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Abstract 

 

Understanding and predicting the impacts of runoff on nutrients under different climate 

conditions within an unsaturated zone of soils is a fundamental challenge in 

hydrological research. The aim of this study is to provide new understanding of surface 

and subsurface hydrological controls on nutrient fluxes within mineral soils at the 

hillslope and catchment scales, and how these are influenced by climate variability.  

The study covers three nested spatial scales: the Blind Beck catchment (9.2 km2), the 

sub-catchment (0.09 km2) and the plot scale (2 m2) within the hillslope located in the 

Upper Eden basin, Cumbria, UK. The methodology combines field experiments and 

sampling, laboratory analysis and modelling approaches. Runoff experiments were 

conducted on two hillslope runoff plots to identify runoff processes and to quantify 

nutrient fluxes, one under perturbed (i.e. increased rainfall) and another under control 

plot. The SHETRAN physically-based hydrological model was then used to simulate 

runoff and nutrient flux for climate scenarios. These represent current and future 

(intensified hydrological cycle) conditions and were generated using the UKCP09 

weather generator.  

Analyses of flow for different climate conditions within the unsaturated zone suggested:   

i) overland flow varied from 14% in dry conditions (before treatment) to more than 64% 

in the enhanced rainfall conditions of the total measured overland flow, ii) lateral 

subsurface flow dominates hillslope runoff during the transition period, iii) overland 

flow occurs in the winter during periods of frozen soil as Hortonian flow and iv) 

nutrients were most concentrated in the topsoil. In extreme climate conditions, 

saturation excess overland flow is probably a major contributor to storm flow followed 

by the subsurface flow. The results have shown that sensitivity of different runoff 

processes to different types/size of storms can support analysis of impacts of enhanced 

climate variability. The enhanced rainfall treatment in the overland flow reduced the 

DOC concentration 1.7 times, while increasing the NO3
- concentration 2.5 times. Under 

the enhanced rainfall treatment at the perturbed plot, C losses are lower in the overland 

flow (9.7 kg/ha) compared with the subsurface flow (22 kg/ha). This indicates enhanced 

loss of the DOC by the subsurface leaching pathway relative to losses through the 

overland flow. Decreases in the mean rainfall between 0.6% and 2.6% for the 2020 and 
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2050 period of the A1B emission scenario are modelled to decrease annual runoff 0.4% 

and 3.4 %. For the A1FI emission scenario, a decrease in rainfall between 1.2% and 

3.2% is modelled to decrease annual runoff by 3.4% for the 2020 period and by 4.8% 

for the 2050 period.  
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Chapter 1.   Introduction 

1.1 Problem statement 

Projected future climate variability is expected to cause considerable changes in water 

quality, flow regime, nutrient flux and soil quality, with widely differing consequences 

for different regions and climate zones. In Europe it is predicted that more frequent 

extreme precipitation events are likely to increase, with implications for the leaching 

and mobilization of pollutants (organic matter and nutrients) from soils and overflows to 

water bodies (Solheim et al. 2010). This may result in (Solheim et al. 2010): 

• Increased water colour in rivers, due to increased input of humic substances as 

dissolved organic carbon (DOC) from catchments, 

• Increased nutrient load in rivers, due to increased mineralisation and releases of 

nitrogen, phosphorus and carbon from soil organic matter and enhanced runoff 

and erosion, and 

• Increased eutrophication with more harmful algal blooms, reduced water 

transparency and declining oxygen concentration. 

In 2008, DEFRA (The Department for Environment, Food and Rural Affairs, a 

government department in the UK) has identified an increased interest in UK soils that 

contain huge amounts of carbon as the major chemical constituent of organic matter 

(soil organic matter typically contains up to 58% carbon) and an essential component of 

functioning terrestrial ecosystems. Soil organic matter (SOM) increases the capacity of 

soils to bind chemicals, buffers the release of pollutants, regulates the supply of 

nutrients, improves soil structure and makes the soil more resistant to drought and 

erosion, but due to loss of soil carbon these soil functions will be detrimentally affected 

(DEFRA 2008). In some agricultural as well as upland organic (peat) soils there is 

evidence that carbon levels are indeed declining as a result of carbon dioxide that is 

being released into the atmosphere, contributing to global warming (DEFRA 2008). 

These observations indicate that climate change will lead to an increase in the loss of 

soil carbon and nutrients in the UK and many other parts of the world.  

Intense agricultural activities are the major source of nutrients such as nitrogen (N) and 

phosphorus (P), in addition to natural sources such as atmospheric deposition. Increased 

mobilization of N and P through enhanced runoff directly leads to eutrophication in 
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streams. Solheim et al. (2010) point out that storm rainfall and snowmelt events increase 

the nitrate load to surface waters, as nitrate bypasses the biological sinks (Battarbee et 

al. 2008; Futter et al. 2009) resulting in a positive effect on nitrate leaching. On the 

other hand, decreasing precipitation may reduce downward infiltration and leaching. 

According to Davies et al. (2005) and Monteith et al. (2000) nitrate leaching has been 

shown to increase due to soil freezing and drought (Adamson et al. 1998), but the 

quantitative importance of these effects is still debated (Borken and Matzner 2009; 

Matzner and Borken 2008; Solheim et al. 2010).  

Solheim et al. (2010) postulated that drought seasons and soil frost may stimulate DOC 

production through increased fine root and microbial mortality, increased fragmentation 

of soil organic matter and fresh litter, and increased aggregate instability (e.g. Fitzhugh 

et al. 2001; Lundquist et al. 1999; Schimel et al. 2007; Tierney et al. 2001). In recent 

years there has been considerable debate about the main drivers of the observed DOC 

increases including the role of climate in these trends (e.g. Evans et al. 2005; Freeman et 

al. 2001a; Freeman et al. 2004; Monteith et al. 2007; Tranvik and Jansson 2002). The 

discussion of control of climatic variables on the DOC concentrations and fluxes is still 

ongoing (Solheim et al. 2010). Climate change has already started to show impacts on 

the surface waters across Europe and on their biodiversity and ecological status, and it is 

expected that first symptoms will increase over the coming years. The urgent need to 

counteract these negative impacts of climate change on surface water processes and 

quality has recently been identified by the European Environmental Agency (Solheim et 

al. 2010).  

To quantify catchment and hillslope scale nutrient fluxes and leaching from the soil, it is 

important to understand the processes of runoff generation.  Recent research has 

focused on the rainfall-runoff relationship using hydrological modelling or field 

investigations. For a long time hydrologists have suggested that isolating definable 

catchment units is a valid approach to constrain and predict runoff (e.g. Sidle et al. 

2000, McGlynn et al. 2004; van Verseveld 2007; Bier 2004). Bonell (1993) for 

example, argues that hillslopes are the fundamental units of upland catchments, and 

subsurface flow is the dominant runoff mechanism in many forested upland catchments 

around the world, and also that rainfall-runoff processes at the hillslope scale are 

intrinsically complex. Detailed studies of runoff processes at the small scale can, in 

principle, be used to transfer the results from the hillslope to the catchment scale.  The 

hillslope is often identified as the smallest possible elementary unit representing the 
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catchment scale runoff dynamics across different catchment sizes (e.g. Freese et al. 

2011; McGuire et al. 2005). Weiler et al. (2005) contend that understanding of runoff 

generation in hillslopes is of central interest because runoff pathways and the timing of 

runoff ultimately determine the chemical composition (quality) and quantity of stream 

flow. However, far more research has been conducted on overland flow as compared to 

subsurface flow. Tromp-van Meerveld et al. (2008) suggested that subsurface storm 

flow is a runoff enigma because “… it is very difficult to observe and seemingly 

different at locales with contrasting driving conditions. Part of this enigma relates to 

the extreme difficulty in acquiring subsurface stormflow data - intensive site 

investigations, such as a hillslope trench and internal water level measurements, are a 

precondition for defining internal controls on flow generation”.  

This study aims to address this research gap, and to provide new original data that can 

be used to interpret flow generation mechanisms in the surface and subsurface in 

support of assessments of the influence that future climate variability has on nutrient 

losses from soils. The research question is expressed as a testable hypothesis: 

Hypothesis 1 - The subsurface leaching pathways for nutrient losses from soils are 

enhanced relative to losses through overland flow under an intensified hydrological 

cycle predicted for continued global warming.  

Several studies have evaluated the hydrological controls on nutrient losses from 

hillslopes (McHale et al. 2002; McKnight et al. 2002; McGlynn et al 2003; Inamdar and 

Mitchell 2006; Ocampo et al. 2006; Park et al. 2007; van Verseveld et al. 2007). In 

general, these field experiments were conducted on different types of soil, especially 

peat and upland forest catchments.  Fierer and Gabet (2002) identified C and N losses 

by overland flow following changes in vegetation; however, they did not consider 

subsurface flow.  

This study aims to address dominant flowpath controls and flushing processes on the 

DOC and the NO3
- at the hillslope scale to provide an understanding of delivery 

mechanisms of key labile nutrients (DOC and NO3
-) to streams of catchments. 

Dissolved organic carbon (DOC) plays an important role as an energy source to bacteria 

and some algae in streams (Kaplan and Newbold 1993). In addition, the DOC absorbs 

UV-radiation (Morris et al. 1995) that can damage aquatic organisms. Nitrates (NO3
-) 

are essential plant nutrients, but in excess amounts, they can cause significant water 



 

4 
 

quality problems (EPA, 2012). The research question is expressed as a testable 

hypothesis: 

Hypothesis 2 – Labile nutrient (DOC and NO3
-) sources in the soil solution are 

preferentially depleted under an intensified hydrological cycle. 

Runoff generation is considered to be an important process in catchment hydrology. To 

be able to identify storm and seasonal runoff pathways that are crucial for understanding 

and modelling of nutrient transport, there is a need for reliable flow separation. This can 

be achieved by continuous monitoring of hydrochemistry, using electrical conductivity 

(EC) as an inexpensive tracer providing high frequency information that can be 

combined with hydrometric measurements.  Hugenschmidt et al. (2010) used 

chemically based hydrograph separation with electrical conductivity and silica as tracers 

to analyse stream water in a tropical, mountainous headwater catchment in northern 

Thailand. Geochemically based hydrograph separation techniques have been carried out 

to assess the hydrological pathways at different spatial scales in a meso-scale Scottish 

catchment (Soulsby et al. 2003). One of the most useful tools in studying catchment 

hydrology is the use of isotopic tracers (Kendall and McDonnell 1998), which can give 

insights into the age, pathway, and the origin of water in hydrologic systems. The use of 

isotopic tracers in catchment hydrology has a long history, and is well documented by 

Dinçer et al. (1968) who used stable isotopes of hydrogen and oxygen to determine the 

water balance of lakes situated in a subhumid climate in southwestern Turkey, and 

Kendall et. al. (1998) who used isotopes for tracing sources and cycling of nitrogen in 

forested catchments. Early work on flow separation of Pinder and Jones (1969) was 

based on the baseflow contribution to runoff by mass balance of dissolved ions, which 

were used to infer the chemical signatures of overland runoff and subsurface water from 

sampling discharge at high and low flows. Tardy et al. (2004, 2005) suggested a 

hydrochemical model, using hydrograph separation, developed for the Niger basin and 

applied it in the Amazon basin for studying large-scale basin dynamics. This study 

demonstrated applicability of using the hydrochemical model across scale and its 

potential as a simple model.  A recent study used hydrochemical and isotope tracers in 

identifying the runoff contributing sources at different scales in a catchment in Tanzania 

(Bohté et al. 2010). This study used the hydrochemical tracers to calculate runoff 

contributions for the sub-catchments and found that they are in agreement with the 

catchment size and rainfall contributions.  
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This study aims to test the utility of continuous monitoring of EC together with a simple 

flow separation model for interpretation of flow pathways. This is expressed as the 

following hypothesis: 

Hypothesis 3 - Hydrochemical flow separation using continuous measurement of 

variables (EC) at the catchment outlet can provide quantitative estimates of surface and 

subsurface components of flow. 

This study aims to test the scale effect on flow. This will combine the results of field 

measurements and observations, hydrochemical separation and conceptual models 

developed in this study together with a modelling approach. The research question is 

expressed as a testable hypothesis: 

Hypothesis 4 - With increases of scale, subsurface flow increase relative to overland 

flow.  

1.2 Outline of experimental approach 

Studies of the evolution of the dominant runoff and nutrient processes at the plot scale 

linked to the hillslope and catchment scales can demonstrate how runoff generation can 

be linked across different spatial scales. This study covers three nested spatial scales: 

the hillslope (2 m2), the sub-catchment (0.09 km2) and the Blind Beck catchment       

(9.2 km2) located in the Upper Eden basin, Cumbria, UK. The Upper Eden has been 

studied for many years by Newcastle University under the CHASM (Catchment 

Hydrology and Sustainable Management) project (Bathurst 2001; Walsh 2004; Mayes et 

al. 2006; Wilkinson 2009). It has been selected as the CHASM study area representative 

of northwest England. This basin is one of the most instrumented in the UK that 

provides a structure for the study of scale effects in hydrological response. 

The central focus of this study is to develop and implement a novel concept of a climate 

experiment that allows quantification of the influence of climate variability in terms of 

precipitation perturbation on both soil quality and nutrient release, and flow. In order to 

achieve this, the methodology proposed here intends to combine field experiments and 

sampling, laboratory analysis and modelling approaches. The field experiment consists 

of a hillslope runoff experiment that was conducted on two hillslope runoff plots to 

identify runoff processes and to quantify nutrient fluxes, one under perturbed (i.e. 

enhanced rainfall) and another as a control plot. For improving the understanding of 
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changes in runoff and nutrient flux process at different scales and the impact of climate 

change scenarios on simulated runoff, a modelling approach is selected with the use of 

the SHETRAN physically-based hydrological model. The SHETRAN model is chosen 

because of its capability to represent the integrated overland and subsurface flows at the 

small scale, and since it can simulate nutrient transport processes integrated with the 

water flows.  The modelling strategy for this project is to:  

• Develop numerical flow and transport models, 

• Run models of stream flow and nutrient fluxes at catchment and sub-catchment 

scales as well as runoff at the hillslope scale, 

• Estimate water balances at the three scales,  

• Run a runoff simulation under current and future climates. 

This study will provide: 

• An analysis of hydrological controls on nutrients at the hillslope and catchment 

scale that can be used to constrain hydrological models, 

• A new conceptual model of flow pathways and nutrient flushing from the 

hillslope and within the catchment that explains the transport of nutrients, 

• A hydrological model for predicting runoff at different scales and prediction of 

spatial  nitrate concentrations and fluxes, 

• An assessment of the impact of climate scenarios on hillslope runoff that can be 

used for future water management and farm planning.  

1.3 Aim and objectives 

The aim of this study is to provide new understanding of surface and subsurface 

hydrological controls on nutrient fluxes within mineral soils at the hillslope and 

catchment scales in Cumbria (UK), and how these are possibly influenced by future 

climate variability. 

Objective 1: Identification and quantification of runoff processes at the catchment and 

hillslope scales using field experiments.  

Objective 2: Determination of hydrological controls on soil C and N storage and 

transport using geochemical analyses.  
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Objective 3: Construction of a conceptual model of storages and fluxes of water and 

nutrients from the hillslope to the catchment scales.  

Objective 4: Development and testing of numerical flow and transport models, and 

application of models using probabilistic future weather projections (UKCP09) to 

simulate possible impacts of precipitation variability on runoff.  

1.4 Structure of thesis 

This study links experimental (field and lab work) and modelling approaches in order to 

improve model prediction. This thesis is divided into 12 chapters. 

Chapter 1 is an introduction to the general context of the research presented in this 

thesis. This chapter identifies the significance of climate variability, and the hillslope as 

a fundamental unit of the catchment that requires further research. The aim, objectives 

and key hypothesis are defined to address identified problems and knowledge gaps. 

Chapter 2 provides a comprehensive literature review of catchment and hillslope 

hydrology, nutrient pathways and processes, and climate variability. 

Chapter 3 introduces the Upper Eden basin in Cumbria (UK) in terms of 

geographical location and physical characteristics such as geological and 

geomorphologic conditions, land use and climatic context. It also presents the installed 

instrumentation. 

Chapter 4 gives a description of the field sites and methods that were used in the 

collection and analysis of samples, monitoring campaigns, as well as the modelling 

approaches. This chapter focuses on the detailed description of plot scale runoff 

experiments at the hillslope using soil profiles and enhanced rainfall. The key objective 

is to quantify overland and subsurface flows in response to natural and perturbed 

precipitation in combination with nutrient export from the hillslope to the stream of the 

sub-catchment. 

Chapters 5, 6 and 7 present the results collected from the catchment, sub-catchment 

and hillslope monitoring and experimental studies. The results are presented, and 

hydrological controls on C and N transport at three nested spatial scales are discussed. 

Chapter 5 presents hydrological processes at the catchment and sub-catchment scales in 
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relation to flooding and nutrient export. Chapters 6 and 7 identify runoff processes and 

quantify nutrient fluxes under the perturbed (i.e. increased rainfall) and control plots.  

Chapter 8 identifies changes in physical and chemical properties of soil at the 

hillslope scale by comparing the responses during the enhanced rainfall treatment (wet 

condition) and unchanged/natural conditions (dry condition). 

Chapter 9 presents new conceptual models for flow paths and nutrient storage and 

transport for the hillslope scale. The end of chapter 9 summarizes the results collected 

from three scales and discusses the issue of nutrients in terms of upscaling.   

Chapter 10 is devoted to hydrological modelling. It describes how the model was set 

up and applied to simulate the hourly discharge from the outlet flows at the catchment 

and sub-catchment scales, and the model validation. In addition, it presents the soil 

moisture and the nitrate outputs from the model. It also presents the modelling of runoff 

at the hillslope scale.  

Chapter 11 gives predictions of potential climate change impacts on runoff at a 

hillslope scale.  

Chapter 12 summarizes the main findings of this study. It also discusses whether the 

objectives were met and the key hypotheses answered. Finally, this chapter identifies 

research limitations and concludes with the directions for future research.  
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Chapter 2.   Literature review 

2.1 Introduction 

A comprehensive search of the literature was conducted to identify and review similar 

studies that have been done to date. To address the research questions and test the 

hypotheses outlined in Chapter 1, a comprehensive literature review was carried out of 

(2.1) catchment and hillslope hydrology, (2.2) nutrient sources and transport, and (2.3) 

climate change and variability.  

To introduce the process of flow paths in a catchment and to predict how patterns and 

processes can change across scales, an overview of theoretical concepts, supported by 

detailed fieldwork over the last 50 years, is provided.  

2.1.1 Hydrological pathways in the catchment systems 

Horton introduced theories on infiltration capacities versus rainfall intensity and the 

traditional view of the overland flow generation in 1933, updated in 1945, where storm 

runoff is produced by infiltration-excess overland flow. Horton explained that overland 

flow begins when rainfall intensity exceeds the infiltration capacity of the soil (its 

capacity to absorb and transport the received water), while saturated overland flow is 

generated when the soil’s storage capacity is exceeded, and the soil is effectively 

saturated. Horton defined infiltration capacity as “the maximum rate at which rain can 

be absorbed by a given soil at a given condition” (Horton 1933: 453). However, 

Horton’s study failed to include subsurface flow during an individual storm event, 

which according to him was overland flow. Another limitation is that Horton was not 

working in forested environments, therefore the Hortonian overland flow is strictly 

applicable only in arid and semi-arid regions or in paved areas but not necessarily in any 

given forest setting. Sometimes the overland flow is also called unsaturated overland 

flow. Horton pointed out that infiltration-excess overland flow would occur uniformly 

across the catchment area, while Betson (1964) argued that this is not necessary 

suggesting the  variable source area model of overland flow generation (Figure 2-1). 

Many researches (Kirkby and Chorley 1967; Tischendorf. 1969; Rawitz et al. 1970; 

Freeze 1972) have shown that Hortonian overland flow is rare or even absent when 

there is appreciable soil and a vegetative cover (Hofer 2007).  Kirkby (1988) suggested 

that surface water variability could be predicted without the need to refer to overland 
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flow, but could be generated purely by subsurface flow (Sørbotten 2011). Infiltration 

excess overland flow can produce large flood peaks and soil erosion despite its 

restricted extent, both in time and space/area. In the catchment, the residence time is 

short and contact between the flowing water and the soil is limited. Therefore, the 

concentration of solute content of infiltration-excess overland flow will be low and it is 

likely to retain the characteristics of rainfall even when it reaches the stream and it is 

characterized as “new water” (Burt and Pinay 2005). 

 

Figure 2-1 Storm runoff mechanisms (source: originally published in Burt (1989) and modified by the 
author) 

In 1919, Engler recognizes the importance of subsurface stormflow after making 

detailed measurements of infiltration and soil properties including porosity, water 

content, soil texture and hydraulic conductivity (summarized in Weiler et al., 2005). 

Hewlett and Hibbert (1963) were the first to recognize the importance of unsaturated 

flow, which could not be ignored in hydrograph analysis. Weyman (1973) later 

published a study in which he describes the main mechanism in the production of 

significant quantities of subsurface stormflow (or throughflow), which is produced by 

saturated conditions within the soil profile, in effect a perched water table, often called 

the “saturated wedge” from its characteristic downslope shape. In the soil, movement of 

subsurface stormflow may be generated through the soil matrix, by flow macropores, or 

by a mixture of both. In this case contact between the flowing water and the soil is 

longer, so subsurface solute content has a high concentration and it is characterized as 

“old” water, where macropore flow can be sufficiently rapid to retain the “new” water 

characteristics. Dunne and Black (1970) pointed out the way in which saturation-excess 

overland flow is produced. According to them, soil profiles become completely 

saturated, which involves also a mixture of “return flow” (exfiltrating “old” soil water) 

and “direct runoff” (“new” rainfall unable to infiltrate the saturated surface. Hewlett 

Storm runoff mechanisms
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overland flow
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Subsurface storm 
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(1961) defines the variable source area in his model of stormflow generation because 

the extent of the zone of saturated ground varies seasonally and during storm events. It 

was recognized that infiltration capacities are rarely, if ever, exceeded in forest soils and 

the variable source area concept was extended to incorporate the idea of an expansion 

and contraction of saturated areas that affect direct runoff of rain falling on those areas 

(Hewlett and Hibbert, 1967). Finally, subsurface flow during storm events was 

recognized as being an important contribution to event based stream discharge.  

In order to explain hydrological pathways in the catchment system in this study, it is 

necessary to review the findings of previous work at the selected study sites. A 

perceptual model of water movement in a Blind Beck catchment is shown in       Figure 

2-2. This view is developed by Ockenden (2010) based on observations and analysis of 

shallow and deep pathways from stream water chemistry. Accordingly, the model 

represents a range of pathways that may bring water into contact with different types of 

subsurface strata (soil, drift, rock); different pathways have different short and long 

residence times and hence different contact times with the matrix. This author offers an 

explanation using Figure 2-2, which indicates that some water is taking a shallow 

pathway, passing only through the drift geology and some water is taking a deeper 

pathway where the water infiltrates into the limestone and then passes through the 

sandstone before returning to the surface. 

 

Figure 2-2 Perceptual model of water pathways in the Blind Beck catchment (source: Ockenden 2010) 
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Runoff generation in catchment systems depends on the following factors: 

• Atmospheric conditions over the catchment (wind speed, direction, temperature, 

humidity etc.), 

• The surface cover (type, distribution, interception, take up, evapotranspiration, 

etc.), 

• Surface soil (type, permeability, porosity, etc.), 

• Terrain (slope, surface texture, etc.), and 

• Geology (structure distribution, permeability, porosity, groundwater levels, etc.). 

2.1.2 The hillslope runoff processes 

Hillslope runoff processes are mainly concerned with the fate of precipitation and the 

movement of water through the hillslope vegetation and soils (Sørbotten 2011). 

However, there is little understanding of what drives runoff delivery through the rapid 

flow paths during large precipitation events. Figure 2-3 shows an overview of the most 

important water fluxes of the hillslope hydrological cycle. According to that, some 

water is lost through evapotranspiration (evaporation and transpiration), through 

interception and from the soil after infiltration, while some water percolates to the 

groundwater and contributes to storage, and some water moves as throughflow and 

contributes to stream flow. Water that does not infiltrate is partitioned between overland 

flow, either Hortonian (also called ‘infiltration excess’) or saturation, subsurface flow 

and return flow (Kirkby 1988) (Figure 2-4). 

 

 

Figure 2-3 The hillslope hydrological cycle (source: modified after Selby 1993) 
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Figure 2-4 Hillslope runoff processes 

Different approaches have been developed to describe the runoff generation processes 

on hillslopes. These approaches consist of various field measurement techniques and 

modelling concepts. Soil infiltration capacity, the rate at which soils absorb rainfall, 

determines whether water flows on the surface or through the subsurface. Water 

percolating vertically through the soil eventually reaches the groundwater table.  

The runoff process is well described in the literature (e.g. Bonell 1993, 1998). In 

summary, flow that runs across the surface of the catchment downslope to the stream, 

generally occurs: 

1) When the rate of rainfall on a surface exceeds the rate at which water can 

infiltrate the ground. This is called infiltration excess overland flow or 

Hortonian overland flow as first described by Robert E. Horton (1933). 

2) When the soil is saturated and therefore not able to absorb excess water. This 

runoff is called saturation excess overland flow or saturated overland flow SOF 

(Kirkby and Chorly 1967). 

3) After water infiltrates the soil, flowing through the soil and re-emerging at the 

surface because it reaches an impermeable barrier, such as an area of saturated 

soil or ice. This is called subsurface return flow or return flow (Dunne and Black 

1970). 

Overland flow depends on highly variable interactions between geomorphology, soil 

type, field management, climate and hydrological controls, all contributing to a variable 

source area in which limited areas of a landscape contribute to basin runoff (Gburek 

and Sharpley 1998). 
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As mentioned in sub-section 2.1.1, overland flow may be generated either by infiltration 

excess or saturation excess. Nash et al. (2002) pointed out that saturation excess flow 

includes both rain and soil water, while infiltration excess flow is comprised 

predominantly of rain water.  

Shallow subsurface flow or throughflow is the movement downslope by gravity of water 

through the soil within an unsaturated zone parallel to the ground surface.  

Deep subsurface flow of deep exfiltration of groundwater is drainage from water stored 

as groundwater and usually presents baseflow. 

Subsurface flow 

In the soil matrix, subsurface flow may occur under both saturated and unsaturated 

conditions and in the vertical and the lateral direction. Movement of soil moisture in all 

cases occurs in response to a gradient of hydraulic potential, which is the sum of three 

components: a gravitational potential, a matric potential (or pressure potential or 

tension) and an osmotic potential (Atkinson 1978). The osmotic potential component is 

often ignored, and the total hydraulic potential per unit weight of water, hw is: 

ℎ𝑤 = 𝑧 +  ψ 

where: z = the height of a point with consideration to the base of the slope, i.e. the gravitational potential, 
ψ = the matric potential in centimetres 

In the soil matrix, water flow is considered to be laminar and is described by Darcy’s 

law (Darcy 1856) which describes flow per unit area, q. 

The Darcy law for vertical flow in unsaturated soils was modified by Buckingham (cf. 

Flühler and Roth 2004) to: 

𝑞 =  −𝑘(θ𝑤)�
𝑑(𝑧 + ψ)

𝑑𝑧 � =  −𝑘(θ𝑤) �
𝑑ψ
𝑑𝑧

+  1� 

where: k(θw) = the hydraulic conductivity dependent on volumetric soil water content 

To calculate the rate of change in the amount of water stored in a block of soil, the 

continuity equation and Darcy’s law can be combined to: 

𝑑
𝑑𝑡

θ𝑤 =  
𝑑
𝑑𝑧
�𝑘(θ𝑤) �

𝑑ψ
𝑑𝑧

+  1�� 

where: θw = the soil water content 
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Arnell (2002) defines this process as the difference between the inflow to the block and 

the outflow from it. This equation, valid for unsaturated soils, is known as the Richards 

equation (Richards 1931). 

In order to understand the runoff generation processes, Kienzler and Naef (2008) 

studied subsurface stormflow (SSF) in an unsaturated zone at four different hillslopes 

during controlled sprinkling experiments and natural rainfall events. In order to 

determine event and pre-event water fractions, they used artificially traced sprinkling 

water with 222Rn as natural tracer. They concluded that when precipitation feeds directly 

into preferential flow paths, SSF responds quickly and contains low pre-event water 

fractions. Conversely, when it is fed indirectly via large saturated zones of soil, the SSF 

response is delayed and consists mainly of pre-event water. Kienzler and Naef (2008) 

also suggest that the fast flow components from the hillslope, such as overland flow and 

fast subsurface flow, may produce rapid discharge responses and deliver substantial 

amounts of pre-event water to the stream. 

In summary, the following processes are usually identified in catchment and hillslope 

hydrology: 

• Evapotranspiration at the surface, 

• Surface infiltration, 

• Overland flow, 

• Unsaturated zone flow, 

• Saturated zone flow (groundwater). 

Understanding and predicting overland and subsurface flow processes at the hillslope 

scale is highly important in terms of flood prediction, transport of nutrients, sediments 

and contaminants, slope stability, and soil-atmosphere-vegetation exchange processes. 

2.1.3 Flow paths and flow chemistry within the hillslope 

Buttle (1994) reviewed the processes responsible for conveying pre-event water rapidly 

to the channel during storm events:  ridging, translation flow, macropore flow, 

saturation-excess overland flow, kinematic waves and release of water from surface 

storage (Burt and Pinay 2005). Not all processes occur in all catchments but, whichever 

dominates, the focus seems inevitably on the near-stream saturated zone (Cirmo and 

McDonnell 1997; Burt and Pinay 2005). 



 

16 
 

Figure 2-5 gives one version of solute and nitrate transport during storm events on a 

two-dimensional hillslope, based on Burt (1986). The slope profile is a low-gradient 

near-stream zone. Water reaches the ground as precipitation that may flow off directly 

into the streams as dilute (‘new’) event water either as infiltration excess overland flow, 

or as direct runoff from saturated areas. Burt and Pinay (2005) suggest that a water table 

rises above its pre-event location because of recharge by matrix or macropore flow, 

possibly aided by capillary fringe effects. Once this happens, flow within the formerly 

unsaturated zone becomes lateral (Burt 1986; Burt and Pinay 2005). As the water table 

further rises, concentrated (‘old’) pre-event water is immediately displaced into the 

stream by a translatory flow (Hewlett and Hibbert 1967; Anderson and Burt 1982) and 

solutes are flushed from previously unsaturated soils (Burt 1979; Hornberger et al. 

1994). Puckett et al. (2002) suggest that translatory flow may also allow deeper 

groundwater to contribute to stream flow, depending on its flow path chemistry and age. 

Channel flow is a mixture of different source of waters according to Burt and Pinay 

(2005), but it may be impossible to infer the hillslope processes from stream flow 

dynamics due to the decoupling of biogeochemistry and hydrology in the near-stream 

zone.  

 

 

Figure 2-5 A schematic diagram of solute and nitrate transport within the hillslope (source: Burt (1986) 
and Buttle (1994)) 

Burt and Pinay (2005) pointed out that nitrate may be produced in the near-stream zone 

by mineralization and rising water tables that can be flushed into the stream. In addition, 

there is the process of immobilization and denitrification, which can remove nitrate 

temporarily or permanently.  
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2.2 Nutrient sources, transport – pathways and processes 

The dominant nutrients within the catchment system are in forms of nitrogen (N), 

phosphorous (P) and carbon (C). This study only discusses N and C. 

2.2.1 The carbon cycle 

Sources and forms of carbon in soils and sediments 

Schumacher (2002) reported three forms of carbon in soils and sediments:                   

(1) elemental, (2) inorganic and (3) organic carbon.   

1) Elemental carbon forms include soot, graphite, charcoal and coal. In soils and 

sediments, the primary sources for elemental carbon are incomplete combustion 

products of organic matter (i.e., charcoal, graphite, and soot), from geologic 

sources (i.e., graphite and coal), or dispersion of these carbon forms during 

mining, processing, or combustion of these materials. 

2) Inorganic carbon (IC) originates from geologic or soil parent material sources. 

In soils and sediments, inorganic carbon is present as carbonates. The most 

common carbonate minerals present in soils and sediments are calcite (CaCO3) 

and dolomite ([CaMg(CO3)] but other minerals may also be present, such as  

siderite,  FeCO3  or other forms depending on where the soils were formed or 

where the sediment source was located. It is possible that calcite and to some 

extent, dolomite, may be present in soils and sediments due to agricultural input 

(i.e., liming practices). 

3) Organic carbon (OC) originates from the decomposition of plants, bacteria and 

animals. In soils and sediments, organic carbon composition ranges from freshly 

deposited litter (e.g., leaves, twigs, branches) to highly decomposed forms such 

as humus. The vast majority of soil microbes requires organic carbon 

compounds (these are called organotrophs) to oxidize for energy and to build the 

organic constituents of their cell bodies. 

Sediment organic matter and nutrients 

Total Organic Carbon (TOC) refers to the amount of organic matter (OM) preserved 

within the sediment. Sediment nutrients are assessed as Total Nitrogen (TN) and Total 

Phosphorus (TP) concentrations, and have inorganic as well as organic sources. The 

amount of organic matter found in sediment is a function of the amount of various 
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sources reaching the sediment surface and the rates at which different types of organic 

matter are degraded by microbial processes during burial.  

Phosphorus readily sorbs to sediments and is primarily transported to streams and lakes 

in overland flow with eroded sediment (USEPA 1999).  Nitrogen does not sorb as 

strongly to sediment as compared to P and is transported to aquatic systems in both 

particulate and dissolved phases in runoff (USEPA 1999). 

Sediment carbon and nutrient content can be altered due to: 

• Organic matter breakdown (mineralisation) which reduces sediment carbon and 

nutrient concentrations, 

• Enhanced sediment transport caused by erosion in catchments, which can lower 

sediment TN and TOC concentrations because inorganic constituents (minerals 

and clays) can dilute organic matter concentrations (Radke 2002). 

Organic matter is a source of food and energy, and its nutritional balance (TOC:TN:TP 

ratio) plays an important role in material flow through ecosystems. Enriquez et al. 

(1993) state that decomposition rates of organic matter increase as nitrogen and 

phosphorus contents increase, and consequently TOC/TN and TOC/TP ratios decrease 

(Thomann 1972). 'Labile' is the term used to describe sediment organic matter with low 

TOC:TN ratios that break down easily, whereas 'refractory' organic compounds (woody 

debris made of lignin and cellulose) have a very high TOC:TN ratios and are highly 

resistant to degradation. Twilley et al. (1999) point out that organic matter with very 

high TOC:TN ratios consume more dissolved oxygen, supporting the less denitrification 

and release of fewer nutrients to the water column (Rivera-Monroy et al. 1996). The 

decomposition of organic matter with very high TOC:TN ratios can even be nutrient 

controlled, meaning that it can cause the uptake of dissolved inorganic nitrogen (DIN) 

from the water column (Grebmeir et al. 1988).  

The adsorption process helps to preserve the organic matter (CSIRO Huon Estuary 

Study Team 2000), and gives rise to a generally positive correlation between TN or 

TOC and % silt-clay. Sites of organic matter accumulation in water bodies are therefore 

controlled to a large extent by processes that govern the transport and deposition of fine 

sediment. 

Total organic carbon (TOC) content in sediments has been used as an indicator of 

pollution and to predict the likelihood of eutrophication (Folger 1972; EPA 2002). High 
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organic carbon content is considered as a sign of frequent algae blooms, the blooms 

being a result of increased nutrient (nitrogen and phosphorus) supply into the system.   

2.2.2 Dissolved organic carbon (DOC) 

Definition of DOC 

Malcom and Leenheer (1973) define the term “dissolved organic carbon” (DOC) as a 

measure of that part of the total organic carbon (TOC) (TOC = DOC + SOC; SOC = 

suspended organic carbon) in water that passes through a 0.45 micrometre silver 

membrane filter (Hughes et al. 1974). Hope et al. (1997) use the DOC export from 85 

British rivers where the samples were not filtered prior to analysis to highlight that the 

difference between the DOC concentration between samples that were filtered and 

unfiltered was less than 5%. Previous studies of the DOC concentrations used GF/F 

filters in Cumbrian lakes and streams (Tipping et al. 1988) and also in the Moisie River, 

Quebec (Ford et al. 1990). Later, Fraser (2001) used 0.45 μm filters for water samples 

from the Mer Bleue bog, Ontario, Canada. Difficulties arise, however, when an attempt 

is made to compare the DOC concentration between different studies due to the varying 

filter types. In this study, samples were filtered using Whatman 0.45 µm membrane 

filter paper. 

Sources of DOC 

Within a stream, the DOC sources are classified as being of external (allochthonous) or 

internal (autochthonous) origins, that is derived either from the basin or from within the 

stream. Allochthonous inputs are derived from soil organic matter and decomposed 

plant debris (Mash et al. 2004) and can enter a system through precipitation and 

leaching. Autochthonous inputs are derived from aquatic biota such as algae and 

macrophytes (Aiken and Cotsaris 1995).  

Allochthonous DOC is generally linked to precipitation that mobilizes particles from the 

vegetation (throughflow and stream flow) and/or leaches soluble carbon from the litter 

(Peuravuori and Pihlaja 1989). The highest concentration of organic carbon is in the 

upper soil horizon resulting from decomposing leaf litter and organic material (Cronan 

and Aiken 1985; Thurman 1985; Bertilsson and Jones 2003). To determinate the effects 

of the DOC, Cory et al. (2002) simulated leaching from soils; their results confirm that 

the DOC in streams can have the same composition as soil water in upper soil horizons.  
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Table 2-1 shows the three main categories of the organic carbon fluxes, and their 

individual contributions to total organic carbon. Some of these inputs originate from the 

stream (such as dying macrophytes, animal faeces, extracellular release of dissolved 

compounds) and some transported into the stream from outside (such as leaf fall, soil 

particulates and compounds dissolved in soil water) (Allan 2001).  

Table 2-1 Sources of organic matter to running waters. The majority originates from outside the water 
body, the sources marked with an asterisk arise from energy fixed by photosynthesis within the water 
bodies that then enters heterotrophic pathways (Allan 2001) 

Sources of Input Comments 
Coarse Particulate Matter (CPOM) 
Leaves and Needles 
Macrophytes during die-back 
Woody debris 
Other plant parts (flowers, fruit, pollen) 
Other animal inputs (faeces and carcases) 

 
Major input in woodland streams, typically pulsed seasonally 
Locally important 
May be a major biomass component, very slowly utilized 
Little information available 
Little information available 

Fine Particulate Organic Matter (FPOM)  
Breakdown of CPOM Major input where leaf fall or macrophytes provide CPOM 
Faeces of small consumers Important transformation of CPOM 
From DOM by microbial uptake Organic microlayers on stones and other surfaces 

From DOM by physical-chemical processes Flocculation and adsorption, probably less important than 
microbial uptake route 

Sloughing of Algae* Of local importance, may show temporal pulses 
Sloughing of organic layers Little information available 

Forest floor litter and soil 
Influenced by storms causing increased channel width and 
inundation of floodplain, affected by an overland versus 
subsurface flow 

Stream bank and channel Little is known, likely related to storm events 
Dissolved Organic Matter (DOM)  
Groundwater Major input, relatively constant over time, often highly 

refractory 
Subsurface flow or interflow Less known, perhaps important during storm events 
Surface flow Less known, perhaps important during storm events 
Leacate from the detritus of terrestrial origin Major input, pulsed depending upon leaf fall 
Throughfall Small input, dependent on contact of precipitation with canopy 
Extracellular release and leachate from algae* Of local importance, may show seasonal and diel pulses 
Extracellular release and leachate from 
macrophytes* Of local importance, may show seasonal and diel pulses 

DOC retention and release in soils 

The DOC concentration that is available to be released from the catchment to streams 

varies with the soil type. Accordingly, catchments with a high proportion of organic soil 

have a large potential to source DOC into streams, such as peatland and forest planted 

on drained catchments in the UK (Hargreaves et al. 2001). In peatland catchments, 

carbon accumulates in soil because of low decomposition rates (Grieve and Marsden 

2001). Table 2-2 shows examples of different catchments type with the DOC exports.  

The DOC concentrations and fluxes in the mineral soil decrease with depth because of 

metabolization by micro-organisms (Allan 2001). The DOC can also be absorbed to 

clay minerals, controlled by soil water pH, Jardine et al. (1989) found that the maximum 

adsorption of DOC within loamy soils occurred at ~ pH 4.5. 
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Table 2-2 DOC exports (g C m-2yr-1) and annual mean precipitation (mm) from a range of catchments 
(source: Wearing 2008) 

Site Catchment type DOC export 
(g C m-2 yr-1) 

Annual mean 
precipitation 

(mm) 
Reference 

Hubbard Brook, New 
Hampshire, USA 

Temperate 
Deciduous Forest 2 1310 McDowell and Likens 

(1988) 
Luquillo Mountains, Puerto 
Rico 

Tropical Evergreen 
Forest 3.25 3500 McDowell (1998) 

Troutbeck catchment, 
Moorhouse, UK Upland Peat 4-7.4 1953 Worrall et al. (2006) 

Maimai, Westland, New 
Zealand 

Temperate 
Evergreen Forest 6.8 2400 Moore (1989) 

Ochil Hills,  
Scotland Upland Peat 8 1200-1500 Grieve (1984) 

Mer Bleue bog, Ontario, 
Canada Bog 8.3 910 Fraser et al. (2001) 

Upper Hafren,  
Wales Upland Peat 8.4 2726 Dawson et al. (2002) 

Loch Ard, Burn 11, 
Scotland 

Temperate 
Evergreen Forest 15 2000-2500 Grieve (1994) 

Loch Ard, Burn 10, 
Scotland 

Temperate 
Evergreen Forest 16 2000-2500 Grieve (1994) 

Brocky Burn,  
Scotland Upland Peat 16.9 1164 Dawson et al. (2002) 

Larry River, Westland, New 
Zealand 

Wetland 
(Moss/fern/scrub 
vegetation) 

65.1 2500 Moore and Jackson (1989) 

Significance of DOC in stream water and soil 

The dissolved organic carbon (DOC) is a fundamental component of biogeochemical 

processes in small catchments (Kalbitz et al. 2000; Hope et al. 1994) that affects the 

food web structure (Jansson et al. 2007) and the carbon balance (Cole et al. 2007; 

Nilsson et al. 2008). The importance of the DOC is as a small but vital component of 

the global carbon. Also, the significance of the DOC lies in its role of being able to 

carry carbon hydrologically between different pools in the ecosystem. The DOC 

concentrations depend on multiple factors, including the catchment soil carbon storage, 

vegetation, and local climate, principally precipitation and temperature. 

In soil and in stream water, the DOC can reach concentrations of 50 mg/l or more 

(Dalva and Moore 1991). The DOC can influence the water acidity, nutrient 

availability, metal solubility, mobility and toxicity of metal. 

2.2.3 The nitrogen cycle 

The nitrogen cycle represents one of the most important nutrient cycles, which involves 

many processes that make the N in manure, fertilizer, and soil available to plants.   

Figure 2-6 shows the major conversion processes in the soil N cycle.  
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Figure 2-6 The farm nitrogen cycle (source: the author) 

In the soil, nitrogen (N) comes in both organic and inorganic forms. Inorganic N 

consists mostly of ammonium (NH4
+) and nitrate (NO3

-), and is already available to 

plants. Organic N (manure, crop residues and soil organic matter) must first be 

converted to inorganic forms before it can be taken up. This process is called 

mineralization, which is completed by soil microbes as a by-product of organic matter 

decomposition.  

Mineralization 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑁 → 𝐴𝑚𝑚𝑜𝑛𝑖𝑎 (𝑁𝐻3+) → 𝐴𝑚𝑚𝑜𝑛𝑖𝑢𝑚 (𝑁𝐻4+)  

The nitrification process consists of two steps:  

Nitrification 

step 1: ammonium-N is converted into nitrite-N by ammonium-oxidizing bacteria 

𝐴𝑚𝑚𝑜𝑛𝑖𝑢𝑚 (𝑁𝐻4+) → 𝑁𝑖𝑡𝑟𝑖𝑡𝑒 (𝑁𝑂2−) 

step 2: nitrite-N is converted into nitrate-N by nitrite-oxidizing bacteria 

𝑁𝑖𝑡𝑟𝑖𝑡𝑒 (𝑁𝑂2−) → 𝑁𝑖𝑡𝑟𝑎𝑡𝑒 𝑁𝑂3− 
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Soil micro-organisms use nitrate and ammonium nitrogen when decomposing plant 

residues. The immobilization process occurs when these forms are temporarily "tied-up" 

(incorporated into microbial tissue). This process is the reverse of mineralization. 

Immobilization 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑁 ← (𝑁𝐻4+)(𝑁𝑂3−) 

Both immobilization and mineralization processes can have a direct impact on water 

quality. 

The process of denitrification is the loss of nitrogen (NO3
-) through metabolic reduction 

into various gaseous forms of N such as dinitrogen (N2), nitrous oxide (N2O) and nitric 

oxide (NO) gas. These gases then diffuse into the atmosphere and are not available to 

plants.  

Denitrification 

2𝑁𝑂3− → 2𝑁𝑂2− → 𝑁𝑖𝑡𝑟𝑖𝑐 𝑜𝑥𝑖𝑑𝑒(2𝑁𝑂) → 𝑁𝑖𝑡𝑟𝑜𝑢𝑠 𝑜𝑥𝑖𝑑𝑒(𝑁2𝑂) → 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑔𝑎𝑠 (𝑁2) 

The air we breathe consists of 78% of dinitrogen (N2) while nitrous oxide (N2O) and 

nitric oxide (NO) gases are considered as greenhouse gases. The process of 

denitrification that can occur within two or three days in poorly drained soils under wet 

conditions can result in large losses of nitrate type fertilizer.   

The process of volatilization is the production and loss of ammonia (NH3
-) from 

ammonium (NH4
+). 

Volatilization 

𝑁𝐻4+ → 𝑁𝐻3− 

High soil pH (pH greater than 7.5) and conditions favourable for evaporation can cause 

large amounts of NH4
+ to be lost from soils by conversion to NH3

- gas. 

Plants can absorb only ammonium-N and nitrate-N, so the rate of nitrification markedly 

influences nitrogen absorption efficiency by plants. Nitrate-N (NO3
-) is very soluble and 

has a negative charge so it does not attach to soil particles, therefore it is easily lost from 

the soil system by leaching. The most critical time for the NO3
- leaching is the 

beginning of the winter or during heavy rainfall. In overland flow water, only small 

amounts of inorganic nitrogen are usually present because of nitrogen solubility and the 

tendency to move into the soil with the first rainfall. 

Excess nitrogen in the environment is associated with many large-scale environmental 

concerns, including, eutrophication of surface waters, toxic algae blooms, hypoxia, acid 
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rain, nitrogen saturation in forests, and global warming. Eutrophication, as a process of 

nutrient enrichment primarily phosphorus and nitrogen has numerous undesirable 

symptoms (see Figure 2-7). 
 

Eutrophication causes an: 

• Increase in primary production either as algae or macrophytes 

• Reduction in water clarity 

• Replacement of submerged macrophytes by phytoplankton 

• Increased dominance by blue-green algae which are liable to 

• Form surface algal blooms and produce algal toxins 

• An increasing respiratory demand for dissolved oxygen causing an 

• Increased potential for fish kills and reduction in biodiversity at all trophic levels 

• Increase in water treatment costs to remove 

o Taste and odour problems 

o Algal toxins which can 

Threaten public and animal health 

• Damage to recreational potential and amenity 
 

 

Figure 2-7 Potential impacts of eutrophication (source: adapted from Foy 2005) 

In order to reduce N losses from the farm there are a number of management options 

based on the strategic use of N fertilizer and improved N recycling within farming 

systems (Burt et al. 1993; Haygarth and Jarvis 2002). The Nitrates Directive 

(91/676/EC), adopted by the European Union in 1991, aims to reduce water pollution 

caused by nitrogen from agricultural sources (Heathwaite et al. 1993) and to prevent 

such pollution in the future. It seeks to limit nitrogen levels to 50 mg/l in ground and 

surface waters throughout the EU. The Nitrates Directive requires countries to identify 

waters that are or could become polluted by nitrates and to designate as Nitrate 

Vulnerable Zones (NVZs) all land draining to those waters and contributing to the 

pollution. 

Table below summarises Nitrate concentrations (mg/l) in surface waters for the North 

West region. The General Quality Assessment (GQA) carried out by the EA in 2006 

(Table 2-3), revealed that 10% of watercourses in the region were in the high’ to ‘very 
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high’ N concentrations and 10% were in the ‘moderate’ N concentration bracket (Barber 

2008).  

Table 2-3 Environment agency nitrate concentration guide for North West region (source: adapted from 
EA 2006) 

EA Nitrate Concentration Guide (mg/l) 
Very Low Low Moderately Low Moderate High V High 

<  5 > 5 - 10 > 10 - 20 > 20 - 30 > 30 - 40 > 40 

The key for the future is to develop sustainable farming management to cause minimal 

pollution to the environment. 

2.2.4 Nutrient loss and leaching 

Many studies have shown that most of the N lost from both grasslands and crop fields 

moves through subsurface flow rather than in overland flow (Andersen et al. 2001a; 

Heathwaite et al. 1993; Barber 2008). Exceptions can occur after application of fertilizer 

or manure during heavy rainfall, or when they are applied to frozen soil (Fawcett 2005).  

Vertical leaching through the soil profile was determined by Haygarth and Jarvis (2002: 

15): “via matrix flow through the whole soil body in light textured soils, or through 

bypass flow in large macropores and cracks in heavy textured soils”. 

Leaching of nutrients from the soil occurs mainly during storm events of long duration. 

During the winter months in the UK, some or all the nitrate that was initially present in 

the soil will have displaced to below the root zone (DEFRA 2007b). Percolation of 

surplus water is referred to as “drainage water” or “excess winter rainfall”. DEFRA 

(2007b) found that on soils, the nitrate concentrations in drainage water are typically 

relatively high in the early winter, and declined over time as the nitrate in the soil is 

displaced and diluted (Figure 2-8). In the case of retentive soils, such as deep silts, the 

water content of the soil is greater, and it requires more rainfall to move the soil nitrate 

below the root zone (DEFRA 2007b). Rainfall is therefore one of the most important 

climate factors affecting the nitrate levels. Heavy rain causes an initial peak when 

infiltrating water flushes nitrate from the soil.  
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Figure 2-8 Nitrate concentrations in leachate from the sandy soil in a moderately wet winter         
(source: DEFRA 2007b) 

Figure 2-9 shows the nitrate concentrations in drainage from clays that tends to fluctuate 

depending on the rainfall, and concentrations during low flow periods that are greater, 

because the water has equilibrated with the soil nitrate (DEFRA 2007b).  DEFRA 

(2007b) gave information that in much of the arable clay land, concentrations during 

low flow periods may exceed 50 mg/l nitrate, while concentrations tend to be smaller 

during heavy rain.  During storm events, on these soils, the rapid overland flow could 

increase the risk that pollutants in surface applied materials may be rapidly transferred 

to water bodies (DEFRA 2007b). The nitrate leaching is also possible from loamy soils 

although nitrate can be retained more effectively in this type of soil with large amounts 

of organic carbon. 

 
Figure 2-9 Nitrate concentrations in water draining from grassland in western England, winter 2005/6, 
showing dilution during heavy rainfall; and a gradual decline in concentrations over winter          
(source: DEFRA 2007b) 

Specific agricultural activities contribute substantially to losses of N, which include the 

ploughing of permanent pasture that releases large amounts of N through the 

mineralisation of soil organic matter, leaving land fallow over the winter, and 

application of animal manures or N fertilisers during the autumn when plant uptake is 

low and over-winter rainfall will increase leaching (Addiscott et al. 1991; Skinner et al. 

1997).   
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The risk of flow carrying pollutants to a stream is increased (DEFRA 2007b):  

• During heavy rain, 

• On soils which are impermeable or where structural damage has reduced the rate 

of infiltration, 

• On bare soils without crop cover,  

• On steep slopes, 

• On converging slopes, even with moderate slope angles, and   

• Where the distance to a ditch or stream is small and there is little physical barrier 

to flow (e.g. hedge, vegetated headland, buffer strip etc.). 

In case of leaching of nitrates, the soil depletes in other nutrients such as Ca2+, Mg2+ and 

K+. Gowariker (2009) mentions that liming generally reduces the leaching of potassium. 

Havlin (1999) points out that sulphate is also leached from surface soils, where the 

losses being highest in soils dominated by monovalent cations (potassium, sodium) and 

lowest in soils with high amounts of aluminium.  

DEFRA (2007b) has been found that nutrients carried down through the percolation soil 

solution are necessarily electrically neutral indicating that anions are leached together 

with equivalent amounts of cations. 

The nitrate concentrations in waters are monitored by the Environment Agency and 

show the integrated effect of all land uses and other inputs at the abstraction point 

(DEFRA 2007b).  70% of the N entering English waters is estimated to come from 

agricultural land (DEFRA 2007b). The experimental results of Haygarth and Jarvis 

(2002) have shown that in the UK most N is lost from arable farms by leaching during 

the autumn and the winter, but most by denitrification in the spring. Hatch et al. (2002) 

claimed that large concentrations of DON have been found in drainage waters leaving 

grassland lysimeters in Devon, England. 

Overland flow can transport large quantities of nutrients from the soil in both dissolved 

and sediment-bound forms (Gifford and Busby 1973; Lowrance and Williams 1988; 

Fierer and Gabet 2002).  

Kleinman et al. (2006) found that loss of soil nutrients in runoff accelerates 

eutrophication of surface waters along a single hillslope. They found that significantly 

greater nutrient losses were under the high intensity rainfall due to larger runoff 

volumes.  
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DEFRA (2007a) estimates agriculture’s contribution to water pollution in England and 

Wales to be:  

• 60% of nitrate emissions to water, 

• >80% of ammonia gaseous emissions, 

• 25% of phosphorus emissions to water, 

• 5-10% of ammonium-N in water standard failures. 

More intense rainfall events and change in rainfall patterns and intensities due to 

climate change may result in greater amounts of overland flow and a concomitant 

increase in the quantities of C and N removed from a hillslope (Edwards and Owens 

1991). Pimentel and Kounang (1998) indicate that any increase in nutrient removal from 

the soil may possess long-term consequences for soil quality and ecosystem 

productivity (Fierer and Gabet 2002). Furthermore, Crosson (1985) indicates that an 

increase in hillslope nutrient loss may reduce the quality of regional stream waters.  

Van Verseveld (2007) gives an overview of nutrient flushing, a term which has been 

used to describe the movement of solutes in relation to hydrological processes (Burns 

2005). Numerous studies have attempted to explain the flushing of nutrients 

qualitatively by (1) a rising water table that intersects high nutrient concentration in the 

upper soil layer (Hornberger et al. 1994; Boyer et al. 1997), (2) vertical transport of 

nutrients by preferential or matrix flow through the (deeper less bio-active) soil to the 

soil-bedrock interface and then laterally downslope (Hill et al. 1999; Buttle et al. 2001; 

Creed et al. 1996), and (3) vertical transport of nutrients into the soil and then laterally 

within the soil profile (e.g. Gaskin et al. 1989). Van Verseveld (2007) indicates that 

several attempts have been made to move away from this two-dimensional view of 

catchments and have focused on spatial sources of stream nutrients by dissecting the 

catchment into different geomorphic units (for example hillslope vs. riparian zone).  

Rainfall intensity affects overland flow generation as well as concentration of nutrients 

in runoff (Kirkby 1978; Srinivasan et al. 2001). Infiltration excess overland flow 

requires sufficient rainfall intensity and duration for the soil infiltration capacity to be 

exceeded, whereas saturation excess flow may occur at extremely low rainfall 

intensities. Determining subsurface flow behaviours across different antecedent wetness 

conditions is a major research gap in hydrology (Sivapalan 2003) and is a pre-requisite 

for identifying dominant hydrological controls on stream nutrient patterns. Studies of 

the hydrological controls on stream concentrations and quality of dissolved organic 



 

29 
 

carbon (DOC) and nitrate have improved our understanding of flushing and draining 

process of nutrients at the catchment scale, but quantifying spatial sources of these 

nutrients during storm events and across seasons remains poorly understood (van 

Verseveld 2007). 

2.3 Climate variability 

The following question is addressed: “What is the difference between climate change 

and climate variability? According to the World Meteorological Organization (WMO), 

“climate variability is the term used to describe a range of weather conditions that, 

averaged together, describe the ‘climate’ of a region” (WMO 2008). In some parts of 

the world or in any region for certain time periods or parts of the year, this variability 

can be weak - i.e. there is not much difference in the conditions within that time 

period”. At the global level, climate change refers to the long-term change, in weather 

conditions.  

2.3.1 Climate change effects on the soil 

On 24 September 2009, the EU Agriculture Commissioner and UK Environment 

Secretary Mr Hilary Benn stated: “Soil is one of the building blocks of life. Good 

quality soils are essential for a thriving farming industry, a sustainable food supply, and 

a healthy environment. Britain’s soils hold more carbon than all the trees in Europe’s 

forests - and their protection is critical whether we are to successfully combat climate 

change” (Soil Association 2009). 

The “Safeguarding Our Soils: A Strategy for England” document (DEFRA 2009) 

mentions that England’s soils faces three main threats: 

• “Soils erosion by wind and rain. Erosion affects both the productivity of soils 

but also water quality and aquatic ecosystems, 

• Compaction of soil reduces agricultural productivity and water infiltration, and 

increases flood risk through higher levels of runoff, 

• Organic matter decline. The loss of soil organic matter reduces soil quality, 

affecting the supply of nutrients and making it more difficult for plants to grow, 

and increases emissions to the atmosphere”.  

All these threats could be influenced by climate change. The latest UK Climate 

Projections (DEFRA, 2009) show that the influence of climate change in the UK is 
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likely to result in extreme weather occurrences such as heat waves, dry spells, heavy 

rain and flooding. This has the potential to significantly affect UK soils and increase the 

risk of their degradation and increase costs and lost production. Changes in the soil due 

to change of temperature and moisture of soil may speed up the decomposition of 

organic matter, reducing the amount of carbon in the soil and increased emissions to the 

atmosphere. The UK Climate Projections (UKCP09) provide an opportunity to examine 

the nature and scale of climate change impacts on the soils of England and Wales. This 

research enables the effects of climate change on the soil to be estimated in order to 

support agricultural productivity and soil management practices to adapt to climate 

change. 

2.3.2 Climate change effects on nutrients 

Climate change affects the soil by variations in temperature and rainfall including the 

soil loss and degradation as well as changes in nutrient and carbon cycling and budgets. 

Kirschbaum (1999) addressed whether changes in soil organic carbon would 

consequently act as positive or negative feedbacks on climate change. He suggested it 

could lower the build-up of CO2 in the atmosphere and reduce further warming. On the 

other hand, a loss of organic carbon with warming would constitute a positive feedback 

by further adding to the build-up of CO2 in the atmosphere. 

Knowledge of the factors controlling the soil carbon storage is essential for the 

understanding the changing global carbon cycle. According to that the 

Intergovernmental Panel on Climatic Change (IPCC) reports (IPCC 2001) indicate that 

even small changes in such a large pool of C can be expected to have dramatic 

feedbacks on the CO2 concentration in the atmosphere and as a consequence on the 

global climate system. Bouraoui et al. (2002) published a study that documents the 

impact of potential climatic change on nutrient loads from agricultural areas to surface 

water in the Yorkshire Ouse catchment, UK. This study used six climate change 

scenarios to cover a wide range of climate change predictions using the Soil and Water 

Assessment Tool (SWAT) model. One of the major conclusions is that all six climate 

scenarios would affect, significantly, not only water quality and nutrient loads from 

agricultural areas but also crop growth patterns and will increase the nutrient losses to 

surface water.  
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Kaipainen et al. (2008) carried out a quantitative assessment of the impact of climate 

change on nutrient flows using a modelling procedure in the Kokemäenjoki river basin, 

Finland. Nutrient loading was modelled in an area that covers 26% of the entire 

catchment. The Rossby Centre coupled Regional Climate Model was used for the 

climate scenarios and emission scenarios (A2 and B2) from the IPCC's Special Report 

on Emissions Scenarios (SRES). According to the scenario simulations or climate 

model, annual nutrient loading sums will increase.  

Climate change and DOC production 

The influence of climatic variables on the DOC concentration has been extensively 

investigated, with the primary focus on temperature (Freeman et al. 2001b) and 

precipitation patterns (Tranvik and Jansson 2002).  It is well established that hydro-

climatic conditions control much of the episodic (Boyer et al. 1997), seasonal (Dawson 

et al. 2008) and inter-annual variability of the DOC (Köhler et al. 2008), but also long-

term trends (Erlandsson et al. 2008). A number of studies have found that a warmer and 

wetter climate would result in an increase in stream DOC concentrations (de Wit and 

Wright 2008; Köhler et al. 2009; Sebestyen et al. 2009). 

However, other studies argue that climate change has no influence in the DOC change, 

for example, Hruška et al. (2009) investigated temporal trends in DOC concentration 

and flux at two geochemically distinct forested catchments in the western Czech 

Republic. They suggest that climate change has played no role in the changes in the 

DOC where temperature, precipitation and discharge showed no statistically significant 

trends during the study period (1993 to 2007). 

2.3.3 Climate variability in the UK and North West England 

Across the UK, annual average temperatures have risen since 1961 by between 1oC and 

1.7oC depending on the region. Nine of the ten warmest UK years on record have 

occurred since 1990. The summer rainfall has declined by up to 17% since 1961, while 

the winter rainfall has increased in all parts of the UK.   

The UK climate has changed over the 20th Century, which is consistent with the 

warming in global climate (Hulme et al 2002).  Hulme et al. (2002) reported that over 

the last 200 years winters have become wetter throughout the UK and more frequent the 

summer heat waves, fewer frosts and the winter cold spells have also been measured. 
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Temperature in Central England has increased by about 1oC since the 1970s, with 2006 

being the warmest on record (Jenkins et al. 2008). 

The United Kingdom Climate Impacts Programme (UKCIP) highlights that throughout 

the 21st century, the UK will be subject to progressively (Jenkins et al. 2008):  

• Warmer and wetter winters,  

• Hotter and drier summers, 

• More extreme rainfall events,  

• Sea level rise, 

• Reduction in soil moisture, especially during the summers,  

• Increased wind speeds and atmospheric depressions. 

Climate variability has had significant impacts in recent years. In the North West of UK, 

for example, extreme climate variability has resulted in flooding in Carlisle in January 

2005, heavy rainfall record and flooding in June and July 2007, floods in Cumbria in 

November 2009, heavy rainfall and flooding in Cornwall in November 2010 and snow 

and low temperatures in December 2010.  

Table 2-4 presents changes in mean daily, maximum and minimum temperature in the 

North West of England. Between 1914 and 2006, annual daily temperatures have shown 

an increase of 0.88°C, through the autumn, the summer and the spring (0.89 to 1.19°C). 

The changes for the shorter 1961 to 2004 climatic period, illustrate an even larger mean 

annual increase of 1.4°C (significance level 95%), with the most rapid change been 

observed since 1985  (Jenkins et al. 2008). Comparison between the 1914-2006 and 

1961-2006 North West temperature data suggest that there have been greater minimum 

temperature increases during the winter than the summer for 1961-2006, while the 

opposite case is true for 1914-2006. For the period 1914 to 2006, maximum 

temperatures have risen by 0.71°C, and annual minimum temperatures have increased 

by 1.06°C. For the period 1961 to 2006, maximum temperatures have risen by 1.55°C, 

while minimum annual temperatures have increased by 1.29°C.  Sanderson et al. (2008) 

concluded that during the winter, minimum and maximum temperatures have increased 

more when compared to the summer increases between 1961 and 2006, whilst for 1914 

to 2006 the reverse is true.   
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Table 2-4 Observed changes in daily mean, maximum and minimum temperature (oC), according to 
season from 1961 to 2006 and 1914 to 2006 for North West England. Shaded values are significant at the 
95% level (source: Jenkins et al. 2008) 

Variable 
1961-2006 1914-2006 

Change Daily Mean Temperature (oC) 
Spring 1.44 0.89 
Summer 1.45 0.91 
Autumn 1.07 1.19 
Winter 1.81 0.66 
Annual 1.40 0.88 
 Change Daily Maximum Temperature (oC) 
Spring 1.67 0.59 
Summer 1.63 0.67 
Autumn 1.13 0.95 
Winter 1.93 0.77 
Annual 1.55 0.71 
 Change Daily Minimum Temperature (oC) 
Spring 1.25 1.19 
Summer 1.31 1.10 
Autumn 1.03 1.47 
Winter 1.7 0.60 
Annual 1.29 1.06 

 

Table 2-5 shows the percentage change in precipitation and rainy days in millimetres for 

North West England. Between 1961 and 2006 precipitation increased by 43.0% during 

the winter, whilst during the summer it decreased by 13.2%. For the period 1914 to 

2006, precipitation significantly decreased by 21.6% during the summer.  

Table 2-5 Observed changes in precipitation amount and rain days, according to season from 1961 to 
2006 and 1914 to 2006 for North West England. Shaded values are significant at the 95% level  (source: 
Jenkins et al. 2008) 

Variable 
1961-2006 1914-2006 

Precipitation amount (%) 
Spring 6.3 15.7 
Summer -13.2 -21.6 
Autumn 5.6 3.5 
Winter 43.0 -0.5 
Annual 8.8 -2.4 
 Days of Rain > 1mm (Days) 
Spring 0.4  
Summer -1.1  
Autumn 2.9  
Winter 6.8  
Annual 7.5  

Kazmierczak and Carter (2010) reported that the current climate of the North West of 

England is classified as mid-latitude oceanic with warm summers, cool winters and 

plentiful precipitation throughout the year. They note that the 2009 autumn heavy 

rainfall and floods in Cumbria exposed the region’s vulnerability to intense rainfall 

events (Kazmierczak and Carter 2010). 
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Predicted climate changes in the UK and North West England 

Climate change scenarios are plausible descriptions of how things may change in the 

future (Hulme et al. 2002). There has been considerable debate about the use of the 

terms "prediction", "projection" and "scenario", and the Intergovernmental Panel on 

Climate Change (IPCC) in their Third Assessment Report (TAR), (IPCC 2001), chose 

to abandon the word "prediction" in favour of "projection". 

The most up to date and detailed projections are from the UK Climate Impacts 

Programme (UKCIP) produced by the Met Offices Hadley Centre regional model 

(HadRM3), who published climate change scenarios available in the UK. The UK 

Projections (UKCIP09) are presented for three different future scenarios representing 

high, medium and low greenhouse gas emission.  

To look at the risk to the internal environment, the latest probabilistic projections from 

the United Kingdom Climate Impacts Program (UKCP09) can be used to create 

probabilistic future weather (UK Climate Projections 2009). UKCP09 contains a 

weather generator which is able to output both daily and consistent hourly weather data 

on a 5 km grid over the UK for the historic period (1961-1990) and future time slices in 

decadal steps from the 2020s up to the 2080s (with each encompassing a separate thirty 

year period) (Jones et al. 2009). 

Key findings for the UK, for the highest changes by the 2080s are (UK Climate 

Projections 2009): 

• Under medium emissions, the central estimate of increase in the winter mean 

temperature is 3.1ºC; it is very unlikely to be less than 1.7ºC and is very unlikely 

to be more than 4.8ºC, 

• Under medium emissions, the central estimate of increase in the summer mean 

temperature is 4.2ºC; it is very unlikely to be less than 2.2ºC and is very unlikely 

to be more than 6.8ºC, 

• Under medium emissions, the central estimate of change in annual mean 

precipitation is +2%; it is very unlikely to be less than –3% and is very unlikely 

to be more than +14%, 

• Under medium emissions, the central estimate of change in the winter mean 

precipitation is +33%; it is very unlikely to be less than +9% and is very unlikely 

to be more than +70%, 



 

35 
 

• Under medium emissions, the central estimate of change in the summer mean 

precipitation is +1%; it is very unlikely to be less than –8% and is very unlikely 

to be more than +10%.  

Key findings for North West England are presented as changes by the 2050s (UK 

Climate Projections 2009): 

• Under medium emissions, the central estimate of increase in the winter mean 

temperature is 2.0ºC; it is very unlikely to be less than 1.0ºC and is very unlikely 

to be more than 3.0ºC. A wider range of uncertainty is from 0.8 to 3.3ºC, 

• Under medium emissions, the central estimate of increase in the summer mean 

temperature is 2.6ºC; it is very unlikely to be less than 1.2ºC and is very unlikely 

to be more than 4.1ºC. A wider range of uncertainty is from 1.1 to 4.7ºC, 

• Under medium emissions, the central estimate of change in annual mean 

precipitation is 0%; it is very unlikely to be less than –4% and is very unlikely to 

be more than +6%. A wider range of uncertainty is from –6% to +7%, 

• Under medium emissions, the central estimate of change in the winter mean 

precipitation is +13%; it is very unlikely to be less than +3% and is very unlikely 

to be more than +26%. A wider range of uncertainty is from 0% to +27%, 

• Under medium emissions, the central estimate of change in the summer mean 

precipitation is –17%; it is very unlikely to be less than –34% and is very 

unlikely to be more than +1%. A wider range of uncertainty is from –36% to 

+8%. 

The UK Climate Projections (2009) show that under a medium greenhouse gas 

emissions scenario for the 2080s the climate of the North West is projected to change 

significantly and experience (UK Climate Projections 2009):  

• An increase in average summer temperatures with a central estimate of            

3.7 degrees, 

• 21% less rainfall in the summer, possibly leading to lower crop yields and water 

stress, 

• 16% more rainfall in the winter increasing the threat of the winter flooding, 

transport disruption and risks to urban drainage, 

• Sea level rise in Liverpool of 30-32cm. 
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2.4 Summary 

Methods for runoff and nutrient flux estimation have also been reviewed, with an 

emphasis on identifying aspects, which will be important to this research project. 

Understanding the limits and advantages of current methodologies allows for an 

assessment of where improvements might be made over current methods.  
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Chapter 3.   General description of the Upper Eden basin 

3.1 Introduction 

According to the selection criteria required to meet the overall objectives of this study, a 

catchment, a sub-catchment and a hillslope were selected in the Upper Eden basin. This 

chapter introduces the Upper Eden in terms of its location, topography, solid and drift 

geology, hydrogeology, vegetation, land use, soils, hydro-climatic conditions and 

instrumentation.  

The Upper Eden basin (322 km2) above Appleby is one of four meso-scale basins (order 

100 km2) under the Catchment Hydrology and Sustainable Management (CHASM) 

programme (Figure 3-1). The CHASM research programme has been established to gain 

new understanding of the hydrological and ecological functioning of meso-scale 

catchments and of how catchment response changes with scale, and to translate this new 

knowledge into enhanced predictive capability.  The four meso-scale catchments are 

being instrumented at the patch/hillslope, micro-catchment  (1 km2) and mini-catchment 

(10 km2) scales. In addition, there are soil and groundwater monitoring systems.  

 

 

 

Figure 3-1 The four instrumented meso-scale catchments across the UK which form the CHASM network 
(source: University of Newcastle Upon Tyne 2000) 
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3.2 Geographical localization and topography 

The Eden basin is located in Cumbria in the north west of the UK and is bordered by 

upland areas of the Pennines to the east and the Lake District to the west (Figure 3-2). It 

lies at an altitude of 10 to 715 m a.s.l. (latitude 54 36 19 N, longitude 02 49 58 W). The 

Eden basin is 86 km long, 64 km wide and the Upper Eden basin is 27 km long, 22 km 

wide. It is limited by the upland areas of the Lake District to the south-west, by the 

Pennines to the east and the Northumbria National Park to the north.  The River Eden 

rises south of Kirkby Stephen on predominantly limestone fells uplands and then flows 

northwards through the towns of Kirkby Stephen, Appleby-in-Westmoreland and the 

city of Carlisle, before discharging into the Irish Sea on the Solway Firth. The Eden 

receives inputs from of the five key watercourses, the Lowther, Eamont, Irthing, Petteril 

and Caldew Rivers. This study focuses on Blind Beck and predominantly Sykeside 

Farm of the Upper Eden basin. 

  

Figure 3-2 Geographical localization of the Eden (the Upper Eden basin boundary is shown in red) and 
a Digital Elevation Model (DEM) of  the Upper Eden basin 

3.3 Geology and Hydrogeology 

The Eden Valley is made up of a half-graben of Permian, Triassic sandstones overlying 

the Carboniferous series and Jurassic rocks (see Appendix A1). It is separated from the 

Carboniferous rocks of the Pennine Hills by the Pennine fault (Taylor 2003; Walsh 

2004). 

In the Eden basin there are seven major hydrostratigraphic units (Younger and Milne 

1997; Bathurst 2001; Walsh 2004): 
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1) The Carboniferous Limestone (aquifers) 

2) The Millstone Grit (aquifers and aquitards) 

3) The Penrith Sandstone (including the Brockram breccias, and silicified and non-

silicified aeolian sandstones) (mainly aquifers) 

4) The Eden Shales (aquitards) 

5) The St Bees Sandstone (aquifer) 

6) The Armathwaite Dyke (aquifer) 

7) Quaternary Drift sediments (variable hydrostratigraphy). 

Figure 3-3 illustrates a solid geology map with hydrostratigraphic units of the Upper 

Eden basin. 

 

Figure 3-3 Solid geology with hydrostratigraphic units of the Upper Eden basin 

The major aquifers on the valley floor are the Penrith and St Bees sandstones, which sit 

on top of the limestone series. The Penrith sandstone is the largest sandstone in the 

Upper Eden basin and shale separating both of sandstones is defined as aquitard. The 

valley sides are mainly of Carboniferous limestone and limestone layers, with the 

exception of the headwater catchment of Gais Gill in the south-west of the basin, which 

consists of an impermeable greywacke. 
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Butcher et al. (2003) found that the Permo-Triassic Sandstone has a core hydraulic 

conductivity of 0.8 m/d for the Penrith Sandstone and 0.24 m/d for the St Bees 

Sandstone. For both the aquifers, the transmissivity and storage coefficient were given 

as 240 m2/d and 1.4 x 10-4 respectively. Younger et al. (1997) described the complex 

hydrostratigraphy of the overlying quaternary deposits, which have a hydraulic 

conductivity of 0.16 m/d.   

Drift geology 

A variable thickness of Quaternary drift is present on the valley floor. The drift geology 

of the Upper Eden is shown in Figure 3-4, where glacial till includes poorly sorted 

mixtures of diamicts, clays, silts, sands and gravels of hummocky moraines and 

drumlins interspersed with alluvial deposits. According to Parkin (2000), these may act 

locally to prevent recharge to the underlying aquifers. 

 

Figure 3-4 Drift geology of the Upper Eden basin 

3.4 Vegetation and Land use 

Upland areas of the Upper Eden consist mainly of rough moorland and unimproved 

pasture, while lowland areas are generally improved pasture. 
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The Land Cover Map of Great Britain database (LCMGB) was prepared using available 

satellite images and aerial photos. Appendix A2 shows a map of 25 different types of 

land use that have been identified, and the description of each type is given in         

Table 3-1. In the interests of clarity, a land use map of the major groups has been 

produced and presented in Figure 3-5. Maps show areas of land as polygons, each with 

attributes such as land cover class, area and boundary length. Land use types of the 

Upper Eden basin can be grouped into 13 major groups (Figure 3-5), namely mown, 

grazed turf, meadow, verge and semi-natural area is the main type with 48%. 

 

Figure 3-5 Land Cover Map of major group of the Upper Eden basin 

In the uplands, livestock densities are relatively low, and are continuing to decrease as 

the entry level single farm payments (and some stewardship schemes) encourage low 

stock density on the fells, while in the lowlands they are relatively high as the good 

grasses are ideal for stock rearing. Arable farming occupies a very small proportion of 

the Upper Eden mainly around the Appleby area, while it increases around the Temple 

Sowerby area. In the basin there is no coniferous forestry and small patches of 

deciduous woodland can be found in parts. There are no major settlements in the basin 

apart from two small market towns of Appleby and Kirkby Stephen. In the basin, there 

is no major industrial activity and a portion of the north of the catchment is owned by 

the MoD (Ministry of Defence) and is an infantry training ground; this does not affect 

the land use vegetation (moorland) but does affect access. 
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Table 3-1 The correspondence between the 25 'target' cover-types and the 17 'key' cover types of  the 
Land Cover Map of Great Britain  (source: Centre for Ecology and Hydrology, Land Cover Map of Great 
Britain 1990) 

LAND COVER CATEGORY 
(17 class system) 

TARGET CLASSES 
(25 class system) 

Aa 1b Sea / Estuary 1c Sea / Estuary 

B 2 Inland Water 2 Inland Water 

C 3 Beach / Mudflat / Cliffs 3 Beach and Coastal Bare 

D 4 Saltmarsh 4 Saltmarsh 

E 5 Rough Pasture / Dune Grass / Grass Moor 5 Grass Heath 

   9 Moorland Grass 

F 6 Pasture / Meadow / Amenity Grass 6 Mown / Grazed Turf 

   7 Meadow / Verge / Semi-natural 

G 7 Marsh / Rough Grass 19 Ruderal Weed 

   23 Felled Forest 

   8 Rough / Marsh Grass 

H 8 Grass Shrub Heath 25 Open Shrub Heath 

   10 Open Shrub Moor 

I 9 Shrub Heath 13 Dense Shrub Heath 

   11 Dense Shrub Moor 

J 10 Bracken 12 Bracken 

K 11 Deciduous / Mixed Wood 14 Scrub / Orchard 

   15 Deciduous Woodland 

L 12 Coniferous / Evergreen Woodland 16 Coniferous Woodland 

M 13 Bog (Herbaceous) 24 Lowland Bog 

   17 Upland Bog 

N 14 Tilled (Arable Crops) 18 Tilled Land 

O 15 Suburban / Rural Development 20 Suburban / Rural Development 

P 16 Urban Development 21 Continuous Urban 

Q 17 Inland Bare Ground 22 Inland Bare Ground 

   0 Unclassified 
 a  class reference within the 17 'key' cover-type categorisation. 
 b  'band' within the 17 'key' cover-type 1 x 1 km summary data. 
 c  label value within the 25 'target' cover-type 25 x 25 metre data. 

3.5 Soil types 

The characteristic soils of the Upper Eden basin are presented in Figure 3-6. A semi-

fibrous black peat surface with a reddish brown coloured peat deeper down (Winter Hill 

Association) is present at the upland moors of Mallerstang Common and the Pennine 

Hills. The basin around Kirkby Stephen and the sides of the valley are covered by 

typical brown earth soils (Eardiston 1 and Wick 1 Association), described as reddish 

well drained coarse loamy, fine silty soils and dark-yellow brown, slightly stony sandy 

loam or sandy silt soil; and are common in northern England. From Kirkby Stephen to 
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Temple Sowerby the valley  bottom and low lying areas are covered by typical 

stagnogley soils (Clifton Association and Brickfield 3 Association), with patches of 

alluvial soils. The Winter Hill series mentioned above is generally a poor draining soil 

and is susceptible to waterlogging, the stagnogley soils typically have a slowly 

permeable lower subsoil, which may make them prone to waterlogging, while the other 

soil series are fairly good to good draining soils. 

