).  

Fresh and dry weight of leaves and root were measured after harvest for each plant 

individually, and leaf area for lettuce varieties only. 

 

 

2.2.1.4  Biomass determination 

 

Seven plants per treatment were harvested and divided into roots and shoots. For both 

varieties of carrot and lettuce the roots were washed carefully in flowing tap water and 

dried using soft tissue. All leaves and the root for each plant were placed in small plastic 

bags separately.  

After measuring fresh weight of roots and shoots by a digital measuring device (Adam 

Equipment PW124 Lab Balance), the samples were kept in a freezer for 2-3 days at (-80 

℃) before transfer to freeze–drying in a Lyolab G freezer-drier for a week. The samples 
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were dried at -20 ℃ until the pressure reached ≤ 0.06 m bar, then the temperature was 

allowed to reach room temperature for nearly 24 hours and the dried samples were 

weighed to record their dry weights. 

 

2.2.1.5  Storage conditions 

 

After freeze drying and dry matter determination, the samples were milled using a 1093 

Cyclotec Sample Mill. All 7 plants for each variety in each tray (which are separate 

samples within the treatment) were milled together and the dry material put in separate, 

new plastic bags from which the air was expelled. These were transferred to the freezer 

(-20 ℃) and kept in the dark in a black bag to minimize degradation until analysis. 

 

 

2.2.1.6  Measuring leaf area  

 

The method was as described by (Davidson, 2010). Fresh leaves were harvested then 

were directly separated and flattened onto a background with a grid of known 

dimensions (42 cm x 39 cm).  Photographs were taken of each plant separately by using 

a vertically positioned digital camera, mounted 40cm above the surface without macro 

focus and no flash to avoid shadows. The images were downloaded and saved to 

computer, the background or an object of known dimensions or form was used for scale 

reference when analysing image. The ImageJ 1.38x software (Figure 2.9) was 

downloaded to computer from the link: http://rsb.info.nih.gov/ij/download.html,  

(section 7.1.3.1 Appendixes). 

 

 

 

Figure 2.9   ImageJ 1.38x software 

 

 

http://rsb.info.nih.gov/ij/download.html
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2.2.2  Phytochemicals analysis 

  

Different methods and modifications were investigated, to take account of the number 

of samples and phytochemicals to be assessed in this project and to determine the 

minimum quantities per sample required for the assays.  

 

2.2.2.1  Sugar content analysis (total soluble solids) 

 

For estimates of sugar content of freeze dried carrot and lettuce samples, 1 mL ultra –

pure water was added to 100 mg of samples, vortex mixed for a few minutes then the 

concentrated extracts were measured by hand with a refractometer (Bellingham and 

Stanley Eclipse refractometer, 0-30 BRIXº). The reading of each sample was repeated 

twice for confirmation. Between each reading the refractometer was rinsed with distilled 

water and dried. 

The  afore  mentioned  method  was done by calculating the average values of each 

sugar (glucose, fructose and sucrose) found  in the lettuce and carrot samples in order to  

prepare a standard for estimating the total sugar content.  

For carrot, the concentration of standard solution was prepared as follows: 1.92 g, 1.13 

g and 6.95g / 100 mL for glucose, fructose and sucrose respectively (the values of 

standard for each sugar were estimated according to data published by (Gaweda, 2007) 

in carrot root), according to the standard curve that provided the conversion of BRIXº 

unit to sugar gram per 100 mL:  therefore one BRIX corresponded to 1.1075g/ 100 mL 

(Figure 2.10 A).  

For lettuce, the concentrations of sugars were proportionally distributed as glucose 2.9 

g, fructose 5.4 g and sucrose 1.7g / 100 mL (the values of standard for each sugar were 

estimated according to data published by (Gaweda, 2007) in lettuce leaf). The standard 

curve provided the conversion of BRIXº unit to sugar gram per 100 mL, therefore one 

BRIX corresponded to 1.1125g /100 mL (Figure 2.10 B).  
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Figure 2.10  Standard curves for the sugar determination of carrot (A) and lettuce (B). 

 

Non-sugar content: however, the residue (non-sugar or insoluble solids) mg/100g FW 

was calculated by subtracting the sugar content (mg sugar /100g FW) from total dry 

matter (g dry weight /100g FW) values.  

 

2.2.2.2  Measurement of Nitrate (spectrophotometer)  

 

The method was adapted from the method devised by (Miranda et al., 2001): the 

principle of this assay is reduction of nitrate by vanadium (III) combined with detection 

by the acidic Griess reaction. 

 

2.2.2.2.1  Developments and modifications of method   

 

The method chosen for nitrate analysis (section 2.3.6.2) was based on preliminary tests 

with the duration of incubation adjusted and with different sample sizes.  The results of 

tests for the determination of appropriate durations and sample sizes and for nitrate 

analysis (absorption at 540 nm) are shown in Figures 2.11 and 2.12 respectively. 
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Figure 2.11  The effects of nitrate concentration   and duration of incubation i.e. half an 

hour, one hour, two hours and three hours on the standard absorbance curve of nitrate 

measurement.  

 

10, 50 and 100 mg of either carrot root or lettuce leaf were mixed with 3 and  5 mL of 

water. Absorbance values (Figure 2.14) were in accord with the range of maximum 

standard absorption in Figure 2.13. Absorbance values for lettuce leaves were more than 

double that for carrot  root samples at all concentrations, but the carrot root samples 

were still within the range of the  standard and thus acceptable (Figure 2.12). 

 

Figure 2.12  The effects of sample size (mg dry weight) and quantity of water diluent on 

nitrate absorption of lettuce leaf and carrot root. Values represent the means (7 

replications of each sample), error bars indicate the SEM. 
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Following these tests, 10-20 mg dry weight of samples (both shoot and root )  were 

mixed with 5-50 mL of water, to keep the concentration of samples within range of the 

standard  (0-0.7).  The optimal duration (incubation time of standard and samples) for 

absorbance reading was between 1-2 hours to reach the maximum (0.7). The absorption 

of samples was read at least 3 times (at 30, 60 and 120 min), to make sure the 

absorption of samples was in the range of standard absorption. 

 

 

2.2.2.2.2  Final method used for main experiments 

 

Preparation of stock solutions: Saturated V(III) solution was prepared quickly 

because it reacts with air, by dissolving 400 mg of VCl3 in 50 mL of 1 M HCl and the 

excess solid was removed by using filter paper. Secondly, 0.1 % NEDD solution was 

prepared by dissolving 0.1 g N-(1-Naphthyl) ethylenediamine dihydrochloride in 100 

mL of H2O, which required heating and stirring. Finally, 2 % sulphanilamide solution 

was prepared, where 2 g of sulphanilamide was dissolved in 100 mL of 5% HCl 

requiring heating and stirring. All the stock solutions were stored in the dark at 4ºC and 

were stable for at least a few weeks.  

Procedure for analysis:  The analyses were performed at room temperature with some 

modification as follows.  Vanadium cocktail was prepared daily and only enough 

volume for a day (e.g. 50 mL). In  a 100 mL beaker, 5 mL of saturated V(III) was 

added,  0.33 mL of 2% sulphanilamide, 0.66 mL of 0.1% NEDD and 40 mL of H2O,  

then  it was  purged  with N2 (5-10 min ) and  kept in a closed container. Nitrate stock 

solution (10 mM) was prepared by dissolving   0.101 g of KNO3 in 100 mL of ultra-

pure water and stored in the dark at 4 ºC. 200 μM nitrate standards were prepared daily 

by pipetting 2mL of 10 mM stock solution into 100 mL volumetric flask, and then 

making up to 100 mL using sample matrix (H2O).  Nitrate standard curve solutions were 

prepared in concentrations of 0-200 μM by diluting 200 μM nitrate standard with water 

to 10 ml final volume. 10-20 mg of each sample was weighed accurately into a screw 

glass-top tube then 5-50 mL pure ultra-water was added depending on which plant part 

(leaf or root) was tested and adjusted. The solution was vortex mixed for 10 min then 

transferred to a centrifuge and centrifuged for 10 min at 4000 g. The clear supernatant 

was filtered using Whatman no 1 filter paper. 100 μL of sample and standard (0-200 

μM) were pipetted into a 96-well plate (PS, Flat bottom Greiner Bio-One Ltd), then 100 
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μL of vanadium cocktail solution were added. The microplate was shaken for a few 

minutes by putting the plate in a spectrophotometer (Molecular Devices-UV plate 

reader, Spectra max plus 384), and then incubated at room temperature for 1-2 hours. 

Finally the absorbance was read at 540 nm after 30 minutes, 1 hour and 2 hour to obtain 

optimal absorption data (Figure 2.11). 

 

 

2.2.2.3  Extraction of carotenes, chlorophylls and polyacetylenes 

 

The chlorophylls and carotenoids were measured using two different methods: 

Method (A):  The chlorophylls  and carotenoids were measured spectrophotometrically 

in fresh plant material as described by Wellburn (1994). 

Method (B): Was based on (Rashed, 2009), separating carotenoid, chlorophyll and 

polyacetylene compounds by HPLC. 

 

2.2.2.3.1  Chlorophylls measurement spectrophotometrically (method A) 

 

The use of fresh material for the analysis of chlorophyll is an important aspect for 

consideration with common methods for chlorophyll measurement. Thus, in accordance 

with (Wellburn, 1994), three fresh leaf discs per sample (carrot and lettuce from the 

main experiments) were cut from three randomly selected plants (for each variety and 

tray) and weighed (0.1-0.2 g). Then the samples were transferred into separate 15 mL 

Falcon tubes and placed in a freezer overnight. Each leaf disc was extracted by grinding 

with a pestle using 5 mL 80 % acetone (Sigma Aldrich Co, UK). The acetone extract 

was then decanted into a Falcon tube, thoroughly mixed, then left in the fridge 

overnight. The Falcon tubes were centrifuged for 5min at 4000 rpm, then the 

supernatant was decanted into another tube and the pellet resuspended in 2 mL acetone 

before being placed in the fridge again for 1h. After centrifugation, the acetone extract 

was decanted into the same tube as the first extract. The total volume of acetone in the 

tube was measured and the supernatant was transferred into quartz cuvettes. The 

determination of photosynthetic pigment content was performed under low light 

condition to avoid any degradation of pigments. Absorbance on the spectrophotometer 
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(UV-2401 PC, SHIMADZU) was read at wavelengths 663, 645 and 470 nm against a 

blank of 80 % acetone as reference.  

Chlorophyll a, chlorophyll b and carotenoids concentration were calculated using the 

following equations:  

Chla = 12.25*A663.2 - 2.79*A646.8………………………………………..........(1)  

Chlb = 21.5*A646.8 - 5.1*A663.2………………………………………………. (2) 

Carotenoids (Cx+c ) = (1000*A470 – 1.82*Ca – 85.02*Cb) /198……………….(3) 

 

 

Figure 2.13 The effect of lettuce variety (Dixter, Exbury) and temperature on 

chlorophylls (chl a and b) and total carotenoids (Cx + C), (measured 

spectrophotometrically). Means with different letters within a chlorophyll type are 

significantly different (P < 0.05). Error bars indicate SEM, (n = 3). 
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Figure 2.14 The effect of carrot variety (Parmex and Little Finger) and temperature on 

chlorophylls (chl a and b) and total carotenoids (Cx + C), (measured 

spectrophotometrically).  Means with different letters within a chlorophyll type are 

significantly different (P < 0.05).  
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Due mainly to the lack of detailed knowledge (the limited range of absorbance in the 

spectrophotometer and/or limits absorption) and the saturation of the samples (the 

concentration of fresh samples may well have exceeded the absorbance of the machine 

used) even after ten times dilution, the results showed that temperature had no effect on 

Chlorophyll concentration, (Figures 2.13 and 2.14). Therefore, it was decided to use 

more reliable and accurate methods such as HPLC, as mentioned in (section 2.3.6.2). 

 

 

 2.2.2.3.2  Development and modifications of the HPLC method (B) 

 

In the original method by Rashed (2009), 2 g of dry plant material were extracted with 

ethyl acetate for three days. Each time they were left one day in the refrigerator before 

centrifugation. The supernatants were combined and filtered then the samples were 

directly analysed by HPLC. 

 

Because of the large amount of plant material used (2 g) for the analysis of carotenoid, 

chlorophyll and polyacetylenes and the long extraction time (3 days) for this method 

and also the number of components to be investigated in this study,  it was necessary to 

test a smaller amount of plant material in proportion to the amount available from the 

experiments. The extraction was tested in a shorter time than the time used in the 

original reference. 

 

The modifications were as follows:-  The amount of plant material was reduced from 2 

g to 70 mg through the testing of different quantities, including matching the amount of 

solvent required (g plant material in mL solvent): this ensured successful methods and 

results. Furthermore, the duration of extraction of total carotenoids and polyacetylenes 

was tested by using a small amount for the analysis and reducing the time of extraction 

from 3 days to 1 hour on the second day: the results were similar (no effect on number 

of peaks or time absorption) for both methods (extraction duration for 3 days and 2 days 

(1 hour next day)).   

The average peak areas of each of the compounds and their standard deviation were 

used to calculate the relative variability (%), (standard deviation of peak area divided by 

the mean of peak area * 100). The values in Figure (2.15) are broadly similar with each 

quantity. 
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Figure 2.15 Tests undertaken on different quantities of samples (dry material) and 

extraction time (40 and 70 mg for 2 days and 2 g for 3 days) for relative variability 

percentage of polyacetylenes (falcarindiol, falcarindiol 3-acetate and falcarinol) and 

carotenes (α and β-carotenes) in carrot root which were analysed by HPLC.  

 

 

The preliminary work on a tested large quantity (2 g) went missing; However Figure 

2.15 includes results of analyses of 2 g samples that were done by another student (Mrs 

Huda Saleh). 

 

Clearly both quantities (plant dry material) were satisfactory as identified and described 

in the section 2.2.2.3.3.  However, 70 mg  powdered dry plant material was chosen as 

the appropriate amount for analysis for each experiment. 
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 2.2.2.3.3  Final method used for main experiments 

 

70 mg of freeze dried sample was homogenized with 1mL of ethyl acetate in 10 mL 

centrifuge tubes, samples were then  vortexed for a few minutes, covered to keep them 

dark and placed in the refrigerator at 4 °C overnight. The next day the samples were 

centrifuged for 10 minutes at a speed of 4000 g and the supernatant put into a new 

screw-top test tube. 0.25 mL of ethyl acetate was added to the residue tube and mixed. 

