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Abstract  

 Artificial reefs have been serving the world in many fields, such as protecting 

beach erosion, enhancing recreational fishing, surfing and fostering biotic diversity, for 

many years. One major use for an artificial reef is to deploy it effectively to attract and 

aggregate fishes and marine life organisms for commercial and scientific purposes. The 

global hydrodynamic conditions in the vicinity of an artificial reef dictate its structural 

design (reef stability etc) and the nature of its large scale environmental impact 

(sediment transport and erosion etc), as well as its operational characteristics. On the 

West Coast of Scotland an artificial reef was deployed under the direction of 

Dunstaffnage Marine Laboratory in 2001. It was designed by the fishing industry to 

promote the economic potential of reef-based fisheries such as the European Lobster 

(Homarus gammarus (L.)). The size of the reef site equates to about 50 football pitches. 

There are forty two artificial reefs, comprising two different types of reef module, and 

25,000 tons of concrete blocks have been used to create each one of them.  

However, the investigation of global hydrodynamics requires solving the tidal 

flow in Loch Linnhe. A numerical model has been adopted to solve the 2D shallow 

water equations using a Finite Volume Godunov-type scheme. The scheme has the 

ability to deal with complicated topography such as Loch Linnhe. The initial and 

boundary conditions of the two-dimensional numerical model were imposed using tidal 

records obtained from the UK Hydrographical Office for the inlet and outlet of the 

Loch. A tidal field measurement was carried out using ADCP (Acoustic Doppler 

Current Profiler) instruments for the purposes of input to the model as well as its 

validation. These instruments were positioned on location near a group of artificial reefs 

to gather tidal wave elevations and currents profiles. The results of a two-dimensional 

numerical model were compared with the data given by the ADCP instruments and tides 

gauges station in the Loch. A good agreement was observed between the numerical 

model and data measurement taken from ADCP. The result of the two-dimensional 

numerical model indicates the ability of the model to represent the complex tidal 

conditions in the region convincingly. The local hydrodynamic conditions dictate flow 

separation and the production of turbulence generating eddies and vortices over a range 

of scales. This, in turn, determines the water quality characteristics,  such as the oxygen 

content,  and settlement patterns over the reef and regions favourable, or otherwise, to 

fish activity (predation, evasion, congregation etc). For these reasons, a reliable 
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procedure for determining the hydrodynamics of local and global of flows about 

artificial reefs is an essential prerequisite to their satisfactory design. The ADCP 

instruments were placed in three locations over a complete spring-neap tides cycle 

around a selected reef to investigate the three-dimensional hydrodynamics affecting it. 

The RNG k-ε turbulent model based on Fluent CFD (ANAYSIS 13) was matched to the 

global flows output from the shallow water flow model and used to simulate the 

hydrodynamic forces and flow fields with different flow velocity profiles of the tidal 

currents. The tidal current dynamics profile over a complete daily spring tidal cycle was 

investigated to identify the flow regimes on the reef. The results of the numerical model 

were compared with the data gained from the ADCP beside the chosen artificial reef.   
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Chapter 1. The importance of artificial reef numerical modelling    

1. Introduction 

The term artificial reef has been defined by many marine scientists, including 

the Oslo-Paris Commission (OSPARCOM) who defined an artificial reef as “a 

submerged structure placed on the substratum deliberately, to mimic some 

characteristics of a natural reef” (Anon, 1998). This definition has subsequently been 

adopted by the European Artificial Reef Research Network (EARRN). A more specific 

description was provided by Seaman and Jensen (2000) who defined an artificial reef as 

“one or more objects of natural or human origin deployed purposefully on the seafloor 

to influence physical, biological, or socioeconomic processes relating to living marine 

resources”. There are in addition many general definitions of an artificial reef, such as 

“a deliberately or accidentally deployed structure that lies on the seabed and which 

functions as habitat for marine life” (Wilding, 2003). In fact, piers (Glasby and Connell, 

1999), seawalls (Chapman, 2006) and gas platforms (Wolfson et al., 1979) have all been 

used as marine organism’s habitats. An artificial reef placed on the seabed works as a 

Fish Aggregating Device (FAD) that attracts fish to it (Chou, 1997). Marine organisms 

benefit from artificial reef sites as sources of food and places for fish reproduction as 

well as shelter for small size fish (Bohnsack and Sutherland, 1985). 

Artificial reefs have a long history. The construction of artificial reefs has been 

used in Japan since 17th century to attract fish (Weisburd, 1986). Fisherman discovered 

a method of increasing productivity by making “Jakagos” which are bamboo baskets 

filled with rocks (Thierry, 1988). Developments of this type of artificial reef are well 

known to fishermen today for their ability to attract fish, leading to increased fishing 

opportunities in their near vicinity (Santos et al., 1997). Such artificial reefs are now 

referred to as Fish Aggregating Devices and the Catch Per Unit Effort (CPUE), a 

measure of increased fishing opportunity, can be seen to be very high in their localities. 

Artificial reefs also have other applications and they can be divided into two main 

categories (Baine, 2001): those specifically designed for purposes such as artificial reefs 

used for scientific research; and those occurring incidentally from causes such as 

dumping waste or from shipwrecks. They can, for example, be used to restore marine 

life to areas damaged by construction projects, or to enhance the ecology of existing 

habitats. For example, even though coral reefs are one of the most productive of sea 

regions, artificial reefs can be used to enhance them as a marine habitat for a particular 
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target species (Clark and Edwards, 1999). Another use for artificial reefs is to provide 

an environment for leisure activities. Reefs used for this purpose are often designed for 

discrete locations which gather large numbers of sizeable or otherwise exotic fish. 

