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Abstract 

The emergence of multiple-antibiotic resistance among clinical pathogens has 

created an urgent requirement for the development of new antibiotics. The 

current lack of new antibiotics has not only renewed interest in traditional 

natural product screening approaches, but also prompted efforts to develop 

alternate antimicrobial strategies. 

Antisense RNA based silencing provides a strategy for developing whole cell 

screening assays, whereby antisense RNA induction leads to target protein 

depletion and subsequently the increased sensitivity of test organisms to target 

specific inhibitors. The development of synthetic derivatives to expressed 

antisense RNA such as peptide Nucleic Acids (PNA), has also been explored 

for use as bacterial inhibitors. This thesis aims to examine two novel 

antimicrobial strategies, firstly by comparing mRNA and protein based 

techniques to evaluate essential gene requirement in bacteria, to identify novel 

targets for antibiotic screening assays. Secondly, to evaluate the potential use 

of peptide peptide-PNA’s as antimicrobials capable of targeting individual 

bacterial species. 

To successfully develop either approach requires the identification and 

validation of suitable gene encoded molecular targets. Essential genes may 

provide potential candidates, yet a suitable system is necessary for 

characterisation to enable genes to be ranked, so that the most suitable targets 

can be prioritized. A disproportionate growth requirement (stringency) is known 

to exist among essential genes, which provides a means to delineate between 

essentially required targets, yet is based upon the measurement of mRNA 

abundance. Due to post-transcription and translation mechanisms, mRNA does 

not provide a reliable indicator of expressed protein, which represents the 

ultimate output of gene expression. 

This study demonstrates the use of a quantitative proteomics strategy for 

evaluating essential gene stringency at the protein level, using the E.coli gene 

fabI. Using expressed antisense RNA silencing to deplete target protein 

concentration and to reduce normal growth rate to 50%, absolute protein 

determinations were used to define a Minimum Protein Level (MPL50), for the 

quantitative characterisation of essential gene stringency. To support the 
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justification of evaluating gene stringency using expressed protein abundance, 

the stringency of operon based genes fusA and rplE using antisense RNA 

silencing was investigated and revealed transcript profiles that contradict the 

use of Minimum Transcript Level (MTL50) previously used to define gene 

stringency. 

Finally, to demonstrate a potential application that would benefit from the 

characterisation of essential gene stringency, the species-specificity of a 

peptide-PNA targeting the essential gene ftsZ was evaluated. Exposing a mixed 

culture of S.typhimurium and E.coli to a peptide-PNA conjugate, incorporating a 

2 base pair mismatch demonstrated the capacity to inhibit translation of ftsZ in 

S.typhimurium but not E.coli. 

This study highlights how characterising essential genes using the MPL50 can 

be used to delineate stringently required gene targets to support antimicrobial 

screening and the development of species specific antimicrobials. Furthermore 

the applications of evaluating gene stringency may be extended further, to 

provide a tool for standardising genetic components in synthetic biology 

approaches. 
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Chapter 1 Introduction 

1.1 Antibiotics overview 

1.1.1 Antibiotic origins, function & resistance 

The discovery and derivatization of antibiotics from natural products has 

provided the foundations of modern chemotherapy, while pioneering techniques 

in isolation, characterisation, purification and systematic screening have 

contributed to the development of the modern pharmaceutical industry. The 

study and elucidation of antibiotic modes of action on bacterial physiology, has 

not only advanced the understanding of cellular mechanisms underlying 

replication, transcription and translation, but also provided selection tools for 

cloning strategies (Fabbretti et al., 2011). 

The origins of naturally derived antibiotics can be traced to organisms within the 

plant and animal kingdoms, primarily unicellular bacteria and eukaryotic fungi. 

Of particular interest are the filamentous gram-positive bacteria belonging to the 

order Actinomycetales (Lechevalier and Lechevalier, 1967),  typified by the 

genera  Streptomyces, which exist ubiquitously within the terrestrial 

environment, fulfilling  a saprophytic role  (Goodfellow and Williams, 1983). 

Streptomyces are among the most prolific producers of naturally derived 

antibiotics that have entered clinical practice, with a speculative capability of 

producing up to 100,000 potential antimicrobial compounds (Watve et al., 

2001).  

Antibiotics are characterized as low molecular weight compounds (MW<3000) 

which are synthesized via complex secondary metabolic pathways, divorced 

from the primary metabolic functions concerned with cell growth (Bérdy, 2005). 

Secondary metabolic pathways are a consequence of distinct biosynthetic gene 

clusters that encode metabolic  enzymes, regulatory genes and resistance 

mechanisms, implying functional evolution as a unit (Maplestone et al., 1992). 

The secondary metabolites produced, possess intricate molecular scaffolds with 

unique functional group configurations (Silver, 2008). These properties enable 

specific interactions with molecular targets (cellular components or enzymes) 

(Figure 1.1),  through specific binding sites either on the target surface, or at 

sites that are exposed following structural re-arrangement, when the target is 

assembled as part of a macromolecular complex with other cellular constituents 
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(Lange et al., 2007). The subsequent binding alters the ordered structure of the 

target causing impairment or complete abolition of normal function. Essential 

cellular function is subsequently effected, which depending on the degree of 

target inhibition, is characterized as either inhibitory (bacteriostatic) or capable 

of initiating cell death (bactericidal) (Walsh, 2003).  

Impaired cellular function and cell death can also occur via a secondary 

pathway that is activated  following primary antibiotic target binding, which 

initiates a universal mechanism of cell death through oxidative damage 

(Kohanski et al., 2010). Interaction between the antibiotic and respective cellular 

target, alters metabolic feedback to the Tricarboxylic Acid Cycle (TCA), through 

increased oxidation of the reduced form of the co-enzyme nicotinamide adenine 

dinucleotide (NADH). Hyper-activation of the electron transport chain ensues, 

causing an increase in the formation of superoxide (O2-), hydrogen peroxide 

(H2O2) and hydroxyl (OH) free radicals, which react readily with enzymes 

containing iron complexes. Iron is subsequently lost following oxidation and 

becomes freely available to interact with H2O2 via the Fenton reaction to 

produce OH radicals, which are highly reactive and capable of readily oxidising 

DNA and proteins (Imlay, 2003). 

The role of antibiotics was deemed to be an evolved survival strategy in the 

guise of a chemical defence mechanism, for minimising competition from other 

bacteria (Fajardo et al., 2009)  and providing protection against bacterivorous 

predators such as protozoa and nematodes (Jousset, 2012). This concept was 

supported by widespread antibiotic production among organisms subject to 

Darwinian competition, in addition to the structural complexity of natural 

products encoded by a significant proportion of the genomes of Actinomycetes 

and the sophisticated interaction between the antibiotic and it’s cognate 

receptor (Williams et al., 1989).  More recently it has been suggested that, 

antibiotics may fulfil a role as autoregulators in intracellular communication, 

since they are known to induce secondary metabolism and aerial mycelium 

formation in Actinomycetes, in addition to cellular differentiation in other species 

(Beppu, 1992). The dual role of defence and communication has been 

suggested to be concentration dependant, with antibiotics behaving as 

autologous signals at low concentrations, whereas at high concentrations they 
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act in the traditional sense of inhibiting bacterial growth (Fajardo and Martinez, 

2008).  

1.1.2 Antibiotic mode of action 

Antibiotics are broadly grouped according to the cellular pathways and targets 

they affect (Table 1.1) peptidoglycan assembly in cell wall synthesis, disruption 

of the outer cytoplasmic membranes, protein synthesis machinery such as the 

ribosome and associated elongation factors, enzymes responsible for 

replication and transcription and the biosynthesis of folate, tRNA and fatty acids 

(Lange et al., 2007) . 

 

 

Figure 1.1. Cellular targets of current antibiotics in clinical use (adapted from Walsh, 
2003).
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Table 1.1. The targets and inhibitory modes of action of antibiotics in clinical use 

Pathway Antibiotic class Primary Target Mechanism of action 

Cell wall 
synthesis 

β-Lactams and derivatives: 

Cephalosporins Carbenems 
Monobactems 

DD-transpeptidases 
(penicillin binding proteins) 

Pencilioyation of the penicillin binding protein active site, 
preventing the catalysis of peptide bond formation between 
peptidoglycan units. 

 Glycopeptide Peptidoglycan units Binds peptidoglycan units (at D-alanyl-D-alanine-dipeptide), 
thereby Inhibiting transglycolase activity and preventing 
cross linking of peptidoglycan. 

DNA 
replication 

Quinolones/fluoroquinolones A-subunit of DNA gyrase or  
A-subunit of Toposiomerase 
IV 

Interferes with the maintenance of chromosome topology, 
through the Inhibition of strand cleavage and re-joining, 
resulting in double strand breaks and replication fork arrest. 

Protein 
synthesis 

Aminoglycosides 16S rRNA 30S ribosome tRNA mismatching resulting in mistranslation. 

 Tetracyclines 30S ribosome Blocks access of aminoacyrl t-RNA to the ribosome. 

 Macrolides 50S ribosome Inhibiting the initiation phase of translation and translocation 
of peptidyl tRNA. 

Transcription Rifamycins Β-subunit of  DNA-
dependent RNA polymerase 

Stable binding to the DNA/RNA tunnel of the Β-subunit 
subsequently blocks RNA elongation. 

Folate 
biosynthesis 

Sulfonamide Dihydropteroate synthase Acts as a competitively inhibitor  

 Trimethoprim Dihyrdofolate reductase Prevents recycling of folate coenzymes 7,8 dihydrofolate 
(DHF) to 5,6,7,8-tetrahydrofolate (THF) 
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1.1.3 The emergence of antibiotic resistance 

Decades of anthropogenic activity in biopharmaceuticals, medicine and 

agriculture, have been speculated to increase the capacity for bacterial 

evolution. Antibiotic exposure promotes a transient increase in rates of 

mutation, recombination and Horizontal Gene Transfer (HGT), which underlie 

genetic diversity. Over time lineages displaying higher mutation rates 

predominate, leading to the directional selection of antibiotic resistance among 

bacteria (Gillings and Stokes, 2012). Although the probability of antibiotic 

resistance developing was initially thought to be low, subsequent advances in in 

microbial genetics have increased understanding regarding the precursors to 

resistance and it’s dissemination amongst other species (Davies, 1994). Within 

a clinical context, persistent antibiotic use has prompted the emergence of three 

predominant classes of resistant pathogens; gram positive organisms such as 

Methicillin Resistant Staphylococcus aureus (MRSA), and gram negative 

organisms such as multidrug resistant (MDR) Escherichia coli, Enterococcus 

faecium, Enterobacter cloacae, Extended-spectrum β-lactamases (ESBL) 

Klebsiella pneumoniae, MDR Actinetobacter baumanii and Pseudomonas 

aeruginosa. In addition a third class consisting of multidrug resistant (XDR) 

Mycobacterrium tuberculosis has also been observed (Fischbach and Walsh, 

2009). It is now accepted that antibiotic exposure creates a Darwinian selection 

pressure which promotes an adaptive response,  through the development of 

survival mechanisms that enable continued growth in cytotoxic antibiotic 

concentrations (Wright, 2007). Those microorganisms best adapted for survival 

persist with the capability of disseminating resistance traits amongst other 

species (Allen et al., 2010).  

Antibiotic resistance mechanisms are considered artefacts arising from a 

comprehensive and evolving natural reservoir of resistance genes, among 

pathogenic and environmental bacteria. This compendium encompasses cryptic 

resistance elements within chromosomes and precursor genes encoding 

proteins with alternate functions, that serve as prototypes to bona fide 

resistance mechanisms, collectively referred to as the antibiotic resistome 

(Wright, 2007). The resistome is thought to have originated from the co-

evolution of proteins with alternate biochemical function which undergo 

convergence, whereby a single functional transcriptional unit develops from the 
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merging of contiguous genes sets coding for structural, regulatory and 

resistance elements into a single bio-synthetic cluster (Fischbach, 2009). The 

source of antibiotic resistance mechanisms has been attributed to 

Actinomycetes, which require a resistance strategy to compensate for antibiotic 

production. Indeed antibiotic resistance in Actinomycetes is known to increase 

in conjunction with synthesis.  In Streptomyces coelicolor, elucidation of the 

production of the antibiotic actinorhordin, revealed a coupling between 

biosynthesis and intracellular export. Pathway intermediates were identified and 

found to be capable of binding to a transcriptional repressor (ActR), responsible 

for regulating the expression of a trans-membrane efflux pump (actA). As a 

result of this mechanism, S.coelicolor was primed in preparation for the toxic 

build-up of antibiotic (Tahlan et al., 2007). 

Resistance mechanisms may be classified as either active (stimulated by an 

evolutionary selective pressure) or passive (a consequence of innate cell 

function or general adaptive process) (Wright, 2005). In these cases, the 

expression of intrinsic resistance mechanisms can arise following spontaneous 

chromosomal mutation or a series of cooperative mutations within genes that 

dictate the synthesis and structural assembly of the antibiotic target. Mutations 

may cause structural re-orientation of the active site (target structural 

mutations), enhance access to the target (target access mutations), or shield 

the target from antibiotic action (target protection mutations) (Martinez and 

Baquero, 2000). 

A prerequisite for spontaneous mutation is pre-mutagenic damage to 

chromosomal DNA as a consequence of native replication errors following DNA 

synthesis, characterised as base substitution, frame-shift, or sequence 

substitutions. Alternatively, mutations may arise from DNA lesions caused by 

adverse chemical reactions (Oxidation, methylation, depurination, deamination 

and hydrolytic decomposition of nucleotide bases), in conjunction with  failures 

in cell repair mechanisms (Maki, 2002). The probability of a spontaneous 

mutation event creating resistant phenotypes (mutability) is dependent on gene 

structure, length and surrounding sequences, which may be prone to genetic 

alteration. Environmental cues such as nutrient limitation are also known to 

increase the rate of mutation by initiating an adaptive response, involving the 

expression of contingency genes, linked to the SOS response (Martinez et al., 
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2009).  Such factors underlie the conditions for mutator phenotypes to arise 

within bacterial populations, which provide a survival mechanism for bacteria to 

adapt and respond to environmental changes. Alternatively resistance genes 

may be acquired from other species through horizontal gene transfer (Mazodier 

and Davies, 1991), encompassing the transmission of mobile genetic elements 

from bacteriophages (transduction), plasmids and conjugative transposons 

(conjugation) and integration of exogenous DNA within chromosomal DNA 

(transformation) (Alekshun and Levy, 2007). Ultimately such mutations support 

the development of common resistance mechanisms enabling mutant bacteria 

to compete with wild-type counterparts. The outcome is subject to the relative 

fitness conveyed by the mutation, which may present a significant biological 

cost in terms of additional metabolic requirements, arising from the expression 

and maintenance of resistance genes (Andersson and Levin, 1999). Although 

resistance is often viewed as reducing fitness, it can be compensated by 

additional mutations in other chromosomal loci, restoring fitness equivalent to 

wild-type strains (Martinez and Baquero, 2000). 

Despite the extensive documentation of emerging resistance mutations, only 

three new classes of antibiotic have been developed in the last few decades, 

consisting of mutilins, lipopetides and oxazolidinones (Fischbach and Walsh, 

2009). Efforts at reversing resistance within a clinical context, through reducing 

antibiotic treatments have had limited effects (Andersson and Hughes, 2010). 

The primary means to treat resistant strains may lie in the discovery of 

antibiotics possessing novel modes of action capable of negating established 

resistance mechanisms. 



8 
 

Table 1.2. Resistance mechanisms associated with current antibiotics. 

Resistance 
Mechanism 

Mode of action Antibiotic 
example 

Mutation description 

Structural 
modification of the 
molecular target  

Alterations in target structure 
reduce interactions / disrupt 
recognition sites for 
antibiotic binding 

Quinolones 

 

Mutations in gyrA  (Ser83 – Leu), gyrB  (Asp426-Asn), which 
encode the subunits of DNA gryase  and subunit of topisomerase 
IV  encoded by parC (Ser80-Arg)  

Aminoglycosides Mutation in nucleotide A1408G of Helix 44 of decoding site of 30S 
subunit 

Alteration in cell 
membrane 
permeability   

Restricts entry of the 
antibiotic  to intracellular 
targets  

Vancomycin 

Polymyxin 

Thickened cell wall in S.aureus 

Modification of lipopolysaccharide and lipid A composition in 
S.enterica by 2 component regulatory system PmrAB 

Expression of 
active efflux 
pumps  

Removes antibiotic from the 
cytoplasm and across inner 
and outer membrane of the 
cell envelope 

Tetracycline 

 

Tet transmembrane efflux transmembrane proteins A-E (gram-) 
and K, L (gram+) protein 

Macrolides MsrA ATP binding cassette (ABC) efflux protein 

Expression of 
enzymes   

Enzymatic modification or 
degradation of antibiotic 
structure rendering it 
inactive 

Aminoglycosides Acetyltransferase(AAC), Nucleotidyltransferases(ANT), 
Phosphotransferases (APH) 

Overproduction of  
molecular target  

Excess target saturates 
antibiotic levels, increasing  

Isoniazid Mutations in the promoter region of inhA encoding enoyl 
transferase in M.tuberculosis 
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1.1.4 The antibiotic discovery paradigm 

The paradigm of antibiotic discovery can be traced to the convergence of two 

separate approaches; systematic chemical synthesis and natural product 

discovery. Systematic chemical synthesis aimed to utilise reaction mechanisms 

to generate variant chemical structures with antibacterial properties. This 

culminated in the development of the first true antibacterial prontisil rubrum, 

which demonstrated in vivo activity against streptococcal infection. Further 

investigation attributed antibacterial activity to the metabolite sulfonilamide, 

which heralded the process of rational design and screening of antimetabolites 

leading to the development of antifolates. The origins of natural product 

discovery began with the serendipitous observation and subsequent isolation of 

penicillin from the mould Penicillium notatum. This was followed by the 

discovery of streptomycin, which provided a template for the screening 

fermentation broths derived from soil Actinomycetes. This became the 

prevailing  approach which facilitated the discovery of the majority of antibiotic 

classes, referred to as  “golden age of antibiotics” (Silver, 2012).  

Over recent decades traditional discovery programs within the pharmaceutical 

industry have declined, due to a loss in profitability associated with developing 

new antibiotics. This has been attributed to the short duration of antibiotic 

therapy which generates a lower return on capital invested in comparison to 

other treatments (e.g.: hypertensives). Profitability has been further exacerbated 

by the conservative pricing of antibiotics  and efforts to limit their prescribing to  

minimise resistance (Tillotson, 2008).  A substantial proportion of the economic 

costs incurred, have been attributed to the reliability of natural sources and the 

characterisation necessary to identify active components in often complex 

extracts (Li and Vederas, 2009). The most significant factor in the decline of 

traditional antibacterial discovery occurred following the introduction of 

combinational chemistry. Combichem refers to the systematic assembly of 

diverse chemical structures by the connection of individual components, 

through biological, chemical or biosynthetic means (Gallop et al., 1994). Using 

this approach it is possible to construct  structurally diverse compounds through 

the addition of functional groups to a primary scaffold element, often derived 

from a natural product template (Koehn and Carter, 2005).  Unlike traditional 

natural product libraries, sufficient quantities can be synthesized economically 
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and undesirable chemical properties that may cause unwanted side effects can 

be avoided at the design stage. 

The introduction of combichem subsequently  prompted a paradigm shift in 

screening strategies that saw empirical screening from natural sources, 

superseded by High Throughput Screening (HTS) using synthetic libraries (Li 

and Vederas, 2009). Yet despite extensive efforts, synthetic libraries have failed 

to make a significant impact. The evidence for this limited  success has been 

exemplified by the screening of synthetic polyketides libraries, which have 

demonstrated a hit rate of <0.001% compared to a 0.3% hit rate achieved with 

natural product libraries (Weissman and Leadlay, 2005). Even the use of 

genomics to identify and select essential genes for target based screening has 

failed to deliver new antibiotic entities.  In a landmark study, a genomics based 

approach was used to identify 70 essential genes, which proceeded to generate 

only 5 leads from subsequent HTS campaigns (Payne et al., 2007). Similar 

results were identified in 127 antibacterial screening programs covering 69 

essential targets (Chan et al., 2004).  

Conclusions drawn from these studies revealed the limitations of synthetic 

libraries, specifically an inherent lack of chemical diversity in terms of steric 

complexity, unique functional groups, chiral centres, and broad molecular 

properties associated with natural products. Furthermore, synthetic compounds 

often lack evolved target specificity, often against subtle features such as 

protein domains and binding motifs (Koehn and Carter, 2005). The lack of 

chemical diversity may have  arisen from an inherent bias towards compounds 

that fulfil Lipinski’s rule of 5, a set of parameters associated with solubility and 

permeability,  in terms of molecular weight, Log p and number of hydrogen 

acceptors and donors (Lipinski et al., 2012). In comparison natural products 

typically display higher MW and polarity compared to other drug classes 

(O'Shea and Moser, 2008). With increasing rates of antibiotic resistance and a 

lack of novel antibiotics in development, there has been a renaissance in 

natural product discovery.  

1.1.5 Possibilities to exploit new sources of antibiotics 

Current efforts in natural product discovery have focused on identifying new 

antibiotic producing microorganisms on the rationale that taxonomic diversity is 
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a proxy for  the  chemical scaffold diversity, associated with natural products 

(Bull et al., 2000). New microorganisms have been sought by surveying 

previously unexplored geographical locations, where extreme environmental 

conditions of temperature pH and salinity are encountered.  Considerable focus 

has been expended on the marine environment including sea ice, the ocean 

subsurface, hydrothermal vents and the ocean floor (Keller and Zengler, 2004).  

Marine sediments in particular have shown large diversity of microorganisms in 

particular Actinomycetes (Stach and Bull, 2005; Pathom-aree et al., 2006). 

Currently members covering 50 genera of Actinomycetes have been isolated 

and cultured from marine habitats including the discovery of new genera; 

Demequina, Lamia, Marinactinospora, Marisediminicola, Miniimonas, 

Paraoerskovia, Phycicococcus, Phycicola, Salinibacterium, Salinispora, 

Aciscionella and Serinicoccus (Goodfellow and Fiedler, 2010). Akin with their 

terrestrial counterparts, marine Actinomycetes possess a significant coding 

capacity reserved for numerous biosynthetic clusters encoding secondary 

metabolites (Baltz, 2008). Evidence has emerged suggesting that marine 

secondary metabolites are synthesised via unique halogenation mechanisms, 

absent in terrestrial Actinomycetes (Butler, 1998). Marine halogenated 

metabolites are speculated to possess novel  properties which arise from the 

incorporation of halogen atoms within aromatic, heterocyclic rings and carbon 

centres, that  influence steric effects and electrophilic reactivity  of the antibiotic 

scaffold, thereby dictating biological activity (Vaillancourt et al., 2006). Recently 

a novel enzymatic pathway that utilises vanadium-dependant haloperoxidases 

was identified within the biosynthetic gene cluster of a marine Streptomyces 

(Lane and Moore, 2011). Consequently, natural products derived from rare 

marine Actinomycetes display desirable characteristics that may be exploited to 

treat antibiotic resistant pathogens. Screening for such products is therefore a 

priority for antibiotic discovery programs. 

The search for Actinomycete derived natural products has been supported by 

advances in genomics and chemical biology, which have aided the elucidation 

of biosynthesis mechanisms, and subsequently defined  new biodiscovery 

approaches (Kurtboke, 2012). The exploitation of whole Actinomycete genomes 

such as Streptomyces avermitlis (Omura et al., 2001) and use of bioinformatic 

analyses to interrogate sequences, has provided the basis for numerous 
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genome mining strategies (Van Lanen and Shen, 2006; Zerikly and Challis, 

2009). 

One such strategy has been founded on manipulating the synthesis of novel 

secondary metabolites such as polyketides (PK) and non-ribosomal proteins 

(NRP).  It is known that the synthesis of PK and NRP antibiotics proceeds in an 

assembly line sequence, where the construction of unique scaffolds arises from 

the coordinate assembly of monomer units by multi-modular enzymes encoded 

in biosynthetic clusters. The structural organization of the multimodular protein 

domains function as a template to direct the order of monomer units within a 

linear oligomer, while catalytic domains govern the activation and incorporation 

via covalent tethering (Fischbach and Walsh, 2006).  Using experimentally 

derived data, it has been possible to ascribe product structure to subunit 

composition thereby enabling characterization of individual subunits (McDaniel 

et al., 1995). Functional information for individual subunits can be utilized in 

predicting metabolic products, including their putative physiochemical 

properties, as exemplified by the polyene marolactam Salinilactam A from 

Salinispora tropica (Udwary et al., 2007). The re-arrangement of monomer units 

within the assembly sequence can also enable the synthesis of novel metabolic 

products. In one example the loading module of Avermectin polyketide synthase 

was substituted with a cyclohexanecarboxylic loading module, enabling the 

synthesis of the novel analogue doramectin (Wang et al., 2011).  

Alternative genome mining approaches have combined bioinformatics analysis 

with assay guided fractionation in a genomisotopic approach. Analysis of the 

genome of Pseudomonas fluorescens Pf-5 revealed three unknown biosynthetic 

clusters for non-ribosomal peptide synthases, the nucleotide sequence of which 

enabled the prediction of amino acid assembly of the product. By using a 

isotopically labelled amino acid, incorporation into the unknown product could 

be identified by NMR, resulting in the discovery of the novel lipopeptide 

orfamide A (Gross et al., 2007). 

Biosynthetic clusters may also be isolated and expressed in host organisms 

followed by the purification of proteins, which are then incubated with co–factors 

in an in vitro reconstitution approach, as performed with the  biosynthetic cluster 

of lantibiotic haloduracin produced by Bacillus halodurans C-125 (McClerren et 

al., 2006). In cases where biosynthetic gene clusters are not constitutively 
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expressed or dictated by specific environmental conditions, expression may be 

induced by modulating transcriptional regulatory factors. In one example, 

overexpression of the transcriptional activator apdR under an inducible 

promoter in Aspergillus nidulans lead to the identification of aspyridones A and 

B (Bergmann et al., 2007). Alternatively cryptic biosynthetic clusters can be 

cloned and expressed in laboratory and industrial strains of Streptomyces with 

characterized metabolomes (Baltz, 2010).  

 An alternative biodiscovery perspective is to examine microbial communities 

directly within their ecological habitats in order to provide an assessment of 

functional diversity. This has been achieved using metagenomics whereby DNA 

is isolated directly from environmental sources and cloned into a model 

organism such as E.coli. Transformants are  then screened for functional 

activity in  a high-throughput assay, in order to assess metabolic potential 

(Handelsman et al., 1998).  The comparison of metagenomic data from 

microbial communities can not only reveal trends that suggest functional 

diversity, but also reveal spatio-temporal characteristics. Metagenomic data can 

therefore reflect  environmental factors that promote the distribution and 

evolution of antibiotic biosynthetic gene clusters that contribute towards 

speciation and diversification (Kurtboke, 2012). The detection of rare 

Actinomycetes can also be pursued using taxonomical studies to devise 

selective isolation procedures. Refinements of Actinomycetes systematics and 

the development of selective isolation techniques within  culture dependant bio-

prospecting strategies have also been investigated (Goodfellow and Fiedler, 

2010).   

In addition to the identification of new taxa, existing Actinomycetes can be 

evaluated with greater scrutiny to reveal their secondary metabolite producing 

capacity. It has been documented that a discrepancy exists between the 

number of compounds produced and potential synthesis capability of many 

Actinomycetes. An attempt to  explore this facet is  exemplified by the One 

Strain Many Compounds (OSMAC) approach, whereby cultivation conditions 

are systematically modified to influence key steps in biosynthesis and thereby  

generate diverse metabolic profiles (Bode et al., 2002). Successful bio-

discovery requires not only consideration of ecological habitat, selective 

isolation procedures and bacterial systematics for the identification of rare 
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Actinomycetes, but also the  implementation of an appropriate screening 

strategy to assess the bioactivity of secondary metabolites that are synthesized 

(Kurtboke, 2012). 

1.1.6 Antibiotic screening approaches  

A key requirement for an antibacterial screening assay is the capacity to 

discriminate between known antibiotics and novel undiscovered compounds.  

Within the terrestrial biosphere, antibiotic biosynthetic clusters are not 

distributed uniformly.  Random genome sampling has revealed that 1% of 

Actinomycetes present in the soil produce streptomycin compared to 0.1% that 

synthesize tetracycline, with other antibiotics isolated at even lower frequencies 

of 1 x 10-7 (Baltz, 2007). Consequently antibiotics that occur at high frequencies 

are easily isolated, thereby potentially masking the presence of novel antibiotics 

that exist in low abundance. The consistent rediscovery of known compounds 

therefore represents a significant technical challenge to screening approaches 

(Williams, 2009).  

Conventional screening strategies have utilised whole cell screens, cell free or 

modular assays to evaluate inhibitors. Whole cell screening involves seeding a 

target organism onto media to which a natural product extract is added (Figure 

1.2). Antibacterial activity is then assessed by observing zones of inhibition 

(Mills and Dougherty, 2012). Refinements to this assay format have lead to the 

development of  mechanism based screening that targets pathways such as the 

cell wall, using hypersusceptible mutant strains to identify β-lactam antibiotics 

(Gadebusch et al., 1992) and the anucleate blue cell assay to detect Type II 

topoisomerase inhibitors of DNA synthesis (Oyamada et al., 2006).  Cell free 

assays differ in that a single target or multiple targets encoding enzymes 

representing a pathway are reconstituted in vitro; inhibition is monitored directly 

using biochemical assay to examine enzyme kinetics. Modular assays are 

similar to cell free systems except that a target is identified in silico. The target 

sequence is cloned into E.coli or other suitable host organisms, expressed with 

a Histag and purified. The isolated target is then screened against natural 

product extracts, and signs of inhibition are evaluated in a binding assay. 
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Table 1.3. Evaluation of antibiotic screening approaches. 

Assay type Advantages Disadvantages 

Wholecell 
antibacterial 
activity 

Identifies  in vivo antibacterial 
activity 

 

Unable to discriminate between 
secondary mechanisms related to 
cytotoxicity and actual antibacterial 
activity 

 Selects compounds capable of 
transversing the cell wall 

Compounds lacking cell penetration, 
but, which would otherwise inhibit the 
target with suitable modification are 
overlooked 

 Enables multi-protein interactions to 
be studied without the need to 
reconstitute complex cell systems 

Secondary biochemical assay 
required to identify the mode of 
action 

  Low sensitivity compared to cell free 
systems 

Target based cell 
free systems 

High sensitivity Requires prior knowledge of the 
target 

 Validates mode of action in addition 
to identifying target 

Complex reaction or substrates make 
enzymatic tests difficult 

  Constrained to targets with enzymatic 
function 
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Figure 1.2. Whole cell screening approach to antibiotic discovery. 

Using whole cell screening provides a number of advantages over cell free 

systems (Table 1.3) and prior to the development of synthetic libraries has been 

the pre-eminent system for evaluating natural products.  Rational Drug Design 

(RDD) represents a further approach that has benefited from advances in 

biophysical characterization techniques, to enable the derivatization of sufficient 

structural data from molecular targets. This information can then be used for the 

construction of putative inhibitors  (Donadio et al., 2002). 

Considerable effort to overcome the inability of  whole cell assays to delineate 

between cellular targets have been pursued using recombinant organisms as 

the basis for target-based screening strategies, in which the expression or 

activity of a specific cellular target is modulated. For example the Keio 

collection, consisting of approximately 4000 individual essential gene knockouts 

strains of E.coli (Baba et al., 2006), which was subsequently screened to 

identify mutants with increased susceptibilities to antibiotics (Tamae et al., 

2008). 
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An alternate approach has been to delete chromosomal copies of essential 

genes in E.coli, replacing them with plasmids containing a complementary copy 

of the gene, under the control of an inducible promoter, to enable gene 

expression modulation. Using this system it is possible to reduce target protein 

expression in order to generate hypersensitivity to target specific inhibitors. 

Screening strains against cognate inhibitors demonstrates increased 

susceptibility, by decreasing the MIC (DeVito et al., 2002). Conversely strains 

have been engineered to overexpress essential proteins from inducible 

plasmids, thereby rendering strains hyposensitive to target protein inhibitors (Xu 

et al., 2006).  

Of the target based assays developed to date many have used known targets 

for which resistance had already been demonstrated. The discovery of novel 

antibiotics therefore requires the identification and validation of either molecular 

targets or components of cellular pathways possessing unique modes of action, 

not currently subject to resistance mechanisms (Black and Hodgson, 2005). 

Potential targets should be evaluated for their capacity to form multiple 

interactions to reduce the likelihood of generating endogenous resistance 

according to the multi-target hypothesis (Silver, 2007). 

1.2 Searching for new antibiotics 

1.2.1 Identification of novel antibiotic targets 

Despite the conserved range of cellular targets exploited by current antibiotics, 

the number of potential targets may be larger then anticipated, due to the 

multiple co-factors and accessory components that cooperate with essential 

targets within biosynthesis pathways (Donadio et al., 2002). A suitable example 

of this multiple- target approach is the peptidoglycan biosynthesis pathway that 

culminates in assembly of the bacterial cell wall. Numerous cytoplasmic 

intermediates have previously been unavailable due to the inability to 

reconstitute them in vitro. Efforts to synthesise key cytoplasmic precursors such 

as UDPMurNAc-pentapeptide, have aided biochemical characterization of the 

peptidoglycan pathway necessary for the development of assays and screens 

for lipid-linked steps. To date screening  for Lipid I and II intermediates revealed 

that MraT a integral membrane translocase, was found to be the target of 

uridine-based nucleoside antibiotics (Bugg et al., 2011). Additional targets have 
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been identified in other metabolic pathways including Aminoacyl t-RNA 

synthetases, Polypeptide deformylase and fatty acid biosynthesis (McDevitt and 

Rosenberg, 2001), enzymes responsible for NAD(P) biosynthesis (Bi et al., 

2011) and component enzymes of cell division (Lock and Harry, 2008).  

Irrespective of novelty, there is a requirement for candidate targets to fulfil the 

following criteria; (i) they must demonstrate an essential function, (ii) the target 

should be conserved across a range of species for broad-spectrum activity, (iii) 

the target should be specific to bacteria with no human homolog to limit toxicity 

and (iv) the target should exist as a single gene copy to minimise potential 

resistance development. Ideally the target should also  display desirable 

physiochemical properties to enable inclusion into a high-throughput screening 

format (Brown and Warren, 1998).  

In recent years a paradigm shift in the identification of potential antibiotic targets 

has  emerged following advances in genomics and bioinformatics (Bull et al., 

2000), specifically following the advent of high-throughput whole genome 

shotgun sequencing, pioneered with Haemophilus influenzae (Fleischmann et 

al., 1995). The number of bacterial genomes sequenced has since increased 

dramatically  following the development of new sequencing technologies such 

as pyrosequencing, DNA ligase-mediated sequencing, and the Illumina platform 

(McLeod et al., 2012). Accompanying the progress in genome sequencing 

technologies have been parallel developments in bioinformatics. Algorithm 

based programs such as TIGR Assembler, Glimmer and Genemark have 

enabled the assembly of contiguous sequences, identification of open reading 

frames and revealed putative function of genes  on the basis of protein 

structural motif homology or operon structure (McDevitt and Rosenberg, 2001; 

McLeod et al., 2012).  Critically, bioinformatics programs such as BLAST and 

FASTA have permitted the development of comparative genomics in silico, 

enabling the identification of conserved orthologues (homologous genes derived 

from a common ancestral gene) across bacteria species. Following the genome 

comparison of H. influenzae and Mycoplasma genatalium, approximately 256 

genes with purported essential functions common to both organisms were 

identified. From this data was established the concept of the minimal genome, a 

core set of genes required for sustaining cellular existence (Mushegian and 

Koonin, 1996). Subsequent genome  studies have assigned essential functions 



19 

to 620 genes in E.coli (Gerdes et al., 2003), 478 genes in H.influenzae (Glass et 

al., 2006) 658 genes  in S.aureus (Forsyth et al., 2002) and 271 genes in 

B.subtilis (Kobayashi et al., 2003b). 

Within  core gene sets a number of ubiquitous cell functions have been 

identified consistently, representing elementary cell functions of transcription, 

translation, replication, membrane transport and energy conversion (Koonin, 

2003).  From an antibacterial search and discovery perspective, these genes 

may serve as potential targets since they are  evolutionary conserved among 

closely related bacteria species  (Jordan et al., 2002). Critically, the majority of 

genes identified within minimal gene sets are also proportionally biased towards 

enzymes (Gao and Zhang, 2011), representing ideal targets for potential 

inhibitors, since they possess an active site, which is predisposed towards 

ligand interaction and proves highly amenable for biochemical assays to 

validate target function (Bumann, 2008).  

The pursuit of inhibitors with specific activity for an individual essential gene 

target has been questioned due to the high frequency of spontaneous 

resistance mutation (10-6 – 10-9), that occur in single genes (Silver, 2011).  The 

use of hybrid pharmacophores, combinations of single target inhibitors and 

structure based drug design have been suggested as potential methods for 

minimising resistance in individually encoded targets. However, a more viable 

approach would be to identify a range of essential genes amenable to 

polypharmacology, whereby a single inhibitor has the capacity to engage with 

multiple molecular targets (Brötz-Oesterhelt and Brunner, 2008). According to 

the multi-target hypothesis, endogenous resistance development is minimised 

where antibiotics bind with multiple molecular targets, since mutations would be 

required in each gene encoded target to render an antibiotic completely 

ineffective (Silver and Bostian, 1993). 

Indeed the majority of antibiotics discovered using whole cell screening 

approaches, act on multiple encoded targets or on individual structures 

assembled from the products of multiple genes (Silver, 2007).  The targeting of 

Penicillin Binding Proteins (PBP’s) by β-lactams and topoisomerase GyrA/ParC 

subunits by quinolones represents two such examples. More recently it has 

been suggested that the bacterial proteolytic complex may also prove a suitable 

target (Raju et al., 2012). Consequently new targets have been proposed 
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including the MurA ligases (D and E), involved in the catalysis of peptidoglycan, 

and Lpx acyrltransfereases (A and D), which are involved in lipidA biosynthesis 

(East and Silver, 2013). 

Defining core gene sets however  has proved  problematic, with varying 

estimates that obscure consensus as to the number of essential genes a set 

comprises (Juhas et al., 2011). A phylogentically balanced study that analysed 

147 bacterial and archaea genomes, found the core set to consist of 38 

essential genes  (Charlebois and Doolittle, 2004). More recently a 

comprehensive analysis comparing the genome of M.genitalium to 92 gram 

negative and 93 gram positive bacteria revealed a core set of 151 genes 

(Huang et al., 2012).  The discrepancy in the core set suggests that not all 

essential genes are conserved among species (Koonin, 2003). It has been 

determined that the number of core genes decreases as the number of 

phylogenetically diverse groups used in comparative analysis increases. This 

reflects Non-orthologous gene displacement (NOGD), whereby non-orthologous 

genes replace orthologous counterparts encoding the same essential cellular 

function. Consequently alternative biochemical pathways arise, which provide a 

capacity for metabolic redundancy rendering many gene targets dispensable 

and therefore unsuitable as target candidates for screening (Becker et al., 

2006).  A known example of this phenomenon is the fabI homologue fabK in 

Streptococcus pneumonia, which is not the subject to the same degree of 

inhibition by triclosan (Heath and Rock, 2000).  

Further discrepancies arise depending on the environmental conditions under 

which a minimal gene set is defined (Koonin, 2003). The requirements imposed 

by an organism’s lifestyle and environment conditions may actually abolish the 

function of some essential genes.  Notably the type II fatty acid synthesis 

pathway can be negated by gram positive pathogens capable of utilising C18 

unsaturated fatty acids from human serum (Brinster et al., 2009). Further 

variability among core gene sets arises from the experimental strategy used to 

validate gene essentiality. The majority of techniques used are based upon the 

generation of mutants, grown as clonal populations or as part of mixed 

populations. Clones grown as part of a mixed population are selected against 

by competitive outgrowth, thus demonstrating reduced fitness rather then true 

essentiality which can result in false assignment (Gerdes et al., 2006).  
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Common experimental techniques for determining gene essentiality are 

founded upon random mutagenesis and targeted gene disruption (Miesel et al., 

2003; McLeod et al., 2012). Random mutagenesis strategies include 

Transposon Saturation Mutagenesis and variants such as Genomic Analysis 

and Mapping By In vitro Transposition (GAMBIT) (Akerley et al., 1998), 

Genome scanning (Reich et al., 1999) and Transposon-Mediated Differential 

Hybridisation (TMDH) (Chaudhuri et al., 2009). A common theme to these 

techniques is the use of transposons (mobile genetic elements), which are 

engineered into plasmids containing a conditional replicon and antibiotic 

selection marker. Once introduced into a cell the transposon inserts randomly in 

the chromosome with its location mapped by sequencing. Transposition into an 

essential gene coding sequence disrupts the gene function resulting in cell 

death thereby confirming essential function (McLeod et al., 2012). Targeted 

gene disruption techniques involve plasmid insertion mutagenesis, whereby the 

central sequence of a target gene is cloned into a suicide vector. Integration of 

the vector via a single crossover recombination event involving the target gene 

and homologous sequence on plasmid results in allelic replacement of the 

target gene with a resistance marker (McLeod et al., 2012).  

Mutagenesis based techniques pose the risk of generating polar effects, that 

involve gene disruption arising from non-sense mutations in translation regions, 

reducing the synthesis of distal proteins in operons (Zipser, 1969). The gradient 

of polarity is evident due to the distance between the mutant and distal genes, 

often with strongest effects at the proximal end (Epstein and Beckwith, 1968). 

Integration of external DNA sequences within a single operon gene may disrupt 

the transcription of genes downstream to the insertion event that may also be 

essential, subsequently essentiality may be attributed in error (McLeod et al., 

2012). Characteristic of all techniques is the definition of essentiality through 

abolition of function, whereby all genes that cannot tolerate replacement or 

disruption are deemed essential. Such techniques are incapable of assessing 

the contribution to fitness of individual essential genes, which may be 

conserved due to small advantage presented under some growth conditions. 

This difficulty has been addressed using gene down regulation, whereby an 

inducible promoter is inserted upstream of the target gene. One variant 

technique in particular has proved useful and is founded on natural 

phenomenon of Antisense RNA based regulation.  
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1.2.2 Antisense RNA 

Despite the recognized and accepted concepts of gene organization, It was 

suggested that gene regulation  could be coordinated by  genes that encode a 

transitory intermediate composed of RNA (Jacob and Monod, 1961).  

Regulation via RNA was later confirmed in prokaryotes, following investigation 

into the replication of plasmid colE1(Tomizawa et al., 1981), where it was 

determined that a complementary RNA blocks  primer RNA formation required 

by  DNA polymerase I to initiate synthesis (Eguchi, 1991). Although many 

fundamental principles have been ascertained through the study of bacterial 

plasmids (Simons and Kleckner, 1988), RNA based regulation has also been 

observed in eukaryotes (Almeida and Allshire, 2005) and plants (Baulcombe, 

2004).  

RNA based gene regulation has been associated with heterogeneous RNAs 

that coordinate gene expression through diverse mechanisms and can be 

classified into four broad groups (Waters and Storz, 2009). Riboswitches are 

multidomain RNA’s capable of binding metabolites which initiates a global 

conformational change enabling the riboswitch to bind within the 5’ untranslated 

region (UTR), where it occludes the Shine Dalgarno sequence (Montange and 

Batey, 2008). Protein binding small RNA’s possess innate enzyme activity, or 

antagonize binding (Waters and Storz, 2009). Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR) represents the most recent addition to the 

RNA regulatory family and comprises a defensive system against phages 

(Sorek et al., 2008). The most significant group consists of small RNAs encoded 

in cis (or Antisense) and trans form (Waters and Storz, 2009). Trans-encoded 

RNA’s are transcribed at distant genomic locations in relation to  the target 

mRNA they regulate, in contrast to cis-encoded RNA which are transcribed 

parallel to their respective target mRNA on the sense DNA strand and therefore 

share full sequence complementarity  (Thomason and Storz, 2011). 

 Antisense RNA are of particular interest since they represent a subset of small 

RNA entities (sRNA’s) in prokaryotes, responsible for the coordination of gene 

expression through mechanisms that influence transcription and translation.  

Following advances in transcriptome analysis, in particular the use of Deep 

RNA sequencing (RNA-Seq) (Wang et al., 2009) the number of antisense RNA 

transcripts identified has increased.  In E.coli alone over 1000 antisense 
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transcripts have been identified (Dornenburg et al., 2010). From this wealth of 

data has emerged an array of regulatory roles including the inhibition of 

transposition, repression of toxic protein synthesis, regulation of transcription 

factors and metabolic enzymes (Thomason and Storz, 2010). Roles in bacterial 

virulence (Gripenland et al., 2010) and  more recently the restriction 

modification system in prokaryotes have also been observed (Mruk et al., 

2011).  