Again, the samples were covered and put in the refrigerator for 1 hour. After that the 

samples were centrifuged and the supernatant transferred to screw-top test tube for 

extraction, and 0.1 mL of ethyl acetate was added to the residue tube and kept for 1hour 

again. Samples were then centrifuged and the supernatant removed. In total, the 

extraction procedure was carried out three times with the supernatant being placed into 

the same screw-top test tubes. They were then filtered using 1mL syringe and filtered 

(0.2 μm). The extracts were combined and directly analyzed by high performance liquid 

chromatography (HPLC). 

 

2.2.2.3.4  UV-Visible Spectroscopy 

 

UV-Visible spectra were obtained with a UV-2401 PC, SHIMADZU double beam 

scanning spectrophotometer (ranging between 200 to 800 nm) at room temperature. The 

standards were measured on the same day the HPLC analysis was done. Baseline 

spectra were taken for each solvent prior to measurement, and every experiment was 

performed under low light conditions, in a laboratory with the lights turned off and all 

windows closed and covered with curtains, (Figure 2. 16 and 2. 17). 
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Figure 2.16  Visible spectra of chlorophylls a and b standard   

 

 

 

Figure 2.17  Visible spectra of lutein, α-carotene and β-carotene standard   
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2.2.2.3.5  HPLC Analysis of carotenes, chlorophylls and polyacetylenes 

 

Both the carotene and polyacetylene analysis was carried out on the same HPLC. The 

column was a HyperClone Reverse phase C18 (250 × 4.6 mm, 5um), and column oven 

set at 40 ℃. The flow rate was 1 mL/min, injection volume 20 μl and detection at 205 

nm of polyacetylenes, and the detection of carotenoids was at 450 nm.  

The mobile phase was, pure water solvent (A), methanol solvent (B), and ethyl acetate 

solvent (C) (Fisher scientific, UK). The solvent gradient ratios are shown in Figure 2.18. 

 

 

Figure 2.18  Percentages and ratio of solvents added at specific time points. 

  

 

2.2.2.3.6  Identification and quantification  

 

Peak area and retention times of carotenoids were quantified by comparison with 

corresponding authentic standards, which were checked with photodiode array detector 

(DAD) on HPLC. α-carotene, β-carotene, lutein, chlorophyll a from alga and 

chlorophyll b from spinach were purchased from Sigma-Aldrich Ltd. The retention 

times of the identified carotenoids at 450 nm were as follows: Lutein 38.25 min, 

chlorophyll b 40.52 min, chlorophyll a 41.85 min, α-carotene 45.47 min, β-carotene 
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45.79 min and Cis- β -carotene 46.23 min, (Figure 3.25 and 3.26, Table 7.5 Appendix). 

In addition, the peak area of polyacetylenes was quantified by comparison with 

falcarindiol, falcarinol 3- acetate and falcarinol standards isolated from carrots by 

students (Ahlam Rashed and Huda Saleh) in Newcastle University, and the retention 

time of polyacetylenes compounds at 205 nm, falcarindiol 19.02 min, falcarinol 3-

acetate 23.14 min and falcarinol 26.5 min. The accurate carotenoid concentrations of the 

standards were determined spectrophotometrically using corresponding extinction 

coefficients Table 2.1, (Alpha values (α) were used in the calculations).  

The Polyacetylene compounds: Falcarinol, falcarinol 3-acetate and falcarindiol 

authentic standards were isolated from carrot root and were calculated as falcarinol 

equivalents at the three UV maxima λ = 256 nm (ε =445 /M), 242 nm (ε =739 /M) and 

230 nm (ε =986 /M) in methanol based on (Hansen and Boll, 1986). 

 

Table  2.1 Accurate specific (α) and millimolar (εmM) extinction coefficients for 

chlorophyll a, b (Chl), lutein (Lut) and α, β– carotene (α, β– car) in different solvents 

 

 

 

 

 

 

 

 

 

Pigments 

 

 

Solvent 

 

 

Wavelengths 

(nm) 

Extinction  coefficients  

 

References 
 

(ε) l/mM
 
/cm

 

 

(α)  E 1cm
1 ) 

      

Chl a 80% Acetone 663 76.79 840 (Pocock et al., 2004) 

(Pocock et al., 2004) Chl b 80% Acetone 645 47.04 518 

Lut Methanol 442 149.60 2629 (Craft and Soares, 

1992) 

α-Car Hexane 445 145 2710 (Rodriguez-Amaya, 

2001) 

β-Car Ethanol 450 135.80 2529 (Craft and Soares, 

1992) 
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2.2.2.4   Extraction of phenolic acids 

 

Three different methods were used to investigate the phenolic compounds using HPLC. 

 

2.3.2.4.1  Development and modifications of method 

 

Three methods were tested for phenolics analysis to determine the clearest separation of 

peaks and the characteristics of phenolics, including absorption spectra: all separations 

were done on the same HPLC and by the same column HyperClone Reverse –phase 

C18 (250 × 4.6mm, 5um):  

 Method A based on (Rashed, 2009) (solvent extraction 40 % acetonitrile adjusted to pH 

3 with phosphoric acid, analysis duration 70 min), (Table 2.2). 

Method B based on (Mpofu et al., 2006) with some modification by Lucas Patzek, 

(solvent extraction 80 % methanol, 2M  NaOH was added for 4 hrs for hydrolysis 

reaction, analysis duration 42 min), (Table 2.2). 

Method C according to (Almuairfi et al., 2010) (solvent extraction 70 % v/v methanol. 

The samples were completely dried with nitrogen gas, the residues were re-suspended in 

the original volume taken with water, analysis duration 65 min) as described in methods 

(Table 2.2 and section 2.2.2.4.2).  
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Table  2.2  Shows the three methods used to test phenolic compounds 

 

 

Method A  (40% ACN) 
 

 

 

Method B  (80 % MeOH) 

            

         Method C  (70 % MeOH) 

 

HPLC Analysis of phenolic acids 

   

Flow rate: 0.1 mL/min, 

oven temperature: 40℃ 

 

 

Flow rate: 1.5 mL/min, 

oven temperature 25℃ 

 

 

Flow rate: 0.1 mL/min, 

oven temperature: 25℃ 

 

Solvent gradient (%) 

   
Time 
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A (2% (v/v) 
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B 
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acetic acid in 

H2O ) 

B 

(acetonitrile) 
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(v/v) TFA in 
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TFA in 

acetonitrile (%) 
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Figure 2.19  HPLC absorbance of phenolic compounds was recorded at 320 nm from 

the carrot root in each of the three methods A (40% ACN), B (80 % MeOH) and C (70 

% MeOH). 

 



53 

 

As Figure 2.19 shows, methods A and B were not as successful as method C, which 

gave clearer separation and the greatest number of peaks (according to UV spectra of 

the phenolics). It also gave the clearest separation of peaks and the flattest baseline. For 

these reasons, method C was chosen. 

 

2.2.2.4.2  Final method used for main experiments 

 

The method (C) was chosen according to (Bennett et al., 2004) with some modifications 

by (Almuairfi et al., 2010).   40 mg freeze dried powder was weighed into a 10 mL 

screw glass-top tube, and the heating block was pre –set to 70 ℃ to start the extractions.  

To each sample 950 µL of  70 % v/v HPLC-grade methanol in ultra –pure water was 

added, the tubes sealed and vortex mixed for 10 seconds. The tubes were opened and 50 

µL of 0.1 mg/mL Naringin (naringenin 7- O-retinoside) purchased from Sigma was 

added as the internal standard (IS), then the tubes sealed and vortex mixed. Samples 

were extracted for 20 min at 70 ℃ with vortex mixing every 5min to optimize 

extraction. The samples were then centrifuged (4000 g, 4 ℃, 20 min) and the 

supernatants processed as follows:  600 µL of the supernatant was transferred to a new 

micro tube using a Gilson pipette. The samples were completely dried with nitrogen gas 

using a concentrator system in combination with the heating block set at 50 ℃. The 

residues were re-suspended in the original volume taken with ultra-pure water 

(Nanopure- Diamond ultra-water system). The samples were vortex mixed for 5-10 min 

and left to stand at room temperature for 10 min. Then the samples were vortex mixed 

again and the whole sample taken up into a 1mL syringe and filtered (0.2 µm) into 

screw top HPLC vials and sealed with standard HPLC vial caps and PTFE inserts, 

(Supplier VWR International Ltd, UK). The samples were stored at -20 ℃ in a freezer 

(not analysed immediately) prior to analysis. 

 

 

2.2.3.4.3  HPLC analyses 

 

The HPLC column used was a HyperClone Reverse –phase C18 (250 ×4.6mm, 5um), 

and column oven was set at 25 ℃. The PDA was set to collect all data from 200-600 

nm. The detection of the separated compounds was monitored at 280 and 320 nm, with 
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a flow rate 0.1mL/min, 20µL of each sample was injected into an HPLC (Shimadzu 

Corporation. Kyoto, Japan), system equipped with a Shimadzu 2 LC-10AD pump, SiL-

10A system Auto sampler (controller), SPD-M 10A photodiode array UV-VIS detector, 

CTO-10AD column oven and CLASSVP.  

0.1% v/v trifluoroacetic acid (TFA) in ultra-pure water (solvent A) and 0.1% v/v 

trifluoroacetic acid in HPLC- grade acetonitrile ACN (solvent B), and the solvent 

gradient was: ( H2O+ 0.1% TFA ): (ACN+0.1% TFA ), 0 min (100:0), 5 min (100:0), 15 

min (83:17), 17 min (83:17), 22 min (75:25), 30 min (65:35), 35 min (50:50), 40 min 

(0:100), 50 min (0:100), 55 min (100:0) and  65 min (100:0).  

 

 

2.2.3.4.4  Quantification of phenolic compounds 

 

A diode-array detector was set at 320 nm and 520 nm to detect the phenolic acids and 

anthocyanin, respectively, in extracted lettuce and carrot samples. Table 2.3 shows the 

different standards that were tested for the identification, where all the phenolic acids 

represent compounds that have been reported to be present in lettuce and/or carrots 

(Tackenberg, 2007; Kreutzmann et al., 2008; Bumgarner et al., 2012). The 

quantification of the concentration of unknown phenolics was carried out as chlorogenic 

acid standard equivalents for those phenolic acids which could not be identified 

individually, but where the peaks had absorption spectra characteristic of caffeic acid 

derivatives (a broad peak near 325 nm with a shoulder near 295 nm), Figure 3.44. 

 

For lettuce the anthocyanin concentration (Figure 3.40) was expressed in mg of 

cyanidin 3-O-glucoside equivalents at 520 nm as in (McCann et al., 2005), (Figure 7.7 

Appendix). For peaks with absorption spectra resembling quercetin or kaempferol 

derivatives (peaks near 354 nm or 255 nm) the concentrations were calculated as rutin 

equivalents.  

Some phenolic compounds were found where the retention time and absorption spectra 

resembled literature description of compounds identified in carrot root such as Cis-5-

caffeoylquinic acid (Samuoliene and Duchovskis, 2006; Tackenberg, 2007; Simoes et 

al., 2011), where however the identity could not be confirmed, as it was not possible to 

find a commercial standard.  
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Table 2.3 List of standards used to compare and identify phenolic compounds. All 

standards were prepared as stock concentration of 0.1 mg/mL in 70 % Methanol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Scientific name  

 

  Common name 

 

CAS No 

 

                Sourced 

 

3-Caffeoylquinic acid 

 

Chlorogenic acid 

 

327-97-9 

 

Chemstrong scientific Co Ltd 

4 -Caffeoylquinic acid Cryptochlorogenic acid 905-99-7 Biopurify Phytochemicals Ltd 

5 -Caffeoylquinic acid Neochlorogenic acid 906-33-2 Biopurify Phytochemicals Ltd 

1,3-Dicaffeoylquinic acid Cynarin, Cynarine 19870-46-3 Biopurify Phytochemicals Ltd 

3,5-Dicaffeoylquinic acid Isochlorogenic acid A 2450-53-5 Biopurify Phytochemicals Ltd 

3,4-Dicaffeoylquinic acid Isochlorogenic acid B 14534-61-3 Biopurify Phytochemicals Ltd 

4,5-Dicaffeoylquinic acid Isochlorogenic acid C 32451-88-0 Biopurify Phytochemicals Ltd 

Dicaffeoyltartaric acid Cichoric acid 70831-56-0 Biopurify Phytochemicals Ltd 

Caffeoyltartaric acid Caftaric acid 67879-58-7 Biopurify Phytochemicals Ltd 

3,4-Dihydroxycinamic Caffeic acid 331-39-5 Sigma-Aldrich Company Ltd 

4-Hydroxycinnamic acid 

Quercetin-3-O-rutinoside 

Cyanidin 3-O-glucoside 

P-coumaric acid 

Rutin 

Kuromanin chloride 

501-98-4 

153-18-4 

7084-24-4 

Sigma-Aldrich Company Ltd 

Sigma-Aldrich Company Ltd 

Sigma-Aldrich Company Ltd 
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2.3  Statistical analysis 

 

All data were subjected to statistical analysis using Minitab 16, ANOVA- general linear 

model (GLM). Statistically the different experiment variables and their interactions 

were determined. Thereafter the whole data sets were tested for normality distribution 

of residual data using the Anderson-Darling test. The P < 0.05 was considered a 

significance level. Where the residuals were not normally distributed (P < 0.05) the data 

were either logarithmically or square root transformed. Tukey’s test was used for pair 

wise comparisons between the temperature regimes’ effects. 

Leaf production rate was calculated as the slope of the linear relationship between leaf 

number recorded and weeks for each replication of each experiment. Then the gradient 

values were analysed using Minitab 16, ANOVA (GLM). 