Usually they are constructed from vessels, rubble or tyres and concrete (McGurrin et al., 

1989). The development of, and wide variety of applications for, artificial reefs will be 

described in more details in the following chapter. 

 This study focuses on modelling flow field effects in and around artificial reefs 

partly because of their ecological impact on marine fisheries (Lin and Zhang, 2006) but 

also for their importance in artificial reef design in general. With regard to the former, 

failure or success of the artificial reef colonization depends on the recruitment of the 

marine organisms, such as larvae, that settled on the reef. A major factor controlling the 

recruitment of marine life organisms is artificial reef hydrodynamics, which potentially 

leads to a high level of success or failure the artificial reefs (Sheng, 2000). The artificial 

reef deployment on the seabed creates a wide range of flow patterns which can be 

characterized by intense velocity gradients, vortices and developing flow turbulence that 

depend on the reef physical characteristics. The artificial reef performance can be 

affected by factors such as the size and the geometrical design of the reef blocks, and 

the kind of materials applied to construct the artificial reef, and their interaction with the 

ambient flow. Therefore several researchers have been investigating aspects of the flow 

field on artificial reefs, such as Wang and Sato (1986) who studied the hydrodynamics 

characteristics of a series of representative models (i.e. cylinders, prisms, and other 

regular structure) that have been used in constricting artificial reef structures. Zhang and 

Sun (2001), for example, have shown that local upwelling current fields and eddy 

current fields at the front and back of an artificial reef structure led to an enhancement 

of the marine life productivity on the reef site.  

 This study will be set in the context of the hydrodynamic modelling of a sub-

element (known as the E-group) of an artificial reef complex constructed in Loch 

Linnhe off the west coast of Scotland. The selected reefs lie in a water depth range 

between 19 – 28 m and so an important factor is that the tidal current plays a major role 

in the artificial reefs hydrodynamics. The global tidal hydrodynamic characteristics in 

the wider Loch Linnhe environs have been simulated with a 2D model based on the 

shallow water equations (Liang et al., 2004 and Liang, 2008). Output from this model in 

the locality of the reef has been used as input to a 3D Navier Stokes solver used to 
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determine the details of the flow on and around the reef. Some experimental 

measurements have been made at the reef site partly for their own intrinsic value, but 

also for validating and refining the numerical models. 

 1.1 Aims and Objectives 

The overall aim of the study is to develop a methodology, and provide the tools 

for its implementation, for the determination of the detailed hydrodynamic 

characteristics of an artificial reef with a specified topology at a given location defined 

only by its bathymetry and tidal information from Admiralty charts, or their equivalent. 

The impetus for the study was to provide design tools for marine scientists and 

engineers developing artificial reef systems with regard to the hydrodynamics 

influencing the structural integrity, the habitat character and the marine environmental 

impact, of a reef of a specified design at a given locality.  

The idea is that the reef designer can compare the respective merits of different 

designs at the preliminary design stage with the aid of the methodology and the 

numerical models developed in the project. To this end, the following objectives were 

identified: 

• To choose an actual location and a realistic artificial reef design to use as the 

basis of the study, and define all their characteristics needed for the study. 

•  To obtain experimental measurements on site to determine environmental 

conditions. 

• To implement a 2D hydrodynamic model capable of determining the global 

hydrodynamics in the general area of the reef. 

• To demonstrate the model’s capabilities and suitability for the project by 

using it to solve problems with known validated outcomes. 

• To implement a 3D model capable of determining the detailed reef 

hydrodynamics. 

• To integrate the two models in a case study based on the Loch Linnhe 

artificial reef by using output from the 2D model as input for the 3D model. 

• To compare where possible the output from the numerical models with 

experimental data. 
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• To correlate flow parameters in the vicinity of the reef with design 

parameters of interest with respect to the reef’s ecology and its structural 

integrity. 

It was planned to achieve the aims and objectives through following the programme of 

work outlined in the next section and described in the following chapters. 

1.2 Thesis Structure 

The study is constructed of three major parts: 

• Part one: The tides and associated hydrodynamics are essential to the study 

especially after the deployment of a structure such as an artificial reef. In 

fact, it is important to understand the existing hydrodynamic characteristics 

of the artificial reef in order to assess its impact on the marine life inhabiting 

the reef. The detailed features of the Loch Linnhe tides have not been studied 

before. Therefore, the simulation of the Loch Linnhe tidal cycles is required 

to understand of the hydrodynamics associated with tide’s variation. The 

tide-induced waves and current velocities in Loch Linnhe have been 

modelled by solving the two-dimensional shallow water equations that adopt 

a finite volume Godunov-type scheme. The study allows the determination 

of the interaction between the tidal current and the Loch Linnhe artificial 

reef and the comparison with the measured field data obtained at the reef 

site.  

