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Abstract 
 
Prostate cancer is the leading cause of cancer-related death in western men 

and results in approximately 10,000 deaths in the UK per year (Cancer 

Research UK). The androgen receptor (AR) plays a prominent role in both 

androgen-dependent (AD) and androgen-independent (AI) disease, but 

treatments that attempt to inactivate the receptor are in-effective. There is a 

requirement therefore to develop new therapies that permanently disrupt AR 

function and attenuate disease progression. Hence, identification of new targets 

within the AR signalling cascade is vital. Numerous AR co-regulators have been 

identified that regulate AR activity and several of these proteins have been 

suggested to play a role in the progression of AD and AI disease. In this project, 

using CaP cell lines, different aspects of the histone methyltransferase enzyme 

SET9 were studied including its phenotypic influence, expression dynamics and 

also the molecular mechanisms it mediates in CaP cells. 

 

Our previous data demonstrated that SET9 enhances AR activity by directly 

methylating the receptor at lysine (K) residue 632 in the KLKK motif within the 

hinge domain of the receptor, and this affected co-activator-AR interaction in 

LNCaP prostate cancer cells. To assess the physiological role of SET9 in CaP 

cells, SET9 expression in LNCaP cells was reduced by siRNA interference and 

the effects on proliferation and apoptosis were investigated. Interestingly, SET9 

knockdown reduced LNCaP cell proliferation and up-regulated apoptosis, 

implicating a role for SET9 in driving CaP progression. Moreover, a combination 

of SET9 knockdown and treatment with the DNA-damaging agent Doxorubicin 

in LNCaP cells synergised to increase apoptosis suggesting SET9 may be a 

potential therapeutic target for advanced CaP.  

 

Using a GFP-SET9 fusion protein and immunofluorescence, incorporating an 

anti-SET9 antibody, SET9 was demonstrated to be predominantly cytoplasmic 

in LNCaP and U2OS cells, suggesting additional, non-nuclear roles for SET9. 

To address this issue, and also to explore novel mechanisms of SET9 

regulation, the enzyme was immunoprecipitated from LNCaP cells and the 

immunoprecipitated material was subjected to in solution based protein 
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separation (OFF-GEL fractionation) followed by LC-MS/MS analysis to identify 

novel SET9 interacting proteins. Amongst several SET9 interacting partners, 

FXR1 was identified as a pro-apoptotic protein that facilitates SET9 knockdown 

mediated apoptosis in response to Doxorubicin. A predominantly cytoplasmic 

co-localisation pattern was confirmed for FXR1 using confocal microscopy, 

which was consistent with the data obtained from prostate clinical specimen 

using immunohistochemistry. Moreover, FXR1 was shown to function through 

AR to repress SET9 mediated co-activation of AR in reporter assays. More 

surprisingly, FXR1 displayed potent repressive effects on AR without the 

induction of SET9.  

 

In summary, this data highlights SET9 as a novel AR co-regulator that is 

important for prostate cancer cell growth. Further characterisation of SET9-

interacting proteins including FXR1 may also provide novel protein targets for 

CaP therapy.  
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1.1 The Prostate 

 
1.1.1 Basic Anatomy of the Prostate 
 

The human prostate is a composite organ made up of tubuloalveolar secretory 

glands and non-glandular elements which are tightly constructed together within 

a common capsule. It is roughly a walnut sized and shaped gland and located 

just beneath the urinary bladder and in front of the rectum with neurovascular 

bundles branching and rejoining from the lateral border of the prostate near the 

base and with lymph vessels drainage into the internal iliac nodes. The prostate 

mainly functions to store and secrete fluids which constitute partial volumes of 

the semen. Since it plays such roles in helping with semen secretion in the 

human body, it is a part of the male reproductive system and is classed as a 

secondary sex organ.  

 

i Prostate Morphology  
 

The prostate is subdivided into three parts (Figure 1.1). The large peripheral 

zone is composed of a glandular epithelium which extends from the base of the 

verumontanum to the prostatic apex. This area is the site of origin of 

approximately 64 percent of prostate cancers. The central zone comprising 25 

percent of the volume of the glandular prostate surrounds the ejaculatory ducts 

and is responsible for about 2.5 percent of the prostate cancer, especially more 

aggressive cases. A transitional zone surrounds the proximal urethra and 

comprises about 5 to 10 percent of the glandular prostate. This region grows 

constantly throughout life, accounts for 34 percent of prostate cancer and is 

also responsible for benign prostate hyperplasia (BPH) (McNeal et al., 1988; 

McNeal, 1969) .  
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Figure 1.1 Schematic representation of the zonal classification of the prostate.  PZ: Peripheral zone 
TZ: Transitional zone. CZ: Central zone. (Figure from online resources) 
 
ii Prostate Histology 
 

The histological structure of the prostate can be explained based on the zone 

structure of the prostate. In all three zones, both ducts and acini are lined by 

secretory epithelium which is composed of three epithelial cell populations 

(Figure 1.2). The luminal cells are the predominant cell population of the 

prostatic epithelium and are classified by expression of androgen receptor (AR) 

and secretion of prostate specific antigen (PSA) as well as other secretory 

proteins such as cytokeratins 1 and 18 and cell surface marker CD57. The 

basal cells are the second largest population of prostate epithelial cells located 

between luminal cells and the basement membrane and express cytokeratins, 

CD44 and anti-apoptotic regulators Bcl2, but without prostatic secretory proteins 

(Liu et al., 1997). A third population is a small portion of neuroendocrine cells 

which are thought to support luminal cell development as it is presumed that 

prostate epithelial stem cells arise in this compartment. In between the duct-

acinar system lies the prostatic stroma, which contains bundles of smooth 

muscle cells (Abate-Shen and Shen, 2000). The three prostate zones differ 

from each other histologically and biologically. One of the major distinguishing 

features between individual zones is the size of the ducts and acini. In the 

peripheral zone and transitional zone, ducts and acini are usually 0.15 to 0.3 

mm in diameter and tend to present simple rounded contours which are not 

perfectly circular shaped due the random undulations of the surrounding 

epithelial layers. Whereas, in the central zone, ducts and acini are larger with 

the diameter up to 0.6mm and display a polygonal structure (McNeal, 1978). 

Another disparity between individual zones is the ratio of epithelium to stroma. 
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The central zone has the higher epithelium composition and the most compact 

stromal structure, whereas the peripheral and transitional zone stroma is loosely 

woven and contains irregularly arranged smooth muscle bundles. Although it is 

generally feasible to distinguish these zones by their histological characteristics, 

it should be noted that with the organ becoming older or disease orientated, it 

becomes harder to distinguish those zones histologically.  

 

Figure 1.2 Schematic depiction of the cell types within a human prostatic duct. (Figure from Abate-
Shen and Shen, 2000 ) 
Note that the rare neuroendocrine cells are morphologically indistinguishable from basal cells 
 
 
iii Prostate development and pathogenesis 
 

From a time course view of the embryonic development of the prostate, the 

male urogenital system remains identical to the female system within the first 6 

weeks of embryo formation, which is then followed by a period of differentiation 

whereby the urinary bladder, ejaculatory ducts and prostatic urethra begin to 

emerge. The increased cellularity of the internal layer of mesoderm surrounding 

the proximal part of the urethra is the first line of evidence to indicate prostate 

formation and it is the prostatic part of the urethra from which the mature 

prostate develops. At week 10, the androgen responsive urogenital sinus 

triggers the budding of the prostatic urethra epithelium, subsequently giving rise 

to the initial presumptive peripheral and internal glandular areas of the prostate. 

By week 11, endodermal differentiation leads to the formation of lumens and 

acini, whereas the mesenchyme differentiates into smooth muscle, fibroblasts 

and blood vessels. Following proliferation of the epithelium and stroma, by week 

15, the high concentration of testosterone causes vigorous epithelial 

mesenchyme interactions leading to the further maturation of the epithelium. 

Within a week, luminal secretory cells start to function with the presence of 

basal and neuroendocrine cell populations (Ingber, 2002; Xia et al., 1990; 
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Kellokumpu-Lehtinen, 1985; Kellokumpu-Lehtinen et al., 1980; Siiteri and 

Wilson, 1974). The maturation process continues until the embryonic 

testosterone level falls, when the prostate enters a homeostatic state.  

 

The second round of the prostate development begins during puberty, which is 

featured by the growth of epithelium stimulated by the elevated androgen level. 

During this phase, the prostate doubles in size with the fully differentiated cell 

phenotypes and the expression of androgen receptor by secretory cells. This 

will be discussed in section 1.1.3. 

 

1.1.2  Diseases of the prostate 

 
The prostate encounters different disorders and the most common syndromes 

are prostatitis, benign prostate hyperplasia (BPH) and prostate cancer. 

Prostatitis is inflammation of the prostate and has different categories 

depending on their etiological factors (McNeal, 1968). Benign prostate 

hyperplasia (BPH) refers to the enlargement of the prostate due the proliferation 

of the epithelial and stromal cells. This disease normally happens in middle-

aged and elderly men and is believed to be androgen-related, although there 

are controversies on the direct link between androgen and BPH. In addition, 

other hormones such as estrogens have also been shown to account for BPH 

pathogenesis (McNeal, 1969). Unlike BPH, which is a non-malignant neoplasm 

of the prostate, prostate adenocarcinoma is the malignant transformation of the 

prostate and accounts for most of the prostatic disease related deaths in men. 

Although the specific causes of prostate cancer still remain unclear, the 

incidence of prostate cancer is correlated with risk factors such as age, genetics, 

racial background, diet, lifestyle and medications (Hsing and Chokkalingam, 

2006; Hankey et al., 1999). One common syndrome which is thought to be 

highly associated with prostate cancer is prostatic intraepithelial neoplasia (PIN), 

as this condition represents confined localized cancerous clumps within 

different zones of the prostate and is also featured by the thickening of the 

epithelial layer and loss of the basal layer (Montironi et al., 2007; McNeal and 

Bostwick, 1986). However, direct evidence is still lacking to prove that PIN is a 

bona fide tumour precursor of the prostate. Among the risk factors, age and 

http://en.wikipedia.org/wiki/Aging�
http://en.wikipedia.org/wiki/Genetics�
http://en.wikipedia.org/wiki/Race_(classification_of_human_beings)�
http://en.wikipedia.org/wiki/Diet_(nutrition)�
http://en.wikipedia.org/wiki/Lifestyle�
http://en.wikipedia.org/wiki/Medication�
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genetic abnormality contribute primarily to prostate cancer and these will be 

discussed.  

 

1.1.3 Function of the Prostate 
 

The prostate has two main functions based on its histological structure. As its 

stromal compartment contains smooth muscle cells, the prostate is able to help 

expel semen during ejaculation and control the flow of urine during urination. 

Given that prostate epithelial cell layer is composed of a large amount of 

secretory cells, it plays important exocrinological roles within the human body 

and also has strong endocrinological cross-talk networks with other organs 

(Aumuller and Seitz, 1990).  

 

i Secretions of the prostate 
 

The prostate stores and secretes a slightly alkaline fluid which constitutes 25-

30% of the volume of semen and contains a variety of molecules secreted 

specifically by the prostate including proteolytic enzymes, prostatic acid 

phosphatase (PAP), citrate and prostate-specific antigen (PSA) (Abrahamsson 

and Lilja, 1990). One primary purpose for the secretion is to serve as a medium 

for sperm transport and protection and thus to increase the mobility, viability 

and oxygen consumption of sperm (Toyama et al., 1995; Lindholmer, 1974).  

 

Apart from the protective effect of the prostatic fluid, many prostatic secretory 

proteins possess various enzymatic activities with the major activity being 

proteolysis. One well-known and intensely studied protease is prostate specific 

antigen (PSA). This enzyme is a 34kDa serine protease belonging to the human 

glandular kallikrein (hGK-1) superfamily and is secreted by epithelial cells as 

well as the periurethral gland (Ban et al., 1984; Wang et al., 1979). PSA gene 

expression is androgen regulated. Due to its trypsin-like activity, it functions with 

another protease, pepsinogen to dissolve the major seminal gel-forming 

proteins semenogelin A and fibronectin thus liberating entrapped sperm (Lee et 

al., 1989; Lilja, 1985). PSA is also proposed to be involved in the breakdown 

and modulation of the insulin-like growth factor binding protein (IGFBP-1) and 

the degradation of secretory leukocyte protease inhibitor (SLPI) in the ejaculate 

http://en.wikipedia.org/wiki/Proteolytic_enzyme�
http://en.wikipedia.org/wiki/Prostatic_acid_phosphatase�
http://en.wikipedia.org/wiki/Prostatic_acid_phosphatase�
http://en.wikipedia.org/wiki/Prostate-specific_antigen�


 

7 
 

(Birnbaum et al., 1994; Cohen et al., 1994). From a clinical standpoint, PSA 

remains the only serum biomarker recommended for use in the clinical 

screening of prostatic malignancies, although there are many other markers 

potentially available such as prostate specific membrane antigen (PSMA), and 

prostate stem cell antigen (PSCA) (Bradford et al., 2006; Smith et al., 2005).  

 

ii Endocrinology of the prostate 
 

The prostate undergoes dynamic endocrinological regulation by various 

hormones. It contains endocrine responsive tissue and its development and 

maintenance are hormone dependent with a major influence by androgens. 

There are different types of androgens within the human body; the most 

emphasized and crucial one is testosterone which is produced primarily in the 

testes in men and also with small quantities generated by adrenal glands in 

males and ovaries in females. It is a member of the steroid hormone family and 

is derived from cholesterol. Upon generation by the Leydig cells in the testes, 

testosterone is circulated in the blood and concentrates in spermatic veins, 

where 60-70 percent of it binds to a plasma protein named steroid hormone 

binding globulin (SHBG), 25-30 percent binds to albumin and only 2 percent in 

free form. Biologically active forms which are either albumin bound or free can 

target their functioning organs including the prostate, whereas the SHBG 

associated testosterone is difficult for uptake and thus needs dissociation to 

carry out its function (Anderson, 1974). Although, testosterone is the primary 

androgen affecting the growth and homeostasis of the prostate, a conversion 

from testosterone to the more potent form, dihydrotestosterone (DHT) is 

necessary for it to carry out its ultimate function and this reducing step is 

stimulated by 5α-reductase within the prostate cells (Edwards and Bartlett, 

2005a). 

 

Evidence for androgen-dependent prostate regulation is largely derived from 

both human and animal model studies and have shown a permissive and active 

role for prostate regulation both pre-natally and post-natally. Removal of the 

foetal testis prior to sexual differentiation inhibits prostate development and the 

growth of other male internal sex glands. Castration experiments on pre-

pubertal mice indicated that ablation of testosterone results in the prevention of 
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further development of the prostate and this effect can be reversed by 

administration of testosterone (Cunha et al., 1987; Berry and Isaacs, 1984). It 

was also demonstrated that with the exogenous testosterone treatment, the 

speed of prostate growth is accelerated in immature rats with earlier completion 

of the formation of the mature prostate (Berry and Isaacs, 1984).  

 

There are different mechanisms that are involved in this phenomenon. Back in 

the 19th Century, scientists were aware that castration halts the prostate growth 

and causes the shrinkage of the prostate and this was more explicitly explained 

and postulated as a result of dysregulation of RNA and proteins, which led to 

the concept of “programmed cell death” in the prostate reviewed by Lee, C. 

(1981). Not only does this explain the growth inhibition of the prostate, but also 

that differentiation and proliferation contribute to the fate of prostate under 

testosterone manipulation. It has been clarified that stimulation by testosterone 

increases DNA synthesis and in turn the production of proteins predominantly 

via androgen receptor mediated axis, which then initiates prostatic cell 

proliferation by regulating the cell cycle and other pathways (Balk and Knudsen, 

2008). 

 

 In the normal prostate, apoptosis and proliferation are maintained in a 

homeostatic state, however, once this balance is destroyed by elimination of 

androgens, striking regression of the prostate will occur. Other than 

testosterone, levels of other hormones are also responsible for prostatic growth. 

These include adrenal androgens, estrogen, glucocorticoids, growth hormone 

and other hormones (Ellem and Risbridger, 2009).  The physiological effect of 

those hormones resides in their capability to assist prostate growth and 

maintenance, consequently influencing the abnormal pathological changes of 

the prostate, especially prostate cancer. Discussed in detail in section 1.2.  

 

iii Regulation of prostate growth  
 

As androgen is an indispensible prerequisite and is the single most important 

mitogenic hormone responsible for prostatic cell growth, the production of 

androgen is vital in controlling the prostatic functions. This is mainly governed 

by the hypothalamic pituitary axis. The anterior pituitary gland secretes several 



 

9 
 

hormones including gonadotropins, follicle-stimulating hormone (FSH) and 

luteinizing hormone (LH) which are involved in regulation of androgen 

production in the testis. Release of LH and FSH from the anterior pituitary with 

subsequent androgen production from the testicular Leydig cells is modulated 

by gonadotropin-releasing hormone (GnRH) produced by the hypothalamus. 

The feedback mechanism of the sex steroids on gonadotropin release rises 

from the testis and occurs at both the hypothalamic and pituitary level. This is 

controlled by testosterone and estradiol. Testosterone exerts this negative 

effect by slowing the hypothalamus pulse generator and subsequent release of 

LH and estradiol produces equal inhibition of both LH and FSH in the 

hypothalamus and pituitary gland (Vacher, 1995).  

 

1.1.4 Mechanisms and Importance of Androgenic Action in the Prostate 
 

The mechanism of androgen regulated cellular functions is predominantly 

mediated by androgen receptor (AR) which is a ligand dependent transcription 

factor belonging to the nuclear hormone receptor superfamily. This multi-step 

metabolic pathway involves the following cascade. Upon entry of free 

testosterone (the main form of male androgen) into target prostate cells, it is 

subsequently converted to more active dihydrotestosterone (DHT) by 5α-

reductase. DHT subsequently binds to the AR to induce a conformational 

change of the AR from its inactive state through the binding of Steroid Hormone 

Binding Globulin (SHBG) to active state and enables formation of AR homo-

dimer, which is also accompanied by other regulations of AR at the molecular 

level (Edwards and Bartlett, 2005a). This process stabilizes the homo-dimer 

and facilitates the translocation of the AR to the nucleus, where it subsequently 

binds to androgen responsive elements (AREs) within target genes and drives 

their expression (Edwards and Bartlett, 2005b; Suzuki et al., 2003). As the 

single most important mitogenic hormone, androgen impacts significantly on 

prostate development, growth and homeostasis and this influence is generally 

achieved by modulating different cellular compartments within the prostate. 

Androgen stimulates stromal cell proliferation and the production of various 

growth factors involved in the regulation of epithelial growth and proliferation. It 

is also postulated that androgen targets epithelial cells via autocrine and 

paracrine pathways to promote cell differentiation and growth (Cunha et al., 
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2004; Cunha et al., 1987). This is not only applicable to normal prostate 

development and growth balance control, but is also one of the main driving 

forces contributing to prostate carcinogenesis.   

 

1.2 Prostate cancer (CaP)  
 
1.2.1 Incidence and etiology of prostate cancer  
 

Prostate cancer (CaP) is the second most common cause of cancer death in 

men in Western countries. In the UK, it accounts for 13% of male death from 

cancer with significantly increasing mortality with aging (Office for National 

Statistics, 2007 Mortality Statistics: Cause, 2005). Possible etiological factors 

associated with the incidence and disease predisposition include genetics, 

racial background, diet, aging and hormone. Prostate cancer incidence rises 

dramatically with age with approximately three quarters of cases occurring in 

males over 65 and only 0.1% diagnosed under the age of 50 (Gronberg, 2003; 

Parkin et al., 2001). Evidence from biopsy-based studies also indicates that 

prostate cancer is detected in 30% of men in their 30’s, 50% of men in their 50’s 

and more than 75% from men older than 85 (Sakr et al., 1993). However, other 

epidemiological findings suggest that the risk of dying from prostate cancer is 

50% in patients over 70 who have clinically localized CaP (Narain et al., 2002).  

 

Ethnicity represents an important risk factor for CaP. Intensive studies indicate 

that African American, Caucasian and Scandinavian males have the highest 

incidence (137 cases per 100,000 per year) while Chinese and Japanese have 

the lowest rates (1.9 cases per 100,000 per year) (Parkin et al., 2001). 

Geographic variation is another factor contributing towards the incidence of CaP. 

Chinese from the mainland have the lowest rates in the world (1.3 per 100,000) 

compared to Hong Kong Chinese having a rate five times higher and Chinese in 

the United States having a rate 16 times higher (Muir et al., 1991). 

 

In addition to age, ethnicity and environmental factors, genetic predisposition is 

another well established risk factor for prostate cancer and this is largely 

associated with early onset of the disease. Findings from case-control analysis 

suggest that there was a 2.4 and 2.1 fold age-adjusted relative risk in men with 
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an affected first or second degree relatives, respectively (Spitz et al., 1991). 

Men who have brothers affected by prostate cancer are more prone to develop 

prostate cancer (Monroe et al., 1995). Studies of twins in Scandinavia suggest 

that 40% of prostate cancer risk can be explained by inherited factors 

(Lichtenstein et al., 2000). So far, many prostate cancer susceptibility genes 

and loci have been found in the human genome. Although no single gene is 

fully responsible for prostate cancer, several key genes have been shown to 

play important roles during CaP development, including BRCA1/2, androgen 

receptor, PTEN, ELAC2 and HPC1 and loci on chromosome X, 1, 5, 8, 17 and 

20 (Gronberg, 2003; Simard et al., 2002; Abate-Shen and Shen, 2000; 

Struewing et al., 1997).  

 

Other epidemiological studies imply dietary agents as risk factors for prostate 

cancer. Although, the findings are conflicting, it has been highlighted that intake 

of multi-vitamins such as D/E/B6 may have preventive effect for CaP, whereas 

high alcohol intake and over-consumption of fatty acids may cause increased 

the risk of prostate cancer (Shannon et al., 2009; Berquin et al., 2007; Lawson 

et al., 2007; Weinstein et al., 2007). Another postulated risk factor responsible 

for prostate cancer is hormones. Many lines of evidence suggested that 

androgen ablation causes the regression of the cancer and therapeutic 

intervention using anti-androgens such as 5-alpha reductase inhibitor reduce 

the prevalence of prostate cancer (Kramer et al., 2009; Hsing and Comstock, 

1993).  

 

1.2.2 Pathology and molecular mechanisms of prostate cancer 
 

i Overview of the pathogenesis of prostate cancer  

 
Prostate cancer is largely characterized as an adenocarcinoma which accounts 

for 95% of cases and originates due to transformation of epithelial cells in the 

prostate gland; predominantly from the peripheral zone of the organ. (Shah and 

Getzenberg, 2004). Prostate intraepithelial neoplasia (PIN), which is 

characterized by the conformational change of prostatic cells and in the 

thickening of the epithelial layer and loss of the basal layer (Gelmann, 2002) 

http://en.wikipedia.org/wiki/Twin_study�
http://en.wikipedia.org/wiki/Scandinavia�
http://en.wikipedia.org/wiki/Heritability�
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represents a potential precursor to CaP. This lesion is distinguishable 

architecturally and cytologically from various other histological abnormalities of 

prostate epithelium, including benign prostate hyperplasia (BPH) and atypical 

adenomatous hyperplasia (AAH), which are not believed to be pre-malignant 

states for CaP (McNeal and Bostwick, 1986). Caused by the inappropriate 

balance between cell proliferation and apoptosis as well as multifocal 

histological transformation, PIN has the potential to develop to CaP eventually, 

which is due to a series of alteration at both genetic and cellular level (Abate-

Shen and Shen, 2000). Some of those altered genes include Alpha-methylacyl-

CoA racemase (AMACR), Telomerase, Hespin, BRCA1, E-cadherin and C-met, 

which show either reduced or increased expression during the transition from 

PIN to prostate carcinoma suggesting PIN represents a bona fide precursor to 

CaP (Rubin and De Marzo, 2004; Abate-Shen and Shen, 2000). 

 

The initial stage of cancer formation is followed by further malignant changes 

which drive the tumour to grow from clinically localized prostate cancer to 

metastatic disease via local invasion to the surrounding tissues and organs or 

via circulation through the bloodstream and lymphatic system.   

 

ii Molecular genetics of prostate cancer  

 
CaP is believed to result from a series of genetic alterations (Figure 1.3). 

Proliferative inflammatory atrophy (PIA) has been postulated to the precursor of 

high-grade PIN due to the finding of the merging atrophic epithelium in the 

same duct and acinus as high-grade PIN. This early prostatic lesion is 

associated with decrease of p27 KIP, increase of bcl-2 and carcinogen 

detoxification enzyme GSTP1 (Putzi and De Marzo, 2000). PIN formation is 

frequently associated with the loss of chromosome 8p and in particular the 

deletion of NKX3.1, which is believed to play a role in normal prostate 

differentiation (Abate-Shen and Shen, 2000; Bhatia-Gaur et al., 1999; Chang et 

al., 1994). Additional chromosomal aberrations that are implicated in the 

subsequent development of CaP are, among many, loss of chromosome 10q 

and in particular 10q23 where PTEN is located. PTEN encodes a lipid 

phosphatase whose substrate is PIP3. Loss of PTEN leads to activation of 

PKB/Akt pathway which in turn desensitizes the response to cell death causing 
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the tumour growth and triggers cell proliferation (Di Cristofano and Pandolfi, 

2000; Sun et al., 1999; Carter et al., 1990).  

 

The loss of Rb on chromosome 13q is also present in 50% of prostate cancer 

including both clinical localized and invasive cases (Abate-Shen and Shen, 

2000; Cooney et al., 1996). In prostate cancer, it has been found that the Rb 

tumour suppressor is responsible for regulation of apoptosis and cell cycle via 

the androgen receptor mediated pathways (Balk and Knudsen, 2008; Abate-

Shen and Shen, 2000; Zhao et al., 1997). Another intensively studied oncogenic 

 
Figure 1.3 Representative development of the prostate cancer with sequential and accumulative 
loss and mutation of genes. (Figure from Abate-Shen and Shen, 2000 ) 
 

pathway of prostate cancer concerns the tumor suppressor p53. p53 is a 

transcription regulator of many key genes engaged in oncogenesis of various 

tumour types and this gene is frequently mutated or deleted during tumour 

progression. Some of the regulated genes by p53 include p21, MDM2, BAX, 

p73 and Proliferating Cell Nuclear Antigen (PCNA) (Riley et al., 2008). Amongst 

those p53 target genes, MDM2 functions as a pivotal mediator of p53 by 

negatively regulating p53 turnover in a feedback manner. The mode of p53 

directed transcription activation requires the binding of p53 to its consensus 

response element on DNA and the follow-up recruitment of general transcription 

proteins such as TAFs and other histone acetyltranferase CBP, p300 and PCAF 

to the promoter –enhancer regions (Gu and Roeder, 1997; Farmer et al., 1996). 

The main outcomes of p53 mediated gene regulation include apoptosis, 

senescence and cell-cycle arrest. In prostate, p53 is frequently altered in normal 

prostate, precursor lesion and prostatic intraepithelial neoplasia resulting in the 

cancer predisposition and this is due to the overexpression of mdm2 and HPV-
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E6 (Downing et al., 2003). In p53 wide-type LNCaP cells, p53 activation and 

phosphorylation in response the DNA damaging agent such as selenium trigger 

caspase-dependent apoptosis indicative of its importance mediating the 

prostate cancer regression (Jiang et al., 2004).  
 

1.2.3 Diagnosis and treatment of prostate cancer 
 

Prostate cancer is generally curable when it remains indolent and has organ-

confined status, but is sometimes neglected as it shares some common 

symptoms with other non-malignant prostate diseases. Nowadays, early 

detection of prostate cancer is aided by the combination of the serum prostate 

specific antigen (PSA) test and digital rectal exam (DRE), while other methods 

are also available and effective for different stages of cancer diagnosis ranging 

from basic physical examination, transrectal ultrasound (TRUS), prostate 

biopsies and bone scans (Lemaitre et al., 2006; Martinez de Hurtado et al., 

1995; Berman and Clark, 1992). The PSA test emerged as a gold standard for 

the detection and monitoring of CaP in the late 1970s (Wang et al., 1979). The 

diagnostic sensitivity in asymptomatic men has been reported to be 80% when 

serum PSA levels are above 4ng/ml with a positive predictive value of elevated 

serum ranging between 28-35% (Lilja et al., 2008; Catalona et al., 1994; 

Catalona et al., 1993). Although increased PSA level is indicative of cancer 

presentation, it is not a definitive and distinctive parameter for the cancer 

diagnosis and staging, as many BPH patients and patients with architecturally 

normal prostate present with high level of PSA (Oesterling, 1991).  

 

The treatment of prostate cancer is largely dependent upon the diagnostic 

outcomes. Since the life expectancy of many patients with evidence of CaP is 

less than 10 years and some patients have no obvious symptom presentation, a 

no treatment therapy called “watchful waiting” may be applied. Currently, there 

is no consensus on the best therapeutic option for early CaP, however, 

according to the guidance from NICE (National Institute for Health and Clinical 

Excellence), if detected in early or organ confined status, the disease can be 

treated individually based upon risk stratification of patients into low, 

intermediate or high risk. Patients with organ confined CaP are most likely to 

undergo radical prostatectomy or radiation therapy depending on the disease 
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aggressiveness and the physical state of the patient. At this stage, some other 

therapies may also be used as treatment regimes such as cryosurgery and high 

intensity focused ultrasound. Regardless of the beneficial outcomes from those 

therapies, the treatments are always plagued with side effects such as 

impotency, pain during urination, diarrhoea and incontinence.  

 

While clinical localized CaP can be treated by above-mentioned therapeutic 

intervention, CaP unfortunately becomes invasive to adjacent tissues and may 

metastasize, primarily to the bone, this is usually lethal. Metastatic prostate 

cancer can be primarily controlled by hormone therapy (androgen ablation) that 

abrogates androgen-stimulated cancer cell growth. Removal of hormone, 

mainly testosterone, by various methods remains the first line treatment for 

advanced prostate cancer. Apart from conventional surgical castration, many 

anti-androgens are used normally in combination with surgical operation as 

effective treatment of invasive cancer. Anti-androgens include Bicalutamide 

which blocks DHT binding to the AR which in turn prevents activation of 

androgen regulated genes (Furr, 1996; Narayana et al., 1981) and Cetrorelix 

acetate, an antagonist of LHRH, which reduces LH production from pituitary and 

subsequently testosterone secretion (Reissmann et al., 2000). Ultimately, within 

a median time of two years, a population of cells escapes from androgen-

dependence to androgen independence leading to hormone-refractory prostate 

cancer or castrate-resistant prostate cancer (CRPC) a disease that currently 

has limited remedies, resulting in an overall high risk of mortality and reduced 

survival (Edwards and Bartlett, 2005a; Berman and Clark, 1992). Current 

medical solutions for hormone refractory prostate cancer include the application 

of combinational Mitoxantrone and corticosteroids, combinations of 

Estramustine, etoposide and cisplatin, and Docetaxel with its combinations 

which show improved life quality and overall survival although only by 2-4 

months maximum (Petrylak et al., 2004; Smith et al., 2003; Kantoff et al., 1999; 

Tannock et al., 1996).  

 

1.3 The Androgen Receptor 
 

1.3.1 The nuclear hormone receptor super-family 
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The family of nuclear hormone receptors function as transcription factors that 

specifically regulate target genes involved in metabolism, development and 

reproduction. Nuclear hormone receptors primarily function to mediate 

transcriptional response to hormones and these include substances with 

lipophilic properties such as sex steroids, adrenal steroids, vitamin D3 and 

thyroid and retinoid hormones (McKenna et al., 1999). More than 100 nuclear 

receptors are known to exist in metazoans with around 48 found in the human 

genome (Robinson-Rechavi et al., 2001). The nuclear receptor superfamily is 

composed of three structurally-related families depending on their mechanisms 

of action and sub-cellular distribution. Type I receptors bear ligand dependent 

activation property and ligand binding of the receptors lead to the dissociation 

from heat shock proteins,  homo-dimerization, translocation from the cytoplasm 

into the cell nucleus, and binding to specific sequences of DNA known as 

hormone response elements (HREs). Type I nuclear receptors bind to HREs 

consisting of two half-sites separated by a variable length of DNA, and the 

second half-site has a sequence inverted from the first (inverted repeat). 

Examples include the androgen receptor, estrogen receptors, glucocorticoid 

receptor, and progesterone receptor. Type II receptors, in contrast to Type I, are 

retained in the nucleus regardless of the ligand binding status and in addition 

bind as hetero-dimers (usually with RXR) to DNA. Examples include the retinoic 

acid receptor, retinoid X receptor and thyroid hormone receptor. Type III nuclear 

receptors (principally NR subfamily 2) are similar to type I receptors in that both 

classes bind to DNA as homo-dimers. However, type III nuclear receptors, in 

contrast to type I, bind to direct repeat DNA sequences instead of inverted 

repeat HREs. Examples include various orphan receptors (Novac and Heinzel, 

2004; Mangelsdorf et al., 1995).  

 

Tyne I receptors which are also called steroid hormone receptors, including 

receptors to androgens and estrogens are composed of several independently 

functioning domains, including: an N-terminal transactivation domain, a DNA 

binding domain (DBD), a hinge region and a C-terminal ligand binding domain 

(LBD/AF-2). The AF-1 (TD) domain alone weakly regulates the transactivation 

of genes, however it synergizes with AF-2 domain to trigger a robust gene 

transcription, however there is an exception for AR as its  transcription activity is 

mainly contained in AF-1 (TD). The highly conserved DNA binding domain 
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contains 2 zinc fingers which bind to specific DNA sequences that contain 

hormone responsive elements (HREs). The hinge region is designated for 

intracellular trafficking and localization as it harbours a nuclear localization 

signal (NLS) or at least some elements of a functional nuclear localization signal. 

The AF-2 domain is responsible for ligand binding, receptor dimerization and 

association with several nuclear hormone coregulators (McEwan, 2009; 

McKenna and O'Malley, 2002; McKenna et al., 1999). Type I receptors mainly 

includes those for progestins (PR), estrogens (ER), androgens (AR), 

glucocorticoids (GR), and mineralocorticoids (MR). Different from other types of 

nuclear receptors, this group of receptors in the absence of ligand is 

sequestered in cytoplasm in an inactive state by association with heat shock 

proteins (HSPs) and they are converted to active state via ligand binding and 

then translocate to the nucleus to bind to their cognate DNA sequences. The 

transcriptional machineries mediated by nuclear hormone receptors are thought 

to be due to communication between the receptors, RNA pol II and surrounding 

coregulators. It has been shown that the structural changes and folding of the 

transactivation domain AF-1 in response to specific protein-protein interactions 

create a platform of subsequent interaction which favours the assembly of a 

competent transcriptional activation complex and the formation of the complex 

increases the resistance of the general transcription factor TFIIF towards 

protease digestion suggesting its role in the regulation of basal transcriptional 

machinery (Reid et al., 2003). Subsequently it was shown that the interaction 

between RAP74, a component of TFIIF and AR induces significantly higher 

helical content in the AF-1 domain which in turn facilitates the interaction of AR 

with SRC-1 suggesting the cooperative transcription mechanism executed by 

AR basal transcription machinery and surrounding AR co-regulators (Kumar et 

al., 2004).  

 

1.3.2 Characteristics of the androgen receptor 
 

i Expression patterns of the androgen receptor  
 

The androgen receptor gene is located on chromosome X at Xq11-12 (Chang et 

al., 1988a). The major site for regulating expression of AR is present 1.1kb 

upstream of the initiator methionine where the promoter region is situated. This 
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region lacks the typical “TATA” and “CAAT” motifs but lies in a “GC-rich” region 

and a putative SP1 binding site, a proposed “housekeeping” promoter sequence. 

In addition, it also possesses a 44bp alternating A/G residue sequence (Tilley et 

al., 1990). Androgen receptor is auto-regulated by androgen. Studies have 

shown that in the androgen-dependent LNCaP prostate cancer cell line, 

administration of androgen causes down-regulation of AR mRNA level whereas 

the protein level of AR is stabilized, a phenomenon due to elevated translational 

efficiency (Krongrad et al., 1991). In addition to the antagonistic auto-regulation 

of the receptor at the transcriptional level, other negative regulatory 

mechanisms affect AR gene at transcript level. It has been reported that the AR 

has relatively low expression in most tissues other than reproductive organs 

and this is possibly due to the repression of AR gene transcription by the 

negative regulatory complex containing the ubiquitous transcription factor NFI 

and two other nuclear factors (Song et al., 1999). 

 

ii Structure and action of the androgen receptor  
 

The human androgen receptor is composed of 8 exons encoding a protein of 

919 amino acids. Like other nuclear hormone receptors, the AR consists of four 

distinct domains, including an N-terminal transactivation domain (TD) (1-559aa) 

a highly conserved DNA binding domain (DBD) (560-624aa), a hinge region 

(625-674aa) and a C-terminal ligand binding domain (LBD) (675-918aa) 

(Tenbaum and Baniahmad, 1997; Weigel, 1996) (Figure 1.4). These regions 

have specific functions: the DBD and hinge region are responsible for DNA-

bindings at androgen responsive elements (AREs) and the hinge region also 

harbours a nuclear localization signal to mediate the cellular movement of the 

receptor. The DBD contains a 68 amino acid region which folds into two “zinc 

coordinated finger” structure and binds to target DNA (Chang et al., 1988b).  

The LBD containing the activation function 2 (AF2) functional domain, that 

regulates ligand-dependant receptor activation and functions in conjunction with 

transcription co-regulators containing the LXXLL or FXXFL motifs. The TD 

carrying the AF1 domain is characterized by its role in transactivation and as a 

coactivator binding mediator. In addition, this N-terminal region contains a 

FXXFL motif which binds to the LBD via an intramolecular interaction that 

reduces androgen dissociation and facilitates co-regulator interaction thus 
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enhances receptor activity (Dubbink et al., 2004; Gelmann, 2002; 

Gnanapragasam et al., 2000). Furthermore, structural analysis revealed that the 

LBD contains several helical structures (12 α-helixes) which forms the ligand 

binding pocket mediating the receptor binding to testosterone and 

dihydrotestosterone and is involved in receptor dimerization and transcription 

regulation (Gelmann, 2002; Thornton and Kelley, 1998).  

 

The mechanism of AR activation is a multi-step process that initiates with the 

binding of DHT to the receptor in the cytoplasm. This induces a conformational 

change within the AR from its inactive to active state and enables formation of 

the AR homo-dimer, which is also accompanied by the phosphorylation of the 

AR by various kinases (Edwards and Bartlett, 2005b; Weigel, 1996). This 

process stabilizes the AR homo-dimer and exposes the nuclear localization 

signal within the hinge domain that allows translocation of the receptor to the 

nucleus, interaction with a cohort of AR co-regulators and binding to AREs in 

androgen-regulated genes to regulate transcriptional output (Edwards and 

Bartlett, 2005a; Lee and Chang, 2003b; Suzuki et al., 2003) (Figure 1-5).  

 

 

Figure 1.4 Schematics of androgen receptor structure and functions of domains.  
Schematics of structure of human AR, individual domains are indicated in different colours.  
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Figure 1.5  Mechanisms of androgen receptor signaling pathway.  
Conventional AR activation pathway is schematically shown.  

 
1.3.3 Transcriptional regulation by the androgen receptor 
 

i AR-regulated genes 
 

The AR regulates vital aspects of prostate growth and function including cellular 

proliferation, differentiation, apoptosis, metabolism, and secretary activity. Since 

the application of gene microarray analyses in androgen-dependent LNCaP and 

CWR22 cell lines, among others, there have been more than 600 androgen 

regulated genes identified (Velasco et al., 2004; Karan et al., 2002; Nelson et al., 

2002). Many of those genes play significant roles in the pathogenesis of 

prostate cancer and contribute towards the transformation from androgen 

dependent to independent disease (Mehra et al., 2008; Massie et al., 2007; 

Velasco et al., 2004). As discussed, the most studied androgen regulated gene 

is PSA which serves as a serum marker in prostate cancer diagnosis, 

monitoring of treatment response and detection of disease recurrence (Lilja et 

al., 2008). Researchers have identified 3 functionally active AREs at the 

androgen promoter and enhancer regions. There are two proximal promoter 
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sequences mapped at the position -170 (AREI) and -394 (AREII) and a putative 

ARE as enhancer region at -3.7kb (AREIII) (Cleutjens et al., 1997; Cleutjens et 

al., 1996). Of particular interest, the AREIII has strong affinity for the receptor 

binding as it showed 1000-fold transcription activity in the presence of synthetic 

androgen R1881 and mutation analysis in this motif almost abolished the 

promoter activity of the PSA gene (Cleutjens et al., 1997).  

 

Many other reports have shown the importance of individual androgen regulated 

genes in the progression of prostate cancer. The cyclin dependent kinase 

inhibitor p21 is up-regulated in response to androgenic treatment and this is 

potentially mediated by the putative ARE residing within the 2.4kb promoter 

region of the gene (Lu et al., 1999). Another group of key androgen-regulated 

genes are the TMPRSS2-ETS fusions which have been found in both clinically 

localized and aggressive stages of the cancer (Mehra et al., 2008; Tomlins et al., 

2005). This fusion gene is formed by abnormal translocation of the androgen 

regulated serine protease TMPRSS2 and the ETS family transcription factor 

(Nam et al., 2007). The fusions of TMPRSS2 with ERG, ETV1 and ETV4 have 

been identified in large portion of prostate cancer cohorts and the TMPRSS2-

ERG fusion has been implicated as a predictive marker for the recurrence of 

prostate cancer in patients with clinical localized cancer after surgery (Nam et 

al., 2007). Probing into the molecular mechanisms linking the TMPRSS2-ERG 

rearrangement and the cancer aggression, it has been found that androgenic 

stimulation may trigger oncogenic C-MYC up-regulation by ERG and the 

abrogation of epithelial differentiation genes PSA and SLC45A3, which together 

may contribute to the neoplastic process of CaP (Sun et al., 2008).  

 

In addition to direct androgen regulation on transcription, reports also indicate 

that androgen signalling is able to up-regulate the micro-RNA (miRNA) miR-

125b which in turn stimulates the androgen independent growth of cancer cells 

by attenuating Bak1 expression (Shi et al., 2007). Moreover, proteomic 

approaches interrogating the androgenic network in LNCaP cells identified 1024 

up-regulated proteins in response to synthetic androgen R1881 suggestive of 

the comprehensive role and multi-tasking of androgen in coordinating the 

various cellular components during cancer progression (Wright et al., 2003).  
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ii Regulatory patterns of AR-mediated transcription 
 

Dynamic transcriptional regulation by AR is tightly co-ordinated through cis-

acting androgen responsive elements (AREs). This 15bp palindromic sequence 

consists of two hexameric half-sites (5’-AGAACA-3’) arranged as an inverted 

repeat with a 3-bp spacer in between (Shaffer et al., 2004). Although there are 

over 500 perfect palindromic AREs identified in the human genome, the 

degeneracy of functional AREs has also been implicated as some reports have 

found some near-consensus sequence with matches of 9- to 12 nucleotides or 

a single AR half-site which would favour the AR binding under a cellular context 

(Horie-Inoue et al., 2004; Nelson et al., 2002). One study using Chip-on-Chip 

analysis on gene promoter tiling arrays, containing 24275 promoter elements, 

identified over 1500 AR binding sites. A substantial proportion of these sites 

consisted of 6-bp AR half-sites and many of the AR-binding sites were 

associated with the ETS1 transcription factor suggesting that AR-mediated DNA 

binding may be influenced by or act in conjunction with other factors in the 

nucleus (Massie et al., 2007).  

 

Like other nuclear hormone receptors, the AR modulates dynamics of 

transcription initiation through the interaction with components of the basal 

transcription machinery and altering the chromatin landscape in the vicinity of 

the promoter to facilitate transcription. It has been found that ligand-bound AR 

dimers are recruited to both enhancer and promoter regions of PSA gene, 

which brings the enhancer into proximity of the promoter near transcriptional 

start site and this process is subsequently followed by the ordered and 

coordinated recruitment of AR co-regulators p160, CBP, p300 and RNA 

polymerase II holoenzyme  to build up the AR containing transcription complex 

to facilitate transcription initiation (Shang et al., 2002) (Figure 1.6). The direct 

interaction between AR and RPB2 (the second largest RNA polymerase II 

subunit) was documented and this association might facilitate transcription 

factors and enhance AR mediated transactivation (Lee and Chang, 2003a). In 

addition to the contact with the initiation complex, the direct interactions 

between AR and the general transcription factors. TFIIF, TFIIH and P-TEFb 

have been discovered using co-immunoprecipitation from LNCaP cells and this 

inter-molecular association enhances polymerase II CTD phosphorylation in 
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turn causing the elevated efficiency of the elongation procedure (Lee and 

Chang, 2003a). The interplay between AR and basal transcription machinery is 

either direct protein-protein interaction or indirect association modulated by AR 

co-factors - discussed below.  

 

Figure 1.6 Formation of androgen receptor transcription complex. (Figure  from  Shang et al., 2002) 

 

1.3.4 Transcriptional co-regulation by androgen receptor associated 
proteins 
 

i Modulation of androgen receptor activity by co-regulators 

 
Regulation of AR during transcription is multifaceted and involves divergent 

molecular processes coupling signalling transduction molecules and the activity 

of co-activators and co-repressors that regulate AR function upon target genes 

(Culig et al., 2004; Taplin and Balk, 2004). At target gene promoters, co-

regulators participate in AR regulation in three ways: 1. Direct modification of 

DNA and/or histone proteins, 2. Remodeling of the local chromatin structure 

through the communication with chromatin modifying enzymes and complexes. 

3. Direct involvement of the recruitment of basal transcriptional machinery. 

However, transcriptional co-regulation is not the only regulatory principle 

applied by co-factors and many AR co-regulators function through other 

mechanisms such as modulation of AR ligand binding capacity, AR 

nuclear/cytoplasmic trafficking and AR protein stability control. The most up-to-

date overview of putative AR co-regulators suggests that more than 170 

members exist in human cells and they display a diverse array of functions and 
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are involved in distinct cellular pathways (Heemers and Tindall, 2007). Amongst 

the entire group of AR co-regulators, those involved directly in transcriptional 

control are of particular interest and this remains an extremely intensive area of 

research. 

 

Active transcription initiation demands the unpacking and loosening of the tight 

DNA-histone structure of the nucleosome to favour the accession of 

transcription factors and basal transcriptional elements. Some AR co-regulators 

have been identified as components of chromatin remodelling complexes to 

exert their function to open up the tightly packed chromatin, in turn facilitating 

AR-mediated transcription. The SWI/SNF chromatin remodelling complex 

contains several AR modulators which potently govern receptor activity. These 

ATP-dependent chromatin remodelling complexes utilize ATP to modify 

chromatin structures. Alternative models include ATP-dependent movement of 

histone octamers in cis along the DNA, transfer of histone octamers from one 

nucleosomal array to another or replacement of nucleosomal histones 

(Reisman et al., 2009). The net result of the chromatin remodelling imposed by 

SWI/SNF complexes is the pre-disposition towards nuclease digestion and 

increased affinity to transcription factors and basal transcriptional machinery. In 

the case of AR, the ATPases Brahma related gene 1 (BRG1) and human 

homolog of Drosophila brm gene (hBRM) were shown to robustly stimulate AR 

activity and depending on the chromatin template contexts, BRG1 and hBRM 

regulate designated subsets of androgen responsive genes (Marshall et al., 

2003). The BRG1 associated factor (BAF57) subunit, another component of the 

SWI/SNF complex, binds to AR directly and activates AR regulated genes while 

inhibition of the gene attenuates LNCaP cell proliferation. The gene regulatory 

mechanism involves the synergistic effect between BAF57 and p160 HAT 

coactivator SRC-1 or is alternatively through non-160 AR coactivators, such as 

ARA70 (Link et al., 2005). Another well studied SWI/SNF component is the 

SWI3-related gene product (SRG3/BAF155) which interacts with the DBD 

region of AR and exists in a complex containing the AR at gene promoter 

regions and it functions by recruiting steroid hormone receptor co-activator 1 

(SRC-1) independent of BRG1 and hBRM (Hong et al., 2005).  Overall, these 

components function as part of the chromatin remodelling complex to alter the 
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structure and topology of the DNA-histone interface rendering AR mediated 

transcription.  

 

Apart from the alteration of the chromatin structure and repositioning of 

transcription-related components by remodelling complexes, another widely 

established mechanism is the direct modification of histone proteins. This 

relatively elaborate and precise control over the local chromatin and 

nucleosome contributes to regulation of receptor action. Such modifications 

include acetylation, methylation, phosphorylation, ubiquitination and 

sumoylation. For brevity, only acetylation and methylation will be discussed in 

the next section. 

 

Modified forms of histone residues cause changes of the net charges of the 

nucleosome which in turn causes the restructuring or remodeling of DNA-

histone and DNA-protein in the local environment. For instance, lysine 

acetylation of histones neutralizes the positive charges, which consequently 

abrogates the interaction with negatively charged DNA, resulting in reduced 

nucleosome-nucleosome interaction allowing for enhanced promoter access. 

For example, members of p160 family of co-activators bearing histone 

acetyltransferase (HAT) activity, such as steroid receptor coactivator 1 (SRC-1), 

has been identified to interact with AF-1 and AF-2 of AR to enhance receptor 

transcriptional activity. This mechanism may be due to the modification on 

proteins, allowing the alteration of the topology of chromatin resulting in the 

access of basal transcriptional machinery, or stabilizing the pre-initiation 

complex (Culig et al., 2004; Powell et al., 2004). Another well-known 

transcription co-activator, p300, a histone acetyltransferase (HAT), has the 

potential to acetylate histone and non-histone proteins including AR to enhance 

AR-mediated transactivation (Gong et al., 2006). TIP60, another HAT enzyme 

also up-regulates AR activity in a HAT-dependent manner. Moreover, the 

antagonistically functioning histone deacetylase 1 (HDAC1) has been shown to 

repress AR activity by counteracting the activity of TIP60 (Gaughan et al., 2002; 

Brady et al., 1999; Heery et al., 1997).  

 

Another group of potent histone modifiers is the histone methyltransferases that 

function to either activate or inactivate genes in a highly discriminate manner 
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that depends upon the exact site of modification within histones H3 and H4. 

Compared to the acetylation on histone proteins, methylation is more 

complicated as this modification can be either active or inactive and the position 

of modification on histones especially histone tails protruding out of the core 

histones is vital to dictate the outcome of downstream events. For example, H3 

lysine 4, H3 arginines 2, 17 and 26 and histone H4 arginine 3 are generally 

associated with gene activation whereas H3 lysines 9, 27 and 36 and H4 lysine 

20 are broadly linked with gene silencing  (Lee et al., 2005a). On histone 

residues, both lysine and arginine can be potentially methylated and in 

particular lysine residues can be mono-, di- or tri- methylated. The status of the 

modification correlates with the transcriptional activity and this will be discussed 

in detail below On the contrary, although histone methylation has been 

considered as a stable modification for some time, recent discoveries indicated 

that reversal of histone methylation can be achieved through histone 

demethylases and some of these enzymes show dynamic regulation in 

androgen receptor mediated transcriptional pathway. So far, many 

methyltransferases and demethylases associated with AR activity have been 

identified.  

 

The well characterized arginine methyltransferases CARM1 and PRMT1 are 

engaged in AR mediated transcriptional regulation in different contexts. CARM1 

has been identified as a secondary AR co-regulator through the interaction with 

SRC co-activators (Chen et al., 1999). CARM1 has been found to be recruited 

to AREs upon ligand stimulation of the receptor and additional mechanisms 

involve methylation of other AR co-regulators, including p300/CBP and some 

RNA binding proteins and interaction with p160 group proteins of AR co-

regulators. CARM1 mediated co-activation is dependent on enzymatic activity 

since the methylation-dead mutant is unable to induce AR activation (Koh et al., 

2001). PRMT1 has also been shown to be a component of the AR 

transcriptional complex and stimulates receptor activity (Wang et al., 2001b).  

 

In addition to arginine methylation, lysine methylation is another key component 

during transcriptional regulation of the AR. The histone H3 lysine 9 

methyltranferase G9a functions as an AR co-activator in spite of the repressive 

feature of H3 lysine 9 methylation. G9a synergizes with GRIP1, CARM1 and 
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p300 to facilitate AR mediated transcription. The methyltransferase activity of 

CARM1, but not G9a is fully required for the synergistic effect to take place (Lee 

et al., 2006a). Moreover, G9a recruitment to AR responsive regions in the 

genome is apparent both in the presence or absence of androgens suggestive 

of a role for G9a in the progression of hormone insensitive prostate cancer (Lee 

et al., 2006a). Another example is the bi-functional nuclear receptor co-activator 

NSD1 (ARA267) which methylates both H3 lysine 36 and H4 lysine 20 (Huang 

et al., 1998). This protein interacts with the DBD-LBD of AR and up-regulates 

the transactivation in a ligand-dependent manner, although the involvement of 

relevant local histone modification is not yet proven (Huang et al., 1998).  

 

The importance of histone demethylation in androgen receptor mediated 

transcriptional regulation has recently been established by the discovery of the 

first AR associated demethylase LSD1 (Metzger et al., 2005). LSD1-mediated 

specific demethylation of mono- and di-methylated histone H3 lysine 9, a 

repressive marker for transcription, leads to activation of AR-dependent 

transcription (Metzger et al., 2005). LSD1 recruitment to AR-regulated genes, 

including PSA, coincides with robust reduction of H3 lysine 9 methylation 

(Metzger et al., 2005). Regardless of its role as an AR co-activator, additional 

lines of evidence indicate the context-dependent regulatory mechanism by 

LSD1 as it has also been identified in the CoREST complex containing HDAC 

activity that targets histone H3 lysine 4 for demethylation (Wang et al., 2007).  

 

Similar to LSD1, the histone demethylase JHDM2A demethylates mono- and di-

methylated H3 lysine 9 in a hormone dependent manner. Functional assays 

support the notion that status of methylation mediated by JHDM2A is key in AR 

mediated ligand dependent activation of AR target genes (Yamane et al., 2006). 

Of interest, another jumonji domain containing demethylase JMJD2C (GASC1) 

which specifically demethylates tri- and di-methylated H3 K9 has been identified 

as an AR co-regulator which functions in cooperation with LSD1 to demethylate 

trimethylated Histone H3 lysine 3 in turn causing the loading of acetylation on 

histones to boost the assembly of AR containing complex at the promoter 

regions (Wissmann et al., 2007; Cloos et al., 2006). These observations 

indicate that transcriptional control of the AR requires the coordinative and 

concomitant function of multiple enzymatic activities, including the opposing 
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actions of HATs, and HDACS together with HMT and HDM enzymes. The 

current full list of AR co-regulators  can be found in an excellent review 

(Heemers and Tindall, 2007).  

 

ii Expression and regulation of androgen receptor co-factors 
 

The crucial roles of AR co-regulators in the receptor mediated transcription 

regulation have been suggested and it has also been highlighted that aberrant 

expression of some co-regulatory proteins may be involved in the development 

and progression of prostate cancer (Urbanucci et al., 2008; Culig et al., 2004; 

Fujimoto et al., 2001). Thus far, the expression and regulation of some AR co-

regulators have been correlated to the androgenic stimulation and various 

clinical and pathological parameters. The well-known AR co-activator SRC-1 is 

elevated in patients with poor response to endocrine therapy and the 

expression level is higher compared to patients with BPH or androgen-

dependent prostate cancer (Fujimoto et al., 2001). The SRC-family member 

TIF2 was also found to be up-regulated in relapsed CaP patients; the effect of 

which was simulated in the CWR22 xenograft model, where the expression of 

SRC-1 and TIF2 decreased after castration and increased again at the time of 

relapse (Fujimoto et al., 2001). Another well-characterized AR co-activator, 

p300 has been implicated in androgen independent prostate cancer. This 

mechanism was linked with IL-6 mediated ligand independent AR activation as 

over-expression of p300 in LNCaP cells attenuated AR inhibition by MAPK 

inhibitor PD 98059, a pathway activated through IL-6 (Debes et al., 2002). Tip60 

has been demonstrated to exhibit significant nuclear accumulation in the 

majority of sample obtained from patients with castrate-resistant prostate 

cancer, (Halkidou et al., 2003).  

In addition to the altered expression patterns of some AR co-regulators, it has 

been found that several AR co-regulators are themselves androgen regulated. 

In one study, using LNCaP cells stably transfected with the AR as a model of 

amplified AR expression in CaP, several potential AR regulated co-regulators 

have been identified, including AIB1, CBP, MAK and BRCA1 (Urbanucci et al., 

2008). Taken together, the above lines of evidence support the notion of the 

mutual interplay between AR and its co-regulators, whereby AR can up-regulate 
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co-activator expression which in turn may cause sustained tumour growth under 

low androgen environment.   

 

1.4 Epigenetic regulation and prostate cancer  
 

1.4.1 An overview of epigenetics 

 
i The concepts and theories of epigenetics 
 

The term epigenetics refers to mechanisms that permit the stable transmission 

of cellular traits without alterations in DNA sequence or amount and this can be 

fulfilled by different mechanisms including DNA methylation, RNA interference, 

genomic imprinting and histone modifications.  

 

Histone proteins are composed of 5 classes including linker histones H1/H5, 

and 4 core histones H2A, H2B, H3 and H4. Two of each core histones 

assemble to constitute one histone octamer with 147 base pairs of DNA 

wrapped around. This structure is termed a nucleosome. The linker histone H1 

functions to binds the nucleosome and the entry and exit sites of the DNA, thus 

locking the DNA into place and rendering the formation of higher order structure. 