 

All experiments were carried out using triplicate samples of each variety. The results 

show the mean ± standard error of mean (SEM). All the results were expressed as 

milligram per 100 gram fresh weight (FW). Analysis of values on a fresh weight basis is 

consistent with the inclusion and consumption of these vegetables in the fresh rather 

than dried state in human nutrition. However, some compounds were also analysed as 

milligram per g dry weight (DW). 

 

The residue (non-sugar or insoluble solids) mg/100g FW was calculated by subtracting 

the sugar content (mg sugar /100g FW) from dry matter (g dry weight /100g FW) 

values.  
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3.1  Growth rate parameters 

 

3.1.1  Effect of temperature on rate of leaf production and harvest 

period 

 

There was a large effect of temperature regime on growth of lettuce and carrot varieties, 

the rate of leaf production and consequently harvest time (Figures 3.1, 3.3, 3.4, 3.5, and 

3.6). Low temperature regimes resulted in slow growth and leaf production and thus a 

longer period until harvest as plants were harvested when they had produced 10-12 

leaves (lettuce) or 6-8 leaves (carrot). In contrast, high temperature encouraged rapid 

growth. 

 

 

Figure 3.1 Effects of different temperatures on weeks to harvest of lettuce and carrot. 
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Figure 3.2 The effect of temperature regimes on shoot and root growth of carrot 

varieties (Parmex and Little Finger) (left side) and lettuce varieties (Dixter and Exbury) 

(right side) at harvest stage. The carrot root length was approximately 3-5 cm. 
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3.1.2  Leaf production rate 

 

 

 

Figure 3.3 Effect of temperature regimes on leaf production rate of lettuce varieties 

(Dixter and Exbury). 
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There was as a significant effect of varieties (P < 0.05), and a highly significant effect 

of temperature regime (P < 0.001) on the rate of leaf production in both varieties of 

lettuce, at the low temperature (12/8 ℃) both varieties had the lowest rate of leaf 

production, but no significant interaction effects were found between the varieties and 

temperature, (Figure 3.4).  

 

 

Figure 3.4 The effect of lettuce variety (Dixter and Exbury) and different growth 

temperature on the average rate of leaf production until harvest. Means with different 

letters differ significantly at (P < 0.05), error bars indicate Standard Error of Mean, (n = 

3). 
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Figure 3.5  Effect of temperature regimes on leaf production rate of carrot (Parmex and 

Little Finger). 
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For carrot, there was no significant effect of variety, but there was a significant effect of 

temperature regime (P < 0.001) on the rate of leaf production, at the low temperature 

regime (12/8 ℃) both varieties had the lowest rate of leaf production.  No significant 

interaction effects were found between the varieties and temperature, (Figure 3.6). 

 

 

Figure 3.6  The effect of carrot variety (Parmex and Little Finger) and different growth 

temperatures on the average rate of leaf production until harvest. Means with different 

letters differ significantly at (P < 0.05), error bars indicate Standard Error of Mean 

(SEM), (n = 3). 
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3.1.3   Plant height (growth rate)  

 

There were consistent and large effects of temperature regimes on plant height with 

both varieties of lettuce and of carrot showing a similar response (Figure 3.7). 

 

 

Figure 3.7  Effect of temperature regimes on height of lettuce (Dixter and Exbury). 
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For lettuce, there was a significant effect of variety (P < 0.01)  and a highly significant 

effect of temperature regime (P < 0.001) on plant height, an plant height increased with 

increasing  temperature, at the high temperature regime (32/28 ℃) both varieties had the 

highest plant height. No significant interactions were found between the varieties and 

temperature, (Figure 3.8). 

 

Figure 3.8 The effect of lettuce variety (Dixter and Exbury) and different growth 

temperature regimes on growth rate (as height change) until harvest (when the plants 

had 10-12 leaves). Means with different letters differ significantly at (P < 0.05), error 

bars indicate Standard Error of Mean, (n = 3). 
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Figure 3.9  Effect of temperature regimes on height of carrot (Parmex and Little Finger). 
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There was no significant effect of variety but a highly significant effect of temperature 

on height (P < 0.001); the plant height increased with the increasing temperature, 

moreover, no significant interaction was found between the varieties and temperature, 

(Figure 3.10). 

 

Figure 3.10  The effect of carrot variety (Parmex and Little Finger) and different growth 

temperature regimes on growth rate (as height change) until harvest (when the plants 

had 6 - 8 leaves). Means with different letters differ significantly at (P < 0.05), error 

bars indicate Standard Error of Mean, (n=3). 
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3.1.4   Leaf area 

 

There was a significant effect of varieties (P < 0.001) and a highly significant effect of 

temperature on leaf area (P < 0.001) of lettuce varieties. The highest leaf area was at a 

moderate temperature regime (22/18 ℃) of both varieties. As well as a significant 

interaction effect between variety and temperature (P < 0.05), for the variety Dixter 

there was a gradual increase in leaf area at (22/18 ℃) which began to decrease at 

temperatures above this regime.  Exbury had smaller leaf area at the lower and higher 

temperature regimes and larger at the moderate temperature regime (22/18 ℃), (Figure 

3.11). 

 

Figure 3.11 The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on leaf area. Means with different letters are significantly different (P < 0.05), error bars 

indicate Standard Error of Mean, (n = 3). 

0

50

100

150

200

250

300

350

400

L
ea

f 
a

re
a

 (
cm

2
 /p

la
n

t)

Dixter

b

ab

a

a

b

0

50

100

150

200

250

300

350

400

12/8 17/13 22/18 27/23 32/28

L
ea

f 
a

re
a

 (
cm

2
 /p

la
n

t)

Temperature regimes (℃ )

Exbury

b b

a

b

ab



69 

 

3.1.5  Fresh and dry weight (plant biomass) 

 

There were highly significant effects of variety (P < 0.001) and temperature (P < 0.001) 

on fresh weight of lettuce leaves and roots of both varieties. Furthermore a significant 

interaction (P < 0.01) was found between variety and temperature. Whilst the fresh 

weight of Exbury was similar at all temperature regimes, Dixter produced the highest 

fresh weight at 17/13 ℃, and generally growth of this variety was better when grown at 

lower temperature regimes (Figure 3.12). 

 

 

Figure 3.12  The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on leaf fresh weight per plant. Means with different letters are significantly different (P 

< 0.05), error bars indicate Standard Error of Mean, (n = 3).  
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Also there were highly significant effects of variety (P < 0.001) and temperature (P < 

0.001) on dry weight of lettuce leaves and roots of both varieties and a significant 

interaction (P < 0.001) was found between variety and temperature. Again varieties 

differed in their response: Dixter had the highest DW at the lowest regimes and 

decreased gradually as temperature increased, while Exbury had a significantly lower 

DW at a temperature regime of (27/ 23 ℃) than other regimes, (Figure 3.13). 

 

 

Figure 3.13  The effect of lettuce variety (Dixter and Exbury) and temperature regime 

on leaf dry weight. Means with different letters are significantly different (P < 0.05), 

error bars indicate Standard Error of Mean, (n = 3).  
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For carrot, there were significant effects of variety (P < 0.001) and temperature regime 

(P < 0.001) on fresh weight of carrot root. Increasing temperature to 27 ℃ inhibited 

carrot root growth.  Significant interaction (P < 0.001) was found between variety and 

temperature, Parmex had higher FW than Little Finger at all temperature regimes with 

comparable response, (Figure 3.14).  There were also significant effects of temperature 

on fresh weight of carrot leaves (Figure 7.7 Appendix). 

 

 

 

Figure 3.14 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on root fresh weight. Means with different letters are significantly different (P 

< 0.05). Error bars indicate Standard Error of Mean, (n=3). 
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There were also highly significant effects of variety (P < 0.001), temperature regimes (P 

< 0.001) on dry weight of carrot root and a significant interaction (P < 0.001) between 

variety and temperature (Figure 3.15). At 17/13 ℃ both carrot varieties had the highest 

dry weight of roots. There were also significant effects of temperature on dry weight of 

carrot leaves (Figure 7.23 Appendix). 

 

 

 

Figure 3.15 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on root dry weight. Means with different letters are significantly different (P < 

0.05).  Error bars indicate Standard Error of Mean, (n=3). 
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3.1.6  Dry matter (%) 

 

There were highly significant effects of variety (P < 0.001) and temperature regimes (P 

< 0.001) on dry matter % leaves and root of lettuce varieties.  

The highest DM % was at a low temperature regime (12/8 ℃) of both varieties (Dixter 

and Exbury).  A highly significant interaction effect (P < 0.001) was found between 

variety and temperature.  At low temperature (12/8 ℃) Dixter had higher DM % than 

Exbury, but with other regimes the DM % was broadly similar, (Figure 3.16).   

 Figure 3.16   The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on dry matter content of leaves and root. Means with different letters are significantly 

different (P < 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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For carrot, there were no significant effects of variety on leaf dry matter percentage, but 

there was a significant effect on the root (P < 0.05). Temperature regimes had 

significant effects (P < 0.001 and P < 0.05) on dry matter percentage of leaf and root 

respectively.  No significant interaction for leaf and root was found between variety and 

temperature, (Figure 3.17). 

 

 

Figure 3.17 The effect of carrot variety (Parmex and Little Finger) and temperature 

regime on dry matter content of leaves and root. Means with different letters are 

significantly different (P < 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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3.1.7  Root /shoot dry weight 

 

There was a significant effect of variety (P < 0.001) and highly significant effect of 

temperature (P < 0.001) on root/shoot dry weight ratio of lettuce. The root /shoot ratio 

was greater at the lowest temperature (12/8 ℃) than higher temperature regimes: there 

was also a significant interaction (P < 0.001) between variety and temperature. Dixter 

had a higher ratio than Exbury at all temperature regimes (Figure 3.18). 

 

Figure 3.18 The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on root/shoot dry weight ratio. Means with different letters are significantly different (P 

< 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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For carrot, there were a significant effect of variety (P < 0.01) and temperature regimes 

(P < 0.001) on root/shoot dry weight ratio of variety, the highest root/ shoot ratio was at 

17/13 ℃, and at high temperature, the growth of the root was inhibited. Significant 

interaction (P < 0.01) between variety and temperature, Parmex had a higher root/shoot 

dry weight ratio than Little Finger at all temperature regimes, (Figure 3.19). 

 

 

 

Figure 3.19 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on root/shoot dry weight ratio. Means with different letters are significantly 

different (P < 0.05). Error bars indicate Standard Error of Mean, (n = 3). 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
o

o
t/

sh
o

o
t 

d
ry

 w
e
ig

h
t 

ra
ti

o

Parmex

a

c

b

a

0

0.2

0.4

0.6

0.8

1

1.2

12/8 17/13 22/18 27/23

R
o

o
t/

sh
o

o
t 

d
ry

 w
e
ig

h
t 

ra
ti

o

Temperature regimes (℃)

Little Finger

c

b

a

b



77 

 

3.2   Phytochemicals 

 

3.2.1   Sugar content (soluble solids) 

 

There were significant effects of variety (P < 0.01) on sugar content of both leaf and 

root: lettuce Dixter had higher sugar content than Exbury. Temperature regimes had a 

highly significant effect (P < 0.001) on shoot and root sugar contents of both lettuce 

varieties. The highest content of sugar was at low temperature (12/8 °C) and it 

decreased as temperature increased (Figure 3.20). Moreover a significant interaction (P 

< 0.001) was found between variety and temperature regime of both leaf and root of 

lettuce variety. 

 

The non-sugar content (insoluble solids) of lettuce varied between the varieties and 

plant parts. There were no significant effects of variety on leaf  and root, but significant 

effects of temperature regimes (P < 0.001) on both leaf and root. No significant 

interaction effects were found between the varieties and temperature for leaf, but there 

was significant effect of a root (P < 0.05), (Figure 3.20). 

 

For carrot, there were no significant effects of variety  on sugar content of leaf but there 

were significant effects (P < 0.001) on root.  

 There were highly significant effects (P < 0.001) of temperature on sugar content of 

both leaf and root of carrot varieties. No significant interaction effects were found 

between the varieties and temperature regimes of leaf or of root Figure 3. 21. 

There were no significant effects of variety on either leaf or root non-sugar content 

(insoluble solids) of carrot varieties, but significant effects of temperature regimes (P < 

0.01) on both leaf and root contents. No significant interaction effects were found 

between the varieties and temperature for leaf but there was a significant interaction for 

root, Figure 3. 21. 
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Figure 3.20  The effect of lettuce variety (Dixter and Exbury) and temperature on sugar 

and non-sugar content of leaves and root. Means with different letters are significantly 

different (P < 0.05). Error bars indicated SEM, (n=3). 
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Figure 3.21 The effect of carrot variety (Parmex and Little Finger) and temperature 

regime on dry matter content of leaves and root. Means with different letters are 

significantly different (P < 0.05). Error bars indicate Standard Error of Mean. 
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3.2.2   Nitrate concentration 

 

There were highly significant effects of variety (P < 0.001) and temperature (P < 0.001) 

on nitrate concentration of lettuce leaves and root. The nitrate concentration increased 

gradually with temperature increase, then seemed to decrease at highest temperature 

regimes (32/28 ℃). Furthermore there were highly significant interactions (P < 0.001 

for leaf and P < 0.05 for root) between variety and temperature regimes. Lettuce Exbury 

had higher concentrations than Dixter in both shoots and root at all temperature 

regimes, (Figure 3.22).   

 

Figure 3.22 The effect of lettuce variety (Dixter and Exbury) and the temperature 

regime on nitrate concentration of leaves and root. Means with different letters within a 

plant fraction are significantly different (P < 0.05). Error bars indicate Standard Error of 

Mean, (n= 3). 
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For the carrots, there were no significant effects of variety on nitrate concentration of 

leaves and root, but there were significant effects of temperature on nitrate 

concentration and greater on leaves (P < 0.001) than on the roots (P < 0.01).  In 

addition, there was a highly significant interaction (P < 0.01) between variety and 

temperature regimes for leaves, but not for carrot root  (Figure 3.23 and 3.24). Parmex 

leaves had higher concentrations than Little Finger at 22/18 ℃ compared with lower 

temperature, while in other regimes Little Finger had higher levels than Parmex in 

leaves and roots. Very large increase in leaf nitrate concentration of both Parmex and 

Little Finger between 22/18 ℃ and 27/23 ℃ 

 

Figure 3.23 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on nitrate concentration of leaves. Means with different letters are significantly 

different (P < 0.05). Error bars indicate Standard Error of Mean, (n=3). 
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Figure 3.24 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on nitrate concentration of root. Means with different letters are significantly 

different (P < 0.05). Error bars indicate Standard Error of Mean, (n=3). 
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3.2.4  Chlorophylls and carotenoids (HPLC analysis) 

 

The main chlorophylls and carotenoids were separated and identified in lettuce leaf and 

carrot root (Figure 3.25 and 3.26). 