The regulatory functions performed by (cis-encoded) antisense  RNAs is 

founded  upon complementary hybridization with cognate mRNA sequences at 

the 5’> 3’ end, internally or 3’ and  5’ untranslated regions (UTRs) (Georg and 

Hess, 2011). The capacity for target hybridization is attributed to the 

characteristic secondary structural features of antisense RNA, consisting of a 

ubiquitous YUNR motif (Y= pyrimidine, R=purine). The motif forms a U-turn loop 

which serves as a recognition element and provides a scaffold for facilitating 

helix formation with the target mRNA (Franch et al., 1999). The process of 

sequence hybridization is thought to proceed via two independent binding 

pathways, that are initiated by a recognition event between loop structures on 

both the antisense and target mRNA, before progressing towards the formation 

of duplex RNA (Brantl, 2007). 

A multistep pathway elucidated from the CopT/CopA antisense system of 

plasmid R1 (Kolb et al., 2000), is initiated with the binding of stem loops to  form 

an unstable kissing complex that is extended via a single stranded region to 

form a four-helix junction intermediate. The intermediate is transformed into a 

stable inhibitory complex which converts to a stable RNA duplex. An alternative 

single step binding pathway was reported for the RNA-IN/RNA out antisense 

system responsible for regulating the transposition of transposase IS10 (Kittle et 

al., 1989). In this particular system, an initial interaction occurs between stem 

loop and single stranded target that permits extension via the loop and stem 

domain. Following complete RNA duplex formation between antisense RNA and 

it’s cognate mRNA target, gene expression can be modulated, by altering 

transcript stability and either transcription  or translation efficiency of the target 

mRNA via distinct mechanisms (Figure 1.3. Mechanisms of antisense RNA 

inhibition.) (Georg and Hess, 2011). 
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Figure 1.3. Mechanisms of antisense RNA inhibition. 

The stability and half-life of target mRNA is known to decrease following 

antisense duplex formation through a degradation pathway. In the 

cyanobacterium Synechocystis 6803, the expression of iron stress induced 

protein (Isia) is known to decrease following over expression of its antisense 

counterpart IsrR (Iron stress repressed RNA) (Duhring et al., 2006). Conversely 

stability may also be increased as exemplified with the glutamate decarboxylase 

transcriptional activator/repressor (gadX/gadW) of the E.coli acid response 

system. Glutamate decarboxylase contains an intergenic region between gadX 

and gadW that encodes the antisense RNA GadY, complementarily to the 3’ 

UTR of gadX. Overexpression of GadY increases accumulation of gadX mRNA 

which increases expression of downstream decarboxylases (Opdyke et al., 

2004). 

The alteration in mRNA stability is thought to involve a common degradative 

pathway that regulates mRNA decay. The process is dictated by the structural 

organization of prokaryote mRNA transcripts. Bacterial mRNA’s possess a 5’-

terminal tri-phosphate, while the 3’-terminus typically forms a stem loop 

structure, which is subject to processing events that effect stability and initiate 
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the process of mRNA degradation (Belasco, 2010).  The 3’ terminal can be 

destabilized by polyadenylation by  Poly(A)polymerase  (Dreyfus and Régnier, 

2002),  while RNA pyrophosphohydrolase (RppH) is known to convert  5’ 

triphosphate to 5’ monophosphates (Deana et al., 2008). Both events initiate 

mRNA degradation via two distinct pathways, involving the RNA degradosome, 

a multi-protein assembly responsible for mRNA processing and degradation 

(Carpousis, 2007). The principle component of the degradosome is RNaseE, a 

multi-domain endoribonuclease, which cleaves polyribosomal RNA to 

fragments. The C-terminal of RNaseE serves as  a molecular scaffold for 

assembly of accessory proteins including; Polynucleotide phosphorylase (PNP) 

a endoribonuclease with 3’ activity, RhlB a DEAD-box RNA helicase with 

ATPase dependent activity for unwinding RNA, and enolase, a glycolytic 

enzyme which has a purported role as a metabolite sensor (Carpousis, 2007). 

Degradation may occur via the 5’-dependant pathway, whereby the 5’ single 

stranded regions are subject to hydrolysis of 5’-terminal triphosphate to 5’- 

terminal monophosphate by RppH. The 5’ terminal monophosphate facilitates 

the binding of RNaseE via subdomains, thereby enabling the correct orientation 

for initiating internal cleavage (Bouvier and Carpousis, 2011). Alternatively 

endonucleolytic degradation by RNaseE is initiated by a 5’ independent 

mechanism that generates multiple fragments which are then subject to 

polyadenylation by polyA polymerase. This permits 3’ exonucleases such as 

PNPase, to attempt to remove structural features such as stem loops 

(Carpousis et al., 1999).  

In some cases, antisense RNA exerts its modulatory effects at the level of gene 

transcription. The hybridization between antisense RNA and it’s cognate mRNA 

target can initiate the formation of secondary structure which prevents RNA 

polymerase proceeding, thereby inhibiting transcription. A known example of 

this mechanism has been observed in Vibrio anguillarum, where transcription of 

the Iron uptake biosynthesis operon was due to a 427 nucleotide antisense 

transcript that formed a terminator structure consisting of a stem loop (Stork et 

al., 2007).  

An alternate mechanism of antisense RNA based regulation referred to as 

transcriptional interference has been noted, which arises from the proximity and 

transcriptional direction of promoters. Convergent promoters facilitate the  
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collision of independent RNA polymerases, causing displacement of one 

polymerase and generating  inverse correlations of mRNA and antisense RNA, 

similar to those observed following analysis of the ubiGmccBA operon in 

Clostridium acetobutylicum (Andre et al., 2008). Alternatively the collision event 

may stall elongation or promote backtracking of the polymerase (Crampton et 

al., 2006). If the strength of converging promoters differs, then the weaker 

promoter may be occluded or RNA polymerase and associated transcriptional 

apparatus may be displaced (Sitting Duck interference) (Georg and Hess, 

2011). 

Antisense RNA based regulation also prevails at the post-transcriptional level, 

where the hybridization of antisense RNA and cognate mRNA target, directly 

modulates ribosome binding efficiency. In E.coli mutation of SymR, a cis 

encoded antisense regulator complementally to the promoter sequence  of  the 

SOS-induced antitoxin gene symE, causes a differential increase in protein 

compared to RNA (Kawano et al., 2007). Post-transcriptional control by 

antisense RNA may be influenced by Hfq, an RNA binding protein, with a 

multimeric pore structure known to interact with small RNAs by facilitating base-

pairing between cis-encoded and target mRNA. Roles of Hfq have been 

postulated in translation repression via binding of sRNA’s that sequester the 

RBS, thereby preventing ribosome binding and subsequently inhibit protein 

translation. Conversely antisense RNA binding may also expose translation 

initiation regions and enhance translation. (Vogel and Luisi, 2011). 

1.2.3 Antisense RNA quantitative effects  

The widespread conservation of antisense RNA based regulation among 

species, suggests a significant evolutionary role, which complements existing 

control mechanisms responsible for  regulating both transcription and 

translation (Thomason and Storz, 2010). From a cellular perspective RNA 

based regulation presents an efficient regulatory mechanism, since the energy 

costs associated with transcription are considerably less in comparison to the 

process of protein translation and assembly. In addition, due to speed of 

synthesis and degradation, mRNA expression can be rapidly modulated  unlike 

protein regulation (Gripenland et al., 2010). Indeed, it was shown that the rate of 

synthesis is up to two magnitudes faster for  antisense RNAs compared to 

mRNA (Shimoni et al., 2007). Unlike protein based regulation, antisense RNA 
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has the capacity to minimise temporal fluctuations and filters transient signals in 

gene expression arising from stochastic events in transcription and translation, 

thereby minimising surges in protein abundance (Kaern et al., 2005).  The 

regulatory capacity of antisense RNA provides a highly responsive system, 

capable of adapting to diverse and often sudden stimuli. Consequently 

antisense regulation is often associated with genes that require expedient 

expression in response to environmental changes such as regulators of the 

cellular stress response. Such genes include the outer membrane porin protein 

F (ompF) in E.coli, which is regulated by the antisense RNA MicF. Expression 

of MicF causes a reduction in protein expression, thereby limiting extracellular 

uptake, especially in the presence of antibiotics (Delihas and Forst, 2001).  

Antisense based regulation is also prevalent where the accumulation of toxic 

proteins would be detrimental to cell viability. The hok/sok system for regulating 

plasmid stability by post-segregation killing involves the expression of hok (host 

killing), a membrane associated toxin that causes irreversible damage to cell 

membranes and is regulated via a 64 nucleotide antisense RNA sok 

(suppression of killing).  Inhibition occurs indirectly as sok inhibits translation of 

mok (modulation of killing), which in turn mediates the translation of hok 

(Thisted and Gerdes, 1992). Metabolism represents further cellular activity 

requiring a rapid response to variations in nutrient levels, and is represented by 

such systems such as the lac operon of E.coli which is disordinately regulated 

by a 109 nucleotide antisense RNA Spot 42 (Møller et al., 2002). Virulence is 

also reliant on antisense regulation for the expression of key proteins, when 

particular environmental conditions are encountered. In pathogenesis antisense 

regulation provides the appropriate degree of responsiveness to host immune 

threats as observed in  Salmonella enterica, where  a 1.2kb antisense RNA 

AmgR was found to be complementary to MgtC, which encodes an inner 

membrane protein essential for intracellular survival within macrophages (Lee 

and Groisman, 2010).  

Quantitative studies of antisense RNA regulation have suggested that the 

equilibrium between the transcription of antisense and target mRNA dictates 

gene expression via a threshold linear response (Levine et al., 2007; Levine 

and Hwa, 2008). Through the modulation of gene expression, characteristic 

expression profiles are generated for both mRNA and antisense transcripts that 

infer the regulatory mechanism in addition to advocating the physiological 
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effect. (Lapidot and Pilpel, 2006). The fine modulation and temporal effects of 

antisense RNA based regulation, have been exploited for numerous 

experimental purposes (Rasmussen et al., 2007).  Primarily, antisense RNA has 

been developed for gene silencing techniques and applied to the identification  

of essential genes in both gram positive and negative organisms, such as 

Staphylococcus aureus (Forsyth et al., 2002), and more recently E.coli (Meng et 

al., 2012). Adaption of the same antisense RNA silencing strategy has also 

enabled the delineation of bacteriostatic and bactericidal targets in 

mycobacteria (Kaur et al., 2009). Antibiotic discovery strategies have also 

benefited from the implementation of antisense RNA silencing in whole cell 

target-based assays, to elucidate inhibitor mode of action using a differential 

assay format (Singh et al., 2007). Success with this approach has been 

demonstrated, with the identification of  novel  fatty acid synthesis inhibitors 

platencin and platensimycin (Wenzel et al., 2011) and the novel protein 

synthesis inhibitor peptidyltransferase (Bandow et al., 2003). 

More recently antisense RNA silencing has been used to evaluate the individual 

contributions of essential genes in maintaining cell viability. Using a combination 

of insertion mutagenesis and DNA microarrays revealed that the fitness 

contribution of essential genes under specified growth conditions varies 

significantly (Badarinarayana et al., 2001). Further efforts have attempted to 

quantitate essential gene requirement for cell viability termed stringency, by 

examining mRNA transcript abundance. In a novel study the titration of E.coli 

growth rates using antisense RNA silencing of essential gene targets fabI, 

murA, acpP and ftsZ, established a differential transcript requirement for each 

gene to maintain cell growth. By defining the minimum transcript level required 

to maintain 50% cell viability, a hierarchy in stringency was revealed in the order 

of acpP > ftsZ > fabI > murA   (Goh et al., 2009). This concept was supported 

by a recent study that examined cell tolerance to degradation of essential 

protein and it’s subsequent effect on cell growth in  determining cell vulnerability 

(Wei et al., 2011). 

The concept of quantifying essential gene stringency represents a significant 

asset to antibiotic discovery strategies; as it would permit the prioritization of 

essential gene targets for inclusion into screening assays. However, despite the 

apparent relationship between mRNA reduction and decline in cell growth, 
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mRNA abundance provides only a surrogate for expressed protein. Functional 

protein epitomizes the culmination of gene expression, and is viewed as 

accurate reflection of the physiological state of a bacterial cell. Current 

estimates of essential gene stringency based upon mRNA abundance may 

therefore be inaccurate, since the correlation between mRNA and protein 

expression is often non-linear (Lee et al, 2003). Even across different species, 

steady state protein abundance displays a higher correlation then 

corresponding mRNA abundances (Laurent et al., 2010) 

 The lack of concurrence between mRNA and protein expression is attributed to 

regulatory mechanisms that operate during transcription and translation (Vogel 

and Marcotte, 2012). The efficient transcription of mRNA is dependant upon the 

complementarity of its Shine Dalgarno sequence, which dictates ribosome 

binding efficiency and therefore translation. The complex secondary structure of 

RNA represents a further influence since it can either expose or sequester the 

ribosome binding site under different environmental conditions. At the 

translational level small antisense RNA affects post-transcription levels via 

translation inhibition, interference, or degradation of mRNA transcripts, while 

ribosome density affects translation efficiency. Ensuing translation, protein half 

life is influenced by factors such as intrinsic stability, rates of degradation, 

modification by phosphorylation and cell localization (Maier et al., 2009).  

Consequently the evaluation of essential gene stringency may be reflected by 

measuring protein abundance. Protein quantification has previously been 

performed using western blotting, whereby proteins are transferred from SDS-

PAGE gel to an absorbent membrane (e.g.: nitrocellulose) and probed with an 

antibody specific for the protein under investigation. Quantification is achieved 

by chemiluminescence using  a secondary antibody conjugated to an enzyme, 

that catalyses the breakdown of a substrate to a coloured product (Kurien and 

Scofield, 2006). However western blotting lacks quantitative capacity and is 

incapable of distinguishing between post-translational modifications. Critically 

only those proteins targeted are subject to analysis, at the exclusion of the 

global proteome (Mann, 2008). To perform accurate quantification at the protein 

level requires the use of sensitive techniques such as liquid chromatography 

tandem mass spectrometry (LC-MS/MS).  
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1.3 The use of mass spectrometry in antibiotic discovery 

1.3.1 Tandem mass spectrometry 

Technological advances in LC-MS/MS have permitted global proteomic 

analyses, enabling  the systematic identification of primary sequences, 

structural characterization of post-translational modifications, elucidation of 

protein-protein interactions and quantification of expressed proteins in complex 

matrices (Aebersold and Mann, 2003).  

The Proteomics based LC-MS/MS process, initiates with the pre-separation of 

individual proteins from a whole cell lysate using either 1D or 2D gel 

electrophoresis, with the aim of removing low molecular weight contaminants 

capable of interfering with mass analysis. The protein bands of interest are 

exercised from polyacrylamide gels and subject to destaining and in-gel 

digestion. During this process samples are reduced  to covert disulphide bonds 

to free sulfhydryl groups which are then alkylated to a S-carboxymethyl 

derivative, to facilitate disruption of three-dimensional structure and expose 

cleavage sites for heterophase enzymatic digestion (Shevchenko et al., 2006). 

The protease trypsin is frequently utilized, since it predicatively cleaves C-

terminal residues at arginine and lysine, generating an appropriate mass range 

of peptides required for fragmentation during LC-MS/MS (Olsen et al., 2004). 

According to peptide fragmentation models, the N-terminus is protonated, but 

the charge is capable of migrating along the backbone by internal solvation, 

becoming randomly localized on amide bonds.  Cleavage along the peptide 

backbone results in cleavage at either the alkyl carbonyl bond (CHR-CO), 

peptide amide bond (CO-NH) or amino alkyl bond (NH-CHR). Following 

fragmentation, the charge can be retained at either the N terminus producing 

a,b,c ions or at the C terminus producing x y z ions. The peptides generated by 

trypsin are typically doubly charged structurally informative y ions, providing a 

high degree of predictability with respect to their fragmentation patterns (Covey 

et al., 1991). 

Digested peptides are eluted from the polyacrylamide matrix in solvent and 

subject to further separation using High Performance Liquid Chromatography 

(HPLC) to minimise sample complexity. By reducing complexity the dynamic 

range can be increased to permit low abundance peptides to be detected in the 
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presence of peptides of higher abundance, thereby increasing the confidence of 

protein identification. Typically a Reversed Phase (RP-HPLC) format is 

employed, involving the differential separation of peptides between a stationary 

(nonpolar matrix) and mobile phase (polar solvent) according to the degree of 

hydrophobic interaction. During this stage hydrophobic peptides interact with 

the stationary phase, while hydrophilic peptides are eluted earlier in the mobile 

phase (Dass, 2007). 

Eluted peptides are then introduced into an ion source and converted to 

charged species by introduction or removal of an electron using electrospray 

ionization, whereby ions are desorbed under a high electric field  (Fenn et al., 

1989). During this process the sample flows through a capillary with high 

potential that generates an electrostatic charge that dispenses solution into 

charged droplets for transportation, via a pressure gradient to a mass analyser 

(Dass, 2007). The mass analyser of choice is often  the orbitrap mass 

spectrometer, which has provided an unprecedented level of sensitivity required 

for high resolution tandem mass spectrometry techniques (Makarov and 

Scigelova, 2010). Using this form of mass analyser provides the high mass 

resolution, accuracy (2-5 ppm), mass charge ratio and dynamic range (103) 

required for protein characterization and quantification. The orbitrap operates on 

the principle of dynamic ion trapping in electrostatic fields (Makarov, 2000) and  

constitutes a central spindle electrode encased by a coaxial outer electrode. 

Following electrospray ionization, ions are transported through a series of 

quadropoles that guide, transport and store ions prior to delivery via an optical 

deflection lens system into the orbitrap. The ions become trapped about the 

central spindle and undergo harmonic ion oscillations, the frequency of which 

provides the basis for mass charge values (Hu et al., 2005). The mass charge 

values of the ions generate a peptide mass fingerprint, which can then be 

compared to an in silico generated mass within a protein sequence database. 

The database is constructed from theoretical spectra, derived from peptide 

fragmentation models. Comparisons between the experimental and theoretical 

spectra is scored to assess the probability of a match and validated using 

algorithm based descriptive, interpretative, stochastic probability or statistical 

and probability models (Sadygov et al., 2004). 
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1.3.2 Proteomic strategies 

The characterization of  functional differences between biological systems 

requires comprehensive proteome coverage, if system-wide variations are to be 

identified and quantified accurately (Cox and Mann, 2007). To date partial 

proteome  coverage has been achieved for 60% of open reading frames in the 

minimal genome bacteria Mycoplasma pneumonia (Kühner et al., 2009), which 

is marginally higher then that of multicellular organisms such as Caenorhabditis 

elegans (54%) (Schrimpf et al., 2009) and Arabidopsis thaliana 50% 

(Baerenfaller et al., 2008). The challenges in obtaining complete proteome 

coverage can be attributed to a number of technical and biological factors (Beck 

et al., 2011). The amenability of proteins to solubilisation and digestion dictates 

whether appropriate tryptic peptides and by extension, characteristic ion spectra 

can be generated. In the event of obtaining quality spectra, identification of 

proteins by matching the MS dataset to known sequences is dependant on the 

quality of annotated open reading frames held within genome databases. 

Inaccuracies may arise due to experimental conditions which may unknowingly 

influence transcription and translation parameters, thereby altering protein 

abundance. Furthermore, sequence coverage is subject to a sufficient fraction 

of peptides being detected, each of which may vary in terms of ionization and 

fragmentation properties. The number of peptides arising from enzymatic 

digestion may also be limited by the size of the protein, with smaller proteins 

generating fewer unique peptides capable of unambiguously identifying the 

protein under investigation (Beck et al., 2011).  In order to provide 

consequential data, experimental workflows must be consistently reproducible 

and accurate for reliable quantification across multiple samples. To this end 

shotgun (discovery), directed and targeted MS-based strategies that differ in 

terms of how prior information is utilised and analysed, have  been introduced 

(Domon and Aebersold, 2010). 

The shotgun approach utilizes ionized peptides arising from electrospray 

ionization (precursor ions) to generate an initial mass spectrum known as a 

survey scan. Data-dependant analysis (DDA) using heuristics is used to 

perform product ion scanning, whereby precursor ion signal intensity is used to 

determine m/z ratio and subsequent peptide mass. A suitable precursor ion is 

then selected for fragmentation by Collision Activated Dissociation (CAD), that 
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generates fragments via collision with inert atoms (Hunt et al., 1986). The 

resulting fragment-ion masses form the product-ion spectra are used for protein 

identification, while the precursor ion signal intensity is used as the basis for 

quantification. Since no prior protein knowledge is required, the shotgun 

approach is suited to open discovery. The method however suffers from bias 

towards the selection of precursor ions, which represent the most abundant 

proteins present in a complex sample.  Furthermore different samples of 

peptide ions in each experiment arise from the heuristics used. A variation to 

this approach is a directed proteomics strategy which entails two independent 

LC-MS analyses. An initial LC-MS/MS run generates survey scans to identify 

precursor ions relating to a peptides of interest, and records their mass 

spectrum characteristics (elution time, m/z ratio, charge), which are formed into 

a master inclusion list as part of the data dependant analysis. The LC-MS/MS is 

repeated in product ion mode using the inclusion list to limit CAD to specific 

fragments identified in the survey scan. Further improvements can be obtained 

by adopting a targeted proteomics strategy, which requires the use of triple 

quadruple instruments operating in Selective Reaction Monitoring (SRM) mode. 

Unlike previous strategies target proteins are preselected and their precursor 

ion m/z, retention time and unique fragment ions formed by CAD are defined to 

form a selected reaction monitoring (SRM) transition, which functions as assay 

parameters for the protein of interest (Picotti and Aebersold, 2012). Ultimately 

the aim of each strategy is achieve consistent detection of individual or subsets 

of protein.  

1.3.3 Mass spectrometry quantification strategies 

The accurate differential (relative) or quantitative analysis of protein is 

paramount and requires the implementation of suitable methods that compare 

individual peptides between experiments. Quantitation is not integral to the 

mass spectrometric process, since instrument response is dependant upon the 

physiochemical properties of proteolytic peptides, which are often influenced by 

matrix effects (Patterson and Aebersold, 2003). A range of techniques have 

been introduced based on the isotope dilution principle, in which isotope 

labelled peptides serve as proxies for their native equivalents. Since isotope 

labelled peptides possess the same physiochemical properties as native 

peptides, they generate the same chromatographic and mass spectrometric 
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profiles. However due to the difference in mass, a differentiation between 

experimental samples can be made. 

Differential (Relative) quantification aims to examine fold changes in protein 

expression between experimental conditions and can be determined using label 

free methods (Spectral counts and MS ion intensity) and stable isotope labelling 

techniques. Spectral counting is founded on an observed linear relationship 

between protein abundance and the number of precursor ions selected for 

MS/MS fragmentation (Liu et al., 2004). The generation of   MS/MS spectra 

associated with a particular peptide can therefore be counted and compared 

relative to the spectral counts of the same peptide under different experimental 

conditions, enabling relative quantification. Variations to this approach have 

lead to the estimation of protein expression using the Protein Abundance Index 

(PAI), derived from the ratio of sequenced peptides and total number of 

predicted tryptic peptides of a protein (Rappsilber et al., 2002) and absolute 

Protein Expression profiling (APEX) (Lu et al., 2007) . 

Alternatively the peak area or ion intensity of all identifiable tryptic peptides 

including their associated parameters of elution time and m/z ratio can be 

integrated over a time chromatographic scale. The subsequent data generates 

an extracted ion chromatogram (XIC) profile that is subsequently normalized to 

the peak area of an internal protein standard (Bondarenko et al., 2002). 

Although both techniques provide cost-effective approaches to compare 

changes in protein expression for multiple experiments, across higher dynamic 

range, accuracy is unreliable. Systematic and non systematic variations relating 

to ionization efficiency, sample preparation and instrumental drift are emulated 

in data, requiring normalization to correct for variation. Furthermore, the linearity 

of response for each protein is problematic due to variations in saturation 

effects for individual proteins (Bantscheff et al., 2007; Xie et al., 2011).  

Stable isotope labelling provides an alternative to label free methods, by 

providing greater accuracy for relative quantification. Conceptually, the 

approach involves the incorporation of low abundance heavy isotopes (13C, 15N 

18O) into proteins and peptides, where they function as a label. Differences in 

ion signal intensities for heavy and light forms of the peptide are therefore taken 

to reflect quantitative changes in protein abundance (Becker, 2008). Heavy 

isotopes may be incorporated into proteins metabolically during growth on 
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labelled media, exemplified using the Stable Isotope Labelling with Amino acids 

in Cell culture (SILAC) approach, where culture media deficient in essential 

amino acids is supplemented with isotope labelled equivalents (Ong et al., 

2002). 

A variation of this approach is to introduce heavy isotopes of 18O directly into 

peptides via the C-terminal of proteins following protease digestion.  

Alternatively isotope containing tags may be introduced via chemical 

modification of specific amino acid residues.  This approach is utilised by 

Isotope-coded Affinity tags (ICAT), which react with sulfhydral groups of 

cysteine residues (Gygi et al., 1999); isobaric Tags for Relative and Absolute 

Quantification (iTRAQ) which link a carbonyl and reporter group (Wiese et al., 

2007) and Tandem Mass tags (TMT), which react with amine groups 

(Thompson et al., 2003).  

Despite providing adequate means to examine changes in protein expression, 

precise determination of actual protein molecules is not possible without 

reference to a standard of pre-determined quantity.  The requirement for 

accurate quantification of protein per se, has been met by the development of 

the Absolute Quantification strategy (AQUA) (Kirkpatrick et al., 2005). In this 

approach, the target protein under investigation is initially analysed by LC-

MS/MS to identify a suitable unique tryptic peptide representative of the target 

protein, for use as an internal standard (Figure 1.4). The standard is 

synthesised with an appropriate heavy label and evaluated using LC-MS/MS to 

determine parameters of retention time and product ion intensities. A quantified 

amount of standard is then introduced to the sample during tryptic digestion and 

analysed by LC-MS/MS. Quantification is performed by integrating peaks for 

light and heavy ions corresponding to the sample and standard respectively and 

analysing the ratio of the peak area, which over a linear range enables 

extrapolation of the sample concentration. Using this strategy has enabled the 

quantification of low abundance yeast proteins including phosphorylated forms 

(Gerber et al., 2003). 
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Figure 1.4. Overview of the LC-MS/MS based quantification. 

The use of isotope labelled peptides as internal standards has been developed 

further to enable multiplex protein quantification, using artificially constructed 

proteins known as quantification concatamers (QconCAT), which can contain 

multiple proteolytic peptides of the target protein (Brun et al., 2007) . A further 

augmentation has been the development of Protein Standard Absolute 

Quantification (PSAQ), which utilises a full length isotope labelled protein 

equivalent to the target protein under investigation. (Brun et al., 2009). 

1.4 Gene silencing using synthetic antisense structures 

Antisense based silencing has not been constrained exclusively to sequences 

derived biologically. Attempts to create synthetic compounds capable of binding 

DNA and RNA in a sequence specific manner have culminated in the 

development of numerous nucleic acid analogues. Initial efforts comprised 

dideoxynucleotide bases interconnected by various chemical linkers such as 

phosphotriester, methylphosphonate, phosphororthiolate, and carbamate 

(Summerton and Weller, 1997). Subsequent improvements in target specificity 
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and biostability were achieved through the structural alterations of 

dideoxynuculeotides to generate non-ionic backbones.  The derivatization of 

morpholine subunits from ribonucloesides, formed the basis for 

phosphorodiamidate morpholino oligonucleotides (PMO’s), with significantly 

improved properties for biological applications (Stirchak et al., 1989). Alternate 

substitutes for nucleobases precipitated in the synthesis of Peptide Nucleic 

Acids (PNA) (Nielsen et al., 1991). Structurally, PNA’s are comprised of 

noncyclic peptides (polyamides of N-2-aminorthyl glycine linked via carbonyl 

linkers to nucleobases), in substitution of the sugar phosphate backbone 

(Lundin et al., 2006). This arrangement creates structural flexibility with a 

neutral charge that negates electrostatic repulsion, thereby increasing 

hybridization efficiency and sequencing specificity with nucleic acid counterparts 

(Good and Nielsen, 1997). The high affinity, discriminatory capacity and 

biostabiliy of  PNAs, has made them pre-eminent for antisense applications 

where short sequences are encountered (Summerton, 2006).  

Recognition between PNA and complementary sequences elicits the formation 

of duplex structures via Watson-Crick hydrogen bonding, when the PNA is 

composed of purine /pyrimidine nucleobases. If the PNA composition 

exclusively incorporates homopyrimidines, then triplex structures are assembled 

via Watson-Crick and Hoogsteen hydrogen bonds (Larsen et al., 1999). To 

date, complexes representing triplex, triplex Invasion, duplex and double duplex 

invasion are been observed (Nielsen, 2010). The formation of these alternate 

complexes, contributes to variant silencing mechanisms. Triplex forming PNA’s 

significantly  distort RNA structure that precipitates steric hindrance, causing 

inhibition of both translation initiation and  ribosome elongation, contrary to 

duplex structures which prevent translation initiation (Knudsen and Nielsen, 

1996) and possibly ribosome read-through (Kulyté et al., 2005). In contrast to 

expressed antisense, translation inhibition of mRNA appears to be the primary 

silencing mechanism, since PNA complexes show a significant degree of 

biostability towards RNaseH (Knudsen and Nielsen, 1996), thereby preventing 

RNase mediated mRNA degradation. 

The biological stability PNA’s have exhibited in bacterial extracts (Demidov et 

al., 1994), and in addition to their hybridization properties, PNA’s makes them a 

novel research tool for synthetic RNA silencing applications in bacteria (Good 
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and Stach, 2011).  Central to this development have been efforts to address 

bacterial entry and accumulation of PNAs to an effective intracellular 

concentration. These factors are critical since growth inhibition is attributed to 

PNA accumulation and slow efflux resulting in potent antibactericidal activity 

(Nikravesh et al., 2007).  

The primary obstacle opposing cellular entry is the bacterial membrane, which 

in gram negative bacteria comprises a cell wall consisting of an outer 

membrane, a thin peptidoglycan layer, a layer of periplasm, and a  plasma 

membrane (Beveridge, 1999). The outer membrane consists of 

lipopolysaccharide (LPS), which provides an effective barrier due to its rigid lipid 

interior and strong interaction between the peptidoglycan layers. The cellular 

accumulation of PNA is opposed by transmembrane porins within the outer 

membrane, which possess the capacity to remove certain peptides (Nikaido, 

2003). However in a recent study, one such membrane transport protein Smba 

was speculated to be involved in actively transporting peptide PNA conjugates 

into cells (Ghosal et al., 2013). 

The significance of cellular entry and accumulation was previously evaluated by 

exposing E.coli strains A19 and D22 deficient in cell walls and specific 

membrane pumps AcrAB and Emr to a PNA targeting the lac repressor to 

enable a correlation between susceptibility and β-galactosidase activity 

following permeabilisation. Although the absence of membrane pumps showed 

little effect on activity, the lack of LPS was found to be a significant factor in 

increasing β-galactosidase activity, suggesting increased membrane 

permeabilisation promotes greater susceptibility (Good et al., 2000a).  

Consequently numerous strategies have been deployed to improve delivery of 

PNA’s across the membrane. Initial attempts utilized microinjection, 

electroporation or co-transfection with cationic lipids (Koppelhus and Nielsen, 

2003). A pioneering approach has been to conjugate  PNA’s to a synthetic cell 

wall permeabilising peptide KFFKFFKFFK possessing cationic, hydrophobic 

and amphiphilic properties (Good et al., 2001b). The presence of a peptide 

promotes uptake across the membrane by receptor independent mechanism, 

through interaction with complementarity groups in the LPS (Vaara and Porro, 

1996). Divalent cation binding sites of the LPS in particular, may have a role in 

compromising membrane integrity through the formation of transient rents that 
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enable PNA entry (Hancock, 1997). The effectiveness of this strategy was 

demonstrated by conjugating permeabilising peptide to a PNA targeting the 

essential gene acpP in E.coli, resulting in growth inhibition (Good et al., 2001b). 

Further evidence was obtained using chromogenic reporter systems to monitor 

permeabilisation of both the outer and inner membrane, which showed an 

increase in flourescence in the presence of PNA peptide conjugates compared 

to free PNA (Eriksson et al., 2002). Although the majority of studies examining 

PNA-conjugates have utilised to gram negative bacteria, their effectiveness has 

also been established in gram positive species such as  S.aureus, where the 

targeting of essential genes also  causes growth inhibition (Nekhotiaeva et al., 

2004). 

Due to the specificity and bactericidal activity displayed in vitro and in vivo, 

there has been intense interest into developing PNA’s into species specific 

antimicrobials, that avoid compromising natural microbiota defences (Good and 

Stach, 2011). Alternative PNA based approaches have focused on re-

introducing antibiotic susceptibility using PNA’s to target resistance 

mechanisms. One study demonstrated that PNA targeting of the multidrug efflux 

transport in CmeABC in Campylobacter jejuni, was found to increase sensitivity 

to ciprofloxacin and erythromycin (Jeon and Zhang, 2009a). Addition roles for 

PNA’s have also been explored including targeted gene repair, whereby PNAs 

are constructed with a corrected sequence of a mutated gene. The formation of 

triplex PNA structure with the target gene sequence perturbs the regular helical 

structure, initiating DNA repair mechanisms that result in homologous 

recombination. Subsequently the repaired sequence is exchanged with the 

mutated gene (Vasquez et al., 2001). A viable demonstration of this potential 

was shown by single base pair modification of β-globin intron using 

pseudocomplementary PNAs (Lonkar et al., 2009). Further roles for PNA’s have 

been demonstrated such as artificial restriction DNA cutters that enable high 

fidelity site selective scission of DNA (Miyajima et al., 2009), probes for 

microarrays (Brandt and Hoheisel, 2004), and investigation of microbial 

communities (Hatamoto et al., 2010). 
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1.5 Project outline 

The central aim of this project is to investigate the application of antisense 

silencing in two distinct roles. Firstly, as a technique for determining the 

stringency of essential genes in E.coli and how stringency differs between 

individually transcribed and operon based genes.  Secondly as a species 

specific silencer, by evaluating the capacity of synthetic antisense sequences to 

discriminate between essential gene homologues and thereby enable selective 

growth inhibition of a specific organism. 

Expressed antisense RNA silencing using inducible paired termini vectors, has 

been employed to determine essential gene stringency, as defined by a 

Minimum Transcript Level (MTL50) (Goh et al., 2009). Determinations of 

essential gene stringency have been limited to individually transcribed genes 

(Goh et al., 2009), which are not subject to the complex regulation associated 

with operon based genes (Ames and Martin, 1964). This raises the question of 

whether the MTL50 is applicable to operon based genes. Furthermore, 

stringency is based upon the relationship between growth rate decline and 

mRNA abundance, which is assumed as a proxy for expressed protein. 

However post-transcriptional and translation regulation mechanisms, account 

for uncorrelated abundancies between mRNA and protein (Maier et al., 2009). 

Consequently measurements of mRNA abundance may be unsuitable for 

determining essential gene stringency requirements. Determinations of gene 

stringency would therefore have more relevancy if the relationship between 

growth rate decline and protein abundance was examined. From this a 

Minimum Protein Level (MPL50) could be derived to replace MTL50, as a more 

accurate measure of gene stringency. A method capable of accurately 

quantifying expressed protein following gene silencing is therefore essential.  

Historically, protein quantification has been performed using biochemical 

assays (Sapan et al., 1999), immunoassays and more recently protein 

microarrays (MacBeath, 2002). However such techniques lack sensitivity and 

are subject to cross reactivity, which complicates quantification (Patterson and 

Aebersold, 2003). Recent developments in the quantitative capacity of LC-

MS/MS provide a number of advantages over such methods. LC-MS/MS 

provides a greater sensitivity over a large dynamic range, enabling low 

abundance proteins to be detected. This is crucial for antisense silencing 
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experiments, where target protein may be depleted to unpredictable levels. 

Crucially, LC-MS/MS permits the identification of individual proteins from 

complex matrices, such as whole cell lysate. If required parallel identification 

and quantification of more then one protein can also be accomplished, which 

supports the evaluation of operon based genes, where the monitoring of more 

then one protein may be required. Furthermore LC-MS/MS possess the 

capacity to discriminate between proteins subject to subtle post-translation 

modifications that can be used to estimate rates of degradation and synthesis. 

(Bantscheff et al., 2007; Bronsema et al., 2012). The viability of determining 

protein abundance has been demonstrated with LC-MS/MS using label free 

methods a modified protein abundance index method (Ishihama et al., 2005), 

revealing proteins to exist over a dynamic range from 100 to 105  copies per cell 

(Ishihama et al., 2008).  

In this study, an absolute quantification strategy using LC-MS/MS that 

incorporates the use of a stable isotope (15N) labelled protein internal standard 

for absolute quantification, will be used to examine protein expression in E.coli 

subject to antisense silencing. Although LC-MS/MS strategies that use protein 

internal references for absolute quantification are not widely employed, they 

have nonetheless been demonstrated in bacteria such as Leptospira 

interrogans (Malmström et al., 2009).  

The essential E.coli genes fabI and murA have been selected as candidate 

targets for developing protein internal standards, since both genes are 

individually transcribed and have been previously evaluated with regards to 

gene stringency. Furthermore, both genes have well characterised functions 

and are subject to inhibition by antibiotics with known modes of action. In E.coli 

fabI encodes the enzyme enoyl-acyl carrier protein reductase, which functions 

as part of the dissociated (type II) fatty acid synthase system, that regulates 

membrane lipid synthesis (Magnuson et al., 1993). The broad spectrum biocide 

triclosan (trichloro derivitive of 2-hydroxy-phenyl ether) specifically targets FabI 

in E.coli, in addition to gram positive bacteria, fungi and mycobacteria (Saleh et 

al., 2011). Triclosan inhibits lipid synthesis, through direct targeting of fabI as 

demonstrated in mutants, which show an approximate 300-fold increase in 

resistance (McMurry et al., 1998). The established mode of action arises from 

irreversible binding of triclosan to the enoyl substrate site, leading to an 
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increase in affinity for NAD+ (Heath et al., 1999).  Triclosan binds non-

covalently via face to face stacking of the phenol ring and nicotinamide rings 

hydrogen bonding. Consequently a stable ternary complex is formed that is 

incapable of catalysis between phenolic hydroxyl and hydrolysis of 2’ 

nicotinamide robose, causing enzyme inhibition. The binding efficiency of 

triclosan is enhanced by its ability to induce a closed conformation of a flexible 

loop structure located above the enoyl active site (Qiu et al., 1999).  

The essential gene murA encodes enolpyruvyl transferase, which catalyses’ the 

transfer of an enolpyruvate moiety from phosphoenolpyruvate (PEP) to uridine 

diphosphate. This represents the initiating step in the synthesis of alternating N-

acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) glycan units 

that comprise peptidoglycan, of the bacterial cell wall (Lovering et al., 2012). 

The antibiotic fosfomycin ((1R,2S)-1,2-epoxypropylphosphonic acid) Inhibits 

MurA through the formation of covalent interactions between a thiol group of 

cytesine115 residue within the active site of the enzyme, which prevents a 

conformational change in the enzyme required for the   dissociation of the 

product UDP-N-glucosamine (UNAG) (Eschenburg et al., 2005). 

Once validated, LC-MS/MS will be applied to investigating gene stringency in 

operon based genes in E.coli by examining fusA and rplE. The essential genes 

fusA which is encoded  in the str operon (Dean et al., 1981b)  and rplE encoded 

in the spc operon (Cerretti et al., 1983). The essential gene fusA encodes 

elongation factor G (EF-G), a translational GTPase that binds to the ribosome 

complex and induces a conformational change involving hydrolysis of GTP,  

which initiates translocation of tRNA and mRNA (Rodnina et al., 1997). A 

functional role has also been determined in ribosome recycling, where EF-G in 

conjunction with the essential protein Ribosome Recycling Factor (RRF) 

induces dissociation of the 70S ribosome into it’s component subunits in 

preparation for next round of protein synthesis (Hirokawa et al., 2005). In E.coli 

rplE encodes the 5S rRNA ribosome accessory protein L5, which has been 

demonstrated to be essential for cell survival (Korepanov et al., 2007). The L5 

protein is one of 21 accessory proteins that in conjunction with 16S rRNA 

constitute the small ribosome subunit (30S), that interacts with tRNA and mRNA 

(Steitz, 2008) The exact role of rplE was unknown until recently, when it was 
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revealed that the L5 protein forms a prominent part of the central protuberance 

(CP) of the large ribosomal subunit (Korepanov et al., 2012).    

In addition to quantifying expressed protein for the purposes of measuring gene 

stringency, the use of LC-MS/MS can also be applied to support the 

development of an antisense RNA based screening assay for detecting novel 

target specific inhibitors. To date antisense based target assays have 

demonstrated potential, with the discovery of novel antibiotics such as 

platensimycin a FabF inhibitor (Wang et al, 2006), platencin a FabH /F inhibitor 

(Wang et al, 2007) and Phaeosphenone, which targets the encoded product of 

rpsD (Zhang et al, 2008). By sensitizing E.coli to target specific inhibitors and 

then measuring expressed protein abundance at particular MIC’s, would enable 

suitable levels of IPTG induction required for antisense silencing to be defined. 

Consequently assay sensitivity could be optimised for screening target specific 

compounds that are synthesized in low abundance. 

Furthermore the knowledge of the expressed protein abundance following 

antibiotic exposure could be used generate  a characteristic proteomic signature 

(Brotz-Oesterhelt et al., 2005). This data can then be used to identify candidate 

cell targets for antibiotic screening and infer potential modes of action. In 

addition, characterisation of proteomic signatures provides a basis for 

constructing reference compendia for the purposes of identifying novel 

antimicrobial compounds (Freiberg et al., 2004). Using candidate targets fabI 

and murA, this study intends to use a validated LC-MS/MS approach to 

measure protein abundance in E.coli at different inhibitory concentrations of 

triclosan and phosphomycin, which aims to provide sufficient data for a 

mathematical model for estimating assay sensitivity 

An alternate to using  expressed antisense RNA from plasmids, for the purpose 

of evaluating essential gene stringency or fine tuning the sensitivity of 

screening, are peptide PNA’s. The capacity of peptide PNA conjugates to 

induce gene silencing, has been evaluated against expressed antisense 

RNAand found to be highly comparable (Goh et al., 2009). In addition, the 

inherent stability of PNA’s in vivo, has facilitated their development as species-

specific antimicrobials in an effort to address antibiotic resistance (Good and 

Stach, 2011). Indeed bactericidal activity has previously been demonstrated 

against individual gene targets in E.coli (Good et al., 2001b). To date however 
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no effort has been made to ascertain if PNA’s can be designed to differentiate 

between a genes in separate bacterial species. This study intend to evaluate 

species-specificity, by designing a PNA that targets an essential gene 

homologue (ftsZ) in Salmonella typhimurium, when grown in a mixed microbial 

culture with E.coli. 
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1.6 Specific aims and objectives 

1. Identify essential genes for silencing using bioinformatics strategy. 

2. Construct antisense RNA expressing strains for E.coli essential genes 

fusA and rplE. 

3. Validate target specificity of antisense RNA constructs by constructing 

over expression vectors to be used in a transcomplementation strategy. 

4. Delineate whether bactericidal or bacteriostatic inhibition occurs following 

silencing of essential genes fusA and rplE using viable counts. 

5. Design and validate a QPCR assay for the relative quantification of 

mRNA abundance, of fusA, rplE, fabI and murA.  

6. Determine essential gene stringency of fusA and rplE, using expressed 

antisense RNA silencing to achieve a titration of growth rate in E.coli, 

and measure associated mRNA abundance. From this data MTL50 values 

for fusA and rplE will be derived. 

7. Synthesise heavy labelled protein standards for fabI and murA and 

evaluate suitable tryptic peptides for identification and quantification of 

respective proteins 

8. Quantitate heavy labelled standards using a standard curve constructed 

from commercial prequantified peptide using LC-MS/MS. 

9. Determine gene stringency of fabI, using expressed antisense RNA 

silencing to achieve a titration of growth rate E.coli. Protein abundance 

will be measured using LC-MS/MS and FabI molecules per cell will be 

calculated to derive a MPL50 value for measuring gene stringency.  

10. Assess discriminatory capacity of species-specific PNA in mixed 

bacterial culture. 

1.7 Thesis Outline 

Chapter 1. Introduction 

This Introduction describes the significant features of antibiotics and the 

challenges posed by multidrug resistance. New strategies for antibiotic 

discovery are outlined, with particular reference to the use of antisense RNA 

and quantitative LC-MS/MS. An argument is presented for the assessment of 

essential gene stringency based upon expressed protein. 

Chapter 2.  Methods and Materials 
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The materials and methods details the construction of antisense RNA and 

transcomplementation expression vectors, in addition to an LC-MS/MS 

quantitative assay, using a 15N labelled internal protein standard, for the 

evaluation of essential gene stringency.  In addition a method used to assess 

the species specificity of a PNA in a mixed culture of S.typhimurium and E.coli 

is also described. 

Chapter 3. Results 

The experimental findings regarding target specificity of antisense RNA 

expression constructs, their validation by transcomplementation, and 

characterization of inhibitory action of essential gene targets is presented. 

Analysis of essential gene stringency using mRNA abundance of candidate 

genes is given.  This chapter also reports the validation of a quantitative LC-

MS/MS assay for measuring protein molecules per cell following expressed 

antisense silencing, and subsequent deriving of the MPL50 value as a measure 

of essential gene stringency. The analysis of species-specific PNA effects on 

bacteria in a mixed culture is also presented.  