Here the basic ‘beads on a string’ structure of chromatin is formed (Luger et al., 

1997). This model enables the compaction to suit large genomes of eukaryotes 

inside cell nuclei. Besides, this highly ordered structure called chromatin is also 

associated with regulation of many essential biological processes, including 

replication, transcriptional, DNA repair, DNA recombination and chromosome 

segregation (de la Cruz et al., 2005; Strahl and Allis, 2000). Dynamic changes 

to chromatin compaction is required for each of these processes and is largely 

mediated by two distinct pathways: (1) Covalent modification of histones 

including acetylation, methylation, phosphorylation, ubiquitination and 

sumoylation; (2) Alteration of the nucleosomal positioning by enzymes utilizing 

energy from ATP hydrolysis (de la Cruz et al., 2005; Holbert and Marmorstein, 

2005). Histone tails protruding from the histone octamer, which are the main 

targets for the aforementioned post-translational modifications, have been 

broadly studied and their functional significance have been deciphered over the 
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past decade (Mersfelder and Parthun, 2006). Histone octamers especially H3 

and H4 tetramers have long tails protruding the nucleosome and they are the 

hot spots for various post-translational modifications which play essential roles 

in regulating cellular functions in many aspects. Histone H3 N-terminal tail 

extends from the central globular domain and is subject mostly to post-

translational modification including the covalent attachment of methyl or acetyl 

groups to lysine and arginine amino acids and the phosphorylation of serine or 

threonine. Such examples include H3 lysine 4 methylation and H3 lysine 9 

acetylation. Likewise, histone H4 is also a preferred target for these covalent 

modifications, including H4 lysine 20 methylation and H4 arginine 3 methylation. 

On the contrary, histone H2A and H2B are not as favoured as H3/H4 for post-

translational modifications, although certain modifications show important 

functions in cells such as ubiquitination at core site lysine 119 of H2A and lysine 

5 of H2B (Wang et al., 2004; Myers et al., 2003). Detailed modifications on 

histone tails are described below in Figure 1.7.  

 

  

Figure 1.7 Sites of histone tail modifications. (Figure from online resources) 
 

Early studies proposed that modified histones can act as recognition signals to 

direct binding of non-histone proteins to specific sites within chromatin, thus 

establishing local DNA-protein or protein-protein conformational changes which 

link the alteration of chromatin structure to cell cycle progression, DNA 

replication, DNA damage and its repair, and transcription regulation (Jenuwein 

and Allis, 2001). More recently, based on abundant evidence, the histone code 

hypothesis, which indicates that specific tail modifications and/or their 

combinations constitute a code that act in concert to bring about unique 
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downstream events, has become generally accepted. This putative epigenetic 

histone code hypothesis has been strongly supported firstly and mostly by 

experimental studies investigating lysine acetylation of histones H3 and H4 

including the cooperative acetylations between H3 K9 and K14 and H4 K4, K8, 

K12 and K16 (Peterson and Laniel, 2004). Some acetylated histone residues 

facilitate further lysine acetylation at adjacent residues, the phenomenon which 

has been observed in many organisms. For instance, histone H4 K16 

acetylation is accompanied by an increase of contiguous lysine acetylation and 

is associated with a 2-fold increase of transcriptional up-regulation of genes on 

male X in Drosophila (Turner, 2000). The notion of the histone code was further 

emphasized by studies demonstrating histone H3 serine 10 phosphorylation 

and histone H4 lysine 16 acetylation may set up a combinatorial mark leading to 

the enhanced transcripton of male X chromosome (Strahl and Allis, 2000). 

Interestingly, antagonizing enzymes such as demethylases, deubiquitinases 

and phosphatases also exist (Holbert and Marmorstein, 2005). The net effect of 

both sets of enzymes in combination with simultaneous or subsequent 

modifications generate a distinct readout of chromatin that can either 

reconfigure chromatin structure or modulate binding affinity of chromatin-

associated proteins. Such changes have the capacity to impact on chromatin 

metabolism, including transcription and DNA repair.  

 

Although the mechanistic links between histone modification and chromatin 

function still remain largely elusive, several chromatin-interacting protein motifs 

have been identified, including bromodomains that interacts with acetylated 

lysines; chromodomains that target methylated lysines, and SANT domains that 

recognizes unmodified lysine residues (Holbert and Marmorstein, 2005). Many 

identified HAT, HMT and HDM enzymes have been shown to contain these 

domains that constitutes a mechanism of controlling substrate specificity of 

these proteins. For example, heterochromatin-binding protein 1 (HP1), a 

methyl-lysine binding protein, interacts with SUV39H1, a histone H3 K9 HMT 

and the methylation of H3 K9 by SUV39H1 creates a binding site to allow the 

access of the HP1 protein to execute its repressive property to silence genes 

and this procedure also synergistically relies upon the suppressive activity of Rb 

protein (Lachner et al., 2001; Nielsen et al., 2001). Likewise, human TAFII250 

which is the largest subunit of TFIID contains two bromodomain modules that 
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bind selectively to multiple acetylated histone H4 peptides (Jacobson et al., 

2000). This evidence again supports that multiple modification patterns of 

histones, not a single acetylated lysine, is required for deciphering an epigenetic 

code and hints at a new and unexpected role for TAFII250 upon hyperacetylated 

histone H4 due to its accessory role in RNA polymerase II mediated 

transcription. 

 

In summary, although a large amount of data are suggestive and indicative of 

the function of multiplex histone modifications, the mysteries of post-

translational marks that decorate histone tails are by no means deciphered. 

Understanding the rules and the consequences of this histone code may impact 

on many, if not all, DNA-templated processes with far-reaching implications for 

human biology and diseases (Strahl and Allis, 2000). A list of histone 

modifications and their correlation with transcription regulation is 

comprehensively represented in Table 1.1. 
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Table 1.1 List of epigenetic modifications and regulatory effects on transcription. (Table from (de la 
Cruz et al., 2005) 
 

ii The link between epigenetics and prostate cancer  
 

Insight into the relationship between epigenetic modifications and CaP revealed 

the abnormal phenotypic manifestations in CaP as consequences of gene 

expression alterations could be partially attributed to certain epigenetic 
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phenomenon (Schulz and Hoffmann, 2009; Schuettengruber et al., 2007). DNA 

methylation is one mechanism of gene silencing which is known to be important 

in prostate cancer (Dobosy et al., 2007; Pang et al., 2006; Patra et al., 2002). 

The other driving force of epigenetic regulatory mechanism in prostate cancer is 

the covalent modification of histone proteins or non-histone proteins, mainly 

catalyzed by HATs and HMTs and their opposing enzymes HDACs and HDMTs, 

respectively (Seligson et al., 2005). Increased HAT activities have a myriad of 

effects that may alter prostate cancer growth in positive and negative fashion 

(Dobosy et al., 2007). For example, the previously mentioned HATs p300, 

PCAF and TIP60 up-regulate AR activity leading to increased AR signalling in 

the presence of trace amount of ligands (Halkidou et al., 2003; Debes et al., 

2002). In addition, the level of TIP60 is up-regulated in CWR22 CaP xenograft 

model and AIB1 another AR co-activator has also shown increased expression 

in prostate cancer clinical specimens (Halkidou et al., 2003; Gnanapragasam et 

al., 2001). Counteractively, removal of acetyl groups from lysines by HDACs, 

are a family of enzymes whose expression is frequently up-regulated in prostate 

cancer (Patra et al., 2001). For instance, high levels of HDAC1 have been seen 

in metastatic CaP cells including LNCaP, PC3 and DU145 and intriguingly in 

LNCaP cells the co-regulation of HDAC1 and Tip60 has been observed at AR 

responsive PSA promoter (Halkidou et al., 2004b; Gaughan et al., 2002). 

Furthermore, the link between the expression of HDACs and CaP has also 

been established. It was shown that HDAC1 was up-regulated in pre-malignant 

and malignant lesions, with the most robust increase in expression in hormone 

insensitive cancer (Halkidou et al., 2004b). Additionally, HDAC4 expression 

showed a predominant occupancy in the nucleus in hormone refractory CaP 

compared to the large cytoplasmic distribution of the protein in androgen 

sensitive primary tumour (Halkidou et al., 2004a).  

 

Co-localization of AR and the HDM LSD1 has been observed and it relieves the 

repressive state of methylated H3 K9, thereby leading to de-repression of AR 

target genes (Metzger et al., 2005). Other evidence also suggests that LSD1 in 

cooperation with a half LIM-domain protein 2 (FHL2) showed elevated 

expression in high risk prostate tumours and might serve as a predictive 

biomarker of CaP aggression (Kahl et al., 2006). Likewise, another strong 

candidate a histone methyltransferase, EZH2 displays significant over-
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expression in hormone refractory and metastatic CaP and is essential for 

cancer cell proliferation, being a strong marker to distinguish indolent prostate 

cancer from those at risk of lethal progression (Varambally et al., 2002). 

Furthermore, although NSD1, a bi-functional transcriptional intermediary factor, 

interacts directly with LBD of several nuclear receptors, its correlation with AR is 

still lacking (Huang et al., 1998). However, it is worth mentioning that it bears a 

putative SET domain and exhibits both repressive and activating function via a 

novel variant motif FXXLL, which differs from the previous conserved box 

LXXLL identified in many AR cofactors (Huang et al., 1998; Heery et al., 1997). 

In fact, NSD1 is amongst the three catalytic SET motif-containing HMTs that are 

linked to nuclear receptor mediated transcription: the other two are G9a and 

RIZ1, both H3 K9 HMTs which are implicated in human cancer. G9a being an 

AR co-activator that synergizes with CARM1 and GRIP1 to regulate AR activity 

(Lee et al., 2006a; Carling et al., 2004).  

 

Despite the CpG island hypermethylations at specific gene promoters as cancer 

diagnostic markers such as the hypermethylated promoters of GSTpi, RUNX3, 

APC and PTGS2 genes, certain histone modifications may also predict the risk 

of prostate cancer recurrence (Richiardi et al., 2009). These include the 

widespread changes of acetylation status at three residues on histone H3 and 

H4, which could potentially serve as independent parameters to predict the 

outcome of tumour stage, preoperative PSA levels and capsule invasion 

(Seligson et al., 2005). Altered expression and activity of epigenetic modifying 

enzymes may provide another avenue for therapeutic prevention of CaP. Many 

agents have been discovered and tested for their therapeutic potentials such as 

MTase inhibitor (Decitabine and Zebularine) and HDAC inhibitors (Trichostatin 

A and Depsipeptide). One study showed that HDAC1 inhibitors trichostatin A 

(TSA), FR901228 or depsipeptide induced LNCaP and DU-145 cell death and 

exhibited several apoptotic features such as cellular shrinkage nuclear 

condensation, and poly(ADP)ribose polymerase cleavage. Another study using 

a novel Phenylbutyrate-Based Histone Deacetylase Inhibitor, (S)-HDAC-42 

showed significant suppression of PC-3 tumor xenograft growth with the 

reduction of intra-tumoural levels of phospho-Akt and Bcl-xL (Dobosy et al., 

2007; Schmidt and McCafferty, 2007; Kulp et al., 2006; Fronsdal and Saatcioglu, 

2005). These lines of evidence together suggest the promising potential of 
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therapeutic intervention for CaP through the mechanisms of epigenetic 

regulation. 

 

In all, since global modifications of histones and their versatile functions acting 

extensively on a variety of proteins involved in significant biological processes 

establish a hallmark for human cancer (Jacobson and Pillus, 1999), their 

contributive roles in prostate cancer development is under intensive 

investigation (reviewed in (Lonard and O'Malley, 2005), (Culig et al., 2004), 

(McKenna et al., 1999) (Seligson et al., 2005)).  

 

1.4.2 The role of histone methyltransferases in prostate cancer 

 
i Protein lysine methylation by histone methyltransferases 

 
Methylation of histone predominantly occur on H3 and H4. Arginine methylation 

and lysine methylation are catalyzed by two groups of enzymes: PRMT family 

and SET (Suppressor of variegation 3-9, the Polycomb-group chromatin 

regulator Enhancer of zeste, and the Trithorax-group chromatin regulator 

Trithorax) domain containing family, respectively and the correlations between 

the individual modifications and their effects on transcription regulation are 

listed (Dillon et al., 2005). The functional significance of arginine methylation 

includes transcriptional regulation via chromatin remodelling, interplay between 

histone acetylation, interaction with diverse types of transcriptional activators or 

co-activators and coordination with ATP dependent enzyme complexes and 

signal transductions (Lee et al., 2005a).  

 

Lysine methylation which is mediated largely by SET domain-containing HMT 

enzymes contributes to both transcriptional activation and repression depending 

upon the discriminate modification of specific lysine residues in histones H3 and 

H4 (Dillon et al., 2005; Lachner and Jenuwein, 2002). Thus far, functional 

studies on histone H3 lysine 4 (H3 K4), K9, K36 and K79 revealed both 

antagonizing and agonizing effects on transcription by either direct or indirect 

mechanisms. In contrast, H3 K27 and H4 K20 methylation is associated with 

gene silencing (Lee et al., 2005a). The precise regulatory mechanisms 
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underlying these effects may be due to three key mechanisms: (1) Inhibiting 

binding of proteins (or other nucleosome) to histone tails or inhibiting binding or 

activities of enzymes that make additional modifications of histone tails or other 

proteins. (2) Creating a binding site for the recruitment of specific proteins 

involved in chromatin remodelling or enhancing activities of certain enzymes to 

make additional modifications. (3) Reprogramming nucleosome conformation, 

thus reconfiguring its association with other proteins or nucleosomes 

(Schuettengruber et al., 2007; Lee et al., 2005a). A list of key histone 

methylations on H3 and H4 and their correlation with transcription regulation is 

presented in Table 1.2.  

 

 

Table 1.2 Individual histone methylations on H3 and H4 and their correlation with transcription 
regulation. (Table from Craig L. Peterson and Marc-Andre Laniel, Magazine) 
Corresponding histone modification enzymes are also listed. 
 

ii The link between HMTs and prostate cancer 
 

Several HMTs have been shown to have a potential role in prostate 

transformation. For example, the intensively studied Poly-Comb Group SET 

domain containing HMT EZH2 is over-expressed in malignant prostate tissue, 
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especially metastatic CaP and may serve as an independent cancer biomarker 

useful in predicting patient outcome after treatment at early stages of disease 

(Sellers and Loda, 2002; Varambally et al., 2002). Studies have also shown this 

highly expressed protein may play a role in regulating cell cycle progression, 

cell self-renewal and apoptosis by controlling transcription of genes such as 

cyclin-A and DAB2IP, a potent growth inhibitor in prostate cancer (Chen et al., 

2005; Tonini et al., 2004). Another Poly-Comb candidate is BMI1, whose 

expression is elevated in CaP (Berezovska et al., 2006). Likewise, the SET 

domain containing tumour suppressor protein RIZ1 is inactivated by promoter 

hypermethylation based on studies using pathological samples. G9a, a histone 

H3 K9 HMT, has been shown to function as an AR coactivator for genes such 

as PSA and methylation of its histone substrate suppressed expression of anti-

metastatic tumour suppressor genes, including desmocollin 3 (DSC3) and 

MASPIN, suggesting its cancer pathogenesis potential (Lee et al., 2006a; 

Suzuki et al., 2006; Wozniak et al., 2006).  

 

1.5 The histone lysine methyltransferase SET9  
 

1.5.1 Characteristics of SET9 
 
i The discovery of SET9 
 

Two pilot papers published in 2002 identified and characterized a novel histone 

H3 K4 methyltransferase SET9 (Nishioka et al., 2002; Wang et al., 2001a). 

Originally purified from HeLa cells, SET9 was shown to methylate histone H3 

lysine 4 in vitro, whereas it failed to methylate histone assembled into 

nucleosome in vitro suggesting it’s in vivo capability requires other factors 

(Wang et al., 2001a). Depletion and point mutation analyses demonstrated that 

the SET domain and its adjacent sequences are required for SET9-mediated 

HMT activity, although it lacks the pre- and post-cysteine rich regions, which is 

found in many other SET domain containing HMTs (see Figure 1-8) (Wang et al., 

2001a). Functional analysis revealed that SET9 functions as a transcriptional 

co-activator via several mechanisms; (1) Methylation of H3 K4 displaces the 

HDAC containing transcription silencing complex NuRD at silenced chromatin 

regions; (2). Methylation of H3 K4 by SET9 and methylation of H3 K9 by 
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SUV39H1 inhibit each other and the latter modification is largely involved in 

transcription repression; (3). Methylation of H3 K4 by SET9 favours subsequent 

deposition of p300 on histone H4, both phenomena together indicative of gene 

activation (Nishioka et al., 2002; Wang et al., 2001a).  

 

ii SET9 protein structure and the catalytic mechanism  

 
SET9 consists of 324 amino acids with the catalytic SET domain located at the 

C-terminus of the protein between residues 227 and 335 (Figure1.8). Mutational 

analysis revealed that histidine 297 within the SET9 domain is required for 

SET9-mediated methylation. In line with other histone methyltransferases, the 

catalytic mechanisms of SET9 relies upon the transfer of methyl group(s) from 

the cofactor S-adenosyl-methionine (SAM) to the specific substrate lysine 4 on 

histone H3 (Figure 1.9) (Hu and Zhang, 2006). The high-resolution crystal 

structure of a ternary complex of human SET7/9 with a histone peptide and 

cofactor reveals that the peptide substrate and cofactor bind on opposite 

surfaces of the enzyme and the target lysine accesses the active site within the 

enzyme and S-adenosyl-methionine cofactor by inserting its side chain into a 

narrow channel that runs through the enzyme, connecting the two interfaces 

(Xiao et al., 2003). Proteomic and structural analysis also indicated it is a 

histone mono-methyltransferase as the structure shows that the arrangement of 

protein side chains in the active site of SET7/9 is such that it can only catalyse 

the addition of a single methyl group to the lysine amine (Couture et al., 2006). 

In addition to the original feature of recognizing histone R-T-K-Q sequence as 

the primary substrate, crystal structure analysis using TAFIID (a SET9 substrate) 

bound SET9 also revealed that in the case of non-histone proteins, it has a 

recognizable motif K/R-S/T/A preceding the lysine substrate and has a 

propensity to bind asparagine and aspartate on the C-terminal side of the lysine 

target (Couture et al., 2006).   
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Figure 1.8 Full-length SET9 amino acid sequence containing  a SET domain.  
Underlined sequences are identified by mass spectrometry. SET-domain residues are in blue, and 
histidine 297 is highlighted in red. 
 

 

Figure 1.9 Chemical mechanisms of histone lysine methyltransferase.  
A methyl group is transferred from S-adenosylmethionine (AdoMet) to the substrate Histone H3 K4. 
 

iii Molecular and cellular functions of SET9 

 
In keeping with the computational-based SET9 putative target identification 

supported by above crystal structure based evidence, it was subsequently 

suggested that SET9 can not only mediate the methylation of histone proteins 

but truly can also methylate or interact with some non-histone proteins. 

Interestingly, it was shown that SET9 enhances p53 transcriptional activity by 

directly methylating p53. Methylation of lysine 372 of p53 by direct SET9 

interaction stabilizes p53 protein and facilitates p53-mediated transcription of 

p21, BAX and MDM2 and indeed exerts effect on the cell phenotype such as 

apoptosis in response to chemotherapeutic intervention doxorubicin (Chuikov et 

al., 2004). This molecular biology property of SET9 has been proven in vivo 

using null allele SET9 mouse model, where deletion of SET9 caused the pre-

disposition to oncogenic transformation upon induction with DNA damage 

through p53 mediated pathway. More interestingly, SET9 methylation of p53 in 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14981985&dopt=Abstract�
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vivo potentiates acetylation of p53 by TIP60 suggesting a mechanistic link 

between methylation and acetylation of proteins (Kurash et al., 2008). Another 

line of evidence in pancreatic β cells suggested that Pdx-1-mediated insulin 

gene transcription is synergistically up-regulated due to -methylation of both 

Pdx-1 protein and histone H3 K4. This also linked its relationship with basal 

transcription machinery, as methylated H3 K4 correlated with RNA polymerase 

II recruitment at the insulin promoter, but not the myoD1 promoter in which H3 

K4 methylation is not enriched (Francis et al., 2005; Chakrabarti et al., 2003). A 

similar mechanism is observed for the collagenase gene, where SET9 functions 

to modify histone H3 K4 with subsequent ordered recruitment of other modifying 

enzymes, including p300, RSK2 kinase and Brg-1, all of which constitute a 

putative readable code recognized by TATA binding protein, c-jun/c-fos and 

RNA polymerase II (Martens et al., 2003). Additionally, supporting these 

findings a physical interaction between SET9 and TAF10, and subsequent 

TAF10 methylation (a component of the general transcription factor TFIID) has 

been observed. This association increases the affinity between TFIID and RNA 

polymerase II facilitating some, but not all corresponding gene transcription, 

including ERA and ERF1 (Kouskouti et al., 2004). Recently, it has been found 

that SET9 can directly methylate estrogen receptor (ER) at a single lysine 

residue, 302 in the lysine-rich RSKK motif. Similar to the story between SET9 

and p53, SET9 methylated ER shows enhanced stability. Methylation at this site 

is a pre-requisite for efficient ER recruitment at the promoter of target genes 

and their subsequent transcription. Interestingly, a breast cancer associated 

mutation at the 303 (lysine to arginine) alters SET9-methylation at adjacent 302 

both in vitro and in vivo suggesting the importance and influence of surrounding 

structure at the hinge region to favour the essential modification (Subramanian 

et al., 2008). SET9 has also been shown to be a regulator of NF-kB. Down-

regulation of SET9 by siRNA caused abolishment of TNF-α induced NF-kβ 

recruitment at inflammatory gene promoters and corresponding transcription in 

monocytes and this also impacts on monocyte adhesion (Li et al., 2008). 

Recent findings indicate that methylation of NF-kB occurs on the p65 subunit of 

the protein complex at lysine 37, which is responsible for TNF- α  and IL1-β 

induced promoter binding of p65 (Ea and Baltimore, 2009). In addition, 

subsequent findings suggest that NF-kB is also methylated by SET9 at the 

lysine residues 314 and 315 of the RelA/p65 subunit and these modifications 
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inhibit NF-kB action by inducing the proteasome-mediated degradation of 

promoter-associated RelA in vitro and in vivo. This suggests an alternative 

mechanism whereby NF-kB is differentially regulated by SET9 (Yang et al., 

2009).  

 

1.5.2 SET9 and cancer 
 

As discussed above, the potential role of SET9 as a non-histone protein 

modifier expands the diversity of the protein in regulating key components in 

cancer biology. The role of SET9 as a p53 stabilizer and participation in pro-

apoptotic gene activation suggests its role as a tumour suppressor. However, 

during breast cancer progression, SET9 may act as a cancer facilitator by 

stabilizing estrogen receptor protein to allow constitutive stimulation of target 

gene expression. Thus the effect of SET9 on positive/negative regulation in 

cancer development might be dependent upon the cellular and molecular 

complex therein. To date, although the function of SET9 in CaP is largely 

unknown, due to the discovery and characterization of many AR co-activators 

combined with their intrinsic effects of targeting specific histone residues at 

numerous gene loci, a role for HMT function in AR activity remains to be 

established. The finding that H3 K4 methylation stimulates the PSA promoter in 

response to androgen suggests an involvement of a H3 K4 HMT in AR 

mediated transcription regulation and signalling, which provides supporting 

evidence of the likelihood of SET9 involvement in prostate cancer progression 

(Kim et al., 2003). In line with the hypothesis, our early data suggested a direct 

interaction between SET9 and AR in LNCaP cells and this interaction imposed a 

direct methylation of the receptor by SET9 at lysine residue 632 in the KLKK 

motif of the hinge domain. Luciferase reporter assays using the AREIII at the 

PSA promoter suggested its function as an AR co-activator again emphasizing 

the potential role of SET9 as a pivotal mediator in the development of prostate 

cancer (Gaughan et al, 2010).  
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Aims  
 

Although SET9 was initially characterized in cancer cells and shown to be an 

important co-regulator protein for numerous transcription factors, including p53 

and the estrogen receptor, mechanisms that regulate this methyltransferase 

enzyme remain undefined. Pioneering experiments performed in the Urology 

Research Group, Newcastle University, demonstrated a role for SET9 in 

androgen receptor regulation. To further extrapolate the SET9 project in 

androgen receptor signaling and prostate cancer, the first aim of this 

studentship is to investigate the regulatory mechanisms of SET9 in the AR 

signaling cascade and assess the impact of SET9 on cell cycle regulation and 

apoptosis in cell line models of prostate cancer.  

 

To gain a more detailed insight into regulatory processes that impact on SET9 

activity in prostate cancer cells, SET9-interacting proteins will be identified and 

their impact on SET9-mediated co-activation of the AR and prostate cell growth 

will be investigated.  

 

In all, the work conducted herein has the potential to highlight novel 

mechanisms of SET9 activity in the AR signaling cascade and prostate cancer 

progression that may further validate the enzyme as a potential therapeutic 

target in this disease. Moreover, by examining protein-interacting partners of the 

histone methyltransferase, it is postulated that control mechanisms of SET9 will 

be identified and thus improve our understanding of this enzyme in epigenetic 

regulation in numerous cellular systems. 
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Chapter 2 
 

General materials and methods 
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2.1 General reagents and chemicals  

 
All general reagents and chemicals detailed in this thesis were purchased from 

the following manufacturers (table 2.1) 

 

Names Suppliers 
Methanol, Ethanol, Isopropanol, NaCl, 

Glycine, Tris(hydroxymethyl)aminomethane, 
Sodium dodecyl sulfate, Glycerol, Acidic acid Fisher Scientific 

Triton X-100, Tween-20, Chloroform, 
Whatman paper, Harris’s Haematoxylin BDH, VWR 

Nonidet P-40 CalBiochem 
Na3VO4, Dimethyl sulfoxide, NaOH, 

phenylmethanesulfonylfluoride, Dithiothreitol, 
Aluminium potassium sulfate, Bromophenol 

blue, T4 DNA polymerase, RPMI 1640 
medium (HEPES modification), DMEM, 3,3’-

Diaminobenzidine tablet, EDTA, plasmid 
DNA purification kit, L-Glutamine, Ampicillin, 

Kanamycin, X-gal, Isopropyl Thio-β-D-
Galactoside, Foetal bovine serum , DHT, 

R1881, Trypsin Sigma Aldrich 
Yeast extract, Tryptone, Agar bacteriological, 

PBS tablets   OXOID 
Saran wrap SLS 

PCR buffer, dNTPs, Hyperladder I and IV,  Bioline 
Oligo dT, Luciferase assay lysis buffer and 

luciferase substrate, MMLV reverse 
transcriptase and buffer 

Promega  

G418, SYBER green, SYBR safe DNA 
staining reagent, T4 DNA ligase 

Invitrogen 

Nuclear/cytoplasmic extraction kit  Perbio Science 
X-ray film  GR1 

G418, SYBR green Invitrogen 
Nuclear/cytoplasmic extraction kit  Perbio Science 
Dextran-charcoal-stripped serum Hyclone  

Protease inhibitor tablet Roche 
Avidin-biotin-complex kit Pierce 

Maxiprep, Miniprep Gel extraction kit  Qiagen  
 
Table 2.1 List of general chemicals and reagents and relevant suppliers.  
 
 
All reagents and chemicals specifically used for individual experimental 

purposes are described below in individual sections. Description of techniques 

used in generating the results within this thesis is provided below. 

Manufacturer’s protocols are referenced where appropriate if the work was 

performed strictly according to those protocols. 
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2.2 General molecular cloning methods  
 

2.2.1 Molecular cloning methods 

 
i Agarose gel electrophoresis  

 
Agarose gel electrophoresis was routinely performed as a pre-requisite for 

DNA/RNA separation. Agarose (Invitrogen) was dissolved in TAE (Tris Acetate 

EDTA) buffer and gels were subsequently poured onto clean class plates with 

perspex combs overhang in order to form sample wells for loading. Gels were 

placed into electrophoresis tank (Bio-Rad). DNA samples were mixed with 5x 

DNA sample buffer (30% sucrose, 100mM EDTA, pH 8, 0.05% bromophenol 

blue, New England Biolabs) at appropriate ratio and loaded into wells alongside 

DNA molecular weight markers (Bioline). Electrophoresis was performed at 100 

volts for 30-60 mins. Gels were then stained in SYBR SAFE at 1 in 10,000 

dilution (Invitrogen) for 10 mins and analyzed using a GelDoc video imaging 

system (Bio-Rad). 

 

ii E.coli culture 
 

Genetically modified chemical competent E.coli strains (Top10 and NEB 5-α) 

were routinely cultured in autoclaved Luria Bertani (LB) medium. pH value of 

the LB medium was adjusted according to manufacturer’s recommendation for 

competent E.coli cells prior to autoclaving. Antibiotics were also added to LB 

medium immediately before culturing in accordance with the resistance property 

of the transformed plasmid vectors for amplification. Ampicillin and kanamycin 

were used as routine antibiotic selection methods for related cloning works.  

 

Chemical Conc. for medium Conc. for plate 
Conc. for plate for 

blue-white selection 
tryptone 10.0g/L 10.0g/L 10.0g/L 

yeast extract 5.0g/L 10.0g/L 10.0g/L 
sodium chloride 5.0g/L 5.0g/L 5.0g/L 

Agar powder -- 15.0g/L 15.0g/L 
distilled H2O diluent diluent diluent 

IPTG -- -- 100µl/plate 
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(stock:100mM) 
X-Gal -- -- 40µl/plate (stock: 

20mg/ml) 

 

Table 2.2 Composition of Luria Bertani (LB) medium.  

 

iii Plasmid DNA vector preparation 
 

All E.coli cells were cultured at 37°C with constant horizontal shaking at 

approximately 180 rpm overnight. Alkaline lysis method was used to extract 

plasmid DNA from bacteria. This was carried out routinely by using Maxiprep or 

Miniprep kit (Qiagen) according to manufacturer’s protocols. Quality of 

extraction was controlled by either agarose gel electrophoresis or UV 

spectrophotometry measuring 260 Å light absorbance using Nanodrop ND-1000.  

 

iv Endonuclease DNA digestion 
 

BamH1 and Kpn1 endonucleases were used in this work during subcloning and 

positive clone selection. Suppliers of these enzymes included Roche, New 

England Biolabs, and Fermentas. Digest reactions were set at either 30°C or 

37°C according to each enzyme’s properties. Incubation was typically 

performed for 1 hour using 3-5 units of enzyme per microgram plasmid DNA. 

  

v Ligation of DNA fragments and alkaline phosphatase treatment 
 

T4 recombinant bacteriophage DNA ligase (Invitrogen) was used routinely in all 

DNA ligation reactions. Typical ligation reactions were performed at RT or 14°C 

from 1 hour up to overnight according to manufacturer’s recommendation. For 

subcloning work, digested vectors were treated with Calf intestine phosphatase 

(CIP) (New England Biolabs) for 15 mins at 37 °C according to manufacturer’s 

protocol. The purpose was to remove phosphate groups from the 5 prime ends 

of digested vectors preventing the digested vectors from self-religation.  

 

vi E.coli transformation and plasmid verification  
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Competent bacteria transformation was carried out according to manufacturer’s 

protocol (Invitrogen or New England Biolabs). Transformed E.coli cells were 

selected by growing E.coli on antibiotic (stated above) containing LB agar 

culture plates overnight at 37 °C. Qualities of the plasmid constructs were 

verified by DNA sequencing and mammalian cell transfection and subsequent 

western blotting for the expressed proteins before functional application of these 

vectors. Sequencing primer sets (Cogenics) are listed below in table 2.3.  

 

vii Gel extraction 

 
Gel extraction was performed using Qiagen gel extraction kit. Gel pieces 

containing the vectors or inserts were weighted and counted as one volume. 

Gels were subsequently dissolved in three volumes of Buffer QG and incubated 

at 50 °C for 10 mins. 1 volume of isopropanol was then added and mixed to 

allow sufficient precipitation of DNA if the DNA fragments were longer than 4 kb. 

Otherwise melted gels were transferred to spin columns and spun at 13000 rpm 

for 1 min. Resultant DNA bound columns were washed with 500 µl of buffer QG 

and centrifuged at 13000 rpm for 1 min. Columns were then filled with 750 µl of 

PE buffer and left for 3 mins before centrifugation. Resultant DNA containing 

columns were then placed in fresh effendorf tubes and 20-30 µl of EB buffer 

was added and stood for 1 min to elute DNA from the columns. Finally, DNA 

was spun off from the columns and collected in new tubes for future use.  

 

2.2.3 Conventional PCR amplification 
 

Polymerase chain reaction (PCR) was carried out using T4 DNA polymerase 

(Sigma) and PCR kit (Bioline) according to the manufacturer’s protocols. Some 

products resulting from PCR were subcloned into linearised plasmid vector 

constructs. The primers used to clone these inserts are listed in Table 2.3. All 

vectors used in this project are listed in Table 2.4. The Flag-tagged pcDNA3.1-

hSET9 vector (GeneBank accession No AF462150) was kindly provided by 

Danny Reinberg. 1081bp full-length hSET open reading frame was PCR-

amplified using the BamH1 site-containing primers shown in Table 2.3. Primer 

pairs used for cloning were purchased from Sigma-Aldrich. 
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No. Name Sequence 
1 3×FLAG-SET9 

forward 
5’-GGA TCC ATG GAT AGC GAC GAC GAG-3’ 

2 3×FLAG-SET9 
reverse 

5’-GGA TCC TCA CTT TTG CTG GGT GGC-3’ 

3 GFP-SET9 forward 5’-ATG ATG GAA TTC GAT AGC GAC GAC GAG ATG-3’ 
4 GFP-SET9 reverse 5’-ATG ATG GAA TTC TCA CTT TTG CTG GGT GGC-3’ 
5 CMV 30 sequencing 

primer forward 
5′-AAT GTC GTA ATA ACC CCG CCC CGT TGA CGC-3′ 

6 3×FLAG-SET9 
sequencing reverse 

5’-GGA TCC TCA CTT TTG CTG GGT GGC-3’ 

7 GFP-SET9 
sequencing forward 

5’-GCC CCT TGA AGA TCA GTCT CCC ATC TGT-3’ 
 

8 GFP-SET9 
sequencing reverse 

5’-ATG ATG GAA TTC TCA CTT TTG CTG GGT GGC-3’ 

 
Table 2.3 List of primers for cloning work.  
 

No. Vector Type Insert Type Mutation Tag 

1 pcDNA 3.1 SET9 WT n/a n/a 

2 pCR 2.1 SET9 WT n/a n/a 

3 P3×FLAG-CMV-10 SET9 WT n/a N-terminus 3×FLAG 

4 pEGFP-C2 SET9 WT n/a N-terminus GFP 

5 pEGFP-C2 HDAC1 WT n/a N-terminus GFP 

6 pcDNA 3.1 SET9 WT n/a N-terminus FLAG  

7 pcDNA 3.1 SET9 MUT H297A N-terminus FLAG 

8 pcDNA 3.1 FXR1 E WT n/a n/a 

9 pcDNA 3.1 FXR1 F WT n/a n/a 

10 pcDNA 3.1 FXR1 G WT n/a n/a 

11 p3×FLAG-CMV-10 EBP1 WT n/a N-terminus 3×FLAG 

12 pEGFP-C1 EBP1 WT n/a N-terminus GFP 

13 pcDNA 3.1-FLAG GIPC1 WT n/a N-terminus FLAG 

14 pcDNA 3.1-FLAG GIPC1 MUT L142A/G143E N-terminus FLAG 

15 pAREIII-luc Luciferase  n/a n/a 
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Table 2.4 List of vectors for cloning work and mammalian cell transfection.  
 
2.3 RNA preparation and analysis methods 
 

2.3.1 Total RNA extraction 
 

Trizol reagent (Invitrogen) was applied directly to cell monolayers and total RNA 

extraction was performed by a series of chloroform, isopropyl alcohol and 

ethanol treatments, and finally, re-dissolved in DEPC water (detailed description 

in the manufacturer’s protocol).  

 

2.3.2 Reverse transcription and SYBR green and TaqMan real-time PCR 
analysis 
 

Prepared RNA was heated at 65 ℃ to remove RNA secondary structure and 

subjected to reverse transcription process for cDNA synthesis using the Mouse 

Moloney Leukemia Virus Reverse Transcriptase (Promega) with oligo ‘dT’ as 

primer hybridizing to polyA  tails of mRNA (protocols from Promega). After 1 

hour incubation at 37 ℃ , cDNAs were used as templates for absolute 

quantification using SYBR Green I or TaqMan gene expression real-time PCR 

analysis according to manufacturer’s instruction (Sigma Aldrich and Applied 

Biosystem). GAPDH or HPRT1 (Sigma) were routinely used for normalization in 

relative quantification and the same setup with polymerase enzyme replaced by 

water was routinely used as negative control. ABI 7900HT real-time PCR 

system was used and data was analysed by SDS2.2 software (Applied 

Biosystem). The primer sets used are listed in Table 2.5.  

 

16 pCMV β-gal n/a n/a 

17 pAD-Gal4 HDAC1WT n/a N-terminus Gal4 

18 TK-GAL4UASLuc Gal-4 responsive 
Luciferase 

n/a n/a 

19 pCMVβ p300 WT n/a n/a 

20 pCDNA3  AR WT n/a n/a 
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No. Name Sequence 
1 PSA forward 5’-GGTGCATTACCGGAAGTGGAT-3’ 
2 PSA reverse 5’TGGTCATTTCCAAGGTTCCAAG-3’ 
3 GAPDH forward 5’CGACCACTTTGTCAAGCTCA-3’ 
4 GAPDH reverse 5’GGGTCTTACTCCTTGGAGGC-3’ 
5 TaqMan SET9 forward n/a 
6 TaqMan SET9 reverse n/a 
7 p21 forward 5'-GACTCTCAGGGTCGAAAACGG-3' 
8 p21 reverse 5'-GCGGATTAGGGCTTCCTCTT-3' 
9 Mdm2 forward 5’- CAAGTTACTGTGTATCAGGCAGGG-3’ 
10 Mdm2 reverse 5’-TCTGTTGCAATGTGATGGAAGG-3’ 
11 Bax forward 5'-ACTCCCCCCGAGAGGTCTT-3' 
12 Bax reverse 5'-GCAAAGTAGAAAAGGGCGACAA-3' 
13 HPRT1 forward 5’-TTGCTTTCCTTGGTCAGGCA-3’ 
14 HPRT1 reverse 5’-AGCTTGCGACCTTGACCATCT-3’ 

 
Table 2.5 List of primers used for real-time PCR quantification of target genes.  
 
 
2.4 Cell biology techniques  
 

2.4.1 General mammalian cell culture methods 
 

Cell lines used in this work are listed in Table 2.6 with their origin stated. All cell 

lines were originally purchased from American Type Culture Collection (ATCC) 

and tested to be free of mycoplasma on a bimonthly basis. Cells were routinely 

propogated in a humidified incubator (5% CO2) in RPMI1640 culture medium 

supplemented with 10% foetal calf serum (FCS), 1% glutamine or in DMEM 

medium supplemented with 10% FCS (HeLa cells). For transfection purposes, 

basal medium (BM) (RPMI 1640 with L-glutamine) was used. Steroid-depleted 

(SD) medium (RPMI 1640 plus10% charcoal-stripped foetal calf serum and 1% 

L-glutamine) were used to assess AR activity. Freezing medium (complete 

medium supplemented with 10% DMSO and 10% FCS) was used for long-term 

storage of cell lines. During cell passage, PBS was used to wash cells at 

approximately 80% confluency once before a thin layer of trypsin/EDTA 

(0.05%/0.02%) was applied to detach cells from culture flasks. Centrifugation 

for 3 minutes at 200g was applied to pellet the cells. The cells were then 

resuspended in fresh growth medium and a fraction of the resuspended cells 

were counted and re-seeded into new flask to achieve approximately 10% 

confluency for routine culture purpose. 
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No. Cell Line Origin/year isolated and references Growth Medium 

1 LNCaP 
Human lymph node metastasis     1980 

(Horoszewicz et al., 1983) 
RPMI1640 10% FBS 

2 U2OS 
Human osteosarcoma                                1964 

(Heldin et al., 1986) 
RPMI1640 10% FBS 

3 HEK293T 
Human embryonic kidney                           1970 

(Pear et al., 1993) 
RPMI1640 10% FBS 

4 DU145 
Human brain metastasis                            1978 

(Stone et al., 1978) 
RPMI1640 10% FBS 

5 HeLa 
Human cervical cancer                               1951 

(Masters, 2002) 
DMEM 10% FBS 

6 PC3M 
Derivative of Human bone metastasis        1979                    

(Kaighn et al., 1979) 
RPMI1640 10% FBS 

 
Table 2.6 List of cell lines used.  
RPMI-1640 medium Dulbecco modified eagle medium (DMEM), were purchased from Sigma-Aldrich, UK. 
Foetal bovine serum (FBS) was purchased from Gibco, UK. 
 
2.4.2 Generation of stable expression clones 
 
For stable Flag-SET9 transfection, HeLa cells were cultured in 90mm dishes until 60-

80% confluence and then transfected with 5µg DNA using the transient transfection 

procedure stated below. Geneticin (G418) selection was applied onto the plates 48 

hours post-transfection at a final concentration of 500µg/ml. Cells were then incubated 

for approximately two weeks with routine replacement of antibiotic containing medium 

every 4-5 days. Resistant clones were then transferred onto 24-well plates and 

continually grown under antibiotics selection prior to transfer onto 6-well plates for 

expansion. Protein expression was then checked by Western blotting. For long-term 

storage, positive clones were transferred to freezing medium and stored at -80oC. For 

routine culture, antibiotic selection was continually applied. 

 

2.4.3 Transient transfection 
 

i DNA plasmid transfection 

 
For DNA transient transfection, mammalian cells were routinely grown until required 

cell densities were reached (approximately 60-80%). Appropriate amounts of DNA for 

transfection were mixed with serum-free medium with either Superfect transfection 
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reagent (Qiagen) or Lipofectamine LTX (Invitrogen) transfection reagent according to 

manufacturer’s recommendations. For Superfect mediated transfection after 2 hrs 

incubation with plasmid tranfection mix, cells were washed with PBS to remove any 

potential toxicity induced by transfection reagent and incubated in full media at varying 

time periods according to different experimental purposes. For Lipofectamine LTX 

mediated transfection, forward transfection was used. Reagent and DNA mixture was 

incubated at RT for 30 mins and then applied to cultured cells (at approximately 50-

60% confluence). Cells were grown for 48 hours before experimental procedures. 

Lipofectamine LTX Plus reagent (Invitrogen) was occasionally used to enhance the 

transfection rate. To achieve this, basal medium containing plasmid DNA was first 

mixed with Plus reagent for 5 mins at RT (as recommended by manufacturer) and the 

above-mentioned transfection procedure was followed.   

 

ii siRNA transfection  
 
Gene knockdown was performed using siRNA oligos (Sigma) as described in the 

protocol provided by the manufacturer. A scrambled siRNA was used as a negative 

control (Sigma). For siRNA transfection, reverse transfection was undertaken using 

Lipofectamine RNAi MAX transfection reagent (Invitrogen). siRNA oligos were diluted 

in serum-free medium and mixed with RNAi duplex at an appropriate ratio according to 

manufacturer’s recommendation. Mixtures were then added into designated wells and 

incubated for 10-20mins at 37 ℃. Appropriate amount of cells were then plated into 

each well to give 30-50% confluence and cells were subsequently incubated for various 

times according to individual experimental requirements prior to assays. All transfection 

conditions are listed below in Table 2.7 and the siRNA oligonucleotide sequences are 

listed in Table 2.8.  

 

No. Reagent Name Manufacturer Ratio: DNA/RNA versus 
transfection reagent 

1 Lipofectamine LTX/ Plus 
reagent Invitrogen 

500 ng/1.5 μl for U2OS, 
H293T and HeLa cells/0.5 μl 

Plus reagent 
500 ng/3 μl for LNCaP cells/ 

1.5 μl Plus reagent 

2 Lipofectamine RNAi MAX Invitrogen 1 μl siRNA/3 μl of RNAi MAX 
for all cell lines 

 
Table 2.7 Transfection conditions during experimental procedures.  
 
 

No. Target gene name sequences Conc. in medium 
1 SET9 5’-CAUUAGGCAGUAGCAGGUCCACG-3’ 25 nM 
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2 p53 5’-GACUCCAGUGGUAAUCUAC-3’ 20 nM 
3 FXR1 5’-AUGUCGAAGGCCUUGCGAG-3’ 25 nM 

 GIPC1 5’-UCAGGGAAGGCAAAGUCAC-3’ 25 nM 
 EBP1 5’-AGAAUAUAAUCCUGGUCGCUU-3’ 25 nM 
 Scramble control 5’-ACGUGACACGUUCGAGAA-3’ Same as target 

Conc. 
 
Table 2.8 List of siRNA oligonucleotide sequences for knockdown experiments.  
 
 
2.4.4 Luciferase reporter assay 
 

Firefly (Photinus pyralis) luciferase gene and b-gal reporter gene were used in 

this work to carry out luciferase assays. The product of the luciferase gene 

catalyzes the luciferin oxidization using ATP/Mg2+ as a co-substrate, in turn 

causing chemical energy conversion leading to the light emission quantitatively 

measured by plate-reading Luminometers (PerkinElmer).  

 

i Chemiluminescent lysate preparation 

 
Transfected cells grown in 24-well plates were washed once with room 

temperature PBS and then reporter lysis buffer (Promega) was used to harvest 

cell lysates containing co-over-expressed proteins of interest, luciferase reporter 

plasmid and β-Galactosidase plasmid. Cell lysates were snap-frozen at -80 ℃ 

for 20 mins and subsequently warmed to RT by incubating on 37 ℃ hot block 

for 5 mins. The thawed cell lysates were immediately used for 

chemiluminescence detection. 

 

ii Chemiluminescence detection 

 
10 µl of lysates from each tested condition was transferred into 96-well opaque 

plates which were then placed in a luminometer. Lysates were provided with 

luciferin substrates and reaction buffer mix (Promega UK) before the 

luminescence signal was read at 560nm wavelength for firefly luciferase signal. 

Luminescence signal strength was recorded by the luminometer as relative light 

unit (RLU) and subsequently transfection efficiency was corrected by dividing 

firefly luminescence values by β-Galactosidase readout values.  
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iii β-Galactosidase assay 

 
The Luciferase reporter studies were designed with an internal loading control. 

β-Galactosidase gene-containing vector was always co-transfected with firefly 

vector and other gene vectors to be studied. This internal control rules out the 

difference in over-expression efficiencies and pipette errors during lysate 

loading. β-Galactosidase is encoded by the lacZ gene of the lac operon in E. 

coli. The enzyme functions by cleaving lactose to glucose and galactose so that 

they can be used as carbon/energy sources. The synthetic compound o-

nitrophenyl-β-D-galactoside (ONPG) is also recognized as a substrate and 

cleaved to yield galactose and o-nitrophenol which has a yellow color. When 

ONPG is in excess over the enzyme in a reaction, the production of o-

nitrophenol per unit time is proportional to the concentration of β-Galactosidase; 

thus, the production of yellow color can be used to determine enzyme 

concentration. Experimentally, 10 µl of cell lysates from each sample was mixed 

with equal volume of β-Galactosidase reagent (2 mM MgCl2, 100 mM β-

mercaptoethanol, 1.33 mg/ml o-nitrophenyl-β-D-galactoside and 200mM sodium 

phosphate buffer. pH 7.3) and left at RT in a 96 well flat-bottomed plate for 20-

30 mins. The reaction was then terminated by adding 50 µl 1M Na2CO3 and the 

A450nm measured using 1 MR500 plate reader. Luciferase readouts were 

divided by β-Galactosidase results to generate normalized luficerase counts.  

 

2.5 Protein analysis 
 

2.5.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) and western 
blotting 

 
Adherent cells were lysed by mixing with SDS sample buffer with 10% β-

mercaptoethanol and lysates were then denatured and loaded into gels 

consisting of appropriate concentration of acrylamide. Samples were separated 

according to their molecular weights and proteins were transferred overnight 

onto Hybond-C nitrocellulose membrane (Amersham Biosciences) at 30V. 

Membranes were blocked with 5% non-fat milk in Tris-buffered saline (TBS) for 

1 hour to prevent non-specific protein-binding of antibodies and subsequently 
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incubated with primary antibodies in diluent (0.1% non-fat milk in TTBS [1% 

Tween/TBS]) for 1 hr at room temperature. Primary antibody complexes were 

detected using HRP-conjugated secondary antibodies and protein bands were 

visualized by enhanced chemiluminescence (ECL, Amersham) under the 

exposure to photographic film (Amersham Pharmacia Biotech). Antibodies used 

in experiments are listed in table 2.9. Acidic antibody stripping buffer was used 

to remove associated antibodies from nitrocellulose membrane for re-blotting in 

some circumstances. Membranes were stripped in stripping buffer (82 ml d-

water, 6.5 ml of 1M Tris-HCl PH 6.7, 10 ml of 20% of SDS and 780 μl of b-

mercaptoethanol) at 50 ℃ for 40 mins with shaking and followed by washing 

twice in TTBS with each time 10 mins. The antibody stripped blots were then 

subject to second round of immunoblotting using protocol described above.  

 

No. Primary antibody name Supplier Conc. to use in 
WB 

Application 

1 Rabbit polyclonal SET9 Upstate 1:2000 WB/IP/IF 
2 Mouse monoclonal SET9 Abcam 1:1000 IF 
3  Mouse monoclonal p53 Calbiohem 1:1000 WB 
4 Goat polyclonal FXR1 Abcam 1:500 WB/IHC/IF/IP 

 5 Goat polyclonal GIPC1 Abcam 1:500 WB/IHC/IF/IP 
6 Goat polyclonal EBP1 Abcam 1:200 WB 
7 Mouse monoclonal α-

Tubulin 
Sigma 1:2000 WB 

  8 Mouse monoclonal 
HDAC1 

Upstate 1:1000 WB/IP 

9 Goat polyclonal PSA Santa-Cruz 1:400 WB 
10 Mouse monoclonal 

Androgen receptor 
Santa-Cruz 1:1000 WB/IP 

 11 Mouse monoclonal p21 Oncogene  1:1000 WB 
12 Mouse monoclonal 

PARP1 
Santa-Cruz 1:500 WB 

13 Rabbit polyclonal p72 Cell signalling  1:300 WB 
 14 Mouse monoclonal 

Lamin A/C 
Santa-Cruz 1:500 WB 

15 Mouse monoclonal 
RACK1 

BD-transduction  1:500 WB 

16 Mouse monoclonal 
FLAG M2 

Sigma 1:2000 WB 

17 Rabbit polyclonal GFP Santa-Cruz 1:500 WB 
18 Mouse monoclonal 

Cyclin B1 
BD pharm 1:1000 WB 

No. Secondary antibody 
name 

Supplier Conc. to use Application 

1 HRP-Swine anti Rabbit Dako Cytomation 1:500 WB 
2 HRP-Rabbit anti Mouse Dako Cytomation 1:500 WB 
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3 HRP-Goat anti Rabbit Dako Cytomation 1:500 WB 
4 Biotinatyed-Rabbit anti 

Goat  
Dako Cytomation 1:250 IHC 

5 FITC-Rabbit anti Goat Dako Cytomation 1:250 IF 
6 FITC-Swine anti Rabbit Dako Cytomation 1:250 IF 
7 TRITC-Goat anti Mouse Dako Cytomation 1:250 IF 
8 TRITC-Rabbit anti Goat Sigma 1:250 IF 

Table 2.9 List of primary and secondary antibodies used and their concentrations for Western 
Blotting.  
Concentrations for other experimental purposes are specified where appropriate.   
 
2.5.2 Immunoprecipitation 

 
i Conventional co-immunoprecipitation  

 
Cells were seeded onto 90 mm dishes and cultured until a confluency of 

approximately 60-80% was reached. Cells were then harvested and pelleted by 

centrifugation.  1 ml of immunoprecipitation buffer (50 mM Tris, pH 7.5, 150 mM 

NaCl, 0.2 mM Na3VO4, 0.5% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride 

in methanol (PMSF), and protease inhibitor cocktail tablets (Roche, 1 

tablet/10ml)) was added to each sample pellet, mixed, and incubated on ice for 

30 mins with occasional inversion to allow efficient cell lysis. 20 µl of protein G-

Sepharose (PGS), pre-washed three times in immunoprecipitation buffer was 

added to each sample and incubated for an additional 4 hs at 4 °C with rotation 

to remove any proteins that interacted nonspecifically with PGS. PGS was 

removed by centrifugation at 14,000 rpm for 3 mins at RT. The supernatant was 

taken and each one was incubated with 2 µg of antibodies overnight at 4 °C 

with rotation. The following day, 20 ml of PGS were added to each sample and 

incubated at 4 °C for an additional 60 mins. PGS- antibody conjugates were 

recovered by centrifugation at 14,000 rpm for 3 mins. After removal of 

supernatant, pellets were washed with buffers in the following order: 1 ml of 

buffer A (PBS, 0.2% Triton X-100, and 350 mM NaCl) once, 1ml of buffer B 

(PBS and 0.2% Triton X-100) for 2 times. Samples were finally resuspended in 

SDS sample buffer, resolved on polyacrylamide gels for electrophoresis and 

followed by immunoblotting using desired antibodies (all antibodies used can be 

found in the antibody list above, Table 2.9). In some cases, 150 mm dishes 

were used for experimental purpose, 1.2-1.5 ml of lysis buffer was added and 

followed by same procedure described above. 
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ii Flag resin immunoprecipitation  

 
For FLAG-resin based immunoprecipitation, 150mm dishes were routinely used. 

Cultured cells were washed twice with room temperature PBS, left on ice for 2 

mins and lysed in 1.2 ml of lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 

1mM EDTA, 1% Triton X-100, and protease inhibitor cocktail tablets (Roche, 1 

tablet/10 ml)). Lysis was performed by incubating on ice for 30 min with 

occasional inversion to allow efficient cell lysis. Cell debris was removed by 

centrifugation at 12,000rpm for 10 mins at 4 °C and supernatant was kept for 

immunoprecipitation. 40 µl of FLAG-M2 resin (Sigma) was usually included for 

each sample (representing 20 µl of the packed gel volume). To prepare, 1 ml of 

TBS was added to resin to wash and a second repeat was performed. Resin 

was then resuspended to the original volume and added to the samples 

individually. FLAG-M2 resin binding was performed at 4 °C overnight with 

constant rotation. The following day, resin was settled by centrifugation at 

12,000 rpm for 30 s. Resultant resin pellets were washed with TBS for three 

times. To elute the protein complexes from the resin, elution buffer was 

prepared (3l pe ptide /100ul Fla g-wash buffer (TBS), 100ul elution buffer per 

sample). Elution was carried out at 4 °C for 30-60 min with rotation and followed 

by centrifugation at 12,000 rpm for 30 s. Resultant supernatant was transferred 

into fresh tubes and subject to SDS-PAGE electrophoresis and western blotting 

analysis.  

 

2.5.3 (Colloidal) Coomassie brilliant blue stain  

 
Coomassie brilliant blue G250 solution (Invitrogen) was microwaved for 10 s 

and then polyacrylamide gels were immersed in the pre-heated solution. 

Staining was carried out for 30 mins with shaking. Coomassie blue was replace 

with Destain (20% methanol, 5% glacial acetic acid in ddH2O) for 30-60 mins to 

remove unbound Coomassie blue. Stained bands were visualized using a light 

box and gels were then stored for later experimental purpose or dried under 

vacuum for long term storage.  
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For Colloidal Coomassie, polyacrylamide gels were stained with Colloidal 

Coomassie (Ammonium sulfate 10%, G250 0.1%, Ortho-phosphoric 3%, 

Ethanol 20%) for 1-4 hours and then destained in water for 1 hour up to 

overnight. Stained bands were visualized on the light box and gels were then 

stored for later experimental purpose or dried for long term storage. 

 
2.5.4 Immunofluorescence analysis 

 
i Indirect immunofluorescence  

 
Cells were seeded out on 8-well chamber slides at 8×103-1×104/well and 

cultured until 60-80% confluency was reached. Cells were then washed in room 

temperature PBS once and subsequently fixed with ice-cold methanol at 20 °C 

for 10 mins. After fixation, cells were washed three times with PBS on a shaker 

for 5 mins each. Blocking serum was prepared at 1 in 10 dilution in PBS (the 

species of serum were chosen according to the species from which the 

secondary antibodies were raised). Cells were then incubated with blocking 

serum for 1 hour at RT on shaker and washed twice with PBS on shaker for 5 

mins each. Antibodies were diluted in PBS at appropriate concentration 

according to manufacturer’s recommendations normally ranging from 1:50-

1:200 and added to cells. Primary antibody incubation was conducted overnight 

at 4 °C with constant low-speed shaking. The next day, cells were washed twice 

with PBS on a shaker for 5 mins each before the addition of secondary 

fluorescent conjugated antibodies. Secondary antibody solution was prepared 

at a dilution of 1 in 250 in PBS and incubation was carried out at RT on shaker 

for 1 hour in the dark (wrapped in aluminum foil). Cells were then washed twice 

in PBS on a shaker for 5 mins each and dried at 37 °C on a hot block. Chamber 

dividers were removed from the slides and one droplet of Vectashield Hard Set 

with DAPI (Vector laboratories) was added to each well to stain cell nuclei. 

Finally, cover-slips were then mounted on top of the slide and sealed with nail 

varnish. Resultant samples were ready for analysis by Leica fluorescent 

microscopy at Northern Institute for Cancer Research or Leica confocal 

microscopy at the core facility laboratory (Dr. Trevor Booth) at Medical School, 

Newcastle University.  
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ii Direct immunofluorescence  
 

In the case of fluorescent proteins imaging such as GFP microscopy, 

immunodetection treatment steps were omitted. Cells were normally grown on 

6-well plates with inserted coverslips. During experimental procedure, cells 

were washed with RT PBS and fixed with ice cold methanol for 10 mins at -

20 °C.  Subsequently, fixed cells were dried at 42 °C on a hot block and stained 

with DAPI before analysis by Leica fluorescent microscopy. In the case of 

combination with immune-based fluorescence experiments, cells underwent 

indirect immunofluorescence procedure in the dark (wrapped in aliminium foil) 

for all stages of the procedure and finally subject to analysis by fluorescent 

microscopy.  