• Part two: The tidal flow propagates at the speed of the shallow water wave 

as determined from the shallow water equations solver. An instrument like 

the ADCP (Acoustic Doppler Current Profiler) has the ability to physically 

measure the tidal current in the water column. It has been used in the vicinity 

of the artificial reef as this will be described in chapter four which also 

presents the results. The data record was taken for 57 days to examine the 

hydrodynamic characteristics during the spring and neap tidal periods. In 

addition, the measurement was compared with the two-dimensional 

numerical solver to explore its ability and accuracy. A set of the tidal current 

profiles was implemented as an initial condition for three-dimensional 

numerical modelling for comparison with initial conditions taken from the 

2D model.  
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• Part three: The artificial reef was modelled using a three-dimensional model 

named FLUENT applying a RNG turbulence model. A comparison between 

computations with initial conditions based on an average velocity profile 

determined from the two-dimensional tidal model and the measured current 

profile taken from the ADCP data was undertaken. The turbulence model 

computes the flow regime around the reef leading to an understanding of 

how the reef hydrodynamics affects the marine organism’s habitat and its 

marine life productivity. 

The thesis is divided to seven chapters with this chapter included that can be briefly 

described as follows:  

1.2.1 Artificial reef development and application focused on the Loch Linnhe 

reefs ecology and the physical characteristics affecting the artificial reef  

Chapter 2 discusses the development of artificial reefs their worldwide 

application. The Loch Linnhe artificial reefs objective, and their location and structural 

complexity have been described. It covers several aspects of the Loch Linnhe artificial 

reefs from an ecology point of view. The attraction-production debate for artificial reefs 

has been explained, focusing on the Loch Linnhe artificial reef habitat. The physical 

factors affecting the artificial reefs ecology has been reviewed. Beginning with the 

factors that affect the artificial reef marine environment, such as reef location and the 

materials that were used in their construction, the factors that must be considered in 

their deployment are also explained. Artificial reef profiles and hydrodynamic patterns 

were described with their relation to the marine life. The factors that affect fish 

colonization, such as fouling organisms, which usually settle on the reef after 

deployment, are considered, as well as the important physical parameters that dictate 

biological reef colonization. The offshore wind-turbine was investigated from an 

ecological and hydrodynamic prospective as an example of the effect of the flow 

hydrodynamics on the marine organisms that live on it. Finally, an acoustic 

investigation of artificial reef structural stability, which depends on the balance of 

sediment scouring and settlement, and carried out by Manoukian et al. (2011) for an 

artificial reef’s in Italy has been discussed. 
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1.2.2 The Finite Volume Method techniques applied to Loch Linnhe tidal 

flows 

After covering the artificial reef ecology, the numerical methods begin with 

Chapter three that describes the shallow water equation (SWE) and the associated 

numerical algorithms, starting with literature reviews of the numerical methods 

implemented for modelling the tides. The Finite Volume Method using a Godunov-type 

scheme for the nonlinear shallow water equations was reviewed. The Godunov method 

and approximate Riemann problem solvers have been defined, followed by a 

description of a HLLC approximate Riemann Solver. The numerical tidal wave tests in 

one-dimension were implemented to validate the tidal numerical model. Further, two-

dimensional benchmark tests were applied to clarify the capability and numerical 

accuracy of the model for which examples of model validation can also be found in the 

literature (Liang, 2008). In addition, the numerical model was examined by simulating 

the tidal dynamics of Cook Strait in New Zealand that demonstrate the accuracy of the 

adopted numerical model.  

1.2.3 ADCP field measurement     

 Chapter four presents the field measurements that were taken near the artificial 

reef in Loch Linnhe. It shows the ADCP station positions near the group which have 

been selected from the artificial reefs. Several scripts of MATLAB code were created 

for the data analysis study. In the data analysis of the tidal wave cycle the velocity of the 

tidal current within the water column is investigated. The length of the record gives the 

spring-neap period during the lunar month. Therefore, a daily cycle from the spring and 

neap duration was selected and current profiles were generated to exhibit the velocities 

of these daily spring and neap cycles. The numerical modifications adopted to smooth 

the velocity profile so it can be applied as an initial condition for three-dimensional 

numerical modelling have been described. 

1.2.4 The tidal simulation of the Loch Linnhe adopting the two-shallow water 

equations 

In Chapter five the tidal numerical modelling was presented with the description 

of the initial and boundary conditions of the numerical model. The tidal simulation was 

executed for 13 days’ time duration to analyse the tidal current during the spring-neap 

periods. The results of the numerical model were compared with the ADCP 
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measurements taken for the artificial reefs sites. Moreover, navigation information from 

seafarer’s model about the kind of the tidal current expected in zones of Loch Linnhe 

was used in the comparison of results.     

1.2.5 The three-dimensional artificial reef turbulence modelling  

 The three-dimensional numerical method implemented to study the localized 

flow in the vicinity of the Loch Linnhe reef has been introduced. The turbulence model 

theoretical background is described and the backward step flow test in two-dimensions 

has been applied to validate the turbulence model. The three-dimensional RNG 

turbulence model was adopted in the simulation, and setting its initial and boundary 

conditions is described. A maximum of a chosen spring tide velocity profile taken from 

the field measurement records was examined on the assumption of slowly varying flow 

over the tidal cycle to investigate the flow pattern surrounding the reef and identify the 

regions of turbulence occurring during the simulation. Initial conditions based on an 

average tidal profile predicted by the two-dimensional shallow water equations model 

was compared with those of a velocity profile measured by ADCP instruments. In 

addition, an hour from the velocity profiles of the spring tide data measurement was 

examined in unsteady conditions to demonstrate the tidal current turbulence pattern can 

be assumed to be slowly varying during an hour in the spring period. This will give an 

indication of eco-efficiency of the artificial reef based on the previous information 

mentioned in chapter two.  