Chapter 4. Discussion 

An evaluation of the experimental findings obtained in this study is made. 

Explanations to account for the observed data including anomalies are 

proposed, with support from appropriate literature.  

Chapter 5. Conclusions and Future Work 

This chapter draws on the discussion to frame the findings of the study in the 

wider context of antibiotic discovery, in addition to extending the scope of the 

research to support applications in other fields of biological enquiry. 

Recommendations to address the limitations highlighted during the course of 

this study are made. 

Appendix 

Additional experimental detail is presented where appropriate. 

References 

Literature used to provide a theoretical background is presented. 
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Chapter 2 Methods & Materials 

2.1 Selection of essential gene targets for silencing  

A hierarchy of gene stringency (Jem .Stach, personal communication) was 

generated by obtaining transcript abundance, presence in an operon and 

number of protein-protein interactions for the essential protein. Transcript 

abundance for E. coli K12 genes was averaged from microarray experiments 

conducted in LB media at 370C (RNA extracted at mid-exponential phase, n = 

50 (Glasner et al., 2003). Presence of the gene in an operon, and location 

within the operon was obtained from the RegulonDB database (Gama-Castro et 

al., 2008), and the number of protein interactions was taken from the 

experimental dataset of the Bacteriome.org database (Su et al., 2008). For each 

category, the essential gene was ranked, in the case of location within an 

operon; weighting was assigned prior to ranking, such that genes that were 

present at the start of large operons, containing other essential genes 

downstream, were scored highly. Weightings of 20:4:2 were applied for the 

number of essential genes downstream, the number of genes in the operon, 

and the number of genes downstream, respectively. The weighted score for 

each gene was calculated as sum product of these categories, multiplied by the 

sum of the weights for each category. The weights were arbitrarily assigned 

considering the mechanism of antisense gene silencing i.e. silencing of the first 

gene in an operon is more likely to affect genes downstream. The estimated 

transcript number and number of protein interactions, were given simple rank 

scores (higher numbers in each giving a higher rank scores).Finally, for each 

essential gene an overall rank score was applied by weighting (6:6:3) for 

transcript copy number, number of interactors and presence in an operon, 

respectively. The final weightings were arbitrarily applied considering that genes 

with high transcriptional abundance, producing products which are highly 

interactive, are more likely to be stringently required. Weighting were also 

applied such that the final rankings for genes acpP, fabI, ftsZ and murA were 

consistent with previous reported MTL50 values (Goh et al., 2009). The genes 

rplE and fusA were chosen for further study, as they were predicted to be 

stringently required (ranked 1 and 8, respectively) and were also present in 

operons. This latter fact was considered important for assessing the utility of the 

MTL50 score for genes present in operons, where downstream affects will likely 
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result from antisense RNA silencing. Nucleotide sequences complementary to 

the ribosome binding region of mRNA transcribed for fusA (-93 +86) and rplE (-

95 +60 ) were identified and cloned into plasmid pHN678, which contains 

flanking inverted repeats that form secondary structure in the form of dsRNA 

termini. The termini increase the stability of antisense transcripts thereby 

improving silencing efficiency (Nakashima et al., 2006). To validate the 

specificity of silencing constructs, transcomplementation plasmids expressing 

the entire ORF of fusA and rplE were also constructed using pBAD (Guzman et 

al., 1995)). For the purposes of comparison, an evaluation was made against 

antisense RNA expression vectors and associated transcomplementation 

vectors for essential gene targets acpP, ftsZ, fabI, and murA  (kindly supplied by 

Shan Goh, Royal Veterinary College, U.K).  

2.1.1 Bacterial growth conditions and strains 

Bacterial growth was performed in liquid and on solid media using Muller Hinton 

Broth (MHB) (Melford) for both E.coli and S.typhimurium. Growth conditions 

were 37C, with aeration at 200-250 rpm for broth cultures. Where maintenance 

of plasmids was required, media was supplemented with antibiotics (Melford) at 

a final concentration of 30g/ml chloramphenicol, 100g/ml ampicillin, 50g/ml 

kanamycin. Detailed recipes or growth media and buffer solutions can be found 

in Appendix: A. All strains used in this study are listed in Table 2.1. 

2.1.2 Bacterial genomic DNA and plasmid extraction 

Both antisense and complete ORF sequences for fusA, rplE, fabI and murA 

were amplified from genomic DNA, which was isolated from E.coli-K12 using 

the GenElute Bacterial Genomic DNA kit (Sigma). Briefly 1.5 ml of overnight 

bacterial culture was harvested by centrifugation at 16,000 x g for 2 minutes. 

The supernatant was removed and pelleted cells were resuspended in 180 µl 

Lysis Solution T with 20 µl of RNase A and incubated for 2 minutes at room 

temperature. After incubation, 20 µl of proteinase K solution was added and 

samples were incubated for 30 minutes at 55°C. A volume of 200 µl of Lysis 

Solution C was added to samples which were then incubated at 55°C for a 

further 10 minutes. GenElute Miniprep Binding columns were prepared by 

addition of 500 µl of Column Preparation solution. Columns were centrifuged at   
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12,000 x g for 1 minute and the flow through was discarded. Prior to loading, 

200 µl of ethanol (95-100%) was added to lysate and vortexed, before loading 

onto columns and centrifuged at   6,500 x g for 1 minute. The spin column was 

placed in a fresh collection tube and 500 µl of Wash Solution I was added, 

samples were then centrifuged at   16,000 x g for 3 minutes. The spin column 

was placed in a fresh collection tube and a further 500 µl of Wash Solution I 

was added, samples were centrifuged at   6,500 x g for 1 minute. The column 

was placed in a fresh collection tube and centrifuged at   16,000 x g for 1 

minute. DNA was eluted by addition of 200 µl of Elute Solution followed by an 

incubation of 5 minutes at room temperature and centrifugation at   16,000 x g 

for 1 minute. Genomic DNA was quantified in triplicate using a NanoDrop 

(Thermo Scientific). 

Plasmid DNA was extracted using the QIAprep® Spin kit (Qiagen).  Briefly 5 ml 

of overnight bacterial culture was pelleted by centrifugation at 2000 x g for 5 

minutes. Pelleted cells were resuspended in 250 µl Buffer P1 containing RNase 

A, to which 250 µl of Buffer P2 was added and the sample mixed by inversion. 

Buffer N3 (350 µl) was added and samples were centrifuged at 17,900 x g for 

10 minutes. The supernatant was added to a QIAprep spin column and 

centrifuged at 17,900 x g for 1 minute. The flow through was discarded and 500 

µl of Buffer PB was then added to the spin column. Samples were centrifuged at 

17,900 x g for 1 minute, and the flow through was discarded. A second wash 

using 750 µl of Buffer PE was added to the spin column, prior to centrifugation 

at 17,900 x g for 1 minute. The wash through was removed and the sample was 

centrifuged at 17,900 x g for 1 minute. Plasmid DNA was eluted addition of 30 

µl of Buffer EB directly to the centre of the spin column, which was incubated at 

room temperature for 1 minute, prior to centrifugation at 17,900 x g for 1 minute. 

Plasmid DNA was quantified in triplicate using a NanoDrop (Thermo 

Scientific). 

2.1.3 Primer preparation and annealing temperature optimization 

To ensure optimal amplification of antisense and ORF sequences, a primer 

validation study was performed. Lyophilized Primers (Sigma/Eurogentec) (Table 

2.4 and Table 2.5), were re-dissolved to a concentration of 100 M, and then 

diluted to a working concentration of 10 M in molecular grade water (Melford). 

Initial gradient Polymerase Chain Reaction (PCR) was performed by preparing 
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a 25l reaction, consisting of 2 x PCR master Mix (0.05 units/l Taq DNA 

polymerase, 4 mM MgCl2, 0.4 mM each of dATP, dCTP, dGTP, dTTP) 

(Fermentas), diluted with molecular grade water to a final concentration of 1 x 

and mixed with forward and reverse primers at a final concentration of 0.2 M. 

A total amount of 100ng of template DNA was added. The thermal Gradient was 

devised by using a range of 3C either side of the average calculated primer 

pair Tm. The PCR thermal profile was as follows: denaturing 95C for 2 minutes, 

30 cycles of denaturing at 95C for 30 seconds, annealing temperature for 30 

seconds, extension at 72C for 2 minutes and a final extension of 72C for 5 

minutes. All gradient PCR were performed on a DYAD™ DNA Engine (MJ 

Research). Optimal primer annealing temperatures were evaluated by visual 

inspection of amplified product using gel electrophoresis (see methods section: 

2.1.4). 

2.1.4 Agarose gel electrophoresis 

Analysis of PCR products was performed by agarose gel electrophoresis to 

ensure correct size of amplified products and ascertain the optimal primer 

annealing temperature. Agarose gels were prepared by dissolving an 

appropriate amount of agarose (Invitrogen) to achieve a final concentration of 

0.5-2% as required for optimal resolution of DNA fragments, in 10 x Tris-borate-

EDTA buffer (1.3 M TRIS, 450 mM boric acid, 25 mM EDTA.Na2 in H2O) 

(Sigma), diluted to 1 x concentrate. Agarose gels were stained with ethidium 

bromide (Sigma) at a final concentration of 0.5µg/ml. Gels were ran at 8v/cm for 

1 hour and photographed using a Uvitec gel doc systems with Essential v12.6 

imaging software  (UVITECH). Samples were prepared by mixing 5-10 µl of 

DNA with 6 x loading dye (Fermentas) to achieve 1 x final concentration. For 

size estimation 5 µl of 100Kb ladder and Hind III digest (Fermentas) were used 

as required. 

2.1.5 Cloning of antisense and ORF sequences into pHN678 and pBAD 

plasmids 

Antisense sequences for essential genes, fusA and rplE and the ORF of target 

genes fabI, murA, fusA and rplE were amplified from E.coli K12 genomic DNA, 

using sequence specific primers (Table 2.4), Antisense sequences were 

designed with restriction sites for XhoI and NcoI, to permit placement of PCR 
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insert in reverse orientation in the multiple cloning site (MCS) of pHN678, in 

order to generate antisense transcript. Transcomplementation vectors were 

designed with restriction sites for XhoI and EcoRI (fabI, murA, rplE) and XhoI 

and SacI (fusA). PCR amplification of target sequences was performed using 

Phusion High fidelity DNA polymerase (New England Biolabs). A 50µl PCR 

reaction was prepared with final concentrations of 1 x reaction buffer, 0.2 µM 

primers with exception of fabI (1 µM), 200 µM dNTP, 0.02 units and 4 µl cDNA 

template.  Thermal cycling was performed on 9700 geneamp thermal cycler 

(Applied Biosystems) using the following conditions: 98C 30 seconds, 98C for 

10 seconds, optimized annealing temperature for 15 seconds, 72C 15 

seconds, and final extension of 72C for 1 minute. Subsequent products were 

purified using QIAquick PCR purification kit (Qiagen) and quantified using a 

NanoDrop Spectrophotometer and associated software ND1000 v3.2.1 

(Thermo Scientific). Confirmation of PCR products was performed by agarose 

gel electrophoresis (see methods section: 2.1.4). 

2.1.6 Restriction digest of PCR inserts and plasmids 

To prepare PCR inserts for cloning into their respective vectors, double 

restriction digests were performed using XhoI and NcoI for antisense 

sequences fusA and rplE. Amplicons of complete ORF sequences were double 

digested with XhoI and EcoRI (fabI, murA, rplE) and XhoI and SacI (fusA) in 

addition to pBAD. Restriction digests were performed according to 

manufacturers’ instructions (Fermentas) and consisted of 10 x Tango buffer 

(330 mM Tris-acetate, 100 mM Mg-Acetate, 660 mM K-acetate, 1 mg/ml bovine 

serum albumin (BSA)) diluted to a final 2 x concentration. For double digests, 

10 units of appropriate restriction enzyme (Fermentas) was added per 1µg of 

DNA, molecular grade water was then added to bring the final reaction volume 

up to 40 l. Samples were incubated at 37C for 2 hours followed by a thermal 

inactivation of restriction enzymes by incubating  at 80C for 20 minutes. 

Digested products were purified using QIAquick PCR purification kit (Qiagen) 

and quantified in triplicate using a NanoDrop (Thermo Scientific). 

2.1.7 Ligation of PCR inserts into plasmids 

Digested antisense and ORF sequences were ligated into pHN678, and pBAD 

respectively. Sticky-end ligation was performed using 100 ng of linear vector 
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DNA according to manufacturers’ instructions. The molar ratio of insert DNA 

was calculated using the Ligations: Molar ratio of insert to vector calculator 

(Promega).   Vector and insert DNA were mixed in a ratio of 1:3 with 10 x T4 

DNA ligase buffer (Fermentas) (400 mM Tris-HCl, 100 mM MgCl2, 100 mM 

DTT, 5 mM ATP), which was diluted to 1 x concentration. For each reaction, 5 

units of T4 DNA ligase (Fermentas), was added. Molecular grade water was 

then added to bring final reaction volume to in a 20 l. Samples were incubated 

for 10 minutes at 22C followed by thermal inactivation of T4 ligase by 

incubating at 65C for 10 minutes. Confirmation of ligation insertion was 

performed by restriction digestion and agarose gel electrophoresis (see 

methods section: 2.1.4). 

2.1.8 Transformation of antisense and transcomplementation plasmids 

into E.coli 

Ligated plasmids containing pHN678 or pBAD with antisense sequences or 

complete ORF sequences respectively were introduced into E.coli by chemical 

transformation. For each plasmid, 5 µl of ligated product was added to one vial 

of One Shot TOP10 Chemically competent E.coli (Invitrogen). The competent 

cells were then incubated on ice for 30 minutes, prior to heat shocking for 30 

seconds at 42C without shaking. Competent cells were then left on ice to 

recover for 2 minutes. A total volume of 250 µl of pre-warmed SOC medium 

(see Appendix: A) was added to each vial, which were subsequently incubated 

at 37C for 1 hour with aeration. A suitable volume of transformants (100 µl) 

was pipetted onto pre-warmed LB agar containing an appropriate antibiotic and 

incubated at 37C overnight. Transformants carrying the correct plasmid with 

insert were screened using colony PCR with plasmid specific primers for 

pHN678 and pBAD respectively (Table 2.4). 

2.2 Evaluation of antisense specificity of fusA and rplE constructs 

To examine the specificity of antisense RNA constructs, antisense growth 

assays were prepared according to the procedure used in a previous evaluation 

of essential gene targets (Goh et al., 2009). A series of IPTG (Melford) 

concentrations were prepared to induce antisense RNA expression from 

pHN678 vectors, to generate a titration in E.coli growth rate. IPTG 

concentrations were prepared in molecular grade water at 10 x concentration, 
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20 l of which was pipetted in triplicate into a 96 well micro plate (Sarstedt). 

Overnight cultures of E.coli were standardized by OD550 readings to 2 x 104 

cfu/ml, using a LibraS12 Spectrophotometer (Biochrom). Standardized culture 

volumes of 180 l were added to respective wells, to bring the final assay 

volume to 200 l. The 96 well microplate was incubated in a Powerwave HT 

plate reader (Biotek Instruments Inc) at 37C with agitation every 5 seconds and 

readings at 550nm taken every 5 minutes for a period of 24 hours. Bacterial 

growth curves were plotted using Gen5 software v1.04.5 (BioTek). Raw 

absorbance data corresponding to the exponential phase of E.coli growth was 

exported to Excel (Microsoft). A trendline was applied and the gradient of the 

growth curve recorded. Relative growth rate was derived by normalizing the 

trendline gradient of induced cells to the trendline gradient of uninduced 

controls. 

2.3 Validation of antisense specificity by transcomplementation 

To validate the target specificity of antisense constructs, rescue assays were 

performed by transforming both antisense and corresponding 

transcomplementation vectors into E.coli TOP10. A matrix of IPTG and L-

arabinose induction concentrations were assessed to determine the level of 

induction required to demonstrate the rescue of bacterial growth rate, in 

accordance with a previous study (Goh et al., 2009). A dilution series of IPTG 

and L-arabinose (Melford) were prepared at 20 x concentration, 10 l of each 

substrate was added to respective wells, prior to the addition of 180 l 

standardised culture in MH media supplemented with 30g/ml chloramphenicol 

and 100 g/ml ampicillin.  Bacterial growth curves were plotted using Gen5 

software v1.04.5 (BioTek). Raw absorbance data corresponding to the 

exponential phase of E.coli growth was exported to Excel (Microsoft). A 

trendline was applied and the gradient of the growth curve recorded. Relative 

growth rate was derived by normalizing the trendline gradient of induced cells to 

the trendline gradient of uninduced controls. 
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2.4 Delineation of the inhibitory effects of silencing essential gene 

targets fusA and rplE 

To examine the inhibitory effects of antisense RNA silencing on growth, viable 

cell counts were performed in the presence of 50 M IPTG, which was double 

the concentration used to silence growth in the examination of specificity. As 

per the procedure for antisense and rescue assays, overnight bacterial cultures 

were standardized by OD550 readings to 2 x 104 cfu/ml. A 50 ml volume of MH 

broth containing chloramphenicol (30g/ml) was inoculated and then incubated 

at 37C with aeration. Sample volumes of 100 l were removed every hour over 

a period of 8 hours, serially diluted (10-5 and 10-6), plated onto MH agar (in 

triplicate) and incubated 37C overnight. A viable colony count was then 

performed on plates containing between 30 and 300 colonies. 

 

2.5 Evaluation of essential gene stringency by quantitative 

assessment of mRNA transcripts 

To maintain consistency with a previous assessment of essential gene 

stringency (Goh et al., 2009), QPCR was used to provide relative quantification 

of mRNA abundance in E.coli, following silencing of essential gene targets fusA 

and rplE. Normalisation was performed relative to two reference genes; 16S 

rRNA which forms part of the 30S subunit (Shajani et al., 2011) and zipA which 

encodes an inner membrane protein involved in the formation of septal ring 

structure during cell division (Hale and De Boer, 1997). Both genes had 

previously been selected following microarray analysis of the E.coli 

transcriptome (Shan Goh personal communication).  

2.5.1  Isolation and clean-up of total RNA 

E.coli was induced with IPTG and harvested once the OD550 of the control 

(uninduced) culture reached 0.1, as it had previously been determined that 

optimal correlation between mRNA abundance and relative growth rate 

occurred at this point in the growth curve (Goh et al., 2009). Total RNA was 

extracted from E.coli using PureLink™ RNA Mini Kit including on-column 

DNAse treatment (Life Technologies), in accordance with manufacturer’s 

protocol for isolating bacterial cell RNA. Briefly, bacterial cells were harvested at 
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500 x g for 5 minutes and resuspended in 100µl of lysozyme solution (Sigma) 

containing 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 1 mg lysozyme from 

chicken egg white. In addition 0.5 µl of 10% SDS and 350 µl of lysis buffer 

containing 1% 2-mercaptoethanol was also added. Samples were homogenized 

by repeated expulsion through a 21 gauge needle. Cell lysate was centrifuged 

at 12,000 x g for 2 minutes to remove cellular debris, prior to addition of 250 µl 

100% ethanol to precipitate RNA. Samples were vortexed and transferred to a 

spin column with collection tube and centrifuged at 12,000 x g for 15 seconds. 

The spin column containing bound RNA was placed in a fresh collection tube to 

eliminate carryover and DNase treatment was performed. The spin column was 

washed with 350 µl of Wash buffer I and centrifuged at 12,000 x g for 15 

seconds, prior to the  addition of 80 µl of DNAse solution, containing 1 x DNase 

I reaction buffer and resuspended DNase I (~3 U/µl). Samples were incubated 

at room temperature for 15 minutes prior to the addition of 350 µl Wash buffer I 

and centrifugation at 12,000 x g for 15 seconds. The spin column was placed in 

a fresh collection tube and 500 µl of Wash buffer II was added. Samples were 

centrifuged at 12,000 x g for 15 seconds and the spin column was removed and 

placed in a fresh collection tube. Samples were centrifuged at 12,000 x g for 1 

minute and the spin column was transferred to a clean 1.5ml microcentrifuge 

tube. To elute the RNA, 30 µl of RNase/DNase free water was added to the 

center of the column, which was then incubated at room temperature for 1 

minute prior to centrifugation at 12,000 x g for 2 minutes. Additional RNA 

purification was performed using TRI reagent (Molecular Research Centre, 

INC). Briefly 1 ml of TRI reagent was added to the eluted RNA samples and left 

at room temperature for 5 minutes. Following dissociation of nucleoprotein 

complexes, 0.1 ml of 1-bromo-3-chloropropane (BCP) (Sigma) was added, 

samples were mixed and stored at room temperature for 15 minutes. Samples 

were centrifuged at 12,000 x g for 15 minutes at 4C. The aqueous phase 

containing RNA was removed and precipitated with 0.5 ml of isopropanol at 

room temperature for 10 minutes before being centrifuged at 12,000 x g for 8 

minutes at 4 C. RNA was washed with 1 ml of 75% ethanol and centrifuged at 

12,000 x g for 5 minutes at 4C. The RNA pellet was air-dried for 5 minutes 

prior to solubilisation in 50 µl RNase-free water. 
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2.5.2 cDNA synthesis of extracted RNA 

The conversion of RNA template to cDNA was performed using the RevertAid™ 

First Strand cDNA Synthesis Kit (Fermentas). A 20µl  reaction was prepared 

consisting of 5 x reaction buffer (250 mM Tris-HCl (pH 8.3), 250 mM KCl, 20 

mM MgCl2, 50 mM DTT), diluted to 1 x concentration. In addition, 20 units 

Ribolock RNase inhibitor, 1 mM dNTP mix, 5 µM random hexamer and 200 

units of M-MuLV Reverse Transcriptase were added. RNA template was 

standardized to 100 ng for each reaction. Reactions were prepared in two 

steps; initially molecular grade water, random hexamers and RNA template 

were heated to 65C for 5 minutes to remove secondary structure, prior to 

addition of the remaining reaction components. cDNA synthesis was performed 

by incubating samples at 25C for 5 minutes, 42 C for 1 hour, then 70C for 5 

minutes to terminate reverse transcriptase activity. Genomic DNA 

contamination was assessed using reverse transcriptase negative and blank 

reactions. 

2.5.3 Relative quantification of mRNA transcripts by QPCR 

QPCR assay validation was performed according to established guidelines 

(Nolan et al., 2006). Briefly primer matrices consisting of concentrations 0.1 – 

0.3 M for all primers with exception of fabI (1-2 M) were prepared and 

analysed in duplicate. Optimal primer concentrations for forward and reverse 

primers were selected according to the primer pair displaying the lowest CT 

(Cycle threshold) value, which signifies the number of cycles required for the 

fluorescent signal to exceed background level. Reaction efficiency was 

assessed using duplicate reactions of six fold serial dilutions of target amplicon, 

with efficiency calculated from standard curve slopes according to the equation 

E = 10[-1/slope] -1 x 100. Samples were prepared in final volumes of 25 l 

consisting of 2 x Maxima SYBR Green qPCR Master Mix (Fermentas) diluted 

to 1 x concentration and 2 l of cDNA synthesis reaction or 5 l positive control 

DNA. Analysis was performed on a Chromo 4 (DYAD) using Opticon Monitor v 

3.1.32 (Biorad). Relative quantification was performed using the DDCt method 

(Livak and Schmittgen, 2001). 
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Table 2.1 Strains used in this study 

Strain Genotype Function Source 

E.coli TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 
nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 

rpsL(StrR) endA1 λ- 

Host Strain for plasmids Invitrogen 

E.coli As-fabI As TOP10, pHN682 Expression of antisense fabI RNA (Nakashima et al., 2006) 

E.coli As-acpP As TOP10, pHN682 Expression of antisense acpP RNA (Goh et al., 2009) 

E.coli As-murA As TOP10, pHN682 Expression of antisense murA RNA (Goh et al., 2009) 

E.coli As-ftsZ As TOP10, pHN682 Expression of antisense ftsZ  RNA (Goh et al., 2009) 

E.coli Ash01 As TOP10, pHN678-rplE Expression of antisense rplE RNA This study 

E.coli Ash02 As TOP10, pHN678-fusA Expression of antisense fusA RNA This study 

E.coli Ash03 As TOP10, pBAD-rplE Overexpression of rplE This study 

E.coli Ash04 As TOP10, pBAD-fusA Overexpression of fusA This study 

E.coli Ash05 As TOP10, pHN678-rplE, pBAD-rplE Transcomplementation rescue of rplE 
antisense 

This study 

E.coli Ash06 As TOP10, pHN678-fusA,  pBAD-fusA Transcomplementation rescue of fusA 
antisense 

This study 

E.coli Ash07 As TOP10, pHN678, pBAD-HisA Transcomplementation  control This study 

E.coli AG1 
ME5305 

recA1 endA1  gyrA96  thi-1  hsdR17(rk- 

mk+)   supE44   relA1 

Overexpression of FabI in minimal media National Bioresource Project 

 

 

http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=recA
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=endA
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=gyrA
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=thi
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=hsdR
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=hsdR
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=supE
http://www.shigen.nig.ac.jp/ecoli/pec/quickSearchAction.do?action=genesList&searchWord=relA
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Table 2.2 Paired termini antisense expression plasmids used in this study. 

Plasmid Characteristic Features Location and length Source 

pHN678 IPTG-inducible 
promoter (Ptrc) with 
paired termini (PT 

flanking MCS CamR 

E.coli stabilized antisense 
expression vector 

N/a (Nakashima et al., 2006) 

pHN682 fabI antisense insert Inducible expression of fabI 
antisense RNA 

-74 to +68 of fabI (160 nucleotides) (Nakashima et al., 2006) 

pHNA acpP antisense insert Inducible expression of acpP 
antisense RNA 

-42 to +85 of acpP (127 nucleotides) (Goh et al., 2009) 

pHNM murA antisense insert Inducible expression of murA 
antisense RNA 

-54 to +78 of fabI (130 nucleotides) (Goh et al., 2009) 

pHNZ ftsZ antisense insert Inducible expression of ftsZ 

antisense RNA 
-53 to +76 of fabI (129 nucleotides) (Goh et al., 2009) 

pHN678-rplE rplE antisense insert Inducible expression of rplE 
antisense RNA 

-95 +60  of rplE  (155 nucleotides) This study 

pHN678-fusA fusA antisense insert Inducible expression of fusA 
antisense RNA 

-93 +86 of fusA  (179  nucleotides) This study 
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Table 2.3 Over expression vectors used in this study 

Plasmid Characteristic Features Location and length Source 

pBAD-HisA L-arabinose inducible 
promoter (Pbad) 

Inducible expression of 
essential genes 

N/a Invitrogen 

pBAD-HisA-rplE Complete ORF rplE Inducible expression of rplE N/a This study 

pBAD-HisA-fusA Complete ORF fusA Inducible expression of fusA N/a This study 

pGlo Complete ORF Green 
Fluorescent Protein 

(GFP) 

Inducible expression of GFP N/a Biorad 

pDs-Red 
Express 

Complete ORF Red 
Fluorescent Protein 

(RFP) 

Inducible expression of RFP N/a Clontech 
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Table 2.4 PCR primers used in this study 

Primer 
Name 

Target Amplified Sequence Amplicon 
size 
(Bp) 

Purpose 

fusA-XF1 Antisense of fusA CGTCCATGGGTCGATGTGCGCACTGATA 179 Cloning of fusA antisense into 
pHN678, resulting in pHN678-fusA 

fusA-XR2 TGTCTCGAGCCCTTCGGAGTTTTAGTCACC 

rplE-XF5 Antisense of rplE CGTCCATGGGGGACTTGCATGACAGAATTG 155 Cloning of rplE  antisense into 
pHN678, resulting in pHN678-rplE 

rplE-XR5 TGTCTCGAGGGCTGACCGTGTAGGCTTTA 

fabIf fabI ATCCTCGAGATGGGTTTTCTTTCCGGT 827 Cloning of fabI ORF into pBAD, 
resulting in pBAD-fabI 

fabIr ATCGAATTCCGATTATTTCAGTTCGAGTTCGT 

murA-OF-
His 

murA GAGCTCGAGATGGATAAATTTCGTGTTCAGGGGC 1282 Cloning of murA ORF into pBAD, 
resulting in pBAD-murA 

murA-OR-
His 

CCGGAATTCACGATTATTCGCCTTTCACACG 

fusAf fusA ATCCTCGAGATGGCTCGTACAACACCC 2135 Cloning of fusA ORF into pBAD, 
resulting in pBAD-fusA 

fusAr ATCGGTACCGCTTATTTACCACGGGCTT 

rplEf rplE ATCCTCGAGATGGCGAAACTGCATGATTAC 564 Cloning of rplE  ORF into pBAD, 
resulting in pBAD-rplE 

rplEr ATCGAATTCCCTACCTTACTTGCGGAACG 

pHN678 
forward 

pHN678 Multiple 
cloning site 

CTGCAGGTCGTAAATCACTGCA N/a Screening for antisense inserts 

pHN678 
forward 

CTTCTCTCATCCGCCAAAACTAG N/a 

pBAD 
forward 

pBAD multiple cloning 
site 

ATGGCTAGCAAAGGAGAAGAAC N/a Screening for ORF inserts 

pBAD 
Reverse 

TAGAGCTCATCCATGCCATGTG N/a 
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Table 2.5 QPCR primers used in this study 

Primer Name Target 
Amplified 

Sequence Amplicon 
size 
(Bp) 

Purpose 

fabI QPCR Forward fabI CTGACCCTTTCCTACCTTG 66 fabI target 

fabI QPCR Reverse TTTTGCCAGACCCATAAC  

murA QPCR Forward murA CACTACCTGCGCGTTGTACGA 64 murA target 

murA QPCR Reverse TGTTCGAGGCCAGAAATGTG  

fusA QPCR Forward fusA ACCTGGGTGGTGAAGAACTG 105 fusA target 

fusA QPCR Reverse TCTTGAACGCAGAACCACAG  

rplE QPCR Forward rplE AAAACCGCTGATCACCAAAG 111 rplE target 

rplE QPCR Reverse AAGAACTCCCACATGCGTTC  

16S QPCR Ref Forward 16S AGGCCTTCGGGTTGTAAAGT 97 Reference gene 

16S QPCR Ref Reverse GTTAGCCGGTGCTTCTTCTG  

ZipA QPCR Ref Forward ZipA ATAAACCGAAGCGCAAAGAA 102 Reference gene 

ZipA QPCR Ref Reverse CCGCTTGTTGAATGCTGTTA  
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2.6 Evaluation of essential gene stringency by protein quantification 

To address the limitation of using mRNA abundance as a proxy for protein 

expression in determining essential gene stringency, a method for absolute 

quantification of expressed protein was developed. Central to this approach is 

the use of an LC-MS/MS assay incorporating a pre-quantified heavy labelled 

(15N) protein as an internal standard for the quantification of expressed protein 

following expressed antisense RNA silencing of essential gene targets.  

2.6.1 Development of a 15N labelled protein internal standard  

To validate the LC-MS/MS approach, the E.coli essential genes fabI and murA 

were selected as targets, since both have previously been evaluated for 

essential gene stringency. To enable complete labelling of the target protein, a 

metabolic labelling strategy was implemented. E.coli expressing pBAD-fabI and 

pBAD-murA were grown in liquid M9 minimal media supplemented with 15N 

ammonium chloride (Cambridge Isotope Laboratories Inc) as the sole nitrogen 

source (see Appendix: A). Due to difficulties in cultivating these particular 

strains of E.coli with ampicillin as a selection agent, an alternative strain was 

sought. E.coli clones overexpressing His-tagged FabI and MurA from the ASKA 

collection (A Complete Set of E.coli K-12 ORF Archive), were obtained from the 

National Bioresource Project-E.coli, (National Institute of Genetics, Japan).  

Suitable growth was achieved in M9 minimal media supplemented with 

chloramphenicol using both these strains. Bacterial cultures were grown to an 

OD550 of 0.5, prior to the induction of protein expression by the addition of IPTG 

to a final concentration of 1 mM. Bacterial cultures were then grown for 

approximately 12 hours prior to harvesting. 

2.6.2 Extraction of 15N labelled protein internal standard from E.coli Lysate 

using IMAC  

Following protein expression in minimal media, His-tagged FabI and MurA were 

extracted from E.coli using Immobilised Metal Affinity Chromatography (IMAC), 

in conjunction with a nickel column (Invitrogen). All reagents used in the 

preparation of IMAC buffers were sourced from Sigma. Approximately 250 ml of 

bacterial culture was centrifuged in a sorvall RC5C Refrigerated Superspeed 

Centrifuge (Dupont) at 10,000 x g for 10 minutes. To each pellet 10 ml of Lysis 

buffer (20 mM Tris-Cl pH 7.6, 1 M NaCl, 0.1 mM PMSF, 20 mM Imidazole, 2% 
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Triton-X-100, 150 mg lysozyme) was added. The sample was then sonicated for 

5 minutes at amplitude of 10 microns using a Soniprep 150 (MSE (UK) Ltd). 

Lysed samples were centrifuged at 20,000 x g for 10 minutes to remove cellular 

debris prior to the  lysate being loaded onto a Nickel column (GE Healthcare 

Life sciences) coupled with AKta Prime (GE Healthcare Life sciences). Bound 

protein was washed and removed from the column using an elution buffer (20 

mM Tris-Cl pH 7.6, 1 M NaCl, 0.1 mM PMSF, 300 mM Imidazole, 2% Triton-X-

100). Binding and elution of his-tagged FabI and MurA was monitored by U.V 

spectrometry on a trace in PrimeView 5.0 (Amersham Biosciences).  

2.6.3 SDS-PAGE of extracted 15N labelled protein internal standards 

Extracted protein was evaluated for approximate size using denaturing SDS-

PAGE. All reagents used in the preparation of polyacrylamide gels were 

obtained from Melford, with the exception of 30% Acrylamide/0.8% 

Bisacrylamide which was sourced from Sigma. Poly-acrylamide gels (12-20% 

concentration) were prepared using Tris-Cl pH 8.8, containing final 

concentrations of 0.1% SDS, 0.375 M Tris-Cl pH8.8 (separating gel), (0.375 M 

Tris-Cl pH 6.8, for the stacking gel) 0.05% ammonium persulfate and 0.03% 

TEMED. A 5 x Tris-glycine running buffer was prepared (0.025M Tris, 0.192 M 

glycine and 0.1 M SDS) and used at 1 x concentration. Gels were photographed 

using Image-Scanner (Amersham Biosciences and Labscan v5.0 (GE 

Healthcare Life Sciences). Protein samples were prepared in 30 l volumes 

using 5 x SDS Page loading dye (Fermentas) and 20 x Reducing agent 

(Fermentas) at final 1 x concentration. Samples were heated at 97C for 4 

minutes to denature protein samples, prior to loading. For size estimation of 

proteins, 5 l of Page Ruler Pre-stained Protein Ladder (Fermentas) was used. 

2.6.4 Purification and concentration of 15N labeled protein internal 

standards  

To remove contaminants associated with the IMAC elution buffer and thereby 

prevent interference with downstream LC-MS/MS analysis, extracted 15N 

labelled protein (FabI and MurA) was purified using an acetone precipitation 

protocol (New England Biolabs). Briefly, 100 µl of 15N labelled protein was 

mixed with 400 µl of ice-cold acetone (Sigma), vortexed and incubated for 1 

hour at -20C. The protein extract was centrifuged at 13,000 x g for 10 minutes 
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and the supernatant was decanted. The protein pellet was then redissolved in 

100 µl of molecular grade water. A small volume of redissolved protein (80 µl) 

was mixed with 120 µl of 5 x SDS loading buffer, 370 µl of molecular grade 

water and 30 µl of 20 x reducing agent. The protein sample was heated to 97C 

for 3 minutes and placed in a sonibath (VWR) for 5 minutes, followed by a 

further heating step of 97C for 3 minutes. The sample was centrifuged at 

16,000 x g for 10 minutes and the supernatant was removed to a fresh tube. 

Protein purity was confirmed by SDS-PAGE, using a 12% polyacrylamide gel. 

2.6.5 Antisense induction for protein and RNA quantification 

An overnight culture of As-fabI was standardized by OD550 readings to 

approximately 2 x 104 cfu/ml in a final volume of 200 ml in MH broth containing 

chloramphenicol (30g/m). An IPTG dilution series was prepared using final 

concentrations of 50, 55 and 70 µM corresponding to growth inhibition of 

approximately 75%, 50% and 25% respectively. Cultures were incubated at 

37C with aeration until the OD550 of a control culture reached 0.1. Bacterial 

cells were harvested at 12,000 x g for 5 minutes, resuspended in 21 ml fresh 

MH broth which was subsequently split into two 10 ml aliquots for protein and 

RNA isolation (see methods section: 2.5.1) for analysis by QPCR respectively. 

The Protein aliquot was centrifuged and resuspended in 1.5 ml MH broth and 

sonicated at 10 microns for 45 seconds five times. 

2.6.6 Protein digestion and SDS-gel extraction from E.coli lysate 

For LC-MS/MS, there is a requirement for protein to be digested into its 

respective peptides, to render it amenable to electrospray ionization. 

Consequently E.coli lysates were separated by SDS-PAGE to reduce sample 

complexity prior to LC-MS/MS analysis. All reagents with the exception of 

trypsin were purchased from Sigma. Proteins were exercised from SDS-PAGE 

gels using a scalpel and placed into a 1.5 ml microcentrifuge tube containing 

140 µl of 200 mM ammonium bicarbonate (NH4HCO3)  pH 7.8. Gel pieces were 

destained in a 37C incubator for 15 minutes. Samples were centrifuged at 

10,000 rpm for 10 seconds, followed by removal of the supernatant, 140 µl of 

200 mM NH4HCO3 pH 7.8/acetonitrile (MeCN) 4:6 was then added, followed by 

the addition of 140 µl of 50mM NH4HCO3 pH 7.8. Samples were incubated at 

37C for 30 minutes. Following incubation, the supernatant was removed after a 
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brief centrifugation at 10,000 x g for 10 seconds after which 140µl of MeCN was 

added, followed by incubation at room temperature for 5 minutes. The MeCN 

was removed following brief centrifugation and the entire destaining procedure 

was repeated until no coomassie dye was visible. The gel pieces were reduced 

by addition of 50 µl 10 mM DTT in 100 mM NH4HCO3 and incubated at 56C for 

1 hour. Samples were briefly centrifuged and the supernatant was removed and 

50 µl of 50 mM iodacetamide was added. Samples were incubated in the dark 

for 30 minutes. The supernatant was removed and gel pieces were washed with 

200 µl 100 mM NH4HCO3 pH 7.8 and incubated at 37C for 15 minutes with 

shaking. The supernatant was removed and 200 µl 50 mM NH4HCO3/MeCN 

(50:50 v/v) was added, followed by incubation at 37C for 15 minutes with 

shaking. Following removal of the supernatant, 140 µl of MeCN was added 

followed by incubation at 37C for 5 minutes with shaking. The MeCN was 

removed following centrifugation and 140 µl of fresh MeCN was added until gel 

pieces turned white. Gel pieces were then digested with trypsin solution 

consisting of 10 µl of 0.5 µg/µl trypsin (Promega), 250 µl 50 mM NH4HCO3 and 

1 mM CaCl2. A 30 µl volume of digest solution was added to the gel pieces 

followed by incubation at room temperature for 5 minutes. A 30 µl addition of 50 

mM NH4HCO was then added to the gel pieces which were then incubated at 

37C overnight. Peptides were extracted by a 10 µl addition of 5% tri-

flouroacetic acid (CF3CO2H), vortexed and then centrifuged at 10,000 x g for 10 

seconds. The supernatant was removed to a fresh (non-autoclaved) 1.5.ml 

microcentrifuge tube. Gel pieces were covered with 2% CF3CO2H acid/60% 

MeCN solution, vortexed and centrifuged again followed by collection of the 

supernatant. A 20 µl volume of 100% MeCN was then added to the gel pieces, 

which were subsequently incubated at room temperature for 5 minutes until 

changing from colourless to white, at which point supernatant was removed. 

Extracted peptide solution was concentrated by in a speed vac (Eppendorf) and 

resuspended in 10 µl 1% CF3CO2H, 5% MeCN and stored at -80C. 

2.6.7 Evaluation of representative tryptic peptides to use for the 

identification and quantification of 15N labelled protein internal 

standard and for the assessment of matrix effects 

To evaluate the potential of matrix effects, a post-extraction spike method was 

employed (Matuszewski et al., 2003). A known volume (2 µl) of purified FabI 
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internal standard was spiked, prior to in-gel digestion with trypsin, into replicate 

samples of different volumes (10µl, 20µl, 30µl) of E.coli TOP10 cell lysate. The 

cell lysate originated from E.coli silenced for fabI expression to achieve a 

titration of the relative growth rate. Induction concentrations of IPTG (50 µM 55 

µM and 65µM) were examined and chosen to achieve an approximate 25%, 

50% and 75% reduction in the relative growth rate respectively. Subsequent 

LC-MS/MS analysis identified 30 tryptic peptides which were evaluated 

according to established criteria (Han and Higgs, 2008). The absolute area 

under each extracted ion chromatogram corresponding to the 15N labelled 

protein internal standard spike and unlabelled species from the E.coli lysate 

were compared, to ascertain if the signal of the 15N labelled standard suffered 

significant variation. 

2.6.8 Quantification of FabI Internal Standard 

The FabI internal standard was quantified using a standard curve, constructed 

from commercially synthesized and pre-quantified peptide analogues of 

EGAELAFTYQNDK and ILVTGVASK peptides (JPT). Both peptides were 

redissolved in RNase/DNase free water (Melford) and serially diluted to 

generate individual standard curves spanning 6 orders of magnitude (0.5-

50,000 fmol). Serial dilutions of each peptide were spiked into trypsin digests (in 

triplicate) containing a 2 µl volume of FabI internal standard and analysed by 

LC-MS/MS (see methods section: 2.6.9). The absolute area under each 

extracted ion chromatogram corresponding to the 15N labelled protein internal 

standard and the unlabelled peptide analogue were averaged. Standard curves 

for each peptide were generated in Sigma plot and a straight line equation 

fitted. The concentration of the 15N labelled internal standard was then 

determined from the straight line equation. 

2.6.9 LC-MS/MS Analysis of FabI protein in silenced samples 

LC-MS/MS was performed by the North East Proteome Facility (NEPAF) using 

an in-house protocol. Peptides were concentrated on a Pepmap C-18 trap 

column (300 μm ID x 5 mm) and separated on a Pepmap C18 reversed phase 

column (Dionex, UK) (3 μm particles, 75 μm ID x 250 mm), using a linear 

gradient over 42 min from 96% A (0.05% formic acid), 4% B (0.05% formic acid, 

80% acetonitrile) to 35% A, 65% B and a flow rate of 300 nl/min. Using the 
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software package; Xcalibur 2.0. Intact peptides were detected between m/z 400 

and m/z 1,600 in the Orbitrap XL (Thermofisher) at a resolution of 30,000. 

Internal calibration was performed using the ion signal of (Si(CH
3

)
3

O)
6

H
+ 

at m/z 

445.120025 as a lock mass Parts per million mass accuracy on an Orbitrap 

mass spectrometer (via lock mass injection into a C-trap). Maximum ion 

accumulation time allowed on the LTQ Orbitrap was 1s for all scan modes. 

Automatic gain control was used to prevent over-filling of the ion trap. Collision 

induced dissociation (CID) spectra of the top 5 peptide ions (rejection of singly 

charged precursors) were acquired between m/z 400 and m/z 1,600 at 

normalized collision energy of 35. Dynamic exclusion was set with a repeat 

count of 1, a repeat time of 30s and an exclusion time of 3 min. The 

chromatography feature was enabled with a correlation area ratio of 1.0. 

Activation Q was set to 0.25 with 30 ms activation time. 

2.6.10 Whole cell screening assays using  triclosan and phosphomycin 

To examine the potential of defining appropriate levels of sensitivity in antisense 

based whole cell screening assays using MPL50 Values, an MIC liquid assay 

was performed. The target specific antibiotics for fabI (triclosan) and murA 

(phosphomycin) were selected as proxies for natural compounds, to examine 

the level of antisense silencing required to reduce the MIC. MIC assays were 

performed as per antisense assays (see methods section 2.22.2). A dilution 

series of triclosan (Sigma) and phosphomycin (Sigma)  were prepared in 100% 

Dimethyl sulfoxide (DMSO) (Sigma) and water respectively, based upon 

published MIC values for triclosan (Bailey et al., 2009) and phosphomycin 

(Takahata et al., 2010). To each well of a 96 well assay plate, 10 l of 

respective antibiotic and 10 l of  and IPTG were added, prior to the addition of 

180 l standardised culture of strains As-fabI or As-murA. 