 

Figure 3.25 HPLC chromatogram recorded at 450 nm with diode array detector of 

chlorophylls and carotenoid compounds in lettuce leaf (Dixter) : 1, lutein; 2, chlorophyll 

b; 3, chlorophyll a; 4, β-carotene; 4 and 5, Cis β-carotene. 

 

 

Figure 3.26 HPLC chromatogram recorded at 450 nm with diode array detector of 

carotenoid compounds in carrot root: 1, lutein; 2, α-carotene; 3, β-carotene; 4, Cis β-

carotene. 
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3.2.4.1  Chlorophylls 

 

There were significant effects of variety (P < 0.001) and of temperature (P < 0.001) on 

leaf chlorophylls (a and b) of lettuce varieties. Moreover a significant interaction (P < 

0.01) was found between variety and temperature regime (Figure 3.27). Chlorophylls 

increased with increasing temperature. Dixter had higher concentrations than Exbury. 

At the highest temperature (32/28 ℃) Exbury responded in different way to Dixter as 

chlorophylls a and b decreased.  

 

Figure 3.27  The effect of lettuce variety (Dixter and Exbury) and temperature on leaf 

chlorophylls a (Chl a) and b (Chl b). Means with different letters within a chlorophyll 

type are significantly different (P < 0.05).  Error bars indicate Standard Error of Mean, 

(n = 3). 
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For carrot, there were significant effects of variety (P < 0.001) and of temperature (P < 

0.05) and (P < 0.001) on leaf chlorophylls a and b respectively. There were no 

significant interactions between variety and temperature, for chl a and for chl b (Figure 

3.28). The highest concentration of chlorophylls were recorded at moderate 

temperatures (17 and 22 ℃) and decreased at the highest temperatures. The chlorophylls 

of Little Finger tended to increase with increasing temperature up to the highest 

concentration at 22/18 ℃, and then decreased at 27/23 ℃. 

 

Figure 3.28  The effect of carrot variety (Parmex and Little Finger) and temperature on 

leaf chlorophylls a (Chl a) and b (Chl b). Means with different letters for each 

chlorophyll type are significantly different (P < 0.05). Error bars indicate Standard Error 

of Mean, (n = 3). 
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3.2.4.2  Carotenoids 

 

There were highly significant effects of variety (P < 0.001) and of temperature (P < 

0.001) on carotenoids (lutein, β-carotene and Cis β-carotene) of lettuce leaves, as well 

as highly significant interaction (P < 0.001) for each of the carotenoids between variety 

and temperature regime (Figure 3.29). At 22/18 ℃ Dixter had the highest concentrations 

of lutein, β-carotene and Cis β-carotene but the concentrations were similar at all the 

other temperature regimes. In contrast, Exbury had the highest concentrations of each at 

22 and 27 ℃ than other regimes.  

 

Figure 3.29  The effect of lettuce variety (Dixter and Exbury) and temperature on leaf 

lutein, β-carotene and Cis β-carotene concentrations. Means with different letters are 

significantly different (P < 0.05). Error bars indicate SEM, (n = 3). 
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For carrot leaf, no significant effect of variety was observed for lutein, but there was 

significant effect of variety (P < 0.05 and P < 0.05) on β-carotene and Cis β-carotene 

respectively.  

 

There was a highly significant effect (P < 0.001) of temperature regimes on lutein, β, 

and Cis β-carotene. The highest concentration of lutein was achieved at low temperature 

(12/8 ℃) and decreased gradually with increasing temperature of both varieties. 

β-carotene accumulated its highest concentration in moderate temperature at 22/18 ℃, 

Little Finger at this regime had greater concentration than Parmex. 

  

Although there was no significant interaction between variety and temperature regimes 

on lutein, but a significant interaction (P < 0.01) and (P < 0.05) of β, and Cis-carotene 

respectively was found between variety and temperature regimes (Figure 3.30).  

 

For carrot root, there was a highly significant effect (P < 0.001) of variety and 

temperature (P < 0.001) on lutein, α-carotene, β-carotene and Cis β-carotene 

respectively. The lutein concentration increased gradually with temperature increase. 

Parmex had a higher concentration of lutein than Little Finger.  The α, β-carotene and 

Cis β-carotene responded similarly to temperature regimes and had highest 

concentrations at 17/13 ℃. 

A highly significant interaction (P < 0.001) between variety and temperature regimes, 

Parmex had a higher concentration of α, β, and Cis -carotene than Little Finger (Figure 

3.31).  

In contrast for carrot leaf, the lowest concentration of lutein was achieved at low 

temperature and increased gradually with increasing temperature.  
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Figure 3.30 The effect of carrot variety (Parmex and Little Finger) and temperature on 

leaf lutein, β-carotene and Cis β-carotene. Means with different letters are significantly 

different (P < 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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Figure 3.31 The effect of carrot variety (Parmex and Little Finger) and temperature on 

root lutein, α-carotene, β-carotene and Cis β-carotene. Means with different letters are 

significantly different (P < 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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3.2.5  Polyacetylene compounds of carrot root 

 

The three main compounds found and identified in carrot root were falcarindiol at 19.1 

min; falcarinol 3-acetate at 23.14 min and   falcarinol at 26 min respectively, (Figure 

3.32 and 3.33). 

 

Whilst there was no significant effect of variety on falcarindiol, it was significant for 

falcarindiol 3-acetate (P < 0.05) and falcarinol (P < 0.001) respectively.  

Temperature significantly (P < 0.01, 0.01 and 0.001) affected polyacetylene compound 

concentrations of falcarindiol, falcarindiol 3-acetate and falcarinol respectively, which 

were higher at low temperatures and deceased with increasing temperature. 

Moreover, no significant interaction was found between variety and temperature regime 

of falcarindiol and falcarindiol 3-acetate respectively, but it was significant (P < 0.01) 

for falcarinol (Figure 3.34).  

 

 

 

 

 

 

 

 

 

 

 

 



91 

 

 

Figure 3.32 HPLC chromatogram recorded at 205 nm with diode array detector of 

polyacetylene compounds in carrot Parmex root: 1, falcarindiol (FaDOH, Rt = 19.1 min; 

λ max 233, 245, 259 nm); 2, falcarinol 3-acetate (FaDOAc) (RT = 23.14 min; λ max 234, 

246, 260 nm) and 3, falcarinol (FaOH) (Rt = 26 min; λ max 231, 244, 256 nm) 

respectively. 

 

 

Figure 3.33 UV spectra characteristics of 1, falcarindiol (FaDOH); 2, falcarinol 3-

acetate (FaDOAc) and 3, falcarinol (FaOH) in carrot root (Parmex variety) collected at 

205 nm. 
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Figure 3.34 The effect of carrot variety (Parmex and Little Finger) and temperature on 

root falcarindiol, falcariniol-3-acetate and falcarinol concentrations. Means with 

different letters are significantly different (P < 0.05). Error bars indicate SEM, (n = 3). 
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3.2.6  Phenolic compounds 

 

3.2.6.1  Phenolic acids in Lettuce: 

 

The three main phenolic acids - caftaric acid (Caffeoyltartaric acid), chlorogenic acid 

(3-caffeoylquinic acid) and cichoric acid (Dicaffeoyltartaric acid) were abundant in high 

concentrations in lettuce leaves indicated by peaks 1, 2 and 6 respectively, (Figure 

3.35). 

 

Figure 3.35  Typical HPLC-DAD chromatogram of phenolic acids of lettuce leaf extract 

recorded at λ = 320 nm. Peaks are 1, caftaric acid; 2, chlorogenic acid (3-CQA); 3,4 

unknown phenolic acids; 5, 8, quercetin derivatives; 6, cichoric acid, 7, internal 

standard (naringenin). 
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Figure 3.36  UV spectra characteristics of main phenolic peaks 1, 2, 3, 4, 5, and 6 in 

lettuce leaf (as shown in Figure 3.35 when detected at 320 nm). 

 

There was a highly significant effect (P < 0.001) of variety and temperature (P < 0.001) 

on caftaric acid, chlorogenic acid and cichoric acid levels (Figure 3.37). Phenolic 

concentration was affected significantly by temperature: at the lowest temperature 12/8 
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gradually until 27/23 ℃. Thereafter there appeared to be a significant increase once 

again. There was a highly significant interaction (P < 0.001) between variety and 

temperature. Dixter had the highest concentration of the three phenolic acids (caftaric, 

chlorogenic and cichoric acid) at low temperature (12/8 ℃). In contrast Exbury had the 

highest concentration of the three main phenolic acids (caftaric, chlorogenic and 

cichoric acid) at high temperature (32/28 ℃), the concentration for both varieties was 

lower at the moderate temperature (22 and 27 ℃), (Figure 3.37).  

 

 

Figure 3.37  The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on leaf concentrations of caftaric acid, chlorogenic acid (3-CQA) and cichoric acid. 

Means with different letters are significantly different (P < 0.05). Error bars indicate 

Standard Error of Mean, (n = 3). 
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3.2.6.2  Quercetin derivatives in lettuce  

 

Quercetin derivatives in lettuce leaves (Peaks 5 and 8, Figure 3. 35) were also recorded 

at 320 nm.  A highly significant effect (P < 0.001) of variety on quercetin derivatives, a 

significant effect  of temperature (P < 0.001), as well as significant interaction (P < 

0.001) was found between variety and temperature for lettuce (Figure 3.38). 

At the lowest temperature (12/8 ℃) Dixter had higher concentrations of quercetin 

derivatives than Exbury, while at the other temperature regimes, both varieties showed 

broadly similar responses. 

 

Figure 3.38  The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on the sum of leaf quercetin derivatives (peaks 5 and 8, from Figure 3. 35). Means with 

different letters are significantly different (P < 0.05). Error bars indicate Standard Error 

of Mean, (n = 3). 
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3.2.6.3  Anthocyanin in lettuce leaves  

 

The anthocyanin in lettuce leaves was recorded at 520 nm at 23.5 min (Figure 3.40). 

There were significant effects of variety (P < 0.001) and temperature regime (P < 0.001) 

on anthocyanin of lettuce leaf. A significant interaction (P < 0.001) was found between 

variety and temperature (Figure 3.41). Clearly, anthocyanin levels in lettuce leaves were 

highest at low temperature.  Differences between varieties were easily seen: Dixter was 

much darker green and red (attributed to the high accumulation of anthocyanin) than 

Exbury, which was lighter green and had less anthocyanin (Figure 3.39). 

Anthocyanin accumulated in highest concentration at low temperature (12/8 ℃) of both 

varieties and decreased gradually as temperature increased. Dixter had much higher 

anthocyanin than Exbury at (12/8 ℃), by the order of threefold. 

 

 

 

Figure 3.39  The effect of temperature regimes on the accumulation of anthocyanin (red 

colour) in lettuce leaves of the varieties (Dixter and Exbury). 
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Figure 3.40  Typical HPLC-DAD chromatogram of anthocyanin of lettuce leaf extract 

recorded at λ = 520 nm, (peak 1 with λ max 521 nm at 23.5 min). 
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Figure 3.41  The effect of lettuce variety (Dixter and Exbury) and temperature regimes 

on leaf anthocyanin concentration. Means with different letters are significantly 

different (P < 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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3.2.6.4  Comparisons with standards of phenolic acids in carrot: 

 

For both carrot and lettuce leaf, the retention time and UV spectra of chlorogenic acid 

(3-caffeoylquinic acid, 3-CQA) CAS number 327-97-9, was similar to an authentic 

standard. There is still confusion  as regards (3-CQA) as, in numerous publications, it is 

named either 3-CQA or (5-caffeoylquinic acid, 5-CQA) CAS number 906-33-2, as 

demonstrated by (Frota and Tucker, 1972).  

  

Much of the literature (Samuoliene and Duchovskis, 2006; Kreutzmann et al., 2008; Du 

et al., 2012) has identified 5-CAQ as the main chlorogenic acid in carrots. By contrast, 

during the present study, both chlorogenic acids (3 and 5-CQA) were tested, but only 3-

CQA was found at a similar time and in the UV spectra in samples (leaf and root).  For 

carrot chlorogenic acid (3-CQA or 3‐caffeoylquinic acid) with λ max 298, 327 nm at 

17.7 min was matched to the standard (peak 2) in leaf (Figure 3. 42) and in root (Figure 

3.43 and 3.44).  

 

The other phenolics were unknown and did not match the whole standard (Caffeic acid, 

4-Caffeoylquinic acid, 5-Caffeoylquinic acid (5-CQA), 1,3-Dicaffeoylquinic acid, 3,5-

Dicaffeoylquinic acid, 3,4-Dicaffeoylquinic acid and 4,5-Dicaffeoylquinic acid) that 

were tested or to any published in previous literature (section 2.2.3.4.4).  

 

Therefore, all phenolic peaks were calculated as total phenolic acids (the sum of all 

individual peaks (PK) as mg of chlorogenic acid equivalent / 100g FW). Clearly, the 

UV spectra characteristics of unknown peaks in the leaf and root of the carrot (Figure 

3.44) were matched to UV spectra of caffeic acid derivatives as shown in many 

publications (section 2.2.3.4.4). 
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Figure 3.42  Typical HPLC-DAD chromatogram of phenolic acids of carrot leaf extracts 

recorded at λ = 320 nm. Peaks: 2 is chlorogenic acid (3-CQA), other peaks are unknown 

phenolic acids. , IS is internal standard (naringenin). 