1.2.6 Discussions and conclusions 

Chapter seven presents a concluding discussion elucidating how the artificial 

reef is affected by the fluid dynamics and its implications for fish and crustacean 

colonization near the Loch Linnhe Reefs. The conclusions drawn from the present study 

are then presented.  Finally, suggestions for further research in the subject are made.  
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Chapter 2. Artificial reefs development and application with a focus on 

Loch Linnhe reefs ecology and the physical oceanographic 

characteristics affecting the artificial reef 

2. Introduction 

 Man-made or natural reefs can have a potential impact on marine life. They 

attract fish and increase marine biomass (Bohnsack and Sutherland, 1985). The earliest 

record of artificial reefs can be found in Japan in the 17th century for attracting fish. The 

development of artificial reefs continued in Japan during the 18th century where they 

were used in seaweed farming with materials made from bamboo and wood (Dean, 

1983). Improvements were made in building artificial reefs throughout the early 20th 

century, including the use of scrapped naval vessels for fish attraction (Simard, 1996). 

The Japanese engineers throughout the early 1960’s continued tested a wide range of 

materials at early stage of artificial reef construction and found that the best choice is 

concrete because of its longevity and low cost. Thus, artificial reef from 1963 onwards 

are largely built of concrete (Duedall and Champ, 1991). Researchers around the world 

focused on artificial reef technology as a result of the Japanese success in this field. 

Artificial reef technology was considered to be a method of seafood production that 

could supplement commercial fishing in countries such as Japan (Grove et al., 1994), 

Korea (Kim, 2001) and Taiwan (Shyue and Yang, 2002). 

However, there are many types of artificial reef and they can be divided more 

systematically according to their function and design. In fact, artificial reef application 

can be classified into four main categories as follows: for fishing and management, for 

marine restoration and habitat enhancement, for recreational objective and other 

function and marine infrastructure. In this work it will be seen that the Loch Linnhe 

artificial reefs have a major objective which is enhancing the marine environment in the 

west coast of Scotland whilst providing a site purpose built for scientific study. The 

habitat complexity of Loch Linnhe artificial reefs has an influence on marine organism 

such as Epifaunal productivity. Therefore, fish that feed on Epifaunal can colonize 

these reefs (Gratwicke and Speight, 2005).  

There are physical oceanographic factors that affect the colonization of an 

artificial reef such as hydrodynamics regimes, water depth, salinity and temperature. In 

fact, these physical characteristics have an impact on the recruitment and growth of 
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marine life such as sessile marine invertebrate which affect the artificial reef 

productivity (Dethier and Schoch, 2005). In addition, hydrodynamics force can affect 

the stability of artificial reef structure since the artificial reef may generate turbulence 

(Grove et al., 1991). An example to the effect of the hydrodynamics conditions is 

offshore wind-turbine scouring phenomenon. The current flow, as it passes a hydraulic 

structure, will create a flow pattern which may lead to changes in sediment transport 

and create scour which will affect the stability of the structure (Roulund et al., 2005). In 

fact, the structural stability of artificial reefs has been focused by Manoukian et al. 

(2011) in his study of sediment settlement on an artificial reef in Italy.  

 2.1 Artificial reef review 

 Artificial reefs deployed for a variety of purposes with a variety of 

designs have been purpose-built to enable the reefs to perform the intended function. 

For example, artificial reefs have been deployed to protect coasts by decreasing the 

wave energy and prevent beach erosion (Bruno, 1993). Further, artificial reefs can be 

used to enhance fisher’s aquaculture and diving tourism and protect marine habitats. 

The common purpose of artificial reef development is related to common fishery and 

aquatic management practice that has been widely used in nearly all countries (Seaman 

and Jensen, 2000). In general, artificial reefs are built for production or protection 

purposes. Artificial reefs can be classified according to their application which indicates 

a wide range of artificial reefs applied in many regions of the world.   

2.1.1 Artificial reefs development  

In 1952, the Japanese government was involved with coastal fisheries 

improvement and promoted the scaling up of artificial reefs from small to large scale. 

Throughout the early 1960’s Japanese companies began installing large scale artificial 

reefs (Yamane, 1989). In Japan during this period the total volume of assembled 

artificial reefs reached 1213390 m3 making up 721065 units of size of 1 m3 and 328217 

units of size of 1.5 m3 (Ino, 1974). Today the Japanese government spends 

approximately $10 million annually (Polovina and Sakai, 1989). In fact, 9.3% of 

Japanese coastline sea beds at less 200 m depth contain artificial reefs as seen in Figure 

2.1 (Thierry, 1988).  The Japanese public and government alike continue to place great 

importance on artificial reefs for the fishing industry. 
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The success of the artificial reef technology encourages the Taiwan government 

to deploy 358 concrete blocks in the water of Linbien in 1957 (Chen and Chen, 1957). 