2.7 Assessment of target specificity using PNA 

To investigate whether peptide conjugate PNA with antisense sequences could  

discriminate between gene homologues, and silence an essential gene target in 

different bacterial species, a mixed microbial assay was performed. 
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2.7.1 Design of Species-specific PNA 

The design of species specific PNA was performed using Artemis (Rutherford et 

al., 2000), according to established rules (Good and Nielsen, 1997). Gene 

homologues from Salmonella enterica serovar Typhimurium LT2 (Knuth et al., 

2004) and Escherichia coli DH10B (Durfee et al., 2008b) were identified by 

BLAST (Altschul et al., 1990) from the Database of essential genes (Zhang and 

Lin, 2009b). Using Artemis, a 20 base pair sequence (-10 to +10) relative to the 

start codon of essential gene homologues were identified and aligned in Clustal 

X version 2 (Larkin et al., 2007) to determine base pair mismatches. A 2 base 

pair cut-off was assigned to identify potential PNA binding sites. A custom perl 

script was used to identify -5 to +5 bases relative  to the start codon for all 

against comparison  (McGinnis and Madden, 2004b), using BLAST to identify  

essential genes with TIR’s amenable to the design of PNA’s. From the 

generated list, a 10 base pair sequence (aacataatct) targeting the TIR of ftsZ 

was identified (PNA Se002). To enable PNA’s to transverse the bacterial cell 

wall, a short peptide (KFFKFFKFFK)   was conjugated to the PNA. The peptide 

sequence is has previously been shown to increase uptake and target 

specificity (Good et al., 2001b). 

2.7.2 Transformation of S. typhimurium and E.coli with reporter gene 

plasmids 

To highlight phenotypic variation arising from the effects of PNA silencing of 

ftsZ, Salmonella typhimurium and E.coli were transformed with pGLo 

expressing Green Fluorescent Protein (Bio-Rad) and pDs-Red expressing red 

fluorescent protein (Clontech) respectively. Salmonella typhimurium LT2 strains 

JR501 was obtained from the Salmonella Genetic Stock Centre, (University of 

Calgary, U.S.A). E.coli TOP10 was obtained from Invitrogen. Transformation of 

S. typhimurium with pGlo was based on an adapted protocol for the 

transformation of enteric bacteria (Tsai et al., 1989). An overnight culture of S. 

typhimurium LT2 JR501, was diluted 1/20 in SOB medium (see Appendix: A) 

and then incubated at 37C with aeration until the OD550 reached mid log phase 

(0.5-0.6). A 50 ml aliquot of the culture was chilled and cells were harvested by 

centrifugation at 10,000 x g for 10 minutes. Harvested cells were washed with 

50 ml of cold (4C) 0.1 M MgCl2 and then resuspended in 25 ml 0.1 M CaCl2 

and incubated on ice for 20 minutes. Cells were centrifuged at 10,000 x g for 10 
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minutes and resuspended in 5 ml of cold 0.1 M CaCl2, which was dispersed as 

0.2 ml aliquots into thin wall 15 ml tubes (Falcon). Upon addition of plasmid 

DNA, cells were incubated on ice for 20 minutes prior to heat shocking for 2 

minutes at 42C without shaking. A total volume of 250 µl of pre-warmed SOC 

medium was added to Transformants, which were then incubated at 37C for 1 

hour with aeration. A suitable volume of transformants (100 µl) was pipetted 

onto pre-warmed LB agar containing ampicillin and incubated at 37C overnight. 

E.coli TOP10 was transformed with pDs-Red as per previous E.coli 

transformations (see methods section: 2.1.8) 

2.7.3 Mixed microbial assay 

Overnight cultures of E.coli Top 10 harbouring pDs-Red and Salmonella 

typhimurium LT2 JR501, containing pGlo, were incubated overnight in low salt 

LB media containing ampicillin. Overnight cultures were diluted in fresh low salt 

LB containing 0.2% L-arabinose (Sigma) and standardized by OD550 readings to 

approximately 2×104 cfu/ml. Equal volumes were then combined to produce a 

mixed culture. Prior to use, PNAs (Panagene, Korea) were heated at 55C for 

10 minutes as per manufacturer’s instructions and added to a final 

concentration of 2.5 and 1.25 M, in a 96 well tissue culture plate (Sarstedt). 

The well volume was made up to 100 l with low salt LB containing 0.2% L-

arabinose, prior to the addition of 100 l of mixed bacterial culture.The 96 well 

plate was sealed with breathable self-adhesive film (Starlab) and incubated in a 

Powerwave HT plate reader (BioTek) at 37C with medium intensity shaking. 

After 6 hours the plate was removed and 10l samples were removed and 

harvested by centrifugation, prior to re-suspension in 1 x PBS (Sigma). 

Microscope slides were prepared by addition of 2 l of sample to a 1% agarose 

pad (Levin, 2002a) and heat fixing for Fluorescent Microscopy. Images were 

captured using a Lecia DMRB microscope with Aqua EXI bioimaging camera 

(Qimiaging).and processed using Image pro plus software (MediaCybernetics). 

2.8 Statistics 

All statistical analyses used in this study were performed using Minitab (Minitab 

Inc).  Before the selection of statistical analysis methods, data was assessed for 

normality using a Kolomogorov-Smirnov test prior to the use of parametric tests 
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(T-test). Where data did not confirm to a normal distribution non-parametric 

statistical analyses (Mann-Whitney U test) were undertaken. 
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Chapter 3 Results 

3.1 Evaluation of gene silencing of fusA and rplE 

3.1.1 Specificity of expressed antisense RNA constructs 

The assessment of essential gene stringency requires exclusive silencing of a 

target gene, to generate a reduction in growth rate. Determining the specificity 

of expressed antisense RNA sequences is therefore necessary to ensure no 

additional genes are inadvertently targeted. Antisense sequences of 

approximately 101-152 nucleotides complementary to the ribosome binding 

region of mRNA for essential genes fusA and rplE, were cloned into a paired 

termini antisense expression vector (pHN678) (Nakashima et al., 2006) and 

transfected into E.coli (TOP10) to create strains Ash01, and Ash02 (see 

methods section 2.1.5-2.18). The growth rate of each strain was titrated down 

using a range of IPTG concentrations to induce increased expression of 

antisense RNA. The growth rates of silenced clones were measured relative to 

uninduced controls to obtain relative growth rate (see methods section: 2.2).  

Both antisense RNA expression constructs demonstrated significant growth 

inhibition of E.coli (2 sample T-test n =3 P <0.005), compared to controls 

containing empty constructs (Figure 3.1). Greater silencing efficiency was 

displayed for rplE, as evident from the early decrease in the relative growth rate 

compared to fusA. The specificity of both fusA and rplE constructs were 

compared to expressed antisense RNA constructs targeting essential genes 

acpP, ftsZ, fabI and murA (Goh et al., 2009). The relative growth rates of acpP, 

ftsZ, fabI and murA (Figure 3.2) were comparable to those obtained previously. 

However a greater level of silencing efficiency was demonstrated for  fusA and 

rplE  over a low IPTG induction range, with growth inhibition occurring at  20-25 

µM compared to acpP (80 µM), ftsZ (60 µM), fabI (70 µM), and murA (50 µM). 

Antisense RNA expression constructs for fusA and rplE demonstrate the 

capacity to reduce bacterial growth, which suggests specificity for their 

respective essential gene targets in E.coli.  
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Figure 3.1 Relative growth rate of E.coli following expressed antisense RNA silencing of 

essential gene targets fusA and rplE.  

Growth rate titration was achieved by induction with increasing concentrations of IPTG to 

increase the expression of antisense RNA and measuring OD550. Raw OD550 data 

corresponding to the exponential phase of growth was plotted and a trendline applied to obtain 

the rate of growth from the straight line equation y = mx + c. Relative growth rate was 

determined by normalising the growth rate of induced samples to uninduced controls. Graph 

shows average relative growth rate with standard error bars (n=3). 
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Figure 3.2 Relative growth rates of E.coli following expressed antisense RNA silencing of 

essential gene targets acpP, ftsZ, fabI, and murA.  

Growth rate titration was achieved by induction with increasing concentrations of IPTG to 

increase the expression of antisense RNA and measuring OD550. Raw OD550 data 

corresponding to the exponential phase of growth was plotted and a trendline applied to obtain 

the rate of growth from the straight line equation y = mx + c. Relative growth rate was 

determined by normalising the growth rate of induced samples to uninduced controls. Graph 

shows average relative growth rate with standard error bars (n=3). 
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3.1.2 Validation of antisense construct specificity by 

transcomplementation 

The validation of target specificity of expressed antisense RNA constructs was 

attempted using a transcomplementation strategy. This approach aims to 

rescue cells from growth inhibition induced by antisense RNA silencing, through 

over-expression of the complete open reading frame (ORF) for each target 

gene from a separate plasmid. Target specificity can then be confirmed 

following the rescue of clones from growth inhibition and restoration of normal 

growth. The entire ORF’s for fusA and rplE were cloned into pBAD-HisA 

containing an L-arabinose inducible promoter to generate strains E.coli Ash03 

and Ash04 (see methods section 2.1.1-2.1.9). The rescue constructs were 

extracted and transfected with their corresponding expressed antisense RNA 

constructs to create E.coli strains, Ash05 and Ash06 respectively.  Strains was 

grown in the presence of IPTG and L-arabinose  to induce expression of both 

antisense  RNA and corresponding episomal copy of the target genes, to 

determine appropriate levels of induction required to demonstrate rescue of 

growth rate (see methods section 2.3).  

Growth inhibition of E.coli, following expressed antisense RNA silencing of rplE 

at 25 µM IPTG, was prevented following gene complementation using 2% L-

arabinose (Figure 3.3). However this was deemed statistically insignificant 

(Mann Whitney, P=0.104, n=7). Difficulties were encountered with the 

transcomplementation of fusA, for which suitable levels of induction for 

expressed antisense RNA and gene overexpression could not be determined. 

Subsequently no significant rescue of growth rate following silencing of fusA 

(Mann Whitney, P=0.734, n=7) was observed with L-arabinose induction (Figure 

3.5). To investigate the potential influence of metabolic load associated with 

expression of two plasmids, strain Ash07 containing empty expression vectors, 

was examined using identical rescue conditions for both rplE (Figure 3.4) and 

fusA (Figure 3.6). Induction with IPTG and L-Arabinose concentrations did not 

significantly affect the growth rate of E.coli using the same rescue conditions for 

rplE (Mann Whitney, P=0.610, n=7) or fusA (Mann Whitney, P=0.710, n=7). 

Higher OD550 readings were observed in the control strains. In summary using 

transcomplementation validated target specificity of rplE but not for fusA. 
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Figure 3.3 Transcomplementation of expressed antisense RNA silencing effects of the 

essential gene rplE in E.coli.  

Growth rate of E.coli strain Ash05 following rplE over-expression, induced with 2% L-arabinose. 

Antisense RNA expression was induced with 25 µM IPTG. Graph shows bacterial growth curves 

derived from average OD550 readings with standard error bars (n=3). 
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Figure 3.4 Transcomplementation control mimicking the expression conditions used for 

the rescue of rplE.  

Expression of E.coli strain Ash07 was induced with 25 µM IPTG and 2% L-arabinose as used in 

the rescue of E.coli strain Ash05. Graph shows bacterial growth curves derived from average 

OD550 readings with standard error bars (n=3). 
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Figure 3.5 Transcomplementation of expressed antisense RNA silencing effects of the 

essential gene fusA in E.coli.  

Growth rate of E.coli strain Ash06 following fusA over-expression, induced with 0.001% L-

arabinose. Antisense RNA expression was induced with 25 µM IPTG.  Graph shows bacterial 

growth curves derived from average OD550 readings with standard error bars (n=3). 
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Figure 3.6  Transcomplementation control mimicking the expression conditions used for 

the rescue of fusA.  

Expression of E.coli strain Ash07 was induced with 25 µM IPTG and0.001% L-arabinose as 

used in the rescue of E.coli strain Ash06. Graph shows bacterial growth curves derived from 

average OD550 readings with standard error bars (n=3). 
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3.1.3 Delineating inhibitory effects caused by gene silencing of fusA and 

rplE 

To ascertain whether the effects of expressed antisense RNA silencing of fusA 

and rplE promoted a bactericidal or bacteriostatic effect on cell growth, a 

survival assay was performed (see methods section 2.4). Silencing of fusA and 

rplE was induced using 50 µM IPTG with viable cell counts performed over 8 

hours. Prior to the assay, It was postulated that silencing of fusA would cause a 

bacteriostatic effect on cell growth, in accordance with inhibitory effects 

observed in S.aureus by the target specific antibiotic fusidic acid (Howden and 

Grayson, 2006). Similarly silencing of rplE was also expected to cause a 

bacteriostatic effect, based upon the inhibitory action exerted by the majority of 

antibiotic classes that target the ribosome, with the exception of 

aminoglycosides (Kohanski et al., 2010).  

Both fusA and rplE silenced strains exhibited significant growth inhibition rather 

then cell death following gene silencing. A significant reduction in viable cell 

numbers was observed upon silencing for both fusA (Mann Whitney U Test, 

P=0.0118, n= 9) and rplE (Mann Whitney U Test, P = 0.0009 n=9). In the case 

of rplE (Figure 3.7) the viable number of cells initially decreased prior to 

increasing after 8 hours. For fusA (Figure 3.8) the number of viable cells 

remained relatively static throughout the 8 hour growth period. The growth 

effects of gene silencing of both rplE and fusA were determined to be 

bacteriostatic, since cell number decline was below the >3 log reduction of the 

final inoculum required for the demonstration of bactericidal activity. One 

particular observation was that growth curves generated for uninduced 

antisense RNA expression of fusA and rplE displayed an exponential increase 

with a plateau at approximately 4 hours. This anomaly was not observed with 

both the uninduced and induced control plasmid, where no difference in viable 

cell count was observed (Figure 3.9), following induction (Mann Whitney U Test, 

P=0.8946, n= 9)  
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Figure 3.7 Delineation of growth effects following expressed RNA silencing of the 

essential gene rplE in E.coli.  

Antisense RNA expression was induced using 50 µM IPTG E.coli strain Ash01 and viable cell 

counts were performed over 8 hours. Graph shows average viable cell count with standard error 

bars (n=3).  
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Figure 3.8 Delineation of growth effects following silencing of the essential gene fusA in 

E.coli.  

Antisense RNA expression was induced in E.coli strain Ash02 using 50 µM IPTG and viable cell 

counts were performed over 8 hours. Graph shows average viable cell count with standard error 

bars (n=3).  
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Figure 3.9 Viable cell counts of E.coli expressing empty pHN678 construct.  

As per previous experimental conditions 50 µM IPTG was used to induce expression of empty 

antisense expression plasmid in E.coli strain Ash03 and viable cell counts were performed over 

8 hours. Graph shows average viable cell count with standard error bars (n=3). 
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3.1.4 Evaluation of gene stringency of fusA and rplE using Mean 

Transcript Level 50 (MTL50) 

To enable comparisons of stringency among essential genes, a Mean 

Transcript Level (MTL50) value, representing the amount of mRNA required to 

maintain 50% of relative growth has been proposed, which reflects the 

relationship between transcript abundance and growth rate decline. (Goh et al., 

2009). The MTL50 of rplE and fusA was initially evaluated by performing a 

titration of growth rates of E.coli strains Ash01 and Ash02, using increasing 

concentrations of IPTG, to promote expressed antisense RNA expression and 

measuring the corresponding mRNA abundance by performing relative 

quantification with QPCR, (see methods section 2.5). Examination of the 

relative growth rate and corresponding mRNA abundance for rplE and fusA 

(Figure 3.10 and Figure 3.11 respectively), reveals an increase in mRNA 

abundance with relative growth rate decline. This is contrary to the expectation 

that mRNA abundance would decline with relative growth rate, due to antisense 

mediated degradation of mRNA transcripts. 

A reduction in growth rate was observed following silencing of rplE yet mRNA 

abundance initially decreased then remained stable, prior to an increase in 

abundance at the lowest relative growth rate. Silencing of fusA, caused the 

relative growth rate and mRNA abundance to initially decline, followed by a 

large increase in mRNA abundance at the lowest relative growth rate. No 

significant correlation between relative growth rate decline and mRNA 

abundance, following silencing for either rplE (rs= -0.02) or fusA (rs = -0.6) was 

observed.  

To compare the stringency of rplE and fusA against previously validated targets, 

the MTL50 value was determined by plotting relative growth rate against relative 

mRNA abundance (Figure 3.12 and Figure 3.13 respectively). The MTL50 

reveals an inverse trend to previously investigated gene targets, whereby 

mRNA abundance increases as relative growth rate declines. The number of 

rplE transcripts required to maintain 50% cell viability increases to 

approximately 2.4 relative value (or 240% of a normal cell growth). For fusA the 

50% decrease in growth rate was not achieved, but indicates that a large 

number of transcripts are present, approximately 1.5 relative value (or 150% of 

a normal cell growth). 
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Figure 3.10 Relative growth rate and mRNA abundance profiles following expressed 

antisense RNA silencing of the essential gene rplE in E.coli.  

Transcript and relative growth rate profile for E.coli strain Ash01. Total RNA was isolated from 

cultures, which were harvested once the OD550 of the uninduced control had reached 0.1. 

mRNA abundance was determined by QPCR using E.coli genes 16S and ZipA as endogenous 

references for relative quantification by DDCt method. Graph shows average relative growth rate 

and average relative mRNA abundance with standard error bars (n=3). 
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Figure 3.11 Relative growth rate and mRNA abundance profiles following expressed 

antisense RNA silencing of the essential gene fusA in E.coli.  

Transcript and relative growth rate profile for E.coli strain Ash02. Total RNA was isolated from 

cultures, which were harvested once the OD550 of the uninduced control had reached 0.1. 

mRNA abundance was determined by QPCR using E.coli genes 16S and ZipA as endogenous 

references for relative quantification by DDCt method Graph shows average relative growth rate 

and average relative mRNA abundance with standard error bars (n=3). 
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Figure 3.12 MTL50 for essential gene rplE.  

The MTL50 was calculated by plotting the mean relative mRNA abundance against its 

corresponding mean relative growth rate. This enables stringency of essential genes to be 

determined by examining the number of transcripts required to maintain 50% relative growth 

rate. 
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Figure 3.13 MTL50 for essential gene fusA.  

The MTL50 was calculated by plotting the mean relative mRNA abundance against its 

corresponding mean relative growth rate. This enables stringency of essential genes to be 

determined by examining the number of transcripts required to maintain 50% relative growth 

rate. 

  



   

88 

3.2 Development of LC-MS/MS protein quantification method 

3.2.1 15N labelled protein internal standard preparation for LC-MS/MS 

The evaluation of stringency in essential gene targets fusA and rplE in this 

study, suggests that mRNA may be limited as a surrogate for expressed 

protein, and therefore inappropriate as a measure of gene essentiality.  Indeed 

correlations between mRNA and protein abundance are known to vary widely, 

due to numerous post-transcriptional and post-translational mechanisms that 

operate within prokaryotes (Maier et al., 2009). 

To circumvent the use of mRNA for determining essential gene stringency, an 

LC-MS/MS assay was developed to provide absolute quantification of target 

protein, following expressed antisense RNA silencing. Development of the 

assay required the synthesis of a heavy labelled (15N) target protein for use as 

an internal standard. The use of a fully labelled protein enables an initial LC-

MS/MS analysis to identify the most suitable tryptic peptides, possessing the 

same physiochemical properties as their native equivalent, but distinguishable 

by mass difference for the purpose of quantifying protein in experimental 

samples. The essential genes fabI and murA were selected as candidate 

targets for use as internal standards, due to their extensive characterization and 

previous evaluation as stringently required genes (Goh et al., 2009).  

As an alternative to commercially synthesized heavy labelled peptides, fully 15N 

labelled proteins were generated from E.coli MG1 AE5305 obtained from the 

ASKA collection (Kitagawa et al., 2005a).  Using a complete stable isotope 

labelled form enabled correction for variability in the analytical workflow, and 

has been show to be preferable choice compared to other forms of internal 

standard (Bronsema, 2013). Candidate proteins were overexpressed in minimal 

media containing 15N labelled NH4 as the sole nitrogen source (see methods 

section 2.6.1), extracted from whole cell E.coli lysate by Immobilised metal 

affinity chromatography (see methods section 2.6.2) and subject to acetone 

precipitation to remove contaminants (see methods section 2.6.4). Purified 15N 

labelled FabI and MurA (Figure 3.14) revealed both target proteins (27.9 and 

44.8 kDa respectively), in addition to high molecular weight contaminants. 

Contamination was more prevalent for MurA, which revealed numerous bands 

in the range of 100 – 130 kDa, including two low molecular weight bands in the 
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predicted range of MurA. Unlike FabI which resides in the cytosol, MurA is a 

membrane associated protein; therefore contaminating bands were likely to 

have been accessory proteins that co-eluted. The identity of each protein was 

confirmed by LC-MS/MS (see results section 3.2.2). 

 

Figure 3.14 Purification of 
15

N labelled FabI and MurA protein from E.coli whole cell 

lysate.  

E.coli MG1 ME5305 overexpressing His-tagged FabI and MurA was grown in minimal media 

until mid log phase and then induced with 1 mM IPTG and grown over 24 hours prior to 

harvesting. Extracted protein was eluted from a nickel column over an imidazole gradient 

generating 10 eluted fractions. A protein ladder (first lane) was used to confirm approximate 

protein size. 
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Both FabI and MurA protein elutes were subsequently concentrated and purified 

further using Amicon filters with appropriate molecular weight ranges. However 

SDS-PAGE of filtered protein revealed the presence of warped bands indicative 

of high salt concentration (Figure 3.15 A), that could detrimentally effect 

electrospray ionization efficiency. Both proteins were therefore subjected to an 

additional purification step using acetone precipitation (Figure 3.15 B), which 

subsequently removed contaminants. Following purification, the yield of FabI 

and MurA appeared to be reduced. This however was not deemed to affect the 

quantification strategy as both protein batches would be quantified 

independently using a standard curve, prior to use as internal standards (see 

methods section: 2.6.8). This would ensure known quantities of internal 

standard would be spiked into experimental samples. 
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Figure 3.15 Purification and concentration of 
15

N labelled FabI and MurA.  

(A) Contamination in 
15

N FabI and MurA, following initial clean-up after elution from IMAC. High 

molecular weight bands corresponding to co-eluted contaminants were observed for MurA (B) 

Acetone precipitation of 
15

N FabI and MurA, revealing the removal of contaminants. Purified 

protein was pooled and 10 µl aliquots were ran on a 15% polyacrylamide gel. A protein ladder 

(first lane) was used to confirm protein size. 
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3.2.2 Confirmation of complete 15N labelling of protein internal standards 

For reliable quantification, the heavy labelling of an internal protein standard 

requires complete and stable 15N incorporation to a level approaching  95 %, as 

a minimum for quantitative analysis (Huttlin et al., 2008). The use of 15N is 

particularly suited as a heavy label, since peptides contain fewer types of 

nitrogen compared to carbons. This has the effect of reducing the complexity of 

isotopic envelopes in 15N labelled peptides, which subsequently reduces the 

distribution of the m/z signal thereby increasing the signal to noise ratio. This 

subsequently increases confidence in identification and quantification   (Huttlin 

et al., 2008). Purified FabI and MurA samples were digested with trypsin and 

analysed by LC-MS/MS to determine the relative degree of 15N incorporation. 

The degree of 15N incorporation in FabI was assessed by submitting the raw 

LC-MS/MS  data to the  gpm (Global Protein Machine), a publically available 

system, comprising a data analysis server, user interface and a relational 

database, containing experimentally generated peptide mass data (Craig et al., 

2004). Within this system, raw tandem mass spectra is compared to spectra 

derived from the same peptide sequences using X! Tandem, a class B open 

source search engine.  An algorithm performs a two step calculation, initially a 

‘survey’ is performed whereby experimentally derived spectra are compared to 

the protein sequences, under the assumption that complete peptide cleavage 

occurs.  Peptides identified with statistically significant matches are then re-

matched taking into consideration potential chemical modifications (e.g.: 

oxidation).To ascertain the level of incorporation the gpm search was initially 

performed with the assumption of  no 15N incorporation (i.e. the search engine 

would only identify peptide sequences with spectra relating to native unlabelled 

protein sequences specific for FabI or MurA). The gpm search (Figure 3.16) did 

not match any spectra corresponding to native FabI or MurA, with spectra 

generated from 15N labelled internal standards, or any other E.coli proteins. The 

only positive identifications made were keratin and bovine trypsin, which 

represent typical contaminants arising from sample preparation. Due to financial 

constraints, a decision was made to proceed with developing an LC-MS/MS 

assay for fabI only. 
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Figure 3.16 GPM Results for unlabelled FabI and MurA.  

No hits for native (unlabelled) FabI and MurA were obtained when gpm search parameters were modified to assume the absence of 
15

N incorporation. This supports 

complete incorporation of 
15

N in both FabI and MurA. 
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The gpm search was repeated by altering the search parameters to 

accommodate for 15N incorporation (Figure 3.17) in peptides specific to FabI 

and MurA proteins. The probability of peptide identification was ranked 

according to a logE score, which represent the base -10 logarithm of the 

probability that a peptide identification is a random match. Log E scores of -

251.6 and -220.4 were obtained for MurA and FabI respectively, indicating that 

the chance of false positive identification is low (for reference a logE score of -3 

corresponds to 1 in 1000 chance). The logE scores for 15N labelled FabI and 

MurA correspond to approximately 1 in 1 x 102000 chances that identification has 

been made at random, which represents a statistically significant probability of 

identification. 

To provide direct evidence of complete 15N labelling, characteristic peptide 

sequences for FabI (ILVTGVASK and SMLNPGSALLTLSYLGAER) and MurA 

(MGAHAEIESNTVICHGVEK and LQGEVTISGAK), were selected to confirm 

the degree of 15N incorporation.  Incomplete labelling of each protein would be 

confirmed by the presence of mass spectra corresponding to unlabelled 

peptides.The mass spectrum for peptide ILVTGVASK (Figure 3.18) revealed an 

isotopic envelope corresponding to 15N labelled pseudo-molecular ion for the 

doubly charged peptide, with a m/z of 449.27 and no trace of the unlabelled 

native protein with a m/z of 444.27. The mass spectrum for 

SMLNPGSALLTLSYLGAER (Figure 3.19) also revealed a characteristic 

isotopic envelope corresponding to a 15N labelled pseudo-molecular 3+ ion for 

the doubly charged peptide, with a m/z of 677.9 and the absence of 

corresponding unlabelled peptide. For MurA the mass spectrum of 

MGAHAEIESNTVICHGVEK revealed the presence of a 15N labelled 

pseudomolecular  3+ ion with a m/z of 702.9  (Figure 3.20). The mass spectrum 

of LQGEVTISGAK (Figure 3.21) revealed the presence of a 15N labelled 

pseudomolecular 2+ ion with m/z of 558.2.  No unlabelled species were 

observed for either peptide. The absence of unlabelled species (14N) indicates 

that complete labelling (i.e. every 14N atom is replaced by 15N) was achieved, as 

expected in unicellular systems grown over eight generations (Snijders et al., 

2005).  The complete 15N incorporation of FabI and MurA validates their use as 

internal standards for absolute quantification of cellular protein, since the high 

level incorporation permits an optimal signal to noise ratio, which aids 

identification and permits accurate quantification. 
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Figure 3.17 GPM Results examining 
15

N Incorporation in FabI and MurA.  

The gpm search parameters were adjusted to assume complete 
15

N labelling of FabI and MurA, which revealed significant log (e) scores, indicating a significant 

probability that labelled protein internal standards were fully labelled.  
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Figure 3.18 Mass spectrum of tryptic peptide ILVTGVASK used for establishing the level of 
15

N incorporation in FabI.  

The red arrow indicates where a completely unlabelled (
14

N labelled) peptide would be observed for peptide ILVTGVASK. 
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Figure 3.19 Mass spectrum of tryptic peptide SMLNPGSALLTSYLGAER used for establishing the level of 
15

N incorporation in FabI.  

The red arrow indicates where a completely unlabelled (
14

N labelled) peptide would be observed for peptide SSMLNPGSALLTLSYLGAER.  
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Figure 3.20 Mass spectrum of tryptic peptide MGAHAEIESNTVICHGVEK used for establishing the level of 
15

N incorporation in MurA.  

The red arrow indicates where a completely unlabelled (
14

N labelled) peptide would be observed for peptide MGAHAEIESNTVICHGVEK. 
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Figure 3.21 Mass spectrum of tryptic peptide LQGEVTISGAK used for establishing the level of 
15

N incorporation in MurA.  

The red arrow indicates where a completely unlabelled (
14

N labelled) peptide would be observed for peptide LQGEVTISGAK. 
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3.2.3 Selection of peptides for quantification of protein internal standard 

by LC-MS/MS 

The strategy for evaluating essential gene stringency in this study incorporates 

the use of absolute quantification of cellular protein using LC-MS/MS. 

Quantification is achieved by comparing the ratio of peak areas of extracted ion 

chromatograms for native peptide to an internal standard of known amount. It is 

critical that tryptic peptides representative of both labelled and unlabelled 

protein generate an equivalent response during electrospray ionization. Ideally 

heavy labelled and native peptides should be equivalent in elution times, 

generate characteristic spectra and be consistently detected in both 15N labelled 

and unlabelled forms over orders of magnitude. Furthermore, the detection of 

peptides should be resilient to potential effects arising from the sample matrix. A 

key requirement of LC-MS/MS method validation is therefore to assess for 

matrix effects that can alter the instrument response through the suppression or 

enhancement of electrospray ionization. Such effects are associated with 

endogenous components of sample (biological) matrices that co-elute and 

compete with peptides or interfere with ionization, specifically the efficiency of 

droplet formation (Van Eeckhaut et al., 2009).  

To evaluate any potential matrix effects associated with whole cell E.coli lysate, 

a post-extraction spike method was employed (see methods section 2.6.7). A 

known volume of internal standard was spiked prior to in-gel digestion with 

trypsin into replicate samples of cell lysate. The cell lysate originated from E.coli 

silenced for fabI expression to achieve a titration of relative growth rate. 

Induction concentrations of IPTG were examined and chosen to achieve an 

approximate 25%, 50% and 75% reduction in the relative growth rate.  LC-

MS/MS analysis identified 30 tryptic peptide sequences indicative of FabI, which 

were evaluated according to established criteria (Han and Higgs, 2008). 

Suitable peptides were selected based on optimal length, (7-30 residues), lack 

of extreme hydrophillic or hydrophobic regions and absence of residues 

susceptible to chemical modification, that could alter m/z values thereby 

complicating identification and quantification. Peptide sequences containing 

specific residues were avoided particularly those containing methionine (subject 

to oxidation), asparagine (can be glycooslytaed or deaminated), glycine or 

glutamic acid (undergo cyclization to pyroglutamic acid), or peptides with 
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internal trypsin cleavage sites. The absolute areas of extracted ion 

chromatogram peaks for selected peptides, identified in both 15N labelled and 

unlabelled FabI, were determined and converted to a Light/Heavy ratio. An 

arbitrary cut-off value of 0.15 was used to identify peptides displaying the lowest 

L/H ratio (approximately 1:1). Four candidate peptides were subsequently 

determined as suitable for quantification standards that could be used to 

quantitate the FabI Internal standard (Figure 3.22). 
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Figure 3.22 Tryptic peptides identified for the quantification of FabI internal standard.  

The Light/Heavy ratio for four tryptic peptides specific to FabI were generated from extracted ion 

chromatograms and plotted against the relative growth rate of E.coli, which was titrated using 

different concentrations of IPTG to achieve increased antisense RNA silencing of fabI. Graphs 

show average peptide L/H ratio with standard error bars (n=3). Peptide VNAISAGPIR was 

discounted from analysis due to substantial variability in the L/H peptide ratio obtained for 50 % 

relative growth rate  
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For quantitation of the 15N labelled internal standard, two tryptic peptides 

EGAELAFTYQNDK and ILVTGVASK were selected due to their similarity in L/H 

ratio’s across all relative growth conditions. Significant variation was displayed 

for VNAISAGPIR at 50% relative growth, hence it was discarded from selection 

with ASLEANVR.   

In order to provide accurate quantitation of the FabI internal standard, the mass 

spectra and elution characteristics for respective peptide ions was determined. 

Since these characteristics are specific to each peptide ion, they can be used to 

confirm that extracted ion chromatogram peaks are assigned to the correct 

peptide ion, which serves a proxy for both the internal standard and the protein 

under investigation. 

Evaluation of EGAELAFTYQNDK revealed spectra corresponding to both 

unlabelled and 15N labelled tryptic peptides (Figure 3.23 and Figure 3.24 

respectively). A pseudomolecular 2+ ion was identified with a m/z of 743.35 for 

the unlabelled peptide and 751.32 for the 15N labelled counterpart (Figure 3.25). 

Extracted chromatograms revealed an elution time of 16.85 minutes (Figure 

3.26 A and B). Similarly ILVTGVASK also revealed characteristic spectra for 

unlabelled and 15N labelled forms of the peptide (Figure 3.27 and Figure 3.28). 

The pseudomolecular 2+ ion was identified with a m/z of 444.28 and 449.27 for 

the unlabelled and 15N labelled counterpart respectively (Figure 3.29). Extracted 

ion chromatograms revealed a peptide elution time of approximately 15 minutes 

(Figure 3.30 A and B).  Due to the consistent detection of tryptic peptides 

EGAELAFTYQNDK  and ILVTGVASK in all relative growth conditions, both 

peptides were selected for incorporation as template profiles into LC-MS/MS 

data analysis software, for subsequent identification and quantitation of the 15N 

labelled FabI internal standard. 
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Figure 3.23 LC-MS/MS spectra for unlabelled EGAELAFTYQNDK.  

The spectra for peptide EGAELAFTYQNDK revealed eight individual m/z peaks that could be used to confirm identity of the native (
14

N) peptide. 
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Figure 3.24 LC-MS/MS spectra for 
15

N labelled peptide EGAELAFTYQNDK.  

The spectra for 
15

N labelled EGAELAFTYQNDK revealed eight individual m/z peaks that could be used to confirm identity. A noticeable shift in m/z values was 

observed compared  to the spectra for the native peptides. 
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Figure 3.25 LC-MS/MS characteristics of peptide EGAELAFTYQNDK.  

Zoomed MS spectra showing characteristic isotopic envelope of native and 
15

N labelled EGAELAFTYQNDK with m/z of 743.35 and 751.32 respectively. 
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Figure 3.26 LC-MS/MS characteristics of peptide EGAELAFTYQNDK.  

Extracted ion chromatogram of native (A) and 
15

N labelled (B) EGAELAFTYQNDK peptide with 

a co-elution time of 16.85 minutes. Relative abundance represents the ion intensity 
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Figure 3.27 LC-MS/MS spectra for unlabelled and 
15

N labelled peptide ILVTGVASK.  

The spectra for peptide ILVTGVASK revealed six individual m/z peaks that could be used to confirm identity of the heavy labelled peptide.  
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Figure 3.28 LC-MS/MS spectra for 
15

N labelled peptide ILVTGVASK.  

The spectra for peptide ILVTGVASK revealed seven individual m/z peaks that could be used to confirm identity of the heavy labelled peptide. A noticeable shift in 

m/z values is observed compared to spectra for corresponding unlabelled peptides. 
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Figure 3.29 LC-MS/MS characteristics of peptide ILVTGVASK.  

Zoomed MS spectra showing characteristic isotopic envelope of native and 
15

N labelled EGAELAFTYQNDK with  m/z of 444.28 and 449.27 respectively.  
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Figure 3.30 LC-MS/MS characteristics of peptide ILVTGVASK.  

Extracted ion chromatogram of native (A) and 
15

N labelled (B) peptide ILVTGVASK with a co-

elution time of approximately 15 minutes. 
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3.3 Quantification and assessment of gene stringency using protein 

abundance 

3.3.1 Quantification of 15N labelled FabI protein internal standard 

Prior to utilizing the 15N labelled fabI as an internal standard, quantification of 

the purified protein was performed using commercially synthesized (pre-

quantified) peptide analogues of EGAELAFTYQNDK and ILVTGVASK (see 

methods section 2.6.8). Both peptides were serially diluted to generate 

individual standard curves spanning 6 orders of magnitude, to enable 

extrapolation of the amount of internal standard. Serial dilutions of each peptide 

were spiked into trypsin digests containing a known volume of FabI internal 

standard and analysed by LC-MS/MS. 

Insufficient data was obtained for both peptides corresponding to spiked 

amounts in the lower range of the standard curve (0.5 and 5 fmol).  

Consequently standard curves were generated over 4 orders of magnitude (50 

– 50,000 fmol). Standard curves for EGAELAFTYQNDK and ILVTGVASK 

(Figure 3.31 A and B respectively), generated by linear regression displayed 

good correlation (r2 = 0.99). Using the linear regression equations y = 7x10-6x – 

765.71 and y = 4x10-6x + 113.66, the amount of internal standard was 

calculated as 675 pmol for EGAELAFTYQNDK and 4547 pmol for ILVTGVASK. 

The average amount of 15N FabI internal standard was subsequently calculated 

as 2.61 nmol 

.  
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Figure 3.31 Tryptic peptide standard curves for quantification of 
15

N FabI internal 

standard.  

(A) Standard curve for tryptic peptide EGAELAFTYQNDK. (B) Standard curve for tryptic peptide 

ILVTGVASK. Standard curves were constructed from 10-fold serial dilution of peptides ranging 

from 50-50,000 fmol. The average amount of 
15

N FabI was calculated using linear regression. 

Standard curves show average amount of peptide with standard error bars (n=3). 
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3.3.2 Quantification of FabI protein per cell following gene silencing of fabI 

in E.coli 

To evaluate the differential growth requirement of the essential gene fabI, the 

growth rate of E.coli strain As-fabI was titrated down using expressed antisense 

RNA silencing. Concentrations of IPTG (50, 55 and 65 µM) were used to 

achieve approximate growth reductions of 25%, 50% and 75% (see methods 

section: 2.6.5). For comparative purposes the amount of FabI synthesised 

following overexpression in E.coli MG1 ME5305 was investigated using IPTG 

induction at 0.5 and 1 mM.  

Transcript abundance was measured by QPCR and protein was quantified by 

LC-MS/MS. The peak area derived from extracted ion chromatograms for 

peptides EGAELAFTYQNDK and ILVTGVASK was used to generate ratios of 

unlabelled: 15N labelled peptide. The amount of protein was obtained by 

multiplying the calculated ratios for each peptide by the amount of internal 

standard spiked into tryptic digests. The calculated amount was converted to 

protein molecules by multiplying by Avogadro’s number and corrected for viable 

cell counts to provide an estimation of FabI molecules per cell (Figure 3.32).   

The number of FabI molecules per cell decreased with declining growth rate, 

following silencing of fabI. A 3-fold decrease in FabI molecules per cell was 

observed as the relative growth rate decreased to approximately 75% of normal 

growth. A smaller decrease in FabI molecules per cell (1.2 fold) was observed 

as the growth rate declined to approximately 50% of normal growth. A 2-fold 

decrease in FabI molecules per cell occurred as the relative growth rates 

dropped to approximately 25% of the normal growth rate.  

When overexpressed the amount of FabI per cell increased by approximately 

100-fold in comparison to both wild-type E.coli and uninduced controls (Figure 

3.33). The number of FabI molecules per cell increased slightly (1.2-fold) when 

the concentration of IPTG was doubled from 0.5 to 1 mM. Interestingly the 

number of FabI molecules per cell in the antisense control (uninduced) was 3.5-

fold higherthen wild-type E.coli and 5-fold higher when compared to the ASKA 

control (uninduced). Both wild-type E.coli and the ASKA control revealed a 

similar basal expression of FabI. 
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Figure 3.32 FabI protein molecules per cell following expressed antisense silencing of 

the cognate essential gene.  

IPTG induction was used to titrate down the relative growth rate of E.coli As-fabI to 

approximately 75% 50% and 25% of normal growth. Protein was measured by comparing the 

extracted Ion chromatogram peak areas of light and 
15

N labelled forms of tryptic peptides 

EGAELAFTYQNDK and ILVTGVASK. Protein amounts were corrected by viable cell counts. 

Graph shows average protein molecules per cell with standard error bars (n=3). 
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Figure 3.33 FabI protein molecules per cell in E.coli MG1 ME5305 and Wild-type E.coli. 

FabI overexpression was induced with 0.5 and 1 mM IPTG. Protein abundance was measured 

by comparing the extracted Ion chromatogram peak areas of light and 
15

N labelled forms of 

tryptic peptides EGAELAFTYQNDK and ILVTGVASK. Protein amounts were corrected by viable 

cell counts. Graph shows average protein molecules per cell with standard error bars (n=3). 
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Both mRNA and protein abundance following gene silencing of fabI was 

evaluated to identify any correlation between the decrease in either mRNA or 

protein, with the observed decline in relative growth rate (Figure 3.34). No 

significant correlation (Pearson product correlation, n = 4, P >0.05) was 

observed.  The abundance of fabI transcripts appeared to initially increase prior 

to a large spike at approximately 50% of normal relative growth rate, after which 

mRNA abundance declined. When evaluated over the induction range of IPTG, 

the decline in protein abundance followed the decrease in growth rate (Figure 

3.35), although again, no significant correlation was observed (Pearson product 

correlation, n = 4, P>0.05). The decline in relative growth rate and mRNA 

abundance also revealed no significant correlation (Pearson product correlation, 

n = 4, P>0.05) (Figure 3.36). 
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Figure 3.34 mRNA transcript and protein abundance in E.coli following expressed 

antisense RNA silencing of the essential gene fabI.  

Relative mRNA abundance and protein molecules per cell were plotted against corresponding 

relative growth rate. Pearson product correlation revealed no significant correlation (n = 4, 

P>0.05) between mRNA and protein abundance. Graph shows average protein molecules per 

cell and mRNA abundance with standard error bars (n=3). 
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Figure 3.35 Relative growth rate correlation with FabI molecules per cell following 

expressed antisense RNA silencing of the essential gene fabI in E.coli.  

Growth rate titration of E.coli strain As-fabI was achieved with increasing concentrations of IPTG 

(50, 55 and 65 µM). Pearson product correlation revealed no significant correlation (n = 4, 

P>0.05) revealed between FabI molecules per cell or relative growth rate decline.  Graph shows 

average protein molecules per cell plotted with average relative growth rate against IPTG 

induction with standard error bars (n=3). 
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Figure 3.36 Relative mRNA abundance correlation with FabI per cell following expressed 

antisense RNA silencing of the essential gene fabI in E.coli.  

Growth rate titration of E.coli strain As-fabI was achieved by induction with increasing 

concentrations of IPTG (50, 55 and 65 µM). No significant correlation was revealed between 

protein molecules per cell or growth rate decline. Pearson product correlation revealed no 

significant correlation (n = 4, P>0.05).  Graph shows average protein per cell plotted with 

average relative growth rate against IPTG induction with standard error bars (n=3). 
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3.3.3 MTL50 and MPL50 for evaluating stringency of the essential E.coli 

gene fabI 

In this study the stringency of the essential E.coli gene fabI has been assessed 

using the concept of an MTL50 value (Figure 3.37). An MTL50 of 5 relative value 

or 500% of normal growth was determined for fabI, suggesting a large number 

of mRNA transcripts are required to maintain cell viability, and thus provides a 

measure of how stringency required the gene is. 

An alternative measure to MTL50 values for determining gene stringency can be 

obtained by substituting relative mRNA abundance for protein molecules per 

cell.  Relative growth rate can then be expressed as a function of protein 

molecules per cell to create a Minimum Protein Level (MPL50), whereby the 

number of protein molecules required for maintaining cell viability at 50% growth 

can be estimated. Application of this measure to fabI reveals a MPL50 value of 

approximately 7.5 x 102 molecules per cell (Figure 3.38).   
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Figure 3.37 Determining MTL50 value for the essential gene fabI.  

Average relative mRNA was plotted against corresponding average relative growth rate to 

generate the MTL50. This enables an estimation of the amount of mRNA required at the point 

where growth is reduced by 50% (y=0.5). This value represents the MTL50 which serves as a 

measure of gene stringency. Due to the increase in relative mRNA abundance at approximately 

50% and 75% of normal growth rate, no linear relationship could be established; hence MTL50 

could not be estimated in this case. 
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Figure 3.38 Determining MPL50 value for the essential gene fabI.  

Average protein molecules per cell were plotted against corresponding average relative growth 

rate to generate the MPL50. The resulting curve enables an estimation of the protein required at 

the point where growth is reduced by 50% (y=0.5). This value represents the MPL50 which 

provides an alternative measure of essential gene stringency. 
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3.3.4 Antisense RNA based whole-cell screening assays using triclosan 

and phosphomycin 

In addition to identifying essential gene targets, MPL50 values could be utilised 

for the optimisation of antisense RNA based whole cell screening assays. 

Appropriate levels of IPTG induction for antisense RNA expression required to 

achieve a specific level of sensitivity could therefore be defined. This is 

considered critical requirement for assays when screening for low abundance 

natural products (Baltz, 2008).  

As the initial phase of this experiment, the level of antisense RNA expression 

required to achieve a decrease in the MIC of target specific antibiotics was 

investigated. Having found a level of IPTG induction required to decrease the 

MIC for example 2-fold, cellular protein would then be quantified using the 

quantitative LC-MS/MS protocol incorporating the FabI protein internal 

standrad. 

 The MIC of strains sensitized for FabI (Figure 3.39) and MurA (Figure 3.40) 

were determined by liquid growth assay (see methods section: 2.6.10). The 

FabI inhibitor triclosan and MurA inhibitor phosphomycin were used since both 

compounds directly inhibit their respective encoded targets. Sub-inhibitory 

concentrations of each antibiotic were used based on previously determined 

MIC’s for the susceptibility of wild-type E.coli to triclosan (Bailey et al., 2009) 

and phosphomycin (Takahata et al., 2010). 