 

2.5.5 Nuclear/Cytoplasmic extraction  

 
Nuclear/Cytoplasmic extraction was performed using the NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Pierce). Generally, appropriate volumes of 

CER I buffer were added to cell pellets according to manufacturer’s instruction. 

Samples were vortexed vigorously on the highest setting for 15 seconds to fully 

suspend the cell pellet and incubated on ice for 10 mins. Ice-cold CER II was 

then applied to samples and followed by vigorous vortexing twice each for 5 s 

with a 1 min incubation on ice between vortexing. Samples were centrifuged at 

16,000 rcf for 5 mins and supernatants (cytoplasmic fractions) were transferred 

to fresh pre-chilled tubes. For the remaining pellets which contained nuclei 

compartment, ice-cold NER buffer was applied at relevant volume according to 

manufacturer’s recommendation. Samples were then subjected to 4 periods of 

repetitive vortexing on the highest setting for 15 seconds and incubation on ice 

for 10 mins in between vortexing. Samples were then spun down at 16,000 rcf 

for 10 mins and the final resultant supernatants (nuclear fractions) were 

transferred into fresh tubes for subsequent experimental use.  

 

2.6 Fluorescent Activated Cell Sorting (FACS) analysis  
 
2.6.1 Propidium Iodide (PI) DNA analysis  



 

61 
 

Cell cycle profiles were performed using propidium Iodide (PI) from Sigma, a 

DNA and RNA incorporating fluorescent biomolecule, which binds preferentially 

to cells permeabilized by Triton detergent. Adherent and floating cells were 

harvested into individual tubes and spun down at 2,000 rpm for 5 mins at room 

temperature (RT). Cells were then washed with warm PBS once, spun down 

and resuspended in PBS under the same conditions. Cells were then stained 

immediately with PI (final concentration approximately 0.25 mg/ml) in Triton-X 

100 and incubated for 10 mins at RT with freshly prepared RNase A at a final 

concentration of 300 µg/ml. Cell cycle profiles and distributions were determined 

by flow cytometric analysis of 10,000 events using the FACScan flow cytometer 

(Becton-Dickinson). Debris and clumped cells were excluded from cell cycle 

distribution analysis by gating. For the calculation of cell population per cycle 

phase WinMDI 2.8 and FlowJo softwares at the core facility laboratory (Dr. 

Brain Shenton) at Medical School, Newcastle University were used. 

 

2.6.2 BrdU proliferation assay 

 
72 hours after SET9 knockdown in LNCaP cells, BrdU (10mg/ml) from BD was 

added to culture medium at a dilution of 1 in 100 and cells were incubated with 

BrdU for 2 hours (optimized for LNCaP cells) to allow the cooperation of BrdU 

during DNA synthesis. Cells were then harvested in tubes and washed twice 

with cold PBS. Cells were subsequently resuspended in 100 µl of BD 

Cytofix/Cytoperm buffer per tube and incubated on ice for 20 mins to allow the 

fixation and permeabilization of cells. 1 ml of Perm/Wash buffer was then added 

to each tube and cells were spun down and resuspended in Cytoperm Plus 

buffer, incubated for 10 mins on ice and subsequently washed in 1 ml of 

Perm/Wash buffer. Cells were then pelleted by centrifugation and re-fixed in 

100 µl of Cytofix/Cytoperm buffer for 5 mins on ice. After another wash using 

Perm/Wash buffer, cells were treated with 100 µl of DNase (diluted to 300 µg/ml 

in PBS (BD)) and incubated for 1 hour at 37 °C to expose incorporated BrdU. 

After incubation, cells were washed again in Perm/Wash buffer and spun down 

before antibody staining. 1:50 dilution of FITC-fluorescent anti-BrdU antibody in 

Perm/Wash buffer was prepared and added to cell pellets at 50 µl for each tube. 

Antibody incubation was performed for 20 mins at RT. Staining cells were again 

http://en.wikipedia.org/wiki/Fluorescence#Biochemistry_and_medicine�
http://en.wikipedia.org/wiki/Biomolecule�
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washed in Perm/Wash buffer and centrifuged. After removal of supernatant, 

cells were staining with 7-AAD to measure the total DNA levels. Finally, 500 µl 

of staining buffer was added to each tube and samples were ready for flow 

cytometer analysis using the FACScan flow cytometer (Becton-Dickinson) at a 

total count of 10,000 events per sample.  

 

2.6.3 Apoptosis Assays  
 

Annexin-V apoptosis analyses were performed using FITC-conjugated Annexin-

V antibody highly specific for phosphatidylserine which presents on the outer 

surface of the plasma membrane during early apoptosis. Cells were prepared 

under the same condition as the cell cycle profile and after PBS wash, cells 

were resuspended in Annexin-V binding buffer (10ml 1.5M NaCl, 100μl 5M KCl, 

100μl 1M MgCl2, 100μl 1.8M CaCl2, 88.7 ml H20) with the final antibody 

concentration of 0.1 µg/ml (Sigma) and left at RT for 30 mins before the addition 

of appropriate PI and Annexin-V binding buffer. Annexin-V analyses were 

measured by FACScan flow cytometer (Becton-Dickinson) and data were 

analyzed using WinMDI 2.8. 

 

Caspase-3 assays were carried out using active caspase-3 kits (Becton 

Dickinson), the detection of activated form of the enzyme which has been 

implicated as an “effector” caspase associated with the initiation of the “death 

cascade” and is therefore an important marker of the cell’s entry point into the 

apoptotic signaling pathway. Cells were harvested, washed with PBS twice and 

resuspended in Cytofix/Cytoperm solution. Cells were then stored at 4 ℃ for 20 

mins to allow simultaneous fixation and permeabilization of cells. Incubated 

cells were then washed with PBS twice, spun down and subjected to caspase-3 

FITC antibody cocktail pre-diluted in Perm/Wash buffer at a ratio of 1 to 4 in 

appropriate volume. Cells were then incubated at RT for 30 mins, PBS washed 

and following final wash in Perm/Wash buffer, pelleted, resuspended in 

appropriate volume of Perm/Wash and then ready for FACS analysis. Data 

were evaluated by WinMDI 2.8.  
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2.7 Repeat of experiments 

 
Unless otherwise indicated, the experimental results shown as protein 

immunoblot (western blot) are representative of at least two repeats. All other 

experimental results are either representative or statistical summarisation of 

three repeats. 

 
Repeat is defined as experiments at the same condition separated by both 

space and time. Same condition is defined as humanely achievable replication 

of all known parameters in the experiment being repeated, which typically 

include time span, temperature, cell type, cell density, medium type, chemical 

compound type and concentration, equipment parameters and condition, all 

human manoeuvre procedures and so on. 

 

2.8 Special note 
 

For treatment using androgenic stimulation, we were unable to acquire a 

continous supply of R1881 and hence had to switch to using DHT mid-way 

through the project. 
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Chapter 3 

 
Analysis of SET9 activity in the LNCaP prostate cancer cell line 
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3.1 Introduction  
 

The identification of SET9 has led to a dramatic increase in the research field 

aiming to establish the relationship between this histone methyltransferase 

(HMT) and transcriptional regulation. Due to the discovery of many chromatin 

modifying enzymes, these epigenetic regulators have become the hotspot of 

current biological research to elucidate their functionality in normal and 

cancerous cell states.  

 

SET9 was initially isolated from HeLa cells and was shown to catalyse specific 

mono-methylation of histone H3 lysine 4 (H3-K4me1), a modification that is 

associated with transcriptional up-regulation via mechanisms involving promoter 

and enhancer methylation and assembly of transcriptional complexes and thus 

SET9 was proposed to function in transcription regulation (Francis et al., 2005; 

Kouskouti et al., 2004; Chakrabarti et al., 2003; Nishioka et al., 2002; Wang et 

al., 2001a). SET9 preferentially methylate core histone H3 lysine 4 in vitro, 

whereas it fails to methylate histone assembled into nucleosome in vitro 

suggesting its in vivo capability requires other factors and also suggesting a 

potential role of SET9 in non-histone protein methylation (Wang et al., 2001a). 

Co-transfection using Gal4-VP16 and SET9 stimulates the Gal4-TK-luciferase 

reporter expression suggesting the role of SET9 as a transcriptional co-activator. 

Immunoprecipitation of histone H3 polypeptide, methylated at H3K9 and H3K4 

using H3 tail specific antibody revealed that H3K9 methylated histone peptide is 

associated with nucleosome remodeling and histone deacetylase complex 

(NuRD), whereas the transcriptional active marker methylated H3K4 shows 

remarkable disruption of interaction with the NuRD complex indicating the 

possible mechanism of SET9 involved transcriptional control.  Subsequently, 

the role of SET9 in transcriptional regulation has been established with the 

demonstration that SET9 controls the function of several transcription factors 

including p53, estrogen receptor α (ERα) and NF-κB (Ea and Baltimore, 2009; 

Li et al., 2008; Subramanian et al., 2008; Chuikov et al., 2004). Those 

regulatory mechanisms that involve SET9 dictate its pivotal roles in cancer 

development. Methylation of the KSKK motif in p53 stabilizes the protein and 

causes p53 target gene activation and subsequent p53 dependent apoptosis 

and G2/M cell cycle arrest in response to DNA damaging agent (Ivanov et al., 
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2007; Chuikov et al., 2004). Methylation of ER by SET9 at K302 is crucial for 

the recruitment of ER at the promoter of target genes (Subramanian et al., 

2008). In vivo models implied that SET9 knockout mice increased the growth 

rate of mouse embryonic fibroblasts (MEFs) in response to Doxorubicin 

treatment, however it failed to develop tumours at one year of age even though 

p53 was partially inactivated possibly due to the detectable p21 expression in 

cells or the activation of compensatory pathways in the absence of SET9 even 

when p53 function was compromised (Kurash et al., 2008).  

 

The relationship between SET9 and those vital players during carcinogenesis 

led us to interrogate the underlying role of this HMT in prostate cancer (CaP), a 

cancer in which the role of SET9 has yet to be investigated. Structural and 

catalytic analyses of SET9 identified a putative consensus substrate sequence 

for SET9-mediated methylation: R/T-S/T/A-K-D/K/N/Q (Couture et al., 2006) 

that is present in several in vitro and in vivo SET9 substrates, including p53 

(KSK(me)K) and ERα (Pradhan et al., 2009; Subramanian et al., 2008; Chuikov 

et al., 2004). .Importantly, within the hinge domain of the androgen receptor (AR) 

the presence of a KLKK motif that is similar to the proposed SET9 target 

sequence suggested that SET9 may be involved in receptor regulation. Indeed, 

pilot work in our laboratory, indicated that SET9 is expressed in the androgen-

dependent LNCaP CaP cell line, interacts directly with the AR in vivo and in 

vitro and methylates the receptor at position lysine 632 within the KLKK motif 

(Gaughan et al., 2010). In addition, SET9 was shown to up-regulate AR-

mediated transactivation in LNCaP cells in a methyltransferase-dependent 

manner.  However, these initial studies failed to assess the mechanisms of 

SET9 regulation in CaP cell lines that is a highly pertinent area of investigation. 

Using the LNCaP cell line model system, several characteristics of SET9 were 

investigated, including protein stability and SET9 expression profiling, to gain an 

insight into the inherent properties of the HMT that could be of important for AR 

regulation.  
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3.2 Special Materials and methods  

 
The composition and suppliers of the majority of the reagents and materials can 

be found in the general materials and methods (Chapter 2.1). Otherwise, the 

materials and reagents are specified in individual chapters where appropriate.  

 

3.2.1 SET9 expression analysis 
 

In order to examine SET9’s regulation at both protein and mRNA levels in 

response to different stimuli and agents, experimental approaches were set up 

as follows. 

 

i SET9 mRNA expression analysis  
 

To test SET9 mRNA expression in response to androgenic stimulation, LNCaP 

cells were seeded out at 7x105 cells/well of a 6-well plate in steroid depleted 

RPMI 1640 medium and starved for 48 hours before treating with the androgen 

analogue R1881 (10nM) for 0, 2, 4, 6, 8, 9, 15 and 17 hours prior to total RNA 

extraction and subsequent TaqMan quantitative real-time PCR analysis (ABI). 

Prostate specific antigen (PSA) mRNA expression was used as positive control 

to ensure the effectiveness of R1881 and GAPDH was used to normalize RNA 

quantities across individual samples.  

 

ii SET9 protein expression analysis  
 

The measurement of SET9 expression under the influence of androgen was 

identical to the mRNA analysis except that LNCaP cells were lysed directly with 

SDS sample buffer and then subjected to electrophoresis and Western blot 

analysis. PSA immunoblotting was used to confirm the validity of the R1881 

treatment. 

 

To assay SET9 protein stability, LNCaP cells were grown at density of 7x105 

cells/well of a 6-well plate in steroid deleted RPMI 1640 medium for 48 hours 

and R1881 androgen analogue was then applied to cells at 1 hour prior to a 
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cyclohexmide (CHX) treatment to allow the stimulation of AR activity. A time 

course of 0, 1, 2, 3, 5, 6 hours after CHX treatment was chosen to harvest 

samples in to SDS sample buffer. Samples were then subjected to 

electrophoresis and Western blotting. p53 was used as a positive control of 

ubiquitin mediated proteolysis.  

 

To gain an insight into SET9 protein levels at individual phases of the cell cycle, 

HeLa cells were seeded out onto 6-well plates in DMEM medium containing 

10% foetal calf serum at low density (around 8×106 cells/well) and after 24 

hours cells were treated with 2 mM thymidine (Sigma) for 18 hours, released 

into full medium for 9 hours and followed by a secondary thymidine block for 17 

hours to arrest cells at the beginning of S phase. The synchronized cells were 

then released into fresh full medium and harvested every 2.5 hours for a 12.5 

hour period of time. Samples were collected in SDS sample buffer for Western 

blot analysis and cyclin B1 was used as a control to monitor cell cycle 

progression. In parallel, the cell cycle position of the cells collected at different 

stages was also determined by Propidium iodide (PI) DNA staining using the 

FACS protocol mentioned in general materials and methods (Chapter 2.6.1).  

 

3.2.2 Monitoring exogenous SET9 distribution using direct/indirect 
Immunofluorescence  
 

U2OS cells were plated at 3x105 cells/well on a 6-well plate containing 22 mm x 

22 mm sterile coverslips in complete RPMI 1640 medium and the next day cells 

were forward transfected with 2µg/well of GFP-SET9 and GFP-HDAC1, 

respectively. After 48 hours, cells were treated using the direct 

immunofluorescence protocol mentioned in general materials and methods 

(Chapter 2.5.4). For a combination of direct and indirect immunofluorescence, 

U2OS cells were treated using the indirect immunofluorescence protocol and all 

experimental steps were performed in the dark. LNCaP cells were either plated 

in full medium or in steroid depleted medium and then forward transfection of 

GFP-SET9 and GFP-HDAC1 was performed. 48 hours post-transfection, cells 

grown in steroid depleted medium were either harvested or treated with R1881 
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for 30 minutes and 120 minutes before subjected to direct immunofluorescence 

analysis using the standard protocol (Chapter 2.5.4). 
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3.3 Results  
 

3.3.1 Expression patterns and turnover of SET9 in prostate cancer cell 
lines 
 

The role and function of SET9 in LNCaP cells have been primarily established 

in early studies carried out by Dr. Luke Gaughan in our laboratory. However, the 

regulation of SET9 has not yet been investigated in significant detail in prostate 

cancer cells and specifically for the androgen-dependent LNCaP cell line. 

Several lines of evidence indicated SET9 is involved in regulating AR-mediated 

transcription and is a co-activator of the receptor. To further analyze these initial 

findings, expression, stability and cellular distribution of SET9 was investigated 

in LNCaP cells as a means of providing important and as yet uncharacterised 

information on regulatory mechanisms of the HMT in CaP cells.  

 

i SET9 expression in response to androgenic induction 
 
From documented literature, the transcriptional activity of AR is regulated by 

cofactor proteins that enhance or reduce the transactivation of target genes. 

Thus, androgen and/or AR regulated co-regulators could potentially be 

important in the emergence of hormone-refractory disease. There are few AR 

co-regulators which are shown to be androgen regulated such as AIB1, 

CBP/P300, BRCA1 and GACS1/JMJD2C (Heemers et al., 2009; Urbanucci et 

al., 2008). Based on these facts, we started by assessing the expression of 

SET9 both at mRNA and protein level upon androgen stimulation. Using 

reverse transcription and real-time PCR analysis, we profiled SET9 mRNA level 

upon stimulation with the synthetic androgen analogue R1881 over a time 

course of 0-17hrs. As shown in Figure 3.1, unlike PSA, SET9 expression was 

not regulated by R1881 over a 17 hour time-course. This was confirmed at the 

protein level, where SET9 levels remained constant during androgenic 

stimulation (Figure 3.2).  
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Figure 3.1 SET9 mRNA expression is not regulated by synthetic androgen R1881 in LNCaP cells.  
LNCaP. After another 48 hours, a 10nM R1881 time course was applied and cells were collected at  
various time points. mRNA was extracted and quantified using real-time PCR. PSA was used as a  
positive control for R1881 mediated transcription induction. All mRNA was normalized to GAPDH and cells  
were grown in serum-containing media and after 24 hours media replaced with androgen deprived medium  
experiments were performed in triplicates.  
 

 

Figure 3.2 SET9 protein expression is not affected by synthetic androgen R1881 in LNCaP cells.  
LNCaP cells were grown in serum-containing media and 24 hours later the media was replaced with  
androgen deprived medium. After another 48 hours, 10nM R1881 was applied over a 17 hour time-course.  
Cells were lysed and subjected to western blot analysis using a SET9 antibody. PSA was used as a  
control for R1881 treatment and α-tubulin as a loading control. 
  
 

ii SET9 expression during cell cycle progression 
 

The protein expression of some histone methyltransferase, including SET8 and 

methylation of many lysine residues on histone tails is cell cycle regulated, such 

as methylation of histone H4K20 by SET8 and histone H3K79 by Dot1 (Fang et 

al., 2002; Feng et al., 2002; Rice et al., 2002). To examine a potential role for 

SET9 in cell cycle-dependent methylation of histone H3, we analysed SET9 

protein abundance and the mono-methylation state of histone H3-K4 during the 

cell cycle. For this experiment, an extensively used sub-strain of HeLa cells 

(Hela S3) that has been used for cell cycle synchronization studies (Borun et al., 

1972) was utilised as LNCaP cells proved difficult to synchronise efficiently for 

the study of SET9 expression. Results show that SET9 protein levels do not 
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change during cell cycle progression from G1/S to G2/M (Figure 3.3). As 

expected, cyclin B1 demonstrates increased protein expression in response to 

cell cycle transition with the lowest expression in G1 phase and a small 

increase in expression from S phase throughout G2/M phase. In the 

corresponding FACS cell cycle analysis, cells were synchronized as expected 

with more than 90 percent of the cells progressing through the cell cycle 

together after release into full medium (Figure 3.4).  

 

Figure 3.3 SET9 protein is not subject to change during cell cycle progression in HeLa cells.  
HeLa cells were seeded onto 6-well plates in DMEM medium at low density and 24 hours later cells were 
treated with 2 mM thymidine for 18 hours, released into full medium for 9 hours and followed by a 
secondary thymidine blockade for 17 hours to arrest cells at the beginning of S phase. The synchronized 
cells were then released into fresh full medium and harvested every 2.5 hours for a 12.5 hour period of 
time.  Samples were then subjected to western blot analysis. SET9 protein level was not significantly 
affected throughout the cell cycle. CyclinB1 acted as a positive control to monitor cell cycle progression, 
displaying minimal expression at G1, elevation at S and peaking at G2/M.   
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Figure 3.4 Histograms showing HeLa cell cycle synchronization and progression profile.  
HeLa cells with the same double thymidine block were released into serum-containing medium and cell 
cycle progression was profiled using FACS-based PI staining to measure DNA content. As shown in the 
histograms, cells were arrested in G1 phase, upon release they progress through individual phases of the 
cell cycle and start to re-enter G1 after 10 hours.  
 

iii SET9 protein stability in LNCaP cells 
 

Protein stability represents another key mechanism of protein regulation that 

may be pertinent in controlling SET9 activity in LNCaP cells. To examine 

whether SET9 is subjected to proteolysis upon androgen stimulation, translation 

of SET9 was blocked using the translation inhibitor cycloheximide (CHX) in 

LNCaP cells to analyze the turnover of a single SET9 population within cells. In 

Figure 3.5, SET9 displayed a stable expression pattern during androgen 

stimulation in the presence of CHX demonstrating SET9 is not subject to 

androgen-dependent turnover as a result of proteolysis. As expected, p53 

protein diminished rapidly as a consequence of protein turnover in the presence 

of CHX treatment. 

 
 
Figure 3.5 SET9 protein turnover is not affected by androgen treatment in LNCaP cells.  
LNCaP cells were plated in serum-containing medium for 24 hours and then treated with 10 nM R1881 at 
1 hour prior to cycloheximide (CHX) treatment. After 1, 2, 3, 5, 6, hours of CHX addition, cells were 
harvested and subject to Western blot analysis using antibodies to SET9, p53 and α-tubulin.  

 
3.3.2 Localization and distribution of SET9 in cancer cell lines 
 

SET9 was initially identified from a HeLa cell nuclear extract as a histone 

modifying enzyme and therefore its proposed action site was believed to be 

predominantly in the nucleus (Nishioka et al., 2002; Wang et al., 2001a). More 

recently, the majority of the studies have focused on the role of SET9 in 

transcriptional regulation of several nuclear transcription factors (Subramanian 

et al., 2008; Francis et al., 2005; Chuikov et al., 2004; Kouskouti et al., 2004) 
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implicating a role in the nuclear compartment of cells. In order to get a better 

understanding of SET9 distribution in prostate cancer cells, we applied 

immunofluorescence using a SET9 antibody in several cancer cell lines, 

including LNCaP, the osteosarcoma cell line U2OS and two androgen-

independent prostate cancer cell lines, PC3 and DU145.  As shown in Figure 

3.6, SET9 was predominantly distributed in the cytoplasm in both LNCaP cells 

and U2OS cells, while in PC3 and DU145 cells (Figure 3.7), SET9 distribution 

was equally distributed between the nucleus and cytoplasm suggesting that the 

localization of this HMT is highly variable in different cancer cell types. In 

parallel experiments, we used a mouse monoclonal HDAC1 antibody as a 

control to show the well established presence of this protein predominantly in 

the nucleus in both LNCaP and U2OS cells (Figure 3.8). 
DAPI 

 

Figure 3.6 SET9 is localised predominantly in the cytoplasm in both LNCaP and U2OS cells.  
LNCaP (upper) and U2OS cells (lower) were grown on chamber slides overnight in serum-containing 
media and then subjected to immunofluorescence analysis using a rabbit polyclonal SET9 antibody. DAPI 
was used for nuclear DNA staining.  

Endogenous SET9 expression in LNCaP cells  

Merge CSET9 TRITC 

SET9 TRITC DAPI 

DAPI 

Endogenous SET9 localization in U2OS cells  

Merge  

Merge  
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Figure 3.7 SET9 is equally distributed  in the cytoplasm and nucleus of both DU145 and PC3 cells.  
DU145 and PC3 cells were grown on chamber slides overnight in serum-containing media and then  
subjected to immunofluorescence analysis using rabbit SET9 antibody. DAPI was used for nuclear DNA  
staining.  

 

Figure 3.8 HDAC1 is predominantly nuclear in both LNCaP and U2OS cells.  
LNCaP and U2OS cells were grown on chamber slides overnight in serum-containing media and then 
subjected to immunofluorescence analysis using a mouse HDAC1 antibody. DAPI was used for nuclear 

Endogenous HDAC1 expression in LNCaP cells  

Endogenous HDAC1 expression in U2OS cells  

HDAC1 FITC DAPI Merge 

HDAC1 FITC DAPI 

Endogenous SET9 localization in DU145 cells  

SET9 FITC  DAPI 

SET9 FITC DAPI 

Endogenous SET9 localization in PC3 cells  

Merge 

Merge 
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DNA staining.  
 

To confirm these findings, the distribution of a GFP-tagged SET9 protein was 

analysed in cells. The molecular cloning strategy for generating the GFP-SET9 

construct is shown in Figure 3.9. The protein expression of GFP-SET9 was 

validated by transient transfection of the construct into U2OS cells followed by 

western blot using either SET9 or GFP antibody (Figure 3.10). In 

immunofluorescence experiments, when GFP-SET9 was transfected in U2OS 

Figure 3.9 Molecular cloning strategy of GFP-C2-SET9.  
Full length SET9 was amplified by PCR with two flanking BamH1 sites at 5’ and 3’ ends. PCR products 
were ligated into pCR2.1 (Invitrogen) and subcloned into GFP-C2 vector. Positive clones were selected by 
BamH1 and Kpn1 digestions. The sequence of the resultant clone was validated by sequencing. 
 

 

Figure 3.10 Ectopic expression of GFP-C2-SET9 in U2OS cells.  
The cloned GFP-C2-SET9 was transiently transfected into U2OS cells alongside empty GFP-C2 vector.  
Western blotting was performed using either SET9 or GFP antibodies. SET9 antibody detected ectopically  
expressed SET9 (asterix) in U2OS cells as well as endogenous SET9 protein (lower band) whereas GFP  

  

 

P
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antibody detected both GFP-tagged SET9 and un-tagged GPF in cells (both denoted by asterix).  
 

cells, as expected, SET9 showed significant distribution in the cytoplasm, but 

was also evident in the nuclear compartment (Figure 3.11) again confirming the 

results observed previously. In the parallel experiment, GFP-HDAC1 exhibited 

almost exclusive distribution in the nucleus, an observation which is well 

documented in the literature (Halkidou et al., 2004b) (Figure 3.11).  

 

In addition, the impact of androgen on SET9 movement was tested within cells, 

as it has been shown that SET9 is translocated to the nucleus in response to 

TNFα in human vascular smooth muscle cells (HVSMC) (Li et al., 2008). Over a 

2 hour R1881 treatment time-course, SET9 did not manifest a significant 

movement from cytoplasm to nucleus in LNCaP cells indicating that androgen 

may not drive the protein to go into the nucleus (Figure 3.12). Parallel 

experiments of AR movement in response to R1881 are found in reference 

(Ozanne et al., 2000). In LNCaP cells where GFP-SET9 was transfected under  

 
 
Figure 3.11 GFP-SET9 is mainly distributed in cytoplasm , but demonstrates nuclear expression in  
U2OS cells.  
U2OS cells were seeded out in 6-well plates with cover slips and the following day cells were transfected  
with GFP-SET9, left for 48 hours and finally subject to immunofluorescence analysis. GFP-SET9 displayed  
predominant cytoplasmic expression and the control GFP-HDAC1 showed almost exclusive nuclear  
expression. DAPI was used for nuclear DNA staining.  
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Figure 3.12 SET9 localization does not change in response to R1881 treatment in LNCaP cells.  
LNCaP cells were grown in 6-well plates with cover slips and the next day cells were replaced with  
androgen depleted medium for 48 hours. On the day of experiment, 10 nM R881 was added and at 30  
mins and 120 mins cells were washed, fixed and followed by immunofluorescence analysis. SET9  
distribution was unaltered by  R1881 treatment in LNCaP cells.  
 
 
androgen depleted  conditions, SET9 demonstrated predominant cytoplasmic 

distribution, although a small amount was evident in the nucleus (Figure 3.13). 

Switching the media to serum-containing conditions failed to impact on SET9 

distribution in LNCaP cells while HDAC1 remained predominantly nuclear 

(Figure 3.14).  

 

Figure 3.13 GFP-SET9 shows a major cytoplasmic distribution in LNCaP cells in androgen- 
depleted medium.  
LNCaP cells were grown in 6-well plates containing cover slips and transfected with GFP-C2-SET9 in  
steroid-depleted media. Cells were incubated for 48 hours prior to immunofluorescence analysis. GFP- 
SET9 displayed a predominantly cytoplasmic expression in LNCaP cells with minor distribution in the  
nucleus under steroid depleted condition. 

 

Figure 3.14 GFP-SET9 shows a major cytoplasmic distribution in LNCaP cells in steroid containing 
serum- medium.  
LNCaP cells were grown in normal serum-containing media (androgens present) in 6-well plates  
containing cover slips and after 24-hours transfected with GFP-C2-SET9. Cells were incubated for 48  

0’ 30’ 120’ 
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hours and then subject to immunofluorescence analysis. GFP-HDAC1 demonstrated exclusive nuclear  
distribution.  
 

To further pursue analysis of SET9 cellular distribution, LNCaP, HeLa, PC3 and 

DU145 cells were subject to cytoplasmic and nuclear protein fractionation and 

SET9 distribution analysed by Western blotting using two different SET9 

antibodies. Consistent with our immunofluorescence data, SET9 expression 

was limited to the cytoplasm in each of the cell lines tested, including HeLa cells 

(Figure 3.15). Interestingly, this data contradicts Nishioka et al., who initially 

identified SET9 from a HeLa cell nuclear extract. Notably, the nuclear protein 

PARP1 showed certain degree of cytoplasmic contamination in HeLa, PC3 and 

DU145 cell lines and this was probably due to the unexpected handling problem 

during the experimental procedure possibly at the stage of separating the 

nucleus and cytoplasm fractions.  

 
Figure 3.15 LNCaP, HeLa, PC3 and DU145 cells demonstrate cytoplasmic distribution of SET9  
following nuclear/cytoplasmic fractionation.  
All cells were grown in androgen containing serum media prior to cell fractionation using the NE-PER kit  
(Pierce). Western blots highlighted major expression of SET9 in the cytoplasmic compartment across all  
cell lines tested. α-tubulin and PARP1 were used as controls for cytoplasmic and nuclear compartments,  
respectively.  
 

3.3.3 Assessment of the transcriptional regulation by SET9 
 

i SET9 activity on AREIII reporter in response to androgen 
 

SET9 is involved in transactivation of many genes either directly through the 

regulation of target proteins or indirectly via the regulation of histone 

methylation on H3-K4 (Kouskouti et al., 2004). Works from our laboratory have 
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demonstrated that SET9 is a co-activator for the AR in LNCaP cells (Gaughan 

et al., 2010), although the function of SET9 in AR regulation in other cell lines 

has not been tested. Thus, to provide a more thorough understanding of AR 

regulation by SET9 the effect of SET9 overexpression on AR activity was 

investigated in other cell lines especially regardingits activity on AREIII reporter 

in response to androgen. 

 

As shown in Figure 3.16, ectopic expression of SET9 in LNCaP cells up-

regulated endogenous AR-mediated transcription upon the androgen-

responsive AREIII luciferase reporter in a methylase activity-dependent manner 

as the catalytically-inactive SET9 mutant (SET9H297A) failed to enhance the 

reporter gene expression. These studies were subsequently extended into 

U2OS cells which have been used to assess the function of SET9 in regulation 

of p53-mediated transcription (Chuikov et al., 2004). Consistent with data from 

LNCaP cells, wild-type, but not the SET9H297A mutant, was able to enhance AR 

activity upon the AREIII reporter in U2OS cells grown in normal serum-

containing media. (Figure 3.17).   

             
Figure 3.16 SET9 wild-type but not the catalytically-inactive SET9H297A, mutant up-regulates AR- 
mediated AREIII driven gene transc ription in LNCaP cells.  
LNCaP cells were transfected with AR, SET9 wild-type, SET9 mutant and the AREIII reporter in various  
combinations. Cells were grown for another 48 hours before subjecting to luciferase reporter assay. Data  
represents three independent repeats of quadruplicate samples +/- standard error.  
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Figure 3.17 SET9 wild-type but not mutant up-regulates the AR mediated AREIII driven gene  
transcription in U2OS cells in serum-containing media.  
U2OS cells were transfected with AR, SET9 wild-type, SET9H297A and the AREIII reporter in various  
combinations. Cells were grown for another 48 hours before subjecting to luciferase reporter assay. Data  
represents three independent repeats of quadruplicate samples +/- standard error. 
 

ii The impact of SET9 knockdown on PSA production in LNCaP cells 
 

Having established the dependency of AR on the HMT activity of SET9 for 

transcriptional co-activation in several cell line models, the role of SET9 in AR 

regulation in LNCaP cells was re-visited by examining the effect of SET9 

knockdown on PSA production. As shown in Figure 3.18, siRNA mediated 

SET9 knockdown was optimized in LNCaP cells and the maximum knockdown 

was achieved 72 hours post-transfection with a concentration of 0.5µg/well on a 

6-well plate format. Under this knockdown condition, mRNA expression and 

protein expression of the PSA gene were analysed, respectively. Upon SET9 

knockdown, PSA was both down-regulated at RNA 

 
 
Figure 3.18 SET9 knockdown optimisation in LNCaP cells.  
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LNCaP cells were reverse transfected with either non-silencing (N/S) or SET9 siRNA at 0.25 µg/ml or 0.5  
µg/ml for 48 or 72 hours respectively. After indicated times, transfected and non-transfected (NT) cells  
were lysed and subject to Western analysis using SET9 and α-tubulin antibodies. The 0.25 µg/ml for 72  
hours was chosen for the following experiments.  
 
and protein levels, which was in agreement with previous findings where SET9 

up-regulated AR mediated transcription on the AREIII reporter in LNCaP cells 

(Figure 3.19).  

 
 
Figure 3.19 SET9 knockdown attenuates PSA gene expression in LNCaP cells.  
LNCaP cells were transiently transfected with SET9 siRNA for 72 hours. Cells were lysed for western blot 
analysis or alternatively harvested for RNA extraction and reverse transcribed followed by real-time PCR 
analysis. Both mRNA quantification and western blot analysis show an evident decrease of PSA level 
upon SET9 knockdown compared to scrambled siRNA control.  
 

3.3.4 Interplay between SET9 and other AR co-regulators 
 

Regulation of AR transcriptional dynamics requires the interplay of various co-

factors  (Heinlein and Chang, 2002). Data from our laboratory has previously 

indicated that the histone deacetylase enzyme histone deacetylase 1 (HDAC1) 

plays a vital role in regulating AR activity. In fact, acetylation of AR is 

concomitantly associated with deacetylation executed by HDAC1. TIP60 and 

HDAC1 interact suggesting the formation of antagonistically functioning 

enzymes may be important for fine-tuning transcriptional rate (Gaughan et al., 

2002). Whether HDAC1 is also required to remove acetyl-markers on the 

receptor to permit SET9-mediated methylation at the KLKK motif in AR is an 

interesting question, therefore, the interplay between SET9 and HDAC1 was 

investigated.   
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i SET9 and HDAC1 interact and co-localise in cells 
 

By co-immunoprecipitation using a SET9 antibody, ectopically expressed SET9 

and HDAC1 in U2OS cells grown in serum-containing media were found to 

interact (Figure 3.20, Left Panel). A reciprocal experiment using an anti-HDAC1 

antibody for immunoprecipitation followed by immunoblotting with an anti-SET9 

antibody confirmed the interaction between the two proteins although the 

interaction appeared very weak on the western blot (Figure 3.20, Right Panel).  

 

 
 
Figure 3.20 SET9 interacts with HDAC1 when over-expressed in U2OS cells.  
U2OS cells were transfected with SET9 and HDAC1 and grown for 48 hours before immunoprecipitation 
using either SET9 or HDAC1 antibodies. Input represents 5% of total cell lysate; antibody control (Ab Con) 
represents IB antibody cross-reactivity with the IP antibody; Extract represents non-specific protein binding 
to protein G sepharose beads; IP is the immunoprecipitated sample. 

 
To further investigate interplay between SET9 and HDAC1, 

immunofluorescence analysis was undertaken to examine potential co-

localisation between these two proteins. In both LNCaP and U2OS cells, SET9 

and HDAC1 were found to have largely disparate cellular distributions; SET9 

was predominantly cytoplasmic in distribution, while HDAC1 was exclusively 

nuclear (Figure 3.21), consistent with our previous findings. The reason 

accounting for this could be that immunoprecipitation of the over-expressed 

proteins may have resulted in an artificial interaction due to the surplus of the 

proteins, which when studied using immunofluorescence under the endogenous 

status have minimal co-localisation.  
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Figure 3.21 Endogenous SET9 and HDAC1 do not co-localise in LNCaP and U2OS cells.  
LNCaP and U2OS cell were grown on chamber slides in normal serum-containing media for 48 hours prior 
to immunofluorescence using primary Anti-SET9 (rabbit) and –HDAC1 (mouse) antibodies followed by 
respective TRITC- and FITC-conjugated secondary antibodies. DAPI was used for DNA staining. 
Secondary antibody only was used as a negative control to monitor any potential non-specific staining in 
experiments. All secondary antibody controls showed absence of staining (data not shown). 
 

Given that the immunoprecipitation data demonstrated an interaction between 

ectopically-expressed SET9 and HDAC1, it was pertinent to assess potential 

co-localisation of over-expressed SET9 and HDAC1 in U2OS cells. Over-

expression of GFP-SET9 demonstrated both a cytoplasmic and nuclear 

distribution pattern, as shown previously (Figure 3.11) that overlapped with 

HDAC1 in the nucleus (yellow colour seen in merged image) indicating a 

potential interaction between these two proteins in this cell line (Figure 3.22).  
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Figure 3.22 GFP-SET9 and endogenous HDAC1 show co-localization in U2OS cells.  
U2OS cells growing on chamber slides  were transfected with GFP-SET9 for 48 hours and then subject to  
immunofluorescence using an anti-HDAC1 antibody followed by addition of a TRITC secondary antibody.  
DAPI was used for DNA staining. Secondary antibody only was used as a negative control for experiments,  
where it showed no staining (data not shown). 
 

ii SET9-mediated AR co-activation is attenuated by HDAC1 
 

Given the interaction between SET9 and HDAC1 in both LNCaP and U2OS 

cells and also the fact that ectopic expression of SET9 manifested a tighter 

association with HDAC1 in U2OS cells, an extrapolation of this work was to 

address if the interaction between SET9 and HDAC1 would dictate a regulatory 

mechanism at the transcription level for the AR.  

 

As shown in Figure 3.23, luciferase assays in U2OS cells transfected with the 

AREIII reporter, AR and increasing amounts of SET9 and/or HDAC1 showed an 

expected increase in AR activity upon SET9 overexpression. However, in the 

presence of HDAC1, AR activity was repressed, which is in-line with previous 

findings (Gaughan et al., 2002), and this repression was not reversed upon co-

expression of increasing amounts of SET9 implying a strong antagonistic effect 

of HDAC1 on SET9 and AR mediated co-activation (Figure 3.23).  
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Figure 3.23 HDAC1 suppresses SET9 mediated co-activation of AR on ARE III.  
U2OS cells were transfected with SET9, AR, HDAC1 and both AREIII and β-gal reporters in various  
combinations and left for 48 hours before luciferase reporter assay. Data represents three independent  
repeats of quadruplicate samples +/- standard error. All luciferase counts were normalized by β-gal assay  
and experiments were done in triplicates.  
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3.4 Discussion 
 

The emergence of epigenetic machinery in cancer biology has led to an 

unforeseen discovery of numerous genes that are involved in chromatin 

regulation. In particular, the development and progression of prostate cancer 

have been linked to aberrant epigenetic regulation through different 

mechanisms (Nelson et al., 2009; Koeneman, 2006; Seligson et al., 2005). As a 

key pathway to determine the growth of prostate cancer, androgen receptor 

signaling is fundamentally subject to various epigenetic alterations such as 

phosphorylation, acetylation, ubiquitylation and methylation. More importantly, 

the alteration of androgen receptor signaling is inevitably accompanied by 

changes of elements in the surrounding environment rendering the signaling to 

be bypassed or adapted under particular circumstances and therein, the altered 

expression and activity of more than a hundred AR co-regulators constitute a 

substantial mechanism. Interestingly, in this context, a considerable number of 

AR co-regulators bear intrinsic chromatin modulating capability such as 

chromatin remodeling proteins BRG1 and BAF57, histone acetyltransferases 

SRC1, p300/CBP and PCAF and histone deacetylases HDAC1 and SIRT1 and  

histone methyltransferases PRMT1/5 and G9A and histone demethylases LSD1 

and JMJD2C (Heemers and Tindall, 2007; Wissmann et al., 2007). In addition 

to that, certain histone modifications predict functional state of chromatin 

affecting downstream biological processes. As a well-researched histone N-

terminal residue, Histone H3 lysine 4 methylation has been linked to ligand-

induced androgen receptor mediated gene activation (Kim et al., 2003). SET9, 

as a histone methyltransferase exclusively targeting this residue, a key lysine 

on histone H3 that has been associated with transcription regulation, has, as yet, 

to be explored in prostate cancer.  

 

Based upon previous findings on the role of SET9 in transcriptional regulation of 

several transcription factors, and work from our laboratory (Gaughan et al., 

2010), the next line of study was to examine the regulatory processes that 

dictate SET9 activity within the AR signaling cascade. Experiments were 

designed to look at the basic properties of the protein in response to the 

synthetic androgen analogue R1881 and it was observed that SET9 expression 
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was not subject to androgenic induction suggesting that there might not be a 

direct feedback regulatory mechanism between SET9 and AR. However, it is 

not possible to fully exclude the likelihood of the regulation of SET9 by 

androgen as the concentration of the R1881 in use could potentially affect the 

gene expression in some circumstances. CBP, is one example of a well 

characterized AR co-activator, which showed increased expression under high 

concentration of DHT (10nM), but with a down-regulation of expression at lower 

concentrations of R1881 stimulation and this effect could also be subject to AR 

positivity in different cancer cell lines (Urbanucci et al., 2008; Comuzzi et al., 

2004). In silico TRANSFAC based analysis might be another approach to 

predict putative AREs in the promoter and enhancer regions of SET9.  

 

As ubiquitination is thought to be another key mechanism of transcriptional 

regulation, and also based on a previous demonstration that some AR cofactors 

are targeted by ubiquitination-mediated protein destruction such as HDAC1 and 

human PIRH2, SET9 protein half-life was measured in LNCaP cells which 

express functional AR and SET9 (Gaughan et al., 2005; Logan et al., 2004). 

Importantly, as AR mediated transactivation is induced upon androgen 

stimulation, the experiment was established to examine SET9 stability upon 

R1881 stimulation. Results showed that SET9 protein was in a steady-state 

during 6 hours of cycloheximide (CHX) and androgen treatment suggesting that 

the single SET9 population might not turn over rapidly as a result of 

proteosome-mediated protein degradation in the cellular environment.  

 

The regulation of the HMT EZH2 represents notable cell cycle dependent 

mechanisms (Bracken et al., 2003). In addition, some histone residues are 

subject to periodic methylation by specific HMTs such as SET8 and Dot1. 

Methylation of H4K20 peaks during the S phase and starts to vanish from G2/M 

to G1 (Fang et al., 2002). Likewise, H3K79 methylation shows the lowest level 

in late S and G2 phases and starts to become hypermethylated from M and 

stays throughout G1 until S phase (Feng et al., 2002). Therefore a potential role 

for SET9 in cell cycle dependent methylation of histone H3 was investigated, 

SET9 protein abundance and the mono-methylation state of histone H3 K4 

during cell cycle progression was analysed using the HeLa S3 cell line which is 

extensively used in cell cycle synchronization study and has been used in other 
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histone modification alteration analysis during cell cycle (Fang et al., 2002; 

Feng et al., 2002). The data showed that SET9 protein level did not change 

when cells progressed from G1/S to G2/M. However, as SET9 is a stable 

protein over a period of 6 hours shown by the protein stability assay, it may be 

difficult to detect subtle changes of SET9 protein during the cell cycle. Moreover, 

the fact that not all cells were synchronized during cell cycle progression may 

also be a disadvantage of this experiment. The corresponding methylation state 

analysis of histone H3-K4 was also performed by western analysis, but the anti-

H3-K4me1 antibody did not provide a clear result as no visible bands were seen 

on the western blots (data not shown). One possibility is that samples collected 

for western blot analysis may not be suitable for downstream applications (large 

portion of cytoplasmic content) and require additional procedures such as 

nuclear extraction or acid extraction of histones to achieve refined samples for 

western blot analysis.  

 

The cellular distribution of SET9 had not been previously investigated in detail, 

particularly in prostate cancer cell lines. Here immunofluorescence based 

assays were applied to gain an insight into the SET9 protein distribution in cells. 

Using either antibody based indirect immunofluorescence in LNCaP, DU145 

and PC3 prostate cancer cell lines or a GFP-tagged SET9 vector in transient 

transfected U2OS and LNCaP cells, it was confirmed that although SET9 was 

expressed in both the cytoplasm and nucleus, it showed a dominant distribution 

in cytoplasm with a perinuclear pattern especially in LNCaP and U2OS cells. 

This is not surprising as it has been found before that SET9 is mainly expressed 

in cytoplasm of cells, although it was initially suggested as a nuclear functioning 

protein (Li et al., 2008). In two more advanced AR negative prostate cancer cell 

lines, PC3 and DU145, SET9 presented a more equal distribution between the 

cytoplasm and nucleus. Therefore it was important to address whether 

androgen could affect SET9 distribution via the AR pathway given the difference 

in SET9 distribution between androgen-dependent and –independent cell lines. 

In both the presence and absence of androgen in LNCaP cells, there was 

almost no difference in SET9 distribution, suggesting that activation of the AR 

signaling cascade fails to impact on SET9 movement. In parallel experiments, 

SET9 distribution in GFP-SET9-expressing LNCaP cells was analysed under 

androgen plus/minus conditions. As with the indirect immunofluorescence study, 
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there was no dramatic change in SET9 localisation in the presence and 

absence of androgen. One notable point was that according to the literature, 

Myc-tagged SET9 in U2OS cells showed more nuclear localization than 

cytoplasm, which conflicts with the findings in U2OS cells when GFP-SET9 was 

transfected (Masatsugu and Yamamoto, 2009). We argue that this might be due 

to the Myc antibody detecting non-specific proteins in the nucleus as opposed 

to direct protein-detection by GFP-SET9 that is performed herein. Interestingly, 

it was documented that SET9 has a particular recruitment pattern in response to 

certain external stimuli. TNF-α is able to drive SET9 recruitment into the nucleus 

to co-localize with p65 subunit of NF-kappa B in HVSMC cells within 2 hours (Li 

et al., 2008). Therefore, as a control for our experiments, it would be pertinent to 

apply TNF-α to cells expressing the GFP-SET9 protein to completely validate 

that the protein responds to stimuli in a similar fashion as the endogenous 

protein.  

 

Data from the nuclear/cytoplasmic extractions showed that SET9 was 

exclusively expressed in the cytoplasmic compartment of almost all cell lines 

tested. Considering the SET9 antibody used for immunofluorescence was the 

same as that for the immunoblotting of SET9 in the cell extracts, it was 

interesting that no nuclear SET9 was detected by Western analysis compared 

to some expression in the nucleus by immunofluorescence. Moreover, given 

that SET9 was originally identified from a HeLa cell nuclear extract SET9 in this 

study was completely absent in the nucleus of HeLa cells, but instead 

demonstrated exclusive cytoplasmic distribution (Nishioka et al., 2002). It is 

intriguing to speculate that the antibody may not be sensitive enough to detect 

trace amounts of SET9 in the nucleus, which could be detected by the 

potentially more sensitive immunofluorescence technique. The other argument 

would be the specificity of the rabbit polyclonal SET9 antibody, however, as this 

specific antibody is extensively detailed in the literature and by comparing to 

other monoclonal SET9 antibodies that we also used for immunofluorescence 

and nuclear/cytoplasmic extraction purposes, we believed that this is more likely 

to be a variation between experimental strategies applied. Regardless of the 

differences observed, one statement ascertained was that although SET9 is a 

nuclear functioning protein, it is likely to play other extra-nuclear roles in cells 

and this would be an interesting avenue to explore in the future. 
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The finding that SET9 interacts with androgen receptor and is involved in up-

regulating AR-mediated transcription in LNCaP cells indicated a co-activator 

role for SET9 (Gaughan et al., 2010). However, the function of SET9 within the 

AR signaling cascade had not been tested in other cell lines. Luciferase reporter 

assays performed in U2OS cells with transfected wild type SET9 and the 

functionally dead mutant SET9H297A in normal serum-containing media 

suggested that SET9 was able to co-activate AR mediated transcription in a 

methylation-dependent manner. This data is in agreement with the previous 

findings in LNCaP cells indicating that the enzymatic activity is required for 

SET9 to exert its function as a transcription co-activator (Gaughan et al., 2010). 

Using an alternative approach, the activity of the same AREIII luciferase 

reporter was assessed by inducible knocking down of SET9 in 293 cells.  

 

As a final validation, PSA expression in LNCaP cells was measured upon SET9 

knockdown. In line with the findings described above, depletion of SET9 

attenuated PSA gene expression as demonstrated at both mRNA and protein 

level confirming the role of SET9 as an AR co-activator.  

 

Androgen receptor co-factor interplay is another driving force of prostate cancer 

development from hormone sensitive to refractory state (Brooke et al., 2008; 

Heinlein and Chang, 2002). HDAC1 is an AR co-repressor that is co-existed in 

an AR containing trimeric complex with TIP60 and functions to reduce TIP60 

mediated AR activity (Gaughan et al., 2002). Evidence also suggested that this 

regulatory mechanism might be via mdm2 mediated AR ubiquitylation and 

disruption (Gaughan et al., 2005). TIP60 has also been shown to be over-

expressed in pre-malignant and malignant lesions of CaP, especially up-

regulated in hormone refractory CaP (Halkidou et al., 2004b). Preliminary data 

suggested that SET9 interacts with the histone deacetylase HDAC1 (Gaughan 

and Robson, unpublished) and thus this was further explored. In the U2OS cell 

model when SET9 and HDAC1 were ectopically expressed, an interaction 

between these two proteins was observed. However, the ectopically expressed 

proteins showed much stronger association than the endogenous proteins 

which were observed on the same western blot (Figure 3.23). This might be due 

to abundant protein expression that alters the normal physiological distribution 
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of proteins, which causes an aberrant interaction between those two proteins, 

as we have demonstrated that HDAC1 and SET9 are by and large expressed in 

the nucleus and cytoplasm, respectively. This may also explain why 

endogenous SET9 and HDAC1 showed a low level interaction in cells as only 

small portions of those two proteins overlap together in the same cellular 

compartment. To further confirm this assumption, immunofluorescence was 

applied. As expected, in both LNCaP and U2OS cells, endogenous SET9 and 

HDAC1 were exclusively localized in different cellular compartments with 

respective cytoplasmic and nuclear distributions. In comparison, over-

expression of SET9 in U2OS cells demonstrated weak to moderate staining in 

the nucleus where it overlapped with endogenous HDAC1, which was 

consistent with the immunoprecipitation data. Due to the physical interplay 

between SET9 and HDAC1, the impact of HDAC1 on SET9-induced AR co-

activation was assessed. Intriguingly in the presence of overexpressed HDAC1, 

SET9-mediated co-activation of the receptor was attenuated suggesting that 

HDAC1 may counteract the co-activating role of SET9, in this preliminary 

experiment. Due to the time limitation, it was not possible to investigate this 

further. However, it would be particularly interesting to alternatively explore an 

inhibitory role for HDAC1 in SET9 mediated co-activation by including HDAC 

inhibitors (eg. Trichostatin A (TSA) or using siRNA specific for HDAC1 in 

experiments. Additionally, further immunoprecipitation and chromatin 

immunoprecipitation experiments could be included to certify the interaction 

between SET9 and HDAC1 in the nuclear compartment and to determine the 

recruitment partners at the androgen responsive promoters of target genes. 

This may help  determine the mechanism whereby HDAC1 negatively regulates 

SET9 mediated co-activation of AR during transcription.  
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Chapter 4 

 
Phenotypic importance of SET9 in LNCaP cells 
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4.1 Introduction 
 

Several androgen receptor co-regulators not only play key roles in the 

molecular characterization of the cancer cells but also affect the biological 

properties determining the fate of cancer cells via various mechanisms. ARA70, 

a well characterised AR co-activator has been found to suppress LNCaP cell 

proliferation and colony formation suggesting that it may be a tissue 

differentiation factor or a potential tumor suppressor (Li et al., 2002). More 

importantly, it is believed that acetylation status of the AR is a strong 

determinant of prostate cellular growth and apoptosis (Fu et al., 2004). In 

DU145 metastatic prostate cancer cell line and prostate cancer mouse models, 

AR acetylation-mimic mutants K630Q and K630T, that mimic constitutive 

acetylation, showed elevated proliferation and colony forming efficiency 

compared to the wild type AR. Moreover, apoptosis of DU145 cells expressing 

the acetylation-mimic mutant AR proteins indicates the importance of 

acetylation of the receptor in driving androgen-dependent cellular phenotypes. 

The mechanism of this phenotypic effect is via the regulation of cell cycle 

control genes, cyclin D1 and cyclin E, and possibly the regulation of a subset of 

p21 regulated growth related genes (Fu et al., 2003). The histone arginine 

methyltransferase CARM1 which is an AR co-activator plays positive roles in 

inducing cell proliferation and prohibiting apoptosis in LNCaP cells (Majumder et 

al., 2006). On the other hand, JMJD2C a histone demethylase functions as an 

AR co-activator to induce LNCaP cell proliferation (Wissmann et al., 2007). All 

evidence described above suggests that AR co-regulators have a remarkable 

effect on regulating the cell phenotypes in the development/progression of 

prostate cancer.  

 

Several reports have established a role of SET9 in the regulation of cell 

phenotypes. Chuikov and colleagues found that over-expression of SET9 leads 

to elevated apoptosis in U2OS cells and this effect was due to the positive 

regulation of p53 by SET9 in response to DNA damage (Chuikov et al., 2004). 

In a follow-up study, the same authors showed that the regulation of p53 activity 

by SET9-mediated methylation also induced G2/M arrest via the p53 activation 

pathway suggesting that SET9 has potent roles in cell proliferation and 

apoptosis via the regulation of the key tumour suppressor, p53 (Ivanov et al., 
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2007). Further study also suggested that SET9 mediated methylation of pRb is 

a key post-translational modification which regulates the interaction of pRb with 

heterochromatin protein HP1 and is required for pRb dependent cell cycle arrest 

and transcriptional repression (Munro et al., 2010). In addition, SET9 has been 

found to be responsible for the maintenance of monocyte HVSMC-THP-1 and 

HUVEC-THP-1 adhesion both in the presence of absence of TNF-α treatment, 

suggesting involvement of SET9 in other biological processes in cells (Li et al., 

2008). Although those lines of evidence support the notion that SET9 activity is 

associated with cell phenotype determination, there remains a lack of such 

evidence in prostate cancer phenotypes.  

 

Preliminary evidence indicated that knockdown of SET9 decreased LNCaP cell 

proliferation suggesting a novel role for SET9 in controlling the cell fate of 

prostate cancer phenotypes. Following from this finding and also due to the 

transcriptional co-regulation by SET9 of the AR in LNCaP cells, the aim of the 

current study was to explore the role of SET9 in regulating the phenotype of the 

androgen-dependent LNCaP cell-line. 
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4.2 Specific materials and methods  
 

The composition and suppliers of the majority of the reagents and materials can 

be found in the general materials and methods. Otherwise, the materials and 

reagents are specified in individual chapters where appropriate. 

 

4.2.1 Caspase-3 assay with dual knockdown of SET9 and p53 in LNCaP 
cells 
 

To assess the effect of p53 knockdown on SET9 knockdown-induced apoptosis, 

co-transfection of p53 and SET9 oligonucleotides in LNCaP cells was 

performed. A final concentration of 20nM of p53 siRNA and 25nM of SET9 was 

used. The concentration of the scrambled siRNA was standardized to 45nM. All 

subsequent experimental procedures are described in Chapter 2.6.3. For the 

purpose of all FACS based caspase-3 assays, 12-well plates were routinely 

used.  

 

4.2.2 Caspase-3 assay with SET9 overexpression in U2OS cells  
 

To examine the effect of SET9 on U2OS cell apoptosis, cells were seeded out 

at a density of 2x105 cells/well of 12-well plates. The following day, cells were 

forward transfected with 0.5µg of wild-type and mutant SET9H297A per well, 

respectively. 48 hours post-transfection, cells were treated with 0.5µM 

Doxorubicin for 24 hours and then subjected to FACS caspase-3 apoptosis 

analysis.  

 

4.2.3 Analysis of p21, Mdm2 and Bax expression upon Doxorubicin 
treatment 
 

Both mRNA and protein analysis were based around a 6-well plate format with 

the plating cell number around 8x104 cell/well. SET9 knockdown was performed 

using the before-mentioned protocol (Chapter 4.2.2) at a final concentration of 

25nM. After 72 hours of transfection, cells were treated with 200nM Doxorubicin 

and collected in Trizol-RNA lysis buffer (Invitrogen) at 0, 3, 4, 6, 12 and 24 hour 

time points for real-time PCR analysis or in SDS sample buffer at 0, 1, 2, 3, 4, 6 
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and 22 hour time points for western blot analysis. Primer sequences for 

individual gene detections are stated in general materials and methods 

(Chapter 2.3.2). The range of time points was chosen according to similar 

experiments performed on SET9 which were documented in the literature 

(Kurash et al., 2008; Ivanov et al., 2007).  

 

4.2.4 Statistical analysis 

 
All FACS based experiments were analyzed using two-sample paired t-test and 

a p-value cut-off of 0.05 was used to evaluate the significance of data compared.   
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4.3 Results  
 

4.3.1 Influence of SET9 on proliferation and cell cycle 
 

The preliminary observation that SET9 knockdown reduced LNCaP cell 

proliferation (Gaughan et al., 2010) prompted a more detailed examination of 

the effect of SET9 on cell-cycle regulation of the LNCaP cell line.  