 

Figure 3-6 HOST soil classification map of the Upper Eden basin (Appleby) 

Table 3-2 shows the percentage distribution of HOST cover categories over the Upper 

Eden. The basin is dominated by non-calcareous mineral gleys (28.5%). HOST 

descriptions are given in Appendix A3. 

Table 3-2 HOST class percentage cover in the Appleby catchment; legend for HOST class is shown in  
Figure 3-6 

 
HOST 
CLASS 

Percentage cover of the 
Upper Eden 

4 7.3 
5 16.0 
6 13.1 
8 1.3 
10 1.2 
15 3.2 
17 0.3 
24 28.5 
26 10.4 
29 18.7 
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3.6 Hydro-Climatic conditions 

The Upper Eden basin receives a yearly average precipitation of 735 mm to 2590 mm 

(SAAR 1961-1990), although there are large differences across the basin due to 

differing elevations and to rain shadow effects from the local hills and the Lake District 

Mountains to the west.  

According to Walsh (2004) rainfall totals in the Upper Eden vary from less than 650 

mm per year in the valley bottom to over 2000 mm per year on the fells and have been 

linearly related to elevation. Wilkinson (2009) reported that snow cover in the winter 

months at elevations above 400 m can be significant (15-30 snow days a year); 

however, for the majority of the Upper Eden there are usually 0-5 snow days a year. The 

same author indicates that there has been significantly less snow since 2000 compared 

with snowfall in the 1990s, which may be a result of climate change. 

During the winter 2009 and 2010, there was a significant snow cover with long snow 

days and observed frozen soil. From the National River Flow Archive, mean flow at 

Temple Sowerby is 14.6 m3/s.  

3.7 The Upper Eden instrumentation 

This section introduces the Upper Eden instrumentation in terms of Automatic Weather 

Stations (AWS), stage recorders and raingauges. 

3.7.1 Automatic weather station (AWS) 

CHASM Automatic Weather Stations 

In the Upper Eden basin, the Warcop Range AWS (NY733197) at an elevation of 227 m 

has a record dating back to 1983, while the next AWS is Shap (NY557120) outside of 

the Temple Sowerby basin at an elevation of 255 m, with a record dating back to 1982.  

Table 3-3 gives details about CHASM AWS that were refurbished systems produced by 

Environmental Measurements Ltd, Sunderland. Locations of the CHASM AWS are 

given in Figure 3-7. In January 2005, all weather stations were upgraded to use 

Campbell CR10X loggers. 
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Table 3-3 Automatic weather stations installed in the Eden basin under the CHASM programme 

Station 
Coordinate Elevation 

(m) Date installed 
X Y 

Gais Gill 371400 500900 400 AWS installed 28/7/03 

Hill Top Farm (Great Musgrave) 375700 513800 155 AWS installed 9/9/03 

Barras 385300 511600 440 AWS installed 01/4/04 

 

Figure 3-7 Location of all weather stations in the Upper Eden basin 

Data from AWS have been nearly continuously recorded since January 2005 to late 

2006, with some problems with sensors. At Gais Gill the temperature and relative 

humidity measurements have been affected by power fluctuations at certain times of the 

year, which makes the data set erratic for small time periods (Wilkinson 2009). The 

same author indicates that following the complete failure of the anemometers and 

thermometers, Barras and Gais Gill have been offline since November 2006. 

The multi-parameter CHASM weather stations record rainfall, wind speed (min, max 

and average), direction, net radiation, relative humidity and temperature (at 15 minute 

intervals), and battery voltage of the logger and rain. 

3.7.2 Stream gauges 

Environment Agency (EA) Stream Gauges 

There are only two the Environment Agency gauging stations in the Upper Eden basin. 

One of them, Kirkby Stephen (NY77300970) is the longest recording gauging station: it 
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was constructed in November 1971 and has a catchment area of 69.4 km2. According to 

data of the Environment Agency, in 2007, the weir structure is a non-standard 

compound broad crested weir, built to stabilise the bed and act as a low flow control. 

The second gauging station was constructed in July 2000 at Great Musgrave, 7 km 

downstream of the Kirkby Stephen gauging station and is the most recent of the 

Environment Agency’s Upper Eden stations (NY76481313). At this location, the weir is 

a non-standard shallow V weir, 30 m across. 

CHASM Stream Gauges 

In Table 3-4, the details of the CHASM gauge stations that were constructed in 2002/03 

can be seen.  

Table 3-4 Gauging stations in the Upper Eden basin 

Station 
Coordinate 

Type Date installed X Y 

Eden, Appleby 368200 520300 
Shaft-encoder and 

Horizontal Acoustic 
Doppler Current Profiler 

18/12/2002 
(H-ADCP installed 

December 2004) 

Scandal Beck, below 
Ravenstonedale 372100 504600 Shaft-encoder 05/09/2002 

Artlegarth Beck, Artlegarth House 372600 502300 Shaft-encoder 16/09/2002 

Artlegarth Beck, Gais Gill 371400 501100 Pressure Transducer-
Diver 28/07/2003 

Helm Beck 370400 514100 Shaft-encoder 18/09/2003 

Blind Beck at Little Musgrave 375400 513100 Shaft-encoder 18/07/2003 

Scandal Beck at Smardale 373500 508500 Shaft-encoder 18/09/2002 

Tributary entering Blind Beck at 
Smithfield 375300 513000 Pressure Transducer-

Diver 10/07/2003 

3.7.3 Raingauges 

The CHASM raingauges have a network of 21 point-rainfall gauging stations (all 

tipping-bucket raingauges recording at 0.2 mm increment on event basis). Among them 

seventeen are located inside and four outside of the Upper Eden basin, as shown in 

Figure 3-8. The overview of the CHASM raingauges is described in Table 3-5. Data 

were obtained from Newcastle University.  
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Figure 3-8 Location of all raingauges in and surrounding the Upper Eden basin 

 

The longest precipitation data record is from the Appleby Castle raingauge back to 

1891.  

 

 

 

 

 

 

 

 



 

48 
 

Table 3-5 Detail and their dataset of the CHASM gauging stations  

Station 
Coordinate Elevation 

(m) Date installed X Y 

Angerholme Pots 377200 499300 480 07/08/2003 

Appleby Castle 368400 520000 148 27/2/04 

Asby 368400 520000 250 24/10/2003 

Barras 385300 511600 440 24/2/04 

Blasterfield Farm 363100 511700 330 05/07/05 

Breaks Hall 370100 513900 175 22/10/03 

Gais Gill 371400 500900 400 28/07/2003 

Great Dun Fell 371100 532200 868 01/08/05 

Hill Top Farm 375700 513800 155 31/07/2003 

Kaber 379500 511600 170 07/09/05 

Kirkby Stephen 377300 507800 190 27/11/03 

Lunds Fell 380600 596700 650 27/11/03 

Murton 373100 522100 275 24/11/03 

Nateby Common 381000 505200 500 27/1/04 

Ravenstonedale 372100 503700 270 28/10/2002 

Sandford 372600 516100 150 07/09/05 

Stennerskeugh 375000 501200 380 06/01/2003 

Syke House (Alpaca) 358200 522000 120 05/07/05 

Sykeside House 374700 519200 180 20/11/04 

Wander Bank 371300 509600 315 24/10/03 

West Clove Hill 383500 519400 510 16/3/04 

3.8 Summary 

This chapter presents a brief summary of the location, topography, geology, 

hydrogeology, vegetation, land use, soils, hydro-climatic conditions and instrumentation 

of the Upper Eden basin. Within the CHASM programme, the Upper Eden basin is 

considered as one of the most instrumented at the meso-scale. The Upper Eden basin 

was found to be the most appropriate where data from this network are available to meet 

the aim and objectives of this study. In the next chapter, the study sites, hillslope 

experiment, field sampling, monitoring, analysis and the model setup required are 

presented. 
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Chapter 4.   Methods 

4.1 Introduction  

This chapter will examine a series of field investigations, laboratory experimental 

procedures and a modelling approach. In this study, the methods used will illuminate 

the central questions about the influence of runoff processes at a hillslope under 

perturbed climate conditions and a catchment scale with respect to nutrient fluxes. 

Collected and analysed data will be used to build models across different scales.  

In this study, the overall experimental design is proposed to investigate flow and water 

chemistry across three scales: the Blind Beck catchment (9.2 km2), the sub-catchment 

(0.09 km2) and the plot scale (2 m2) within the hillslope located in the Upper Eden 

basin, Cumbria, UK. Runoff experiments are conducted on two hillslope runoff plots to 

identify runoff processes and to quantify nutrient fluxes, one under perturbed (i.e. 

increased rainfall) and another under control plot.    

4.2 Overall methodology approach 

The research methodology consists of three main activities as follows (Figure 4-1): 

1) Field work (sampling and monitoring) 

2) Laboratory analysis 

3) Modelling. 

To address the project aims and test the proposed hypotheses (Chapter 1), a field 

experimental design was used. The field experiment finds its justification in terms of 

meeting the study aims of improving understanding of hydrological controls on nutrient 

fluxes, and analysing the influence of future climate variability on nutrient losses from 

soils. This is generally part of broader research aimed to show scale effects in runoff 

and nutrient fluxes. Therefore, research methods and criteria for selecting experimental 

design have been well defined in the literature with the largest amount of research 

performed using runoff plots to provide specific information about hydrologic 

processes, for example to test soil erodibility and runoff generation on small plots under 

simulated rainfall (Messer 1980) or to determine the relationship between soil loss, 

runoff and slope angle (Djorovic 1980). The plot method has also been carried out to 

determine nutrient loss in drainage and surface flow from grazed cattle pastures 
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(Monaghan et al. 2000). Slaymaker (1991) states that most of the runoff plot 

experiments do not provide suitable data because they are too large or too small to 

permit very detailed observations during storm events, or because the monitoring 

system is insufficiently precise to provide detailed formation on process control. Many 

studies used plots that have varied in shapes, length and width, depending on the 

process being studied, for example from the 1 m2 to 10 m2 plots used by Bagayoko  

(2006) in the province of Kompeinga, West Africa. There is an argument about the 

influence of the length, width and slope of the runoff plot on the rate of water and 

sediment delivery. In practice, it is difficult to suggest an adequate length of the plot 

(Slaymaker 1991). The advantage of runoff plots is that they give the researcher control 

over some variables, while the disadvantage is that data cannot be directly translated to 

a whole basin (Striffler 1965). 

 

Figure 4-1 Flow diagram showing main steps in the methodology 

The main focus of this study is on high-resolution experiments at the runoff plot scale, 

to provide detailed and controlled insights into how precipitation perturbs soil quality 

and nutrient release. However, since impacts of farming and other land use activities are 

generally at catchment scales, there is need for the study to obtain information at larger 

scales. Therefore, an experimental design was devised to investigate hydrological and 
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hydrochemical behaviour across scales, from a hillslope plot then at sub-catchment and 

small catchment scales. Modelling studies help to interpret the data at each scale, and 

are used to generalize the results for other catchments. This design defines the necessary 

instrumentation, which is focussed on capturing runoff processes in small experimental 

plots on a hillslope, in a monitored sub-catchment nested within a tributary catchment of 

the River Eden. Three runoff plots were sited within the sub-catchment to allow 

discharge measurements. Runoff plot dimensions were 2 by 1 m with wooden sheets on 

three sides. The downstream section of each plot was fitted with a gutter. The runoff 

from the plot was led into a tipping bucket raingauge, then into a storage container until 

it can be measured, sampled and recorded.  

Suction lysimeters are the types of equipment used to collect samples of the soil water 

solution, in order to determine nutrients in subsurface flow. Soil water content was 

measured with a Soil Moisture Logger DL6. The soil moisture probes were installed at 

3 depths (10, 20 and 30 cm) at the upper and the bottom of the hilslope to determine the 

relationship between soil moisture storage and rainfall infiltration. A trench was 

constructed to measure a subsurface flow and the DOC and the NO3
- concentration 

during different climate conditions. This experimental design was set up to provide data 

sets at the plot and hillslope scales on runoff, soil and nutrient fluxes. The advantage of 

using the plot scale studies is the possibility for detailed process monitoring on a small 

scale, and providing a basic description of the most relevant aspects (Michaelides et al. 

2009). Data from the experimental design are used as reference in modelling approach, 

calibration and validation. 

4.3 Site selection 

To understand the surface and subsurface hydrological controls on nutrient fluxes, three 

sites were selected for intensive observation in the Upper Eden basin. The selected sites 

are the Blind Beck catchment, the Hollow sub-catchment and a hillslope, both at 

Sykeside Farm. Figure 4-2 shows that Sykeside Farm is located in the Upper Eden 

basin, about 8 km south-west of Brough and about 7 km north-west of Kirkby Stephen.   
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Figure 4-2 Location of the three study sites. The Blind Beck catchment is shown in the red shaded area; 
the Hollow sub-catchment is shown in violet shaded area 

The purpose of this study at the catchment/sub-catchment scale is to: a) obtain initial 

estimates of hydrological and hydrochemical behaviour at catchment/sub-catchment 

scale and b) test scale variability. 

4.3.1 The Blind Beck catchment 

The Blind Beck catchment covers 9.22 km2 and contains a small stream that flows past 

Little Musgrave Farm (Figure 4-2). The boundary of the catchment and the stream 

network were delineated from a 50 x 50 m2 grid cell Digital Elevation Model (DEM) 

using hydrological functions of ArcGIS, Figure 4-3.  

 

Figure 4-3 Digital Elevation Model (DEM) of the Blind Beck catchment 
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Geology  

The main formations in the study area consist of Penrith Sandstones and limestones 

(Figure 4-4, Table 4-1). It can be seen from Figure 4-5 that most of the study area falls 

within the till deposits of the Devensian.  Lower elevation areas are associated with 

alluvium deposits. On the west of the stream is fine to medium textured lodgement till 

(formerly boulder clay), glaciolacustrine and estuarine deposits. Further details of the 

geology are given in the geology chapter of the Upper Eden basin (Chapter 3).  

 

 

Figure 4-4 Geology map of the Blind Beck catchment (source: Edina Digimap 2008 and modified by     
the author) 
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Table 4-1 Rock description of the Blind Beck catchment geology map (source: Edina Digimap) 

Map 
code Description Max age Min age Lithology description Thickness 

AG ALSTON 
FORMATION Asbian Pendleian 

Bioclastic limestones, sandstones, 
mudstones, siltstones and rare coals 

typically in regular cyclothemic 
sequence. 

c.340m 

ASKL 
ASKHAM 
LIMESTONE 
MEMBER 

Asbian Brigantian 

Limestone, dark grey, well-bedded, 
wackestone and packstone, 

porcellanous in parts. Prominent layers 
with algal oncoliths and coral colonies. 
The member is split into 2 leaves by a 

thin layer of red-brown mudstone. 

12 - 14.7m. 

KNL 
KNIPE SCAR 
LIMESTONE 
FORMATION 

Asbian  

Pale grey, scar-forming limestones, 
mostly thick-bedded biosparites and 

biopelsparites commonly 
pseudobrecciated, and probable thin 
siliciclastic bed, not exposed at type 

section. 

61m seen, 
but top 16 
metres of 
formation 
not present 

LLLM LOWER LITTLE 
LIMESTONE Brigantian    

PS 
PENRITH 
SANDSTONE 
FORMATION 

Early 
Permian  Coarse-grained cross-bedded aeolian 

sandstone. 
up to c. 
100m 

RNL ROBINSON 
LIMESTONE Asbian    

SIL SIMONSTONE 
LIMESTONE Brigantian    

 

 
Figure 4-5 Superficial deposits map of the Blind Beck catchment (source: Edina Digimap 2008 and 
modified by the author) 

0                             1                            2 km

Legend:

Alluvium (ALV)

Peat (PEAT)

River Terrace Deposits
(Undifferentiated) (RTDU)

Till, Devensian (TILLD)
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Vegetation and land use 

A map of 25 different types of land use is presented over the study area. This map was 

reclassified into twelve (12) categories of land cover, as shown in Figure 4-6. The 

vegetation of the Blind Beck catchment is represented essentially by meadow (58%) and 

mown, grazed turf (24%).  

 

Figure 4-6 The Land Cover Map of the Blind Beck catchment 

 

Soil types 

The spatial distribution of the main types of soil can be seen in a soil map (Figure 4-7). 

The soils in this area are predominantly freely drained brown earths and humus-iron 

podzols (43%) and loamy textured alluvial soil (27%) in the lower part of the catchment 

with wetness class I – III (Figure 4-8). Loamy textured alluvial soil has a thick top layer 

and a higher infiltration capacity, making it less susceptible to erosion. On the west, the 

soil type is non-calcareous mineral gleys with wetness class III or IV (Appendix A3). 

This clay soil is characterised by poor infiltration with a shallow layer of topsoil that 

makes it more prone to overland flow and soil erosion. 
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Figure 4-7 The HOST map of the Blind Beck catchment 

 
Figure 4-8 The HOST class percentage cover for the Blind Beck catchment 4: freely drained brown 
earths, 5: freely drained humus-iron podzols and brown earths, 6: freely drained brown earths and 
humus-iron podzols, 8: immature free and imperfectly drained loamy textured alluvial soils and 24: non-
calcareous mineral gleys 

The Blind Beck catchment instrumentation 

Instruments at the outlet of the Blind Beck catchment include a multi-parameter water 

quality station recording a selection of physico-chemical variables (including pH, 

conductivity, turbidity, and dissolved oxygen (DO)). This station was installed in July 

2005. Unfortunately, it has become broken since 2008 and there are no data available 

for our study period. The site is also equipped with a stream gauge. Stream flow is 

logged at 15 minute intervals. Figure 4-9 shows the permanent equipment of the Blind 

Beck stream. 

4
8.6% 5

5.2%

6
43.1%

8
27.6%

24
15.5%
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Figure 4-9 The Blind Beck catchment: permanent equipment 

4.3.2 The Hollow sub-catchment 

The Hollow sub-catchment is located at Sykeside Farm with an area of 0.09 km2 with a 

small ephemeral stream, which was chosen as the flow observation point               

(Figure 4-2). The lowest elevation of the sub-catchment is about 150 m (east side) at its 

outlet to stream and its peak reaches an elevation of 184 m above sea level (a.s.l.) in the 

southwest part at Strutforth Hill.  

Barber (2008) mentions Sykeside Farm in his thesis as an example of a sediment and 

nutrient loss mini-catchment ‘hotspot’ within the Upper Eden basin. It is also 

characterised by a flashy response during storms. This site was selected because of good 

relations with the landowner, an arranged land agreement, installed equipment for the 

CHASM project, and good position of the sub-catchment. The boundary and 

topography of the Hollow sub-catchment were obtained using GPS surveying 

equipment. 

Field survey 

A survey of the sub-catchment area was undertaken by the author. This was done using 

the Leica 1200 GPS (base station and rover) to provide a close resolution topographic 

survey and to map visible features (Figure 4-10). A control point was established on 

high ground (184 and 173 m). The GPS operator walked across the entire area, 

recording points at a distance of approximately 20 m intervals.   

CHASM
stream gauge

CHASM water quality 
station
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Figure 4-10 The author taking points in the Hollow sub-catchment 

Satellite reception proved to be problematic in the areas of higher vegetation. Very 

dense, overhead vegetation can block or weaken the signal. In that case, it is helpful to 

take data points in a nearby area to obtain a clearer satellite signal.    

A total of 512 points was collected over the sub-catchment area. These points were then 

transferred to an Excel spread sheet to facilitate analysis and GIS mapping. The X and 

Y data were then used to automatically plot the points onto a map in ArcGIS        

(Figure 4-11). These point data were then interpolated to create a triangulated irregular 

network (TIN) using 3D Analyst-Create/Modify TIN, Figure 4-12. 

 

Figure 4-11 Data points recorded over the sub-catchment 

 
Figure 4-12 Triangulated Irregular Network (TIN) of the Hollow sub-catchment 
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A Digital Elevation Model (DEM) of the sub-catchment was constructed using the TIN 

model.  

Geology  

On Sykeside Farm, the dominant rock type is Penrith sandstone (Figure 4-13,         

Table 4-2).  

 
Figure 4-13 The geology map of Sykeside Farm (source: Edina Digimap 2008 and modified by             
the author) 

Table 4-2 Rock description of Sykeside geology map (source: Edina Digimap 2008) 

Map 
code Description Max age Min age Lithology description Thickness 

AG ALSTON 
FORMATION Asbian Pendleian 

Bioclastic limestones, sandstones, 
mudstones, siltstones, and rare coals 

typically in regular cyclothemic 
sequence. 

c. 340m 

PS 
PENRITH 
SANDSTONE 
FORMATION 

Early 
Permian  Coarse-grained cross-bedded aeolian 

sandstone. 
up to c. 
100m 

Figure 4-14 presents superficial deposits with dominant till and alluvial deposits from 

the Permian and the Jurassic. 

 
Figure 4-14 Superficial deposits of Sykeside Farm (source: Edina Digimap 2008 and modified by         
the author) 

Legend:

Alston Formation (AG)

Penrith Sandstone Formation (PS)
1000 m

2000 ft

Legend:
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1000 m
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Vegetation and land use 

The vegetation of Sykeside Farm covers about 26 ha of the field with wetlands, 

permanent pasture and temporary grass field, Figure 4-15. The Hollow sub-catchment is 

represented by permanent pasture. Livestock farming is the predominant activity at 

Sykeside Farm, with the rearing of animals such as cattle and sheep. In the northern part 

of the field, as at the lower end of the farm, wetland has been under the stewardship for 

some years.  

 
Figure 4-15 Principle land use of Sykeside Farm (source: Gravier 2004 and modified by the author) 

The unimproved and naturally boggy north part of the farm (represented at the top of 

Figure 4-15) is used intermittently for sheep grazing.  

Soil types 

Soils are classified according to the HOST Classification (The Macaulay Institute 

2008). As can be seen in Figure 3-6 for the Upper Eden basin, Sykeside Farm is 

classified as the HOST type 8 and 24. The HOST type 8 corresponds to the immature 

free and imperfectly drained, loamy textured alluvial soils and the HOST Type 24 

corresponds to the non-calcareous mineral gleys.    

Sub-catchment instrumentation 

Rainfall data were collected using a raingauge installed at the outlet of the Hollow sub-

catchment (Figure 4-16 and 4-17). This raingauge has been operational since 1996 and 

measurements are taken automatically at 0.2 mm increments on an event basis. 

0 0.5 km

wetlands

permanent pasture

temporary grass field

Legend:
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Figure 4-16 The Hollow catchment: permanent equipment 

Discharge data used in this study have been provided by an existing data logger at            

15 minute intervals on the 60o V-notch weir at the outlet of the sub-catchment Hollow 

(Figure 4-16). Details about the construction and maintenance of the weir can be found 

under section “Monitoring” later in the text. Figure 4-16 presents the permanent 

instruments that are installed at the outlet of the catchment.  

The X, Y and Z data obtained from GPS survey were used to plot 3-dimensional surface 

of the Hollow sub-catchment by SURFER software (Figure 4-17). 

     

Figure 4-17 Location of the Hollow sub-catchment and the hillslope instrumentation  

4.4 Hillslope experiment 

4.4.1 Field site and soil 

The location of the hillslope experiment is presented in Figure 4-17 in the Hollow         

sub-catchment. The soil profile was observed when a trench was dug to excavate and 
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repair a drainage pipe running through the middle of the sub-catchment area,         

Figure 4-18 (see Appendix B). This mineral soil profile shows: 

Litter – (O horizon) the top, made up of humus (decomposed organic matter), 

Organic-rich topsoil – (A horizon) the topsoil, plant roots grow in this dark-coloured 

layer, made up of humus mixed with mineral particles, 

Compacted inorganic layer – (E horizon) the leaching layer, light in colour. It is made 

up mostly of sand and silt, while below is the subsoil (B horizon) layer which consists 

of clay and mineral deposits (such as calcium carbonate). In the process of leaching, this 

layer has lost most of its minerals and clay as water percolates through the soil, 

Gravel and stones – regolith (C horizon) consists of slightly broken-up bedrock. Plant 

roots do not penetrate into this layer, very little organic material is found in this layer. 

 

Figure 4-18 A soil profile in the Hollow sub-catchment open pit 

4.4.2 Experimental design 

Experimental runoff plots were set up in April 2009 at the hillslope of Sykeside Farm. 

The location of these plots within the sub-catchment is shown in Figure 4-17. A wooden 

fence measuring 9.5 m x 11 m has been placed at the hillslope to prevent cattle 

accessing the plot, and to protect the hillslope instrumentation. A list of material and 

instruments used for runoff plot installation is shown in Table 4-3. 

The Mini Diver is a data logger for the measurement of temperature and water 

level. The CTD Diver is a datalogger for measurement of conductivity, temperature and 

water level. The Baro Diver is designed to measure the atmospheric (barometric) 

Gravel and
stones

Litter

Organic - rich 
topsoil

Compacted 
inorganic 

layer

0 

20

40

60

cm



 

63 
 

pressure for a particular area in order to compensate the Diver range of Loggers. When 

used in conjunction with the MiniDiver and CTD Diver, the data collected is 

compensated using the DiverOffice software wizard to provide correct water level 

readings.  

Table 4-3 Material and instrument list required for experimental runoff plots 

No. Material - Instruments - Data collection system 
10 2 m wooden board 
7 1 m wooden board 
3 1 m plastic gutter 
6 gutter corners 
2 1 x 2 m plastic sheet 
 polyethylene pipe 

2 1 m perforated PVC pipe 
2 47 x 64 x 50 cm containers 
4 Tipping bucket collector 3.5l 
2 Tipping bucket collector 10l 
1 Rainwater collector 
6 MiniDiver 
2 CTD Diver 
2 Baro Diver 
4 Lysimeter 
1 Soil Moisture Data Logger DL6 with 6 Theta Probes 
 Pocket PC 
 Grass trimmer 

The purpose of the study at the runoff plots is to: a) test experimental methods and b) 

obtain initial estimates of hydrological and nutrient responses of plots under natural and 

altered climate conditions.  

Plot characteristics 

At the hillslope of Sykeside Farm, three pairs of 1 m wide by 2 m long runoff plots have 

been isolated on the upper three sides by wooden frames driven 5 cm into the soil and 

extending 5 cm above the soil with the long axis orientated down the slope (Figure 4-19 

and 4-20). A 1 m gutter was installed at the base of each plot to collect overland flow; 

inserted 5 cm into the soil to the upper edge level with the soil surface at the lower end 

of each plot. Special care provided for minimal soil disturbance in the installation of the 

gutters and runoff plots. The gutters were equipped with polyethylene pipe, which 

firstly directs the rainfall into a small plastic bottle with a CTD Diver (250 ml) and then 

into a runoff collector (in general tipping buckets) of 3.5 l (MiniDiver) and 10 l placed 

in the ground (Figure 4-19). One Baro Diver was placed in the bucket at the hillslope 

while one surplus Baro Diver was installed at the outlet of the Hollow sub-catchment as 
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a backup. The start time of the runoff (runoff discharging from the gutter to a collection 

bucket) is recorded by a MiniDiver installed in the bucket. The 10 l runoff collectors 

were cleared of sediment and water after each rainfall event. As the rain falls, the first 

plastic bottle fills up and then overflows into the second one and so on, until it reaches 

the last one for collecting runoff samples through the pipe fitted to the wall of the 

bucket.  When the last tipping bucket is full, the rainfall then overflows through the pipe 

fitted in the lid. The tipping buckets were covered with a plastic lid to prevent the 

catching of external precipitation and to prevent the evaporation of the collected runoff 

water. The loss of runoff into the tipping buckets was minimal due to continuously 

checking of possible air in the pipes due to visual evidence of the air bubbles in the 

small plastic bottle with CTD Diver (250 ml). For removing air from pipes, first the 

gutter was cleaned, then the pipe fitted to the wall of the bucket was removed, and the 

water amount was increased into the gutter to force the air out or by the second method 

of blowing through the pipe to dislodge the lock. The gradient of runoff plots was 

matched to the gradient of the hillslope (a gradient of 13%) on which they were set up. 

These runoff plots were placed close enough to each other (a distance of 1 m between 

them) to avoid the influence of the soil spatial variability and rainfall runoff monitoring  

(Figure 4-20). According to this, the soil was uniform and the soil physical 

characteristics of an area of 9.5 m x 11 m were similar. Table 4-4 shows the summary of 

the soil physical characteristics collected outside and around on the fence at four points.  

Samples were taken with a hammer auger at the 7.6 cm depth and 3.3 cm diameter 

before fencing. Figure 4-19 shows the layout of the hillslope instrumentation. 

The plots were named A, B and C; A and B were selected to present perturbed climate 

conditions (double rainfall input) with installed irrigation pipes, while C was a control 

plot, so that the natural (unperturbed) climate conditions can be presented.  In order to 

not disturb runoff plot A, plot B was used for taking the soil samples. It is assumed that 

additional rainfall for the perturbed plot is proportional to the area of the rainfall 

catcher. 

Table 4-4 Physical properties of soil in site 

Site Bulk Density (g/cm3) % Sand % Clay + Silt Soil Class* 
1 1.47 80.40 19.17 Loamy sand 
2 1.46 83.82 15.86 Loamy sand 
3 1.38 84.52 15.26 Loamy sand 
4 1.43 84.56 15.12 Loamy sand 

*Based on the particle size distribution triangle, the UK system 
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Figure 4-19 Layout of the hillslope instrumentation 

 

Plots were assigned as follows: 

• Perturbed plot => Double rainfall # A 

• Perturbed - sample plot => Double rainfall - soil samples # B 

• Control plot => Natural # C 
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Runoff plot A when freshly 

constructed 

 

 
Runoff plots B and C when freshly constructed 

 
Perturbed plots A and B with installed irrigation 

pipes when freshly constructed 

Figure 4-20 Runoff and rainfall plots in picture 

Considering that the runoff coefficient from a grass plot due to each storm would be in 

the range of 0.05 - 0.35 meaning that they only contribute 5% - 35% of their rainfall to 

overland flow, it is assumed that a figure of 30% runoff coefficient would be 

reasonable. From historical data, it is estimated that the highest amount of rain for each 

storm event would be about 100 mm. Therefore, a design rainfall figure of 125 mm 

would be sufficient. In a case of a 2 m2 runoff plot, the runoff generated from each 

storm would be equal to 75 litres. 

Rainfall simulator 

Water used in the enhanced rainfall was obtained from rainfall collectors. It was 

necessary to collect small volumes of rainfall water, instead of trying to collect larger 

volumes of rainwater in a bigger tank over a longer period, as this would encourage the 

blooming of algae. Each collector consisted of rainfall plot, measuring 1 m by 2 m, 

isolated by wooden frames, with the bottom being covered by a plastic sheet        

(Figure 4-20). These collectors were connected to the perturbed plots using 
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polyethylene irrigation pipes. Later on, containers were used with size 47 x 64 x 50 cm 

for collection of rainfall of larger volume. 

Application of the enhanced rainfall was made on 27 August 2009 to 18 March 2010, 

and then started again on 15 July 2010 to 19 August 2010. On 15 July 2010, containers 

were used to collect additional rainfall to perturbed plots (A and B). 

4.4.3 Rainfall and runoff measurements (non-recording raingauge) 

A modified rainfall collector was placed between plots to monitor the rainfall volume 

and to take rainwater samples (Figure 4-19 and Figure 4-21). A 10 litre tipping bucket is 

attached to a UV resistant plastic funnel, diameter of 254 mm. A plastic mesh is placed 

in the funnel to prevent blocking.   

   
Figure 4-21 A rainfall collector devices 

The total rain and runoff from runoff plots was measured by emptying the tipping 

bucket into a measuring cylinder. The main disadvantage of this method was that 

cumulative runoff from several rainfall events could be attributed to one rainfall event. 

For example, during the night several rainfall events can take place after which only one 

reading is made.  

4.4.4 Soil moisture measurements 

Prior to the field experiment, grass had been grown on the hillslope. The grass was 

removed with minimal disturbance to the soil surface. The soil moisture content was 

observed at 10, 20 and 30 cm depths on the top and the bottom of the hillslope with the 

use of a Soil Moisture Logger DL6 (Figure 4-19 and Figure 4-22). The soil moisture 

content was recorded at 15 min intervals at three depths. A Theta Probe was inserted 
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into the ground at a 45 degree angle. It measures volumetric soil moisture content (θv) 

by responding to changes in the dielectric constant (ε) of the soil.  

 

Figure 4-22 The Theta Probes installed at three depths 

4.4.5 Suction lysimeters 

The perturbed (A) and control (C) plots were instrumented with soil water samplers, 

also known as lysimeters (1900L12-B02M2 SOIL WATER SAMPLER, 12 inch length) 

at shallow  (10 cm) and deep (18 cm) soil profile position above clay layer. Soil water 

was extracted by an extraction kit at time intervals of once per month. On each plot, two 

samplers were placed approximately 0.40 m away from each other and 0.30 m away 

from the left and right edge of the plot (Figure 4-23). 

 

Figure 4-23 Installation of 1900 soil water sampler  
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The soil water samplers are simple, consisting of a porous ceramic cup and a sample 

collection tube. In order to create a vacuum in the sampler, a vacuum pump was used, 

which draws water from the soil matrix through the ceramic cup and into the sampler. 

The lysimeters were sampled monthly and analysed for pH, EC, DOC and ions in the 

chemistry laboratory at Newcastle University.  

4.4.6 Subsurface drainage installation 

Prior to installation, a trench was dug that was roughly twice the width of a drainage 

pipe and deep enough so the drainage pipe would be below the frost level          (Figure 

4-24). The subsurface drainage systems consisted of a 150 mm diameter, 1 m perforated 

PVC (Polyvinyl chloride) pipe placed at 18 cm depth. Two PVC pipes were installed 

horizontally, first under runoff plot B and second above control (natural) runoff plot (C) 

as shown schematically in Figure 4-19. Drainage pipes were connected with a small 

diameter pipe to tipping buckets completed with MiniDivers to monitor subsurface 

flow. This approach of installation was used in order to provide a low level of soil 

disturbance.  

   

 

Figure 4-24 Subsurface drainage pipe installation 
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4.4.7 The trimming program of vegetation 

The experimental area together with runoff plots were cut in June 2009 and July 2010. 

The grass was cut from the field using a grass trimmer and a shear held at 5 cm above 

ground level.  

4.5 Monitoring 

The three study sites (the Blind Beck catchment, the Hollow sub-catchment and the 

hillslope) were monitored by the author between 2009 and August 2010.  This was done 

by establishing the following monitoring program: 

• Stream gauge which recorded water depth at 15 min intervals, 

• Continuously monitoring discharge on the outlet of sub-catchment, 

• CTD and MiniDiver data loggers which recorded water level and electrical 

conductivity (EC) of runoff at 15 min intervals, 

• Meteorological measurements, 

• Soil moisture equipment. 

The following section will provide details of how this monitoring program was 

established to provide stream discharge and runoff for the purpose of monitoring water 

quality and nutrients through the catchment, the sub-catchment and the hillslope.   

4.5.1 Stream gauge at the catchment scale 

Continuous records of stream flows were derived from a stream gauge record. An 

electronic datalogger was installed in July 2003 owned by the CHASM project, to 

record flow at Blind Beck.  This logger stores readings in its memory, and the data are 

downloaded every one to two months. It takes around five to ten minutes to download 

the data at a stage gauge. Proper maintenance and handling of the stream gauge ensures 

that if a problem did occur with a logger, then the data gap would be kept to a 

minimum. The maintenance of a gauge includes the removing of debris and vegetation 

around the gauge and to check the logger stage value with a tape measure on the 

outside.  At this site, the stage gauge has an associated rating curve, which is regularly 

checked with a spot gauging.  

In the field, stream data is transferred onto a tough book laptop. The Hydrolog database 

is developed to store the raw data extracted from the laptop. The database is designed to 
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automatically convert the raw data into discharge using the rating curve equation stored 

into mentioned database. The Hydrolog is a fully integrated tool for storing hydrological 

data, performing data quality checks, performing corrections and can be used for 

producing reports and exports of data. 

4.5.2 Discharge measurement at the sub-catchment scale  

The main discharge data that have been used in this work was provided by the existing 

runoff gauge and a V-notch weir at the Hollow sub-catchment.  

Construction and maintenance of V-notch weir 

The design, construction and maintenance of the weir are based on the criteria of the 

British Standard (BSI 1981) as shown in Table 4-5.  

Table 4-5 Construction and maintenance of the weir according to the British Standard (BSI 1981) 

Weir 
component Criteria to meet Achieved 

Weir Plate 

Constructed of a material that cannot be damaged or distorted 
The upstream face of the plate to be smooth within a distance of 

~ 0.02 m of the crest (Ackers et al. 1978) 
The surface of the notch should be planed surfaces, forming sharp edges where it 

intersects with the upstream 
face of the weir plate 

The width of the notch surface should be between 1-2 mm, if greater than it should 
be chamfered on the 

downstream edges at an angle of no less than 45°. To help prevent water clinging 
to the downstream face of 

the weir at low heads than a chamfer of 60° is recommended 
(Dodge 2001 ) 

Yes 
 

Yes 
 
 

Yes 
 
 
 
 
 

Yes 

Weir Plate 
Installation 

The plate should be perpendicular to the walls of the channel 
The weir plate should be water tight where it intersects with the wall and floors of 

the channel. 
The centre of the notch should be in the centre of the stream channel 

The nappe should only touch the upstream faces of weir plate and downstream the 
channel should be a 

sufficient vertical distance to ensure free discharge where the discharge is 
independent of the downstream 

water level and there must be atmospheric pressure underneath the nappe of the 
flow over the weir 

Yes 
 

Yes 
Yes 

 
 
 
 
 

Yes 

Maintenance The weir plate must be cleaned and silt, vegetation and any obstructions up or 
downstream of the weir removed 

Yes  
continuous 

maintenance 

The V-notch weir has an angle of 60-degree at the sub-catchment outlet, and was 

constructed using wood, bricks and concrete (see Figure 4-16). The stream’s water level 

was determined using a gauge installed at the base of the stream behind the weir plate. 

A gauge was equipped with a CTD Diver, which takes measurements automatically at 

15 minutes time intervals.  The MiniDiver was installed on 15 January 2009. The data 

were downloaded every month. Figure 4-25 shows a schematic of the weir plate used. 

The illustrated weir can measure up to a head height of 0.95 m measuring discharge up 
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to 710 l/s. During 2009 there was a loss of water from around the V-notch, which was 

immediately fixed. 

 

 

Figure 4-25 Schematic of 60o V-notch weir plate 

Calculation of V-notch discharge  

The Baro Diver is installed above the water level and measures the atmospheric 

pressure, (Pb) and the MiniDiver under water measures the total pressure including the 

water pressure. The CTD Diver measures water pressure (Pw) with a built-in pressure 

sensor. After data (in cm) are downloaded from the Diver, so that pressure can be 

converted to depth, the difference between the water pressure (Pw) and barometric 

pressure (Pb) gives the depth of the water passing over the V-notch, PW = (Pb + Pw) - 

Pb. At the zero gauge of the weir, the gauge reading corresponds to the level of the 

crest, which was 30 cm above the pressure of water. The discharge Q of V-notch is 

directly related to the height of the upstream flow, above the crest.  To determine the 

depth of water, 30 cm was subtracted from all depth measurements. The water level 

value is termed H and used in the discharge equation. For the given V-notch weir of 

angle 60o, the Kindsvater-Shen formula is used: 

𝑄 =  
8

15
𝐶𝑑 �2𝑔 𝑡𝑎𝑛 �

𝜃
2
�  𝐻5/2 

where: Q = the volume rate of flow (m3/s), Cd = the coefficient of discharge; g = the acceleration due to 
gravity (m/s2), θ = the notch angle i.e. the angle included between the sides of the notch in degrees (60°),  
H = height above notch base (m)  

Weir calibration  

To check that the discharge calculation presented above was producing accurate 

discharges, a calibration check was performed. The water level readings were calibrated 

by taking manual measurements by using a stopwatch and capturing and measuring the 

weir flow. For this site, several stream manual discharge measurements were made to 

60o H
0.95 m

0.25 m

1.25 m
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define a stage-discharge rating curve plotted in Figure 4-26. According to the rating 

curve, discharge can be calculated from height using the following equation: 

𝑄 = 0.0081𝐻2.4978 

where: Q = discharge (l/s), H = the measured height above notch base (cm) 

 
Figure 4-26 Rating curve for the Hollow sub-catchment stream shown by solid line; extrapolated the 
relationship of the stage-discharge as shown by the dashed line 

As the field measurements did not cover all discharges, higher discharges were 

extrapolated.  

4.5.3 Hillslope monitoring 

Hillslope monitoring deals with runoff flow, electrical conductivity and soil moisture 

processes within mineral soils. The tipping buckets were equipped with the data loggers 

(see Figure 4-19) that recorded runoff at 15 min time intervals. Overland flow was 

monitored during the period March 2009 - August 2010 and subsurface for the period 

September 2009 - August 2010. 

Soil moisture 

Soil moisture Theta Probes were set up for measuring and monitoring the soil moisture 

content at three depths at the top and the bottom of the hillslope. The sampling 

frequency was at 15 minute intervals. They were used from October 2009 up to August 

2010. During the observed period, both wet and dry periods were observed.  

A generalised calibration equation for mineral soil was used to convert the dielectric 

constant to volumetric soil moisture content (θv) as a ratio of volume of water to 

volume of sample (m3m-3). A typical error for this calibration is ± 0.05 m3m-3 (Theta 
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Probe 1999). A third order polynomial has been used to convert the voltage output from 

the Theta Probe (V) to the square root of the dielectric constant (ε). 

√ε = 1.07 + 6.4𝑉 − 6.4𝑉2 +  4.7𝑉3                          (R2 = 0.998) 

or by linear relationship 

√ε = 𝑎0 +  𝑎1θ𝑣 

where: a0 =1.6, a1 =8.4 for a general mineral soil, θv is in m3m-3 

Electrical conductivity 

The electrical conductivity (EC) was recorded at two study sites: the outlet of the sub-

catchment for the period January 2009 - August 2010 and the hillslope for the period 

March 2009 - August 2010.  

At the outlet of the Hollow sub-catchment together with the gauge level, the EC of 

discharge water was recorded using the CTD Diver at 15 minute time intervals. Data 

from the EC are given in mS/cm, and after being downloaded are converted to µS/cm. 

The EC values have been used as a geochemical tracer for hydrograph separation of 

runoff components. 

At the hillslope, the EC of overland flow was measured with CTD Divers installed in 

the 250 ml tipping buckets close to the perturbed and control runoff plots. This gives 

support to the idea of using the EC as a tracer to have knowledge of the different 

sources of runoff during low and high flow as the relationship between runoff and 

dissolved ions. 

4.5.4 Raingauge stations 

Rainfall data of three tipping bucket raingauge stations for the period 2009 - 2010 were 

obtained from Sykeside, Asby and Great Musgrave sites. Figure 4-27 shows the 

locations of these stations.  

Rainfall was recorded using a tipping bucket system linked to the datalogger. Raw data 

are input as event rainfall (i.e. the time of the tip  of 0.2 mm of rain) then put into 

Hydrolog data base which converts data into time series rainfall (from 1 min to 1 year).  
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Figure 4-27 Location of raingauge stations 

 
Figure 4-28 Downloaded raw rainfall data from raingauge at Asby by the author 

Rainfall data processing and filling of missing values 

Missing data in hydrology are a common problem. Rainfall and evapotranspiration data 

are the most important input variables in all hydrological models. To obtain appropriate 

the model results, data accuracy is crucial. Data accuracy is also crucial for checking the 

water balance, agricultural demand and the effects of the climate changes. 

There was missing rainfall data for Sykeside raingauge station for the years of 2009 and 

2010. Data completion was carried out by linear regression using stations that have 

shown significant correlation. The method is based on fitting the best straight line 

through observations. To obtain a good quality of fit, the coefficient of determination 

should be a number between 0 and 1, where 1 represents perfect fit.  

Using linear regression, a mathematical relationship can be defined between data of a 

base station and other stations of the form (de Laat 2005): 

1 mile0
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Sykeside
 

Great Musgrave
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𝑌 = 𝐶 +  𝐶1𝑋1 + 𝐶2𝑋2 + 𝐶3𝑋3 +  𝑒𝑡𝑐. 

where: Y = a series of values of the base station (dependent variable), Xi = a series of values of 
neighbouring station i (independent variable), C = the equation's constant, Ci = the equation's coefficients 

Multiple regressions mean that more than one neighbouring station (independent 

variable) is regarded. In the case of a base station and one neighbouring station, the 

equation reduces to:  

𝑌 = 𝐶 +  𝐶1𝑋1 

This equation was performed between Sykeside (dependent variable) and neighbouring 

stations (independent variable): 

• Asby for data collected between July and November 2009,  

• Great Musgrave for data collected between February and October 2010. 

Double mass curve analysis 

Using a double mass curve analysis, in homogeneities and inconsistencies in the time 

series can be detected. This is indicated in the curve of the double mass plot showing an 

inflection point in the straight line. The deviation from the straight line is mainly due to 

the change of observer, change of measurement method, location change to new site, 

etc. The principle of double mass analysis is to plot accumulated values of a station 

under investigation against accumulated values of other stations over the same period of 

time. The principle of double mass curve analysis is exercised through plotting 

accumulated 15 min time interval rainfall for one certain period over the year for 

raingauge of observation for station Sykeside against the mean of the other two stations 

(Figure 4-29 and 4-30).  

 
Figure 4-29 Double mass analysis of 15 min rainfall between Asby and Sykeside raingauge stations 
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Figure 4-30 Double mass analysis of 15 min rainfall between Great Musgrave and Sykeside raingauge 
stations 

The double mass curve as shown in Figures 4-29 and 4-30 can be interpreted as follows: 

• an upward deviation from the linear relation indicates relative high values of 

Sykeside raingauge station 

• a parallel line indicates a constant relation between station Asby or Great 

Musgrave and Sykeside 

• a downward deviation from the linear relation indicates relative low values of 

Sykeside raingauge station. 

The double mass curve analysis shows that during the study period rainfall at three 

raingauge stations was nearly the same. These results show that the close proximity of 

the Sykeside raingauge to the Asby and Great Musgrave raingauge minimized the 

differences in gauge catch due to spatial variation in rainfall intensity or occurrence.  

It is not necessary to plot the residuals and to continue with the analysis, as there is no 

significant deviation and the data are homogenous.  

4.5.5 Weather station 

An automatic weather station was established at Hill Top Farm (Great Musgrave) in 

September 2003 as a part of AWS network under the CHASM Project in the Upper 

Eden basin. Location and details of the station are presented in sub-section 3.7.1. The 

station was installed on the hill at a 155 m elevation where no obstacles were present, 

which could potentially affect the readings. It is powered by solar cells, which charge a 

12v battery internally. This station was a refurbished system produced by 
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Environmental Measurements Ltd, Sunderland that resulted in patchy data for a period 

of 18 months. Later, it was upgraded with a Campbell’s CR10X logger in January 2005. 

Air temperature, wind speed average over 15 minutes (min, max and average), wind 

direction, net radiation, relative humidity, and battery voltage of the logger were 

recorded. From September 2003 to October 2010, data from the weather station has 

been near continuous, except for a gap between October 2008 and February 2010, when 

it was offline. 

4.6 Field Sampling  

4.6.1 Plot soil core program 

For the estimation of nutrients, the normal sampling depth is about 15 cm (6 in.) 

because most plant roots grow and tillage mixes most nutrients into the soil to about    

15 cm deep (Reid 2006). If the sampling is deeper than 15 cm (6 in.), the subsoil is 

normally much lower in nutrient content, and the sample is not representative of the 

field. For the sampling of nitrates, a depth of 30 cm (1 ft.) will provide a more accurate 

indication of the amount of nitrate available to the crop, since nitrate will move more 

easily in soil water than other nutrients (Reid 2006). According to this, it was decided 

that the best depth to adopt for soil investigation in terms of nutrients was 30 cm. 

The soil samples were taken in the spring 2009 (April 30) before wetting (enhanced 

rainfall) and in the autumn 2009 (October 8) and the summer 2010 (August 19) after 

wetting from perturbed (B) and control plot (C).  

The soil cores were extracted using an auger that is manufactured by the Ejkelkamp 

firm, with a diameter of 6.0 cm (Figures 4-31 and 4-32). From each plot, four soil 

samples were collected (6 cm diam., 30 cm deep). Extra care was taken not to disturb 

the hydrological effects at the hillslope. Due to this, samples from the perturbed plot (B) 

was collected inside the plot, and samples from the control plot (C) were taken adjacent 

to the plot. The hole created by soil core removal was filled with soil. After collection, 

the samples were preserved in PVC tubes, being wrapped in cellophane (Figure 4-33) to 

protect from drying out whilst being transported to the laboratory prior to analysis. 
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Figure 4-31 The author obtains a soil core at the hillslope adjacent to plot 

 
Figure 4-32 An auger used to sample soil core 

 
Figure 4-33 A 40 cm soil core obtained and, wrapped in cellophane 

Layout of soil cores obtained from two plots at the hillslope 

To obtain a representative sample or “representative value” for a soil property, a number 

of samples need to be taken over the area. In the case of a plot, the samples are analysed 

separately. The position of the soil cores was chosen by adapting the sampling strategy 

used in UK agriculture, which is to walk along a “W” shaped path, as shown in     

Figure 4-34 for a field (Rowell et al. 1994). 
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Figure 4-34 A soil sampling strategy for a field area (source: Rowell 1994) 

Layout of soil cores are presented in Figures 4-35, 4-36 and 4-37.  

 
Figure 4-35 Layout of runoff plots, illustrating the location of the 30 cm cores used to evaluate the soil 
properties of each plot before wetting, the spring 2009  

 

 
Figure 4-36 Layout of runoff plots illustrating the location of the 30 cm cores used to evaluate the soil 
properties of each plot, after wetting, the autumn 2009 
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Figure 4-37 Layout of runoff plots illustrating the location of the 30 cm cores used to evaluate the soil 
properties of each plot, after wetting, the summer 2010  

4.6.2 Catchment water and sediment sampling program  

Site selection and sampling location 

Prior to collection of samples, a walk through the study site was conducted to identify 

sample locations. As a result of visual observations, five sample site locations of stream 

water and sediment were selected, Figure 4-38. The stream sampling program is based 

on monthly samples and more frequent sampling during some episodes such as storm 

events. 
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Figure 4-38 Plan view showing sample locations and instrumentation 

Site 1: Downstream of Sykeside Farmyard 

Site 1 is located at Sykeside Farm, approximately 150 m downstream from the 

farmyard. Figure 4-39 shows the wider channel and pathway where a farmer used to 

cross a stream called the Beck with farm machinery.  

 

1 

4 
2 

Blind Beck 

Sample Site 
Stream 

Pond/spring 

Intake Hill (164m) 

Strutforth Hill 
(184m) 

Ephemeral stream 
Wetland/boggy area 

5 

(Upstream catchment 
area = 10 km )  2 

CHASM flow & water quality  monitoring site 

 (173m) 

 (154m) 

Little Musgrave 

Sykeside Farm 
(Upstream catchment 

area = 7km ) 2  

Disconnected land drain CHASM raingauge  

0 100 200 300 400

MetersMetres  

3



 

83 
 

 
Figure 4-39 Photograph showing sample site 1: directly downstream of Sykeside Farmyard               
(flow left to right) 

The selected area is used for sheep grazing where animals have easy access to Blind 

Beck itself.  In addition, animals have a drinking pond, which is directly connected to 

the stream. Approximately 20 m from the east of this site there is a hard standing, which 

is used for the temporary shelter for cattle and storage of animal feed.  Water is carried 

by a man-made drain directly from the hard standing to Blind Beck. At this site, the 

water contains high levels of suspended sediment and has large areas of algae growing 

on the bed. 

Site 2: Directly upstream of CHASM raingauge 

Site 2 is located downstream of site 1 and upstream of ephemeral spring and a CHASM 

raingauge. Figure 4-40 shows a large gully that drains the improved field further uphill. 

During the storm event, there is evidence of tramlines running perpendicular to the 

hillslope and surface runoff directly to Blind Beck. 

 
Figure 4-40 Photograph showing sample site 2: Directly upstream of CHASM raingauge                   
(flow right to left) 
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Site 3: Downstream of ephemeral spring (upstream of buffer strip area) 

Figure 4-41 shows the location of site 3 approximately 150 m downstream of site 1 

where the Beck flows at the foot of Strutforth Hill. The uphill fields are drained by 

natural gullying and man-made drainage ditches running into the stream.   

The fields are a mixture of improved grassland and grazing. Figure 4-41 shows a pipe 

that drains the area in between the two hills and emerges as a small ephemeral spring 

that flows into Beck just 10 m upstream at the sample point.      

 
Figure 4-41 Photograph showing sample site 3: directly downstream of ephemeral spring (view in 
upstream direction) 

On the eastern bank, the Beck is fenced off from the fields, and there is a small amount 

of riparian vegetation. At this site, the stream is rather shallow approximately 15-20 cm 

deep. The stream bed is heavily presented with areas of algal growth and turbid water. 

The riparian area is approximately 120 m downstream of site 3.  

Site 4: V-notch at the outlet of the Hollow sub-catchment 

The sampling site 4 is located at the outlet of the sub-catchment (Figure 4-42). This was 

to obtain representative samples of water and sediments for whole sub-catchment.  

 
Figure 4-42 Photograph showing sample site 4: V-notch at the outlet of the Hollow sub-catchment 

 



 

85 
 

Site 5: CHASM sampling site on the Blind Beck 

Site 5 is located at the Blind Beck catchment outlet, where the Beck flows by the side of 

the road in a ditch that becomes heavily vegetated in the summer. This site is also a 

CHASM monitoring site (water quality and stream flow), Figure 4-43. 

 
Figure 4-43 Photograph showing sample site 5: furthest downstream monitoring site near Little 
Musgrave Farm (flow left to right) 

This site is characterized by improved grassland to the north and heavily grazed, 

unimproved land to the south. The stream is very fast and bed is considerably less silted 

than further upstream at Sykeside Farm where there is algal growth. 

Sampling type and sampling schedule 

One schedule was followed for water quality and sediment sampling: monthly point 

values. Figure 4-44 provides a sampling period of stream water, rainwater and 

sediments. Data collection took place between April 23, 2009 and August 19, 2010.  

Travel time required 1 day to visit all sites. Table 4-6 lists the sampling schedule and 

the parameters analysed for each site.  

 
Figure 4-44 Sampling period of stream water, rainwater and sediments 
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Table 4-6 Sampling schedule and parameters analyses at monitoring stations 

Site 1 2 3 4 5 
Monthly water sediment water sediment water sediment water sediment water sediment 

Parameter A B A B A B A B A B 
 

A: �

pH, EC
Anions: chloride, nitrate, sulphate, hydrogen carbonate

Cations: calcium, magnesium, sodium, potassium
Dissolved organic carbon (DOC)

� 

 

B: �
Particle size distribution (PSD)

Total organic carbon (TOC)
Total carbon (TC)and total nitrogen (TN)

� 

Figure 4-45 presents the measured rainfall at the outlet of the Hollow sub-catchment, 

the periods of enhanced rainfall on the perturbed plot, soil and water sampling calendar 

in the 2009 and 2010 year for the hillslope plots. 

 
Figure 4-45 Monthly rainfall, enhanced rainfall periods, and sampling calendar for the hillslope plots 

4.6.3 Field data quality assurance/quality control 

Quality assurance (QA) is defined as a system of management activities to ensure that a 

process, item or service is of the type and quality needed by the user. 

Data validation 

Field observations, activities and sample sites were noted in a field book. Monthly visits 

included a description of the vegetation, precipitation, flow level, condition of V-notch 

weir, raingauges, stream gauges, runoff plots and irrigation pipes, tipping buckets, pipe 

connectors, divers, Theta Probes and any problems that occurred. Photographs were 
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taken to document experiment set up, topographic survey, sampling activities and 

stream flow. 

Accuracy 

Accuracy is defined as a measure of the closeness of the measured value to the “true 

value”. In the field this means following standardized techniques and procedures to 

minimize sampling error.  

Comparability 

Comparability is used to measure how well one data set can be considered as similar to 

another. 

Completeness 

During sampling, the procedure followed a sampling plan to collect all of the designated 

samples. Changes of the sampling plan were made before visiting the field after 

discussion. All necessary samples were collected, transported to and analysed by the 

laboratory. 

Quality control 

The quality control measures used in the field include but are not limited to: 

• Proper cleaning of sample tipping buckets and sampling equipment, 

• Maintenance, cleaning and calibration of field equipment/kits per the 

manufacturer’s and/or laboratory’s specifications, 

• Proper field sample collection and analysis techniques, 

• Correct sample labelling and data entry, 

• Proper sample handling and transport techniques, 

• One field duplicate per set of 10 samples (minimum of 1). 

4.7 Soil and sediment analysis 

Physical and chemical properties of soil and sediment samples were characterised by 

standard UK procedures.  

In the laboratory soil cores obtained from field were photographed (Figure 4-46) then 

pushed out from PVC tubes. After that, they were divided into segments of 0-10, 10-20 

and 20-30 cm and used for further analysis.  
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Figure 4-46 Example of soil core, taken from the hillslope; numbers indicate cm below surface and cut 
segments  

4.7.1 Determining Soil – water by the gravimetric method  

Soil bulk density is a measure of how dense and tightly packed a sample of soil is. This 

was determined via the core method (Blake and Hartage 1986) by taking four 

undisturbed soil cores from the perturbed and control plots before and during enhanced 

rainfall from 0-10, 10-20 and 20-30 cm soil depths. The soil samples were dried at 

105oC for 24 hours in a forced-air oven, weighed and bulk density calculated as the 

weight of oven-dry soil divided (Wds) by the volume of soil (Vs) before drying, 

expressed in g/cm3.  

𝐵𝐷 =
𝑊𝑑𝑠
𝑉𝑠

 

𝑉𝑜𝑙𝑢𝑚𝑒𝑐𝑜𝑟𝑒  𝑉𝑠 =  
3.14 ∙ 𝑖𝑛𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑞𝑢𝑎𝑟𝑒𝑑  ∙ 𝐻𝑒𝑖𝑔ℎ𝑡

4
 

 

𝑉𝑠 =  
3.14 𝑑2 𝐻

4
 

Soil total porosity was calculated utilizing a modification of the Water Desorption 

Method described by Danielson and Sutherland (1986): 

TP(%) = [1-(bulk density/d)]·100 

where: d = the specific gravity of the solid constituents of the soil; it = estimated to be 2.65 g/cm3 for an 
average soil, 2.4 for a highly calcareous soil, 2.0 for a humiferous soil and 1.5 for a peaty soil.  

In general, porosity values typically are in the range from 30% in very fine textured 

soils to 80% in peat. 

4.7.2 Particle Size Distribution 

A dried soil sample’s lumps were broken into small particles with an agate mortar, 

homogenized by shaking, stirring and pulverizing using a blender to remove plant 

debris and root matter before they were passed through the sieves, Figure 4-47. Particle 

size analysis was determined by sieve analysis using a set of sieves (2 mm – passing 

0 cm10 20 30 
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0.063 mm) in a sieve shaker and weighed each fraction separately,  Figures 4-48   and 

4-49. The milled sample was then mixed and placed in a labelled, glass sample bottle, 

while representative homogenized powder soil sample for thermogravity analysis in 

small labelled glass bottle. 

       

Figure 4-47 Mortar and pestle used to crush the soil 

 
Figure 4-48 Set of sieves in a sieve shaker 

   
diameter: 1.18 mm                                  diameter: 0.212 mm 

Figure 4-49 Sediments being sieved 
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The percentage of gravel, sand, silt and clay size particles presented in the soil were 

obtained from a particle size distribution curve.  A soil and sediment texture triangle 

was used to classify the texture class defined by the UK classification (Figure 4-50).  

  

Figure 4-50 The particle size distribution triangle, the UK system (source: Land Inforamtion Systems 
2013 and modified by the author) 

Definition of particle size classes 

The particle size classes of the soil (< 2 mm) are defined as follows (FAO 2006): 

Clay < 2 µm 
Silt 2 – 63 µm 
Sand 63 – 2000 µm 
 

Classification of the surface sediments based on grain size 

The final dry samples were screened with a set of sieves arranged into a uniform 

database containing percentages for silt+clay content (grain size <63 μm), sand (grain 

size between 63 μm and 2000 μm) and gravel (grain size >2000 μm). The classification 

system used to distinguish sediment type and the sorting index were carried out in 

accordance with FAO (2006).  

4.7.3 Quantification of total organic carbon (TOC) by LECO TOC analyser 

Total organic carbon was determined using the direct method. Direct determination 

consists of previous removal of any carbonates present by treating the soil with 

hydrochloric acid.  
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The dried and homogenized soil or sediment samples were analysed for TOC in 

duplicate. Samples were weighed (about 100 mg) in a porous crucible and in-situ 

acidified with sufficient dilute hydrochloric acid (4.0 mol/l) to remove carbonates. After 

the acid has drained from the crucibles, these samples were put in the oven and dried at 

65oC overnight. Total organic carbon (TOC) of oven dried samples were determined 

using a LECO Carbon/Sulphur Analyser, previously calibrated with standard steel rings 

of certified carbon content. The ceramic crucible was placed in a radio frequency 

furnace and the sample combusted in a stream of carbon dioxide-free oxygen.  The 

residual carbon (organic) was oxidised to carbon dioxide by combustion in a stream of 

oxygen, and the CO2 produced was quantified by infra-red detection.  

4.7.4 Quantification of total carbon (TC) and total nitrogen (TN) by CNS analyser 

Total soil C and N were determined by the CNS analyser (Vario EL, Elementar 

Analysensysteme GmbH, Hanau, Germany). The analyses were carried out on 100 mg 

of crushed samples in a crucible without previous decarbonation. The CNS Analyser 

gives a rapid analysis of total carbon, which includes organic carbon and carbonates. 

Total Nitrogen (TN) is a measure of both inorganic and organic forms of nitrogen. Total 

C and N are expressed as a percentage.  

Calculation of CaCO3 

The total inorganic carbon (TIC) was determined by difference: 

𝑇𝐼𝐶 (𝑤𝑡%) = 𝑇𝐶(𝑤𝑡%) − 𝑇𝑂𝐶(𝑤𝑡%) 

To express TIC as a percentage calcium carbonate (CaCO3), the following equation was 

used:  

(𝑇𝐶 − 𝑂𝐶)  ∙ 8.33 = 𝐶𝑎𝐶𝑂3(𝑤𝑡%) 

Quality assurance: duplicate sample analysis 

𝑅𝑃𝐷 =  
��𝐶𝑎𝑟𝑏𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒1 −  𝐶𝑎𝑟𝑏𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒2��

�
�𝐶𝑎𝑟𝑏𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒1 +  𝐶𝑎𝑟𝑏𝑜𝑛𝑠𝑎𝑚𝑝𝑙𝑒2�

2 �
 ∙ 100 

4.7.5 Thermal analysis of soil (TG-DSC-QMS) 

Thermal analysis was conducted using a Netzch Simultaneous Thermal Analyzer STA 

449C Jupiter equipped with a Thermogravimetry (TG) - Differential scanning 

calorimetry (DSC) sample carrier type S supports a PtRh10-Pt thermocouple.  
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Approximately 30 mg of soil passing 63 µm was placed in an Al2O3 crucible. Samples 

were heated continuously from 40 to 900oC at a heating rate of 20oC min-1 under 

flowing 20% oxygen (to maximise oxidation of evolved carbon gas species to CO2) in 

helium (30cm3/min).  

For Quadrupole Mass Spectrometer (QMS) analysis, mass/charge (m/z) values from 10 

to 300 were collected and m/z intensities of interest 12 (C), 18 (H20) and 44 (CO2 and 

N2O) were reported.  

A reference soil, humus, was used for calibrating the temperature axis and the 

corresponding enthalpy output. 

The TG QMS instrument failed on October 10th, 2008. The problem was resolved by 

engineers from Germany and the 13th of November 2009 was the last time the 

equipment was serviced. After this period quadrupole mass spectrometer (QMS) 

instrument continued to work up to December 2010. 

4.7.6 Soil extraction 

In order to quantify the elemental composition of a soil, two extraction schemes were 

used:  Ammonium Nitrate (NH4NO3) and Hydrofluoric Acid (HF).  

Sample preparation for ICP  

Extraction with an Ammonium Nitrate (NH4NO3) 

The commonest extraction of soil is with ammonium nitrate. Approximately 10 g of 

sieved soil samples were extracted with 50 ml 1.0 mol/l NH4NO3, shaken on the 

shaking machine for 30 minutes, and filtered through a 125 mm Whatman No. 2 filter 

paper (MAFF 1986) (Figure 4-51). NH4NO3 soil extracts due to their high concentration 

of nitrate were not suitable for ICP. According to that, a dilution was made using 5 ml 

of extract and 25 ml of deionised H2O. Samples were stored in a cold room at 5oC prior 

to ICP analysis. 
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Figure 4-51 Filtering of soil extracts through a 125 mm Whatman No. 2 filter paper 

This extraction is mainly developed for agriculture and it is not suitable for “total” 

element analysis. 

Extraction with Hydrofluoric Acid (HF) 

Extraction with HF means a known weight of soil is dissolved in a known volume of 

concentrated acid at high temperature and pressure. To understand a complete 

dissolution of soil, 4 different concentrated acids were used: HF (hydrofluoric acid) 

used to break silicate bonds, concentrated perchloric acid used to break down the 

organic matter (heated becomes a strong oxidizer) and also effectively removes excess 

HF from the sample, boric acid used to dissolve rare-earth fluorides that may be present 

and HCl (hydrochloric acid) used for dissolution of metals. 

Approximately 300 - 400 mg of oven dried powdered soil samples were ashed at 550oC 

overnight in porcelain crucibles. Sediment samples were transferred into teflon 

crucibles and any remaining sediment was washed with 2.5 ml concentration of nitric 

acid, and a further 2.5 ml concentration of nitric acid was added to the teflon crucible. 

Samples were extracted with 5 ml concentration of HF, placed on a hotplate, and several 

drops of concentrated perchloric were added and left to evaporate to dryness at 

approximately 130oC for 24 hours. After 24 hours, 5 ml of boric acid was added and left 

to evaporate to dryness at the same temperature for 6 to 8 hours. Evaporation was 

repeated to ensure that all HF residual was removed from the matrix. Then the inside 

walls of the crucible were rinsed carefully with 5 ml of 50% HCl, heated to near boiling 

to dissolve all salts (probably ~ 70oC), added to a 100 ml volumetric flask and made up 

to volume. Solutions were then analysed for cations using ICP spectrometry.  



 

94 
 

Sample preparation for DIONEX (anion) 

Extraction with deionised water (DI) 

A first batch of soil samples (collected in April, 2009) was extracted with a soil:extract 

ratio of 1:10 using approximately 2.5 g of sieved soil (Figure 4-52) with 25 ml of 

deionised water in 50 ml bottles. A second batch of samples (collected in August, 2010) 

was extracted with a soil:extract ratio of 1:5 using approximately 2 g of sieved soil with 

10 ml of deionised water in conical tubes. The reason for changing the extract ratio was 

due to a high concentration of fine particles in extraction.  Samples were shaken 

overnight at 300 RPM on an orbital shaker. Then the first batch of extracts were 

decanted and filtered through a 125 mm Whatman No. 2 filter paper. Samples with high 

concentrations were vacuum-filtered through a filter Glass-Microfibre Discs Grade 

MGA Dia 70 (Figure 4-53). The second batch of extracts in tubes was centrifuged at 

6,000 rpm for ten minutes. After centrifugation, the extracts were decanted and filtered. 

Filtered extracts were stored at 5oC for analysis by DIONEX.  

 

Figure 4-52 Electronic balance with the dried soil 

 
Figure 4-53 Vacuum-filtered soil extract  

filtered soil extract 

filter Glass-Microfibre Discs 
Grade MGA Dia 70
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DIONEX Ion - Chromatography Model ICS - 1000 

Anion analysis by DIONEX of the soil samples was performed by the Newcastle 

University laboratory, School of Civil Engineering and Geosciences.  

0.5 ml of extraction with 0.45 ml of deionised water was put into DIONEX vials          

(5 ml) for analysis of anions in soil. Then soil samples, blanks and check-standards in 

vials were placed in the autosampler of DIONEX machine, Figure 4-54.   

 
Figure 4-54 Dionex DX-100 Ion Chromatography 

4.7.7 Measurement of soil pH 

Soil pH was determined in 1:5 suspension using a pH Meter 3310 JENWAY. 5 ml of 

soil was weighed into a plastic tube and 25 ml of deionised water from measuring 

cylinder were added. The suspensions were first stirred for 15 seconds, and then placed 

in a mechanical shaker for 15 minutes. The samples were left to stand for overnight. 

The pH value was determined using a pH meter previously calibrated using 4.0 and 7.0 

buffer solutions.    

4.7.8 Soil Organic matter (SOM) 

Soil organic matter (SOM) encompasses a wide range of organic compounds, and no 

analytical method allows SOM to be accurately determined from direct measurement 

(Sleutel 2005). The organic carbon measurements were used to indirectly determine soil 

organic matter (SOM) through the use of a conversation factor 1.724 based on the 

assumption that SOM contains 58% carbon (Kerven et al. 2000): 

%Organic C x 1.724 = %SOM 
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The “Van Bemmelen factor” of 1.724 has been used for many years although the 

literature indicates that the proportion of organic carbon in SOM for a range of soils is 

very variable (Soil Survey Lab Staff 1996). 

4.8 Water sample collection and analysis 

4.8.1 Sample handling and filtration 

Water samples were collected with clean 0.5 l capacity plastic bottles and labelled. Prior 

to collection, the plastic bottles were cleaned by washing, rinsing with tap water, then 

rinsing with distilled water and put into the oven to dry.  

Stream water 

During sampling, sample bottles were rinsed with the sampled water three times and 

then filled to the brim (Figure 4-55). 

 

Figure 4-55 Sampling of stream water by the author 

Surface runoff  water and rainfall  

Samples were collected in 10 l plastic containers. The collection was carried out by 

careful immersion of the sample containers deep inside the water.  

Subsurface (soil solution) runoff water 

The subsurface water sample was extracted from the collection tube using an extraction 

kit of 50 ml (Figure 4-56) and taken to the laboratory for chemical analysis. 
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Figure 4-56 Extraction kit (50 ml) 

Notes were kept on volume of surface and subsurface (soil solution) runoff and rainfall. 

When the collected sample volume was insufficient, analyses were done first for the 

DOC. The samples were transported to the Laboratory as soon as possible and stored in 

the refrigerator at 5oC prior to analysis. After collection, raw waters were filtered to 

remove particulate matter using a vacuum type filtration apparatus with a conditioned 

Whatman 0.45 µm membrane filter paper.  

4.8.2 Determination of pH and Electrical Conductivity (EC) 

Standard methods were followed in the determination of pH and EC. pH was measured 

using a pH meter (model: 3310 JENWAY). The pH meter was calibrated using buffers 

of pH 4.0 and 7.0. pH was measured immediately after the samples reached the 

laboratory. 

Electrical conductivity (EC) is a measure of dissolved salts in the water and therefore an 

indicator of salinity. Yusop et al. (2006) suggested that the EC value could be used as an 

indicator of the overall ionic content or concentration of dissolved salts. The EC was 

measured using a hand held EC meter. It was calibrated using standard salinity solution 

prior to use.  

4.8.3 Determination of dissolved organic carbon (DOC) by TOC Analyser 

The DOC determination was performed by the Newcastle University laboratory, School 

of Civil Engineering and Geosciences. Dissolved organic carbon (DOC) concentrations 

were analysed in filtered water samples using a Shimadzu TOC-5000A total organic 

carbon analyser (Figure 4-57). The instrument is capable of measuring inorganic carbon 

and total carbon separately. Filtered samples were put into cartridges and put in TOC 

analyser with the first blank sample. 
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Figure 4-57 A Shimadzu TOC-5000a total organic carbon analyser 

4.8.4 Major cation analysis 

Inductively coupled plasma (ICP) optical emission spectroscopy (OES) 

Ion chromatography (Vista MPX, CCP Simultaneous ICP-OES, Varian) allows 

detection and measurement of cations in solution to ppb levels. Cation analysis by ICP 

optical emission spectroscopy of soil samples was performed by the Newcastle 

University laboratory, School of Civil Engineering and Geosciences. In case where Ca2+ 

and Mg2+ were not detected, dilutions were made for every sample with dilution factor 

1:10 using standardized volumetric flasks and deionised water. Blanks, standard checks 

and replicates were run every 15 samples. The ICP-OES was recalibrated when the 

standard check differed by more than ±5%. 

4.8.5 Major anion analysis 

DIONEX Ion - Chromatography Model ICS - 1000 

1 ml of filtered water sample was put into vials with 4 ml of deionized water, duplicate 

for every sample (a and b) and labelled dilution factor 1:5 (Figure 4-58). 5 ml of filtered 

sample was used in case where concentrations of NO3
- and PO3 were not detected. 

Blank and check-standards were placed in the first three places. Samples were placed in 

a DIONEX machine. 
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Figure 4-58 5 ml vials with filter caps used for the automated sample 

4.8.6 Lab quality assurance 

Quality Control in laboratories includes the following: 

• Laboratory instrumentation calibrated with the analytical procedure, 

• Laboratory instrumentation maintained in accordance with the instrument 

manufacturer’s specifications, the laboratory’s (QMP) and Standard Operating 

Procedures (SOPs), 

• Method Blanks, Matrix spike/matrix spike duplicates, sample duplicates, etc. per 

the laboratory’s QMP. 

• Laboratory data verification and validation. 

Charge Balance Error (CBE) 

The first step of the water quality of data was calculating the balance of positive and 

negative ions. The equation for ion balance is shown below: 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟 =  
∑𝑐𝑎𝑡𝑖𝑜𝑛𝑠 −  ∑𝑎𝑛𝑖𝑜𝑛𝑠
∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + ∑𝑎𝑛𝑖𝑜𝑛𝑠

 ∙ 100% 

An error up to ±10% is tolerable for surface water. A significant imbalance in the 

charge balance indicates that additional constituents are present or that an error has been 

made in the analysis of one or more of the ions. 

4.9 Modelling: SHETRAN model description 

4.9.1 Theory behind the model 

The SHETRAN modelling system has been developed by the Water Resources Systems 

Research Laboratory (WRSRL) at the Newcastle University. SHETRAN (Ewen et al. 

blank check-standards
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2000; Ewen et al. 2002) has its origins in the Système Hydrologique Europèen (SHE) 

(Abbott et al. 1986a, b) and is a fully distributed, physically based model for  water 

flow, sediment and contaminant transport in river basins. Figure 4-59 shows the 

SHETRAN representations of catchment hydrological processes and consequently 

requires a considerable quantity of data to describe the properties of the catchment. In 

SHETRAN the catchment is divided into a horizontal orthogonal grid network and in 

the vertical direction by a column of horizontal layers at each grid square. The channel 

system is represented on the boundaries of the grid squares (Nasr et al. 2004). Each grid 

cell carries a piece of information for the catchment at that point. This information 

includes a specific surface elevation and model components for interception, 

evapotranspiration, snowmelt, and one-dimensional vertical unsaturated zone flow 

where appropriate (Ewen et al. 2000). The water flow component is able to simulate 

overland and channel water flow on the ground surface and in the stream channels, and 

soil-water and ground-water flow in the unsaturated and saturated zones, including 

systems of unconfined and perched aquifers (Ewen et al. 2000; Walsh 2004). Each grid 

element represents a rectangular area of ground surface and vegetation, and the part of 

the unsaturated and saturated zones directly below the ground surface (Walsh 2004). 

 

Figure 4-59 Schematic illustration showing SHETRAN column and its (Sub-Column) cells (source: 
created by Ewen 2000, modified by Bovolo 2006) 

SHETRAN gives a detailed description in time and space of the flow and transport in 

the basin, which can be visualized using animated graphical computer displays (Ewen et 

al. 2000). This makes it a powerful tool for studying the environmental impacts of land 
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erosion (e.g. Wicks and Bathurst 1996), pollution (Birkinshaw and Ewen 2000a), the 

effects of changes in land use and climate (Parkin et al. 1996) and also in studying 

surface water and ground water resources (Parkin et al. 1996) and management (Adams 

et al. 1995; Walsh 2004). SHETRAN can be applied to a wide variety of spatial scales 

from large (2,500 km2) contiguous river basins with multiple sub-basins, to single or 

partial basins, to individual hillslopes and catchments (0.94 km2) (Bathurst et al. 2004). 

Flow and infiltration in an unsaturated zone (UZ) are modelled using Richard’s equation 

which is governed by the soil-hydraulic parameters (soil matrix potential and the 

hydraulic conductivity that is calculated using the equation of Brooks and Corey 1964) 

and this zone presents an integral part of subsurface flow where subsurface flow and 

transport are coupled directly to surface flow and transport. Interception is calculated 

using the Rutter (1971/1972) equation, which depends on ground cover areas, canopy 

drainage and storage capacity and transpiration, is accounted for by a root density 

function.  Actual evapotranspiration can be calculated, using either the Penman-

Monteith equation or observed evaporation data (e.g. pan evaporation), as a function of 

soil tension (water potential; e.g. Feddes et al. 1976). The process governs the 

generation of runoff and is coupled to a saturated zone (SZ). Overland flow (runoff) can 

be generated by excess of rainfall over infiltration capacity (Horton flow) or by excess 

of saturation (Dunne flow) (Figueiredo and Bathurst 2007). Transport capacity can be 

calculated using the equations of Yalin (1963) or Engelund and Hansen (1967). The 3D 

solute transport equations were used to simulate the leaching and transport of nitrate. A 

nitrogen transformation model has been integrated into SHETRAN, so spatially 

distributed river catchment modelling simulations of coupled flow and nitrate transport 

can be made (Birkinshaw and Ewen 2000a). In terms of simulation time step, 

SHETRAN can simulate at any time step from one minute up to one day. 

4.9.2 Data required by the model 

The spatial data required by SHETRAN includes a Digital Elevation Model (DEM), 

land use map and soil map. The meteorological variables include rainfall and potential 

evapotranspiration data. For nutrient modelling, a time series of nitrate application loads 

is required. Time series of observed discharge and nutrient concentrations are vital for 

calibrating and validating the models.  
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A more detailed description of the equations and nature of SHETRAN, covering its 

strengths and weaknesses, its data requirements, and its wide range of applications, is 

available elsewhere in the literature (Ewen et al. 2000; Birkinshaw et al. 2010) and it is 

not repeated here. 

4.10 Summary 

This chapter is designed to define the main field and laboratory methods used to 

determine the runoff, water quality parameters, chemical and physical characteristics of 

soil as well as modelling approach. The case study sites are described and laboratory 

methods to determine the nutrients, such carbon and nitrate are also discussed. The 

results for each aspect of the methods described here are presented in the next chapters. 
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Chapter 5.   Hydrological and nutrient behaviour at the catchment 
and sub-catchment scale 

5.1 Introduction 

The following chapter provides insights for a better understanding of hydrological 

processes at a catchment and sub-catchment scale in relation to nutrient export. To 

address this issue, manually collected water samples and sediment data from the stream 

are summarised and discussed in relation to the nutrient status of the water and the 

sediments.  