Later, from 1973 Taiwan adopted a variety of sea farming methods using many types of 

materials like scrapped vessels, fly-ash, old tyres and concrete blocks. The Fishery 

Bureau of Taiwan Provincial Government invested about $2 million in this program and 

19 artificial reef sites were constructed around the coast of Taiwan as presented in 

Figure 2.2 (Chang and Shao, 1988). Korean researchers adopted the same approach 

regarding artificial reef construction materials and as a result, 90% of the 1200 artificial 

reefs that exist are made from concrete (Kim, 2001). In USA in the early days of 

artificial reefs there was no dumping of any scrap materials until the mid19th century 

and reefs were made from trees and bushes (Stone, 1985). Subsequently some reefs 

were constructed of waste materials, including scrapped cars. In 1968, an artificial reef 

of about 400 tonnes built from used car tyres was deployed in Humboldt Bay as an 

experiment (Dewees and Gotshall, 1974). However, due to a lack of experience in USA 

compared with Japan, early experiments brought many failures (Sheehy, 1982). It was 

found that dumping tyres created an environmental problem resulting in poor fishing 

grounds, and it was costly to remove them from the marine environment as shown by 

Figure 2.3. 

 

 

 

 

 

 

 

 

 

 



 - 11 -   

 

 

Figure 2.1 Artificial reef sites and fish species living near it in Japan            

(Thierry, 1988). 

 

Figure 2.2 The artificial reef positions in Taiwan 1973-1979 (Chang                

and Shao, 1988). 
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Figure 2.3 Early artificial reefs were made from scrap materials including old 

tyres which were cost millions of dollars to remove it (Diplock, 2008). 

Amongst them were such examples as the ‘Beer Case Reef’ in Fire Island Inlet built 

from 14,000 concrete filled beer cases. On the other hand, an artificial reef constructed 

from 250 cars off the coast of Alabama that did gave some indication of success in 

terms of the resulting fisheries grounds (Dean, 1983). 

 In Australia artificial reefs were made from a variety of materials including 

waste concrete pipes deployed in the sea. Tyres and decommissioned vessels were also 

used in early artificial reef experiments with approximately 40,000 un-ballasted tyres 

deployed as artificial reefs (Branden et al., 1994). Whereas, in Europe the sinking of any 

materials that effect the marine environment was restricted by regulation. This 

legislation can be seen in the European Artificial Reef Research Network [EARRN] 

(Wilding, 2003). The European leader in artificial reef technology is Italy. The majority 

of artificial reefs constructed in Europe have been deployed for research reasons (Jensen 

et al., 2000). The materials used to build these reefs were prefabricated materials like 

concrete blocks (Kress et al., 2001) or made from steel that can used for marine 

environment (Antsulevich et al., 2000). The objectives of these reefs are for biological 

improvement which will form a foundation for research or lead to commercial 

applications. UK is the strongest from Europe in the artificial reef research, with a high 

publication rate. In UK artificial reefs have been used for coastal protection from 

flooding and coastal erosion such as Happisburgh-to-Winterton on the north-east facing 

Norfolk coast in the UK (Gardner et al., 1996). Whatever differences exist between 
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countries like USA, Japan, Korea, Australia and Taiwan in cultural application they all 

have in common a continual development and construction of artificial reefs. In UK the 

first experimental artificial reef licensed under the revised draft OSPARCOM 

guidelines was located at Loch Linnhe on the west coast of Scotland. The Loch Linnhe 

artificial reef was funded by the Dunstaffnage Marine Laboratory to be a tool in 

scientific research for aquaculture. An important criterion in selecting the artificial reef 

location at Loch Linnhe was its acceptability to fisherman (Sayer and Wilding 2002).  

2.1.2 Artificial reefs application 

 Artificial reefs occur in two main forms: those deliberately placed on location 

for an explicit purpose, such as for scientific research; and those occurring incidentally 

from causes like shipwrecks. In fact, artificial reefs application can be separated due to 

their functions as follows: 

2.1.2.(A) Fishing reefs and management 

Artificial reefs have a long history of being used for attracting fish. In fact, 

artificial reefs can stimulate food chains such as, for example, herbivorous fish feeding 

on the algae growth on the reef and larger fish feeding on the sheltering juveniles 

(Chou, 1997). Most new artificial reef structures sunk in the sea and fish colonization 

will occur within hours or days (Bohnsack, 1991). Even if the food resource is still in 

the developing stage on the reef shelter is an important issue to certain species (Sale, 

1980). In addition, fish living near artificial reefs may be better developed than fish 

living near natural reefs, which if the reef is well managed reduces the fishermen’s 

running costs and increases their profit (Whitmarsh et al., 2008). Fishermen deploy 

artificial reefs and FADs to attract fish near to the shore using lightweight natural 

materials that dissipate over a short time period. Such reefs are usually small in size 

(Collins et al., 2000). In contrast, overfishing is one of the major threats to the 

successful commercialization of artificial reefs and they must be managed carefully to 

avoid this condition and produce good profits (Chou, 1997). Management strategies 

involve procedures such dividing the reef into zones by using particular gear such as 

trawls to decrease the conflict between different species of fish. This will create zones 

in the managed area that have different size of fishes in each zone (Revenga et al., 

2000). 

 



 - 14 -   

 

2.1.2.(B) Artificial reefs for marine restoration and habitat enhancement 

The decline of coral reefs is a widespread threat to ocean ecosystems 

(Hinrichsen, 1997).  The provision of artificial reef as alternative sites for the restoration 

of marine life could make a significant contribution to solving this marine 

environmental problem (Seaman and Sprague, 1991).  In addition, the introduction of 

artificial reefs can protect the coral reef by providing an alternative habitat for marine 

organisms that otherwise seek refuge in the coral reefs. The marine organisms will 

reproduce in the artificial reef and reduce the human activity on natural reefs (Abelson 

and Shlesinger, 2002). In fact, when artificial reefs sited in Marine Protected Areas 

(MPA) they will accelerate the development of threatened fish populations and increase 

the chances of their recovery by creating nursery grounds for the target species in these 

regions (Pitcher et al., 2002). The process is often reinforced in these areas by 

preventing the catch of certain kind of fish or by controlling the size of fishing gear 

allowed (Bombace et al., 2000). 