 

i LNCaP PI cell cycle analysis 
 

In an effort to address whether LNCaP cell cycle is regulated by SET9, a series 

of fluorescence activated cell sorting (FACS) based approaches were used, 

including application of propidium iodide (PI) and bromodeoxyuridine (BrdU) 

staining to address cell proliferation in more detail. PI is an intercalating agent 

and a fluorescent molecule that can bind to DNA. Due to its emission range 

between 562-588nm, it can used to evaluate DNA content and cell viability in 

flow cytometry based cell cycle analysis. BrdU is a synthetic nucleoside which is 

analogous to thymidine and thus it can be incorporated into the newly 

synthesised DNA as a substitution for thymidine during DNA replication. In 

conjunction with antibodies specific for BrdU, the cell proliferation can be 

measured. Using PI for DNA staining in combination with FACS analysis, the 

profile of the LNCaP cell cycle was analysed under optimized SET9 knockdown 

conditions. Interestingly, upon SET9 knockdown there was a 20% decrease in S 

phase (Figure 4.1.A (p-value=0.0049)) and reciprocal increase of the G1/G0 

population in LNCaP cells (Figure 4.1.B), which was indicative of cell cycle 

inhibition at the G1/S transition and subsequent suppression of proliferation of 

the cells. 
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A 

 

B 

Figure 4.1 SET9 knockdown inhibits LNCaP cell proliferation via G1/S arrest.  
(A/B) LNCaP cell cycle analysis was carried out using FACS based PI DNA staining. LNCaP cells were 
reverse transfected with siRNA targeting SET9 and scrambled control. Cells were left for 72 hours and 
then subject to FACS analysis. Upon SET9 knockdown there was a 20% decrease of S phase cells due to 
the partial cell cycle arrest in G1 as indicated by the dot plots and histogram. Knockdown was verified by 
corresponding western blot using SET9 antibody. Experiments were performed in triplicates with p-value < 
0.05 indicating significance.  
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ii LNCaP BrdU proliferation assay 

 
As knockdown of SET9 caused a retarded G1/S progression, the next step was 

to further address the S-phase reduction in response to SET9 knockdown in 

LNCaP cells. BrdU proliferation based FACS analysis was applied. Consistent 

with the previous findings, BrdU showed a 20% decrease in incorporation into 

the S phase in SET9-depleted cells compared to the non-silencing control cells 

indicating that SET9 is responsible for proliferation of LNCaP cells possibly by 

regulating the cellular G1/S transition (p-value=0.0076) (Figure 4.2).  
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Figure 4.2 BrdU proliferation assays in LNCaP cells demonstrate SET9 is pro-proliferative.  
LNCaP cells were reverse transfected with either non-silencing (N/S) or SET9 siRNA for 72 hours followed 
by a FACS based BrdU proliferation assay incorporating transfected and non-transfected (N/T) cells. The 
green dots in the dot plots represent the Brdu incorporation into the S phase cells. The bar chart 
represents calculated decrease in S-phase cells as a percentage of total cell number and is the average of 
three independent experiments performed in triplicate +/- standard error (** p-value<0.05). 
 
 
 
4.3.2 Influence of SET9 on LNCaP cell apoptosis  

 
i Annexin V apoptosis assay 
 

Having established a possible mechanism of SET9 mediated LNCaP cell cycle 

regulation, the identification of other phenotypic influences governed by SET9 

were investigated. Since SET9 has been linked to regulating cell death via p53-

mediated activity, the effect of SET9 knockdown on apoptosis of the p53 wild-

type cell line LNCaP was examined by an Annexin V based FACS analysis. 

This assay takes advantage of the fact that phosphatidylserine (PS) is 

translocated from the inner (cytoplasmic) leaflet of the plasma membrane to the 

outer (cell surface) leaflet soon after the induction of apoptosis. Annexin V 

protein has a strong, specific affinity for PS (4–6). PS on the outer leaflet is 

available to bind labeled Annexin V, providing the basis for a simple staining 

assay. By combining with PI DNA staining, the profile of early apoptosis 

(Annexin V+/PI-) is feasible and is distinguishable from late apoptosis/necrotic 

cells (Annexin V+/PI+). After cells were gated with PI only staining, the addition 

of Annexin V revealed the basal level of staining in non-transfected cells and 

introduction of scrambled siRNA as expected had negligible effect on apoptosis 



 

102 
 

and cell death. This level of apoptosis was acceptable and in line with previous 

work conducted with LNCaP cells (Thirugnanam et al., 2008). Interestingly, 

SET9 knockdown in LNCaP cells exhibited a shift from Annexin V negative 

(bottom left) to Annexin V positive (bottom right) which indicated a higher 

positivity of apoptotic staining compared to the non-silencing control implicating 

a potential involvement of SET9 in apoptosis regulation. Regardless of this, the 

total number of cells undergoing apoptosis was not abundant, SET9 knockdown 

induced 1.8 fold apoptosis over the non-silencing siRNA control (p-

value=0.00047) (Figure 4.3). This data conflicts with the previous finding in 

U2OS cells where the over-expression of SET9 triggers apoptosis only in the 

presence of a DNA damaging agent Doxorubicin. This finding may constitute an 

alternative mechanism or an opposing regulatory role of SET9 in the context of 

LNCaP cells.  
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Figure 4.3 SET9 knockdown induces a small, but significant increase in LNCaP cell apoptosis 
using an Annexin V assay.  
LNCaP cells were reverse transfected with SET9 and non-silencing (N/S) siRNA and left for 72 hours 
before Annexin V apoptosis assay of both transfected and non-transfected (NT) cells. In the dot plot where 
SET9 is depleted, there was a shift of cell population from Annexin negative to positive quadrant  
suggesting an increase in apoptosis in response to SET9 knockdown. The bar chart represents the fold 
increase of apoptotic cells upon SET9 knockdown compared to scrambled control and western blot shows 
the corresponding SET9 knockdown levels. Experiments were performed in triplicates and repeated three 
times +/- standard error (***p-value<0.05). 
 

 
ii Caspase-3 apoptosis assay 
 

In order to confirm the involvement of SET9 in LNCaP cell apoptosis, active 

caspase-3 assays were performed. This assay takes advantage of the caspase-

3 as a convergent mediator in different signaling pathways especially in 

apoptosis. As a member of caspase family, it is an implicated “effector” caspase 

associated with the “death cascade” and thus is an important marker of the 

cell’s entry point into the apoptotic signaling pathway. In is also noted that in 

contrast to the Annexin V assay, which is mainly designed for detection of early 

and late apoptotic events, caspase-3 assay captures extrinsic and intrinsic 

apoptosis pathways. As expected, in keeping with the Annexin-V assay, cells 

depleted of SET9 demonstrated more positive caspase-3 staining compared 

with the non-silencing control cells, which again illustrates its function as a 

negative regulator of LNCaP cell apoptosis (Figure 4.4). It was also noted that 

when comparing the fold-change between the caspase-3 and Annexin V assays, 
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that the Annexin V assay represented more apoptotic cells (1.8 fold) than that 

detected by caspase-3 assay (1.3 fold, p-value=0.026). This was possibly due 

to the detection of both early and late apoptotic events by Annexin V, whereas 

the detection of caspase-3 relies upon the activation of effector caspase-3 

which requires the upstream caspase activator activation via either intrinsic or 

extrinsic pathways.  

 

 

Figure 4.4 SET9 knockdown induces LNCaP cell apoptosis using  caspase-3 apoptosis  assay. 
LNCaP cells were reverse transfected with SET9 and non-silencing (N/S) siRNA and left for 72 hours 
before caspase-3 apoptosis assay in both transfected and non-transfected (NT) cells. The dot plots and 
histograms show the increased apoptosis upon  SET9 knockdown as indicated by the shift from caspase-3 
negative to positive. The bar charts represent the percentage of total and fold increase of apoptotic cells 
upon SET9 knockdown respectively compared to scrambled control. Corresponding western blots are 
displayed for SET9 and α-tubulin. Experiments were performed three times in triplicate +/- standard error.  
 

4.3.3 Synergistic effect between SET9 knockdown and chemotherapeutic 
intervention  
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Evidence from U2OS cells suggested that p53-induced apoptosis is dependent 

upon the stabilization of p53 after DNA damage via SET9-mediated methylation 

and thus SET9 is required to facilitate programmed cell death in response to 

DNA damaging agents such as Doxorubicin, which generates double-stranded 

DNA breaks (Chuikov et al., 2004). A combination of SET9 knockdown and 200 

nM Doxorubicin treatment in LNCaP cells, was utilized to see if this would 

facilitate the apoptosis events observed by SET9 knockdown alone. As 

expected, the percentage of total apoptotic cells was dramatically increased to 

40% when 200 nM concentration of Doxorubicin was applied for 24 hours 

(Figure 4.5) which is an approximate 4-fold increase in apoptosis over non-

treated cells (Figure 4.4). Interestingly, combining Doxorubicin treatment with 

SET9 knockdown further enhanced the rate of apoptosis by 20% suggesting a 

synergistic effect between depletion of the methyltransferase and 

chemotherapeutic intervention (p-value=0.013) (Figure 4.5). Poly (ADP-ribose) 

polymerase 1 (PARP1) is a direct downstream target of caspase-3 during 

activation of apoptosis and it is cleaved to two fragment by caspase-3. The 24 

kDa N-terminal peptide retains the DNA binding domains of PARP1 and a C-

terminal 89 kDa fragment has reduced catalytic activity and its detection is 

usually taken as a sensitive assay for apoptosis. As a confirmation of caspase-3 

activity, western blot using PARP1 antibody showed increased cleavage (89 

KDa larger fragment) with SET9 siRNA knockdown compared to the non-

silencing siRNA control (Figure 4.5). Moreover, the fold change in the presence 

of Doxorubicin also showed a further increase compared to the siRNA treatment 

alone (Figure 4.5).  

http://www.copewithcytokines.de/cope.cgi?key=poly%28ADP%2dribose%29%20polymerase%201�
http://www.copewithcytokines.de/cope.cgi?key=poly%28ADP%2dribose%29%20polymerase%201�
http://www.copewithcytokines.de/cope.cgi?key=domain�
http://www.copewithcytokines.de/cope.cgi?key=Apoptosis�
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Figure 4.5 Effect of combining SET9 knockdown and Doxorubicin treatment on LNCaP cell 
apoptosis.  
LNCaP cells were reverse transfected with SET9 and non-silencing (N/S) siRNA and left for 72 hours  
before Doxorubicin treatment for 24 hours prior to caspase-3 apoptosis assay using both transfected and  
non-transfected (NT) cells. Dot plots and histograms represent the increase of caspase-3 positivity. The  
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bar charts demonstrate approximately 60% apoptotic cells when SET9 knockdown is combined with  
Doxorubicin. The fold increase in apoptosis is also shown. The PARP1 western blot supports the caspase- 
3 assay data and SET9 knockdown was verified by western blot. Experiments were performed in triplicates  
with p-value<0.05.  
 

4.3.4 Determining the mechanisms of SET9-mediated anti-apoptotic effect 
in LNCaP cells 
 

The data suggest that SET9 is a negative regulator of apoptosis in LNCaP cells, 

however in U2OS cells SET9 appears to play a pro-apoptotic role as over-

expression of SET9 synergizes with Doxorubicin to induce apoptosis and this 

mechanism is p53 dependent (Chuikov et al., 2004). In an attempt to firstly 

confirm these findings, the effect of SET9 over-expression on U2OS cell 

apoptosis in response to Doxorubicin was examined to address if the pro-

apoptotic role of SET9 is reproducible in this cell line. Transient expression of 

wild-type SET9 enhanced apoptosis over basal, non-transfected levels by 

approximately 3-fold, whereas the methylation dead SET9H297A mutant had less 

pronounced effect on apoptosis (Figure 4.6). This data is consistent with 

published work and demonstrates that in U2OS cells, p53 plays a pro-apoptotic 

role (Chuikov et al., 2004).  

 

Since the effect of SET9 knockdown on LNCaP cell apoptosis was more 

pronounced in the presence of Doxorubicin, a compound that has been shown 

to enhance p53-mediated apoptosis, it was hypothesized that this effect might 

be through a p53-dependent mechanism. Therefore, to address this, the first 

experiment in LNCaP cells was to assess a potential interaction between SET9 

and p53. As hypothesised, using immunoprecipitation, it was demonstrated that 

SET9 interacts with p53 suggesting a potential interplay between SET9 and p53 

in LNCaP cells (Figure 4.7).  
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Figure 4.6 Wild type SET9 but not mutant SET9 induces apoptosis in U2OS cells.  
U2OS cells were grown in complete medium and transiently transfected with wild-type SET9 and the  
catalytically-inactive SET9H297A mutant for 48 hours. Cells were then treated with 0.5 µM Doxorubicin for  
24 hours and subjected to caspase-3 apoptosis assay. Dot plots represent the increase of apoptosis when  
wild-type SET9 is expressed. The mutant SET9 also affected apoptosis to a small degree but much less  
than the wild-type SET9,.The bar chart shows the change in apoptosis mediated by wild type and mutant  
SET9. The empty vector plasmid was included as a control in these experiments. All experiments were  
performedin triplicates with p-value<0.05.  
 

 

Figure 4.7 SET9 interacts with p53 in LNCaP cells.  
LNCaP cells were used for immunoprecipitation using SET9 antibody. Subsequent Western blot using p53  
antibody demonstrated the interaction between SET9 and p53 in LNCaP cells. 

 

In U2OS cells, SET9-mediated methylation of p53 stabilizes the protein which 

consequently up-regulates p53 responsive gene expression, including p21, 

MDM2 and BAX (Chuikov et al., 2004). Therefore, the expression of these 

genes in response to SET9 knockdown incorporating a time course of 

Doxorubicin treatment was examined. As hypothesized, treatment with 

Doxorubicin in conjunction with silencing SET9 in LNCaP cells caused an 

earlier up-regulation (from 0-6 hours) of p21 and MDM2, when compared to the 
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non-silencing control siRNA, However, this effect did occur to BAX dramatically, 

suggesting that in contrast to the mechanisms in U2OS cells, knockdown of 

SET9 might selectively cause disruption and delay of p53 mediated 

transcription (Figure 4.8). The corresponding p21 protein synthesis in response 

to Doxorubicin treatment was also measured, however the protein levels did not 

change as dramatically as the mRNA levels when comparing the SET9 

knockdown and non-silencing siRNA treated samples (Figure 4.9).  

 

 

 
Figure 4.8 SET9 knockdown facilitates the expression of p53 regulated p21 and MDM2 in LNCaP  
cells in response to Doxorubicin.  
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LNCaP cells were reverse transfected with SET9 siRNA for 72 hours and then treated with Doxorubicin in  
a time course of  0, 3, 4.5, 6, 12 and 24 hours. mRNA was collected, reverse transcribed and subjected to  
real-time PCR analysis using specifically designed primers for p21, MDM2 and BAX. Figure shows the  
elevated earlier expression of p21 and MDM2 between 0-6 hours of Doxorubicin treatment compared to  
the scrambled control and to a lesser extent with MDM2. SET9 expression was measured at protein  
level (data not shown) and all related expression was normalized against  GAPDH. Experiments were  
done in triplicates.  
 

 
Figure 4.9 SET9 knockdown does not affect the protein stability of p53 and the corresponding  
expression of p21 within the 22 hours of Doxorubicin treatment.  
LNCaP cells were reverse transfected  with SET9 siRNA for 72 hours and then treated with Doxorubicin.  
Cells were harvested over the time course of either 0, 1, 2, 3, 6 and 22 hours or 1, 3, 4.5, 6 and 12 hours  
post-treatment and subjected  to western blot analysis using p53 and p21 antibodies. p53 showed limited  
alteration upon SET9 knockdown and the p21 also showed no dramatic change over time.  
 

To further analyse interplay between SET9 and p53 in the LNCaP apoptosis 

response, SET9 knockdown was combined with p53 knockdown to assess the 

requirement of p53 for LNCaP apoptosis in response to SET9 depletion. To 

perform those experiments, optimization of p53 knockdown was performed in 

the absence and presence of Doxorubicin and dual p53 and SET9 knockdown 

conditions in LNCaP cells were also optimized. As shown in Figure 4.10, 24, 48 

and 72 hours of the knockdown efficiencies were compared each with p53 oligo 

concentration of 10, 25, 40 nM, respectively. In the presence of Doxorubicin, 

p53 expression was partially recovered due to stabilization of the protein via 

deregulation from mdm2 (Burns and El-Deiry, 1999). Upon optimization, the 25 

nM concentration for a period of 72 hours was selected as the experimental 

condition and was combined with 25 nM concentration of SET9 in dual 

knockdown assays. Figure 4.10 also shows the combined knockdown of SET9 

and p53 in the presence and absence of Doxorubicin. In line with the previous 

observation in caspase-3 apoptosis assays, SET9 knockdown induced 40 to 50 

percent apoptosis in response to Doxorubicin treatment after 24 hours. p53 

knockdown alone had little effect on Doxorubicin induced LNCaP cell apoptosis. 
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This finding is seemingly not consistent with previous finding where p53 has 

been shown as a prerequisite for the Doxorubicin induced LNCaP apoptosis 

(Rokhlin et al., 2008). However, this was possibly due to the treatment time with 

Doxorubicin, where 48 hours rather than 24 hours was used. This might lead to 

a more pronounced apoptosis compared to the condition herein. Alternatively, a 

more efficient p53 knockdown in LNCaP cells may have been achieved, 

compared to our transient p53 knockdown. Regardless of this discrepancy, 

strikingly, when p53 was knocked down in LNCaP cells under SET9 depleted 

condition, SET9 knockdown-induced apoptosis was completely abolished. 

(Figure 4.11). All above data suggests that SET9 mediated apoptosis is 

dependent upon p53 activation which subsequently leads to the activation of the 

caspase cascade. However, instead of regulating p53 in a positive manner in 

U2OS cells, the situation for p53 regulation by SET9 in LNCaP cells might be 

the opposite and the regulation of apoptosis and p53 target genes might also 

involve SET9 mediated AR regulation which is key to determine the fate of 

LNCaP cells.  

 

Figure 4.10 p53 knockdown optimization in LNCaP cells and dual knockdown assessment of 
p53/SET9.  
p53 knockdown was optimized using 10, 25 and 40nM concentration in a time course of 24, 48 and 72  
hours post-transfection. The 72 hours post-transfection was also extended to incorporate 24 hours  
Doxorubicin treatment to assess p53 level after induction. Upon optimization, 20nM p53 was combined  
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with 25nM SET9 siRNA to measure the dual knockdown efficiency and both proteins were depleted  
accordingly.  
 

 

 

 

Figure 4.11 p53 knockdown attenuates SET9 knockdown mediated apoptosis in LNCaP cells in the  
presence of Doxorubicin (200nM).  
LNCaP cells were reverse transfected with SET9, p53 and SET9/p53 combination. All siRNA  
concentrations were standardized to control. After 72 hours of knockdown followed by 24 hours  
Doxorubicin treatment, cells were harvested for caspase-3 apoptosis assay. The dot plots indicate the  
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lowered apoptosis when p53 is present in SET9 knockdown cells (shown by the green dots). SET9 alone  
caused dramatic apoptosis, whereas p53 alone had no effect on LNCaP cell apoptosis. The bar chart  
shows a complete inhibition of apoptosis when p53 is depleted in cells compared to SET9 knockdown  
alone. Knockdown was assessed by western blot. Experiments were performed in triplicates with p- 
value<0.05.  
 

Finally, another prostate cancer cell line, DU145 which expresses wild-type 

SET9 and non-functional p53 was evaluated to assess whether SET9 can still 

induce apoptosis without p53 activation. Using FACS based Annexin V 

apoptosis assay, it was found that SET9 knockdown did not affect DU145 cell 

apoptosis indicating that functional p53 might be a key requirement for SET9 

knockdown activated apoptosis (Figure 4.12).  

 

 



 

114 
 

 

Figure 4.12 SET9 knockdown does not impact on apoptosis in DU145 cells bearing inactive p53. 
SET9 knockdown was first optimized in DU145 cells and a chosen 0.25µg/ml concentration was applied in 
subsequent experiments. DU145 cells were reverse transfected with SET9 and non-silencing (N/S) 
siRNAs and left for 72 hours prior to FACS Annexin V apoptosis assay using transfected and non-
transfected (NT) cells. Dot plots demonstrated no significant change occurring in response to SET9 
depletion compared to scrambled siRNA control, which is also evident in the bar chart. Experiments were 
performed in triplicates and repeated three times+/- standard error (p-value<0.05).  
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4.4 Discussion  
 

In addition to members of the histone acetyltransferase and deacetylase 

families, the emerging members of the histone methyltransferase family may 

provide a series of additional potential therapeutic targets for cancer treatment. 

Indeed, many histone lysine methyltransferases have been linked to the 

pathogenesis and development of cancer, including EZH2, a H3 lysine 9 and 27 

methyltransferase, which is shown to be up-regulated in aggressive prostate 

cancer (Varambally et al., 2002). Two other histone H3 lysine 9 

methyltransferases, SUV39H1 and G9a have also been shown to be required to 

perpetuate the malignant phenotype of PC3 prostate cancer cell line (Kondo et 

al., 2008). These described examples suggest that individual histone 

methyltransferases have discernible roles in manipulating the cell phenotypes 

through different mechanisms.  

 

Several lines of evidence suggest that SET9 is actively involved in regulation of 

p53 stability through the methylation of p53 at lysine 372 and this modification 

results in the p53-dependent apoptotic response induced by DNA damage 

(Chuikov et al., 2004). Early data in the laboratory showed that knockdown of 

SET9 decreased the proliferation of LNCaP cells suggesting an involvement of 

the HMT in regulating cell fate. Therefore, it was pertinent to decipher the 

mechanism of SET9 in regulating LNCaP cell proliferation. Cell cycle analysis 

using PI DNA content profiling was firstly utilized and interestingly showed that 

knockdown of SET9 caused G1/S arrest as reflected by the decrease of S 

phase and corresponding increase in G1 phase cells indicating that SET9 may 

facilitate cell cycle progression in LNCaP cells. This finding was also supported 

by the BrdU proliferation assay where a decrease of BrdU incorporated into S 

phase cells was observed in cells depleted of SET9. AR has been shown to 

stimulate G1/S transition via the cyclin D-Rb axis in prostate cancer cells and 

thus the G1/S arrest upon SET9 knockdown could be a result of deregulation of 

AR activity, by removal of receptor methylation for example, via knockdown of 

SET9 (Xu et al., 2006). On the other hand, androgen stimulation diminishes 

cyclin A levels, a mechanism due to Rb-mediated transcription repression (Balk 

and Knudsen, 2008). In line with this observation, recent findings have 

suggested that SET9 is capable of methylating Rb and blocking methylation 
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caused a reduced G1 accumulation compared to the wild type Rb when over-

expressed in SAOS2 cells (Munro et al., 2010). Speculatively, it seems that the 

role of SET9 in LNCaP cell proliferation may not be via Rb, but could possibly 

be that dynamic methylation on AR, mediated by SET9 acts to drive AR-

mediated cell turnover.   

 

It was also noted that silencing of SET9 in both assays caused a consistent 

20% decrease in S phase cells in comparison to the non-silencing siRNA 

control. However, the proliferation assay showed an almost 30% decrease in 

cell growth. Therefore, it was speculated that there might be other mechanisms 

responsible for the overall reduction of proliferating cells. Considering SET9 is 

involved in facilitating p53-driven apoptosis in U2OS cells, it was decided to 

address whether the overall proliferation change is partially contributed by 

apoptosis in LNCaP cells (Chuikov et al., 2004). Interestingly in agreement with 

the hypothesis, data from both Annexin V and caspase-3 assays showed 

increased apoptotic cells in the presence of SET9 knockdown compared to the 

non-silencing siRNA control, which is indicative of an anti-apoptotic role of 

SET9 in LNCaP cells. To further assess the role of SET9 in apoptosis regulation, 

treatment of SET9-depleted LNCaP cells with the DNA damage agent 

Doxorubicin was performed to determine whether this could alter the apoptosis 

induced by the knockdown alone. Strikingly, addition of Doxorubicin to cells 

synergized with SET9 knockdown to significantly enhance cellular apoptosis to 

60%, compared to 12% without DNA-damage induction. In all, these data 

suggest that the DNA damaging agent Doxorubicin sensitizes LNCaP cells to 

apoptosis in the absence of SET9. In contrast, previous findings suggest that 

SET9 plays a pro-apoptotic role in U2OS cells when treated with Doxorubicin, 

which is contradictory with our findings. Therefore, a control experiment was 

performed incorporating U2OS cells transiently expressing either wild-type 

SET9 or the catalytically-inactive mutant SET9H297A. Consistent with previous 

findings, wild-type SET9 induced significant apoptosis when cells were treated 

with Doxorubicin, whereas the mutant induced relatively less apoptosis 

confirming our previous observation in LNCaP cells where depletion of SET9 

caused significant increase of apoptosis in the presence of Doxorubicin. In 

U2OS cells the mechanism of apoptosis involves the stabilization and nuclear 

activation of p53 via the methylation of its lysine residue 372 by SET9 and this 
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physiological impact consequently modulates p53 target gene expression, 

including p21 and Bax that are both pro-apoptotic (Chuikov et al., 2004) 

Additional supporting evidence suggests that LNCaP apoptosis can be triggered 

via p53 activation pathway (Jiang et al., 2004). Given that LNCaP cells express 

wild-type p53, it is possible to speculate that SET9 might be a determinant of 

p53 function in LNCaP cells that affects apoptosis induced by Doxorubicin. To 

begin with, co-immunoprecipitation was used as an assessment of interaction 

between p53 and SET9 in LNCaP cells. Under both androgen-depleted and -

stimulated conditions, there was an interaction demonstrated between those 

two proteins (data shown in Chapter 6 Figure 4.7) suggesting a direct 

involvement of SET9 in regulating p53. To follow up on this finding, expression 

of selected p53 target genes p21, MDM2 and BAX was analysed. Unlike the 

phenomenon observed in U2OS cells, SET9 knockdown in LNCaP cells 

combined with Doxorubicin treatment raised expression of p21 and MDM2 at 

early time points up to 6 hours post-treatment and to a lesser extent with Bax, 

although between 6 and 24 hours, the expression patterns had no significant 

change over time. Although the trends observed were not significant for BAX, 

the altered expressions of p21 and MDM2 in response to SET9 knockdown 

were apparent and significant. This finding implies that rather than to trigger p53 

activity by methylating the protein, SET9 might play a negative role in regulating 

p53 activity in synergy with Doxorubicin in LNCaP cells. On the other hand, in 

parallel experiments where the protein expressions of p53 and p21 were 

measured, there was no significant changes of p21 and p53 protein expression 

possibly due to slower response of protein translation than the production of 

mRNA in cells. Since our data imply that SET9 may regulate p53 and its target 

gene expression, we then went on to see if the apoptosis induced by SET9 with 

Doxorubicin treatment is potentially via the p53 dependent pathway. 

Interestingly, as SET9 depletion alone facilitated the apoptosis with Doxorubicin 

treatment, silencing p53 together with SET9 in LNCaP cells completely 

abrogated the apoptosis induced by SET9 knockdown alone, which was 

indicative of the participation of p53 activation in SET9 knockdown mediated 

apoptosis. Notably, induction of Doxorubicin caused an increase in p53 

expression measured after 24 hours post-treatment. However, it could be 

argued that this sudden restoration of p53 level would not skew the 

interpretation of our data as the occurrence of apoptosis mediated by p53 
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responsive genes such as BAX would not be affected by rapid recovery of p53 

level in the cells and on the contrary would be affected due to the massive 

reduction of p53 prior to the Doxorubicin induction. In an attempt to verify the 

hypothesis that SET9 knockdown mediated apoptosis is via p53 dependent 

pathway, the DU145 prostate cancer cell line with functionally inactive p53 was 

used to examine whether SET9 knockdown had the potential to induce 

apoptosis in the absence of functional p53. As expected, SET9 knockdown was 

unable to induce apoptosis in DU145 cells suggesting that this apoptosis 

pathway is potentially dependent upon p53 activation.  

 

Of particular interest was the combination of SET9 knockdown with the 

therapeutic agent Doxorubicin, which combined together significantly 

augmented apoptosis and the mechanism was through a p53-dependent 

process. This observation seemingly contradicts the mechanism in U2OS cells 

where SET9 stabilizes p53 to trigger apoptosis (Chuikov et al., 2004). There are 

several possible reasons to explain this: 1) different cell lines bear distinct 

biological properties which would impact on the function of certain proteins. 2) 

post-translational modification patterns may affect the outcome of the impact of 

SET9 on p53. So far, although we established direct interaction between SET9 

and p53 and this would possibly impact on the activity of the protein and 

subsequent gene expression, we still lack the direct evidence of p53 

methylation by SET9 in LNCaP cells. Furthermore, another line of evidence 

suggests that the methylation of p53 K372 by SET9 may affect the subsequent 

acetylation status and possibly the ubiquitylation of p53, a procedure which 

would dictate the turnover of the protein (Ivanov et al., 2007). Moreover, the C-

terminal region in p53 is a hot spot of various post-translational modifications 

such as acetylation, ubiquitylation, phosphorylation and methylation and 

individual modifications may play agonistic or antagonistic effect depending on 

the settings in various cellular environments. In the context of SET9 involved 

regulatory mechanism, it has been shown that pre-methylation of K372 assists 

the loading of acetylation by p300 at lysine residue 382 and the reciprocal pre-

acetylation on the protein however prohibits the methylation of K372 by SET9 

(Ivanov et al., 2007). Further supporting this, in addition to affecting p53 

acetylation, methylation at K372 may impact other p53 modifications such as 

the adjacent K370 which is a target of methylation by Smyd2 (Huang et al., 
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2006). Thus it is reasonable to argue that SET9 mediated apoptosis via the 

regulation of p53 is a combinational effect of substantial modifications on the 

protein with dynamic interplay between individual modulators and it is possible 

that in LNCaP cells there is a pre-existing p53 state distinct from the model in 

U2OS cells, which when SET9 is introduced would lead to a dissociation of the 

protein via aberrant post-translational modifications. To prove that, we need to 

design experiments to knockdown other major p53 modifiers such as p300, 

Smyd2 and MDM2 in combinations with depletion of SET9 in the LNCaP cells to 

see their impact on K372 methylation. 3) Another possible explanation is that in 

U2OS cells K372 methylation of p53 is predominantly catalyzed by SET9, 

whereas in the LNCaP cells it can also be catalyzed by other 

methyltransferases or maybe influenced by other proteins. In a recent 

publication, SET9 has been shown to negatively regulate E2F1 by methylating 

the protein at lysine 185, which prevents E2F1 accumulation during DNA 

damage and activation of its pro-apoptotic target gene p73. Of equal interest, 

this methyl mark is removed by LSD1, which is required for E2F1 stabilization 

and apoptotic function (Kontaki and Talianidis). Notably, this observation was 

achieved in p53-deficient cell line H1299, whereas in an earlier publication, 

H1299 cells transfected with exogenous wild-type p53 and SET9 still showed a 

crosstalk between those two protein suggesting that depending on the intrinsic 

properties of various target proteins, the function of SET9 might be altered 

dramatically (Chuikov et al., 2004; Kontaki and Talianidis). Thus far, whether 

SET9 is the major player of K372 methylation on p53 in LNCaP cells and 

whether there are other mechanisms involved in this regulation procedure is still 

awaiting to be addressed.  
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Chapter 5 
 
 

Identification of novel SET9 interacting partners  
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5.1 Introduction  

 
The identification of SET9 subsequently has led to the discovery of many non-

histone protein substrates of the enzyme, including p53, Estrogen Receptor α, 

NF-kB and pRb all of which play prominent roles in cancer development. 

Likewise, some other HMT containing complexes have been identified in 

mammalian cells such as the EZH2 containing complex EED-EZH2 that plays 

significant roles in cancer cell proliferation (Cao and Zhang, 2004). Importantly, 

the majority of SET9 substrates have been identified via candidate-based 

approaches in which proteins containing a consensus or near-consensus SET9-

targeting methylation motif have been assessed for interaction and modification 

by the methyltransferase enzyme. To date, however, no study has been 

conducted to identify novel SET9-interacting partners in an unbiased whole cell 

system, an approach that has the potential to build up mechanistic links 

between SET9 and other potential interacting and methylation targets in a 

cellular context. 

 

The incorporation of fusion-tagged proteins in immunoprecipitation/purification 

and subsequent analysis of the complexes by tandem mass spectrometry (MS), 

termed MS/MS, is a sophisticated and well established technique that has been 

utilized extensively to identify novel interacting partners of a protein of interest. 

Indeed, the identification of several transcriptional co-regulatory complexes has 

been the result of combining immunoprecipitation with MS/MS analysis 

demonstrating the validity of using this approach. For example, 

immunoprecipitation and MS/MS analysis of the FLAG-tagged histone 

demethylase enzyme LSD1 complex resulted in the identification of the histone 

deacetylase (HDAC)-containing co-repressor complex CoREST which promotes 

the demethylation of histone H3 K4 (Lee et al., 2006b; Lee et al., 2005b). In 

addition, the identification of linker histone H1 associated factors and histone 

H3 tail associated proteins have both been the result of this approach; 

purification of the H1 subtype H1.2 from a stably expressing HeLa S3 clone 

resulted in the identification of YB1 and PURα as H1.2-interacting proteins that 

repress p53 dependent, p300-mediated chromatin acetylation (Kim et al., 2008). 

Furthermore, G9a, JMJD2C, CARM1 ASH1, MLL3 and HDACs were all found 
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to interact with an immunoprecipitated H3 tail peptide, purified from a HeLa S3 

clone using the FLAG-M2 resin (Heo et al., 2007).  A more relevant example to 

the study of SET9 is the identification of PTIP (Pax transcription activation 

domain/interacting protein)-interacting proteins including ALR, ASH2, WDR5, 

RBBP5 and NCOA6, which together co-exist in a histone H3 lysine 4 

methyltransferase complex and PTIP has been found to be essential for the 

assembly of this methyltransferase complex (Patel et al., 2007). The molecular 

mechanisms which bridge the methylation complex of histone H3 lysine 4 and 

the DNA binding transcriptional regulation by PAX2 established the theoretic 

basis of discovering novel protein interacting partners as a way to uncover 

molecular basis of various cellular events.  

 

In chapters 3, SET9 was shown to interact with HDAC1, suggesting a novel 

mode of regulation for the methyltransferase. However, this finding was the 

result of a candidate-based study that simply predicted that SET9 and HDAC1 

may interact due to the existence of cross-talk between p53 acetylation and 

methylation during p53-mediated transcription (Kurash et al., 2008). Therefore, 

to gain a better and unbiased understanding of the protein interaction network 

that exists for SET9 in CaP cells, a combined immunoprecipitation and MS/MS 

approach was utilized in LNCaP cells to identify SET9-interacting proteins. It 

was hypothesized that by identifying novel interacting partners of SET9 in CaP 

cells, an insight into the function and regulation of SET9 within the AR signaling 

cascade and beyond would be provided and hence potentiate the definition of 

new therapeutic targets for prostate malignancy. 
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5.2 Specific materials and methods  
 

The composition and suppliers of the majority of the reagents and materials can 

be found in the general materials and methods (Chapter 2.1) Otherwise, the 

materials and reagents are specified in individual chapters where appropriate. 

 

5.2.1 Immunoprecipitation of SET9 containing complex from HeLa cells 
stably expressing 3×FLAG-SET9 or LNCaP cells expressing endogenous 
SET9 
 

The molecular cloning of p3XFLAG-CMV-10 expressing full length wild-type 

SET9 and the generation of stable HeLa SET9 expressing cells are described in 

Chapter 2.2 and 2.4.2. Both SET9 over-expressing and control empty vector 

clone cells from 5×150mm plates (1×108 cells) were harvested and subjected to 

Immunoprecipitation using anti-FLAG-M2 affinity resin as described in detail in 

Chapter 2.5.2. The sample preparation steps and endogenous SET9 

immunoprecipitation from LNCaP cells was the same as described in Chapter 

2.5.2 except it was scaled up 40-fold to reflect the larger number of cells (4×108). 

In parallel with SET9 pull-down, rabbit IgG was used as a standard negative 

control to filter out non-specific bindings of target proteins to IgG and/or PGS 

beads during the experimental procedure.  

 

5.2.2 Acetone precipitation prior to tandem mass spectrometry (MS/MS) 
analysis 

 
For immunoprecipitated crude protein mixtures from LNCaP cell lysates, 

acetone precipitation was performed prior to being subjected to in-solution 

digestion using endoproteinase Lys-C and trypsin. Briefly, cold cell lysates were 

mixed with six volumes of pre-chilled 100% acetone and incubated at -20℃ until 

precipitates were well formed (usually overnight). Acetone was then decanted 

and the remaining protein pellets were then used for In-solution digestion using 

endoproteinase Lys-C and trypsin. Trypsin and endoproteinase Lys-C 

specifically hydrolyze peptide bonds at the carboxyl-terminal of arginine and 

lysine residues and the inclusion of endoproteinase Lys-C acts to increase the 
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digestion efficiency at high urea condition in the protein mixture to endure a 

complete digestion reaction.  

 

5.2.3 Performing In-solution digests using endoproteinase Lys-C and 
trypsin 
 

All reagents were prepared fresh. Acetone precipitated samples were re-

dissolved in 50 µl 6M urea (Sigma), 100 mM Tris/50mM N4HCO3 by vortexing 

thoroughly. Then 2.5µl of reducing agent (194 mM DTT from Sigma in 0.1M 

Tris/HCl pH8) was added to samples, mixed and left for 1 hour at room 

temperature prior to the addition of 10µl alkylating reagent (195mM 

iodoacetamide (Sigma) in 0.1M Tris/HCl pH8) in the dark at room temperature 

(RT) for 1 hour to allow alkylation of the iodoacetamide. After incubation, 10µl of 

reducing agent was added, mixed and incubated at RT for 1 hour to consume 

unreacted iodoacetamide. Endo Lys C (stock concentration 0.1µg/µl (Sigma)) 

was then added to samples at an enzyme: substrate ratio of 1/100 and samples 

were vortexed and placed in a Thermomixer at 37℃, 1000rpm for overnight. 

After digestion with Endo Lys C, 240µl of 50mM NH4CO3 was added in order to 

decrease the urea concentration to approximately 1M which was suitable for 

efficient trypsin digestion. A protease: substrate ratio of either 1/20 or 1/100 of 

the stock protease (0.2µg/µl (Promega)) was applied to samples and then 

placed in the Thermomixer under same condition as the Endo Lys C for 

overnight. The reaction was finally stopped by adding 100µl of Trifluoroacetic 

acid (TFA) and samples were then stored at -20℃ before proceeding to the 

next step.  

 

5.2.4 Performing peptide fractionation using the Agilent 3100 OFFGEL 
fractionator 
 

The OFFGEL fractionator is an item of equipment that can prefractionate 

proteins and peptides prior to LC/MS analysis. It uses a novel isoelectrical 

focusing technique to ensure the high quality protein isoelectrical point-based 

fractionation in order to achieve high standard and reproducible MS data. For 

peptide isoelectrofocusing (IEF), an OFFGEL stock solution was firstly made 
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(8.4 M Urea, 2.4 M Thiourea, 0.08 M DTT, 50% Glycerol (Sigma) and 1.2% IPG 

buffer (GE Healthcare)). Immobiline DryStrip pH 3-10 24cm IPG strips were 

used to fractionate digested peptides. Strips were placed in an OFFGEL Tray 

and rehydrated using rehydration solution (0.96 ml OFFGEL stock solution to 

0.24 ml dH2O with Bromophenol Blue in). Then, 0.72 ml of each peptide sample 

was mixed with 2.88 ml OFFGEL stock solution (1.25×) to ensure that the salt 

concentration was lower than 10 mM (This is essential to ensure that IPG strips 

are not overheated or burned due to high salt concentration during 

electrophoresis). After the OFFGEL frame set was placed on top of the IPG 

strips, equal amounts of each sample were loaded into individual wells of the 

frame. The OFFGEL fractionation was performed under the OFFGEL mode 

(OG24PE00). After fractionation, samples in each frame well were collected in 

tubes using a pipette. 

 
5.2.5 Liquid chromatography based tandem mass spectrometry analysis 
and data processing 
 

Acquired samples from OFFGEL fractionation were then subjected to liquid 

chromatography MS/MS (LC-MS/MS) using the LTC OrbiTrap XL mass 

spectrometer (ThermoFisher). Raw data files were interpreted using the 

ThermoFisher Xcalibur software and converted to Mascot generic file (mgf) 

format using the ThermoFisher Proteome Discoverer software. The mgf files 

were then submitted automatically to X!Tandem database through the Global 

Protein Machine (GPM) interface. The local GPM database was also always 

used for large mgf files that may timeout on the global database. After all 

protein IDs were acquired through the GPM database, SET9 

immunoprecipitation pull-down samples were compared with the control IgG 

pull-down and positive peptide hits were identified using Excel based data 

sorting.  
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5.3 Results  
 

5.3.1 Construction of the 3×FLAG-SET9 wild type vector 
 

The 3×FLAG CMV-10 construct was chosen to generate 3×FLAG-SET9 to be 

used for stable transfection into HeLa cells. The FLAG tag mediated fusion 

protein purification strategy has been documented and is compatible with the 

following tandem mass spectrometry (see introduction above). The detailed 

strategy of generation of the 3×FLAG-SET9 plasmid was described in Chapter 

2.2. All individual steps and their relevant results are shown below (Figure 5.1) 

The amplified SET9 PCR fragment was ligated into the pre-digested Bam H1 

site of the pCR2.1 vector (Invitrogen) and recombinant plasmids were identified 

via Bam H1 digestion. SET9 cDNA was then subcloned into the 3×FLAG CMV 

10 vector (Sigma) via the Bam H1 site and recombinant p3xFlag-SET9 clones 

with the correct orientation were identified using individual digests with Bam H1 

and Kpn 1. The recombinant vector was verified by sequencing and transient 

expression in U2OS cells followed by Western blot analysis using either SET9 

or FLAG antibodies (Figure 5.2).  

 

 
                      A                          B                                C                  D 
 
Figure 5.1 Molecular cloning strategy of 3×FLAG-SET9 wild type.  
Full length SET9 fragments were amplified by PCR with two primers containing flanking BamH1 sites. The  
single PCR product (A) was subsequently ligated into pCR2.1 vector and then subject to Bam H1 digestion  
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to identify positive recombinant vectors (B). SET9 fragments were subcloned into 3×FLAG CMV-10 vector  
via Bam H1 sites and positive recombinant clones were selected by Bam H1 digestion (C). As 3×FLAG  
CMV-10 bears the Multiple Cloning Site (MCS) with a single kpn1 after the BamH1 site  and correctly  
orientated inserted SET9 contains a Kpn1 site near the 5’ end of the gene, Kpn1 restriction enzyme was  
used to ensure the orientation of clones and the resultant 1kb insert was released after digestion (D). The  
positive clone was finally validated by sequencing.   
 

 
 

Figure 5.2 Ectopic expression of 3×FLAG-SET9 in U2OS cells.  
The p3×FLAG-SET9 was transiently transfected into U2OS cells at two different concentrations alongside 
empty p3×FLAG-CMV-10 vector. Western blotting was carried out using either SET9 or FLAG antibody. 
SET9 antibody detected both endogenous and exogenous SET9 in transfected U2OS cells.  
 
5.3.2 Generation of 3×FLAG-SET9 stable HeLa expressing clone and 
FLAG-M2 resin affinity purification  
 

To generate the stable SET9 expressing HeLa clone, Lipofectamine LTX/ Plus 

reagent was used to forward transfect HeLa cells with 3×FLAG-SET9 vector 

using the standard protocol (Chapter 2.4.3).  This construct takes the advantage 

of the neomycin resistance gene which is used for the positive clone selection. 

G418 was utilised for selecting stable 3xFLAG-SET9 expressing HeLa cell 

clones at a concentration of 500 µg/ml (Dart et al., 2009). All generation 

procedures are described in Chapter 2. 4.2. An empty 3xFLAG-CMV10 vector 

clone was also generated as a control in pull-down assay to identify potential 

non-specific interaction of proteins with FLAG tags. After G418 selection for 2 

weeks, resistant colonies emerged and single clones were transferred into 24-

well plates to continue growing until they were ready to be lysed and subjected 

to Western analysis, using both SET9 and FLAG antibodies to assess ectopic 

SET9 expression. As shown in Figure 5.3, only one out of the nine selected 

clones expressed FLAG-SET9 that was detected with the FLAG antibody, but 

not the SET9 antibody (Clone 4) (Figure 5.3). This was possibly due to the low 

expression level of 3×FLAG-SET9 in HeLa cells and hence was only identified 

using the very efficient FLAG antibody, but not the weaker-binding SET9 

antibody. An additional validation experiment for Clone 4 was performed in 
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which SET9 levels were depleted by siRNA oligonucleotide and cell lysates 

subjected to anti-Flag immunoblotting. As shown in Figure 5.3 (Right Panel) 

transient transfection of the FLAG-SET9-expressing Clone 4 with SET9 siRNA 

resulted in reduced FLAG-SET9 expression confirming that the stable HeLa cell 

clone was indeed expressing the desired fusion protein (Figure 5.3). This cell 

line, termed HeLa-FLAG-SET9 was subsequently used for SET9 

immunoprecipitation procedures. 

 

Notably, one of the clones (clone No. 3) expressed comparably high level of 

SET9 which could be detected by both FLAG and SET9 antibodies, however 

this clone did not grow properly and underwent severe morphological changes 

(Figure 5.4). Therefore, this cell line was not used for subsequent experiments 

primarily due to a failure to bulk up sufficient cells for downstream protein 

purification procedures.   

 

 
 
Figure 5.3 Screening of stable HeLa SET9 clone.  
After G418 selection, surviving colonies were expanded and tested for SET9 positivity using western blot. 
As shown above, one out of nine colonies expresses FLAG-tagged SET9 as detected by FLAG antibody. 
This positive clone was then verified using the siRNA against SET9 and western blot using FLAG antibody  
showed  the depletion of  3×FLAG-SET9 by siRNA knockdown.  
 

 
Figure 5.4 High level expression of 3×FLAG-SET9 in one HeLa clone showing significant  
morphological changes in culture.  
The expression of FLAG-tagged SET9 were both detected by FLAG and SET9 antibodies using western  
blot. This clone displayed strong growth inhibition and remarkable morphological changes in culture.  
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5.3.3 Optimization of FLAG-SET9 immunoprecipitation using FLAG M2 
resin affinity purification 
 
Having established the FLAG-SET9-overexpressing cell line, HeLa-FLAG-SET9, the 

next step was to optimize the FLAG-M2 resin for immunoprecipitating the SET9 

fusion protein. The initial purification of FLAG-SET9 from HeLa-FLAG-SET9 and the 

control HeLa-3×FLAG CMV-10 was performed using FLAG-M2 resin based 

immunoprecipitation method. Importantly, as shown in Figure 5.5, the empty 

vector HeLa cell clone showed no expression of exogenous SET9, while HeLa-

FLAG-SET9 demonstrated expression and immunoprecipitation of the fusion protein, 

as detected by Western analysis using an anti-SET9 antibody, indicating the 

validity of the method for separating and enriching proteins of interest (Figure 

5.5, upper panel)). Purified samples were then subject to SDS-PAGE followed 

by Coomassie brilliant blue staining. Intriguingly, no intensely stained bands 

were observed on the gel. When the more sensitive Colloidal Coomassie 

staining was applied to a second gel containing the same samples, a small 

number of bands appeared in the HeLa-FLAG-SET9 SET9 clone lanes. However, it 

was difficult to distinguish bands specifically associated with this clone 

compared to the control sample (Figure 5.5, lower panel). Given that the 

experiment started with a large amount of cells, the expression of the FLAG-

SET9 protein in the HeLa cell clone may be inadequate for the downstream 

experiments to identify SET9-interacting proteins.  
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Figure 5.5 FLAG-M2 resin immunoprecipitation validation using the HeLa-FLAG-SET9 stable clone.  
The HeLa-FLAG-SET9 clone was used for the validation of FLAG-M2 resin based immunoprecipitation. 4×108  
of both HeLa-FLAG-SET9 and HeLa-FLAG cells were used for immunoprecipitation and control  
immunoprecipitation, respectively. In HeLa SET9 clone IP, the western blot shows the purified 3×FLAG- 
SET9 in IP elution lane. The beads lane shows the uneluted 3×FLAG-SET9 protein associated with beads.  
The 1 lane represents the endogenous SET9 (lower molecular weight as non-tagged by Flag) which was  
not co-purified with FLAG-tagged SET9. The HeLa FLAG empty clone and reagent only control showed no 
expression or co-purification of FLAG-tagged SET9 in this purification system. The purified FLAG-SET9  
was then subjected to Coomassie and Colloidal Coomassie staining, respectively. Beads controls  
represent the beads after the elution steps and 1controls represent the Input samples which were cell  
lysate without Flag-M2 resin treatment.  
 

5.3.4 Identification of SET9 interacting partners in LNCaP prostate cancer 
cells   
 

Given that the HeLa-FLAG-SET9 clone was unsuitable for the identification of SET9-

interacting proteins by immunoprecipitation, due to a low level of FLAG-SET9 

expression, an alternative approach was utilised that involved 

immunoprecipitating endogenous SET9 from LNCaP prostate cancer cells. 

LNCaP cells were chosen for this purpose on two accounts; firstly, they express 

high level of SET9 and secondly, they are more relevant to our on-going AR 

and CaP studies. The work flow of the experiment is provided in Figure 5.6. In 

order to maximize the protein recovery to identify potential interacting partners 



 

131 
 

 
 
Figure 5.6 Experimental strategy for identification of SET9 interacting proteins using mass  
spectrometry.  
Schematic representation of the experimental approach for SET9 interacting protein identification.  
4×109 of LNCaP cells growing in full medium were subjected to immunoprecipitation using either a  
polyclonal SET9 antibody or a non-specific rabbit IgG antibody for control. After protein recovery,  
specificity of the immunoprecipitation procedure was verified by Western analysis using an anti-SET9  
antibody. Immunoprecipitated proteins were then acetone precipitated and subjected to in-solution tryptic  
digestion. Samples were subsequently loaded onto an Agilent OffGel fractionator for separation by peptide  
isoelectric points. All resulting fractions were finally analyzed by LTQ-Orbitrap mass spectrometry using  
reverse phase liquid Chromatograghy-MS/MS. All resulting fractions were finally analyzed by LTQ-Orbitrap  
mass spectrometry using reverse phase liquid Chromatograghy-MS/MS.  
 

and also as documented in the literature regarding the quantities of protein 

required for this type of experiment, 20×150mm plates (4×109 cells, roughly 200 

mg protein) of LNCaP cells grown in full medium were harvested and lysed in 

lysis buffer (see chapter 2.5.2), prior to immunoprecipitation using either SET9 

or control IgG antibodies (Heo et al., 2007; Patel et al., 2007). To assess the 

quality of the immunoprecipitation procedure, samples were subject to western 

analysis using an anti-SET9 antibody. As shown in Figure 5.7, SET9 was 

efficiently pulled-down by the SET9 antibody (Lane 1), but not in the control arm 

of the experiment (Lane 4). After samples were immunoprecipitated, in-solution 

digestion was applied and followed by Agilent OFFGEL IEF fractionation to 

separate peptides into 24 fractions for SET9 and IgG pull-down, respectively. 

Each fraction was then analyzed using the LC-LTQ-Orbitrap MS/MS.  
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Figure 5.7 IP sample validation by immunoblotting.  
The efficiency of the immunoprecipitation was assessed by Western analysis using an anti-SET9 antibody  
(mouse). SET9 was specifically detected n the IP sample (lane 1) only and not in the IgG control (Lane 4)  
confirming the pull-down of the protein. Ab con. refers to control with antibody only, with   
immunoprefcipitation buffer. Extract is the control with no cellular contents and antibodies in but beads  
only. Input refers to the control with cellular contents pre-incubated with beads but on further downstream  
treatments. 
 

The summary of all identified proteins can be found in Appendix 1 and Table 5.1 

lists the proteins identified by this procedure as SET9-interacting proteins in the 

LNCaP cell line. All identified peptide spectra of specific interacting partners are 

presented in Appendix 2. A valid interacting protein is defined as a protein 

identified specifically in SET9 immunoprecipitated sample and not being present 

in IgG only pull-down; having good coverage on the mass spec (rl number), and 

low log(e) value and their correlated molecular weight. Those protein are also 

not classified into the “sticky” protein category according to the previously 

published work (Trinkle-Mulcahy et al., 2008). 
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5.3.5 Validation of SET9 interacting partners using immunoprecipitation 

 
Having identified SET9 interacting proteins from the combined 

immunoprecipitation-mass spectrometry approach, the next step was to validate 

these interactions by co-immunoprecipitation experiments in LNCaP cells. The 

same procedure was used as above to examine the interaction of selected 

targets, but on a much smaller scale (4×108 cells). The same SET9 antibody 

and rabbit IgG control used in the IP above were used as described. 

Surprisingly, p72 a novel human member of the DEAD box family of putative 
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RNA-dependent ATPases and ATP-dependent RNA helicases) did not show an 

association with SET9 (Figure 5.8) (Lamm et al., 1996). To confirm this finding, 

an additional IP was performed in U2OS cells ectopically expressing SET9 and 

p72. Although expression of p72 was low, there was no detectable interaction 

between SET9 and p72 in these cells, suggesting that the two proteins may 

interact transiently and hence is difficult to detect by western analysis, that a 

particular spliced form of p72 interacts with SET9 that is not detected by 

western analysis or they are not binding partners (Figure 5.9). 

 

Notably, western blot using RACK1 and Lamin A/C antibodies resulted in bands 

which were non-specific IgG bands and not a result of non-specific binding of 

the proteins to the IgG or beads. Interestingly, PARP1 western blot showed an 

evident interaction in the SET9 pull-down lane, however this was also the case 

in the IgG control pull-down, suggesting the importance of using IgG or beads 

as a negative control in immunoprecipitation when performing protein-protein 

interaction study. This finding was also in line with the previous published work 

in which PARP1 has been classified as a sticky protein which has the tendency 

to associate with beads (Trinkle-Mulcahy et al., 2008).In fact, some of identified 

proteins fall into the sticky protein categories including DEAD box protein p72 

and Lamin A/C again supporting the rationale for using the controls (IgG/beads) 

in immunoprecipitation procedure in such instance.  

 

 
 

Figure 5.8 Western  blot validation of selected SET9 interacting partners in LNCaP cells.  
LNCaP cells were grown in complete medium and then subject to immunoprecipitation using rabbit SET9  
antibody followed by individual western blot assays to detect interaction. SET9 pull-down was assessed by  
probing with mouse SET9 antibody. Samples were tested for interaction with p72, RACK1, Lamin A/C and  
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PARP1. Although Lamin A/C and PARP1 showed an interaction with SET9, the control IgG also interacted  
to a degree, indicating the potential non-specific binding of those two proteins with sepharose beads or  
random IgG. Extract is the control with no cellular contents and antibodies in but beads only. Input refers to  
the control with cellular contents pre-incubated with beads but on further downstream treatments. 
 
 

 
 
Figure 5.9 Validation of protein interaction between SET9 and p72/RACK1 in U2OS cells over- 
expressing SET9 and p72/RACK1.  
U2OS cells were transiently transfected with the combination of SET9/p72 and SET9/RACK1, respectively.  
Cells were cultured for 48 hours and then subjected to immunoprecipitation using rabbit SET9 antibody.  
Western blot using either p72 or RACK1 showed no evident interaction between SET9 and p72/RACK1,  
although p72 was shown to be expressed in the Input lane. It was not possible to determine whether  
RACK1 was expressed, due to additional bands appearing in extract and antibody lanes. SET9 pull-down  
was verified using mouse SET9 antibody.  
 

To examine the interaction of p72/SET9 and RACK1/SET9, overexpression 

system to test the interaction between SET9 and p72/RACK1 was used. When 

ectopic expression of p72 and RACK1 were induced in conjunction with 

ectopically expressed SET9 in U2OS cells, there was no overexpression of p72 

and RACK1 observed. For p72 this might be due to the problem of the construct 

used and for RACK1 the postulation would be that the antibody used was not 

suitable or sensitive enough to detect RACK1 protein in western blot application 

and thus the likelihood of the interaction between these two proteins and SET9 

still remains to be addressed (Figure 5.9).  

 

Having established this system, attention was then focused on three other 

potential SET9 interacting proteins identified in the mass spectrometry 

approach, namely Fragile X Mental Retardation Syndrome-related protein 1 

(FXR1), Tax interaction protein 2 (tip-2) also named PDZ domain-containing 

protein (GIPC1) and ErbB3 binding protein 1 (EBP1). In accordance with the 

mass  
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Figure 5.10 Western  blot validation of interaction  between SET9/FXR1, SET9/GIPC1 and 
SET9/EBP1 in LNCaP cells.  
LNCaP cells were grown in serum-containing medium and then subject to immunoprecipitation using rabbit  
SET9 antibody followed by individual western blot assays to detect interaction. SET9 pull-down was  
assessed by probing with mouse SET9 antibody. Samples were tested for interaction with FXR1, GIPC1  
and EBP1. FXR1 strongly interacted with SET9 as indicated by western blot and GIPC1 also showed a  
degree of interaction with SET9. Due to an antibody problem, EBP1 interaction with SET9 was not  
established. The reciprocal IP was also carried out using FXR1 and GIPC1 antibodies respectively under  
the same conditions. Western blot using SET9 antibody confirmed the association between SET9/FXR1  
and to a lesser extent with SET9/GIPC1. Pull-down efficiency was verified using FXR1 and GIPC1  
antibodies, respectively.  