The results of this study aim to answer the following questions: 1) What are the major 

hydrological pathways in the sub-catchment? 2) How do the concentrations of nutrients 

(DOC and NO3
-) in stream water and sediments vary with season and discharge? 3) 

How does the catchment size affect carbon and nitrogen variations in the sediments?  

5.2 Precipitation and discharge relationships of the Blind Beck catchment 

The period from 2009 to 2010 is used in this study. As in most of UK catchments, the 

Blind Beck catchment and the Hollow sub-catchment were subject to two rainy seasons; 

one in the autumn and another in the spring (Figure 5-1). The winter of 2009 - 2010 was 

unusually cold in the UK with heavy snowfalls from December to January. The Met 

Office (Meteorological Office; the United Kingdom's national weather service) website 

provides information about the winter 2009-2010 in the UK (Appendix C1). This source 

reported that: “from Thursday 17 December 2009 to Friday 15 January 2010 the UK 

experienced a spell of very low temperatures and significant snowfalls which affected 

almost the whole country. With daytime temperatures often failing to rise above 

freezing, little thawing occurred so fresh snowfalls added to previous accumulations. 

Snow depths of 10 to 20 cm were widespread across England and Wales, whilst across 

upland areas of northern England and in the Scottish Highlands, depths exceeded 30 cm 

in many areas. By 7 January, the UK was covered by lying snow, almost without 

exception, to significant depths in many areas” (source: Met Office 2012) (Appendix 

C2). Long drought periods occurred in May and June 2010 at both locations.  
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Figure 5-1 Daily rainfall (mm) from 1/1/2009 to 31/08/2010 

Table 5-1 gives a positive water balance (Precipitation- PET) for the wet period in the 

autumn and the winter, while for the dry season there is a negative water balance in the 

spring. The total precipitation from 1 January to 31 August was 542 mm and 311 mm 

for 2009 and 2010 respectively. This shows that 2009 was a relatively wet period and, 

conversely, 2010 was a drier period. Precipitation data were provided from the 

Hydrolog data base. Potential evapotranspiration (PET) values were calculated using a 

weather generator as described in sub-section 7.3.2. 

Table 5-1 Water balance data for seasons of 2009 and 2010 

Season Winter 
(DJF)  

Spring 
(MAM) 

Summer 
(JJA) 

Autumn 
(SON) 

Winter 
(DJF)   

Spring 
(MAM) 

Summer 
(JJA) 

Autumn 
(SON) 

Year 2009 2010 
Precipitation (mm) 249 125 232 412 164 119 197 N/A 
PET (mm) 26 164 228 78 28 163 192 N/A 
Water balance (mm) 
(Precipitation-PET) 223 -39 4 334 136 -44 5 N/A 

N/A: not available; J-January, F-February, M-March, A-April, M-May, J-Jun, J-July, A-August, N-November, D-December 

Figure 5-2 shows a time series of rainfall and stream flow with five storm events. 

Precipitation data were obtained from the Sykeside raingauge, while discharge data 

were from the stream gauge at the outlet of the Blind Beck catchment. The total 

precipitation from 1 May 2009 to 31 August 2010 was 1084 mm, and discharge was 

537 mm. November 2009 was the most eventful month with many discharge peaks that 

reflect significant rainfall inputs. A total of 228 mm of rain fell in the catchment during 

five storm events, which are named in following E1 to E6. There have been four minor 

(E1, E2, E4 and E5) and one large flooding event (E3). Of the five events, the event of 
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November 18, 2009 (E3 in Table 5-2) produced the largest amount of rainfall          

(99.6 mm). Discharge rates decreased from April 2010 to August 2010, which was 

likely due to lower total rain, higher evapotranspiration, and decreased water table level. 

 
Figure 5-2 Rainfall and stream flow discharge for the study period from May 2009 to August 2010 for 
Blind Beck. The five selected storm events are indicated 

Total storm runoff is considered to be the total hydrograph volume minus the baseflow 

volume for the storm event. Since precise definition of a storm duration is difficult for 

multiple-peaked hydrographs, a pragmatic choice of the start and end of each storm was 

made based on visual inspection of the hydrograph. 

Table 5-2 Hydrologic parameters for the five selected storm events over the study period of May 2009 to 
August 2010 for Blind Beck. APT7 is the antecedent precipitation total (mm) for 7 days prior to the event 

Event 
# 

Day of the 
event 

Rainfall total 
(mm) 

Hourly peak 
rainfall 
(mm) 

API7 
(mm) 

Runoff 
depth 
(mm) 

Hourly peak 
runoff (mm) 

Runoff 
ratio 

E1 17-18/7/2009 37 4.8 60 18 0.79 0.49 
E2 30-31/8/2009 38 3.8 19 11 0.38 0.29 
E3 16-21/11/2009 100 5.2 53 66 1.42 0.66 
E4 15-17/1/2010 18 4.6 6 10 0.44 0.56 
E5 29/3/-1/4/2010 36 4.8 31 14 0.74 0.39 

Table 5-2 summarizes hydrologic characteristics associated with the five storm events 

during the study period of May 2009 to August 2010. The runoff ratio is one indicator 
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of the water balance in a catchment (Tockner and Robinson 2009). Runoff ratios have 

been calculated for individual events with values ranged from 0.30 to 0.66. Thus, the 

runoff ratio (total runoff as a proportion of total available precipitation) values were 

slightly variable between storm events E1, E2, E4 and E5 except for the large flooding 

event in November 2009, E3. This distribution suggests that there is variability of the 

storm duration, total precipitation, rainfall intensity or antecedent wetness conditions. 

However, the variability of runoff ratio is well documented in the literature but with no 

clear conclusion about which factors govern this variability (e.g. Gottschalk et al. 1998; 

Wainwright et al. 2002; Longobardi et al. 2003). There are also several variables related 

to catchment characteristics that affect the runoff ratio, which control mechanisms such 

as evapotranspiration, soil infiltration and groundwater abstraction (Burt 1992; Gustard 

1992; Tockner and Robinson 2009). Longobardi et al. (2003) indicated that rainfall-

runoff transformation is a non-linear process, and proposed that the dependence of 

runoff ratio on antecedent conditions could be assessed by means of a conceptual 

framework. They estimated the runoff coefficient as the ratio between quick flow and 

rainfall volume on an event basis, and as a function of the initial catchment state 

conditions prior to an event, such as pre-event soil moisture and pre-event base flow. In 

this study, detailed antecedent soil moisture conditions have not been measured at the 

catchment and sub-catchment scale, as this requires many point measurements to 

represent the antecedent catchment state adequately, so antecedent precipitation totals 

are used as a proxy.  

The November 16th - 21st 2009 (which from here on will be called the November 2009 

flood, E3) was the largest flood event to be recorded by the instrumentation and visual 

observation in Blind Beck as can be seen in Figure 5-3 at sampling site 1 and         

Figure 5-4 downstream at sampling site 5.  

    
Figure 5-3 Blind Beck stream at sampling site 1: a) April, 2009 and b) flood event, November 18th 2009 
photo taken by Nick Barber 2009)  

a) b) 
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Figure 5-4 Blind Beck at sampling site 5: a) April 2009 and b) flood event, November 22th 2009 (photo 
taken by James Bathurst 2009) 

The main cause of the November 2009 flooding was the large amount and the intensity 

of the rainfall occurring on a saturated soil that resulted in high overland flow rates.  

Figure 5-5 shows the November flood hydrograph.  

 
Figure 5-5 Flood hydrograph at the Blind Beck catchment during the November 2009 flood event 

5.3 Electrical conductivity, precipitation and discharge relationship of the 
Hollow sub-catchment 

The Hollow sub-catchment in a pasture landscape consists of large open surfaces      

(Figure 5-6) that contribute to the large volume of runoff during months of high rainfall. 

The total annual precipitation from 1 June 2009 to 31 July 2010 was 1019 mm, and 

6.11x107 litres or 680 mm of water flowed past the V-notch weir. Precipitation and 

discharge data were obtained from the raingauge and data logger on the 60o V-notch 

weir at the outlet of the Hollow sub-catchment.  
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Figure 5-6 The Hollow sub-catchment 

Figure 5-7 shows the relationship between precipitation and discharge from June 2009 

to July 2010. For the mentioned period, the minimum recorded flow was zero. The 

maximum recorded hourly flow was 56 mm during the period from 17 to 19 November 

2009 associated with the storm event with large discharge peaks that reflect the 

significant rainfall inputs. The left photo in Figure 5-8 shows no flow over the weir on 6 

August 2009, and the right photo shows the flood event on 17 November 2009. 

 
Figure 5-7 Rainfall and streamflow, at the Hollow sub-catchment for the study period of June 2009 to 
July 2010. The three storm events are indicated. Dry conditions resulted in no streamflow (zero values) 
over the V-notch weir 
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Figure 5-8 Hollow at sampling site 4: a) no flow over the V-notch weir, August 2009 and b) flood event, 
November 17th 2009  

In total three storm events were monitored for stream flow discharge at the outlet of the 

Hollow sub-catchment. Table 5-3 summarizes the main hydrologic characteristics 

associated with the three events for the Hollow sub-catchment. The runoff ratio is also 

presented with values ranged from 0.28 to 0.85. Runoff ratios were variable between 

catchment and sub-catchment with no evident relationship to catchment size (Tables 5-2 

and 5-3). In event 3, the runoff ratio was 0.85 for the Hollow and a smaller value of 0.66 

for Blind Beck. The timing of runoff response to rainfall was directly related to 

catchment size (Figures 5-2 and 5-7) with the sub-catchment reacting most quickly.  

Table 5-3 Hydrologic parameters for the five selected storm events over the study period of May 2009 to 
August 2010 for the Hollow sub-catchment. APT7 is the antecedent precipitation total (mm) for 7 days 
prior to the event 

Event 
# 

Day of the 
event 

Rainfall total  
(mm) 

Hourly peak 
rainfall 
(mm) 

API7 
(mm) 

Runoff 
depth  
(mm) 

Hourly peak 
runoff (mm) 

Runoff 
ratio 

E3 17-19/11/2009 66 5.2 53 56 3.5 0.85 
E4 15-17/1/2010 18 4.6 6 5 2.5 0.28 
E5 30/3/-1/4/2010 25 4.8 31 9 1.5 0.36 

In event 4, the runoff ratio was smaller than event 3, being 0.28 for the sub-catchment 

and a larger value of 0.54 at the catchment scale. The lag in initial response between            

sub-catchment and catchment was 28 h. Similar to event 3, the sub-catchment reacted 

most quickly to precipitation. In event 5, runoff ratios were almost the same between the 

Hollow sub-catchment and Blind Beck (Tables 5-2 and 5-3). A 26 h lag is recorded 

between the sub-catchment and catchment scales. 

Tockner and Robinson (2009) indicate that the runoff ratio normally decreases with a 

catchment area because the catchment size is an indicator of the path length a raindrop 

to travel from the headwaters before leaving the catchment downstream. Differences in 

a) b) 
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runoff ratios and timing between the catchment and sub-catchment showed that the 

large storm event (E3) with wet antecedent conditions resulted in less lagged timing.  

Figure 5-9 shows the rainfall, discharge and the behaviour of electrical conductivity 

(EC) during the November storm event. In the sub-catchment, the electric conductivity 

(EC) of the runoff was measured at 15 min intervals. The November 2009 event (E3) 

was selected as a representation of the relationships between the EC and discharge 

because it was the largest storm event.  At the outlet of the sub-catchment, the EC of 

stream water responds quickly to stream flow (Figure 5-9). 

 
Figure 5-9 Rainfall, streamflow, and electrical conductivity at the Hollow sub-catchment for the 
November storm event 

Data from the monitoring show that the EC showed a generally inverse relationship to 

discharge. While rainfall at the nearby raingauge station had EC values of around        
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11 µS/cm, with small variations during storm events, the EC in runoff reached 

extremely high values of 980 ± 20 µS/cm (average = 525 µS/cm). As can be seen from       

Figure 5-9, during the event the EC drops, due to dilution of the relative high EC pre-

event (‘old’) water with low EC event (‘new’) water. Before the storm event, the EC 

was 827 µS/cm and during the storm it dropped to 251 µS/cm. In the case of recessions, 

an opposite trend occurred. It seems possible that the lower EC values are indicative of 

the greater influence of runoff from the hillslope whereas the higher EC is related to the 

higher groundwater supply or pre-event (‘old’) water. As mentioned in the literature 

high dissolved mineral concentration represented by an increase of EC might be due to 

the long residence times allowing reactions between recharged water and soil minerals 

(Burt and Pinay 2005).  

The EC shows a clockwise hysteresis with the lower EC on the descending limb       

(Figure 5-10) compared with the ascending limb. These results indicate that during the 

intense storm, discharge increased with flushing effect of rainfall on the EC, while in 

the case of decreasing discharge, the EC concentrations increase.  It seems possible that 

during flushing, low EC indicates soils with near saturation, while high EC indicates 

drier conditions. 

 
Figure 5-10 Hysteresis loop of the electrical conductivity plotted against discharge, during the November 
storm event at the Hollow sub-catchment 

During low flow conditions, there is a high conductivity in the stream water that 

indicates the high presence of inorganic dissolved solids (nutrients). This can cause 

triggering of excessive algal growth (algal bloom) or eutrophication.  

In general, therefore, it seems that the electrical conductivity is an indicator of the origin 

of the water for both storm events. It provides information about the hydrological 

behaviour of specific catchments during stormwater runoff that can affect water bodies 
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and agricultural activities. Based on this behaviour it is proposed that the EC is a useful 

natural hydrologic tracer for estimates of surface and subsurface components of flow 

(event and pre-event water) at the outlet of the sub-catchment scale, because of its low 

cost, easy monitoring and the immediate assessment of the water composition. 

5.3.1 Hydrograph separation at the Hollow sub-catchment 

The electrical conductivity (EC) was used to distinguish between event water (overland 

flow) and pre-event water (baseflow/subsurface flow) according to the procedure of 

Hugenschmidt et al. (2010).  

Chemistry-based hydrochemical separation relies on the principle of mixing where the 

equations of continuity and mass balance govern the quantity of tracer flow (Ogunkoya 

and Jenkins 1993). An example of a two-component separation is: 

Qt = Qo + Qn 
QtCt = QoCo + QnCn  

where Qt, Qo and Qn (Q in m3s-1) represent volumes of current stream flow, pre-event 

water (old water - subsurface water including soil water and/or groundwater) and event 

water (new water - rainfall, overland flow), respectively, and Ct, Co, and Cn (C in     

mgl-1 or  µScm-1) are the corresponding tracer concentrations. 

In this study, electrical conductivity values were obtained by continuous measurements 

with a CTD Diver and by direct field measurements at the outlet of the sub-catchment. 

As mentioned earlier (Chapter 2, Section 2.1), rainfall has a short residence time and 

does not make much contact with mineral soils (Burt and Pinay 2005; Weiler et al. 

1999). Therefore, it is assumed that the electrical conductivity in the overland flow is 

similar to that of rainfall (Gremillion 2000). The overland flow and rainfall water 

samples were collected and analysed in order to test that overland flow and rainfall 

values were similar and thus represented the same end member in the two-component 

mixing model.  

During the sampling period, samples of baseflow/subsurface flow (pre-event water; 

water in the stream during periods without rainfall), overland flow and rainfall (both 

constituents of event water; from a tipping bucket set up on the hillslope) were collected 

and measured. As the interflow component for the E3 event was not available, and for 
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the E4 event was not activated, this component could not be included in the separation 

process.  

In this study, the two end-member compositions (event water and pre-event water) were 

considered from two initial sources: rainwater and baseflow/subsurface flow. The end-

members chosen for the two-component hydrograph separation for each storm event are 

given in Table 5-4. The baseflow/subsurface flow electrical conductivity is an average 

of baseflow conductivities over a twenty-four hour period prior to the storm event. 

Table 5-4 Electrical conductivity of the event and pre-event water used in the hydrograph separation of 
discharge in the Hollow sub-catchment 

 Electrical conductivity (µS/cm) 
Event November 2009 (E3) January 2010 (E4) March-April 2010 (E5) 

Event water (overland flow) 11 43 11 
Pre-event water (baseflow) 819 984 971 

The rainfall conductivity value for the November 18th storm event (E3) was             

11.0 µS/cm. The average overland flow runoff conductivity was measured as            

11.2 µS/cm. This shows a similarity between the average overland flow conductivity 

and rainfall conductivity value. Because of this similarity and the fact that only one 

conductivity value can represent event water concentration, the overland flow 

conductivity data was chosen to represent event water conductivity to define the event 

water end-member.  

During the January 15th, 2010 storm event, the electrical conductivity of the rainfall was 

12.0 µS/cm. The average overland flow runoff was 43.4 µS/cm. Because of this 

difference, the rainfall conductivity was not considered as a significant component. 

The average rainfall conductivity value for the March 30th (E4), 2010 storm event was  

11.0 µS/cm. The average overland flow runoff conductivity was also 11 µS/cm, which 

shows the same similarity between overland flow runoff and rainfall conductivities. 

The results obtained from the hydrograph separation techniques are presented in        

Figure 5-11. New water (event-water) runoff is a significant portion of the total runoff 

for each event. Average new water contributions for all events range from 15 to 22%. 

The separation was mainly composed of the pre-event water (78%) for the November 

storm event (E3). These results suggest that they are due to long duration of rainfall and 

infiltration into soils, which consider two components of flow, the overland 

and subsurface flow. At the moment when the soil was saturated it produced saturation 

excess overland flow.  



 

114 
 

 

 
Figure 5-11 Results of the hydrograph separation for 17 November 2009 (E3), 15 January 2010 (E4) and 
30 March 2010 (E5)  

The separation of event 4 (E4) shows the appearance of a baseflow peak prior to the one 

of total runoff. The overland and the subsurface flow do not peaked at about the same 

time. The subsurface flow was dominant with 85% and the overland flow with 15%. 

This observation may be explained by the fact that in January the soil (ground) was 

frozen, producing the overland flow, with the baseflow peak occurring due to freezing-

melting alternations. During melting or thawing, the upper soil layers melt first, 

allowing infiltration of water and saturation of the soil. Frozen soils do not allow any 

infiltration, hence produces a very rapid overland flow. The thickness of frozen soil was 

approximately 18 cm or even deeper according to field observations in lysimeters 

installed on the hillslope at that depth. Based on the observation that soil was frozen in 

the sub-catchment during December 2009 to January 2010, it is suggested that the 

observed overland flow is Hortonian flow rather than saturated excess overland flow. 

The storm follows a relatively dry period (Table 5-3); the antecedent precipitation total 

for 7 days prior to the event was low (6 mm). 

For the event 5 (E5), the subsurface flow was dominant with 82% and the overland flow 

with 18%. The antecedent precipitation total for 7 days prior to event 5 was 31 mm. 

This suggests on comparison to all events that the event water proportion increases with 

an increase of precipitation depth. In comparison of all events, E3 event experienced the 
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highest proportions of event water. The smaller events produce more pre-event water 

due to the importance of mixing between event and pre-event water during the 

beginning of runoff generation where the pre-event water ranged from 82-85% (E4 and 

E5) for smaller to 78% for larger events (E3). 

The application of the two-component hydrograph separation shows that for all events, 

the overland flow and subsurface flow are present. However, the overland flow is not 

the dominant flow process in the sub-catchment during storm events. This finding is in 

agreement with Ogunkoya and Jenkins (1991) who report that pre-event water 

contributes the most significant volumes to stream flow during storms where values 

ranging between 80-95%. This the case in the majority of studies, while several studies 

show 60% of stream flow during storms to be event water, with maximum contributions 

of 80% event water (Ogunkoya and Jenkins 1991) The dominant flow process in the 

Hollow sub-catchment during storm events is subsurface flow.  

The amount of overland flow generated by individual storm events is dictated by 

variables such as the infiltration capacity of the ground, water table height, capillary 

fringe height, storm magnitude, and storm intensity (Occhi 2009). This author also 

indicates that the amount of overland flow may be affected even by the amount of time 

in between storms, which can dictate the rate at which water can permeate the ground 

water table at infiltration zones.  

Linking these findings with Hypothesis 3 (Chapter 1) that was tested over the                

sub-catchment, it is shown that continuous measurement of variables at the outlet of the 

sub-catchment can provide adequate estimates of surface and subsurface components. 

This means that electrical conductivity can be used as a tracer to separate hydrographs 

at the small scale catchment (sub-catchment, 0.09 km2), which is consistent with the 

third hypothesis of this study.    

This study does not include the hydrograph separation techniques at the catchment scale 

(Blind Beck) because no data of electrical conductivity were available as mentioned in 

the sub-section 4.3.1. Therefore, it was not possible to determine scale effects between 

catchment and sub-catchment in the amount of runoff and the percentage generated 

from the overland flow using this method. Consequently, the intention of this study to 

provide a broader picture on upscaling effects and proportions of event water and pre-

event water at each scale was not achieved.  
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The hydrograph separation techniques using the two-component separation method is 

likely to be affected by errors related to each of the two end members, and the 

uncertainty in the measurement of stream values.  

The results of the hydrograph separation suggest that overland and subsurface flows 

both play a significant role in the runoff generation of the sub-catchment, providing 

major pathways for nutrients. According to this, the question raised at the beginning of 

this chapter, ‘What are the major hydrological pathways in the sub-catchment?‘ has 

been answered. 

5.4 Stream water quality 

The chemistry of major ions (Ca2+, Mg2+, K+, Na+, HCO3
-, Cl-, SO4

-2 and NO3
-) in the 

water of Blind Beck and Hollow stream was studied. One of the primary goals of this 

study is to evaluate the characteristics of stream nutrients in the water for the Blind 

Beck and Hollow stream. 

As shown in Table 4-6 of Chapter 4, data on five water quality parameters were 

collected on a monthly basis (one point value) during 2009-2010 year at sites 1, 2, 3, 4 

and 5. Stream water was sampled at the weir of the Hollow catchment at site 4 and for 

all sites (see Figure 4-38), but collection of water samples was not available in January 

2010. In addition, another parameter used for the interpretation of water quality was 

discharge. For all samples, electric conductivity, pH, and the concentrations of K+, Na+, 

Ca2+, Mg2+, HCO3
-, Cl-, SO4

-2 and NO3
- were measured.  

Table 5-5 shows the average chemical compositions of rain water. Also, minimum, 

maximum, and standard deviation of measured ions are included in Table. It can be seen 

from Table that Cl-, HCO3
- and Na+

 are the dominant ions in rainwater of Sykeside. 

The Appendix D1: Table D1-1 provides the full chemical results of rain water, showing 

that the major ion concentrations were higher in the winter.  The average pH of rainfall 

for the sampling period (August 2009-July 2010) was 6.4, which indicates that rain 

water samples were slightly acidic in nature. The average electrical conductivity (EC) 

was 11 µS/cm. The general trend of the abundances of different chemical constituent is 

as follows: 

𝐶𝑙− >  𝑁𝑎+ >  𝑆𝑂42− >  𝐶𝑎2+ >  𝐾+ >  𝑁𝑂3− >  𝑀𝑔2+ 
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The chemical composition of rain water is dominated by chloride and sodium ions, 

however, high concentrations of sulphate, calcium and potassium can occur. Sulphate, 

calcium and potassium are associated with both marine and terrestrial sources. 

Table 5-5 Statistical analysis of chemical composition of rainwater over Sykeside Farm during 2009 – 
2010 year (n = 12) 

Rainwater pH EC 
(µS/cm) 

Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

 mg/l 
Min. 5.8 7 1.3 0.4 0.8 0.2 3.3 4.7 1.6 0.3 
Mean 6.4 11 2.5 1.0 1.5 0.4 5.0 7.5 2.3 0.9 
Max. 7.2 13 5.6 2.0 3.5 0.8 7.7 8.1 3.6 2.8 
SD. 0.4 2 1.5 0.5 0.9 0.2 1.5 2.1 0.7 0.8 

Min = minimum value, Max =  maximum value, SD =  standard deviation  

Table 5-6 summarises statistical analysis of stream water concentrations from sites 1 to 

5. During dry periods (April – July 2010), sampling of water at the outlet of the Hollow 

sub-catchment was a problem because no water spilled over the weir and the stream was 

dry with some areas of standing water. Samples with large errors (16 - 40%) were 

eliminated and not included in this thesis. The full chemical results for the stream water 

with the Charge Balance Error (CBE) may be found in Appendix D1: Table D1-2 to 

D1-6.  

Table 5-6 Statistical analysis of chemical composition of stream water for site: 1 to 5 in Blind Beck 
during 2009 – 2010 year 

Site 1 
(n = 16) pH 

Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
Min. 7.4 7.4 1.1 54.8 14.3 202.4 10.9 6.0 1.6 
Mean 7.9 8.9 2.2 75.0 26.7 285.8 19.3 10.5 4.6 
Max. 8.4 14.8 5.9 108.4 34.2 374.2 41.2 20.5 7.2 
SD. 0.3 1.8 1.2 14.8 4.6 50.3 7.7 3.6 2.0 

Site 2 
(n = 16) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 7.3 6.1 0.9 50.0 13.8 204.3 10.6 5.7 1.0 
Mean 8.0 8.6 2.1 73.6 26.1 287.41 16.8 9.5 4.6 
Max. 8.4 18.2 5.6 97.8 32.4 392.8 39.8 12.7 7.4 
SD. 0.3 3.0 1.3 17.1 5.1 53.7 7.7 2.0 2.0 

Site 3 
(n = 16) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 7.4 6.7 0.8 53.3 13.3 192.0 11.2 5.8 1.1 
Mean 8.0 9.1 2.1 73.0 25.9 278.6 19.1 8.5 4.2 
Max. 8.5 19.4 6.5 95.8 30.6 406.1 41.2 11.4 7.3 
SD. 0.3 3.4 1.5 13.8 4.9 58.9 8.4 1.8 1.9 

Site 4 
(n = 9) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 6.8 5.4 0.6 37.3 9.8 112.7 8.0 5.0 0.0 
Mean 7.2 7.0 1.4 77.2 19.1 272.2 13.0 6.8 1.3 
Max. 8.0 8.5 3.0 102.0 24.4 376.2 20.4 9.4 3.5 
SD. 0.4 1.1 0.9 27.6 6.4 112.7 5.1 1.7 1.2 

Site 5 
(n = 16) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 7.4 6.8 1.1 59.4 14.4 211.3 11.5 5.8 2.9 
Mean 7.9 8.3 1.7 92.9 26.6 340.1 17.3 8.8 7.8 
Max. 8.4 10.4 3.6 120.0 34.4 462.2 27.0 16.3 14.6 
SD. 0.2 0.9 0.7 16.1 4.5 60.3 4.1 2.5 3.4 

Min = minimum value, Max =  maximum value, SD =  standard deviation  



 

118 
 

The average pH of stream water was in the range 7.2 – 8.0, indicating slightly alkaline 

conditions. Potassium concentration values were low, with minimum values ranging 

from 0.6 to 6.5 mg/l. At site 1, the potassium concentrations in the stream water were 

high compared to other sites, with the mean potassium concentration of 2.2 mg/l and the 

maximum concentration of 5.9 mg/l. At site 2 the mean potassium concentration in the 

samples was 2.1 mg/l, and the maximum concentration was 5.6 mg/l, while at site 3 the 

mean potassium concentration was 2.1 mg/l and the maximum concentration was 6.5 

mg/l. Sodium concentrations in stream water were generally low, the mean 

concentration ranged from 7.0 to 9.1 mg/l. At site 3 the mean sodium concentration at 

this site was 9.1 mg/l and the maximum concentration was 19.4 mg/l. Calcium ranged 

from 37.3 - 120 mg/l and magnesium from 9.8 - 34.4 mg/l. The Ca2+ and Mg2+ presence 

reflects the lithology of the catchment (see Chapter 4, Figure 4.4). As can be seen from 

Table 5-6 all cations and pH were lowest at site 4 (Hollow).  

Bicarbonate concentration ranged from 112.7 to 462.2 mg/l. Chloride concentration 

varied between 8.0 - 41.2 mg/l. Sulphate concentrations varied with sampling location 

from 5.0 -20.5 mg/l, with the highest value at site 1. This could be due to the vicinity of 

the farm where ammonium sulphate fertiliser is commonly used. The nitrate values 

were from 0.0 - 14.6 mg/l, with the highest value at site 5, where nitrate sources are 

likely to be from agricultural activities. In the interpretation of this data, it must be 

considered that both manure and fertilisers were applied to cultivated crops of the study 

area.  

Figure 5-12 illustrates the percentage contribution of each ionic constituent to the total 

ionic mass. The contribution of Ca2+ is 51% at site 4 and 56.6% at site 5 of the total 

ionic mass. The accounted proportion of K+ was very low (1.0 - 1.5%).  

  

Figure 5-12 Percentage contribution each ion to total ionic mass 
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Water chemistry for all sites is predominantly calcium-bicarbonate-magnesium-chloride 

type of water with the following ionic sequences: 

Ca > Mg > Na > K 
HCO3 > Cl > SO4 > NO3 

Two chemical signatures may be distinguished from the study of the constructed Piper 

diagram: Ca(Mg)-HCO3 (stream) and Cl(Na)-HCO3 (rainwater), as illustrated in      

Figure 5-13. 

 

Figure 5-13 Piper diagram illustrating the major ion compositions in stream water at the Blind Beck 
catchment (site 5), the outlet of the Hollow sub-catchment (site 4), sites 1, 2, 3 and rainwater 

The average chemical composition of the Blind Beck stream (site 1, 2, 3 and 5), and the 

Hollow stream (site 4) is very similar but differs from the rainwater which clearly has a 

very different chemical signature. The stream water at all sites was heavily dominated 

by bicarbonate ions. The major ions determined in this study are consistent with prior 

studies in Blind Beck (Ockenden 2010).  

In comparison to the Hollow, Blind Beck contains slightly higher concentrations of 

bicarbonate, calcium and nitrate. These differences could be attributed to variations in 

bedrock geology such as limestone. The observed slightly high concentrations of nitrate 

in  the Blind Beck stream could be attributed to extensive agricultural activity and crop 

cultivation, which affected drainage water and had a great influence on stream water 
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quality (Figure 5-14).  The nitrate concentrations are lower at the Hollow sub-catchment 

as pasture land compared with sites 1, 2 and 3 due to the influence of localised pollution 

at Sykeside Farm where intensive farming is present. The low concentrations of 

potassium for both catchments suggests that migration of potassium depends on soil 

texture and organic matter content of soil, especially pH (Peverill et al. 1999). However, 

at three sites 1, 2 and 3 there are high levels of potassium in the stream water due to 

farm pollution. The slightly higher sodium concentrations in the stream water from site 

3 may be the result of pollution through a pipe that drains the area in between the two 

hills, which emerges as a small ephemeral spring that flows into the Beck just 10 m 

upstream of site 3 (sub-section 4.6.2, Figure 4-41).   

 
 

Figure 5-14 Schematic map of the stream water sampling sites indicating point source pollution and 
influence of geology 
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The Environment Agency’s (2006) Groundwater Quality Monitoring Network recorded 

the same dominant water type in the Upper Eden basin as throughout the Penrith 

Sandstone aquifer as Ca(Mg)-HCO3. This shows the same water type as recorded in the 

water stream at all sites in this study. The geology upstream of the Sykeside Farm 

contains large quantities of limestone (calcium carbonate) where the stream flows 

through the limestone stream bed, where bicarbonate ions from the calcite are released, 

which results in high alkalinity measurements for sampling sites downstream (Figure 

5-14). Overall, it became clear that what seemed to be established in the research 

literature on hydrological pathways of a deeper pathway where the water infiltrates into 

the limestone and then passes through the sandstone and reaches the stream (Chapter 2, 

Ockenden 2010) can be in agreement with the results of water quality in this study. 

Relationship between ion concentration and discharge  

The relationship between the stream water discharge and ion concentration of the 

Hollow sub-catchment (site 4), and the Blind Beck catchment (site 5) is presented in 

Figures 5-15 and 5-16.  

 

Figure 5-15 Relationship between water quality variables – anions (monthly means) and discharge 
(monthly means) 

Among cations, similar behaviour is observed between SO4
2- and Cl- for both sites. The 

similar trend was observed between Ca2+ and Mg2+; Ca2+, Mg2+ and HCO-
3 for both 
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stream and Na+ with K+ for the Blind Beck stream. The HCO-
3, Ca2+ and Mg2+ 

concentrations are inversely related to discharge, demonstrating a strong dilution effect, 

while SO4
-2 shows less pronounced dilution.  

 

Figure 5-16 Relationship between water quality variables – cations (monthly means) and discharge 
(monthly means) 

The chloride concentrations in the stream started to increase during the autumn           

(Figure 5-15). However, there is a record of high chloride concentration in February that 

suggests that during snowmelt, chloride stored in the unsaturated zone is flushed into 

groundwater, which increases its chloride concentration (Lundmark 2005). Therefore, 

groundwater may be the major source of water in the stream during melting of the 

snowpack. The water quality of groundwater has not been monitored in this study to 

justify this statement, but the water quality from the hillslope of the Sykeside Farm in 

the overland and subsurface flows were investigated and will be discussed in the 

Chapter 7. HCO3
- concentrations, increasing from August to October, drop in November 

due to dilution and remain relatively constant from February to June 2010 for the Blind 
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- concentration increasing from 
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August to October, drop in November 2009 due to high stream flow, and also in 

February 2010, then increase in March. Discharge increased dramatically in November 

2009 during the storm event and concentration consequently declined, which is very 

clearly presented for Ca2+, Mg2+ and HCO3
-.  

During the drier months, sulphate accumulates within the soil due to increased rates of 

oxidation (Heal et al. 2002). Norrström (1995) pointed out that higher rainfall in the 

autumn re-wets the soil and releases this store of sulphate into the stream with runoff. 

During the period of lowest discharge, groundwater is expected to be the major ion 

supplier.  

In summary, the behaviour of anions and cations in the stream water is similar for both 

the catchment and sub-catchment, and are related to discharge. Soulsby et al. (2002) 

pointed out that the definition of flow concentration relationships is important for 

modelling and predicting water quality.  

Determination of chemical sources at site 4 and 5 

Sources of ions and pH in stream water at site 4 and 5 were examined using the 

correlation matrix. The correlation matrices of all collected samples are given in      

Table 5-7 and 5-8. It is considered that the correlation is good if r > 0.3 and marginal 

0.2 < r < 0.3 at 95% confidence interval (P < 0.00002 for site 4 and P < 0.0002 for     

site 5). 

Table 5-7 Correlation matrix of ionic components for the Hollow sub-catchment (site 4) 

 Na K Ca Mg HCO3 Cl NO3 SO4 pH 
Na 1.0         
K 0.42 1.0        
Ca 0.0 -0.83 1.0       
Mg 0.05 -0.83 1.0 1.0      

HCO3 0.05 -0.80 0.98 0.99 1.0     
Cl -0.05 0.69 -0.93 -0.91 -0.85 1.0    

NO3 0.07 0.13 -0.23 -0.28 -0.39 -0.04 1.0   
SO4 0.63 0.29 -0.10 -0.02 -0.06 0.25 -0.39 1.0  
pH -0.43 -0.70 0.62 0.57 0.49 -0.69 0.26 -0.71 1.0 

 

Table 5-8 Correlation matrix of ionic components for the Blind Beck catchment (site 5) 

 Na K Ca Mg HCO3 Cl NO3 SO4 pH 
Na 1.0         
K 0.63 1.0        
Ca 0.42 0.10 1.0       
Mg 0.39 0.25 0.79 1.0      

HCO3 0.11 -0.29 0.73 0.45 1.0     
Cl 0.35 -0.02 -0.18 -0.08 -0.27 1.0    

NO3 0.35 -0.21 0.55 0.36 0.54 0.29 1.0   
SO4 0.38 0.06 0.22 0.39 0.40 0.17 0.5 1.0  
pH -0.01 0.02 0.36 0.65 0.22 -0.33 0.20 0.46 1.0 
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Site 4: Hollow sub-catchment 

A significant positive correlation was found between Ca2+ and Mg2+ (r = 1). This 

suggests that these cations may have originated from the same source, most likely the 

soil/rock. Ockenden (2010) observed the highest concentrations of magnesium in the 

Sykeside boreholes, with the higher concentration in the deeper (18 m) of 35 mg/l than 

the shallower (6 m) borehole of 30 mg/l. Ockenden suggests an explanatory theory that 

under low flow conditions, the stream water is derived from regolith zones where there 

is the most weathering of the bedrock. In that study, Ockenden also identified that 

during storm events, the water comes mainly from the near surface soil zones where 

there are lower concentrations of the bedrock minerals because of the shorter contact 

time between the water and soil.  

The significant positive correlation between bicarbonate anion and calcium (r = 0.98), 

and magnesium (r = 0.99) probably reflects common geological sources. Limestone 

dissolution is the major controlling factor for calcium and carbonate concentrations in 

the stream. Bicarbonate shows a good correlation with pH, which means bicarbonate 

alkalinity and increase of HCO3
- during weathering originates from soil/atmospheric 

CO2. Chloride shows moderate correlation with K+ (r = 0.69), which may have 

originated from the application of potassium chloride as the most widely used K+ 

fertilizer. The fields at the top of the hill at Sykeside Farm are improved grassland and 

certainly experienced application of fertiliser/manure. Another source of K+ can be the 

substantial amount of leaf/litter decaying organic matter in the stream, which was 

indeed observed in the field. Chloride showed a significant negative correlation with 

calcium (r = -0.93), magnesium (r = -0.91) and bicarbonate (r = -0.85). Therefore with 

increase or decrease in the values of Cl-, the values of Ca2+, Mg2+ and HCO3
- decreases 

or increases. The magnesium content of Hollow stream water shows a good positive 

correlation with pH. A weak correlation between Cl- and SO4
2- (r = 0.25) could indicate 

that there is another source of sulphate ions in the sub-catchment than atmospheric 

inputs.  This suggests that the most significant source of Cl- and Na+ in stream water is 

precipitation. Another possible source of chlorine may be released during weathering of 

sedimentary rocks, such as sandstone (chlorine can occur in the cement) or mudstones.  

Site 5: Blind Beck catchment 

In the present study for the period from 2009 to 2010 chloride has a strong negative 

correlation with HCO3
- (r= -0.27) and Ca2+ (r= -0.18). This shows that with increase or 
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decrease in the values of Cl-, HCO3
- and Ca2+ also exhibit decrease or increase in their 

concentrations. Cl- ions bear a negative correlation with K+. This indicates that KCl may 

be absent from water samples. There is also a strong correlation between Ca2+ and Mg2+ 

(r = 0.79), and with bicarbonate (r = 0.73). The magnesium content of Blind Beck water 

varies with pH. The NO3
- shows a moderate correlation with bicarbonate. 

The weathering of the minerals in the bedrock may account for ions found in the stream. 

The most abundant cation in the stream is Ca2+. The possible source for Ca2+ includes 

weathering of calcite. Calcite weathers with carbonic acid to produce Ca2+ and 2HCO3
- 

according to the following equation: 

𝐶𝑎𝐶𝑂3 + 𝐻2𝐶𝑂3− > 𝐶𝑎2+ + 2𝐻𝐶𝑂3− 

Sulphate (SO4
2-) is most likely derived from the atmosphere. Sulphuric acid reacts with 

minerals such as calcite to form sulphates according the following reaction:  

2𝐶𝑎𝐶𝑂3 + 𝐻2𝑆𝑂4 → 2𝐶𝑎2+ + 2𝐻𝐶𝑂3− + 𝑆𝑂42− 

According to Drever (1997), magnesium ions result from the weathering of the mineral 

biotite and kaolinite, a clay mineral: 

7.3𝐾𝑀𝑔3𝐴𝑙𝑆𝑖3𝑂10(𝑂𝐻)2 +  51𝐶𝑂2 + 26𝐻2𝑂
= 3.7𝐴𝑙2𝑆𝑖2𝑂5(𝑂𝐻)4 + 22𝑀𝑔2+ + 7.3𝐾+ + 51𝐻𝐶3− +  15𝑆𝑖𝑆𝑖2 

Both sites are characterised by the same source of alkaline water which is represented 

with a strong correlation between Ca2+ and Mg2+, and with bicarbonate. 

5.4.1 NO3
 and DOC concentration in the stream water 

The marked variations in the nitrate (NO3
-) and the dissolved organic carbon (DOC) 

concentration were observed between sites, seasons and months (Figure 5-17).         

Table 5-9 shows a summary of nitrate (NO3
-) and dissolved organic carbon (DOC) 

concentration at sample points (site 1, 2, 3 and 5) along the length of the Blind Beck 

stream and the outlet of the Hollow sub-catchment (site 4).  The mean nitrate 

concentrations along the length of Blind Beck (site 1 to 3) were fairly constant (4.2 to 

4.7 mg/l) except at site 5 where the mean was higher (7.8 mg/l). The NO3
- 

concentrations were significantly lower in the stream draining the Hollow sub-

catchment, while NO3 concentrations were higher at sites along the Blind Beck stream. 

The range of DOC data was very similar between Blind Beck and the stream draining 

the Hollow sub-catchment (Figure 5-17). Although the mean DOC concentration was 

slightly larger for the Hollow sub-catchment (13 mg/l) than sites 1, 2, 3 and 5 (12.2-  
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12.5 mg/l), concentrations were not significantly different between the stream draining 

the Hollow sub-catchment and sites along the length of the Blind Beck stream. The 

highest maximum DOC concentration was recorded on site 1 (32.5 mg/l) indicating the 

impact of the farm. The Appendix D2: Tables D2-1 and D2-2 provide the full NO3
- and 

DOC results. 

 

 
Figure 5-17 Box plots showing the distribution of average a) nitrate and b ) dissolved organic carbon for 
five sites. Box plots depict the mean (small square within the boxes), median (line within the boxes), 25th 
and 75th percentiles (lower and upper edges of the boxes), minimum and maximum of the data (lower and 
upper error bars) 

Table 5-9 Mean, minimum and maximum NO3
- and DOC concentrations with standard deviation for  

Sykeside Farm (site 1, 2 and 3, period April 2009 - Aug 2010), Hollow (site 4, period Aug 2009 - Aug 
2010) and Blind Beck (site 5, period April 2009 - Aug 2010) 

Location Site 1 
(n = 16) 

Site 2 
(n = 16) 

Site 3 
(n = 16) 

Site 4 
(n = 10) 

Site 5 
(n = 16) 

 NO3
- (mg/l) 

Min. 1.6 1.0 1.1 0.2 1.1 
Mean 4.6 4.7 4.2 1.6 7.8 
Max. 7.2 7.4 7.3 5.5 14.6 
SD. 1.9 2.1 2.1 1.9 3.4 

 DOC (mg/l) 
Min. 3.1 2.5 2.2 4.12 0.1 
Mean 12.5 12.2 12.3 13.0 12.4 
Max. 32.5 21.0 19.5 23.1 22.1 
SD. 7.6 5.6 5.6 6.8 5.9 

Min = minimum value, Max =  maximum value, SD =  standard deviation  
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Figure 5-18 shows the relation between the stream water discharge, the monthly point 

values of the NO3
-
 and the DOC concentration for the Hollow sub-catchment (site 4) 

and the Blind Beck catchment (site 5). For the Blind Beck catchment, the behaviour of 

nutrients in stream flow is much more complex than for the Hollow sub-catchment. 

Along the Blind Beck stream, the lowest monthly point values of the NO3
- 

concentrations were observed in July 2010 at site 2 (1.0 mg/l) and the highest 

concentrations in April 2010 year at site 5 (14.6 mg/l). The nitrate concentrations were 

zero in the Hollow at site 4 in August 2009, July and August 2010, while the highest 

concentrations were in April 2010 (5.5 mg/l). However, for both streams, the minimum 

monthly point values of the DOC concentrations were observed in December 2009, 

while the maximums were in July 2010.  Between April and July 2010, due to dry 

conditions and no flow at the outlet of the Hollow sub-catchment, water and sediment 

samples were collected from a stagnant pool in the stream bed that flowed 

intermittently. This effect is identified in Figure 5-18a by the high monthly point 

concentration values of the NO3
- (42.7 mg/l) and the DOC (105 mg/l), suggesting 

eutrophication. Therefore, these data have not been included in the calculation of the 

other statistics to avoid skewing of the results. The evidence of eutrophication has been 

identified during a field visit at the outlet of the Hollow sub-catchment as blue-green 

algal blooms and foul smell of water. As can be seen in Figure 5-18a, the high DOC 

levels at the Hollow sub-catchment outlet indicate a stagnant stream system of water 

that became muddy, cloudy, full of weeds and with a number of insects as the stagnant 

stream is the favourite breeding ground.   

The annual NO3
- and DOC losses (flux) were estimated as the product of the stream 

discharge multiplied by the NO3
- or the DOC concentration (discharge weighted mean 

concentrations) based on monthly point values. The discharge weighted annual mean 

NO3
- concentration based on monthly point values for the Blind Beck catchment was    

6 mg/l in 2009 and 10 mg/l in 2010, while for the Hollow sub-catchment in 2010 it was 

1.3 mg/l (Table 5-10). Based on the monthly means for discharge and the NO3
- 

concentration, the total annual discharge of NO3 for Blind Beck is estimated at 37 Mg 

for 2009 and 27 Mg in 2010, while for Hollow the nitrate discharge was 0.08 Mg in 

2010 (Table 5-10). The NO3
- export per unit area is estimated at 4 g NO3

- m-2 (40 kg/ha) 

in 2009 and 2.9 g/m-2 (29 kg/ha) in 2010 for Blind Beck, while the export for the 

Hollow sub-catchment is 0.88 g NO3 m-2 (8.8 kg/ha). 
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Figure 5-18 Daily average discharge and stream NO3

- and DOC concentrations (point values) for         
a) Hollow sub-catchment (site 4) and b) Blind Beck catchment (site 5) 
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Table 5-10 Estimated annual nitrate (NO3
-) and dissolved organic carbon (DOC) export for 2009 and 

2010 year 

Location Year Discharge weighted 
mean NO3

- (mg/l) 
Annual estimated 

NO3 export (Mg/yr) 
Area weighted 

NO3
- export (g NO3

- m-2/yr) 

Blind Beck 2009 6.0 37 4.0 
2010 10.0 27 2.9 

Hollow 2010 1.3 0.08 0.88 

Location Year Discharge weighted 
mean DOC (mg/l) 

Annual estimated 
DOC export (Mg/yr) 

Area weighted 
DOC export (g DOC m-2/yr) 

Blind Beck 2009 9.6 60 6.5 
2010 12.8 36 3.9 

Hollow 2010 13.0 0.8 8.8 

The discharge weighted annual mean DOC concentration based on monthly point values 

for the Blind Beck catchment was 9.6 mg/l in 2009 and 12.8 mg/l in 2010, while for the 

Hollow sub-catchment it was 13 mg/l. The total annual DOC export from the Blind 

Beck catchment is estimated at 60 Mg in 2009 and 36 Mg in 2010 (Table 5-10). The 

DOC export per unit area is estimated at 6.5 g m-2 (65 kg/ha) in 2009 and 3.9 g m-2     

(39 kg/ha) in 2010. In 2009, the area weighted annual discharge was almost twice as 

large as 2010. This is due to climate variability, as 2010 during the summer period was 

dryer compared with 2009. Table 5-10 gives the annual DOC loss of 8.8 g m-2                  

(88 kg/ha) or 0.80 Mg for the Hollow sub-catchment. The DOC export is largely driven 

by changes in the stream water volume that is directly affected by dry climate 

conditions.  

The mean nitrate concentrations in this study along the Blind Beck stream are 

consistent with the findings of Barber (2008). The mean nitrate concentrations in the 

stream water (sites 1, 2 and 3) of Blind Beck are considered ‘very low’ (<5 mg/l as 

NO3
-) and ‘low’ for site 5 (EA 2006) and are well below the Nitrate Directives 

recommended limit of 25 mg/l. Therefore, the naturally occurring levels of nitrate are 

not harmful to the environment. The highest value of nitrate concentration at the outlet 

of the Hollow sub-catchment of 42.7 mg/l would be considered as ‘very high’ (EA 

2006), which is the result of eutrophication and pollution. Other authors reported 

different nitrate levels that could lead to eutrophication. Armstrong and Burt (1993) 

showed that concentrations of 6.5 mg/l could lead to algal growth (cited in Barber 

2008). According to these earlier studies, the concentrations recorded in this study could 

be considered high enough to cause eutrophication. However, Johnson et al. (2000) 

indicated that high levels of nitrate (>1 mg/l) are not good for aquatic life. It is widely 

assumed that nitrite concentrations in freshwaters are negligible (Stanley and Hobbie 

1981; Paul and Clarke 1989), and the worldwide average concentration has been 

estimated to be 1 mg of nitrite/litre (Meybeck 1982; Adeyemo et al. 2008).  
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Along Blind Beck stream, the nitrate concentration is greater in the downstream site. 

Barber (2008) found that the average concentration of nitrate increases from 4.85 mg/l 

at site 1 to 5.51 mg/l below the farmyard. In contrast to earlier findings, this study 

shows that nitrate concentration decreases from 4.6 mg/l to 4.2 mg/l. However, the 

observed difference between site 1 and site 3 was not significant.  Site 1 is located 

approximately 150 m downstream from the farmyard, which is possibly a point source 

of nitrate (Figure 5-14). The relatively high nitrate concentration observed at site 5 

could be due to the influence of a small stream that flows past Little Musgrave Farm 

into Blind Beck 10 m upstream (see Figure 4-38) where Barber (2008) recorded mean 

nitrate concentration of 16.61 mg/l.  Another explanation for higher nitrate is inputs 

from agricultural land, which is in the line with the report of Commins et al. 

(1983).  Barber (2008) investigated the source of this high nitrate concentration 

approximately 550 m upstream of the small stream that flows past Little Musgrave 

Farm. This author claims that the highest concentration is coming from the stream that 

flows from the south-east past Low Hall Farm, which had a maximum recorded 

concentration of 19.55 mg/l where it is likely that the N is being leached from the land 

surrounding this  stream.  

The nitrate concentrations at the Hollow sub-catchment were on average smaller than 

the Blind Beck catchment, but still in excess of 25 mg/l nitrate in dry conditions. This 

may be because the Hollow sub-catchment is under a pasture system dominated by 

sheep farming where nitrate concentrations leaving agricultural soils are diluted to a 

some extent. This suggests that water moves through soil and depletes the soil nitrate 

from soils to stream or groundwater. In the case of higher rainfall, more water passes 

through the soil, diluting and reducing the average nitrate concentration on its way to 

stream or groundwater. This may partly explain the lower nitrate concentration at the 

stream of the Hollow sub-catchment. 

In this study, it is not possible to identify actual trends in the NO3
- and the DOC 

concentrations without an analysis that requires data over a number of years and a 

number of factors, otherwise it would lead to misinterpretation of trends.  

During the early part of the winter and the spring, nitrate concentrations in the stream 

water draining the Blind Beck catchment are higher than in the stream of the Hollow 

sub-catchment. These high values may, in part be due to agricultural influence in the 

Blind Beck catchment. The nitrate is lost from the land mainly during the winter due to 
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runoff from saturated land. Increasing trends in nitrate during the winter period is in 

agreement with Burt et al. (1988) who also found that during the winter the high NO3
- 

concentrations combine with high discharge to produce the high NO3
-
 loads. Other 

authors (Burns and Kendall 2002; Pardo et al. 2004; Piatek et al. 2005; Judd et al. 2007) 

suggested that microbially produced NO3
- appears to dominate stream NO3

-, even 

during the spring snowmelt, when water is flushing quickly through soils.  

During the dry conditions, nitrate concentrations in both streams increased as discharge 

decreased through the summer, in agreement with behaviour reported in the literature 

(DEFRA 2007b). However, as Figure 5-18a illustrates, nitrate levels in the stream of the 

Hollow sub-catchment (site 4) increase but drop quickly during dry conditions.  With no 

overland flow for transport, nitrate concentration does not appear in the stream.  

The nitrate concentration tends to increase before the November storm event, but after 

sufficiently high discharges, nitrate concentrations are diluted by the large water influx 

into the stream. From this point on, there is an inverse relationship between discharge 

and nitrate concentration observed at both streams. The reason for this increasing of 

nitrate before a large event was likely due to increased leaching from the soil as 

mineralization (i.e. release of nutrients from organic matter) by overland flow and 

shallow subsurface runoff. Vinten and Smith (1993) pointed out that nitrate 

concentration in a stream water increase in the autumn due to reduced nitrate uptake 

by plants and the stimulation of microbial nitrification processes by soil drying and 

wetting cycles. During smaller rain events, nitrate transport into streams of Blind Beck 

and Hollow seems to be with overland flow that washes nitrate from the fields.  

It is interested to note how these nitrate concentrations behaviours change at different 

locations. During storm events, the pattern of nitrate concentration at the Hollow sub-

catchment is similar to that at the Blind Beck catchment. Although nitrate patterns are 

similar during large rain events, seasonal dry and wet conditions lead to a somewhat 

different pattern on the two streams (Figure 5-18).     

In summary, nitrate losses from the Hollow sub-catchment are smaller than those from 

the Blind Beck catchment.  Table 5-10 shows that the NO3
- loss from the Hollow      

sub-catchment has annual nitrate losses of 8.8 kg/ha, while the Blind Beck catchment 

has losses in the range of 29-40 kg/ha. This is evidence of the importance of intense 

agricultural influence in determining nitrate concentrations in the Blind Beck stream.  
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Typically, nitrate concentrations decreased with increasing discharge. Johnes and Burt 

(1993) estimate that 80% of the annual the N loss occur in the winter and report that, 

following a dry summer, soils require sometimes a prolonged recharge in the autumn 

and the early winter before drainage and leaching begins (Barber 2008). According to 

the results from hydrograph separation in sub-section 5.3.1, it is possible that overland 

flow and subsurface flow is responsible for the transport of labile nutrients (NO3
-) into 

streams during the winter and the autumn months followed by storm events. These are 

referred to leaching of the NO3
- concentrated ‘old’ water. The high level of nitrate 

observed during the dry season in this study is in agreement with Wolfhard and 

Reinhard (1998) who concluded that nitrate is usually built up during dry seasons and 

that high levels of nitrate are only observed during early rainy seasons.  

Dissolved organic carbon (DOC) 

In many regions, some authors have predicted an increase in stream DOC 

concentrations due to a warmer and wetter climate (de Wit and Wright 2008; Köhler et 

al. 2009; Sebestyen et al. 2009; Ågren 2010). The DOC concentrations in the stream 

system studied are consistent with DOC data reported from small stream catchments in 

Scotland (Wearing 2008). Previous studies have reported that the DOC concentration in 

streams generally increased during the storm periods due to the increase of discharge as 

a major factor controlling the output of organic carbon (Hope et al. 1994). This is 

consistent with the findings of this study (Figure 5-18) except during very dry summer 

months and large storm events.  

Under the high stream flow, more DOC is generated from the deeper soil layer by 

subsurface flow than by overland flow. Support for this statement comes from the 

hillslope experiment for the wet conditions where the soil water solution at 18 cm soil 

depth had the significantly higher DOC concentration of 27 mg/l than overland flow of 

8 mg/l (Chapter 7). The DOC concentrations observation at the hillslope provided 

evidence that samples from lysimeters located at 10 cm soil depth had a very low DOC 

concentration during the wet periods (approximately 5 mg/l). Hence, these inputs of soil 

water solution directly to the stream by overland flow would tend to dilute the DOC 

concentrations in stream flow. The dilution effects of the precipitation can also decrease 

the DOC concentration or even flux (Boyer et al. 1997).   

However, under low flow conditions, the largest DOC portion is derived from deeper 

soil layers by subsurface flow where the DOC concentrations are small. The evidence 
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for this statement is derived from the hillslope experiment during the dry conditions 

where the DOC concentration of the soil solution at 10 cm soil depth was 32 mg/l, at   

18 cm 22 mg/l, and overland flow 13 mg/l. According to Fragalà (2009), the unsaturated 

zone at Sykeside Farm can be assimilated to a two-layer system composed of topsoil 

and till (unsorted glacial sediment that it is mixtures of clay, sand, gravel and boulders). 

A topsoil has a much higher hydraulic conductivity with greater flow compared to the 

till where it is reduced.  As Fragalà (2009: 157) states: “When the infiltration capacity 

of the till is exceeded water flows laterally through the topsoil, mainly as unsaturated 

flow. Most of the flow is concentrated in the upper topsoil (subsurface lateral flow), 

which is the most porous portion of the topsoil and which generally higher water 

contents”. Unfortunately, in this study, the hydraulic conductivity 

measurements were not considered. 

The Blind Beck stream during low flow appears transparent with a low accumulation of 

dissolved materials that indicates low productivity of humic substances, while during 

high flows it shows brown colour of water due to high concentration of dissolved 

organic matter, such as humus (Figure 5-19). The site 2 had the DOC point value of 

stream water during low flow on April 23, 2009 of 7.2 mg/l and during high flow on 

November 3, 2009 of 14.7 mg/l. One possible explanation is that during heavy rainfall 

intensity, rainwater infiltrates vertically through the soil profile, dissolves a large 

amount of organic carbon in the form of the DOC in the upper soil layer where the DOC 

is mainly produced, and moves to deeper soil horizons.  

It can be concluded that the increased concentrations of the dissolved organic carbon 

(DOC) in stream draining upland catchment are direct evidence of organic carbon loss 

from mineral soils. 

   
Figure 5-19 DOC concentration during a) low and b) high flow of the Blind Beck stream (site 2) 

a) b) 
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For the November storm event in both the catchment and the sub-catchment, the 

overland and subsurface flows contribute to the stream flow. The data from the hillslope 

field experiment suggest that during the November storm event (E3), subsurface flow 

dominates the DOC export to the stream (Chapter 7). From November 3 2009, the DOC 

monthly point value decreased by approximately 17% compared with 1 December 2009 

at all sites along Blind Beck (site 1, 2, 3 and 5) and the Hollow stream (site 4). These 

reductions in the DOC concentration might be due to dilution effects but also losses due 

to sorption and microbial degradation.  

5.5 Nutrients in surface sediments   

Surface sediments were collected from the Blind Beck and Hollow stream and analysed 

for grain size distribution and nutrients such as total organic carbon, and total nitrogen 

in order to understand the spatial distribution and hydrological effects of nutrients.  

5.5.1 Sediment particle size 

The stream sediments were found to be mainly sandy gravels at all sampling sites, 

except at the Hollow sub-catchment outlet (site 4). Sandy gravels are generally 

composed of ∼40% – 60% gravel, 50% (±15%) sand and <1% silt + clay. Sediments at 

the outlet of the Hollow sub-catchment are mainly composed of a mixture of sand and 

fines (silt+clay). The distribution of sand, fines and gravel in these sediments are as 

follows: sand>fines>gravel. The sand compromises about 63-87% of the total sediment 

fractions and the rest is 3% of gravel and 12% of silt + clay. Sediment texture noticed at 

site 4 (Hollow sub-catchment) was loamy sand. This suggests sediments transport in 

runoff from the hillslope, where the soil type was determined as loamy sand at 0-10 cm 

and 10-20 cm soil depth (Chapter 8). The sediment distribution at the outlet of the 

Hollow sub-catchment largely depends on the source and texture of soils of the 

concerned area. Sediment size distribution curves are given in Appendix D3. 

5.5.2 Sediment total organic carbon (TOC), total nitrogen (TN) and C/N ratio 

The TOC contents in the sediment samples ranged from 0.23 to 2.72wt% with means at 

each sampling site of 0.50 to 2.08wt% (Table 5-11). The highest TOC values were 

observed at site 4 (TOC = 1.44 ± 2.72wt%, n = 12) dominated by fine-grained 

sediments. TOC was very low in the sandy gravels sediments of the Blind Beck stream 

(0.23 ± 1.26wt%), suggesting the lack of accumulation of organic matter (OM) in this 



 

135 
 

sediment type. TN varied from 0.02 to 0.44wt% with a mean value of 0.08 to 0.22wt% 

and a standard deviation of 0.05 to 0.06wt%. The highest TN values were at site 4 (TN 

= 0.12 ± 0.27wt%, n = 12). The relationship between the mean of TN and TOC is 

shown in Figure 5-20.  

Table 5-11 Mean concentration and data range of TOC, TN and nutrient ratio 

Location Site  Mean Min Max SD n 

Sykeside Farm 

1 
TOC (wt%) 0.50 0.28 1.07 0.25 

16 TN (wt%) 0.09 0.02 0.29 0.05 
C/N 5.56 14.00 3.69 5.00 

2 
TOC (wt%) 0.71 0.29 1.04 0.27 

16 TN (wt%) 0.08 0.02 0.17 0.05 
C/N 8.88 14.5 6.12 5.40 

3 
TOC (wt%) 0.57 0.23 1.01 0.18 

15 
 TN (wt%) 0.08 0.02 0.16 0.05 

C/N 7.13 11.5 6.31 3.60 

Hollow 4 
TOC (wt%) 2.08 1.44 2.72 0.29 

12 TN (wt%) 0.22 0.12 0.44 0.05 
C/N 9.45 12.00 6.18 5.80 

Blind Beck 5 
TOC (wt%) 0.67 0.31 1.26 0.29 

16 TN (wt%) 0.08 0.02 0.24 0.06 
C/N 8.38 15.5 5.25 4.83 

Min = minimum value, Max =  maximum value, SD =  standard deviation,  n =  number of sampled  
records  

 
Figure 5-20 Relationship between TOC (%) and TN (%) contents 

The measured carbon-nitrogen ratios (C/N) in this study varied from 11.5 to 6.31 with 

mean values for each sampling site of 5.56 to 9.45 and a standard deviation of 5.0 to 5.8 

(Table 5-11). The highest C/N ratio was found in sediments at the Hollow sub-

catchment outlet (site 4) with a mean value of 9.45, showing that organic fraction of this 

sediment is mainly of terrestrial origin. This suggests that fine-grained sediments were 

delivered from the hillslope by runoff processes that will be discussed in the next 

chapters. The Appendix D4: Tables D4-1 and D4-2 provides the full TOC and TN 

results for the stream sediments. 
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The distribution of TOC and TN at the sites along Blind Beck and the outlet of the 

Hollow sub-catchment are shown as the box plot in Figure 5-21. It visualizes how the 

sediment TOC and TN concentration changes along the stream. This representation 

shows spatial differences.  It is also useful to see how the presence of the farm affects 

the sediment TOC content.  The upstream site 1 along the Blind Beck stream had the 

maximum content of TOC and TN content compared to site 2 and 3 but the mean values 

were not noticeably higher. The maximum TN content then decreased along the stream 

length to site 3. This suggests the influence of the farm activity. However, sediments at 

site 4 contained the highest amount of TOC and TN content due to fine-grained 

sediments where sediment carbon and nutrient concentrations increase with decreasing 

grain size and had high organic matter. The high total organic carbon (TOC) content in 

sediments also indicates eutrophication (Folger 1972; EPA 2002). The water quality of 

the Hollow stream indicates eutrophication due to high nitrate and the DOC 

concentrations in the stream stagnant water during dry conditions. 

 

 

Figure 5-21 Box plots showing the distribution of average TOC and TN  for the years 2009 to 2010, for 
five sites. The ends of the boxes represent the 25th and 75th percentiles, the bars indicate the lowest and 
highest values not considered outliers, and the horizontal line shows the median 
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The mean content of TN at the Hollow was 2.8 times higher than other sites. TN 

concentrations for sites 1, 2, 3 and 5 along the Blind Beck stream were similar. At this 

point it is worth noting that 0.22 wt% of TN demonstrates possible eutrophication. 

The source of the sediments and origin of organic carbon is important. It is likely that 

fine sediments and nutrients were delivered from the hillslope from erosion of topsoil 

during overland flow, providing sources of both sediments and suspended solids   

(Figure 5-22). Data on soil core analyses within the hillslope experiments of this sub-

catchment showed that the topsoil (0-10 cm) represents the result of humus 

accumulation that is rich in organic carbon and loamy sand. This soil data together with 

the main runoff processes on hillslope will be discussed later.  

   
Figure 5-22 Outlet of the Hollow sub-catchment a) before and b) after sediments delivered from hillslope 
erosion of topsoil during surface runoff  

Barber (2008) reported that even upstream of site 1 of Sykeside Farm, the stream bed 

was heavily coated in sediment which suggests that high sediment loads are entering the 

Beck from other sources in the 7 km2 upstream catchment (Figure 5-23).  He found that 

at times of increased stream stage, typically following rainfall events, suspended 

sediment concentrations can increase significantly, particularly at sites 2 and 3 that 

could be due to mobilisation of sediment from the farmyard or farmland surrounding the 

Beck, or perhaps from bank erosion. 

 
Figure 5-23 Sedimentation of Blind Beck upstream of site 1 (source: Barber 2008) 

a) b) 
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Nutrient and sediments were affecting the stream, mainly due to farming activities 

including cattle management and field cultivations. This is the case at Sykeside Farm 

where cattle were allowed to the stream water at site 1 that cause nutrient pollution 

problems, partly due to the lack of a riparian zone and the open access to the stream for 

animals. There is a visual evidence of bank collapse or bank erosion along the Beck 

(Figure 5-23 and 5-24) and the lack of bank-side vegetation to reduce bank stability. 

Barber (2008) reported in his study that other sediment sources include the farmyard 

itself where hard standings (site 1) are very close to the stream. This is consistent with 

field observations from this study; man-made drainage channels drain the two hills to 

the west of the farm, providing direct hydrological connectivity between improved 

grassland and the stream; and also farm vehicles crossing the stream. Figure 5-24 shows 

where farm vehicles have crossed Blind Beck leaving deep tyre tracks in the bank.   

 
Figure 5-24 Evidence of farm vehicles crossing Blind Beck and hard standings at site 1 

Bank erosion is prominent due to lack of vegetation that would otherwise provide a 

binding structure to the soil (Figure 5-25).  This area is also easily accessible to animals. 

It is apparent that land use can alter stream channel geomorphology by catchment runoff 

and sediment loads. These findings are consistent with Barber (2008). 

 
Figure 5-25 Bank erosion along Blind Beck at site 3 

The tramlines were made by farm vehicles probably during the wet seasons that run 

perpendicular to the hillslope and continue right down to the river bank (Figure 5-26).  
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This can cause the transport of large amounts of sediment and associated 

pollution/nutrients by overland flow to the stream very quickly. The fields at the top of 

the hill are improved grassland, and fertiliser or manure applications (Barber 2008). 

 
Figure 5-26 Field surface degradation and tramlines caused by farm vehicles (site 1)                    
(source: Barber 2008) 

The organic enrichment in sediment observed at the outlet of the Hollow sub-catchment 

is a sign of environmental deterioration. Sediment organic carbon content has been used 

as an indicator of enrichment in sediments but the amount of surface area available for 

carbon adsorption must be considered.  

During this study, there were no obvious signs of eutrophication at sites 1, 2, 3 and 5. A 

photograph from Barber’s study (2008) upstream of site 1 (Figure 5-27) shows many 

stretches of the stream with significant algal blooms, particularly downstream of the 

farm. Such algal blooms did not affect site 1 during the collection of stream water 

samples in this study.  

 
Figure 5-27 Eutrophication of Blind Beck upstream of site 1 (source: Barber 2008) 

Low flows in the dry summer months due to insufficient rainfall, resulted in the 

accumulation of debris and algal growth in streams due to enrichment of TOC and TN. 

High organic carbon is considered as a cause of frequent algae blooms, which lead to 

increased nutrient (nitrogen) loadings into the streams as observed at site 4. 
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The findings of this sub-section emphasize the need for stream management to focus on 

small/sub-catchment scales within the context of larger scale catchment management, 

with the potential for reductions in fine sediment loads that may have an appreciable 

influence on water quality of stream (eutrophication). 

5.6 Summary 

There were 5 storm events recorded in 2009-2010, 5 at the Blind Beck catchment and 3 

at the sub-catchment. At the sub-catchment scale, the hydrograph separation was clearly 

able to separate event and pre-event water using electrical conductivity (EC) as a 

hydrochemical tracer. The hydrograph separation results for each storm event indicate a 

range of event and pre-event water contributions. For all events, the subsurface flow 

was the dominant runoff process. 

To investigate the characteristics of stream nutrients and the eutrophication process that 

was observed upstream of site 1 and at the outlet of the sub-catchment/site 4, chemical 

analyses of water was performed at all sites to determine the water quality status. The 

differences in ion concentrations in stream water between all five sites are significant 

and are related to how the geology and agricultural activity of the area dictates the type 

of water. 

This chapter also introduces the role of the nitrate and the DOC and how it varies 

between sites and seasons. The average NO3
- concentrations varied among sites, with 

the Hollow sub-catchment (site 4) having the lowest NO3
- concentrations and the Blind 

Beck catchment (site 5) had the highest. The dilution effects on nitrate concentrations 

appear only with the very high discharge event in November for Blind Beck and the 

stream of the Hollow sub-catchment. It has been identified that when no precipitation is 

falling on the sub-catchment and there is no discharge over the weir, the DOC 

concentrations within the stream are high due to a stagnant stream system. The DOC 

Concentration is at the highest level in the outlet of the Hollow sub-catchment where 

significant eutrophication was observed (site 4).  

At the Hollow sub-catchment outlet the finest sediment had the highest TOC, 

suggesting that the hillslope runoff processes were the main driving force in the 

accumulation of organic matter. The highest C/N ratio (9.45), showing that these 

sediments are mainly fine-grained, suggesting that they are formed by the transport of 

sediments by runoff from the hillslope. 
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Chapter 6.   Hydrological behaviour on the hillslope scale 

6.1 Introduction 

This chapter describes the outcome of the field experiment and monitoring that was 

conducted to determine the hydrological behaviour in terms of dominant runoff process 

for different climate conditions at a hillslope of Sykeside Farm. The results have been 

divided into three periods: a ‘dry period’ in order to investigate the conditions before 

enhanced rainfall, a ‘wet period’ in order to investigate the influence of enhanced 

rainfall and storm events, and a “transition period” in order to investigate the transition 

from wet to dry conditions (no enhanced rainfall). A flowchart of the field experiment 

activities and purpose according to the ‘dry’, ‘wet’ and ‘transition’ period is given in 

Figure 6-1. During each enhanced rainfall test, additional water from the rainfall 

collectors is applied continuously to all events. Runoff amounts are monitored during 

dry, wet and transition periods and recorded at 15 minute intervals.  

 

Figure 6-1 Field experiment activities and purpose according to the ‘dry’, ‘wet’ and ‘transition’ period 

To identify the runoff processes on hillslopes, the soil moisture has to be considered. 

The soil moisture is of major importance as it has implications for management of water 

resources, irrigation planning and movement of chemicals/nutrients from land to water 

(Liu and Zhang 2007). This study investigates the soil moisture at three depths of the 

top and the bottom of the hillslope. In this chapter, a simple conceptual model based on 
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soil moisture data is introduced that allows an automated determination of the dominant 

runoff process on the hillslope.  

6.2 The relationship between rainfall, simulated rainfall and runoff 

It is apparent that not every drop of water landing on the grass or soil will produce 

runoff down the guttering drainage pipes of the experimental plots. After rainfall, a thin 

residue of water will be left on the grass and will eventually evaporate. To minimize this 

interception loss of water, the grass was cut regularly within the hillslope experimental 

plots. This helps to reduce one possible source of uncertainty in the water balance of the 

experimental plots. 

Precipitation data were provided from the Hydrolog data base. Potential 

evapotranspiration (PET) values were calculated using a weather generator as described 

in sub-section 7.3.2. The average monthly rainfall depth for the 2009 year was 88 mm, 

and the total rainfall was 1055 mm, while for 2010 until August 19, the average rainfall 

was 48 mm and total rainfall 381 mm. The field enhanced rainfall tests were conducted 

from August 6, 2009 to March 18, 2010 (286 days) then again from July 15 to August 

19, 2010 (35 days). The enhanced rainfall was applied only at perturbed plots (A and B) 

(Chapter 4, Figure 4-19).  

Between April 1, 2009 and August 18, 2010 a total of 1110 mm of rainfall was 

measured distributed over 505 days and three significant events (Table 6-1).  The 

maximum daily rainfall intensity was 31 mm/day. Significant snowfall occurred during 

December 2009, January and February 2010. There were many rainy days per month 

and the number ranged from 4 in April 2010 to 27 in November 2010. 

Table 6-1 Hydrological statistics of rainfall for the period of record 

Period Total rainfall 
(mm) 

Max monthly  
(mm) 

Min monthly 
(mm) 

Max intensity 
(mm/d) 

Range rain 
days 

(days/mth) 

1/4/09 – 17/8/10 1110 308 
(November 2009) 

1.8 
(June 2009) 31 4-27 

The enhanced rainfall was applied on perturbed plots A and B to examine the runoff 

effect and loss of nutrients due to enhanced rainfall. Table 6-2 lists the total natural 

rainwater applied to runoff plots. The enhanced rainfall experiment was carried out after 

a three month period of natural rainfall. This period was necessary to make comparisons 

between plots during natural climate condition before beginning the additional rainfall 

input.  
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Table 6-2 The total of natural rainfall applied to runoff plots during runoff experiment, enhanced rainfall 
(shaded area) 

Date  
Plot type Perturbed plot Control plot (natural) 

Plot A, B C 
Treatment/Climate condition Rainfall (mm) 

23/4/2009 
Dry 192 192 6/5/2009 

25/6/2009 
22/7/2009 

Wet 1 1221 610 

6/8/2009 
27/8/2009 
29/9/2009 
8/10/2009 
3/11/2009 
1/12/2009 
2/2/2010 

18/3/2010 
22/4/2010 

Transition 154 154 20/5/2010 
17/6/2010 
15/7/2010 Wet 2 148 74 19/8/2010 +30*  

*container                                             Total 1745 mm 1030 mm 

6.2.1 The overland and the subsurface flows at the hillslope plots  

The overland flow data are provided from May 2009 to August 2010 with more detailed 

analyses of the storm events. At the beginning of the experiment, the soil was clearly 

not saturated. The relationship between the two plots A (perturbed plot) and C (control 

plot) of the overland flow generated under each rainfall event are shown in Figure 6-2. 

Three storm events were selected for detailed analysis and named in following text as 

E1, E3 and E5 (Table 6-3). Of the three events, the event of 18 November 2009 (E3 in      

Table 6-3) produced the largest amount of rainfall (46 mm), was the longest in duration, 

and generated the largest volume of the overland flow on the perturbed plot (18 mm). 

The control plot, which was only affected by the natural rainfall, produced only 11 mm 

of overland flow.  

Table 6-3 Some characteristics of measured rainfall and overland flow events 

Event 
# 

Day of the 
event 

Rainfall total 
(mm) 

Overland flow 
(mm) 

Rainfall 
peak 

(mm/hour) 

Overland flow 
peak (mm/hour) 

A C A C 
E1 16/7/2009 27 4.8 4.6 4.8 2.1 2.3 
E3 17-18/11/2009 46 18.0 11.4 5.2 3.4 1.6 
E5 30-31/3/2010 25 8.3 4.4 4.8 1.9 0.6 

Sum 98 30.6 20.4  
A-perturbed plot, C- control (natural) plot 
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Figure 6-2 Daily precipitation and overland flow with events measured during 2009 to 2010 year at the 
hillslope plots 

Total overland flow for the three events accounts for 20.4 mm of precipitation at the 

control plot, which is equivalent to 21 % of the precipitation that fell during three events 

(98 mm), and in the case of the perturbed plot, 30.6 mm of total overland flow is 

equivalent to 31% of the precipitation.  

The overland flow based on three storm events is presented in Figures 6-3, 6-4 and 6-5, 

where two types of hydrograph can be distinguished: hydrograph with one runoff peak 

and with several peaks of runoff.  

16 July 2009 storm event (E1) 

Over 27 mm of rain fell on 16 July 2009, which wetted the surface soil layer to 

saturation and produced the single-day event (Figure 6-3). The event hydrograph at both 

the perturbed and control plots showed the same behaviour for the same rainfall 

conditions, with the matching of the time of peak flow, runoff volume and peak flow. 

This runoff event occurred in the (initial) dry period when enhanced rainfall was not 

applied on the perturbed plot. 
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Figure 6-3 July event (E1) hydrograph for the overland flow  

17-19 November 2009 storm and  flood (E3) 
The November 2009 storm event (E3) started with high rainfall intensities, which 

produced a saturation excess overland flow (Figure 6-4). The evidence for this 

statement is based on the visual field observation and direct observations of the 

saturated soil during the event. This was the top ranked event in 2009 that produced the 

major flood in the Hollow sub-catchment, and also in the Upper Eden basin.  At the 

beginning of the event, there were a series of several runoff peaks, and then two distinct 

sharp peaks with short duration. In the case of the control plot, three runoff peaks with 

low runoff rate occurred at the beginning of the event, which differs from the perturbed 

plot. The storm event hydrograph in Figure 6.4 shows also the difference in the main 

peaks between plots with the higher peaks at the perturbed plot.  The runoff peak flow, 

runoff volume and time to peak all differ between the two plots. The significant 

differences between the two plots is suggested to be a consequence of different surface 

soil moisture conditions, permeability or strictly, field saturated hydraulic conductivity 

Kfs and enhanced rainfall input at the perturbed plot. This runoff event occurred in the 

wet period when the enhanced rainfall was applied on the perturbed plot. 
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Figure 6-4 November event (E3) hydrograph for the overland flow  

30-31 March 2010 storm event (E5) 

The hydrograph for the March event (E5) has two corresponding runoff peaks at the 

perturbed plot (Figure 6-5) and one peak at the control plot. The runoff peaks at the 

perturbed plot are higher than at the control plot. This suggests that there is higher 

antecedent soil moisture from the previously enhanced rainfall period. This runoff event 

occurred in the transition period when enhanced rainfall was not applied on the 

perturbed plot. 

 

Figure 6-5 March event (E5) hydrograph for the overland flow  

Compared to the rainfall average in 2009, the rainfall amounts during April to July 2010 

were lower. The observations for all hydrographs include rapid rise and fall of overland 

17/11/09 9:30 17/11/09 19:06 18/11/09 4:42 18/11/09 14:18

0

1

2

3

4

O
ve

rln
ad

 fl
ow

 (m
m

/h
ou

r)

6

4

2

0

R
ai

nf
al

l (
m

m
/h

ou
r)

Perturbed plot (A)
Control plot (C)

E3

Date (dd/mm/yy hh:nn)

30/03/10 10:30 30/03/10 20:06 31/03/10 5:42

0

0.4

0.8

1.2

1.6

2

O
ve

rln
ad

 fl
ow

 (m
m

/h
ou

r)

5

4

3

2

1

0

R
ai

nf
al

l (
m

m
/h

ou
r)

Perturbed plot (A)
Control plot (C)

E5

Date (dd/mm/yy hh:nn)



 

147 
 

flow. The amount or timing of runoff during storm events has been influenced by the 

rainfall intensity and the antecedent soil moisture. In natural rainfall conditions 

compared to intensified rainfall, dry soil antecedent conditions are likely to be 

responsible for the absence of the overland flow. Some storms did, however, generate 

runoff as shown in Figures above, but with low runoff volume and runoff peaks.  