 

 

Figure 3.43  Typical HPLC-DAD chromatogram of phenolic acids of carrot root 

extracts recorded at λ = 320 nm. Peaks are: 2 is chlorogenic acid (3-CQA), other peaks 

are unknown phenolic acids, IS is internal standard (naringenin). 
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Figure 3.44  UV spectra characteristics of  main phenolic peaks 1, 2, 3, 4, 5, 6, 8, 9 and 

10  in carrot (as shown in Figure  3.43 when detected at 320 nm). 
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There were no significant effects or interactions of variety or temperature on 

chlorogenic acid content of carrot roots, (Figure 3.45). 

For carrot leaf, there was a significant effect (P < 0.01) of variety, a highly significant 

effect of temperature (P < 0.001) on chlorogenic acid level and a significant interaction 

(P < 0.01) between the varieties and temperature, (Figure 3.45). 

 

 

 

 

Figure 3.45 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on chlorogenic acid concentration in the leaves and roots. Means with different 

letters are significantly different (P < 0.05).  Error bars indicate Standard Error of Mean, 

(n = 3). 
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Figure 3.46  The effect of carrot variety (Parmex) and temperature regimes on individual phenolic acids concentration in the leaf (as shown in Figure 

3.42). Means with different letters are significantly different (P < 0.05).  Error bars indicate Standard Error of Mean, (n = 3). 
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Figure 3.47  The effect of carrot variety (Little Finger) and temperature regimes on individual phenolic acids concentration in the leaf (shown in Figure 

3.42). Means with different letters are significantly different (P < 0.05).  Error bars indicate Standard Error of Mean, (n = 3). 

0

0.5

1

1.5

2

2.5

3

PK
1 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/

 1
00

g 
F

W

Little Finger

b

aab

b

0

1

2

3

4

5

6

7

PK
3 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

a

b

a

b

0

1

2

3

4

5

6

7

8

PK
4 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

bb

b

a

0

0.5

1

1.5

2

2.5

3

PK
5 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

b
b

b

a

0

0.5

1

1.5

2

2.5

3

PK
6 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

bb

b

a

0

5

10

15

20

25

30

PK
7 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

bb

b

a

0

1

2

3

4

5

6

7

12/8 17/13 22/18 27/23

PK
9 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

Temperature  regimes (℃)

a

cbc

ab

0

5

10

15

20

25

30

12/8 17/13 22/18 27/23

PK
8 

m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

Temperature  regimes (℃)

c
c

b

a

0

10

20

30

40

50

60

12/8 17/13 22/18 27/23

PK
10

 m
g 

of
 C

Q
A

 e
qu

iv
al

en
t/ 

10
0g

 F
W

Temperature  regimes (℃)

bc

c

a

ab



106 

 

There was a highly significant effect of temperature (P < 0.001) on  the sum of phenolic 

peaks in carrot leaves (10 peaks in Figure 3.35, based on 3-CQA equivalent), as well as 

a significant interaction (P < 0.01) between the varieties and temperature:  the highest 

concentration of summed peaks was at 17/ 13 ℃ in both varieties and at two low 

temperatures Little Finger had a higher concentration than Parmex, but not at the two 

high temperatures (Figure 3. 48).  

 

Figure 3.48  The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on the sum of phenolic compounds (the sum of 10 individual peaks mg of 3-

CQA equivalent) in the leaves. Means with different letters are significantly different (P 

< 0.05).  Error bars indicate Standard Error of Mean, (n = 3). 
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Figure 3.49 The effect of carrot variety (Parmex) and temperature regimes on individual 

phenolic acid concentrations in the roots (shown in Figure 3.43). Means with different 

letters are significantly different (P < 0.05).  Error bars indicate Standard Error of Mean, 

(n = 3). 
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Figure 3.50 The effect of carrot variety (Little Finger) and temperature regimes on 

individual phenolic acid concentrations in the roots. Means with different letters are 

significantly different (P < 0.05).  Error bars indicate Standard Error of Mean, (n = 3).  
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There was no significant effect  of variety at each temperature on carrot root but a 

significant effect of temperature (P < 0.05) on sum of all phenolics (all 10 peaks in 

Figure 3.36), 3-CQA and other unknown compounds based on 3-CQA equivalent) level. 

No significant interaction was found between the varieties and temperature, (Figure 

3.51). Additionally it was observed that the carrot leaves had much higher 

concentrations than roots. 

 

Figure 3.51 The effect of carrot variety (Parmex and Little Finger) and temperature 

regimes on the sum of phenolics (the sum of all individual phenolics (10 peaks) include 

3-CQA) in the roots. Means with different letters are significantly different (P < 0.05).  

Error bars indicate Standard Error of Mean, (n = 3). 
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Table 3.1  Analysis of Variance (ANOVA) for the phenolic peaks of leaf and root of carrot varieties grown at different temperatures  

 

The highlighted P-value indicates significant differences (P<0.05), (n=3). 

  Chlorogenic acid and unknown  phenolic peaks (mg/100g FW)  of carrot variety (leaf and root) 

   

Pk 1 

 

Pk 2 (3-CQA) 

 

Pk 3 

 

Pk 4 

 

Pk 5 

 

Pk 6 

 

Pk 7 

 

Pk 8 

 

Pk 9 

 

Pk 10 

 

Sum of all peaks  

ANOVA P-values (Leaf)            

Varieties  0.000 0.007 0.209 0.001 0.236 0.916 0.000 0.000 0.176 0.028 0.002 

Temperature  0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Var * Temp 0.929 0.005 0.588 0.275 0.750 0.988 0.000 0.000 0.210 0.010 0.001 

 

ANOVA P-values (Root) 

           

Varieties 0.456 0.372 0.837 0.074 0.804 0.877 0.031 0.000 0.000 0.000 0.558 

Temperature 0.090 0.417 0.018 0.003 0.147 0.001 0.010 0.000 0.000 0.374 0.012 

Var * Temp 0.098 0.234 0.374 0.098 0.081 0.103 0.042 0.001 0.007 0.713 0.080 
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4.1  Effect of temperature on plant growth parameters 

 

4.1.1  Effect of temperature on plant growth rate and time to 

harvest 

 

Throughout the current study, growth of lettuce proceeded over a wider range of 

temperatures than the carrot. Under the highest temperature regime (27/23 ℃) the 

growth of carrot was almost entirely suppressed. This concurs with many previous 

reports which have considered the responses of different plant species and genotypes 

subject to different growth temperatures throughout the whole of the growth cycle. For 

example, (Nascimento et al., 2008) observed that under high temperature treatments, the 

success of carrot germination is dependent on genotype and the extent of the vigour of 

seeds (although effects of temperature on seed germination were not tested in the 

experiments reported here). The time to reach harvestable stage was affected by 

temperature regime: rapid growth and achievement of the appropriate stage of growth or 

maturity of plants is encouraged by higher temperatures whilst plants grown under 

lowest temperature regimes take a longer time to reach harvest on account of slower 

growth and delayed ripening/maturity. This observation was also reported by (Reddy 

and Hodges, 2000), who stated that early growth of lettuce is determined by 

temperature, and the production rate increases with increasing temperature. At low 

temperature slow growth is associated with a slow rate of production of leaves and more 

limited plant height but increases gradually as temperature regimes increase. This 

reflects the effect of temperature on the photosynthesis mechanism the rate of which 

rises with increasing temperature. Consequently, as demonstrated by (Berry and 

Bjorkman, 1980) temperature is a major environmental factor  to which the 

photosynthesis process in plants is particularly sensitive. 

 

4.1.2  Growth and plant biomass production  

 

 It is well-known that plant morphology and growth parameters are affected by growth 

conditions and, in the present study, plant biomass (leaf and root) were affected 

significantly by temperature.  According to (Tackenberg, 2007), basic plant growth rate 

and production is the result of effects of growth conditions such as temperature. Growth 
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(weeks to harvest) was slowest and biomass at harvest highest at lower rather than 

higher temperatures regimes, since in this experiment the harvest time was defined by 

the number of leaves, not by the weight of the plant.   Although there were clear variety 

differences in response to temperature regimes for leaf fresh weight, (Dixter had highest 

leaf (FW) at 17/13 ℃, while Exbury had highest leaf (FW) at moderate temperature 

(22/18 ℃) this was mainly due to differences in moisture content.  

Both lettuce varieties had highest (DW) at lowest temperature at 12/8 ℃. Clearly, the 

rate of dry matter accumulation is the primary variable affected by temperature in many 

species, including  lettuce (Lopes et al., 2004). However it may also influence the dry 

matter content of fresh plant material and have an effect on product quality e.g. texture 

and storage potential of horticultural crops. 

The temperature regimes of 12 ˚C and 17 ℃ resulted in the highest total biomass of 

lettuce. This could be due to the adaptation of this species to lower optimal temperatures 

as a ‘cool’ crop that performs better at lower rather than at higher temperature. This is 

especially the case with carrots in which root growth is more severely affected than 

leaves. Similar results regarding the  effects of high temperature on different species 

were observed  (Bewley, 1997).  Moreover, within a species there is varietal difference: 

the total fresh and dry mass of lettuce Dixter (leaf and root) was higher than that of 

Exbury over the whole of the treatment range due to the differing response of genotypes 

to temperature regimes.  

Since the plants were grown under constant light and similar watering regimes, the 

significant variations in dry matter were obviously effects of the temperature regimes.  

Lopes et al. (2004) made a similar observation.  In addition to the temperature effect, 

light conditions have an important impact on the dry matter content, due to the strong 

relationship between the dry matter accumulation and the amount of photosynthetically 

active radiation of plants (Lopes et al., 2004). Current results concur with (Koontz and 

Prince, 1986) who concluded that the dry matter of the lettuce plant is higher when 

exposed to irradiance (< 500 μmol /m
2
 /s) for a longer period than when exposed to 

irradiance (> 500 μmol /m
2
 /s) for shorter periods. This explains the effect of time until 

harvesting and that differences are dependent on the temperature regime even with a 

similar light condition (150 μmol /m
2
 /s), whereas a plant which is grown slowly (longer 

period) has the highest dry matter in this study specifically that of lettuce.  By contrast,  

at a high temperature, the dry matter content is affected negatively due to an increase in 
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maintenance respiration (Straten et al., 2010), thus,  plants grown at a high temperature 

have a less dry  matter. 

 

4.1.3  Leaf area  

 

The rate of leaf production increased  with increasing day temperature regimes which 

concurs with the conclusion provided by (Wurr et al., 1996): this  is consistent with 

lettuce being a vegetable that matures more quickly and reaches a marketable stage 

when grown at a high temperature. The temperature response of the leaf area of lettuce 

was affected by variety:  Dixter   being more vigorous than Exbury. Temperature had a 

significant effect on the average leaf area of lettuce varieties for all temperatures, 

moderate temperature (22/18 ℃) gave the highest leaf area, with average of varieties 

increasing by 45.9 % from 12/8 to 22/18 ℃ and then decreasing by 22.2 % from 22/18 

to 32/28 ℃. This could be due to the effects of the lowest and highest regimes on 

photosynthetic efficiency and hence on the leaf area: 22/18 ℃ was the optimum regime 

for lettuce growth. 

Al-Hamdani and Todd (1990) observed slow growth, a large leaf area, lower respiration 

and the lowest net photosynthesis in  alfalfa plants grown at 21 ℃ than those grown at 

34 ℃, but different light conditions were imposed (850 and 520 μmol /m
2
 /s). This is 

similar to the current results, even with much reduced light condition (150 μmol m
2
 /s).   

 

 

4.2  Phytochemicals  

 

Clearly, growth temperature regimes effects on morphology and physiological 

processes lead to impacts on the quality and nutritional value of plant products  (Moretti 

et al., 2010). This is reflected in the large changes in the phytochemical concentrations 

in this study. However, the response of plants to growth temperature conditions and, 

thus, the accumulation of phytochemicals differs, as has been reported in previous 

studies of environmental stress influences (Taub et al., 2000; Moretti et al., 2010; 

Sanghera et al., 2011).  
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4.2.1  Sugar content 

 

Accumulation of sugar in both shoots and roots of lettuce and carrot was highest at a 

low temperature and decreased with increasing temperatures. According to (Pietrini et 

al., 2002), at  low temperatures  respiration  rates slow down and there is less enzyme 

activity, which tends to reduce energy demand and leads to a high accumulation of 

sugar instead of nitrate. By contrast, at a high temperature, increasing respiration (more 

energy requirement) leads to a decrease in the sugar content with a different response 

between the genotypes, as a result of the associated active nitrogen metabolism process 

that utilizes  sugars, (Champigny, 1995).  

This offers an explanation for current results whereby, the mechanism of sugar 

production results in high levels in response to the effect of low temperatures, leading to 

the a reduction of nitrate accumulation associated with an increase in the rate of 

nitrogen metabolism. Similar observations were made in lettuce leaves by (Zhou et al., 

2013) with the same light intensity but a different light quality.  

Additionally, the greater concentration of sugar is associated with slow growth and 

development of plants, due to the main effect of low temperatures on sugar 

accumulation. This contrasts with higher temperature regimes that lead to more rapid 

growth and less sugar. Therefore the physiological process (the photosynthesis and 

respiration alterations caused by temperature) is a possible reason, since dark respiration 

slows down under low temperature conditions, which causes reduction of carbohydrate 

consumption (Khayat et al., 1988).  Thus carbohydrate levels are influenced by the 

maturation extent of leaves and shoots (Jiao et al., 1989) in rose plants. 

Although effects on sugar content were variable dependent on temperature regimes in 

the recent study, this was not the case for the content of non-sugar materials (plant 

residue) of both lettuce and carrot plants, where there are no reported studies to compare 

with.  

 

4.2.2 Nitrate concentration 

 

Previous  research has shown that light (Lillo, 2004; Santamaria, 2006) and temperature 

(Hill, 1991; Gorenjak and Cencic, 2013) are both important for nitrate accumulation in 
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plants, they are considered to be the main factors affecting of both uptake and reduction 

of nitrate in plants.   

Nevertheless, in the present study, growth temperature regimes were observed to be a 

significantly influential factor on nitrate accumulation, while the light was constant for 

all temperature treatments.  Nitrate accumulation in both the leaves and roots of carrots 

and lettuces increased significantly with temperature. However, concentrations differed 

between roots and leaves and between different varieties of the same plant species. 