 
 

Figure 5.11 Reciprocal immunoprecipitation of SET9/FXR1 and SET9/GIPC1.  
LNCaP cell lysates were prepared in the same way as mentioned above. The reciprocal IP was also  
carried out using FXR1 and GIPC1 antibodies respectively under the same context. Western blot using  
SET9 antibody confirms the association between SET9/FXR1 and to a lesser extent with SET9/GIPC1.  
Pull-down efficiency was verified using FXR1 and GIPC1 antibodies respectively.  
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spectrometry findings, using SET9 antibody to immunoprecipitate the protein 

complex and probing with FXR1 and GIPC1. The physical association of these 

two proteins with SET9 in LNCaP cells was confirmed with a particularly strong 

interaction between SET9 and FXR1 (Figure 5.10). The interaction between 

EBP1 and SET9 was also tested, however, due to the problem with the 

antibody (see Chapter 6) it was difficult to establish an interaction between them 

(Figure 5.10). Additionally, the bona fide interaction of FXR1 and GIPC1 with 

SET9 was tested by means of reciprocal immunoprecipitation again 

reconfirming the reliability of the data achieved through the mass spectrometry 

analysis (Figure 5.11). 
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5.4 Discussion  
 
The data from previous chapters suggested two general conclusions, one was 

that SET9 is involved in AR-mediated transcription regulation and the second is 

that SET9 plays anti-apoptotic roles in LNCaP cell apoptosis in response to the 

DNA damaging agent Doxorubicin, in a p53-dependent manner. In order to 

decipher the molecular mechanisms underlying these disparate findings, a 

series of immunoprecipitation based approaches and mass spectrometry tools 

were used to identify novel SET9 interacting proteins. It was hypothesised that 

identifying protein interacting partners of SET9 has the potential to provide 

clues to the role of SET9 in these pathways.  

 

Initially, a stable FLAG-tagged SET9 expressing HeLa cell line was generated 

for this purpose. However, due to the relative low expression of the exogenous 

FLAG-SET9 in cells, it was difficult to proceed further with this model as 

immunoprecipitating sufficient amounts of FLAG-SET9 for subsequent mass 

spectrometry analysis would not be achieved. Although difficult to explain, the 

failure to express large amounts of SET9 in HeLa cells may be due to an 

increase in apoptosis or aberrant growth such that the only surviving clones 

expressed very low amounts of the ectopic enzyme. Indeed, this claim is 

backed-up by evidence from a higher-expressing SET9 clone (Figure 5.4) that 

displayed severe growth inhibition and underwent severe morphological 

changes in culture. Importantly, although SET9 was initially identified from HeLa 

cells as a histone methyltransferase, the direct evidence to suggest phenotypic 

roles of SET9 in HeLa cells is still lacking and the only SET9 involved molecular 

mechanism in HeLa cell line was related to its physiological interaction with and 

methylation of TAF10 containing transcription initiation complex (Kouskouti et 

al., 2004). Interestingly, it is also noted that in some studies conducted to 

identify protein complexes using the same combined IP-mass spectrometry 

strategy, researchers used more than 100 150mm culture plates of cells in 

order to achieve enough material for protein identification (Patel et al., 2007; 

Lee et al., 2006b). Therefore, the expansion may be required to scale up 

samples to render the acquisition of sufficient materials for the purpose of 

protein identification. Furthermore, given that SET9 has significant toxicity to the 

growth of HeLa cells, an inducible system may be desirable to establish 
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regulatable expression in the cell line, which would resolve the adverse effect of 

ectopic expression of SET9 in HeLa cells.  
 

Having failed using the HeLa cell-based model, LNCaP prostate cancer cells 

were subsequently utilized as an alternative model system for identifying SET9-

associating proteins. A major advantage for this system was that it made use of 

the high level of endogenous SET9 in these cells that would maximize the 

attainability of physiologically relevant interacting proteins from a cell line that is 

relevant to previous studies of SET9 in the AR signaling cascade. Several 

proteins were discovered using this experimental approach. Upon acquisition of 

the data by mass spectrometry, interaction of the targets was then assessed 

using conventional immunoprecipitation and Western blot analysis. The limited 

availability of antibodies in-house did not enable an assessment of all targets on 

the list, including Breakpoint cluster region protein 1, Erlin-1, AP1 complex 

subunit beta-1, Nucleolar protein Nop56, hFXR2P and AP2 complex subunit 

beta-1. It was however possible to investigate p72, LaminA/C, PARP1, RACK1, 

FXR1, GIPC1 and EBP1. Amongst those proteins tested by 

immunoprecipitation the DEAD box RNA helicase p72 failed to show an 

interaction with SET9 and also due to the failure to over-express p72 in U2OS 

cells, it was difficult to confirm the interaction between SET9 and p72 (Lamm et 

al., 1996) . Similarly to p72, the establishment of the interaction between 

RACK1, a receptor for activated C kinase and SET9 failed due to antibody 

cross-reactivity (Chang et al., 1998). With regard to PARP1 and Lamin A/C, 

there appeared to be a specific interaction of these two proteins with SET9, 

however, the IgG control also showed similar interaction pattern with PARP1 

and Lamin A/C suggesting that the interaction might not truly exist in LNCaP 

cells and rather possibly due to a non-specific interaction between IgG and 

PARP1 and Lamin A/C. Additional supporting evidence comes from the recent 

proteomic based analysis after immunoprecipitation which suggested that 

sepharose beads based protein purification would potentially co-purify many 

proteins that are associated with beads rather than antibodies of interest. Lamin 

A/C and PARP1 turned out to fall into this group of proteins (Trinkle-Mulcahy et 

al., 2008). Therefore, the assumption is that the interactions observed were 

possible artifacts rather than genuine protein-protein interactions. Towards this 

end, a proper explanation of why those proteins interacted with the sepharose 
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matrix in the mass spectrometry samples is still lacking, however it is important 

to highlight that many proteins found on the list were potential bead associated 

proteins, such as the DEAD box protein family, eukaryotic translation initiation 

and elongation factors, heat shock proteins, histones, hnRNP proteins, 

ribosomal proteins and cytoskeletal/structural/mobility proteins. Thus, the DEAD 

box protein p72 that was identified on the list might be a pseudo SET9 

interacting protein (Trinkle-Mulcahy et al., 2008).  

 

Subsequently, the study focused on the three proteins FXR1, GIPC1 and EBP1. 

FXR1 is positioned top of the list with the highest significance represented by 

the lowest log (e) value and the FXR2 which is firmly associated with FXR1 was 

also co-purified in the SET9 containing complex, therefore this is believed to be 

a strong candidate partner for SET9 interaction (Zhang et al., 1995). GIPC1 

(TIP-2) was also chosen due to the significance of the log (e) value and its 

potential participation in various cell signalling pathways such as G protein-

coupled receptor pathway, receptor tyrosine kinase pathway and TGF-β 

signalling (Blobe et al., 2001; Lou et al., 2001). EBP1 was also selected as this 

protein is an AR co-repressor which plays a prohibitive role in hormone resistant 

prostate cancer and thus its association with the AR co-activator SET9 might 

indicate a co-regulatory mechanism on the receptor in LNCaP cells (Zhang et 

al., 2008; Zhang et al., 2005b). In keeping with our assumption, the 

immunoprecipitation confirmed the interaction between SET9 and FXR1 and 

GIPC1 respectively and this was also verified by reciprocal immunoprecipitation 

using FXR1 and GIPC1 antibodies. Unfortunately, the association between 

SET9 and EBP1 could not be observed due to the antibody for Western blot 

analysis, which will be explained in the next chapter.  

 

Notably, the reciprocal immunoprecipitation did not demonstrate a similarly 

intense interaction as that observed following pull-down by SET9 antibody and 

this was particularly evident with FXR1. This may be due to partial blockage of 

epitopes on the protein-protein interacting interface, which potentially made the 

FXR1 antibody binding sites inaccessible. In summary, a combination of 

immunoprecipitation and LC-MS/MS identified multiple protein binding partners 

for SET9, which were confirmed by conventional immunoprecipitation. 

Regardless of all problems encountered, there was a pronounced interaction 
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between SET9 and FXR1 in LNCaP cells and to a lesser extent with GIPC1, 

both proteins were further studied in the following chapter.  
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Chapter 6 
 
 

Investigating the role of FXR1 and GIPC1 in SET9 function 
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6.1 Introduction 

 
The discovery of the SET9-interacting partners FXR1 and GIPC1 may help to 

further our understanding of the mechanisms at play that regulate SET9 in 

processes such as transcription control, cell cycle regulation and apoptosis.  

 

FXR1 (Fragile X Mental Retardation Syndrome Related protein 1) was identified 

as an RNA binding protein which is homologous to FMR1 (Fragile X Mental 

Retardation 1), a key protein whose expression is important for the 

development of Fragile X Mental Retardation Syndrome (Siomi et al., 1995). 

Similar to FMR1, the protein sequence of FXR1 contains two KH domains which 

mediate RNA recognition and RNA binding and an RGG box which mediates 

poly G and poly U containing RNA recognition and binding (Siomi et al., 1995). 

Early data also proved that FXR1 is predominantly distributed in the cytoplasm 

in various cell types and tissues implying its potential role in gene regulation at 

post-transcriptional level possibly through binding of 3’UTR of mRNA (Siomi et 

al., 1995). Subsequent findings demonstrated that FXR1 interacts with its 

homologues FXR2 and FMR1; each of the three proteins is capable of forming 

heterodimers with the others, and each can also form homodimers. All 

complexes have been shown to associate with ribosomal 60S subunits 

indicating key roles in translation and mRNA transport and metabolism (Siomi et 

al., 1996; Zhang et al., 1995). In addition to the KH domain, FXR1 also contains 

a nuclear export signal (NES) and a nuclear localization signal (NLS) which 

mediates the nuclear cytoplasmic shuttling of the protein and this seems to 

correlate with mRNA export from the nucleus (Bardoni et al., 2001; Tamanini et 

al., 1999). Additional studies have shown that the FXR1 transcript is 

alternatively spliced and in mammalian cells, there have been seven splice 

variants identified each with differential expression in various mammalian 

tissues and cells (Khandjian et al., 1998). Further characterization of FXR1 

revealed that it is a human autoantigen which is re-distributed to punctuated foci 

in response to apoptosis suggesting a role in autoimmune response and cell 

death pathways (Bolivar et al., 1998). Additionally, FXR1 has also been 

characterized as a translation repressor of tumour necrosis factor (TNF) further 

supporting its role in gene regulation at the post-transcriptional level (Garnon et 

al., 2005). To date, there is no direct link between SET9 and FXR1 and even 
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the implication of FXR1 in prostate cancer has not yet been established. 

Therefore, the discovery of FXR1 as a binding partner of SET9 raised intriguing 

hypotheses which may potentially address SET9 mediated cellular and 

molecular mechanisms in the progression of prostate cancer.  

 

GIPC1 (GAIP-interacting protein C terminus) is a scaffolding protein which 

functions in conjunction with GAIP in a G protein-coupled signalling complex to 

regulate cell surface receptor expression and trafficking. Like other GIPCs 

family members, it contains a highly conserved PDZ domain which interacts 

with RGS-GAIP, a GTPase-activating protein (GAP) for Gai subunits and a C-

terminal acyl carrier protein domain which implies a putative function in the 

acylation of vesicle-bound proteins (Katoh, 2002; De Vries et al., 1998). This 

protein, to date has been implicated in various cell signalling pathways through 

the direct interaction with some key molecules. GIPC1 binds to TrkA a tyrosine 

kinase receptor and inhibits MAP kinase pathway activation indicating its 

bridging mechanism between the G protein signalling and MAP kinase pathway 

(Lou et al., 2001). The roles of GIPC in other signalling pathways were also 

suggested, such as WNT signalling, insulin-like growth factor receptor and 

transforming growth factor-β receptor mediated cellular communication and 

signal transduction, based upon various model systems (Lee et al., 2008; Katoh, 

2002). Due to its comprehensive roles in signal transduction, the correlation 

between GIPC1 and cancer has also been established. In both cell lines and 

clinical samples. GIPC1 mRNA was found highly expressed in gastric, 

pancreatic, colorectal and lung cancers compared to bone marrow and 

peripheral blood leukocytes (Kirikoshi and Katoh, 2002). Additionally, in GIPC1 

knock-out mice, the animals exhibited strong growth inhibition of pancreatic 

tumour cells through the inhibition of interaction between tyrosine kinase 

receptor IGF-1R and GIPC1 indicating its tumour initiating potential and a 

feasible therapeutic target (Muders et al., 2007). As is the case with FXR1, 

there is no direct link between GIPC1, SET9 and prostate cancer and thus the 

objective of the study was to characterise role of the FXR1 and GIPC1 in SET9 

regulation of AR function and apoptosis.   
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6.2 Specific materials and methods  

 
The composition and suppliers of the majority of the reagents and materials can 

be found in the general materials and method (Chapter 2.1). Otherwise, the 

materials and reagents are specified in individual chapters where appropriate. 

 

6.2.1 Sequential immunofluorescence and confocal microscopy 

 
LNCaP cells were grown in 8-well chamber slides in serum-containing media for 

48 hours and then washed in cold PBS prior to fixation in methanol for 10 mins. 

Fixed cells were subsequently washed in PBS before incubating with blocking 

buffer for 30 mins at room temperature (1% BSA and 1% Triton-X 100 and 10% 

serum from the species that the secondary antibody was raised in). Cells were 

then washed in PBS three times for 5 mins each and then incubated with an 

anti-FXR1 antibody at a dilution of 1:200 in 1% BSA in Tween-PBS in a 

humidified chamber for 1 hr at room temperature. Cells were washed in PBS 

three times for 5 mins and then incubated with rabbit anti-goat TRITC 

secondary antibody in 1% BSA in PBS for 1 hour in the dark. After the first 

round of antibody labelling, cells were treated as before with the same 

procedure with the exception of using an anti-SET9 primary and swine anti-

rabbit FITC-conjugated secondary antibodies. All steps were performed in the 

dark to prevent the loss of fluorescence. After the PBS wash step post 

secondary antibody, cells were counterstained and mounted using DAPI-

containing mounting solution (Vectashield). Slides were subsequently analysed 

using a Leica TCS SP2UV confocal microscopy system in the Bio-Imagine Unit 

in the Medical School, Newcastle University. Upon data acquisition, the co-

localization coefficient was analysed by ImageJ software.  

 

6.2.2 Immunohistochemistry  
 

To test if the FXR1 and GIPC1 antibodies were suitable for 

immunohistochemistry, prostate tissue sections and test Tissue Microarray 

(TMA) made available within the Solid Tumour Target Discovery group were 

initially used. Slides containing the prostate tissue sample were baked at 60 ℃ 

for 2 hours to prevent tissue loss during the procedure and then de-paraffinized 
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in two sequential xylene washes for 10 mins each. Slides were hydrated for 5 

minutes each in sequential washings of 100%, 75% and 50% ethanol and water.  

The removal of endogenous peroxidise activity was conducted by incubating 

slides with hydrogen peroxide solution (3 ml of hydrogen peroxide in 180 ml 

methanol) for 10 mins followed by washing in running tap water and PBS wash, 

both for 5 mins. Antigen retrieval was subsequently performed by incubating in 
citrate buffer pH 6.5 in the Decloaking chamber (Biocare Medical) with the following 

settings: 125℃ for 3 mins and then 90℃ for 10 secs. After antigen retrieval, tissue 

slides were transferred to tap water for 2 mins and then PBS prior to tissue outlining 

with a PAP pen (DAKO) and incubation with 200-300 µl of blocking serum (PBS plus 

10% serum of the species from which the secondary antibody was raised from) for 20 

mins at room temperature. Subsequently, the blocking serum was drained off and 

appropriate strength and volume of primary antibody was added to each slide (1:250 to 

1:500 dilutions of FXR1 or GIPC1 antibodies in PBS) for overnight incubation at 4 ℃. 

The following day, slides were washed twice in PBS for 5 mins each then incubated 

with biotinylated secondary antibodies at a 1: 250 dilution in PBS for 30 mins at room 

temperature. Slides were then washed twice in PBS for 5 mins each and 

incubated with ABC detection solution (Vectorlabs) for 30 mins (1% of A and 

1% of B of the ABC kit in PBS). After two PBS washes for 5 mins, 

Diaminobenzidine tablets made (DAB) solution was prepared (1 Au tablet and 

1Ag tablet (Sigma) in 5 ml of deionised water) and applied to the slides until 

visible colour change in the tissue was observed. Immediately after, slides were 

transferred to running water for 5 mins and then counterstained in fresh Harris’ 

haematoxylin for 90 seconds followed by acid alcohol incubation (1% of 

concentrated HCl in 100% ethanol) for 10 seconds and subsequent running tap 

water for 3 mins. Slides were then dehydrated using the reverse steps to the 

rehydration steps and finally mounted with DPX mounting medium with 

appropriate sized cover slips. Slides were visualized and analysed using an in-

house Aperio Imagining System.  

 
6.2.3 Statistical analysis and other experimental tools 

 
The protein co-localization coefficient was achieved using the ImageJ software 

and all FACS based experimental data were analyzed using two-sample paired 
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t-test and a p-value cut-off of 0.05 was used to evaluate the significance of data 

compared.   

 

FACS and Western blotting were performed in this chapter, but described in 

detail within chapter 2. All antibody dilutions are stated in Table 2.9 in Chapter 2. 
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6.3 Results 

 
6.3.1 Verifying protein-protein interaction in cells 

 
Data presented in Chapter 5 demonstrated that endogenous FXR1 and GIPC1 

interacted with SET9 in LNCaP cells (see Figure 5.10/5.11). To confirm this 

interaction, FXR1, GIPC1, EBP1 and SET9 were ectopically expressed in 

U2OS cells and subject to immunoprecipitation. Prior to this experiment, 

however, expression of the individual constructs including the three isoforms, -E, 

-F and -G of FXR1 (structures are listed below), FLAG-tagged GIPC1 and both 

FLAG-EBP1 and GFP-EBP1 were tested in U2OS cells. Importantly, as 

discussed in Chapter 5, the EBP1-SET9 interaction was unable to be confirmed 

in LNCaP cells due to a presumed failure of the antibody for 

immunoprecipitation and Western analysis. Therefore, using an over-expression 

system, the interaction between SET9 and EBP-1 had the potential to be 

confirmed. As shown in Figure 6.1, the FXR1 isoforms E, F, G and GIPC1 were 

all over-expressed and detected by FXR1 and either GIPC1 or Flag antibodies. 

Over-expression of Flag-EBP1 was only identified by Western analysis using a 

Flag antibody, but not the EBP1 antibody confirming our notion that the EBP1 

immunoglobulin is unsuitable for protein detection by immunoblotting.  

 

A. 
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B. 

 
Figure 6.1 Validation of FXR1, GIPC1 and EBP1 expression in U2OS cells and schematic structures  
of FXR1 splicing variants E, F and G.  
(A) Western blot shows the transient expression of FXR1 isoforms E, F and G, FLAG-GIPC1 wild-type  
and mutant, FLAG- EBP1 and GFP-EBP1 in U2OS cells detected by FXR1, GIPC1, FLAG antibody. (B)  
Structural representation of FXR1 E, F and G. The black box represents the 87-bp insert at position 1035  
of the cDNA. The darkly striped box next to the black box represents a 78bp insert at position 1286 of the  
cDNA. The striped box represents 81bp insert at position 1690 of the cDNA and the lightly striped box  
represents a 92bp insert at position 1772 of the cDNA.  
 

Having validated each construct by transient transfection, interactions between 

over-expressed SET9 and either FXR1, GIPC1 and EBP1 were examined by 

immunoprecipitation. Unlike the strong interaction observed in LNCaP cells 

between SET9 and FXR1, a weaker interaction between SET9 and the three 

FXR1 isoforms was observed in U2OS cells (Figure 6.2, upper left panels), 

even though the ectopic expression of each protein was comparable to the 

endogenous level in LNCaP cells (see Figure 5.10). Consistent with the findings 

from LNCaP cells, ectopically expressed GIPC1 interacted with SET9, 

confirming the interaction between these proteins (Figure 6.2, lower left panel). 

Unfortunately, probing SET9 immunoprecipitates with a Flag antibody failed to 

detect ectopically expressed Flag-EBP1 suggesting that this interaction may not 

be detectable using methods utilised here or might not exist naturally in U2OS 

cells (Figure 6.2, lower right panel).  
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Figure 6.2: Interaction of SET9 with FXR1, GIPC1 and EBP1.  
U2OS cells were transiently transfected with vectors in the following combinations (SET9/FXR1 E, F, G 
isoforms, SET9/GIPC1 and SET9/EBP1). Immunoprecipitation was carried out using Rabbit SET9 
antibody. Western blots show the interaction of ectopically and/or trace amount of endogenously 
expressed FXR1 E, F, G with SET9 as well as GIPC1 with SET9.The pull-down efficiency was verified 
using the Mouse SET9 antibody shown above. 
 

6.3.2 Assessment of FXR1, GIPC1 and SET9 co-localisation by confocal 
microscopy 

 
The interaction between FXR1 and GIPC1 with SET9 in both LNCaP and U2OS 

cells confirmed the initial mass spectrometry data and subsequently led to the 

assumption that both newly identified proteins would co-localise with SET9 in 

cells. FXR1 has been shown to be predominantly cytoplasmic (Siomi et al., 

1995), which is consistent with data in Chapter 3, demonstrating cytoplasmic 

distribution of SET9 in LNCaP cells (Figure 3.7). In keeping with the hypothesis 

that both FXR1 and SET9 co-localise in cells, immunofluorescence in 

combination with confocal microscopy demonstrated that both proteins display 

predominantly  



 

151 
 

 
A 

 

B 

Figure 6.3 Co-localization of SET9 and FXR1 in LNCaP cells.   
(A) LNCaP cells were grown in chamber slides in serum-containing medium. SET9 and FXR1 were 
detected by immunofluorescence staining with FXR1 (TRITC) and SET9 (FITC) antibodies and observed 
using confocal microscopy. (B) The scatterplot displays the intensity of co-localization between SET9 and 
FXR1 as shown in orange and yellow, respectively due to the merging of red and green pixels. The bar 
chart shows the co-localization coefficient between SET9 and FXR1, which was calculated by the ImageJ 
program. Experiments were performed in duplicates and repeated three times. Error bars represent the 
standard deviation from three independent experiments.  
 

cytoplasmic distribution patterns in LNCaP cells (Figure 6.3, upper panel). 

Moreover, based upon the scattered plot and various means of coefficient 

analysis, approximately 80% to 90% of both proteins overlapped, which was 
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indicative of a strong correlation between the co-localisation of the two proteins 

in LNCaP cells (Figure 6.3, lower panel).  

 

With regard to the distribution of GIPC1 and SET9, similar to the association 

between SET9 and FXR1, both GIPC1 and SET9 showed predominant staining 

in the cytoplasmic compartment (Figure 6.4, upper panel) which was confirmed  

 
A 

 
B 

Figure 6.4 Co-localization of SET9 and GIPC1 in LNCaP cells.   
(A) LNCaP cells were grown in chamber slides in complete medium. SET9 and GIPC1 were detected by  
immunofluorescent staining with GIPC1 (TRITC) and SET9 (FITC) antibodies consecutively and followed  
by confocal microscopy. (B) The scatterplot displays the intensity of co-localization between SET9 and  
GIPC1 as shown in orange and yellow due to the merging of red and green pixels. The bar chart shows  
the co-localization coefficient between SET9 and GIPC1, which was calculated by the ImageJ.Experiments  
were performed in duplicates. 
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by an 80% co-localisation efficient calculated by the ImageJ software (Figure 

6.4, lower panel). Together, these data indicate a close link between SET9 and 

both FXR1 and GIPC1 at the cellular level.  

 

6.3.3 Effect of silencing FXR1 and GIPC1 on SET9 knockdown induced 
apoptosis in LNCaP cells 
 
In light of the interaction and co-localisation pattern between FXR1 and GIPC1 

with SET9, a role for FXR1 and GIPC1 in SET9 regulation was next addressed. 

As described in Chapter 4, SET9 is a negative regulator of LNCaP apoptosis 

induced by Doxorubicin. Therefore, to begin the functional analysis of FXR1 and 

GIPC1 in SET9 activity, the first experiment was to determine the impact of 

FXR1 and GIPC1 depletion on SET9 knockdown-induced apoptosis in LNCaP 

cells.  

 

Knockdown of both FXR1 and GIPC1 using siRNA was firstly optimised in 

LNCaP cells and Figure 6.5 below shows preliminary conditions applied to gain 

the optimal condition for the subsequent caspase-3 apoptosis assay with the 

dual knockdown of FXR1/GIPC1 and SET9. Having achieved the best 

conditions for the knockdown (Table 2.8 in Chapter 2), caspase-3 apoptosis 

assays were performed in LNCaP cells depleted of both SET9 and either FXR1 

or GIPC1 and treated with 200 nM Doxorubicin. As expected, SET9 knockdown 

caused a significant increase in LNCaP cell apoptosis. Interestingly, although 

FXR1 knockdown alone had negligible effect on LNCaP cell apoptosis, 

depletion of both FXR1 and SET9 completely negated the effect of SET9 

knockdown-induced apoptosis suggesting a role for FXR1 in driving LNCaP cell 

apoptosis in response to SET9 depletion (Figure 6.6).  

 

In parallel experiments investigating the function of GIPC1 in LNCaP cell 

apoptosis, it was found that depleting GIPC1 alone enhanced LNCaP cell 

apoptosis to levels equivalent to that of SET9 knockdown (Figure 6.7, upper 

panel). Interestingly, dual knockdown of both proteins failed to further enhance 

the degree of apoptosis seen with individual protein depletions, suggesting that 

GIPC1  
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Figure 6.5 Optimization of FXR1 and GIPC1 knockdown in LNCaP cells.  
LNCaP cells were reverse transfected with oligonucleaotides specifically designed against FXR1 and  
GIPC1 at concentrations of 25 nM. Cells were left for 48 or 72 hours post-transfection. Assessment of  
knockdown efficiency was conducted using Western blot analysis using either FXR1 or GIPC1 antibodies.  
 

 
A 
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B 

Figure 6.6 Ablation of FXR1 attenuates SET9 knockdown induced apoptosis in response to  
Doxorubicin treatment in LNCaP cells.  
(A) LNCaP cells were transfected with SET9, FXR1 and FXR1/SET9 siRNA, then incubated for 72 hours  
and followed by Doxorubicin treatment (200nM) for 24 hours. Cells were then collected for FACS based  
caspase-3 apoptosis assay. The dot plots represent the dramatic decrease of SET9 silencing mediated  
apoptosis upon the additional knockdown of FXR1. The effect of Doxorubicin was demonstrated by the  
control LNCaP cells with or without Doxorubicin treatment. (B) Bar chart represents the complete inhibition  
of apoptosis with the dual knockdown of SET9 and FXR1 compared to SET9 knockdown only (p<0.05). All  
knockdown was checked correspondingly by western blot and experiments were performed in triplicates. 
(-Dox: cells without Doxorubicin treatment, +Dox: cells with Doxorubicin). The number of asterix indicate 
the statistical significance of the T-test analysis with one representing the significance under 0.05, two for 
under 0.005 and three for under 0.0005. 
 

may function in the same pathway as SET9 to regulate apoptosis in LNCaP 

cells.  

 

Considering the observation that FXR1 knockdown attenuates up-regulation of 

LNCaP cell apoptosis in response to SET9 depletion, combined with the fact 

that FXR1 directly interacts with SET9 which is a p53-interacting protein, it was 

hypothesised that FXR1 interacts with p53. In agreement with this assumption, 

immunoprecipitation experiments performed in LNCaP cells using an FXR1 

+Dox 
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A 

 
B 

Figure 6.7 Ablation of GIPC1 has no additive effect on SET9 knockdown induced apoptosis in  
response to Doxorubicin treatment in LNCaP cells.  
(A) LNCaP cells were transfected with SET9, GIPC1 and GIPC1/SET9 siRNA, incubated for 72 hours  
followed by Doxorubicin treatment (200nM) for 24 hours. Cells were then collected for FACS-based  
caspase-3 apoptosis assays. The dot plots represent an increase of apoptosis induced by GIPC1  
silencing, whereas the dual knockdown of SET9 and GIPC1 showed no additional effect compared to  
SET9 knockdown alone. (B) Bar chart represents the impact of individual or combinational knockdown on  
LNCaP apoptosis (p<0.05). All knockdown was checked correspondingly by western blot and experiments  
were performed in triplicates. 
 

antibody followed by p53 Western blotting showed an interaction between FXR1 

and p53, both in the presence and absence of 200 nM Doxorubicin (Figure 6.8). 

Notably, when Doxorubicin was induced, there was a stabilization of FXR1 

observed, which can be seen in Figure 6.8 and other experiments (data not 

shown) suggesting a possible DNA damage induced regulation of FXR1 

turnover, which might be of potential research interests.  
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It is also worth mentioning that although FXR1 knockdown alone did not affect 

LNCaP cell apoptosis, when FXR1 was silenced, LNCaP cells exhibited neural 

extension and migration growth pattern compared to the scrambled siRNA 

control, indicating a potential role of FXR1 controlling LNCaP cell morphology 

(Figure 6.9). This resembles the neuroendocine LNCaP cell differentiation effect 

induced by some other proteins such as Snail transcription factor and IL-6 and 

Cyclic-AMP dependant kinase co-treatment (Deeble et al., 2001; McKeithen et 

al.). 

 
 

Figure 6.8 FXR1 interacts with p53 in the presence and absence of Doxorubicin in LNCaP cells.  
Immunoprecipitation in LNCaP cells was carried out using FXR1 antibody and western blot using a p53  
antibody showed the interaction between endogenous FXR1 and p53 both in the presence and absence of  
Doxorubicin induction. 
 

 
 

Figure 6.9 FXR1 affects LNCaP cell morphology.  
LNCaP cells were transfected with FXR1 or scrambled siRNA in complete medium and after 48 hours of  
transfection, neuroendocrine like growth patterns were observed in FXR1 knockdown cells. The upper  
panels are x20 magnification and lower panels are x10 magnification. 
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6.3.4 Effect of FXR1, GIPC1 and EBP1 on AR mediated transcription 
regulation 

 
Given that SET9 is an AR co-regulator, a potential role for FXR1 and GIPC1 in 

SET9-mediated AR co-activation was then addressed as a means of furthering 

our understanding of these proteins in SET9 regulation. In this series of 

experiments, HEK293T cells were transiently transfected with AR, SET9 and 

increasing amounts of GIPC1 and the three splicing variants of FXR1. Using the 

androgen-responsive AREIII luciferase reporter, it was found that SET9-

mediated AR transactivation was attenuated by GIPC1, while GIPC1 itself 

partially co-activated AR mediated transcription in the absence of SET9, 

although this change was not significant (Figure 6.10). 

 
Surprisingly, unlike what has been found previously in the literature (Zhang et 

al., 2005a), the known androgen receptor co-repressor EBP1 had no 

pronounced impact on the luciferase reporter activity either in the presence or 

absence of SET9 regardless of the negligible co-activating impact on AR 

mediated transactivation (Figure 6.10).  

 
A 
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B 

Figure 6.10 GIPC1 attenuates SET9-mediated AR coactivation in HEK293T cells  
(A) H293 cells were transiently transfected with β-gal and AREIII reporters, AR, and combinations of SET9  
and GIPC1 in androgen deprived medium for 48 hours. Cells were then stimulated with DHT (10nM) for 24  
hours and subject to luciferase reporter assay. Luciferase counts were normalized using β-gal assay.  
Addition of GIPC1caused a reduction of SET9 mediated AR co-activation, whereas GIPC1 had little effect  
on AREIII without SET9 being present. (B) H293 cells were transiently transfected with β-gal AREIII  
reporter, AR, SET9 and EBP1 with various combinations in androgen deprived medium for 48 hours and  
cells were treated using the same procedure as mentioned before. EBP1 did not have significant impact  
on the reporter activity no matter whether SET9 was present or absent regardless of the negligible co- 
activating effect on the basal reporter activity. Experiments were performed in quadruplicates and repeated  
three times. Error bars represent  +/- SE.  
 

More striking observations were made upon analysis of the three FXR1 

isoforms E, F and G in the AR-dependent reporter analysis. Each of the three 

FXR1 isoforms were titrated into reporter assays as described above to assess 

the dose-dependency of these proteins on AR-mediated transcription. 

Interestingly and in line with previous data, FXR1 E, F and G all suppressed 

SET9 co-activated AR regulated gene transcription and in particular, the F 

isoform seemed to reduce the reporter activity in a dose-responsive manner 

(Figure 6.11). Further characterization was carried out to address the 

antagonistic effect of FXR1 E, F and G on AR mediated transactivation by 

titrating increasing FXR1 amounts on the reporter. Here results showed that all 

three FXR1 isoforms showed individual degrees of co-repression in response to 

the increasing does of transfected plasmids, with FXR1 F representing the most 

apparent dose-dependent suppressive effect on AR driven transcription on 

AREIII reporter. This data was in agreement with the early on finding in this 

figure that FXR1 F exhibits a dose-dependent response in the presence of AR 

and its co-activator SET9.  
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Figure 6.11  FXR1 abolishes SET9 mediated AR transcriptional activity  in HEK293T cells.  
H293 cells were transiently transfected with β-gal AREIII reporter, AR, SET9 and FXR1 E, F, G  with 
various combinations in androgen deprived medium for 48 hours. Cells were then stimulated with DHT 
(10nM) for 24 hours and subject to luciferase reporter assay. Luciferase counts were normalized using β-
gal assay. All three FXR1 isoforms repressed SET9 mediated AR co-activation and in particular the E 
isoform showed the strongest inhibition capability even lower than the level induced by AR alone. 
Experiments were performed in triplicates.  
 
6.3.5 Regulation of SET9 by FXR1 in LNCaP cells 
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Having gained an insight into the antagonistic regulation of SET9-mediated AR 

transactivation by FXR1, a logical assumption for the effect of FXR1 on SET9 

activity was that SET9 protein levels may be affected by FXR1 manipulation. To 

this end, siRNA mediated knockdown of FXR1 in LNCaP cells was used to 

determine the role of FXR1 in regulating SET9 protein levels. Consistent with 

this assumption, depletion of FXR1 stabilised SET9 indicating that FXR1 is a 

negative regulator of SET9 (Figure 6.12) and this might help explain the down-

regulation of SET9 mediated transcriptional co-activating function due to the 

destabilization of SET9 in the excessive level of FXR1 in the reporter assays 

performed. In addition, the influence of GIPC1 silencing on SET9 protein level in 

LNCaP cells was also analysed. Consistent with the data for FXR1 knockdown, 

and with the findings from luciferase reporter assays, knockdown of GIPC1  

 
 

Figure 6.12 Knockdown of either FXR1or GIPC1 stabilizes SET9 protein in LNCaP cells.  
LNCaP cells were reverse transfected with FXR1 and GIPC1 individually,  grown for 72 hours post-
transfection and lysed in SDS sample buffer for immunoblotting analysis using antibodies including SET9, 
FXR1 and GIPC1. Α-Tubulin was used as loading control. Depletion of FXR1 dramatically stabilized SET9 
protein level and to a lesser extent SET9 was stabilized following knockdown of GIPC1. 
 

reduced SET9 protein level indicating that GIPC1 may also act as a negative 

regulator of SET9 in LNCaP cells (Figure 6.12). 

 

Interestingly, it was also noted that knockdown of SET9 appeared to have a 

feedback regulatory role on FXR1 as depletion of SET9 caused a reduction in 
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FXR1 level. Nevertheless, this mutual regulatory mechanism did not seem to 

exist between GIPC1 and SET9 (Figure 6.12).  

 
6.3.6 Evaluating FXR1 and GIPC1 expression in prostate clinical tissue 
specimens 
 
To obtain further support for a potential involvement of FXR1 in CaP, an 

Oncomine database was carried out for differential FXR1 expression in normal 

versus tumour tissue and as expected certain degree of differential expression 

was observed which made the rationale of investigating the expression further 

in clinical specimens. To begin to analyse expression of FXR1 in both benign 

and cancerous prostate tissue, the suitability of the FXR1 antibody for 

immunohistochemistry (IHC) analysis was determined on a small cohort of 

benign paraffin-embedded formalin-fixed prostate tissue. In addition, staining for 

GIPC1 was also conducted on the same cohort of prostate tissue samples to 

optimise the antibody for future analysis. Figure 6.13 shows that both antibodies 

worked for IHC on clinical specimens and consistent with the findings in cell line 

work, both proteins demonstrated cytoplasmic distribution (Figure 6.13). An 

additional step was taken to further optimise the FXR1 antibody for protein 

expression analysis in the Urology Research Group’s tissue microarray (TMA). 

Using a test TMA available as a resource for antibody optimisation, it was found 

that suitable staining of FXR1 was demonstrated using an antibody dilution of 

1:250 (Figure 6.14). These optimisation experiments have provided a good 

platform to build for the analysis of FXR1 expression in benign and malignant 

prostate tissue specimens as a means of determining a role for FXR1 in cancer 

development. Given that FXR1 is shown to reduce AR activity in reporter 

experiments, a hypothesis to test in future studies would be that FXR1 levels 

are reduced during the transition from normal to malignant prostate tissue. 
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Figure 6.13 Expression and localization pattern of FXR1 and GIPC1 in prostate tissue specimens.  
Benign prostate clinical tissue samples were used to enable the validation and optimization of FXR1 and  
GIPC1 antibodies for IHC and after IHC procedure.  Samples were analysed using the Aperio ScanScope  
Digital Scanner. A 1 in 500 antibody dilution for both FXR1 and GIPC1 was applied on the following test  
TMA analysis. Both FXR1 and GIPC1 displayed predominant cytoplasmic distribution with minor  
expression in the nucleus.  
 

 
A 
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1:250 

B 
Figure 6.14 Optimization of FXR1 on test TMA samples.  
FXR1 antibody was applied to test TMA slides  consisting of major prostate tissues including 6 × BPH, 6 ×  
prostate cancer (Gleason grade 3-8) and other tissues including  liver, overy, breast and kidney at 1:250  
and 1:500 dilution for IHC. Following IHC procedure, samples were analysed using the Aperio ScanScope  
Digital Scanner. FXR1 protein was displayed predominantly cytoplasmic distribution mainly  in epithelial  
cells. (A) 1:250 dilution showed a clearer visualization of FXR1 distribution in cells compared to 1:500  
dilution. (B) The staining patterns of other tissue cores on the test TMA are also presented at antibody  
concentration of 1:250.  
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6.4 Discussion 

 
Mass spectrometry analysis of the purified SET9-containing complex from 

LNCaP prostate cancer cells identified several potential SET9-interacting 

proteins, including FXR1, GIPC1 and EBP1. In an attempt to further determine 

the interaction between FXR1, GIPC1 and EBP1 with SET9, U2OS cells were 

transiently transfected with mammalian expression vectors to drive over-

expression of each protein and hence facilitate the detection of SET9-

FXR1/GIPC1/EBP1 interactions. Using a rabbit SET9 antibody to pull down 

both endogenous and exogenous SET9 containing complexes, it was found that 

three FXR1 isoforms E, F and G were all associated with SET9 protein, 

although the interaction was not as strong as that observed in LNCaP cells. 

One explanation for these findings could be that U2OS cells have very low level 

of endogenous FXR1 expression and the interaction between FXR1 and SET9 

under native condition in this cell line is relatively weak compared to that of 

LNCaP cells. The results in untransfected U2OS cells supported this notion as 

FXR1 antibody could only weakly detect one or possibly two isoforms of FXR1 

and these isoforms as indicated by their molecular weight relative to all three 

un-tagged FXR1 isoforms are shorter isoforms than depicted in the literature 

(Figure 6.2) (Kirkpatrick et al., 1999). Another possible reason is that the 

interaction in LNCaP cells may require an additional factor that is lacking or is at 

lower levels in U2OS cells and hence the interaction is not as robust as that 

seen in LNCaP cells. With the same intention to look for interaction, the 

association between GIPC1 and SET9 was also tested when ectopically 

expressed in U2OS cells. In line with the data from LNCaP cells, the GIPC1 and 

SET9 interaction was also confirmed by immunoprecipitation of ectopically 

expressed proteins in U2OS cells. Notably, although the endogenous GIPC1 

expression was relatively low in this cell line, it was shown to interact with over-

expressed SET9 further indicating a positive interaction between the two 

proteins. In parallel experiments, the question of whether EBP1 and SET9 

interacted was addressed. Unfortunately, no interaction was demonstrated 

using the anti-FLAG antibody to detect ectopic EBP1 after pull-down of the 

SET9 containing complex. Several reasons may explain this observation. 1) 

U2OS cells may not be a suitable model for the interaction study between EBP1 



 

166 
 

and SET9. 2) The interaction between EBP1 and SET9 in U2OS cells may need 

additional factors that are absent in this cell line. 3) Despite the low false-

positive rate (6%) in the protein ID search using GPM, the LC-Orbitrap mass 

spectrometry protein identification has far more sensitive detection potency than 

the western blotting and thus some of the weak or transient interaction could not 

be visualized on conventional western blot analysis. Given these findings and 

the fact that the EBP1-SET9 interaction could not be confirmed using the 

current methodologies, additional experimentation focussed primarily on the 

interplay between SET9 and the proteins FXR1 and GIPC1.  

 

Work described in Chapters 3 and 4 and the data published from other groups 

(Li et al., 2008; Siomi et al., 1995) indicated that SET9 and FXR1 are 

predominantly cytoplasmic proteins. Considering the observation that SET9 and 

FXR1/GIPC1 associate in LNCaP and U2OS cells, immunofluorecence was 

performed to examine potential co-localisation between the proteins in question. 

Using confocal microscopy to scan TRITC-labelled FXR1 and FITC-conjugated 

SET9 in LNCaP cells, the appearance of large spectral overlap shown in orange 

was apparent (Figure 6.3), a consequence of protein co-localization and this 

double stained pattern was calculated as approximately 80% of these two 

proteins co-localizing in the same cellular compartment with the majority being 

present in the cytoplasm. The data is consistent with the tight interaction 

between FXR1 and SET9 in LNCaP cells on the basis of previous 

immunoprecipitation and mass spectrometry analysis. Notably, although FXR1 

was largely retained in the cytoplasm, there were a number of speckles dotted 

in the nucleus, which was in support of the previous data that FXR1 shuttles 

between cytoplasm and nucleus, possibly in a regulated manner (Tamanini et 

al., 1999). As for GIPC1, GIPC1 exhibited intensive co-localization with SET9 

as reflected by double fluorescence staining and this overlap was determined 

statistically to be over 80%. The cytoplasmic observation for GIPC1 coincided 

with the location of GIPC1 and the previously documented literature stating that 

it is a cytoplasmic protein involved in the trafficking process of G protein 

coupled signalling network and other networks (Katoh, 2002; De Vries et al., 

1998). Similarly to FXR1, it was postulated that the association of GIPC1 and 

SET9 in LNCaP cells may predict novel regulatory mechanisms of SET9 

function. Taken together, the data confirmed the association between 
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FXR1/GIPC1 and SET9. However, it might be necessary as a further step to 

conduct nuclear/cytoplasmic immunoprecipitation to determine which 

compartment displays the stronger interaction as the dual staining of the 

proteins suggested a potential interaction not only in the cytoplasm but also in 

the nucleus and therefore this would enable a focus on the nuclear function of 

these proteins.  

 

The intention to discover novel regulatory mechanisms contributed by FXR1 

and GIPC1 on SET9 initiated from the investigation regarding the role of SET9 

as an anti-apoptotic agent in LNCaP cells. This is a vital mechanism governed 

by SET9, and it was thought would perhaps reveal a link between SET9 and 

FXR1/GIPC1. It was shown that ablation of FXR1 by siRNA approach resulted 

in a substantial reduction of apoptosis initiated by SET9 knockdown solely in 

response to Doxorubicin treatment. This suggested a pro-apoptotic role of 

FXR1 in SET9 knockdown induced apoptosis in response to Doxorubicin 

administration. As SET9 depletion mediated apoptosis is via the retardation of 

p53 mediated gene transcription and knockdown of p53 completely blocks 

SET9 silencing mediated LNCaP cell apoptosis, the FXR1 story was taken one 

step forward by assessing the interaction between FXR1 and p53. It was found 

that FXR1 interacted with p53 both in the absence and presence of DNA 

damaging agent treatment. One notable observation was the presence of a 

doublet band appearing in the immunoprecipitation sample lane without 

Doxorubicin treatment. The speculation was that there might be either different 

splicing variants or covalently modified forms of the protein detected by the p53 

antibody in LNCaP cells. The early finding supports this hypothesis as in the 

cyclohexmide treatment experiment investigating SET9 protein stability at least 

two forms of p53 co-existed. Furthermore, when comparing to the DNA damage 

induced immunoprecipitation sample, it seemed that one of the double bands 

disappeared and thus it was speculated that the other form of p53 was a 

potential dephosphorylated form of p53. In LNCaP cells, there are different p53 

phosphorylation sites identified, including serines 9 and 15. Notably these two 

residues are phosphorylated to a certain degree even without external stimuli 

(Jiang et al., 2004). On the other hand, supporting evidence also indicates that 

p53 is dephosphorylated on serine 376 in response to irradiation induced DNA 

damage (Lakin and Jackson, 1999; Waterman et al., 1998). Therefore, it was 
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postulated that there might be phosphorylation or other post-translational 

modifications occurring on p53 in normal LNCaP cells. However, following 

Doxorubicin treatment, dysregulated phosphorylation may change the overall 

status of p53, which is reflected in the western blot results with the 

disappearance of one band. One conclusion from this experiment is that FXR1 

plays a role as a potent regulator which in conjunction with p53 controls SET9 

knockdown mediated apoptosis. As FXR1, SET9 and p53 interact with each 

other, there might be a ternary complex existing in LNCaP. cells Since the 

induction of apoptosis by SET9 knockdown relies upon p53 via its aberrant 

regulation as proposed earlier, one possible argument is that FXR1 may 

influence p53s involvement in LNCaP cell apoptosis. Considering that depletion 

of FXR1 alone did not cause a dramatic change in LNCaP cell apoptosis and 

neither did p53 alone, it is possible that FXR1 regulated p53 alteration is SET9 

dependent. A further speculation is that FXR1 might impact on the 

combinational interplay of post-translational modifications occurring on p53 

which is predominantly modulated by the dynamics of SET9 in LNCaP cells. 

Thus, the mechanism of apoptotic event could be established as follows: SET9 

knockdown alters p53 post-translational modification dynamics which stabilizes 

the protein to induce apoptosis in the presence of Doxorubicin. FXR1 at some 

point facilitates this p53 stabilization under such a modified status generated in 

response to ablation of SET9. This assistant role by FXR1 is indispensable for 

p53 to execute its downstream function. Although FXR1 knockdown alone has 

limited effect on apoptosis of LNCaP cells, evident morphological change was 

observed, which resembled a neuroendocrine (NE) differentiation pattern when 

FXR1. Therefore, FXR1 knockdown might potentially drive the trans-

differentiation of LNCaP cells to allow the production of neuroendocrine-like cell 

growth pattern, which resembles the effect observed during androgen-deprived 

conditions in LNCaP cells. This warrants further investigation to get a clearer 

understanding of the relationship between FXR1  regulatory machinery and 

neuroendocrine differentiation markers. Particular focus could be on signalling 

pathways linked with neuroendocrine differentiation, including protein kinase A 

and MAP kinase pathways, activated through cyclic AMP and the PI3 Kinase 

and STAT3 pathways, activated through the induction of cytokines such as 

interleukin-6 and interleukin-1β (Yuan et al., 2007; Culig et al., 2005; Hoosein, 

1998).  
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In parallel experiments where the effect of GIPC1 on SET9 knockdown 

mediated apoptosis was assessed, GIPC1 seemed incapable of affecting the 

apoptosis induced by SET9 ablation. Although, depletion of GIPC1 alone 

enabled LNCaP cells to undergo apoptosis to a similar extent to that of SET9 in 

the presence of Doxorubicin. As this GIPC1 induced phenotypic effect was 

seemingly not correlated with SET9 knockdown, no further studies were 

conducted. Nevertheless, GIPC1 mediated apoptosis may occur via the 

regulation of signalling transduction possibly through MAP Kinase (Erk1/2) 

mediated apoptosis pathway where GIPC1 seems to function as a negative 

regulator through binding with TrkA (Lou et al., 2001). Moreover, as this effect 

occured following exposure to DNA damaging agent (Doxorubicin) which 

activates p53, it is possible that MAP Kinase pathway acts in association with 

p53 to induce apoptosis in LNCaP cells, since it is documented that p53 

activation by 5-aza-2'-deoxycytidine induces pro-apoptotic gene expression and 

mitogen-activated protein kinases in LNCaP cells (Pulukuri and Rao, 2005).  

 

Having established a role for FXR1 and GIPC1 in SET9 induced LNCaP cell 

apoptosis, the next question was to address whether they have an impact on 

SET9-mediated co-activation of androgen receptor-driven transcription. To this 

end, luciferase reporter assays were performed in HEK293T cells. Using the 

ARE III driven reporter, it was found that induction of FXR1 suppressed SET9 

mediated co-activation of AR to levels lower than that induced by AR alone. 

Importantly, all three isoforms of FXR1 exerted a similar effect by down-

regulating reporter activity. In parallel experiments, the effect of GIPC1 and 

EBP1 was tested under the same experimental conditions. Although addition of 

GIPC1 reduced SET9-mediated co-activation, it failed to impact on 

transcriptional activity of the receptor in the absence of SET9 indicating a 

potentially different mechanism of function to that of FXR1. In contrast to FXR1 

and GIPC1, EBP1 failed to affect AR activity irrespective of the presence of 

SET9. This finding is inconsistent with the previous findings that demonstrated 

EBP1 functions as an AR co-repressor through the association with the Sin3A 

complex containing histone deacetylase activity (Zhang et al., 2005a). These 

authors applied the androgen-responsive MMTV reporter in LNCaP cells which 
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differs considerably from the ARE III reporter in HEK293T cells used in herein 

and may part explain different effects of EBP1 on AR-mediated transcription.   

 

The finding that all three FXR1 isoforms down-regulated AR mediated gene 

activation (Figure 6.12) suggested FXR1 functions as an AR co-repressor on 

the AREIII reporter. To further probe the mechanism behind this co-repressive 

effect driven by FXR1, knockdown of FXR1 in LNCaP cells was performed in 

order to assess the turnover of SET9 accordingly. These results showed that 

depletion of FXR1 significantly up-regulated SET9 protein, which may suggest a 

mechanism for the reduction in SET9-mediated co-activation when FXR1 is 

over-expressed. However, the data remains limited as independent 

mechanisms of FXR1 as an intrinsic AR co-repressor have not been sufficiently 

addressed due to limited time available. Moreover, the observation that GIPC1 

knockdown also caused SET9 levels to increase suggested that GIPC1 over-

expression down-regulates SET9 mediated co-activation by reducing SET9 

protein in the luciferase assays, although this has not been confirmed. Current 

knowledge on FXR1 indicates that it primarily functions as an RNA binding 

protein to influence gene expression at post-transcriptional level. It is feasible 

that FXR1 regulation of SET9 and possibly AR occurs at the transcript level 

where FXR1 negatively regulates SET9 and AR mRNA, in turn facilitating 

reduced AR mediated gene transcription. However, considering the observation 

of direct SET9 and FXR1 interaction in vivo, it is also possible that the protein-

protein association would predict a co-regulatory mechanism involving FXR1. 

So far, the only molecular basis to support this notion is the nuclear-cytoplasmic 

shuttling of proteins governed by FXR1 (Tamanini et al., 1999). Whether FXR1 

contributes towards SET9 and/or AR nuclear influx/efflux during transcription 

control still remains to be determined. In regard to the repression of AR 

mediated transcription by FXR1, providing the appearance of FXR1 in the 

nuclear compartment, whether it influences AR mediated transcription directly 

by either forming into an AR containing transcriptional complex at promoter 

regions or recruiting other repressive components such as HDACs still remains 

to be elucidated. Finally, due to the complexity of AR signalling cross-talk in 

hormone refractory prostate cancer, it might be possible that various signalling 

pathways responsible for the development of AR dependent prostate cancer 

such as AKT, MAP Kinase and PKC pathways could be potentially regulated by 



 

171 
 

FXR1 (Edwards and Bartlett, 2005b; Gnanapragasam et al., 2000; Weigel, 

1996). From current knowledge and our findings so far, no further conclusion 

can be made on the molecular mechanisms lying behind the repressive 

regulation of transcriptional machinery involving SET9 and AR in the presence 

of FXR1 and these questions need to be addressed in the future.  

 

Finally, the intention was to determine the expression pattern of FXR1 and 

GIPC1 in prostate clinical specimens. Upon validation of the antibodies, it was 

confirmed that both FXR1 and GIPC1 are largely expressed in the cytoplasm of 

prostate epithelial cells, consistent with the immunofluorescence data. The 

antibodies were applied to test TMA slides to allow the determination of 

appropriate concentration to use. Nevertheless as time was limited, 

experiments did not proceed to the stage to examine larger-scale prostate 

cancer TMAs containing clinical prostate tumours with varied Gleason scores. 

Interestingly, according to in silico RNA expression search against FXR1 using 

the Oncomine data base, FXR1 gene showed up-regulated expression during 

the initiation and advancement of prostate carcinoma in clinical patient samples, 

which supports a convincing reason to justify examining the expression of FXR1 

protein in clinical specimens in future experiments (Tomlins et al., 2007; 

Lapointe et al., 2004; Vanaja et al., 2003).  
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Chapter 7 

 
Summary and future direction 
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7.1 Current study  

 
One primary driving force of prostate cancer (CaP) from organ confined state to 

metastasis and castrate resistant disease is the aberrant regulation of androgen 

receptor (AR) pathway. In the variety of mechanisms contributing towards 

regulation of receptor dynamics and activity, co-regulators are believed to play 

pivotal roles governing many biological aspects of AR (Heinlein and Chang, 

2002). In this project, the attention was focussed on one important epigenetic 

regulator, SET9 which has previously been identified as a primary histone H3 

lysine 4 mono-methyltransferase (Nishioka et al., 2002; Wang et al., 2001a). 

Follow-up investigation on this protein revealed that its function is not only 

restricted to histone proteins but also connected to other essential regulators, 

particularly in various cancer pathways, including p53, estrogen receptor (ER), 

NF-κB and components of basal transcriptional machinery such as TAF10 (Li et 

al., 2008; Subramanian et al., 2008; Chuikov et al., 2004; Kouskouti et al., 

2004). Based on it’s substrate protein methylation sites, a consensus sequence 

recognisable by SET9, R/K-S/T/A-K-D/K/N/Q, has been modelled and 

interestingly this lysine rich motif also appears within the AR sequence which is 

previously reported as a highly modifiable region (Couture et al., 2006; 

Gaughan et al., 2002; Fu et al., 2000). By analogy, a primary investigation was 

performed aiming to establish the role of SET9 in AR mediated biological 

processes. Our preliminary data showed that SET9 is capable of methylating 

the receptor at a single lysine residue, 632 in the KLKK motif by applying in vitro 

methylation assay and tandem mass spectrometry analysis. The methylation 

event dictated SET9 potency by facilitating AR mediated transcription, evident 

using reporter assays through ectopic expression or gene knockdown strategy, 

revealing its role as an AR co-activator (Gaughan et al., 2010 in press).  

 

To further characterize SET9 in CaP cells, many biological properties of this 

protein were examined. It was demonstrated that SET9 is a stable protein 

whose expression is relatively unchanged during cell cycle progression. Using 

immunofluorescence and nuclear/cytoplasmic extraction, both endogenous and 

ectopically expressed SET9 showed predominant cytoplasmic distribution, an 

observation in agreement with one previous study but potentially contradictory 
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to the primary reported function of this protein as a histone modifying enzyme 

(Li et al., 2008; Nishioka et al., 2002) (Gaughan et al., 2010). The transcriptional 

co-activation role of SET9 was also confirmed in LNCaP cells and U2OS cells, 

again highlighting that SET9 is an AR co-activator. This co-activation 

mechanism can be significantly reversed by HDAC1, possibly through a direct 

interaction between the two proteins, evident when over-expressing both 

proteins together.  Probing into the phenotypic role of SET9 in CaP cells, 

several observations have been made. Based upon siRNA mediated 

knockdown and FACS based assays, it was shown that SET9 enhanced the 

proliferative potential of LNCaP cells by accelerating the G1/S transition and 

inhibiting apoptosis suggesting an important role during cancer progression. 

Moreover, depletion of SET9 in LNCaP cells combined with Doxorubicin DNA 

damaging agent treatment induced massive apoptosis compared to SET9 

knockdown alone. p53 knockdown attenuated SET9 knockdown mediated 

apoptosis in response to chemotherapeutic intervention, suggesting its potential 

apoptotic function through DNA damaging triggered pathway, a phenomenon 

which links this study with previous work for SET9 on  p53 (Gaughan et al., 

2010). Opposite to the effect observed in U2OS cells where SET9 stabilizes 

p53 to trigger apoptosis in response to Doxorubicin treatment, the justification 

was that SET9 might regulate p53 in the opposite way in LNCaP cells 

compared to U2OS cells as some of the p53 target genes MDM2 and p21 

showed up-regulation pattern upon SET9 knockdown.  

 

In order to interrogate SET9 involvement in cellular mechanisms for CaP cells,  

endogenous SET9 protein was extracted from LNCaP cells using 

immunoprecipitation and multiple proteins associated with SET9 were identified 

using LC-MS/MS from electrophoresis fractionated samples. Amongst 13 

identified SET9 interacting proteins, based upon the confidence and quality of 

peptides identified for each protein and their relevance to cancer biology, FXR1, 

GIPC1 and EBP1 were chosen for further characterization. Although a link 

between EBP1 and SET9 could not be confirmed,, primary exploration of 

SET9/FXR1 and SET9/GIPC1 was established. The data highlighted a strong 

cytoplasmic co-localization between SET9/FXR1 and SET9/GIPC1 in LNCaP 

cells, which is in agreement with the immunofluorescence data done on SET9 

previously and the literaturally documented work done on FXR1. In addition, 
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FACS based analysis revealed that FXR1 is important for SET9 knockdown 

mediated LNCaP cell apoptosis in the presence of Doxorubicin. This 

mechanism might involve SET9, p53 and FXR1, since FXR1 directly interacts 

with p53 in LNCaP cells. Further characterization from the transcriptional control 

aspect suggested that FXR1 is a robust co-repressor of AR which diminishes 

AR activity independently of SET9 expression. A further explanation comes 

from the expression analysis of SET9 in the presence of FXR1 knockdown, 

which suggests FXR1 might negatively regulate SET9 at the protein level, 

although the mechanism is still to be revealed. Finally, the investigation ended 

with the study of FXR1 and GIPC1 expression in CaP clinical tissue samples. 

the data was consistent with the cell line work demonstrating FXR1 and GIPC1 

showed predominantly cytoplasmic expression, coincides with the distribution of 

SET9 in clinical TMA samples at various cancer grade (Gaughan et al., 2010). 