Figure 6-6 illustrates the subsurface flow response observed during different climate 

conditions for the period 30 September 2009 to 17 August 2010. It is not possible to 

present the subsurface flow during the initial (dry) conditions because the installation of 

a subsurface drainage pipe was set up later in the wet condition on 6 August 2009.  

 
Figure 6-6 Subsurface flow at the perturbed and control plots 

The results show that the subsurface flow is more significant under the dry (transition 

period) conditions than under the wet conditions.    

The total climate condition overland flow depth was 149 mm for the perturbed plot and    

84 mm for the control plot (Table 6-4), representing 8.5% and 8.2% of the total rainfall 

depth. The percentage of the rainfall that became the overland flow ranging from 6.7 to 

10.9% for the perturbed climate conditions and from 6.5 to 10.4% for the natural 
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climate conditions.  The duration of treatments was not the same, therefore comparison 

between the dry and the wet period is not possible related to the flows. For the dry 

climate condition, the soil was dry and the rate of the infiltration was high, therefore it 

produced less the overland flow compared to the wet climate conditions. For the 

November storm event (#E3), the overland flow dominated at the both plots (Table 6-4). 

In this case, the soil moisture content was high and the rainfall event occurred over a 

couple of days, the overland flow represented 39.1% and the subsurface 17.4% of the 

total rainfall for that event. For this comparison, the same amount of the rainfall was 

used. This indicates that for this storm event doubling of the rainfall input results 22% 

change in the overland and 52% in the subsurface flow between the natural and the 

perturbed conditions. The runoff generation at the hillslope was dominated by the 

saturated overland flow during the storm events and the role of the saturated soil. 

Table 6-4 Rainfall and flow of the hillslope plots during different climate condition and percentage of  
rainfall that became flow  

Treatment/ 
Climate condition 

Rainfall  Perturbed plot (A) Control plot (C) 
Perturbed 
plot (A) 

Control  
plot (C) 

Overland  
flow 

Subsurface 
flow Overland flow Subsurface 

flow 
(mm) (mm) (mm) (%) (mm) (%) (mm) (%) (mm) (%) 

Dry (16 weeks) 192 192 21 10.9 N/A N/A 20 10.4 N/A N/A 
Wet 1 (24 weeks) 1221 610 100 8.2 81 6.6 48 7.9 26 4.3 

Transition (17 weeks) 154 154 16 10.4 21 13.6 10 6.5 10 6.5 
Wet 2 (34 days) 178 74 12 6.7 12 6.7 6 8.1 7 9.5 

Total 1745 1030 149 8.5 114 6.5 84 8.2 43 4.2 
Storm event (E3) 46 46 18 39.1 8.0 17.4 11.4 24.8 2.5 5.4 

N/A not available 

Table 6-4 shows the overland and the subsurface flows of the total flow during the dry 

period, the first enhanced rainfall period (wet 1), the transition period and the second 

enhanced rainfall period (wet 2). The rainfall distribution on the plots was also 

presented in Table.  The overland flow comprised 21 mm at the perturbed plot and 20 

mm at the control plot during the dry conditions. However, 100 mm (plot A) and 48 mm 

(plot C) was composed of overland flow during the first enhanced rainfall period (wet 

1). The difference in the overland flow between the two plots was not significant during 

the transition and the second enhanced rainfall period (wet 2).  The subsurface flow 

comprised 81 mm at the perturbed plot and 26 mm at the control plot during the wet 1 

condition. The difference in the subsurface flow between the two plots was 5% during 

the transition and the wet 2 conditions. 

The perturbed plot was compared to the control plot through the percentage of the 

rainfall and flows (Table 6-5). For the 24 weeks of the rain application during the wet 

period 1, the perturbed plot produced a significantly higher response, with 68% of 
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rainfall producing the overland flow, while the control plot produced 32%. The similar 

situation occurred during the second enhanced rainfall event (wet 2) with 34% 

difference. During the transition period, the difference was 24%. The differences of the 

subsurface flow between the plots were 52% for the wet 1, 36% for the transition and 

26% for the wet 2 conditions. 

Table 6-5 Percentage of rainfall and flow from the perturbed plot compare to the control plot at the 
hillslope during different climate condition 

Rainfall 
and flow 

Treatment/Climate 
condition  

Plot Percentage 
Perturbed 
plot (A) 

Control plot 
(C) Total Perturbed 

plot (A) 
Control plot 

(C) Total 

Rainfall 
(mm) 

Dry (16 weeks) 214 214 428 50 50 

100 Wet 1 (24 weeks) 1100 550 1650 67 33 
Transition (17 weeks) 144 144 288 50 50 

Wet 2 (34 days) 148 74 222 71 29 

Overland 
flow (mm) 

Dry (16 weeks) 21 20 41 51 49 

100 
Wet 1 (24 weeks) 100 48 148 68 32 

Transition (17 weeks) 16 10 26 62 38 
Wet 2 (34 days) 12 6 18 67 33 

Subsurface 
flow (mm) 

Dry (16 weeks) N/A N/A N/A N/A N/A N/A 
Wet 1 (24 weeks) 81 26 107 76 24 

100 Transition (17 weeks) 21 10 31 68 32 
Wet 2 (34 days) 12 7 19 63 37 

N/A not available 

During the winter period from 1 to 29 January 2010 the subsurface runoff dominated at 

the event peak (16 January 2010) (Figure 6-7). The reason for this appears to be related 

to melting or thawing of soils by the time of rain-on-snow event and/or frozen soil 

water. According to the field observations in lysimeters, the frozen soil water was 

noticed at a depth of 18 cm on 2 February 2010. It is assumed that the thickness of the 

frozen soil was approximately at 18 cm soil depth or even deeper. Therefore, the 

overland flow dominated on 2 February 2010 compared to the subsurface flow,     

Figure 6-7. This suggests that the overland flow occurs in the winter period during 

frozen soil as Hortonian overland flow. The comparable results were found in a study of 

Wilcox et al. (1997) who monitored runoff, both the surface and lateral subsurface of 

ponderosa pine hillslope in northern New Mexico. They found that the snowpack 

generated only the overland flow when it melted, while no lateral subsurface runoff was 

measured.  

The enhanced rainfall experiment generated more runoff where the principal reasons for 

the higher runoff peaks compared with the control plot are suggested to be wetter 

antecedent soil moisture conditions, the higher rainfall intensity and lower permeability. 

There was the significantly less the overland flow from the control plot compared to the 

perturbed plot. Observed differences in the overland flow between plots during the 
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transition and wet 2 periods were likely reflected by the greater homogeneity of the soil 

infiltration properties and previous rainfall-runoff events.  

 
Figure 6-7 Overland and subsurface flows at the perturbed plot during the winter period 

During the wet 1 period, the overland flow was dominated for the both plots. The results 

showed that during the transition period or a ‘switching’ behaviour between the first 

(wet1) and the second (wet 2) wet seasons, the lateral subsurface flow dominated.  

At the hillslope the soil water table was observed at approximately 25 cm below the 

surface. It is believed that the soil would rapidly become saturated and the saturation 

overland flow would occur. This is possible due to the high permeability of the loamy 

sand layer that extends from ground surface to 20 cm. These data are based on 

laboratory analysis, shown later in Chapter 8. Therefore, this allowed easy infiltration of 

water into the soil and rise of the soil water table.  

An important contributor of labile nutrients from the hillslope to the stream is the 

overland storm flow. The contributions of the hillslope to the stream flow of the Hollow 

sub-catchment were quantified through the storm event. It was found that the overland 

hillslope flow comprised 32% from the perturbed plot and 20% from the control plot of 

the total catchment storm runoff during the larger November event.    
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6.3 Soil moisture distribution on the top and the bottom of the hillslope 

In order to understand runoff processes at the hillslope and in the catchment, it is 

necessary to measure internal information, i.e. soil moisture patterns in this case. The 

soil moisture patterns combined with other existing data give us much insight into 

runoff processes. Hupet and Vanclooster (2002) mention the soil moisture as another 

state variable for a range of hydrological processes that act over a variety of spatial and 

temporal scales.  

In this study, the soil moisture was determined in the vadose (unsaturated) zone over 

three soil depths of 10, 20 and 30 cm at the top and bottom of the hillslope or three soil 

layers. Bulk density and soil texture were also measured at these depths that have 

potential for dictating soil moisture patterns (further discussed in Chapter 8). Bulk 

density was found to be higher in sandy loam at 30 cm than in loamy sand at 10 and     

20 cm soil depth. Due to several equipment faults with the soil moisture data logger 

(DL6), data were available only for the periods from 11 September to 8 October 2009, 6 

January to 1 February 2010,   19 February to 18 March 2010, and 26 March to  22 April 

2010. The observation had a monthly schedule to download data from August 2009 to 

July 2010. Part of the data set is missing due to a data file corruption.  

The soil moisture time series observed in the field are shown for the three different soil 

depths in Figures from 6-8 to 6-10. These Figures also present comparisons between the 

top and the bottom of the hillslope. Volumetric water content was measured at 15 

minute intervals. The soil moisture time series suggest a relationship between rainfall 

events and peaks in soil moisture.  

The points below are used as explanations for the soil moisture curves shown in Figures 

(based on Aquaflex (2005), with modifications by the author): 

1) The soil is very dry 

2) Rainwater has penetrated to the depth of the Theta Probe sensors 

3) Slight drops in moisture could be attributed to short interruptions in the rain 

event or some rapid drainage of water from the air voids around the sensor, as 

the soil is wetted 

4) There is no further wetting maybe because the soil is saturated and additional 

water is draining freely past the sensor and through the soil profile 

4-5) The soil has remained saturated 



 

152 
 

5) Excess water draining past the sensor combined with water extraction by the 

grass has resulted in a net loss of water from the depth at which the sensor is 

located 

6) The rapid decline in water is most likely due to gravity drainage of excess 

water applied during rain event 

7) Movement of water through capillary action and pressure gradients often cause 

a slight increase in soil water content 

8) The slower decline in soil moisture levels is probably due to evaporation 

9) A distinct reduction in water usage indicates that the soil moisture is 

approaching the wilting point, and the plants are beginning to experience 

significant water stress. 

Figure 6-8 shows the differences of the volumetric water content in the upper and lower 

soil layers. There has been a sharp increase in the soil moisture content on October 3, 

2009 at the bottom of the hillslope at a depth of 10 cm. It is clearly shown that the soil 

moisture at 20 cm depth decreases continually. This suggests a strong drainage process 

because root extraction is excluded as an option because it is generally very small and 

near the top of the soil profile. All Figures show ‘noise’ at 10 cm that is a possible 

sensitive reflection of the Theta Probe sensors to small changes in the soil moisture 

content or measurement error. The soil moisture data at 30 cm soil depth in the bottom 

of the slope were not used in interpretations due to their corruption. 
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Figure 6-8 Soil moisture content in the different layers at the top and the bottom of the hillslope and 
rainfall for the period Sep - Oct 2009 

Figure 6-9 shows an example of one storm realisation in January 2010. The soil 

moisture peaks are evident due to rainfall inputs at the top of the slope at the depth of 20 

cm and much less at 30 cm, while in the bottom of the slope they are only evident at 10 

cm depth. Here is also evident noise at 10 cm depth. The periods of noise in the soil 

moisture data were not used in interpretations.  
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Figure 6-9 Soil moisture content in the different layers at the top and the bottom of the hillslope and 
rainfall for the period in January 2010 

The graphs in Figure 6-10 show the spatial changes in soil moisture at the top of the 

slope at depths of 20 and 30 cm, and in the bottom of the slope at 20 cm depth during 

snowmelt and moderate rainfall intensity. The Theta Probe at the bottom of the slope at 

30 cm soil depth did detect water but only at a very low content. This suggests that the 

snowmelt process has caused high volumetric content at 20 cm at the hillslope bottom. 
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Figure 6-10 Soil moisture content in the different layers at the top and the bottom of the hillslope and 
rainfall for the period Feb – April 2010. Gaps in the record denote instrument failure 

From Figures above, the soil moisture above 0.7 m3m-3 indicate that the soil is fully 

saturated and the overland flow is occurring. This suggests fully saturated soil due to a 

previous snowmelt event and/or high precipitation input. The snowpack accumulated 

later and began to melt at the end of February and March with moderately saturated soil 

where additional rainfall acted as a trigger to produce the overland flow. The soil 

moisture measured at 10 cm soil depth shows some noise that could influence the 
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interpretation of the results. Therefore, caution must be applied, as the findings might 

not be transferable. 

The relationship between the soil moisture at 30 cm and the measured subsurface flow 

at 18 cm allowed the identification of the soil moisture threshold value above which 

runoff significantly increased (Figure 6-11, Table 6-6). The subsurface flow was low 

during dry conditions and a sharp increase occurred when the 46% moisture threshold 

was exceeded at 30 cm. 

 

   

Figure 6-11 Threshold behaviour in the relationship between the hillslope soil moisture at the top prior 
to the event and the subsurface flow runoff values. The vertical lines highlight the soil moisture threshold 

 

Table 6-6 Threshold behaviour in the relationship between the hillslope soil moisture at the top and 
bottom prior to the event and the subsurface flow runoff values 

Depth (cm) Threshold 
top bottom 

10 ∼0.33 m3m-3 (33%) ∼0.30 m3m-3 (30%) 
20 ∼0.37.4 m3m-3 (38%) ∼0.30 m3m-3 (30%) 
30 ∼0.45.3 m3m-3 (46%) ∼0.05 m3m-3 (5%) 

Moisture contents seem to be the threshold above which major changes occur in the 

lateral subsurface moisture fluxes runoff. Moisture conditions less than the threshold 

represent lateral subsurface moisture fluxes and runoff processes under unsaturated 

conditions or moderately dry soils. In the case of larger threshold values, lateral 

subsurface moisture fluxes and runoff occurs for soil moisture conditions that are at or 

near saturation.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80Su
bs

ur
fa

ce
 ru

no
ff 

(m
m

/1
5m

in
)

Soil moisture at 20cm (%)

natural plot

36.4%

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

44 45 46 47 48 49 50 51 52Su
bs

ur
fa

ce
 ru

no
ff 

(m
m

/1
5m

in
)

Soil moisture at 30cm (%)

natural plot

45.2%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80Su
bs

ur
fa

ce
 ru

no
ff 

(m
m

/1
5m

in
)

Soil moisture at 20cm (%)

perturbed plot

37.4%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

44 45 46 47 48 49 50 51 52Su
bs

ur
fa

ce
 ru

no
ff 

(m
m

/1
5m

in
)

Soil moisture at 30cm (%)

perturbed plot

45.3%



 

157 
 

Table 6-7 summarises the statistics of soil moisture for several periods. A mean soil 

moisture ranged from 0.27 to 0.32 m3m-3 at 10 cm depth, from 0.18 to 0.47 m3m-3 at   

20 cm depth and from 0.37 to 0.49 m3m-3 at 30 cm depth of soil at the top of the 

hillslope. In the case of bottom position, the mean soil moisture ranged from 0.13 to 

0.79 m3m-3 at 10 cm depth, from 0.23 to 0.89 m3m-3 and at 20 cm depth. The standard 

deviation decreases with an increase of the mean soil moisture value. 

The top of the slope has the highest, while the bottom of the hillslope has relatively low 

soil moisture content. The mean moisture content decreases, while variation of moisture 

content along the hillslope profile (top to bottom) increases, resulting in large spatial 

variability of soil moisture. However, only the wet period is considered, the high soil 

moisture is at the bottom, and lower at the top of the hillslope. The overall results from 

this study are in agreement with those of Ockenden (2010) who measured the soil 

moisture in the Blind Beck catchment on five separate occasions with different 

antecedent condition to investigate temporal variation. 

Soil moisture measurements were not made directly during the storm event (e.g. 

November 2009) thus, it cannot be possible to determine whether lateral subsurface 

flow during the storm was related to the shallow or deeper soil moisture pattern. In this 

study only precipitation depth, gradient, soil bulk density and soil texture were collected 

but many factors (vegetation, soil hydraulic parameters, land use, etc.) jointly cause the 

variability of surface moisture to be complicated and cannot be considered only by a 

single factor. 
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Table 6-7 Soil moisture statistics for the top and bottom of the hillslope for three different soil depths 

Occasions/ 
(conditions) 

Slope 
position 

Depth 
(cm) 

Soil moisture Antecedent 
rainfall Rainfall 

for 
occasions 

(mm) 
Mean 

(m3m-3) 

Standard 
Deviation 
(m3m-3) 

Coefficient 
of variation 

10 
days 
(mm) 

40 
days 
(mm) 

11 – 30 Sep 2009 
(dry) 

top 
10* 0.13 0.0 0.01 

29 103 3 

20 0.23 0.03 0.13 
30 0.39 0.01 0.03 

bottom 
10 0.17 0.01 0.07 
20 0.23 0.01 0.03 
30 0.04 0.01 0.14 

1 – 8 Oct 2009 
 (wet) 

top 
10* 0.28 0.00 0.01 

2 73 33 

20* 0.18 0.01 0.06 
30 0.37 0.01 0.03 

bottom 
10 0.23 0.18 0.75 
20 0.23 0.01 0.06 
30 0.03 0.01 0.31 

6 – 31 Jan 2010 
(wet) 

top 
10* 0.27 0.06 0.22 

16 111 36 

20 0.41 0.09 0.23 
30 0.47 0.03 0.06 

bottom 
10 0.38 0.18 0.47 
20 0.26 0.01 0.04 
30 0.03 0.01 0.45 

1 – 2 Feb 2010 
(wet) 

top 
10 0.32 0.09 0.29 

15 67 7 

20 0.37 0.05 0.14 
30 0.44 0.02 0.04 

bottom 
10 0.30 0.10 0.34 
20 0.23 0.00 0.02 
30 0.03 0.00 0.13 

19 – 28 Feb 2010 
(wet) 

top 
10 0.27 0.05 0.19 

7 52 13 

20 0.36 0.01 0.02 
30 0.45 0.03 0.06 

bottom 
10 0.27 0.08 0.30 
20 0.26 0.01 0.04 
30 0.03 0.01 0.21 

1 – 18 March 2010 
(dry) 

top 
10 0.30 0.01 0.02 

13 45 2 

20 0.35 0.01 0.02 
30 0.42 0.01 0.02 

bottom 
10 0.13 0.04 0.33 
20 0.24 0.01 0.04 
30 0.03 0.01 0.28 

26 Mar – 10 April 
2010 
(wet) 

top 
10 0.31 0.01 0.03 

50 70 50 

20 0.47 0.15 0.33 
30 0.49 0.03 0.06 

bottom 
10 0.23 0.01 0.04 

20* 0.89 0.14 0.16 
30 0.06 0.01 0.23 

11 – 22 April 2010 
(dry) 

top 
10 0.31 0.01 0.03 

9 88 0.4 

20 0.35 0.01 0.02 
30 0.42 0.01 0.02 

bottom 
10 0.23 0.01 0.04 
20 0.26 0.01 0.04 
30 0.02 0.00 0.20 

* caution applied 
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6.3.1 Conceptual model of hillslope runoff response based on soil moisture pattern 

In this study, a simple conceptual model is proposed by linking the results of soil 

moisture with observed overland and subsurface flows at the hilslope.  This is an 

attempt to create the model of dominant runoff process within the unsaturated zone. The 

conceptual model is presented in Figure 6-12 for dry and wet conditions. The highest 

mean value of water content recorded by Theta Probe soil moisture sensor is indicated 

by a red arrow and label as I. The possible direction of moving water through the soil is 

indicated as parallel to the soil water table or topography.  

 

Figure 6-12 Conceptual model of dominant runoff at the hillslope in dry and wet conditions based on the 
soil moisture measurements (source: the author) 

Several flow processes were observed during the soil moisture monitoring. These have 

been classified into dominant (red arrow) and subordinate (blue arrow) flows on the 

basis of the highest mean soil moisture values. During dry conditions, the highest mean 

soil moisture value (I) was recorded at the depth of 30 cm at the top and 20 cm at the 

bottom of the hillslope. Second highest value (II) was at the depth of 20 cm at the top 

and at 0.10 m of the bottom. During dry conditions, soil moisture is reduced, likely 

causing a significant reduction in hydraulic conductivity, and it is dominated by vertical 

flow or percolation to groundwater. 

The second model corresponds to the wet period, where the highest mean soil moisture 

value (I) was recorded at the depth of 20 cm at the top and 10 cm at the bottom of the 

hillslope. Second highest value (II) was at the depth of 30 cm at the top and at 20 cm of 

the bottom. The spatial distribution of soil moisture during the wet period was attributed 

to lateral redistribution of water through the subsurface from top to bottom of the hill as 
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lateral flow. Increasing of saturation during the intense rainfall could produce the 

overland flow. 

The soil layer at 30 cm at the bottom of the hillslope shows lower soil moisture values. 

This suggests that for the dry conditions, the lateral subsurface flow occurs as the deep- 

and shallow-subsurface flow identified as the dominant process at 30 cm and 20 cm soil 

depth. The absence of significant high values of the soil moisture at 10 and 30 cm depth 

of the bottom was the key to this interpretation.  

It is possible that the soil layer at 30 cm depth is a transition as it remained relatively 

moist and it has been a source of upward water movement where the water and nutrients 

are being transferred to the top layer at the bottom of the hillslope. There is no evidence 

to justify this conceptual model but can be regarded as a hypothesis rather than 

conclusive evidence.  

6.4 Summary 

In this study, a field experiment was conducted on a small scale hillslope in the Hollow 

sub-catchment and aimed to characterize the runoff flow pathways and soil moisture 

pattern of three soil depths. Representation of possible climate variability in terms of 

precipitation perturbation on flow at the hillslope has been shown to have effects on the 

hydrological cycle. For 24 weeks of enhanced rainfall application on the perturbed plot, 

produced 65 % of overland flow, while the control plot produced 35% of overland flow. 

The overland flow varied from 14% in dry conditions (before treatment) to more than 

64% in the enhanced rainfall conditions of the total measured overland flow. The results 

have  shown that sensitivity of different runoff processes to different types/size of 

storms can support analysis of impacts of enhanced climate variability. During the 

winter, the overland flow of runoff was facilitated by frozen soil.  

It was found that both the overland and subsurface flows depend on rainfall intensity 

and seasonal changes in the soil moisture. It is observed that lateral subsurface runoff 

dominates in the transition period. However, it can occur together with the overland 

flow in specific conditions such as snowmelt. The shallow and permeable soils detected 

at the hillslope lead to saturation during storm events to produce the saturated overland 

flow. 
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This chapter incorporates a conceptual model of the effect of precipitation and soil 

moisture on hillslope runoff fluxes. The results indicated that the subsurface saturation 

is related to soil depth, gradient and soil moisture pattern.  

The findings that were significant difference between measurements at plots in this 

study supports the use of small plots of 2 m2 to estimate the runoff. Bagayoko (2006) 

used in his study a short (1 m2) and long (10 m2) plots for estimating of overland flow. 

He observed that the short plot became saturated more quickly than the long plots for 

the same rainfall depth. It is clear that no matter of size of the plots they will never give 

a true representation of runoff, as they will always have an edge effect especially on the 

bottom side where runoff water and sediment would be collected. The advantage of the 

larger plot is less worry about edge effects.  The results from this study showed the 

overall method to be a valid and reliable tool for monitoring runoff for understanding 

the hydrological behaviour of dominant runoff process for different climate conditions. 

This data has implications for determination of the dominant flow for nutrient and water 

transport and connectivity of the hillslope to the stream of the sub-catchment. This 

runoff experiment will be supported together with geochemical analyses later in the 

study to establish a new concept in the understanding of overland and subsurface 

hydrological controls on nutrient fluxes.  
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Chapter 7.   Nutrient behaviour at the hillslope scale 

7.1 Introduction 

The purpose of this chapter is to summarize the water quality results, and the electrical 

conductivity relationship to flow at a hillslope scale, to test hypotheses 1 and 2 of this 

study (Chapter 1), and to identify the variation in the dissolved organic carbon (DOC) 

and the nitrate (NO3
-) concentrations in overland and subsurface flows. This chapter 

aims to investigate which of the surface and subsurface hydrological processes within 

the hillslope are controlling nutrient fluxes, measured in overland flow and soil water 

solution at 10 cm and 18 cm soil depth representing subsurface flow.  In this study, the 

results from the field and laboratory chemistry analyses are used to identify those 

climatic and hydrologic variables that best explain variations in the DOC and the nitrate. 

7.2 Hillslope water quality 

The water quality chemistry results are based on data collected from July 2009 to 

August 2010. The chemical composition of the soil water solution was studied during 

10 months (one wet and one transition period) using lysimeters. The lysimeter pairs 

consisted of one lysimeter which was placed 10 cm into the soil (“shallow lysimeter”) 

and one which was placed at 18 cm into the soil (“deep lysimeter”). The lysimeters were 

pumped out every month. The assessment of the soil water chemistry was limited by the 

lack of water chemical data during the summer period.  

The full quality data for all parameters with the use of the Charge Balance Error (CBE) 

are listed in Tables 1-6 of Appendix E1. To examine the relationship between runoff 

and variation in chemical concentration, data from runoff water samples were collected 

as monthly point values.  

Table 7-1 summarises the statistical analysis of the overland flow water concentrations 

of the perturbed and control (natural) plot. During dry periods (May – June 2010), 

sampling of the flow water at plots was a problem because there was no water in the 

tipping buckets.  

The pH of the overland flow water varied in the range 5.8 - 7.2 indicating slightly acidic 

to a neutral type of water.  
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Table 7-1 Statistical analysis of chemical composition in the overland flow water of the perturbed plot 
(A) and control plot (C) at hillslope during June 2009 – August 2010 

Perturbed plot (A) 
(n = 13) pH 

Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
Min. 5.8 2.0 1.9 2.2 0.6 3.5 6.4 1.7 0.5 
Mean 6.6 4.7 4.5 5.2 1.3 16.0 9.9 4.7 1.8 
Max. 7.2 9.5 9.3 8.4 2.7 30.5 17.1 12.3 4.5 
SD. 0.4 1.9 2.1 2.2 0.6 9.8 8.7 3.0 1.2 

Control plot (C) 
(n = 13) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 5.8 1.1 0.6 0.8 0.2 0.9 4.5 0.9 0.0 
Mean 6.6 4.4 3.9 3.2 0.9 11.2 8.7 2.7 1.2 
Max. 7.2 7.4 8.0 6.4 1.8 24.7 13.5 5.8 4.0 
SD. 0.4 2.2 2.8 2.0 0.5 6.7 3.1 1.4 1.2 

Min = minimum value, Max =  maximum value, SD =  standard deviation  

Perturbed plot 

The Charge Balance Error (CBE) has been calculated for 11 samples of which 5 had 

positive CBE and 6 negative CBE (see Appendix E1, Table E1-1). CBE ranged from a 

minimum of 8.3% to a maximum of 11.6%. If the relative errors are within ±10% they 

are considered acceptable.  

The dominant cation in the overland flow water was Ca2+ (2.2 to 8.4 mg/l), followed by 

Na+ (2.0 to 9.5 mg/l), K+ (1.9 to 9.3 mg/l) and Mg2+ (0.6 to 2.7 mg/l).  

HCO3
- ranged from 3.5 to 30.5 mg/l, followed by Cl- of 6.4 to 17.1 mg/l. SO4

2-  ranged 

from 1.7 to 12.3 mg/l and NO3
- 0.5 to 4.5 mg/l. 

The chemical composition of the overland flow water for the perturbed plot is 

predominantly calcium-bicarbonate-sodium-chloride type of water with the following 

ionic sequences: 

Ca > Na > K > Mg 
HCO3 > Cl > SO4> NO3  

Control plot 

The Charge Balance Error (CBE) has been calculated for 13 samples of which 8 had 

positive CBE and 5 negative CBE. From the Appendix E1: Table E1-2, CBE ranged 

from a minimum of 10.6% to a maximum of 11.2%.  

The dominant cation was Na+ (1.1 to 7.4 mg/l), followed by K+ from 0.6 to 8.0 mg/l. 

Ca2+ ranged from 0.8  to 6.4 mg/l and Mg2+ from 0.2 to 1.8 mg/l. 

HCO3
- ranged from 0.9 to 24.7 mg/l, followed by Cl- of 4.5 to 13.5 mg/l. SO4

2-  ranged 

from 0.9 to 5.8 mg/l and NO3
- 0.0 to 4.0 mg/l. 
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The chemical composition for the control plot in the overland flow is predominantly 

sodium-bicarbonate-potassium-chloride type of water with the following ionic 

sequences: 

Na > K > Ca > Mg 
HCO3 > Cl > SO4> NO3  

Figure 7-1 illustrates the percentage contribution of each ionic constituent in the 

overland flow water to the total ionic mass. The highest contribution had HCO3
- then 

Ca2+ with 32.9% and 10.7% of the total ionic mass of the perturbed plot. For the control 

plot, HCO3
- contributed with 31.4% and Ca2+ with 8.8%. The proportions of Cl- and Na+ 

are 20.4% and 9.5% of the total ionic mass for the perturbed plot, while for the control 

plot were 24.6% and 12.5%. The proportion of Mg2+ was accounted as very low 

(~2.5%). 

  

Figure 7-1 Percentage contribution each ion to total ionic mass in the overland flow water 

Table 7-2 summarises the statistical analysis of the soil water concentrations of the 

perturbed and control plots, collected at 10 and 18 cm soil depth. The pH of the soil 

water varied in the range 5.7 - 7.4 indicating slightly acidic to a neutral type. 

Perturbed plot – soil water at 10 cm depth 

The dominant cation in the soil water at 10 cm soil depth was Ca2+ (6.6 to 9.4 mg/l), 

followed by Na+ (0.5 to 6.9 mg/l), Mg2+ (1.0 to 2.7 mg/l) and K+ (0.8 to 2.1 mg/l).  

HCO3
- varied from 5.2 to 9.1 mg/l, followed by Cl- of 1.9 to 16.7 mg/l, SO4

2-  from 1.2 

to 7.3 mg/l and NO3
- 0.3 to 5.9 mg/l. 
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Table 7-2 Statistical analysis of chemical composition of the soil water (lysimeter sampling) at the both 
plots during 2009 – 2010 year 

 Soil water at 10 cm depth 
Perturbed plot (A) 

(n = 5) pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
Min. 6.1 0.5 0.8 6.6 1.0 5.2 1.9 1.2 0.3 
Mean 6.5 3.7 1.3 7.4 1.5 6.7 6.2 4.9 2.3 
Max. 7.4 6.9 2.1 9.4 2.7 9.1 16.7 7.3 5.9 
SD. 0.5 2.3 0.5 1.2 0.7 1.5 18.6 2.5 2.3 

Control plot (C)  
(n =4) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 5.7 1.8 0.3 3.8 0.6 3.4 2.1 0.7 0.9 
Mean 6.4 2.7 0.4 4.1 0.7 5.7 4.0 3.1 1.4 
Max. 7.2 3.5 0.5 4.3 0.7 7.0 5.2 5.9 2.1 
SD. 0.6 0.7 0.1 0.2 0.1 1.7 1.4 2.1 0.6 

  Soil water at 18 cm depth 
Perturbed plot (A) 

(n = 10) pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
Min. 5.9 2.1 0.3 2.4 0.5 2.0 1.6 0.9 0.0 
Mean 6.4 4.9 0.7 9.4 1.3 8.4 6.3 5.7 1.9 
Max. 7.2 11.0 1.4 20.0 2.1 16.9 14.9 13.2 7.5 
SD. 0.5 2.9 0.4 5.2 0.6 6.0 4.8 3.9 2.6 

Control plot (C)  
(n =4) pH Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- 
mg/l 

Min. 5.8 2.1 0.3 4.1 0.6 1.8 1.7 1.3 0.2 
Mean 6.3 2.5 0.4 5.3 0.8 5.1 4.6 3.0 0.5 
Max. 7.0 2.9 0.5 6.6 1.0 7.4 7.8 4.8 1.0 
SD. 0.5 0.4 0.1 1.3 0.2 2.5 3.2 1.5 0.4 

Min = minimum value, Max =  maximum value, SD =  standard deviation  

Control plot – soil water at 10 cm depth 

At 10 cm soil depth, the dominant cation was Ca2+ (3.8 to 4.3 mg/l), second Na+ from 

1.8 to 3.5 mg/l, third Mg2+ from 0.6 to 0.7 mg/l and K+ from 0.3 to 0.5 mg/l.  

Four anions, HCO3
- dominated in the range of 3.4 to 7.0 mg/l, than Cl- from 2.1 to      

5.2 mg/l, SO4
2-  from 0.7 to 5.9 mg/l and NO3

- 0.9 to 2.1 mg/l. 

Perturbed plot – soil water at 18 cm depth 

At 18 cm soil depth, Ca2+ was dominant cation that ranged from 2.4 to 20.0 mg/l, then 

Na+ from 2.1 to 11.0 mg/l. Mg2+ ranged from 0.5 to 2.1 mg/l, while K+ from 0.3 to      

1.4 mg/l.  

In the case of anions, HCO3
- ranged from 2.0 to 16.9 mg/l, followed by Cl- of 1.6 to 14.9 

mg/l, SO4
2-  from 0.9 to 13.2 mg/l and NO3

- 0 to 7.5 mg/l. 

Control plot – soil water at 18 cm depth 

Ca2+ was dominant cation that varied from 4.1 to 6.6 mg/l, followed by Na+ from 2.1 to 

2.9 mg/l, Mg2+ from 0.6 to 1.0 mg/l and K+ from 0.3 to 0.5 mg/l.  
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HCO3
- ranged from 1.8 to 7.4 mg/l, Cl- of 1.7 to 7.8 mg/l, then SO4

2-  from 1.3 to         

4.8 mg/l and NO3
-  from 0.2 to 1.0 mg/l. 

The chemical composition of the soil solution collected at 10 and 18 cm soil depth for 

both plots is the same, predominantly calcium-bicarbonate-sodium-chloride type of 

water with the following ionic sequences: 

Ca > Na > Mg > K 
HCO3 > Cl > SO4 > NO3 

Figure 7-2 illustrates the percentage contribution of ions at 10 and 18 cm soil depth with 

the highest contribution of HCO3
- and Ca2+ (19.6% and 21.7%) for the perturbed plot. 

The proportions of HCO3
- and Ca2+ were 25.8% and 18.6% for the control plot, 

respectively. The proportion of K+ was accounted as low (1.8 to 3.8%). 

  

  

Figure 7-2 Percentage contribution each ion to total ionic mass of the soil water A: perturbed plot,       
C: control plot; 10: soil solution at 10 cm depth; 18:  soil solution at 18 cm soil depth 

At 18 cm soil depth, the contribution of HCO3
- and Ca2+ was higher for both plots. The 

proportions of Cl- and Na+ were 16.3% and 12.7% for the perturbed plot, while for the 

control plot were 20.7% and 11.3%. The proportion of K+ was very low (1.8%). 

Analysis comparing the mean NO3
- concentrations for the shallow lysimeter (10 cm) 

and the deep lysimeter (18 cm) showed that there was the significantly greater the mean 

NO3
- concentration in the deep lysimeter for the both plots.  For example, O’Reilly et al. 

(2010) reported that a nitrate concentration of 3.3 mg/l was measured in the lysimeter  at 

the depth of 1.4 m and 0.84 mg/l from the 2.6 m deep well. In this study, the mean 
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nitrate concentrations were higher under the double rainfall inputs at the perturbed plot 

(10 cm: 2.3 mg/l; 18 cm: 1.9 mg/l) compared to the control plot under natural rainfall 

inputs (10 cm: 1.4 mg/l; 18 cm: 0.5 mg/l). 

The major ions obtained from chemical analyses of the rainwater, the overland flow 

water and the soil solution are displayed on a Piper diagram (Figure 7-3).  The average 

chemical composition of the overland flow water and the soil solution had a different 

chemical signature from the rainwater.  

 
Figure 7-3 Piper diagram illustrating the major ion compositions in rain, runoff water and soil solution 
at the control and perturbed plot for total sample days (A: perturbed plot, C: control plot;  srw: surface 
runoff water; 10: soil solution at 10 cm depth; 18:  soil solution at 18 cm soil depth) 

The concentration of ions in runoff water was higher than in the rain water (Chapter 5, 

Table 5-5). There were significant differences in chloride concentrations between the 

perturbed and the control plot. The highest concentration of chloride in the overland 

flow water and in the soil water solution of the perturbed plot is likely due to additional 

inputs of rainwater compared to the control plot under natural rainfall conditions. In 

general, the highest levels of chloride occurred during the autumn and the winter.  

At the hillslope, the linkage between the rainfall water and runoff water chemistry has 

been observed during the November storm event that is discussed in Section 7.4 with 
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high conductivity values in the overland flow water at the perturbed plot. For the rest of 

the events the linkage has not been analysed because an extreme event was needed. 

The similar chemical composition of the overland flow water from the perturbed plot 

was observed with the soil water solution with the following ionic sequences: Ca > Na, 

while that it is not the case with the control plot (Na > K). The relationship between the 

chemical composition of the overland flow water from the perturbed plot and the soil 

solution may be explained by the fact that the mobility of calcium is relatively low, 

especially compared to cations such as sodium or potassium where loss of Ca2+ through 

leaching is relatively low, especially when it is in the form of lime (Hodges 1995).         

Under the saturated water conditions in the soil, the water moves upward and transport 

nutrients to the upper soil layer where it is most likely to be lost in the overland flow. 

Several studies have reported a rising water table that transports high nutrient 

concentrations in the upper soil layer (Hornberger et al. 1994; Boyer et al. 1997; van 

Verseveld 2007). The major research limitation of this study was the failure to collect 

and analyse the data of the water table and hydraulic gradient using tensiometers.  

From the chemical composition, the major cation in the overland flow water for the 

perturbed climate conditions is Ca2+, and for the control climate conditions is Na+, while 

the major anion beside HCO3
- is Cl- for both conditions.  Na+ and Cl- probably reflect 

primary recharge from the rain. Since residence time is so short and there is a little 

contact between the soil and the flowing water, then the solute content in the overland 

flow will be low and will retain the characteristics of rainfall (Burt and Pinay 2005). 

Further evidence for this statement is discussed in Section 7.4. 

The concentration of potassium ion (K+) was in the same decreasing order: overland 

flow > soil solution collected at 10 cm > solution collected at 18 cm as reported by Tsai 

et al. (2010). He also suggested that the highest K+ concentration in the overland flow 

could be attributed to the decomposition of litterfall at soil surface. In Tsai’s study, 

Sposito (1984) and Grimaldi et al. (2004) suggested that lower concentrations of K+ ion 

in soil solution was the result of easily absorbed and reused K+ ion by plant roots. The 

concentration of Cl-and Na+ for the perturbed plot was in following order: overland flow 

> solution collected at 18 cm > soil solution collected at 10 cm. For the control plot Cl- 

ion had the same order as the perturbed plot but for Na ion was: overland flow > soil 

solution collected at 10 cm > solution collected at 18 cm. Higher content of Cl- and Na+ 

in the overland flow suggests that the rainwater significantly affects the overland flow 



 

169 
 

and the soil solution  chemistry. For the perturbed plot, Ca2+ and Na+ were dominant 

cations, while for the control plot Na+ and K+ were dominant. The concentration of Ca2+ 

ion was in following order: solution collected at 18 cm > soil solution collected at       

10 cm > overland flow. The presence of Ca2+ reflects the lithology, the source of Na+ 

reflects rain input, while K+ reflects lithology or fertilizer input. Comparisons between 

the concentration of ions in the overland flow and soil solution showed that obviously 

the lower content of cations and anions in soil solution at 18 cm suggest that the strong 

leaching effects occur.  Mulder and Cresser (1994) reported that the chemistry of soil 

solution may vary considerably through the year of a given soil horizon, due to (i) a 

variable composition of infiltration water, (ii) variability in climatic conditions, and (iii) 

variability in biological activity. Sulphate concentrations changed very little during the 

observation period at both plots, probably due to sorption within the soil.      

Water quality was very good as indicated by the low concentrations of nutrients and no 

pollution that could percolate into groundwater. Although the number of samples taken 

before, during and after enhanced rainfall treatment is limited on monthly point value, 

the data show a marked difference between two climate conditions, the perturbed and 

unchanged rainfall conditions. The sum of anions and cations (total dissolved solids) 

was higher for the perturbed climate conditions. 

In this study, it was considered that some sources of error or uncertainties can occur, 

such as: (1) the limitation of sampling number and replication, (2) the difference of 

spatial distribution of soil properties between the two plots, (3) the input of precipitation 

and loss as output of evaporation.   

The results of the runoff experiment indicate that rainfall and changes in the dominant 

stormflow pathways were the most significant factors affecting differences in the ion 

concentrations between the two plots. This study has demonstrated the usefulness of 

available chemical data for understanding the overland and subsurface flows water 

quality and important implications for developing appropriate conceptual models.   

7.3 Variation in total dissolved organic carbon (DOC) and nitrate (NO3) 
concentrations at the hillslope   

Dissolved organic carbon (DOC) 

Several researchers have investigated the influence of the climatic variables on the DOC 

concentration, with the primary focus on temperature (Freeman et al. 2001b), and 
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precipitation (Tranvik and Jansson 2002). An increase in the total dissolved organic 

carbon (DOC) concentrations in runoff in terrestrial ecosystems has been considered by 

others. Naden and McDonald (1989) in northern England and Neal et al. (1997) in 

Wales linked  the climatic factors such as increased temperatures and dry periods to the 

DOC. However, more work is necessary to unravel variations in the DOC 

concentrations in the overland flow and the soil solution. This is possible by linking the 

flow to the climatic factors of the dry, wet and transition periods and comparison 

between the plots. In this section, the data from the field will potentially help to unravel 

the principal variations of the total dissolved organic carbon relate to the enhanced and 

the natural rainfall conditions. 

The water samples of the runoff were collected as the monthly point values from July 

2009 to August 2010. To investigate variations in the DOC concentrations, firstly 

monthly point values of the DOC concentrations were compared between the two plots, 

then between the overland and the subsurface flow water.  

Figure 7-4a shows the DOC concentration in the overland flow for both plots perturbed 

(A) and control (C), while the mean concentrations for each season are presented in 

Table 7-3.  

Table 7-3 Mean concentrations of DOC in the overland flow for the perturbed and control plots 
separately shown for each season (dry, wet and transition) 

Season Perturbed plot (A) Control plot (C) 
DOC (mg/l) 

Dry 17.1 17.6 
Wet 9.6 12.4 

Transition 14.1 13.8 

The DOC for the perturbed plot during the dry period ranged from 15.9 to 18.2 mg/l, the 

wet period from 8.54 to 11.2 mg/l and the transition period from 9.3 to 22.9 mg/l. For 

the control plot, the DOC ranged during the dry period from 16.4 to 18.8 mg/l, the wet 

period from 3.8 to 16.0 mg/l and the transition period from 6.2 to 23.9 mg/l (Appendix 

E2, Table E2-1). The DOC concentration at the perturbed plot with the intensified 

rainfall was 23% less than the concentration at the control (natural) plot. From the 

results, the average DOC concentration tended to be highest in the dry period and the 

lower in the wet period. 
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Figure 7-4 Comparison of DOC concentration in a) overland flow and b) soil solution between plots  

The results corresponding to the DOC export for the whole period of the analysis are 

reported in Table 7-4. It is clear that the use of the limited number of the soil water 

samples in this case may present some difficulty in estimating of the DOC and the NO3
- 

losses through the subsurface flow. The export of C is estimated at the soil depth of     

18 cm where the subsurface flow was monitored. Multiplying the overland flow by the 

flow-weighted, the DOC concentration showed C loss of 9.7 kg C/ha for the intensified 

climate condition compared to 5.8 kg C/ha for the unchanged climate conditions. This 

approach assumes that in the case of the subsurface flow, the C loss was 22 kg C/ha for 

the intensified climate condition. It was not possible to estimate the C loss through the 

subsurface flow for the unchanged climate conditions.  At the perturbed runoff plot, the 
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wet period includes the enhanced rainfall and the large flood event in November 2009 

that influenced the high losses in the DOC by the overland and the subsurface flows.  

Table 7-4 Amount of C export in runoff 

Period Total Dissolved 
Carbon (kg/ha) 

Total Dissolved 
Carbon  (mg/l ) 

Flow 
(mm) 

Perturbed plot – overland flow 
Dry 4.8 17 28 
Wet 9.7 9.6 100 

Transition 2.6 14 16 
Control plot – overland flow 

Dry 4.7 18 26 
Wet 5.8 12 48 

Transition 1.1 14 8 
Perturbed plot – subsurface flow 

Dry N/A N/A N/A 
Wet 22 28 80 

Transition 4.4 19 23 
Control plot – subsurface flow 

Dry N/A N/A N/A 
Wet N/A N/A N/A 

Transition 1.1 10 11 

                         N/A not available 

Before the enhanced rainfall treatment (dry period), the DOC concentrations in the 

overland flow water between the two plots were not significantly different, but there are 

differences in the carbon loss during the wet period. Under the enhanced rainfall 

treatment (wet period) at the perturbed plot, the C losses are lower in the overland flow 

(9.7 kg/ha) compared with the subsurface flow (22 kg/ha). This indicates enhanced loss 

of the DOC by the subsurface leaching pathway relative to losses through the overland 

flow. Worrall et al. (2002) reported that the soil flow paths are the greatest source of 

DOC to streams, and the flow path which is followed is dependent on the intensity and 

length of the rainfall, and the time period since the previous rainfall. Stevens et al. 

(1999) demonstrated that nutrient and cation transport via the subsurface lateral flow 

varies between hillslope position and rainfall events where environmentally significant 

amounts of nitrate and dissolved organic carbon moved as the subsurface lateral flow 

via macrospores. 

The DOC concentration in the overland flow generally decreased during the wet period 

for the both plots due to dilution. At the start of the wet period, the DOC concentration 

in the overland flow at the perturbed plot showed a lower concentration compared to the 

control plot (Figure 7-4a). The difference between the two plots of approximately 22% 

for the wet period can be attributed to the climatic conditions, as on the perturbed plot 

there was double input of rain that caused the lower DOC concentration and the higher 

DOC loss. However, surprisingly, the DOC concentration did increase progressively 
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with the increase in the rate of rainfall input (Figure 7-4). As can be seen from Figure 

7-4 during the winter period the relative magnitude of the DOC was changed. This can 

be explained by the “flushing theory”, which suggests that the DOC accumulates 

underneath the snow during the winter and during the snowmelt waters move through 

the soil where DOC is rapidly flushed into streams. O'Riley (2012) also supported the 

“flushing theory” and pointed to a lack of understanding of what controls DOC 

dynamics during the snowmelt period. 

During the dry period, the soil solution from lysimeters was not available for the both 

plots. As can be seen in Figure 7-4b, the high rainfall events significantly decreased the 

DOC concentration measured at the soil depth of 18 cm. At the perturbed plot, the DOC 

concentrations sampled with lysimeters from 10 and 18 cm deep soil over the total 

observed period ranged from 8.5 to 31.6 mg/l and 4.8 to 46.4 mg/l (Appendix E2, Table 

E2-2). The DOC concentrations sampled at the control plot (unchanged climate 

conditions) from 10 cm and 18 cm deep soils showed the DOC concentrations from 5.4 

to 23.1 mg/l and from 4.1 to 21.7 mg/l. Overall, the soil solutions were increased during 

the transition period, and started to decrease in the second wet period. On the hillslope, 

the concentration of the DOC in the soil solution at 10 cm during the transition period 

was low compared to the soil solution  at 18 cm (decrease with soil depth) where it 

surprisingly started to increase and was higher than the soil solution at 18 cm. About the 

case of the DOC concentrations decrease with the soil depth, the literature is in 

agreement (e.g. Thurman 1985; Allan 2001; Gundersen 2012) where loss of the DOC is 

attributed to the combination of the three processes; biodegradation, adsorption, and 

decreasing the concentration of SOM with depth. 

In the soil water solution, the DOC originated from the decomposition of the organic 

matter together by leakage of metabolites from plant and microbial cells (Christ and 

David 1996; Kalbitz et al. 2000; Yano et al. 2004), and it is removed largely by 

adsorption in the mineral soil (Qualls and Haines 1992). Figure 7-4b shows for 

December 2009 the low DOC concentration in the soil solution sampled at 18 cm soil 

depth. This suggests that during the wet conditions, the ‘new’ water moves vertically 

through the soil and dilutes the ‘old’ water where the soil perched water table may have 

risen into more permeable shallow subsurface and surface horizons. According to this, 

the soil perched water table rises, concentrated soil solution is displaced from the deep 

to the upper soil layer. It was found, as did McGlynn and McDonnell (2003), that the 

DOC concentration of the hillslope runoff was a mixture of shallow high DOC soil 
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water and deep low DOC mineral soil water. During the autumn and the winter period, 

probably most of the DOC infiltrates through the soil vertically and flows laterally 

through deep soil layer. Taken together, these results suggest that the intensity of rain is 

an important factor controlling the flushing of the DOC.  

Figure 7-4 shows an increase trend in the DOC concentrations during the transition 

period suggesting a temporary dilution of the soil carbon pool that was released to the 

overland flow of the previous storm events.  The highest DOC concentration in the 

overland flow was observed after the long dry period in July 2010 during the summer 

period. This was observed at the field in the tipping bucket that collected the overland 

flow water at the perturbed plot. The increase of the DOC led to an enhanced water 

colour similar to dark tea (Figure 7-5). The reason for such an increase is believed to be 

due to the long dry period and low precipitation that prevents the transport of the DOC 

to the deeper soil layer, which therefore leads to accumulation of the DOC in the upper 

soil layer (around 10 cm, 32 mg/l; 18 cm, 22 mg/l). After the dry period, the first intense 

rain events probably caused slow flow where soil TOC is increasingly flushed through 

the system, leading to increases in the DOC.  

The high DOC concentrations in the overland and the subsurface flows during the 

transition period were probably the result of the dry climate condition and the low 

antecedent wetness condition. This suggests a build-up of labile organic material in the 

upper soil layer because of incomplete decomposition and lack of the flushing. 

 
Figure 7-5 Water colour of the overland flow in the DOC from the perturbed plot, July 2010 

The different seasonal and climate conditions indicate the significance of variations in 

the solute signatures for different flow process during the wet or dry periods. The DOC 

concentration was generally higher during the summer in the overland flow and lower 

during the winter. These increases during the summer or dry periods have been reported 
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in many studies (de Wit and Wright 2008; Köhler et al. 2009; Sebestyen et al. 2009; 

Ågren 2010).  

It is concluded from this study that the flushing mechanism generates the higher DOC 

concentrations during the summer rains (storm) events compared to the wet periods. It is 

important to understand the factors that influence increasing of the DOC concentration 

that lead to higher loads of organic matter in the surface water and increasing colouring. 

This could have implications for drinking water quality in some areas.  

Nitrate (NO3
-) 

The effect of climate on the concentration and fluxes of nitrate is studied by many 

researchers, with the influence of climate for biological, chemical and physical 

processes which determine N cycling and losses (Howden and Burt 2008, 2009; Jones 

and Smart 2005; Monteith et al. 2000; Zhang and Schilling 2005; Odoux et al. 2010). 

For example, Odoux et al. (2010) report in their study that climate can govern two kinds 

of processes: 1) soil processes related to the mineralisation of organic soil nitrogen, for 

which soil temperature and wetness are the main climatic drivers - these processes play 

an important role in leaching rates of nitrate because small imbalances between 

inorganic nitrogen availability in the soil and biological uptake may lead to marked 

changes; and 2) hydrological processes, mainly driven by effective rainfall that can 

couple or uncouple the nitrate supply and its leaching in time and space. 

Figure 7-6a shows the NO3
- concentration in the overland flow for both plots, while the 

mean concentrations for the each period are presented in Table 7-5. The NO3
- 

concentrations in the overland flow are different between seasonal periods (dry, wet and 

transition period).  

Table 7-5 Mean concentrations of NO3
- in the overland flow for the perturbed and control plot separately 

shown for each season (dry, wet and transition) 

Season Perturbed plot Control plot 
NO3

- (mg/l) 
Dry 1.3 1.2 
Wet 3.3 3.1 

Transition 0.5 0.3 
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Figure 7-6 Comparison of NO3
- concentration in a) the overland flow and b)soil solution between plots 

The NO3
- in the overland flow of the perturbed plot during the dry period ranged from 

1.1 to 1.5 mg/l, during the wet period from 0.5 to 8.0 mg/l and the transition period 

from 0.2 to 1.9 mg/l. For the control plot, the NO3
- ranged during the dry period from 0 

to 1.4 mg/l, during the wet period from 1.3 to 5.5 mg/l and the transition period from 0 

to 2.1 mg/l (Appendix E2, Table E2-1). 

The NO3
- concentrations were generally higher in the wet period, and lower during the 

dry and the transition period, which is the opposite of the DOC concentration trend. 

There is also obvious variation in the NO3
- concentration during the wet period; the high 

intensity of rain decreased the NO3
-, while the low intensity increased the NO3

-
 

concentration. Hodges (1995) report that leaching occurs when inorganic forms of N, 
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particularly nitrite (NO2
-) and nitrate (NO3

-) are solubilized and carried by water 

through the soil profile or by the overland flow.  

The results in the NO3
- losses corresponding to the whole period of the analysis, and 

they are reported in Table 7-6. The N loss from the perturbed plot was 3.3 kg N/ha as 

compared with 1.5 kg N/ha from the control plot during the wet period in the overland 

flow. As mentioned before it is difficult to estimate the NO3
- losses through the 

subsurface flow as the number of the soil solution samples was limited. 

Table 7-6 Amount of N export in flow 

Period Nitrate (kg/ha) Nitrate (mg/l ) Flow 
(mm) 

Perturbed plot – overland flow 
Dry 0.4 1.3 28 
Wet 3.3 3.3 100 

Transition 0.1 0.5 16 
Control plot – overland flow 

Dry 0.3 1.2 26 
Wet 1.5 3.1 48 

Transition 0.02 0.3 8 
Perturbed plot – subsurface flow 

Dry N/A N/A N/A 
Wet 1.8 3.4 80 

Transition 0.09 0.4 23 
Control plot – subsurface flow 

Dry N/A N/A N/A 
Wet N/A N/A N/A 

Transition 0.06 0.5 11 

                              N/A not available 

Before the enhanced rainfall treatment (dry period), the NO3
-
 concentrations in the 

overland flow water between two plots are not significantly different. Under the rainfall 

treatment (wet period), the N losses were higher in the overland than the subsurface 

flows. This suggests that during the enhanced rainfall treatment more N was available to 

be lost in the overland flow once the soil was saturated. Furthermore, significant 

differences in the N loss were found between the perturbed and the control plot that 

received no enhanced rainfall during the transition period in the overland flow. There is 

the difference in the nitrate loss between conditions before (dry) and during rainfall 

(wet) treatment, with more N lost during the wet period in the overland flow. It is 

suggested that the nitrate export is higher in the subsurface flow during the dry period 

through leaching. That means that high concentration of the nitrate occurs in the deeper 

part of the soil. Infiltration of water dilutes nitrate concentration, which is the reason for 

low concentrations during the wet period in the subsurface flow and high in the 

overland flow. According to Tables 7-5 and 7-6 the nitrate concentrations do not differ 
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much between the perturbed and control plots and the difference in loads is a result of 

the different flows. 

In November and December, overall the concentrations were much lower. A dilution 

phase was evident, but again concentrations increased for the enhanced climate 

conditions during the wet period. The control plot also indicates the concentration 

decrease during the storm event with an increase during the wet period but now lower in 

concentration compared to the perturbed plot. The monthly changes were observed in 

the NO3
- concentrations in the soil solution at 10 cm and 18 cm depth for both plots 

collected from lysimeters   (Figure 7-6b). The NO3
- concentrations at 10 cm depth 

varied from 0 to 5.9 mg/l for the perturbed plot, and 0.9 to 2.1 mg/l for the control plot. 

In the case of 18 cm soil depth, the soil water in the NO3
- concentration varied from 0 to 

4.3 mg/l for the perturbed plot, and from 0.2 to 1.0 mg/l for the control plot. The mean 

values of the NO3
- concentrations in the soil water collected from the perturbed plot at 

both depths were higher than collecting those from the control plot. The mean nitrate 

concentrations in flow are considered as ‘very low’  (<5 mg/l as NO3
-) (EA 2006). 

In this study, the results showed that nitrate content in the overland flow and the soil 

water solution collected at 10 and 18 cm depth decreased at the end of the transition 

period, and increased with the establishment of the rainy season and the second wet 

treatment (Figure 7-6). During the wet period, the NO3
- concentrations in the overland 

flow were higher on the control plot than on the perturbed plot. As a result, at the 

perturbed plot the soil water concentration in the NO3
-
 simply decreases with apparent 

dilution as rainwater increases.  

It is assumed that increased the NO3
- in the overland flow concentration in the winter 

was due to high NO3
- contribution from the melting snowpack that is consistent with 

findings of Inamdar and Mitchell (2006). These can be explained by several processes 

in the cycling of nitrogen in snow pack and snowmelt; firstly with the wet and dry 

deposition of atmospheric nitrogen, and secondly with freeze-thaw cycles that led to 

increasing nitrogen in the bottom layer of snow pack (Hafich 2010). The process of 

melting produces water mobilization of solutes downward with a moving wetting front, 

while freezing process produces an increase of nitrate concentrations at the wetting front 

(Hafich 2010). Therefore, after several cycles of thawing and freezing, the higher 

concentrations of nitrate were present in the deeper snow pack layer that led to extreme 

nitrate concentrations in the first flush of melt water (Kuhn 2001; Hafich 2010). The 



 

179 
 

nitrogen deposition and the movement occurs above ground in the snow, while in the 

soil nitrogen cycling by nitrification and mineralization of organic N in soils when N 

availability exceeds the uptake by micro-organisms and plants. This N mineralization 

and nitrification produce available pools of the NO3
- in the soil, which happens in the 

winter, the early spring, and the autumn when vegetation is dormant (Lepori et. al. 

2003, Hafich 2010). Creed and Band (1998) found that the NO3
- peaks on the rising 

limb of the hydrograph and attributed this pattern to flushing of the NO3
- from surface 

soils by rising water tables. In this study, on April 2010, a rain event shows a dilution 

trend in the NO3
- concentration, while it was not apparent for two previous rain events 

in September and November 2009 (Figure 7-6). 

The monthly variations in the NO3
- concentrations of the soil solutions were very 

similar for both plots showing an increasing trend during the wet period. During the dry 

period there was the opposite situation, as the NO3
- concentration decreased. During the 

wet period, the NO3
- was the highest just below the ground surface at approximately   

10 cm and then decreased with depth into the soil profile. The soil water concentrations 

in the NO3
- during the transition period of June and July were not detected and/or have a 

zero value for both plots. It is assumed that is due to dry climate conditions.  

During the second wet period, the NO3
- concentration in the overland flow for the 

perturbed plot slightly increases in comparison to the soil solution. This suggests that 

large amounts of the NO3
- may have accumulated in the deeper soil layers during the 

transition period (a prolonged dry period), and the first significant rains with the soil 

saturation trigger export of the NO3
- upward. This statement was based on the field 

evidence and the results presented later in the text (Chapter 8) that indicates depletion of 

total nitrogen (TN) at deeper soil layers (20-30 cm) during the wet condition.  This 

finding is in agreement with findings of Ritter and Bergstrom (2001) who found the 

high concentration of NO3 both in the overland and subsurface flows due to the large 

pool of the NO3
- contained in the soil medium. Iqbal (2006) reported that after irrigation 

in a field in China, the nitrate concentration leachate of 30 cm soil layer was higher than 

that of 60 cm, and the concentration of nitrate leaching at the five N treatments through 

the two depth soil layer came into the same level. This is in agreement with findings 

from this study.  

The DOC and the NO3
-
 concentrations in the soil water solution were highest from just 

below the organic layer at 10 cm and decreased with depth into the soil profile   
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(Figures 7-4 and 7-6). This is in the line with findings of van Verseveld (2007) which 

suggests a net release of both the DOC and N from the organic layer with net removal 

of the DOC and N from solution below the organic layer. Similar to observations of van 

Verseveld (2007), the upper mineral soil (0-10 cm) was the largest source of the DOC 

and N, which is also in agreement with findings of Yano et al. (2004). 

The flow characteristics of the November flood event (E3) as well as the DOC and the 

NO3
- export are summarized in Table 7-7. The other events E1 and E5 were not 

included here as data were not available for the DOC and the NO3
-. The values for 

concentration were calculated using an interpolation method.  

To identify how specific hydrological processes control the DOC and the NO3
-
 losses 

during the storm event, the November storm event was chosen. The event extended over 

one day, 46 mm of precipitation. Table 7-7 shows the DOC as well as the NO3
- export 

during the November storm event with the different hydrological pathways for the 

perturbed plot. For the DOC and the NO3
- concentrations, estimates are much less 

certain due to the limited number of the samples and some additional assumptions are 

made. The DOC and the NO3
- concentration in flow is assumed to be best described by 

the interpolation of the flow-only concentrations. 

Table 7-7 Export rates of DOC and NO3
- during the November storm event at the perturbed (A) and 

control plot (C) 

Storm event E3 
Start date 17.11.2009 
End date 18.11.2009 
Total precipitation (mm) 46 

Overland flow: perturbed plot 
DOC export (kg/ha) 1.6 
NO3

- export (kg/ha) 0.25 
Overland flow: control plot 

DOC export (kg/ha) 0.6 
NO3

- export (kg/ha) 0.19 
Subsurface flow: perturbed plot 

DOC export (kg/ha) 2.5 
NO3

- export (kg/ha) 0.21 
Subsurface flow: control plot 

DOC export (kg/ha) N/A 
NO3

- export (kg/ha) N/A 

                                     N/A not available 

The estimated value of the DOC is generally in line with published data of Smith (2012) 

who reported the total amount of the DOC exported during the major storm event on 8-

11 August 2010 of 2.6 kg/ha during a long-term experiment at the Neal Smith National 

Wildlife Refuge in Jasper County, Iowa, USA. She did not indicate which flow was 

dominant. Tang et al. (2011) indicated that the subsurface lateral flow was the dominant 
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pathway for nitrate export from the hillslope. These authors, however, reported the 

higher t losses from 1.5 to   2.4 kgN/ha during the observed storm events. Many factors 

can affect the nitrate leaching such as the soil physical and the chemical properties and 

the weather conditions. From Table above, the DOC export to surface water is 

facilitated by the subsurface flow during the storm event, while the NO3
- export is 

dominated by overland and subsurface storm flows. McGlynn and McDonnell (2003) 

report that subsurface storm flow is responsible for the transport of labile nutrients into 

surface water bodies. The N loss in the overland and the subsurface flows is almost the 

same. Transport of nutrients is driven by the surface runoff, which is generated from 

soils that have low infiltration capacity because of high clay content, high water table, 

surface crusting and/or shallow bedrock (Czapar et al. 2008). They reported that most of 

the nutrient losses in surface runoff tend to occur in a few rare events that involve large 

quantities of runoff (Czapar et al. 2008). 

The current study has only examined the monthly point values of the DOC and the NO3
- 

therefore it was not possible to estimate the correlation between nutrient (C and N) flux 

and flow. It is hypothesized that the labile nutrient source of the soil solution is 

preferentially depleted under an intensified hydrological cycle. This hypothesis is 

consistent with observations on the role of rainfall intensity and seasonality. These 

results indicate that rainwater easily accesses the soil where it: 

1) dilutes the NO3
- concentration and during storm events also the DOC, 

2) washes away the labile nutrients at deeper soil layers by subsurface flow or 

3) in the case of intensified rain events results in rising from the soil water table 

and moving labile nutrients in the upper soil layer. 

The results from the November storm events (Table 7-7) support the hypothesis that the 

subsurface leaching pathway for nutrient losses from the soil will be enhanced relative 

to losses through overland flows in an intensified hydrological cycle.  

7.4 Electrical conductivity relationship to flow 

In the field, measured rainfall had an electrical conductivity (EC) of around 11 µS/cm. 

It is often assumed that the electrical conductivity of precipitation is similar to that of 

the overland flow runoff (Gremillion et al. 2000).  This assumption can be made 

because the precipitation has a short residence time and little contact with mineral soils 

(Weiler et al. 1999; Burt and Pinay 2005).  Figure 7-7 presents the electrical 
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conductivity (EC) of the overland flow that was measured in 15 min intervals. It is 

apparent from this Figure that there is a significant difference between the two climate 

conditions in the EC values. The EC in the overland flow reached values of 47 µS/cm 

for the perturbed and 53 µS/cm for the control plot before the November storm event. 

For the perturbed plot at the start of the event, the EC decreased to 28 µS/cm due to 

rainfall flushing then increased to 45 µS/cm, while for the control plot the EC continued 

to decrease until it reached the EC of rainfall (11 µS/cm). The EC of the overland flow 

from the perturbed plot reached values of 40 µS/cm during peak discharge of the 

November 2009 flood event with small variations during the storm event. After the 

event, the water had EC in the range of 33 to 54 µS/cm for the perturbed plot, while the 

EC for the control plot reached the EC peak of 29 µS/cm on 19 November 2009 and 

decreased to 11 µS/cm. 

 
Figure 7-7 The relationship between overland flow and electrical conductivity during the November 2009 
flood event 
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A conceptual model of EC flushing is developed for each plot during the storm event 

and it is presented in Figure 7-8. An increasing conductivity trend was observed in the 

perturbed plot. The most possible explanation for this increasing trend is that there is a 

more significant contribution from the runoff rather than from rainfall. It is interesting 

to note that the EC for the control plot showed increasing and decreasing trends. This 

suggests the observed decreasing trends reflect the flushing process of rainwater during 

the rain event and dilution of the total dissolved solids.  

 

 
Figure 7-8 Conceptual model of  EC flushing during the storm event 

High values of the electrical conductivity are related to high concentration of dissolved 

solids. During the storm event, the overland flow transports dissolved material from 

soils to streams. The overland flow may continue to carry nutrients long after rainfall 

ends, with low intensity.  Langlois and Mehuys (2003) investigated within-storm 

variations of dissolved nutrient concentrations that were determined in two agricultural 

fields during four natural rainfall events along with discharge, sediment, antecedent soil 

water conditions, and nutrient contents. Their results showed that nutrient 

concentrations increased with time during each event. 

The findings of this study suggest that saturation excess overland flow occurred during 

the largest flood event at the perturbed plot as a result of rain falling on the saturated 
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plot which, being unable to infiltrate, collects nutrients from the upper soil layer, then 

runs off downslope and export nutrients (DOC and NO3
-). The EC at the control plot 

showed that during large flood events, rainwater flushing nutrients and direct rainwater 

contributed to the water quality in the overland flow. According to the similarity of the 

overland flow water and rainfall conductivity values with contribution of increasing 

dissolved solids in the subsurface flow, it is assumed that mixtures of new and old water 

indicate the shallow subsurface flow. 

The export rate in the DOC and the NO3
- of the overland flow was smaller for the 

unchanged climate conditions compared to the intensified conditions (Table 7-7), which 

is in agreement with the developed conceptual model of the EC flushing during the 

storm event. The mobilization and transport of nutrients to the stream are driven by the 

two key factors: soil and hydrological control. The soil is characterized by soil texture, 

soil structure, nutrient and organic matter status, while hydrological status controls 

factors indicate whether nutrients are moved or not and which runoff process is 

dominant in their mobilization to the stream. The finding of this study suggested there 

are two main runoff processes or pathways:  saturation excess overland flow and 

shallow subsurface flow. The nutrients can be attached to sediment particles in the 

overland flow or soluble in the subsurface flow. During the mobilization of nutrients 

their status can be changed in chemical, physical and biological sense before they enter 

the stream. The nutrient behaviour also depends on the intensity and duration of rainfall, 

contact between the soil and water, characteristics of the hillslope, land use and grazing 

intensity. 

7.5 Summary 

Chapter 7 has improved knowledge of nutrient behaviour at a hillslope scale through 

water chemistry from samples collected monthly from overland flow and soil solution, 

with measurement of the DOC and the nitrate concentrations and electrical conductivity 

of the overland flow. 

This study showed that the flushing mechanism generates the higher DOC 

concentrations during the summer rains (storm) events compared to wet periods. The 

DOC concentrations were significantly lower during the wet period compared to the dry 

and the transition period, which is the opposite of the NO3
- concentration trend. Under 

the enhanced rainfall treatment (wet period) at the perturbed plot, C losses are lower in 
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the overland flow compared with the subsurface flow while the N losses were higher in 

overland than subsurface flows. 

It was difficult to estimate the DOC and the NO3
- export in the subsurface flow due to 

limited numbers of soil water data. The overland flow was found to be an important 

feature in the NO3
-
 export, while in the case of the DOC the subsurface flow dominated 

during storm events.  

The runoff mechanisms were examined during storm events with electrical conductivity 

data measured in the field. It was suggested that the two dominant runoff mechanisms at 

the hillslope scale were (1) saturation excess overland flow and (2) shallow subsurface 

flow. 
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Chapter 8.   Effects of enhanced rainfall on soil at the hillslope scale 

8.1 Introduction 

The purpose of this Chapter in the context of  different climate conditions is to present i) 

soil physical and chemical properties, ii) soil carbon and nitrate content and iii) soil C 

depletion sequence with use of thermal analysis. Sixteen soil cores were used in this 

study; four of them were from the perturbed (B) and four from the control (C) plot 

before and after enhanced rainfall or wetting treatment on the soil samples. In the 

following Tables and Figures, values represent the average of four samples. The soil 

samples before enhanced rainfall were collected on April 23, 2009 while soil samples 

after enhanced rainfall were collected on August 19, 2010. Soil samples were also 

collected on October 8, 2009, but the experimental results did not show a large 

difference as was expected (data not shown).  

Soil samples were taken in dry and wet (during enhanced rainfall test) periods at 

different depths (10, 20 and 30 cm) from perturbed-sample plot (B) and control plot (C) 

for analysis of soil nutrients.  

8.2 Soil physical properties 

Texture 

The results of particle size analyses for ‘wet’ (enhanced rainfall treatment) and ‘dry’ 

plots revealed that soils are found to contain more than 80% of sand. The texture of the 

investigated soils from the perturbed and control plots varied from loamy sand at         

0-10 cm and 10-20 cm depth to sandy loam at 20-30 cm depth.  A determination is 

made according to a Particle Size Distribution (PSD) triangle (Chapter 4).  Soils are 

dominated by the sand fraction with 86% in the upper horizons and higher content of 

finer fractions (silt + clay) at 20-30cm depth (Figure 8-1), which might be due to the 

translocation of finer particles from the surface soil layers to subsurface layers.  
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Figure 8-1 Example of Particle Size Distribution curve for the perturbed plot after wetting 

Bulk density and porosity 

The bulk density is dependent on soil texture, the densities of the soil mineral and 

organic matter. Figure 8-2 shows the density values obtained from the perturbed (B) and 

control (C) plot. The overall bulk density in the humus horizon varied within the 

interval  0.60 - 0.83 g/cm3 with the overall porosity around 60%. According to texture, 

the loamy sand horizon at the depth of 10 - 20 cm had the bulk density within the 

interval 1.05 - 1.19 g/cm3 and the overall porosity 55%. The values of the bulk density 

in the soil depth of 20 -30 cm are within the interval 1.35 - 1.55 g/cm3, and those of the 

overall porosity within the interval 42 - 51%. The bulk density increases with soil depth 

due to reduced organic matter and aggregation in the subsurface layer compared to the 

surface layer. 

 

Figure 8-2 Soil dry bulk density for the dry and wet condition treatments  
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In wet condition treatment, the bulk density values are significantly lower compared to 

dry conditions for the perturbed plot. The additional input of rain indicated as ‘wet’ 

treatment on the perturbed plot has significantly affected the soil density and available 

water capacity of the soil. Soils with lower bulk density have a high proportion of pore 

space. This suggests that there would be more organic matter content in nutrient-rich 

soil as a result of the high pore space.  

8.3 Soil chemical properties 

pH 

As can be seen from Figure 8-3, the soil pH of the perturbed and control plots varies 

with depth. At the perturbed plot without additional rain, soil pH was 6.0, 5.6 and 5.4 at 

depths of 0-10, 10-20 and 20-30 cm, respectively. The data on the soil pH indicates that 

soils were found to be moderately to slightly acidic.  Soils formed under high rainfall 

conditions (wet) are more acid than those formed under dry conditions.  At lower pH 

values, reduction reactions take place and vice versa. Therefore, in the process of soil 

formation, acidity plays a significant role in oxidation-reduction reactions (Dzamic and 

Stevanovic 2007). The soil acidity is a significant factor in solubility of nutrients in the 

soil. Lucas and Davis (1961) determined the relationship between pH and availability of 

important nutrients. They concluded that the ideal pH range (in terms of total nutrient 

availability) for soil solution is between 5.0 and 6.0.  

 

Figure 8-3 Comparison of the soil pH by depth under dry and wet conditions 

An increase in the pH down the soil profile could be due to leaching of basic cations 

accumulated in the upper part of the soil profile. Rainfall dissolves nutrients and leaches 

them from the soil or percolates to deeper soil layers. Nutrient availability varies 

according to the pH.   
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Distribution of soil nutrients  

Mineral soil was analysed for exchangeable cations by extraction with NH4NO3, and 

total cations by HF. The exchangeable calcium (Ca2+), magnesium (Mg2+) and 

potassium (K+) soil values are indicators of the available nutrient level in the soil. The 

total cations are indicators of weathering-leaching of the soil, showing the extent to 

which cations have been lost through leaching. Extractable nitrate (NO3
-) and sulphate 

(SO4
2-) were also measured by extraction with deionised water.  

Adsorptive capacity is one of the most important characteristics of the soil because it 

reduces leaching of substances from the soil, and so is of great importance for plant 

nutrition and soil properties.   

Exchangeable and total Ca and Mg  

Calcium is the major component of lime, dolomite and gypsum. Calcium plays an 

important role to maintain and increase soil fertility. The soil in which adsorptive 

complex is saturated with Ca-ion has good physical properties, high adsorption capacity 

and favourable conditions for the biological and biochemical processes that influence 

nutrient mobilization from soil reserves (Dzamic and Stevanovic 2007).  

Calcium and magnesium are only available to plants in the exchangeable form. Frank 

(2006a) investigated ideal Ca:Mg:K ratios in soil and he found that considering ratios 

only of total calcium, magnesium and potassium did not provide a good indicator of 

available nutrients to plants. He suggested that the exchangeable form of calcium, 

magnesium and potassium provide better estimate of the soil’s ability to provide these 

nutrients to plants. 

The results of the calcium content obtained by the NH4NO3 and HF method are 

presented in Figure 8-4. The exchangeable calcium content of the perturbed plot after 

enhanced rainfall treatment showed an increased trend at a depth of 0-10 cm of 10%, at 

the depth of 10-20 cm of 17% and at the depth of 20-30 cm of 9%. The total calcium 

content of the perturbed plot after enhanced rainfall showed at a depth of 0-10 cm the 

loss of calcium content of 14%. For the same condition, loss of calcium content was 

12% at the depth of 10-20 cm and 12% at the depth of 20-30 cm.  
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Figure 8-4 The average content in soil of exchangeable and total calcium  

The content of exchangeable calcium increases with increasing depth. There is a slight 

increasing trend of total calcium with depth but this trend is not significant. The calcium 

content of the control plot samples was almost the same for all depths.  

Kelling and Schulte (1992) reported that leaching of calcium through soils does not 

normally occur because of its relatively strong attraction to the surface of clay particles. 

Calcium is not considered as a leachable nutrient as can be seen in Figure 8-4. 

The results obtained from the perturbed plot showed exchangeable Mg loss of 30%, 

12% and 4% in 10, 20 and 30 cm soil depth after wetting treatment (Figure 8-5). For the 

control plot, loss of exchangeable magnesium was 4% and 5% at 10 and 20 cm soil 

depth, while at depth of 20-30 cm magnesium content was increased for 9%. The total 

Mg content for the perturbed plot at 0-10 cm soil depth after enhanced rainfall treatment 

showed 11% of loss (Figure 8-5). The loss of total magnesium content was 7% at the 

depth of 10-20 cm and 16% at the depth of 20-30 cm. The loss of magnesium was 8% in 

0-10 cm depth, an increase of 2% in 10-20 cm and 6% in 20-30 cm soil depth on the 

control plot.  
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Figure 8-5 The average content in soil of exchangeable and total magnesium  

The Mg content varies with depth. The results from the perturbed plot were significantly 

different between dry and wet conditions. The soil calcium and magnesium content is in 

the range of content found in the literature of Yong at al. (2005). According to some 

results where no treatment effect was observed as in this study, Schweiger and 

Amberger (1979) for example calculated average loss of Mg in long term lysimeter 

experiments of 72 kg/ha in sandy soil and 94 kg/ha in loamy soil. This investigation was 

carried out in a region with 810 mm of average precipitation. 

Exchangeable and total K 

The total potassium varies widely in soil, where the total K+ in the soil is determined by 

the amount of potassium minerals in the parent material. The potassium minerals during 

decomposition are transformed into clay minerals (feldspar and mica), where the 

amount of clay is taken as an indicator of K+ content.  The second source of potassium 

beside feldspar and mica that makes 98% of potassium unavailable for plants is the 

nonexchangeable potassium that acts as a reserve source of potassium in the soil and is 

associated with the 2:1 clay minerals. The third source of potassium is called the 
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exchangeable potassium or readily available potassium that can be found in layers of 

clay and it is still very hard for plants to use. However, during wet conditions when the 

clay holding the potassium becomes wet, readily available potassium is created and it is 

found on the cation exchange sites or in the soil solution. In this way, potassium is taken 

up by the plants root system and it is then replaced by the potassium on the exchange 

sites (McAfee 2008). In summary, soil K+ exists in four forms in soils:  solution, 

exchangeable, fixed or nonexchangeable, and structural or mineral. 

The clay content and types of clay minerals present in the soil strongly affect the 

behaviour of K+ in soil, including release, absorption, fixation and leaching (Mengel 

and Kirkby 1987).  

Figure 8-6 shows the rate and direction of reactions between the solution and 

exchangeable forms of potassium. It indicates whether applied K+ will be leached into 

lower horizons, taken up by plants, converted into unavailable forms, or released into 

available forms (Sparks 2001). Sparks (2001) reports in his study of potassium in soils 

that the reaction rate between soil solution and exchangeable phases of K+ is strongly 

dependent on the type of clay minerals present in the soil (Sivasubramaniam and 

Talibudeen 1972; Sparks 1980; Sparks and Jardine 1981, 1984) as well of the method 

employed to measure kinetics of K+ exchange (Sparks 1989, 1995; Amacher 1991; 

Sparks et al. 1996; Sparks 2001).  

 

Figure 8-6 A simple diagrammatic representation of the potassium cycle in soil (source: modified from 
Sparks and Huang (1985); Mutscher (1995) and modified by the author) 

Many studies have investigated kinetics of K+ exchange in soils (Sparks and Huang 

1985; Sparks 1987; Sparks 2000). For example, Sparks and Jardine (1981) studied K+ 

adsorption/desorption on a Matapeake soil from Delaware and they found that 

potassium desorption was slower than adsorption. 