It is well known that the enzyme reductase rapidly can convert nitrate to amino acids in 

the plant, and that its conversion requires important factors that are:  light, nutrients, 

water and appropriate temperature, (Weitzberg and Lundberg, 2013). However, if the 

plant is exposed to different stresses, the conversion of nitrate to proteins becomes 

restricted, thereby resulting the accumulation of nitrate (Hill, 1991).   

Other studies have demonstrated that lettuce which is grown in winter (low temperature 

and low conditions) has higher nitrate concentration than those grown in summer (high 

temperature and high light conditions) due to differences in light intensity  thus 

affecting nitrate reductase enzyme activity leading to variation of nitrate uptake in plant 

tissues,(more light result in more nitrate being converted into protein) (Leyva et al., 

1995).   Light energy also stimulates the photosynthetic electron transport to provide the 

required electrons that are responsible for reduction of nitrate to nitrite, (McCashin, 

2000). 

However, in complete contrast, in this study nitrate concentration increased with 

temperature. This is probably due to the fact that light inputs was constant at all 

temperatures and relatively lower (150 μmol /m
2
 /s) compared with other reports. 

According to (Brown et al., 1993)  the increase in accumulation of nitrate in plants 

grown at high temperature is high due to the rapid transpiration of water that occurs at 

faster rate than the nitrate can be metabolised.  

Some studies have raised concerns about links between the nitrate concentration in the 

diet and some health issues such as cancer in the digestive tract or 

methaemoglobinaemia in infants. This may be caused by toxic products such as nitrite 

resulting from the conversion of ingested nitrate in saliva and the gastrointestinal tract, 

(Lundberg et al., 1994; Bryan and Grinsven, 2013).         

However, nitrate concentration of leafy salads and vegetables is a feature related to the 

European Commission’s adopted EC Regulation No. 1822/2005 associated with health 

requirements of consumers. This specifies the maximum level of nitrate permitted in 

lettuce and spinach (Table 1.2), Exbury variety had the highest concentration of NO3 



117 

 

(2690 mg/Kg) at 27/23 ℃. This level exceeds the maximum permitted level in lettuce 

during summer (for crops grown in the open air and under cover) and could therefore 

have implications for human health. Clearly, there are differential effects of temperature 

and also variety on leaf nitrogen concentrations which are significant for both producers 

and consumers.   

Carrot root growth was inhibited at a high temperature (27/23 ℃), however, it was not 

possible to measure nitrate concentration in the carrot root at this temperature regime, 

since the amount of root material (of the tap root) was too small, therefore the nitrate 

concentrations was investigated in the leaves only. Whereas leaves had the highest 

accumulation of nitrate under this temperature regime (27/23 ℃), so this may also have 

been the case for the roots, if it had been possible to measure the content in the very 

small roots that were formed at this regime. 

Nitrate accumulation reacts in the opposite way to sugar and increases with an increase 

in the temperature, as concluded by (Zhang et al., 1997). However, most of the earlier 

studies show a strong correlation between low light intensity and high accumulation of 

nitrate in both the field and greenhouse.  

In the present study, the growth temperature played a significant role in nitrate 

accumulation. This observation will thus be useful for growers when growing plants at 

different temperatures (seasonal differences between summer and winter) and when 

using fertilizers which lead to an increase in the nitrate level (Brown et al., 1993; Byrne 

et al., 2004; Bumgarner et al., 2012). Thus nitrogen fertiliser recommendations and 

determination of the appropriate fertilizer  dose to be applied should take account of the 

prevailing temperature regime, taking into account  both light and temperature changes  

between seasons. On other hand climate change is predicted to increase temperature 

without changing the light conditions.  

Different studies used different experimental design  have achieved very different 

results, however, it is well known that the nitrate concentration can be controlled 

(reduced) during winter growing in greenhouses by using either a low temperature or 

with supplementary light or both to develop a strategy of growth, (Ioslovich and 

Seginer, 2002; Demsar et al., 2004; Lillo, 2004; Xu and Huang, 2011). 
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4.2.3  Chlorophyll pigments    

  

Many researchers consider that HPLC measurement to be the more accurate 

quantification technique for chlorophyll pigments and the results of this study was 

based on this. Also the chlorophylls were measured spectrophotometrically (fresh 

material), but it was not possible to use the results of the spectrophotometric method 

because of an error in the procedure used. 

According to the observation by (Al-Hamdani and Todd, 1990)  chlorophyll a and b 

increased with increasing temperatures. However, as expected the results showed that 

the high temperature regimes increased chlorophyll levels of both lettuce and carrot 

leaves. Similarly, Al-Hamdani and Todd (1990)  reported that chlorophylls a and b of 

Alfalfa grown at 12, 21 and 34 ℃ under high light conditions  increased with an 

increase in temperatures. Although lettuce varieties respond differently to temperature 

regimes in terms of chlorophyll accumulation, in the current study, chlorophylls a and b 

of lettuce increased as the temperature increased. As consideration the chlorophylls are 

the primary pigments of photosynthesis in plants, and its concentration can affect 

different factors. Through the present study with constant  light conditions, the 

concentration appears low at the lowest regime and increases with an increase in 

temperatures due to the greater activity of photosynthesis as observed by (Fitter and 

Hay, 2002; Qin et al., 2007; Moretti et al., 2010), which in turn increases the 

chlorophyll concentration. This observation disagrees with the results reported by 

(Gazula et al., 2005) who observed that lettuce grown at 20 ℃ has a higher 

concentration of chlorophyll b than lettuce grown at 30 ℃ due to pigment degradation at 

high temperatures, the likely reason for this disagreement is the genotypes variation to 

temperature response and high light conditions (600 μmol /m
2
 /s) which is considered 

high for the light conditions when compared to the current study which is (150 μmol /m
2
 

/s).  

The observation for both chlorophylls a and b concentration of carrot leaves in present 

study are higher at a moderate temperature 22/18 ℃ than at a lower temperature and 

slightly decreased at 27/23 ℃ (above optimal). This suggests that the optimal 

temperature regime is 22/18 ℃. Consequently, an increase in photosynthesis activity is 

associated with an increase in chlorophyll pigment concentrations associated with 

increasing temperatures (up to 32 ℃ in the present study) and the ability of plants to 
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adapt up to this range. However, it could be that had the temperature range under test 

been extended above 32 ℃ there may have been a decrease or/ and inhibition of 

pigmentation. According to (Berry and Bjorkman, 1980) however, high temperature (> 

20 ℃) has a negative effect on the photosynthetic apparatus (Photosystem II and CO2 

fixation) through disruption of the functional integrity, due to the high sensitivity of 

photosynthesis to high temperatures . 

As reported by (Nobel, 1999)  that the normal ratio of chl a: chl b is (3:1), while the 

present results shows an increase of chlorophyll a / chlorophyll b ratio, which even 

exceeded the normal range which is considered to be 4:1. 

However, this is most likely in response to the low light condition in this study. A 

similar observation was reported by (Beneragama and Goto, 2010), who observed 

increased chlorophyll a/b ratios in Euglena in low light conditions. 

 

 

4.2.4  Carotenoid composition 

 

In the present study   temperature regimes had a highly significant effect on carotenoids’ 

concentration. The concentrations of lutein, β-carotene and Cis β-carotene in the variety 

Dixter were similar over all temperature regimes except at the moderate temperature 

(22/18 ℃) where it was highest. The variety Exbury  also exhibited significant effect of 

temperature on  carotenoid concentration but the concentrations of lutein, β-carotene 

and Cis β-carotene were broadly similar at all temperature regimes. This could be a 

varietal response to the temperature effect. Generally, these results concur with those 

reported by (Mou, 2005), that carotenoids levels in autumn (where the  temperature 

close to 17/13 ℃ in present study) are lower than in the summer (where the  

temperature close to 22/18 and 27/23 ℃ in present study, taking into account the 

differing  light conditions), in addition to the genetic variation that is significant for 

lettuce varieties. Regarding carrots,  however, (Simon and Wolff, 1987) reported that 

the variation of carotenes’ concentration is likely to be caused by genetic and 

environment factors but the genotypes are considered the main influence on carrot roots. 

In the present study, the concentrations of lutein, α-carotene and β-carotene were 

significantly affected by temperature  which is consistent with the results for carrot 

roots, as reported by Nicolle et al. (2004). Carotenoid levels of carrot leaves were also 

significantly affected by temperature. There is a different response of carotenoids to 
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temperature regimes and a greater temperature effect on lutein concentration in both 

carrot leaves and roots, although they respond in different directions. Whereas the lutein 

in the carrot root increases with an increase in temperature, the concentration in the 

leaves decreases with an increase in temperature.  In this study, it was evident that the 

effect of temperature on accumulation of lutein in leaves is opposite to that of 

chlorophyll pigments. Therefore, these results disagree with other studies e.g.  Mou 

(2005)  who concluded that both carotenoids and chlorophyll concentrations were both 

affected in the same direction.  The low light conditions in the present study are 

probably a reason of this disagreement. This observation needs further research to 

clarify understanding. 

The greater β-carotene of carrot root at 17/13 ℃ could be due to the more prolific 

growth of  roots, dry matter accumulation with advancing maturity and increasingly 

dark orange colour at this temperature, especially in the Parmex variety (Figure 3.31): 

this is supported by (Samuoliene and Duchovskis, 2006) who indicated that the 

carotenes’ concentrations increase with the age and size of carrot roots. However, carrot 

leaves have about twice the concentration of carotenoid levels than the roots.  

 

 

4.2.5  Polyacetylene compounds of carrot root 

 

Concentration of the three polyacetylene compounds (falcarindiol, falcarinol 3-acetate 

and falcarinol) varied considerably between the temperature regimes. At the lowest 

temperature (12/8 ℃) both carrot varieties exhibited the highest concentration of 

polyacetylenes in the roots: on average the concentrations in both varieties decreased by 

45.3 % with an increase in temperature (12-22 ℃). The influence of temperature on 

polyacetylenes accumulation is considered to be one of the different defence 

mechanisms of plants against environmental stresses, including temperature and also 

pests and diseases. Many studies have reported the antifungal activity and antibacterial 

properties of polyacetylenes (Mercier et al., 1993; Baranska and Schulz, 2005; 

Christensen and Brandt, 2006). 

Falcarindiol is the most abundant polyacetylene in both varieties of carrot root, as 

reported by (Czepa and Hofmann, 2003; Czepa and Hofmann, 2004; Christensen and 

Kreutzmann, 2007; Kjellenberg et al., 2010) and also reported by (Kreutzmann et al., 

2008) in the carrot peel. On the other hand, in other studies, Falcarindiol was present at 
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a lower concentration than Falcarinol (Kreutzmann et al., 2008). Falcarinol differed 

markedly between the two varieties of carrots, which may reflect the ability of different 

genotypes to accumulate polyacetylenes, both during growth and in the post-harvest 

phase which is apparent in the effects of root size and storage conditions as reported by 

(Kidmose et al., 2004). Many previous studies have shown the sensitivity of 

polyacetylenes to several different factors, but no reports have highlighted the effects of 

growth temperature on the polyacetylene concentration in carrots. Information about the 

accumulation of these bioactive compounds at different temperatures is still new and the 

present study demonstrates that the low growth temperature regime enhances increased 

levels of polyacetylenes. This might be due to the role of polyacetylene compounds as a 

defence against sub-optimal temperature stresses and thus the synthesis effects depend 

on temperature. Further research is needed to confirm this observation in the absence of 

clear investigations of growth temperature influences and the associated physiological 

processes. 

 

 

4.2.6  Phenolic compounds 

 

4.2.6.1  Phenolic acids  

 

Present results confirm chlorogenic acid, (3-CQA), as the main phenolic acid in carrot 

root and leaf, and also its presence in lettuce leaves. Other major phenolic acids have 

been identified by other groups of researchers. However, most of the phenolic standards 

were tested, which had previously been reported for carrots, were not present in the 

samples analysed in present study. Therefore, the results reported in the previous 

literature were probably not correct. However of all of the alternative compounds, the 

standards were impossible to purchase for phenolic acids. So there is full agreement in 

all of the literature that these peaks are phenolic acids, it’s just not certain which 

phenolic acids they are.  

Regarding lettuce leaves, the current study which identified chlorogenic acid named as 

(3-CQA) as the main phenolic acid does not concur with (Romani et al., 2002) who 

reported that the name of main caffeic derivative was (5-CQA). 

Many studies have shown the high accumulation of phenolics under the different 

stresses. Therefore, the current results show similar observations that have previously 
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been reported (Ellnain-Wojtaszek et al., 2001; Wang and Zheng, 2001; Gliszczynska-

Swiglo et al., 2007; Oh et al., 2009): exposure of plants to stresses, increases the action 

of enzymes that lead to an increase in the production of phenolic acids.    

The temperature regimes (22/18 and 27/23 ℃) that are considered an the moderate 

range (least stressful) to growth and development of both species, however, the plants at 

these regimes had the lowest concentration of phenolic compounds. Clearly, the stress 

temperature regimes (12/8 and 32/28 ℃) particularly lower temperature (12/8 ℃) 

affected the biosynthesis of phenolic compounds (phenolic acids and quercetin) and 

thus resulted in the accumulation of higher levels in the lettuce and carrot leaves. 

Similarly, (Dixon and Paiva, 1995) reported during the exposure of plants to diverse 

stresses such as temperature and/or light conditions,  as a result it is likely antioxidants 

act for the defence through accumulation in response to stress. This reflects on plants 

which adapt to the surrounding conditions. These defence mechanisms of genetic 

activity were also reported in lettuce by Oh et al. (2009).  

Likewise, carrot shoots have a higher concentration of phenolic acids than roots and 

both parts vary in response to temperatures. 

In addition, that the least stressful temperature for carrot is lower than for lettuce, and 

this corresponds with the temperature where the concentration of phenolic acids is 

lowest. 

The present study provides strong evidence that contributes further to previous reports 

about accumulation of phenolic compounds under stress.  Due to the important role of 

some enzymes (such as phenylalanine ammonia-lyase (PAL)) and activation resulting 

from stresses, accumulation of phenolics increases to levels according to the extent of 

the stress, (Rosa et al., 2001; Oh et al., 2009; Boo et al., 2011).     