Expressed RNA silencing of fabI, resulted in a significant difference between 

relative growth rates at each triclosan concentration (Kruskal-Wallis, H= 13.705, 

3 df, P<0.05). At the highest level of IPTG induction (110 µM) an approximate 7 

fold increase in triclosan sensitivity was observed. In the case of murA 

silencing, no significant difference was observed between relative growth rates 

at selected phosphomycin concentrations  (Kruskal-Wallis, H= 0.628, 3 df, 

P>0.05).  
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Figure 3.39 Triclosan sensitivity in E.coli following expressed antisense RNA silencing of 

fabI.  

IPTG was used to induce antisense RNA expression in order to sensitize E.coli As-fabI to sub-

inhibitory concentrations of triclosan at 0.0339, 0.0078 and 0.0156 µg/ml. This was intended 

demonstrate how MIC changes with increased gene silencing. Graph shows average relative 

growth rates with standard error bars (n=3). 
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Figure 3.40. Phosphomycin sensitivity in E.coli following expressed antisense RNA 

silencing of murA.  

IPTG was used to induce antisense RNA expression in order to sensitize E.coli As-murA to sub-

inhibitory concentrations of phosphomycin at 0.0156, 0.0313 and 0.0625 µg/ml. As with the 

assay for triclosan, this was intended demonstrate how MIC changes with increased gene 

silencing. Graph shows average relative growth rates with standard error bars (n=3). 
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3.4 Species-specificity of peptide-PNA conjugates 

3.4.1 Evaluation of PNA to discriminate between bacterial species in a 

mixed culture 

The capacity of peptide PNA conjugates to induce gene silencing has been 

assessed directly with expressed antisense RNA from plasmids and found to be 

highly comparable (Goh et al., 2009). In addition to defining gene stringency, 

the inherent stability of PNA’s in vivo has facilitated research into their 

development as species-specific antimicrobials, in an effort to address antibiotic 

resistance (Good and Stach, 2011). The use of MPL50 values could therefore be 

applied to in the context of PNA’s to ascertain sufficient dose concentrations 

required to achieve bactericidal activity. Indeed bactericidal activity has 

previously been demonstrated against individual gene targets in E.coli (Good et 

al., 2001b). To date however, the capacity for PNA’s to promote bactericidal 

activity in an individual species within a mixed culture has not been evaluated. 

To examine the discriminatory potential of PNA’s further, a bioinformatics 

approach (see methods section: 2.7.1), was employed to identify the +5 to -5 

translation initiation region (TIR) of essential genes conserved between 

S.typhimurium and E.coli.  A total of 93 orthologous genes were identified, 47 of 

which possessed TIR’s with >2 base-pair mismatches necessary for effective 

silencing (Dryselius et al., 2006a). The essential gene ftsZ was selected for 

further investigation. In the majority of prokaryotes ftsZ encodes an FTPase that 

functions as a cytoskeletal element, analogous to the mammalian homologue 

tubulin in the regulation of cytokinesis (Bi and Lutkenhaus, 1991; De Boer et al., 

1992). Following chromosome replication, FtsZ self-assembles into 

protofilaments that form a Z-ring structure via isodesmic mechanisms. Once 

assembled the Z-ring localizes to the interior of the cytoplasmic membrane at 

the midcell, where it is stabilised by FtsA and ZipA and recruits other cell 

division proteins in the formation of a division septum (Margolin, 2005).  

Mutations that reduce the expression of ftsZ cause a characteristic change in 

cell morphology, whereby highly elongated cells are formed (Bi and 

Lutkenhaus, 1992).  Therefore PNA inhibition of ftsZ would enable phenotypic 

differentiation between S.typhimurium, which would be expected to form 

elongated cells compared to E.coli, where normal cell size would be maintained 

thereby allowing microscopic observation of PNA specificity within a mixed 
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culture. To provide contrast, E.coli AC01 and S.typhimurium AC02 were 

transfected with L-arabinose inducible plasmids, expressing DS-red and Green 

Fluorescent Protein (GFP) respectively. Mixed cultures were prepared, induced 

with L-arabinose and treated with 1.25 µM of Peptide-PNA Se0002. Samples 

were taken after 6 hours incubation and viewed using fluorescent microscopy 

(Figure 3.41). The phenotype of E.coli AC01 treated with Se0002 was 

consistent with untreated controls, indicating the absence of gene silencing. In 

contrast S.typhimurium AC02 displayed cell elongation, indicating a failure in 

cellular division associated with the inhibition of ftsZ. These results demonstrate 

the capacity for PNA’s to discriminate between species in a mixed culture.   

 

Figure 3.41 Effects of species-specific PNA essential gene ftsZ on E.coli and 

S.typhimurium.  

Mixed cultures of E.coli AC01 expressing DS-Red and S.typhimurium AC02 expressing GFP 

were treated with 1.25 µM Peptide PNA Se0002 targeting ftsZ and observed with fluorescent 

microscopy after 6 hours incubation. A filamentous phenotype associated with ftsZ silencing 

was observed for S.typhimurium AC02, but not E.coli AC01. 
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Chapter 4 Discussion 

4.1 Introduction 

The threat of increasing antibiotic resistance has created an urgent requirement 

for the development of targeted screening strategies for identifying novel 

antibiotics. Critical for such assays is the identification of suitable molecular 

targets that sustain cellular growth.  Essential genes have previously been 

identified as potential candidates using various genetic strategies. However, 

only recently has a concerted effort been made to ascertain the minimally 

required amount of gene expression necessary to sustain bacterial growth. A 

differential growth requirement (stringency) has been observed among essential 

genes. To date stringency has been assessed using mRNA abundance to 

represent expressed protein, yet issues have been raised concerning the large 

variation in mRNA-protein correlations for many genes. The lack of correlation 

between mRNA and protein is attributed to distinct post-transcriptional and post 

translational processing mechanisms, but also gene stochasticity. This study 

aimed to evaluate the stringency of essential gene targets in E.coli; firstly by 

examining operon based targets fusA and rplE and secondly; developing an LC-

MS/MS strategy for measuring stringency at the protein level, using the 

essential gene fabI to validate the approach. 

4.2 Specificity of antisense constructs 

The concept of antisense RNA based regulation in prokaryotes has been 

adapted to provide practical tools for studying gene expression (Rasmussen et 

al., 2007). Typical strategies involve the plasmid based expression of natural 

RNA transcripts within cells. Gene silencing occurs through a trans-mechanism, 

whereby expressed antisense RNA hybridizes to cognate mRNA, inducing 

transcript degradation and steric hindrance, and subsequently reducing the 

amount of translated protein. Using this strategy  two essential gene targets in 

E.coli; fusA encoding elongation factor G (EF-G), a translational GTPase 

involved in protein synthesis (Rodnina et al., 1997) and rplE encoding the 5S 

rRNA  ribosome accessory protein L5 (Korepanov et al., 2007), in addition to 

previous gene targets fabI, murA, ftsZ and acpP, have been evaluated. Growth 

assays revealed that expressed antisense RNA silencing of both essential gene 

targets fusA and rplE, causes a significant decline in cell growth rate. Notably a 
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reduction in growth rate was achieved at lower levels of IPTG induction, in 

comparison to previously assessed essential genes (Goh et al., 2009).  

Experimental conditions may have exerted significant influence in this study  

since the specificity of fusA and rplE was examined using MH media compared 

to LB media used in the assessment of fabI, murA, ftsZ and acpP (Goh et al., 

2009). In LB media carbon sources are limited and promote a change in the 

physiological state of E.coli, which switches metabolism to utilize amino acids 

causing a diauxic growth profile (Sezonov et al., 2007). In comparison, the use 

of MH media may support a higher rate of growth and subsequent antisense 

expression, resulting in higher silencing efficiency. A comparison between fabI, 

murA, ftsZ and acpP grown in MH and LB media however, revealed similar 

growth profiles over the same induction range of IPTG. An additional source of 

variability may arise from exogenous small RNA’s present in complex growth 

media, that arise from either the environment or as a by-product of RNA 

biogenesis from cells grown in the media. It has been determined that the 

presence of such exogenous sRNA’s exerts a significant effect on protein 

profiles (Pavankumar et al., 2012). Whether the presence of such entities would 

significantly enhance or suppress the effects of expressed antisense silencing is 

unknown. To validate any potential effects of exogenous sRNA’s would require 

growth profile comparisons of each strain using media pre-treated with RNase 

to prevent extraneous interference, ideally supported by transcript analyses. 

With regards to the difference in growth rate to previously examined essential 

gene targets, It is more plausible that the low level of IPTG induction required 

for growth inhibition of fusA and rplE compared to acpP, ftsZ, fabI or murA, can 

be ascribed to antisense sequence design. Silencing efficiency is dependent 

upon mRNA turnover, efficiency of translation initiation and accessibility of the 

paired termini-antisense sequence to mRNA (Nakashima and Tamura, 2009). 

Such factors could be assessed using an array of bioinformatics frameworks 

that incorporate structural fluctuation and the transition state mRNA undergoes 

according to environmental conditions to predict silencing efficiency (Johnson 

and Srivastava, 2013). Critically a BLAST alignment of the fusA antisense 

sequence reveals an alignment with the 3’ translated region of rpsG, which 

encodes the 30S ribosomal subunit protein S7. Similarly the rplE antisense 

sequence is complementary to the 3’ translated region of the 50S ribosomal 
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subunit protein L24. Conseqently off target effects may have occurred, resulting 

in reduced transcription of rpsG and rplX.  

Despite the significant growth inhibition which indicated a high degree of 

specificity for fusA and rplE paired constructs, speculation regarding gene 

stringency should be avoided in the absence of transcript or protein data. 

 

4.3 Validation of fusA and rplE expressed antisense RNA specificity 

Transcomplementation strategies are an established method to validate target 

specificity and mechanisms of action in gene silencing studies, since the 

expression of a complete ORF accounts for all transcript variations (Goh et al., 

2009). Although the specificity of rplE could be validated by 

transcomplementation, cell growth in fusA silenced E.coli could not be rescued. 

Currently no published data exists regarding the transcomplementation of either 

rplE of fusA in E.coli, following expressed antisense silencing. However 

transcomplementation has been used successfully to validate the specificity of 

expressed antisense RNA constructs for acpP, ftsZ, fabI and murA (Goh et al., 

2009).  

The overexpression of fusA appeared to contribute towards further growth 

reduction with increasing concentrations of L-arabinose. Furthermore, growth 

curves exhibited an extended lag phase in addition to a final cell density that 

was considerably lower compared to rplE. The absence of rescue may reflect a 

number of phenomena associated with gratuitous protein expression. The 

overexpression of certain genes is known to be toxic and detrimentally affects 

the growth rate of E.coli, due to a decrease in protein synthesis and 

accumulation of heat shock proteins (Dong et al., 1995). In addition the 

perturbation of normal cellular protein concentrations can disrupt the 

homeostasis of protein-protein interactions, thereby altering the rate of protein 

degradation and post–translational modification. Consequently protein half-life 

can be extended culminating in an accumulation of extraneous protein, which 

localizes at critical intracellular sites and disturbs normal cell functions (Koller et 

al., 2000). Excessive protein expression can induce an internal starvation 

response, resulting in a depletion of nutrients which through an unknown 
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mechanism,  initiates the destruction of rRNA and ribosomes, thereby reducing 

cellular capacity for protein synthesis (Kurland and Dong, 1996). The 

breakdown of rRNA also increases competition between the mRNA species of 

clones and native proteins for functional ribosomes, contributing towards further 

growth reduction (Dong et al., 1995). Although not examined further, 

microscopic examination of E.coli under these conditions would confirm if 

protein aggregation was occurring during transcomplementation of fusA. This 

would suggest if production was excessive and prompt the redesign of 

transcomplementation plasmid, possibly to incorporate a weaker promoter to 

reduce expression. 

Alternatively the reduced growth rate could be due to the metabolic burden 

associated with the simultaneous expression of plasmids with different selection 

markers. This state arises as a consequence of excess requirements for cell 

resources (energy and biosynthetic precursors), associated with the 

transcription and translation of encoded genes (Glick, 1995). Previous studies 

have reported growth defects arising from the expression of two strong 

promoter gene cassettes from multicopy plasmids that increase the metabolic 

burden on cells promoting plasmid loss (Anthony et al., 2009). Furthermore 

plasmid maintenance can alter the intracellular concentrations of cAMP-crP, 

disrupting the transcription of many host regulons (Diaz Ricci and Hernández, 

2000). However rplE did not reveal a similar trend using the same plasmids and 

selection marker genes, which suggests that fusA itself, may have been 

contributory factor in the failure to rescue cell growth.  

Although the fusA encoded protein functions as a translational GTPase in 

protein synthesis, a secondary role has been suggested as a molecular 

chaperone in facilitating the stabilization and folding of denatured proteins 

(Caldas et al., 2000). This purported role has been supported by increases 

amounts of FusA in response to exogenous stressors in E.coli (Han et al., 

2008). Consequently, the excess of FusA synthesized following induction may 

exceed a critical level required for protein synthesis.  Excess FusA may 

therefore have been available to function inappropriately as a chaperone and 

bind non-specifically with cytosol proteins to detrimental effect. This could be 

evaluated by examining cell lysate via SDS-PAGE or by using western blotting 

to detect increased levels of FusA. 
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The inability to validate antisense function by transcomplementation in the case 

of fusA may reflect a disruption in protein homeostasis, by altering protein-

protein interactions and stoichiometry. Such changes may promote the 

misfolding and aggregation of numerous cellular proteins and alteration in 

protein turnover. Where excessive synthesis occurs, chaperone proteins and 

proteases that constitute the intracellular quality control system can no longer 

compensate (Mogk et al., 2011) . Alternatively fusA expression for cell viability 

may be dependant upon a fine equilibrium between mRNA transcripts and 

translated protein. This could be attributed to the IPTG and L-arabinose based 

expression systems, which may lack the capacity to provide sufficiently refined 

induction ranges to maintain optimal expression. Indeed cross talk has been 

observed between PBad and PLac promoters through an undefined mechanism, 

which was found to be alleviated through directed evolution of the arabinose 

transcriptional activator AraC (Sung et al., 2007). Incidentally the detrimental 

effects on cellular growth observed from transcomplementation would suggest 

that fusA may be a stringently required target. Due to the discrepancies 

observed with transcomplementation however, in particular with fusA, this 

technique may be limited to the validation of expressed antisense specificity of 

individually transcribed genes. 

4.4 Growth inhibitory effects of silencing rplE and fusA in E.coli 

Essential gene targets that display bactericidal activity upon inhibition are 

desirable due to the reduced prospects of resistance developing and increased 

therapeutic efficacy (Stratton, 2003). Therefore characterizing the activity of 

molecular targets is a pre-requisite for the selection of suitable targets as part of 

antibiotic screening assay development. 

The inhibitory effects of silencing both fusA and rplE in this study were 

determined to be bacteriostatic, since viable cell counts did not show a 3 log 

reduction in cfu/ml, representing the benchmark for bactericidal activity. The 

bacteriostatic nature of fusA is supported by the documented activity of known 

inhibitors such as fusidic acid in sensitive E.coli strains (Harvey et al., 1966). To 

date there is no known antibiotic that specifically targets rplE, however, 

inhibition following the silencing of ribosomal genes rplJ and rpsL, (encoding 

50S ribosomal protein L10 and 30S ribosomal subunit protein S12 respectively) 

in M. smegmatis, have been characterized as bacteriostatic (Kaur et al., 2009). 
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Further support is evident in the mechanism of macrolide antibiotics, which are 

characteristically bacteriostatic and have a speculated capacity to interact with 

the L5 subunit (Schlünzen et al., 2003). Bacteriostatic inhibition arising from 

targeting of the ribosome has been linked to the inhibition of the in vitro folding 

capacity of the 23S rRNA, preventing the peptidyl transferase reaction rather 

then ribosome destruction (Chattopadhyay et al., 1996). This is especially 

prevalent with antibiotics that target the 50S subunit exclusively (Chattopadhyay 

et al., 1999), where the L5 ribosome protein encoded by rplE is assembled.  

Despite the specificity and rapid decline in growth rate observed following 

silencing of fusA and rplE, the experimental findings characterize both genes as 

bacteriostatic targets. Whether the use of expressed antisense provides an 

accurate characterization of target inhibition is unclear, since inhibition of the 

same gene targets by different entities can cause variable effects. In the case of 

antibiotics, chloramphenicol is bacteriostatic in E.coli, but bactericidal in 

H.influenza. Furthermore, the inhibitory effects of PNA’s on gene targets are 

bactericidal, despite bacteriostatic inhibition observed with target specific 

antibiotics. 

The bactericidal activity observed with ribosome targeting has been attributed to 

the mistranslation and misfolding of membrane proteins which initiates a stress 

response. Antibiotic induced conformational changes in the ribosome, causes 

tRNA mismatching resulting in mistranslated proteins, which are bound to 

chaperone proteins and directed towards the membrane. At this stage defective 

proteins undergo translocation across the inner membrane which activates the 

envelope two-component stress response sensor CpxA. CpxA phosphorylates 

CpxR which in turn activates the stress response proteins including the redox 

responsive two-component  transcription factor ArcA which upregulates both 

metabolic and respiratory systems leading to oxidative stress (Kohanski et al., 

2008). In contrast antisense mediated inhibition reduces target mRNA 

abundance through decay or steric hindrance, neither of which initiates a 

secondary pathway capable of initiating oxidative stress. Consequently the use 

of antisense silencing may not be predictive of the mode of action utilised by 

target specific inhibitors. Although the silencing of one essential gene may be 

insufficient to generate bactericidal activity, the silencing of two essential  genes 

simultaneously may prove synergistic. Dual silencing of the ackA-pta operon in 
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E.coli, demonstrated increased silencing compared to individual expression 

(Nakashima and Tamura, 2009). Therefore essential genes within the same 

operon may be assessed in tandem to determine if bactericidal activity is 

evident. 
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4.5 Evaluation of stringency in essential genes rplE and fusA 

Evaluating the stringency of essential genes supports gene characterization, 

network analyses and the identification of suitable molecular targets for 

antibiotic screening assays. This study has evaluated the stringency of essential 

genes rplE and fusA in E.coli, using expressed antisense RNA silencing to 

titrate down the growth rate and measure the associated transcript abundance. 

Gene silencing of both rplE and fusA although causing a significant decline in 

growth rate, failed to cause a significant decrease in mRNA abundance. In 

E.coli expressing antisense rplE, the transcript abundance initially increased 

upon induction and remained stable as relative growth rate decreased. 

Silencing of fusA revealed an initial decrease in mRNA abundance, prior to a 

large increase in mRNA at the lowest growth rate. The standard error for 

relative growth rate showed significant variation, especially for two data points 

in fusA. This may reflect variation in cDNA synthesis despite batch reactions 

being performed. These results contradict previous determinations of essential 

gene stringency for fabI, murA, acpP and ftsZ, where mRNA abundance 

decreased in parallel with growth rate (Goh et al., 2009).  

For direct comparisons of stringency with previously validated essential targets, 

MTL50 values were calculated. An inverse trend for both fusA and rplE was 

observed, whereby expressed antisense silencing causes an increase in 

transcription, resulting in higher target mRNA abundance. The transcript 

abundance required to maintain a 50% growth rate was higher then the level for 

normal growth rate. This finding initially suggests that rplE and fusA are not 

stringently required for cell viability.  However, the apparent increase and 

stability of mRNA abundance could be ascribed to partial degradation of mRNA, 

resulting in non-functional transcripts that were still viable templates for 

amplification during QPCR. If true, then a reduction in growth rate would be 

expected, while mRNA abundance remains high. The location of amplified 

regions used by primers in QPCR would likely play a significant role. If amplified 

regions were located at the 5’ end of the mRNA transcript, then the possibility of 

viable template persisting is likely, since enzyme mediated destruction of 

antisense bound transcripts occurs primarily from the 3’end (Condon, 2007). 

Unlike fusA and rplE, previously assessed essential genes were individually 

transcribed (Goh et al., 2009). In contrast both rplE and fusA are located within 
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ribosomal operons, which are subject to an autogenous feedback mechanism 

from genes encoding ribosomal subunit proteins (Yates et al., 1980). The spc 

operon encodes rplE in addition to nine other genes encoding sequential 

subunits; rplN (L14), rplX (L24),  rplE (L5),  rpsN (S14),  rpsH (S8),  rplF (L6),  

rplR (L18),  rpsE (S5),  rpmD (L30),  and rplO (L15),  (Cerretti et al., 1983). 

Within this operon the ribosomal protein S8, functions as a translational 

repressor (Dean et al., 1981a), through binding in proximity to the translation 

initiation region of rplE, inhibiting its translation and that of distal proteins. 

Additionally S8 also governs the expression of proximal proteins (L14 and L24) 

via a retro-regulation mechanism, involving exonuclease degradation following 

translation repression of L5 (Mattheakis et al., 1989). These regulatory 

mechanism may account for the discoordinate expression of mRNA, which has 

been observed following mutations in the start codon region of rplE, which 

reduce the synthesis of distal proteins 20-fold, yet exhibit little effect on mRNA 

synthesis. In addition overproduction of the S8 repressor causes a 3-fold 

reduction in protein synthesis, but not mRNA synthesis (Mattheakis and 

Nomura, 1988). A separate ribosomal operon str encodes both ribosomal 

protein subunits; rpsL (S12), rpsG (S7), elongation factors fusA (EF-G) and tufA 

(EF-Tu). Within this operon, S7 acts as a translational repressor and regulates 

the synthesis of EF-G and EF-Tu by translational coupling (Dean et al., 1981b), 

and S12 by retro regulation (Saito and Nomura, 1994).  

Unlike individual genes, the transcription of polycistronic mRNA and subsequent 

translation is discoordinated (Dryselius et al., 2006a).  Evidence For this 

phenomena is derived from a study of the lac operon in E.coli using targeted 

PNA’s to the structural genes lacZ, lacY and lac, which revealed a directed 

inhibitory effect. PNA mediated inhibition of lacZ reduces expression of 

downstream lacY and lacA, yet inhibition of lacY does not affect the expression 

of lacZ, only lacA (Dryselius et al., 2006a). A further discrepancy was observed 

with the number of lacZ transcripts that were 3-4 fold higher,  due to cleavage 

by RNaseE within an intergenic region between lacZ and lacY, resulting in 

increased stability of lacZ transcripts and decay of lacA (Li and Altman, 2004). 

The lack of decline in mRNA abundance observed following gene silencing of 

fusA and rplE, may reflect a disturbance in normal feedback regulation within 

each operon due to translational coupling of distal genes. For rplE in particular,  
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the regulation of r-protein expression is founded on the interaction between 

rRNA and mRNA, due to structural features that recognize homologous 

sequences. A single subunit can therefore coordinately regulate the synthesis of 

other subunits via translational feedback (Nomura et al., 1980). In the context of 

these results a reduction in rplE encoded L5 protein may alter the stoichiometry 

of ribosomal subunits, consequently reducing repressor mediated effects of the 

S8 regulatory protein. Parallel examination of both mRNA and protein 

abundance would aid in elucidating these effects. Indeed disproportionate 

reductions of mRNA and protein have been observed for genes within operons 

(Dryselius et al., 2006a).  

The lack of consistent mRNA decline with increased antisense RNA silencing 

may also reflect the inherent heterogeneous nature of isogenic (genetically 

identical) cell populations. Within these populations, sub-populations exist that 

exhibit variations in physiologically state, manifesting as in growth rate, cell age, 

metabolic state or stage in the cell cycle. These variations arise due to 

intracellular differences in resources and cell machinery, which are amplified by 

cellular cascade mechanisms (Lidstrom and Konopka, 2010). These differences 

underlie the phenomena of gene stochasticity (noise), whereby the expression 

of genes occurs at irregular intervals and in short burst of transcription and 

translation to generate variable numbers of proteins (McAdams and Arkin, 

1997). Early studies of gene stochasticity identifying key causes, which were 

attributed to Intrinsic noise; associated with the expression of a gene sequence, 

and  extrinsic noise arising from the interactions of other cellular components 

(Elowitz et al., 2002).From an evolutionary perspective, these stochastic events  

have been speculated to function as a survival strategy, that confers a selective 

advantage, by priming regulatory pathways for the onset of sudden 

environmental changes (Fraser and Kærn, 2009). Subsequent studies into gene 

stochasticity have lead to the development of fluorescent based techniques that 

permit the measurement of mRNA in individual bacterial cells (Golding et al., 

2005). Such techniques represent an alternative to QPCR and provide a more 

direct and visible means of quantifying transcript abundance. 

From an experimental perspective, the abnormally high MTL50 values could also 

reflect the narrow range of IPTG used to induce silencing. For fusA and rplE, 

this ranged from 5 – 25 µM in comparison to wider range of inducer 
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concentrations for fabI, murA, ftsZ, acpP (Goh et al., 2009). In retrospect, both 

rplE and fusA represent poor targets and highlight the limitations of assessing 

gene stringency based upon mRNA abundance, especially for gene targets 

encoded within operons with regulatory feedback mechanisms. 

Recently a method for evaluating operon genes in isolation was developed to 

address such discoordinate expression. A dynamic transcriptional control on/off 

switch was constructed using the Lambda repressor, which was inserted into 

the chromosomal position of the lac repressor. A plasmid expressing fusA under 

control of the lambda promoter was then used for constitutive expression. The 

addition of IPTG, subsequently enabled gene expression to be switched on and 

off (Min et al., 2012). In summary the determined MTL50 values for fusA and 

rplE suggest neither gene is stringently required for cell viability, based on the 

present definition.  

These results emphasize the complexities of evaluating operon based essential 

genes due to translation coupling and regulatory feedback mechanisms. 

Consequently the MTL50 value may be limited as a measure of gene stringency 

and supports the case for evaluating essential genes at the level of protein 

expression. 
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4.6 Evaluation of gene stringency in essential gene fabI by proteomics 

Previous measures of essential gene stringency have assumed that relative 

mRNA transcripts are directly related to the amount of translated protein. 

However a lack of correlation between mRNA and protein due to gene 

organization and regulatory mechanisms is well documented.  Consequently the 

direct measurement of expressed protein provides the most appropriate 

determination of cell physiology and therefore gene stringency. This study 

aimed to address the limitations of the MTL50 value used for measuring 

essential gene stringency. An LC-MS/MS assay was devised to quantify the 

abundance of fabI protein in E.coli in parallel with mRNA abundance, following 

expressed antisense RNA silencing.  

The LC-MS/MS assay revealed a significant decrease in the abundance of FabI 

following gene silencing; however no correlation with mRNA abundance was 

observed.  Indeed relative mRNA abundance increased when the relative 

growth rate reached 50% of normal growth. Although transcriptome and 

proteome analyses often reveal divergent profiles (Jayapal et al., 2008), the 

silencing of fabI in a previous study did show an overall decline in mRNA 

abundance with IPTG induction ranging from 20 to 80 µM. At induction 

concentrations above 80 µM however, mRNA abundance was seen to increase 

marginally (Goh et al., 2009). The lack of definitive decrease in mRNA 

abundance observed in this study may reflect the narrow range of IPTG 

concentrations used to induce antisense expression (50 – 65 µM). Over this 

range, decreases in mRNA abundance may be obscured by inherent noise 

associated with stochastic gene expression (Raj and van Oudenaarden, 2008). 

However the observed growth reduction suggests expressed antisense is 

functioning. As in the case of rplE and fusA, those transcripts detected in QPCR 

analyses may be non functional, yet provide viable templates for amplification, 

generating mRNA profiles. 

The disproportionate correlation between mRNA and protein abundance may 

also reflect the dynamic relationship between  their respective rates of synthesis 

and degradation (Vogel and Marcotte, 2012). The synthesis of  mRNA is 

dictated by factors that effect recruitment of RNA polymerase and associated 

transcription factors to the transcription start site, such as chromosome 

structure and promoter strength (Balleza et al., 2009). The stability of mRNA 



   

141 

transcripts is governed by RNaseE and the length of mRNA. Although mRNA 

turnover contributes to mRNA-protein correlation, the greatest influence is 

attributed to post-transcriptional and post-translational mechanisms that 

regulate protein turnover (Maier et al., 2009). The secondary structure of 

transcribed mRNA, strength of the Shine Dalgarno sequence, codon bias and 

ribosome density all contribute to translational efficiency (Maier et al., 2009). 

Following translation mRNA-protein ratios are influenced further by protein half-

life, which is dictated by protein stability and post-translational processes (Maier 

et al., 2009). Consequently examining mRNA and protein turnover may provide 

a more comprehensive assessment of gene stringency. Attempts at quantifying 

mRNA and protein turnover have been attempted in the minimal genome 

bacterium Mycoplasma pneumonia, where protein abundance ranged over 

three orders of magnitude (Maier et al., 2011). Furthermore the ratio of mRNA: 

protein varied during the growth phase and was highly uncorrelated for genes 

existing within operons. Notably, a higher correlation was observed if operons 

were short and genes were not situated at the 3’ end (Maier et al., 2011). 

However a global analysis of mRNA decay and abundance of 4288 predicted 

mRNA’s in E.coli, suggested that generalizations concerning the decay of 

transcripts was limited in applicability. This conclusion arose from the finding of 

an inverse relationship between transcript abundance and stability. A similar 

inverse trend was found following analysis in M.tuberculosis, where a global 

stabilization of transcripts was observed in response to cellular stress (Rustad 

et al., 2013). 

An alternative to the use of QPCR would be to employ RNA sequencing to 

quantitate expression of silenced genes. The approach utilizes deep 

sequencing technologies based on the conversion of mRNA to cDNA which is 

ligated to adapters and sequenced. RNA sequencing displays a high level of 

sensitivity and is not susceptible to background interference resulting in strong 

signal:noise ratios.  Furthermore, unlike QPCR RNA sequencing does not 

require normalization of data sets (Wang et al., 2009). The quantitative capacity 

of RNA sequencing has been demonstrated, and shows strong correlation with 

both QPCR (Nagalakshmi et al., 2008)  and label--free LC-MS/MS methods (Fu 

et al., 2009).  
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A comparison of FabI molecules per cell between E.coli As-fabI, AG1 ME5305 

and a wild-type control revealed a significant difference in protein abundance. 

The number of FabI molecules per cell was higher in the antisense control, 

which may be evidence of high basal promoter (Ptrc) activity associated with 

the paired termini vector in the absence of IPTG (Nakashima and Tamura, 

2009). To date limited published data exists regarding the protein abundance of 

fabI quantified using LC-MS/MS following antisense expressed silencing. In 

E.coli a value 12,500 FabI copies per cell has been determined (Ishihama et al., 

2008).  A basal expression level of 12,000 copies per cell has also been 

determined in S.aureus (Slater-Radosti et al., 2001).  These estimations are 

approximately 5-fold higher then this study’s observations in the E.coli As-fabI 

control (2561 FabI molecules per cell) and approximately 17 fold higher then the 

basal level observed in wild-type E.coli (718 FabI copies per cell). An accurate 

comparison is limited however, since abundance measurements in E.coli was 

determined using a linear ion trap rather then an orbitrap mass spectrometer, 

resulting in faster scan cycles and increased m/z range. The use of additional 

protein fractionation steps to increase identification coverage, in addition to the 

use of an emPAI approach for quantitative analysis (Ishihama et al., 2008), 

would also account for the variation observed with this study. With regards to 

S.aureus, genetic differences such as the presence of homologues and the 

semi-quantification of protein abundance using western blotting, also limit a 

direct comparison (Slater-Radosti et al., 2001). 

The quantfication of the 15N FabI internal standard revealed a significant 

difference in the fmol amount after extrapolation from independent standard 

curves generated for EGAELAFTYQNDK and ILVTGVASK. Experimental error 

is a feasible explanation due to the low volumes of standard spiked into pre-

trypsin digests. However, steps were introduced to limit potential inaccuracies, 

such as the preparation of serial dilutions at fixed ratio rather then fixed interval 

(Han and Higgs, 2008).  Further variation in the quantitative analysis may be 

accounted for by the effects of 15N incorporation. Absolute quantification using a 

15N labelled internal standard is reliant upon the isotope dilution principle. This 

concept is based on the assumption that physiochemical properties between 

light and heavy labelled peptides are equivalent. The concept  also assumes 

that the effects of isotope incorporation on protein structure and function are 
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negligible. This notion has been disputed following a recent study of 15N 

labelling on protein expression in E.coli. where incorporation of 15N was found to 

effect the expression of over 40 cytoplasmic proteins. Critically the proteins 

affected included key metabolic enzymes, which accounted for significantly 

reduced growth rates (Filiou et al., 2012). The direct incorporation of a heavy 

isotope may result in decreased enzyme function due to conformational 

changes in key residues such as the active site. It is known that 15N can alter 

structural integrity of proteins, through changes in peptide backbone torsion, 

side-chain orientation of residues and hydrogen bonding between neighbouring 

peptides (Xu and Case, 2002). This phenomenon has been validated by studies 

of copper metallothioneins in S.cerevisiae, which show aberrant spectroscopic 

profiles, indicating the distortion of normal protein architecture with 15N labelling 

(Hartmann et al., 2003). 

The incorporation effects of 15N may therefore influence the quantification 

process in particular the tryptic digestion step, as trypsin has been found to 

cleave light proteins at a faster rate compared to heavy labelled proteins 

(Konopka et al., 2012). False L\H ratios could therefore be generated 

compromising accurate quantification of protein abundance. Despite this risk, 

the effects of 15N incorporation have been limited to physiochemical properties 

of peptides, such as chromatographic retention time and found to exert no 

influence on quantification accuracy (Webhofer, 2013). Nonetheless, 

incorporatation effects on trypsin digestion should be evaluated as part of the 

LC-MS/MS validation. Ideally this would be incorporated as part of the internal 

standard validation process and would be evaluated by analysing  tryptic 

digests of equal quantities of 15N labelled and unlabelled FabI protein over 

varying incubation times. LC-MS/MS could then be used to examine the degree 

of variance in the L:H ratio, which would be expected to be equal if the effects of 

15N incorporation were negligible. 

The absence of correlation between transcripts and expressed FabI in E.coli as 

demonstrated in this study, highlight the limitations of using mRNA as a direct 

proxy for expressed protein. The obtained results demonstrate the capability of   

an LC-MS/MS strategy incorporating a fully 15N labelled internal standard, for 

measuring protein concentration per cell.  From the quantitative data, essential 

gene stringency has been established using the MPL50 value to define the 
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absolute growth requirement of the essential gene fabI. These findings 

therefore support the argument for quantifying expressed protein, which 

provides a more accurate reflection of essential gene stringency.  
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4.7 Species specificity of peptide-PNA conjugates in mixed bacterial 

cultures 

Alternative strategies for the treatment of bacterial infections have been 

pursued to address the limitations posed by the development of multiple 

antibiotic resistance mechanisms. Gene silencing using peptide-PNA 

conjugates demonstrates the potential to discriminate between gene 

sequences, since they can be designed to exploit the degeneracy of the genetic 

code, thereby allowing gene silencing to be used in a discriminatory capacity.. 

This study has examined this potential of peptide-PNA conjugates as a species-

specific antimicrobial, by designing a PNA sequence incorporating a 2 base-pair 

mismatch, to delineate the effects of silencing of the essential gene ftsZ in 

S.typhimurium and E.coli.  Treatment of mixed cultures with PNA revealed no 

effect on E.coli, however elongated cells of S.typhimurium were observed. This 

phenotype is consistent with mutations that reduce expression of ftsZ causing a 

characteristic change in cell morphology to form highly elongated cells (Bi and 

Lutkenhaus, 1992). Further validation is provided by similar results in previous 

silencing studies of ftsZ using peptide-PNA conjugates (Goh et al., 2009). The 

results confirm that a peptide-PNA conjugate with sequences incorporating a 2 

base-pair mismatch were sufficient to selectively bind to and inhibit translation 

of ftsZ thereby interrupting cell division causing cell elongation in S.typhimurium 

but not E.coli.  
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Chapter 5 Conclusion and Future Work 

The sustained threat of multiple antibiotic resistance has invoked interest in 

empirical target based screening assays, for the discovery of novel antibiotic 

compounds.  An integral component of target based strategies is the selection 

of an encoded molecular target, such as essential genes which provide suitable 

candidates. Defining essential genes has been previously founded on 

systematic gene deletion studies, where cessation of cell growth in the absence 

of a gene defines essentiality. The aim of this study was to expand on previous 

findings that a differential growth requirement or stringency exists among 

essential genes and is reflected in both the transcriptome and proteome profiles 

of E.coli, following gene silencing 

The unpredictable effects of silencing operon based genes presents a 

significant limitation with the antisense silencing strategy for evaluating gene 

stringency, as observed   in this study with divergent transcript and protein 

profiles. Consequently, alternative approaches have been sought to provide 

temporal gene regulation. The development of inducible protein degradation 

systems represents one such example. This strategy is founded upon adaptor 

mediated proteolysis, which regulates protein turnover in prokaryotes. The 

central  component is the  protease complex  ClpXP consisting of an ATPase 

(ClpP) and a peptidase (ClpX), which recognises and binds to unstructured 

peptide sequences at the N or C terminus of proteins that function as 

degradation tags (degrons) (Baker and Sauer, 2012). A known degron tag is the 

short peptide SsrA which is translated and added to incomplete proteins, 

following ribosome stalling, due to the absence of stop codons or premature 

transcription termination (Keiler et al., 1996). Adapting this process enabled an 

assessment of antibiotic inhibition required to inactivate encoded gene products 

(termed vulnerability) (Wei et al., 2011). In this study, phage homologous 

recombination was used to insert a sequence encoding a modified SsrA tag 

fused to a protecting peptide, into chromosome regions encoding individual 

antibiotic targets in M.smegmatis. A virus-specific protease targeting the 

protecting peptide was put under the control of a tetracycline promoter and also 

integrated. Expression of the viral protease removed the protecting peptide and 

exposed the SsrA tag to ClpXP mediated degradation of individual target 

proteins causing an increase in antibiotic sensitivity. This strategy also enabled 
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the differentiation between bactericidal and bacteriostatic antibiotic targets (Wei 

et al., 2011).  

More recently an alternative inducible protein degradation system has also been 

described in E.coli. Strains were constructed using homologous recombination 

to insert a proteolytic system consisting of a promoter (lac) driven ClpA gene for 

inducible degradation and constitutive promoter driven ubiquitin protease. A 

modified tryptophan promoter was combined with the trpR gene encoding 

tryphtophan repressor and replaced the tryphanonanse tnaA gene. The ORF for 

ubi4 (target for ubiquitin protease) was then inserted upstream of the target 

gene. This system enabled biphasic control of target protein and also 

delineation between bactericidal and bacteriostatic activity (Yoshida et al., 

2012).  

Unlike expressed antisense RNA silencing, inducible protein degradation 

systems are capable of maintaining basal expression levels, while avoiding 

directional effects associated with operon silencing, including the disruption of 

feedback regulation. Protein half-life can also be strictly regulated to prevent 

extraneous accumulation and potential toxicity.  The experimental approach in 

this study could therefore be improved by combining inducible protein 

degradation with a quantitative LC-MS/MS strategy, to provide a comprehensive 

determination of gene stringency.  

Whether using antisense RNA or protein degradation systems for studying gene 

stringency, consideration should be given towards the unknown consequences 

of silencing a single gene on the expression of other genes, either directly or 

through feedback regulation. Due to the lack of knowledge concerning how 

cellular pathways interact, a pre-requisite to determining gene stringency, would 

therefore be to validate the effects of silencing strategies on the global 

transcriptome and proteome of model organisms such as E.coli. 

An intended aim of evaluating essential gene stringency was to facilitate the 

pre-screening of genes to enable the prioritization of targets for natural product 

screening assays and for designing species specific PNA’s (Goh et al., 2009).  

Further applications have since become apparent in the emerging research field 

of synthetic biology, which aims to combine investigative biology techniques 

with engineering concepts such as standardization, decoupling and abstraction 
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(Endy, 2005). This multidisciplinary approach is envisaged to facilitate the 

rationale design and systematic construction of a library of compatible modular 

devices, which can be assembled to form functional metabolic pathways and 

networks.  This would support the elucidation of a minimal genome chassis, and 

ultimately the development of synthetic organisms (Purnick and Weiss, 2009).   

In order to facilitate the assembly of complex cell systems, there is a 

requirement for a library of characterized and standardized elements to enable 

interchangeability between modules (Güttinger, 2013). With regards to the 

construction of a minimal genome, a pre-requisite would be the characterization 

of minimal gene sets for cell viability. Previous efforts to define minimal genes 

have generated inconsistent results, due to inherent limitations in the 

experimental techniques used.  Transposon mutagenesis overestimates the 

number of essential genes by considering those that slow growth, but do not 

stop it as essential. Antisense RNA silencing is also limited to genes that can be 

inhibited by sufficiently expressed levels of antisense inhibitor and does account 

for redundant genes (Moya et al., 2009). Consequently misinterpretations arise 

as evident from genome reductions of up to 30% which do not decrease cell 

viability (Fehér et al., 2007), despite many deleted genes having previously 

been characterized as essential (Gerdes et al., 2003).  

Given these discrepancies, the evaluation of essential gene stringency would 

support characterization efforts and enable the creation of an essentiality 

threshold. Knowledge of stringently required genes would therefore minimise 

biological complexity through the removal of non-stringent genes from minimal 

gene sets, facilitating the construction of a minimal genome chassis and 

supporting the classification of modular functionality (Esvelt and Wang, 2013). 

Furthermore, essential gene stringency would aid the development of in silico 

modelling especially for metabolic reconstitutions (Chavali et al., 2012) and 

genome scale engineering (Esvelt and Wang, 2013). 

  



   

149 

References 

Aebersold, R. and Mann, M. (2003) 'Mass spectrometry-based proteomics', 

Nature, 422(6928), pp. 198-207. 

Akerley, B.J., Rubin, E.J., Camilli, A., Lampe, D.J., Robertson, H.M. and 

Mekalanos, J.J. (1998) 'Systematic identification of essential genes by in vitro 

mariner mutagenesis', Proceedings of the National Academy of Sciences of the 

United States of America, 95(15), pp. 8927-8932. 

Alekshun, M.N. and Levy, S.B. (2007) 'Molecular mechanisms of antibacterial 

multidrug resistance', Cell, 128(6), pp. 1037-50. 

Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J. and 

Handelsman, J. (2010) 'Call of the wild: antibiotic resistance genes in natural 

environments', Nat Rev Microbiol, 8(4), pp. 251-9. 

Almeida, R. and Allshire, R.C. (2005) 'RNA silencing and genome regulation', 

Trends in Cell Biology, 15(5), pp. 251-258. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) 'Basic 

local alignment search tool', Journal of Molecular Biology, 215(3), pp. 403-410. 

Ames, B.N. and Martin, R.G. (1964) 'BIOCHEMICAL ASPECTS OF 

GENETICS: THE OPERON', Annual review of biochemistry, 33, pp. 235-258. 

Andersson, D.I. and Hughes, D. (2010) 'Antibiotic resistance and its cost: is it 

possible to reverse resistance?', Nat Rev Microbiol, 8(4), pp. 260-71. 

Andersson, D.I. and Levin, B.R. (1999) 'The biological cost of antibiotic 

resistance', Current Opinion in Microbiology, 2(5), pp. 489-493. 

Andre, G., Even, S., Putzer, H., Burguiere, P., Croux, C., Danchin, A., Martin-

Verstraete, I. and Soutourina, O. (2008) 'S-box and T-box riboswitches and 

antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum', 

Nucleic Acids Res, 36(18), pp. 5955-69. 

Andrews, J.M. (2001) 'The development of the BSAC standardized method of 

disc diffusion testing', Journal of Antimicrobial Chemotherapy, 48, pp. 29-42. 

Andrews, J.M. (2009) BSAC Methods for Antimicrobial Susceptibility Testing. 

Available at: http://www.bsac.org.uk/_db/_documents/Version_8_-

_January_2009.pdf (Accessed: 17.06.2009). 



   

150 

Anthony, J.R., Anthony, L.C., Nowroozi, F., Kwon, G., Newman, J.D. and 

Keasling, J.D. (2009) 'Optimization of the mevalonate-based isoprenoid 

biosynthetic pathway in Escherichia coli for production of the anti-malarial drug 

precursor amorpha-4,11-diene', Metabolic Engineering, 11(1), pp. 13-19. 

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, 

K.A., Tomita, M., Wanner, B.L. and Mori, H. (2006) 'Construction of Escherichia 

coli K-12 in-frame, single-gene knockout mutants: the Keio collection', Mol Syst 

Biol, 2, p. 2006 0008. 

Badarinarayana, V., Estep, P.W., Shendure, J., Edwards, J., Tavazoie, S., Lam, 

F. and Church, G.M. (2001) 'Selection analyses of insertional mutants using 

subgenic-resolution arrays', Nature Biotechnology, 19(11), pp. 1060-1065. 

Baerenfaller, K., Grossmann, J., Grobei, M.A., Hull, R., Hirsch-Hoffmann, M., 

Yalovsky, S., Zimmermann, P., Grossniklaus, U., Gruissem, W. and Baginsky, 

S. (2008) 'Genome-scale proteomics reveals Arabidopsis thaliana gene models 

and proteome dynamics', Science, 320(5878), pp. 938-941. 