The content of exchangeable K+ in this study showed the loss of 33% at the 10 cm soil 

depth after an enhanced rainfall treatment on the perturbed plot. The plot with perturbed 

Plant
uptake 

Leaching

K in soil
solution

K 
exchangeable

K 
mineral

K 
nonexchangeable

ka

kd

k = adsorption rate a k = desorption rate d 

Mass 
flow

Diffusion

K
 fertilizer



 

193 
 

climate conditions did show significant loss (Figure 8-7). A decreasing trend was also 

recorded at 20 and 30 cm of 34% and 22% K+ loss.  The total K+ increase with depth 

that indicates an increase of clay content in the deeper layers of sandy loam and loamy 

sand as shown in Figure 8-7. Total potassium is an indicator of weathering of the soil, 

showing the extent to which K+ has been lost through leaching, erosion of surface soils 

and removal via plant and animal products (Rayment and Higginson 1992). According 

to that, the soil test shows 5% of total K+ loss at the perturbed plot at 0-10 cm soil depth 

after enhanced rainfall treatment (Figure 8-7). The loss of total potassium content was 

2% and 11% at the depth of 20 cm and 30 cm. At the control plot, loss of total 

potassium was 4% at 10 cm, while at   20 cm and     30 cm soil depth it increased by 3% 

and 1%. The control plot shows a gain in total K+ from dry to wet when moving deeper 

into the soil. The total K+ varies widely in soil, and therefore soil test values vary greatly 

(Frank 2006b).  Sadusky et al. (1987) reported similar findings of total potassium in 

loamy sand of Delaware soils, but most of the mineral K+ was present as K+ feldspars in 

the sand fractions. The type of clay minerals present in soils was not investigated as part 

of this study.  

 

 

Figure 8-7 The average content in soil of exchangeable and total potassium  
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The K+ content at all soil depths is in range with those of Allotey et al. (2008) where 

they measured available exchangeable K+ levels in soils of clay to silty clay in Ghana in 

the range from 0.3 to 1.1 cmol/kg. McAfee (2008) reports that excess water can increase 

the amount of leaching of potassium particularly in sandy soils as opposed to clay type 

soils with high to very high levels of potassium. This is in agreement with findings in 

this study of exchangeable K+ leaching that is expected to have slightly higher leaching 

in sandy loam and less in loamy sand that contains more percentage of clay minerals.   

Sparks (2001) suggests that the amount of clay and soil organic matter (SOM) in the 

soil strongly influences the degree of potassium leaching. Leaching of K+ is often a 

problem in sandy soils, while soils with higher cation-exchange capacity (CEC) have a 

greater ability to retain added K+ (Sparks and Huang 1985; Sparks 2001). The content 

of exchangeable K+ decreases significantly with increasing depth, while for the total K+ 

there is an opposite trend, but this is not significant. For the unchanged climate 

condition (control plot) at all soil depths, the loss of potassium content was minor which 

confirmed the influence of additional rainwater at the perturbed plot.  

The content of exchangeable Ca2+ is up to 10 times higher than those of exchangeable 

Mg and K+. The Ca2+ and Mg2+ is subject to leaching from the surface to deeper soil 

layers which is in contrast to K+. 

The soil test results suggest that heavy rainfall is a dominant control of nutrient 

distribution in the soil. The calcium content increases with soil depth. The observed 

increase can be attributed to hydrological flow paths, with this cation originating from 

the deep subsurface flow. The exchangeable magnesium and potassium are more 

vulnerable to leaching during higher rainfall than exchangeable calcium. Low leaching 

of calcium can be explained by relatively strong attraction to the surface of clay 

particles. In the K+ and Mg levels as can be seen from Figures above, significant losses 

were found at 10 cm soil depth in wet conditions. The leaching differences between 

cations are probably due to the differing adsorption properties. The results showed that 

potassium was leached more in comparison with calcium and magnesium at all soil 

depths. Other authors have also reported significant potassium leaching in sandy and 

organic soils and in high-rainfall areas (Malavolta 1985; Havlin et al. 1999; Schroth and 

Sinclair 2003). The loss of exchangeable cations was in the order of K > Mg > Ca.  

The decreasing exchangeable K+ content with the soil depth show the same trend as the 

organic carbon content (see Figure 8-10), which is in the line with the findings of 
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Barthold et al. (2007). These authors suggest that exchangeable K+ is preferentially 

bound to humic substances where is the high content of exchangeable K+ in topsoil than 

in the subsoil. The reason for this is that plant obtains the bulk of their K+ from the 

topsoil and that in soils with limited cation content the recycling processes mainly take 

place in topsoil. In contrast to exchangeable K+, the exchangeable Ca2+ content shows 

opposite trend. 

The total content of nutrient distribution in the soil may reflect the lithology and its 

mineral composition. Considering this, it is not possible to put any explanation of the 

mineral composition of the soil that is made of Ca2+, Mg2+ and K+ without mineral soil 

analysis. After soil leaching, total cation contents had been reduced at all depths at 

perturbed plot. The order of total cation loss was Ca > Mg > K, which coincided with 

the experimental results in Chapter 7 of the soil solution collected at the 10 and 18 cm 

soil depth. 

Extractable NO3
- and SO4

-2 

Figure 8-8 illustrates details of soil nitrate conditions before and after rainfall treatment. 

The NO3
- content was not detected at 0-10 cm soil depth in dry conditions. After 

enhanced rainfall treatment, the nitrate content increased at 0-10 cm soil depth. The 

extractable NO3
- content between ‘dry’ and ‘wet’ conditions at the perturbed plot after 

enhanced rainfall treatment showed an increased trend at a depth of 0-10 cm, decreasing 

trend at the depth of 10-20 cm of 65%, and at the depth of 20-30 cm of 46%. The NO3
-
 

content of the control plot increased 50% in 0-10 cm, while leaching in nitrate content 

was 11% and 20% at depths 20 and 30 cm.  

 

Figure 8-8 The average content in soil of extractable NO3
- 
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Significant decrease in NO3
-were found at 20 and 30 cm soil depth under enhanced 

rainfall treatment. The lower or zero NO3
- content was found at the surface soil depth 

(0-10 cm) for both conditions, whereas after the wet conditions increase of nitrate 

content from the surface downward was detected. The reason can be related to the 

infiltration of rain that moved nitrate to deeper soil layers, leaching by the subsurface 

flow or in the case of saturated soil, the rise of the soil water table. In the spring, the 

content of nitrate is usually low because of  unfavourable conditions of nitrifies, while 

later the content of nitrate increases and then decreases in the autumn (Dzamic and 

Stevanovic 2007). This suggests that during the autumn when the intensity of rain 

increases, which is in our case during the wet conditions, the content of nitrate 

decreases. It is possible that nitrates during dry periods can move upward and may 

accumulate at the soil surface (Neale 2006). However, if nitrates once have been 

leached below the root zone, upward movement of large quantities is unlikely, and 

according to that they are lost to the crop (Hauck 1984). This suggests the absence of 

the nitrate content in the upper soil layer (0-10 cm) observed in this study (perturbed 

plot).  

In Figure 8-9, soil samples at the perturbed plot after enhanced rainfall treatment 

showed the loss of sulphate content of 69% at the depth of 0-10 cm. For the same 

conditions, loss of sulphate content was 70% at the depth of 10-20 cm and 73% at the 

depth of 20-30 cm. At the control plot, loss of sulphate was 12% in 0-10 cm depth, 9% 

in 10-20 cm, and at a depth of 20-30 cm 11%.  

 

Figure 8-9 The average content in soil of extractable  SO4
-2 
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-2  may appear in the soil solution due to mineralization of organic matter and the use 
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explained by soil solution that carries nutrients down the soil profile where anions are 

leached with the equivalent amounts of cations (Schroth and Sinclair 2003).  The loss of 

elements was in order of SO4
-2 > NO3

-. Supporting the evidence of the loss of nutrients 

(Ca2+, Mg2+, K+, NO3
-, SO4

2-) was the decrease in percentage of ion contents at mineral 

soil depths after enhanced rainfall treatment. Among all ions, SO4
-2 showed the highest 

loss and sensitivity to wetness.  Ruszkowska et al. (1988) reported leaching losses of 

calcium, magnesium and sulphur in the lysimeter experiment of (in kg/ha per year): 49-

82 kg Ca2+, 15-25 Mg2+, and 21-37 kg SO4
-2  from the loamy soil. 

The understanding of soil nutrients in relation to farm budgets is useful for describing 

the nutrient flow within the farming system with minimal leakage of nutrients into the 

environment.  

8.4 Soil carbon and nitrate content  

Soil organic carbon (SOC) is an important constituent of soil organic matter (SOM), 

which indicates soil quality and productivity, and its capacity to affect plant growth as 

both a source of energy and a trigger for nutrient availability through mineralization 

(Walpola and Arunakumara 2011). The major factors that have been found to control 

soil organic carbon beside vegetation, elevation, terrain position and soil texture is 

climate. The relationship between climatic factors and the carbon and nitrogen contents 

of soils are well documented in the past. The content of carbon and nitrogen contents of 

soils increase with increasing rainfall (Sievers and Holtz 1923; Russell and McRuer 

1927; Dean 1938).  The relationship between climate and soil organic carbon (SOC) 

have been studied at large and small scales with scale-dependent outcomes 

(Woldeselassie 2009). At a global scale, it was concluded that SOC generally increases 

with increasing precipitation and with decreasing temperature for any specific level of 

precipitation (Post et al. 1982; Jobbagỳ and Jackson 2000; Woldeselassie 2009). In 

contrast, the same conclusion was drawn at the small scale at the grassland of the US 

Central Plains (Burke et al. 1989).  

The increasing of carbon in soils (i.e. organic matter) is associated with many important 

productions and environmental benefits including (Liddicoat et al. 2010):  

• Improved soil structure,  

• Increased soil fertility, 

• Increased water holding capacity,   
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• Increased infiltration capacity,  

• Increased water use efficiency - due to reduced moisture loss from runoff, 

evaporation  or deep drainage below the root zone, 

• Increased soil biological health resulting in higher nutrient cycling and 

availability. 

The chemical, physical and biological aspects of soil quality are controlled by the soil 

organic matter (SOM) as a fundamental component of the soil (Chan 2001). The role of 

soil organic matter in ecosystems has been summarised by various authors (Volk and 

Loeppert 1982; Charman and Roper 1991; Fisher 1995; Skjemstad, et al. 1998) and 

include:   

• Source of carbon and energy for soil micro-organisms,  

• Cation exchange capacity which affects the retention (prevents the leaching of 

essential plant nutrients), release and availability of plant nutrients, 

• Major source of and a temporary sink for plant nutrients (such as N, P and S),   

• Improvement in soil buffering capacity, against acidification and toxicities, 

• Formation and maintenance of desirable soil structure,  

• Improvement of water percolation into and retention by the soil,  

• Absorption of solar radiation which influences soil temperatures,  

• Ability to stimulate plant growth. 

In this study, the total organic carbon (TOC) content at the perturbed plot after 

enhanced rainfall treatment showed an increased trend of 38% at a depth of 0-10 cm,  

22% at the depth of 10-20 cm and 50% at the depth of 20-30 cm (Figure 8-10). In 0 to 

10 cm soil layer, the TOC content was significantly larger for wet conditions at the 

perturbed plot than those at control plot.  

Figure 8-10 illustrates the loss in calcium carbonate (CaCO3) content with increase 

depth. Overall, CaCO3 contents in the soil depth of 0-10 cm, 10-20 cm and 20-30 cm 

were significantly decreased by 30%, 34% and 20% compared to the initial amount 

before enhanced rainfall treatment. The loss in calcium carbonate at the control plot was 

not significant. 
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Figure 8-10 Changes in total organic carbon (TOC), carbonate (CaCO3), total nitrate (TN), and soil 
organic matter (SOM) content in mineral soil affected by soil depth and  enhanced rainfall  
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The total N content increased after wetting at 0-10 cm depth by 28%, at 10-20 cm depth 

by 48% and at 20-30 cm depth by 59% compared to dry conditions as can be seen in 

Figure 8-10. Total N tended to decrease significantly with depth. This can be due to its 

direct relationship with carbon and the microbial biomass.  

In the plot with perturbed climate conditions, the soil organic matter increased at the 0-

10 cm depth by 38% due to enhanced rainfall (Figure 8-10), at 10-20 cm depth 21%, 

and 49% in 20-30 cm. At the plot with natural climate conditions, SOM was recognized 

by 14%, 6% at soil depths 0-10 cm, 10-20 cm and decreased by 7% in 20-30 cm.   

The amount of soil organic carbon (SOC) that is stored in a soil can be calculated using 

the equation of Broos and Baldock (2008):  

SOC (t/ha) = depth (cm) x bulk density (g/cm3) x organic carbon content (%) 

The amount of soil organic carbon (SOC) that is stored in the soil at 10 cm soil depth 

was estimated to be 23 t/ha in the dry condition and 32 t/ha in the wet conditions.  For 

example, Dalal and Mayer (1986) reported that the organic carbon increase in virgin 

soils of 48 kg C/ha for each mm of rainfall compared to 29 kgC/ha per mm of rainfall in 

cultivated soils. 

During dry conditions, decreases were observed in the TOC, TN and SOM content in 

soil compared to wet conditions. In this study, there was not a direct measurement of 

temperature effects on C and N in soil, which has a direct effect on the rate of 

decomposition of organic materials and SOC (Jenkinson 1991). Dalal and Chan (2001) 

reported that the decomposition of SOC is more rapid in tropical regions than in more 

temperate regions. 

Previous studies have reported that decreases in soil bulk density increase organic 

carbon and nitrogen levels (Schjonning et al. 1994; Mapa and Gunasena 1995; Haynes 

and Naidu 1998; Halvorson et al. 1999; Rawls et al. 2003). This is consistent with the 

findings of this study. 

Total organic carbon decreased significantly with increasing soil depth before and after 

treatment, as expected. The TOC contents increased after enhanced rainfall where 

rainfall has a driving role on SOC content due to its effect on plant productivity. For the 

plot under perturbed climate conditions, surface mineral soil (0-10 cm) had a 

significantly higher value of TOC content than subsurface soil at  10-20 cm and          

20-30 cm depth. Dry climate conditions as observed in this study can lead to reduce 
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microbial biomass activity and nutrient mineralization due to a shortage of energy 

sources and poor soil SOC (Tanhan et al. 2007). The soil sample with greater TOC will 

be much better for the growth of plant as well as biomass increase (Anyasi 2012). Dean 

(1938) showed in his study the relationship of climatic conditions to the carbon and 

nitrogen contents of Hawaiian soils similar values of total carbon (from 1.32 to 12.82%) 

and nitrogen (from 0.13 to 0.78%) to values of this study. 

Generally, the amount of CaCO3 in the soil was observed to decrease after enhanced 

rainfall. The results indicate that with increased rainfall, CaCO3 is significantly leached 

from the soil. The application of additional rainwater on the perturbed plot had 

significant effects on the distribution of CaCO3. This treatment decreased CaCO3 at all 

depths. This result may explain by the fact that runoff increased erosion and transport of 

the soil particles. There is also a possible explanation that after wetting treatment, 

CaCO3 dissolves allowing Ca2+ and HCO3
- ions to move downwards with the 

percolating soil water. Calcium carbonate precipitates where the percolation  stopped or 

calcium carbonate can also percolate if the concentration in solution becomes high 

enough. CaCO3 precipitation is not evenly distributed over the soil. 

After rainfall treatment, the wet conditions showed a marked influence on soil TOC, 

CaCO3, TN and SOM content. These changes can affect the soil C budget, which can be  

attributed to climate variability. The wet conditions significantly increased TOC, TN 

and SOM content in the soil to 30 cm depth. The results from this study are largely in 

agreement with the conclusion of Burke et al. (1989) that rainfall increased C, N and 

SOM. For example, in semi-arid grassland, Niu et al. (2009) reported that water 

addition on the soil C could significantly stimulate gross ecosystem productivity. 

However, Lü et al. (2011) reported that water addition of a 2-year treatment failed to 

affect the soil C storage because the amount of precipitation is not as important as 

precipitation distribution as a suggestion by Chen et al. (2009). 

Distribution of C and N in the soil profile at the plot scale showed higher content in the 

surface layer. These findings suggest that in general TN increases with more moisture. 

As expected, the SOM decreased with depth in both plots. The higher SOM content in 

the upper soil layers was probably the result of considerable plant residues. There was a 

significant difference between the two climate conditions. In the case of enhanced 

rainfall, SOM increased at all depths. In general, therefore, accumulation of organic 

matter in the soil is greater with more rainfall.  
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From the results, the soil productivity can be changed by excessive nutrient runoff and 

intensified rainfall inputs. The findings of C, N and SOM give a better understanding of 

soil productivity especially for farming management and agrosystems in the future 

according to climate variability. For the successful implementation of any management 

practices, research is needed to quantify the impacts of vegetation. Much of this 

research is still to be carried out. 

8.5 Thermal analyses of soil 

One of the objectives of this study was to determine changes in the soil quality by 

assessing the soil C depletion sequence in terms of thermal properties. The TG-QMS-

DSC method was necessary to use to support the aims of this study. The soils were 

isolated from a sequence of 0 to 10 cm depth from the grassland mineral soil, and 

analysed using thermogravimetry (TG) and differential scanning calorimetry (DSC) 

before and after enhanced rainfall treatment. To determine the properties of the major 

components that are released as gas (12 (C), 18 (H20) and 44 (CO2 and N2O)), a 

quadrupole mass spectrometer (QMS) was also used. 

A considerable amount of literature has been published on thermal analyses. These 

studies indicate the application of thermal analyses techniques by means of determining 

and examines changes in soil organic matter quality, for instance in clay-associated 

organic matter isolated from soils in an organic C depletion sequence (Plante et al. 

2004), quality under different land use (Lopez-Capel et al. 2005), on tropical soil with 

forest vegetation from unburnt and burnt cane plantations (Critter and Airoldi 2006), 

also on coal, charcoal, peat and lignite. However, no research has been found that 

applied TG-DSC-QMS techniques on the soil in terms of natural and progressive 

climate condition.  

The TG-DSC experiment involves continuous and simultaneous measurement of weight 

loss (TG) and energy change (DSC) during heating (Lopez-Capel et al. 2005). 

Thermogravimetry (TG) contributes to understanding the heating effects on soil 

components such as loss of water, organic matter combustion and clay dehydroxylation, 

in order to compare the relative abundance of more and less labile carbon sources 

(Siewert 2004; Miyazawa et al. 2000; Gaál et al. 1994). DSC measures the heat into and 

out of (endothermic and exothermic) a sample relative to a standard reference as a 

function of temperature. Initial weight loss is dominated by the exothermic 
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decomposition of labile aliphatic and carboxyl groups (approx. 300oC)  whist 

exothermic loss of more refractory aromatic C occurs at higher temperatures (approx. 

450oC) (Flaig et al. 1975; Schulten and Leinweber 1999; Czimczik et al. 2002). Brown 

(1988) points out that the weight loss that occurs in these two parts of the heating cycle 

can be used to compare the relative abundance of more and less labile C, the position of 

DSC peaks reflecting structure and chemical composition. 

Figure 8-11 compares the results before and after enhanced rainfall obtained from 

thermal analysis. TG-DSC traces of samples before treatment show thermograms 

typical of those previously reported in the literature (Lopez-Capel et al. 2005). 

Thermogravimetric mass losses were observed at 200, 350, 500, 800 and 900oC. The 

TG traces clearly showed single stage decomposition. The total weight losses on the 

perturbed plot were before wetting 9.32% and after wetting 11.74%, respectively. The 

maximum energy occurred between 200 and 500oC. The weight loss curves (TG) in 

Figure 8-11 show that the decomposition of soil organic matter (SOM) increases at 

270oC and is completed before 600oC. Release of CO2-C occurs at temperatures above 

500oC (Gaál et al. 1994). 

 

Figure 8-11 TGS curves of mineral soil sample of 10 cm depth on the perturbed plot before and after 
enhanced rainfall 

According to Lopez-Capel et al. (2005, 2006), for soil organic matter, weight losses 

between 250 - 350oC correspond to labile material, 250 - 500oC to recalcitrant, and 500 

- 650oC to refractory (organic matter) OM. Following this approach, mineral soil was 
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subdivided into a thermally labile C pool called OM1 (250 – 350), thermally recalcitrant 

C pool called OM2 (350 – 500) and a refractory C pool called OM3 (500 – 800), also 

similar to the approach used by Dell’Abate et al. (2003). The thermogravimetric data for 

the soil before and after enhanced rainfall are presented in Table 8-1. 

Table 8-1 Thermogravimetry (TG) mass losses in the exothermic region attributed to organic matter 
oxidation 

Perturbed plot Mass losses (%) 
Enhanced rainfall OM1 OM2 OM3 Total OM (20-900oC) 

Before 3.64 3.25 1.01 9.32 
After 5.09 4.35 1.17 11.72 

Table 8-2 stability indices (Exo1 – Exo 3) are calculated from the relative percentage of 

the weight loss according to terminology proposed by Dell’Abate et al. (2000) 

corresponding to the first exothermic (aliphatic C and carbohydrates predominantly 

cellulose), second exotherm (aromatic C, predominantly lignin), and third exotherm 

(aromatic C, refrectory), normalised with respect to the weight loss between 200 and 

800oC (Exototal). The values of thermal stability indices indicate the relative abundance 

of organic materials with different thermal stabilities. Cumulative losses (TG) are scaled 

to 100%. Arrows show the “threshold” temperature chosen for SOM fractionation. 

Table 8-2 TG parameters summarising: relative weight losses (%) of temperature intervals Exo 1 (200-
350oC), Exo 2 (350-500 oC) and Exo 3 (500-800 oC), total weight loss for the temperature interval 200-
800oC, composition of TOC by LECO analyser, TOC 1, TOC 2 and TOC 3 mass weight according to 
temperature intervals 

Treatment Exo 1 
(%) 

Exo 2 
(%) 

Exo 3 
(%) 

Exotot 
(%) 

TOC 
(wt%) 

TOC 1 
(wt%) 

TOC 2 
(wt%) 

TOC 3 
(wt%) Exo 1/(Exo2+Exo3) 

Before 46.08 41.14 12.78 7.90 3.28 1.51 1.35 0.42 0.85 
After 47.97 41.00 11.03 10.61 5.32 2.55 2.18 0.59 0.92 

 

The DSC traces were characterized by an endothermic reaction between 70 and 82oC 

due to water release and a range with exothermic reactions between 20 to 900oC  

(Figure 8-12). These exothermic reactions are positive values of DSC that represents 

energy release and oxidation of organic matter. In qualitative terms, the DSC 

thermogram showed for both treatments one sharp exothermic peak at approximately 

350oC consistent with analyses of organic matter and humic substances reported in the 

literature (Lopez-Capel et al. 2005). The maximum DSC values of 0.16 and              

0.21 µVmg-1 before and after wetting were measured at 346oC and 349oC. The gentler 

slope of the TG thermograms in the 200 and 500oC region reflects the distinction 

between the beginning and end of DSC peak. As shown in Figure 8-12, the exothermic 

region of the low-temperature around 300-350oC ascribes to the burning of 

carbohydrate and other aliphatic compounds. 
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Figure 8-12 DSC curves of mineral soil sample of 10 cm depth on the perturbed plot before and after 
enhanced rainfall. Arrows show the “threshold” temperature chosen for SOM fractionation 

Figure 8-13 shows the results for each mass to charge (m/z) relationship between soil 

before and after perturbed climate condition (with enhanced rainfall). The temperature 

ranges at which the emission profiles lie run from 200oC up to 700oC for m/z=12, 44 

with a maximum around 350oC. The main gas species detected in this mineral soil were 

m/z12 at 351oC and 321-376oC, then m/z18 at 60-75 and 300oC, and m/z44 at 346oC.  

Emission of carbon (m/z 12) begins at some point between 40 and 200oC and increases 

up to 351oC, where it tends to decrease. There was a significant difference between the 

two climate conditions and loss of C of 67%. 

During thermal decomposition of water (m/z18), two peaks may be observed. First peak 

at 60-75oC is observed that may correspond to the evaporation of the water contained in 

soil. Second one at 300oC is probably due to the breaking down of the groups that 

contain oxygen, mainly hydroxide (OH) groups, giving rise to the formation of 

pyrolysis water over a wide range of temperatures. The maximum emission of carbon 

dioxide (mz44) is observed at 341oC and 361oC. This may indicate carbon 

decomposition, which can occur at higher temperatures (peak at 500oC).  
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Figure 8-13 Thermogram of ion currents m/z12, m/z18 and m/z44 

Thermal techniques such as TG, DSC and QMS are rapid and easy way to determine 

changes in soil and detect an organic C depletion within the soil. Thermal analyses of 

the soil data show significant difference in the mineral soil under different climate 

conditions. Intensified rainfall from the perturbed plot resulted in significant carbon 

depletion due to enhanced storm events attributed to increased rainfall intensity and 

duration. Thermogravimetric mass loss ratios were greater in the thermally labile (250-

300°C) exothermic region than in the more thermally resistant, recalcitrant (350-500°C) 

exothermic region. Soil organic matter (SOM) decomposition can be represented by 
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three carbon pools that includes a labile (which includes cellulose (Lopez-Capel et al. 

2005), a recalcitrant (including lignin (Leinweber et al. 1992)) and a refractory pool 

(including chars (Kaloustian et al. 2001)) as well as aromatic carbon (Lopez-Capel et al. 

2006). Similarly, the DSC peaks were higher in the exothermic region of 350-500°C. 

According to this, the higher ratios indicate that the more thermally resistant organic 

matter has been retained and the more thermally labile organic matter is lost in the 

soil. Strong evidence of carbon loss was found when coupled quadrupole mass 

spectrometers was used. The enhanced rainfall treatment of the mineral soil samples 

removed approximately 67% of the initial organic carbon. 

It can be concluded that the thermal analysis results indicates preferential depletion of 

labile carbon affected by the enhanced rainfall treatment as compared to unchanged 

climate conditions. The coupled TG-DSC-QMS system allows the proportions of OM 

pools to be quantified, and demonstrates C changes in soils.  

8.6 Summary 

Distributions of nutrients in hillslope soils of Sykeside Farm were analysed during dry 

and wet conditions. Soils from the 0 to 10, 10 to 20 and 20 to 30 cm depth ranges were 

analysed for: exchangeable and total Ca2+, Mg2+ and K+; extractable NO3
- and SO4

-2; 

TOC, CaCO3, TN and SOM; and  the soil C depletion sequence in terms of thermal 

properties. The results showed: (1) that the nutrients were most concentrated in the 

topsoil (upper 10 cm), (2) leaching rates of nutrients were in the following order:          

K > Mg > Ca, (3) SO4
-2 in the soil is more vulnerable to leaching during high rainfall 

than NO3
-
, (4) the content of K+, TOC, CaCO3, TN and SOM decreases with increasing 

soil depth, (5) intensified rainfall conditions resulted in significant carbon depletion 

based on thermal analysis.    
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Chapter 9.   The role of hillslope hydrology in the process of nutrient 
mobilisation 

9.1 Introduction 

In this chapter, conceptual models of runoff generation and changes in DOC and NO3
-

concentrations under dry and wet scenarios on hillslopes are developed based on the 

findings described in Chapter 7. Parameters including soil moisture, surface slope, soil 

clay content, vegetation cover and observed flow have been used to develop 

relationships and understanding of the runoff generation processes at the hillslope scale.  

A number of runoff generation concepts have evolved, some already mentioned in the 

literature review (Chapter 2) that include the partial area concept of Betson (1964), the 

variable source area concept of Hewlett and Hibbert (1967),  Dunne and Black (1970), 

and the rapid subsurface storm flow concept of Dunne and Leopold (1978), and 

McDonnell (1990). These concepts differ from each other in terms of source locations 

of runoff and dominant hydrological flow pathways, which determinant nutrient 

mobilization and transport in the landscape (Dahlke et al. 2012).  

The purpose of this Chapter is to present: i) a conceptual model of runoff generation at 

the hillslope scale, ii) changes in the DOC and the NO3
- concentrations under dry and 

wet scenarios and iii) to establish a method to upscale nitrate loads.  

9.2 The conceptual runoff models in unsaturated zone 

Different approaches have been developed to describe runoff generation on hillslopes as 

described in Section 2.1. Conceptual runoff models were made under three soil moisture 

regimes according to soil depths. For all three models, it is assumed that during the wet 

season soil water and rain create recharge at the top of the hill along a 9 m length that 

contributes to the deep soil water storage and flow. The subsurface flow is separated 

into shallow and deep flow processes.  

Model 1: The model is based on analysis of the data for the soil moisture for the dry 

period. Looking at Table 6-7 in Chapter 6 for the period 11-30 September 2009, the 

highest mean soil moisture content at the top of hillslope at 30 cm depth was 39%.  For 

the 20 cm soil horizon, saturation at the bottom of the hillslope was 23%. Absence of 

the soil saturation at the top in 10 cm up to a depth of 20 cm indicates vertical drainage 
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through the profile probably by flow in micropores or through the soil matrix. Model 1 

is presented in Figure 9-1. Based on these results, the shallow and deep lateral 

subsurface flows are proposed that occurs at 20 and 30 cm of the soil depth. Many 

research studies have proposed the conceptual understanding of the subsurface flow 

(SSF) formation (McDonnell 1990, Sidle et al. 2000; Kienzler and Naef 2007) as well 

as addressing the question of where the subsurface flow occurs (Jones et al. 1997; 

Scherrer and Naef 2003). During the low or moderate rainfall, water infiltrates vertically 

through the soil where it accumulates and moves laterally downslope at or very close to 

the soil surface, which produces the shallow subsurface storm flow. Since the early 

work of Hursh (1936, 1944), shallow subsurface flow processes have perplexed 

hydrologists and to some extent are still ignored as a contribution to the storm event 

response (Michener and Lajtha 2008). Model 1 shows that the subsurface flow is the 

dominant pathway that can be applied for the dry climate conditions.  

Model 2: Turning now to the experimental evidence on the soil moisture for the period  

6-31 January 2010 (Table 6-7), the highest mean value of water content can be seen at 

the top of the slope at 20 and 30 cm soil depth. However, at the bottom of the hillslope 

there was at the soil depth of 20 and 10 cm.   

The soil physical properties (Chapter 8) and field observations (Figure 4-46) show the 

presence of clay (loam) soils located at a depth of approximately 20 cm and below, 

indicating that rainwater enters a layer of restricted permeability. When the water 

content exceeds the storage capacity of the soil it flows laterally downslope and 

discharges from the hillslope.  

Clay soils are   layered sediments, usually irregularly structured, and could form clay 

lenses. It is assumed that this presence of clay soils formed its own soil water table, i.e. 

a perched soil water table. To assess the evidence behind this assumption, information 

collected from the field observation during a runoff experiment at the hillslope is used. 

In the trench, tipping buckets for collecting flow water samples were used to monitor 

flows during intensive rainfall, and the perched soil water table was identified. The 

trench was around 30 cm deep, the clay soil layer was visible, and was one-third full of 

water making a so called “water pool”. It is well known that clay soils in contact with 

water absorb and increase volume through swelling.  According to this, it is possible 

that the clay soil layer acts as a buffer zone, stores the water and reduces percolation 

into the groundwater. 
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Figure 9-1 Conceptual model of flow processes at the hillslope within the unsaturated zone  
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Based on this evidence, therefore, it seems that that shallow and deep lateral subsurface 

flows are the dominant pathways, and when saturation increases and the perched soil 

water table moves upward this produces firstly deep subsurface then shallow subsurface 

storm  flows (Figure 9-1). This aspect of the perched soil water table is shown by the 

work of Wilson and Luxmoore (1988) and Wilson et al. (1990, 1991) in a small (0.5 ha) 

upper hillslope sub-catchment of Walker Branch. They reported that a perched water 

table developed in the upper soil profile in response to moderate-large storms, 

contribute most of the subsurface storm flow via macropores. When the soil reaches full 

saturation, excess rainwater does not infiltrate, which then produces the overland flow 

or a saturation excess overland flow. In summary, the dominant flow during storm 

events is subsurface and overland and/or saturated excess overland flows. 

Attempts are made to relate the findings from hydrograph separation in Section 5.3.1 of 

the storm event (E3) to soil moisture contents (Chapter 6, Table 6-7) and to this 

conceptual model. The findings from hydrograph separation are consistent with this 

runoff process model.  

The conceptual Model 2 can be successfully applied for explanation of flow paths 

within the unsaturated zone during storm events or intensive rainfall.  

Model 3: The soil wetness was recorded at the top of the hillslope at 20 and 30 cm 

depth.  At the bottom of the hillslope, the mean soil water content was recorded at       

10 cm and 20 cm soil depth, while at 30 cm depth the soil was not saturated based on 

moisture evidence, Table 6-7 (February 2010). As was previously pointed out in Model 

2, the presence of the clay layer indicates lateral subsurface flow, which is also the case 

here. There are three flow mechanisms identified: deep and shallow subsurface flow and 

deep storm subsurface flow (Figure 9-1).  

The following question was addressed: what is the primary application for this 

model? It is assumed that this model can fit for low rainfall intensity with short 

duration. The previous two models are for dry periods and for storm events and this 

model could fit between them as a transition model from dry to wet conditions.  

The major limitation in the conceptual models is that the soil water table measurements 

are not available. Testing models on situations outside those on which they were 

developed can provide some significant insights into the limitations of model operation.  
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According to the soil moisture and chemical composition, a new approach is proposed 

to select the flow process within mineral soil type under grassland at the hillslope scale. 

The evidence for this is based on the hillslope water quality (Section 7.2). The five 

runoff processes are defined:  

1) saturation excess overland flow occurs when the soil is saturated. This flow has 

the chemical composition of these dominant ions:  

HCO3 > Cl > X 

where X can be one of this ions Ca2+, Mg2+ or K+, depending on the mineral 

composition of soils.  

2) shallow-subsurface storm flow (SSSF) occurs  at or very close to the soil 

surface (at most 3 cm soil depth) with flow laterally through the soil. This flow 

has the chemical composition of  these dominant ions:  

Na-Cl and Na-Cl-HCO3 > Cl > Na 

3) deep-subsurface storm flow (DSSF) occurs approximately at 3 to 15 cm soil 

depth. Once the soil is saturated at that depth, flow occurs. This flow has the 

chemical composition of these dominant ions: 

HCO3 > Cl > X 

where X can be one of this ions Ca2+, Mg2+ or K+, depending on the  mineral 

composition of soils. 

4) shallow-subsurface flow (SSF) occurs at soil depth of approximately 15 to      

25 cm. This is the dominant flow during the dry period but also occurs during 

rainfall periods. This runoff has the chemical composition of these dominant 

ions: 

HCO3 > Cl > X 

where X can be one of this ions Ca2+, Mg2+ or K+, depending on the  mineral 

composition of soils. 

5) deep-subsurface flow (DSF) occurs on an up-slope part of the hillslope at soil 

depth of approximately 25 to 35 cm or  deeper. This is the dominant flow during 

dry periods but also occurs during rainfall periods. This flow has the chemical 

composition of these dominant ions: 
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HCO3 > X > Y 

where X and Y can be one of  ions, depend on the  mineral composition of  soils and 

geology. 

Mulholland et al. (1990) investigated the storm hydrogeochemical response at the whole 

catchment scale. Their results suggest that water chemistry differed considerably 

between flow paths, and shallow (subsurface) and deep (groundwater) flow paths were 

important in generating storm stream flow. 

Upscaling these runoff models of hydrological behaviour from the hillslope to the 

Hollow sub-catchment scale, it is possible to explain under which type of runoff models 

nutrients reach the stream. 

9.3 Conceptual model of labile nutrients (DOC and NO3) flushing  

Understanding the flushing mechanism during storm events is important for model 

development for the prediction of land use change and climate change effects on surface 

water quality. During storm events or snowmelt, many studies have reported a 

significant increase in dissolved organic carbon (DOC) and nitrate (NO3-N) that is 

attributed to nutrient flushing (Creed et al. 1996; Boyer et al. 1997; McHale et al. 2002; 

McGlynn and McDonnell 2003; Vanderbilt et al. 2003).  

The results shown in previous chapters have been used to develop conceptual models 

for the export of the labile nutrients (DOC and NO3
-) from the hillslope to the stream. 

The models assume that water and solutes are mixed into upper subsurface soil 

horizons.  

To be able to understand the mechanism of nutrient flushing from the hillslope, it is first 

necessary to explain the source of nutrients (DOC and NO3
-) within the unsaturated 

zone and then to link these sources with the main flow processes. In the soil solution 

nitrate, may originate from organic matter or ammonium. A detailed explanation was 

given in Chapter 2.  

Figure 9-2 gives insight into the DOC concentration in rainwater and flows. The mean 

DOC concentration was lower in the rainwater and higher in the soil water.  
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Figure 9-2 DOC concentration (mg/l) of various compartments at the hillslope. A: perturbed plot, C: 
control plot; 10: soil solution at 10 cm depth; 18:  soil solution at 18 cm soil depth 

During low rainfall or dry periods, the greatest DOC concentrations are suggested to be 

in the shallow mineral layer at approximately 10 cm depth as shown in Figure 9-3a. The 

total organic carbon content (Chapter 8) was the highest in the upper soil layer.  The 

evidence for this is based on the soil solution collected and analysed from the field that 

presented the higher DOC concentration at 10 cm depth (32 mg/l), medium at 18 cm 

depth (22 mg/l) and low in the overland flow (13 mg/l). The shallow-subsurface flow 

with deep-subsurface storm flows may facilitate the flushing of the high DOC 

concentration to the catchment. 

Figure 9-3b presents the conceptual model of the DOC flushing during periods of high 

precipitation intensity of storm events. It suggests that the high DOC concentrations in 

deep soil layers are due to downward movement of the DOC. The evidence for this is 

based on the soil solution collected and analysed from the field that presented higher 

DOC concentration at 18 cm depth (27 mg/l) and low in the overland flow (8 mg/l). 

According to this, the deep-subsurface flow is attributed to flushing of the high DOC 

concentration with the shallow-subsurface flow of medium concentration. 
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Figure 9-3 Conceptual model of DOC export during a) low and b) heavy rain intensity  

During low rainfall, the greatest nutrient (NO3
-) concentrations are likely to be in the 

deeper mineral layer as shown in Figure 9-4a. As stated previously in Chapter 7, 

infiltration of low rainwater intensity can transport the NO3
- to deeper soil layers. The 

evidence for this is based on the soil solution collected and analysed from the field that 

presented the higher NO3
- concentration at 18 cm depth (1.9 mg/l), low at 10 cm depth 

(0.3 mg/l) and in the overland flow (0.3 mg/l). According to this, the deep-subsurface 

flow is responsible for flushing of high nitrate concentration to the catchment scale. 

Heathwaite (1995) indicates that subsurface flow is important for soluble elements such 

as nitrate for transport to the stream. 

 

Figure 9-4 Conceptual model of NO3
- export during a) low and b) heavy rain intensity  

high 

low 

concentration 

a)

10

20

30

cm

~5

subsurface 
horizon

surface 
horizon

10

20

30

cm

~5

subsurface 
horizon

surface 
horizon

Rain - low intensity

Rain - heavy intensity

medium

high 
concentration of

DOCmedium

DOC
DOC

DOC

b)

high 

low 

concentration 

high concentration of 
NO  3

a)

10

20

30

cm

~5

subsurface 
horizon

surface 
horizon

10

20

30

cm

~5

subsurface 
horizon

surface 
horizon

Rain - low intensity

Rain - heavy intensity

NO3

NO3

NO3

medium

b)



 

216 
 

Under the heavy precipitation and saturation of deeper soil horizons, nitrate may be lost 

by denitrification, which takes place in an anaerobic condition, below the perched soil 

water table. In previous sub-sections, the existence of the clay soil layer and the soil 

perched water table were identified. It is assumed that the soil perched water table may 

have risen into more permeable shallow subsurface and surface horizons. As the soil 

perched water table rises, concentrated soil solution is displaced from the deep to the 

upper soil layer (Figure 9-4b). The soil solution collected and analysed from the field 

presented the low NO3
- concentration at 18 cm depth (1.0 mg/l) and higher in the 

overland flow (2.1 mg/l). The overland and shallow-subsurface storm flows contribute 

to high nitrate concentration flushing with the deep-subsurface flow of medium 

concentration from the hillslope to streams.   

Van Verseveld et al. (2007) reported in their study that nutrient flushing mechanisms 

have been explained in the literature by: (1) a rising water table that intersects high 

nutrient concentrations in the upper soil layer, (2) vertical transport of nutrients, by 

preferential or matrix flow through the (deeper less bio-active) soil to the soil–bedrock 

interface and then laterally downslope (Creed et al. 1996; Hill et al. 1999; Buttle et al. 

2001), and (3) vertical transport of nutrients and then laterally within the soil profile 

(Gaskin et al. 1989). As mentioned before, the data of the water table and hydraulic 

gradient were not available in this study. Therefore, a rising of water table is assumed 

and conclusions were based on collected the DOC and the NO3
- concentration in the 

overland flow and the soil water solution.  

The overall findings resulted in the conceptual model of a mechanistic assessment of 

labile nutrients (DOC and NO3
-) transport within the mineral soil from the hillslope to 

the stream of the sub-catchment. This study clearly demonstrated that high 

concentrations of nutrients under low precipitation intensity and duration have a strong 

response to the subsurface water quality.  

The model presented in this study is consistent with statement of Heathwaite (1995) 

who suggests that there are two key driving factors at the hillslope in the mobilization 

and subsequent transport of nutrients to the stream. These two main pathways of 

nutrient transport are overland or surface flow and subsurface or throughflow. Further, 

this author reports that nutrients once mobilized, may undergo further physical, 

chemical or biological transformations along the hillslope hydrological pathway before 

they enter the stream.  
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Thus, these models give an overview of hillslope nutrient behaviour during different 

climate conditions, which is important for implementation of catchment nutrient 

management plans.  It also results in an improved understanding of the sources, flow 

path and transport mechanisms responsible for the export of the DOC and the NO3
- from 

the hillslope to catchment scale. 

9.4 Upscaling nitrate from hillslope to sub-catchment and catchment scale 

The study covers three nested spatial scales: plot scale (2 m2) within the hillslope       

(45 m2), the sub-catchment (0.09 km2) and the Blind Beck catchment (9.2 km2) located 

in the Upper Eden basin, Cumbria, UK. Sivapalan and Kalma (1995) identified the scale 

issue as a major unresolved problem in hydrological sciences and it pervades all aspects 

of catchment hydrology and biogeochemistry (Blöschl 2001). Theoretical investigations 

into catchment scaling have outpaced field observations and empirical understanding 

(McGlynn et al. 2003). These authors state that the reason for this is often difficult and  

expensive measurements, and empiricists often do not know where to sample or indeed 

how many measurements are necessary to characterize a given catchment (regardless of 

scale). According to this, field investigations have been conducted most often at the 

headwater catchment scale and then extrapolated to larger scales (McGlynn et al. 2003). 

The nitrate was one of the labile nutrients chosen to represent nutrient conditions across 

scales. Figure 9-5 reports a box plot (75%, max, mean, min, 25%) distribution of nitrate 

data for all scales: plots within hillslope, Hollow sub-catchment and Blind Beck 

catchment.   It clearly shows the differences between scales. The average NO3
-
 

concentration at the catchment was higher than at the sub-catchment and the hillslope. 

Overall, the average NO3
- concentrations were low at all sampling sites and did not 

exceed the water quality limits (> 5 – 10 mg/l) according to the Nitrate Concentration 

Guide (EA 2006).  

In Figure 9-6, the nitrate concentration on the two smaller scales showed remarkably 

similar behaviour, with a high concentration at high flow rates, while at the catchment 

there is an opposite trend. A maximum concentration of 14.6 mg/l N was recorded in 

March 2010 at the Blind Beck catchment that has intensive farming (Figure 9-6). The 

relatively high nitrate concentration observed at this scale as mentioned before    

(Chapter 5) suggests the influence of a small stream that flows past Little Musgrave 

Farm into Blind Beck 10 m upstream, where Barber (2008) recorded a mean nitrate 
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concentration of 16.61 mg/l. This author suggests that the highest concentration is 

coming from the stream that flows from the south-east past Low Hall Farm, which had a 

maximum recorded concentration of 19.55 mg/l, with N being leached from the land 

surrounding this stream.  

 

Figure 9-5 Box plots showing the distribution of average nitrate  at three scales: the hillslope, the Hollow 
sub-catchment and the Blind Beck catchment. The ends of the boxes represent the 25th and 75th 
percentiles, the bars indicate the lowest and highest values not considered outliers, and the horizontal 
line shows the median 

These results show that dilution during high flow plays an important role in reducing 

nitrate concentration to 3 mg/l. This is in agreement with Doležal and Kvítek (2004) 

who observed a similar effect, and also the study of Floate (2002) who carried out a 

nutrient pollution assessment of the River Eden and its tributaries at 3 different 

catchment scales; micro-catchment (1 km2), mini catchment (10 km2) and meso-

catchment (100 km2). The study of Floate found dilution effects at the meso-catchment 

scale, while the micro-catchment sites were the nitrate ‘hotspots’ and were responsible 

for the high levels of nitrogen measured at all scales with a maximum concentration of 

9.5 mg/l N recorded after a nitrate leaching event in the micro-catchment. Work by 

Soler (2003) followed a multi-scale approach with samples of nitrate taken in three sub-

catchments at micro-, mini, and meso-scales, and found that the results from the 

multiscale sampling showed that nutrient concentrations were below EC Drinking 

Water limits for nitrates at all of the sites, and the highest nitrate levels were found in 

the meso-catchment sites. Mannix (2005) carried out a runoff experiment at Sykeside 

Farm to attempt to quantify the nitrate concentration that occurs in overland flow before 

and after land spreading of manure. The results showed high nitrate concentrations at 

the near surface with peaks in the soil profiles that likely represent flushing downwards 

of peaks in nitrogen content in the near subsurface which have built up by the end of 

each summer. This study also involved groundwater sampling from the Great Musgrave 
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site and surface water sampling at upland and lowland tributaries in the Upper Eden. 

The lowest nitrate concentrations were found in surface water of the uplands with mid-

range values of 0.66 to 1.21 mg/l measured in the meso- and larger micro-scale 

catchments. In comparison to Soler (2003), nitrate concentrations showed an increase in 

surface water from nitrate hotspots at micro-catchment sites.  

 

Figure 9-6 Propagation of the discharge and nitrate concentration signal from: a) Blind Beck catchment 
(9.22 km2), b) Hollow sub-catchment (0.09 km2) and c) the plot within hillslope (2 m2) 
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During the flood event period in November 2009, the maximum flow recorded at the 

catchment scale (9.22 km2) was 0.8 m3/s with a minimum of 3 mg/l nitrate           

(Figure 9-6a). At the sub-catchment scale (0.09 km2), the maximum flow recorded was 

0.0108 m3/s with a maximum of 3.5 mg/l nitrate (Figure 9-6b). At the plot scale (2 m2), 

the maximum flow was 1.14x10-7 m3/s with a maximum of 6.8 mg/l nitrate           

(Figure 9-6c).  

It was possible to estimate nitrate loads across different scales in order to evaluate and 

predict the eventual effects of agricultural and/or farming on stream water quality. The 

nitrate load was obtained by multiplying the average concentration by the average flow: 

Chemical load = Concentration x Flow 

where: Chemical load = grams per second (g/s) or kilograms per hour (kg/h); Concentration = grams per 
litre (g/l); Flow rate = cubic metres per second (m3/s) (in general consisting of only one sample)  

The nitrate loads during the extreme November event varied from 2.4 g/s to 0.038 g/s to 

7.74x10-7 g/s from the Blind Beck catchment to the Hollow sub-catchment to the 

hillslope plot scale. The nitrate concentrations showed an increase from the catchment 

to sub-catchment to plot scales while the nitrate load showed the opposite trend.  

The nitrate loads per hectare were calculated by dividing the chemical load by the area. 

Of the catchment, sub-catchment and plot scales, greatest nitrate loads per ha were 

identified at the sub-catchment scale of 0.0042 g/s/ha. High nitrate loading per ha was 

evident at plot scale of 0.0039 g/s/ha. The nitrate loads per ha at the catchment scale 

were 0.0026 g/s/ha. 

Using the results from this study, nitrate loads can be scaled up to give a prediction of 

the nitrate load. The ability to use information about nitrate load from discrete areas to 

predict what conditions may be like in other locations can be very useful (Rudolph et al. 

2010). The nitrate load estimated at the plot, sub-catchment and catchment scales can be 

used to estimate the nitrate load at the sub-catchment and catchment scale through 

upscaling approach. The simplest approach is to multiply the nitrate load of the plot 

scale by the area of the sub-catchment divided by the area of the plot scale. This gives 

the predicted nitrate load of the sub-catchment of 0.035 g/s. If the nitrate load of the plot 

scale is multiplied by the area of the catchment divided by the area of the plot scale, it 

gives the predicted nitrate load of the catchment as 3.6 g/s. The upscaled nitrate load 

from the sub-catchment to the catchment scale is 3.9 g/s. The upscaled nitrate load from 

the sub-catchment and plot scale to the catchment scale (3.9 g/s and 3.6 g/s) is almost 
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1.6 times higher than the estimated nitrate load for the catchment (2.4 g/s). This 

suggests a reduction in nitrate concentration by dilution. A major limitation in the 

prediction of the nitrate load at the catchment scale does not take into account many 

factors important at the catchment scale. Such factors include stream dilution effects 

during high flow and/or intensive farming drainage. The good agreement between the 

plot and the sub-catchment scale suggests that the plot scale conditions at the hillslope 

were more similar to the Hollow sub-catchment conditions (land use, soils, landscape, 

and nitrate management) than conditions at the catchment scale. This is consistent with 

Mulla et al. (2003) who suggest that the upscaling techniques do not seem to depend on 

the magnitude of upscaling as on the relative similarity between the smaller unit that is 

upscaled and the larger unit. It is obvious that types of measurements taken at a point   

(1 m2) differ from the measurement made at the hillslope scale (1 ha), in small 

catchment of 1 km2 or in large catchment of 1000 km2 (Heathwaite 2001). Therefore, it 

should be noted that the upscaling effort required assumptions about the nitrate 

concentration reduction at the catchment scale. Further steps may include development 

of a correction factor. Because of a lack of data in terms of the other peaks of the event, 

the correction factor cannot be developed in this study. However, there is a good area 

scaling from the plot to sub-catchment but not from the plot and sub-catchment to the 

catchment.  

Guo et al. (2002) recognize many potential sources of error and uncertainty during 

estimation of nutrient loads. Quinn (2002) stated that scaling-up techniques have been 

noted internationally as an important area of further research, and Heathwaite (2003) 

stated that scaling-up is associated with considerable uncertainty. Since data on 

concentrations is not continuous, it likely shows considerable error. The uncertain 

parameter is the nitrate concentration on days when no sample was taken. There are no 

other peaks of the event of similar magnitude to compare this nitrate load with. 

9.5 Linking hillslope water chemistry with stream chemistry 

The water chemistry results presented in this section are based on data collected from 

July 2009 to August 2010. Surface and subsurface waters were monitored and sampled 

on the plots of the hillslope to test runoff generation and stream chemical composition. 

There was a significant difference between the perturbed and control plots in the 

overland flow water quality. Linking the flow water quality results from the hillslope to 

the sub-catchment and catchment scales suggest a different chemical signature      
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(Figure 9-7). This difference has been studied by researchers, where linking hillslope 

runoff with stream hydrological conditions (Peters et al. 1995) and chemistry           

(Hill 1990) showed that the riparian zone may reset hillslope flow paths and chemical 

signatures (Robson et al. 1992). Comparing the cations, the dominant Ca2+ ion suggests 

that the bedrock geology is probably the main source on water chemistry in the streams. 

Stream water with the highest overall mean Ca2+ and Mg2+ concentrations (93 mg/l and 

27 mg/l) is Blind Beck. The Ca2+ concentrations showed an increase from the plot to 

sub-catchment and to catchment scales that reflecting the limestone geology. Burns, et 

al. (1998) reported that differences in the degree of chemical weathering in soil minerals 

may also be related to flushing frequency. 

 

Figure 9-7 Scale link water quality data 

The results show that there is a significant relationship between the hillslope flow and 

sub-catchment and/or catchment flow during enhanced rainfall conditions (perturbed 

plot). However, there is no significant relationship between the overland flow of the 

hillslope (control plot) and sub-catchment and/or catchment for the normal rainfall 

conditions.   Chemical analyses of the overland flow water samples at plots suggest 

storm discharge into streams as a mixture of “old” and “new” water that has been 

transported from the hillslope to the sub-catchment prior to the intensified rainfall event.  

This suggests that the sub-catchment and catchment may be supplied largely with “old” 

water. Ockenden (2010) investigated stream water chemistry of Blind Beck using a 

hydrograph separation based on two end-members: bicarbonate concentration and 

specific conductivity. For the period September to December 2008, the hydrograph 

separation for Blind Beck stream indicated 46% ± 8% of “old” water. In this study, the 
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chemistry of the subsurface flow at the hillslope is more similar to the chemistry of the 

overland flow of the perturbed plot within the hillslope than the catchment scale. There 

have been relatively few studies of chemical evolution on hillslopes because of the 

complexity in deriving chemical models of subsurface flow at the hillslope scale 

(Bishop et al. 1990; Wilson et al. 1991; Burns et al. 1998). By contrast, most studies and 

models of water chemistry have been focused at the catchment scale (Cosby et al. 1985; 

Hooper et al. 1990; Wolford et al. 1996). The chemical signature of soil water in the 

hillslope differs from the chemistry of riparian water where all hillslope water must pass 

through the riparian zone before reaching the stream (Katsuyama and Ohte 2005).  

To be able to fully represent the linkages between the hillslope and the catchment water 

chemistry, this study needs to consider groundwater and riparian zone chemistry with 

their contribution to the stream. As a consequence of this limitation, the linkages 

described in this thesis are not crucial.  

9.6 Summary  

This chapter described the development of a conceptual model of runoff and nutrient 

flushing from the hillslope to the catchment scale. The model accounts for both the 

overland (specifically saturation-excess overland and lateral subsurface mechanisms of 

runoff production. The effect of soil moisture on subsurface flows and the development 

of areas of saturated soils are accounted for.  

Nutrient flushing at the hillslope scale was assessed for low and intense rainfall 

conditions, and it is concluded that different flushing mechanisms occurred during these 

two conditions. The following flushing mechanisms are proposed: (1) during low 

rainfall or dry periods, the shallow-subsurface flow with deep-subsurface storm flows 

may facilitate the flushing of high concentration of the DOC, (2) during heavy rainfall, 

the deep-subsurface flow is attributed to flushing of the high DOC concentration,        

(3) during low rainfall, the deep-subsurface flow is responsible for flushing of high 

nitrate concentration to the catchment, and (4) during heavy rainfall, the overland and 

shallow-subsurface storm flows are contributed to high nitrate concentration flushing to 

the catchment. 

In this chapter, the best results for nitrate loads upscaling to the sub-catchment scale 

(0.09 km2) were obtained from the plot scale (2 m2) within the hillslope scale (45 m2), 

rather than from the plot and sub-catchment scale to the catchment scale (9.22 km2). 
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This is because the plot scale conditions at the hillslope were more similar to the 

Hollow sub-catchment conditions (land use, soils, landscape, nitrate management) than 

conditions at the catchment scale. Upscaling predictions of the nitrate load were 

reasonably good. The potential errors need to be considered during monitoring of data 

and uncertainty of the nitrate concentration on days when no sample was taken.  

Analysis of ions showed that the concentrations of most ions were highest in the Blind 

Beck stream. Compared to other sites, Blind Beck had a high Ca2+ and Mg2+ 

concentration that indicates more effect on rock weathering in the stream water. The 

sub-catchment and catchment may be supplied largely with “old” water. One of the 

main limitations highlighted within this chapter concerns lack of groundwater and 

riparian zone chemistry data.  

As with all the work undertaken in this thesis, there are alternative approaches, methods 

and/or modelling that may be suited to the work carried out here. Therefore, Chapter 9 

also presents an exploration of the work presented in this study by critically considering 

what has been achieved as well as developing ideas for future work. 
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Chapter 10.   Application of SHETRAN for simulation of hydrological 
and nitrate processes at catchment, sub-catchment and 

hillslope scales 

10.1 Introduction 

In this chapter, a distributed physically based hydrological model SHETRAN is used to 

simulate runoff generation, soil moisture and nitrate storage and transport in the Blind 

Beck catchment and the Hollow sub-catchment. The modelling approach will help to 

improve understanding of the hydrological components of the water balance at both the 

catchment and hillslope scale, and how they behave over different scales.  

This chapter begins with the introduction of the model and the input data, including the 

maps that were created to run the model. Parameter calibration and validation of the 

model is presented, and the model results of runoff, soil moisture and nitrate are 

analysed and discussed. 

10.2 The chosen model 

French and Deelstra (2003) gave a list of the following four factors as important to 

consider when choosing a suitable model: 

• Time needed to set up a specific model, data availability 

• Cost of commercial software, technical support 

• Need for knowledge (input data, programming knowledge) 

• Model availability/development. 

The following questions are addressed when considering the SHETRAN model for 

research purposes: 

• Is the model available (time and money)? 

• Who else uses the SHETRAN model and their experience? 

• Is it possible to have the technical support in time? 

• Is the SHETRAN model under continuous revision? 

• What are the model inputs data requirements, model parameters, model structure 

and output results? 

• What would be the time and space resolution of input data? 
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As mentioned in the fourth Chapter 4, Section 4.9, the SHETRAN model has been 

developed at the Newcastle University and considering the selection factors and 

questions listed above, it is selected for the simulation of hydrological processes at the 

catchment and hillslope scale. In this study, SHETRAN is used as the hydrological 

model. The detailed information about the model can be found in the corresponding 

user’s manuals and websites (http://research.ncl.ac.uk/shetran).  

In this study the SHETRAN model was applied to the Blind Beck catchment            

(9.22 km2), Hollow sub-catchment (0.09 km2) and hillslope (45 m2) scales. A manual 

calibration and validation procedure was performed in order to account for hydrological 

differences across scale. 

10.3 Model setup 

This section discussed the application of the SHETRAN model for the Blind Beck 

catchment, the Hollow sub- catchment and the hillslope. 

A Geographical Information System (GIS) tool was applied in this study to shape the 

geomorphological features of the catchment. ArcGIS 10.1 software was used in this 

research to prepare, analyse and represent data for particular the catchment and the   

sub-catchment. 

10.3.1 Model setup for Blind Beck catchment 

A Digital Elevation Model (DEM) was used to define the physical characteristics of the 

catchment area and to derive different additional datasets that collectively describe the 

drainage pattern of the catchment.  

Delineation of the Upper Eden basin was completed with ArcGIS. The use of readily 

available 50 m resolution DEM of the Upper Eden basin constructed by Walsh (2004) 

allows the procedure to be easily replicated. The catchment grid delineation process 

relies on the hydrology tool in the main menu of the ArcGIS Spatial Analysis tool to 

define watersheds and stream networks shown in Figure 10-1. Preparation for running 

the Watershed processing feature includes running the fill, the flow direction, the sink, 

the flow accumulation and the stream functions. The watersheds may now be delineated 

with the Watershed function in ArcGIS. This function utilizes the flow direction surface 

to identify all cells flowing out of the specific outlet. The flow direction raster and the 
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outlet or feature pour point data were used as input to the watershed function in ArcGIS. 

Each cell has an outlet point called a pour point that indicates the location where water 

would flow out of the cell. The created catchment is in a grid format and it is 

represented as a polygon. The Blind Beck catchment area was extracted from the Upper 

Eden basin by use of a mask function. The mask function eliminates the undesired area 

of an image by multiplying the source image by the mask image that contains two 

values 1 for preserved areas and 0 for undesired areas.  

 

Figure 10-1 Illustration of main menu of Arc Spatial Analysis tools and Watershed function 

To change the grid size, the 50 m DEM was aggregated to a grid cells of 100 m x 100 m 

size with the generalization tool in ArcGIS spatial analysis using aggregate function 

(Figure 10-1). The resultant rectangular raster grid (100 m, 100 m) had 56 rows and 48 

columns. Within this raster grid, the catchment area was defined by 922 cells that 

comprise the active model domain for the overland plane. Figure 10-2 shows the map or 

shape of the Blind Beck catchment, which would be the border of the counted values for 

computation, any value of the model variables and parameters outside this domain will 

be ignored. Figure 10-2 shows the tops of the columns in plain view and stream channel 

network lies along the edges of the surface finite difference cells.  
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Figure 10-2 SHETRAN mesh (100 m grid resolution) and elevations for  the Blind Beck catchment.      
The stream channels run along the edge of the grid squares (colours have no significance) 

10.3.2 Model setup for Hollow sub-catchment 

For the Hollow sub-catchment, the TIN as the result of GPS points of the sub-catchment 

(described in the subsection 4.2.2) was converted into raster format, using TIN-to-

Raster-conversation function in 3D Analyst module of ArcGIS, and the resultant GRID 

format of the sub-catchment is shown in Figure 10-3. The GRID resolution was set as 

10 metres in this transformation from vector (TIN) to raster (GRID) format. In a second 

step, the masking function was used to cut out only the Hollow sub-catchment. The 

raster (GRID) presents grid cells of 10 x 10 m cell size of DEM.  

 

Figure 10-3 GRID maps of Hollow sub-catchment. The maps are composed of raster cells of 10 m by    
10 m area 

The resultant rectangular raster grid (10 m, 10 m) had 29 rows and 49 columns, and the 

sub-catchment was defined by 944 cells. A shape of the sub-catchment is shown in   
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Figure 10-4 which would be the border of the counted values for computation, and any 

value outside of the model would be ignored.  

 
Figure 10-4 SHETRAN mesh (10 m grid resolution) and elevations for the Hollow sub-catchment.       
The stream channels run along the edge of the grid squares  (colours have no significance) 

10.3.3 Model setup for hillslope 

The model summarized here was accompanied by an extensive field study. The model 

was “physically based” in the sense that its parameters have a physical meaning and can 

be derived from field measurements or experiments. The conceptual model represents 

the hillslope as a rectangular storage element of length L and depth D. The hillslope was 

assumed to be composed of three parallel soil layers of depth h, of nearly the same 

characteristics. The two-dimensional version of the hillslope model was developed with 

the hillslope sequence taken from the top of the hillslope down to the lower slopes     

(45 m long).  

The location of the cross-section through the Hollow sub-catchment (Figure 10-5) was 

prepared in ArcGIS using DEM to estimate the elevation of the top of the hillslope 

down to lower slope. Once the estimation was performed, the resulting elevation data 

were exported to Excel to produce a cross-section of the hillslope (Figure 10-6).   

 

Figure 10-5 Location of a cross - section through the Hollow sub-catchment 
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The hillslope model was broken into 45 grid cells (Figure 10-6) where each grid had the 

reference of level depth, soil and vegetation parameters.  

 

Figure 10-6 A cross-section X-Y of the hillslope profile. The instrumented runoff plots are highlighted 
with 17 

The thickness of soil layer was fixed at 10 cm which was considered appropriate to 

describe processes such as lateral subsurface flow and nutrient leaching. The bottom 

layer of the calculated soil column was numbered by 1 with layers increases upwards to 

the top layer numbered by 3.   

The lower boundary of the soil profile was governed by the presence of a gravity 

drained bottom boundary condition and a lateral flow boundary at the top. A schematic 

illustration of the soil profile is shown in Figure 10-7. A two-dimensional 

(horizontal/vertical) version of the model was developed. In the unsaturated soil matrix, 

water movement of the hillslope was approached by approximating the Richard's 

equation. 

The characteristic hillslope model represented water movement along a two-

dimensional section of soil down to a stream weir. All parameters were assumed to be 

uniform within each model cell. The lateral subsurface inflow was assumed to enter the 

hill at the top and producing lateral subsurface outflow (Figure 10-7) where downslope 

entering the stream weir. Percolation was assumed as gravity drainage with no physical 

connection with the groundwater. 
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Figure 10-7 Conceptual hydrological hillslope 2D model (length L, hydraulic conductivity k1-3, thickness 
of soil profile D, thickness of layer h1-3) 

10.3.4 SHETRAN input files 

The basic data sets required to develop the SHETRAN model inputs are: topography, 

climatic data (rainfall and potential evapotranspiration), land use and soil. 

Topography  

Blind Beck: The 50 m DEM of the Upper Eden basin after aggregation as described 

above was used to represent the land elevation of the Blind Beck catchment in the 

model. The 100 m DEM and MASK files were prepared as input files in the SHETRAN 

model. 

Hollow: The 10 m raster (GRID) was used to represent the land elevation of the Hollow 

sub-catchment in the model. The raster (GRID) was converted to ASCII format. In the 

processing stage of data input during the implementation of the model runs, the 10 m 

DEM and MASK were prepared as input files.  

Precipitation 

Rainfall time series (mm/hour) are a compulsory input data in the SHETRAN model for 

the entire studied period. Hourly rainfall data were obtained from the Hydrolog data 

base. The selected period for the catchment was from 01/01/2008 to 31/08/2010, and for 

the sub-catchment 01/06/2009 to 17/08/2010.  

Potential evapotranspiration (mm/day) 

Daily potential evapotranspiration (PET) values are required by SHETRAN, which was 

calculated using a weather generator. The weather generator (WG) can generate 
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precipitation and other variable data at a given location on a map interface system. The 

main reason to use the weather generator for PET is due to the problems with the 

CHASM AWS that resulted in no available data. The potential evapotranspiration (PET) 

was calculated using a FAO-modified (Food and Agriculture Organisation of the United 

Nations) version of the Penman method. The Penman-Monteith form of the combination 

equation is:  

𝐸𝑇 =  
∆(𝑅𝑛 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

∆ + 𝛾 �1 + 𝑟𝑠
𝑟𝑎
�

 

where: Rn = the net radiation, G = the soil heat flux, (es - ea) represents the vapour pressure deficit of the 
air, ρa = the mean air density at constant pressure, cp = the specific heat of the air, ∆ = the slope of the 
saturation vapour pressure temperature relationship, γ = the psychrometric constant, and rs and             
ra = the (bulk) surface and aerodynamic resistances. 

More details and the formula used to calculate the PET by the WG can be found in the 

papers by Ekström et al. (2007) and Kilsby et al. (2007).  Kilsby et al. (2007) describe 

the general approach taken in the weather generator that is more sophisticated than 

Neyman-Scott point process model (Cowpertwait 1991) (for current climate condition, 

as future climate condition are ignored) as: 

• Observed data of rainfall and other weather variables used to define current 

climate, 

• Weather generator model based on a regression relation between daily climatic 

variables and daily rainfall: parameterised using current climate data, and then 

applied for future climates, using future factored daily climate variable statistics, 

• Software implementation using a map viewer linked to a spatial database 

allowing the flexible selection of areas for generation of the series. 

Figure 10-8 shows schematic of the operation of the weather generator described by 

Kilsby at al. (2007). 

Daily rainfall data sets from the Sykeside raingauge (sub-catchment) were selected as 

input to the weather generator to generate daily weather variables from which potential 

evaporation was extracted. Using the GIS interface on the weather generator, the local 

catchment was selected which contained the selected raingauge. The advantage of using 

data obtained from the weather generator is that it allows a larger spatial coverage of the 

PET data. 
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Figure 10-8 Schematic of operation of the weather generator including map viewer                        
(source: Kilsby et al. 2007) 

Land use 

A land use map provided spatial distribution of major land cover classes within the 

catchment area and affects the hydrology in the model including dependant parameters 

such as: root density function (RDF) and the actual/potential evapotranspiration 

function as a function of soil water potential.  

The source of the land use map is the Land Cover Map of Great Britain 1990. The area 

of the Blind Beck catchment was extracted from this map using ArcGIS. More detail is 

given in Chapter 4.  

A set of parameters was used in the evapotranspiration component of the SHETRAN 

model: soil moisture tension, canopy resistance, leaf area index, maximum rooting 

depth, AE/PE at field capacity. The values of these parameters were based on literature 

reported values or supplied with the SHETRAN model. 
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Vegetation related parameters 

In the computation of the actual ET and interception used for preliminary runs in this 

study, parameter values for grass were proposed and presented in Table 10-1. For 

preliminary runs of the model, the values of these parameters were assumed not to vary 

during the simulations. 

Table 10-1 Vegetation properties for the hillslope model 

Properties/Vegetation type Grass Reference 
Canopy  storage capacity (mm) 1.5 Rutter (1975) 

Leaf area index 6 supplied with SHETRAN 
Maximum rooting depth (m) 1 supplied with SHETRAN 

AE/PE at field capacity 0.6 Shuttleworth (1993) 

The proposed initial values for the hillslope model were just starting point values, which 

were adjusted during calibration process. 

Soil types 

The soil map of the Upper Eden basin was available from Newcastle University, UK. 

The area of the Blind Beck catchment was extracted from the Upper Eden basin. The 

HOST Classification (The Macaulay Institute 2008) was used to classify soils for the 

sub-catchment. The soils map consists of five soil types (Figure 4-7). For the modelling 

in this study, physical properties of the soil were used: saturated hydraulic conductivity, 

porosity, residual water content, specific storage and the parameters for the van 

Genuchten soil characteristics (α and n). The values of these parameters were based on 

literature reported values or supplied with the SHETRAN model.  The overall soil depth 

modelled was selected to be 2 m but within this, the focus was primarily on the shallow 

soil horizons. 

Hillslope 

The soil type of the different soil layers at the hillslope were based on the soil samples 

collected from the field. The particle size distribution analyses and the soil texture 

triangle were used to classify the texture class. The proposed initial values of the soil 

water content at saturated conditions (porosity) of the different soil layers were 

estimated taking into account ranges of values reported in the literature, Table 10-2 

(Freeze and Cherry 1979). 

Field measurements did not include saturated conductivity. Thus, the initial values of 

saturated hydraulic conductivities for loamy sand and sandy loam textures were based 

on literature reported values (Rawls et al. 1982) for representative physical properties of 
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soils by texture as shown in Table 10-2. The initial value of residual water content 

assumed for loamy sand (0.075) and sandy loam (0.098) is reported by Freeze and 

Cherry (1979). Table 10-2 gives the soil parameters used for the hillslope simulation.  

Table 10-2 The initial soil parameters for unsaturated zone used in the hillslope model simulation 

Properties/Layers Layer 1 Layer 2 Layer 3 Reference 
Soil type Loamy sand Loamy sand Sandy loam lab measured using PSD 

Layer depth (cm) 10 20 30 field measured 
Saturated Water Content 
(porosity) 0.37 0.37 0.412 Freeze and Cherry 

(1979) 

Residual Water Content 0.075 0.075 0.098 supplied with 
SHETRAN 

Saturated Conductivity (m/day) 1.467 1.467 0.622 Rawls et al. 1982 

van Genuchten-α (cm-1) 1.99x10-2 1.99x10-2 1.44x10-2 supplied with 
SHETRAN 

van Genuchten-n 1.793 1.793 1.736 supplied with 
SHETRAN 

10.3.5 Measured discharge  

Stream flow data were collected at one gauging station within the catchment at the 

Blind Beck stream, and at the outlet of the sub-catchment. The stream flow data were 

disaggregated from a 15 minute interval to mean hourly intervals in order to compare 

with simulated hourly flow data from the model. 

Measured flow data at a plot scale were the only available data at the hillslope scale. 

The runoff data were collected for the period from April 2009 to August 2010 at the plot 

scale of the hillslope.  

10.4 Hydrological model calibration and validation 

The effectiveness of hydrological models depends both on how well the model is 

calibrated and how it performs during validation (Ajami et al. 2004; Bekoe 2005). The 

calibrated model should be tested against an independent set of measured data, which is 

commonly used as model validation. The practice in hydrological modelling is to divide 

available time series data into two sets (Klemes 1986). According to that one set is used 

for calibration and the remaining data used for validation. 

Once the model has been set up, the next step is to calibrate the model in order to adjust 

measured discharge with simulated. The parameters were manually optimised by trial-

and-error. The quality of each set of parameters for which the SHETRAN model was 

run was tested using calibration statistics and visual inspection of the hydrographs. 
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Madsen (2000) noted that for a proper evaluation of the calibrated model, it is necessary 

to translate the overall calibration objective into more operational terms. With this 

observation, he noted that the following objectives should be considered for proper 

evolution of the calibration model (Madsen 200:278): 

1) “a good agreement between the average simulation and observed catchment 

runoff volume (i.e. a good water balance) 

2) a good overall agreement of the shape of the hydrograph  

3) a good agreement of the peaks with respect to timing, rate and volume 

4) a good agreement for low flows”. 

SHETRAN was manually calibrated by estimating of various parameters in order to 

understand their relevance and also was gain control over mean annual water balance, as 

suggested by Santhi et al. (2001). 

10.4.1 Calibration parameters 

The SHETRAN model is most sensitive to external inputs of precipitation and potential 

evapotranspiration (PET). However, these weather inputs are typically not adjusted 

during calibration. Within the model, the annual water balance is usually most sensitive. 

Table 10-3 shows the key model parameters used in the calibration process in the 

SHETRAN model to which the simulations are most sensitive. In the Blind Beck 

catchment and Hollow sub-catchment the model was calibrated using 5 parameters to fit 

the model results to the measured values. For parameters that were calibrated are given 

a brief explanation in this section. 

Table 10-3 Calibrated parameters  

Parameter Description 
Kx, Ky, Kz Saturated hydraulic conductivity (m/day) 

θsat Volumetric saturated soil water content (porosity) 
θres Volumetric residual water content 
n van Genuchten n parameter 
α van Genuchten α parameter (cm-1) 

 

Saturated hydraulic conductivity  

This calibration parameter is an essential parameter for understanding soil hydrology. 

The saturated conductivity (Ksat) is the rate of discharge per unit area through a 

saturated medium. It varies considerably in soils from less than 0.01 m/day in clay soils 

to over 100 m/day in gravel alluvium.  
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The hydraulic conductivity (Kx,y,z) in a soil is greatest when the soil is saturated         

(θ= θsat), while as the soil dries out the larger pores spaces no longer hold any water, the 

conductivity is confined to the smaller pore spaces and the hydraulic conductivity 

decreases.  

The saturated conductivity values are defined for each soil and rock in the x, y and z 

directions and given in SHETRAN Data Requirements, Data Processing and Parameter 

Values report. 

Volumetric saturated soil water content (porosity) 

The volumetric saturated soil water content is by definition the moisture content when 

all pore space is occupied by water. However in the real world it is not 100% of the soil 

porosity occupied by water, because there is always air trapped in micro pores. The 

value of the porosity for soil range from 0.3 (30%) in sand soil to 0.6 (60%) in clay soil. 

Coarse-textured soils tend to be less porous than fine-textured soils. 

Volumetric residual water content 

This calibration parameter (degree of saturation or volumetric water content and soil 

suction) defines the residual state condition of soil and represents one location along the 

soil-water characteristic curve. Residual water content can be associated with the 

immobile water present within a dry soil profile in films on particle surfaces in the 

interstices between particles, and within soil pores. 

Van Genuchten parameters 

The van Genuchten parameters α and n (van Genuchten 1980) together with the 

saturated moisture content and the residual moisture content fully describe the soil-

water potential (θ) and the soil-water content (Ψ) relationship of unsaturated soils and 

fractured rock. The van Genuchten’s soil water retention curve model (van Genuchten 

1980) is described by:  

 
𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= [1 + (𝛼|ℎ|)𝑛]−𝑚 

where: θ = the volumetric water content (cm3cm−3), θr = the residual water content (cm3cm−3),                
θs = the saturated water content (cm3cm−3), h = the water pressure (kPa), α = a scaling parameter that is 
inversely proportional to mean pore diameter (cm−1), n = the soil water characteristic curve index (shape 
parameter of the curve), and m = 1 − 1/n. θr and θs can be measured directly. α and n = fitted parameters. 
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10.4.2 Model Performance  

Model performance was evaluated with an hourly discharge time step for the entire 

available record. Two statistical performances were used: the goodness-of-fit measures 

were a coefficient of determination (R2 coefficient), and a Nash-Sutcliffe efficiency 

(NSE) (Nash and Sutcliffe 1970).  

The R2 measure is the coefficient of determination, which describes how much of the 

variance between the two variables is described by a linear fit. 

𝑅2 =
[∑ (𝑄𝑚𝑡 − 𝑄𝑚����)(𝑄𝑜𝑡 − 𝑄𝑜����)𝑇

𝑡=1 ]2

∑ (𝑄𝑚𝑡 − 𝑄𝑚����)2𝑇
𝑡=1 ∑ (𝑄𝑜𝑡 − 𝑄𝑜����)2𝑇

𝑡=1
 

where: Qo = observed discharge, Qm = modelled discharge, Qo
t = observed discharge at time t 

The R2 values can range from 0 to 1. The higher a value of R2, the more useful the 

model is. The value of 1 for the R2 is the best, while the value of 0 means that none of a 

variance measured data is replicated by the model prediction. Henriksen et al. (2003) 

suggests that R2 value > 0.85 is excellent for a hydrological model, values between 0.65 

and 0.85 are very good, 0.50-0.65 are good, 0.20-0.50 are poor and < 0.20 are very poor 

(Whitehead 2005).  

The Nash-Sutcliffe model efficiency coefficient is often used to assess a prediction 

efficiency of the hydrological models (Nash and Sutcliffe 1970). It is given by the 

formula: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑡 − 𝑄𝑚𝑡 )2𝑇
𝑡=1

∑ (𝑄𝑜𝑡 − 𝑄𝑜����)2𝑇
𝑡=1

 

The Nash-Sutcliffe efficiencies range from negative infinity to 1. The value of 1 

(NSE=1) corresponds to a perfect match of modelled discharge to the observed data. 

The closer the model efficiency is to 1, the more satisfactory the model is. The 

simulation results were considered to be good if NSE ≥0.75, and satisfactory if 0.36 ≤ 

NSE ≤ 0.75 (van Liew and Garbrecht 2003). Liden and Harlin (2001) and Andersen et 

al. (2001b) state that a good simulation should have an NSE between 0.5 and 0.95. 

Table 10-4 shows the calendar for the calibration and validation (split-sample test) for 

the catchment and sub-catchment. The model was run for a period of time (warm up) 

until the storage reaches a representative value. The SHETRAN model needs an 

adaptation period to read in the initial data input and to warm up until calculation 

equilibrium. 
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Table 10-4 Calibration and validation calendar  

Site Warm-up Calibration Validation 
Blind Beck 01/01/2008 – 31/08/2008 01/09/2008 – 31/08/2009 01/09/2009 – 31/08/2010 

Hollow 01/05/2008 – 31/05/2009 01/06/2009 – 07/01/2010 08/01/2010 – 17/08/2010 

The hydrologic models were first calibrated by adjusting model parameters until the 

simulated and measured annual water budgets were in good agreement. Then, the 

intensity and arrival time of individual events were calibrated. This process was 

repeated until the simulated results closely represent the measured flow patterns and 

magnitude.  