2.1.2.(C) Artificial reefs for recreational purposes 

Recreational reefs increase fish population and attract more interesting fish 

which give the sites an economical interest because they attract divers due to their fish 

variety (Ditton et al., 2002). These artificial reef locations are diving preferred which 

release pressure from natural reef dive sites. These kinds of artificial reefs may include 

surfing reef which is used to create waves suitable for surfacing (Mead and Black, 

1999). In USA recreational artificial reef has been enhancing surfing by creating regular 

ride waves (Borrero and Nelsen, 2003).  

2.1.2.(D) Other Artificial reef function and marine infrastructure 

Artificial reefs constructed for a specific job like algae and filter feeders that 

grow on these reefs to remove nutrient from water column (Angel and Spanier, 2002). 

Research artificial reefs can be included in this type of reefs. It is used to study the 

ecological processes on reefs as well as to investigate fisheries improvement on reefs 

(Jensen and Collins, 1997). In fact, research reefs can be used to test the materials 

suitability as the artificial reef substrate (Collins et al., 2002). Another, infrastructure 

such as coastline protection (Hamer et al., 1998), harbor walls (Stephens and Pondella, 

2002), shipwrecks (Zintzen et al., 2008) and offshore platforms (Wolfson et al., 1979) 

can be classified as an artificial reef. In fact, most of the human made structure that lies 
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on seabed can be consider as an artificial reef. These structures can be colonized by 

marine organisms since it was built from material resist sea condition which will create 

marine life environment (Caselle et al., 2002). These reefs can create most significant 

regional biodiversity of marine life such as Sydney Harbor 50% of marine biodiversity 

found in these kind of artificial reef (Bulleri et al., 2005). Another example, in USA at 

state of Louisiana oil offshore platform create 90% marine life habitat (Polovina, 1991). 

 2.2 Introduction to Loch Linnhe artificial reef 

  The artificial reefs used as a case study in this work are located in Loch Linnhe, 

off the west coast of Scotland. Wilding (2003) provides in-depth analysis of Loch 

Linnhe licensing and design. The artificial reef was deployed at August 2001 which 

followed by pre-deployment other research reefs in several years (Wilding, 2003). It lies 

on the west coast of Scotland UK about 12 Km from city of Oban. The objective of 

these reefs is studying the control factors that affect the biological communities on fish 

and crustacean species such as the European Lobster (Homarus gammarus). In fact, the 

Loch Linnhe artificial reefs marine ecology has been studied by many researchers such 

as Wilding and Sayer (2002a), Rose (2005) and Beaumont (2006). The reefs consider 

being one of the largest artificial reefs known in Europe. The size of the reef site 

equates to about 50 football pitches (Grid reference 56o 32` N 05o 27` W) as exhibited 

in Figure 2.4 (Beaumont, 2007).  

2.2.1 Loch Linnhe artificial reef and structure complexity 

The artificial reef cited on silty sand overlain by cobbles and stones (Wilding 

and Sayer, 2002a). The site consist of 42 artificial reefs with two different kind of reef 

module and 25,000 tons of concrete blocks which cover an area about 0.4Km2 as 

explained in details in Beaumont (2006). The position of all groups of the artificial reefs 

is presented in Figure 2.5 showing the water depth that was deployed in it. It is clear 

from the figure the artificial reefs deployment was in water depth range starting from a 

minimum 3m to maximum 28m. For research purposes the Loch Linnhe artificial reefs 

has been deployed in the human diving range. The Loch Linnhe formed by dumping 

concretes blocks in selected sites. The block concrete size was 21 X 21 X 42 cm which 

made from granite dust with low levels of fly-ash that make physically and chemically 

stable (Wilding and Sayer, 2002b). 
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Figure 2.4 The south of Loch Linnhe with the positions of the artificial reefs. 

In addition, there was two kind of concrete block a complex blocks with two 

voids in them to increase potential structure and simple one blocks as shown in Figure 

2.6. The objective from the reef complex design is to give higher level complexity to 

marine habitat. Another reason for complex blocks is the boundary between 

sedimentary ground and rocky reefs that give a shelter to marine life like the lobster 

(Wickins, 1994). The artificial reef structure design must meet the aims of the overall 

programme with economical cost and logistics (Wilding, 2003). Thus, the best choice 

was deploying the block concrete using a crane from an anchored barge in the chosen 

sea regions as seen in Figure 2.7 (Wilding and Sayer, 2002b). A target buoy was used to 

drop the concrete blocks which was fell to the seabed. There were two kinds of artificial 

reef modules a solid forming conical shape and other complex forming a pentagon 

shape with approximately 3-4 m in height by 15-20 m across as exhibited in Figure 2.8 

which shows a Multi-beam SONAR was applied to scan the artificial reef sites 

(Beaumont, 2006).  