Bailey, A.M., Constantinidou, C., Ivens, A., Garvey, M.I., Webber, M.A., 

Coldham, N., Hobman, J.L., Wain, J., Woodward, M.J. and Piddock, L.J. (2009) 

'Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to 

triclosan induces a species-specific response, including drug detoxification', J 

Antimicrob Chemother, 64(5), pp. 973-85. 

Baker, T.A. and Sauer, R.T. (2012) 'ClpXP, an ATP-powered unfolding and 

protein-degradation machine', Biochimica et Biophysica Acta - Molecular Cell 

Research, 1823(1), pp. 15-28. 

Balleza, E., López-Bojorquez, L.N., Martínez-Antonio, A., Resendis-Antonio, O., 

Lozada-Chávez, I., Balderas-Martínez, Y.I., Encarnación, S. and Collado-Vides, 

J. (2009) 'Regulation by transcription factors in bacteria: Beyond description', 

FEMS Microbiology Reviews, 33(1), pp. 133-151. 

Baltz, R.H. (2007) 'Antimicrobials from actinomycetes: Back to the future', 

Microbe, 2(3), pp. 125-131. 

Baltz, R.H. (2008) 'Renaissance in antibacterial discovery from actinomycetes', 

Current Opinion in Pharmacology, 8(5), pp. 557-563. 



   

151 

Baltz, R.H. (2010) 'Streptomyces and Saccharopolyspora hosts for 

heterologous expression of secondary metabolite gene clusters', Journal of 

Industrial Microbiology and Biotechnology, 37(8), pp. 759-772. 

Bandow, J.E., Brotz, H., Leichert, L.I.O., Labischinski, H. and Hecker, M. (2003) 

'Proteomic Approach to Understanding Antibiotic Action', Antimicrobial Agents 

and Chemotherapy, 47(3), pp. 948-955. 

Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. and Kuster, B. (2007) 

'Quantitative mass spectrometry in proteomics: a critical review', Anal Bioanal 

Chem, 389(4), pp. 1017-31. 

Baulcombe, D. (2004) 'RNA silencing in plants', Nature, 431(7006), pp. 356-

363. 

Beck, M., Claassen, M. and Aebersold, R. (2011) 'Comprehensive proteomics', 

Current Opinion in Biotechnology, 22(1), pp. 3-8. 

Becker, D., Selbach, M., Rollenhagen, C., Ballmaier, M., Meyer, T.F., Mann, M. 

and Bumann, D. (2006) 'Robust Salmonella metabolism limits possibilities for 

new antimicrobials', Nature, 440(7082), pp. 303-7. 

Becker, G.W. (2008) 'Stable isotopic labeling of proteins for quantitative 

proteomic applications', Brief Funct Genomic Proteomic, 7(5), pp. 371-82. 

Belasco, J.G. (2010) 'All things must pass: contrasts and commonalities in 

eukaryotic and bacterial mRNA decay', Nat Rev Mol Cell Biol, 11(7), pp. 467-78. 

Beppu, T. (1992) 'Secondary metabolites as chemical signals for cellular 

differentiation', Gene, 115(1-2), pp. 159-165. 

Bérdy, J. (2005) 'Bioactive microbial metabolites: A personal view', Journal of 

Antibiotics, 58(1), pp. 1-26. 

Bergmann, S., Schümann, J., Scherlach, K., Lange, C., Brakhage, A.A. and 

Hertweck, C. (2007) 'Genomics-driven discovery of PKS-NRPS hybrid 

metabolites from Aspergillus nidulans', Nature Chemical Biology, 3(4), pp. 213-

217. 

Beveridge, T.J. (1999) 'Structures of gram-negative cell walls and their derived 

membrane vesicles', Journal of Bacteriology, 181(16), pp. 4725-4733. 

Bi, E. and Lutkenhaus, J. (1991) 'FtsZ ring structure associated with division in 

Escherichia coli', Nature, 354(6349), pp. 161-164. 



   

152 

Bi, E. and Lutkenhaus, J. (1992) 'Isolation and characterization of ftsZ alleles 

that affect septal morphology', Journal of Bacteriology, 174(16), pp. 5414-5423. 

Bi, J., Wang, H. and Xie, J. (2011) 'Comparative genomics of NAD(P) 

biosynthesis and novel antibiotic drug targets', J Cell Physiol, 226(2), pp. 331-

40. 

Black, M.T. and Hodgson, J. (2005) 'Novel target sites in bacteria for 

overcoming antibiotic resistance', Adv Drug Deliv Rev, 57(10), pp. 1528-38. 

Bode, H.B., Bethe, B., Höfs, R. and Zeeck, A. (2002) 'Big effects from small 

changes: Possible ways to explore nature's chemical diversity', ChemBioChem, 

3(7), pp. 619-627. 

Bondarenko, P.V., Chelius, D. and Shaler, T.A. (2002) 'Identification and 

relative quantitation of protein mixtures by enzymatic digestion followed by 

capillary reversed-phase liquid chromatography - Tandem mass spectrometry', 

Analytical Chemistry, 74(18), pp. 4741-4749. 

Bouvier, M. and Carpousis, A.J. (2011) 'A tale of two mRNA degradation 

pathways mediated by RNase E', Mol Microbiol, 82(6), pp. 1305-10. 

Brandt, O. and Hoheisel, J.D. (2004) 'Peptide nucleic acids on microarrays and 

other biosensors', Trends in Biotechnology, 22(12), pp. 617-622. 

Brantl, S. (2007) 'Regulatory mechanisms employed by cis-encoded antisense 

RNAs', Curr Opin Microbiol, 10(2), pp. 102-9. 

Brinster, S., Lamberet, G., Staels, B., Trieu-Cuot, P., Gruss, A. and Poyart, C. 

(2009) 'Type II fatty acid synthesis is not a suitable antibiotic target for Gram-

positive pathogens', Nature, 458(7234), pp. 83-6. 

Bronsema, K.J., Bischoff, R. and Van de Merbel, N.C. (2012) 'Internal standards 

in the quantitative determination of protein biopharmaceuticals using liquid 

chromatography coupled to mass spectrometry', Journal of Chromatography B: 

Analytical Technologies in the Biomedical and Life Sciences, 893-894, pp. 1-14. 

Bronsema, K.J., Bischoff, R., van de Merbel, N.C (2013) 'High-Sensitivity LC-

MS/MS Quantification of Peptides and Proteins in Complex Biological Samples: 

The Impact of Enzymatic Digestion and Internal Standard Selection on Method 

Performance', Analytical Chemistry, 85, pp. 9528-9535. 



   

153 

Brotz-Oesterhelt, H., Bandow, J.E. and Labischinski, H. (2005) 'Bacterial 

proteomics and its role in antibacterial drug discovery', Mass Spectrom Rev, 

24(4), pp. 549-65. 

Brötz-Oesterhelt, H. and Brunner, N.A. (2008) 'How many modes of action 

should an antibiotic have?', Current Opinion in Pharmacology, 8(5), pp. 564-

573. 

Brown, J.R. and Warren, P.V. (1998) 'Antibiotic discovery: Is it all in the 

genes?', Drug Discovery Today, 3(12), pp. 564-566. 

Brun, V., Dupuis, A., Adrait, A., Marcellin, M., Thomas, D., Court, M., 

Vandenesch, F. and Garin, J. (2007) 'Isotope-labeled protein standards: toward 

absolute quantitative proteomics', Mol Cell Proteomics, 6(12), pp. 2139-49. 

Brun, V., Masselon, C., Garin, J. and Dupuis, A. (2009) 'Isotope dilution 

strategies for absolute quantitative proteomics', J Proteomics, 72(5), pp. 740-9. 

Bugg, T.D., Braddick, D., Dowson, C.G. and Roper, D.I. (2011) 'Bacterial cell 

wall assembly: still an attractive antibacterial target', Trends Biotechnol, 29(4), 

pp. 167-73. 

Bull, A.T., Ward, A.C. and Goodfellow, M. (2000) 'Search and Discovery 

Strategies for Biotechnology: the Paradigm Shift', Microbiology and Molecular 

Biology Reviews, 64(3), pp. 573-606. 

Bumann, D. (2008) 'Has nature already identified all useful antibacterial 

targets?', Curr Opin Microbiol, 11(5), pp. 387-92. 

Butler, A. (1998) 'Acquisition and utilization of transition metal ions by marine 

organisms', Science, 281(5374), pp. 207-210. 

Caldas, T., Laalami, S. and Richarme, G. (2000) 'Chaperone properties of 

bacterial elongation factor EF-G and initiation factor IF2', Journal of Biological 

Chemistry, 275(2), pp. 855-860. 

Carpousis, A.J. (2007) 'The RNA degradosome of Escherichia coli: an mRNA-

degrading machine assembled on RNase E', Annu Rev Microbiol, 61, pp. 71-87. 

Carpousis, A.J., Vanzo, N.F. and Raynal, L.C. (1999) 'mRNA degradation: A 

tale of poly(A) and multiprotein machines', Trends in Genetics, 15(1), pp. 24-28. 

Casadevall, A. (2006) 'The third age of antimicrobial therapy', Clinical Infectious 

Diseases, 42(10), pp. 1414-1416. 



   

154 

Casadevall, A. (2009) 'The case for pathogen-specific therapy', Expert Opin. 

Pharmacother., 10(11), pp. 1699-1703. 

Cerretti, D.P., Dean, D., Davis, G.R., Bedwell, D.M. and Nomura, M. (1983) 

'The spc rtbosomal protein operon of Eschenchia coli: Sequence and 

cotranscriptlon of the rlbosomal protein genes and a protein export gene', 

Nucleic Acids Research, 11(9), pp. 2599-2616. 

Chan, P.F., Holmes, D.J. and Payne, D.J. (2004) 'Finding the gems using 

genomic discovery: Antibacterial drug discovery strategies - The successes and 

the challenges', Drug Discovery Today: Therapeutic Strategies, 1(4), pp. 519-

527. 

Charlebois, R.L. and Doolittle, W.F. (2004) 'Computing prokaryotic gene 

ubiquity: Rescuing the core from extinction', Genome Research, 14(12), pp. 

2469-2477. 

Chattopadhyay, S., Das, B. and Dasgupta, C. (1996) 'Reactivation of denatured 

proteins by 23S ribosomal RNA: Role of domain V', Proceedings of the National 

Academy of Sciences of the United States of America, 93(16), pp. 8284-8287. 

Chattopadhyay, S., Pal, S., Pal, D., Sarkar, D., Chandra, S. and Das Gupta, C. 

(1999) 'Protein folding in Escherichia coli: Role of 23S ribosomal RNA', 

Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 

1429(2), pp. 293-298. 

Chaudhuri, R.R., Allen, A.G., Owen, P.J., Shalom, G., Stone, K., Harrison, M., 

Burgis, T.A., Lockyer, M., Garcia-Lara, J., Foster, S.J., Pleasance, S.J., Peters, 

S.E., Maskell, D.J. and Charles, I.G. (2009) 'Comprehensive identification of 

essential Staphylococcus aureus genes using Transposon-Mediated Differential 

Hybridisation (TMDH)', BMC Genomics, 10. 

Chavali, A.K., D'Auria, K.M., Hewlett, E.L., Pearson, R.D. and Papin, J.A. 

(2012) 'A metabolic network approach for the identification and prioritization of 

antimicrobial drug targets', Trends in Microbiology, 20(3), pp. 113-123. 

Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-

Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M. and Tiedje, J.M. 

(2009) 'The Ribosomal Database Project: improved alignments and new tools 

for rRNA analysis', Nucleic Acids Research, 37, pp. D141-D145. 



   

155 

Condon, C. (2007) 'Maturation and degradation of RNA in bacteria', Current 

Opinion in Microbiology, 10(3), pp. 271-278. 

Covey, T.R., Huang, E.C. and Henion, J.D. (1991) 'Structural characterization of 

protein tryptic peptides via liquid chromatography/mass spectrometry and 

collision-induced dissociation of their doubly charged molecular ions', Analytical 

Chemistry, 63(13), pp. 1193-1200. 

Cox, J. and Mann, M. (2007) 'Is Proteomics the New Genomics?', Cell, 130(3), 

pp. 395-398. 

Craig, R., Cortens, J.P. and Beavis, R.C. (2004) 'Open source system for 

analyzing, validating, and storing protein identification data', Journal of 

Proteome Research, 3(6), pp. 1234-1242. 

Crampton, N., Bonass, W.A., Kirkham, J., Rivetti, C. and Thomson, N.H. (2006) 

'Collision events between RNA polymerases in convergent transcription studied 

by atomic force microscopy', Nucleic Acids Research, 34(19), pp. 5416-5425. 

Davies, J. (1994) 'Inactivation of antibiotics and the dissemination of resistance 

genes', Science, 264(5157), pp. 375-382. 

De Boer, P., Crossley, R. and Rothfield, L. (1992) 'The essential bacterial cell-

division protein FtsZ is a GTPase', Nature, 359(6392), pp. 254-256. 

Dean, D., Yates, J.L. and Nomura, M. (1981a) 'Escherichia coli ribosomal 

protein S8 feedback regulates part of spc operon', Nature, 289(5793), pp. 89-

91. 

Dean, D., Yates, J.L. and Nomura, M. (1981b) 'Identification of ribosomal 

protein S7 as a repressor of translation within the str operon of E. coli', Cell, 

24(2), pp. 413-419. 

Deana, A., Celesnik, H. and Belasco, J.G. (2008) 'The bacterial enzyme RppH 

triggers messenger RNA degradation by 5' pyrophosphate removal', Nature, 

451(7176), pp. 355-8. 

Delihas, N. and Forst, S. (2001) 'MicF: An antisense RNA gene involved in 

response of Escherichia coli to global stress factors', Journal of Molecular 

Biology, 313(1), pp. 1-12. 

Demidov, V.V., Potaman, V.N., Frank-Kamenetskii, M.D., Egholm, M., Buchard, 

O., Sonnichsen, S.H. and Nielsen, P.E. (1994) 'Stability of peptide nucleic acids 



   

156 

in human serum and cellular extracts', Biochemical Pharmacology, 48(6), pp. 

1310-1313. 

Dervan, P.B. (2001) 'Molecular recognition of DNA by small molecules', 

Bioorganic & Med. Chem., 9(9), pp. 2215-2235. 

DeVito, J.A., Mills, J.A., Liu, V.G., Agarwal, A., Sizemore, C.F., Yao, Z., 

Stoughton, D.M., Cappiello, M.G., Barbosa, M.D.F.S., Foster, L.A. and 

Pompliano, D.L. (2002) 'An array of target-specific screening strains for 

antibacterial discovery', Nature Biotechnology, 20(5), pp. 478-483. 

Diaz Ricci, J.C. and Hernández, M.E. (2000) 'Plasmid effects on Escherichia 

coli metabolism', Critical Reviews in Biotechnology, 20(2), pp. 79-108. 

Domon, B. and Aebersold, R. (2010) 'Options and considerations when 

selecting a quantitative proteomics strategy', Nat Biotechnol, 28(7), pp. 710-21. 

Donadio, S., Carrano, L., Brandi, L., Serina, S., Soffientini, A., Raimondi, E., 

Montanini, N., Sosio, M. and Gualerzi, C.O. (2002) 'Targets and assays for 

discovering novel antibacterial agents', Journal of Biotechnology, 99(3), pp. 

175-185. 

Dong, H., Nilsson, L. and Kurland, C.G. (1995) 'Gratuitous overexpression of 

genes in Escherichia coli leads to growth inhibition and ribosome destruction', 

Journal of Bacteriology, 177(6), pp. 1497-1504. 

Dornenburg, J.E., DeVita, A.M., Palumbo, M.J. and Wade, J.T. (2010) 

'Widespread antisense transcription in Escherichia coli', mBio, 1(1). 

Dreyfus, M. and Régnier, P. (2002) 'The poly(A) tail of mRNAs: Bodyguard in 

eukaryotes, scavenger in bacteria', Cell, 111(5), pp. 611-613. 

Dryselius, R., Aswasti, S.K., Rajarao, G.K., Nielsen, P.E. and Good, L. (2003) 

'The translation start codon region is sensitive to antisense PNA inhibition in 

Escherichia coli', Oligonucleotides, 13(6), pp. 427-433. 

Dryselius, R., Nikravesh, A., Kulyté, A., Goh, S. and Good, L. (2006a) 'Variable 

coordination of cotranscribed genes in Escherichia coli following antisense 

repression', BMC Microbiology, 6. 

Dryselius, R., Nikravesh, A., Kulyté, A., Goh, S. and Good, L. (2006b) 'Variable 

coordination of cotranscribed genes in Escherichia coli following antisense 

repression', BMC Microbiol., 6:97. 



   

157 

Duhring, U., Axmann, I.M., Hess, W.R. and Wilde, A. (2006) 'An internal 

antisense RNA regulates expression of the photosynthesis gene isiA', Proc Natl 

Acad Sci U S A, 103(18), pp. 7054-8. 

Durfee, T., Nelson, R., Baldwin, S., Plunkett, G., Burland, V., Mau, B., 

Petrosino, J.F., Qin, X., Muzny, D.M., Ayele, M., Gibbs, R.A., Csorgo, B., 

Posfai, G., Weinstock, G.M. and Blattner, F.R. (2008a) 'The complete genome 

sequence of Escherichia coli DH10B: Insights into the biology of a laboratory 

workhorse', Journal of Bacteriology, 190(7), pp. 2597-2606. 

Durfee, T., Nelson, R., Baldwin, S., Plunkett Iii, G., Burland, V., Mau, B., 

Petrosino, J.F., Qin, X., Muzny, D.M., Ayele, M., Gibbs, R.A., Csörgo, B., 

Pósfai, G., Weinstock, G.M. and Blattner, F.R. (2008b) 'The complete genome 

sequence of Escherichia coli DH10B: Insights into the biology of a laboratory 

workhorse', Journal of Bacteriology, 190(7), pp. 2597-2606. 

East, S.P. and Silver, L.L. (2013) 'Multitarget ligands in antibacterial research: 

Progress and opportunities', Expert Opinion on Drug Discovery, 8(2), pp. 143-

156. 

Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, 

M., Gill, S.R., Nelson, K.E. and Relman, D.A. (2005) 'Diversity of the human 

intestinal microbial flora', Science, 308(5728), pp. 1635-1638. 

Eckert, R., He, J., Yarbrough, D.K., Qi, F., Anderson, M.H. and Shi, W. (2006a) 

'Targeted killing of Streptococcus mutans by a pheromone-guided "smart"  

antimicrobial peptide.', Antimicrob. Agents and Chemother., 50(11), pp. 3651-

3657. 

Eckert, R., Qi, F., Yarbrough, D.K., He, J., Anderson, M.H. and Shi, W. (2006b) 

'Adding selectivity to antimicrobial peptides: rational design of a multidomain 

peptide against Pseudomonas spp.', Antimicrob. Agents and Chemother., 50(4), 

pp. 1480-1488. 

Eguchi, Y. (1991) 'Antisense RNA', Annual Review of Biochemistry, 60, pp. 631-

652. 

Elowitz, M.B., Levine, A.J., Siggia, E.D. and Swain, P.S. (2002) 'Stochastic 

gene expression in a single cell', Science, 297(5584), pp. 1183-1186. 



   

158 

Endy, D. (2005) 'Foundations for engineering biology', Nature, 438(7067), pp. 

449-453. 

Epstein, W. and Beckwith, J. (1968) 'Regulation of gene expression', Annual 

Review of Biochemistry, 37, pp. 411-436. 

Eriksson, M., Nielsen, P.E. and Good, L. (2002) 'Cell permeabilization and 

uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli', J 

Biol Chem, 277(9), pp. 7144-7. 

Eschenburg, S., Priestman, M. and Schönbrunn, E. (2005) 'Evidence that the 

fosfomycin target Cys115 in UDP-N-acetylglucosamine Enolpyruvyl Transferase 

(MurA) is essential for product release', Journal of Biological Chemistry, 280(5), 

pp. 3757-3763. 

Esvelt, K.M. and Wang, H.H. (2013) 'Genome-scale engineering for systems 

and synthetic biology', Molecular Systems Biology, 9. 

Fabbretti, A., Gualerzi, C.O. and Brandi, L. (2011) 'How to cope with the quest 

for new antibiotics', FEBS Lett, 585(11), pp. 1673-81. 

Fajardo, A., Linares, J.F. and Martínez, J.L. (2009) 'Towards an ecological 

approach to antibiotics and antibiotic resistance genes', Clinical Microbiology 

and Infection, 15(SUPPL. 1), pp. 14-16. 

Fajardo, A. and Martinez, J.L. (2008) 'Antibiotics as signals that trigger specific 

bacterial responses', Curr Opin Microbiol, 11(2), pp. 161-7. 

Faridani, O.R., Nikravesh, A., Pandey, D.P., Gerdes, K. and Good, L. (2006) 

'Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-

mediated cell killing in Escherichia coli', Nucleic Acids Res., 34(20), pp. 5915-

22. 

Fehér, T., Papp, B., Pál, C. and Pósfai, G. (2007) 'Systematic genome 

reductions: Theoretical and experimental approaches', Chemical Reviews, 

107(8), pp. 3498-3513. 

Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M. (1989) 

'Electrospray ionization for mass spectrometry of large biomolecules', Science, 

246(4926), pp. 64-71. 



   

159 

Fields, P.I., Swanson, R.V., Haidaris, C.G. and Heffron, F. (1986) 'Mutants of 

Salmonella-Typhimurium That Cannot Survive within the Macrophage Are 

Avirulent', Proc. Natl. Acad. Sci. U.S.A., 83(14), pp. 5189-5193. 

Filiou, M.D., Varadarajulu, J., Teplytska, L., Reckow, S., Maccarrone, G. and 

Turck, C.W. (2012) 'The 15N isotope effect in Escherichia coli: A neutron can 

make the difference', Proteomics, 12(21), pp. 3121-3128. 

Fischbach, M.A. (2009) 'Antibiotics from microbes: converging to kill', Curr Opin 

Microbiol, 12(5), pp. 520-7. 

Fischbach, M.A. and Walsh, C.T. (2006) 'Assembly-line enzymology for 

polyketide and nonribosomal peptide antibiotics: Logic machinery, and 

mechanisms', Chemical Reviews, 106(8), pp. 3468-3496. 

Fischbach, M.A. and Walsh, C.T. (2009) 'Antibiotics for emerging pathogens', 

Science, 325(5944), pp. 1089-93. 

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., 

Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., 

McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J.D., Scott, J., 

Shirley, R., Liu, L.I. and Venter, J.C. (1995) 'Whose-genome random 

sequencing and assembly of Haemophilus influenzae Rd', Science, 269(5223), 

pp. 496-521. 

Foliaki, S., Pearce, N., Bjorksten, B., Mallol, J., Montefort, S. and von Mutius, E. 

(2009) 'Antibiotic use in infancy and symptoms of asthma, rhinoconjunctivitis, 

and eczema in children 6 and 7 years old: International Study of Asthma and 

Allergies in Childhood Phase III', Journal of Allergy and Clinical Immunology, 

124(5), pp. 982-989. 

Forsyth, R.A., Haselbeck, R.J., Ohlsen, K.L., Yamamoto, R.T., Xu, H., Trawick, 

J.D., Wall, D., Wang, L., Brown-Driver, V., Froelich, J.M., Kedar, G.C., King, P., 

McCarthy, M., Malone, C., Misiner, B., Robbins, D., Tan, Z., Zhu, Z.Y., Carr, G., 

Mosca, D.A., Zamudio, C., Foulkes, J.G. and Zyskind, J.W. (2002) 'A genome-

wide strategy for the identification of essential genes in Staphylococcus aureus', 

Molecular Microbiology, 43(6), pp. 1387-1400. 

Fowler, S., Webber, A., Cooper, B.S., Phimister, A., Price, K., Carter, Y., 

Kibbler, C.C., Simpson, A.J.H. and Stone, S.R. (2007) 'Successful use of 

feedback to improve antibiotic prescribing and reduce Clostridium difficile 



   

160 

infection: a controlled interrupted time series', Journal of Antimicrobial 

Chemotherapy, 59(5), pp. 990-995. 

Franch, T., Petersen, M., Wagner, E.G.H., Jacobsen, J.P. and Gerdes, K. 

(1999) 'Antisense RNA regulation in prokaryotes: Rapid RNA/RNA interaction 

facilitated by a general U-turn loop structure', Journal of Molecular Biology, 

294(5), pp. 1115-1125. 

Fraser, D. and Kærn, M. (2009) 'A chance at survival: Gene expression noise 

and phenotypic diversification strategies', Molecular Microbiology, 71(6), pp. 

1333-1340. 

Freiberg, C., Brotz-Oesterhelt, H. and Labischinski, H. (2004) 'The impact of 

transcriptome and proteome analyses on antibiotic drug discovery', Curr Opin 

Microbiol, 7(5), pp. 451-9. 

Friedman, L., Alder, J.D. and Silverman, J.A. (2006) 'Genetic changes that 

correlate with reduced susceptibility to daptomycin in Staphylococcus aureus.', 

Antimicrob. Agents and Chemother., 50(6), pp. 2137-2145. 

Fu, X., Fu, N., Guo, S., Yan, Z., Xu, Y., Hu, H., Menzel, C., Chen, W., Li, Y., 

Zeng, R. and Khaitovich, P. (2009) 'Estimating accuracy of RNA-Seq and 

microarrays with proteomics', BMC Genomics, 10. 

Gadebusch, H.H., Stapley, E.O. and Zimmerman, S.B. (1992) 'Discovery of cell 

wall active antibacterial antibiotics', Critical Reviews in Biotechnology, 12(3), pp. 

225-243. 

Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.A. and Gordon, E.M. 

(1994) 'Applications of combinatorial technologies to drug discovery. 1. 

Background and peptide combinatorial libraries', Journal of Medicinal 

Chemistry, 37(9), pp. 1233-1251. 

Gama-Castro, S., Jiménez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., 

Peñaloza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muñiz-

Rascado, L., Martínez-Flores, I., Salgado, H., Bonavides-Martínez, C., Abreu-

Goodger, C., Rodríguez-Penagos, C., Miranda-Ríos, J., Morett, E., Merino, E., 

Huerta, A.M., Treviño-Quintanilla, L. and Collado-Vides, J. (2008) 'RegulonDB 

(version 6.0): Gene regulation model of Escherichia coli K-12 beyond 

transcription, active (experimental) annotated promoters and Textpresso 

navigation', Nucleic Acids Research, 36(SUPPL. 1), pp. D120-D124. 



   

161 

Gao, F. and Zhang, R.R. (2011) 'Enzymes are enriched in bacterial essential 

genes', PLoS ONE, 6(6). 

Georg, J. and Hess, W.R. (2011) 'cis-antisense RNA, another level of gene 

regulation in bacteria', Microbiol Mol Biol Rev, 75(2), pp. 286-300. 

Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. and Gygi, S.P. (2003) 

'Absolute quantification of proteins and phosphoproteins from cell lysates by 

tandem MS', Proc Natl Acad Sci U S A, 100(12), pp. 6940-5. 

Gerdes, S., Edwards, R., Kubal, M., Fonstein, M., Stevens, R. and Osterman, 

A. (2006) 'Essential genes on metabolic maps', Curr Opin Biotechnol, 17(5), pp. 

448-56. 

Gerdes, S.Y., Scholle, M.D., Campbell, J.W., Balazsi, G., Ravasz, E., 

Daugherty, M.D., Somera, A.L., Kyrpides, N.C., Anderson, I., Gelfand, M.S., 

Bhattacharya, A., Kapatral, V., D'Souza, M., Baev, M.V., Grechkin, Y., Mseeh, 

F., Fonstein, M.Y., Overbeek, R., Barabasi, A.L., Oltvai, Z.N. and Osterman, 

A.L. (2003) 'Experimental Determination and System Level Analysis of Essential 

Genes in Escherichia coli MG1655', Journal of Bacteriology, 185(19), pp. 5673-

5684. 

Ghosal, A., Vitali, A., Stach, J.E.M. and Nielsen, P.E. (2013) 'Role of SbmA in 

the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli', ACS 

Chemical Biology, 8(2), pp. 360-367. 

Giesen, U., Kleider, W., Berding, C., Geiger, A., Orum, H. and Nielsen, P. 

(1998) 'A formula for thermal stability (Tm) prediction of PNA/DNA duplexes', 

Nucleic Acids Res., 26(21), p. 5004. 

Gillings, M.R. and Stokes, H.W. (2012) 'Are humans increasing bacterial 

evolvability?', Trends in Ecology and Evolution, 27(6), pp. 346-352. 

Glasner, J.D., Liss, P., Plunkett Iii, G., Darling, A., Prasad, T., Rusch, M., 

Byrnes, A., Gilson, M., Biehl, B., Blattner, F.R. and Perna, N.T. (2003) 'ASAP, a 

systematic annotation package for community analysis of genomes', Nucleic 

Acids Research, 31(1), pp. 147-151. 

Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, 

M., Hutchison Iii, C.A., Smith, H.O. and Venter, J.C. (2006) 'Essential genes of 



   

162 

a minimal bacterium', Proceedings of the National Academy of Sciences of the 

United States of America, 103(2), pp. 425-430. 

Glick, B.R. (1995) 'Metabolic load and heterologous gene expression', 

Biotechnology Advances, 13(2), pp. 247-261. 

Goh, S., Boberek, J.M., Nakashima, N., Stach, J. and Good, L. (2009) 

'Concurrent growth rate and transcript analyses reveal essential gene 

stringency in Escherichia coli', PLoS One, 4(6), p. e6061. 

Golding, I., Paulsson, J., Zawilski, S.M. and Cox, E.C. (2005) 'Real-time kinetics 

of gene activity in individual bacteria', Cell, 123(6), pp. 1025-1036. 

Good, L. (2002) 'Antisense Inhibition of Bacterial Gene Expression and Cell 

Growth', in Nielsen, P. (ed.) Peptide Nucleic Acids: Protocols and Applications 

(Methods in Molecular Biology). New York: Springer,  pp. 237-248. 

Good, L., Awasthi, S.K., Dryselius, R., Larsson, O. and Nielsen, P.E. (2001a) 

'Bactericidal antisense effects of peptide-PNA conjugates', Nat. Biotechnol., 

19(4), pp. 360-4. 

Good, L., Awasthi, S.K., Dryselius, R., Larsson, O. and Nielsen, P.E. (2001b) 

'Bactericidal antisense effects of peptide - PNA conjugates', Nature 

Biotechnology, 19(4), pp. 360-364. 

Good, L. and Nielsen, P.E. (1997) 'Progress in developing PNA as a gene-

targeted drug', Antisense and Nucleic Acid Drug Development, 7(4), pp. 431-

437. 

Good, L. and Nielsen, P.E. (1998) 'Inhibition of translation and bacterial growth 

by peptide nucleic acid targeted to ribosomal RNA', Proc. Natl. Acad. Sci. 

U.S.A., 95(5), pp. 2073-6. 

Good, L., Sandberg, R., Larsson, O., Nielsen, P.E. and Wahlestedt, C. (2000a) 

'Antisense PNA effects in Escherichia coli are limited by the outer-membrane 

LPS layer', Microbiology, 146(10), pp. 2665-2670. 

Good, L., Sandberg, R., Larsson, O., Nielsen, P.E. and Wahlestedt, C. (2000b) 

'Antisense PNA effects in Escherichia coli are limited by the outer-membrane 

LPS layer', Microbiol. UK, 146, pp. 2665-70. 

Good, L. and Stach, J.E. (2011) 'Synthetic RNA silencing in bacteria - 

antimicrobial discovery and resistance breaking', Front Microbiol, 2, p. 185. 



   

163 

Goodfellow, M. and Fiedler, H.P. (2010) 'A guide to successful bioprospecting: 

informed by actinobacterial systematics', Antonie Van Leeuwenhoek, 98(2), pp. 

119-42. 

Goodfellow, M. and Williams, S.T. (1983) 'Ecology of actinomycetes', Annual 

Review of Microbiology, 37, pp. 189-216. 

Granieri, L., Miller, O.J., Griffiths, A.D. and Merten, C.A. (2009) 'A competition-

based assay for the screening of species-specific antibiotics', Journal of 

Antimicrobial Chemotherapy, 64(1), pp. 62-68. 

Gripenland, J., Netterling, S., Loh, E., Tiensuu, T., Toledo-Arana, A. and 

Johansson, J. (2010) 'RNAs: regulators of bacterial virulence', Nat Rev 

Microbiol, 8(12), pp. 857-66. 

Gross, H., Stockwell, V.O., Henkels, M.D., Nowak-Thompson, B., Loper, J.E. 

and Gerwick, W.H. (2007) 'The Genomisotopic Approach: A Systematic Method 

to Isolate Products of Orphan Biosynthetic Gene Clusters', Chemistry and 

Biology, 14(1), pp. 53-63. 

Güttinger, S. (2013) 'Creating parts that allow for rational design: Synthetic 

biology and the problem of context-sensitivity', Studies in History and 

Philosophy of Science Part C :Studies in History and Philosophy of Biological 

and Biomedical Sciences, 44(2), pp. 199-207. 

Guzman, L.M., Belin, D., Carson, M.J. and Beckwith, J. (1995) 'Tight regulation, 

modulation, and high-level expression by vectors containing the arabinose 

P(BAD) promoter', Journal of Bacteriology, 177(14), pp. 4121-4130. 

Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H. and Aebersold, R. 

(1999) 'Quantitative analysis of complex protein mixtures using isotope-coded 

affinity tags', Nature Biotechnology, 17(10), pp. 994-999. 

Hacek, D.M., Dressel, D.C. and Peterson, L.R. (1999) 'Highly reproducible 

bactericidal activity test results by using a modified National Committee for 

Clinical Laboratory Standards broth macrodilution technique', Journal of Clinical 

Microbiology, 37(6), pp. 1881-4. 

Hale, C.A. and De Boer, P.A.J. (1997) 'Direct binding of FtsZ to ZipA, an 

essential component of the septal ring structure that mediates cell division in E. 

coli', Cell, 88(2), pp. 175-185. 



   

164 

Han, B. and Higgs, R.E. (2008) 'Proteomics: from hypothesis to quantitative 

assay on a single platform. Guidelines for developing MRM assays using ion 

trap mass spectrometers', Brief Funct Genomic Proteomic, 7(5), pp. 340-54. 

Han, K.Y., Park, J.S., Seo, H.N., Ann, K.Y. and Lee, J. (2008) 'Multiple stressor-

Induced proteome responses of escherichia coli BL21(DE3)', Journal of 

Proteome Research, 7(5), pp. 1891-1903. 

Hancock, R.E.W. (1997) 'Peptide antibiotics', Lancet, 349(9049), pp. 418-422. 

Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. and Goodman, R.M. 

(1998) 'Molecular biological access to the chemistry of unknown soil microbes: 

A new frontier for natural products', Chemistry and Biology, 5(10), pp. R245-

R249. 

Harth, G., Zamecnik, P.C., Tang, J.Y., Tabatadze, D. and Horwitz, M.A. (2000) 

'Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to 

glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of 

the poly-L-glutamate/glutamine cell wall structure, and bacterial replication', 

Proc. Natl. Acad. Sci. U.S.A., 97(1), pp. 418-423. 

Hartmann, H.J., Kaup, Y. and Weser, U. (2003) 'Does 13C-or 15N-labeling 

affect Cu(I)-thiolate cluster arrangement in yeast copper-metallothionein?', 

BioMetals, 16(3), pp. 379-382. 

Harvey, C.L., Knight, S.G. and Sih, C.J. (1966) 'On the mode of action of fusidic 

acid', Biochemistry, 5(10), pp. 3320-3327. 

Hatamoto, M., Nakai, K., Ohashi, A. and Imachi, H. (2009) 'Sequence-specific 

bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding 

site of 16S rRNA', Appl. Microbiol. Biot, 84(6), pp. 1161-1168. 

Hatamoto, M., Ohashi, A. and Imachi, H. (2010) 'Peptide nucleic acids (PNAs) 

antisense effect to bacterial growth and their application potentiality in 

biotechnology', Applied Microbiology and Biotechnology, 86(2), pp. 397-402. 

Heath, R.J. and Rock, C.O. (2000) 'Microbiology: A triclosan-resistant bacterial 

enzyme', Nature, 406(6792), pp. 145-146. 

Heath, R.J., Rubin, J.R., Holland, D.R., Zhang, E., Snow, M.E. and Rock, C.O. 

(1999) 'Mechanism of triclosan inhibition of bacterial fatty acid synthesis', 

Journal of Biological Chemistry, 274(16), pp. 11110-11114. 



   

165 

Hirokawa, G., Nijman, R.M., Raj, V.S., Kaji, H., Igarashi, K. and Kaji, A. (2005) 

'The role of ribosome recycling factor in dissociation of 70S ribosomes into 

subunits', RNA, 11(8), pp. 1317-1328. 

Hoban, D.J. (2003) 'Antibiotics and collateral damage', Clin. Cornerstone 

Suppl., 3, pp. S12-20. 

Holmes, E., Kinross, J., Gibson, G.R., Burcelin, R., Jia, W., Pettersson, S. and 

Nicholson, J.K. (2012) 'Therapeutic Modulation of Microbiota-Host Metabolic 

Interactions', Science Translational Medicine, 4(137). 

Howden, B.P. and Grayson, M.L. (2006) 'Dumb and dumber - The potential 

waste of a useful antistaphylococcal agent: Emerging fusidic acid resistance in 

Staphylococcus aureus', Clinical Infectious Diseases, 42(3), pp. 394-400. 

Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M. and Graham Cooks, R. 

(2005) 'The Orbitrap: a new mass spectrometer', J Mass Spectrom, 40(4), pp. 

430-43. 

Huang, C.H., Hsiang, T. and Trevors, J.T. (2012) 'Comparative bacterial 

genomics: defining the minimal core genome', Antonie van Leeuwenhoek, 

International Journal of General and Molecular Microbiology, pp. 1-14. 

Hunt, D.F., Yates Iii, J.R., Shabanowitz, J., Winston, S. and Hauer, C.R. (1986) 

'Protein sequencing by tandem mass spectrometry', Proceedings of the 

National Academy of Sciences of the United States of America, 83(17), pp. 

6233-6237. 

Huttlin, E.L., Hegeman, A.D. and Sussman, M.R. 52 (2008) 'Chapter 20 

Metabolic Labeling Approaches for the Relative Quantification of Proteins' 

Whitelegge, J.P., pp. 479-513,529-530. Available at: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

67149101455&partnerID=40&md5=fb5e2ee3c5544129fdf826f1a6290424. 

Imlay, J.A. (2003) 'Pathways of oxidative damage', Annu Rev Microbiol, 57, pp. 

395-418. 

Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J. and 

Mann, M. (2005) 'Exponentially modified protein abundance index (emPAI) for 

estimation of absolute protein amount in proteomics by the number of 



   

166 

sequenced peptides per protein', Molecular and Cellular Proteomics, 4(9), pp. 

1265-1272. 

Ishihama, Y., Schmidt, T., Rappsilber, J., Mann, M., Hartl, F.U., Kerner, M.J. 

and Frishman, D. (2008) 'Protein abundance profiling of the Escherichia coli 

cytosol', BMC Genomics, 9, p. 102. 

Jacob, F. and Monod, J. (1961) 'Genetic regulatory mechanisms in the 

synthesis of proteins', Journal of molecular biology, 3, pp. 318-356. 

Jakobsson, H.E., Jernberg, C., Andersson, A.F., Sjolund-Karlsson, M., Jansson, 

J.K. and Engstrand, L. (2010) 'Short-term antibiotic treatment has differing long-

term impacts on the human throat and gut microbiome', PLoS One, 5(3), p. 

e9836. 

Jayapal, K.P., Philp, R.J., Kok, Y.J., Yap, M.G.S., Sherman, D.H., Griffin, T.J. 

and Hu, W.S. (2008) 'Uncovering genes with divergent mRNA-protein dynamics 

in Streptomyces coelicolor', PLoS ONE, 3(5). 

Jayaraman, R. (2009) 'Antibiotic resistance: an overview of mechanisms and a 

paradigm shift', Current Science, 96(11), pp. 1475-1484. 

Jeon, B. and Zhang, Q. (2009a) 'Sensitization of Campylobacter jejuni to 

fluoroquinolone and macrolide antibiotics by antisense inhibition of the 

CmeABC multidrug efflux transporter', Journal of Antimicrobial Chemotherapy, 

63(5), pp. 946-948. 

Jeon, B. and Zhang, Q.J. (2009b) 'Sensitization of Campylobacter jejuni to 

fluoroquinolone and macrolide antibiotics by antisense inhibition of the 

CmeABC multidrug efflux transporter', Journal of Antimicrobial Chemotherapy, 

63(5), pp. 946-948. 

Johnson, E. and Srivastava, R. (2013) 'Volatility in mRNA secondary structure 

as a design principle for antisense', Nucleic Acids Research, 41(3). 

Jordan, I.K., Rogozin, I.B., Wolf, Y.I. and Koonin, E.V. (2002) 'Essential Genes 

Are More Evolutionarily Conserved Than Are Nonessential Genes in Bacteria', 

Genome Research, 12(6), pp. 962-968. 

Jousset, A. (2012) 'Ecological and evolutive implications of bacterial defences 

against predators', Environmental Microbiology, 14(8), pp. 1830-1843. 



   

167 

Juhas, M., Eberl, L. and Glass, J.I. (2011) 'Essence of life: essential genes of 

minimal genomes', Trends Cell Biol, 21(10), pp. 562-8. 

Kaern, M., Elston, T.C., Blake, W.J. and Collins, J.J. (2005) 'Stochasticity in 

gene expression: from theories to phenotypes', Nat Rev Genet, 6(6), pp. 451-

64. 

Kaur, P., Agarwal, S. and Datta, S. (2009) 'Delineating bacteriostatic and 

bactericidal targets in mycobacteria using IPTG inducible antisense expression', 

PLoS ONE, 4(6). 

Kawano, M., Aravind, L. and Storz, G. (2007) 'An antisense RNA controls 

synthesis of an SOS-induced toxin evolved from an antitoxin', Mol Microbiol, 

64(3), pp. 738-54. 

Keiler, K.C., Waller, P.R.H. and Sauer, R.T. (1996) 'Role of a peptide tagging 

system in degradation of proteins synthesized from damaged messenger RNA', 

Science, 271(5251), pp. 990-993. 

Keller, M. and Zengler, K. (2004) 'Tapping into microbial diversity', Nat Rev 

Microbiol, 2(2), pp. 141-50. 

Kirkpatrick, D.S., Gerber, S.A. and Gygi, S.P. (2005) 'The absolute 

quantification strategy: a general procedure for the quantification of proteins and 

post-translational modifications', Methods, 35(3), pp. 265-73. 

Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., 

Toyonaga, H. and Mori, H. (2005a) 'Complete set of ORF clones of Escherichia 

coli ASKA library (A complete set of E. coli K-12 ORF archive): unique 

resources for biological research', DNA Research, 12(5), pp. 291-299. 

Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., 

Toyonaga, H. and Mori, H. (2005b) 'Complete set of ORF clones of Escherichia 

coli ASKA library (a complete set of E. coli K-12 ORF archive): unique 

resources for biological research', DNA Res., 12(5), pp. 291-299. 

Kittle, J.D., Simons, R.W., Lee, J. and Kleckner, N. (1989) 'Insertion sequence 

IS10 anti-sense pairing initiates by an interaction between the 5' end of the 

target RNA and a loop in the anti-sense RNA', Journal of Molecular Biology, 

210(3), pp. 561-572. 



   

168 

Knight, R. (2010) 'Translational medicine and the human microbiome', Genome 

Biol., 11, p. (Suppl 1):I15. 

Knudsen, H. and Nielsen, P.E. (1996) 'Antisense properties of duplex- and 

triplex-forming PNAs', Nucleic Acids Research, 24(3), pp. 494-500. 

Knuth, K., Niesalla, H., Hueck, C.J. and Fuchs, T.M. (2004) 'Large-scale 

identification of essential Salmonella genes by trapping lethal insertions', 

Molecular Microbiology, 51(6), pp. 1729-1744. 

Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, 

M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, 

S.C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L.C., Danchin, A., 

Debarbouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, 

O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., 

Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R., Hecker, M., Hosoya, 

D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., 

Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, 

I., Le Coq, D., Masson, A., Mauel, C., Meima, R., Mellado, R.P., Moir, A., 

Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., 

Ohanan, T., O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., 

Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, 

T., Saxild, H.H., Scanlan, E., Schumann, W., Seegers, J.F.M.L., Sekiguchi, J., 

Sekowska, A., Seror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., 

Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., van Dijl, J.M., Watabe, 

K., Wipat, A., Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, 

K., Yoshida, K., Yoshikawa, H., Zuber, U. and Ogasawara, N. (2003a) 'Essential 

Bacillus subtilis genes', Proc. Natl. Acad. Sci. U.S.A., 100(8), pp. 4678-4683. 

Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, 

M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, 

S.C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L.C., Danchin, A., 

Débarbouillé, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, 

O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., 

Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R., Hecker, M., Hosoya, 

D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., 

Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, 

I., le Coq, D., Masson, A., Mauël, C., Meima, R., Mellado, R.P., Moir, A., 



   

169 

Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., 

Ohanan, T., O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., 

Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, 

T., Saxild, H.H., Scanlan, E., Schumann, W., Seegers, J.F.M.L., Sekiguchi, J., 

Sekowska, A., Séror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., 

Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., van Dijl, J.M., Watabe, 

K., Wipat, A., Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, 

K., Yoshida, K., Yoshikawa, H., Zuber, U. and Ogasawara, N. (2003b) 'Essential 

Bacillus subtilis genes', Proceedings of the National Academy of Sciences of 

the United States of America, 100(8), pp. 4678-4683. 

Koehn, F.E. and Carter, G.T. (2005) 'The evolving role of natural products in 

drug discovery', Nat Rev Drug Discov, 4(3), pp. 206-20. 

Kohanski, M.A., Dwyer, D.J. and Collins, J.J. (2010) 'How antibiotics kill 

bacteria: from targets to networks', Nat Rev Microbiol, 8(6), pp. 423-35. 

Kohanski, M.A., Dwyer, D.J., Wierzbowski, J., Cottarel, G. and Collins, J.J. 

(2008) 'Mistranslation of membrane proteins and two-component system 

activation trigger antibiotic-mediated cell death', Cell, 135(4), pp. 679-90. 

Kolb, F.A., Engdahl, H.M., Slagter-Jäger, J.G., Ehresmann, B., Ehresmann, C., 

Westhof, E., Wagner, E.G.H. and Romby, P. (2000) 'Progression of a loop-loop 

complex to a four-way junction is crucial for the activity of a regulatory antisense 

RNA', EMBO Journal, 19(21), pp. 5905-5915. 

Koller, E., Gaarde, W.A. and Monia, B.P. (2000) 'Elucidating cell signaling 

mechanisms using antisense technology', Trends in Pharmacological Sciences, 

21(4), pp. 142-148. 

Konopka, A., Boehm, M.E., Rohmer, M., Baeumlisberger, D., Karas, M. and 

Lehmann, W.D. (2012) 'Improving the precision of quantitative bottom-up 

proteomics based on stable isotope-labeled proteins', Analytical and 

Bioanalytical Chemistry, 404(4), pp. 1079-1087. 

Koonin, E.V. (2003) 'Comparative genomics, minimal gene-sets and the last 

universal common ancestor', Nat Rev Microbiol, 1(2), pp. 127-36. 

Koppelhus, U. and Nielsen, P.E. (2003) 'Cellular delivery of peptide nucleic acid 

(PNA)', Advanced Drug Delivery Reviews, 55(2), pp. 267-280. 



   

170 

Korepanov, A.P., Gongadze, G.M., Garber, M.B., Court, D.L. and Bubunenko, 

M.G. (2007) 'Importance of the 5 S rRNA-binding ribosomal proteins for cell 

viability and translation in Escherichia coli', J Mol Biol, 366(4), pp. 1199-208. 

Korepanov, A.P., Korobeinikova, A.V., Shestakov, S.A., Garber, M.B. and 

Gongadze, G.M. (2012) 'Protein L5 is crucial for in vivo assembly of the 

bacterial 50S ribosomal subunit central protuberance', Nucleic Acids Research, 

40(18), pp. 9153-9159. 

Kühner, S., Van Noort, V., Betts, M.J., Leo-Madas, A., Batisse, C., Rode, M., 

Yamada, T., Maier, T., Bader, S., Beltran-Alvarez, P., Castaño-Diez, D., Chen, 

W.H., Devos, D., Güell, M., Norambuena, T., Racke, I., Rybin, V., Schmidt, A., 

Yus, E., Aebersold, R., Herrmann, R., Böttcher, B., Frangakis, A.S., Russell, 

R.B., Serrano, L., Bork, P. and Gavin, A.C. (2009) 'Proteome organization in a 

genome-reduced bacterium', Science, 326(5957), pp. 1235-1240. 

Kulyté, A., Dryselius, R., Karlsson, J. and Good, L. (2005) 'Gene selective 

suppression of nonsense termination using antisense agents', Biochimica et 

Biophysica Acta - Gene Structure and Expression, 1730(3), pp. 165-172. 

Kurien, B.T. and Scofield, R.H. (2006) 'Western blotting', Methods, 38(4), pp. 

283-93. 

Kurland, C.G. and Dong, H. (1996) 'Bacterial growth inhibition by 

overproduction of protein', Molecular Microbiology, 21(1), pp. 1-4. 

Kurtboke, D.I. (2012) 'Biodiscovery from rare actinomycetes: an eco-

taxonomical perspective', Appl Microbiol Biotechnol, 93(5), pp. 1843-52. 

Kurupati, P., Tan, K.S.W., Kumarasinghe, G. and Poh, C.L. (2007) 'Inhibition of 

gene expression and growth by antisense peptide nucleic acids in a 

multiresistant beta-lactamase-producing Klebsiella pneumoniae strain', 

Antimicrob. Agents Chemother., 51(3), pp. 805-11. 

Lane, A.L. and Moore, B.S. (2011) 'A sea of biosynthesis: marine natural 

products meet the molecular age', Nat Prod Rep, 28(2), pp. 411-28. 

Lange, R.P., Locher, H.H., Wyss, P.C. and Then, R.L. (2007) 'The targets of 

currently used antibacterial agents: Lessons for drug discovery', Current 

Pharmaceutical Design, 13(30), pp. 3140-3154. 



   

171 

Lapidot, M. and Pilpel, Y. (2006) 'Genome-wide natural antisense transcription: 

coupling its regulation to its different regulatory mechanisms', EMBO Rep, 

7(12), pp. 1216-22. 

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., 

McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., 

Gibson, T.J. and Higgins, D.G. (2007) 'Clustal W and Clustal X version 2.0', 

Bioinformatics, 23(21), pp. 2947-2948. 

Larsen, H.J., Bentin, T. and Nielsen, P.E. (1999) 'Antisense properties of 

peptide nucleic acid', Biochimica et Biophysica Acta - Gene Structure and 

Expression, 1489(1), pp. 159-166. 

Laurent, J.M., Vogel, C., Kwon, T., Craig, S.A., Boutz, D.R., Huse, H.K., Nozue, 

K., Walia, H., Whiteley, M., Ronald, P.C. and Marcotte, E.M. (2010) 'Protein 

abundances are more conserved than mRNA abundances across diverse taxa', 

Proteomics, 10(23), pp. 4209-12. 

Lechevalier, H.A. and Lechevalier, M.P. (1967) 'Biology of actinomycetes', 

Annual Review of Microbiology, 21, pp. 71-100. 

Lee, E.J. and Groisman, E.A. (2010) 'An antisense RNA that governs the 

expression kinetics of a multifunctional virulence gene', Mol Microbiol, 76(4), pp. 

1020-33. 

Lemon, K.P., Armitage, G.C., Relman, D.A. and Fischbach, M.A. (2012) 

'Microbiota-targeted therapies: an ecological perspective', Science translational 

medicine, 4(137), pp. 137rv5-137rv5. 

Levin, P.A. 31 (2002a) '6 Light microscopy techniques for bacterial cell biology'. 

pp. 115-132. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-

27944456245&partnerID=40&md5=1f0046740cc85b95d04cc328d4422624. 

Levin, P.A. (2002b) 'Light microscopy techniques for bacterial cell biology', in 

Sansonetti, P. and Zychlinsky, A. (eds.) Methods in Microbiology: Molecular 

Cellular Microbiology. London: Academic Press Limited,  pp. 115-132. 

Levine, E. and Hwa, T. (2008) 'Small RNAs establish gene expression 

thresholds', Curr Opin Microbiol, 11(6), pp. 574-9. 

Levine, E., Zhang, Z., Kuhlman, T. and Hwa, T. (2007) 'Quantitative 

characteristics of gene regulation by small RNA', PLoS Biol, 5(9), p. e229. 



   

172 

Li, J.W. and Vederas, J.C. (2009) 'Drug discovery and natural products: end of 

an era or an endless frontier?', Science, 325(5937), pp. 161-5. 

Li, Y. and Altman, S. (2004) 'Polarity effects in the lactose operon of Escherichia 

coli', Journal of Molecular Biology, 339(1), pp. 31-39. 

Lidstrom, M.E. and Konopka, M.C. (2010) 'The role of physiological 

heterogeneity in microbial population behavior', Nature Chemical Biology, 6(10), 

pp. 705-712. 

Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2012) 

'Experimental and computational approaches to estimate solubility and 

permeability in drug discovery and development settings', Advanced Drug 

Delivery Reviews, 64(SUPPL.), pp. 4-17. 

Liu, H., Sadygov, R.G. and Yates Iii, J.R. (2004) 'A model for random sampling 

and estimation of relative protein abundance in shotgun proteomics', Analytical 

Chemistry, 76(14), pp. 4193-4201. 

Livak, K.J. and Schmittgen, T.D. (2001) 'Analysis of relative gene expression 

data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method', 

Methods, 25(4), pp. 402-8. 

Lock, R.L. and Harry, E.J. (2008) 'Cell-division inhibitors: new insights for future 

antibiotics', Nat Rev Drug Discov, 7(4), pp. 324-38. 

Lonkar, P., Kim, K.H., Kuan, J.Y., Chin, J.Y., Rogers, F.A., Knauert, M.P., Kole, 

R., Nielsen, P.E. and Glazer, P.M. (2009) 'Targeted correction of a thalassemia-

associated β-globin mutation induced by pseudo-complementary peptide 

nucleic acids', Nucleic Acids Research, 37(11), pp. 3635-3644. 

Lovering, A.L., Safadi, S.S. and Strynadka, N.C.J. 81 (2012) 'Structural 

perspective of peptidoglycan biosynthesis and assembly'. pp. 451-478. 

Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-

84861892432&partnerID=40&md5=9b1dabe66be341c89fd117fd3ca231cc. 

Lu, P., Vogel, C., Wang, R., Yao, X. and Marcotte, E.M. (2007) 'Absolute protein 

expression profiling estimates the relative contributions of transcriptional and 

translational regulation', Nature Biotechnology, 25(1), pp. 117-124. 

Lundin, K.E., Good, L., Strömberg, R., Gräslund, A. and Smith, C.I.E. 56 (2006) 

'Biological Activity and Biotechnological Aspects of Peptide Nucleic Acid' Hall, 



   

173 

J.C., Dunlap, J.C., Friedmann, T. and Heyningen, V., pp. 1-51. Available at: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

33745928141&partnerID=40&md5=d9e447de1cac3e1d6f55b27d64228e5f. 

MacBeath, G. (2002) 'Protein microarrays and proteomics', Nature Genetics, 

32(5 SUPPL. DEC.), pp. 526-532. 

Magnuson, K., Jackowski, S., Rock, C.O. and Cronan Jr, J.E. (1993) 

'Regulation of fatty acid biosynthesis in Escherichia coli', Microbiological 

Reviews, 57(3), pp. 522-542. 

Maier, T., Guell, M. and Serrano, L. (2009) 'Correlation of mRNA and protein in 

complex biological samples', FEBS Lett, 583(24), pp. 3966-73. 

Maier, T., Schmidt, A., Guell, M., Kuhner, S., Gavin, A.C., Aebersold, R. and 

Serrano, L. (2011) 'Quantification of mRNA and protein and integration with 

protein turnover in a bacterium', Mol Syst Biol, 7, p. 511. 

Makarov, A. (2000) 'Electrostatic axially harmonic orbital trapping: A high-

performance technique of mass analysis', Analytical Chemistry, 72(6), pp. 1156-

1162. 

Makarov, A. and Scigelova, M. (2010) 'Coupling liquid chromatography to 

Orbitrap mass spectrometry', J Chromatogr A, 1217(25), pp. 3938-45. 

Maki, H. (2002) 'Origins of spontaneous mutations: specificity and directionality 

of base-substitution, frameshift, and sequence-substitution mutageneses', Annu 

Rev Genet, 36, pp. 279-303. 

Malmström, J., Beck, M., Schmidt, A., Lange, V., Deutsch, E.W. and Aebersold, 

R. (2009) 'Proteome-wide cellular protein concentrations of the human 

pathogen Leptospira interrogans', Nature, 460(7256), pp. 762-765. 

Mann, M. (2008) 'Can proteomics retire the western blot?', Journal of Proteome 

Research, 7(8), p. 3065. 

Maplestone, R.A., Stone, M.J. and Williams, D.H. (1992) 'The evolutionary role 

of secondary metabolites - A review', Gene, 115(1-2), pp. 151-157. 

Margolin, W. (2005) 'FtsZ and the division of prokaryotic cells and organelles', 

Nature Reviews Molecular Cell Biology, 6(11), pp. 862-871. 

Martinez, J.L. and Baquero, F. (2000) 'Mutation frequencies and antibiotic 

resistance', Antimicrobial Agents and Chemotherapy, 44(7), pp. 1771-1777. 



   

174 

Martinez, J.L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J.F., 

Martinez-Solano, L. and Sanchez, M.B. (2009) 'A global view of antibiotic 

resistance', FEMS Microbiol Rev, 33(1), pp. 44-65. 

Mattheakis, L., Vu, L., Sor, F. and Nomura, M. (1989) 'Retroregulation of the 

synthesis of ribosomal proteins L14 and L24 by feedback repressor S8 in 

Escherichia coli', Proceedings of the National Academy of Sciences of the 

United States of America, 86(2), pp. 448-452. 

Mattheakis, L.C. and Nomura, M. (1988) 'Feedback regulation of the spc operon 

in Escherichia coli: translational coupling and mRNA processing', Journal of 

Bacteriology, 170(10), pp. 4484-4492. 

Matuszewski, B.K., Constanzer, M.L. and Chavez-Eng, C.M. (2003) 'Strategies 

for the assessment of matrix effect in quantitative bioanalytical methods based 

on HPLC-MS/MS', Analytical Chemistry, 75(13), pp. 3019-3030. 

Mazodier, P. and Davies, J. (1991) 'Gene transfer between distantly related 

bacteria', Annual Review of Genetics, 25, pp. 147-171. 

McAdams, H.H. and Arkin, A. (1997) 'Stochastic mechanisms in gene 

expression', Proceedings of the National Academy of Sciences of the United 

States of America, 94(3), pp. 814-819. 

McClerren, A.L., Cooper, L.E., Quan, C., Thomas, P.P., Kelleher, N.L. and Van 

Der Donk, W.A. (2006) 'Discovery and in vitro biosynthesis of haloduracin, a 

two-component lantibiotic', Proceedings of the National Academy of Sciences of 

the United States of America, 103(46), pp. 17243-17248. 

McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. and Khosla, C. (1995) 'Rational 

design of aromatic polyketide natural products by recombinant assembly of 

enzymatic subunits', Nature, 375(6532), pp. 549-554. 

McDevitt, D. and Rosenberg, M. (2001) 'Exploiting genomics to discover new 

antibiotics', Trends in Microbiology, 9(12), pp. 611-617. 

McGinnis, S. and Madden, T. (2004a) 'BLAST: at the core of a powerful and 

diverse set of sequence analysis tools', Nucleic Acids Res., 32, pp. W20-W25. 

McGinnis, S. and Madden, T.L. (2004b) 'BLAST: At the core of a powerful and 

diverse set of sequence analysis tools', Nucleic Acids Research, 32(WEB 

SERVER ISS.), pp. W20-W25. 



   

175 

McLeod, S.M., Dougherty, T.J. and Pucci, M.J. (2012) 'Novel Antibacterial 

Targets/Identification of New Targets by Comparative Genomics', pp. 881-900. 

McMurry, L.M., Oethinger, M. and Levy, S.B. (1998) 'Triclosan targets lipid 

synthesis [4]', Nature, 394(6693), pp. 531-532. 

Meng, J., Kanzaki, G., Meas, D., Lam, C.K., Crummer, H., Tain, J. and Xu, H.H. 

(2012) 'A genome-wide inducible phenotypic screen identifies antisense RNA 

constructs silencing Escherichia coli essential genes', FEMS Microbiol Lett, 

329(1), pp. 45-53. 

Menossi, M., Cremonese, N., Maron, L.G. and Arruda, P. (2000) 'Making colony 

PCR easier by adding gel-loading buffer to the amplification reaction', 

Biotechniques, 28(3), pp. 424-426. 

Miesel, L., Greene, J. and Black, T.A. (2003) 'Genetic strategies for antibacterial 

drug discovery', Nat Rev Genet, 4(6), pp. 442-56. 

Mills, S.D. and Dougherty, T.J. (2012) 'Cell-Based Screening in Antibacterial 

Discovery', pp. 901-929. 

Min, B.E., Seo, S.W. and Jung, G.Y. (2012) 'Switching control of an essential 

gene for reprogramming of cellular phenotypes in Escherichia coli', 

Biotechnology and Bioengineering, 109(7), pp. 1875-1880. 

Miyajima, Y., Ishizuka, T., Yamamoto, Y., Sumaoka, J. and Komiyama, M. 

(2009) 'Origin of high fidelity in target-sequence recognition by PNA 

Ce(IV)/EDTA combinations as site-selective DNA cutters', Journal of the 

American Chemical Society, 131(7), pp. 2657-2662. 

Mogk, A., Huber, D. and Bukau, B. (2011) 'Integrating protein homeostasis 

strategies in prokaryotes', Cold Spring Harbor perspectives in biology, 3(4). 

Møller, T., Franch, T., Udesen, C., Gerdes, K. and Valentin-Hansen, P. (2002) 

'Spot 42 RNA mediates discoordinate expression of the E. coli galactose 

operon', Genes and Development, 16(13), pp. 1696-1706. 

Montange, R.K. and Batey, R.T. (2008) 'Riboswitches: emerging themes in RNA 

structure and function', Annu Rev Biophys, 37, pp. 117-33. 

Moya, A., Gil, R., Latorre, A., Peretó, J., Pilar Garcillán-Barcia, M. and De La 

Cruz, F. (2009) 'Toward minimal bacterial cells: Evolution vs. design', FEMS 

Microbiology Reviews, 33(1), pp. 225-235. 



   

176 

Mruk, I., Liu, Y., Ge, L. and Kobayashi, I. (2011) 'Antisense RNA associated 

with biological regulation of a restriction-modification system', Nucleic Acids 

Res, 39(13), pp. 5622-32. 

Mushegian, A.R. and Koonin, E.V. (1996) 'A minimal gene set for cellular life 

derived by comparison of complete bacterial genomes', Proceedings of the 

National Academy of Sciences of the United States of America, 93(19), pp. 

10268-10273. 

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and 

Snyder, M. (2008) 'The transcriptional landscape of the yeast genome defined 

by RNA sequencing', Science, 320(5881), pp. 1344-1349. 

Nakashima, N. and Tamura, T. (2009) 'Conditional gene silencing of multiple 

genes with antisense RNAs and generation of a mutator strain of Escherichia 

coli', Nucleic Acids Research, 37(15). 

Nakashima, N., Tamura, T. and Good, L. (2006) 'Paired termini stabilize 

antisense RNAs and enhance conditional gene silencing in Escherichia coli', 

Nucleic Acids Res, 34(20), p. e138. 

Nekhotiaeva, N., Awasthi, S.K., Nielsen, P.E. and Good, L. (2004) 'Inhibition of 

Staphylococcus aureus gene expression and growth using antisense peptide 

nucleic acids', Molecular Therapy, 10(4), pp. 652-659. 

Nielsen, P.E. (2010) 'Peptide Nucleic Acids (PNA) in chemical biology and drug 

discovery', Chemistry and Biodiversity, 7(4), pp. 786-804. 

Nielsen, P.E., Egholm, M., Berg, R.H. and Buchardt, O. (1991) 'Sequence-

selective recognition of DNA by strand displacement with thymine-substituted 

polyamide', Science, 254(5037), pp. 1497-1500. 

Nikaido, H. (2003) 'Molecular Basis of Bacterial Outer Membrane Permeability 

Revisited', Microbiology and Molecular Biology Reviews, 67(4), pp. 593-656. 

Nikravesh, A., Dryselius, R., Faridani, O.R., Goh, S., Sadeghizadeh, M., 

Behmanesh, M., Ganyu, A., Klok, E.J., Zain, R. and Good, L. (2007) 'Antisense 

PNA accumulates in Escherichia coli and mediates a long post-antibiotic effect', 

Molecular Therapy, 15(8), pp. 1537-1542. 

Nolan, T., Hands, R.E. and Bustin, S.A. (2006) 'Quantification of mRNA using 

real-time RT-PCR', Nat Protoc, 1(3), pp. 1559-82. 



   

177 

Nomura, M., Yates, J.L., Dean, D. and Post, L.E. (1980) 'Feedback regulation of 

ribosomal protein gene expression in Escherichia coli: Structural homology of 

ribosomal RNA and ribosomal protein mRNA', Proceedings of the National 

Academy of Sciences of the United States of America, 77(12 II), pp. 7084-7088. 

O'Shea, R. and Moser, H.E. (2008) 'Physicochemical properties of antibacterial 

compounds: Implications for drug discovery', Journal of Medicinal Chemistry, 

51(10), pp. 2871-2878. 

Olsen, J.V., Ong, S.E. and Mann, M. (2004) 'Trypsin cleaves exclusively C-

terminal to arginine and lysine residues', Mol Cell Proteomics, 3(6), pp. 608-14. 

Omura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., 

Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., 

Sakaki, Y. and Hattori, M. (2001) 'Genome sequence of an industrial 

microorganism Streptomyces avermitilis: Deducing the ability of producing 

secondary metabolites', Proceedings of the National Academy of Sciences of 

the United States of America, 98(21), pp. 12215-12220. 

Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, 

A. and Mann, M. (2002) 'Stable isotope labeling by amino acids in cell culture, 

SILAC, as a simple and accurate approach to expression proteomics', 

Molecular & cellular proteomics : MCP, 1(5), pp. 376-386. 

Opdyke, J.A., Kang, J.G. and Storz, G. (2004) 'GadY, a small-RNA regulator of 

acid response genes in Escherichia coli', J Bacteriol, 186(20), pp. 6698-705. 

Oyamada, Y., Ito, H., Fujimoto-Nakamura, M., Tanitame, A., Iwai, N., Nagai, K., 

Yamagishi, J.I. and Wachi, M. (2006) 'Anucleate cell blue assay: A useful tool 

for identifying novel type II topoisomerase inhibitors', Antimicrobial Agents and 

Chemotherapy, 50(1), pp. 348-350. 

Pathom-aree, W., Stach, J.E.M., Ward, A.C., Horikoshi, K., Bull, A.T. and 

Goodfellow, M. (2006) 'Diversity of actinomycetes isolated from Challenger 

Deep sediment (10,898 m) from the Mariana Trench', Extremophiles, 10(3), pp. 

181-189. 

Patterson, S.D. and Aebersold, R.H. (2003) 'Proteomics: The first decade and 

beyond', Nature Genetics, 33(SUPPL.), pp. 311-323. 



   

178 

Pavankumar, A.R., Ayyappasamy, S.P. and Sankaran, K. (2012) 'Small RNA 

fragments in complex culture media cause alterations in protein profiles of three 

species of bacteria', BioTechniques, 52(3), pp. 167-172. 

Payne, D.J., Gwynn, M.N., Holmes, D.J. and Pompliano, D.L. (2007) 'Drugs for 

bad bugs: confronting the challenges of antibacterial discovery', Nat Rev Drug 

Discov, 6(1), pp. 29-40. 

Pfeiffer, V., Sittka, A., Tomer, R., Tedin, K., Brinkmann, V. and Vogel, J. (2007) 

'A small non-coding RNA of the invasion gene island (SPI-1) represses outer 

membrane protein synthesis from the Salmonella core genome', Molecular 

Microbiology, 66(5), pp. 1174-1191. 

Picotti, P. and Aebersold, R. (2012) 'Selected reaction monitoring-based 

proteomics: workflows, potential, pitfalls and future directions', Nat Methods, 

9(6), pp. 555-66. 

Purnick, P.E.M. and Weiss, R. (2009) 'The second wave of synthetic biology: 

From modules to systems', Nature Reviews Molecular Cell Biology, 10(6), pp. 

410-422. 

Qiu, X.-Q., Wang, H., Lu, X.-F., Zhang, J., Li, S.-F., Cheng, G., Wan, L., Yang, 

L., Zuo, J.-Y., Zhou, Y.-Q., Wang, H.-Y., Cheng, X., Zhang, S.-H., Ou, Z.-R., 

Zhong, Z.-C., Cheng, J.-Q., Li, Y.-P. and Wu, G.Y. (2003) 'An engineered 

multidomain bactericidal peptide as a model for targeted antibiotics against 

specific bacteria.', Nature Biotechnology, 21(12), pp. 1480-1485. 

Qiu, X.-Q., Zhang, J., Wang, H. and Wu, G.Y. (2005) 'A novel engineered 

peptide, a narrow-spectrum antibiotic, is effective against vancomycin-resistant 

Enterococcus faecalis.', Antimicrob. Agents and Chemother., 49(3), pp. 1184-

1189. 

Qiu, X., Janson, C.A., Court, R.I., Smyth, M.G., Payne, D.J. and Abdel-Meguid, 

S.S. (1999) 'Molecular basis for triclosan activity involves a flipping loop in the 

active site', Protein Science, 8(11), pp. 2529-2532. 

Raj, A. and van Oudenaarden, A. (2008) 'Nature, Nurture, or Chance: 

Stochastic Gene Expression and Its Consequences', Cell, 135(2), pp. 216-226. 



   

179 

Raju, R.M., Goldberg, A.L. and Rubin, E.J. (2012) 'Bacterial proteolytic 

complexes as therapeutic targets', Nature Reviews Drug Discovery, 11(10), pp. 

777-789. 

Rappsilber, J., Ryder, U., Lamond, A.I. and Mann, M. (2002) 'Large-scale 

proteomic analysis of the human spliceosome', Genome Research, 12(8), pp. 

1231-1245. 

Rasmussen, L.C., Sperling-Petersen, H.U. and Mortensen, K.K. (2007) 'Hitting 

bacteria at the heart of the central dogma: sequence-specific inhibition', Microb 

Cell Fact, 6, p. 24. 

Reich, K.A., Chovan, L. and Hessler, P. (1999) 'Genome scanning in 

Haemophilus influenzae for identification of essential genes', Journal of 

Bacteriology, 181(16), pp. 4961-4968. 

Rodnina, M.V., Savelsbergh, A., Katunin, V.I. and Wintermeyer, W. (1997) 

'Hydrolysis of GTP by elongation factor G drives tRNA movement on the 

ribosome', Nature, 385(6611), pp. 37-41. 

Rustad, T.R., Minch, K.J., Brabant, W., Winkler, J.K., Reiss, D.J., Baliga, N.S. 

and Sherman, D.R. (2013) 'Global analysis of mRNA stability in Mycobacterium 

tuberculosis', Nucleic Acids Research, 41(1), pp. 509-517. 

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A. 

and Barrell, B. (2000) 'Artemis: Sequence visualization and annotation', 

Bioinformatics, 16(10), pp. 944-945. 

Sadygov, R.G., Cociorva, D. and Yates, J.R., 3rd (2004) 'Large-scale database 

searching using tandem mass spectra: looking up the answer in the back of the 

book', Nat Methods, 1(3), pp. 195-202. 

Saito, K. and Nomura, M. (1994) 'Post-transcriptional regulation of the str 

operon in Escherichia coli. Structural and mutational analysis of the target site 

for translational repressor S7', Journal of Molecular Biology, 235(1), pp. 125-

139. 

Saleh, S., Haddadin, R.N., Baillie, S. and Collier, P.J. (2011) 'Triclosan - an 

update', Lett Appl Microbiol, 52(2), pp. 87-95. 

Sapan, C.V., Lundblad, R.L. and Price, N.C. (1999) 'Colorimetric protein assay 

techniques', Biotechnology and Applied Biochemistry, 29(2), pp. 99-108. 



   

180 

Schlünzen, F., Harms, J.M., Franceschi, F., Hansen, H.A.S., Bartels, H., 

Zarivach, R. and Yonath, A. (2003) 'Structural basis for the antibiotic activity of 

ketolides and azalides', Structure, 11(3), pp. 329-338. 

Schrimpf, S.P., Weiss, M., Reiter, L., Ahrens, C.H., Jovanovic, M., Malmström, 

J., Brunner, E., Mohanty, S., Lercher, M.J., Hunziker, P.E., Aebersold, R., von 

Mering, C. and Hengartner, M.O. (2009) 'Comparative functional analysis of the 

Caenorhabditis elegans and Drosophila melanogaster proteomes', PLoS 

biology, 7(3). 

Sezonov, G., Joseleau-Petit, D. and D'Ari, R. (2007) 'Escherichia coli 

physiology in Luria-Bertani broth', Journal of Bacteriology, 189(23), pp. 8746-

8749. 

Shajani, Z., Sykes, M.T. and Williamson, J.R. 80 (2011) 'Assembly of bacterial 

ribosomes'. pp. 501-526. Available at: 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

79959438183&partnerID=40&md5=7a697ee667696f0fec854a607a6acc91. 

Shen, N., Ko, J.H., Xiao, G., Wesolowski, D., Shan, G., Geller, B., Izadjoo, M. 

and Altman, S. (2009) 'Inactivation of expression of several genes in a variety of 

bacterial species by EGS technology', Proc. Natl. Acad. Sci. U.S.A., 106(20), 

pp. 8163-8. 

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. and Mann, M. (2006) 'In-gel 

digestion for mass spectrometric characterization of proteins and proteomes', 

Nat Protoc, 1(6), pp. 2856-60. 

Shimoni, Y., Friedlander, G., Hetzroni, G., Niv, G., Altuvia, S., Biham, O. and 

Margalit, H. (2007) 'Regulation of gene expression by small non-coding RNAs: a 

quantitative view', Mol Syst Biol, 3, p. 138. 

Silver, L. (2012) 'Rational Approaches to Antibacterial Discovery: Pre-Genomic 

Directed and Phenotypic Screening', in Dougherty, T.J.P., M.J. (ed.) Antibiotic 

Discovery and Development. USA: Springer Science+Business Media, LLC,  

pp. 33-75. 

Silver, L.L. (2007) 'Multi-targeting by monotherapeutic antibacterials', Nature 

Reviews Drug Discovery, 6(1), pp. 41-55. 



   

181 

Silver, L.L. (2008) 'Are natural products still the best source for antibacterial 

discovery? The bacterial entry factor', Expert Opinion on Drug Discovery, 3(5), 

pp. 487-500. 

Silver, L.L. (2011) 'Challenges of antibacterial discovery', Clinical Microbiology 

Reviews, 24(1), pp. 71-109. 

Silver, L.L. and Bostian, K.A. (1993) 'Discovery and development of new 

antibiotics: The problem of antibiotic resistance', Antimicrobial Agents and 

Chemotherapy, 37(3), pp. 377-383. 

Simons, R.W. and Kleckner, N. (1988) 'Biological regulation by antisense RNA 

in prokaryotes', Annual Review of Genetics, 22, pp. 567-600. 

Singh, S.B., Phillips, J.W. and Wang, J. (2007) 'Highly sensitive target-based 

whole-cell antibacterial discovery strategy by antisense RNA silencing', Current 

Opinion in Drug Discovery and Development, 10(2), pp. 160-166. 

Slater-Radosti, C., Van Aller, G., Greenwood, R., Nicholas, R., Kellerb, P.M., 

DeWolf Jr, W.E., Fan, F., Payne, D.J. and Jaworskia, D.D. (2001) 'Biochemical 

and genetic characterization of the action of triclosan on Staphylococcus 

aureus', Journal of Antimicrobial Chemotherapy, 48(1), pp. 1-6. 

Snijders, A.P.L., De Koning, B. and Wright, P.C. (2005) 'Perturbation and 

interpretation of nitrogen isotope distribution patterns in proteomics', Journal of 

Proteome Research, 4(6), pp. 2185-2191. 

Sorek, R., Kunin, V. and Hugenholtz, P. (2008) 'CRISPR - A widespread system 

that provides acquired resistance against phages in bacteria and archaea', 

Nature Reviews Microbiology, 6(3), pp. 181-186. 

Srinivas, N., Jetter, P., Ueberbacher, B.J., Werneburg, M., Zerbe, K., 

Steinmann, J., Van der Meijden, B., Bernardini, F., Lederer, A., Dias, R.L.A., 

Misson, P.E., Henze, H., Zumbrunn, J., Gombert, F.O., Obrecht, D., Hunziker, 

P., Schauer, S., Ziegler, U., Kach, A., Eberl, L., Riedel, K., DeMarco, S.J. and 

Robinson, J.A. (2010) 'Peptidomimetic Antibiotics Target Outer-Membrane 

Biogenesis in Pseudomonas aeruginosa', Science, 327(5968), pp. 1010-1013. 

Stach, J. and Good, L. (2011) 'Synthetic RNA silencing in bacteria – 

antimicrobial discovery and resistance breaking', Frontiers in Antimicrobials, 2 

pp. Article 185 1-11. 



   

182 

Stach, J.E.M. and Bull, A.T. (2005) 'Estimating and comparing the diversity of 

marine actinobacteria', Antonie van Leeuwenhoek, International Journal of 

General and Molecular Microbiology, 87(1), pp. 3-9. 

Steitz, T.A. (2008) 'A structural understanding of the dynamic ribosome 

machine', Nature Reviews Molecular Cell Biology, 9(3), pp. 242-253. 

Stirchak, E.P., Summerton, J.E. and Weller, D.D. (1989) 'Uncharged 

stereoregular nucleic acid analogs: 2. Morpholino nucleoside olgiomers with 

carbamate internucleoside linkages', Nucleic Acids Research, 17(15), pp. 6129-

6141. 

Stork, M., Di Lorenzo, M., Welch, T.J. and Crosa, J.H. (2007) 'Transcription 

termination within the iron transport-biosynthesis operon of Vibrio anguillarum 

requires an antisense RNA', J Bacteriol, 189(9), pp. 3479-88. 

Stratton, C.W. (2003) 'Dead bugs don't mutate: Susceptibility issues in the 

emergence of bacterial resistance', Emerging Infectious Diseases, 9(1), pp. 10-

16. 

Su, C., Peregrin-Alvarez, J.M., Butland, G., Phanse, S., Fong, V., Emili, A. and 

Parkinson, J. (2008) 'Bacteriome.org - An integrated protein interaction 

database for E. coli', Nucleic Acids Research, 36(SUPPL. 1), pp. D632-D636. 

Summerton, J. and Weller, D. (1997) 'Morpholino antisense oligomers: Design, 

preparation, and properties', Antisense and Nucleic Acid Drug Development, 

7(3), pp. 187-195. 

Summerton, J.E. (2006) 'Morpholinos and PNAs Compared', in  Peptide Nucleic 

Acids, Morpholinos and related Antisense Biomolecules. Kluwer Academic / 

Plenum Publishing,  pp. 91-113. 

Sung, K.L., Chou, H.H., Pfleger, B.F., Newman, J.D., Yoshikuni, Y. and 

Keasling, J.D. (2007) 'Directed evolution of AraC for improved compatibility of 

arabinose- and lactose-inducible promoters', Applied and Environmental 

Microbiology, 73(18), pp. 5711-5715. 

Tahlan, K., Ahn, S.K., Sing, A., Bodnaruk, T.D., Willems, A.R., Davidson, A.R. 

and Nodwell, J.R. (2007) 'Initiation of actinorhodin export in Streptomyces 

coelicolor', Molecular Microbiology, 63(4), pp. 951-961. 



   

183 

Takahata, S., Ida, T., Hiraishi, T., Sakakibara, S., Maebashi, K., Terada, S., 

Muratani, T., Matsumoto, T., Nakahama, C. and Tomono, K. (2010) 'Molecular 

mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli', 

International Journal of Antimicrobial Agents, 35(4), pp. 333-337. 

Tamae, C., Liu, A., Kim, K., Sitz, D., Hong, J., Becket, E., Bui, A., Solaimani, P., 

Tran, K.P., Yang, H. and Miller, J.H. (2008) 'Determination of antibiotic 

hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli', 

Journal of Bacteriology, 190(17), pp. 5981-5988. 

Then, R.L. and Sahl, H.-G. (2010) 'Anti-infective strategies of the future: is there 

room for species-specific antibacterial agents?', Current Pharmaceutical 

Design, 16, pp. 555-566. 

Thisted, T. and Gerdes, K. (1992) 'Mechanism of post-segregational killing by 

the hok/sok system of plasmid R1: Sok antisense RNA regulates hok gene 

expression indirectly through the overlapping mok gene', Journal of Molecular 

Biology, 223(1), pp. 41-54. 

Thomason, M.K. and Storz, G. (2010) 'Bacterial antisense RNAs: how many are 

there, and what are they doing?', Annu Rev Genet, 44, pp. 167-88. 

Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., 

Neumann, T. and Hamon, C. (2003) 'Tandem mass tags: A novel quantification 

strategy for comparative analysis of complex protein mixtures by MS/MS', 

Analytical Chemistry, 75(8), pp. 1895-1904. 

Tilley, L.D., Hine, O.S., Kellogg, J.A., Hassinger, J.N., Weller, D.D., Iversen, 

P.L. and Geller, B.L. (2006) 'Gene-specific effects of antisense 

phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia 

coli and Salmonella enterica serovar Typhimurium in pure culture and in tissue 

culture', Antimicrob. Agents Chemother., 50(8), pp. 2789-96. 

Tillotson, G.S. (2008) 'Where does novel antibiotics R&D stand among other 

pharmaceutical products: An industrial perspective?', Expert Review of Anti-

Infective Therapy, 6(5), pp. 551-552. 

Tomizawa, J., Itoh, T., Selzer, G. and Som, T. (1981) 'Inhibition of ColE1 RNA 

primer formation by a plasmid-specified small RNA', Proceedings of the 

National Academy of Sciences of the United States of America, 78(3), pp. 1421-

1425. 



   

184 

Tsai, S.P., Hartin, R.J. and Ryu, J. (1989) 'Transformation in restriction-deficient 

Salmonella typhimurium LT2', Journal of General Microbiology, 135(9), pp. 

2561-2567. 

Turner, P.R. and Denny, W.A. (2000) 'The genome as a drug target: Sequence 

specific minor groove binding ligands', Current Drug Targets, 1(1), pp. 1-14. 

Typas, A., Nichols, R.J., Siegele, D.A., Shales, M., Collins, S.R., Lim, B., 

Braberg, H., Yamamoto, N., Takeuchi, R., Wanner, B.L., Mori, H., Weissman, 

J.S., Krogan, N.J. and Gross, C.A. (2008) 'High-throughput, quantitative 

analyses of genetic interactions in E. coli', Nat. Methods, 5(9), pp. 781-787. 

Udwary, D.W., Zeigler, L., Asolkar, R.N., Singan, V., Lapidus, A., Fenical, W., 

Jensen, P.R. and Moore, B.S. (2007) 'Genome sequencing reveals complex 

secondary metabolome in the marine actinomycete Salinispora tropica', 

Proceedings of the National Academy of Sciences of the United States of 

America, 104(25), pp. 10376-10381. 

Vaara, M. and Porro, M. (1996) 'Group of peptides that act synergistically with 

hydrophobic antibiotics against gram-negative enteric bacteria', Antimicrobial 

Agents and Chemotherapy, 40(8), pp. 1801-1805. 

Vaillancourt, F.H., Yeh, E., Vosburg, D.A., Garneau-Tsodikova, S. and Walsh, 

C.T. (2006) 'Nature's inventory of halogenation catalysts: Oxidative strategies 

predominate', Chemical Reviews, 106(8), pp. 3364-3378. 

Van Eeckhaut, A., Lanckmans, K., Sarre, S., Smolders, I. and Michotte, Y. 

(2009) 'Validation of bioanalytical LC-MS/MS assays: evaluation of matrix 

effects', J Chromatogr B Analyt Technol Biomed Life Sci, 877(23), pp. 2198-

207. 

Van Lanen, S.G. and Shen, B. (2006) 'Microbial genomics for the improvement 

of natural product discovery', Curr Opin Microbiol, 9(3), pp. 252-60. 

Vasquez, K.M., Marburger, K., Intody, Z. and Wilson, J.H. (2001) 'Manipulating 

the mammalian genome by homologous recombination', Proceedings of the 

National Academy of Sciences of the United States of America, 98(15), pp. 

8403-8410. 



   

185 

Velicer, C.M., Heckbert, S.R., Lampe, J.W., Potter, J.D., Robertson, C.A. and 

Taplin, S.H. (2004) 'Antibiotic use in relation to the risk of breast cancer', JAMA, 

J. Am. Med. Assoc., 291(7), pp. 827-835. 

Vogel, C. and Marcotte, E.M. (2012) 'Insights into the regulation of protein 

abundance from proteomic and transcriptomic analyses', Nat Rev Genet, 13(4), 

pp. 227-32. 

Vogel, J. (2009) 'A rough guide to the non-coding RNA world of Salmonella', 

Molecular Microbiology, 71(1), pp. 1-11. 

Vogel, J. and Luisi, B.F. (2011) 'Hfq and its constellation of RNA', Nat Rev 

Microbiol, 9(8), pp. 578-89. 

Walsh, C. (2003) Antibiotics: actions, origins, resistance. United States of 

America: ASM Press. 

Wang, J.B., Pan, H.X. and Tang, G.L. (2011) 'Production of doramectin by 

rational engineering of the avermectin biosynthetic pathway', Bioorganic and 

Medicinal Chemistry Letters, 21(11), pp. 3320-3323. 

Wang, Z., Gerstein, M. and Snyder, M. (2009) 'RNA-Seq: A revolutionary tool 

for transcriptomics', Nature Reviews Genetics, 10(1), pp. 57-63. 

Waters, L.S. and Storz, G. (2009) 'Regulatory RNAs in bacteria', Cell, 136(4), 

pp. 615-28. 

Watve, M.G., Tickoo, R., Jog, M.M. and Bhole, B.D. (2001) 'How many 

antibiotics are produced by the genus Streptomyces?', Arch Microbiol, 176(5), 

pp. 386-90. 

Webhofer, C. (2013) '15N metabolic labeling: Evidence for a stable isotope 

effect on plasma protein levels and peptide chromatographic retention times', 

Journal of Proteomics. 

Wei, J.R., Krishnamoorthy, V., Murphy, K., Kim, J.H., Schnappinger, D., Alber, 

T., Sassetti, C.M., Rhee, K.Y. and Rubin, E.J. (2011) 'Depletion of antibiotic 

targets has widely varying effects on growth', Proceedings of the National 

Academy of Sciences of the United States of America, 108(10), pp. 4176-4181. 

Weissman, K.J. and Leadlay, P.F. (2005) 'Combinatorial biosynthesis of 

reduced polyketides', Nat Rev Microbiol, 3(12), pp. 925-36. 



   

186 

Wenzel, M., Patra, M., Albrecht, D., Chen, D.Y., Nicolaou, K.C., Metzler-Nolte, 

N. and Bandow, J.E. (2011) 'Proteomic signature of fatty acid biosynthesis 

inhibition available for in vivo mechanism-of-action studies', Antimicrob Agents 

Chemother, 55(6), pp. 2590-6. 

White, D.G., Maneewannakul, K., vonHofe, E., Zillman, M., Eisenberg, W., 

Field, A.K. and Levy, S.B. (1997) 'Inhibition of the multiple antibiotic resistance 

(mar) operon in Escherichia coli by antisense DNA analogs', Antimicrob. Agents 

Chemother., 41(12), pp. 2699-2704. 

Wiese, S., Reidegeld, K.A., Meyer, H.E. and Warscheid, B. (2007) 'Protein 

labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome 

research', Proteomics, 7(3), pp. 340-350. 

Williams, D.H., Stone, M.J., Hauck, P.R. and Rahman, S.K. (1989) 'Why are 

secondary metabolites (natural products) biosynthesized?', Journal of Natural 

Products, 52(6), pp. 1189-1208. 

Williams, P.G. (2009) 'Panning for chemical gold: marine bacteria as a source of 

new therapeutics', Trends in Biotechnology, 27(1), pp. 45-52. 

Wright, G.D. (2005) 'Bacterial resistance to antibiotics: Enzymatic degradation 

and modification', Advanced Drug Delivery Reviews, 57(10), pp. 1451-1470. 

Wright, G.D. (2007) 'The antibiotic resistome: the nexus of chemical and genetic 

diversity', Nat Rev Microbiol, 5(3), pp. 175-86. 

Xie, F., Liu, T., Qian, W.J., Petyuk, V.A. and Smith, R.D. (2011) 'Liquid 

chromatography-mass spectrometry-based quantitative proteomics', J Biol 

Chem, 286(29), pp. 25443-9. 

Xu, H.H., Real, L. and Bailey, M.W. (2006) 'An array of Escherichia coli clones 

over-expressing essential proteins: a new strategy of identifying cellular targets 

of potent antibacterial compounds', Biochem Biophys Res Commun, 349(4), pp. 

1250-7. 

Xu, X.P. and Case, D.A. (2002) 'Probing multiple effects on 15N, 13Cα, 13Cβ, 

and 13C′  chemical shifts in peptides using density functional theory', 

Biopolymers, 65(6), pp. 408-423. 

Yamaichi, Y., Duigou, S., Shakhnovich, E.A. and Waldor, M.K. (2009) 'Targeting 

the Replication Initiator of the Second Vibrio Chromosome: Towards Generation 



   

187 

of Vibrionaceae-Specific Antimicrobial Agents', Plos Pathogens, 5(11), p. 

e1000663. 