10.4.3 Calibration and validation for the Blind Beck catchment 

The SHETRAN model was calibrated using the parameters mentioned in the previous 

section. The model was calibrated for the certain period until the parameters were 

consistent with the model input and output and the calculated discharge curve was close 

to the measured flow. Table 10-5 reports calibrated values for the Blind Beck 

catchment. These parameters were adjusted manually to produce the highest possible R2 

and ENS for the calibration year and therefore the same values were used to simulate 

the validation period. 

Table 10-5 Calibrated soil parameter values 

Parameter Description Soil layer Value 

Kx, Ky, Kz Saturated hydraulic conductivity (m/day) 

1 1.1140 
2 0.1830 
3 0.6220 
4 5.0400 
5 0.0050 

θsat Volumetric saturated soil water content (porosity) 

1 0.5440 
2 0.4520 
3 0.4120 
4 0.3520 
5 0.1800 

θres Volumetric residual water content 

1 0.3260 
2 0.0930 
3 0.0980 
4 0.0660 
5 0.0500 

n van Genuchten n parameter 

1 1.4430 
2 1.6810 
3 1.7360 
4 1.8470 
5 2.0000 

α van Genuchten α parameter (cm-1) 

1 0.0046 
2 0.0052 
3 0.0144 
4 0.0120 
5 0.0120 
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The hourly calibrated simulated stream flow of the Blind Beck catchment is shown in 

Figure 10-9. Period from 1/09/2009 to 31/08/2010 have been used to validate the Blind 

Beck catchment. The hourly validated simulated stream flow of the Blind Beck is 

shown, respectively, in Figure 10-10. 

 

Figure 10-9 Hourly calibrated simulated stream flow for the Blind Beck catchment 

The hydrograph of the measured and the simulated flow show that is not possible to 

achieve the best match of the entire shape of hydrographs throughout the simulation 

period. SHETRAN tends to underpredict some of the high flow periods, in particular 

those that happened in autumns and winters 2008 and 2009. For the calibration in 2008 

and 2009 (Figure 10-9) the model overpredicted very high peak flows. Figure 10-10 

shows that the November storm peak flows were underpredicted by SHETRAN during 

the validation period. However, the visual representations show that the model 

overpredicted the higher peak flow during the November storm event. In the 2010 

simulation, hourly stream flow was overpredicted by the model for most of the time 

series. 
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Figure 10-10 Hourly validated simulated stream flow for the Blind Beck catchment 

Table 10-6 presents the summary statistics of the calibration and validation results. The 

performance efficiency (R2) value for simulated versus measured hourly stream flow for 

the catchment was 0.74 for the calibration period and 0.84 for the validation period. 

According to Henriksen et al. (2003) the R2 value falls into the range of very good 

model. The hourly calibration and validation NSE was 0.74 and 0.83 indicating 

satisfactory and good the model results according to NSE criteria of van Liew and 

Garbrecht (2003). 

Table 10-6 Calibrated and validated model performance statistics for hourly stream flow simulations in 
the Blind Beck catchment 

Dataset Statistical test Units Blind Beck Model Performance 

Calibration R2 - 0.74 very good 
NSE - 0.74 satisfactory 

Validation R2 - 0.84 very good 
NSE - 0.83 good 

To provide a measure of model accuracy, average hourly model predicted and observed 

flows were compared through a regression analysis shown in Figure 10-11. The 

regression analysis indicates that the closer the data comes to the 45o angle line, the 

better the two data sets match. The analysis suggests that most of the flows were well 

correlated, with the modelled flows slightly over predicted in the validation period. 
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a)  b)  

Figure 10-11 Regression analysis of simulated and measured average hourly flows (m3/s) during            
a) calibration period  and b) validation period  of the Blind Beck catchment (red line: line of equal value; 
green line: best-fit line) 

Another useful measure is an evaluation of model performance with respect to monthly 

variation. Figure 10-12 illustrates the variation of the measured and simulated flow by 

month. This graph indicates that the model slightly overpredicted stream flow from 

August to October 2009, from December 2009 to April 2010 and underpredicted flow 

during November 2009 month. 

 

Figure 10-12 Monthly variation of the simulated and the measured flow during calibration and 
validation of the Blind Beck catchment 

In addition, to the graphs above, flow duration curves of simulated and measured flows 

were compared to ensure that all flow regime trends were captured in the model. The 

graphs below give an overview of duration curves for calibration and validation periods. 

Figure 10-13 shows that the simulated flow duration curve in the calibration period 

follows the trends of the measured flow duration curve during most flow regimes. 
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Figure 10-13 Flow duration curves at Blind Beck for the calibration period 

The flow duration curves for measured and simulated hourly stream flows closest match 

for the most part for the validation period (Figure 10-14). Only some flows were 

overestimated by the model. From the results, it can be concluded that flow duration 

curves give relatively good results. 

 

Figure 10-14 Flow duration curves at Blind Beck for the validation period 

The observed comparisons of annual runoff volumes in Table 10-7 indicate that the 

simulation accuracy is different in the calibration and validation period. Total runoff for 

the calibration period was undersimulated by volume error of -0.8%.  The total runoff 

for the validation was slightly overestimated by the model (9.8%). The % volume errors 

for the calibration and the validation period are less than ±10%, indicating a very good 

model for annual runoff.  

Table 10-7 Summary of annual simulated and observed runoff volumes (m3) 

Calibration Validation 
Year OBS SIM ERR Year OBS SIM ERR 

1/9/2008-31/8/2009 1611 1598 -0.8 1/9/2009-31/8/2010 1241 1362 9.8 

SIM = Simulated, OBS = Observed, ERR = 100 x (SIM – OBS)/OBS % 
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Visual comparison of simulated and measured stream flow during the calibration and 

validation period shows that the model performed well in terms of the rainfall and flow 

relationships. Overall, a limitation of the simulation is to model the flow peaks 

adequately. Most of estimated peaks are lower than the measured. Except for large 

events, the hourly measured and simulated stream flow during the calibration and 

validation periods match reasonably well (e.g. for the July 2009 (E1) event      

simulation = 1.35 m3/s and measurement = 1.72 m3/s, while for the major flood event in 

November 2009 (E3) simulation =  4.04 m3/s and measured = 3.64 m3/s). It can be 

noticed that for the spring seasons the model gives better results than the winter periods. 

As seen from the presented graphs, the parameters that are found in the calibration 

process fit well for the validation process. The model gives better results for the 

validation than the calibration period according to R2 = 0.84 and Nash–Sutcliffe 

efficiency = 0.83.  

The calibration and validation results show that SHETRAN is reasonably able to predict 

the total discharge within the Blind Beck catchment, with all percentage errors falling 

below 10%. The model performance statistics show a range in model accuracy but the 

majority of the statistics reflect a good to very good overall performance. The measured 

and simulated annual mass balances agree well for 2008-2009 but differ for 2009-2010; 

Table 10-15 shows the overall balance.  

10.4.3.1 Storm event simulation for Blind Beck stream  

The final step in model calibration and validation is to examine the representation of 

individual storm hydrographs in both time periods. For the period 2009-2010 three 

storm events were incorporated within the SHETRAN model run (November 2009, 

January 2010 and March 2010).  The graphs of the measured and simulated flow for the 

storm events (E3, E4 and E5) are presented in Figure 10-15.  

The simulated and measured peak flows, time to peak flows, runoff volumes and 

percentage differences (errors) of the respective measured and simulated values are 

given in Table 10-8. 
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Figure 10-15 Measured and simulated flow of Blind Beck stream flow during storm events: E3, E4      
and E5 
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Table 10-8 Comparisons of measured and simulated SHETRAN hourly continuously peak flows, time to 
peaks and runoff volumes of three storm events of Blind Beck stream flow  

Period 
SHETRAN hourly continuous simulation  

Parameter (unit) Simulated Measured Percentage error (%) 

E3: 
November 16 – 21, 2009 

Peak flow (m3/s) 4.04 3.64 11 
Time to peak (h) 8 8 0 

Runoff volune (mm) 57.4 65.5 -12 

E4: 
January 15 -17, 2010 

Peak flow (m3/s) 1.17 1.12 4 
Time to peak (h) 5 6 -17 

Runoff volune (mm) 11.3 9.7 16 

E5: 
March 29 – April 1, 2010 

Peak flow (m3/s) 1.99 1.88 6 
Time to peak (h) 27 27 0 

Runoff volune (mm) 14.0 19.5 -28 

As can be seen from Table above, negative runoff volume errors indicate 

underpredictions. In the case of time to peaks errors, the negative one indicating arrival 

of simulated peaks generally too early. The two storm event hydrographs, E3 and E4 

predicted the time to peak more accurately. As can be seen from Figure 10-15, 

hydrograph, peak flow and runoff volume of the main flood event in November 2009 

(E3) could be simulated in the Blind Beck catchment by the SHETRAN model. From 

Figure it is clear that simulated flood hydrographs do not differ much from the 

measured one. 

The model efficiencies for each of the five storm hydrographs were calculated and are 

summarized in Table 10-9. 

Table 10-9 Storm event model performance statistics for hourly stream flow simulations of the Blind Beck 
catchment 

Statistical test Units E3 E4 E5 Model performance 
R2 - 0.80 0.96 0.87 very good to excellent 

NSE - 0.72 0.89 0.76 satisfactory to good 

 

E3: 16 – 21 November 2009  

The November storm event was the largest flood event to be recorded by the 

instrumentation during the 2009 year. Figure 10-15 presents the first case of the multi-

day event. The model matched the time of peak flow and peak flow prediction correctly. 

The simulated hydrograph had a rising limb in reasonable agreement but with the 

simulated curve falling off less steeply which probably does not represent the slow 

release of groundwater to the stream after the storm event. The corresponding NSE was 

0.72 and R2 was 0.80 (Table 10-9). Thus, the simulated results for the November event 

are considered satisfactory to very good.  
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E4: 15 - 17 January 2010  

The storm event model predicted the peak flow and runoff volume for the simulation 

period. A long tail of the simulated hydrography was most likely due to release 

temporary groundwater storage. This model performed the best according to the 

statistical results as indicated by the R2 value of 0.96 and NSE value of 0.89.  

E5: 29 March - 1 April 2010  

Another pair of closely spaced rainfall events occurred during the period   29 March -   

1 April 2009. On a rising limb, the measured and simulated hydrograph showed a 

pronounced “knee”. The time flow peaks did match the measured flow. There was a 

good fit between the simulated and measured values. The descending hydrograph limb 

of measured data shows a step. The simulated results for this event are excellent to good 

(R2 = 0.87 and NSE = 0.76). 

The models were simulated with an NSE of > 0.5. Overall, the best modelling result is 

for the January event (E4). Predicted flow at hourly time intervals successfully captured 

the timing of peak flow and was well simulated for storm events. E3 and E5 storm 

events show that the model is satisfied according to the Nash-Sutcliffe Efficiency (NSE) 

criteria. According to the R2 value, the hydrological model is good. Model prediction of 

storm event peaks is generally very good.  

10.4.4 Calibration and validation for the Hollow sub-catchment 

The model comparisons are performed for both the calibration and validation periods. 

The specific comparisons of simulated and measured values include: 

• Hourly time series of flow (m3/s), 

• Annual runoff volumes (m3/s), 

• Storm event periods, e.g. hourly values (m3/s). 

Parameter adjustments focused primarily on saturated hydraulic conductivity, porosity, 

residual water content and van Genuchten parameter changes, as a function of soils to 

obtain reasonable overall water balances. Table 10-10 reports calibrated values for the 

Hollow sub-catchment. The soil type of different soil layers at the Hollow sub-

catchment were estimated as: clay, silt loam and sandy loam. Following model 

calibration, model validation was performed to test the calibrated parameters for a 

second time period, without further model adjustment. 
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Table 10-10 Parameters used in model calibration for the three soil types used to characterize the      
sub-catchment 

Parameter Description Soil class Value 

Kx, Ky, Kz Saturated hydraulic conductivity (m/day) 
clay 0.0140 

silt loam 0.452 
sandy loam 0.6220 

θsat Volumetric saturated soil water content (porosity) 
clay 0.4440 

silt loam 0.4520 
sandy loam 0.4120 

θres Volumetric residual water content 
clay 0.3260 

silt loam 0.0630 
sandy loam 0.0980 

n van Genuchten n parameter 
clay 1.443 

silt loam 1.681 
sandy loam 1.7360 

α van Genuchten α parameter (cm-1) 
clay 0.0458 

silt loam 0.0515 
sandy loam 0.0144 

Visual observations (Figure 10-16) for the hourly simulation were that the shape of the 

hydrograph produced from simulating sub-catchment was good visually in terms of 

patterns of peaks, the onset of the rainy season and dry seasons, but that the timing of 

these peaks and rainy seasons were not coinciding with the measured stream flow. Most 

of simulated peaks are lower than the measured. 

 

Figure 10-16 Hourly calibrated and validation simulated stream flow for the Hollow sub-catchment 

The hourly calibrated and validated simulations of stream flow from the Hollow       

sub-catchment are shown in Figure 10-16 and the performance statistics are displayed in   

Table 10-11. The period from 8/01/2010 to 17/08/2010 has been used to validate the 

Hollow sub-catchment. For the flow validation, good results were achieved for the dry 

and wet periods. The hourly hydrograph show one large flood event, 15-19 November 
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2009 in the calibration period and two events 15-17 January 2010 and 30 March –         

1 April 2010 in the validation period. 

Table 10-11 Calibrated and validated model performance statistics for hourly stream flow simulations in 
the Hollow sub-catchment 

Dataset Statistical test Units Hollow Model performance 

Calibration R2 - 0.83 very good 
NSE - 0.78 good 

Validation R2 - 0.73 very good 
NSE - 0.70 satisfactory 

For the Hollow sub-catchment, hourly measured and simulated stream flows events 

match quite well during the calibration resulting in hourly NSE of 0.78. The hourly 

validation NSE was 0.70. The hourly calibration and validation R2 were 0.83 and 0.73. 

These show that the calibrated model satisfied the Nash-Sutcliffe Efficiently (NSE) 

criteria ≥ 0.5. The R2 value falls into the range of very good model.  

To provide a measure of model accuracy, average hourly the model simulated and 

measured flows were compared through a regression analysis for the calibration and 

validation period and shown in Figure 10-17. The analysis suggests that the flows were 

overpredicted in the calibration and underpredicted in the validation period.  

a)  b)  

Figure 10-17 Regression analysis of simulated and measured average hourly flows (m3/s) during a) 
calibration period and b) validation period  of the Hollow sub-catchment (red line: line of equal value; 
green line: best-fit line) 

Figure 10-18 illustrates the monthly variation of the measured and simulated flow. The 

model slightly underpredicted stream flow from August to September, overpredicted in 

October then underpredicted from November 2009 to February 2010, and from March 

to July overpredicted flow. 
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Figure 10-18 Monthly variation of the simulated and measured flow during calibration and validation of 
the Hollow sub-catchment  

The observed comparisons of annual runoff volumes in Table 10-12 indicate that the 

simulation accuracy is different in the calibration and validation period. Total runoff for 

the calibration period was underestimated by -34%.  The total runoff for the validation 

was overestimated by the model (27%). The % volume errors for the calibration and 

validation period (Table 10-12) are higher than ±10%. This confirms that the model is a 

good to a fair for the calibration and validation mean annual flow. This larger difference 

was probably caused by uncertainties in the rainfall data, no flow over the weir during 

dry months and short period of data. 

Table 10-12 Summary of annual simulated and observed and observed runoff volumes (m3) 

Calibration Validation 
Year OBS SIM ERR Year OBS SIM ERR 

1/6/2009-7/1/2010 13.8 9.2 -34 8/1/2010-17/8/2010 3.0 3.8 27 

SIM = Simulated, OBS = Observed, ERR = 100 x (SIM – OBS)/OBS % 

The calibration and validation results show that SHETRAN is reasonably able to predict 

total runoff within the Hollow sub-catchment. Despite the time series of available flow 

data being relatively short by hydrological standards, the Hollow model was both 

calibrated and validated with an NSE of > 0.5. The extreme event of November 2009 

was also well represented. The simulated values for the extreme event is 0.092 m3/s 

while the measured value was 0.080 m3/s. However, the simulated and measured annual 

mass balances are not in good agreement for the calibration and validation (errors in 

annual runoff of -34% and 27%); Table 10-17 shows the overall balance.    
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10.4.4.1 Storm event simulation for Hollow stream  

For the period 2009-2010 three storm events were incorporated within the SHETRAN 

model run (November 2009, January 2010 and March 2010) and presented in             

Figure 10-19. In order to receive an overall “feel” for how well the SHETRAN model 

performed on a sub-catchment, the simulated hydrographs were visually compared with 

the measured hydrographs.  

 

 

 

Figure 10-19 Measured and simulated flow in the Hollow catchment during storm events (E3, E4        
and E5) 
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The simulated and measured peak flows, time to peak flows, runoff volumes and 

percentage difference (errors) of the respective measured and simulated values are given 

in Table 10-13. 

Table 10-13 Comparisons of measured and simulated SHETRAN hourly continuously peak flows, time to 
peaks and runoff volumes of three storm events of the Hollow sub-catchment flow 

Period SHETRAN hourly continuous simulation  
Parameter (unit) Simulated Measured Percentage error (%) 

E3: 
November 16 – 24, 2009 

Peak flow (m3/s) 0.092 0.086 7 
Time to peak (h) 25 25 0 

Runoff volume (mm) 68.40 105.51 -35 

E4: 
January 15 - 17, 2010 

Peak flow (m3/s) 0.055 0.061 -10 
Time to peak (h) 8 9 -11 

Runoff volume (mm) 11.62 17.43 -33 

E5: 
March 30 – 1 April, 2010 

Peak flow (m3/s) 0.052 0.038 37 
Time to peak (h) 24 25 -4 

Runoff volume (mm) 21.29 15.99 33 

In the case of time to peaks errors, all events except E3 showed negative errors 

indicating advanced simulated peak arrivals. Amongst the three hydrographs, peak flow 

and runoff volume of the main flood event in November 2009 (E3) were the most 

accurate. 

The model efficiencies for each of the three storm hydrographs were calculated are 

summarized in Table 10-14. 

Table 10-14 Storm event  model performance statistics for hourly stream flow simulations in the Hollow 
sub-catchment 

Statistical test Units E3 E4 E5 Model performance 
R2 - 0.82 0.90 0.81 very good to excellent 

NSE - 0.52 0.76 0.56 satisfactory to good 

E3: 15 – 19 November 2009 flood event  

The 15 – 19 November 2009 were multi-day storm events that result in flood with 0.086 

m3s-1 peak flow. Both the measured and simulated hydrographs start to rise at the same 

time and have “knee” in the rising limb. The SHETRAN model did a good job of 

simulating the measured hydrograph. The performance efficiency (R2) value for the 

simulated versus measured storm event (E3) flow for the sub-catchment was 0.82 and 

NSE 0.52. This confirms that the model is very good to satisfactory.  

E4: 15 January 2010 event  

The simulated and measured hydrographs only had one sharp peak. The simulated 

hydrograph was shifted so that it forecasted a slightly earlier peak flow rate than was 

measured. Both of hydrographs had a quick rising and falling limb. The measured peak 

was considerably higher than the simulated one. The SHETRAN model did a good job 
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of simulating the measured hydrograph, however it showed a time shift to the left of 

approximately one hour. 

E5: 30 March 2010 event  

Although the simulated peak flow was higher than the measured value, there is 

generally good agreement between the measured and simulated hydrographs. The 

simulated hydrograph falls off more slowly than the measured hydrograph. The 

measured and simulated hydrographs have similar shapes. The SHETRAN model did a 

good job of simulating the measured hydrograph shape, however it did not perform as 

well around the hydrograph peak. 

Overall, the % difference in storm peaks reflecting a good simulation of storm peaks. 

The Nash-Sutcliffe Efficiency (NSE) criteria ≥ 0.5 is a good for the E4 storm event. For 

the same event, the R2 value falls into the range of excellent for a hydrological model 

according to Henriksen et al. (2003). For the storm events E3 and E5 according to R2 

value it falls into the range of very good model, while according to the Nash-Sutcliffe 

Efficiency criteria to satisfactory model. According to statistical analysis of storm 

events, the best result is achieved for the storm event in January 2010 (E4). 

10.4.5 Interpretation of results  

It can be concluded that the calibration and validation results show that SHETRAN is 

reasonably able to predict total runoff within the Blind Beck catchment and the Hollow 

sub-catchment. The Nash and Sutcliffe efficiencies (NSE) for all two calibration sites 

are also comparable with other UK SHETRAN models. Wilkinson (2009) achieved best 

NSE values of 0.81 for Great Musgrave (222 km2), 0.82 for Temple Sowerby (616 km2) 

and 0.93 Smardale (36 km2) that include four different storm events.  

In comparison to studies carried out in other countries, the NSE values attained in the 

UK are relatively similar. Bathurst et al. (2011) obtained an ENS value of 0.85 for the 

Pejibaye catchment in Costa Rica (131 km2), 0.92 for the Panamá and 0.81 for the Lise 

catchment in Ecuador (10 km2), 0.84 for the forested condition and 0.91 for the logged 

condition for the La Reina catchment in Chile (0.35 km2), and 0.83 (outlet), 0.78 

(Martial sub-catchment) and 0.76 (Godoy sub-catchment) in Argentina (12.9 km2). 

It is important to consider the range of uncertainty revealed in the model calibration and 

validation relative to specific uses of the model. There is uncertainty regarding the 
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model’s ability to accurately predict high flow peaks. The uncertainty within the 

SHETRAN model is reflected in the November flood event by underpredict the flood 

peak for both the catchment and the sub-catchment. However, this uncertainty is not 

always constant throughout the model simulation for the catchment. For the sub-

catchment, there is a constant uncertainty of over- and underpredicted storm peak flows 

and also an advanced peak arrival in the storm peak. According to this, an assumption is 

made that the model uncertainties are constant and it is likely produced by the rainfall 

within the model.  

There is uncertainty within the sub-catchments by underestimating runoff during the 

autumn and the winter months. This can result in less runoff being generated in the 

model. This can be seen in the model output for the calibration period for the sub-

catchment. However, the validation period generates more simulated runoff during the 

spring and the summer periods than the autumn and the winter periods, which is shown 

for the both the catchment and the sub-catchment scale. Therefore, as with the previous 

point, this is a result of the uncertainty of rainfall input and it is known to be constant. 

The fit between hourly measured and simulated stream flows was checked  graphically 

by plotting the flow duration curves. General agreement between the measured and 

simulated flow duration curves indicates adequate calibration and validation over the 

range of the flow conditions simulated. 

For the sub-catchment, goodness of fit measures indicated a reasonably good fit 

between the measured and simulated stream flow during the calibration and validation 

with good representation of the general flow pattern and hourly hydrograph. 

It is expected that the better simulations are often for the larger scales and events and 

the largest differences tend to be for the smaller scales and smaller events. The 

simulated flows were slightly better simulated for the catchment scale than for the sub-

catchment scale. This suggests application of rainfall data derived outside of the sub-

catchment (see sub-section 4.5.4).  

The simulated and measured annual mass balances are in reasonable agreement for the 

catchment scale but for the sub-catchment, it is a good to a fair. This suggests 

uncertainty of the measured flow at the outlet of the sub-catchment.  

The overall shape of the storm event hydrographs was very well captured; however, the 

sub-catchment overpredicted peak flow for the E3 and E5 events and underpredicted for 
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the E4 event. The storm simulations are generally in the range of a good, although some 

are very good. Thus, the model shows a clear consistency between the rainfall and the 

resulting runoff.  The baseflow are modelled correctly, showing the catchment and the 

sub-catchment wetness levels.  

10.4.6 Hillslope model performance 

In this study, the modelling techniques consider the fate of runoff from a 45 m hillslope. 

The simulated hillslope runoff is presented in Figure 10-20. There was no measured 

runoff at the hillslope scale and the runoff was estimated using a model based on 

physical parameters. All input parameters were determined by field and laboratory 

measurements. 

 

Figure 10-20 Simulated hillslope runoff 

The model was manually calibrated. Due to the lack of runoff data, the model could not 

be calibrated in a traditional sense. To calibrate the model, measurement data of soil 

moisture were used. The soil moisture was measured with Theta Probes in three 

different depths (10, 20, 30 cm) as discussed in Section 6.3. Due to a failure of the 

measuring system the soil moisture data are only available from September 11 to 

October 8, 2009, January 6 to February 1, 2010, February 19 to March 18, 2010, and  

March 26 to  April 22, 2010. The possible measurement errors were taken into account 

when using this data for the model calibration.  
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The reasonable agreement has been achieved between field observations and the model 

by adjusting the saturated water content parameter θsat with the final value of 0.4 for 

the hillslope. It appears, however, that the modelled runoff for the hillslope is realistic. 

During calibration, there were observed variations in some parameters of the soil that 

can cause large changes in the runoff at the hillslope. It was found that the soil moisture 

was an important factor for evaluating criteria.  

The peaks in the hydrograph are well simulated, as well for size as for time of 

occurrence. The hourly hillslope responses at the peak of the November flood event. 

The runoff is seen to make up a small volume of the total runoff, becoming important 

only in the most intense period of storm event. The runoff is generated as a rapid flow 

response. 

It can be concluded that hydrograph, peak flow and runoff volume of the main flood 

event in November 2009 as well as of the three following small events could be 

simulated by the hillslope model, so the hillslope model is suitable for use in climate 

impact analysis. 

To demonstrate the usefulness and performance of the hillslope model, modelled 

rainfall and runoff patterns were assessed at 100 random selected samples for 30-year 

time slices and the results were analysed statistically to assess the effects of climate 

change on rainfall and runoff at the hillslope scale. This will be discussed in the next 

chapter. 

10.5 Discussion of uncertainties 

Any application of a hydrological model has some level of uncertainty.  Three main 

sources of uncertainties in the SHETRAN modelling process could be distinguished: 

1) Input parameters 

2) Model assumptions and 

3) Measured data.  

These are briefly described here. 
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10.5.1 Input parameters 

The SHETRAN model for the Upper Eden basin was originally developed in Walsh, 

(2004). Thus, input data used a 50 m DEM of the Upper Eden basin constructed by 

Walsh (2004) which was aggregated to a 100 m DEM.  

As rainfall data were available from the field measurements in the sub-catchment the 

uncertainties related to this data are low. However, due to a failure of the raingauge, 

more uncertainties are related to the rainfall data for 2009 and 2010, because data from 

raingauges outside the sub-catchment had been used as model input. These rainfall daily 

data sets were selected as input to the weather generator from which potential 

evaporation was extracted, to help reduce the uncertainty. 

The spatial distribution of the land use was taken from the Land Cover Map of Great 

Britain 1990. Due to detailed spatial distribution of major land cover classes the quality 

of the map is very good.  

The vegetation parameters were available from studies of Rutter (1975) and 

Shuttleworth (1993). Leaf area index and maximum rooting depth were taken from 

SHETRAN library values. As these are not directly measured, the uncertainty caused by 

these parameters may be quite high. 

Soil physical parameters were available from literature sources or from SHETRAN 

library values. The uncertainty related to these parameters therefore may also be fairly 

high.  

10.5.2 Model assumptions 

There are uncertainties related to how the simulation processes are represented in the 

model. These are difficult to quantify, and assessment of the influence of these on the 

results is beyond the scope of this study. The uncertainties related to the simulation 

processes may arise from the assumptions used in the model. 

10.5.3 Measuring data 

In general, all measurements contain measurement errors, which have to be taken into 

account while using this data for calibration and validation. The discharge was 

calculated based on continuous water level measurements and a stage-discharge 
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relationship for each gauge. Although this method is related with uncertainties, it is the 

standard method for discharge measurements, because other methods for continuous 

discharge measurements are not available. 

The discussion of the uncertainties showed that uncertainties exist at all levels. Often it 

is not possible to determine which uncertainties cause the deviation between simulated 

and measured variables. 

10.6 Water balance 

Hydrological models have become useful tools in water resources planning and 

managements, providing a capability to analyse quantity and quality of stream flow and 

a hillslope runoff. 

The components of the (sub) catchment water balance include precipitation and change 

in storage ∆S while the output comprises the actual evapotranspiration Eact and the 

stream discharge Q at the outlet of the (sub) catchment. 

𝑃 − 𝐸𝑇 − 𝑄 = ∆𝑆 

where: P = precipitation [L/T], ET = evapotranspiration [L/T], Q = stream discharge at the outlet of the 
catchment [L/T], ∆S = change of storage [L] 

In a general form, the long term water balance of the hillslope can be written as: 

𝐴 ∙ ∆𝑆𝑠𝑜𝑖𝑙 = (𝑃 + 𝑄𝑖𝑛) − �𝐸𝑇 + 𝑄𝑜𝑢𝑡 + 𝑅𝑠 + 𝑅𝑝� ∙ ∆𝑡 

where: A = area of the hillslope [m2], ∆Ssoil = change in soil water storage [mm] 

Inputs: 

P = precipitation [mm/hr], Qin = lateral subsurface inflow [m3/hr] 

Outputs: 

ET = evapotranspiration [mm/day], Qou t= lateral subsurface outflow [m3/hr], Rs = overland flow [mm],   
R = recharge losses (downward vertical flow) = percolation [mm] 

∆t = time interval [hr] 

10.6.1 Water balance for the Blind Beck catchment 

The monthly rainfall and runoff for the Blind Beck catchment for the period 2009-2010 

are shown in Table 10-15. The hourly values of rainfall and runoff (simulated 

discharge) were aggregated to the monthly values. This would provide a better insight 

into the long-term rainfall-runoff relationship at the Blind Beck catchment. The highest 
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rainfall was in November (308.2 mm) while the lowest value was in April   (2.2 mm). 

The monthly runoff values were higher in the winter period while lower in the summer 

period. The highest measured runoff value was in November of 220.9 mm and the 

lowest in June of 9.9 mm. 

As can be seen from Table 10-15, the months from October to January and March have 

positive storage values while the remaining months are negative. The negative monthly 

water balance indicates that water was being lost from storage. 

Table 10-15 Water balance of the observed and simulated stream flow in the Blind Beck catchment, 
August 2009 to July 2010 

Month Precipitation  
(P) (mm) 

Evapotranspiration 
(ET) (mm) 

Measured 
discharge 

(mm) 

Simulated 
discharge 

(mm) 

Change in 
storage -
measured 
(∆S) (mm) 

Change in 
storage -
simulated  
(∆S) (mm) 

Aug 75.8 69.4 11.0 19.4 -4.6 -13 
Sep 31.9 44.1 15.2 16.6 -27.4 -28.8 
Oct 72.4 24.7 17.0 34.1 30.7 13.6 
Nov 308.2 9.5 220.9 193.5 77.8 105.2 
Dec 99.4 6.2 74.2 88.3 19 4.9 
Jan 35.8 9.1 42.7 44.8 -16 -18.1 
Feb 29.6 13.0 21.2 31.6 -4.6 -15 
Mar 88.6 32.2 32.6 55.2 23.8 1.2 
Apr 2.2 55.4 17.6 15.7 -70.8 -68.9 
May 28.2 75.8 10.9 9.9 -58.5 -57.5 
Jun 34.7 70.6 9.9 10.3 -45.8 -46.2 
Jul 51.4 65.1 12.3 13.0 -25.98 -26.68 

Annual 858.2 475.1 485.5 532.4 -102.38 -149.3 

Table 10-16 shows the water balance on the annual basis and the difference between the 

simulated and measured discharge data. These differences were compared to the rainfall 

and to the measured discharge with a computed percentage difference. For the annual 

period, the difference between the simulated and the measured runoff as a proportion of 

the annual rainfall were 5.5%. This indicates that the simulated values of annual runoff 

are good compared to the measured. The error in runoff as a proportion of the measured 

annual runoff (discharge) was 9.7%.    

Table 10-16 Annual water balance components at the Blind Beck catchment. P = rainfall, ET = 
evapotranspiration, Qs = simulated discharge, Qm = measured discharge and ∆S is change in storage 

Year P – ET - Qs = ∆S Qm (mm) Qs – Qm 
(mm) %(Qs – Qm) to P %(Qs – Qm) to Qm 

2009-2010 858.2-475.1-532.4 = -149.3 485.5 46.9 5.5 9.7 

The change in the annual water balance is negative, which suggests that the water being 

lost from the storage. 
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10.6.2 Water balance for the Hollow sub-catchment 

The total monthly rainfall and runoff in the Hollow sub-catchment for the period 2009- 

2010 are shown in Table 10-17. The highest rainfall is in November with a value of 

308.2 mm while the lowest value was in April with a value of 2.2 mm. The total 

monthly runoff values were higher in the winter period but lower in the summer period. 

The highest simulated runoff value was in November of 212.1 mm and the lowest in 

June of 5.9 mm. 

Table 10-17 Water balance of the measured and simulated stream flow in the Hollow sub- catchment, 
August 2009 to July 2010 

Month Precipitation  
(P) (mm) 

Evapotranspiration 
(ET) (mm) 

Measured 
discharge 

(mm) 

Simulated 
discharge 

(mm) 

Change in 
storage -
measured 
(∆S) (mm) 

Change in 
storage -
simulated  
(∆S) (mm) 

Aug 75.8 69.4 9.5 9.0 -3.1 -2.6 
Sep 31.9 44.1 17.6 7.5 -29.8 -19.7 
Oct 72.4 24.7 2.5 12.1 45.2 35.6 
Nov 308.2 9.5 336 212.1 -37.3 86.6 
Dec 99.4 6.2 160.8 100.9 -67.6 -7.7 
Jan 35.8 9.1 68.9 38.4 -42.2 -11.7 
Feb 29.6 13.0 22.8 22.1 -6.2 -5.5 
Mar 88.6 32.2 32.3 62.0 24.1 -5.6 
Apr 2.2 55.4 0.6 10.0 -53.8 -63.2 
May 28.2 75.8 0.0 7.5 -47.6 -55.1 
Jun 34.7 70.6 0.0 5.9 -35.9 -41.8 
Jul 51.4 65.1 0.6 6.2 -14.28 -19.88 

Annual 858.2 475.1 651.6 493.7 -268.48 -110.6 

As can be seen from Table 10-17, just two months have a positive storage value while 

the remaining months negative. These negative values of storage indicate that water was 

being lost from the storage. 

Table 10-18 shows the water balance on an annual basis and the difference between the 

simulated and measured discharge data. The difference between the simulated and the 

measured runoff as a proportion of the annual rainfall had very high percentage. This 

indicates that the simulated values of runoff are quite far from the measured. The error 

in runoff as a proportion to the measured annual runoff (discharge) had also a relatively 

high percentage error. 

Table 10-18 Annual water balance components at the Hollow sub-catchment. P = rainfall, ET = 
evapotranspiration, Qs = simulated discharge, Qm = measured discharge and ∆S is change in storage 

Year P – ET - Qs = ∆S Qm (mm) Qs – Qm 
(mm) %(Qs – Qm) to P %(Qs – Qm) to Qm 

2009-2010 858.2-475.1-493.7 = -110.6 651.6 -157.9 18.4 24.2 

The uncertainty in the water balance was reflected by the uncertainty in annual stream 

discharge for the weir with high temporal-resolution recording capacitance devices of 
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5% (Winter 1981; Lesack 1993; Genereux 2005). Allen et al. (1989) reported the 

standard errors of 0.36 mm/day for the monthly reference Penman-Monteith ET 

estimates. 

Tables 10-17 and 10-18 show the water balance on the annual basis and difference 

between the simulated and measured discharge data. These negative values of storage 

indicate that water was being lost from the storage. It shows that losses exceed 

precipitation in most of the months in the year 2009-2010, which makes it a deficit year. 

The water balance calculations show for the Blind Beck catchment that, October to 

December and March are found to be surplus months. For the Hollow sub-catchment, 

surplus months are October and November for the simulated discharge, while October 

and March for the measured discharge.  

The simulation results obtained in this study show that the availability of water in the 

catchment and the sub-catchment scale, on a monthly time scale, is useful for decision 

making and the effective utilization of water. For example, these results are useful in 

agricultural planning, groundwater modelling and vulnerability studies. 

10.6.3 Water balance for the hillslope 

Figure 10-21 presents a diagram of the main aspects of water balance and estimated 

fluxes from the SHETRAN model simulation for one year at the slope section (1 m 

wide by 45 m long).  

 

Figure 10-21 Estimated water balance components at the hillslope, August 2009 to July 2010 (∆S: change 
in soil water storage) 

A mass balance of water within the hillslope from the SHETRAN model is estimated 

for the entire year as:  

Rainfall = overland flow + E + infiltrated water 

and  

Rainfall: 858 mm

Overland flow: 100 mm

Transpiration: 221 mm 

Surface evaporation: 119 mm

Intercepted evaporation: 135 mm

Mineral soil
Percolation: 283 mm

Total runoff: 553 mm

S: -169 mm
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E = intercepted evaporation + surface evaporation + transpiration 

Infiltration = ∆Storage + Q 
Q = percolation + lateral subsurface outflow 

where: ∆Storage  = the change in soil moisture in the unsaturated zone, Q = defined as the estimated sum 
of percolation, and lateral subsurface outflow 

The subsurface flow and percolation are the largest water losses from the hillslope. 

The net inputs to the unsaturated storage are produced by rainfall and lateral subsurface 

inflow where lateral subsurface inflow was calculated by the model, so it can be 

regarded as negligible in the equation. As output, discharge at the hillslope scale, which 

includes overland flow, lateral subsurface outflow and percolation was difficult to 

separate. Focusing on the hillslope, equation can be re-written as follows: 

Rainfall = overland flow + E + percolation 

The monthly rainfall and simulated discharge values have been compared by taking the 

monthly totals for the period August 2009 – July 2010. This provides better insight into 

the long-term rainfall-runoff relationship at the hillslope. The hourly values of rainfall 

and runoff (simulated discharge) were aggregated to the monthly values. 

The total monthly rainfall and runoff of the hillslope for the period August 2009 - July 

2010 is shown in Figure 10-22. The highest rainfall was in November with a value of 

308.2 mm while the lowest value was in April with a value of 2.2 mm. The total 

monthly runoff values were higher in the autumn and the winter period while lower in 

the summer period as shown also for the (sub) catchment. The highest runoff value was 

in November of 279.5 mm and the lowest in May of 0.1 mm. The highest overland flow 

values were in November of 90.8 mm and the lowest was zero. 

 

Figure 10-22 The total monthly rainfall and runoff of the hillslope (Aug 2009 - July 2010) 
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The simulated overland flow occurred in response to precipitation event, in November, 

December and March.  

The monthly water balance for the period August 2009 - July 2010 is shown in            

Table 10-19. As can be seen from Table, three months have a positive storage value 

while the remaining months negative. There was a net change in soil storage of              

-169.4 mm. These negative values of storage indicate that water was being lost from the 

soil storage and draining the hill out over the year.  

Table 10-19 Water balance of the simulated flow at the hillslope, August 2009 to July 2010 

Month Rainfall  (P) 
(mm) 

Evapotranspiration 
(ET) (mm) 

Simulated 
runoff (Q) 

(mm) 

Change in storage 
-simulated  (∆S) 

(mm) 
Losses = P - Q 

Aug 75.8 69.4 15.8 -9.4 60 
Sep 31.9 44.1 22.8 -35 9.1 
Oct 72.4 24.7 20.4 27.3 52 
Nov 308.2 9.5 279.5 19.2 28.7 
Dec 99.4 6.2 95.6 -2.4 3.8 
Jan 35.8 9.1 42.1 -15.4 -6.3 
Feb 29.6 13.0 24.9 -8.3 4.7 
Mar 88.6 32.2 36.0 20.4 52.6 
Apr 2.2 55.4 12.5 -65.7 -10.3 
May 28.2 75.8 0.1 -47.7 28.1 
Jun 34.7 70.6 0.7 -36.6 34 
Jul 51.4 65.1 2.1 -15.8 49.3 

Annual 858.2 475.1 552.5 -169.4 305.7 

The term losses are used as difference between rainfall and net runoff (incorporating 

soil water storage contributions), therefore the following equation is: 

Losses = P – Q 

The total rainfall for the period August 2009 – July 2010 was 858 mm while the total 

annual runoff is 553 mm that consequently gives losses of 306 mm per year. Factors 

contributing to uncertainty in the hillslope storage changes include soil moisture content 

measurement by the Theta Probes. 

The hillslope model has provided additional insight into hydrological processes 

operating in the Hollow sub-catchment.  The model provides results for the hillslope 

runoff, overland flow and water balance. A conceptual hillslope model was designed to 

produce a model structure with processes and parameters that can be closely linked to 

the plot scale model. 
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10.7 Model simulation and interpretation of results 

10.7.1 Model simulation results for soil moisture 

The knowledge of the spatial distribution of the soil moisture is essential to support 

assessment of the quality, accuracy and applicability of the SHETRAN model 

prediction in the subsurface with calibration/validation against measured data. 

Knowledge of the soil moisture is important as it has considerable influence on many 

hydrological (e.g. runoff and flood forecasting) and pedogenic processes (Western et al. 

2004), and on the water and energy balances of land surfaces (Qui et al. 2001;                   

di Domenico et al. 2006). In recent years, there has been increasing attention on spatial 

distribution of the soil moisture (Famiglietti et al. 1998; Starks et al. 2006) because it is 

widely recognized that improving our knowledge and understanding of the soil moisture 

and the processes underpinning its spatial and temporal distribution is critical (Wilson et 

al. 2003; Martinez et al. 2008).  

In order to estimate the soil moisture there is methods that can be classified into three 

main groups: (1) ground based measurement; (2) estimation based on remote sensing; 

and (3) estimation via simulation models (Grayson and Western 1998; Martinez et al. 

2008). In this study, a modelling approach was used to examine the spatial and temporal 

distribution of soil moisture (soil depth up to 2 m) and comparison of measured with 

observed data. This study is focused on obtaining estimates of soil moisture at the 

catchment and sub-catchment scales.  

Blind Beck catchment 

For the presentation of the soil moisture maps, two images were chosen: one in the 

middle of the summer dry period (30 June 2009) and one during flood event               

(24 November 2009) to test the sensitivity of the modelling approach. The spatially 

distributed soil moisture simulation output of the SHETRAN model is illustrated in 

Figure 10-23. A very small rainfall event of about 0.1 mm occurred 10 days before 30 

June, while 10 days before 24 of November of the same year, rainfall was intensified 

with a heavy rainfall of about 146 mm. Rainfall appears to be well correlated with the 

observed temporal soil moisture trends, with wet conditions in the autumn, followed by 

the drying period in the spring and the summer, before the large flood event and soil 

wetting in 2009.  
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Figure 10-23 Soil moisture maps derived with the SHETRAN model for two days in 2009 for the Blind 
Beck catchment 

The light bluish colours on the maps representing a low level of moisture across the 

entire catchment except for streams and valley areas, where the colour is reddish 

representing the relatively higher level of soil moisture. Table 10-20 gives a statistical 

summary of the soil moisture data produced by the SHETRAN. The average soil 

moisture value ranged from 0.27 to 0.37 m3m-3. The maximum value for both days were 

0.40 m3m-3. 

Table 10-20 Mean, minimum and maximum soil moisture content with standard deviation 

Date Soil moisture (m3m-3) 
Mean Min Max SD 

30 June 2009 0.27 0.11 0.40 0.08 
24 November 2009 0.37 0.18 0.40 0.07 

Min = minimum value, Max =  maximum value, SD =  standard deviation  

A visual assessment of the catchment indicates that the distribution of the near-surface 

soil moisture depends on topography (Burt and Butcher 1985), soils (Hawley et al. 

1983), vegetation (le Roux et al. 1995) and land use. Ockenden (2010) found for the 

Blind Beck catchment that the pasture sites are clearly much wetter than their woodland 

sites (mean soil moisture ranged from 0.50 to 0.56 m3m-3 in pasture compared to 0.41 to 

0.50 m3m-3 for woodland site). The wetness and dryness patterns agree very much with 
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expectations, where the driest places are at higher elevations whereas the wettest 

regions are typically at lower elevations during wet conditions.  

The soil moisture change between both days is clearly visible in both images. The Blind 

Beck catchment shows the highest mean soil moisture in November of 2009 

respectively due to the large flood. During the dry period, soil moisture decreases, 

mainly due to prolonged evaporation losses and relatively low precipitation. The 

significant low soil moisture contents could lead to agronomic and environmental 

consequences. The reduction in grass growth rate that the results from water-stress 

decreases the efficiency of nitrogen uptake by the grass, which in turn requires fertiliser 

nitrogen applications during the spring and the summer periods to be reduced 

accordingly (Allen et al. 1998; Coulter 2001).  

The simulated soil moisture values were compared with the field measurement from 

previous study for the same catchment. According to the results of soil moisture 

measurements, Ockenden (2010) found that most of the sites had mean soil moisture 

content from 0.4 m3m-3 to 0.56 m3m-3 (i.e. close to saturation) that is in agreement with 

data from this study.  

Hollow sub-catchment 

Figure 10-24 shows the spatially distributed soil moisture maps output of SHETRAN 

simulation for the Hollow sub-catchment, represented by the HDFVIEW. On June 30, 

2009 was no visual evidence of runoff response at the catchment outlet. However, wet 

areas or saturated areas (red) for the stream and valley area were simulated. Another 

qualitative observation was when the catchment ‘‘wets-up’’ during the flood period 

(November 24, 2009). The dominant red colours in maps representing a high level of 

moisture extended across the entire catchment. The maps of these data sets show a good 

contrast between soil moisture conditions near saturated and saturated. 

The simulated mean soil moisture value for 30 June was 0.30 m3m-3. When including 

the flood information, the soil moisture tends to increase, which is shown in           

Figure 10-24 for 24 November 2009. This indicates the saturated soil with a value of           

0.41 m3m-3. It is clear from the simulated results that lower part of the sub-catchment 

has the highest, while the upper part relatively low soil moisture content.  
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Figure 10-24 Soil moisture maps derived with the SHETRAN model for two days in 2009 for the Hollow 
sub-catchment  

The validation of the spatial soil moisture was carried out by comparing the simulated 

soil moisture content with measured at three depths (10 cm, 20 cm and 30 cm) at the 

hillslope of the Hollow sub-catchment (Section 6.3). The agreement between simulated 

and measured soil moisture data at the depth of 0-30 cm was good  (Table 10-21). There 

are three variables that combine to identify each soil moisture measurement and its 

corresponding simulated value; namely the day on which it was taken, and the position 

and depth. These data points were at a depth of 30 cm and at the top of the hillslope. 

Comparing the field soil moisture measurements to the estimates from the simulated 

model, the R2 was 0.7 m3m-3 (Figure 10-25). 

Table 10-21 Comparison of the measured soil moisture contents against the values simulated by 
SHETRAN 

Period Mean (m3m-3) 
Measured Simulated 

11 – 30 Sep 2009 0.39 0.37 
1 – 8 Oct 2009 0.37 0.37 
6 – 31 Jan 2010 0.47 0.53 
1 – 2 Feb 2010 0.44 0.53 

19 – 28 Feb 2009 0.45 0.52 
1 – 18 March 2010 0.42 0.51 

26 Mar – 10 April 2010 0.49 0.50 
11 – 22 April 2010 0.42 0.47 

The comparisons of the mean measured (the actual value measured in the field) versus 

simulated (the corresponding values simulated by the SHETRAN model) soil moisture 

contents are arranged according to each of these variables. These measurements were 

plotted against each other with the line of equality (Figure 10-25). A line of equality is 

shown along which all values would be expected to lie in the presence of perfect 

agreement. Clearly, this was not the case, as most of soil moisture values fall above the 

line of equality (dashed line).  
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Figure 10-25 Scatterplot, with line of equality, for measured versus simulated soil moisture using the 
SHETRAN model 

In this study, the spatial and seasonal comparison was made of the soil moisture. The 

level of wetness and dryness can provide information to the hydrologist about the 

spatial distribution of processes in the catchment.   

10.7.2 Modelling nitrate 

The benefit of using the computer nitrate model is the ability to compare and quantify 

the effect of different rainfall patterns on the spatial soil distribution and the nitrate 

transformation within the stream. 

A nitrogen transformation model, the Nitrate Integrated Transformation (NITS) 

component for SHETRAN was used to complete the modelling of nitrate. This has been 

integrated within SHETRAN’s solute transport component, so the concentrations of the 

nitrogen species are simulated for every finite-difference cell, and are updated, along 

with water flow and nitrate transport, every time step (Birkinshaw and Ewen 2000a). 

The distributed model has the capability of predicting the spatial pattern of nitrate 

within the catchment as well as nitrate stream flux. In addition, this system allows the 

simulation of nitrate generation, leaching, transport through the subsurface and 

discharges via seepage areas into surface waters and transport through river networks 

(Birkinshaw and Ewen 2000a).  The SHETRAN model encompasses both the 

hydrological processes, which control the availability of nitrate in the soil and the 

stream nitrate concentration. The purpose of N simulations is to indicate transport 

pathways related to runoff mechanisms using spatial model outputs and time series of 

export concentrations. SHETRAN nitrate modelling has been used to a small catchment 

at Slapton Wood Devon, UK that the simulated results for nitrate concentrations and 
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leaching load, which agree well with existing measurements (Birkinshaw and Ewen 

2000b). From this study, it is concluded that SHETRAN should be a powerful, practical 

and useful tool for studying nitrate pollution problems. 

In order to avoid too many assumptions data available from the fieldwork were used 

based on the stream nitrate concentration and the soil nitrate content. From previous 

modelling there is also considerable knowledge within catchments, previous experience 

and literature that was used to make the nitrate model (Birkinshaw and Ewen 2000a). 

Considering the available data of N in the soil and stream concentration collected from 

the field, some basic assumptions and limitations were made in order to simplify the 

construction of the model: 

• Nitrogen fertilizer was ignored as it not monitoring in the field 

• Nitrate leaching and subsurface transport to groundwater were ignored 

• Plant uptake was ignored 

• Organic, ammonium N pool and process within were ignored 

• Atmospheric deposition is assumed to 1.21 g N m-3. 

SHETRAN was used here to simulate nitrate transport in the Blind Beck catchment. 

This was carried out as a validation test against field measurements of soil and the 

stream nitrate concentrations as applied the Slapton Wood catchment. Figure 10-26 

shows the spatial distributed maps of the nitrate in soil (soil depth up to 2 m) for the 

Blind Beck catchment, represented by the HDFVIEW. The nitrate concentration in the 

soil ranged from 0.9 mg/l to 7 mg/l in the wet season whereas in the dry season, the 

nitrate concentration ranged from 8 mg/l to 20 mg/l. The high nitrate content during 

June could be attributed to the influence of the dry season.  The low nitrate content in 

the soil is the result of precipitation. High rainfall, with 380 mm from October-

November 2009, favoured leaching losses of the nitrate from soils.  

The simulation results for the stream nitrate concentrations of the Blind Beck catchment 

are shown in Figure 10-27 with indication of storm events (#E3 to E5). These results 

illustrate the ability of the model to simulate trends in the stream nitrate concentrations 

for the Blind Beck catchment.  
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Figure 10-26 Soil nitrate maps derived with the SHETRAN for the Blind Beck catchment  

 

 
Figure 10-27 Stream discharge and simulation of nitrate concentrations for the Blind Beck catchment 

The model was not able to fit the measured nitrate concentrations. The monthly point 

measured values are generally high compared to the low simulated values, although  due 

to the relatively long time between sampling there were not enough field measurements 

to verify the model adequately well. 
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During the November 2009 storm event (E3), the peak discharge reached 3.6 m3/s, 

while the stream water nitrate concentration reached the minimal 1.8 mg/l likely due to 

the intensive depletion of the nitrate pool in soils during rainfall events. During the 

second rainfall event in January 2010 (E4), the stream water nitrate concentration fluxes 

were higher than during the first rainfall event (Figure 10-27). During this event, the 

stream water nitrate concentration decreased and increased very sharply from 1.8 mg/l 

to more than 3.8 mg/l. The overall decreases of the nitrate concentrations in the falling 

limbs of the hydrographs can be associated with high portions of ‘new’ water in the 

total discharge which contained the lower nitrate concentration.  

Figure 10-28 shows the spatial distributed maps of the nitrate in the soil as output of the 

SHETRAN simulation for the Hollow sub-catchment. The nitrate concentration in the 

soil ranged from 7.7 mg/l to 21 mg/l in the dry season whereas in the wet season, the 

nitrate concentration ranged from 0.9 mg/l to 2.9 mg/l.  

 

Figure 10-28 Soil nitrate maps derived with the SHETRAN for the Hollow sub-catchment  

The highest nitrate concentration occurred on 30 June 2009 (10.4 mg/l), while the 

lowest was 24 November 2009 (1.1 mg/l). The high nitrate content during June is likely 

due to the influence of the dry season and lack of rainfall. From the results of the soil 

nitrate presented in Chapter 8, Figure 8-8, that in dry conditions the nitrate 

concentration is higher in the deeper soil layers and decreased during the wet is in 

agreement with simulated findings.  

The simulation results for the stream nitrate concentrations at the outlet of the Hollow 

sub-catchment are shown in Figure 10-29. Figure shows that the simulated nitrate 

concentrations are much higher than the measured ones. The model overpredicted the 
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nitrate concentration for the Hollow stream related to the monthly point measured 

values. These results illustrate the ability of the model to simulate trends in the stream 

nitrate concentrations for the Hollow sub-catchment.  

 

Figure 10-29 Stream discharge and simulation of nitrate concentrations at the outlet of the Hollow sub-
catchment 

For both scales, the low soil content of the nitrate during the wet period and higher 

during the dry is consistent with our findings at the hillslope (see Figure 8-8). The low 

soil nitrate concentrations are likely due to heavy rain that infiltrates into soil and 

flushes the nitrate out of the vadose zone into deeper soil layers, percolating to 

groundwater, leaching by subsurface flow or/and moving from the soil water table to the 

ground surface. From the spatial distribution map of the soil nitrate concentration, it can 

be seen that the highest soil nitrate concentrations occur during the dry period.  

If the soil moisture maps are linked with the nitrate concentration maps for the same 

date, it can be seen that high soil level moisture coincides with low level of the nitrate 

concentration and opposite. In theory, the soil nitrate tends to accumulate in the spring 

and decrease during the summer due to crop uptake.   

The stream water nitrate concentration is often used as an index of water quality. As the 

result of nitrate simulation, the concentration of the nitrate increases as water flow 

decreases, with apparent dilution. This finding is in agreement with other authors (Olsen 

2003; DEFRA 2007b). Also, Poor and McDonnell (2007) found that in the agricultural 

catchment, nitrate concentrations decreased with increasing flow rates during storm 

events. Comparison with field data of Blind Beck and Hollow stream shows reliable the 
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simulation results. Based on the measured concentrations from previous events this 

decrease in nitrate in stream flow was expected. 

There is not enough data available at the catchment and sub-catchment scale to support 

the detailed and physically based approach in this study. Furthermore, the uncertainty of 

the input parameters and the simulation outputs there was not investigated. This should 

be taken into account when making decisions based on the use of these models. 

However, the overall spatial and nitrate flux were simulated satisfactorily with the 

SHETRAN model. The results show that the model is suitable for prediction of the 

spatial distribution and flux of nitrate for extremely wet and dry seasons. 

10.7.3 Catchment, sub-catchment and hillslope scale linkages of simulated flow 

Hydrological modelling is being carried out at spatial scales ranging from plot scale to 

global scale and a variety of scaling theories has been developed (e.g. Blöschl and 

Sivapalan (1995) and Beven 1995). The scaling theories consider different spatial scales 

for single processes.  

The simulations have been carried out for the hillslope as well as for the catchment and 

sub-catchment by the SHETRAN model. Figure 10-30 presents comparison and 

quantifying of the flow proportion that is changing across scales. The model represents 

the characteristics of the fast flow response to rainfall in the (sub) catchment and the 

hillslope. On a daily time step, there is almost no lag between rainfall and flow at the 

outlet. The hillslope responds to storm very differently from the (sub) catchment scale. 

These comparisons show the nature of rapid runoff at the smaller scale with the more 

baseflow at the hillslope scale. The scale affects the hydrological characteristics of the 

drainage area. Most of the precipitation on the hillslope scale tends to runoff quickly 

because there is little time or area for infiltration. On the large scale, travel distances are 

much longer, water storage may decrease flow peaks, precipitation has more time to 

infiltrate, and runoff reaches the (sub) catchment outlet more slowly after peak rainfall 

than at a small scale. 

The modelling results within the catchment, sub-catchment and hillslope do show the 

runoff peak for the storm event in November, the same trends but different runoff rate 

and volume (Figure 10-30). This reflects the fact of scale, where the catchment        

(9.22 km2) is much larger than the sub-catchment (0.09 km2) and hillslope (45 m2). The 

peak flow is higher for the catchment (0.56 m3/s) than sub-catchment (0.03 m3/s) and 
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hillslope (1.87⋅10-5 m3/s) but the peak per unit area is relatively lower for the catchment 

(0.06 m3/s/km2) compared to the sub-catchment (0.33 m3/s/km2) and hillslope           

(0.45 m3/s/km2). This is partly related to the areal properties of the storm event, to 

infiltration losses and to the longer time required for the total catchment to contribute to 

the peak runoff (time of concentration). 

 
Figure 10-30 Comparison of simulated discharge at the catchment, sub-catchment and hillslope scales 
(E3-E5: storm event) 
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Figure 10-30 shows the simulated hydrological components of the total, the overland 

and the subsurface flows. The baseflow from the daily simulation for the November 

flood event (E3) is estimated to be approximately 92% of the total flow for the Blind 

Beck catchment.  The modelling results indicate that the subsurface flow contributes to 

the runoff generation of the Blind Beck catchment, but no data are available to verify 

the modelling details in this particular aspect. However, the field measurement with EC 

tracer was applied at the outlet of the Hollow sub-catchment as described in sub-section 

5.3.1. The model for the Hollow sub-catchment provides a split of the total storm flow 

into 30% overland and 70% subsurface flow for the November flood event (E3). The 

corresponding proportions for the E4 event in January are 13% overland flow and 87% 

subsurface/baseflow. For the event (E5) in March, the simulated results in Figure 10-30 

demonstrate that the subsurface/ baseflow is 88% of the total flow, and the overland 

flow is 12%, respectively. Compared to the measured flow and applied hydrochemical 

separation, this is well in agreement with the simulated separation of the total flow. The 

overland flow proportion in the hillslope flow was a minor component of the flow with 

39% of the subsurface contributions. Many researchers (Neal and Rosier 1990; Sklash 

1990; McDonnell 2003; Kirchner 2003) demonstrated through field monitored 

experiments that the most part of the hillslopes runoff production comes from the 

subsurface, reaching often percentages around 80% of total runoff. This is in agreement 

with the simulated subsurface flow of the hillslope from this study. 

The scaling behaviour of the runoff generation was limited by current data. Only the 

plot scale was fully conducted and measured for both the overland and the subsurface 

flows. The preliminary simulated result on scale effect is that the runoff coefficient at 

the catchment was smaller (0.37) than at the sub-catchment (0.57) and the hillslope 

scale (0.64). The results show that the November flood event runoff coefficients are 

highest at the hillslope scale, while lowest at the catchment scale. Wainwright and 

Parsons (2002) and Cerdan et al. (2004) has been examined the scale dependency of 

runoff coefficients to a plot and a catchment area and they both identified a significant 

decrease in the runoff coefficient as area increases. This is in agreement with the results 

from this study. The main cause of runoff coefficients decreasing with the increasing 

catchment area is probably due to long time of the surface runoff travelling to the outlet, 

the more rainfall amount needed for runoff generation or more infiltration amount for 

the larger catchment (Feng and Li 2008). 
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The subsurface flow increased moving from the hillslope scales to larger scales, while 

the overland flow decreased moving from small scales to larger. This indicates that    

hypothesis 4 which states that subsurface flow increase relative to overland flow with 

increase of scale is correct.  

10.8 Summary 

Modelling of the Blind Beck catchment and the Hollow sub-catchment using the 

SHETRAN model has been undertaken and the results shown by means of model 

performance, calibration and validation. The SHETRAN model results showed that 

hydrographs and the water balance were simulated adequately within an acceptable 

range for the calibration and validation phases.  

During the modelling, the performance criteria used for appraising of the model 

performance were undertaken with a coefficient of determination (R2 coefficient), and a 

Nash-Sutcliffe efficiency (NSE) for hourly predicted flows. The criteria of Henrikson et 

al. (2003) for R2 was followed as R2 value > 0.85 is excellent, values between 0.65 and 

0.85 are very good, 0.50-0.65 are good, 0.20-0.50 are poor and < 0.20 are very poor. For 

the NSE, the results were considered to be good if NSE ≥0.75, and satisfactory if      

0.36 ≤ NSE ≤ 0.75 (van Liew and Garbrecht 2003). The fit for the catchment and sub-

catchment is generally good, with R2 values (on hourly flows) in the range of 0.73 to 

0.84 and Nash-Sutcliffe Efficiency coefficients in the range of 0.70 to 0.83. Therefore, 

the model calibration and validation tests are judged to be successful. The statistics 

show that the SHETRAN performed satisfactorily in predicting average hourly 

discharges.  

The individual simulated hydrographs for the catchment showed a very good modelling 

results for the January event (E4) of Blind Beck. The event (E4) is likely due to 

influence of rain-on-snow event incorporating snowmelt. The winter 2009-2010 in the 

UK was unusually cold with heavy snowfall and record low temperatures (see Appendix 

C1 and C2). The snow was observed during December and January but almost of all the 

snow melts at the end of February and the beginning of March. The event (E4) was 

modelled with rainfall only and the presence of the snowpack was not taken in account, 

so the simulation appears to be good based on an assumption that snowmelt played little 

or no part in the observed runoff generation. The SHETRAN model shows variations 

between storm events, with better performance for the January event (E4) for the 
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Hollow sub-catchment.  The error in the peak flow rate simulation was much larger for 

the spring event than it was in the autumn and the winter events. The modelling results 

of individual storm event show overall a decreased simulated discharge.  

A limitation of the models is a poorer performance of simulating low flows at the 

catchment scale. Based on the observed rainfall and other hydrological data, the water 

balance for all three scales was modelled. The models were evaluated for 2009 to 2010, 

from which there was found to be a deficit year for all scales. The catchment and sub-

catchment annual water balances showed little differences in overall stream discharge. 

The change in the annual water balance was negative, which suggested that water was 

being lost from storage. 

Spatially distributed soil moisture values in the Blind Beck catchment declined during 

the midsummer periods. Evidence from the soil moisture field measurements show that 

the soil moisture at the 10 cm below soil ground dried significantly during dry 

conditions, although soils at a greater depths at 20 and 30 cm remained saturated.  

Comparisons were made between measured and simulated soil moisture data at three 

depths at the hillslope of the Hollow sub-catchment. The agreement between simulated 

and measured soil moisture soil at the depth of 0-30 cm was good. 

The simulated soil nitrate concentrations generally show high accumulation of nitrate in 

the dry season, whereas in the wet season they were low. Simulating the spatial 

distribution of the soil nitrate can provide important information for control of the 

spread of nitrate leaching to groundwater. 

The model supports the hypothesis that with increases of scale, subsurface flow increase 

relative to overland flow.  
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Chapter 11.   Future scenarios in term of climate variability 

11.1 Introduction 

Recent extreme weather events such as the autumn UK floods (e.g. 18 November 2009) 

have attracted attention to the possible impacts of climate change on agricultural land.  

Evidence from climate models (e.g. Frei et al. 1998, 2006; Ekström et al. 2005) suggests 

that warming may lead to an intensification of the hydrological cycle and increases in 

both mean and heavy rainfall (Fowler et al. 2006).  

This Chapter presents how the distributed hydrological hillslope model developed in 

Chapter 10 was used with projected climate change scenarios to assess how runoff is 

likely to change in the future. Firstly, a review of the climate change modelling 

approach will be introduced (Section 11.2) with the methodology of deriving climate 

change projections for the UK. Then the methodology of deriving of climate change 

projections with a suitable climate change scenario will be described. The impact of this 

scenario upon climatological variables such as precipitation regime will be assessed. 

Application of the emission scenarios to a hillslope model and the impact on runoff, will 

be analysed.  

11.2 Climate change modelling and possible future scenarios 

In the selection of climate change models, it is important to select a model with the 

ability to simulate future climate conditions and impacts on the runoff regime for a 

particular case study at a hillslope scale.  

General Circulation Models (GCMs) can provide time series of climate variables 

globally, accounting for the effects of greenhouses gases in the atmosphere (Ghosh and 

Mujumdar 2008). The GCMs provide predictions of climate variables at larger spatial 

scales reasonably well, but perform relatively poorly at smaller space and time scales 

(Bates 1998). However, they remain relatively coarse in resolution and are unable to 

resolve significant sub-grid scale features (Grotch and MacCracken 1991) such as 

topography, clouds and land use. In order to solve these problems, the modelling 

community has focused on improving techniques to “downscale” these scenarios using 

a sequence of models to translate these global scenarios to regional and local impacts. 

To make predictions at regional and local scales, Limited Area Models (LAMs) or 

dynamic downscaling has been developed in which a fine computational grid over a 
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limited domain is nested within the coarse grid of a GMC (Jones et al. 1995). This 

approach is complicated in design with a high computational cost (Ghosh and 

Mujumdar 2008) in the sense that expanding the region or moving to a slightly different 

region requires redoing the entire experiment (Crane and Hewitson 1998). A statistical 

downscaling process is another approach that involves deriving empirical relationships 

that transform large scale features of the GCM (Predictors) to regional scale variables 

(Predictands) such as precipitation and streamflow (Ghosh and Mujumdar 2008). In the 

statistical downscaling are three implicit assumptions (Hewitson and Crane 1992):      

“(i) the predictors are variables of relevance and are realistically modelled by the host 

GCM; (ii) the empirical relationship is valid also under altered climatic conditions; (iii) 

the predictors employed fully represent the climate change signal” (Ghosh and 

Mujumdar 2008). Statistical downscaling methodologies consist of three categories 

(Murphy 1999; Wilby et al. 2004): weather generators, weather typing and transfer 

functions.  

Regional Climate Models (RCMs) were developed historically as physically based 

downscaling tools, in which the limited-area climate model was driven by time-

dependent lateral boundary data, either from an analysis or from a coarser-meshed 

general circulation model (Vidale et al. 2003). Regional Climate Models (RCMs) are 

commonly used to downscale GCM simulations from the global scale to the regional. 

Although both RCMs and GCMs include the representation of hydrology, they 

generally do not resolve the hydrological cycle at a level of detail that is suitable for 

hydrological applications (Bergström et al. 2001). They are also subject to systematic 

biases, particularly for precipitation (Varis et al. 2004), the primary variable that 

dominates in most hydrological regimes. For this reason, hydrological models are 

generally used to interpret the climate scenario results from climate models. 

Covey et al. (2003) mentioned many sources of uncertainty that have to be considered 

during the estimation of climate change impacts. Global Climate Model (GCM) 

uncertainty consists of two sources: structure and parameterisation scheme. In the case 

of using Regional Climate Model (RCM) data, Déqué et al. (2007) highlighted that the 

sources of uncertainty increase, as outputs are influenced by RCM resolution, numerical 

scheme, physical parameterizations and the forcing boundary conditions. Reaney and 

Fowler (2008) investigated the uncertainty present in studies considering the 

hydrological impacts from climate change (Figure 11-1). They considered that results 
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from the emission rates of greenhouse gases produce the major uncertainty but this is 

determined by society through polices and behaviour (Reaney and Fowler 2008).  

 

Figure 11-1 Sources of uncertainty in studies considering hydrological impacts from predicted climatic 
change (source: Reaney and Fowler 2008; modified by the author) 

A climate-change prediction (or projection) is the change between a model simulation 

of recent climate (generally 1961-1990) and the model climate prediction for a period 

(for example, 2071-2100) in the future, under a specific emissions scenario (Jenkins and 

Lowe 2003).  

11.3 Weather Generators 

A weather generator is a statistical method of creating projections of future climate 

variables. There are two fundamental types of daily weather generators based on daily 

precipitation: Markov chain approach (Hughes et al. 1993; Hughes and Guttorp 1994; 

Hughes et al. 1999; Mehrotra and Sharma 2005) and the spell-length approach (Wilks 

1999). Kilsby et al. (2007) point out that previous weather generators have used simple 

rainfall models based on either Markov chains (Richardson 1981) or empirical 

distributions of wet or dry spells (Semenov and Brooks 1999; Kilsby et al. 2007). 

However, a stochastic weather generator model such as that of Kilsby et al. (2007) and 

also used in the UKCP09 weather generator generates a synthetic time series of rainfall, 

temperature, humidity, potential evapotranspiration and sunshine amount. The 

stochastic approach means that the state of the system at one time does not completely 

determine the state at the next time (Jones et al. 2009). 

Emissions 
Scenario

Climate 
model

Weather 
Generation

Hydrological
Model

Increasing uncertainty in results

- Model parameter 
uncertainty
- Model structural
uncertainty
- Analytical solution 
errors
- Implementation
errors
- Perceptual model
errors

- Model parameter 
uncertainty
- Model structural
uncertainty
- Analytical solution 
errors
- Implementation
errors
- Perceptual model
errors
- Realisations of 
stochastic
processes

- Model parameter 
uncertainty
- Model structural
uncertainty
- Analytical solution 
errors
- Implementation
errors
- Perceptual model
errors

- Prediction of 
population growth
- Predictions of
emission
- Predictions of
global economic
dynamics



 

281 
 

The general motivation for using the weather generator is to provide synthetic series of 

unlimited length (Hulme et al. 2002) or the possibility of infilling missing values by 

imputation (i.e., sampling missing observations from their conditional distribution given 

the available observations, see Yang et al. 2005; Semenov et al. 1998). The 

computational efficiency of this method allows for multi-model probabilistic projections 

or other impact assessments (Jones et al. 2009). 

Weather generators have been used in many different impact studies. For example, 

Hobson (2005) used a technique to couple a k-nearest stochastic weather generator and 

Precipitation-Runoff Modelling System (PRMS) basin model to simulate historic 

streamflow statistics and provide a framework for forecasting flows in the Upper 

Truckee River Watershed. Walsh and Kilsby (2007) used the UKCIP02 climate 

scenarios to produce climate sequences for the catchment flow regime affecting Atlantic 

salmon in the Eden catchment. In this study, the outputs from the UKCIP02 were used 

as the input series of the SHETRAN model, which subsequently generates flows to 

represent the climate in the 2080s. Fowler et al. (2008) developed a model to combine 

different projections of change in climate and flow statistics from multiple RCMs into 

single probabilistic estimates. They used the stochastic weather generator (SWG) 

downscaling approach to produce catchment scale climate change scenarios for the 

River Eden in northwest England. A simplified and calibrated version of the Arno 

hydrologic model (Todini 1996) was used to produce 1000 synthetic 30-year daily flow 

sequences.  

In this study, in order to estimate future climate conditions at the local scale, weather 

generator models from the UKCP09 weather generator were used. UKCP09 contains a 

weather generator which is able to output both daily and consistent hourly weather data 

on a 5 km grid over the UK for the historic period (1961-1990) and future time slices in 

decadal steps from the 2020s up to the 2080s (with each encompassing a separate thirty 

year period) (Jones et al. 2009). These are described in further detail in the next section. 

11.4 UKCP09 Methodology 

The latest probabilistic projections from the United Kingdom Climate Impacts Program 

(UKCP09) can be used to produce probabilistic future weather sequences over the UK 

(UK Climate Projections 2009). Based on the UKCP09 probabilistic change factors over 

land, a stochastic climate change weather tool has been produced by Newcastle 
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University to generate weather files with either a daily or hourly time series (Jones et al. 

2009). 

UKCP09 provides climatic information for three emission scenarios: low, medium and 

high that are related to greenhouse gas emissions levels - SRES B1, SRES A1B and 

SRES A1FI scenarios in the IPCC Special Report on Emission Scenarios (SRES) 

(Nakicenovic et al. 2000). A scenario is not a prediction of the future, it is a coherent, 

internally consistent and plausible description of a possible future state of the world 

(Parry and Carter 1998). The UKCP09 weather generator provides seven different 

thirty-year time periods: 2020s (2010-2039), 2030s (2020-2049), 2040s (2030-2059), 

2050s (2040-2069), 2060s (2050-2079), 2070s (2060-2089) and 2080s (2070-2099). 

The image outputs that can be used to visualise the UKCP09 probabilistic climate 

projections are presented as Probability Distribution Function (PDF) plots. These help 

at single estimates to be defined, justified and placed in the context of alternative 

outcomes. 

The UKCP09 WG is based around a stochastic model that simulates future precipitation 

sequences. The UKCP09 weather generator then uses this daily precipitation sequence 

as the primary variable while other variables are created using mathematical and 

statistical relationships with daily precipitation and the previous day’s values of other 

climate variables.  The daily observed baseline climate (1961 – 1990) is used to 

calibrate the weather generator rainfall model. This model is applied across a 25 km 

grid, while the addition of a 5 km grid for the weather generator allows for changes in 

local topology and it is based on observations, which have been spatially interpolated 

onto the same 5 km grid but does not give any further climate information outside the 

25 km grid. 

The weather generator outputs nine daily variables: mean total precipitation, minimum 

temperature, maximum temperature, vapour pressure, relative humidity, sunshine hours, 

potential evapotranspiration (PET), direct radiation and downward diffuse radiation. 

The hourly temporal resolution contains seven output variables: mean total 

precipitation, mean temperature, vapour pressure, relative humidity, sunshine hours, 

direct radiation and downward diffuse radiation. 

In summary, the UKCP09 weather generator is able to generate daily and consistent 

hourly weather data on a 5 km grid over the UK for the historic period (1961-1990) and 
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future time slices in decadal steps from the 2020s up to 2080s. More details on the 

UKCP09 weather generator can be found in UK Climate Projections 2009.  

11.5 Methodology of deriving climate change projections 

In this study, climate change modelling was performed using the UKCP09 weather 

generator data (WG). Firstly, the emission scenarios medium (SRES A1B) and high 

(SRES A1FI) were selected because result in the medium and highest increases in 

global-mean temperature by 2100. Emissions scenario A1B is based on the assumption 

of very rapid future economic growth, technological developments with fossil fuel use. 

Scenario A1FI assumes only very rapid future economic growth and fossil fuel use.  It 

was decided to assess climate change in the 2020s (2010-2039) and the 2050s (2040-

2069) for monthly temporal averages. The use of these two time slices avoids the use of 

data with high uncertainty for 2080s period and to consider the results on scientific 

(2050s) and shorter-term management (2020s) time scale. In the next step, the 5 km grid 

point of the weather generator was selected that covers the study site. The option for 

random sampling of model variants was selected and the weather generator was run for 

100 randomly selected samples of the input parameters. The time frequency of weather 

generator output was hourly and daily. The duration of each weather generator run was 

set to 30 years. The random number seed generator was selected to be 1.  The run of 100 

randomly selected samples for 30 years produced 100 30 year stochastic simulations of 

the baseline period (1961-1990) and another 100 of the future scenario climate period. 

In each simulation, precipitation (P) and mean potential evaporation (PET) were output. 

11.5.1 Climate change and runoff scenarios 

Available data 

The monthly baseline 1961-1990 averages for rainfall were provided by the UKCP09 

weather generator. The climate change scenarios obtained from the weather generator 

were prepared in the form of hourly time scale for precipitation and daily time scale for 

PET. They consist of 100 different realisations of a possible future climate scenario with 

each realisation consisting of a thirty-year time series. For each WG 100 30-year 

climate scenarios were produced for each of the SRES A2 and SRES A1FI emissions 

scenarios.  
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After the calibration and validation of the SHETRAN model carried out for the 

hillslope, the hourly future climate variables (P and PET) for the 2020s and 2050s 

period were input to SHETRAN and used to examine changes in flow. All the 

simulations were based on an hourly time step. 

11.6 Results of future climate model runs 

11.6.1 Analysis of monthly rainfall projections 

Future climate conditions at the hillslope were estimated by applying the corresponding 

climate change scenarios for the observed climate baseline as detailed in the previous 

section.  

The mean monthly rainfall data for the 2020s and 2050s time slices, and for the medium 

(M) and high (H) emission scenarios (A1B and A1FI) are illustrated in Figure 11-2. 

These monthly series are the average of 100 rainfall series of each scenario. 

 

Figure 11-2 Comparison of mean monthly rainfall for the baseline and UKCP09 scenarios  

Comparison between the UKCP09 scenarios and the baseline showed that rainfall is 

projected to increase from January to April, decrease from May to September and to 

increase from October to December. The scenario shows mostly higher rainfall except 

for April to September. Seasonally, mean projected rainfall was higher in the autumn 

and the winter, while less in the spring and the summer. The largest changes are 

projected for the High scenario between the 2020s and 2050s. Rainfall is higher during 

July for the 2020-High than for the 2050-High. Rainfall is significantly lower from June 
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to September and higher from October to April for the 2040-2069 period than for the 

2010-2039 period. 

Annual rainfall for the baseline period was 1014 mm. The baseline and future rainfall 

for the each emission scenario were compared (Table 11-1). For the A1B scenario, the 

average annual rainfall in the 2020 centred period (2010-2039) was 0.6% less than for 

the baseline. For the A1FI scenario, there was 1.2% reduction. By 2050, rainfall 

reductions were much larger for the A1FI scenario than for the A1B scenario. Average 

annual rainfall for the 2050-centred period (1040-2069) was approximately 2.6% and 

3.2% less than the baseline for the A1B and A1FI scenarios respectively. However, for 

the A1FI scenario, the rainfall reduction to 2020 was smaller than it was for 2050, at 

approximately 1.2% compared with 3.2%.  

Table 11-1 Mean annual rainfall for the A1B and A1FI climate scenarios, reported for baseline and 
future periods 

Period Baseline 
A1B (Medium) A1FI (High) 

Rainfall (mm) % Change from 
baseline Rainfall (mm) % Change from 

baseline 
(1961-1990) 1014  -  - 

2020 (2010-2039)  1008 -0.6 1002 -1.2 
2050 (2040-2069)  988 -2.6 982 -3.2 

Table 11-2 compares the average winter (DJF) and the summer (JJA) rainfall for the 

baseline (1961-1990) and climate change projections (2020 and 2050). The UK Climate 

Projections for the 2020s and 2050s show that a trend toward wetter winters and drier 

summers. More specifically, an average rainfall increase in the winter for the Medium 

and High emissions scenario of between 0.4% and 2.7% for the 2020s, and 10.0% to 

11.6% for the 2050s. Summer rainfall was highest in the baseline period (1961-1990), 

was lower in 2020 and lower still in the 2050 period. By 2050, rainfall reductions were 

much larger for the Medium and High scenarios than for the 2020.  

Table 11-2 Comparison of baseline and climate projectors for the winter and the summer rainfall 

 
Baseline Rainfall (mm) % Change from baseline 

2020M 2050M 2020H 2050H 2020M 2050M 2020H 2050H 
Winter 
(DJF) 317 321 349 314 344 2.7 11.6 0.4 10.0 

Summer 
(JJA) 193 185 170 187 168 -4.0 -11.7 -2.9 -12.8 

11.6.2 Runoff results of future climate model runs 

The runoff results are the average of the SHETRAN simulations for each emission 

scenario (A1B and A1FI). It has been analysed for the mean annual and monthly runoff 
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assessed at two 30-year time-slices between 2020 and 2050 and the baseline period 

(1961-1990). Projected and baseline runoff have been compared. 