Nevertheless, the artificial reef concept is intended to create an ecosystem that 

encourages a rise in marine life productivity. In addition, the effectiveness of any 

artificial reef depends on the marine colonization as will be found in the following 

section.  
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Figure 2.5 The artificial reef sits in the Loch Linnhe (Wilding, 2010).  
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                                                                 Figure 2.6 Block of the complex (right) and simple (left). The block dimensions 21 x 21x 42 cm (Wilding, 2010).  

   

                                             Figure 2.7 The crane on the surface barge deploying the blocks that construct the artificial reefs (Wilding, 2010). 
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                           Figure 2.8 An example of the Multi-beam SONAR showing the seabed with section of six artificial reef modules  

(C1c,C2c, C3c) modules consist of complex blocks and (C1s,C2s and C3s) simple blocks reef              

(Beaumont, 2006).  
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2.2.2 Epiflora and Epifauna colonization and the Loch Linnhe artificial reef 

Marine life colonizes artificial reefs by migration and the settlement of larvae 

and juveniles. In reality, marine organisms, such as algae, microorganisms and other 

marine animals that are attracting to new structures can colonize a reef in phenomenon 

known as biofouling. The biofouling consists of processes starting with organic and 

inorganic molecules settling on the new surface followed by microorganisms (Jonsson 

et al., 2004). The first layer is composed of organic molecules such as protein fragments 

and polysaccharides as presented in Figure 2.9. These microscopic suspended particles 

are governed by physical forces such as: the random motion of suspended particles 

(known as Brownian motion); van der Waals forces, which an electromagnetic forces 

acting between molecules; and electrostatic interaction (Davis, 1995).  

 

 

Figure 2.9 The four layers of marine biofouling (Davis, 1995). 

A biofilm from microorganisms like bacteria, Diatoms, protozoa and yeasts 

colonizes the new reef structure (Woods Hole Oceanographic Institution marine fouling 

prevention [WHOI], 1952). The Diatoms adhere themselves to a specific type of 

antifouling coating which sticks to the surface by Extracellular Polymeric Substances 

(EPS). The adhesive cells multiply to form a biofilm colonizing the new surface and 
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may reach 500 µm in thickness (Callow and Callow 2002). The surface roughness and 

its irregularity will increase the microbial colonization. A complex marine community 

will follow the microbial colonization which includes multicellular primary marine life 

such as algal spores, marine fungi, protozoa and barnacle cyprids (WHOI, 1952). The 

last stage involves large marine invertebrates which settle as macrofoulers. Most 

macrofouling communities include hard calcium carbonate from tubeworms, barnacles, 

mussel and corals as well as soft organisms that will settle like sponges, ascidians and 

hydroids. Fouling organism’s develop quickly with high density in warmer regions 

compared to cold ones. In addition, sun light and salinity will reinforce the rate of 

photosynthesis in marine life like marine plants and algae (WHOI, 1952). As a result, 

there is competition between marine microorganisms for the best area on the artificial 

reef with nutrients, light which can inhibit dissolved gases exchange (Steinberg et al., 

1997). In fact, fouling species like pelagic larvae form 90% of the initial colonists that 

settle on the artificial reef (Osman, 1977). The fouling of Epifaunal specie creates 

marine habitat diversity and raises the heterogeneity of the artificial reef. Thus, there is 

a correlation between the rate of fouling on the artificial reef and its productivity as 

suggested by Relini (1997). An example of Epifauna is the Epibiotic community that 

colonizes the artificial reef and forms the basis of the chain food on the reef. The 

aggregate and resident reef fish feed on Epibiota as observed by Sanchez-Jerez et al. 

(2002) and Page et al. (2007). The productivity of Epifaunal biomass on the Loch 

Linnhe artificial reef modules has been investigated by Beaumont (2006). As matter of 

fact, she indicates that Epifaunal recruitment is heavy in summer compared to other 

seasons on the Loch Linnhe artificial reef. There are two types of module making up the 

artificial reef on Loch Linnhe: simple and complex as explained in previous section. 

Beaumont (2006) estimated that Epifaunal biomass on the complex reef modules for 12 

months duration which indicates complex blocks is 1.6 times more productive than 

simple blocks. In addition, Epifaunal biomass on a complex Loch Linnhe artificial reef 

module is up to 30 times greater than the infaunal biomass losses due to sediment 

covering during 12 months of fouling time as exhibited by Figure 2.10. Therefore, there 

are high increases at the reef base of the food-web since preys exist for taxa in higher 

trophic levels. Literally, Steimle et al. (2002) studied Epifauna on his artificial reef and 

found its 44 times more productive than the Infauna beside it in sandy sediment. This 

agrees with results found by Beaumont (2006) on the Loch Linnhe artificial reef. 

Moreover, the habitat complexity has an influence on Epifaunal productivity as 

suggested by Guichard et al. (2001). 
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Figure 2.10 Loch Linnhe complex modules (a) shortly after deployment (b) 

more than 12 months of biofouling (Beaumont, 2006). 

As a result, the higher complexity will give more opportunities for Epifaunal prey such 

as fish to feed and have shelter or nest on the artificial reef (Gratwicke and Speight, 

2005). However, evaluation of artificial reef performance regarding productivity is 

important for artificial reef development as will be described in attraction-production 

debate. 