 

4.2.6.2  Anthocyanin of lettuce 

 

High concentrations of anthocyanin in lettuce grown at lower temperatures (12/8 and 

17/13 ℃) can be easily observed by the red pigmentation of the leaves, which is not 

apparent at higher temperatures (27/23 and 32/28 ℃).  

Boo et al. (2011) also reported higher concentrations of anthocyanin in lettuce grown at 

relatively low temperatures (13/10 °C and 20/13 °C) compared with higher temperature   
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(25/20 and 30/25 °C) that had lower concentration,   with the same light conditions  as 

the present study. Therefore, the temperature regimes result in significant alterations of 

plant metabolism which cause different anthocyanin accumulation in lettuce tissue. 

However, increased occurrence of both activities of PAL (phenylalanine ammonia-

lyase) and PPO (polyphenol oxidase) more quickly at low temperature than at high 

temperature and increased the anthocyanin accumulation (Boo et al., 2011). 

Zhang et al. (1997) reported a high accumulation and production of anthocyanin in 

strawberry cells grown at a lower temperature (15 and 20 ℃) than that of higher regimes 

(30 ℃) associated with a longer period of growth, due to the different biosynthesis of 

anthocyanin. Thus, the physiological mechanisms (response) were different (during 

various growth temperatures.  This concurs with the present study which identified 

greater levels of anthocyanin in lettuce grown slowly at low temperature regimes even 

with low light conditions.   

By contrast, high temperature suppression of anthocyanin accumulation, could arise 

because the unstable state, genetic mechanisms of anthocyanin and short periods of 

growth at high temperatures as concluded by (He et al., 2010).  As well as  a high 

temperature is the main influence on anthocyanin accumulation. Two mechanisms were 

reported by (Chao and Yang, 1996; Shaked-Sachray et al., 2002), one is that the 

synthesis decreases and the other is an increased rate of degradation, both reducing the 

concentrations at high temperatures. 

The physiological aspects of anthocyanin accumulation at low temperature conditions 

have been reported by many researchers who are aware of this protective mechanism 

(Leyva et al., 1995) being an important key of plant growth.  This acts as light screening 

to protect the plants against the temperature stresses and the photo induced oxidative 

reaction inhibited through the photosynthetic apparatus, whereby anthocyanin 

molecules provide this protection during low temperatures associated with slow rate of 

photosynthesis and  slow enzyme activity (Chalker-Scott, 1999; Pietrini et al., 2002; 

Bumgarner et al., 2012). These explanations support the results of the present study as 

regards low temperature regimes.   

The varieties significantly vary in their response to low temperature regimes and thus 

lead to a variation in anthocyanin levels which could be due to the different genetics and 

responsiveness. These results provide additional firm confirmation of high 

accumulations of anthocyanin associated with low temperature regimes and that high 
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temperatures (especially the moderate 22/18 ℃) lead to the inhibition of pigment 

synthesis, as has been reported in many investigations.  

In contradiction to the present experiment actually proves that (He et al., 2010) 

hypothesis is incorrect, and that the anthocyanin can be formed also at high 

temperatures (the Dixter and Exbury dramatically had slightly increasing of anthocyanin 

at the highest regime (32/28 ℃) than lower moderate regimes), probably when there 

is stress that requires protection (as mentioned with phenolic acids).  However, further 

researches are required to support this observation.  

 

4.2.7  Effects of temperature on plant composition 

 

Temperature played significant effects on growth rate and the different stages of 

development of plants.  

Practically, this study points out the importance to growers of knowledge and 

understanding about the different response of varieties to temperature. This may help 

their decisions about choice of varieties to be grown under different environmental 

conditions in order to achieve the best yields and quality and hence optimise their 

returns.  On other hand it was clear that some the important photochemical compounds 

either increased or decreased according to temperature i.e. the optimum was different 

for different compounds which may mean that compromises may be needed.  The 

present study has shown how the temperature regimes affect two species of vegetable 

plants, and may be considered as a starting point for further studies focusing on the link 

between production environment and the effects of these important phytochemicals that 

relate to diet and human health and effects of climate change that lead to increasing of 

temperature. The role of some as beneficial antioxidants and others that may have 

potential toxic effects is still an area of great debate: potential inhibition against diseases 

such as some cancers by producing plants for human consumption that have high levels 

of beneficial phytochemicals is an important goal.  Just as important is the avoidance of 

producing potentially harmful levels of phytochemicals for consumption. It is essential 

however to confirm precisely which are beneficial and which are harmful and in what 

amounts. 

Most previously published work in this area has investigated effects of temperature on 

individual phytochemicals, in most cases focusing on the types of stress or other 
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environmental influences (e.g light stress, water stress) that are particularly relevant for 

this type of compounds.  

The present study has investigated one specific environmental factor - temperature - 

across a wide range of different phytochemicals in two plant species. For 

phytochemicals present in both carrots and lettuce, most temperature effects show the 

same trends for both species, although the temperature optimum for carrot growth is 

lower than for lettuce.   

 

The present study also confirms that responses to temperature differ between different 

groups of phytochemicals which have different functions within the plant. Clearly 

therefore, no single temperature regime can optimize the concentration of all the 

potentially health-promoting compounds in vegetables. Conclusions based on single-

compound investigations are thus likely to contradict comparable outcome focusing on 

other types of compounds.  

 

This highlights the need for more research to determine which phytochemicals are more 

or less important for human health, as a necessary basis for any successful 

implementation of the horticultural/agronomic studies. 
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5.1  Conclusion  

 

The results of this study confirm what is well known - that growth temperature regimes 

have a significant effect on plant morphology, resulting in a variation of growth 

parameters. The temperature stresses that were imposed had very clear effects on 

growth. As temperature increased plants grew more rapidly with leaf growth being more 

positively affected than root growth. On the other hand, low temperatures resulted in 

slow growth and increased root biomass (especially the roots of carrots). The lettuce 

plants were able to grow in a wide range of temperature regimes, whilst carrot root 

growth was more affected than that of shoot growth and at 27/22℃ growth became 

inhibited.  Plants grown in a higher temperature regime were significantly taller and had 

a greater leaf production than in lower regimes. There was a very consistent effect of 

temperature regimes on dry matter content: the lowest temperature (12/8 °C) produced 

the highest dry matter content of both shoots and roots. 

Clearly growth temperature regimes have an effect on the physiological processes of 

plants and involve components, which either respond to or defend against extreme 

temperatures by means of large alterations in phytochemical concentrations. 

Highly significant effects of the temperature regimes on the lettuce and carrot varieties 

were observed. At the lowest temperature, the sugar content increased in both shoot and 

roots. Growth temperature plays an important role in nitrate accumulation of plants; 

however it can be concluded that increasing temperatures will increase nitrate under low 

light conditions. Consequently, the response of sugar and nitrate concentrations to 

temperature was in the opposite direction. 

There was a marked effect of the three temperature regimes for the polyacetylenes in 

carrot roots which decreased by 45 % at the lowest temperature. Falcarindiol was at the 

highest level followed by intermediate levels of Falcarinol and Falcarindiol-3-acetate at 

the lowest level in all temperature regimes.  The chlorophylls and carotenoids which are 

directly involved in photosynthesis were higher at moderate temperatures than in the 

lowest temperature regimes.  

Temperature had a significant effect on total phenolic compounds. The accumulation of 

phenolic compounds in both carrots and lettuce leaves is associated with both low and 

high temperature treatments, and the levels at 22/18 ℃ are only 3-50 % of the highest 

values, whilst the total phenolics of carrot roots are at consistent levels. 
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Accordingly, it can be noted that growth temperatures, particularly stress regimes, 

enhance (stimulate) high accumulation of phytochemicals and thus increase the 

nutritional value of main food plants which, in turn, may help to compensate for the 

generally below recommended rate of vegetable consumption which is apparent in some 

populations. To summarize, these effects could become increasingly important aspects 

as climate change and global warming proceeds with potentially substantial 

implications for the links between diet and human health. 

 

 

5.2  Future work and recommendation 

 

Further investigations are required to test the performance and composition of plants 

under different temperature and light levels with more replications of each treatment to 

confirm these observations. Continuation of this line of research with various different 

types of vegetables and different genotypes and how they are affected by different 

temperature treatments should also be pursued. In terms of nutritional value, it would be 

interesting to investigate the levels of phytochemicals of plants grown at different 

temperatures and compare them with the changes in levels that may occur as a result of 

postharvest storage processes and assess the extent to which such changes in 

concentrations may be achieved by manipulating environmental conditions in the field, 

greenhouse or store. It should then be possible to assess the   potential benefits or 

dangers to humans of the changes in nutritional value brought about by such 

modifications. Furthermore, for commercial vegetable production, detailed knowledge 

about the interactions between changing environmental temperatures and water and 

nutrient supply throughout growth that impact on crop nutritional value may help to 

design and optimise management strategies to control crop product quality future basic 

research is recommended. For example, it would be useful to investigate and identify 

the main phenolic compounds present in carrot roots by using new techniques with 

confirmation of their names and chemical structure.  
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7.1  Materials and methods  

 

7.1.1  Experimental overview  

 

           

Figure 7.1 Growth chamber model Sanyo (MLR-351) and plant trays (replication). 

 

             

Figure.7.2 Processing of carrot and lettuce variety samples at harvest time: sample 

collection, storage conditions and milled samples. 
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7.1.2   Growth parameters 

 

7.1.2.1 Leaf area analysis 

 

The analysis was done as following:   each image file was opened in image J program 

Figure 7.3. 

 

     

 

Figure.7.3 Show the steps of measurement of lettuce leaf area 

 

The image menu was opened and the “type” selected. Then “8-bit” was selected, then 

again from image menu the “adjust” tools were selected, then “threshold”. The sliding 

bars were adjusted until the whole leaf area was all red and the background was white. 

Then a black and white image appeared. The scale on image were set from toolbar, the 

straight-line tool was selected then a line drawn across the area of known dimensions 

(which is = 3 cm). For each plant whole leaves were analysed at one time, by selection 

of the box or polygon tool from the toolbar and drawing a box or outline around the 

whole leaf, a single click placed a new line in the shape and double click to close the 

shape. Also a specific leaf can be measured by selection of required leaf. From the 

analyse menu “set measurements”, were selected and the area box was ticked. Analyse 

menu again opened “analyse particles” were selected, then a dialogue box were opened, 

the minimum size of an object where it say “size (cm^2) were selected and clicking OK, 

then a new box page were appearing with the results. 
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7.1.3   Phytochemicals analysis 

 

7.1.3.1 Nitrate measurement 

 

 

 

 

Figure 7.4 Flow chart of the nitrate analytical procedure 

 

 

 

 

 

 



160 

 

7.2 Results  

 

7.2.1 Growth rate  

 

7.2.1.1 Plant biomass 

 

Table 7.1 Analysis of Variance (ANOVA) for the weight of lettuce variety root grown 

in different temperature regime, (n=3). 

 

  Weight of root (g/plant) 

  Fresh weight Dry weight 

Variety   

Dixter    

12/8 3.057 ± 0.086 a 0.326 ± 0.027 a 

17/13 1.928 ± 0.102 b 0.133 ± 0.007 b 

22/18 1.144 ± 0.021 c 0.068 ± 0.003 c 

27/23 0.579 ± 0.019 d 0.037 ± 0.001 c 

32/28 0.673 ± 0.052 d 0.045 ± 0.003 c 

Exbury    

12/8 1.722 ± 0.103 a 0.121 ± 0.013 a 

17/13 1.084 ± 0.113 b 0.061 ± 0.005 b 

22/18 0.476 ± 0.038 c 0.026 ± 0.002 c 

27/23 0.277 ± 0.018 c 0.017 ± 0.001 c 

32/28 0.550 ± 0.076 c   0.037 ± 0.005 bc 

ANOVA P-Values   

Varieties 0.000 0.000 

Temperature  0.000 0.000 

Varieties* temperature  0.000 0.000 

 

The values are Mean ± standard error of means followed by different letters are 

significantly different, the highlight P-value indicated significant differences (P< 0.05). 

 

 

 



161 

 

Table 7.2 Analysis of Variance (ANOVA) for the weight of carrot variety leaf grown in 

different temperature regimes, (n=3). 

 

  Weight of leaf (g/plant) 

  Fresh weight  Dry weight  

Parmex     

12/8 1.816 ± 0.191 b 0.334 ± 0.028 b 

17/13 4.140 ± 0.179 a 0.657 ± 0.033 a 

22/18 4.281 ± 0.191 a 0.668 ± 0.022 a 

27/23 2.535 ± 0.422 b 0.427 ± 0.026 b 

Little Finger     

12/8 2.229 ± 0.089 b 0.436 ± 0.031 b 

17/13 4.508 ± 0.264 a 0.730 ± 0.053 a 

22/18 4.070 ± 0.357 a 0.667 ± 0.057 a 

27/23 2.563 ± 0.143 b 0.380 ± 0.030 b 

ANOVA P-Values     

Varieties 0.437 0.251 

Temperature  0.000 0.000 

Varieties* temperature  0.634 0.199 

 

The values are Mean ± standard error of means followed by different letters are 

significantly different, the highlight P-value indicated significant differences (P< 0.05). 
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Table 7.3 Analysis of Variance (ANOVA) for the total plant weight (fresh and dry) of 

lettuce varieties grown in different temperature regime, (n=3). 

 

 

  Total plant weight(g) 

  Fresh weight Dry weight 

Variety   

Dixter    

12/8 11.57 ± 0.43 a 1.27 ± 0.05 a 

17/13 13.57 ± 0.68 a 0.86 ± 0.04 b 

22/18 11.59 ± 0.21 a 0.66 ± 0.01 c 

27/23 8.17 ± 0.45 b 0.48 ± 0.01 d 

32/28 7.16 ± 0.43 b 0.44 ± 0.02 d 

Exbury    

12/8 8.44 ± 0.63 a 0.61 ± 0.05 a 

17/13 7.61 ± 0.98 ab 0.43 ± 0.05 b 

22/18 7.77 ± 0.46 ab 0.39 ± 0.01 bc 

27/23 5.11 ± 0.34 b 0.25 ± 0.01 c 

32/28 6.76 ± 0.41 ab 0.43 ± 0.03 b 

ANOVA P-Values   

Varieties 0.000 0.000 

Temperature  0.000 0.000 

Varieties* temperature  0.001 0.000 

 

The values are Mean ± standard error of means (SEM) followed by different letters are 

significantly different; the highlight P-value indicated significant differences (P< 0.05). 
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Table 7.4 Analysis of Variance (ANOVA) for the total plant weight (fresh and dry) of 

carrot varieties grown in different temperature regime, (n=3). 