Figure 11-3 shows the monthly runoff projected for the 2020s and 2050s under the High 

and Medium emission scenarios and the baseline (1961-1990) period. Simulations of the 

future runoff predict increases in the autumn and the winter, and decreases in the 

summer runoff. The following runoff results are the average of 100 simulations for each 

emission scenario. 

 

 

Figure 11-3 Mean monthly runoff for the hillslope for the A1B and A1FI climate scenario 

According to the climate change projections, an increase relative to the summer and a 

significant decrease compared to the historical observations in the long-term mean 

monthly runoff can be expected from August to December for the 2010-2039 period and 

from September to December for the 2040-2069 period. For the months June and July a 

decrease in the long-term mean monthly runoff is expected for both periods and also in 
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the month of August for the 2040-2069 period. The projected runoff for the A1FI 

scenario in the 2020s is lower than for the 2050s from December to May. This effect is 

also evident for the A1B scenario where the projected runoff for the 2020s was lower 

than for the 2050s from November to March. The highest increase in mean runoff at the 

hillslope is projected to occur in December for both time periods and both scenarios.  

The mean annual runoff for each emission scenarios for the future periods compared to 

the baseline period are shown in Table 11-3. The largest decrease in runoff was found 

for the A1FI scenario by 2050 of 4.8%. The runoff reduction was similar to the A1B 

scenario by 2050 and A1FI by 2020 at 3.4%. However, it appears that runoff for the 

A1B scenario by 2020 was 0.4% less than the baseline period. 

Table 11-3 Mean annual runoff for the A1B and A1FI climate scenarios, reported for baseline and future 
periods 

Period Baseline 
A1B (Medium) A1FI (High) 

Runoff (mm) % Change from 
baseline Runoff (mm) % Change from 

baseline 
(1961-1990) 563  -  - 

2020 (2010-2039)  561 -0.4 544 -3.4 
2050 (2040-2069)  544 -3.4 536 -4.8 

Table 11-4 compares the average winter and the summer runoff for the baseline and 

climate projectors (2020s and 2050s) under the Medium and High emission scenarios. 

The changes show wetter winters and drier summers. More specifically, an average 

runoff increase in the winter for the High and Medium emissions scenario of 22 and 

24% for the 2020s, and 35 to 37% for the 2050s. By 2050, runoff reductions are much 

larger for both scenarios than for the 2020. This indicates lack of runoff in the summer 

months. 

Table 11-4 Comparison of baseline and climate projectors for the winter and the summer runoff 

 
Baseline Runoff (mm) Percentage difference 

2020M 2050M 2020H 2050H 2020M 2050M 2020H 2050H 
Winter 
(DJF) 230 286 310 280 310 24 37 22 35 

Summer 
(JJA) 37 3 0 3 0 -92 -100 -92 -100 

The mean monthly runoff results for each emission scenario are shown in Table 11-5. 

An increase in monthly runoff can be expected in November and/or December, and  in 

April and May for the 2040-2069 period under A1B and A1FI emission scenarios and 

the 2010-2039 period under both scenarios. The highest relative increase in the mean 

monthly runoff for the 2010-2039 period in comparison with the baseline period can 

occur in May under the A1B scenario (+100%)  and in April under the A1FI scenario 
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(+94%). In the case of the 2040-2069 period, the highest increase can be assumed to be 

in April under the A1B scenario (+80%) and in March under the A1FI scenario (+96%).  

Table 11-5 Mean monthly runoff for the A1B and A1FI climate scenarios, reported for baseline and 
future periods 

Month Runoff 
% Change from  baseline 

2020 2050 
Baseline (mm) A1B A1FI A1B A1FI 

January 83 15 15 28 24 
February 53 58 54 69 74 
March 30 70 63 77 96 
April 13 91 94 80 84 
May 3 100 91 20 17 
June 1 -100 -100 -100 -100 
July 8 -100 -100 -100 -100 

August 28 -90 -90 -100 -10 
September 61 -63 -61 -75 -83 

October 90 -35 -35 -39 -46 
November 100 -6 -8 1 -10 
December 95 14 -10 27 21 

 

A decline in the long-term mean monthly runoff may occur from June to November 

and/or December for the 2020s period under both emission scenarios and the 2050s 

period under the A1FI scenario. The extreme decrease in monthly runoff could occur in 

June and July for the 2020s and 2050s period under the High and Medium emission 

scenarios, i.e. -100. This decrease in runoff can be caused by a decrease in rainfall 

exactly in these months (Figure 11-2). 

11.7 Projected changes in rainfall and runoff patterns 

For this study the weather generator (WG) 100 30-year climate series were produced for 

each of medium (SRES A1B) and high (SRES A1FI) scenarios, which means the other 

possible scenarios, such as Low-Medium and Low-High remains unstudied. For the 

modelling study, focus is given on the fate of runoff at a hillslope scale.  

For both future periods mean monthly rainfall is projected to decrease for all emission 

scenarios except for the months of February and December, and including January for 

the 2050s. The projected change in the rainfall pattern has a direct impact on the runoff 

at the hillslope. A projected increase in runoff can be attributed to the projected increase 

in rainfall from September to December (Figure 11-3). The most extreme projected 

decrease in monthly runoff during June and July for both periods, and additionally in 

August for the 2040-2069 period, due to decrease in rainfall during these months. This 

suggests the absence of antecedent soil moisture that directly depends on the rainfall of 

the previous months to produce flow. The results indicate a projected reduction in the 
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future runoff during the summer period and an increase during the winter period. This is 

consistent with the findings of Walsh and Kilsby (2007) who found the same trend for 

the River Eden catchment above at Temple Sowerby (area 600 km2), in the northern 

UK. 

The rainfall patterns of the future climate conditions may gradually lead to a critical 

reduction in the soil moisture for the hillslope of a catchment during the summer months 

and consequently to the total lack of the catchment’s deep subsurface flow. The effect 

of increased climate variability on water storages at the hillslope depends on the 

hydrologic processes of rainfall. The low runoff simulated for the scenario period would 

potentially cause drought which would have effects on stream ecology (eutrophication, 

blooming of algae, watercolour) while on the other hand simulated high runoff would 

cause more floods (erosion of stream banks, lower accessibility of fields) which would 

have some effect on agriculture. The evidence of the climate change impact is seen 

during the summer 2010 where low runoff increase the DOC and the nitrate 

concentration in stream of the Hollow sub-catchment that cause the problems in stream 

such as eutrophication.  These future changes would depend on change in future 

rainfall, runoff volume and runoff peak. In the Eden basin, floods are normally 

considered as a serious problem, as they often have an impact on agriculture fields, 

infrastructure and buildings. What this work does not consider, is the application of the 

weather series to the catchment and sub-catchment model and the impact on stream 

flow that could reveal much about the frequency and magnitude of peak flows, low, 

high flows and extreme floods.  

The propagation of uncertainties and errors with modelling future climate changes on 

runoff is amplified during the hydrological modelling. The results of this climate change 

modelling are likely affected by the uncertainty of hydrological modelling and 

processes to model as shown in Figure 11-1 and described by Reaney and Fowler 

(2008). The two emission scenarios used in this study ranged from medium (A1B) to 

high (A1FI) are based on the future greenhouses gas emission which represented a great 

deal of uncertainty as to how these will develop in the future. The scenarios do not 

represent actual predictions but do represent projected future climate data. By taking 

more climate change scenarios into account, it is possible to give a better impression of 

the results. Nevertheless, the results of this study are believed to be responsible for the 

purpose of estimating approximate runoff from the hillslope within the historical data 

and future changes in runoff for the range of specified climate scenarios. 
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The data in this study are useful in projecting future water availability and can be used 

to support management changes. The potential impact of climate change is a significant 

consideration for decision making at large scales.  

11.8 Summary 

This research assesses the effects of climate change on rainfall and runoff at a hillslope 

scale. Modelled rainfall and runoff patterns were assessed for 100 randomly generated 

samples for 30-year time slices representing the following timeframes: 

• 1961-1990 baseline 

• 2020 centred future period (2010-2039) 

• 2050 centred future period (2040-2069) 

The emission scenarios medium (SRES A1B) and high (SRES A1FI) were selected for 

the simulations. Projected rainfall series for these two emission scenarios were applied 

to the SHETRAN hydrological model for the hillslope. In terms of seasonal changes, 

future projections of change in rainfall indicate an increase during the winter months 

with decreases during the summer. By the 2020s between 0.6 % and 1.2 % less rainfall 

is expected under the medium and high emission scenarios. By the 2050s rainfall 

reduction is expected to fall between 2.6 % (medium emission) and 3.2 % (high 

emission). The monthly mean runoff is seen to decrease from June to November and/or 

December with an extreme decrease in June and July, and increase from November 

and/or December to May. The projected increase in mean runoff is predominantly 

through increases in the winter and the spring runoff, while monthly mean runoff in the 

summer and the autumn are projected to remain the same or to decrease. 

These results provide an assessment of direct climate change impacts on runoff at the 

hillslope scale in the range of medium to high emission scenarios. This work should be 

extended to the  catchment and sub-catchment scales, and to simulate the impacts of 

climate change upon carbon and nitrate water quality. 
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Chapter 12.   Conclusions 

12.1 Introduction 

The aim of the work presented in this study was to provide a new understanding of 

surface and subsurface hydrological controls on nutrient fluxes within mineral soils at 

the hillslope and catchment scale in Cumbria (UK), and how these are possibly 

influenced by future climate variability.  Based on the findings, a new conceptual 

understanding was developed of the role of runoff on nutrient fluxes within mineral 

soils of the unsaturated zone, and applied to a larger scale. The overall methodology has 

been integrated in the form of field experiments and sampling, laboratory analysis and 

modelling. The hillslope runoff experiment was conducted on two hillslope runoff plots 

to identify runoff processes and to quantify nutrient fluxes, one under perturbed (i.e. 

enhanced rainfall) conditions, and the other as the control plot. Hydrochemical 

separation was carried out to provide quantitative information of storm and seasonal 

runoff pathways at the outlet of the sub-catchment. The modelling approach included 

development and testing of numerical flow and transport models, and simulation of 

possible impacts of precipitation variability on runoff.  

In the first section of this chapter, the main findings of this study are presented with 

respect to the initial four objectives. Concluding remarks are given with regard to the 

key hypotheses. In the last section, recommendations for further study are presented. 

12.2 Main thesis findings 

Objective 1: Identification and quantification of runoff processes at the catchment and 

hillslope scales using field experiments.  

It was hypothesized that hydrochemical flow separation using continuous measurement 

of variables at the catchment outlet could provide quantitative estimates of surface and 

subsurface components of flow at the catchment scale (Hypothesis 3). This hypothesis 

was addressed by the application of two-component hydrograph separation on three 

high to moderate intensity rainfall events in the Hollow sub-catchment to evaluate the 

dominant storm runoff generation processes. Electrical Conductivity (EC) was used as a 

continuous tracer in combination with stream discharge data. Hydrograph separation 

indicates that storm flow was largely composed of pre-event water that is a significant 

portion of the total runoff for each event. Average pre-event water contributions for all 
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events range from 78% to 85%. The current study was unable to determine 

hydrochemical separation at the outlet of the Blind Beck catchment because no data of 

continuously monitored electrical conductivity were available. Hydrochemical flow 

separation has been shown to be an effective tool for separating runoff at the outlet of 

the sub-catchment.  

At the plot scale (2 m2) observations are extrapolated to the hillslope transect 

determining the hydrological role of nutrient and water mobilization within the 

unsaturated zone. The examination of the hydrological behaviour at the hillslope during 

runoff experiments was based on analysis of enhanced rainfall and three rain storm 

events that show significant runoff differences. Analyses of runoff for different climate 

conditions within the unsaturated zone suggested: i) overland flow varied from 14% in 

dry conditions (before treatment) to more than 67% in the enhanced rainfall conditions 

of the total measured overland flow, ii) lateral subsurface flow dominates hillslope 

runoff during the transition period and iii) overland flow occurs in the winter during 

periods of frozen soil as Hortonian flow. The enhanced rainfall experiment produced 

68% of overland flow over the longer term as compared to the natural climate condition 

control plot with 32% overland flow.  

Objective 2: Determination of hydrological controls on soil C and N storage and 

transport using geochemical analyses.  

The runoff hillslope experiment was used to help us to understand the effects of rainfall 

and runoff on soil properties under various climate conditions. In this study for the first 

time is used TG-DSC-QMS method to give an estimation of carbon loss during change 

of climate conditions. These observations beg the question:  How and why soil carbon is 

declining? This method provides the significant results of 67% C loss in the wet 

condition.  From the author's point and based on the results the TG-DSC-QMS method 

may serve as a valid tool to estimate carbon loss. During the wet period, the significant 

changes in TOC content (38%) were in the upper soil layer with increasing of TOC 

(Section 8.4). For the same conditions, the TN increased with significant changes of 

59% observed in deeper soil layers (20-30 cm). The amount of soil organic carbon 

(SOC) that is stored in the soil at 10 cm soil depth was estimated to be 23 t/ha in the dry 

condition and 32 t/ha in the wet conditions.  Declining of soil organic carbon is 

accelerating by the removal of soil organic matter. The main key for the declining of 

soil carbon is a significant influence of rainfall intensity and duration.  
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Objective 3: Construction of a conceptual model of storages and fluxes of water and 

nutrients from the hillslope to the catchment scales.  

A conceptual model of the EC flushing was being developed for each plot during the 

storm event (Section 7.4, Figure 7-8). It was found an increasing trend of the total 

dissolved solids in the perturbed plot during an intensified rainfall event that suggested 

additional contributions from runoff than rainfall. The electrical conductivity measured 

at a control plot for the extreme storm event (November 2009) showed the flushing 

mechanism of the rain and dilution of the total dissolved solids. Based on these data, the 

saturation excess overland flow occurred during the large flood event at the perturbed 

plot. It is the result of rain falling on the saturated plot which, being unable to infiltrate, 

collect nutrients from the upper soil layer, runs off downslope and export labile 

nutrients (DOC and NO3
-). The DOC and the NO3

- export in the overland flow were 

smaller for the unchanged climate conditions compared to the intensified conditions. 

These findings support a conceptual model of water and nutrient flushing from the 

hillslope. 

The runoff water samples were collected on a monthly basis from the perturbed and 

control plots at the hillslope scale. The DOC export to surface water is facilitated by the 

subsurface flow under perturbed, while the export of the NO3
- is dominated by the 

overland flow under perturbed conditions. The enhanced rainfall treatment in the 

overland flow reduced the DOC concentration 1.7 times, while increasing the NO3
- 

concentration 2.5 times. For the observed period in intensified rainfall conditions, the 

mean DOC exported from the perturbed plot was 9.7 kg/ha in the overland flow, and   

22 kg/ha in the subsurface flow. In contrast, nitrate exports were larger in the overland 

than in the subsurface flow. The mean nitrate loss was 3.3 kg/ha in the overland flow, 

and 1.8 kg/ha in the subsurface flow. The results do partially support the hypothesis that 

the subsurface leaching pathway for nutrient losses from soil are enhanced relative to 

losses through surface flows under an intensified hydrological cycle predicted for 

continued global warming (Hypothesis 1). This hypothesis is not supported by the NO3
- 

as shown that the dominant flow in the nitrate loss was the overland flow. The DOC 

export to surface water is facilitated by the subsurface flow during the large November 

storm event, while the NO3
-export is dominated by the overland and subsurface storm 

flows, which do support listed hypothesis. Therefore, in order to apply this hypothesis 

in full other storm events should also be considered to validate these findings.  



 

294 
 

It is concluded that the export of C and N from the hillslope to a greater degree depends 

on the rainfall intensity and duration. Based on this data, understanding about the 

leaching process has been improved for determining changes in the carbon and nitrogen 

balance in the soil. These observations supported a new conceptual model of nutrient 

flushing from the hillslope scale.  

The novel conceptual models for the export of the labile nutrients (DOC and NO3
-) from 

the hillslope to the stream were developed. These models represent a new approach of 

where water and nutrients travels (e.g. soil depth), how it travels (e.g. surface or 

subsurface flow), when it travels (e.g. storm events), and where it is transported (e.g. 

streams).  

The conceptual runoff generation models have been developed for the hillslope, 

presents flow pathways for dry, transition and wet periods. During the dry period, the 

subsurface flow dominates, while during the wet period shallow and deep lateral 

subsurface flow are the dominant pathways. Overall, it is concluded that main transport 

of delivering nutrients (DOC and NO3
-) to the streams is intensified by rainfall events. 

The hypothesis that labile nutrient source of the soil solution is preferentially depleted 

under an intensified hydrological cycle is correct  (Hypothesis 2). This depletion is 

based on dominant runoff process occurring within the unsaturated zone, the role of 

rainfall (duration and intensity) and seasonality. 

Objective 4: Development and testing of numerical flow and transport models, and 

application of models using probabilistic future weather projections (UKCP09) to 

simulate possible impacts of precipitation variability on runoff.  

The hydrological models (Chapter 10) have been developed to address the initial 

hypothesis that with increases of scale increases subsurface flow relative to overland 

flow (Hypothesis 4). A modelling approach was used to quantify the runoff proportion 

and to test the significance of scale. 

The hydrological model has been successfully developed and calibrated to represent 

hydrological processes in the catchment and the sub-catchment. The statistics describing 

the fit of the hourly predicted flows, including R2, and Nash-Sutcliffe coefficient of 

efficiency (ENS) – a very good model according to Henriksen et al. (2003). The 

satisfactorily performance of the model shows the model is reasonably capable for 

prediction of runoff. The behaviour of the catchment differs from the behaviour of the 
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sub-catchment in dry periods; no discharge in the sub-catchment. Evaluation on 

performance of runoff simulation shows the results are consistently better at small scale 

than catchment, which indicates that SHETRAN model is suitable for small-scale 

hydrological modelling. The possible uncertainties in the modelling process could be 

attributed to input parameters, model assumptions and measuring data for the model 

validation.   

The hillslope model aimed to capture the significant hydrological responses in storm 

events. A good relationship in the hydrographic shapes was found between the hillslope 

and sub-catchment scale. Furthermore, hydrograph observed at smaller scale reproduce 

rapid runoff, and the more baseflow – dominant runoff at the catchment scale. 

It was hypothesised that with increases of scale increases subsurface flow relative to the 

overland flow, which is supported by the results of modelling approach. Moving from 

hillslope scale to sub-catchment and catchment scale, subsurface flow increased with a 

larger proportion at the catchment scale.  

The model satisfactorily simulated spatial nitrate concentration for a heavy storm event 

at both catchment scale and sub-catchment scale in agreement with field measurement 

data. In the light of these results, SHETRAN demonstrated its ability to satisfactorily 

simulate runoff and nitrate across different scales. 

To estimate climate impacts on runoff, projected rainfall and potential evaporation 

series for two emission scenarios were applied to the hillslope hydrological model for 

the 2010-2039 and 2040-2069 period. The emission scenarios of medium (A1B) and 

high (A1FI) greenhouse gas emission were selected. The seasonal pattern in hillslope 

runoff is expected to change giving significantly higher runoff during the winter and 

decrease during the summer. The most dramatic change in hydrological regime is 

predicted by a lack of runoff during the summer (June and July). Decreases in the mean 

rainfall between 0.6% and 2.6% for the 2020 and 2050 period of the A1B emission 

scenario are modelled to decrease annual runoff 0.4% and 3.4 %. For the A1FI emission 

scenario, a decrease in rainfall between 1.2% and 3.2% is modelled to decrease annual 

runoff by 3.4% for the 2020 period and by 4.8% for the 2050 period. An increase in 

monthly runoff can be expected in November and/or December, and  in April and May 

for the 2040-2069 period under A1B and A1FI emission scenarios and the 2010-2039 

period under both scenarios. This increase could be caused by an increase in the rainfall 

during the whole year except for the summer months (June and July) for the both 
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periods under High (A1FI) and Medium (A1B) emission scenarios. The monthly mean 

runoff is seen to decrease from June to November and/or December with an extreme 

decrease in June and July, and increase from November and/or December to May. The 

projected increase in mean runoff is predominantly through increases in the winter and 

the spring runoff, while monthly mean runoff in the summer and the autumn are 

projected to remain the same or to decrease. 

This study has improved our understanding of the dominant role of hydrological control 

on nutrient flux under different climate conditions. The data in this study are useful in 

projecting future water availability and can be used to make management changes. The 

potential impact of climate change is a significant consideration for decision making on 

large scales.  

12.3 Recommendations 

Due to the fixed time limit set for this study the following recommendations are given 

for further research: 

• more detailed investigation of the runoff generation that could include a three-

component hydrograph separation at the outlet of the catchment. It is 

recommended to make use of other tracers to support separation of runoff 

components.   

• research should also be undertaken to investigate the nutrient data beyond the 

Blind Beck catchment and to determine biological nutrient response. More 

information on the concentration of phosphorus, dissolved oxygen (DO), 

suspend sediments and turbidity in stream water would give additional 

information on the water quality. More broadly, research is also needed to 

determine the water quality of groundwater and estimate possible contribution to 

the stream water. 

• automatic samplers for water quality need to be installed at different points 

along the stream so that storm events can be captured without dependence on 

manual sampling and based on high resolution detailed measurements, to allow 

nutrient fluxes to be estimated more accurately.  

• soil moisture levels should be measured at various locations within the 

catchment at different soil depths to establish how different topography and soils 

respond to rainfall.  
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• other sources of soil organic carbon (SOC) depletion such as microbes, climate 

change (warming and drying) and erosion should be investigated to get a broader 

picture of the main drivers of carbon losses. 

• the SHETRAN modelling should be improved by automatic calibration. Further 

modelling of nitrate should include simulation of nitrate leaching to 

groundwater. 

• climate change simulations should be considered for the catchment scale, 

including also assessment on nitrate and carbon loads in the stream. It would 

also be interesting to assess the effects of climate change on sediments. 

• a comparison of findings could be made for other sites with different soil types 

(e.g. peat), climate, geology, geometry and vegetation.  It is recommended that 

future research be undertaken at a wider scale using the methodology of this 

study.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 



 

298 
 

Chapter 13.   References 

Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connell and J. Rasmussen (1986a). An 
introduction to the European Hydrological System – Systeme Hydrologique Europeèn, 
SHE. 1: Hystory and physolophy of a physically-based, distributed modelling system. 
Journal of hydrology, 87: 45-49. 

Abbott, M.B., J.C. Bathurst, J.A. Cunge, P.E. O’Connell and J. Rasmussen (1986b). An 
introduction to the European Hydrological System – Systeme Hydrologique Europeèn, 
SHE. 2: Structure of a physically-based, distributed modelling system. Journal of 
hydrology, 87: 61-67. 

Ackers, P., W.R., White, J.A. Perkins and A.J.M. Harrison (1978). Weirs and Flumes 
for Flow Measurement, Chichester, New York, Brisbane and Toronto: John Wiley and 
Sons Ltd. 

Adams, R., S.M. Dunn, R. Lunn, R. Mackay and J.R. O'Callaghan (1995). Assessing the 
performance of the NELUP hydrological models for river basin planning. Journal of 
Environmental Planning and Management, 38(1): 53-76. 

Adamson, J.K., W.A. Scott and A.P. Rowland (1998). The dynamics of dissolved 
nitrogen in a blanket peat dominated catchment. Environmental Pollution 99:69-77. 

Addiscott, T.M., A.P. Whitmore and D.S. Pawlson (1991).  Farming, Fertilizers and the 
Nitrate Problem. CAB International, Wallingford: 176. 

Adeyemo, O.K., O.A., Adedokun, R.K. Yusuf and E.A. Adeleye (2008). Global NEST 
Yournal, 10(3): 326-336. 

Ågren, M. Haei, S. Köhler, K. Bishop and H. Laudon (2010). Long cold winters give 
higher stream water dissolved organic carbon (DOC) concentrations during snowmelt. 
Biogeosciences Discussions, 7: 4857–4886. 

Aiken, G. and E.  Cotsaris (1995). Soil and hydrology: their effect on NOM. Journal of 
the American Water Works Association, 87(11): 36-45. 

Ajami, N.K., H. Gupta, T. Wagener and S. Sorooshian (2004). Calibration of a semi-
distributed hydrologic model streamflow estimation along a river system.  Journal of 
Hydrology, 298: 112-135. 

Allan, J.D. (2001). Stream Ecology, structure and function of running waters. 
Dordrecht: Kluwer academic publishers. 

Allen, R.G., M.E. Jensen, J.L. Wright and R.D. Burman (1989). Operational Estimates 
of Reference Evapotranspiration. Agronomy Journal, 81: 650-662. 

Allen, R.G., L.S. Pereira, D. Raes and M. Smith (1998). Crop evapotranspiration. 
Guidelines for computing crop water requirements. FAO, Irrigation and Drainage Paper, 
56. 

Allotey, D.F.K., R.D. Asiamah, C.D. Dedzoe and A.L. Nyamekye (2008). Physico-
chemical properties of three salt-affected  soils in the Lower Volta basin and 



 

299 
 

management strategies for their sustainable utilization. West African Journal of Applied 
Ecology, 12. 

Amacher, M.C. (1991). Methods of obtaining and analyzing kinetic data. In: Sparks, 
D.L., Suarez, D.L. (eds.), Rates of Soil Chemical Processes. Soil Science Society of 
America Journal, Madison, WI, 19–59. 

Andersen, H.E., M.L. Pedersen, O. Jorgensen and B. Kronvang (2001a).   Analysis of 
the Hydrology and Flow of Nitrogen in 17 Danish Catchments. Water Science and 
Technology, 44(7): 63-68. 

Andersen, J., J.C. Refsgaard and K.H. Jensen (2001b). Distributed hydrological 
modelling of the Senegal River Basin-model construction and validation. Journal of 
Hydrology, 247: 200-214. 

Anderson, M.G. and T.P. Burt (1982). The role of throughflow in storm runoff 
generation: an evaluation of a chemical mixing model. Earth Surface Processes and 
Landforms, 7: 565–74. 

Anyasi, R.O. (2012). Growth of Chromolaena odorata (Siam weed) in two soil samples 
studied under greenhouse condition. Scholarly Journal of Agricultural Science, 2(10):  
253-262. 

Aquaflex (2005). Interpreting an AQUAFLEX Soil Moisture Meter Graph.  
Available at: 
http://www.streatsahead.com/Pages/Aquaflex%20Menu.htmlreat%20Instruments%20%
20%20Moisture%20Meter,%20Analyzer%20&%20Moisture%20Control.htm(Accessed
: April 2011). 

Armstrong, A.C. and T.P. Burt (1993).  Nitrate Losses from Agricultural Land, in: Burt, 
T.P., A.L. Heathwaite and S.T. Trudgill (eds.),  Nitrate: Processes, Patterns and 
Management. John Wiley and Sons Ltd, Chichester, UK, 239-268. 

Arnell, N. (2002). Hydrology and Global Environmental Change. Pearson Education 
Limited, Essex, UK. 

Atkinson, T.C. (1978). Techniques for measuring subsurface flow on hillslopes. In: 
Kirkby, M.J. (eds.), Hillslope  Hydrology. John Wiley, Chichester, UK. 

Bagayoko, F. (2006). Impact of land-use intensity on evaporation and surface runoff: 
Processes and parameters for eastern Burklina Faso, West Africa. Ecology and 
Development Series No. 40. 

Barber, N. (2008). The Application of a Farm Integrated Runoff Management (FIRM) 
Plan to Sykeside Farm, Cumbria: A Scoping Study. School of Civil Engineering and 
Geosciences. Newcastle University. MSc Thesis. 

Barthold, F.K., R.F. Stallard and H. Elsenbeer (2007). Soil nutrient–landscape 
relationships in a lowland tropical rainforest in Panama, Forest 
Ecology and Management. Elsevier Science. Article in press. 

Bates, B.C, S.P. Charles and J.P Hughes (1998). Stochastic downscaling of numerical 
climate model simulations. Environ Modelling and Software, 13: 325–31. 



 

300 
 

Bathurst, J.C. (2001). Experimental design task force: Site selection report for the EA, 
E. A. (2007). Review of the 2007 summer floods. Environment Agency. Eden/Irthing 
catchments (unpublished report). Newcastle Upon Tyne, Newcastle University, 150. 

Bathurst, J.C., J. Ewen, G. Parkin, P.E. O’Connell and J.D. Cooper (2004). Validation 
of catchment models for predicting land-use and climate change impacts: 3. Blind 
validation for internal and outlet responses. Journal of Hydrology, 287(1-4): 74-94. 

Bathurst, J.C., S.J. Birkinshaw, F. Cisneros, J. Fallas, A. Iroumé, R. Iturraspe, M.G. 
Novillo, A. Urciuolo, A. Alvarado, C. Coello, A. Huber, M. Miranda, M. Ramirez and 
R. Sarandón (2011). Forest impact on floods due to extreme rainfall and snowmelt in 
four Latin American environments 2: Model analysis. Journal of Hydrology, 
doi:10.1016/j.jhydrol.2010.09.001 

Battarbee, R.W., M. Kernan, D.M. Livingstone, U. Nickus, P. Verdonschot, D. Hering, 
B. Moss, R.F. Wright, C.D. Evans, J.O. Grimalt, R.K. Johnson, E. Maltby, C. Linstead 
and R.A. Skeffington (2008). Freshwater ecosystem responses to climate change: the 
Euro-limpacs project, p. 313-354, In P. Quevauviller, et al. (eds.), The Water 
Framework Directive - Ecological and Chemical Status Monitoring. John Wiley and 
Sons Ltd, Chichester, UK. 

Bekoe, E.O. (2005). Application of a hydrological model in a data-poor tropical West 
African catchment: a case study of the Densu Basin of Ghana. Institute of Water and 
Environment. Cranfield University at Silsoe. PhD Thesis. 

Bergström, S., B. Carlsson, M. Gardelin, G. Lindström, A. Pettersson and M. 
Rummukainen (2001). Climate change impacts on runoff in Sweden - assessments by 
global climate models, dynamical downscaling and hydrological modelling. Climate 
Research, 16: 101-112. 

Bertilsson, S. and J.B. Jones (2003). Supply of dissolved organic matter to aquatic 
ecosystems: autochthonous sources in Aquatic ecosystems: interactivity of dissolved 
organic matter. Findlay, S.E.G.  and R.L. Sinsabaugh (eds.), Elsevier Science, New 
York: 26-59. 

Betson, R.P. (1964). What is basin runoff? Journal of Geophysical Research, 69: 1541-
42. 

Beven, K. (1995). Linking parameters across scales: subgrid parameterizations and 
scale dependent hydrological. Hydrological Processes, 9: 507–25. 

Bier, A.F. (2004). Investigating runoff generation processes in a small forested 
headwater catchment using artificial tracers. The Faculty of Graduate Studies. 
Geography. The University of British Columbia, Vancouver. MSc thesis. 

Birkinshaw, S.J. and J. Ewen (2000a). Nitrogen transformation component for 
SHETRAN catchment nitrate transport modelling. Journal of Hydrology, 230: 1–17. 

Birkinshaw, S.J. and J. Ewen (2000b). Modelling nitrate transport in the Slapton Wood 
catchment using SHETRAN. Journal of Hydrology, 230: 18–33. 

Birkinshaw, S.J., P. James and J. Ewen (2010). Graphical User Interface for Rapid Set-
up of SHETRAN Physically-Based River Catchment Model. Environmental Modelling 
and Software, 25: 609-610.  



 

301 
 

Bishop, K.H., H. Grip and A. O’Neill (1990).The origins of acid runoff in a hillslope 
during storm events, Journal of Hydrology, 116, 35–61. 

Blöschl, G. and M. Sivapalan (1995).Scale issues in hydrological modeling - a review, 
Hydrological Processes, 9(3-4): 251-290, 1995. 

Blöschl, G. (2001). Scaling in hydrology. Hydrological Processes, 15: 709– 711. 

Bohté, R., M.L. Mul, T.A. Bogaard, H.H.G. Savenije, S. Uhlenbrook and T.C. Kessler 
(2010). Hydrograph separation and scale dependency of natural tracers in a semi-arid 
catchment. Hydrology and Earth System Sciences Discuss, 7: 1343-1372. 

Bonell, M. (1993). Progress in the understanding of runoff generation dynamics in 
forests, Journal of Hydrology, 150: 217–275. 

Bonell, M. (1998). Selected challenges in runoff generation research in forests from the 
hillslope to headwater drainage basin scale. Journal of the American Water Resources 
Association, 34: 765-785. 

Borken, W. and E. Matzner (2009). Reappraisal of drying and wetting effects on C and 
N mineralization and fluxes in soils. Global Change Biology, 15:808-824. 

Bouraoui, F. L. Galbiati and G. Bidoglio (2002). Climate change impacts on nutrient 
loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences, 
6(2): 197–209. 

Boyer, E.W., G.M. Hornberger, I.C.E. Bencala and D.M. McKnight (1997). Response 
characteristics of DOC flushing in an alpine catchment. Hydrological Processes, 11(12): 
1635-1647. 

Brooks, R.H. and A.T. Corey (1964). Hydraulic properties of porous media. Hydrology 
Papers 3. Colorado State University, Fort Collins. 

Broos, K. and J. Baldock (2008). Building soil carbon for productivity and implications 
for carbon accounting in 2008. South Australian GRDC Grains Research Update. 

Brown, M.E. (1988). Introduction to thermal analysis: Techniques and applications. 
Chapman and Hall, London. 

BSI (1981) Methods of measurement of liquid flow in open channels. Weirs and flumes. 
Method using thin-plate weirs (BS3680- 4a:1981). 

Burke, I.C., C.M. Yonker, W.J. Parton, C.V. Cole, K. Flach and D.S. Schimel (1989). 
Texture, climate, and cultivation effects on soil organic content in U.S. grassland soils: 
Soil Science Society of America Journal, 53: 800-5. 

Burns, D.A. (2005). What do hydrologists mean when they use the term flushing? 
Hydrological Processes, 19: 1325–1327. 

Burns, D.A., R.P. Hooper, J.J. McDonnell, J. Freer, C. Kendall and K. Beven (1998). 
Base cation concentrations in subsurface flow from a forested hillslope—the role of 
flushing frequency. Water Resources Research, 34: 3535–3544. 



 

302 
 

Burns, D.A. and A.C. Kendall (2002). Analysis of delta N-15 and delta O-18 to 
differentiate NO3) sources in runoff at two basins in the Catskill Mountains of New 
York. Water Resources Res, 38:1051. 

Burt, T.P. (1979). The relationship between throughflow generation and the solute 
concentration of soil and stream water. Earth Surface Processes, 4: 257-266. 

Burt, T.P. (1986). Runoff processes and solutional denudation rates on humid temperate 
hillslopes. In Trudgill, S.T., editor, Solute processes, Chichester: Wiley: 193–249. 

Burt, T.P. (1989). Storm runoff generation in small catchments in relation to the flood 
response of large basins. In Beven K.J. and P.A. Carling (eds.), Floods. Chichester: 
Wiley: 11–36. 

Burt,T.P. (1992). The  hydrology of headwater catchments. In  Calow, P. and G.E. Petts,   
(eds.), The Riurs Handbook, 1: 3 -28. 

Burt, T.P. and D.P. Butcher (1985). Topographic controls of soil moisture distribution. 
Journal of Soil Science 36: 469-486. 

Burt, T.P., B.P. Arkell, S.T. Trudgill and D.E. Walling (1988). Stream nitrate levels in a 
small catchment in south west England over a period of 15 years. Hydrological 
Processes, 2: 267-284. 

Burt, T.P., A.L. Heathwaite and S.T. Trudgill (1993). Nitrate: Processes, Patterns and 
Management. John Wiley and Sons, Inc., New York, Chapters 5 and 10. 

Burt, T.P. and G. Pinay (2005). Linking hydrology and biogeochemistry in complex 
landscapes. Progress in Physical Geography, 29(3): 297–316. 

Butcher, A.S., A.R. Lawrence, C. Jackson, J. Cunningham, E. Cullis,  K. Hasan and  J. 
Ingram (2003). Investigation of rising nitrate concentrations in groundwater in the Eden 
valley, Cumbria: Scoping study. Environment Agency R and D Report NC/00/24/14. 

Buttle, J.M. (1994). Isotope hydrograph separations and rapid delivery of pre-event 
water from drainage basins. Progress in Physical Geography, 18: 16–41. 

Buttle, J.M., S.W. Lister and A.R. Hill (2001). Controls on runoff components on a 
forested slope and implications for N transport. Hydrological Processes, 15(6): 1065–
1070. 

Centre for Ecology and Hydrology, Land Cover Map of Great Britain (1990). Available 
at:  http://www.ceh.ac.uk/LandCoverMap1990.html (Accessed: June 2008). 

Cerdan, O., Y. Le Bissonnais, G. Govers, V. Leconte, K. van Oost, A. Couturier, C. 
King and N. Dubreuil (2004). Scale effects on runoff from experimental plots to 
catchments in agricultural areas in Normandy. Journal of hydrology, 299: 4–14. 

Chan, K.Y. (2001). Soil organic carbon and soil structure: implications for the soil 
health of agrosystems. In: ‘Soil Health. The Foundation of Sustainable Agriculture’, 
Proceeding of a workshop on the importance of soil health in agriculture, Ed R. Lines-
Kelly, Wollongbar Agriculture Institute, NSW, pp. 126-133. 



 

303 
 

Charman, P.E.V. and M.M. Roper (1991). Soil organic matter. In: ’Soils-their properties 
and Mangement: a Soil Conservation Handbook for New South Wales’, (eds.), P.E.V. 
Charman and B.W. Murphy. Sydney University Press, Australia, pp. 206-214. 

Chen, S.P., G.H. Lin, J.H. Huang and G.D. Jenerette (2009). Dependence of carbon 
sequestration on the differential responses of  cosystem photosynthesis and respiration 
to rain pulses in a semiarid steppe. Glob Change Biology, 15: 2450–2461. 

Christ, M. and M.B. David (1996). Dynamics of extractable organic carbon in 
Spodosoil forest floors. Soil Biology and Biochemistry, 28: 1171-1179. 

Cirmo, C. and J.J. McDonnell (1997). Linking the hydrologic and biogeochemical 
controls of nitrogen transport in near-stream zones of temperate-forested catchments: a 
review. Journal of Hydrology, 199: 88-120. 

Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. 
Duarte, P. Kortelainen, J.A. Downing, J.J. Middelburg and J. Melack (2007). Plumbing 
the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, 
Ecosystems, 10: 171-184. 

Commins, K.A., M. Alouso, P. Lopez and M. Comelles (1983). Limnology of 
Ciallocanta Lake, Argon, North Eastern Spain. Hydrobiology, 105: 207-239. 

Cory, R.M., S.A. Green and K.S. Pregitzer (2002). Dissolved organic matter 
concentration and composition in the forests and streams of Olympic National Park, 
Wa, Biogeochemistry, 67: 269-288. 

Cosby, B. J., G.M. Hornberger, J.N. Galloway and R.F. Wright (1985). Modeling the 
effects of acid deposition: Assessment of a lumped parameter model of soil l water and 
streamwater chemistry, Water Resources Research, 21: 51-63. 

Coulter, B.S. (2001). Editor. Nutrient and Trace Element Advice for Grassland and 
Tillage Crops. Teagasc, Johnstown Castle Research Centre, Wexford. 

Covey, C., K.M. Achuta Rao, U. Cubasch, P. Jones, S.J. Lambert, M.E. Mann, T.J. 
Phillips and K.E. Taylor (2003). An overview of results from the Coupled Model 
Intercomparison Project. Global Planet Change, 37: 103-133. 

Cowpertwait, P.S.P. (1991). Further developments of the Neyman-Scott clustered point 
process for modelling rainfall. Water Resources Research, 27: 1431-1438. 

Crane, R.G. and B.C. Hewitson (1998). Doubled CO2 precipitation changes for the  
Susquehanna Basin: down-scaling from the genesis general circulation model. 
International Journal of Climatology, 18: 6576. 

Creed, I.F, L.E. Band, N.W. Foster, I.K. Morrison, J.A. Nicotson, S. Semkin and D.S., 
Jeffries (1996). Regulation of nit:rate-N release from temperate forests: a test of the N 
flushing hypothesis. Water Resources Research, 32(11): 3337-3354. 

Creed, I.F. and L.E Band (1998). Export of nitrogen from catchments within a 
temperate forest: Evidence for a unifying mechanism regulated by variable source area 
dynamics. Water Resources Research, 34. 



 

304 
 

Critter, S.A.M. and  C. Airoldi  (2006). Thermal analysis of brazilian tropical soils 
originating from different sources. Journal of Brazilian Chemical Society 17(7): 1250-
1258. 

Cronan, C.S. and G.R. Aiken (1985). Chemistry and transport of soluble humic 
substances in forested basins of the Adirondack Park, New York, Geochimica et 
Chosmochimica Acta, 49: 1697-1705. 

Crosson, P. (1985). Impact of erosion on land productivity and water quality in the 
United States: 217–236. In S. El-Swaify et al. (eds.), Soil erosion and conservation. 
The Soil Conservation Society of America, Ankeny, IA. 

CSIRO Huon Estuary Study Team (2000). Huon Estuary Study: Environmental 
Research for ntegrated Catchment Management and Aquaculture. Project No. 96/284, 
Final Report to the Fisheries Research and Development Corporation: 285. 

Czapar, G.F., J.M. Laflen, G.F. McIsaac and D.P. McKenna (2008). Effects of Erosion 
Control Practices on Nutrient Loss. in UMRSHNC (Upper Mississippi River Sub-basin 
Hypoxia Nutrient Committee). 2008. Final Report: Gulf Hypoxia and Local Water 
Quality Concerns Workshop. American Society of Agricultural and Biological 
Engineers, 117-127. 

Czimczik, C.I., C.M. Preston, M.W. I. Schmidt, R.A. Werner and E.D. Schulze (2002). 
Effects of charring on mass, organic carbon, and stable carbon isotope composition of 
wood. Organic Geochemistry, 33: 1207–1223. 

Dahlke, H.E., Y.M. Easton, S.W. Lyon, M. T. Walter, G. Destouni and T. Steenhuis 
(2012). Dissecting the variable source area concept – Subsurface flow pathways and 
water mixing processes in a hillslope. Journal of Hydrology, 420–421: 125–141. 

Dalal, R.C. and R.J. Mayer (1986). Long-term trends in fertility of soils under 
continuous cultivation and cereal cropping in Southern Queensland. II total organic 
carbon and its rate of loss from the soil profile. Australian Journal of Soil Research, 24: 
281-292. 

Dalal, R.C. and K.Y. Chan (2001). Soil organic matter in rainfed cropping systems of 
Australian cereal belt. Australian Journal of Soil Research, 39: 435-464.  

Dalva, M. and T.R. Moore (1991). Sources and sinks of dissolved organic carbon in a 
forested swamp catchment. Biogeochemistry, 15: 1-19. 

Danielson, R.E. and P.L. Sutherland (1986). Porosity. In Methods of Soil Analysis, Part 
1. Physical and Mineralogical Analysis. A. Klute (eds.), SSSA, Madison, WI:. 443-461. 

Darcy, H. (1856). Les fontaines publiques de la ville de Dijon, Dalont, Paris. 

Davies, J.J.L., A. Jenkins, D.T. Monteith, C.D. Evans and D.M. Cooper (2005). Trends 
in surface water chemistry of acidified UK Freshwaters, 1988-2002. Environmental 
Pollution 137:27-39. 

Dawson, J.J.C., M.F. Billett, C. Neal and S. Hill  (2002).  A comparison of particulate, 
dissolved and gaseous carbon in two contrasting upland streams in the UK.  Journal of 
Hydrology, 257: 226-246. 



 

305 
 

Dawson, J.J.C., C. Soulsby, D. Tetzlaff, M. Hrachowitz, S.M. Dunn and I.A. Malcolm  
(2008). Influence of hydrology and seasonality on DOC exports from three contrasting 
upland catchments, Biogeochemistry, 90: 93-113. 

Dean, L.A. (1938). The Effect of Rainfall on Carbon and Nitrogen Contents, and 
Carbon-Nitrogen Ratios of Hawaiian Soils. Soil Science Society of America Journal, 2: 
455-459. 

DEFRA (2007a).  The Government's Strategic Review of diffuse water pollution from 
agriculture in England.  Paper 1: Agriculture and water: a diffuse pollution review.  
Available at:  
http://www.defra.gov.uk/environment/water/quality/diffuse/agri/reports/dwpa01a.htm 
(Accessed: April 2008). 

DEFRA (2007b). Diffuse nitrate pollution from agriculture – strategies for reducing 
nitrate leaching. Supporting  paper D3 for the consultation on implementation of the 
Nitrates Directive in England. ADAS report. 
Available at: 
http://archive.defra.gov.uk/environment/quality/water/waterquality/diffuse/nitrate/docu
ments/consultation-supportdocs/d3-inventory-measures.pdf (Accessed: February 2008). 

DEFRA (2008). Available at: 
http://www.defra.gov.uk/corporate/consult/soilstrategy/index.htm (Accessed: September 
2008). 

DEFRA (2009). Safeguarding Our Soils: A strategy for England. September 2009. 
DEFRA, UK (http://www.defra.gov.uk/environment/quality/land/soil/documents/soil-
strategy.pdf) 

De Laat,  P.J.M.  (2005). Workshop on Hydrology. Lecture note. UNESCO-IHE, Delft. 
The Netherlands. 

Dell’Abate, M.T., S. Canali, A. Trinchera, A. Benedetti and P. Sequi (2000). Thermal 
method of organic matter maturation monitoring during composting process. Journal of 
Thermal Analysis and Calorimetry,. 61: 389-396. 

Dell’Abate, M.T., A. Benedetti and P.C. Brookes (2003). Hyphenated techniques of 
thermal analysis for characterisation of soil humic substances. Journal of Separation 
Science 26, 433440. 

Déqué, M., D.P. Rowell, D. Lüthi, F. Giorgi, J.H. Christensen, B. Rockel, D. Jacob, E. 
Kjellström, M. de Castro and B. Van den Hurk (2007). An intercomparison of regional 
climate simulations for Europe: assessing uncertainties in model projections. Clim. 
Change, 81: 53-70. 

De Wit, H.A. and R.F. Wright (2008). Projected stream water fluxes of NO3 and total 
organic carbon from the Stograma headwater catchment, Norway, under climate change 
and reduced acid deposition. Ambio, 37(1): 56-63. 

Di Domenico, A., G. Laguardia and M. Fiorentino (2006). Capturing critical behaviour 
in soil moisture spatio-temporal dynamics. Advances in Water Resources, 30(3): 543– 
554. 



 

306 
 

Dinçer, T. (1968). The use of oxygen-18 and deuterium concentrations in the water 
balance of lakes. Water Resources Research, 14: 6. 

Djorovic, M. (1980). Slope effect on runoff and erosion. In M. De Broodt and D. 
Gabriels (eds.), Assessment of erosion, Wiley-Interscience, Chichester, 215-225. 

Dodge, R. (2001). Water measurement manual: A guide to effective water measurement 
practices for better water management. United States, Interior Dept., Bureau of 
Reclamation. 

Doležal, F. and T. Kvítek (2004). The role of recharge zones, discharge zones, springs 
and tile drainage systems in peneplains of Central European highlands with regard to 
water quality generation processes. Physics and Chemistry of the Earth, 29: 775-785. 

Drever, J.I. (1997). The geochemistry of natural waters: 3rd edition Prentice Hall, 
Upper Saddle River, New Jersey. 

Dunne, T. and  R.D. Black (1970). An experimental investigation of runoff production 
in permeable soils. Water Resources Research, 6: 478–90. 

Dunne, T. and L. Leopold (1978). Water in Environmental Planning. W.H. Freeman and 
Co., New York. 

Dzamic, R. and D. Stevanovic (2007). Agrochemistry. II edition. Faculty of Agriculture. 
Partenon, Belgrade (in Serbian). 

Edina Digimap. Available at:  http://edina.ac.uk/digimap (Accessed: March 2008) 

Edwards, W. and L. Owens (1991). Large storm effects on total soil erosion. Journal of 
Soil Water Conservation, 46:75–78. 

Ekström, M., H.J. Fowler, C.G. Kilsby and P.D. Jones (2005). New estimates of future 
changes in extreme rainfall across the UK using regionalclimate model integrations. 1. 
Future estimates and use in impactstudies. Journal of Hydrology, 300: 234–251. 

Ekström, M. P.D. Jones, H.J. Fowler, G. Lendernik, T.A. Buishand and D. Conway 
(2007). Regional climate model data used within the SWURVE project. 1: Projected 
changes in seasonal patterns and estimation of PET. Hydrolology and Earth Systems, 
11(3): 1069-1083. 

Engelund, F. and E. Hansen (1967). A monograph on sediment transport in alluvial 
streams. Teknish Forlag, Copenhagen, Denmark. 

Engler, A. (1919). Untersuchungen über den Einfluss des Waldes auf den Stand der  
Gewässer, 12. Kommissionsverlag von Beer and Cie, Zürich, 626 pp. in Wieler et al. 
2005. 

Enriquez, S., C.M. Duarte and K. Sand-Jensen (1993). Patterns in decomposition rates 
among photosynthetic organisms: the importance of detritus C:N:P content. 
Oecologia, 94: 457-471. 



 

307 
 

Environment Agency (2006).  North West General Quality Assessment (GQA) 2006, 
Available at: http://environment-
agency.wales.gov.uk/regions/northwest/346910/347005/440418/445438/?version=1&la
ng=_e (Accessed: November 2007). 

EPA (U.S. Environmental Protection Agency) (2002). Mid-Atlantic Integrated 
Assessment (MAIA) Estuaries 1997. 

EPA (U.S. Environmental Protection Agency) (2012). Nitrates. 
Avaliable at: 
http://water.epa.gov/type/rsl/monitoring/vms57.cfm (Accessed: May 2012). 

Evans, C.D., D.T. Monteith and D.M. Cooper (2005). Long-term increases in surface 
water dissolved organic carbon: Observations, possible causes and environmental 
impacts. Environmental Pollution, 137:55-71. 

Ewen, J., G. Parkin and P.E. O’Connell (2000). SHETRAN: distributed river basin flow 
and transport modeling system. Journal of Hydrologic Engineering, 5(3): 250-258. 

Ewen, J., J. C. Bathurst, G. Parkin, P.E. O’Connell, S.J. Birkinshaw, R. Adams, R. 
Hiley, C.G. Kilsby and A. Burton (2002). SHETRAN: Physically-based distributed 
river basin modelling system. In: Mathematical Models of Small Basin Hydrology and 
Applications, V.P. Singh and D.K. Frevert (eds.), Water Resources Publications LLC: 
43-68.  

Famiglietti, J.S., J.W. Rudnicki and M. Rodell (1998). Variability in surface moisture 
content along a hillslope transect: Rattlesnake Hill, Texas, J. Hydrol., 210: 259 – 281. 

FAO (2006). Guidelines for soil description. Fourth edition. Food and agriculture 
organization of the united nations. Rome, Italy. 

Fawcett, R.S. (2005). A Review of BMPs for Managing Crop Nutrients and 
Conservation Tillage to Improve Water Quality. Edited by Tim Smith (2005). 
Conservation Technology Information Centre (CTIC), West Lafayette, I N, USA. 

Feddes, R.A., P. Kowalik, S.P. Neuman and E. Bresler (1976). Finite difference and 
finite element simulation of field water uptake by plants. Hydrological Sciences 
Bulletin, 21: 81–98. 

Feng, P. and J. Z. Li (2008). Scale effects on runoff generation in meso-scale and large-
scale sub-basins in the Luanhe River Basin. Hydrology and Earth System Sciences 
Discussions, 5: 1511–1531. 

Fierer, N.G. and J.E. Gabet (2002). Carbon and Nitrogen Losses by Surface Runoff 
following Changes in Vegetation.  Journal of Environmental Quality, 31: 1207–1213. 

Figueiredo, E.E. and J.C. Bathurst (2007). Runoff and sediment yield predictions in a 
semiarid region of Brazil using SHETRAN. Prediction in Ungauged Basins: PUB Kick-
off. IAHS Publication: 309. 

Fisher, R.F. (1995). Soil organic matter: clue and conundrum: In: ‘Carbon Forms and 
functions in Forest Soils’. Soil science Society of America. W.W. McFee and J.M. 
Kelly (eds.), CRC Inc. Madison, USA, 594: 1-11. 



 

308 
 

Fitzhugh, R.D., C.T. Driscoll, P.M. Groffman, G.L. Tierney, T.J. Fahey and J.P. Hardy 
(2001). Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and 
carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56:215-238. 

Flaig, W., H. Beutelspacher and E. Rietz (1975). Soil components. J.E. Gieseking, 
Springer-Verlag New York. 

Floate, C. (2002). Nutrient pollution in rural systems. University of Newcastle Upon 
Tyne. Unpublished MSc thesis. 

Flühler, H. and K. Roth (2004). Physik der Ungesättigten Zone. Skript zur Vorlesung 
Bodenphysik and der ETH  Zürich, Version 2004.1. Zürich, CH. 

Folger, D.W. (1972). Characteristics of estuarine sediments of the United States: U.S. 
Geological Survey Prof. Paper, 742: 94. 

Ford, T.E., S.A. Ford, M.A. Lock and R.J. Naiman (1990).  Dissolved organic carbon 
concentrations and fluxes along the Moisie River, Quebec.  Freshwater Biology,  24: 
35-42. 

Fowler, H.J., S. Blenkinsop, A.P. Smith, M. Ekstrom and C.G. Kilsby (2006). BHS, 9th 
National Hydrology Symposium, Durham, UK. 

Fowler, H.J., C. Tebaldi and S. Blenkinsop (2008). Probabilistic estimates of climate 
change impacts in flows in the River Eden, Cumbria. BHS, 10th National Hydrology 
Symposium, Exeter, UK.  

Foy, R.H. (2005).  The Return of the Phosphorus Paradigm: Agricultural Phosphorus 
and Eutrophication, in:  Sims, J. T. and A.N. Sharpley (eds.), Phosphorus: Agriculture 
and the Environment, American Society of Agronomy, Wisconsin, USA, 911-939. 

Fragalà, F.A. (2009). Assessment of local recharge through glacial and alluvial deposits 
in the Upper Eden valley, UK. School of Civil Engineering and Geosciences. Newcastle 
University. PhD Thesis. 

Frank, K.D. (2006a). Calcium and Magnesium. Part I. Fertility Principles In:."EC06-
155 Nutrient Management for Agronomic Crops in Nebraska" Ferguson, R.B. (2006). 
Historical Materials from University of Nebraska-Lincoln Extension. Paper 1711.  

Frank, K.D. (2006b). Potassium. Part I. Fertility Principles In:."EC06-155 Nutrient 
Management for Agronomic Crops in Nebraska" Ferguson, R.B. (2006). Historical 
Materials from University of Nebraska-Lincoln Extension. Paper 1711.  

Fraser, C.J.D., N.T. Roulet and T.R. Moore (2001). Hydrology and dissolved organic 
carbon biogeochemistry in an ombrotrophic bog.  Hydrological Processes, 15: 3151-
3166. 

Freeman, C., C.D. Evans, D.T. Monteith, B. Reynolds and N. Fenner (2001a). Export of 
organic carbon from peat soils. Nature, 412:785. 

Freeman, C., N. Ostle and H. Kang (2001b). An enzymic 'latch' on a global carbon store 
- A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. 
Nature, 409:149. 



 

309 
 

Freeman, C., N. Fenner, N.J. Ostle, H. Kang, D.J. Dowrick, B. Reynolds, M.A. Lock, 
D. Sleep, S. Hughes and J. Hudson (2004). Export of dissolved organic carbon from 
peatlands under elevated carbon dioxide levels. Nature, 430:195-198. 

Freese, C., S. Lorentz, P. le Roux, J. van Tol and D. Vermeulen (2011). A description 
and quantification of hillslope hydrological processes in the Necf, Weatherley 
catchment. 15th SANCIAHS National Hydrology Symposium. Science and practice for 
sustainable water resources management, Rhodes University, Grahamstown, Greece. 

Freeze, R.A. (1972). Role of subsurface flow in generating surface runoff: 2. Upstream 
source areas.  Water  Resources Research, 8: 1271-83. 

Freeze, R.A. and J.A. Cherry (1979). Groundwater. Prentice-Hall, Inc. Englewood Cliff, 
New Jersey. 

Frei, C., C. Schär, D. Luthi and H.C. Davies (1998). Heavy precipitation processes in a 
warmer climate. Geophys. Res. Lett., 25: 1431-1434. 

Frei, C., R. Schöll, S. Fukutome, J. Schmidli and P.L. Vidale (2006). Future change of 
precipitation extremes in Europe: An intercompariosn of scenarios from regional 
climate models. J. Geophys. Res., 111. 

French, H.K. and J. Deelstra (2003). Modelling at Jordforsk. Objectives and overview 
of present and potential models. Jordforsk – Norwegian Institute for Agricultural and 
Environmental research, pp. 49, Ås, Norway.  

Futter, M.N., R.C. Helliwell, M. Hutchins and J. Aherne (2009). Modelling the effects 
of changing climate and nitrogen deposition on nitrate dynamics in a Scottish mountain 
catchment. Hydrology Research, 40:153-166. 

Gaál, F., I. Szöllősy, M. Arnold and F. Paulik (1994). Determination of the Organic 
Matter, Metal Carbonate and Mobile Water in Soils. Simultaneous TG, DTG, DTA and 
EGA Techniques, Journal of Thermal Analysis, 42: 1007-1016. 

Gaskin, J. W., J.W. Dowd, W.L. Nutter and W.T. Swank (1989). Vertical and lateral 
components of soil nutrient flux in a hillslope. Journal of Environmental Quality, 18(4): 
403–410. 

Gburek, W.J. and A.N. Sharpley (1998). Hydrologic Controls on Phosphorus Loss From 
Upland Agricultural Basins. Journal of Environmental Quality, 27: 267-277. 

Genereux, D.P., M.T. Jordan and D. Carbonell (2005). A paired-watershed budget study 
to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica. Water 
Resources Research 41, W04011. 

Ghosh, S. and P.P. Mujumdar (2008). Statistical downscaling of GCM simulations to 
streamflow using relevance vector machine. Advances in Water Resources 31: 132–146. 

Gifford, G. and F. Busby (1973). Loss of particulate organic materials from semiarid 
basins as a result of extreme hydrologic events. Water Resources Research, 9: 1443–
1449. 



 

310 
 

Gottschalk, L. and R. Weingartner (1998). Distribution of peak flow derived from a 
distribution of rainfall volume and runoff coefficient, and a unit hydrograph,  Journal of 
Hydrology, 208: 148-162. 

Gowariker, V., V.N. Krishnamurthy, S. Gowariker, M. Dhanorkar, K. Paranjape and N. 
Borlaug (2009). The Fertilizer Encyclopedia. Wiley, John and Sons. 

Gravier, J. (2004).  Soil Erosion Evaluation in the Eden. University of Newcastle upon 
Tyne. Unpublished MSc Thesis. 

Grayson, R.B. and A.W. Western (1998). Towards areal estimation of soil water content 
from point measurements: time and space stability of mean response. Journal of 
Hydrology 207: 68–82. 

Grebmeir, J.M., C.P. McRoy and H.M. Feder (1988). Pelagic-benthic coupling on the 
shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic 
biomass. Marine Ecology Progress Series, 48: 57-67. 

Gremillion, P., A. Gonyeau and M. Wanielista (2000). Application of alternative 
hydrograph separation models to detect changes in flow paths in a basin undergoing 
urban development. Hydrological Processes, 14: 1485– 1501. 

Grieve, I.C. (1984). Concentrations and annual loading of dissolved organic matter in a 
small moorland stream.  Freshwater Biology, 14: 533-537. 

Grieve, I.C. (1994).  Dissolved organic carbon dynamics in 2 streams draining forested 
catchments at Loch Ard, Scotland.  Hydrological Processes, 8: 457-464. 

Grieve, I.C. and R.L. Marsden (2001).  Effects of forest cover and topographic factors 
on TOC and associated metals at various scales in Western Scotland.  Science of the 
Total Environment, 265: 143-151. 

Grimaldi, C., M. Grimaldi, A. Millet, T. Bariac and J. Boulegue (2004). Behaviour of 
chemical solutes during a storm in a rainforested headwater catchment. Hydrological 
Processes, 18: 93-106. 

Grotch, S. and M. MacCracken (1991) The use of general circulation models to predict 
regional climate change. Journal of Climate, 4: 284–303. 

Gundersen, C.B. (2012). Biodegradation and Characterization of Dissolved Organic 
Matter (DOM) along the Flowpath of a N-saturated Subtropical Forested Catchment in 
China. Department of chemistry, University of Oslo. MSc Thesis. 

Guo, Y., M. Markusa and M. Demissie (2002). Uncertainty of nitrate-N load 
computations for agricultural watersheds. Water Resources Research, 38 (10): 1185. 

Gustard, A. (1992). Analysis of river regimes. In The Rivers Handbook, Calow, P. and 
G.E.  Petts (eds.), Blackwell Scientific: Oxford, 1: 29-47. 

Hafich, K. (2010). Nitrogen Cycling in the Snowmelt Process: Effects on Episodic 
Acidification of Alpine Streams. EPS 415/Crossey. 



 

311 
 

Halvorson, A.D., C.A. Reule and R.F. Follett (1999). Nitrogen fertilization effects on 
soil carbon and nitrogen in a dryland cropping system. Soil Science Society of America 
Journal, 63, 912–917. 

Hargreaves, K.J., R. Milne and G.R. Cannell (2001). UK Emissions by Sources and 
Removals by Sinks due to Land Use, Land Use Change and Forestry Activities, Chapter 
4: Carbon balance of afforested peatland in Scotland.  Department of the Environment, 
Transport and the Regions, Global Atmosphere Division.   

Hatch, D., K. Goulding and D. Murphy (2002).  Nitrogen, in: Haygarth, P.M. and S.C.  
Jarvis (eds.), Agriculture, Hydrology and Water Quality. CAB International, 
Wallingford, UK: 7-27. 

Hauck, R.D. (1984). Nitrogen in Crop Production. Madison, Wisconsins: American 
Society of Agronomy. Crop Science Society of America. Soil Science Society of 
America. 

Havlin, J.L., J.D. Beaton, S.L. Tisdale and W.L. Nelson (1999). Soil fertility and 
fertilizers. 6th (eds.), Prentice Hall. Upper Saddle River, NJ. 

Hawley, M.E., T.J. Jackson and R.H. McCuen (1983). Surface soil moisture variation 
on small agricultural watersheds. Journal of Hydrology 62: 179-200. 

Haygarth, P.M. and S.C. Jarvis (2002). Agriculture, hydrology, and water quality. CABI 
Publishing. UK. 

Haynes, R.J. and R. Naidu (1998). Influence of lime, fertilizer and manure applications 
on soil organic matter content and soil physical  onditions: a review. 
Nutrient Cycling in Agroecosystems, 51: 123–137. 

Heal, K.V., P.E. Kneale and A.T. McDonald (2002). Manganese in runoff from upland 
catchments: temporal patterns and controls on mobilization. Hydrological Sciences-
Journal, 47: 5. 

Heathwaite, A.L. (1995). Sources of eutrophication: hydrological pathways of 
catchment nutrient export. Man's Influence on Freshwater Ecosystems and Water Use 
(Proceedings of a Boulder Symposium, July 1995). IAHS Publ. no. 230. 

Heathwaite, A.L. (2001). Modelling Nutrient Export from Agricultural Land: 
Approaches, Scales and End-Users. International congress on modelling and simulation, 
Modsim 2001. The Australian National University, Canberra. 

Heathwaite, A.L. (2003). Making process-based knowledge useable at the operational 
level: a framework for modelling diffuse pollution from agricultural land. 
Environmental Modelling and Software 18: 753-760. 

Heathwaite, A.L., T.P. Burt and S.T. Trudgill (1993).  The Nitrate Issue: a Question of 
Scale, in: Burt, T.P., Heathwaite, A.L. and S.T. Trudgill (eds.),  Nitrate: Processes, 
Patterns and Management. John Wiley and Sons Ltd, Chichester, UK: 3-22. 

Henriksen, H., L. Troldborg, P. Nyegaard, T. Sonnenborg, J. Refsgaard and B. Madsen 
(2003). Methodology for construction, calibration and validation of a national 
hydrological model for Denmark, Journal of Hydrology, 280: 52-71. 



 

312 
 

Hewitson, B.C. and R.G. Crane (1992). Large-scale controls on local precipitation in 
tropical Mexico. Geophys Res Lett, 19(18): 1835–8. 

Hewlett, J.D. (1961). Basin management. In Report for 1961 Southeastern Forest 
Experiment Station,  US Forest Service, Asheville, North Carolina: 62–66. 

Hewlett, J.D. and A.R. Hibbert (1963). Moisture and energy conditions within a sloping 
soil mass during drainage. Journal of Geophysical Research, 68: 1081-1087. 

Hewlett, J.D. and A.R. Hibbert (1967). Factors affecting the response of small 
watersheds to precipitation in humid regions. In: Sopper, W.E. and H.W. Lull (eds.), 
Forest Hydrology. Pergamon Press, Oxford. 

Hill, A.R. (1990). Ground water flowpaths in relation to nitrogen chemistry in the near-
stream zone. Hydrobiologia, 206: 39-52. 

Hill, A.R., W.A. Kemp, J.M. Buttle and D. Goodyear (1999). Nitrogen chemistry of 
subsurface storm runotf on forested Canadian Shield hillslopes. Water Resources 
Research, 35(3), 811-821. 

Hobson, A.N. (2005). Use of a stochastic weather generator in a basin model for 
streamflow simulation. Department of Civil, Environmental and Architectural 
Engineering. University of Colorado. MSc Thesis. 

Hodges, S.C. (1995). Soil Fertility Basics, Soil Science Extension North Carolina State 
University certified Crop Advisor Training, 2-75. 

Hofer, M. (2007). Water fluxes along a boreal hillslope in northern Sweden under 
current and possible future climate conditions. Diploma thesis. Department of 
Geography, University of Zurich. 

Hooper, R.P., N. Christophersen and N.E. Peters (1990). Modelling streamwater 
chemistry as a mixture of soilwater end-members - An application to the Panola 
mountain catchment, Georgia, U.S.A., J. Hydrol., 116, 321 – 343.  

Hope, D., M.F. Billett and M.S. Cresser (1994). A review of the export of carbon in 
river water: Fluxes and processes. Environmental Pollution, 84: 301–324. 

Hope, D., M.F. Billett, R. Milne and T.A.W. Brown (1997). Exports of organic carbon 
in British rivers. 217 Hydrological Processes, 11: 325-344. 

Hornberger, C.M., K.E. Bencala and D.M. McKnight (1994). Hydrological controls on 
dissolved organic carbon during snowmelt in the Snake River near Montezuma, 
Colorado. Biogeochemisrry, 25(3): 147-165. 

Horton, R.E. (1933). The role of infiltration in the hydrological cycle. Transactions, 
American Geophysical Union, 14: 446-60. 

Horton, R.E. (1945). Erosional development of streams and their drainage basins: 
hydrophysical approach to quantitative morphology. Bulletin of the Geological Society 
of America, 56: 275-370. 

Howden, N.J.K. and T.P. Burt (2008). Temporal and spatial analysis of nitrate 
concentrations from the Frome and Piddle catchments in Dorset (UK) for water years 



 

313 
 

1978 to 2007: evidence for nitrate breakthrough ? Science of the Total Environment, 
407: 507–26. 

Howden, N.J.K. and T.P. Burt (2009). Statistical analysis of nitrate concentrations from 
the Rivers Frome and Piddle (Dorset, UK) for the period 1965–2007. Ecohydrology, 2: 
55–65. 

Hruška J, P. Kram, W.H. McDowell and F. Oulehle (2009). Increased Dissolved 
Organic Carbon (DOC) in Central European Streams is Driven by Reductions in Ionic 
Strength Rather than Climate Change or Decreasing Acidity. Environmental Science 
and Technology, 43: 4320-4326. 

Hugenschmidt, C., J. Ingwersen, W. Sangchan, Y. Sukvanachaikul, S. Uhlenbrook and 
T. Streck (2010). Hydrochemical analysis of stream water in a tropical, mountainous 
headwater catchment in northern Thailand. Hydrology and Earth System Sciences 
Discussions, 7: 2187-2220. 

Hughes, J.L., L.A. Eccles and R.L. Malcolm (1974). Dissolved Organic Carbon (DOC), 
an Index of Organic Contamination in Ground Water Near Barstow, California. Ground 
Water, 12(5): 283–290. 

Hughes, J.P, D.P. Lettenmaier and P. Guttorp (1993). A stochastic approach for 
assessing the effect of changes in synoptic circulation patterns on Gauge precipitation. 
Water Resources Research, 29(10): 3303–15. 

Hughes, J.P. and P. Guttorp (1994). A class of stochastic models for relating synoptic 
atmospheric patterns to regional hydrologic phenomena. Resources Research, 30(5): 
1535–46.  

Hughes, J.P, P. Guttorp, S.P. Charles (1999). A non-homogeneous hidden Markov 
model for precipitation occurrence. Journal of Applied Statistics, 48(1): 15–30. 

Hulme, M., G.J. Jenkins, X. Lu, J.R. Turnpenny, T.D. Mitchell, R.G. Jones, J. Lowe, 
J.M. Murphy, D. Hassell, P. Boorman, R. McDonald and S. Hill (2002). Climate 
Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report, Tyndall 
Centre for Climate Change. 

Hupet, F. and M. Vanclooster (2002). Intraseasonal dynamics of soil moisture 
variability within a small agricultural maize cropped field. Journal of Hydrology, 261: 
86–101. 

Hursh, C.R. (1936). Storm-water and adsoption. Transactions of the American 
Geophysical Union, 17: 863-870.  

Hursh, C.R. (1944). Subsurface flow. Transactions of the American Geophysical Union, 
25: 743-746. 

Inamdar, S.P and M.J. Mitchell (2006). Hydrological and topographical controls on 
storm-event exports of dissolved organic carbon (DOC) and nitrate across catchment 
scales. Water Resources Research: 42. 

IPCC (Intergovernmental Panel on Climate Change) 2001. Climate Change 2001, The 
Scientific Basis. Cambridge University Press, New York. 



 

314 
 

Iqbal, M.T. (2006). Study on Vertical and Lateral Leaching of Nitrate from a Wheat 
Field in China. Turk J Agric For 30. 

Jansson, M., L. Persson, A.M. De Roos, R.I. Jones and L.J. Tranvik (2007). Terrestrial 
carbon and intraspecific size-variation shape lake ecosystems. 
Trends in Ecology and Evolution, 22: 316–322. 

Jardine, P.M., N.L. Weber and J.F. Mccarthy  (1989).  Mechanisms of dissolved organic 
carbon adsorption on soil.  Soil Science Society of America Journal, 53: 1378-1385. 

Jenkins, G.J. and J. Lowe (2003).  Handling uncertainties in the UKCIP02 scenarios of 
climate change. Hadley Centre technical note, 44. 

Jenkins, G.J., M.C. Perry and M.J. Prior (2008). The climate of the United Kingdom 
and recent trends. Met Office Hadley Centre, Exter, UK. 

Jenkinson, D.S. (1991). The Rothamsted long-term experiments: are they still of use? 
Journal of Agronomy, 83: 2.  

Jobbagỳ, E.G. and R.B. Jackson (2000). The vertical distribution of soil organic carbon 
and its relation to climate and vegetation. Ecological Applications, 10: 423-436. 

Johnes, P.J. and T.P. Burt (1993) Nitrate in Surface Waters. In T. P. Burt, A. L. 
Heathwaite and S. T. Trudgill (eds.), Nitrate: Processes, Patterns and Controls, Wiley: 
269-317. 

Johnson, D.W, W. Cheng and I.C. Burke (2000). Biotic and abiotic nitrogen retention in 
a variety of forest soils. Soil Science Society of America Journal, 64: 1503–1514. 

Jones, J.A.A., J.M. Richardson and H.J. Jacob (1997). Factors controlling the 
distribution of piping in Britain: a reconnaissance. Geomorphology, 20: 289–306. 

Jones, A.L. and P.L. Smart (2005). Spatial and temporal changes in the structure of 
groundwater nitrate concentration time series (1935–1999) as demonstrated by 
autogressive modelling. J Hydrol., 310: 201–15. 

Jones, P.D, J.M. Murphy and M. Noguer (1995). Simulation of climate change over 
europe using a nested regional-climate model, I: assessment of control climate, 
including sensitivity to location of lateral boundaries. Q.J.R. Meteorological Society, 
121: 1413–49. 

Jones, P.D., C.G. Kilsby, C. Harpham, V. Glenis and A. Burton (2009). UK Climate 
Projections science report: Projections of future daily climate for the UK from the 
Weather Generator. University of Newcastle, UK. ISBN 978-1-906360-06-1. 

Judd, K. E, L.E. Gene and P. M. Groffman (2007). High nitrate retention during winter 
in soils of the Hubbard Brook Experimental forest. Ecosystems. DOI: 10.1007/s10021-
007-9027. 

Kaipainen, H., Ä. Bilaletdin, T. Frisk and A. Paananen (2008). The Impact of Climate 
Change on Nutrient Flows In the Catchment of River Kokemäenjoki. BALWOIS 2008 
– Ohrid, Republic of Macedonia. 



 

315 
 

Kalbitz, K., S. Solinger, J. H. Park, B. Michalzik and E. Matzner (2000).  Controls on 
the dynamics of dissolved organic matter in soils: a review.  Soil Science, 165: 277-304. 

Kaloustian, J., A.M. Pauli and J. Pastor (2001). Kinetic study of the thermal 
decompositions of biopolymers extracted from various plants. Journal of Thermal 
Analysis and Calorimetry, 63: 7–20. 

Kaplan, L.A. and J.D. Newbold (1993). Biogeochemistry of dissolved organic carbon 
entering streams. In: Ford, T.E. (eds.), Aquatic Microbiology: An Ecological Approach. 
Blackwell Science, Malden, MA, 139–165. 

Katsuyama, M. and N. Ohte (2005). Effects of bedrock permeability on hillslope and 
riparian groundwater dynamics in a weathered granite catchment. Water resources 
research, 41. 

Kazmierczak, A. and J.Carter (2010). Adaptation to climate change using green and 
blue infrastructure: A database of case studies. Report. 

Kelling, K.A. and E.E. Schulte (1992). Soil and applied calcium. University of 
Wisconsin-Extension, 2523: 1-2.  

Kendall, C. and J.J. McDonnell (1998). (eds.), Isotope Tracers in Catchment Hydrology. 
Elsevier Science B.V., Amsterdam: 839. 

Kerven, G.L., N. W Menzies and M.D. Geyer (2000). Soil carbon determination by high 
temperature combustion. A comparison with dichromate oxidation procedures and the 
influence of charcoal and carbonate on the measured value. Communications in Soil 
Science and Plant Analysis, 31: 1935-1939. 

Kienzler, P.M. and F. Naef (2007). Subsurface storm flow formation at different 
hillslopes and implications for the “old water paradox”. Hydrological Processes, in 
press. 

Kienzler, P.M. and F. Naef (2008). Temporal variability of subsurface stormflow 
formation. Hydrology and Earth System Sciences, 12: 257–265. 

Kilsby, C.G., P.D. Jones and A. Burton, A.C. Ford, H.J. Fowler, C. Harpham, P. James, 
A. Smith and R.L. Wilby (2007). A daily weather generator for use in climate change 
studies. Enviromental modelling and software, 22: 1705-1719. 

Kirchner, J.W. (2003). A double paradox in catchment hydrology and geochemistry. 
Hydrological processes, 17: 871–874. 

Kirkby, M.J. and R.J. Chorley (1967). Throughflow, overland flow, and erosion. Int. 
Assoc. Hydrological Sciences Bulletin 12(3): 5–21. 

Kirkby, M.J. (1978). Editor. Hillslope Hydrology. John Wiley and Sons, Chicester. 

Kirkby, M.J. (1988). Hillslope runoff processes and models. Journal of Hydrology, 100 
(1-3): 315-339. 

Kirschbaum, M.U.F. (1999). Will changes in soil organic carbon act as a positive or 
negative feedback on global warming? Biogeochemistry, 48: 21-51. 



 

316 
 

Kleinman, P.J. A., M.S. Srinivasan, C.J. Dell, J.P. Schimidt, A.N. Sharpley and R.B. 
Bryant (2006). Role of rainfall intensity and hydrology in nutrient transport via surface 
runoff. Journal of Environmental Quality, 35: 1248-1259. 

Klemes, V. (1986). Operational testing of hydrological simulation models. Hydrol. Sci. 
J., 31(1): 13-24. 

Köhler, S.J., I. Buffam, H. Laudon and K. Bishop (2008). Climate’s control of intra-
annual and inter-annual variability oftotal organic carbon concentration and flux in two 
contrasting boreal landscape elements. Journal of Geophysical Research, 113, G03012, 
doi:10.1029/2007JG000629. 

Köhler, S.J., I. Buffam, J. Seibert, K.H. Bishop and H. Laudon (2009).  Dynamics of 
stream water TOC concentrations in a boreal headwater catchment: Controlling factors 
and implications for climate scenarios. Journal of Hydrology, 373: 44–56.  

Kuhn, M. (2001). The nutrient cycle through snow and ice, a review. Aquatic Sciences 
63: 150-167.  

Land Inforamtion Systems (LandlS). Available at:  
http://www.landis.org.uk/data/nmtopsoiltexture.cfm (Accessed: April 2013). 

Langlois, J. L. and  G.R.Mehuys (2003). Intra-Storm Study of Solute Chemical 
Composition of Overland Flow Water in Two Agricultural Fields. Journal of 
Environmental Quality, 32(6): 2301-2310. 

Leinweber, P., H.R. Schulter and C. Horte (1992). Differential thermal analysis, 
thermogravimetry and pyrolysis-field ionisation mass spectrometry of soil organic 
matter in particlesize fractions and bulk soil samples. Thermochimica Acta, 194: 175–
187. 

Lepori, F., A. Barbieri and S.J. Ormerod (2003). Causes of episodic acidification in 
alpine streams. Freshwater Biology, 48: 175-189.   

Le Roux, X., T. Bariac and A. Mariotti (1995). Spatial partitioning of the soil water 
resource between grass and shrub components in a West African humid savanna. 
Oecologia, 104: 147-155. 

Lesack, L.F.W. (1993). Water Balance and Hydrologic Characteristics of a Rain Forest 
Catchment in the Central Amazon Basin. Water Resources Research, 29 (3): 759-773. 

Liden, R. and J. Harlin (2001). Analysis of conceptual rainfall-runoff modelling 
performance in different climates.  Journal of Hydrology, 238: 231-247. 

Liddicoat, C., A. Schapel, D. Davenport and E. Dwyer (2010). Soil Carbon and climate 
change.  PIRSA Discussion Paper, June 2010. 

Liu, G. and J.H. Zhang (2007). Spatial and temporal dynamics of soil moisture after 
rainfall events along a slope in Regosols of southwest China. Hydrological processes, 
21(20): 2778-2784.  