 

7.2 Future direction 
 

The data investigating the regulatory mechanism between SET9 and HDAC1 

casts light on the molecular mechanism behind the regulation of SET9 by 

HDAC1 in the context of AR dynamics. As HDAC1 is involved in Tip60 

mediated AR down-regulation and both Tip60 and SET9 target the KLKK motif 

within the receptor, there might be a similar scenario established between SET9 

and HDAC1. Whether methylation is required for subsequent acetylation of 

surrounding lysines by other AR co-activator such as Tip60 or p300/PCAF, and 

whether HDAC1 could remove all these acetylated marks to inactivate the 

receptor to diminish transcription, is worthy of further investigation. The 

interaction observed between SET9/AR, SET9/HDAC1 and the ternary complex 

of Tip60, HDAC1 and AR suggests a potential cross-talk between the three 

proteins and thus the influence of HDAC1 on SET9 methylated KLKK motif is of 

interest for future study.  

 

Although the overall mechanism of SET9 knockdown mediated apoptosis in 

LNCaP cells has been established, the exact molecular biology behind it is still 

unknown. Confirming the precise methylation of p53 by SET9 in LNCaP cells is 

essential and this might explain the distinct mechanism observed in LNCaP 

cells compared to U2OS cells in regulating p53 target genes.  
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Since FXR1 was identified in LNCaP cells as a strong candidate with regard to 

its capability for regulating SET9 mediated apoptosis and transcriptional control, 

it will be important to determine the underlying molecular mechanisms involved. 

How could FXR1 knockdown inhibit apoptosis induced by SET9 upon activation 

of p53? Is this through direct regulation of FXR1 on p53 or vice versa? How 

could FXR1 suppress SET9’s co-activator function and is there a direct AR 

regulation by FXR? These questions remain to be addressed. To prioritise the 

questions, the key experiment would be to determine the repressive role of 

FXR1 on AR mediated transcription. A direct interaction between those two 

proteins might be pursued and as HDAC1 is a strong inhibitory regulator of AR 

activity, a link between FXR1 and HDAC1 could be sought to determine 

whether FXR1 mediated receptor inhibition is acting via HDAC1. Finally, the 

now optimized conditions for CaP tissue immunohistochemistry will allow us to 

characterise FXR1 protein expression in a clinical context, using CaP TMAs to 

obtain a clearer understanding of the correlation between FXR1 and CaP 

progression. This will constitute a novel area for future CaP biomarker discovery 

and the search for more effective therapeutic intervention.  
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Appendices  
 
Appendix 1 

 
Annotated spectra of protein peptides identified specifically in SET9 pull-down 

samples. Only one representative peptide spectrum for each protein is depicted 

here.  

 

 
Polyadenylate-binding protein 1-like  
 

 
 
 Breakpoint cluster region protein 1  
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Fragile X mental retardation syndrome-related protein 1 (FXR1) 
 

 

 
ErbB3-binding protein 1 (EBP1) 
 

 

 
Receptor of activated protein kinase C 1 
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RNA-dependent helicase p72 (p72) 
 

 
GAIP C-terminus-interacting protein (GIPC1) 
 

 
Lamin A/C 
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AP-2 complex subunit beta-1 
 

 
Fragile X mental retardation syndrome-related protein 2 (FXR2) 
 

 
Nucleolar protein 5A 
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AP-1 complex subunit beta-1 
 

 
Endoplasmic reticulum lipid raft-associated protein 1 (Erlin-1) 
 

Appendix 2 
 
Data summary of all identified peptides in immunoprecipitated sample fractions 

and corresponding control fractions with their relevant information. This figure 

was tidied up with the exclusion of keratins and trypsins.  
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Band 
No

File Name Identifier log(I) rI log(e) pI Mr Description

19 090211_13_NW_C10.mgf ENSP00000009589 5.66 3 -14.1 9.9 13.4 40S ribosomal protein S20 [Source:UniProtKB/Swiss-Prot;Acc:P60866]

21 090211_15_NW_C11.mgf' ENSP00000009589 5.46 2 -8 9.9 13.4 40S ribosomal protein S20 [Source:UniProtKB/Swiss-Prot;Acc:P60866]

39 090213_16_NW_C20.mgf ENSP00000014112 3.83 1 -1.3 9.2 57.2 Polypyrimidine tract-binding protein 1 (PTB)(Heterogeneous nuclear ribonucleoprotein I)(hnRNP I)(57 
kDa RNA-binding protein PPTB-1) [Source:UniProtKB/Swiss-Prot;Acc:P26599]

40 090213_17_NW_S20.mgf ENSP00000014112 3.61 1 -2.1 9.2 57.2 Polypyrimidine tract-binding protein 1 (PTB)(Heterogeneous nuclear ribonucleoprotein I)(hnRNP I)(57 
kDa RNA-binding protein PPTB-1) [Source:UniProtKB/Swiss-Prot;Acc:P26599]

8 090213 10 NW S4.mgf ENSP00000084795 3.26 1 -5.6 12 21.6 60S ribosomal protein L18 [Source:UniProtKB/Swiss-Prot;Acc:Q07020]
37 090213 13 NW C19.mgf ENSP00000084795 3.5 1 -4.9 12 21.6 60S ribosomal protein L18 [Source:UniProtKB/Swiss-Prot;Acc:Q07020]
39 090213_16_NW_C20.mgf ENSP00000084795 3.19 1 -1.4 12 21.6 60S ribosomal protein L18 [Source:UniProtKB/Swiss-Prot;Acc:Q07020]

15 090211_08_NW_C8.mgf ENSP00000162391 4.06 1 -1.6 6.2 62.4 Forkhead box protein J2 (Fork head homologous X) [Source:UniProtKB/Swiss-Prot;Acc:Q9P0K8]

14 090211 07 NW S7.mgf ENSP00000172853 5.38 2 -1.3 9.1 772.5 Nebulin [Source:UniProtKB/Swiss-Prot;Acc:P20929]
15 090211 08 NW C8.mgf ENSP00000173527 3.74 1 -1.1 6.5 22.2 Isochorismatase domain-containing protein 1 [Source:UniProtKB/Swiss-Prot;Acc:Q96CN7]
37 090213_13_NW_C19.mgf ENSP00000188376 3.31 1 -1.5 9.4 39.9 Phosphate carrier protein, mitochondrial Precursor (Phosphate transport protein)(PTP)(Solute carrier 

family 25 member 3) [Source:UniProtKB/Swiss-Prot;Acc:Q00325]
8 090213_10_NW_S4.mgf ENSP00000202773 4.48 3 -12.9 11 32.7 60S ribosomal protein L6 (TAX-responsive enhancer element-binding protein 

107)(TAXREB107)(Neoplasm-related protein C140) [Source:UniProtKB/Swiss-Prot;Acc:Q02878]
40 090213_17_NW_S20.mgf ENSP00000202773 3.81 1 -1.6 11 32.7 60S ribosomal protein L6 (TAX-responsive enhancer element-binding protein 

107)(TAXREB107)(Neoplasm-related protein C140) [Source:UniProtKB/Swiss-Prot;Acc:Q02878]
9 090213_11_NW_C5.mgf ENSP00000204732 4.91 3 -18.1 9.3 70.7  Polyadenylate-binding protein 4 (Poly(A)-binding protein 4) (PABP 4) (Inducible poly(A)-binding protein) 

(iPABP) (Activated-platelet protein 1) (APP-1). Source: Uniprot/SWISSPROT Q13310
21 090211_15_NW_C11.mgf' ENSP00000207437 4.14 1 -3.2 5.6 22.7 Myosin light chain 6B (Smooth muscle and nonmuscle myosin light chain alkali 6B)(Myosin light chain 1 

slow-twitch muscle A isoform)(MLC1sa) [Source:UniProtKB/Swiss-Prot;Acc:P14649]

23 090211_18_NW_C12.mgf ENSP00000207437 4.1 1 -2.2 5.6 22.7 Myosin light chain 6B (Smooth muscle and nonmuscle myosin light chain alkali 6B)(Myosin light chain 1 
slow-twitch muscle A isoform)(MLC1sa) [Source:UniProtKB/Swiss-Prot;Acc:P14649]

5 090213 06 NW C3.mgf ENSP00000211372 4.84 5 -11.3 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]
35 090211_32_NW_C18.mgf ENSP00000211372 3.17 1 -1.7 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

38 090213_14_NW_S19.mgf ENSP00000211372 3.95 2 -2.6 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

39 090213_16_NW_C20.mgf ENSP00000211372 3.31 1 -1.5 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

40 090213_17_NW_S20.mgf ENSP00000211372 3.97 2 -7.7 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

41 090213_18_NW_C21.mgf ENSP00000211372 3.46 1 -2.3 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

42 090213_19_NW_S21.mgf ENSP00000211372 3.92 2 -1.9 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

48 090213_26_NW_S24.mgf ENSP00000211372 3.63 1 -2.1 11 17.7 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

8 090213_10_NW_S4.mgf ENSP00000215375 3.73 1 -2 5.3 17.5 ATP synthase subunit delta, mitochondrial Precursor (F-ATPase delta subunit) 
[Source:UniProtKB/Swiss-Prot;Acc:P30049]

10 090213_12_NW_S5.mgf ENSP00000216019 3.41 1 -4.5 8.5 80.2 Probable ATP-dependent RNA helicase DDX17 (EC 3.6.1.-)(DEAD box protein 17)(RNA-dependent 
helicase p72)(DEAD box protein p72) [Source:UniProtKB/Swiss-Prot;Acc:Q92841]

9 090213 11 NW C5.mgf ENSP00000216038 4.23 1 -1.9 6.8 55.2 UPF0027 protein C22orf28 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3I0]
37 090213 13 NW C19.mgf ENSP00000216038 3.31 1 -2.5 6.8 55.2 UPF0027 protein C22orf28 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3I0]
38 090213_14_NW_S19.mgf ENSP00000216038 3.34 1 -2.9 6.8 55.2 UPF0027 protein C22orf28 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3I0]

35 090211_32_NW_C18.mgf ENSP00000216181 4.37 4 -27.1 5.5 226.4 Myosin-9 (Myosin heavy chain 9)(Myosin heavy chain, non-muscle IIa)(Non-muscle myosin heavy chain 
IIa)(NMMHC II-a)(NMMHC-IIA)(Cellular myosin heavy chain, type A)(Non-muscle myosin heavy chain-
A)(NMMHC-A) [Source:UniProtKB/Swiss-Prot;Acc:P35579]

6 090213 07 NW S3.mgf ENSP00000216538 3.25 1 -1.2 12 31.2
35 090211_32_NW_C18.mgf ENSP00000217074 4.36 2 -7.7 9.3 37.7 Polyadenylate-binding protein 1-like [Source:UniProtKB/Swiss-Prot;Acc:Q4VXU2]

36 090211_32_NW_S18.mgf ENSP00000217074 3.96 1 -2.3 9.3 37.7 Polyadenylate-binding protein 1-like [Source:UniProtKB/Swiss-Prot;Acc:Q4VXU2]

38 090213_14_NW_S19.mgf ENSP00000217074 4.07 2 -6.6 9.3 37.7 Polyadenylate-binding protein 1-like [Source:UniProtKB/Swiss-Prot;Acc:Q4VXU2]

39 090213_16_NW_C20.mgf ENSP00000217074 4.08 2 -6.6 9.3 37.7 Polyadenylate-binding protein 1-like [Source:UniProtKB/Swiss-Prot;Acc:Q4VXU2]

37 090213_13_NW_C19.mgf ENSP00000217182 3.68 1 -2.8 9.1 50.4 Elongation factor 1-alpha 2 (EF-1-alpha-2)(Elongation factor 1 A-2)(eEF1A-2)(Statin S1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q05639]

38 090213_14_NW_S19.mgf ENSP00000217182 3.52 1 -1.7 9.1 50.4 Elongation factor 1-alpha 2 (EF-1-alpha-2)(Elongation factor 1 A-2)(eEF1A-2)(Statin S1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q05639]

39 090213_16_NW_C20.mgf ENSP00000217182 3.54 1 -2.8 9.1 50.4 Elongation factor 1-alpha 2 (EF-1-alpha-2)(Elongation factor 1 A-2)(eEF1A-2)(Statin S1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q05639]

40 090213_17_NW_S20.mgf ENSP00000217182 3.51 1 -3.9 9.1 50.4 Elongation factor 1-alpha 2 (EF-1-alpha-2)(Elongation factor 1 A-2)(eEF1A-2)(Statin S1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q05639]

5 090213_06_NW_C3.mgf ENSP00000217652 4.63 6 -17.8 4.6 19.8 Myosin regulatory light chain MRLC3 (Myosin regulatory light chain 2, nonsarcomeric)(Myosin 
RLC)(MLC-2B) [Source:UniProtKB/Swiss-Prot;Acc:P19105]

6 090213_07_NW_S3.mgf ENSP00000217652 3.69 2 -5.5 4.6 19.8 Myosin regulatory light chain MRLC3 (Myosin regulatory light chain 2, nonsarcomeric)(Myosin 
RLC)(MLC-2B) [Source:UniProtKB/Swiss-Prot;Acc:P19105]

21 090211_15_NW_C11.mgf' ENSP00000217652 3.46 1 -5.2 4.6 19.8 Myosin regulatory light chain MRLC3 (Myosin regulatory light chain 2, nonsarcomeric)(Myosin 
RLC)(MLC-2B) [Source:UniProtKB/Swiss-Prot;Acc:P19105]

9 090213_11_NW_C5.mgf ENSP00000218316 4.43 1 -1.7 7.6 67.3 Melatonin-related receptor (G protein-coupled receptor 50)(H9) [Source:UniProtKB/Swiss-
Prot;Acc:Q13585]

20 090211_14_NW_S10.mgf ENSP00000219439 4.86 1 -1.5 8.9 37 Hydroxysteroid dehydrogenase-like protein 1 [Source:UniProtKB/Swiss-Prot;Acc:Q3SXM5]

10 090213_12_NW_S5.mgf ENSP00000221418 3.52 1 -3.2 8.2 35.8 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial Precursor (EC 5.3.3.-) 
[Source:UniProtKB/Swiss-Prot;Acc:Q13011]

10 090213_12_NW_S5.mgf ENSP00000221419 3.84 1 -6 8.6 64.2 Heterogeneous nuclear ribonucleoprotein L (hnRNP L) [Source:UniProtKB/Swiss-Prot;Acc:P14866]

5 090213 06 NW C3.mgf ENSP00000221975 4.91 4 -12.1 10 16.1 40S ribosomal protein S19 [Source:UniProtKB/Swiss-Prot;Acc:P39019]
8 090213 10 NW S4.mgf ENSP00000221975 5.07 6 -11.5 10 16.1 40S ribosomal protein S19 [Source:UniProtKB/Swiss-Prot;Acc:P39019]

21 090211_15_NW_C11.mgf' ENSP00000221975 5.31 2 -1.7 10 16.1 40S ribosomal protein S19 [Source:UniProtKB/Swiss-Prot;Acc:P39019]

24 090211_19_NW_S12.mgf ENSP00000221975 4.58 1 -2 10 16.1 40S ribosomal protein S19 [Source:UniProtKB/Swiss-Prot;Acc:P39019]

5 090213_06_NW_C3.mgf ENSP00000222956 4.34 1 -2.4 9.1 29.4 Uncharacterized protein ENSP00000222956 Fragment [Source:UniProtKB/TrEMBL;Acc:A6NCA2]

8 090213_10_NW_S4.mgf ENSP00000222956 4.17 1 -1.7 9.1 29.4 Uncharacterized protein ENSP00000222956 Fragment [Source:UniProtKB/TrEMBL;Acc:A6NCA2]

5 090213_06_NW_C3.mgf ENSP00000223129 3.52 1 -5.2 4.9 13.6 Replication protein A 14 kDa subunit (RP-A p14)(Replication factor A protein 3)(RF-A protein 3) 
[Source:UniProtKB/Swiss-Prot;Acc:P35244]

10 090213_12_NW_S5.mgf ENSP00000223129 3.81 1 -2.7 4.9 13.6 Replication protein A 14 kDa subunit (RP-A p14)(Replication factor A protein 3)(RF-A protein 3) 
[Source:UniProtKB/Swiss-Prot;Acc:P35244]

2 090213_03_NW_S1.mgf ENSP00000224784 3.51 1 -1.4 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

10 090213_12_NW_S5.mgf ENSP00000224784 4.38 3 -3.6 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

17 090211_11_NW_C9.mgf' ENSP00000224784 5.14 1 -1.3 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

19 090211_13_NW_C10.mgf ENSP00000224784 6.28 8 -3.3 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

20 090211_14_NW_S10.mgf ENSP00000224784 5.49 4 -4.7 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

30 090211_26_NW_S15.mgf ENSP00000224784 4.86 1 -3.4 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

33 090211_29_NW_C17.mgf ENSP00000224784 4.26 2 -2.3 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

34 090211_30_NW_S17.mgf ENSP00000224784 3.84 1 -1.2 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

38 090213_14_NW_S19.mgf ENSP00000224784 4.29 3 -17.7 5.2 42 Actin, aortic smooth muscle (Alpha-actin-2)(Cell growth-inhibiting gene 46 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P62736]

8 090213 10 NW S4.mgf ENSP00000225430 3.46 1 -14.2 12 23.3 60S ribosomal protein L19 [Source:UniProtKB/Swiss-Prot;Acc:P84098]
5 090213_06_NW_C3.mgf ENSP00000227378 3.98 2 -6.9 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
6 090213_07_NW_S3.mgf ENSP00000227378 3.24 1 -5.2 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
8 090213_10_NW_S4.mgf ENSP00000227378 4.3 3 -27 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
9 090213_11_NW_C5.mgf ENSP00000227378 5.92 5 -15.1 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
10 090213_12_NW_S5.mgf ENSP00000227378 4.72 7 -20.7 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
17 090211_11_NW_C9.mgf' ENSP00000227378 4.54 4 -10.2 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
20 090211_14_NW_S10.mgf ENSP00000227378 3.34 1 -4.5 5.4 70.9 Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8) [Source:UniProtKB/Swiss-

Prot;Acc:P11142]
9 090213 11 NW C5.mgf ENSP00000228140 3.62 1 -6.4 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

10 090213 12 NW S5.mgf ENSP00000228140 3.73 1 -5.1 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]
21 090211_15_NW_C11.mgf' ENSP00000228140 5.09 1 -4.2 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

24 090211_19_NW_S12.mgf ENSP00000228140 4.75 1 -3.9 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

36 090211_32_NW_S18.mgf ENSP00000228140 4.15 1 -2.5 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]
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37 090213 13 NW C19.mgf ENSP00000228140 4.09 2 -4 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]
38 090213_14_NW_S19.mgf ENSP00000228140 3.74 1 -3.6 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

39 090213_16_NW_C20.mgf ENSP00000228140 3.38 1 -4.1 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

40 090213_17_NW_S20.mgf ENSP00000228140 4.17 2 -12.4 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

41 090213_18_NW_C21.mgf ENSP00000228140 3.3 1 -1.2 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

42 090213_19_NW_S21.mgf ENSP00000228140 3.34 1 -3.8 11 17.2 40S ribosomal protein S13 [Source:UniProtKB/Swiss-Prot;Acc:P62277]

9 090213_11_NW_C5.mgf ENSP00000228251 3.5 1 -12.5 9.8 40.1 DNA-binding protein A (Cold shock domain-containing protein A)(Single-strand DNA-binding protein NF-
GMB) [Source:UniProtKB/Swiss-Prot;Acc:P16989]

40 090213_17_NW_S20.mgf ENSP00000229239 3.68 1 -3.8 8.6 36 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)(EC 1.2.1.12) [Source:UniProtKB/Swiss-
Prot;Acc:P04406]

41 090213_18_NW_C21.mgf ENSP00000229239 3.61 1 -1.7 8.6 36 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)(EC 1.2.1.12) [Source:UniProtKB/Swiss-
Prot;Acc:P04406]

9 090213_11_NW_C5.mgf ENSP00000236051 4.46 1 -1.4 10 34.8 Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2)(Nucleolar protein p40) 
[Source:UniProtKB/Swiss-Prot;Acc:Q99848]

5 090213 06 NW C3.mgf ENSP00000240851 5.43 12 -47.8 4.9 43.4 Protein TFG (TRK-fused gene protein) [Source:UniProtKB/Swiss-Prot;Acc:Q92734]
6 090213 07 NW S3.mgf ENSP00000240851 4.4 5 -18.3 4.9 43.4 Protein TFG (TRK-fused gene protein) [Source:UniProtKB/Swiss-Prot;Acc:Q92734]
8 090213 10 NW S4.mgf ENSP00000240851 4.16 2 -3.1 4.9 43.4 Protein TFG (TRK-fused gene protein) [Source:UniProtKB/Swiss-Prot;Acc:Q92734]
5 090213 06 NW C3.mgf ENSP00000242284 5.17 9 -24.7 4.5 23.6 Clathrin light chain A (Lca) [Source:UniProtKB/Swiss-Prot;Acc:P09496]
6 090213 07 NW S3.mgf ENSP00000242284 4.92 5 -17.2 4.5 23.6 Clathrin light chain A (Lca) [Source:UniProtKB/Swiss-Prot;Acc:P09496]
8 090213 10 NW S4.mgf ENSP00000242284 4.61 1 -1.3 4.5 23.6 Clathrin light chain A (Lca) [Source:UniProtKB/Swiss-Prot;Acc:P09496]

14 090211 07 NW S7.mgf ENSP00000242284 4.12 1 -2.3 4.5 23.6 Clathrin light chain A (Lca) [Source:UniProtKB/Swiss-Prot;Acc:P09496]
10 090213_12_NW_S5.mgf ENSP00000244020 3.66 1 -3.2 11 39.6 Splicing factor, arginine/serine-rich 6 (Pre-mRNA-splicing factor SRP55) [Source:UniProtKB/Swiss-

Prot;Acc:Q13247]
21 090211_15_NW_C11.mgf' ENSP00000244534 4.74 2 -10.5 11 22.3 Histone H1.3 (Histone H1c) [Source:UniProtKB/Swiss-Prot;Acc:P16402]

9 090213 11 NW C5.mgf ENSP00000244573 5.58 2 -7.8 11 21.8 Histone H1.1 [Source:UniProtKB/Swiss-Prot;Acc:Q02539]
10 090213 12 NW S5.mgf ENSP00000244573 4.07 1 -6.8 11 21.8 Histone H1.1 [Source:UniProtKB/Swiss-Prot;Acc:Q02539]
14 090211 07 NW S7.mgf ENSP00000246911 4.17 1 -2 5.8 31.8 Interferon-induced 35 kDa protein (IFP 35) [Source:UniProtKB/Swiss-Prot;Acc:P80217]

8 090213_10_NW_S4.mgf ENSP00000247207 4.24 3 -16.3 5.6 70 Heat shock-related 70 kDa protein 2 (Heat shock 70 kDa protein 2) [Source:UniProtKB/Swiss-
Prot;Acc:P54652]

19 090211_13_NW_C10.mgf ENSP00000248071 4.31 1 -1.6 9.1 37.4 Krueppel-like factor 2 (Lung krueppel-like factor) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y5W3]

9 090213_11_NW_C5.mgf ENSP00000248553 4.98 2 -10.2 6 22.8 Heat shock protein beta-1 (HspB1)(Heat shock 27 kDa protein)(HSP 27)(Stress-responsive protein 
27)(SRP27)(Estrogen-regulated 24 kDa protein)(28 kDa heat shock protein) [Source:UniProtKB/Swiss-
Prot;Acc:P04792]

10 090213_12_NW_S5.mgf ENSP00000248553 4.32 2 -6.9 6 22.8 Heat shock protein beta-1 (HspB1)(Heat shock 27 kDa protein)(HSP 27)(Stress-responsive protein 
27)(SRP27)(Estrogen-regulated 24 kDa protein)(28 kDa heat shock protein) [Source:UniProtKB/Swiss-
Prot;Acc:P04792]

19 090211_13_NW_C10.mgf ENSP00000248553 4.71 1 -4.1 6 22.8 Heat shock protein beta-1 (HspB1)(Heat shock 27 kDa protein)(HSP 27)(Stress-responsive protein 
27)(SRP27)(Estrogen-regulated 24 kDa protein)(28 kDa heat shock protein) [Source:UniProtKB/Swiss-
Prot;Acc:P04792]

20 090211_14_NW_S10.mgf ENSP00000248553 4.31 1 -3.2 6 22.8 Heat shock protein beta-1 (HspB1)(Heat shock 27 kDa protein)(HSP 27)(Stress-responsive protein 
27)(SRP27)(Estrogen-regulated 24 kDa protein)(28 kDa heat shock protein) [Source:UniProtKB/Swiss-
Prot;Acc:P04792]

10 090213_12_NW_S5.mgf ENSP00000250113 3.67 1 -3.8 6.2 77 Fragile X mental retardation syndrome-related protein 2 [Source:UniProtKB/Swiss-Prot;Acc:P51116]

37 090213 13 NW C19.mgf ENSP00000251453 3.97 2 -10 10 16.4 40S ribosomal protein S16 [Source:UniProtKB/Swiss-Prot;Acc:P62249]
38 090213_14_NW_S19.mgf ENSP00000251453 3.97 1 -1.1 10 16.4 40S ribosomal protein S16 [Source:UniProtKB/Swiss-Prot;Acc:P62249]

38 090213_14_NW_S19.mgf ENSP00000251595 3.34 1 -1.3 8.7 15.2 Hemoglobin subunit alpha (Hemoglobin alpha chain)(Alpha-globin) [Source:UniProtKB/Swiss-
Prot;Acc:P69905]

37 090213 13 NW C19.mgf ENSP00000252543 3.57 1 -2.7 12 12.2 60S ribosomal protein L36 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3U8]
38 090213_14_NW_S19.mgf ENSP00000252543 3.91 1 -3.7 12 12.2 60S ribosomal protein L36 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3U8]

39 090213_16_NW_C20.mgf ENSP00000252543 3.28 1 -3.3 12 12.2 60S ribosomal protein L36 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3U8]

40 090213_17_NW_S20.mgf ENSP00000252543 4.01 2 -3.6 12 12.2 60S ribosomal protein L36 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3U8]

41 090213_18_NW_C21.mgf ENSP00000252543 3.78 1 -2.5 12 12.2 60S ribosomal protein L36 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3U8]

42 090213_19_NW_S21.mgf ENSP00000252543 3.68 2 -4 12 12.2 60S ribosomal protein L36 [Source:UniProtKB/Swiss-Prot;Acc:Q9Y3U8]

9 090213 11 NW C5.mgf ENSP00000253788 4.01 1 -3.8 11 15.8 60S ribosomal protein L27 [Source:UniProtKB/Swiss-Prot;Acc:P61353]
6 090213_07_NW_S3.mgf ENSP00000254108 4.21 4 -15.6 9.4 53.4 RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637]
8 090213_10_NW_S4.mgf ENSP00000254108 4.41 3 -5.3 9.4 53.4 RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637]
9 090213_11_NW_C5.mgf ENSP00000254108 5.26 3 -18.9 9.4 53.4 RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637]
10 090213_12_NW_S5.mgf ENSP00000254108 4.48 1 -8.1 9.4 53.4 RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637]
19 090211_13_NW_C10.mgf ENSP00000254108 6.11 4 -5.5 9.4 53.4 RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637]
20 090211_14_NW_S10.mgf ENSP00000254108 5.53 2 -8.6 9.4 53.4 RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637]
5 090213_06_NW_C3.mgf ENSP00000254436 5.79 4 -2.8 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 

autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

6 090213_07_NW_S3.mgf ENSP00000254436 5.07 2 -2 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 
autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

8 090213_10_NW_S4.mgf ENSP00000254436 5.01 7 -25.9 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 
autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

21 090211_15_NW_C11.mgf' ENSP00000254436 4.73 1 -1.9 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 
autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

35 090211_32_NW_C18.mgf ENSP00000254436 4.15 1 -1.6 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 
autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

36 090211_32_NW_S18.mgf ENSP00000254436 3.87 1 -1.4 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 
autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

38 090213_14_NW_S19.mgf ENSP00000254436 3.27 1 -2.4 6.1 54.2 52 kDa Ro protein (Sjoegren syndrome type A antigen)(SS-A)(Ro(SS-A))(52 kDa ribonucleoprotein 
autoantigen Ro/SS-A)(Tripartite motif-containing protein 21)(RING finger protein 81) 
[Source:UniProtKB/Swiss-Prot;Acc:P19474]

15 090211 08 NW C8.mgf ENSP00000254653 4.9 1 -1.4 9.4 78.9 IQ and AAA domain-containing protein [Source:UniProtKB/Swiss-Prot;Acc:Q86XH1]
40 090213_17_NW_S20.mgf ENSP00000255136 3.81 2 -9.6 9.1 68.3 Polyadenylate-binding protein 1-like [Source:UniProtKB/Swiss-Prot;Acc:Q4VXU2]

8 090213_10_NW_S4.mgf ENSP00000255381 3.77 1 -1.8 5.7 222.9 Myosin-4 (Myosin heavy chain 4)(Myosin heavy chain 2b)(MyHC-2b)(Myosin heavy chain IIb)(MyHC-
IIb)(Myosin heavy chain, skeletal muscle, fetal) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y623]

9 090213 11 NW C5.mgf ENSP00000256397 5.25 1 -1.3 6 87
9 090213_11_NW_C5.mgf ENSP00000257192 4.63 2 -10.5 4.9 113.7 Desmoglein-1 Precursor (Desmosomal glycoprotein 1)(DG1)(DGI)(Pemphigus foliaceus antigen) 

[Source:UniProtKB/Swiss-Prot;Acc:Q02413]
10 090213_12_NW_S5.mgf ENSP00000257192 3.49 1 -4.5 4.9 113.7 Desmoglein-1 Precursor (Desmosomal glycoprotein 1)(DG1)(DGI)(Pemphigus foliaceus antigen) 

[Source:UniProtKB/Swiss-Prot;Acc:Q02413]
8 090213_10_NW_S4.mgf ENSP00000257197 4.18 1 -4.4 5.3 93.8 Desmocollin-1 Precursor (Desmosomal glycoprotein 2/3)(DG2/DG3) [Source:UniProtKB/Swiss-

Prot;Acc:Q08554]
16 '090211_09_NW_S8.mgf ENSP00000258383 3.53 1 -1.5 8.6 37.5 39S ribosomal protein L44, mitochondrial Precursor (L44mt)(EC 3.1.26.-)(MRP-L44) 

[Source:UniProtKB/Swiss-Prot;Acc:Q9H9J2]
15 090211 08 NW C8.mgf ENSP00000258599 3.77 1 -1.1 6.7 43.8
15 090211_08_NW_C8.mgf ENSP00000258886 4.97 2 -7.6 6.6 105 Iron-responsive element-binding protein 2 (IRE-BP 2)(Iron regulatory protein 2)(IRP2) 

[Source:UniProtKB/Swiss-Prot;Acc:P48200]
35 090211_32_NW_C18.mgf ENSP00000259469 4.09 1 -3.7 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]

37 090213 13 NW C19.mgf ENSP00000259469 3.93 1 -7.8 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]
38 090213_14_NW_S19.mgf ENSP00000259469 3.59 1 -3.5 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]

40 090213_17_NW_S20.mgf ENSP00000259469 3.31 1 -2.9 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]

41 090213_18_NW_C21.mgf ENSP00000259469 3.97 2 -4.3 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]

42 090213_19_NW_S21.mgf ENSP00000259469 3.27 1 -3.3 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]

43 090213_20_NW_C22.mgf ENSP00000259469 3.22 1 -5 11 14.5 60S ribosomal protein L35 [Source:UniProtKB/Swiss-Prot;Acc:P42766]

35 090211_32_NW_C18.mgf ENSP00000259791 4.67 3 -16.4 11 14.1 Histone H2A type 1-B/E (H2A/m)(H2A.2)(H2A/a) [Source:UniProtKB/Swiss-Prot;Acc:P04908]

21 090211_15_NW_C11.mgf' ENSP00000259925 3.59 1 -1.6 4.8 49.6 Tubulin beta chain (Tubulin beta-5 chain) [Source:UniProtKB/Swiss-Prot;Acc:P07437]

38 090213_14_NW_S19.mgf ENSP00000259925 3.2 1 -2.7 4.8 49.6 Tubulin beta chain (Tubulin beta-5 chain) [Source:UniProtKB/Swiss-Prot;Acc:P07437]

39 090213_16_NW_C20.mgf ENSP00000259925 3.24 1 -6.7 4.8 49.6 Tubulin beta chain (Tubulin beta-5 chain) [Source:UniProtKB/Swiss-Prot;Acc:P07437]

40 090213_17_NW_S20.mgf ENSP00000259925 4.66 6 -15.6 4.8 49.6 Tubulin beta chain (Tubulin beta-5 chain) [Source:UniProtKB/Swiss-Prot;Acc:P07437]

5 090213 06 NW C3.mgf ENSP00000260968 4.62 5 -13.7 10 17.4 40S RIBOSOMAL S15
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19 090211_13_NW_C10.mgf ENSP00000261182 3.82 1 -6.3 4.4 45.3 Nucleosome assembly protein 1-like 1 (NAP-1-related protein)(hNRP) [Source:UniProtKB/Swiss-
Prot;Acc:P55209]

37 090213_13_NW_C19.mgf ENSP00000261210 3.72 1 -2.7 9.4 50.6 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

38 090213_14_NW_S19.mgf ENSP00000261210 3.82 1 -1.1 9.4 50.6 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

16 '090211_09_NW_S8.mgf ENSP00000261712 4.45 1 -1.1 6.1 47.4 26S proteasome non-ATPase regulatory subunit 11 (26S proteasome regulatory subunit S9)(26S 
proteasome regulatory subunit p44.5) [Source:UniProtKB/Swiss-Prot;Acc:O00231]

11 090211_04_NW_C6.mgf' ENSP00000261868 4.8 2 -1.9 4.7 29 Eukaryotic translation initiation factor 3 subunit J (eIF3j)(Eukaryotic translation initiation factor 3 subunit 
1)(eIF-3-alpha)(eIF3 p35) [Source:UniProtKB/Swiss-Prot;Acc:O75822]

31 090211_27_NW_C16.mgf ENSP00000262584 4.42 1 -1.9 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]

32 090211_28_NW_S16.mgf ENSP00000262584 4.51 1 -2.6 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]

33 090211_29_NW_C17.mgf ENSP00000262584 4.71 2 -2.7 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]

34 090211_30_NW_S17.mgf ENSP00000262584 5.33 4 -5.1 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]

37 090213 13 NW C19.mgf ENSP00000262584 3.58 1 -4.3 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]
42 090213_19_NW_S21.mgf ENSP00000262584 3.64 1 -3.4 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]

48 090213_26_NW_S24.mgf ENSP00000262584 3.68 1 -3.6 11 28 60S ribosomal protein L8 [Source:UniProtKB/Swiss-Prot;Acc:P62917]

20 090211_14_NW_S10.mgf ENSP00000262746 4.33 1 -1.2 8.3 22.1 Peroxiredoxin-1 (EC 1.11.1.15)(Thioredoxin peroxidase 2)(Thioredoxin-dependent peroxide reductase 
2)(Proliferation-associated gene protein)(PAG)(Natural killer cell-enhancing factor A)(NKEF-A) 
[Source:UniProtKB/Swiss-Prot;Acc:Q06830]

23 090211_18_NW_C12.mgf ENSP00000263102 4.89 1 -1.1 6.9 53.3 Coiled-coil domain-containing protein 6 (Protein H4)(Papillary thyroid carcinoma-encoded protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q16204]

9 090213 11 NW C5.mgf ENSP00000263200 3.7 1 -3.2 5.6 186.9 Clathrin heavy chain 2 (CLH-22) [Source:UniProtKB/Swiss-Prot;Acc:P53675]
20 090211_14_NW_S10.mgf ENSP00000263200 3.51 1 -4.1 5.6 186.9 Clathrin heavy chain 2 (CLH-22) [Source:UniProtKB/Swiss-Prot;Acc:P53675]

38 090213_14_NW_S19.mgf ENSP00000264051 3.84 1 -1.1 5.4 82.4 Ephexin-1 (Eph-interacting exchange protein)(Neuronal guanine nucleotide exchange factor) 
[Source:UniProtKB/Swiss-Prot;Acc:Q8N5V2]

9 090213 11 NW C5.mgf ENSP00000264073 3.78 1 -6.8 9.2 36.1 ELAV-like protein 1 (Hu-antigen R)(HuR) [Source:UniProtKB/Swiss-Prot;Acc:Q15717]
10 090213 12 NW S5.mgf ENSP00000264073 3.34 1 -5.3 9.2 36.1 ELAV-like protein 1 (Hu-antigen R)(HuR) [Source:UniProtKB/Swiss-Prot;Acc:Q15717]

5 090213_06_NW_C3.mgf ENSP00000264198 3.75 1 -1.5 8.5 39.8 Mitochondrial ubiquitin ligase activator of NFKB 1 (EC 6.3.2.-)(E3 ubiquitin-protein ligase MUL1)(NF-
kappa-B-activating protein 266)(Mitochondrial-anchored protein ligase)(RING finger protein 218) 
[Source:UniProtKB/Swiss-Prot;Acc:Q969V5]

6 090213 07 NW S3.mgf ENSP00000264258 4.12 2 -3.5 11 14.5 60S ribosomal protein L31 [Source:UniProtKB/Swiss-Prot;Acc:P62899]
20 090211_14_NW_S10.mgf ENSP00000264258 4.2 1 -1.3 11 14.5 60S ribosomal protein L31 [Source:UniProtKB/Swiss-Prot;Acc:P62899]

21 090211_15_NW_C11.mgf' ENSP00000264258 3.75 1 -1.3 11 14.5 60S ribosomal protein L31 [Source:UniProtKB/Swiss-Prot;Acc:P62899]

13 090211_06_NW_C7.mgf ENSP00000264930 3.52 1 -1.3 6.2 120.2 Solute carrier family 12 member 7 (Electroneutral potassium-chloride cotransporter 4)(K-Cl cotransporter 
4) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y666]

17 090211_11_NW_C9.mgf' ENSP00000264933 3.5 1 -2.1 5.2 21.9 Programmed cell death protein 6 (Apoptosis-linked gene 2 protein)(Probable calcium-binding protein ALG-
2) [Source:UniProtKB/Swiss-Prot;Acc:O75340]

19 090211_13_NW_C10.mgf ENSP00000265100 5.83 2 -1.2 11 17.2 60S ribosomal protein L26-like 1 [Source:UniProtKB/Swiss-Prot;Acc:Q9UNX3]

20 090211_14_NW_S10.mgf ENSP00000265100 5.41 2 -1.7 11 17.2 60S ribosomal protein L26-like 1 [Source:UniProtKB/Swiss-Prot;Acc:Q9UNX3]

19 090211_13_NW_C10.mgf ENSP00000265264 4.54 3 -7.3 11 17.8 60S ribosomal protein L24 (Ribosomal protein L30) [Source:UniProtKB/Swiss-Prot;Acc:P83731]

12 090211_05_NW_S6.mgf ENSP00000266679 4.98 1 -1.6 7.3 63.4 Cleavage and polyadenylation specificity factor subunit 6 (Cleavage and polyadenylation specificity 
factor 68 kDa subunit)(CPSF 68 kDa subunit)(Pre-mRNA cleavage factor Im 68 kDa subunit)(Protein 
HPBRII-4/7) [Source:UniProtKB/Swiss-Prot;Acc:Q16630]

9 090213_11_NW_C5.mgf ENSP00000266732 3.25 1 -4.9 7.6 75.4 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

10 090213_12_NW_S5.mgf ENSP00000266732 3.61 1 -2.6 7.6 75.4 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

5 090213 06 NW C3.mgf ENSP00000269122 5.03 14 -61.8 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
6 090213 07 NW S3.mgf ENSP00000269122 3.56 2 -18 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
8 090213 10 NW S4.mgf ENSP00000269122 4.95 6 -37.1 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
9 090213 11 NW C5.mgf ENSP00000269122 6.38 10 -25.3 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]

10 090213 12 NW S5.mgf ENSP00000269122 4.93 4 -13.4 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
15 090211 08 NW C8.mgf ENSP00000269122 5.91 2 -1.8 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
17 090211 11 NW C9.mgf' ENSP00000269122 4.95 3 -19.5 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
19 090211_13_NW_C10.mgf ENSP00000269122 4.85 5 -18.6 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]

21 090211_15_NW_C11.mgf' ENSP00000269122 4.6 2 -13.5 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]

33 090211_29_NW_C17.mgf ENSP00000269122 4.4 1 -1.1 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]

35 090211_32_NW_C18.mgf ENSP00000269122 4.65 3 -14.1 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]

37 090213 13 NW C19.mgf ENSP00000269122 3.69 2 -9.9 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]
38 090213_14_NW_S19.mgf ENSP00000269122 4.02 1 -1.2 5.5 191.5 Clathrin heavy chain 1 (CLH-17) [Source:UniProtKB/Swiss-Prot;Acc:Q00610]

9 090213_11_NW_C5.mgf ENSP00000270460 4.37 1 -1.8 4.7 60.3 Epsin-1 (EPS-15-interacting protein 1)(EH domain-binding mitotic phosphoprotein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q9Y6I3]

5 090213 06 NW C3.mgf ENSP00000270625 5.14 2 -2.1 10 18.4 40S ribosomal protein S11 [Source:UniProtKB/Swiss-Prot;Acc:P62280]
6 090213 07 NW S3.mgf ENSP00000270625 3.89 1 -2.5 10 18.4 40S ribosomal protein S11 [Source:UniProtKB/Swiss-Prot;Acc:P62280]
8 090213 10 NW S4.mgf ENSP00000270625 4.35 1 -2.9 10 18.4 40S ribosomal protein S11 [Source:UniProtKB/Swiss-Prot;Acc:P62280]

41 090213_18_NW_C21.mgf ENSP00000270625 3.42 1 -1.2 10 18.4 40S ribosomal protein S11 [Source:UniProtKB/Swiss-Prot;Acc:P62280]

42 090213_19_NW_S21.mgf ENSP00000270625 3.38 1 -1.2 10 18.4 40S ribosomal protein S11 [Source:UniProtKB/Swiss-Prot;Acc:P62280]

48 090213_26_NW_S24.mgf ENSP00000270625 3.5 1 -2.9 10 18.4 40S ribosomal protein S11 [Source:UniProtKB/Swiss-Prot;Acc:P62280]

5 090213 06 NW C3.mgf ENSP00000272298 5.89 29 -36.5 4.1 16.8 Calmodulin (CaM) [Source:UniProtKB/Swiss-Prot;Acc:P62158]
6 090213 07 NW S3.mgf ENSP00000272298 5.26 11 -34.8 4.1 16.8 Calmodulin (CaM) [Source:UniProtKB/Swiss-Prot;Acc:P62158]

13 090211_06_NW_C7.mgf ENSP00000272972 4.98 2 -1.4 6.3 106.7 Ankyrin repeat and MYND domain-containing protein 1 (Testis-specific ankyrin-like protein 1)(Zinc finger 
MYND domain-containing protein 13) [Source:UniProtKB/Swiss-Prot;Acc:Q9P2S6]

18 090211_12_NW_S9.mgf ENSP00000273038 3.25 1 -1.5 8.5 30.9 Transcription cofactor vestigial-like protein 4 (Vgl-4) [Source:UniProtKB/Swiss-Prot;Acc:Q14135]

6 090213_07_NW_S3.mgf ENSP00000274031 5.22 3 -5.7 4.5 40.7 Histone-lysine N-methyltransferase SETD7 (EC 2.1.1.43)(Histone H3-K4 methyltransferase 
SETD7)(H3-K4-HMTase SETD7)(SET domain-containing protein 7)(SET7/9)(Lysine N-
methyltransferase 7) [Source:UniProtKB/Swiss-Prot;Acc:Q8WTS6]

8 090213_10_NW_S4.mgf ENSP00000274031 5.71 13 -21.5 4.5 40.7 Histone-lysine N-methyltransferase SETD7 (EC 2.1.1.43)(Histone H3-K4 methyltransferase 
SETD7)(H3-K4-HMTase SETD7)(SET domain-containing protein 7)(SET7/9)(Lysine N-
methyltransferase 7) [Source:UniProtKB/Swiss-Prot;Acc:Q8WTS6]

10 090213_12_NW_S5.mgf ENSP00000274031 5.7 8 -44.2 4.5 40.7 Histone-lysine N-methyltransferase SETD7 (EC 2.1.1.43)(Histone H3-K4 methyltransferase 
SETD7)(H3-K4-HMTase SETD7)(SET domain-containing protein 7)(SET7/9)(Lysine N-
methyltransferase 7) [Source:UniProtKB/Swiss-Prot;Acc:Q8WTS6]

20 090211_14_NW_S10.mgf ENSP00000274031 4.85 1 -1.5 4.5 40.7 Histone-lysine N-methyltransferase SETD7 (EC 2.1.1.43)(Histone H3-K4 methyltransferase 
SETD7)(H3-K4-HMTase SETD7)(SET domain-containing protein 7)(SET7/9)(Lysine N-
methyltransferase 7) [Source:UniProtKB/Swiss-Prot;Acc:Q8WTS6]

15 090211_08_NW_C8.mgf ENSP00000274764 6.13 3 -3.6 10 14.2 Histone H2B type 1-A (Histone H2B, testis)(Testis-specific histone H2B) [Source:UniProtKB/Swiss-
Prot;Acc:Q96A08]

17 090211_11_NW_C9.mgf' ENSP00000274764 5.05 1 -2.5 10 14.2 Histone H2B type 1-A (Histone H2B, testis)(Testis-specific histone H2B) [Source:UniProtKB/Swiss-
Prot;Acc:Q96A08]

18 090211_12_NW_S9.mgf ENSP00000274764 4.72 1 -1.8 10 14.2 Histone H2B type 1-A (Histone H2B, testis)(Testis-specific histone H2B) [Source:UniProtKB/Swiss-
Prot;Acc:Q96A08]

9 090213_11_NW_C5.mgf ENSP00000276079 3.38 1 -2 9 54.2 Non-POU domain-containing octamer-binding protein (NonO protein)(54 kDa nuclear RNA- and DNA-
binding protein)(p54(nrb))(p54nrb)(55 kDa nuclear protein)(NMT55)(DNA-binding p52/p100 complex, 52 
kDa subunit) [Source:UniProtKB/Swiss-Prot;Acc:Q15233]

10 090213_12_NW_S5.mgf ENSP00000276079 3.51 1 -7.1 9 54.2 Non-POU domain-containing octamer-binding protein (NonO protein)(54 kDa nuclear RNA- and DNA-
binding protein)(p54(nrb))(p54nrb)(55 kDa nuclear protein)(NMT55)(DNA-binding p52/p100 complex, 52 
kDa subunit) [Source:UniProtKB/Swiss-Prot;Acc:Q15233]

10 090213 12 NW S5.mgf ENSP00000277860 3.64 1 -4.6 9.5 13.4 SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2 SNRNP CORE D2 SM D2
5 090213 06 NW C3.mgf ENSP00000278572 4.8 8 -17.3 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]
6 090213 07 NW S3.mgf ENSP00000278572 5.08 5 -11.4 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

10 090213 12 NW S5.mgf ENSP00000278572 3.96 2 -1.8 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]
19 090211_13_NW_C10.mgf ENSP00000278572 4.02 2 -3.6 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

20 090211_14_NW_S10.mgf ENSP00000278572 4.07 1 -3.1 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

21 090211_15_NW_C11.mgf' ENSP00000278572 4.03 3 -5.1 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

23 090211_18_NW_C12.mgf ENSP00000278572 3.47 1 -5.2 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

31 090211_27_NW_C16.mgf ENSP00000278572 5.58 3 -4.8 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

32 090211_28_NW_S16.mgf ENSP00000278572 4.93 1 -4 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]
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http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000308.xml&uid=45556&homolog=45556&label=ENSP00000262584&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000314.xml&uid=45556&homolog=45556&label=ENSP00000262584&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=66575&homolog=66575&label=ENSP00000262746&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000238.xml&uid=3311&homolog=3311&label=ENSP00000263102&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=38693&homolog=38693&label=ENSP00000263200&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=77385&homolog=77385&label=ENSP00000263200&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000279.xml&uid=16985&homolog=16985&label=ENSP00000264051&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=17001&homolog=17001&label=ENSP00000264073&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=34001&homolog=34001&label=ENSP00000264073&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=63883&homolog=63883&label=ENSP00000264198&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=14687&homolog=14687&label=ENSP00000264258&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=14687&homolog=14687&label=ENSP00000264258&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=14687&homolog=14687&label=ENSP00000264258&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000224.xml&uid=14960&homolog=14960&label=ENSP00000264930&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=29863&homolog=29863&label=ENSP00000264933&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=32817&homolog=32817&label=ENSP00000265100&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=32817&homolog=32817&label=ENSP00000265100&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=50967&homolog=50967&label=ENSP00000265264&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000240.xml&uid=81103&homolog=81103&label=ENSP00000266679&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=40729&homolog=40729&label=ENSP00000266732&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=81457&homolog=81457&label=ENSP00000266732&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=42700&homolog=42700&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000227.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000251.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000253.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000270.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000279.xml&uid=85399&homolog=85399&label=ENSP00000269122&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=18693&homolog=18693&label=ENSP00000270460&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=36637&homolog=36637&label=ENSP00000270625&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=36637&homolog=36637&label=ENSP00000270625&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=36637&homolog=36637&label=ENSP00000270625&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000307.xml&uid=18319&homolog=18319&label=ENSP00000270625&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000308.xml&uid=18319&homolog=18319&label=ENSP00000270625&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000314.xml&uid=18319&homolog=18319&label=ENSP00000270625&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=13585&homolog=13585&label=ENSP00000272298&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=13585&homolog=13585&label=ENSP00000272298&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000224.xml&uid=8591&homolog=8591&label=ENSP00000272972&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000230.xml&uid=49347&homolog=49347&label=ENSP00000273038&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=29259&homolog=29259&label=ENSP00000274031&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=29259&homolog=29259&label=ENSP00000274031&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=29259&homolog=29259&label=ENSP00000274031&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=29259&homolog=29259&label=ENSP00000274031&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000227.xml&uid=20749&homolog=20749&label=ENSP00000274764&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=20749&homolog=20749&label=ENSP00000274764&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000230.xml&uid=20749&homolog=20749&label=ENSP00000274764&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=29373&homolog=29373&label=ENSP00000276079&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=58745&homolog=58745&label=ENSP00000276079&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=4451&homolog=4451&label=ENSP00000277860&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000238.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000249.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000250.xml&uid=95345&homolog=95345&label=ENSP00000278572&proex=-1�
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37 090213 13 NW C19.mgf ENSP00000278572 3.61 1 -1.8 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]
38 090213_14_NW_S19.mgf ENSP00000278572 3.33 1 -1.6 9.7 26.7 40S ribosomal protein S3 [Source:UniProtKB/Swiss-Prot;Acc:P23396]

35 090211_32_NW_C18.mgf ENSP00000279259 5.15 2 -2.8 10 14.4 Ubiquitin-like protein FUBI [Source:UniProtKB/Swiss-Prot;Acc:P35544]

36 090211_32_NW_S18.mgf ENSP00000279259 4.07 1 -2.2 10 14.4 Ubiquitin-like protein FUBI [Source:UniProtKB/Swiss-Prot;Acc:P35544]

37 090213 13 NW C19.mgf ENSP00000279259 4.2 2 -1.7 10 14.4 Ubiquitin-like protein FUBI [Source:UniProtKB/Swiss-Prot;Acc:P35544]
38 090213_14_NW_S19.mgf ENSP00000279259 4.45 3 -4.8 10 14.4 Ubiquitin-like protein FUBI [Source:UniProtKB/Swiss-Prot;Acc:P35544]

39 090213_16_NW_C20.mgf ENSP00000279259 3.73 1 -2.7 10 14.4 Ubiquitin-like protein FUBI [Source:UniProtKB/Swiss-Prot;Acc:P35544]

40 090213_17_NW_S20.mgf ENSP00000279259 4.56 3 -4.1 10 14.4 Ubiquitin-like protein FUBI [Source:UniProtKB/Swiss-Prot;Acc:P35544]

39 090213_16_NW_C20.mgf ENSP00000281456 3.52 1 -1.5 9.8 33 ADP/ATP translocase 1 (Adenine nucleotide translocator 1)(ANT 1)(ADP,ATP carrier protein 1)(Solute 
carrier family 25 member 4)(ADP,ATP carrier protein, heart/skeletal muscle isoform T1) 
[Source:UniProtKB/Swiss-Prot;Acc:P12235]

14 090211 07 NW S7.mgf ENSP00000281513 5.18 2 -8.7 5.6 268.4 Neuroblastoma-amplified gene protein [Source:UniProtKB/Swiss-Prot;Acc:A2RRP1]
5 090213_06_NW_C3.mgf ENSP00000282050 3.61 1 -7.6 9.2 59.7 ATP synthase subunit alpha, mitochondrial Precursor [Source:UniProtKB/Swiss-Prot;Acc:P25705]

8 090213_10_NW_S4.mgf ENSP00000282050 4.06 1 -7.3 9.2 59.7 ATP synthase subunit alpha, mitochondrial Precursor [Source:UniProtKB/Swiss-Prot;Acc:P25705]

8 090213_10_NW_S4.mgf ENSP00000283179 3.43 1 -1.9 5.6 88.9 Heterogeneous nuclear ribonucleoprotein U (hnRNP U)(Scaffold attachment factor A)(SAF-
A)(p120)(pp120) [Source:UniProtKB/Swiss-Prot;Acc:Q00839]

19 090211_13_NW_C10.mgf ENSP00000283179 3.79 1 -4.6 5.6 88.9 Heterogeneous nuclear ribonucleoprotein U (hnRNP U)(Scaffold attachment factor A)(SAF-
A)(p120)(pp120) [Source:UniProtKB/Swiss-Prot;Acc:Q00839]

10 090213 12 NW S5.mgf ENSP00000287038 3.37 1 -3.8 9.7 12.8 60S ribosomal protein L30 [Source:UniProtKB/Swiss-Prot;Acc:P62888]
40 090213_17_NW_S20.mgf ENSP00000287144 3.72 1 -6.1 11 18.5 60S RIBOSOMAL L29 

42 090213_19_NW_S21.mgf ENSP00000287144 4.16 1 -8 11 18.5 60S RIBOSOMAL L29 

43 090213_20_NW_C22.mgf ENSP00000287144 3.36 1 -5.5 11 18.5 60S RIBOSOMAL L29 

47 090213_25_NW_C24.mgf ENSP00000287144 3.4 1 -7.4 11 18.5 60S RIBOSOMAL L29 

48 090213_26_NW_S24.mgf ENSP00000287144 3.61 1 -8.4 11 18.5 60S RIBOSOMAL L29 

23 090211_18_NW_C12.mgf ENSP00000289032 4.43 3 -8.9 9.2 80.9 Zinc finger protein 782 [Source:UniProtKB/Swiss-Prot;Acc:Q6ZMW2]

24 090211_19_NW_S12.mgf ENSP00000289032 3.84 1 -1.1 9.2 80.9 Zinc finger protein 782 [Source:UniProtKB/Swiss-Prot;Acc:Q6ZMW2]

38 090213_14_NW_S19.mgf ENSP00000289734 3.98 1 -1.8 5.8 205.9 Ankyrin-1 (Erythrocyte ankyrin)(Ankyrin-R) [Source:UniProtKB/Swiss-Prot;Acc:P16157]

1 090213 02 NW C1.mgf ENSP00000289816 3.63 1 -3.5 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]
2 090213 03 NW S1.mgf ENSP00000289816 4.36 3 -2.2 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]
4 090213 05 NW S2.mgf ENSP00000289816 4.02 2 -3.3 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]
8 090213 10 NW S4.mgf ENSP00000289816 4.55 2 -1.3 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

12 090211 05 NW S6.mgf ENSP00000289816 4.11 2 -1.5 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]
21 090211_15_NW_C11.mgf' ENSP00000289816 3.74 1 -1.2 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

29 090211 25 NW C15.mgf ENSP00000289816 4.57 1 -1.2 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]
30 090211_26_NW_S15.mgf ENSP00000289816 3.58 1 -2.8 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

32 090211_28_NW_S16.mgf ENSP00000289816 4.49 2 -1.3 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

34 090211_30_NW_S17.mgf ENSP00000289816 4.45 3 -1.5 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

36 090211_32_NW_S18.mgf ENSP00000289816 4.46 2 -1.8 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

37 090213 13 NW C19.mgf ENSP00000289816 3.95 1 -1.8 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]
40 090213_17_NW_S20.mgf ENSP00000289816 3.36 1 -1.3 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

42 090213_19_NW_S21.mgf ENSP00000289816 3.23 1 -1.1 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

47 090213_25_NW_C24.mgf ENSP00000289816 4.2 1 -1.3 8.7 59.8 Zinc finger protein 276 (Zfp-276) [Source:UniProtKB/Swiss-Prot;Acc:Q8N554]

31 090211_27_NW_C16.mgf ENSP00000289989 3.3 1 -1.1 8.5 39.6 Uncharacterized protein C8orf58 [Source:UniProtKB/Swiss-Prot;Acc:Q8NAV2]

9 090213_11_NW_C5.mgf ENSP00000292309 4.95 1 -1.2 6 302.9 NBEL2_HUMAN Isoform 3 of Q6ZNJ1 - Homo sapiens (Human) 
[Source:UniprotKB/SpliceVariant;Acc:Q6ZNJ1-3]