Yates, C.M., Shaw, D.J., Roe, A.J., Woolhouse, M.E.J. and Amyes, S.G.B. 

(2006) 'Enhancement of bacterial competitive fitness by apramycin resistance 

plasmids from non-pathogenic Escherichia coli', Biology Letters, 2(3), pp. 463-

465. 

Yates, J.L., Arfsten, A.E. and Nomura, M. (1980) 'In vitro expression of 

Escherichia coli ribosomal protein genes: Autogenous inhibition of translation', 

Proceedings of the National Academy of Sciences of the United States of 

America, 77(4 I), pp. 1837-1841. 

Yoshida, T., Nasu, H. and Yamashita, M. (2012) 'Construction of the control 

system of target molecule expression in Escherichia coli: application to a 

validation platform for bactericidal and bacteriostatic profiles due to suppression 

of a target molecule', FEMS Microbiol Lett, 331(2), pp. 113-9. 

Zerikly, M. and Challis, G.L. (2009) 'Strategies for the discovery of new natural 

products by genome mining', Chembiochem, 10(4), pp. 625-33. 

Zhang, R. and Lin, Y. (2009a) 'DEG 5.0, a database of essential genes in both 

prokaryotes and eukaryotes', Nucleic Acids Research, 37, pp. D455-D458. 

Zhang, R. and Lin, Y. (2009b) 'DEG 5.0, a database of essential genes in both 

prokaryotes and eukaryotes', Nucleic Acids Research, 37(SUPPL. 1), pp. D455-

D458. 

Zipser, D. (1969) 'Polar mutations and operon function', Nature, 221(5175), pp. 

21-25. 



   

188 

Appendix A: Growth Media & Buffer compositions 

Luria-Bertani (LB) Agar 

Tryptone    - 10.0 g/L 

Yeast Extract    - 5.0 g/L 

Sodium Chloride   - 5.0 g/L 

Agar     - 15.0 g/L 

Muller Hinton Broth 

Beef Infusion Solids   - 2.0 g/L 

Casein hydrolysate   - 17.5 g/L 

Starch     - 1.5 g/L 

SOB medium 

Tryptone    - 20g/L 

Yeast extract    - 5g/L 

Sodium chloride   - 0.5g/L 

Potassium chloride   - 10 ml of 250 mM 

Magnesium Chloride  - 5ml sterile 2 M prior to use  

SOC Medium 

As SOB medium with the addition of 20 m l of 1 M glucose to provide a final 20 

mM concentration. 

M9 Minimal media 

Disodium phosphate  -  33.78 g/L   

Monopotassium phosphate - 15 g/L  

Sodium chloride   - 2.5 g/L  
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Ammonium chloride   - 5 g/L  

Magnesium sulphate  -  2 mM  

Glycerol    - 20%   

Calcium chloride   - 0.1 mM  

Iron Sulphate    - 0.01 mM  
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Appendix B: Publications associated with this study 

 

Mondhe, M., Ashley Chessher, A., Good, L., Stach, J.E.M (2012). Species-

selective killing of bacteria by "smart" antimicrobial peptide-PNAs. (In 

review at time of print). 

 

Chessher, A. (2012).  Evaluating the suitability of essential genes as targets for 

antibiotic screening assays using proteomics. Protein & Cell. 3(1): 5–7.
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Broad-spectrum antimicrobials kill indiscriminately, a property that can lead to 

negative clinical consequences and an increase in the incidence of resistance. 

Species-specific antimicrobials that could selectively kill pathogenic bacteria 

without targeting other species in the microbiome could limit these problems. 

The pathogen genome presents an excellent target for the development of such 

antimicrobials. In this study we report the design and evaluation of species-

selective peptide nucleic acid (PNA) antibacterials. Selective growth inhibition of 

B. subtilis, E. coli, K. pnuemoniae and S. enterica serovar Typhimurium in 

axenic or mixed culture could be achieved with PNAs that exploit species 

differences in the translation initiation region of essential genes. An S. 

Typhimurium-specific PNA targeting ftsZ resulted in a cell elongation phenotype 

that was not observed in E. coli, providing phenotypic evidence of the selectivity 

of PNA-based antimicrobials. Analysis of the genomes of E. coli and S. 

Typhimurium gave a conservative estimate of >150 PNA targets that could 

potentially discriminate between these two closely related species. This work 

provides a basis for the development of a single class of antimicrobial with a 

tuneable spectrum of activity. 

 

Introduction. 

Treatment of bacterial infections with antimicrobial drugs has been clinically 

effective for over six decades. However, the rise of antimicrobial resistance 

threatens to limit options for the treatment of life-threatening microbial diseases 

(Jayaraman, 2009). Arturo Casadevall noted that antimicrobial therapy ‘is the 

only branch of medicine where therapeutic options were better in the mid-20th 

century than at the beginning of the 21st century (Casadevall, 2006)’. A critical 

factor behind the rise in resistance is the spectrum of activity of the antibacterial 

agent; the development of broad-spectrum agents (effective against a number 

of microbial species) enabled empirical usage (i.e. without the use of diagnostic 

identification of the pathogen) and rapid treatment of fulminate microbial 

infections. However, it is this broad-spectrum of activity that is partly responsible 

for the prevalence of multi-drug resistant bacterial pathogens. Also, the human 

body plays host to hundreds of microbial species, collectively termed the 

microbiome (Eckburg et al., 2005), the majority of which are beneficial to health. 



   

3 

Thus, the use of non-specific broad-spectrum antimicrobial agents will have 

unintended detrimental affects on the microbiome, which can result in 

colonization of pathogenic microbes. Examples of such opportunistic infections 

include Clostridium difficile-associated diarrhea, antibiotic-associated colitis and 

candidiasis (Fowler et al., 2007; Casadevall, 2009). Perhaps of greater concern 

is the link between the microbiome and the normal development of the immune 

system; there are indications that the use of broad-spectrum agents may 

increase the risk of diseases such as asthma, eczema, rhinoconjunctivitis and 

breast cancer (Velicer et al., 2004; Foliaki et al., 2009). Furthermore, broad-

spectrum antimicrobial treatment selects for resistance mechanisms in non-

target species that are readily transferred to pathogenic species (Hoban, 2003; 

Yates et al., 2006). The impact of broad-spectrum antimicrobial agents on the 

gut microflora was highlighted in a recent study by Jakobsson et al (Jakobsson 

et al., 2010): the authors reported that treatment of Helicobacter pylori infection 

with the macrolide antibiotic clarithromycin, resulted in perturbation of the gut 

microflora associated with an increase in level of the macrolide antibiotic 

resistance gene erm(B). These effects were observable four years after 

antibiotic exposure.  

Recent findings demonstrating the importance of the microbiome in host health, 

have led to a growing interest in the use of microbiota-targeted therapies that 

can eliminate individual strains of single species (Lemon et al., 2012), for 

example, through targeting of drugs to microbial genes (Holmes et al., 2012). 

The increasing incidence of multi-drug resistant bacteria, coupled to declining 

discovery of novel broad-spectrum antimicrobial compounds, will likely make 

the development of species-specific antimicrobials a necessity; simultaneously 

providing the market conditions required for such a change in emphasis within 

drug development companies. Improved on-site diagnostics should soon enable 

pathogen/drug pairing in clinics. The development and implementation of any 

species-specific antimicrobial possess significant clinical challenges: 

nevertheless, the approach, alongside immunotherapy aimed at improving host 

responses, is predicted to deliver the “Third Age of antimicrobial therapy 

(Casadevall, 2006; Casadevall, 2009; Then and Sahl, 2010)”.  

     Technologies for species-specific pathogen inhibition include 

immunotherapy, radioimmunotherapy, anti-virulence agents, and phage therapy 
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(Then and Sahl, 2010, and references therein). Growing interest in narrow-

spectrum antimicrobial compounds is evident in recent studies that have 

developed species-specific antimicrobial screens (Granieri et al., 2009) and 

through the identification of species-selective antimicrobial compounds (Qiu et 

al., 2003; Qiu et al., 2005; Eckert et al., 2006a; Eckert et al., 2006b; Yamaichi et 

al., 2009; Srinivas et al., 2010). Theoretically, the DNA sequence of the genome 

itself provides the ultimate species-specific target; antimicrobial compounds that 

bind to nucleic acids in a sequence-specific manner, can be used to define the 

spectrum of activity. Natural products such as netropsin and distamycin bind to 

adenine and thymine rich DNA sequences in the minor groove of DNA (Turner 

and Denny, 2000), with synthetic compounds that recognise all four bases 

having been described (Dervan, 2001). An alternative approach to targeting 

specific sequences in the chromosome is silencing of essential genes using 

antisense mechanisms. Exogenously delivered antisense DNA 

oligonucleotides, designed to bind to specific mRNA sequences, have been 

demonstrated to be effective against bacterial targets (White et al., 1997; Harth 

et al., 2000). Furthermore, DNA mimics such as peptide nucleic acid (PNA) and 

phosphorodiamidate morpholino (PMO) have uncharged backbone structures 

that enable delivery across negatively-charged bacterial cell barriers, and offer 

superior hybridization and stability properties when compared to modified DNA 

oligonucleotides (Good et al., 2000b). Attachment of carrier peptides to 

PNAs/PMOs can enhance cell permeation and uptake and improve antisense 

effects (Good et al., 2001a). PNAs and PMOs targeted to the translation 

initiation region (TIR) of essential mRNAs are bactericidal and have been 

successfully applied to a number of different species (Good and Nielsen, 1998; 

Nekhotiaeva et al., 2004; Kurupati et al., 2007; Shen et al., 2009). Bactericidal 

PNAs/PMOs are typically 10 bp in length and are more sensitive to target 

mismatches than equivalent DNA oligonucleotides, properties that make them 

highly suited to species discrimination.  

 In this study we tested the hypothesis that the selective binding 

properties of peptide PNA antimicrobials can be exploited to selectively target 

certain species in mixed culture based on sequence differences in the 

translation initiation region of essential genes. We report, for the first time, that 
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peptide-PNAs can form the basis of a single class of antimicrobial with a 

tuneable spectrum of activity. 

  

MATERIALS AND METHODS 

 

Bacterial strains and growth conditions. A list of the strains used in this study is 

given in Table 1. All strains were grown in Miller’s modified Luria broth (MMLB; 

Sigma-Aldrich, UK) with constant shaking (200 rpm) at 37oC. For mixed-culture 

growth, MMLB was inoculated with 1 x 104 CFU/ml; the proportion of each 

species needed to give reproducible species counts after 16 h of growth at 

35oC was experimentally determined (Table S1 in the supplementary material). 

 

Design of species-specific peptide PNAs: General guidelines for the design of 

antibacterial peptide-PNAs are described elsewhere (Good and Nielsen, 1998; 

Good et al., 2000b; Good et al., 2001a; Good, 2002). Criteria used for the 

design of species-specific peptide-PNAs are described in the results section. 

The Database of Essential Genes (Zhang and Lin, 2009a) and BLAST (Altschul 

et al., 1990) were used to identify any essential gene homologues present in all 

four species used in this study. The Artemis program (Rutherford et al., 2000) 

was used to extract twenty base-pairs (-10 - + 10 bases relative to the start 

codon) of the TIRs from the genome sequences of Bacillus subtilis (Kobayashi 

et al., 2003a), Escherichia coli DH10B (Durfee et al., 2008a), Klebsiella 

pneumoniae and Salmonella enterica serovar Typhimurium LT2 (Knuth et al., 

2004) (GenBank accession numbers: AL009126; CP000948; CP000647; and 

AL513382 respectively). The 20 bp TIRs from gene homologues were aligned in 

Clustal X version 2.0 (Larkin et al., 2007) and the number of base-pair 

mismatches between species was determined. The predicted thermal stability 

(Tm) of PNA/DNA duplexes was determined according to formula of Giesen et 

al. 1998 (Giesen et al., 1998). A genomic analysis of the possible binding sites 

of the PNAs within their target species was conducted in Artemis, using a cut-off 

of greater than 2 bp mismatches. Secondly, to comprehensively examine the 

number of potential antibacterial PNAs that could be used to discriminate 
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between two closely related species, a semi-automated method was employed: 

genome sequences were use to identify the start codon positions of essential 

genes from E. coli DH10B and S. Typhimurium LT2. A custom PERL script was 

used to extract the -5 - + 5 bases relative to the start codon of each gene. The 

10 bp sequences were used for an all-against-all comparison using standalone 

BLAST (Altschul et al., 1990; McGinnis and Madden, 2004a) to identify the TIRs 

of essential genes that were amenable to the design of species specific PNAs. 

The peptide-PNAs used in this study and their properties are listed in Table 2. 

 

Antimicrobial susceptibility and peptide-PNA minimal inhibitory concentration 

(MIC) testing. Strains were tested with twenty different antibiotic disks (Oxoid, 

UK) representing the major classes of antimicrobial compounds. Tests were 

done according to the standardized disc susceptibility testing method of the 

British Society for Antimicrobial Chemotherapy (Andrews, 2001; Andrews, 

2009). The minimum inhibitory concentration (MIC) of the peptide-PNA 

conjugants were determined using a method modified from Hacek et al (Hacek 

et al., 1999) and Friedman et al (Friedman et al., 2006): Peptide-PNA 

conjugants, obtained as lyophilized powder (Panagene, Korea), were dissolved 

in ddH20. MIC assays were performed in an ultra low-bind (Costar, UK) 

polystyrene 96-well plate format in a final volume of 150 µl MMLB. An extended 

gradient of peptide-PNA concentrations was created by combining five sets of 

twofold serial dilutions from four starting concentrations (10, 4.8, 3.2 and 3 and 

2 µM); giving 55 final peptide-PNA concentrations which extended over five 

rows of the 96-well plate. All cultures were incubated at 35oC for 16 h without 

shaking or agitation. Each peptide-PNA MIC calculation was performed in 

triplicate, each replicate representing a different starting colony. Mixed-culture 

experiments were conducted as above with a 1 x 104 CFU/ml starting inoculum. 

For growth curve analysis, 200 l cultures were grown in a BioTek PowerWave 

HT spectrophotometer, under constant agitation at 37oC in a 96-well plate 

covered with a breathable film. Growth (OD550) was monitored every 5 mins, 

each experiment was performed in triplicate. 
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Microscopy. Cells prepared for fluorescence imaging were grown in a BioTek 

PowerWave HT spectrophotometer as above. After six hours 10 l of culture 

was removed, washed and resuspended in 1 X PBS by centrifugation (13, 000 x 

g). Cells were applied to an agarose pad (Levin, 2002b) and viewed using an 

epifluorescence Leica DMRB microscope. An EXi Aqua CCD camera 

(QImaging) and Image Pro Plus (MediaCybernetics) were used for image 

acquisition and processing. 

 

Species identification. In mixed-culture experiments, colonies on MMLB plates 

were identified using a combination of phenotypic and genotypic properties. In 

order to rapidly identify species post peptide-PNA treatment, we designed a 

species-specific PCR-based identification method. Primer sets for peptide 

deformylase (def) were designed that yielded different sized amplicons for each 

species: B. subtilis (352 bp), E. coli (394 bp), K. pneumoniae (231 bp) and S. 

Typhimurium (280 bp) (see Table S2). All colonies were picked from the plates 

with the most countable dilution (30-50 cfu per plate) and used directly for 

colony multiplex PCR in 10 l reaction volumes according to the simplified 

method of (Menossi et al., 2000). Colonies were identified using standards 

prepared from pure cultures. Furthermore, in the three-species mixed-culture 

experiments, colonies were identified using the colony PCR protocol with 16S 

rRNA gene primers. The sequences of both strands of the resulting amplicons 

were determined with the BigDye (version 3.1) cycle sequencing kit and a 3730 

DNA analyzer (Applied Biosystems, UK). Species identity was confirmed using 

the SEQMATCH function of the Ribosomal Database Project (Cole et al., 2009) 

 

RESULTS 

 

Peptide-PNA mediated growth inhibition and species-selectivity. The four 

bacterial species used in this study were chosen as they have all been reported 

to be susceptible to antisense antibiotics (Good et al., 2001a; Tilley et al., 2006; 

Kurupati et al., 2007; Shen et al., 2009). The parameters used in the design of 
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species-selective peptide-PNAs resulted in a number of potential gene targets 

that could be used for species-selective growth inhibition. The following criteria 

were used for the design of species-selective peptide PNAs were: 1) target 

gene is essential and homologues are present in all four species used in this 

study; 2) the translation initiation region (TIR) of the mRNA had at least two 

base-pair differences between species (see below); 3) the TIR sequence was 

amenable to the design of peptide-PNAs with low melting temperatures; 4) 

where possible, off-target sites within and between species were not in the TIRs 

of essential genes; and 5) evidence that gene silencing of the target and/or 

inhibition of its cognate protein is growth inhibitory. We have previously shown 

that murA and ftsZ are good targets for peptide-PNA mediated growth inhibition 

(Goh et al., 2009), both genes were identified in this study as potential targets 

for species-selective peptide-PNAs, and thus, were selected for further study. 

Two base-pair mismatches were selected, as PNAs with one base-pair 

mismatch will bind to the target, but with reduced affinity (Good et al., 2001a); 

peptide-PNAs with one base-pair mismatch to their target sites have 

approximately 33% increase in MIC (Liam Good, unpublished). This is in 

agreement with the design parameters suggest by Dryselius et al. (Dryselius et 

al., 2003) in which they suggest 1-bp mismatches within the TIR of off-target 

genes should be avoided.  

The peptide-PNAs designed in this study were assayed for their antibacterial 

activity against both target and non-target species. The previously reported 

En108 peptide-PNA (called Ec108 in (Goh et al., 2009)) was used as a control 

to test the feasibility of species-selectivity at a broad taxonomic level; E. coli, K. 

pneumoniae and S. Typhimurium (Gram-negative, Enterobacteriaceae) have 

identical acpP TIRs and thus all three species should be susceptible to En108, 

while the acpP TIR of Bacillus subtilis (Gram-positive, Bacillaceae) has six 

base-pair mismatches and should be resistant to En108. Antibacterial assays 

with En108 proved this to be the case; En108 had an MIC of 1.2, 0.4 and 0.3 

M for E. coli, K. pneumoniae and S. Typhimurium respectively (Table 2), and 

had no detectable antibacterial activity against B. subtilis at concentrations of up 

to 20 M (data not shown). Similarly, the species-selective PNAs for B. subtilis, 

K. pneumoniae and S. Typhimurium were only antibacterial to the intended 

species (Fig. 1A). The E. coli-selective Ec1000 was unexpectedly cross-reactive 
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with S. Typhimurium (discussed below). Table 3 shows the analysis of potential 

binding sites within the genomes of the target species. Of note is the difference 

in MIC between E. coli, K. pneumoniae and S. Typhimurium when treated with 

the acpP-targeting En108; the MIC of this PNA was 3 and 4 fold less in K. 

pneumoniae and S. Typhimurium, respectively (Table 2). Analysis of the binding 

sites of En108, Kp0001 and Se0001 in the genomes of these species revealed 

that En108 likely binds in the TIR region of other essential genes in K. 

pneumoniae (mukF and ribH) and S. Typhimurium (yhhM) each with a 1 bp 

mismatch. This could account for the decreased MIC in these species, however 

the relationship is not straightforward as Se0001 is predicted to bind in the TIR 

of at least three other genes determined to be essential in E. coli and S. 

Typhimurium (hemK, lnt and rluA) and has an MIC equivalent to that of En108 

in E. coli (Table 2). Furthermore, there is no obvious relationship between the 

MIC of a peptide-PNA and the number of off-targets in the genome of the target 

species, including those that bind in the TIRs of both essential and non-

essential genes (Table 3). Reasons for the possible differences between the 

MICs of the different peptide-PNAs are discussed below.  

Use of species-selective PNAs in mixed culture. To test the selectivity of 

peptide-PNAs in mixed culture, we first used reciprocal treatment in two-species 

culture (Fig. 1B). When mixed cultures of E. coli and K. pneumoniae were 

treated with 3.2 M of E. coli-selective Ec1000, after 16 hrs of incubation only K. 

pneumoniae was detectable. Untreated control cultures maintained both 

species throughout the incubation period. Reciprocal treatment of the same 

mixed culture with 3.2 M of K. pneumoniae-specific Kp0001 showed equivalent 

selectivity. Species-selective growth inhibition was also observed in mixed 

culture of K. pneumoniae and S. Typhimurium treated with 3.2 M Kp0001 or 

2.0 M Se0001 (Fig. 1B). S. Typhimurium was successfully removed from 

mixed culture with E. coli when treated with 2.0 M Se0001, but reciprocal 

removal of E. coli could not be achieved with Ec1000 (see above). Three-

species mixed culture of B. subtilis, K. pneumoniae and S. Typhimurium was 

used to test the possibility of specifically targeting either one or two species, 

with a single peptide-PNA or a combination of two. Kp0001 and Se0001 both at 

4.5 M were successfully applied to the three-species mixed culture; only B. 

subtilis and S. Typhimurium could be detected after 16 hrs incubation with 
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Kp0001, and only B. subtilis and K. pneumoniae after Se0001 treatment (Fig. 

2). Treatment of the three-species culture with 3.5 M En108 resulted in the 

expected selective growth inhibition of both enteric species, with only B. subtilis 

detectable after after 16 hrs. Combined use of Kp0001 and Se0001, at 4.5 M 

each was also able to specifically remove K. pneumoniae and S. Typhimurium 

from the mixed culture, however there was a significant difference in the final B. 

subtilis CFU count between the En108 and dual Kp0001/Se0001 treated 

cultures. This indicates that, while both Kp0001 and Se0001 had no affect on B. 

subtilis at concentrations of > 4.5 M, combined use of the PNAs may have a 

weak synergistic antibacterial effect (Stach and Good, 2011). Mixed culture 

experiments with four species were not attempted in this study, however the 

potential of peptide-PNAs as species-selective antibacterial compounds is 

highlighted by a comparison of all possible species combinations for the four 

species tested in this study, alongside the antibiotic spectrum of the peptide-

PNAs and twenty known antibiotics (Fig. S1). Only peptide-PNAs are capable of 

species-selective growth inhibition for the three Gram-negative species. For 

these species, there are six possible outcomes for species-selective 

antibacterial treatment of two-species mixed cultures. Treatment with the twenty 

antibiotics assessed in this study (Table S3), could theoretically achieve four of 

these outcomes (all combinations except those requiring inhibition of E. coli or 

K. pneumoniae in combination with S. Typhimurium). Use of peptide-PNAs 

Ec1000, Se0001 and Kp0001 enabled five of the possible outcomes; 

unexpected cross-reactivity of Ec1000 prevented selective inhibition of E. coli in 

combination with S. Typhimurium. However, it is very likely that evaluation of 

other E. coli-selective peptide PNAs would be able to rectify this result (see 

below). Furthermore, of the known antibiotics, only streptomycin could select 

between E. coli and S. Typhimurium. This would not be the case for most 

strains of E. coli as strain DH10B has an rpsL mutation that confers resistance 

to streptomycin. Unlike the peptide-PNAs, in mixed culture experiments with 

three species (Fig. 2), no combination of the known antibiotics would be able to 

selectively kill any of the Gram-negative species tested without killing B. subtilis. 

Peptide-PNA mediated discrimination of E. coli and S. Typhimurium. The 

observation that Ec1000 was antibacterial to the non-target S. Typhimurium led 

us to use a comprehensive genomic analysis to determine the number of 
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potential targets that could be used to design peptide-PNAs that would 

discriminate between these two closely related species. For the purposes of 

defining potential discriminatory target sites, we allowed for 1 bp mismatch 

difference between the target site of S. Typhimurium and E. coli; while 1 bp 

mismatch is not likely to be sufficient to prevent binding, differences in gene 

silencing activity may be sufficient, in some cases, to enable the development of 

peptide-PNAs that would be selectively antibacterial to S. Typhimurium. Three 

separate BLAST analyses were done: 1) TIR sequences of genes described as 

essential in S. Typhimurium against the TIRs of E. coli essential genes; 2) TIRs 

of S. Typhimurium genes described as essential in E. coli, against TIRs of E. 

coli essential genes and 3) the TIRs of E. coli essential genes against TIR 

sequences of genes described as essential in S. Typhimurium (Tables S4-6). 

Using the essential genes of S. Typhimurium from the DEG database, and the -

5 to +5 TIR region we identified 113 genes that could serve as targets for 

peptide-PNAs that would be selectively antibacterial to S. Typhimurium over E. 

coli (Table S4). Of these, 68 genes had orthologues not identified as essential 

in E. coli, 34 did not have orthologues in E. coli and of the 11 genes that had 

essential orthologues in E. coli, 5 of these had TIR sequences with > 2 bp 

mismatches. The fact that peptide-PNA Se0001, was selectively antibacterial 

for S. Typhimurium, and designed to target a gene not reported to be essential 

in S. Typhimurium indicates that orthologues of genes that are identified as 

essential in E. coli are likely to be essential in S. Typhimurium. Furthermore, E. 

coli genes have been identified as essential by failure to construct a specific 

knockout, whereas those of S. Typhimurium were identified by trapping lethal 

insertions (Knuth et al., 2004). We applied the bioinformatic screening 

technique described above to identify peptide-PNAs that would discriminate 

between S. Typhimurium and E. coli using the essential genes of E. coli as the 

query sequences. This analysis identified a further 93 orthologous genes that 

could potentially act as targets for discriminatory peptide-PNAs (Table S5). Of 

these, 47 genes had TIRs with > 2 bp mismatches between the two species, 

from which ftsZ was chosen for further study.  This target was chosen for the 

reasons given above, and because gene silencing of ftsZ should result in a cell 

filamentation phenotype that would enable microscopic evaluation of the 

specificity of the peptide-PNA in mixed culture. DsRed-labelled E. coli AC01, 

and GFP-labelled S. Typhimurium AC02 were exposed to peptide-PNA Se0002 
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at concentrations ≤ 5 M. E. coli AC01 was unaffected by Se0002 at all 

concentrations tested, whereas S. Typhimurium growth was inhibited at 1.25 

M (0.5 × MIC), with a lag phase ca. 7.5 hrs longer than that of the untreated 

sample (Fig. 3a). Growth of S. Typhimurium observed in Se0002-treated 

cultures after 10. 5 hrs was not due to the generation of spontaneous resistance 

mutants, as samples of cells taken after 14 hrs of incubation, passaged into 

fresh media containing the same concentration of Se0002, exhibited identical 

growth kinetics to the parent culture. Growth is more likely due to the effective 

concentration of Se0002 falling below the minimum inhibitory concentration, 

caused by the peptide-PNA accumulating in non-growing cells, adsorbing to the 

plastic of the well, or proteolysis of the carrier peptide. Mixed cultures of E. coli 

AC01 and S. Typhimurium AC02 prepared as above, treated with 1.25 M of 

Se0002 were sampled after 6 hrs of growth and were observed by fluorescence 

microscopy (Fig. 3b). As predicted, E. coli AC01 treated with Se0002 had an 

identical phenotype to untreated controls, whereas S. Typhimurium AC02 cells 

displayed a distinct filamentous phenotype only upon treatment with Se0002. 

This phenotype is consistent with previous studies using anti-ftsZ peptide-PNAs 

in E. coli (Goh et al., 2009). These results, and those of the mixed culture 

experiments detailed above, prove that it is possible to employ antisense-based 

molecules as species-selective antimicrobial agents in mixed culture.  
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DISCUSSION 

 

The aim of this study was to test the hypothesis that peptide-PNAs can be 

applied as species-selective antimicrobial compounds. We demonstrate, for the 

first time, the design and application of species-selective antisense 

antibacterials. Antibacterial peptide-PNAs evaluated against B. subtilis, E. coli, 

K. pneumoniae and S. Typhimurium, both in single and mixed cultures, with the 

exception of Ec1000, displayed detectable antibacterial activity against the 

intended species only. Peptide-PNA treatment of mixed cultures enabled 

selective growth inhibition that, in theory, could not be achieved using the 

twenty antibiotics evaluated in this study. The current requirement for narrow-

spectrum antimicrobial agents will likely be met by both small molecule 

approaches, where examples already exist (Then and Sahl, 2010), and by novel 

approaches such as the use of antisense agents. Our findings suggest that 

PNAs are good candidates for narrow-spectrum antimicrobials. For species-

selectivity, 16S rRNA would appear to be a logical candidate. However, while 

peptide-PNAs targeted to 16S rRNA have been demonstrated to be bactericidal 

and sequence selective (Good and Nielsen, 1998; Hatamoto et al., 2009), prior 

to this study, species selectivity has not been observed and may be difficult to 

achieve due to sequence conservation within functional regions of 16S rRNA. 

Currently, while the mode of action of peptide-PNA antimicrobials is well 

understood (Good and Nielsen, 1998; Good et al., 2000b; Good et al., 2001a; 

Good, 2002), differences in uptake of the peptide-PNA (see below), species 

sensitivity and the affect of non-target binding remain important areas for future 

experimentation.  

The observation that En108 has different activity in three closely related species 

is intriguing from the perspective of improving the antibacterial activity of 

peptide-PNAs. Analysis of the binding sites of En108 in the genomes of the 

three species provides a possible explanation: En108 will bind (allowing for 1 bp 

mismatch) to the TIRs of off-target essential genes in both, K. pneumoniae and 

S. enterica, and only the intended target in E. coli. Antisense-based 

antimicrobials have been shown to have greater growth inhibitory activity when 

the expression of multiple essential genes is simultaneously inhibited (Harth et 
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al., 2000). While the efficacy of gene silencing with mismatched PNAs may be 

reduced, it is reasonable to suggest that silencing of more than one essential 

gene will lead to lower MICs. En108 will bind to two off-target essential genes in 

K. pneumoniae, and one in S. Typhimurium, yet has a lower MIC in the later. 

This may be explained by mechanistic differences in the gene silencing itself 

(binding efficacy, Tm differences caused by mismatches, and location of the off-

target relative to TIR) or differences in the stringency of requirement for the 

target and off-target genes, i.e. a small reduction in the mRNA pool of the two 

off-targets in K. pneumoniae may be better tolerated than that of the off-targets 

in S. Typhimurium (Goh et al., 2009).  Differences in the susceptibility of the 

three species to En108 may also be explained by uptake efficiency: The 

transporter protein SbmA has recently been identified as required for peptide-

PNA uptake in E. coli (A, Ghosal, J.E.M. Stach, A. Vitali and P.E. Nielsen, 

submitted for publication). Mutations in the sbmA gene affect uptake kinetics, 

and as E. coli shares 86% and 92% similarity to its orthologues in K. 

pneumoniae and S. Typhimurium respectively, the observed difference in 

sensitivity to En108 in these three species may be explained by differences in 

SbmA-mediated uptake. 

The finding that PNA Ec1000, designed to silence the murA gene of E. coli, was 

antibacterial to S. Typhimurium was unexpected. The parameters described for 

the design of species-selective PNAs (see Materials & Methods) should 

theoretically prevent binding of PNAs to the TIRs of essential genes in non-

target species. A study by Dryselius et al. (Dryselius et al., 2003) demonstrated 

that the TIR of a gene is most sensitive to antisense PNA gene silencing. 

However, some PNAs that bind intragenically were shown to significantly 

elevate gene expression. Furthermore, PNAs can repress co-transcribed genes; 

a PNA binding to the TIR of a nonessential gene, may affect the transcription of 

an essential downstream gene to a varying degree depending on transcript 

stability (Dryselius et al., 2006b). Thus, the unexpected antibacterial activity of 

Ec1000 in S. Typhimurium may be due to such events. An analysis of the 

binding sites (allowing for 1 bp mismatch) for Ec1000 in S. Typhimurium shows 

that it binds intragenically to a number of essential genes (alaS, fusA, hemE 

and rplF) that are reported to be toxic upon overproduction (Kitagawa et al., 

2005b). Also, Ec1000 binds (1 bp mismatch) in the intergenic region of rpsN 
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and rplE, genes that are located in a ribosomal protein operon. Thus, it is 

possible that translation of the transcript rplNXE-rpsNH-rplFR-rpsE-rpmD-rplO-

secY-rpmJ could be repressed for genes downstream of rpsE. The predicted 

ribosomal binding site for rpsN is 25 bp upstream of the start codon, with the 

Ec1000 binding site 12 bp upstream, explaining why it was missed in the initial 

screen for undesirable off-target binding sites. In S. Typhimurium, Ec1000 can 

form a duplex in the TIRs of six genes: pipC, a pathogenicity island-encoded 

protein; pepP, a metallopeptidase; mrcA, a murein 

transglycosylase/transpeptidase; STM1127, a putative transcriptional regulator; 

STM3527, a hypothetical protein and STM4051, a putative outer membrane 

protein. None of these genes are reported to be essential in S. Typhimurium or 

the other species used in this study. It is also possible that the Ec1000 PNA 

may bind to a non-coding RNA. Non-coding RNAs are well documented as 

regulatory elements in S. Typhimurium (Vogel, 2009), and while we could 

identify no potential binding between Ec1000 and known non-coding RNAs in S. 

Typhimurium (Pfeiffer et al., 2007) there may be as yet unidentified non-coding 

RNAs that are transcribed from, or interact with, intergenic Ec1000 binding 

sites; disruption of a RNA antitoxin is one possible mechanism that would lead 

to bactericide (Faridani et al., 2006). It is unlikely that small elevations in 

essential gene expression, partial silencing of non-essential genes, or disruption 

of non-coding RNAs could be effective alone, but in combination they may be 

growth inhibitory. The elucidation of the mechanism responsible for Ec1000-

induced growth inhibition in S. Typhimurium is required for the continued 

development of species-selective antibacterial PNAs; understanding of the 

mechanism will enable the design parameters of peptide-PNAs to be modified 

to exclude likely off-target effects and/or identification of new targets for gene-

silencing antimicrobials. Comparative genomics between sensitive and resistant 

species, qRT-PCR  (Goh et al., 2009) and the introduction of point mutations 

within putative targets could be applied to identify the cause of the off-target 

selectivity in S. Typhimurium. While the unexpected activity of Ec1000 

prevented its use as an E. coli species-selective peptide-PNA, our in-silico 

analysis, and the identification of E. coli-specific TIRs (Table S6) suggest that 

finding targets that are amenable for discriminating E. coli from closely related 

species is readily achievable. There are 46 targets, in the -5 to +5 TIR region of 

essential genes in E. coli, that have >2 bp mismatches with orthologs in S. 
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Typhimurium (Table S5). The in silico approach was applied in the successful 

design of Se0002, and thus a peptide-PNA raised to the same target in E. coli, 

will likely discriminate E. coli for S. Typhimurium. Furthermore, the number of 

potential species-selective targets between these two strains is likely an 

underestimate as we confined our search to a single target region (-5 to +5 of 

the TIR) and peptide-PNAs with gene silencing activity have been described 

based on a target region at least twice this size (Dryselius et al., 2003).  

As the peptide-PNA mediated growth inhibition is dependent on the silencing of 

an essential gene or genes, a better understanding of which genes are 

essential in the specific pathogen, in a relevant (i.e. in host) environment, will 

facilitate in the design of peptide-PNAs. For example, the silencing of genes 

that are essential for survival or virulence in the host (Fields et al., 1986) or 

antimicrobial resistance factors, as peptide-PNAs silencing of such genes can 

reestablish the antimicrobial sensitive phenotype in resistant strains (Good and 

Nielsen, 1998; Jeon and Zhang, 2009b). Discovery of synthetically lethal gene 

combinations in bacteria (Typas et al., 2008) will also broaden the number of 

targets available for the design of species-selective peptide-PNAs.  

As peptide-PNAs are used within environments of increasing species diversity, 

it is clear that there will be a higher the likelihood of non-target species activity, 

as a consequence of identical target regions or off-target binding (as is likely the 

case for Ec1000 in S. Typhimurium). Nevertheless, relative to currently used 

antibiotics, PNAs provide greater opportunity for the design of narrow-spectrum 

antimicrobials where the primary target is dictated by the nucleic acid sequence. 

The availability of in-depth microbiome sequencing will enable the assessment 

(in terms of spectrum of activity) of PNA-based antimicrobial therapy in an 

animal model to be assessed; aid in the determination of conditions where such 

strategies may provide alternative or complementary therapy (Knight, 2010), 

and in the design of species-selective PNAs through exhaustive prediction of 

binding sites in all species of the microbiome.    

While examples of bacterial resistance to peptide-PNAs have not been 

published, it is reasonable to assume that it may arise through point mutation of 

the PNA binding site. In this case, activity would be restored by simple 

modification of the PNA sequence, whereas point mutations that lead to 
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structural changes in the binding site of proteins and ribosomes require 

chemical modification of the antimicrobial based on structure activity 

relationships that are not straightforward to predict. Resistance due to 

prevention of uptake (as above), degradation of the peptide carrier, or efflux 

remain possible, and as such, characterization of peptide-PNA resistance 

mutants and the evaluation of alternative PNA carriers, remain priority areas for 

the development of antimicrobial PNAs.  

Narrow-spectrum antimicrobial therapy has likely been hindered by the need to 

treat infections quickly without waiting for identification of the pathogen. 

However, with the advent of cheap sequencing and rapid diagnostics, the 

benefits of species-selective or narrow spectrum antimicrobials may improve 

patient outcome and ameliorate the development of antimicrobial resistance. 

Antimicrobials that act at the gene sequence level, such as PNAs, have great 

potential in the development of what Casadevall has termed them ‘Third-Age 

antimicrobials’ (Casadevall, 2006). 
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 FIG. 1. Species-selective antibacterial peptide-PNAs in two-species mixed 

culture. E. coli (dark grey), K. pneumoniae (white) and S. Typhimurium (light 

grey). All cultures were incubated for 16 hrs. A) axenic cultures of the species 

were treated with E. coli- specific Ec1000 at 3.2 M,  K. pneumoniae-specific 

Kp0001 at 3.2 M and S. Typhimurium-specific Se0001 at 2.0 M. Asterisks 

indicate species-selective growth inhibition of E. coli, K. pneumoniae and S. 

Typhimurium respectively. B) Two-species mixed cultures treated with peptide-

PNAs as above. The control cultures show the relative proportion of the two 

species without treatment, the two treatments to the left of the control represent 

the same mixed culture treated with a peptide-PNA. Black arrows indicate non 

species-selective growth inhibition of S. Typhimurium by Ec1000.  
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FIG. 2. Species-selective antibacterial peptide-PNAs in three-species mixed 

culture. B. subtilis (dark grey), K. pneumoniae (white) and S. Typhimurium (light 

grey) in mixed culture were separately treated with Ec108 at 3.5 M, Kp0001 or 

Se0001 at 4.5 M or by combined treatment of Kp0001 and Se0001 both at 4.5 

M. All cultures were incubated for 16 hrs. Selective inhibition of either K. 

pneumoniae or S. Typhimurium individually or together, achieved with the 

peptide-PNAs, could not theoretically be achieved with any combination of the 

twenty known antimicrobial compounds tested in this study. 

 

 

 

FIG. 3. S. Typhimurium-selective growth inhibition. Peptide-PNA Se0002 was 

designed to target the -5 to +5 region of the translational initiation region (TIR) 

of ftsZ in S. Typhimurium. Se0002 has 2 base pair mismatches in the TIR of 

ftsZ in E. coli. (A) Growth curve analysis of Se0002 in pure culture. E. coli 

growth in the presence of 1.25 M Se0002 (solid line) was identical to that of 

untreated controls (not shown). S. Typhimurium growth was inhibited in the 

presence of 1.25 M of Se0002 (dotted line) relative to the untreated control 

(dashed line). Growth in the treated samples after 10 hrs was not due to 

resistance (see text for details). (B) Mixed cultures of GFP-labeled S. 

Typhimurium AC02 and DsRed-labeled E. coli AC01 were treated with 1.25 M 

Se0002; and imaged by fluorescence microscopy after 6 hrs of incubation. The 
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filamentous growth phenotype was only observed in S. Typhimurium AC02 and 

is consistent with silencing of ftsZ expression.  
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Table 1. Bacterial strains used in this study. a American Type Culture Collection b Salmonella Genetic Stock Center 
 

 
 

 

 

  

Strain Source Genotype Characteristic 

Bacillus subtilis susp subtilis 168 
ATCCa 
23857 

trpC2 
Genome sequenced 
strain 

Escherichia coli DH10B Invitroge
n 

F- endA1, recA1, galE15, 
galK16, nupG, rpsL, ΔlacX74, 
Φ80lacZΔM15, araD139, 
Δ(ara,leu)7697, mcrA, Δ(mrr-
hsdRMS-mcrBC), λ- 

Genome sequenced 
strain, parent of E. coli 
AC01 

E. coli AC01 This 
study 

As above, pDsRed-Express2  Expression of DsRed 
fluorescent protein 

Klebsiella pneumoniae subsp. 
pneumoniae 
 

ATCC 
700721 

n/a Genome sequenced 
strain 

Salmonella enterica serovar 
Typhimurium LT2 
 

SGSCb 
1412 

n/a Genome sequenced 
strain 

S. Typhimurium LT2 substr 
JR501 

SGSC 
1593 

hsdSA29, hsdSB121, hsdL6, 
metA22, metE55,1 trpC2, ilv-
452, H1-b, H2-e,n,x (cured of 
Fels 2), fla-66, nml, rpsL120, 
xyl-404, galE719 

Restriction-deficient, 
modification-proficient 
cloning strain of S. 
Typhimurium LT2, 
parent of S. 
Typhimurium AC02 

S. Typhimurium AC02 This 
study 

As above, pGFPuv Expression of green 
fluorescent protein 
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Table 2. Properties of peptide-PNAs used in this study. 
 

a 
Code refers to predicted species-specificity Bs =B. subtilis, Ec = E. coli, En = Enterobacteriaceae, Kp = K. pneumonia, Se = S. enterica 

Typhimurium 
b
 Indicates if specificity based on bioinformatic prediction was observed. 

c
 Target is shown as positions of nucleotides relative to the start codon.  

d
 Thermal stability of PNA/DNA duplex. 

e 
Ec1000 lacked predicted specificity, see text for details. 

  

Name
a
 

Targ
et  

Sequence 

Minimum Inhibitory Concentration (µM)  
Expected 
specificit
y

b
 

Target 
site 

Tm
d
 

Reference B. 
subtilis 

E. 
coli 

K. 
pneumonia 

S. 
Typhimurium 

Bs000
1 

ftsZ  
(KFF) 3K-eg-
caacatgcta 

4.0 >10 >10 >10 yes -4 to +6 
53.
5 

This study 

En108 acpP 
(KFF) 3K-eg-
ctcatactct 

>10 1.2 0.4 0.3 yes -5 to +5 
41.
5 

Goh et al. 
2009 

Ec100
0 

murA 
(KFF) 3K-eg-
ccatttagtt 

>10 2.4 >10 3.2 no
e
 -6 to +4 

44.
0 

This study 

Kp000
1 

murA 
(KFF) 3K-eg-
tccattgatt 

>10 >10 2.5 >10 yes -5 to +5 
46.
8 

This study 

Se000
1 

murA  
(KFF) 3K-eg-
tccattattg 

>10 >10 >10 1.2 yes -5 to +5 
43.
5 

This study 

Se000
2 

ftsZ 
(KFF) 3K-eg-
aacataatct 

>10 >10 >10 2.5 yes -5 to +5 
46.
1 

This study 
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Table 3. PNA binding site analysis in target species. 

Species PNA 
No. off 
targets

a
 

Off Targets within TIR
b
 of gene 

No. essential (gene)
c
 No. non-essential (gene) 

E. coli En108 128 0  11 (araH, arpB, cadB, gpp, ssuE, ugpQ, upp, yagW, yhjG, yodC, yqjF) 

K. pneumoniae En108 143 2  (mukF
d,e

, ribH
d,f

) 5 (gppA, kpn_00790, kpn_01124, kpn_04794, nlpA) 

S. Typhimurium En108 138 1  (yhhM
d
) 14 (dps, hycE, pmgI, STM0566, STM0762, STM1698, STM2137,  

      STM2481, STM3085, STM4218, thiJ, upp, ydcY, ygaC) 

E. coli Ec1000 201 2  (lnt
d,f

, rpsN
d,f

) 11 (elaD, hypF, mrcA, ppsR, rhsD, ybfD, ydcC, yfbM, yhaJ, yhhI,  

      yjgH) 

S. Typhimurium  Se0001 320 5  (aspC
f
, hemK

d,e,f
,  8 (fucA, ppiC, sodA, STM2343, STM2903, yajB, ybdF, yebB) 

   

 

 

 

lnt
d,f

, nuoI
f
, purD

f
,   

  rluA
d,f

)   

S. Typhimurium  Se0002 311 0  11 (celC, t0363, t0453, t1718, t2652, t4467, tdcE, umuC, yacK, yadI,  

      ybaB) 

K. pneumoniae Kp0001 157 3 ispA
d,f

, rpsN
d,f

,  3 (KPN_02027, KPN_04368, rhaT) 

    topB
e
   

B. subtilis Bs0001 104 

0  

4 (yabQ, yeeG, yruI, yvyE) 

 

a includes sites with  1base-pair mismatch with PNA 
b Translation Initiation Region 
c identified by BLAST searching of the Database of Essential Genes 
d essential in E. coli  
e essential in S. Typhimurium 
f essential in other prokaryotes 

ND Not determine 