Longobardi, A., P. Villani, R.B. Grayson and A.W. Western (2003). On the relationship 
between runoff coefficient and catchment initial conditions. Proc., MODSIM 2003 

http://www.metoffice.gov.uk/climate/uk/summaries/anomacts
http://www.metoffice.gov.uk/climate/uk/summaries/anomacts


 

317 
 

International Congress on Modelling and Simulation, Modelling and Simulation Society 
of Australia and New Zealand Inc., Townsville, Australia, 2: 867-872. 

Lopez-Capel, E., S. Sohi, J.L. Gaunt and D.A.C. Manning (2005). Use of 
thermogravimetry–differential scanning calorimetry to characterize modelable soil 
organic matter fractions. American Journal of Soil Science Society, 69: 136–140. 

Lopez-Capel, E., J.M.R.Arranz, F.J. G. Vila, J.A G. Perez and D.A.C. Manning (2006). 
Elucidation of different forms of organic carbon in marine sediments from the Atlantic 
coast of Spain using thermal analysis coupled to isotope ratio and quadrupole mass 
spectrometry. Organic Geochemistry, 37: 1983–1994. 

Lowrance, R. and R. Williams (1988). Carbon movement in runoff and erosion under 
simulated rainfall conditions. Soil Science Society of America Journal, 52: 1445–144. 

Lucas, R.E. and  J.F. Davis  (1961). Relationships between pH values of organic soils 
and availabilities of 12 plant nutrients. Soil Science, 92: 171–182. 

Lundmark, A. (2005). Modelling the impacts of deicing salt on soil water in a roadside 
environment. KTH, Land and water Resources Enginner, Stockholm.   

Lundquist, E.J., L.E. Jackson and K.M. Scow (1999). Wet-dry cycles affect dissolved 
organic carbon in two California agricultural soils. Soil Biology and Biochemistry, 
31:1031-1038. 

Lü, F.M.,  X. T. Lu, W. Liu, X. Han, G.M. Zhang, D.L. Kong and X.G. Han 
(2011). Carbon and nitrogen storage in plant and soil as related to nitrogen and water 
amendment in a temperate steppe of northern China. Biology and Fertility of Soils, 47: 
187-196.  

The Macaulay Institute, Hydrology of Soil Types (HOST). Available at:  
http://www.mluri.sari.ac.uk/host/index.html. (Accessed: December 2009). 

Madsen, H. (2000). Automatic calibration of conceptual rainfall–runoff model using 
multiple objectives.  Journal of  Hydrology, 235: 276–288. 

MAFF (1986). The analysis of agricultural materials. Reference Book 427. 3rd edition. 
HMSO. 248pp. 

Malavolta, E. (1985). Potassium status of tropical and subtropical region soils. 
In’Potassium in Agriculture’. (Ed. RD Munson): 163-200. ASA and SSSA, Madison, 
WI USA. 

Malcom, R.L. and J.A. Leenheer (1973). The usefulness of organic carbon parameters 
in water quality investigations. Institute of Environmental Sciences: 336-340. 

Mannix, A. (2005). The source and fate of nitrates in the Upper Eden Catchment. 
University of Newcastle Upon Tyne. Unpublished MSc thesis. 

Mapa, R.B. and H.P.M. Gunasena (1995). Effect of alley cropping on soil aggregate 
stability of a tropical Alfisol. Agrofor. Syst. 32, 237–245. 

http://www.mendeley.com/research/carbon-nitrogen-storage-plant-soil-related-nitrogen-water-amendment-temperate-steppe-northern-china/
http://www.mendeley.com/research/carbon-nitrogen-storage-plant-soil-related-nitrogen-water-amendment-temperate-steppe-northern-china/


 

318 
 

Martinez, C., G.R. Hancock, J.D. Kalma and T. Wells (2008). Spatio-temporal 
distribution of near-surface and root zone soil moisture at the catchment scale. 
Hydrological Processes, 22: 2699– 2714. 

Mash, H., P.K. Westerhoff, L.A. Baker, R.A. Nieman and M. Nguyen (2004). Dissolved 
organic matter in Arizona reservoirs: assessment of carbonaceous sources, Organic 
Geochemistry, 35: 831-843. 

Matzner, E. and W. Borken (2008). Do freeze-thaw events enhance C and N losses from 
soils of different ecosystems? A review. European Journal of Soil Science, 59:274-284. 

Mayes, W.M., C.L. Walsh, J.C. Bathurst, C.G. Kilsby, P.F. Quinn, M. Wilkinson, E., 
A.J. Daugherty and P.E. O’Connell (2006).  Monitoring a flood event in a densely 
instrumented catchment, the Upper Eden, Cumbria, UK, Water and Environment 
Journal, 20: 217–226. 

McAfee, J.  (2008). Potassium, A Key Nutrient for Plant Growth. Department of Soil 
and Crop Sciences:  
http://jimmcafee.tamu.edu/files/potassium%20a%20key%20nutrient%20for%20plant%
20growth.pdf 

McDonnell, J.J. (1990). A rationale for old water discharge through macropores in a 
steep, humid catchment. Water Resour. Res., 26 (11): 2821–2832. 

McDonnell, J.J. (2003). Where does water go when it rains? Moving beyond the 
variable source area concept of rainfall-runoff response. Hydrological Processes, 17: 
1869-1875. 

McDowell, W.H. (1998). Internal nutrient fluxes in a Puerto Rican rain forest. Journal 
of Tropical Ecology, 14: 521-536. 

McDowell, W.H. and G.E. Likens (1988). Origin, composition, and flux of dissolved 
organic carbon in the Hubbard Brook Valley. Ecological Monographs, 58: 177-195. 

McGlynn, B.L. and J.J. McDonnell (2003). Role of discrete landscape units in 
controlling catchment dissolved organic carbon dynamics. Water Resources Research, 
39(4): 1090. 

McGlynn, B.L., J.J. McDonnell, M. Stewart and J. Seibert (2003). On the relationships 
between catchment scale and streamwater mean residence time. Hydrological Processes, 
17: 175–181. 

McGlynn, B.L., J.J. McDonnell, J. Seibert and C. Kendall (2004). Scale effects on 
headwater catchment runoff timing, flow sources, and groundwater-streamflow 
relations. Water Resources Research. doi:10.1029/2003WR002494. 

McGuire, K.J., J.J. McDonnell, M. Weiler, C. Kendall, B.L. McGlynn, J.M. Welker and 
J. Seibert (2005) The role of topography on catchment-scale water residence time. 
Water Resources Research, 41:W05002. 

McHale, M.R, J.J. McDonnell, M.J. Mitchell and C.P. Cirmo (2002). A field-based 
study of soil water and groundwater nitrate release in an Adirondack forested basin. 
Water Resources Research, 38(4): 1031. 



 

319 
 

McKnight, D.M., G.M. Hornberger, K.E. Bencala and E.W. Boyer (2002). In-stream 
sorption offulvic acid in an acidic stream: a stream-scale transport experiment. Water 
Resources Research, 38(1). 

Mehrotra, R. and A. Sharma (2005). A nonparametric nonhomogeneous hidden Markov 
model for downscaling of multi-site daily rainfall occurrences. Journal of 
Geophysical Research - Atmos, 110(D16): 16108. 

Mengel, K. and E.A. Kirkby (1987). Principles of Plant Nutrition. 4th Ed.International 
Potash Institute, Basel, Switzerland. 

Messer, T. (1980). Soil erosion measurements on experimental plots in Alsace 
vineyards (France). In M. De Broodt and D. Gabriels (eds.), Assessment of erosion, 
Wiley-Interscience, Chichester, 455-462. 

Met Office (Meteorological Office ) (2012). UK actual and anomaly maps. Available at: 
http://www.metoffice.gov.uk/climate/uk/summaries/anomacts (Accessed: September 
2012). 

Meybeck, M. (1982). Carbon, nitrogen and phosphorus transport by World Rivers, 
American Journal of Science, 282: 401–450. 

Michaelides, K., D. Lister, J. Wainwright and  A.J. Parsons (2009). Vegetation controls 
on small-scale runoff and erosion dynamics  in a degrading dryland environment, 
Hydrological Processes, 23: 1617-1630. 

Michener, R. and K. Lajtha (2008). Stable Isotopes in Ecology and Environmental 
Science. 2nd Edition, John Wiley and Sons. 

Miyazawa, M., M.A. Pavan, E.L. Oliveira, M. Ionashiro and A.K. Silva (2000). 
Gravimetric determination of soil organic matter. Brazilian Archives of Biology 
and Technology, 43: 475. 

Monaghan, R.M., R.J. Paton, L.C. Smith and C. Binet (2000). Nutrient loss in drainage 
and surface runoff from a cattle-grazed pasture in Southland. Proceedings of the New 
Zeeland Grassland association, 62: 99-104. 

Monteith, D.T., C.D. Evans and B. Reynolds (2000). Are temporal variations in the 
nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? 
Hydrological Processes, 14:1745-1749. 

Monteith, D.T., J.L. Stoddard, C.D. Evans, H.A. de Wit, M. Forsius, T. Høgåsen, A. 
Wilander, B.L. Skjelkvåle, D.S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopácek and J. 
Vesely (2007). Dissolved organic carbon trends resulting from changes in atmospheric 
deposition chemistry. Nature, 450: 537-541. 

Moore, T.R. and R.J. Jackson (1989). Dynamics of dissolved organic-carbon in forested 
and disturbed catchments, Westland, New Zealand .2. Larry River. Water Resources 
Research, 25: 1331-1339. 

Morris, D., H. Zagarese, C.E. Williamson, E.G. Balseiro, B.R. Hargreaves, B. 
Modenutti, R.  Moeller, C. Queimalinos (1995). The attenuation of solar UV radiation 
in lakes and the role of dissolved organic carbon. Limnology and Oceanography 40(8): 
1381–1391. 

http://www.metoffice.gov.uk/climate/uk/summaries/anomacts


 

320 
 

Mulder, J. and M.S. Cresser (1994). Soil and Soil Solution Chemistry. Biogeochemistry 
of Small Catchments: A Tool for Environmental Research. Edited by B. Moldan and 
J.Cerny. John Wiley and Sons Ltd. 

Mulholland, P.J., G.V. Wilson and P.M. Jardine (1990). Hydrogeochemical response of 
a forested watershed to storms: effects of preferential flow along shallow and deep 
pathways. Water Resources Research, 26: 3021-3036. 

Mulla, D. J., P. H. Gowda, A. S. Birr and B. J. Dalzell (2003). Estimating nitrate-N 
losses at different scales in agricultural watersheds. Ch. 17, In: Y. Pachepsky, D. 
Radcliffe, and M. Selim, (eds.), Scaling Methods in Soil Physics. CRC Press. Boca 
Raton, FL. 

Murphy, J.M. (1999). An evaluation of statistical and dynamical techniques for 
downscaling local climate. Journal of Climate, 12: 2256–84. 

Mutscher, H. (1995). Measurement and Assessment of Soil Potassium. IPI Research 
Topics 4. International Potash Institute, Basel, Switzerland. 

Naden, P.S. and A.T. McDonald (1989). Statical modelling of water colour in the 
uplands: The Upper Nidd catchment. Environmental Pollution, 60: 141-163. 

Nakicenovic, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, 
A. Grübler, T.Y. Jung, T. Kram, E.L. La Rovere,L. Michaelis, S. Mori, T. Morita,  W. 
Pepper, H. Pitcher, L. Price, K. Riahi, A. Roehrl, H.H. Rogner, A. Sankovski,  M. 
Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor and Z. Dadi  
(2000). IPCC Special Report on Emissions Scenarios. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 599pp. 

Nash, J.E. and J.V. Sutcliffe (1970). River flow forecasting through conceptual models 
1. A discussion of principles. Journal of Hydrology, 10: 182-190. 

Nash, D., D. Halliwell and J. Cox (2002). Hydrological mobilization of pollutants at 
field/slope scale: 225–242. In P.M. Haygarth and S.C. Jarvis (eds.), Agriculture, 
hydrology, and water quality, CABI Publ., Wallingford, UK. 

Nasr, A. (2004).  Modelling of phosphorus loss from land to water: a comparison of 
SWAT, HSPF and SHETRAN/GOPC for three irish catchments. Thesis submitted to 
the Department of Civil Engineering. Univesity College Dublin for the degree of PhD. 

Neal, C. and P.T.W. Rosier (1990). Chemical studies of chloride and stable oxygen 
isotopes in 2 conifer afforested and moorland sites in british uplands. Journal of 
Hydrology, 115: 269–283. 

Neal, C., J. Wilkinson, M. Neal, M. Harrow, H. Wickham, L.Hill and C. Morfitt (1997). 
The hydrochemistry of the headwaters of the River Severn, Plynlimon. Hydrology and 
Earth System Sciences, 1: 583-617. 

Neale, B.D. (2006). Effects of Fertilizer Application and Cutting Interval on Nitrate 
Accumulation in Bermudagrass. Thesis submitted to the Department of Agriculture, 
University of Tennessee at Martin for the degree of MSc in Agricultural Operations. 



 

321 
 

Nilsson, M., J. Sagerfors, I. Buffam, H.  Laudon, T. Eriksson, A. Grelle, L. 
Klemedtsson, P. Weslien and A. Linderoth (2008).Complete carbon budgets for two 
years of a boreal oligotrophic minerogenic mire. Global Change Biology, 14: 1-16. 

Niu S.L, H.Y. Yang, Z. Zhang, M.Y. Wu, Q. Lu, L.H. Li, X.G. Han and S.Q. Wan 
(2009). Non-additive effects of water and nitrogen ddition on ecosystem carbon 
exchange in a temperate steppe. Ecosystems, 12: 915–926. 

Norrström, A.C. (1995) Concentration and chemical species of iron in soils from 
groundwater/surface water ecotones. Hydrological Sciences Journal, 40(3): 319–329. 

Ocampo, C.J., C.E. Oldham, M. Sivapalan and J.V. Turner (2006). Hydrological versus 
biogeochemical controls on catchment nitrate export: a test of the flushing mechanism. 
Hydrological Processes, 20 (20): 4269-4286. 

Occhi, M. (2009). Sources of Stream Discharge in the North East and North West 
Branches of the Anacostia Watershed:  Unpublished manuscript.    

Ockenden, M.C. (2010). Identification of catchment runoff processes as a basin for 
defining water quality protection zones. Lancaster University. PhD thesis. 

Odoux, C.G., P. Aurousseau, P. Durand, L. Ruiz and J. Molenat (2010). The role of 
climate on inter-annual variation in stream nitrate fluxes and concentrations. Science of 
the Total Environment, 408: 5657–5666. 

Ogunkoya, O.O. and A. Jenkins (1991).  Analysis of runoff pathways and flow 
contributions using deuterium and stream chemistry, Hydrological Processes, 5: 271-
282. 

Ogunkoya, O.O. and A. Jenkins (1993). Analysis of storm hydrograph and flow 
pathways using a three-component hydrograph separation model, Journal of Hydrology, 
142: 71-88. 

Olsen, L. (2003). Selected Applications of Hydrologic Science and Research in aryland, 
Delaware, and Washington, D.C., 2001-2003. USGS Fact Sheet FS-126-03. 

O'Reilly, A.M., N.B. Chang, M.P. Wanielista and Z. Xuan (2010).  Identifying 
biogeochemical processes beneath stormwater infiltration ponds in support of a new 
best management practice for groundwater protection. GQ10: Groundwater Quality 
Management in a Rapidly Changing World (Proc. 7th International Groundwater 
Quality Conference held in Zurich, Switzerland). 

O'Riley, J.L. (2012). Dissolved Organic Carbon Dynamics During the Snowmelt Period 
in a Small Urban Watershed. Graduate Masters Theses. Paper 120. 

Pardo, L.H, C. Kendall, J. Pett-Ridge and C.C.Y. Chang (2004). Evaluating the source 
of streamwater nitrate using delta N-15 and delta O-18 in nitrate in two basins in New 
Hampshire, USA. Hydrological Processes, 18: 2699–712. 

Park, J., J. Lee, S. Kang and S. Kim (2007). Hydroclimatic controls on dissolved 
organic matter (DaM) characteristics and implications for trace metal transport in 
Hwangryong River Basin, Korea, during a summer monsoon period. Hydrological 
Processes, 21: 3025-3034. 



 

322 
 

Parkin, G., G. O'Donnell, J. Ewen, J.C. Bathurst, P.E. O'Connell and J. Lavabre (1996). 
Validation of catchment models for predicting land-use and climate change impacts. 2. 
Case study for a Mediterranean catchment. Journal of Hydrology, 175: 595-613. 

Parkin, G. (2000). Catchment Hydrology and Sustainable Management (CHASM), The 
Eden Catchment. I. report, Newcastle University. 

Parry, M. and T. Carter (1998). Climate Impact and Adaptation Assessment. Earthscan 
Publications Ltd., London, UK. 

Paul, E.A. and F.E. Clarke (1989). Soil microbiology and biochemistry. Academic 
Press, Inc., San Diego, California. 

Peters, D.L., J.M. Buttle, C.H. Taylor and B.D. Zazerte (1995). Runoff production in a 
forested shallow soil. Canadian Shield basin. Wat. Resour. Res., 31: 1291-1304. 

Peuravuori, J. and H. Pihlaja (1989). Isolation and fractionation of humic substances in 
lake waters, in Humic substances in the aquatic and terrestrial environment, 33, B. 
Allard, H. Borén and A. Grimvall, (eds.), Springer-Velag, Linköping: 9-36. 

Peverill, K.I., L.A. Sparrow and D.J. Reuter (1999). Soil Analysis: An Interpretation 
Manual. CSIRO PUBLISHING, Australia.  

Piatek, K.B, M.J. Mitchell, S.R. Silva and C. Kendall (2005). Sources of nitrate in 
snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate. 
Water, Air, and Soil Pollution, 165: 13–35. 

Pimentel, D. and N. Kounang (1998). Ecology of soil erosion in ecosysotems. 
Ecosystems, 1: 416–426. 

Pinder, F.G. and J.F. Jones (1969). Determination of the groundwater component of 
peak discharge from the chemistry of total runoff. Water Resources Research, 5(2): 438-
445. 

Plante, A.F., C. Chenu, M. Balabane, A. Mariotti and D. Righi (2004). Peroxide 
oxidation of clay-associated organic matter in a cultivation chronosequence. European 
Journal of Soil Science, 55: 471–478. 

Poor, C.J. and J.J. McDonnell (2007). The effect of land use on stream nitrate dynamics. 
Journal of Hydrology, 332: 54–68. 

Post, W.M., W.R. Emanuel, P.J. Zinke and A.G. Stangenberger (1982). Soil carbon 
pools and World Life Zones. Nature, 298: 156-159. 

Puckett, L.J., T.K. Cowdery, P.B. McMahon, L.H. Tornes and J.D. Stoner (2002). 
Using chemical, hydrologic and age dating analysis to delineate redox processes and 
flow paths in the riparian zone of a glacial outwash aquifer-stream system.  Water 
Resources Research, 38(8). 

Qualls, R.G. and B.L. Haines (1992). Biodegradability of dissolved organic matter in 
forest throughfall, soil solution, and stream water. Soil Science Society of America 
Journal, 56: 578-586. 

 



 

323 
 

Qui, Y., B. Fu, J. Wang and L. Chen (2001). Soil moisture variation in relation to 
topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of 
Hydrolology, 240: 243–63. 

Quinn, P. (2002). Models and monitoring: scaling-up cause-and-effect relationships in 
nutrient pollution to the catchment scale. In 'Agricultural effects on ground and surface 
waters: research at the edge of science and society. Proceedings of an international 
symposium, Wageningen, Netherlands, October 2000'. Wallingford UK. (eds.) 
Steenvoorden, J., Claessen, F. and Willems, J.) pp. 397-403. (IAHS Press) Radke, L.C. 
(2002). Catchment clearing impacts on estuaries. AUSGEO News, 65: 6-7. 

Rawitz E., E.T. Engman and G.D. Cline (1970). Use of mass balance method for 
examining the role of soils in controlling basin performance. Water Resources 
Research, 6: 1115– 1123. 

Rawls, W.J, D.L. Brakensiek and K.E. Saxton (1982). Estimation of soil Water 
Properties. Trans. ASAE, 25: 1316-1320. 

Rawls, W.J., Y.A. Pachepsky, J.C. Ritchie, T.M. Sobecki and H. Bloodworth (2003). 
Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76. 

Rayment, G.E. and Higginson, F.R. (1992).  Australian Laboratory Handbook of Soil 
and Water Chemical Methods. Inkata Press, Melbourne. 

Reaney, S.M. and H.J. Fowler (2008). Uncertainty estimation of climate change impacts 
on river flow incorporating stochastic downscaling and hydrological model 
parameterisation error sources. Proceedings of the British Hydrological Society 10th 
National Hydrology Symposium. Exeter, 15-17th September 2008. 

Reid, K. (2006). Soil Sampling and Analysis for Managing Crop Nutrients. Factsheet. 
Ministry of agriculture, food and rural affairs, Ontario. 

Richards, L.A. (1931). Capillary conduction of liquids through porous mediums, 
Physics, 1: 318-333. 

Richardson, C.W. (1981).  Stochastic simulation of daily precipitation, temperature, and 
solar radiation.  Water Resources Research, 17: 182-190. 

Ritter, W.F. and L. Bergstrom (2001). Nitrogen and water quality. p. 59-90. In W.F. 
Ritter and A. Shirmohammadi (eds.), Agricultural Nonpoint Source Pollution: 
Watershed Management and Hydrology. Lewis Publishers, Boca Raton, FL. 

Rivera-Monroy, V.H. and R.R. Twilley (1996). The relative role of denitrification and 
immobilisation in the fate of inorganic nitrogen in mangrove sediments (Terminos 
Lagoon, Mexico). Limnology and Oceanography, 41: 284-296. 

Robson, A.R., K. Beven and C. Neal (1992). Towards identifying sources of subsurface 
flow: a comparison of components identified by physically based runoff model and 
those determined by chemical mixing techniques. Hydrological Processes, 6: 199-214. 

Rowell, D.L. (1994). Soil science. Methods and applications. Longman Scientific and 
Techical, Harlow, Essex, UK. 

 



 

324 
 

Rudolph, D.L., B.Jr.Conant, L.E. Bekeris, J. Cole, S.K. Frey, J.T. Koch and M.R. Sousa 
(2010).  Monitoring of Selected Hog Farms to Assess the Impacts of Implemented 
BMPs Resulting From the Nutrient Management Act. A Research Project Conducted 
for: Ontario Pork. Department of Earth and Environmental Sciences University of 
Waterloo Waterloo, Ontario. 

Russell, J.C. and W.G. McRuer (1927). The relation of organic matter and nitrogen 
content to series and type in Virgin Grassland soils. Soil Science, 24: 421-452. 

Ruszkowska M., M. Warchoowa, Z. Rebowska, S. Sykut and M. Kusio (1988). Nutrient 
balance in a lysimeter experiment (1981-1985). II. Balance of calcium, magnesium and 
sulphur. Pamietnik Puawski, 91: 235-250. 

Rutter, A.J., K.A., Kershaw, P. C. Robins and A. J. Morton (1971/1972). A predictive 
model of rainfall interception in forest I. Derivation of the model from observations in a 
plantation of Corsican Pine. Agricultural and Forest Meteorology: 9: 367-384. 

Rutter, A.J., A.J. Morton and P.C. Robins (1975). A predictive of rainfall interception in 
forest II. Generalization of the Model and Comparison with Observation in some 
Coniferous and Hardwood Stands. Journal of Applied Ecology, 12: 367-380. 

Sadusky, M.C., D.L.Sparks, M.R. Noll and G.J. Hendricks (1987). Kinetics and 
mechanisms of potassium release from sandy soils. Soil Science Society of America 
Journal,  51:  1460-1465. 

Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, R. Srinivasan and L.M. Hauck 
(2001). Validation of the SWAT model on a large river basin with point and nonpoint 
sources. Journal of American  Water Resourources Association, 37(5): 1169-1188. 

Scherrer, S. and F. Naef (2003). A decision scheme to identify dominant flow processes 
at the plotscale for the evaluation of contributing areas at the catchments-scale. 
Hydrological Processes, 17(2): 391–401. 

Schimel, J., T.C. Balser and M. Wallenstein (2007). Microbial stress-response 
physiology and its implications for ecosystem function. Ecology, 88:1386-1394. 

Schjonning, P., B.T. Christensen and B. Carstensen (1994). Physical and chemical-
properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer 
for 90 years. European Journal of Soil Science, 45, 257–268. 

Schroth, G. and F.L. Sinclair (2003). Trees, Crops and Soil Fertility. Concepts and 
research methods. CABI Publishing.  

Schulten, H.R. and P. Leinweber (1999). Thermal stability and composition of mineral-
bound organic matter in density fractions of soil. European Journal of Soil Science, 50: 
237–248. 

Schumacher, B.A. (2002). Methods for the determination of total organic carbon (TOC) 
in soils and sediments. Ecological Risk Assessment Support Center. US. Environmental 
Protection Agency: 23.  

Schweiger, P. and A. Amberger (1979). Mg-Auswaschung und Mg-Bilanz in einem 
langjährigen Lysimeterversuch. Z. Acher-und Pflanzenbau, 148: 403-410. 



 

325 
 

Sebestyen, S.D., E.W. Boyer and J.B. Shanley (2009). Responses of stream nitrate and 
DOC loadings to hydrological forcing and climate change in an upland forest of the 
northeastern United States. Journal of Geophysical Research, 114: G02002. 

Selby, M.J. (1993). Hillslope Materials and Processes. Oxford University Press, Oxford. 

Semenov, M.A., R. Brooks, E. Barrow and C. Richardson (1998). Comparison of the 
WGEN and LARS-WG stochastic weather generators for diverse climates. Climate 
Research, 10: 95-107. 

Semenov, M.A. and R.J. Brooks (1999). Spatial interpolation of the LARS-WG 
stochastic weather generator in Great Britain. Climate Research, 11: 137-148. 

SHETRAN Hydrological model. Available at:  http://research.ncl.ac.uk/shetran/ 
(Accessed: March 2008).  

Shuttleworth, W.J. (1993). Evaporation. In Maidment, D.R. (eds.), Handbook of 
Hydrology. McGraw-Hill, New York, Chapter 4. 

Sidle, R.C., Y. Tsuboyama, S. Noguchi, I. Hosoda, M. Fujieda and T. Shimizu (2000). 
Stormflow generation in steep forested headwaters: A linked hydrogeomorphic 
paradigm. Hydrological Processes, 14: 369 – 385. 

Sievers, F.J. and H.F. Holtz (1923). The influence of precipitation on soil composition 
and soil organic matter maintenance. Wash. Agr. Expt. Sta. Bull., 176. 

Siewert, C. (2004). Rapid screening of soil properties using thermogravimetry. Soil 
Science Society of America Journal, 68: 1656–1661. 

Sivapalan, M. (2003). Process complexity at hillslope scale, process simplicity at the 
basin scale: is there a connection? Hydrological Processes, 17: 1037-1041. 

Sivapalan, M and J.D. Kalma (1995). 1: Scale problems in hydrology: contributions of 
the Robertson workshop. In Scale Issues in Hydrological Modeling, Kalma, J.D. and M.  
Sivapalan (eds.), Wiley: Chichester, UK. 1–8. 

Sivasubramaniam, S. and O. Talibudeen (1972). Potassium-aluminum exchange in acid 
soils. I. Kinetics. J. Soil Sci., 23: 163--176. 

Skinner, G.R. B., R. Thomas, M. Taylor, M. Sellarajah, S. Bolt, S. Krett and A. Wright 
(1997). Thyroxine should be tried in clinically hypothyroid but biochemically euthyroid 
patients.  British Medical Journal, 314: 1764. 

Skjemstad, J.O., L.J. Janik and J.A. Taylor (1998). Non-living soil organic matter: what 
do we know about it? Australian journal of Experimental Agriculture, 38: 667-680.  

Sklash, M.G. (1990). Environmental isotope studies of storm and snowmelt runoff 
generation. In: Anderson, M.G. and T.P. Burt (eds.), Process Studies in Hillslope 
Hydrology: 401–435. 

Slaymaker, O. (1991). Field experiments and measurements programs in 
geomorphology. Vancouver University of British Columbia Press. 



 

326 
 

Sleutel, S. (2005) Carbon sequestration in crop land soils: recent evolution and the 
potential of alternative management options. Ghent University. Department of Soil 
Management and Soil Care. PhD thesis. 

Smith, T.E. (2012). Effects of native perennial vegetation buffer strips on dissolved 
organic carbon in surface runoff from an agricultural landscape. Iowa State University, 
Ames, Iowa. MSc thesis. 

Soil Association (2009). Soil Carbon and Organic Farming. A review of the evidence on 
the relationship between agriculture and soil carbon sequestration, and how organic 
farming can contribute to climate change migration and adaptation. UK 

Soil Survey Lab Staff  (1996).  Soil Survey Laboratory Manual. USDA, Washington, 
D.C.  Soil Survey Investigations Report Number, 42(3). 

Soler, M.J. (2003). Nutrient pollution evaluation in the River Eden. University of 
Newcastle Upon Tyne. Unpublished MSc thesis. 

Solheim, A.L., K. Austnes, T.E. Eriksen, I. Seifert and S. Holen (2010). Climate change 
impacts on water quality and biodiversity. Background Report for EEA European 
Environment State and Outlook Report 2010. Europian Enviromental Agency, 
ADS/06/001-Water, Prague. 

Sørbotten, L.E. (2011). Hill slope unsaturated flowpaths and soil moisture variability in 
a forested catchment in southwest China. Norwegian University of Life Sciences, 
Department of Plant and Environmental Sciences. MSc thesis.  

Soulsby, C., C. Gibbins, A.J. Wade, R. Smart and R. Helliwell (2002). Water quality in 
the Scottish uplands: a hydrological perspective on catchment hydrochemistry. 
Science of the Total Environment, 294: 73 –94. 

Soulsby C, P. Rodgers, R. Smart, J. Dawson and S. Dunn (2003). A tracer-based 
assessment of hydrological pathways at different spatial scales in a mesoscale Scottish 
catchment. Hydrological Processes, 17: 759-777. 

Sparks, D.L. (1980). Chemistry of soil potassium in Atlantic Coastal Plain soils: A 
review. Commun. Soil Sci. Plant Anal. 11: 435-449. 

Sparks, D.L. (1987). Potassium dynamics in soils. Advances in Soil Science,  6: 1-63. 

Sparks, D.L. (1989). Kinetics of Soil Chemical Processes. Academic Press, San Diego, 
CA. 

Sparks, D.L. (1995). Environmental Soil Chemistry. (eds.), Geoderma, 67: 1–140. 

Sparks, D.L. (2000). Bioavailability of soil potassium, D-38-D-52. In M.E. Sumner 
(eds.), Handbook of Soil Science, CRC Press, Boca Raton, FL. 

Sparks, D.L. (2001). Dynamics of K in Soils and Their Role in Management of K 
Nutrition. Department of Plant and Soil Sciences, University of Delaware, Newark, 
Delaware 19717-1303.  Event: IPI PRII K in nutrient management for sustainable crop 
production in India, New Delhi, India. 

 



 

327 
 

Sparks, D.L., D.C. Martens and L.W. Zelazny (1980). Plant uptake and leaching of 
applied and indigenous potassium in Dothan soils. Agronomy Journal, 72: 551-555. 

Sparks, D.L. and P.M. Jardine (1981). Thermodynamics of potassium exchange in soil 
using a kinetics approach. Soil Science Society of America Journal, 45: 1094-1099. 

Sparks, D.L. and P.M. Jardine (1984). Comparison of kinetic equations to describe K-
Ca exchange in pure and in mixed systems. Soil Science, 138: 115-122. 

Sparks, D.L. and P.M. Huang (1985). Physical chemistry of soil potassium. In R.D. 
Munson (eds.), Potassium in agriculture. American Society of Agronomy, Madison, 
WI., 201-276. 

Sparks, D.L., S.E Fendorf, I.V. Toner and C.V. Carski (1996). Kinetic methods and 
measurements. In: Sparks, D.L. (eds.), Methods of Soil Analysis: Chemical Methods. 
SSSA Book Ser. No. 5, American Society of Agronomy, Madison, WI, 1275–1307. 

Sposito, G. (1984). The future of an illusion-ion activities in soil solutions. Soil Science 
Society of American Journal, 48: 531-536. 

Srinivasan, K., S. Muruganandan,  J. Lal, S. Chandra, S.K. Tandan and V.R. Prakash 
(2001). Evaluation of anti-inflammatory activity of Pongamia pinnata leaves in rats.  
Journal of Ethnopharmacology, 78(2-3): 151-157. 

Stanley D.W. and J.E. Hobbie (1981). Nitrogen  cycling in a North Carolina coastal 
river. Limnology and Oceanography, 26: 30–42. 

Starks, P.J, G.C. Heathman, T.J. Jackson and M.H. Cosh (2006). Temporal stability of 
soil moisture profile. Journal of Hydrology, 324: 400–411. 

Stevens, D.P., J.W.Cox and D.J. Chittleborough (1999). Pathways of phosphorus, 
nitrogen, and carbon movement over and through texturally differentiated soils, South 
Australia. Australian Journal of Soil Research, 37(4): 679–693. 

Striffler, W.D. (1965). The selection of experimental watersheds and methods in 
distributed forest areas. Proceedings of the Symposium of Budapest on Representataive 
and Experimental Areas, IAHS, 66: 464-473. 

Tang, J., B. Zhang, C. Gao and H. Zepp (2011). Subsurface lateral flow from hillslope 
and its contribution to nitrate loading in the streams during typical storm events in an 
agricultural catchment. Hydrology and Earth System Scienced Discussusion, 8: 4151-
4193. 

Tanhan, P, M. Kruatrachue, P. Pokethitiyook and R. Chaiyarat (2007). Uptake and 
accumulayion of cadmium, lead and zinc by siam weed [Chromlaena odorata (L) King 
and Robinson]. Chemosphere, 68: 323-329. 

Tardy, Y., V. Bustillo and J.L. Boeglin (2004). Geochemistry applied to the basin 
survey: hydrograph separation, erosion and soil dynamics. A case study: the basin of the 
Niger River, Africa. Applied Geochemistry, 19: 469-518. 

Tardy, Y., V. Bustillo, C. Roquin, J. Mortatti and R. Victoria (2005). The Amazon. Bio-
geochemistry applied to river basin management. Part I. Hydro-climatology, hydrograph 



 

328 
 

separation, mass transfer balances, stable isotopes, and modelling. Applied 
Geochemistry, 20: 1746-1829.  

Taylor, G. (2003). "Geology from rail journeys: the Settle-Carlisle Railway.Geology 
Today, 19(4): 143-148. 

Theta Probe, Soil Moisture Sensor (1999). TYPE ML2x, User  Manual, ML2x-UM-
1.21. Delta-T Devices Ltd., 128 Low Road, Burwell, Cambridge, CB5 0EJ, England. 

Thomann, R.V. (1972). Systems analysis and water quality measurement. 
Environmental Research and Application. Inc., New York. 

Thurman, E.M. (1985). Organic geochemistry of natural waters, Martinus Nijhoff/Dr 
W. Junk Punlishers, Dordrecht. 

Tierney, G.L., T.J. Fahey, P.M. Groffman, J.P. Hardy, R.D. Fitzhugh and C.T. Driscoll 
(2001). Soil freezing alters fine root dynamics in a northern hardwood forest. 
Biogeochemistry 56:175-190. 

Tipping, E., C. Woof, E. Rigg, A.F. Harrison, P. Ineson, K. Taylor, D. Benham, J. 
Poskitt, A.P. Rowland, R. Bol and D. D. Harkness (1988). Climatic influences on the 
leaching of dissolved organic matter from upland UK moorland soils, investigated by a 
field manipulation experiment. Environment International, 25: 83-95. 

Tischendorf, W.G. (1969). Tracing Stormflow to Varying Source Area in Small 
Forested Basin in the  Southeastern Piedmont. University of Georgia, Athens, Georgia. 
Ph.D. thesis. 

Tischendorf, L.C. (2002). Catchment clearing impacts on estuaries. AUSGEO 
News, 65: 6-7. 

Tockner, K.U. Uehlinger and C.T. Robinson (2009). Rivers of Europe. Amsterdam; 
London: Academic Press. 

Todini, E. (1996). The ARNO rainfall-runoff model. Journal of Hydrology, 175: 339–
382. 

Tranvik, L.J. and M. Jansson (2002). Climate change -Terrestrial export of organic 
carbon. Nature, 415: 861-862. 

Tromp-van Meerveld, H.J., A.L. James, J.J. McDonnell and N.E. Peters (2008). A 
reference data set of hillslope rainfall-runoff response, Panola Mountain Research 
Basin, United States. Water Resources Research, 44. 

Tsai, C.C., P.C. Chen and Z.S. Chen (2010). Soil solution chemistry and elemental 
balance of Fushan natural hardwood forest ecosystem in Taiwan. 19th World Congress 
of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia. 

Twilley, R.R., J. Cowan, T. Miller-Way, P.A. Montagna and B. Mortazavi (1999). 
Benthic nutrient fluxes in selected estuaries in the Gulf of Mexico, pp 163-209 In 
Bianchi, T.S., Pennock, J.R. and R.R. Twilley (eds.), Biogeochemistry of Gulf of 
Mexico Estuaries, John Wiley and Sons, Inc. 



 

329 
 

UK Climate Projections (2009). Available at: 
http://www.defra.gov.uk/publications/2011/03/28/pb13274-uk-climate-projections-
090617/ (Accessed: December 2010). 

University of Newcastle Upon Tyne (2000). CHASM: Catchment Hydrology And 
Sustainable Management. Available at: http://research.ncl.ac.uk/chasm/ 

USEPA (1999). Protocol for Developing Nutrient TMDLs. EPA 841-B-99-007.  Office 
of Water (4503F), United States Environmental Protection Agency, Washington D.C. 
135 pp. 

Vanderbilt, K.L., K. Lajtha and F.J. Swanson (2003). Biogeochemistry of unpolluted 
forested watersheds in the Oregon Cascades: temporal patterns of precipitation and 
stream nitrogen fluxes. Biogeochemistry, 62: 87–117. 

Van Genuchten, M.Th. (1980). A closed-form equation for Predicting the Hydraulic 
Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44: 892-
898. 

Van Liew, M.W. and J. Garbrecht (2003). Hydrologic simulation of the Little Washita 
river experimental basin using SWAT. Journal of the American Water Resources 
Association, 39(2): 413–426. 

Van Verseveld (2007). Hydro-biogeochemical coupling at the hillslope and catchment 
scale. Oregon State University. PhD Thesis. 

Varis, O., T. Kajander and R. Lemmelä (2004). Climate and water: from climate models 
to water resources management and vice versa. Climatic Change, 66: 321-344. 

Vidale, P.L., D. Luthi, C. Frei, I. Seneviratne and C. Schär (2003). Predictability and 
uncertainty in a regional climate model. Journal of Geophysical Research, Atmos 108, 
Art. No.–4586. 

Vinten, A.J.A. and K.A. Smith (1993). Nitrogen cycling in agricultural soils. In Burt, 
T.P., A.L. Heathwaite and S.T. Trudgill (eds.), Nitrate:  Processes, patterns, and 
management. John Wiley and Sons, West Sussex, UK: 39-74. 

Volk, B.G. and R.H. Loeppert (1982). Soil organic matter. In: ‘Handbook of Soils and 
Climate in Agriculture’, V. J. Kilmer and A.A. Hanson(eds.),  CRC Press, Inc. Boca 
Raton, Florida. 

Wainwright, J. and A.J. Parsons (2002). The effect of temporal variations in rainfall on 
scale dependency in runoff coefficients. Water Resources Research, 38 (12): 1271. 

Walpola, B.C. and K.K.I.U. Arunakumara (2011). Carbon and nitrogen mineralization 
of a plant residue amended soil. The effect of salinity stress. Bangladesh Journal of 
Scientific & Industrial Research, 46(4): 565-572. 

Walsh, C.L. (2004). Simulation and Analysis of River Flow Regimes: Implications for 
Sustainable Management of Atlantic Salmon (Salmo salar) Under Climate Change. 
School of Civil Engineering and Geosciences. Newcastle Upon Tyne, Newcastle 
University. 

http://research.ncl.ac.uk/chasm/


 

330 
 

Walsh, C.L. and C.G. Kilsby (2007). Implication of climate change on flow regime 
affecting Atlantic salmon. Hydrology and Earth System Sciences, 11(3): 1127-1143. 

Wearing, C.L. (2008). Changes in fluxes of dissolved organic carbon (DOC) from small 
catchments in central Scotland. The School of Biological and Environmental Sciences. 
University of Stirling. PhD Thesis. 

Weiler, M., S. Scherrer, F. Naef and P. Burlando (1999).  Hydrograph Separation of 
Runoff Components Based on Measuring Hydraulic State Variables, Tracer 
Experiments, and Weighting Methods: International Association of Hydrologic 
Science,. 258: 249-255. 

Weiler M., J.J. McDonnell, I. Tromp-van Meerveld  and T. Uchida (2005). Subsurface 
stormflow runoff generation processes. In Encyclopedia of Hydrological Sciences, 
Anderson M.G. (eds.), John Wiley and Sons Ltd, 1719 – 1732. 

Western, A.W, S-L. Zhou, R.B. Grayson, T.A. McMahon, G. Blöschl and D.J Wilson 
(2004). Spatial correlation of soil moisture in small catchments and its relationship to 
dominant spatial hydrological processes. Journal of Hydrology, 286: 113–134.  

Weyman, D.R. (1973). Measurements of the downslope flow of water in a soil. Journal 
of Hydrology, 20: 267-288. 

Whitehead, J.C. (2005). Environmental Risk and Averting Behavior: Predictive Validity 
of Revealed and Stated Preference Data. Environmental and Resource Economics, 
32:301-316. 

Wicks, J.M. and J.C. Bathurst (1996). SHESED: a physically based, distributed erosion 
and sediment yield component of the SHE hydrological modelling system. Journal of 
Hydrology, 175: 213-238. 

Wilby, R. L, S. P Charles, E. Zorita, B. Timbal, P. Whetton and L. O. Mearns (2004). 
The guidelines for use of climate scenarios developed from statistical downscaling 
methods. Supporting material of the Intergovernmental Panel on Climate Change 
(IPCC), prepared on behalf of Task Group on Data and Scenario Support for Impacts 
and Climate Analysis (TGICA). 
<http://ipccddc.cru.uea.ac.uk/guidelines/StatDown_Guide. pdf. 

Wilcox, B.P., B.D. Newman, D. Brandes, D.W. Davenport and K. Reid (1997). Runoff 
from a semiarid ponderosa pine hillslope in New Mexico. Water Resources Research, 
33(10): 2301-2314. 

Wilkinson, M. E. (2009). A multiscale nested experiment for understanding and 
prediction of high rainfall and flood response spatial behaviour in the Eden Catchment, 
Cumbria, UK. School of Civil Engineering and Geosciences. Newcastle University. 
PhD Thesis. 

Wilks, D.S. (1999). Multisite downscaling of daily precipitation with a stochastic 
weather generator. Climate Research, 11: 125–36. 

Wilson, D.J, A.W. Western, R.B. Grayson, A.A. Berg, M.S. Lear, M. Rodell, J.S. 
Famiglietti, R.A Woods and T.A. McMahon (2003). Spatial distribution of soil moisture 
over 6 and 30cm depth, Mahurangi river catchment, New Zealand. Journal of 
Hydrology, 276: 254– 274. 



 

331 
 

Wilson, G.V. and R.J. Luxmoore (1988). Infiltration, macroporosity and mesoporosity 
distributions on forested watersheds. Soil Science Society of America Journal, 52: 329-
335. 

Wilson, G.V., P.M. Jardine, R.J. Luxmoore and J.R. Jones (1990). Hydrology of a 
forested watershed during storm events. Geoderma, 46: 119-138. 

Wilson, G.V., P.M. Jardine, R.J. Luxmoore, L.W. Zelazny and D.E. Todd (1991). 
Hydrogeochemistry processes controlling subsurface transport from an upper 
subcatchment of Walker Branch during storm events. 1. Hydrologic transport processes. 
Journal of Hydrology, 123: 297-316. 

Winter, T.C. (1981). Uncertainty in Estimating the Water Balance of Lakes. Water 
Resources Bulletin (AWRA), 17 (1): 82-115. 

Woldeselassie, M.K. (2009). Soil Organic Carbon and Site Characteristics in Aspen and 
Evaluation of the Potential Effects of Conifer Encroachment on Soil Properties in 
Northern Utah. Utah State University, MSc thesis. 

Wolfhard, S. and B. Reinhard (1998). The heterogeneity of runoff and its significance 
for water quality problems. Hydrological Sciences Journal, des Sciences Hydrologiques, 
43: 103-113. 

Wolford, R.A., R.C. Bales and S. Sorooshian (1996). Development of a hydrochemical 
model for seasonally snow-covered alpine watersheds: Application to Emerald Lake 
watershed, Sierra Nevada, California. Water Resources Research, 32: 1061 – 1074. 

WMO (2008). Climate. 
Available at:  http://www.wmo.int/pages/prog/wcp/COP16QAvariability.php  
(Accessed: May 2008). 

Worrall, F., T.P. Burt, R.Y. Jaeban, J. Warburton and R. Shedden (2002). Release of 
dissolved organic carbon from upland peat. Hydrological Processes, 16: 3487-3504. 

Worrall, F., T.P. Burt and J. Adamson (2006).  The rate of and controls upon DOC loss 
in a peat catchment. Journal of Hydrology, 321: 311-325. 

Yalin, M.S. (1963). An expression for bed-load transportation. Journal of Hydrology, 
89: 221-250.  

Yang, C., R.E. Chandler, V. Isham and H.S. Wheater (2005). Spatial-temporal rainfall 
simulation using Generalized Linear Models. Water Resources Research, 41, W11415. 

Yano, Y., K. Lajtha, P. Sollins and B.A. Caldwell (2004). Chemistry and seasonal 
controls on the dynamics of dissolved organic matter in a coniferous old-growth stand 
in the Pacific Northwest, USA. Biogeochem., 71: 197-203. 

Yong, J., Z. Yu-Ge, L. Wen-Ju and Q. Li (2005). Pedogenic and anthropogenic 
influence on calcium and magnesium behaviors in stagnic anthrosols. Scinece Press, 
Beijing, 15(3): 341-346. 

Younger, P.L. and C.A. Milne (1997). Hydrostratigraphy and hydrogeochemistry of the 
Vale of Eden, Cumbria, UK. Proceedings of the Yorkshire Geological Society, 51(4): 
349-366. 



 

332 
 

Yusop, Z., I. Douglas and A.R. Nik (2006). Export of dissolved and undissolved 
nutrients from forested catchments in Peninsular Malaysia, Forest Ecology and 
Management, 224: 26-44. 

Zhang, Y.K. and K. Schilling (2005). Temporal variations and scaling of streamflow 
and baseflow and their nitrate–nitrogen concentrations and loads. Advances in Water 
Resources, 28: 701–10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

333 
 

  Appendices 

Appendix A1 Geology Map Upper Eden basin 

Appendix A2 Land Cover Map Upper Eden basin 

Appendix A3 HOST Classification (The Macaulay Institute 2008) 

Appendix B Open pit at the Hollow sub-catchment 

Appendix C1 UK maps for December 2009 and January 2010  

(including mean temperature, mean daily minimum temperature, days of ground frost 

and days of snow lying) 

Appendix C2 UK map of recorded snow depths at 0900 GMT on Thursday                         

7 January 2010  

Appendix D1 Analysis of major ions in rain water and stream water within Blind Beck 

and Hollow 

Appendix D2 Analysis of NO3
- and DOC in stream water within Blind Beck and 

Hollow 

Appendix D3 Sediment size distribution curves  

Appendix D4 Analysis of TOC and TN in sediments within Blind Beck and Hollow 

Appendix E1 Analysis of major ions in the overland and subsurface flow within              

the hillslope 

Appendix E2 Analysis of DOC and NO3
- in the overland and subsurface flow within       

the hillslope 



 

334 
 

Appendix A1 Geology Map Upper Eden basin 
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Appendix A2 Land Cover Map Upper Eden basin 
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Appendix A3 HOST Classification (source: The Macaulay Institute 2008) 

HOST 
Class Description of HOST Class 

4  
Geology: hard fissured Dalradian, Cambrian or Ordovician limestones or sandstones. Some 
well weathered intrusive and metamorphic rocks (England and Wales only).  
 
Landforms: Limestone region - Few areas of true Karst, predominantly undulating with 
ridges (eg Lismore ), rocky knolls or craggy outcrops on steep-sided valleys. Much of the 
land has been extensively glaciated. Sandstone region - varies from gently undulating 
lowlands (e.g. Black Isle) with few rock outcrops to the rock-dominated hill tops of 
Sutherland and Caithness. In Shetland, the topography can be very rocky with a stepped 
appearance or strongly undulating lowlands. 
 
Soils: freely drained (wetness class I) brown earths, humus-iron podzols, brown and 
podzolic rankers, brown rendzinas and lithosols. They are often shallow. 
 
Vegetation: semi-natural grasslands and herb-rich heather moorland in the uplands to 
arable, improved pastures, coniferous plantation and occasionally broadleaved woodlands 
in the lowlands. 
 
Flow: flow in substrate is mainly through rock fissures though some rock is porous. 
 

5  
Geology: fluvioglacial sands and gravels or windblown sands, some coarse morainic drift.  
 
Landforms: quite variable includes a raised beach, windblown links and dunes (Culbin, 
Tentsmuir and Gullane) as well as high level river terraces (in Scotland at least) and the 
parallel roads of Glen Roy. The fluvioglacial deposits can be either moundy with long 
sinuous ridges or gently sloping outwash plains (e.g. around Forres in North-east Scotland). 
 
Soils: freely drained (wetness class I) humus-iron podzols and brown earths with brown 
calcareous soils, calcareous regosols, alluvial sands and gravel, and regosols. Found 
throughout Scotland but primarily south and east of the Great Glen. 
 
Vegetation: varies from natural marram grassland through heather moorland to coniferous 
plantation but the dominant land use is arable and permanent pasture. 
 
Flow: flow through these soils and substrates is largely laminar and intergranular. 

6  
Geology: loamy textured drift underlain by porous rocks such as sandstones. They are 
found throughout the lowlands of Scotland but most extensively in the east, Caithness and 
Sutherland. 
 
Landforms: the landforms associated with this class are highly variable from undulating 
non-rocky lowlands, valley sides and hilltops. The land has a wide range of slopes and is 
occasionally rocky and there are also localised areas of moundy moraine. The class ranges 
in altitude from virtually sea level to around 700 m. 
 
Soils: freely drained (wetness class I) brown earths and humus-iron podzols with some 
subalpine podzols. 
 
Vegetation: ranges from cultivated arable land in the lowlands through heather moorland, 
rough grasslands and semi-natural woodland. 
 
Flow: microporous with by-pass flow common along major structural cracks.  
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HOST 
Class Description of HOST Class 

8  
Geology: alluvial deposits. 
 
Landforms: alluvial areas in close proximity to rivers. 
 
Soils: immature free and imperfectly drained, loamy textured alluvial soils (wetness class I-
Ill). 
 
Vegetation: often intensively cultivated. 
 
Flow: these soils are underlain by a fluctuating groundwater table generally within two 
metres, by-pass flow common.  

10  
Geology: alluvial deposits and saltings. 
 
Landforms: found in low lying areas around lochs, between fluvioglacial mounds, along 
rivers and on raised beaches. Also saltings and dune slacks. 
 
Soils: poorly drained alluvial soils and mineral ground water gleys (wetness class IV). 
Saline alluvial soils below the high-water mark which are periodically inundated by the 
sea. 
 
Vegetation: varies from the halophytic marsh species of the saltings, rush pastures, and 
sedge mires to permanent pasture and intensive agriculture where the level of the water 
table can be controlled.  

15  
Geology: hummocky and slope moraines, coarse to medium textured till. Soft rock 
geologies. 
 
Landforms: valley moraines depression and receiving sites, ice-scoured landscapes with 
rock knolls and pockets of drift, some stepped topography, foot slopes, till embayment’s, 
spring lines and concave slopes. 
 
Soils: peaty gleys, peaty podzols and peaty rankers on porous rock types (wetness class V 
and VI). 
 
Vegetation: permanent and rush pastures, commercial forestry, bog heather moorland and 
molinia grassland, flush sites with mosses, rushes and sedges. 
 

17  
Geology: loamy textured drift drifts overlying hard, coherent rock at depths greater than 
one metre, colluvium and loose, frost-shattered debris.  
 
Landforms: gentle to strongly undulating, steep, rocky and non-rocky valley sides and 
foothills, moraines, boulder lobes and stone strips of mountain top environments. Ranges in 
altitude from virtually sea level to over 900 metres. 
 
Soils: freely drained brown earths, humus-iron podzols, subalpine soils, some brown 
magnesian soils and alpine soils. 
 
Vegetation: cultivated arable lands of the lowlands, coniferous plantations, semi-natural 
woodland, heather moorland, rough grasslands and the wind clipped moorland and heath 
reminiscent of the fringes of the arctic tundra including alpine azalea, lichens and sedges.  
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HOST 
Class Description of HOST Class 

24  
Geology: fine to medium textured lodgement till (formerly boulder clay), glaciolacustrine 
and estuarine deposits. 
 
Landforms: undulating till plains with occasional drumlin swarms, till embayments and 
some steep sided valleys. Gently undulating or level. The estuarine silts and clays form a 
specific and distinct landform associated with the Rivers Tay, Forth and Cree and are 
known as the Carse lands. 
 
Soils: non-calcareous mineral gleys with wetness class III or IV. 
 
Vegetation: cultivated with arable and dairying being a prominent farming system in the 
lowlands, locally, semi-natural Molinia grassland, rush pasture, broadleaved woodland and 
conifer plantation.  
 

26  
Geology: fine-textured lodgement till (formerly boulder clay), glaciolacustrine and 
estuarine deposits. 
 
Landforms: lowland depressions, gently undulating hill ground some steeper valley sides. 
 
Soils: peaty gleys (wetness class V to VI). 
 
Vegetation: with semi-natural vegetation including rush pasture, Molinia bog and heather 
moorland.  
 

29  
Geology: unconfined, umbrageous, climatic peat deposits. 
 
Landform: undulating land with gentle slopes including mountain plateaux on slopes < 
15o. Associated with a great many landform unit throughout Scotland. 
 
Soils: blanket peats (organic soils) often more than 1 metre deep.  
 
Vegetation: either semi-natural moorland, Molinia-dominated bog scrub or conifer 
plantation. 
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Appendix B Open pit at the Hollow sub-catchment 
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Appendix C1 UK maps for December 2009 and January 2010 (including 
mean temperature, mean daily minimum temperature, days of ground frost 
and days of snow lying) (source: Met Office, 2012) 
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Appendix C2 UK map of recorded snow depths at 0900 GMT on Thursday 7 
January 2010 (source: Met Office, 2012) 
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Appendix D1 Analysis of major ions in rain water and stream water within 
Blind Beck and Hollow 

Table D1-1 Summary of rain water results  

Date pH Na+ K+ Ca2+ Mg2+ Cl- SO4
2- NO3

- DOC 
mg/l 

6/8/09 6.3 4.0 1.4 1.6 0.3 6.7 3.6 0.9 3.2 
29/9/09 6.2 1.3 0.9 1.8 0.4 8.1 1.7 0.5 9.2 
8/10/09 6.3 2.2 0.8 0.8 0.3 6.0 1.6 0.4 9.3 
3/11/09 6.3 2.8 0.8 3.6 0.8 5.9 2.1 0.9 7.1 
1/12/09 5.8 5.0 0.5 0.9 0.5 20.0 2.4 0.4 5.0 
2/2/10 7.1 5.6 1.6 0.8 0.3 6.5 3.5 0.8 7.7 

18/3/10 6.0 2.7 0.8 1.0 0.4 5.1 3.6 2.8 3.4 
22/4/10 6.5 2.5 0.7 0.8 0.2 5.9 1.6 0.9 5.2 
20/5/10 N/A 1.3 1.0 1.2 0.3 N/A N/A N/A 13.7 
17/6/10 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
15/7/10 6.2 1.8 2.0 2.8 0.8 6.6 1.8 0.3 10.6 
19/8/09 6.5 1.0 1.0 0.8 0.2 3.3 1.0 0.5 10.3 

N/A not available 

 

 

Table D1-2 Summary of stream water results at sampling site 1 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- Charge 

balance 
mg/l % 

23/4/09 8.37 8.6 3.5 83.4 34.2 323.8 13.3 9.3 6.3 10.9 
06/5/09 8.11 9.6 6.0 92.4 30.3 330.0 17.2 10.6 5.6 10.6 
25/6/09 8.37 8.5 1.9 54.8 28.2 280.7 17.7 10.6 3.2 0.9 
22/7/09 7.65 8.5 1.7 73.9 23.0 320.4 13.6 8.1 4.0 1.1 
27/8/09 7.86 8.1 1.7 80.4 21.3 316.8 10.9 6.0 2.4 4.2 
29/9/09 7.51 8.4 1.3 91.0 29.8 324.3 13.8 10.9 6.5 10.1 
8/10/09 7.77 8.5 1.6 108.4 29.1 374.2 16.6 14.4 4.5 8.2 
3/11/09 7.63 9.3 2.8 57.0 14.3 219.4 16.9 6.2 2.8 2.9 
1/12/09 7.78 7.5 1.4 82.4 26.0 343.7 19.7 9.0 6.7 0.9 
2/2/10 7.60 14.8 3.1 77.3 23.4 295.3 41.2 8.5 5.5 1.9 

18/3/10 7.72 9.0 1.5 74.4 28.8 257.0 25.5 11.9 7.1 10.3 
22/4/10 7.89 7.7 1.1 73.9 27.7 271.1 17.2 9.3 7.2 9.5 
20/5/10 7.95 8.4 1.7 70.2 30.5 255.6 16.8 20.5 5.3 10.7 
17/6/10 8.05 9.6 5.9 92.4 30.3 330.0 17.2 10.6 5.6 10.6 
15/7/10 7.35 11.5 2.7 57.9 25.4 202.4 32.1 13.9 1.6 10.0 
19/8/10 8.0 8.1 1.6 57.6 29.4 229.3 17.5 10.4 1.7 11.67 
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Table D1-3 Summary of stream water results at sampling site 2 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- Charge 

balance 
mg/l % 

23/4/09 8.40 8.7 4.0 71.6 29.5 309.9 16.4 12.7 7.4 4.5 
06/5/09 8.2 10.7 5.6 93.4 30.5 339.6 16.9 10.7 5.1 10.1 
25/6/09 8.37 7.5 1.5 49.9 25.8 276.0 18.2 12.0 4.9 -3.7 
22/7/09 7.87 7.5 1.6 55.8 17.3 289.0 14.2 7.9 4.0 -7.9 
27/8/09 7.86 7.1 1.3 76.6 20.9 305.2 10.6 6.0 2.3 3.72 
29/9/09 7.68 7.0 1.0 94.9 29.7 324.4 13.6 10.2 6.1 11.1 
8/10/09 7.83 9.4 2.0 97.8 28.0 332.8 14.8 10.9 4.2 10.7 
3/11/09 7.30 7.2 2.4 58.1 13.8 204.3 16.9 5.7 3.2 4.9 
1/12/09 7.98 6.5 1.1 84.7 25.9 341.5 20.6 10.4 7.1 1.3 
2/2/10 7.61 18.2 3.3 87.4 24.6 295.3 39.8 11.4 6.2 7.1 

18/3/10 7.99 7.9 1.2 97.5 32.4 339.6 25.1 11.9 7.0 8.8 
22/4/10 8.12 6.9 0.9 73.0 27.7 262.7 15.0 8.9 5.5 11.06 
20/5/10 8.2 7.9 1.5 60.6 29.3 228.1 18.6 10.0 5.0 12.2 
17/6/10 8.3 7.8 1.6 55.5 31.0 218.9 27.2 7.9 1.3 11.4 
15/7/10 7.6 6.1 1.3 65.8 26.5 225.3 16.3 7.0 2.6 9.7 
19/8/10 8.0 6.1 1.3 65.8 26.5 245.3 16.3 7.0 2.6 10.5 

 

 

 

Table D1-4 Summary of stream water results at sampling site 3 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- Charge 

balance 
mg/l % 

23/4/09 8.1 4.7 4.8 81.4 30.6 304.6 14.7 9.7 4.7 11.3 
06/5/09 8.3 9.0 6.5 87.4 28.5 300.4 17.1 10.9 5.1 10.9 
25/6/09 8.5 7.8 1.6 53.3 27.5 267.5 16.6 10.0 3.1 1.9 
22/7/09 7.9 7.5 1.6 78.2 23.9 328.3 12.0 7.6 3.7 2.5 
27/8/09 7.9 6.8 1.3 78.8 20.9 310.0 11.2 6.2 2.4 3.6 
29/9/09 7.7 7.3 1.1 88.8 29.1 325.2 12.4 8.6 6.2 9.2 
8/10/09 7.9 19.4 2.4 95.8 28.4 406.1 14.3 10.6 4.1 4.4 
3/11/09 7.4 7.3 2.4 56.5 13.4 206.5 18.2 5.9 3.9 2.6 
1/12/09 7.9 6.7 1.1 83.4 25.8 351.7 14.1 5.8 5.0 1.8 
2/2/10 7.7 14.1 3.0 77.6 23.3 290.3 41.2 8.7 5.6 2.3 

18/3/10 8.1 7.7 1.2 80.7 29.1 256.5 25.0 11.4 7.3 12.7 
22/4/10 8.2 6.8 0.8 65.9 25.1 239.3 16.5 8.9 7.0 9.6 
20/5/10 8.3 7.6 1.2 65.3 30.1 245.7 16.6 8.7 4.7 12.4 
17/6/10 8.5 7.67 1.6 54.2 28.8 210.2 26.1 7.4 1.2 11.2 
15/7/10 7.7 24.2 2.7 54.3 24.2 192.0 34.3 8.1 1.1 10.3 
19/8/10 8.0 7.2 1.2 62.7 26.3 233.9 15.1 6.7 2.3 11.8 
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Table D1-5 Summary of stream water results for at sampling site 4 (Hollow) 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- Charge 

balance 
mg/l % 

27/8/09 7.2 7.6 1.8 93.4 23.1 322.9 8.6 6.9 0.0 9.98 
29/9/09 7.5 7.3 0.7 102.0 24.4 376.2 8.1 5.4 0.4 6.60 
8/10/09 7.0 7.3 0.8 97.6 24.1 370.4 9.4 9.4 0.7 4.73 
3/11/09 6.8 8.5 3.0 37.3 10.3 112.7 18.8 8.1 3.5 9.72 
1/12/09 7.2 7.0 0.9 78.1 19.6 277.9 15.6 7.4 1.3 6.09 
2/2/10 6.9 5.4 2.0 39.0 9.8 116.1 20.4 5.0 1.1 7.80 

18/3/10 8.0 5.9 0.6 92.7 22.7 329.5 10.3 5.4 0.4 9.81 
22/4/10 8.0 6.4 0.6 94.7 22.0 284.5 5.7 3.2 5.5 15.67 
20/5/10 7.8 6.5 0.5 105.2 22.9 293.0 8.2 5.5 0.2 17.84 
17/6/10 7.9 10.8 2.3 95.4 23.6 239.5 7.8 1.2 0.0 26.85 
15/7/10 7.1 20.6 9.9 162.9 21.0 141.8 15.2 264.0 42.7 39.50 

 

 

 

Table D1-6 Summary of stream water results at sampling site 5 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- Charge 

balance 
mg/l % 

23/4/09 8.0 9.25 3.58 118.9 34.4 388.8 15.2 10.7 9.9 12.7 
06/5/09 8.1 9.9 2.4 96.39 31.2 287.0 14.5 9.3 5.0 5.7 
25/6/09 8.2 8.5 1.4 85.9 28.3 372.9 20.3 16.3 8.1 -0.9 
22/7/09 7.9 7.7 1.4 85.8 24.8 357.0 11.6 7.5 4.4 2.2 
27/8/09 7.9 7.8 1.4 87.5 7.8 347.5 11.5 6.5 4.1 2.9 
29/9/09 7.8 7.2 1.2 88.3 7.2 393.1 12.2 8.3 6.1 -1.4 
8/10/09 7.7 8.9 1.5 120.0 8.9 462.2 16.0 10.0 10.9 1.8 
3/11/09 7.4 7.5 2.5 59.4 7.5 211.3 17.9 5.8 2.9 4.7 
1/12/09 7.9 6.8 1.2 89.8 6.8 357.0 19.5 6.2 6.4 2.4 
2/2/10 7.5 10.4 2.0 100.0 10.4 354.9 27.0 8.7 11.2 4.1 

18/3/10 7.8 8.3 1.3 78.8 8.3 346.4 22.3 11.4 14.6 -4.6 
22/4/10 8.0 7.9 1.1 106.6 7.9 343.7 17.0 8.7 11.2 11.2 
20/5/10 7.9 8.0 1.3 103.6 8.0 342.3 16.6 9.1 10.8 10.9 
17/6/10 7.9 8.3 1.5 107.7 8.3 355.9 20.6 7.5 8.8 10.7 
15/7/10 7.7 8.5 2.2 73.9 8.5 249.0 18.7 8.0 4.3 10.1 
19/8/10 7.8 7.7 1.2 84.5 26.9 282.8 16.5 7.1 6.0 11.9 
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Appendix D2 Analysis of NO3
- and DOC in stream water within Blind Beck 

and Hollow 

Table D2-1 Summary of nitrate in stream water results at sampling site 1 to 5 

Date 1 2 3 4 5 
NO3

- (mg/l) 
23/4/09 6.3 7.4 4.7 N/A 9.9 
06/5/09 5.6 5.1 5.1 N/A 5.0 
25/6/09 3.2 4.8 3.1 N/A 8.1 
22/7/09 4.0 4.0 3.7 N/A 4.4 
27/8/09 2.4 2.3 2.4 0.0 4.1 
29/9/09 6.5 6.1 6.2 0.4 6.1 
8/10/09 4.5 4.2 4.1 0.7 10.9 
3/11/09 2.8 3.2 3.9 3.5 2.9 
1/12/09 6.7 7.1 5.0 1.3 6.4 
2/2/10 5.5 6.2 5.7 1.1 11.2 

18/3/10 7.1 7.0 7.3 0.4 14.6 
22/4/10 7.2 5.5 7.0 5.5 11.2 
20/5/10 5.3 5.0 4.7 0.2 10.8 
17/6/10 1.7 1.3 1.2 0.0 8.8 
15/7/10 1.6 1.0 1.1 42.7 4.3 
19/8/10 2.9 2.6 2.3 N/A 6.0 

N/A not available; 4: Hollow; 5: outlet Blind Beck catchment 
 

Table D2-2 Summary of DOC in stream water results at sampling site 1 to 5 

Date 
1 2 3 4 5 

DOC (mg/l) 
23/4/09 5.0 7.2 3.5 N/A N/A 
06/5/09 4.6 5.6 5.6 N/A 12.9 
25/6/09 7.0 6.9 10.9 N/A 6.3 
22/7/09 13.9 18.4 19.4 N/A 16.9 
27/8/09 6.9 7.6 7.7 6.11 15.2 
29/9/09 6.2 7.8 12.8 4.12 6.2 
8/10/09 10.9 16.4 14.7 1.5 3.5 
3/11/09 12.6 14.7 13.8 18.4 13.5 
1/12/09 3.1 2.5 2.2 6.9 2.4 
2/2/10 10.0 8.2 7.1 9.1 2.4 

18/3/10 18.8 18.5 17.3 0.4 13.9 
22/4/10 13.6 12.9 11.5 14.8 10.1 
20/5/10 20.0 17.0 18.2 16.1 16.1 
17/6/10 19.3 15.6 16.1 105.9 14.7 
15/7/10 32.5 21.0 19.5 39.4 22.1 
19/8/10 15.7 15.1 15.9 15.9 10.4 

N/A not available; 4: Hollow; 5: outlet Blind Beck catchment 
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Appendix D3 Sediment size distribution curves  
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Appendix D4 Analysis of TOC and TN in sediments within Blind Beck and 
Hollow 

Table D4-1 Summary of TOC in sediments at sampling site 1 to 5 

Date 1 2 3 4 5 
TOC (wt%) 

23/4/09 0.31 0.37 N/A N/A 0.36 
06/5/09 0.41 0.37 0.66 N/A 0.31 
25/6/09 0.33 0.30 0.23 N/A 0.53 
22/7/09 0.28 0.29 0.32 N/A 0.43 
27/8/09 0.58 1.01 0.55 1.44 0.64 
29/9/09 0.56 0.59 0.61 2.03 0.44 
8/10/09 0.37 0.61 0.54 1.68 0.59 
3/11/09 0.47 1.03 0.59 1.99 0.50 
1/12/09 0.35 0.99 1.01 2.35 0.34 
2/2/10 0.37 0.77 0.47 2.36 1.01 
18/3/10 0.45 0.53 0.50 2.06 0.60 
22/4/10 0.90 0.87 0.78 1.80 0.84 
20/5/10 1.07 0.95 0.64 2.25 0.93 
17/6/10 0.90 1.04 0.54 2.02 0.92 
15/7/10 0.82 0.77 0.55 2.21 1.09 
19/8/10 0.65 0.82 0.56 N/A 1.26 

N/A not available; 4: Hollow; 5: outlet Blind Beck catchment 

 

 

Table D4-2 Summary of TN in sediments at sampling site 1 to 5 

Date 1 2 3 4 5 
TN (wt%) 

23/4/09 0.05 0.05 0.05 N/A 0.05 
06/5/09 0.03 0.03 0.03 N/A 0.03 
25/6/09 0.03 0.03 0.03 N/A 0.03 
22/7/09 0.06 0.06 0.06 N/A 0.06 
27/8/09 0.05 0.05 0.05 0.16 0.05 
29/9/09 0.04 0.04 0.04 0.21 0.04 
8/10/09 0.08 0.08 0.08 0.23 0.07 
3/11/09 0.12 0.12 0.12 0.23 0.08 
1/12/09 0.14 0.14 0.14 0.27 0.14 
2/2/10 0.07 0.07 0.07 N/A 0.07 
18/3/10 0.06 0.06 0.06 0.27 0.06 
22/4/10 0.02 0.02 0.02 0.24 0.02 
20/5/10 0.12 0.12 0.12 0.18 0.13 
17/6/10 0.14 0.14 0.14 0.12 0.12 
15/7/10 0.15 0.15 0.15 0.13 0.14 
19/8/10 0.17 0.17 0.17 0.18 0.24 

N/A not available; 4: Hollow; 5: outlet Blind Beck catchment 
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Appendix E1 Analysis of major ions in the overland and subsurface flow 
within the hillslope 

 

Table E1-1 Summary of the overland flow water results for the perturbed plot (A) 

Date pH 
Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- Charge 
balance 

mg/l % 
22/7/09 7.1 5.8 3.5 7.0 1.4 30.5 8.3 4.4 1.0 -2.1 
6/8/09 6.6 4.6 4.1 3.7 1.0 11.9 7.8 12.3 1.5 -9.8 
29/9/09 6.4 3.6 3.3 4.6 1.1 15.7 7.1 3.9 4.5 -4.5 
8/10/09 6.2 5.3 9.3 6.7 1.8 22.9 14.6 6.1 0.5 1.4 
3/11/09 5.8 3.6 2.7 2.9 0.7 3.5 7.6 2.3 2.7 8.3 
1/12/09 6.5 9.5 5.3 8.4 2.7 20.5 15.9 5.8 0.9 -11.1 
2/2/09 7.2 5.0 2.7 5.4 1.6 17.2 17.1 2.5 3.2 -11.6 
18/3/09 6.7 4.3 3.2 3.7 1.0 10.8 6.4 2.8 1.2 10.4 
22/4/09 6.9 4.0 1.9 2.2 0.6 6.41 9.8 3.4 1.9 -11.5 
20/5/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
17/6/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
15/7/09 6.9 3.5 6.0 8.4 1.6 26.3 7.7 6.3 0.6 3.9 

19/08/09 6.5 2.0 4.5 3.9 1.1 10.3 7.0 1.7 2.1 6.02 

N/A not available 

 
 

Table E1-2 Summary of the overland flow water results for the control plot (C) 

Date pH 
Na+ K+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- Charge 
balance 

mg/l % 
22/7/09 6.3 6.9 8.0 6.4 1.8 24.7 11.3 2.5 0.0 11.2 
6/8/09 6.0 6.0 5.6 5.2 1.4 19.3 11.3 4.7 1.4 3.8 
29/9/09 6.7 5.7 6.2 3.9 1.0 11.7 10.2 2.5 2.5 7.8 
8/10/09 6.7 5.7 7.3 2.1 0.8 14.6 12.0 3.1 1.5 -4.9 
3/11/09 6.6 6.6 5.4 2.7 1.0 10.2 11.4 3.6 4.0 1.1 
1/12/09 5.8 7.4 3.4 1.1 0.4 8.3 7.7 2.1 1.3 9.14 
2/2/09 7.2 4.5 1.7 0.8 0.4 5.6 8.2 1.5 2.0 -10.6 
18/3/09 6.3 2.5 1.0 2.5 0.6 5.2 7.0 2.6 2.1 -10.6 
22/4/09 7.0 1.6 0.6 1.1 0.2 0.9 4.5 1.1 1.0 -5.5 
20/5/09 6.7 1.1 1.3 4.9 1.1 9.6 4.5 5.8 0.3 5.9 
17/6/09 6.8 1.2 0.7 1.6 0.5 5.4 4.5 0.9 0.0 -9.9 
15/7/09 6.3 4.8 6.3 5.7 1.6 18.5 13.5 2.6 0.0 2.7 

19/08/09 6.9 2.7 2.7 3.4 1.1 11.0 6.8 1.9 0.1 3.8 

N/A not available 

 
 

Table E1-3 Summary of the subsurface flow water results (10 cm) for the perturbed plot 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
18/3/09 6.2 6.9 1.3 9.4 1.8 6.8 16.7 4.9 5.9 
22/4/09 6.2 0.5 1.5 7.4 2.7 6.8 4.6 7.2 3.2 
20/5/09 7.4 3.9 1.1 6.7 1.1 9.1 5.4 7.3 1.9 
17/6/09 6.4 4.2 2.1 7.0 1.1 5.6 2.4 3.9 0.4 
15/7/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

19/08/09 6.1 3.0 0.8 6.6 1.0 5.2 1.9 1.2 0.3 

N/A not available 
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Table E1-4 Summary of the subsurface flow water results (18 cm) for the perturbed plot 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
21/10/09 6.1 10.9 1.4 10.7 1.9 6.9 12.1 7.6 7.5 
3/11/09 5.9 4.9 0.5 9.8 1.7 5.3 4.6 5.6 4.1 

11/11/09 6.2 5.6 1.2 11.3 2.0 16.2 5.5 5.2 1.2 
1/12/09 6.1 5.2 0.9 10.6 1.8 10.8 5.0 5.4 2.6 
2/2/09 6.0 2.5 0.6 2.4 0.4 2.9 2.9 0.9 0.0 
18/3/09 5.9 3.4 0.4 10.0 1.4 3.2 9.5 6.6 4.3 
22/4/09 6.2 7.0 0.4 7.4 1.5 7.7 14.9 13.2 0.0 
20/5/09 7.2 2.2 0.3 3.6 0.6 5.8 1.6 2.5 0.2 
17/6/09 7.0 2.5 0.3 20.0 0.9 16.9 4.2 8.3 1.4 
15/7/09 7.1 7.5 1.1 13.7 2.1 16.9 N/A N/A 0.0 

19/08/09 5.7 2.1 0.3 5.0 0.7 2.0 1.6 0.9 0.0 

N/A not available 

 
 

Table E1-5 Summary of the subsurface flow water results (10 cm) for the control plot 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
18/3/09 6.3 3.0 0.4 4.2 0.7 5.7 5.0 2.8 2.1 
22/4/09 6.3 2.4 0.3 3.8 0.6 6.8 3.7 3.1 0.9 
20/5/09 7.2 3.5 0.4 4.1 0.7 7.0 5.2 5.9 1.9 
17/6/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
15/7/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

19/08/09 5.9 1.8 0.5 4.3 0.7 3.4 2.1 0.7 0.9 

N/A not available 

 

 

Table E1-6 Summary of the subsurface flow water results (18 cm) for the control plot 

Date pH Na+ K+ Ca2+ Mg2+ HCO3
- Cl- SO4

2- NO3
- 

mg/l 
18/3/09 6.2 2.9 0.5 6.1 1.0 6.3 7.8 3.4 1.0 
22/4/09 6.1 2.8 0.3 6.6 1.0 6.5 7.0 4.8 0.6 
20/5/09 7.0 2.1 0.3 4.1 0.5 7.4 2.0 2.5 0.2 
17/6/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
15/7/09 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

19/08/09 5.8 2.1 0.4 4.2 0.6 1.8 1.7 1.3 0.2 

N/A not available 
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Appendix E2 Analysis of DOC and NO3
- in the overland and subsurface flow 

within the hillslope 

 

Table E2-1 Summary of DOC and NO3
- in the overland flow water 

Date Perturbed plot Control plot Perturbed plot Control plot 
DOC (mg/l) NO3

- (mg/l) 
22/7/09 15.9 16.4 1.1 1.0 
06/8/09 18.2 18.8 1.5 1.4 
27/8/09 10.2 16.0 1.1 2.5 
29/9/09 9.1 12.6 4.5 5.5 
8/10/09 9.5 12.1 0.5 1.5 
3/11/09 8.9 12.1 4.7 6.8 
1/12/09 11.2 8.3 0.9 1.3 
2/2/10 8.5 3.8 3.2 2.0 
18/3/10 10.1 8.4 8.1 2.1 
22/4/10 9.3 6.2 1.9 1.0 
20/5/10 N/A 11.7 0.2 0.3 
17/6/10 N/A 13.7 N/A 0.0 
15/7/10 22.9 23.9 N/A 0.0 
19/8/10 10.4 9.3 2.1 0.1 

N/A not available 

 

Table E2-2 Summary of DOC and NO3
- in soil water solution  

Date 
Perturbed plot Control plot Perturbed plot Control plot 

10 cm 18 cm 10 cm 18 cm 10 cm 18 cm 10 cm 18 cm 
DOC (mg/l) NO3

- (mg/l) 
8/10/09 

Not 
measured 

46.4 
Not 

measured 
Not 

measured 
Not 

measured 

7.5 
Not 

measured 
Not 

measured 
3/11/09 30.7 2.6 
1/12/09 4.8 0.0 
2/2/10 N/A N/A 

18/3/10 8.5 13.8 5.4 4.1 5.9 4.3 2.1 1.0 
22/4/10 15.3 19.4 11.6 10.1 3.2 0.00 0.9 0.6 
20/5/10 26.8 19.6 18.4 11.7 1.9 0.2 1.9 0.3 
17/6/10 31.6 22.1 N/A N/A 0.3 1.4 N/A N/A 
15/7/10 N/A 30.4 N/A N/A 0.0 0.0 N/A N/A 
19/8/10 26.2 28.1 23.1 21.7 0.3 0.0 0.9 0.2 

N/A not available 

 

 

 

 

 

 