5 090213_06_NW_C3.mgf ENSP00000293371 6.03 10 -19 6.1 11.3 Dermcidin Precursor (Preproteolysin) [Contains Survival-promoting peptide;DCD-1] 
[Source:UniProtKB/Swiss-Prot;Acc:P81605]

6 090213_07_NW_S3.mgf ENSP00000293371 4.98 5 -14.4 6.1 11.3 Dermcidin Precursor (Preproteolysin) [Contains Survival-promoting peptide;DCD-1] 
[Source:UniProtKB/Swiss-Prot;Acc:P81605]

8 090213_10_NW_S4.mgf ENSP00000293371 4.16 2 -14.6 6.1 11.3 Dermcidin Precursor (Preproteolysin) [Contains Survival-promoting peptide;DCD-1] 
[Source:UniProtKB/Swiss-Prot;Acc:P81605]

9 090213_11_NW_C5.mgf ENSP00000293618 4.8 2 -6.8 6.1 81.2 La-related protein 4 (La ribonucleoprotein domain family member 4) [Source:UniProtKB/Swiss-
Prot;Acc:Q71RC2]

9 090213 11 NW C5.mgf ENSP00000293760 4.21 1 -5.1 9.2 56.9 LEM domain-containing protein 2 (hLEM2) [Source:UniProtKB/Swiss-Prot;Acc:Q8NC56]
10 090213 12 NW S5.mgf ENSP00000293760 3.7 1 -5.8 9.2 56.9 LEM domain-containing protein 2 (hLEM2) [Source:UniProtKB/Swiss-Prot;Acc:Q8NC56]
18 090211_12_NW_S9.mgf ENSP00000295137 5.23 4 -9.4 5.3 41.8 Actin, gamma-enteric smooth muscle (Smooth muscle gamma-actin)(Gamma-2-actin)(Alpha-actin-3) 

[Source:UniProtKB/Swiss-Prot;Acc:P63267]
5 090213_06_NW_C3.mgf ENSP00000295470 4.02 2 -13.8 9.6 46.4 Heterogeneous nuclear ribonucleoprotein D-like (hnRPD-like protein)(hnHNRP-DL)(JKT41-binding 

protein)(AU-rich element RNA-binding factor)(Protein laAUF1) [Source:UniProtKB/Swiss-
Prot;Acc:O14979]

9 090213 11 NW C5.mgf ENSP00000295897 4.44 1 -1.8 5.9 69.3 Serum albumin Precursor [Source:UniProtKB/Swiss-Prot;Acc:P02768]
48 090213_26_NW_S24.mgf ENSP00000295897 3.77 2 -6.5 5.9 69.3 Serum albumin Precursor [Source:UniProtKB/Swiss-Prot;Acc:P02768]

48 090213_26_NW_S24.mgf ENSP00000296028 3.33 1 -1.5 9 13.9 Platelet basic protein Precursor (PBP)(C-X-C motif chemokine 7)(Small-inducible cytokine 
B7)(Leukocyte-derived growth factor)(LDGF)(Macrophage-derived growth factor)(MDGF) [Contains 
Connective tissue-activating peptide III(CTAP-III)(Low-affinity platelet factor IV)(LA-PF4);TC-
2;Connective tissue-activating peptide III(1-81)(CTAP-III(1-81));Beta-thromboglobulin(Beta-
TG);Neutrophil-activating peptide 2(74)(NAP-2(74));Neutrophil-activating peptide 2(73)(NAP-
2(73));Neutrophil-activating peptide 2(NAP-2);TC-1;Neutrophil-activating peptide 2(1-66)(NAP-2(1-
66));Neutrophil-activating peptide 2(1-63)(NAP-2(1-63))] [Source:UniProtKB/Swiss-Prot;Acc:P02775]

5 090213_06_NW_C3.mgf ENSP00000296930 5.2 7 -15.4 4.6 32.6 Nucleophosmin (NPM)(Nucleolar phosphoprotein B23)(Numatrin)(Nucleolar protein NO38) 
[Source:UniProtKB/Swiss-Prot;Acc:P06748]

6 090213_07_NW_S3.mgf ENSP00000296930 5.2 6 -24.9 4.6 32.6 Nucleophosmin (NPM)(Nucleolar phosphoprotein B23)(Numatrin)(Nucleolar protein NO38) 
[Source:UniProtKB/Swiss-Prot;Acc:P06748]

8 090213_10_NW_S4.mgf ENSP00000296930 5.65 3 -2.3 4.6 32.6 Nucleophosmin (NPM)(Nucleolar phosphoprotein B23)(Numatrin)(Nucleolar protein NO38) 
[Source:UniProtKB/Swiss-Prot;Acc:P06748]

38 090213_14_NW_S19.mgf ENSP00000297012 3.73 1 -1.7 11 14.2 Histone H2A type 1-A (H2A/r) [Source:UniProtKB/Swiss-Prot;Acc:Q96QV6]

39 090213_16_NW_C20.mgf ENSP00000297012 4.82 4 -6 11 14.2 Histone H2A type 1-A (H2A/r) [Source:UniProtKB/Swiss-Prot;Acc:Q96QV6]

40 090213_17_NW_S20.mgf ENSP00000297012 4.32 3 -7.3 11 14.2 Histone H2A type 1-A (H2A/r) [Source:UniProtKB/Swiss-Prot;Acc:Q96QV6]

41 090213_18_NW_C21.mgf ENSP00000297012 4.22 2 -1.3 11 14.2 Histone H2A type 1-A (H2A/r) [Source:UniProtKB/Swiss-Prot;Acc:Q96QV6]

47 090213_25_NW_C24.mgf ENSP00000297012 3.65 1 -2.1 11 14.2 Histone H2A type 1-A (H2A/r) [Source:UniProtKB/Swiss-Prot;Acc:Q96QV6]

48 090213_26_NW_S24.mgf ENSP00000297012 3.74 1 -1.6 11 14.2 Histone H2A type 1-A (H2A/r) [Source:UniProtKB/Swiss-Prot;Acc:Q96QV6]

5 090213_06_NW_C3.mgf ENSP00000297185 5.97 22 -37.3 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

6 090213_07_NW_S3.mgf ENSP00000297185 5.64 11 -26.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

8 090213_10_NW_S4.mgf ENSP00000297185 5.5 16 -74.3 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

9 090213_11_NW_C5.mgf ENSP00000297185 6.47 11 -44.8 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

10 090213_12_NW_S5.mgf ENSP00000297185 5.82 16 -28.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

15 090211_08_NW_C8.mgf ENSP00000297185 6.04 3 -23.5 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

16 '090211_09_NW_S8.mgf ENSP00000297185 4.27 2 -5.6 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

17 090211_11_NW_C9.mgf' ENSP00000297185 6.62 11 -41.5 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

18 090211_12_NW_S9.mgf ENSP00000297185 5.87 3 -14.7 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

19 090211_13_NW_C10.mgf ENSP00000297185 6.46 9 -43.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]
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20 090211_14_NW_S10.mgf ENSP00000297185 5.95 9 -35.7 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

21 090211_15_NW_C11.mgf' ENSP00000297185 5.93 6 -42.4 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

23 090211_18_NW_C12.mgf ENSP00000297185 5.02 3 -11.4 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

24 090211_19_NW_S12.mgf ENSP00000297185 5.18 5 -20.3 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

25 090211_20_NW_C13.mgf ENSP00000297185 4.76 2 -12.7 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

26 090211_21_NW_S13.mgf ENSP00000297185 4.06 1 -4.1 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

30 090211_26_NW_S15.mgf ENSP00000297185 3.39 1 -3.4 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

32 090211_28_NW_S16.mgf ENSP00000297185 4.08 3 -17.5 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

33 090211_29_NW_C17.mgf ENSP00000297185 3.75 1 -10.6 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

34 090211_30_NW_S17.mgf ENSP00000297185 3.55 1 -3.6 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

35 090211_32_NW_C18.mgf ENSP00000297185 4.78 3 -6.7 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

36 090211_32_NW_S18.mgf ENSP00000297185 4.54 3 -18.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

37 090213_13_NW_C19.mgf ENSP00000297185 4.5 7 -39.3 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

38 090213_14_NW_S19.mgf ENSP00000297185 4.75 9 -37.4 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

39 090213_16_NW_C20.mgf ENSP00000297185 4.15 4 -24.2 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

40 090213_17_NW_S20.mgf ENSP00000297185 4.58 7 -21.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

41 090213_18_NW_C21.mgf ENSP00000297185 3.9 2 -7.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

42 090213_19_NW_S21.mgf ENSP00000297185 4.38 4 -11.9 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

43 090213_20_NW_C22.mgf ENSP00000297185 3.4 1 -1.7 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

44 090213_21_NW_S22.mgf ENSP00000297185 3.58 1 -4.6 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

ENSP00000297185

45 090213_23_NW_C23.mgf ENSP00000297185 3.16 1 -3.6 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

ENSP00000297185

47 090213_25_NW_C24.mgf ENSP00000297185 4.08 2 -6.6 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

48 090213_26_NW_S24.mgf ENSP00000297185 4.42 4 -8.1 5.9 73.6 Stress-70 protein, mitochondrial Precursor (75 kDa glucose-regulated protein)(GRP 75)(Heat shock 70 
kDa protein 9)(Peptide-binding protein 74)(PBP74)(Mortalin)(MOT) [Source:UniProtKB/Swiss-
Prot;Acc:P38646]

9 090213_11_NW_C5.mgf ENSP00000299198 3.77 1 -1.7 5.3 42.6 Creatine kinase B-type (EC 2.7.3.2)(Creatine kinase B chain)(B-CK) [Source:UniProtKB/Swiss-
Prot;Acc:P12277]

10 090213_12_NW_S5.mgf ENSP00000299299 3.54 1 -4.3 6.3 12 Pterin-4-alpha-carbinolamine dehydratase (PHS)(EC 4.2.1.96)(4-alpha-hydroxy-tetrahydropterin 
dehydratase)(Phenylalanine hydroxylase-stimulating protein)(Pterin carbinolamine 
dehydratase)(PCD)(Dimerization cofactor of hepatocyte nuclear factor 1-alpha)(Dimerization cofactor of 
HNF1)(DCoH) [Source:UniProtKB/Swiss-Prot;Acc:P61457]

23 090211_18_NW_C12.mgf ENSP00000299977 4.28 1 -1.2 8.5 101 Schlafen family member 5 [Source:UniProtKB/Swiss-Prot;Acc:Q08AF3]

10 090213_12_NW_S5.mgf ENSP00000300026 3.74 1 -2.6 9.4 23.7 Peptidyl-prolyl cis-trans isomerase B Precursor (PPIase)(Rotamase)(EC 5.2.1.8)(Cyclophilin B)(S-
cyclophilin)(SCYLP)(CYP-S1) [Source:UniProtKB/Swiss-Prot;Acc:P23284]

5 090213_06_NW_C3.mgf ENSP00000300291 3.42 1 -8.5 8.9 26.2 Cleavage and polyadenylation specificity factor subunit 5 (Cleavage and polyadenylation specificity 
factor 25 kDa subunit)(CPSF 25 kDa subunit)(Pre-mRNA cleavage factor Im 25 kDa 
subunit)(Nucleoside diphosphate-linked moiety X motif 21)(Nudix motif 21) [Source:UniProtKB/Swiss-
Prot;Acc:O43809]

9 090213_11_NW_C5.mgf ENSP00000301740 3.51 1 -5.3 12 299.4 Serine/arginine repetitive matrix protein 2 (Serine/arginine-rich splicing factor-related nuclear matrix 
protein of 300 kDa)(Ser/Arg-related nuclear matrix protein)(SR-related nuclear matrix protein of 300 
kDa)(Splicing coactivator subunit SRm300)(300 kDa nuclear matrix antigen) [Source:UniProtKB/Swiss-
Prot;Acc:Q9UQ35]

10 090213_12_NW_S5.mgf ENSP00000301740 3.53 1 -6.4 12 299.4 Serine/arginine repetitive matrix protein 2 (Serine/arginine-rich splicing factor-related nuclear matrix 
protein of 300 kDa)(Ser/Arg-related nuclear matrix protein)(SR-related nuclear matrix protein of 300 
kDa)(Splicing coactivator subunit SRm300)(300 kDa nuclear matrix antigen) [Source:UniProtKB/Swiss-
Prot;Acc:Q9UQ35]

10 090213_12_NW_S5.mgf ENSP00000302886 4.29 2 -7 6.1 43.8 Proliferation-associated protein 2G4 (Cell cycle protein p38-2G4 homolog)(hG4-1)(ErbB3-binding protein 
1) [Source:UniProtKB/Swiss-Prot;Acc:Q9UQ80]

8 090213 10 NW S4.mgf ENSP00000302896 4.16 1 -3 11 22.6 40S ribosomal protein S9 [Source:UniProtKB/Swiss-Prot;Acc:P46781]
21 090211_15_NW_C11.mgf' ENSP00000302896 4.09 2 -9.1 11 22.6 40S ribosomal protein S9 [Source:UniProtKB/Swiss-Prot;Acc:P46781]

35 090211_32_NW_C18.mgf ENSP00000306099 3.5 1 -6.4 8.5 55.9 Fibrinogen beta chain Precursor [Contains Fibrinopeptide B] [Source:UniProtKB/Swiss-
Prot;Acc:P02675]

26 090211_21_NW_S13.mgf ENSP00000306124 3.48 1 -1.1 6.7 83.6 Protein kinase C epsilon type (EC 2.7.11.13)(nPKC-epsilon) [Source:UniProtKB/Swiss-
Prot;Acc:Q02156]

9 090213_11_NW_C5.mgf ENSP00000306330 3.44 1 -1.5 4.8 28.3 14-3-3 protein gamma (Protein kinase C inhibitor protein 1)(KCIP-1) [Source:UniProtKB/Swiss-
Prot;Acc:P61981]

5 090213 06 NW C3.mgf ENSP00000306469 6.09 15 -22.4 5.4 42 Beta-actin-like protein 2 (Kappa-actin) [Source:UniProtKB/Swiss-Prot;Acc:Q562R1]
6 090213 07 NW S3.mgf ENSP00000306469 5.04 6 -18 5.4 42 Beta-actin-like protein 2 (Kappa-actin) [Source:UniProtKB/Swiss-Prot;Acc:Q562R1]

11 090211 04 NW C6.mgf' ENSP00000306469 6.07 5 -12.1 5.4 42 Beta-actin-like protein 2 (Kappa-actin) [Source:UniProtKB/Swiss-Prot;Acc:Q562R1]
9 090213_11_NW_C5.mgf ENSP00000307633 3.26 1 -1.3 6.3 59.9 Fragile X mental retardation syndrome-related protein 1 (hFXR1p) [Source:UniProtKB/Swiss-

Prot;Acc:P51114]
16 '090211_09_NW_S8.mgf ENSP00000307634 5.22 1 -1.3 8.2 94.4 Centaurin-gamma-2 (ARF-GAP with GTP-binding protein-like, ankyrin repeat and pleckstrin homology 

domains 1)(AGAP-1)(GTP-binding and GTPase-activating protein 1)(GGAP1) [Source:UniProtKB/Swiss-
Prot;Acc:Q9UPQ3]

40 090213_17_NW_S20.mgf ENSP00000307699 4.67 1 -1.1 6.3 40.7 Putative homeodomain transcription factor 2 [Source:UniProtKB/Swiss-Prot;Acc:Q8N3S3]

47 090213_25_NW_C24.mgf ENSP00000307786 5.02 6 -14.7 9.6 11.7 Cytochrome c [Source:UniProtKB/Swiss-Prot;Acc:P99999]

48 090213_26_NW_S24.mgf ENSP00000307786 5.38 6 -10.9 9.6 11.7 Cytochrome c [Source:UniProtKB/Swiss-Prot;Acc:P99999]

9 090213_11_NW_C5.mgf ENSP00000307889 5.26 2 -1.9 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-
Prot;Acc:P26373]

10 090213 12 NW S5.mgf ENSP00000307889 4.06 1 -2 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-
19 090211_13_NW_C10.mgf ENSP00000307889 4.12 1 -1.1 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
35 090211_32_NW_C18.mgf ENSP00000307889 4.5 2 -7.3 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
36 090211_32_NW_S18.mgf ENSP00000307889 3.9 1 -4.9 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
37 090213_13_NW_C19.mgf ENSP00000307889 4.62 7 -9.9 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
38 090213_14_NW_S19.mgf ENSP00000307889 3.9 3 -4.5 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
39 090213_16_NW_C20.mgf ENSP00000307889 4.16 3 -4 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
40 090213_17_NW_S20.mgf ENSP00000307889 4.58 6 -9.2 12 24.2 60S ribosomal protein L13 (Breast basic conserved protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26373]
9 090213_11_NW_C5.mgf ENSP00000308753 3.42 1 -2.3 5.1 39.6 Tropomodulin-3 (Ubiquitous tropomodulin)(U-Tmod) [Source:UniProtKB/Swiss-Prot;Acc:Q9NYL9]

6 090213_07_NW_S3.mgf ENSP00000309323 3.24 1 -4.9 6 37.2 EUKARYOTIC TRANSLATION INITIATION FACTOR 2 SUBUNIT 2 EUKARYOTIC TRANSLATION 
INITIATION FACTOR 2 SUBUNIT BETA EIF 2 BETA

5 090213 06 NW C3.mgf ENSP00000309415 3.53 1 -1.1 4.6 25.2 Clathrin light chain B (Lcb) [Source:UniProtKB/Swiss-Prot;Acc:P09497]
6 090213 07 NW S3.mgf ENSP00000309415 3.98 1 -3.1 4.6 25.2 Clathrin light chain B (Lcb) [Source:UniProtKB/Swiss-Prot;Acc:P09497]

20 090211_14_NW_S10.mgf ENSP00000309431 4.57 1 -2.3 4.8 49.5 Tubulin beta-8 chain B [Source:UniProtKB/Swiss-Prot;Acc:A6NNZ2]

5 090213_06_NW_C3.mgf ENSP00000309558 4.38 5 -13 8 61.8 TATA-binding protein-associated factor 2N (RNA-binding protein 56)(TAFII68)(TAF(II)68) 
[Source:UniProtKB/Swiss-Prot;Acc:Q92804]
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6 090213_07_NW_S3.mgf ENSP00000309558 3.67 3 -13.6 8 61.8 TATA-binding protein-associated factor 2N (RNA-binding protein 56)(TAFII68)(TAF(II)68) 
[Source:UniProtKB/Swiss-Prot;Acc:Q92804]

25 090211_20_NW_C13.mgf ENSP00000310696 3.27 1 -1.4 9.9 34.9 Beta-1,4-galactosyltransferase 2 (Beta-1,4-GalTase 2)(Beta4Gal-T2)(b4Gal-T2)(EC 2.4.1.-)(UDP-
galactose:beta-N-acetylglucosamine beta-1,4-galactosyltransferase 2)(UDP-Gal:beta-GlcNAc beta-1,4-
galactosyltransferase 2) [Includes Lactose synthase A protein(EC 2.4.1.22);N-acetyllactosamine 
synthase(EC 2.4.1.90)(Nal synthetase);Beta-N-acetylglucosaminylglycopeptide beta-1,4-
galactosyltransferase(EC 2.4.1.38);Beta-N-acetylglucosaminyl-glycolipid beta-1,4-
galactosyltransferase(EC 2.4.1.-)] [Source:UniProtKB/Swiss-Prot;Acc:O60909]

5 090213 06 NW C3.mgf ENSP00000311028 6.22 13 -37.3 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]
6 090213 07 NW S3.mgf ENSP00000311028 5.72 9 -17.2 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]
8 090213 10 NW S4.mgf ENSP00000311028 5.03 14 -24.2 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

32 090211_28_NW_S16.mgf ENSP00000311028 3.84 1 -3.3 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

33 090211_29_NW_C17.mgf ENSP00000311028 3.92 1 -1.2 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

34 090211_30_NW_S17.mgf ENSP00000311028 4.25 2 -2.8 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

40 090213_17_NW_S20.mgf ENSP00000311028 3.87 2 -3.4 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

42 090213_19_NW_S21.mgf ENSP00000311028 4.24 1 -5.2 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

47 090213_25_NW_C24.mgf ENSP00000311028 3.92 1 -4.7 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

48 090213_26_NW_S24.mgf ENSP00000311028 4 1 -4.8 10 16.3 40S ribosomal protein S14 [Source:UniProtKB/Swiss-Prot;Acc:P62263]

8 090213_10_NW_S4.mgf ENSP00000311113 3.58 1 -5.7 5.8 81.7 Junction plakoglobin (Desmoplakin-3)(Desmoplakin III)(Catenin gamma) [Source:UniProtKB/Swiss-
Prot;Acc:P14923]

40 090213_17_NW_S20.mgf ENSP00000311113 3.34 1 -1.6 5.8 81.7 Junction plakoglobin (Desmoplakin-3)(Desmoplakin III)(Catenin gamma) [Source:UniProtKB/Swiss-
Prot;Acc:P14923]

5 090213 06 NW C3.mgf ENSP00000311430 6.33 10 -13.9 11 47.7 60S ribosomal protein L4 (L1) [Source:UniProtKB/Swiss-Prot;Acc:P36578]
6 090213 07 NW S3.mgf ENSP00000311430 5.9 5 -8.3 11 47.7 60S ribosomal protein L4 (L1) [Source:UniProtKB/Swiss-Prot;Acc:P36578]

10 090213 12 NW S5.mgf ENSP00000311430 3.63 1 -3 11 47.7 60S ribosomal protein L4 (L1) [Source:UniProtKB/Swiss-Prot;Acc:P36578]
38 090213_14_NW_S19.mgf ENSP00000311430 3.51 1 -1.6 11 47.7 60S ribosomal protein L4 (L1) [Source:UniProtKB/Swiss-Prot;Acc:P36578]

9 090213_11_NW_C5.mgf ENSP00000313007 4.63 3 -18.4 9.5 70.6 Polyadenylate-binding protein 1 (Poly(A)-binding protein 1)(PABP 1) [Source:UniProtKB/Swiss-
Prot;Acc:P11940]

19 090211_13_NW_C10.mgf ENSP00000313007 4.04 1 -2.7 9.5 70.6 Polyadenylate-binding protein 1 (Poly(A)-binding protein 1)(PABP 1) [Source:UniProtKB/Swiss-
Prot;Acc:P11940]

20 090211_14_NW_S10.mgf ENSP00000313007 3.72 1 -4.5 9.5 70.6 Polyadenylate-binding protein 1 (Poly(A)-binding protein 1)(PABP 1) [Source:UniProtKB/Swiss-
Prot;Acc:P11940]

37 090213_13_NW_C19.mgf ENSP00000313007 4.16 3 -16.4 9.5 70.6 Polyadenylate-binding protein 1 (Poly(A)-binding protein 1)(PABP 1) [Source:UniProtKB/Swiss-
Prot;Acc:P11940]

8 090213_10_NW_S4.mgf ENSP00000313199 4.68 2 -9.5 7.6 38.4 Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0)(AU-rich element RNA-binding protein 1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q14103]

40 090213_17_NW_S20.mgf ENSP00000314414 3.27 1 -3.5 5.2 105.8 AP-2 complex subunit beta-1 (Adapter-related protein complex 2 beta-1 subunit)(Beta2-adaptin)(Beta-
adaptin)(Plasma membrane adaptor HA2/AP2 adaptin beta subunit)(Clathrin assembly protein complex 2 
beta large chain)(AP105B) [Source:UniProtKB/Swiss-Prot;Acc:P63010]

15 090211_08_NW_C8.mgf ENSP00000314556 4.54 1 -1.9 6.6 162.4 Uveal autoantigen with coiled-coil domains and ankyrin repeats [Source:UniProtKB/Swiss-
Prot;Acc:Q9BZF9]

8 090213 10 NW S4.mgf ENSP00000316411 4.41 3 -10.8 5.8 9.7 No other features on this peptide
24 090211_19_NW_S12.mgf ENSP00000317614 4.03 1 -1.1 9.5 119.5 Zinc finger protein 518B [Source:UniProtKB/Swiss-Prot;Acc:Q9C0D4]

5 090213 06 NW C3.mgf ENSP00000318195 4.74 7 -25.6 4.6 76.6 Nucleolin (Protein C23) [Source:UniProtKB/Swiss-Prot;Acc:P19338]
6 090213 07 NW S3.mgf ENSP00000318195 4.51 3 -13.3 4.6 76.6 Nucleolin (Protein C23) [Source:UniProtKB/Swiss-Prot;Acc:P19338]
8 090213 10 NW S4.mgf ENSP00000318195 4.18 3 -19.8 4.6 76.6 Nucleolin (Protein C23) [Source:UniProtKB/Swiss-Prot;Acc:P19338]

21 090211_15_NW_C11.mgf' ENSP00000318195 4.47 1 -2.4 4.6 76.6 Nucleolin (Protein C23) [Source:UniProtKB/Swiss-Prot;Acc:P19338]

5 090213 06 NW C3.mgf ENSP00000318197 4.37 3 -21.3 5 49.8 Tubulin alpha-3E chain (Alpha-tubulin 3E) [Source:UniProtKB/Swiss-Prot;Acc:Q6PEY2]
6 090213 07 NW S3.mgf ENSP00000318197 4.21 4 -27.4 5 49.8 Tubulin alpha-3E chain (Alpha-tubulin 3E) [Source:UniProtKB/Swiss-Prot;Acc:Q6PEY2]

17 090211 11 NW C9.mgf' ENSP00000318197 5.14 3 -4.6 5 49.8 Tubulin alpha-3E chain (Alpha-tubulin 3E) [Source:UniProtKB/Swiss-Prot;Acc:Q6PEY2]
18 090211 12 NW S9.mgf ENSP00000318197 3.44 1 -2.3 5 49.8 Tubulin alpha-3E chain (Alpha-tubulin 3E) [Source:UniProtKB/Swiss-Prot;Acc:Q6PEY2]
11 090211 04 NW C6.mgf' ENSP00000318646 4.91 1 -4.9 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]
19 090211_13_NW_C10.mgf ENSP00000318646 5.03 1 -2.3 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]

20 090211_14_NW_S10.mgf ENSP00000318646 4.97 2 -1.7 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]

35 090211_32_NW_C18.mgf ENSP00000318646 4.53 1 -1.6 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]

36 090211_32_NW_S18.mgf ENSP00000318646 4.22 1 -1.8 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]

37 090213 13 NW C19.mgf ENSP00000318646 4.2 2 -2.4 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]
41 090213_18_NW_C21.mgf ENSP00000318646 3.97 1 -2.2 10 14.8 40S ribosomal protein S15a [Source:UniProtKB/Swiss-Prot;Acc:P62244]

5 090213_06_NW_C3.mgf ENSP00000319739 4.07 2 -9.4 4.3 36.9 Reticulocalbin-2 Precursor (Calcium-binding protein ERC-55)(E6-binding protein)(E6BP) 
[Source:UniProtKB/Swiss-Prot;Acc:Q14257]

6 090213_07_NW_S3.mgf ENSP00000319739 3.79 1 -19.1 4.3 36.9 Reticulocalbin-2 Precursor (Calcium-binding protein ERC-55)(E6-binding protein)(E6BP) 
[Source:UniProtKB/Swiss-Prot;Acc:Q14257]

39 090213_16_NW_C20.mgf ENSP00000321744 3.78 1 -2.2 10 13.9 Histone H2B type 1-C/E/F/G/I (H2B.a/g/h/k/l)(H2B.1 A)(H2B/a)(H2B/g)(H2B/h)(H2B/k)(H2B/l) 
[Source:UniProtKB/Swiss-Prot;Acc:P62807]

40 090213_17_NW_S20.mgf ENSP00000321744 3.8 1 -1.4 10 13.9 Histone H2B type 1-C/E/F/G/I (H2B.a/g/h/k/l)(H2B.1 A)(H2B/a)(H2B/g)(H2B/h)(H2B/k)(H2B/l) 
[Source:UniProtKB/Swiss-Prot;Acc:P62807]

5 090213_06_NW_C3.mgf ENSP00000322419 6.42 21 -33.8 4.4 11.7 60S acidic ribosomal protein P2 (Renal carcinoma antigen NY-REN-44) [Source:UniProtKB/Swiss-
Prot;Acc:P05387]

6 090213_07_NW_S3.mgf ENSP00000322419 6.03 11 -34.8 4.4 11.7 60S acidic ribosomal protein P2 (Renal carcinoma antigen NY-REN-44) [Source:UniProtKB/Swiss-
Prot;Acc:P05387]

8 090213_10_NW_S4.mgf ENSP00000322419 4.99 4 -25.5 4.4 11.7 60S acidic ribosomal protein P2 (Renal carcinoma antigen NY-REN-44) [Source:UniProtKB/Swiss-
Prot;Acc:P05387]

11 090211_04_NW_C6.mgf' ENSP00000322419 5.64 16 -19.9 4.4 11.7 60S acidic ribosomal protein P2 (Renal carcinoma antigen NY-REN-44) [Source:UniProtKB/Swiss-
Prot;Acc:P05387]

12 090211_05_NW_S6.mgf ENSP00000322419 3.47 1 -5.8 4.4 11.7 60S acidic ribosomal protein P2 (Renal carcinoma antigen NY-REN-44) [Source:UniProtKB/Swiss-
Prot;Acc:P05387]

9 090213_11_NW_C5.mgf ENSP00000322439 3.61 1 -1.6 7.3 49.8 Elongation factor Tu, mitochondrial Precursor (EF-Tu)(P43) [Source:UniProtKB/Swiss-
Prot;Acc:P49411]

10 090213_12_NW_S5.mgf ENSP00000322439 3.39 1 -4 7.3 49.8 Elongation factor Tu, mitochondrial Precursor (EF-Tu)(P43) [Source:UniProtKB/Swiss-
Prot;Acc:P49411]

31 090211_27_NW_C16.mgf ENSP00000322707 4.32 3 -10.9 8.5 37 Tubulin alpha-1C chain (Tubulin alpha-6 chain)(Alpha-tubulin 6) [Source:UniProtKB/Swiss-
Prot;Acc:Q9BQE3]

5 090213_06_NW_C3.mgf ENSP00000324173 3.94 2 -18 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

6 090213_07_NW_S3.mgf ENSP00000324173 4.27 2 -15.4 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

8 090213_10_NW_S4.mgf ENSP00000324173 4.17 3 -15.1 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

9 090213_11_NW_C5.mgf ENSP00000324173 4.2 2 -12.9 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

10 090213_12_NW_S5.mgf ENSP00000324173 4.3 4 -14.3 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

12 090211_05_NW_S6.mgf ENSP00000324173 4.01 2 -10.8 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

17 090211_11_NW_C9.mgf' ENSP00000324173 4.48 2 -9.4 5.1 72.3 78 kDa glucose-regulated protein Precursor (GRP 78)(Heat shock 70 kDa protein 5)(Immunoglobulin 
heavy chain-binding protein)(BiP)(Endoplasmic reticulum lumenal Ca(2+)-binding protein grp78) 
[Source:UniProtKB/Swiss-Prot;Acc:P11021]

18 090211_12_NW_S9.mgf ENSP00000324392 4.6 1 -1.3 5.5 118.4 Protein ALO17 (ALK lymphoma oligomerization partner on chromosome 17) [Source:UniProtKB/Swiss-
Prot;Acc:Q9HCF4]

5 090213 06 NW C3.mgf ENSP00000324438 5.17 5 -9.1 8.7 9.1 40S ribosomal protein S21 [Source:UniProtKB/Swiss-Prot;Acc:P63220]
6 090213 07 NW S3.mgf ENSP00000324438 4.51 3 -5.5 8.7 9.1 40S ribosomal protein S21 [Source:UniProtKB/Swiss-Prot;Acc:P63220]
9 090213 11 NW C5.mgf ENSP00000324438 3.43 1 -7.4 8.7 9.1 40S ribosomal protein S21 [Source:UniProtKB/Swiss-Prot;Acc:P63220]

10 090213 12 NW S5.mgf ENSP00000324438 4.23 2 -3.8 8.7 9.1 40S ribosomal protein S21 [Source:UniProtKB/Swiss-Prot;Acc:P63220]
21 090211_15_NW_C11.mgf' ENSP00000325376 4.6 2 -8 8.8 77.5 Heterogeneous nuclear ribonucleoprotein M (hnRNP M) [Source:UniProtKB/Swiss-Prot;Acc:P52272]

10 090213_12_NW_S5.mgf ENSP00000326128 3.83 1 -1.2 6.6 81 La-related protein 5 (La ribonucleoprotein domain family member 5) [Source:UniProtKB/Swiss-
Prot;Acc:Q92615]

14 090211 07 NW S7.mgf ENSP00000327699 4.87 1 -1.3 8.2 55.9
5 090213 06 NW C3.mgf ENSP00000328902 3.98 2 -3.3 8.5 29.4 FBRNP. Source: Uniprot/SPTREMBL Q65ZQ3

11 090211_04_NW_C6.mgf' ENSP00000329646 4.98 1 -1.3 7.5 34.5 Multiple C2 and transmembrane domain-containing protein 2 [Source:UniProtKB/Swiss-
Prot;Acc:Q6DN12]

9 090213 11 NW C5.mgf ENSP00000330074 4.94 3 -6.2 11 22.6 Histone H1.5 (Histone H1a) [Source:UniProtKB/Swiss-Prot;Acc:P16401]
10 090213 12 NW S5.mgf ENSP00000330074 4.15 2 -6.2 11 22.6 Histone H1.5 (Histone H1a) [Source:UniProtKB/Swiss-Prot;Acc:P16401]

6 090213_07_NW_S3.mgf ENSP00000330165 3.42 1 -2.1 11 12.5 60S ribosomal protein L35a (Cell growth-inhibiting gene 33 protein) [Source:UniProtKB/Swiss-
Prot;Acc:P18077]

37 090213_13_NW_C19.mgf ENSP00000330165 3.6 1 -1.4 11 12.5 60S ribosomal protein L35a (Cell growth-inhibiting gene 33 protein) [Source:UniProtKB/Swiss-
Prot;Acc:P18077]

38 090213_14_NW_S19.mgf ENSP00000330165 3.49 1 -1.1 11 12.5 60S ribosomal protein L35a (Cell growth-inhibiting gene 33 protein) [Source:UniProtKB/Swiss-
Prot;Acc:P18077]

41 090213_18_NW_C21.mgf ENSP00000330165 3.75 1 -1.3 11 12.5 60S ribosomal protein L35a (Cell growth-inhibiting gene 33 protein) [Source:UniProtKB/Swiss-
Prot;Acc:P18077]
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5 090213_06_NW_C3.mgf ENSP00000330516 6.06 9 -10.3 9.4 68.4 RNA-binding protein EWS (EWS oncogene)(Ewing sarcoma breakpoint region 1 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q01844]

6 090213_07_NW_S3.mgf ENSP00000330516 4.16 3 -4.6 9.4 68.4 RNA-binding protein EWS (EWS oncogene)(Ewing sarcoma breakpoint region 1 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q01844]

8 090213_10_NW_S4.mgf ENSP00000330516 4.39 2 -6.4 9.4 68.4 RNA-binding protein EWS (EWS oncogene)(Ewing sarcoma breakpoint region 1 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q01844]

9 090213_11_NW_C5.mgf ENSP00000330516 5.55 4 -15.4 9.4 68.4 RNA-binding protein EWS (EWS oncogene)(Ewing sarcoma breakpoint region 1 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q01844]

10 090213_12_NW_S5.mgf ENSP00000330516 3.78 1 -5.7 9.4 68.4 RNA-binding protein EWS (EWS oncogene)(Ewing sarcoma breakpoint region 1 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q01844]

5 090213 06 NW C3.mgf ENSP00000330879 3.29 1 -6 10 21.8 60S ribosomal protein L9. Source: Uniprot/SWISSPROT P32969
6 090213 07 NW S3.mgf ENSP00000330879 3.73 1 -5.9 10 21.8 60S ribosomal protein L9. Source: Uniprot/SWISSPROT P32969
8 090213 10 NW S4.mgf ENSP00000330879 3.86 1 -3.4 10 21.8 60S ribosomal protein L9. Source: Uniprot/SWISSPROT P32969
5 090213 06 NW C3.mgf ENSP00000331275 5.79 9 -14.9 11 7.8 AMBIGUOUS
6 090213 07 NW S3.mgf ENSP00000331275 4.77 5 -12.5 11 7.8 No description available.
8 090213 10 NW S4.mgf ENSP00000331275 4.18 2 -9.1 11 7.8 No description available

10 090213_12_NW_S5.mgf ENSP00000331901 3.76 1 -3.1 6.3 49.9 Elongation factor 1-gamma (EF-1-gamma)(eEF-1B gamma) [Source:UniProtKB/Swiss-
Prot;Acc:P26641]

11 090211 04 NW C6.mgf' ENSP00000331902 4.95 2 -7 7.7 161.5 Collagen alpha-5(IV) chain Precursor [Source:UniProtKB/Swiss-Prot;Acc:P29400]
16 '090211 09 NW S8.mgf ENSP00000331902 4.67 2 -7.3 7.7 161.5 Collagen alpha-5(IV) chain Precursor [Source:UniProtKB/Swiss-Prot;Acc:P29400]

5 090213 06 NW C3.mgf ENSP00000332117 5.4 5 -4 10 17.5 No description available
6 090213 07 NW S3.mgf ENSP00000332117 3.95 2 -3.4 10 17.5 No description available
8 090213 10 NW S4.mgf ENSP00000332117 3.63 2 -1.8 10 17.5 No description available

13 090211_06_NW_C7.mgf ENSP00000333157 4.2 1 -1.3 6 29.2 Growth hormone variant Precursor (GH-V)(Placenta-specific growth hormone)(Growth hormone 2) 
[Source:UniProtKB/Swiss-Prot;Acc:P01242]

29 090211_25_NW_C15.mgf ENSP00000337774 3.37 1 -1.4 10 8.6

9 090213_11_NW_C5.mgf ENSP00000338235 4.8 3 -11.6 9.3 63.8 Protein LYRIC (Lysine-rich CEACAM1 co-isolated protein)(3D3/LYRIC)(Metastasis adhesion 
protein)(Metadherin)(Astrocyte elevated gene-1 protein)(AEG-1) [Source:UniProtKB/Swiss-
Prot;Acc:Q86UE4]

10 090213_12_NW_S5.mgf ENSP00000338235 4.41 3 -2.3 9.3 63.8 Protein LYRIC (Lysine-rich CEACAM1 co-isolated protein)(3D3/LYRIC)(Metastasis adhesion 
protein)(Metadherin)(Astrocyte elevated gene-1 protein)(AEG-1) [Source:UniProtKB/Swiss-
Prot;Acc:Q86UE4]

37 090213 13 NW C19.mgf ENSP00000338371 3.29 1 -7.7 6.6 182.5 Trinucleotide repeat-containing gene 6B protein [Source:UniProtKB/Swiss-Prot;Acc:Q9UPQ9]
8 090213_10_NW_S4.mgf ENSP00000338477 3.77 1 -11.9 5.4 45.6 Heterogeneous nuclear ribonucleoprotein F (hnRNP F)(Nucleolin-like protein mcs94-1) 

[Source:UniProtKB/Swiss-Prot;Acc:P52597]
13 090211_06_NW_C7.mgf ENSP00000338788 5.32 2 -8.4 5.2 49.1 Zinc finger CCCH domain-containing protein 15 (DRG family-regulatory protein 1)(Likely ortholog of 

mouse immediate early response erythropoietin 4) [Source:UniProtKB/Swiss-Prot;Acc:Q8WU90]

8 090213 10 NW S4.mgf ENSP00000339027 5.12 2 -4.5 5.7 34.3 60S acidic ribosomal protein P0 (L10E) [Source:UniProtKB/Swiss-Prot;Acc:P05388]
37 090213 13 NW C19.mgf ENSP00000339027 3.95 2 -7.7 5.7 34.3 60S acidic ribosomal protein P0 (L10E) [Source:UniProtKB/Swiss-Prot;Acc:P05388]
38 090213_14_NW_S19.mgf ENSP00000339027 3.85 2 -5.8 5.7 34.3 60S acidic ribosomal protein P0 (L10E) [Source:UniProtKB/Swiss-Prot;Acc:P05388]

39 090213_16_NW_C20.mgf ENSP00000339027 4.35 2 -7.8 5.7 34.3 60S acidic ribosomal protein P0 (L10E) [Source:UniProtKB/Swiss-Prot;Acc:P05388]

40 090213_17_NW_S20.mgf ENSP00000339027 4.3 2 -6.4 5.7 34.3 60S acidic ribosomal protein P0 (L10E) [Source:UniProtKB/Swiss-Prot;Acc:P05388]

42 090213_19_NW_S21.mgf ENSP00000339027 3.63 1 -6.6 5.7 34.3 60S acidic ribosomal protein P0 (L10E) [Source:UniProtKB/Swiss-Prot;Acc:P05388]

19 090211_13_NW_C10.mgf ENSP00000339058 5.58 2 -3.4 10 17.7 60S RIBOSOMAL 

20 090211_14_NW_S10.mgf ENSP00000339058 4.49 1 -1.6 10 17.7 60S RIBOSOMAL 

21 090211_15_NW_C11.mgf' ENSP00000339058 5.61 4 -2.2 10 17.7 60S RIBOSOMAL 

24 090211_19_NW_S12.mgf ENSP00000339058 3.24 1 -3.2 10 17.7 60S RIBOSOMAL 

35 090211_32_NW_C18.mgf ENSP00000339064 3.66 1 -2.1 11 15.8 60S ribosomal protein L32 [Source:UniProtKB/Swiss-Prot;Acc:P62910]

37 090213 13 NW C19.mgf ENSP00000339064 3.9 3 -4.1 11 15.8 60S ribosomal protein L32 [Source:UniProtKB/Swiss-Prot;Acc:P62910]
38 090213_14_NW_S19.mgf ENSP00000339064 4.15 1 -1.2 11 15.8 60S ribosomal protein L32 [Source:UniProtKB/Swiss-Prot;Acc:P62910]

39 090213_16_NW_C20.mgf ENSP00000339064 3.19 1 -2.9 11 15.8 60S ribosomal protein L32 [Source:UniProtKB/Swiss-Prot;Acc:P62910]

40 090213_17_NW_S20.mgf ENSP00000339064 3.62 2 -4.3 11 15.8 60S ribosomal protein L32 [Source:UniProtKB/Swiss-Prot;Acc:P62910]

5 090213 06 NW C3.mgf ENSP00000339095 4.04 2 -3.4 10 22.1 40S ribosomal protein S7 [Source:UniProtKB/Swiss-Prot;Acc:P62081]
35 090211_32_NW_C18.mgf ENSP00000339095 3.96 1 -3.2 10 22.1 40S ribosomal protein S7 [Source:UniProtKB/Swiss-Prot;Acc:P62081]

38 090213_14_NW_S19.mgf ENSP00000339095 3.58 1 -2.6 10 22.1 40S ribosomal protein S7 [Source:UniProtKB/Swiss-Prot;Acc:P62081]

40 090213_17_NW_S20.mgf ENSP00000339095 3.52 1 -1.4 10 22.1 40S ribosomal protein S7 [Source:UniProtKB/Swiss-Prot;Acc:P62081]

21 090211_15_NW_C11.mgf' ENSP00000339566 4.67 2 -10.5 11 21.4 Histone H1.2 (Histone H1d) [Source:UniProtKB/Swiss-Prot;Acc:P16403]

23 090211_18_NW_C12.mgf ENSP00000339566 4.23 1 -4.2 11 21.4 Histone H1.2 (Histone H1d) [Source:UniProtKB/Swiss-Prot;Acc:P16403]

5 090213_06_NW_C3.mgf ENSP00000340251 4.7 3 -18.8 9.2 38.7 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

19 090211_13_NW_C10.mgf ENSP00000340251 4.79 2 -2.7 9.2 38.7 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

20 090211_14_NW_S10.mgf ENSP00000340251 3.61 2 -1.7 9.2 38.7 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

39 090213_16_NW_C20.mgf ENSP00000340251 4.06 2 -8.4 9.2 38.7 Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma)(TP 
beta/gamma)(Thymopoietin-related peptide isoforms beta/gamma)(TPRP isoforms beta/gamma) 
[Contains Thymopoietin(TP)(Splenin);Thymopentin(TP5)] [Source:UniProtKB/Swiss-Prot;Acc:P42167]

5 090213_06_NW_C3.mgf ENSP00000340329 4.84 3 -19.6 5.1 78.6 Caprin-1 (Cytoplasmic activation- and proliferation-associated protein 1)(GPI-anchored membrane 
protein 1)(GPI-anchored protein p137)(GPI-p137)(p137GPI)(Cell cycle associated protein 1)(Membrane 
component chromosome 11 surface marker 1) [Source:UniProtKB/Swiss-Prot;Acc:Q14444]

8 090213_10_NW_S4.mgf ENSP00000340329 4.46 3 -5.5 5.1 78.6 Caprin-1 (Cytoplasmic activation- and proliferation-associated protein 1)(GPI-anchored membrane 
protein 1)(GPI-anchored protein p137)(GPI-p137)(p137GPI)(Cell cycle associated protein 1)(Membrane 
component chromosome 11 surface marker 1) [Source:UniProtKB/Swiss-Prot;Acc:Q14444]

9 090213_11_NW_C5.mgf ENSP00000340329 5.42 5 -26.2 5.1 78.6 Caprin-1 (Cytoplasmic activation- and proliferation-associated protein 1)(GPI-anchored membrane 
protein 1)(GPI-anchored protein p137)(GPI-p137)(p137GPI)(Cell cycle associated protein 1)(Membrane 
component chromosome 11 surface marker 1) [Source:UniProtKB/Swiss-Prot;Acc:Q14444]

10 090213_12_NW_S5.mgf ENSP00000340329 4.59 4 -21.4 5.1 78.6 Caprin-1 (Cytoplasmic activation- and proliferation-associated protein 1)(GPI-anchored membrane 
protein 1)(GPI-anchored protein p137)(GPI-p137)(p137GPI)(Cell cycle associated protein 1)(Membrane 
component chromosome 11 surface marker 1) [Source:UniProtKB/Swiss-Prot;Acc:Q14444]

17 090211_11_NW_C9.mgf' ENSP00000340329 5.02 3 -14.7 5.1 78.6 Caprin-1 (Cytoplasmic activation- and proliferation-associated protein 1)(GPI-anchored membrane 
protein 1)(GPI-anchored protein p137)(GPI-p137)(p137GPI)(Cell cycle associated protein 1)(Membrane 
component chromosome 11 surface marker 1) [Source:UniProtKB/Swiss-Prot;Acc:Q14444]

21 090211_15_NW_C11.mgf' ENSP00000340469 5.68 7 -16.9 10 13.6 40S RIBOSOMAL S25 

23 090211_18_NW_C12.mgf ENSP00000340469 5.57 4 -7.7 10 13.6 40S RIBOSOMAL S25 

24 090211_19_NW_S12.mgf ENSP00000340469 5.46 6 -16.3 10 13.6 40S RIBOSOMAL S25

25 090211_20_NW_C13.mgf ENSP00000340469 4.54 1 -2.5 10 13.6 40S RIBOSOMAL S25

26 090211_21_NW_S13.mgf ENSP00000340469 4.79 3 -2.2 10 13.6 40S RIBOSOMAL S25

5 090213_06_NW_C3.mgf ENSP00000340510 4.29 1 -1.1 5.5 204.6 Periplakin (195 kDa cornified envelope precursor protein)(190 kDa paraneoplastic pemphigus antigen) 
[Source:UniProtKB/Swiss-Prot;Acc:O60437]

19 090211_13_NW_C10.mgf ENSP00000340554 4.87 4 -21.7 6.2 2663 titin isoform novex-3 [Source:RefSeq peptide;Acc:NP_596870]

8 090213_10_NW_S4.mgf ENSP00000340698 3.83 1 -10.3 5.9 36 PDZ domain-containing protein GIPC1 (RGS19-interacting protein 1)(GAIP C-terminus-interacting 
protein)(RGS-GAIP-interacting protein)(Tax interaction protein 2)(TIP-2) [Source:UniProtKB/Swiss-
Prot;Acc:O14908]

17 090211_11_NW_C9.mgf' ENSP00000340857 3.53 1 -7.2 8.9 84.7 Heterogeneous nuclear ribonucleoprotein U-like protein 1 (Adenovirus early region 1B-associated protein 
5)(E1B-55 kDa-associated protein 5)(E1B-AP5) [Source:UniProtKB/Swiss-Prot;Acc:Q9BUJ2]

19 090211_13_NW_C10.mgf ENSP00000341885 6.04 4 -19.4 10 31.3 40S ribosomal protein S2 (S4)(LLRep3 protein) [Source:UniProtKB/Swiss-Prot;Acc:P15880]

15 090211 08 NW C8.mgf ENSP00000343329 5.02 2 -7.5 9.9 33.5
9 090213_11_NW_C5.mgf ENSP00000343405 3.78 1 -5.1 6.7 118.2 Protein transport protein Sec24C (SEC24-related protein C) [Source:UniProtKB/Swiss-

Prot;Acc:P53992]
9 090213 11 NW C5.mgf ENSP00000343513 3.34 1 -4.5 4.9 31.2 ELONGATION FACTOR 1 EF 1

15 090211 08 NW C8.mgf ENSP00000343801 4.47 1 -2.7 10 12.2 60S RIBOSOMAL L7A
17 090211 11 NW C9.mgf' ENSP00000343801 5.88 4 -3.8 10 12.2 60S RIBOSOMAL L7A
18 090211 12 NW S9.mgf ENSP00000343801 5.6 4 -4.4 10 12.2 60S RIBOSOMAL L7A

5 090213 06 NW C3.mgf ENSP00000344777 4.65 2 -1.7 10 17.8 Putative uncharacterized protein ENSP00000344777 [Source:UniProtKB/TrEMBL;Acc:A6NP00]
6 090213 07 NW S3.mgf ENSP00000344777 3.89 1 -2 10 17.8 Putative uncharacterized protein ENSP00000344777 [Source:UniProtKB/TrEMBL;Acc:A6NP00]
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http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=24690&homolog=24690&label=ENSP00000339064&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=12471&homolog=12471&label=ENSP00000339095&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000253.xml&uid=12471&homolog=12471&label=ENSP00000339095&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000279.xml&uid=12471&homolog=12471&label=ENSP00000339095&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=6236&homolog=6236&label=ENSP00000339095&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=20807&homolog=20807&label=ENSP00000339566&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000238.xml&uid=20807&homolog=20807&label=ENSP00000339566&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=81453&homolog=81453&label=ENSP00000340251&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=81453&homolog=81453&label=ENSP00000340251&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=81453&homolog=81453&label=ENSP00000340251&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000272.xml&uid=81453&homolog=81453&label=ENSP00000340251&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=93511&homolog=93511&label=ENSP00000340329&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=93511&homolog=93511&label=ENSP00000340329&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=46756&homolog=46756&label=ENSP00000340329&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000280.xml&uid=93511&homolog=93511&label=ENSP00000340329&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=93511&homolog=93511&label=ENSP00000340329&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=31629&homolog=31629&label=ENSP00000340469&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000238.xml&uid=31629&homolog=31629&label=ENSP00000340469&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000242.xml&uid=31629&homolog=31629&label=ENSP00000340469&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000243.xml&uid=31629&homolog=31629&label=ENSP00000340469&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000244.xml&uid=31629&homolog=31629&label=ENSP00000340469&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=44523&homolog=44523&label=ENSP00000340510&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=15853&homolog=15853&label=ENSP00000340554&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=34541&homolog=34541&label=ENSP00000340698&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=35857&homolog=35857&label=ENSP00000340857&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=44193&homolog=44193&label=ENSP00000341885&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000227.xml&uid=16761&homolog=16761&label=ENSP00000343329&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=1877&homolog=1877&label=ENSP00000343405&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=17254&homolog=17254&label=ENSP00000343513&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000227.xml&uid=31191&homolog=31191&label=ENSP00000343801&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=31191&homolog=31191&label=ENSP00000343801&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000230.xml&uid=31191&homolog=31191&label=ENSP00000343801&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=35007&homolog=35007&label=ENSP00000344777&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=35007&homolog=35007&label=ENSP00000344777&proex=-1�
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40 090213_17_NW_S20.mgf ENSP00000344777 4.16 2 -7.9 10 17.8 Putative uncharacterized protein ENSP00000344777 [Source:UniProtKB/TrEMBL;Acc:A6NP00]

41 090213_18_NW_C21.mgf ENSP00000344777 4.34 2 -12.9 10 17.8 Putative uncharacterized protein ENSP00000344777 [Source:UniProtKB/TrEMBL;Acc:A6NP00]

42 090213_19_NW_S21.mgf ENSP00000344777 4.24 1 -5.7 10 17.8 Putative uncharacterized protein ENSP00000344777 [Source:UniProtKB/TrEMBL;Acc:A6NP00]

46 090213_24_NW_S23.mgf ENSP00000344777 3.49 1 -4.7 10 17.8 Putative uncharacterized protein ENSP00000344777 [Source:UniProtKB/TrEMBL;Acc:A6NP00] ENSP00000344777

13 090211_06_NW_C7.mgf ENSP00000344950 4.21 1 -1.7 9.6 67.7 La-related protein 7 (La ribonucleoprotein domain family member 7)(P-TEFb-interaction protein for 7SK 
stability)(PIP7S) [Source:UniProtKB/Swiss-Prot;Acc:Q4G0J3]

25 090211_20_NW_C13.mgf ENSP00000345060 4.39 1 -1.1 5.5 257.1 Probable G-protein coupled receptor 179 Precursor (Probable G-protein coupled receptor 158-like 1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q6PRD1]

8 090213 10 NW S4.mgf ENSP00000345156 3.79 1 -9.7 11 23.4 60S ribosomal protein L14 (CAG-ISL 7) [Source:UniProtKB/Swiss-Prot;Acc:P50914]
24 090211_19_NW_S12.mgf ENSP00000345157 3.78 1 -1.5 9.7 16.3

19 090211_13_NW_C10.mgf ENSP00000346018 4.15 2 -8.1 11 30 60S ribosomal protein L7a (Surfeit locus protein 3)(PLA-X polypeptide) [Source:UniProtKB/Swiss-
Prot;Acc:P62424]

5 090213 06 NW C3.mgf ENSP00000346045 4.72 6 -14.4 9.8 15.5 40S ribosomal protein S17 [Source:UniProtKB/Swiss-Prot;Acc:P08708]
6 090213 07 NW S3.mgf ENSP00000346045 3.98 1 -2.5 9.8 15.5 40S ribosomal protein S17 [Source:UniProtKB/Swiss-Prot;Acc:P08708]

12 090211_05_NW_S6.mgf ENSP00000346051 4.8 1 -1.9 5.8 126.3 Zinc finger protein ZFPM2 (Zinc finger protein multitype 2)(Friend of GATA protein 2)(FOG-2)(hFOG-2) 
[Source:UniProtKB/Swiss-Prot;Acc:Q8WW38]

11 090211 04 NW C6.mgf' ENSP00000346080 4.5 1 -3.8 9.7 15.6 60S ribosomal protein L22-like 1 [Source:UniProtKB/Swiss-Prot;Acc:Q6P5R6]
12 090211 05 NW S6.mgf ENSP00000346080 3.81 1 -2.8 9.7 15.6 60S ribosomal protein L22-like 1 [Source:UniProtKB/Swiss-Prot;Acc:Q6P5R6]
31 090211_27_NW_C16.mgf ENSP00000346080 4.93 1 -1.4 9.7 15.6 60S ribosomal protein L22-like 1 [Source:UniProtKB/Swiss-Prot;Acc:Q6P5R6]

15 090211_08_NW_C8.mgf ENSP00000346081 5.79 3 -8 9 208.8 HERV-K_7p22.1 provirus ancestral Pro protein (EC 3.4.23.-) (HERV- K(HML-2.HOM) Pro protein) 
(HERV-K108 Pro protein) (HERV-K(C7) Pro protein) (Protease) (Proteinase) (PR). Source: 
Uniprot/SWISSPROT Q9Y6I0

40 090213_17_NW_S20.mgf ENSP00000346120 3.39 1 -2.7 9.3 87.3 Nucleolar RNA helicase 2 (EC 3.6.1.-)(Nucleolar RNA helicase II)(Nucleolar RNA helicase Gu)(RH 
II/Gu)(Gu-alpha)(DEAD box protein 21) [Source:UniProtKB/Swiss-Prot;Acc:Q9NR30]

42 090213_19_NW_S21.mgf ENSP00000346120 3.33 1 -2 9.3 87.3 Nucleolar RNA helicase 2 (EC 3.6.1.-)(Nucleolar RNA helicase II)(Nucleolar RNA helicase Gu)(RH 
II/Gu)(Gu-alpha)(DEAD box protein 21) [Source:UniProtKB/Swiss-Prot;Acc:Q9NR30]

5 090213 06 NW C3.mgf ENSP00000346598 5.54 8 -14.8 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]
6 090213 07 NW S3.mgf ENSP00000346598 5.09 6 -13.5 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]
8 090213 10 NW S4.mgf ENSP00000346598 4.27 1 -5.4 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

24 090211_19_NW_S12.mgf ENSP00000346598 3.56 1 -1.1 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

35 090211_32_NW_C18.mgf ENSP00000346598 3.97 1 -6.2 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

38 090213_14_NW_S19.mgf ENSP00000346598 3.96 2 -12 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

40 090213_17_NW_S20.mgf ENSP00000346598 4.03 1 -8 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

42 090213_19_NW_S21.mgf ENSP00000346598 3.55 1 -5.8 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

47 090213_25_NW_C24.mgf ENSP00000346598 3.5 1 -7.1 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

48 090213_26_NW_S24.mgf ENSP00000346598 3.71 1 -7.3 4.8 32.9 Uncharacterized protein ENSP00000346598 [Source:UniProtKB/TrEMBL;Acc:A6NE09]

8 090213_10_NW_S4.mgf ENSP00000346634 4.15 1 -3.6 10 108.6 Thyroid hormone receptor-associated protein 3 (Thyroid hormone receptor-associated protein complex 
150 kDa component)(Trap150) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y2W1]