 

  Total plant weight(g) 

  Fresh weight Dry weight 

Variety     

Parmex     

12/8 4.64 ± 0.26 c 0.70  ± 0.04 c 

17/13 11.78 ± 0.38 a 1.62 ± 0.05 a 

22/18 7.52 ± 0.54 b 1.03 ± 0.07 b 

27/23 2.62 ± 0.43 d 0.44  ± 0.03 d 

Little Finger     

12/8 3.97 ± 0.55 c 0.66 ± 0.10 c 

17/13 10.81 ± 0.56 a 1.43 ± 0.06 a 

22/18 7.69 ± 0.87 b 1.05 ± 0.12 b 

27/23 2.65 ± 0.16 c 0.39 ± 0.03 c 

ANOVA P-Values     

Varieties 0.309 0.154 

Temperature  0.000 0.000 

Varieties* temperature  0.588 0.363 

 

The values are Mean ± standard error of means followed by different letters are 

significantly different, the highlight P-value indicated significant differences (P< 0.05). 
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7.2.2   Chlorophylls and carotenoids 

 

 

Table 7.5 Carotenoids of lettuce leaves with the HPLC specific UV spectrum 

 

 

Peak Retention time 

(RT) 

symbol compound             HPLC- DAD  

     UV spectrum λmax (nm) 

1 38.2 Lut Lutein 421sh,443,471 

2 40.5 Chl b Chlorophyll b 436sh, 463,470 

3 41.8 Chl a Chlorophyll a 338,385,418,432 

4 45.4 α-car α-carotene 424sh, 444, 472 

5 45.7 β-car β-carotene 422,450,474 

6 46.3 Cis β-car Cis β-carotene 421,446,469 
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Figure 7.5 The effect of lettuce leaf variety (Dixter and Exbury) and temperature on 

chlorophyll a and b (mg/cm
2
) . Means with different letters are significantly different (P 

< 0.05). Error bars indicate Standard Error of Mean, (n = 3). 
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Table 7.6 Analysis of Variance (ANOVA) for the sum chlorophylls (a and b) and 

carotenoids (Lutein, β-carotene and Cis  β-carotene) of lettuce leaf varieties grown in 

different temperature regime, (n=3). 

 

                    Sum of chlorophylls and carotenoids of lettuce leaf  (mg/ 100g FW) 

  

Variety 

Sum of chlorophylls 

 (a + b) 

sum of carotenoids  

(Lut, β-car and Cis  β-car) 

Dixter    

12/8 49.34 ±  4.17 b 5.76 ± 0.35 b 

17/13 65.61 ± 4.46 ab 6.03 ±  0.38 b 

22/18 82.52 ± 7.69 a 12.98 ±  0.67 a 

27/23 83.61 ±  4.37 a 5.72 ±  0.18 b 

32/28 91.13 ±  7.61 a 5.93 ±  0.45 b 

Exbury   

12/8 39.44 ±  1.95 c 3.87 ±  0.18 ab 

17/13 36.53 ±  0.11 c 3.30 ±  0.15 b 

22/18 55.02 ±  5.17 b 4.87 ±  0.41 a 

27/23 68.91 ±  2.73 a 4.68 ±  0.22 a 

32/28 39.19 ±  0.52 c 2.01 ±  0.05 c 

ANOVA P-Values   

Variety 0.000 0.000 

Temperature  0.000 0.000 

Variety *Temperature 0.002 0.000 

 

The values are Mean ± standard error of means within followed by different letters are 

significantly different, the highlight P-value indicated significant differences (P< 0.05).  
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Table 7.7 Analysis of Variance (ANOVA) for the sum chlorophylls (a + b) and 

carotenoids (Lut, α-car, β-car and Cis β-car) of carrot leaf and root variety grown in 

different temperature regime, (n=3). 

 

 

The values are Mean ± standard error of means within followed by different letters are 

significantly different, the highlight P-value indicated significant differences (P< 0.05).  

 

  Sum of chlorophylls and carotenoids of carrot (mg/100 g FW) 

  Leaf Root 

  sum of chlorophylls  

(a + b) 

sum of carotenoids  

(Lut, β-car and Cis β-car) 

sum of carotenoids  

(Lut, α-car, β-car and Cis β-car) 

Variety    

Parmex    

12/8 98.30 ± 4.96 a 9.22 ± 0.33 b 3.72 ± 0.58 b 

17/13 105.00 ± 3.95 a 9.63 ± 0.58 b 11.43 ± 0.65 a 

22/18 100.90 ± 3.53 a 12.16 ± 0.11 a 7.63 ± 0.42 ab 

27/23 90.90 ± 3.57 a 4.58 ± 0.04 c  

Little Finger    

12/8 106.10 ±  4.76 a 8.19 ±  0.77 bc 2.33 ± 1.07 a 

17/13 112.90 ± 6.79 a 9.99 ±  0.47 b 3.43 ± 0.19 a 

22/18 134.40 ± 9.85 a 16.36 ± 1.41 a 3.34 ± 0.21 a 

27/23 106.40 ± 4.91 a 5.47 ± 0.53 c  

ANOVA P-values    

Varieties 0.000 0.028 0.000 

Temperature 0.012 0.000 0.001 

Var * Temp 0.082 0.008 0.006 
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7.2.3   Polyacetylene compounds (HPLC)  

 

 

Figure 7. 6 The effect of temperature regimes and carrot  variety (Parmex and Little 

Finger) and temperature on total polyacetylene compounds (FaDOH, FaDOAc and 

FaOH). Means with different letters are significantly different (P < 0.05). Error bars 

indicate Standard Error of Mean, (n = 3). 
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7.2.4   Phenolic compounds  

 

 

 

                             

 

Figure 7.7 HPLC chromatogram recorded at 520 nm with diode array detector of 

Anthocyanin in Lettuce leaf grown (at 12/8 ℃). 
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Table 7.8 Analysis of Variance (ANOVA) for the phenolic peaks of carrot leaf variety grown in different temperature regime, (n=3). 

 

 

 

The values are Mean ± standard error of mean followed by different letters are significantly different, the highlight P-value indicated 

significant differences (P< 0.05), (n = 3). 

 

 

 

  Chlorogenic acid and unknown  phenolic peaks (mg/100g FW)  of carrot leaf 

   

Pk 1 

 

Pk  2 (3-CQA) 

 

Pk 3 

 

Pk 4 

 

Pk 5 

 

Pk 6 

 

Pk 7 

 

Pk 8 

 

Pk 9 

 

Pk 10 

 

Sum of phenolic 

(all peaks ) 

Parmex            

12/8 2.65 ± 0.64 a 16.25 ± 2.87 b 1.20 ± 0.23 b 8.88 ± 0.23 a 1.75 ± 0.41 a 1.82 ± 0.35 a 6.42 ± 0.44 a 11.40 ±  0.63 a 1.86 ± 0.60 a 17.93 ± 6.71 a 70.16 ± 9.70 b 

17/13 2.79 ± 0.49 a 144.81 ± 5.22 a 3.81 ± 0.44 ab 2.01 ± 0.60 b 0.50 ± 0.22 b 0.49 ± 0.04 b 5.00 ± 0.43 a 2.37 ± 0.45 b 1.69 ± 0.23 a 25.09 ± 1.63 a 188.00 ± 5.38 a 

22/18 3.28 ± 0.39 a 11.84 ± 4.77 b 2.16 ± 0.33 ab 1.33 ± 0.51 b 0.23 ± 0.10 b 0.41 ± 0.09 b 1.47 ± 0.75 b 0.96 ± 0.42 bc 1.65 ± 0.49 a 11.31 ± 1.99 a 34.65 ± 9.16 b 

27/23 3.84 ± 0.68 a 14.87 ± 3.99 b 5.31 ± 1.37 a 3.04 ± 0.92 b 0.29 ± 0.03 b 0.42 ± 0.08 b 0.87 ± 0.17 b 0.38 ± 0.13 c 6.25 ± 1.60 a 30.84 ± 6.95 a 66.03 ± 13.91 b 

Little Finger             

12/8 0.85 ± 0.27 b 45.05 ± 2.06 b 1.93 ± 0.10 b 5.54 ± 1.60 a 2.17 ± 0.31 a 1.88 ± 0.56 a 25.85 ± 1.32 a 25.35 ± 2.23 a 5.14 ± 0.93ab 39.33 ± 7.17 ab 144.46 ± 5.52 b 

17/13 1.12 ± 0.22 b 145.55 ± 3.53 a 5.68 ± 0.61 a 1.04 ± 0.36 b 0.66 ± 0.01 b 0.51 ± 0.06 b 3.74 ± 1.14 b 6.74 ± 0.95 b 2.42 ± 0.17bc 49.49 ± 7.15 a 216.04 ± 10.23a 

22/18 2.10 ± 0.47 ab 9.68 ± 0.74 c 2.35 ± 0.09 b 0.37 ± 0.19 b 0.32 ± 0.08 b 0.34 ± 0.04 b 0.68 ± 0.06 b 1.00 ± 0.15 c 1.81 ± 0.58 c 6.31 ± 1.67 c 24.97 ± 2.97 d 

27/23 2.31 ± 0.20 a 20.82 ± 3.75 c 5.36 ± 0.92 a 0.50 ± 0.03 b 0.30 ± 0.06 b 0.35 ± 0.05 b 0.87 ± 0.08 b 0.20 ± 0.05 c 5.73 ± 0.71 a 25.43 ± 2.54 bc 61.87 ± 5.65 c 

ANOVA P-values             

Varieties  0.000 0.007 0.209 0.001 0.236 0.916 0.000 0.000 0.176 0.028 0.002 

Temperature  0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Var*Temp 0.929 0.005 0.588 0.275 0.750 0.988 0.000 0.000 0.210 0.010 0.001 
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Table 7.9 Analysis of Variance (ANOVA) for the phenolic peaks of carrot root variety grown in different temperature regime, (n=3). 

 

 

The values are Mean ± standard error of mean followed by different letters are significantly different, the highlight P-value indicated 

significant differences (P< 0.05), (n = 3). 

 

 

  Chlorogenic acid and unknown  phenolic peaks (mg/100g FW)  of carrot root 

  

Pk 1 

 

Pk 2 (3-CQA) 

 

Pk 3 

 

Pk  4 

 

Pk 5 

 

Pk 6 

 

Pk 7 

 

Pk 8 

 

Pk 9 

 

Pk 10 

 

Sum of phenolics 

(10 peaks) 

Parmex 
 

          

12/8 0.30 ±  0.06 a 1.22 ±  0.31 a 0.14 ±  0.04 a 0.26 ±  0.06 a 0.80 ±  0.17 a 1.86 ±  0.45 b 0.16 ±  0.03 a 0.06 ±  0.02 c 0.17 ±  0.05 b 0.39 ±  0.01 a 5.34 ±  1.13 a 

17/13 0.33 ±  0.02 a 1.71 ±  0.25 a 0.09 ±  0.01 a 0.19 ±  0.01 a 0.86 ± 0.06 a 3.04 ±  0.28 ab 0.14 ± 0.01 a 0.12 ±  0.01 b 0.30 ±  0.03 b 0.36 ±  0.02 a 7.14 ±  0.47 a 

22/18 0.41 ± 0.09 a 2.34 ±  0.60 a 0.14 ±  0.03 a 0.18 ± 0.02 a 1.01 ± 0.21 a 5.36 ±  1.22 a 0.26 ± 0.05 a 0.19 ±  0.02 a 0.54 ±  0.01 a 0.40 ±  0.07 a 10.83 ±  2.36 a 

Little Finger            

12/8 0.41 ± 0.08 a 2.79 ±  1.16 a 0.18 ±  0.03 a 0.38 ±  0.05 a 1.21 ±  0.24 a 3.47 ±  0.57 ab 0.33 ±  0.04 a 0.19 ±  0.04 b 0.66 ±  0.10 a 0.18 ±  0.04 a 9.78 ±  2.07 a 

17/13 0.18 ± 0.03 a 1.44 ±  0.40 a 0.07 ±  0.00 b 0.16 ±  0.01 b 0.51 ± 0.09 a 1.80 ±  0.30 b 0.16 ±  0.03 b 0.10 ±  0.01 b 0.33 ±  0.06 b 0.07 ± 0.02 a 4.81 ±  0.93 a 

22/18 0.34 ± 0.05 a 2.30 ±  0.11 a 0.12 ± 0.01 ab 0.26 ± 0.02ab 0.84 ± 0.17 a 5.24 ±  0.60 a 0.26 ± 0.03ab 0.36 ±  0.01 a 0.91 ±  0.04 a 0.14 ±  0.03 a 10.76 ±  0.86 a 

ANOVA P-values            

Varieties 0.456 0.372 0.837 0.074 0.804 0.877 0.031 0.000 0.000 0.000 0.558 

Temperature 0.090 0.417 0.018 0.003 0.147 0.001 0.010 0.000 0.000 0.374 0.012 

Var*Temp 0.098 0.234 0.374 0.098 0.081 0.103 0.042 0.001 0.007 0.713 0.080 
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Table 7.10 show the conversion factors of main standards used  

 

Standard, name Concentration, 

mg/ml 

Area nm 

Lutein 0.000737 200239 450 

α-carotene 0.000344 26717 450 

β-carotene 0.00193 746815 450 

Chlorophyll a 0.01238 111736 450 

Chlorophyll b 0.00809 397733 450 

Falcarinol 0.5412 19211412 205 

Falcarindiol 0.2177 12929874 205 

Falcarindiol-3-acetate 0.1230 5975803 205 

Caftaric acid 0.1 7563305 320 

Chlorogenic acid 0.1 8588202 320 

Cichoric acid  0.1 9523060 320 

 

 

. 

 
 

Figure 7. 8 Visible spectra of Rutin (A) and chlorogenic acid (B) standards   

 