19 090211_13_NW_C10.mgf ENSP00000346634 3.79 1 -3.3 10 108.6 Thyroid hormone receptor-associated protein 3 (Thyroid hormone receptor-associated protein complex 
150 kDa component)(Trap150) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y2W1]

37 090213_13_NW_C19.mgf ENSP00000346634 3.6 1 -3.1 10 108.6 Thyroid hormone receptor-associated protein 3 (Thyroid hormone receptor-associated protein complex 
150 kDa component)(Trap150) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y2W1]

37 090213 13 NW C19.mgf ENSP00000346975 4.08 2 -7.6 11 29.6 similar to 60S ribosomal protein L7a (LOC401640), mRNA Source: RefSeq dna XR 017380 
40 090213_17_NW_S20.mgf ENSP00000346975 4.31 3 -9.6 11 29.6 similar to 60S ribosomal protein L7a (LOC401640), mRNA Source: RefSeq_dna XR_017380 

8 090213_10_NW_S4.mgf ENSP00000347049 4.93 3 -4.8 10 21.4 KERATIN ASSOCIATED KERATIN ASSOCIATED KERATIN ASSOCIATED KERATIN 
ASSOCIATED KERATIN ASSOCIATED

17 090211 11 NW C9.mgf' ENSP00000347271 5.56 6 -3.4 10 18.9 40S ribosomal protein S10 [Source:UniProtKB/Swiss-Prot;Acc:P46783]
13 090211_06_NW_C7.mgf ENSP00000347325 5.33 2 -7.6 6.8 449.1 Histone-lysine N-methyltransferase MLL3 (EC 2.1.1.43)(Myeloid/lymphoid or mixed-lineage leukemia 

protein 3)(Homologous to ALR protein)(Lysine N-methyltransferase 2C) [Source:UniProtKB/Swiss-
Prot;Acc:Q8NEZ4]

17 090211_11_NW_C9.mgf' ENSP00000348031 4.75 1 -1.1 8.4 296.5 Histone-lysine N-methyltransferase, H3 lysine-36 and H4 lysine-20 specific (EC 2.1.1.43)(H3-K36-
HMTase)(H4-K20-HMTase)(Nuclear receptor-binding SET domain-containing protein 1)(NR-binding 
SET domain-containing protein)(Androgen receptor-associated coregulator 267)(Lysine N-
methyltransferase 3B) [Source:UniProtKB/Swiss-Prot;Acc:Q96L73]

16 '090211 09 NW S8.mgf ENSP00000348531 5.57 5 -16 10 13.9 Histone H2B type 1-H (H2B.j) (H2B/j). Source: Uniprot/SWISSPROT Q93079
5 090213_06_NW_C3.mgf ENSP00000348578 4.67 6 -20.5 5.4 52.1 Ras GTPase-activating protein-binding protein 1 (EC 3.6.1.-)(G3BP-1)(ATP-dependent DNA helicase 

VIII)(HDH-VIII)(GAP SH3 domain-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q13283]

8 090213_10_NW_S4.mgf ENSP00000348578 3.9 1 -9.6 5.4 52.1 Ras GTPase-activating protein-binding protein 1 (EC 3.6.1.-)(G3BP-1)(ATP-dependent DNA helicase 
VIII)(HDH-VIII)(GAP SH3 domain-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q13283]

19 090211_13_NW_C10.mgf ENSP00000348578 3.54 1 -2.4 5.4 52.1 Ras GTPase-activating protein-binding protein 1 (EC 3.6.1.-)(G3BP-1)(ATP-dependent DNA helicase 
VIII)(HDH-VIII)(GAP SH3 domain-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q13283]

37 090213 13 NW C19.mgf ENSP00000348933 3.35 1 -2.5 6.3 24.5 Coiled-coil domain-containing protein 25 [Source:UniProtKB/Swiss-Prot;Acc:Q86WR0]
5 090213_06_NW_C3.mgf ENSP00000349101 5.95 7 -17 4.8 28.4 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
6 090213_07_NW_S3.mgf ENSP00000349101 5.15 3 -4.7 4.8 28.4 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
8 090213_10_NW_S4.mgf ENSP00000349101 4.34 2 -3.1 4.8 28.4 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
19 090211_13_NW_C10.mgf ENSP00000349101 5.1 1 -1.5 4.8 28.4 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
20 090211_14_NW_S10.mgf ENSP00000349101 4.75 1 -1.2 4.8 28.4 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
17 090211 11 NW C9.mgf' ENSP00000349185 5.02 1 -2 11 29.6 60S RIBOSOMAL L7
19 090211_13_NW_C10.mgf ENSP00000349185 5.19 3 -10.9 11 29.6 60S RIBOSOMAL L7

20 090211_14_NW_S10.mgf ENSP00000349185 4.49 2 -8.3 11 29.6 60S RIBOSOMAL L7 

21 090211_15_NW_C11.mgf' ENSP00000349185 4.44 1 -2.1 11 29.6 60S RIBOSOMAL L7

23 090211_18_NW_C12.mgf ENSP00000349185 3.96 1 -2.5 11 29.6 60S RIBOSOMAL L7

24 090211_19_NW_S12.mgf ENSP00000349185 4.02 1 -2.6 11 29.6 60S RIBOSOMAL L7

25 090211_20_NW_C13.mgf ENSP00000349185 4.02 1 -3.1 11 29.6 60S RIBOSOMAL L7 

5 090213 06 NW C3.mgf ENSP00000349362 3.7 2 -4.9 11 12.9 Protein Family: 40S RIBOSOMAL S26
5 090213_06_NW_C3.mgf ENSP00000349435 4 3 -20.8 10 45.9 60S ribosomal protein L3 (HIV-1 TAR RNA-binding protein B) (TARBP-B). Source: 

Uniprot/SWISSPROT P39023
8 090213_10_NW_S4.mgf ENSP00000349435 3.42 1 -2.7 10 45.9 60S ribosomal protein L3 (HIV-1 TAR RNA-binding protein B) (TARBP-B). Source: 

Uniprot/SWISSPROT P39023
38 090213_14_NW_S19.mgf ENSP00000349435 3.66 1 -3.3 10 45.9 60S ribosomal protein L3 (HIV-1 TAR RNA-binding protein B) (TARBP-B). Source: 

Uniprot/SWISSPROT P39023 
39 090213_16_NW_C20.mgf ENSP00000349435 3.16 1 -3.3 10 45.9 60S ribosomal protein L3 (HIV-1 TAR RNA-binding protein B) (TARBP-B). Source: 

Uniprot/SWISSPROT P39023 
40 090213_17_NW_S20.mgf ENSP00000349435 3.6 1 -3.1 10 45.9 60S ribosomal protein L3 (HIV-1 TAR RNA-binding protein B) (TARBP-B). Source: 

Uniprot/SWISSPROT P39023 
5 090213_06_NW_C3.mgf ENSP00000349748 3.72 2 -18.9 9.5 76.1 Splicing factor, proline- and glutamine-rich (Polypyrimidine tract-binding protein-associated-splicing 

factor)(PTB-associated-splicing factor)(PSF)(DNA-binding p52/p100 complex, 100 kDa subunit)(100 
kDa DNA-pairing protein)(hPOMp100) [Source:UniProtKB/Swiss-Prot;Acc:P23246]

5 090213 06 NW C3.mgf ENSP00000349960 6.21 34 -61.5 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]
6 090213 07 NW S3.mgf ENSP00000349960 5.17 13 -30.3 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]
8 090213 10 NW S4.mgf ENSP00000349960 5.42 8 -23.4 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]
9 090213 11 NW C5.mgf ENSP00000349960 6.3 12 -25.5 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

11 090211 04 NW C6.mgf' ENSP00000349960 7.11 21 -32.3 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]
12 090211 05 NW S6.mgf ENSP00000349960 6.48 17 -30.4 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]
21 090211_15_NW_C11.mgf' ENSP00000349960 5.53 5 -13.8 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

23 090211_18_NW_C12.mgf ENSP00000349960 5.49 5 -12.6 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

24 090211_19_NW_S12.mgf ENSP00000349960 5.36 8 -18 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

25 090211_20_NW_C13.mgf ENSP00000349960 5.42 5 -11.8 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

26 090211_21_NW_S13.mgf ENSP00000349960 5.09 3 -11.6 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

28 090211_22_NW_S14.mgf ENSP00000349960 5.09 3 -11.8 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

29 090211_25_NW_C15.mgf ENSP00000349960 4.83 3 -9.2 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

31 090211_27_NW_C16.mgf ENSP00000349960 3.5 1 -2.3 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

32 090211_28_NW_S16.mgf ENSP00000349960 4.31 2 -11.7 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

37 090213 13 NW C19.mgf ENSP00000349960 4.76 4 -11 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]
47 090213_25_NW_C24.mgf ENSP00000349960 3.94 3 -16.9 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=17504&homolog=17504&label=ENSP00000344777&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000307.xml&uid=17504&homolog=17504&label=ENSP00000344777&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000308.xml&uid=17504&homolog=17504&label=ENSP00000344777&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000316.xml&uid=17504&homolog=17504&label=ENSP00000344777&proex=-1�
http://www.ensembl.org/Homo_sapiens/protview?peptide=ENSP00000344777�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000224.xml&uid=14523&homolog=14523&label=ENSP00000344950&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000243.xml&uid=84223&homolog=84223&label=ENSP00000345060&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=49799&homolog=49799&label=ENSP00000345156&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000242.xml&uid=29229&homolog=29229&label=ENSP00000345157&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=43095&homolog=43095&label=ENSP00000346018&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=19077&homolog=19077&label=ENSP00000346045&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=19077&homolog=19077&label=ENSP00000346045&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000240.xml&uid=90543&homolog=90543&label=ENSP00000346051&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000223.xml&uid=52159&homolog=52159&label=ENSP00000346080&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000240.xml&uid=52159&homolog=52159&label=ENSP00000346080&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000249.xml&uid=52159&homolog=52159&label=ENSP00000346080&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000227.xml&uid=52899&homolog=52899&label=ENSP00000346081&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=1736&homolog=1736&label=ENSP00000346120&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000308.xml&uid=1736&homolog=1736&label=ENSP00000346120&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=35109&homolog=35109&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=35109&homolog=35109&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=35109&homolog=35109&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000242.xml&uid=35109&homolog=35109&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000253.xml&uid=35109&homolog=35109&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000279.xml&uid=35109&homolog=35109&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=17555&homolog=17555&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000308.xml&uid=17555&homolog=17555&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000312.xml&uid=17555&homolog=17555&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000314.xml&uid=17555&homolog=17555&label=ENSP00000346598&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=65565&homolog=65565&label=ENSP00000346634&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=65565&homolog=65565&label=ENSP00000346634&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000270.xml&uid=65565&homolog=65565&label=ENSP00000346634&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000270.xml&uid=2475&homolog=2475&label=ENSP00000346975&proex=-1�
http://oct2006.archive.ensembl.orghttp//srs.sanger.ac.uk/srsbin/cgi-bin/wgetz?-e+%3Cbr%3E    %5BREFSEQ-alltext:XR_017380%5D�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=1238&homolog=1238&label=ENSP00000346975&proex=-1�
http://oct2006.archive.ensembl.orghttp//srs.sanger.ac.uk/srsbin/cgi-bin/wgetz?-e+%3Cbr%3E    %5BREFSEQ-alltext:XR_017380%5D�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=18671&homolog=18671&label=ENSP00000347049&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=22539&homolog=22539&label=ENSP00000347271&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000224.xml&uid=27967&homolog=27967&label=ENSP00000347325&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=32943&homolog=32943&label=ENSP00000348031&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000228.xml&uid=20897&homolog=20897&label=ENSP00000348531&proex=-1�
http://aug2007.archive.ensembl.orghttp/www.ebi.uniprot.org/entry/Q93079�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=32563&homolog=32563&label=ENSP00000348578&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=32563&homolog=32563&label=ENSP00000348578&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=32563&homolog=32563&label=ENSP00000348578&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000270.xml&uid=89529&homolog=89529&label=ENSP00000348933&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=53223&homolog=53223&label=ENSP00000349101&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=53223&homolog=53223&label=ENSP00000349101&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=53223&homolog=53223&label=ENSP00000349101&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=53223&homolog=53223&label=ENSP00000349101&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=53223&homolog=53223&label=ENSP00000349101&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000229.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000231.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000298.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000238.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000242.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000243.xml&uid=31137&homolog=31137&label=ENSP00000349185&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=971&homolog=971&label=ENSP00000349362&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=78451&homolog=78451&label=ENSP00000349435&proex=-1�
http://aug2007.archive.ensembl.orghttp/www.ebi.uniprot.org/entry/P39023�
http://aug2007.archive.ensembl.orghttp/www.ebi.uniprot.org/entry/P39023�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=78451&homolog=78451&label=ENSP00000349435&proex=-1�
http://aug2007.archive.ensembl.orghttp/www.ebi.uniprot.org/entry/P39023�
http://aug2007.archive.ensembl.orghttp/www.ebi.uniprot.org/entry/P39023�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000279.xml&uid=78451&homolog=78451&label=ENSP00000349435&proex=-1�
http://aug2007.archive.ensembl.orghttp//www.ebi.uniprot.org/entry/P39023�
http://aug2007.archive.ensembl.orghttp//www.ebi.uniprot.org/entry/P39023�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000272.xml&uid=78451&homolog=78451&label=ENSP00000349435&proex=-1�
http://aug2007.archive.ensembl.orghttp//www.ebi.uniprot.org/entry/P39023�
http://aug2007.archive.ensembl.orghttp//www.ebi.uniprot.org/entry/P39023�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000305.xml&uid=39226&homolog=39226&label=ENSP00000349435&proex=-1�
http://aug2007.archive.ensembl.orghttp//www.ebi.uniprot.org/entry/P39023�
http://aug2007.archive.ensembl.orghttp//www.ebi.uniprot.org/entry/P39023�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=65451&homolog=65451&label=ENSP00000349748&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000293.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000292.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000288.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000303.xml&uid=26475&homolog=26475&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000223.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000240.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000233.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000238.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000242.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000243.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000244.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000246.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000247.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000249.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000250.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000270.xml&uid=52949&homolog=52949&label=ENSP00000349960&proex=-1�
http://nepaf-x6401/thegpm-cgi/protein.pl?path=/gpm/archive/GPM00300000312.xml&uid=26475&homolog=26475&label=ENSP00000349960&proex=-1�
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48 090213_26_NW_S24.mgf ENSP00000349960 4.43 4 -21.4 5.3 41.7 Actin, cytoplasmic 1 (Beta-actin) [Source:UniProtKB/Swiss-Prot;Acc:P60709]

6 090213_07_NW_S3.mgf ENSP00000350170 3.74 2 -17.1 5.8 69.7 Fragile X mental retardation syndrome-related protein 1 (hFXR1p) [Source:UniProtKB/Swiss-
Prot;Acc:P51114]

6 090213_07_NW_S3.mgf ENSP00000350199 3.51 1 -5 4.9 104.6 AP-1 complex subunit beta-1 (Adapter-related protein complex 1 subunit beta-1)(Adaptor protein complex 
AP-1 subunit beta-1)(Beta-adaptin 1)(Beta1-adaptin)(Golgi adaptor HA1/AP1 adaptin beta 
subunit)(Clathrin assembly protein complex 1 beta large chain) [Source:UniProtKB/Swiss-
Prot;Acc:Q10567]

19 090211_13_NW_C10.mgf ENSP00000350494 5.04 1 -3.3 11 16.6 60S RIBOSOMAL L27A 

20 090211_14_NW_S10.mgf ENSP00000350494 4.3 1 -1.1 11 16.6 60S RIBOSOMAL L27A 

21 090211_15_NW_C11.mgf' ENSP00000350494 4.35 1 -3.1 11 16.6 60S RIBOSOMAL L27A 

9 090213 11 NW C5.mgf ENSP00000350580 5.25 8 -11.4 10 13.9 Histone H2B type 1-B (H2B.f)(H2B/f)(H2B.1) [Source:UniProtKB/Swiss-Prot;Acc:P33778]
10 090213 12 NW S5.mgf ENSP00000350580 3.26 1 -7.4 10 13.9 Histone H2B type 1-B (H2B.f)(H2B/f)(H2B.1) [Source:UniProtKB/Swiss-Prot;Acc:P33778]

8 090213_10_NW_S4.mgf ENSP00000351108 4.3 2 -7.9 6.5 35.9 Heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B)(APOBEC1-binding protein 1)(ABBP-1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q99729]

29 090211_25_NW_C15.mgf ENSP00000351483 3.84 1 -1.4 6.9 128.6 Electroneutral sodium bicarbonate exchanger 1 (Electroneutral Na+-driven Cl-HCO3 exchanger)(Solute 
carrier family 4 member 8)(k-NBC3) [Source:UniProtKB/Swiss-Prot;Acc:Q2Y0W8]

5 090213 06 NW C3.mgf ENSP00000351906 4.39 3 -15.8 11 19 60S RIBOSOMAL L21
38 090213_14_NW_S19.mgf ENSP00000351906 3.5 1 -3.4 11 19 60S RIBOSOMAL L21 

9 090213 11 NW C5.mgf ENSP00000352402 3.23 1 -2 12 24.2
10 090213 12 NW S5.mgf ENSP00000352402 4.38 3 -5.9 12 24.2 similar to ribosomal protein L15 (LOC402694), mRNA Source: RefSeq dna NM 001089590
14 090211 07 NW S7.mgf ENSP00000352847 3.88 1 -1.4 8.6 65.2

9 090213 11 NW C5.mgf ENSP00000352980 5.76 5 -7.6 11 11.4 Histone H4 [Source:UniProtKB/Swiss-Prot;Acc:P62805]
10 090213 12 NW S5.mgf ENSP00000352980 4.62 2 -5.3 11 11.4 Histone H4 [Source:UniProtKB/Swiss-Prot;Acc:P62805]
16 '090211 09 NW S8.mgf ENSP00000352980 3.42 1 -1.2 11 11.4 Histone H4 [Source:UniProtKB/Swiss-Prot;Acc:P62805]
21 090211_15_NW_C11.mgf' ENSP00000352980 5.05 1 -2.1 11 11.4 Histone H4 [Source:UniProtKB/Swiss-Prot;Acc:P62805]

5 090213 06 NW C3.mgf ENSP00000353659 4.62 5 -11.4 10 24.4 No other features on this peptide
6 090213 07 NW S3.mgf ENSP00000353659 4.02 4 -10.9 10 24.4 No other features on this peptide
5 090213_06_NW_C3.mgf ENSP00000353679 4.22 1 -1.1 5.5 85.5 Neprilysin (EC 3.4.24.11)(Neutral endopeptidase 24.11)(Neutral 

endopeptidase)(NEP)(Enkephalinase)(Atriopeptidase)(Common acute lymphocytic leukemia 
antigen)(CALLA)(CD10 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P08473]

6 090213_07_NW_S3.mgf ENSP00000353679 3.83 1 -1.6 5.5 85.5 Neprilysin (EC 3.4.24.11)(Neutral endopeptidase 24.11)(Neutral 
endopeptidase)(NEP)(Enkephalinase)(Atriopeptidase)(Common acute lymphocytic leukemia 
antigen)(CALLA)(CD10 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P08473]

8 090213_10_NW_S4.mgf ENSP00000353679 3.95 1 -10.4 5.5 85.5 Neprilysin (EC 3.4.24.11)(Neutral endopeptidase 24.11)(Neutral 
endopeptidase)(NEP)(Enkephalinase)(Atriopeptidase)(Common acute lymphocytic leukemia 
antigen)(CALLA)(CD10 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P08473]

9 090213_11_NW_C5.mgf ENSP00000353679 3.93 1 -2.7 5.5 85.5 Neprilysin (EC 3.4.24.11)(Neutral endopeptidase 24.11)(Neutral 
endopeptidase)(NEP)(Enkephalinase)(Atriopeptidase)(Common acute lymphocytic leukemia 
antigen)(CALLA)(CD10 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P08473]

10 090213_12_NW_S5.mgf ENSP00000353679 3.46 1 -4.7 5.5 85.5 Neprilysin (EC 3.4.24.11)(Neutral endopeptidase 24.11)(Neutral 
endopeptidase)(NEP)(Enkephalinase)(Atriopeptidase)(Common acute lymphocytic leukemia 
antigen)(CALLA)(CD10 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P08473]

18 090211_12_NW_S9.mgf ENSP00000353679 4.54 1 -2.5 5.5 85.5 Neprilysin (EC 3.4.24.11)(Neutral endopeptidase 24.11)(Neutral 
endopeptidase)(NEP)(Enkephalinase)(Atriopeptidase)(Common acute lymphocytic leukemia 
antigen)(CALLA)(CD10 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P08473]

8 090213 10 NW S4.mgf ENSP00000353736 3.44 1 -1.5 11 23.6 60S RIBOSOMAL L13A
11 090211 04 NW C6.mgf' ENSP00000353736 5.3 2 -4.5 11 23.6 60S RIBOSOMAL L13A
20 090211_14_NW_S10.mgf ENSP00000353769 4.13 1 -1.2 9.3 139.2 Splicing factor, arginine/serine-rich 19 (Serine arginine-rich pre-mRNA splicing factor SR-A1)(SR-

A1)(SR-related-CTD-associated factor)(SCAF) [Source:UniProtKB/Swiss-Prot;Acc:Q9H7N4]

9 090213 11 NW C5.mgf ENSP00000353941 4.22 2 -6.4 7.5 25.7 Ig kappa chain C region. Source: Uniprot/SWISSPROT P01834
10 090213 12 NW S5.mgf ENSP00000353941 4.13 2 -5.7 7.5 25.7 Ig kappa chain C region. Source: Uniprot/SWISSPROT P01834
38 090213_14_NW_S19.mgf ENSP00000354021 4.44 2 -6.4 8.7 36 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
39 090213_16_NW_C20.mgf ENSP00000354021 4.18 1 -3.7 8.7 36 Heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2 / hnRNP B1) [Source:UniProtKB/Swiss-

Prot;Acc:P22626]
5 090213 06 NW C3.mgf ENSP00000354029 4.9 3 -7.5 9.2 14.5 No other features on this peptide

15 090211 08 NW C8.mgf ENSP00000354074 3.43 1 -2.3 11 15.1 40S ribosomal protein S24 [Source:UniProtKB/Swiss-Prot;Acc:P62847]
17 090211 11 NW C9.mgf' ENSP00000354074 3.92 2 -3.1 11 15.1 40S ribosomal protein S24 [Source:UniProtKB/Swiss-Prot;Acc:P62847]
20 090211_14_NW_S10.mgf ENSP00000354346 4.78 1 -2.2 5.9 94.6 Matrin-3 [Source:UniProtKB/Swiss-Prot;Acc:P43243]

11 090211_04_NW_C6.mgf' ENSP00000354522 3.36 1 -4.5 9.3 90.7 DNA topoisomerase 1 (EC 5.99.1.2)(DNA topoisomerase I) [Source:UniProtKB/Swiss-Prot;Acc:P11387]

27 090211_22_NW_C14.mgf ENSP00000354932 4.04 1 -1.1 6.6 91.2 Toll-like receptor 1 Precursor (Toll/interleukin-1 receptor-like protein)(TIL)(CD281 antigen) 
[Source:UniProtKB/Swiss-Prot;Acc:Q15399]

8 090213_10_NW_S4.mgf ENSP00000355258 4.6 1 -3.1 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

9 090213_11_NW_C5.mgf ENSP00000355258 4.19 2 -4.5 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

10 090213_12_NW_S5.mgf ENSP00000355258 3.46 1 -4.6 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

31 090211_27_NW_C16.mgf ENSP00000355258 5.68 5 -7.2 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

32 090211_28_NW_S16.mgf ENSP00000355258 4.69 1 -1.3 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

38 090213_14_NW_S19.mgf ENSP00000355258 3.88 1 -2.3 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

43 090213_20_NW_C22.mgf ENSP00000355258 3.5 1 -1.4 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

44 090213_21_NW_S22.mgf ENSP00000355258 3.5 1 -1.2 9.9 24.8 60S ribosomal protein L10a (CSA-19)(Neural precursor cell expressed developmentally down-regulated 
protein 6)(NEDD-6) [Source:UniProtKB/Swiss-Prot;Acc:P62906]

ENSP00000355258

13 090211 06 NW C7.mgf ENSP00000355356 3.41 1 -1.3 9.5 179.4
9 090213_11_NW_C5.mgf ENSP00000355759 4.32 1 -2.5 9 113 Poly [ADP-ribose] polymerase 1 (PARP-1)(EC 2.4.2.30)(ADPRT)(NAD(+) ADP-ribosyltransferase 

1)(Poly[ADP-ribose] synthetase 1) [Source:UniProtKB/Swiss-Prot;Acc:P09874]

10 090213_12_NW_S5.mgf ENSP00000355759 3.56 2 -9.1 9 113 Poly [ADP-ribose] polymerase 1 (PARP-1)(EC 2.4.2.30)(ADPRT)(NAD(+) ADP-ribosyltransferase 
1)(Poly[ADP-ribose] synthetase 1) [Source:UniProtKB/Swiss-Prot;Acc:P09874]

40 090213_17_NW_S20.mgf ENSP00000355809 3.49 1 -1.1 6.5 66.5 Protein enabled homolog [Source:UniProtKB/Swiss-Prot;Acc:Q8N8S7]

13 090211_06_NW_C7.mgf ENSP00000356264 5.64 2 -8.1 8.6 162.6 Neuron navigator 1 (Steerin-1)(Pore membrane and/or filament-interacting-like protein 3)(Unc-53 
homolog 1)(unc53H1) [Source:UniProtKB/Swiss-Prot;Acc:Q8NEY1]

5 090213_06_NW_C3.mgf ENSP00000356520 3.76 2 -6.1 6.4 140.9 ATP-dependent RNA helicase A (EC 3.6.1.-)(Nuclear DNA helicase II)(NDH II)(DEAH box protein 9) 
[Source:UniProtKB/Swiss-Prot;Acc:Q08211]

5 090213 06 NW C3.mgf ENSP00000356881 5.22 13 -23.3 6.8 14.5 40S ribosomal protein S12 [Source:UniProtKB/Swiss-Prot;Acc:P25398]
6 090213 07 NW S3.mgf ENSP00000356881 4.93 9 -24.4 6.8 14.5 40S ribosomal protein S12 [Source:UniProtKB/Swiss-Prot;Acc:P25398]

29 090211_25_NW_C15.mgf ENSP00000356881 4.25 1 -2.2 6.8 14.5 40S ribosomal protein S12 [Source:UniProtKB/Swiss-Prot;Acc:P25398]

13 090211_06_NW_C7.mgf ENSP00000357002 5.17 1 -1.1 6.6 13.3 Putative thiosulfate sulfurtransferase KAT (EC 2.8.1.1) [Source:UniProtKB/Swiss-Prot;Acc:Q8NFU3]

8 090213_10_NW_S4.mgf ENSP00000357284 4.17 2 -9.7 6.4 65.1 Lamin-A/C (70 kDa lamin)(Renal carcinoma antigen NY-REN-32) [Source:UniProtKB/Swiss-
Prot;Acc:P02545]

10 090213_12_NW_S5.mgf ENSP00000357284 3.52 1 -8.9 6.4 65.1 Lamin-A/C (70 kDa lamin)(Renal carcinoma antigen NY-REN-32) [Source:UniProtKB/Swiss-
Prot;Acc:P02545]

5 090213_06_NW_C3.mgf ENSP00000357673 3.25 1 -5.2 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 
[Source:UniProtKB/Swiss-Prot;Acc:Q12905]

9 090213_11_NW_C5.mgf ENSP00000357673 5.03 1 -6.7 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 
[Source:UniProtKB/Swiss-Prot;Acc:Q12905]

10 090213_12_NW_S5.mgf ENSP00000357673 4.27 1 -7.9 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 
[Source:UniProtKB/Swiss-Prot;Acc:Q12905]

11 090211_04_NW_C6.mgf' ENSP00000357673 5.83 6 -7 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 
[Source:UniProtKB/Swiss-Prot;Acc:Q12905]

12 090211 05 NW S6.mgf ENSP00000357673 4.33 1 -3.4 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 
37 090213_13_NW_C19.mgf ENSP00000357673 3.42 1 -1.2 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 

[Source:UniProtKB/Swiss-Prot;Acc:Q12905]
40 090213_17_NW_S20.mgf ENSP00000357673 3.87 1 -3.9 5.2 42.9 Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) 

[Source:UniProtKB/Swiss-Prot;Acc:Q12905]
37 090213 13 NW C19.mgf ENSP00000357791 3.53 1 -4.3 10 282.2 Hornerin [Source:UniProtKB/Swiss-Prot;Acc:Q86YZ3]
38 090213_14_NW_S19.mgf ENSP00000357791 3.89 2 -24.4 10 282.2 Hornerin [Source:UniProtKB/Swiss-Prot;Acc:Q86YZ3]

40 090213_17_NW_S20.mgf ENSP00000357791 3.89 2 -16.4 10 282.2 Hornerin [Source:UniProtKB/Swiss-Prot;Acc:Q86YZ3]

5 090213 06 NW C3.mgf ENSP00000358027 6.06 6 -1.9 7.7 18.9 Decaprenyl-diphosphate synthase subunit 2 (EC 2.5.1.-)(Decaprenyl pyrophosphate synthetase subunit 
6 090213_07_NW_S3.mgf ENSP00000358027 4.41 1 -2.2 7.7 18.9 Decaprenyl-diphosphate synthase subunit 2 (EC 2.5.1.-)(Decaprenyl pyrophosphate synthetase subunit 

2)(Candidate tumor suppressor protein) [Source:UniProtKB/Swiss-Prot;Acc:Q86YH6]
8 090213 10 NW S4.mgf ENSP00000358089 3.43 1 -2.4 8.1 43.4 Nucleolysin TIAR (TIA-1-related protein) [Source:UniProtKB/Swiss-Prot;Acc:Q01085]

37 090213 13 NW C19.mgf ENSP00000358089 3.72 1 -1.1 8.1 43.4 Nucleolysin TIAR (TIA-1-related protein) [Source:UniProtKB/Swiss-Prot;Acc:Q01085]
40 090213_17_NW_S20.mgf ENSP00000358089 3.43 1 -2 8.1 43.4 Nucleolysin TIAR (TIA-1-related protein) [Source:UniProtKB/Swiss-Prot;Acc:Q01085]

13 090211_06_NW_C7.mgf ENSP00000358123 3.81 1 -1.1 5.1 64.6 E3 ubiquitin-protein ligase HACE1 (EC 6.3.2.-)(HECT domain and ankyrin repeat-containing E3 
ubiquitin-protein ligase 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8IYU2]

8 090213_10_NW_S4.mgf ENSP00000358417 4.21 2 -13.5 6.3 56.6 D-3-phosphoglycerate dehydrogenase (3-PGDH)(EC 1.1.1.95) [Source:UniProtKB/Swiss-
Prot;Acc:O43175]

35 090211_32_NW_C18.mgf ENSP00000358417 3.88 1 -1.1 6.3 56.6 D-3-phosphoglycerate dehydrogenase (3-PGDH)(EC 1.1.1.95) [Source:UniProtKB/Swiss-
Prot;Acc:O43175]

37 090213_13_NW_C19.mgf ENSP00000358417 3.45 1 -6.3 6.3 56.6 D-3-phosphoglycerate dehydrogenase (3-PGDH)(EC 1.1.1.95) [Source:UniProtKB/Swiss-
Prot;Acc:O43175]
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38 090213_14_NW_S19.mgf ENSP00000358417 3.33 1 -6.9 6.3 56.6 D-3-phosphoglycerate dehydrogenase (3-PGDH)(EC 1.1.1.95) [Source:UniProtKB/Swiss-
Prot;Acc:O43175]

40 090213_17_NW_S20.mgf ENSP00000358417 3.72 1 -7 6.3 56.6 D-3-phosphoglycerate dehydrogenase (3-PGDH)(EC 1.1.1.95) [Source:UniProtKB/Swiss-
Prot;Acc:O43175]

8 090213_10_NW_S4.mgf ENSP00000358799 4.26 1 -1.2 10 107.1 Putative RNA-binding protein 15 (RNA-binding motif protein 15)(One-twenty two protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q96T37]

9 090213 11 NW C5.mgf ENSP00000358857 4.12 1 -1.2 5.3 29 Emerin [Source:UniProtKB/Swiss-Prot;Acc:P50402]
48 090213_26_NW_S24.mgf ENSP00000358943 3.58 1 -3.7 5.9 23.7 Tumor protein D54 (hD54)(Tumor protein D52-like 2) [Source:UniProtKB/Swiss-Prot;Acc:O43399]

17 090211 11 NW C9.mgf' ENSP00000358998 4.56 2 -14.1 8.8 144.9 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]
5 090213 06 NW C3.mgf ENSP00000359002 5.01 6 -38.1 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]
6 090213 07 NW S3.mgf ENSP00000359002 4.32 2 -10.5 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]
8 090213 10 NW S4.mgf ENSP00000359002 4.51 4 -39.4 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]
9 090213 11 NW C5.mgf ENSP00000359002 4.68 4 -10.5 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]

10 090213 12 NW S5.mgf ENSP00000359002 3.56 1 -3.5 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]
11 090211 04 NW C6.mgf' ENSP00000359002 4.27 1 -2.2 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]
20 090211_14_NW_S10.mgf ENSP00000359002 3.44 1 -1.9 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]

38 090213_14_NW_S19.mgf ENSP00000359002 3.64 1 -1.7 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]

39 090213_16_NW_C20.mgf ENSP00000359002 3.54 1 -2 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]

40 090213_17_NW_S20.mgf ENSP00000359002 3.69 1 -1.5 8.8 146 Myosin-VI (Unconventional myosin VI) [Source:UniProtKB/Swiss-Prot;Acc:Q9UM54]

5 090213 06 NW C3.mgf ENSP00000359345 4.18 2 -7.2 9.7 34.3 60S ribosomal protein L5 [Source:UniProtKB/Swiss-Prot;Acc:P46777]
10 090213_12_NW_S5.mgf ENSP00000359438 3.5 1 -5.1 7.7 38.9 Erlin-1 (Endoplasmic reticulum lipid raft-associated protein 1)(Stomatin-prohibitin-flotillin-HflC/K domain-

containing protein 1)(SPFH domain-containing protein 1)(Protein KE04) [Source:UniProtKB/Swiss-
Prot;Acc:O75477]

6 090213_07_NW_S3.mgf ENSP00000359508 3.51 1 -11.2 7.3 65.8 Fragile X mental retardation 1 protein (Protein FMR-1)(FMRP) [Source:UniProtKB/Swiss-
Prot;Acc:Q06787]

17 090211_11_NW_C9.mgf' ENSP00000359508 4.08 1 -1.4 7.3 65.8 Fragile X mental retardation 1 protein (Protein FMR-1)(FMRP) [Source:UniProtKB/Swiss-
Prot;Acc:Q06787]

9 090213_11_NW_C5.mgf ENSP00000359645 5.06 2 -6 10 42.3 Heterogeneous nuclear ribonucleoprotein G (hnRNP G)(RNA-binding motif protein, X 
chromosome)(Glycoprotein p43) [Contains Processed heterogeneous nuclear ribonucleoprotein G] 
[Source:UniProtKB/Swiss-Prot;Acc:P38159]

10 090213_12_NW_S5.mgf ENSP00000359645 3.93 2 -5.4 10 42.3 Heterogeneous nuclear ribonucleoprotein G (hnRNP G)(RNA-binding motif protein, X 
chromosome)(Glycoprotein p43) [Contains Processed heterogeneous nuclear ribonucleoprotein G] 
[Source:UniProtKB/Swiss-Prot;Acc:P38159]

5 090213_06_NW_C3.mgf ENSP00000360034 3.98 3 -11 8.7 44.9 Plasminogen activator inhibitor 1 RNA-binding protein (PAI1 RNA-binding protein 1)(PAI-
RBP1)(SERPINE1 mRNA-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8NC51]

6 090213_07_NW_S3.mgf ENSP00000360034 3.44 1 -5.9 8.7 44.9 Plasminogen activator inhibitor 1 RNA-binding protein (PAI1 RNA-binding protein 1)(PAI-
RBP1)(SERPINE1 mRNA-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8NC51]

8 090213_10_NW_S4.mgf ENSP00000360034 4.57 3 -8 8.7 44.9 Plasminogen activator inhibitor 1 RNA-binding protein (PAI1 RNA-binding protein 1)(PAI-
RBP1)(SERPINE1 mRNA-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8NC51]

11 090211_04_NW_C6.mgf' ENSP00000360034 4.38 1 -5.9 8.7 44.9 Plasminogen activator inhibitor 1 RNA-binding protein (PAI1 RNA-binding protein 1)(PAI-
RBP1)(SERPINE1 mRNA-binding protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8NC51]

26 090211_21_NW_S13.mgf ENSP00000360293 3.86 3 -6.8 6.4 142.4 Sorbin and SH3 domain-containing protein 1 (Ponsin)(c-Cbl-associated protein)(CAP)(SH3 domain 
protein 5)(SH3P12) [Source:UniProtKB/Swiss-Prot;Acc:Q9BX66]

8 090213_10_NW_S4.mgf ENSP00000360709 4.07 2 -12.3 5 83.2 Heat shock protein HSP 90-beta (HSP 90)(HSP 84) [Source:UniProtKB/Swiss-Prot;Acc:P08238]

22 090211_16_NW_S11.mgf' ENSP00000361269 4.71 1 -1.3 5.8 123.6 Rap guanine nucleotide exchange factor 1 (Guanine nucleotide-releasing factor 2)(C3G protein)(CRK 
SH3-binding GNRP) [Source:UniProtKB/Swiss-Prot;Acc:Q13905]

9 090213 11 NW C5.mgf ENSP00000361288 5.76 3 -7.4 10 24.2 40S ribosomal protein S8 [Source:UniProtKB/Swiss-Prot;Acc:P62241]
10 090213 12 NW S5.mgf ENSP00000361288 4.82 6 -7.9 10 24.2 40S ribosomal protein S8 [Source:UniProtKB/Swiss-Prot;Acc:P62241]
13 090211 06 NW C7.mgf ENSP00000361290 4.18 2 -9.6 9.3 165.7 Collagen alpha-6(IV) chain Precursor [Source:UniProtKB/Swiss-Prot;Acc:Q14031]

5 090213_06_NW_C3.mgf ENSP00000361626 3.9 3 -11 9.9 35.9 Nuclease-sensitive element-binding protein 1 (Y-box-binding protein 1)(Y-box transcription factor)(YB-
1)(CCAAT-binding transcription factor I subunit A)(CBF-A)(Enhancer factor I subunit A)(EFI-A)(DNA-
binding protein B)(DBPB) [Source:UniProtKB/Swiss-Prot;Acc:P67809]

37 090213 13 NW C19.mgf ENSP00000361920 4.54 3 -2.4 11 14.9 60S ribosomal protein Fragment [Source:UniProtKB/TrEMBL;Acc:Q5T8W0]
40 090213_17_NW_S20.mgf ENSP00000361920 3.89 2 -2.3 11 14.9 60S ribosomal protein Fragment [Source:UniProtKB/TrEMBL;Acc:Q5T8W0]

17 090211_11_NW_C9.mgf' ENSP00000361927 5.22 2 -10.9 5.9 49.2 60S ribosomal protein L36a (60S ribosomal protein L44)(Cell migration-inducing gene 6 protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P83881]

5 090213 06 NW C3.mgf ENSP00000362211 3.73 1 -1.1 6.4 80.2 Kelch-like protein 4 [Source:UniProtKB/Swiss-Prot;Acc:Q9C0H6]
5 090213_06_NW_C3.mgf ENSP00000362744 4.44 3 -19.8 10 29.6 40S ribosomal protein S4, X isoform (Single copy abundant mRNA protein)(SCR10) 

[Source:UniProtKB/Swiss-Prot;Acc:P62701]
6 090213_07_NW_S3.mgf ENSP00000362744 3.59 1 -3.4 10 29.6 40S ribosomal protein S4, X isoform (Single copy abundant mRNA protein)(SCR10) 

[Source:UniProtKB/Swiss-Prot;Acc:P62701]
37 090213_13_NW_C19.mgf ENSP00000362744 4.19 2 -3 10 29.6 40S ribosomal protein S4, X isoform (Single copy abundant mRNA protein)(SCR10) 

[Source:UniProtKB/Swiss-Prot;Acc:P62701]
38 090213_14_NW_S19.mgf ENSP00000362744 3.96 2 -3.4 10 29.6 40S ribosomal protein S4, X isoform (Single copy abundant mRNA protein)(SCR10) 

[Source:UniProtKB/Swiss-Prot;Acc:P62701]
40 090213_17_NW_S20.mgf ENSP00000362744 4.24 1 -3.3 10 29.6 40S ribosomal protein S4, X isoform (Single copy abundant mRNA protein)(SCR10) 

[Source:UniProtKB/Swiss-Prot;Acc:P62701]
34 090211_30_NW_S17.mgf ENSP00000362768 3.83 1 -1.6 7.3 120.8 Retinoblastoma-like protein 1 (PRB1)(107 kDa retinoblastoma-associated protein)(p107) 

[Source:UniProtKB/Swiss-Prot;Acc:P28749]
38 090213_14_NW_S19.mgf ENSP00000362820 3.41 1 -1.6 12 19.3 Splicing factor, arginine/serine-rich 3 (Pre-mRNA-splicing factor SRP20) [Source:UniProtKB/Swiss-

Prot;Acc:P84103]
40 090213_17_NW_S20.mgf ENSP00000362820 4.11 1 -3.4 12 19.3 Splicing factor, arginine/serine-rich 3 (Pre-mRNA-splicing factor SRP20) [Source:UniProtKB/Swiss-

Prot;Acc:P84103]
10 090213_12_NW_S5.mgf ENSP00000363006 4.17 2 -5.6 9.7 29.1 Transcription factor A, mitochondrial Precursor (mtTFA)(Mitochondrial transcription factor 

1)(MtTF1)(Transcription factor 6-like 2) [Source:UniProtKB/Swiss-Prot;Acc:Q00059]
21 090211_15_NW_C11.mgf' ENSP00000363006 4.68 1 -3.6 9.7 29.1 Transcription factor A, mitochondrial Precursor (mtTFA)(Mitochondrial transcription factor 

1)(MtTF1)(Transcription factor 6-like 2) [Source:UniProtKB/Swiss-Prot;Acc:Q00059]
5 090213_06_NW_C3.mgf ENSP00000363021 4.41 5 -2.8 5.7 29.2 Replication protein A 32 kDa subunit (RP-A p32)(RP-A p34)(Replication factor A protein 2)(RF-A protein 

2) [Source:UniProtKB/Swiss-Prot;Acc:P15927]
6 090213_07_NW_S3.mgf ENSP00000363021 3.65 2 -1.3 5.7 29.2 Replication protein A 32 kDa subunit (RP-A p32)(RP-A p34)(Replication factor A protein 2)(RF-A protein 

2) [Source:UniProtKB/Swiss-Prot;Acc:P15927]
17 090211_11_NW_C9.mgf' ENSP00000364802 4.82 2 -10.6 5.5 70 Heat shock 70 kDa protein 1 (HSP70.1)(HSP70-1/HSP70-2) [Source:UniProtKB/Swiss-

Prot;Acc:P08107]
8 090213_10_NW_S4.mgf ENSP00000364805 4.16 2 -10.5 5.8 70.3 Heat shock 70 kDa protein 1L (Heat shock 70 kDa protein 1-like)(Heat shock 70 kDa protein 1-

Hom)(HSP70-Hom) [Source:UniProtKB/Swiss-Prot;Acc:P34931]
9 090213 11 NW C5.mgf ENSP00000365238 4.42 1 -2.2 5.7 126.7 Ankyrin repeat domain-containing protein 26 [Source:UniProtKB/Swiss-Prot;Acc:Q9UPS8]
5 090213_06_NW_C3.mgf ENSP00000365458 4.27 3 -13.5 5.2 51 Heterogeneous nuclear ribonucleoprotein K (hnRNP K)(Transformation up-regulated nuclear 

protein)(TUNP) [Source:UniProtKB/Swiss-Prot;Acc:P61978]
10 090213_12_NW_S5.mgf ENSP00000365458 3.83 1 -3 5.2 51 Heterogeneous nuclear ribonucleoprotein K (hnRNP K)(Transformation up-regulated nuclear 

protein)(TUNP) [Source:UniProtKB/Swiss-Prot;Acc:P61978]
6 090213_07_NW_S3.mgf ENSP00000366013 3.38 1 -6.3 8 29.7 Guanine nucleotide-binding protein subunit beta-2-like 1 (Guanine nucleotide-binding protein subunit 

beta-like protein 12.3)(Receptor of activated protein kinase C 1)(RACK1)(Receptor for activated C 
kinase) [Source:UniProtKB/Swiss-Prot;Acc:P63244]

8 090213_10_NW_S4.mgf ENSP00000366013 4.17 1 -1.1 8 29.7 Guanine nucleotide-binding protein subunit beta-2-like 1 (Guanine nucleotide-binding protein subunit 
beta-like protein 12.3)(Receptor of activated protein kinase C 1)(RACK1)(Receptor for activated C 
kinase) [Source:UniProtKB/Swiss-Prot;Acc:P63244]

37 090213_13_NW_C19.mgf ENSP00000366190 3.4 1 -1.8 5.1 23.2 Dr1-associated corepressor (Dr1-associated protein 1)(Negative co-factor 2-alpha)(NC2-alpha) 
[Source:UniProtKB/Swiss-Prot;Acc:Q14919]

22 090211_16_NW_S11.mgf' ENSP00000366620 4.34 1 -2.1 6.8 89.9 GDH/6PGL endoplasmic bifunctional protein Precursor [Includes Glucose 1-dehydrogenase(EC 
1.1.1.47)(Hexose-6-phosphate dehydrogenase);6-phosphogluconolactonase(6PGL)(EC 3.1.1.31)] 
[Source:UniProtKB/Swiss-Prot;Acc:O95479]

37 090213_13_NW_C19.mgf ENSP00000366702 3.99 1 -4.3 8.4 50.5 ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein)(Mig-6) [Source:UniProtKB/Swiss-
Prot;Acc:Q9UJM3]

39 090213_16_NW_C20.mgf ENSP00000366702 4.52 2 -2.9 8.4 50.5 ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein)(Mig-6) [Source:UniProtKB/Swiss-
Prot;Acc:Q9UJM3]

40 090213_17_NW_S20.mgf ENSP00000366702 4.39 2 -4.2 8.4 50.5 ERBB receptor feedback inhibitor 1 (Mitogen-inducible gene 6 protein)(Mig-6) [Source:UniProtKB/Swiss-
Prot;Acc:Q9UJM3]

11 090211 04 NW C6.mgf' ENSP00000367025 4.06 1 -3.3 5.3 53 keratin 25D Source: RefSeq peptide NP 853513
8 090213_10_NW_S4.mgf ENSP00000367044 3.61 1 -5 8.7 152.4 Ribosome-binding protein 1 (Ribosome receptor protein)(180 kDa ribosome receptor homolog)(ES/130-

related protein) [Source:UniProtKB/Swiss-Prot;Acc:Q9P2E9]
19 090211_13_NW_C10.mgf ENSP00000367336 3.9 1 -4.5 10 14.8 60S ribosomal protein L23 (Ribosomal protein L17) [Source:UniProtKB/Swiss-Prot;Acc:P62829]

12 090211_05_NW_S6.mgf ENSP00000367643 3.92 1 -1.1 5.8 138.1 PR domain zinc finger protein 16 (PR domain-containing protein 16)(Transcription factor MEL1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q9HAZ2]

15 090211_08_NW_C8.mgf ENSP00000367643 5.05 1 -1.3 5.8 138.1 PR domain zinc finger protein 16 (PR domain-containing protein 16)(Transcription factor MEL1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q9HAZ2]

10 090213 12 NW S5.mgf ENSP00000367806 4.76 5 -10.3 11 17.1 40S ribosomal protein S16 [Source:UniProtKB/Swiss-Prot;Acc:P62249]
13 090211 06 NW C7.mgf ENSP00000367865 4.54 1 -1.2 6.1 21.1 Transmembrane protein 52 Precursor [Source:UniProtKB/Swiss-Prot;Acc:Q8NDY8]
22 090211_16_NW_S11.mgf' ENSP00000368543 3.86 1 -1.6 9.4 72.5 Vitrin Precursor [Source:UniProtKB/Swiss-Prot;Acc:Q6UXI7]

5 090213_06_NW_C3.mgf ENSP00000368883 4.51 4 -14.6 4.5 17.3 Myosin light polypeptide 6 (Smooth muscle and nonmuscle myosin light chain alkali 6) (Myosin light 
chain alkali 3) (Myosin light chain 3) (MLC-3) (LC17). Source: Uniprot/SWISSPROT P60660

10 090213_12_NW_S5.mgf ENSP00000369129 3.79 1 -1.3 6.4 331.6 Desmoplakin (DP)(250/210 kDa paraneoplastic pemphigus antigen) [Source:UniProtKB/Swiss-
Prot;Acc:P15924]

21 090211_15_NW_C11.mgf' ENSP00000369129 4.31 1 -1.2 6.4 331.6 Desmoplakin (DP)(250/210 kDa paraneoplastic pemphigus antigen) [Source:UniProtKB/Swiss-
Prot;Acc:P15924]

37 090213_13_NW_C19.mgf ENSP00000369129 3.8 1 -4.2 6.4 331.6 Desmoplakin (DP)(250/210 kDa paraneoplastic pemphigus antigen) [Source:UniProtKB/Swiss-
Prot;Acc:P15924]

38 090213_14_NW_S19.mgf ENSP00000369129 4.01 1 -6.4 6.4 331.6 Desmoplakin (DP)(250/210 kDa paraneoplastic pemphigus antigen) [Source:UniProtKB/Swiss-
Prot;Acc:P15924]

15 090211 08 NW C8.mgf ENSP00000369245 7.14 2 -1.1 7 36 Ig gamma-4 chain C region. Source: Uniprot/SWISSPROT P01861 
16 '090211 09 NW S8.mgf ENSP00000369245 5.32 1 -1.8 7 36 Ig gamma-4 chain C region. Source: Uniprot/SWISSPROT P01861 
17 090211 11 NW C9.mgf' ENSP00000369245 7.01 2 -1.4 7 36 Ig gamma-4 chain C region. Source: Uniprot/SWISSPROT P01861 
21 090211_15_NW_C11.mgf' ENSP00000369245 6.36 2 -6.5 7 36 Ig gamma-4 chain C region. Source: Uniprot/SWISSPROT P01861 
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25 090211_20_NW_C13.mgf ENSP00000369245 5.61 2 -1.1 7 36 Ig gamma-4 chain C region. Source: Uniprot/SWISSPROT P01861 

5 090213 06 NW C3.mgf ENSP00000369757 4.5 3 -8.9 11 28.7 40S ribosomal protein S6 (Phosphoprotein NP33) [Source:UniProtKB/Swiss-Prot;Acc:P62753]
6 090213 07 NW S3.mgf ENSP00000369757 4.02 2 -1.7 11 28.7 40S ribosomal protein S6 (Phosphoprotein NP33) [Source:UniProtKB/Swiss-Prot;Acc:P62753]
5 090213_06_NW_C3.mgf ENSP00000369957 4.65 4 -20.5 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-

stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

6 090213_07_NW_S3.mgf ENSP00000369957 4.24 2 -4.3 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

8 090213_10_NW_S4.mgf ENSP00000369957 3.67 1 -6.3 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

9 090213_11_NW_C5.mgf ENSP00000369957 3.95 1 -4.5 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

12 090211_05_NW_S6.mgf ENSP00000369957 5.03 3 -3.7 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

23 090211_18_NW_C12.mgf ENSP00000369957 3.99 2 -2.6 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

38 090213_14_NW_S19.mgf ENSP00000369957 3.54 1 -1.3 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

41 090213_18_NW_C21.mgf ENSP00000369957 3.39 1 -1.4 7.9 76.5 Interleukin enhancer-binding factor 3 (Nuclear factor of activated T- cells 90 kDa) (NF-AT-90) (Double-
stranded RNA-binding protein 76) (DRBP76) (Translational control protein 80) (TCP80) (Nuclear factor 
associated with dsRNA) (NFAR) (M-phase phosphoprote Source: Uniprot/SWISSPROT Q12906

31 090211_27_NW_C16.mgf ENSP00000370540 3.98 2 -8.2 8.7 26.2 Transmembrane emp24 domain-containing protein 4 precursor. Source: Uniprot/SWISSPROT Q7Z7H5 

10 090213 12 NW S5.mgf ENSP00000370589 3.54 1 -4.7 9.2 66 Nucleolar protein 5A (Nucleolar protein Nop56) [Source:UniProtKB/Swiss-Prot;Acc:O00567]
40 090213_17_NW_S20.mgf ENSP00000370601 3.49 1 -3.5 10 23.3 ATP synthase O subunit, mitochondrial precursor (EC 3.6.3.14) (Oligomycin sensitivity conferral protein) 

(OSCP). Source: Uniprot/SWISSPROT P48047 
14 090211 07 NW S7.mgf ENSP00000370782 4.25 1 -1.4 5.9 24.7

5 090213 06 NW C3.mgf ENSP00000371275 3.71 2 -13.7 8.6 47 Creatine kinase, ubiquitous mitochondrial Precursor (EC 2.7.3.2)(U-MtCK)(Acidic-type mitochondrial 
6 090213_07_NW_S3.mgf ENSP00000371275 4.18 3 -13.8 8.6 47 Creatine kinase, ubiquitous mitochondrial Precursor (EC 2.7.3.2)(U-MtCK)(Acidic-type mitochondrial 

creatine kinase)(Mia-CK) [Source:UniProtKB/Swiss-Prot;Acc:P12532]
20 090211 14 NW S10.mgf ENSP00000371275 3.79 1 -3 8.6 47 Creatine kinase, ubiquitous mitochondrial Precursor (EC 2.7.3.2)(U-MtCK)(Acidic-type mitochondrial 

5 090213_06_NW_C3.mgf ENSP00000371283 4.95 3 -8.3 9.7 70 Polyadenylate-binding protein 3 (Poly(A)-binding protein 3) (PABP 3) (Testis-specific poly(A)-binding 
protein). Source: Uniprot/SWISSPROT Q9H361

6 090213_07_NW_S3.mgf ENSP00000371283 4.32 2 -9.2 9.7 70 Polyadenylate-binding protein 3 (Poly(A)-binding protein 3) (PABP 3) (Testis-specific poly(A)-binding 
protein). Source: Uniprot/SWISSPROT Q9H361

17 090211_11_NW_C9.mgf' ENSP00000371283 3.56 1 -1.7 9.7 70 Polyadenylate-binding protein 3 (Poly(A)-binding protein 3) (PABP 3) (Testis-specific poly(A)-binding 
protein). Source: Uniprot/SWISSPROT Q9H361

18 090211_12_NW_S9.mgf ENSP00000371283 3.62 1 -7.3 9.7 70 Polyadenylate-binding protein 3 (Poly(A)-binding protein 3) (PABP 3) (Testis-specific poly(A)-binding 
protein). Source: Uniprot/SWISSPROT Q9H361

8 090213 10 NW S4.mgf ENSP00000371363 4.73 3 -8.7 10 20.1 Ribosomal protein S10-like pseudogene. Source: Uniprot/SPTREMBL Q9NQ39
19 090211_13_NW_C10.mgf ENSP00000371647 4.67 2 -7.9 9.5 121.6 Myosin-Ic (Myosin I beta) (MMI-beta) (MMIb). Source: Uniprot/SWISSPROT O00159

47 090213_25_NW_C24.mgf ENSP00000371891 3.29 1 -1.7 9.2 59.3 Caskin-1 (CASK-interacting protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8WXD9]

13 090211_06_NW_C7.mgf ENSP00000372170 3.22 1 -1.2 10 31.3 Homeobox protein MSX-1 (Msh homeobox 1-like protein)(Hox-7) [Source:UniProtKB/Swiss-
Prot;Acc:P28360]

10 090213 12 NW S5.mgf ENSP00000372218 3.79 1 -2 5.2 48.4 Serpin B12 [Source:UniProtKB/Swiss-Prot;Acc:Q96P63]
34 090211_30_NW_S17.mgf ENSP00000372500 5.25 2 -3.9 8.6 27.9 60S RIBOSOMAL L5 

24 090211_19_NW_S12.mgf ENSP00000372520 4.9 1 -1.1 6.3 59 Ig gamma-1 chain C region. Source: Uniprot/SWISSPROT P01857 

29 090211_25_NW_C15.mgf ENSP00000372520 4.66 2 -6.1 6.3 59 Ig gamma-1 chain C region. Source: Uniprot/SWISSPROT P01857 

38 090213_14_NW_S19.mgf ENSP00000372524 3.36 1 -1.4 10 16.7 Uncharacterized protein ENSP00000372524 [Source:UniProtKB/TrEMBL;Acc:A6NH90]

42 090213_19_NW_S21.mgf ENSP00000372524 3.49 1 -2.7 10 16.7 Uncharacterized protein ENSP00000372524 [Source:UniProtKB/TrEMBL;Acc:A6NH90]

17 090211 11 NW C9.mgf' ENSP00000372554 4.55 1 -1.3 11 9.8 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]
19 090211_13_NW_C10.mgf ENSP00000372554 4.92 1 -1.3 11 9.8 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]

20 090211 14 NW S10.mgf ENSP00000372554 3.87 1 -1.4 11 9.8 40S ribosomal protein S18 (Ke-3)(Ke3) [Source:UniProtKB/Swiss-Prot;Acc:P62269]
35 090211_32_NW_C18.mgf ENSP00000372648 3.97 1 -8.7 6.9 192.6 complement component 4B preproprotein [Source:RefSeq peptide;Acc:NP_001002029]

9 090213 11 NW C5.mgf ENSP00000372873 3.99 2 -21 7.1 47.3 Flotillin-1 [Source:UniProtKB/Swiss-Prot;Acc:O75955]
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