2.2.3 The attraction-production debate and the Loch Linnhe artificial reef  

 The definition of the productivity of an artificial reef depends on the assumption 

that artificial reef creates a new critical habitat with an environment that can increase 

the abundance and biomass of reef biota (Bortone et al., 1994). The fouling biomass on 

an artificial reef structure will enhance local production for reasons such as an increase 

production of fish biomass. Fish and crustacean species are desirable due to their 

commercial importance (Steimle et al., 2002). However, there is an argument that an 

artificial reef may attract the fish with no increase in total biomass which shows local 

fish biomass is redistributed with no additional biomass exploitable (Bohnsack, 1991). 

In fact, the Attraction hypothesis predicates that biomass on an artificial reef 

redistributes fishes without an increase in production (Wilson et al., 2001). On the other 

hand, it could be said that an artificial reef not only creates new additional habitat, 

which increases fish production, but it redirects harmful human activity away from 

sensitive regions such as natural reefs (Sosa-Cordero et al., 1998). Thus, the effect of 
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artificial reefs regarding the ‘Attraction versus Production’ discussion is still 

controversial as each side represents his view (Bohnsack, 1989). 

 In the Attraction hypothesis the fish high density on artificial reefs may occur 

due to fish immigration from natural reefs that survive and grow with a comparable rate 

on artificial reefs as they do on a natural reef. Thus, fish biomass on the artificial reef 

will increase since fish are pulled from their natural reef habitat (Wilson et al., 2001). 

On the other hand, natural reefs will suffer from fish reduction which indicates a spatial 

distribution of fish production between natural habitat and artificial reef, but total 

production of the artificial reef and the natural still constant as seen from Figure 2.11.a. 

Moreover, In the Attraction hypothesis larval fishes skip from the pelagic environment 

and settle in the artificial reef environment (Keough and Downes, 1982). On the other 

hand, in the Production hypothesis, an artificial reef can increase fish production by 

providing a new marine environment so fish larvae can settle, otherwise they are never 

recruited into older age-classes to survive on the artificial reef. Since, the artificial reef 

is producing new fish biomass and not redistributing it fish production will increase as 

the artificial reef size rises whereas the natural reef production will remain constant 

(Wilson et al., 2001). Therefore the net fish biomass production will increase overall for 

the reef system as shown by Figure 2.11.b. 
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Figure 2.11.a, b The prediction of the attraction and production assumptions 

against artificial reef size (a) attraction hypothesis [fish production is constant]                

whereas (b) production hypothesis [fish production rises linearly                                   

as artificial reef create new habitat] (Wilson et al., 2001). 

There are number of factors that lead to an increase in production such as increasing in 

feed efficiency, more shelter from predation or increase in tidal current and larval 

settlement that recruit larger fish populations (Bortone et al., 1994 ). The local fish that 

live on the artificial reef are attracted to it due to the surrounding environment, such as a 

shaded area that can protect it from approaching predators, or a sunlight area in which to 

feed. In fact, Bohnsack predicted the possibility of an artificial reef deployment effect 

with its attraction and production compared to non-reef regions as represented by  

Figure 2.12.  
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Figure 2.12 Bohnsack (1989) predicted linear or saturation functions which 

indicate if the fish population is recruit limited it will not be matter to increase                    

space of the artificial reef since it will not raises the fishery.                                    

However, if it is space limited, and artificial reefs increase                                      

the volume of space available, then they might serve                                                   

to increase fish production. 

  The natural reef is exposed to pressure from climate change which effects it’s 

availability as well as its mechanisms of natural population limitation. Bohnsack (1989) 

predicted several important gradients for artificial reef that may attract fish or rise 

production as shown in Figure 2.13. He predicts an artificial reef can attract fish at 

locations with high natural reef availability which increases fishing intensity. Another 

factor predicted by Bohnsack (1989) is increasing production can be more important for 

habitat-limited such as damselfish than recruitment-limited species such as snapper fish. 

Reef dependency and site attachment altered according to species and with age for some 

species (Sale, 1969). In fact, enhancement in production can be connected with highly 

territorial, philopatric and obligatory reef species. Some of these predications gradients 

were partial tested by Polovina and Sakai (1989) in studying an obligatory demersal reef 

species such as Octopus dofleini which is territorial, philopatric and low mobility. The 

study concludes an increase in production of the Octopus which appears to be habitat-

limited reef species. 
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Figure 2.13 The gradients predicted to be important for attraction versus 

production at artificial reef location which indicates a linear response                                           

as Bohnsack (1989) suggested. 

However, the attraction-production study was focussed on fish population 

(Svane and Peterson, 2001). Other marine species like crustacean fisheries have shown 

an enhancement of production on artificial reefs. It is practiced less commonly as 

economic benefits are modified due to the length of time needed for a majority of 

crustacean, such as lobsters, to reach market size (Jensen and Collins, 1997). 

On the other hand, lobster ranching has benefits over other finfish species due to 

its high degree of habitat integrity as well as its juvenile’s Homarus sp. commercial 

availability (Whitmarsh et al., 1995). In addition, many artificial reefs have been 

specifically deployed for lobster ranching in USA, Canada and UK and they have 

shown some success (Jensen and Collins, 1997). The crustacean fisheries can be 

discussed with the attraction-production debate, since artificial reefs with large size can 

attract and localize lobsters. Thus, a rise in lobster population will be found in natural 

and artificial reefs as Bohnsack (1989) using the same attraction assumption as for fish 

species. The Loch Linnhe artificial reef was designed as an experimental matrix in order 

to facilitate the study the impact of artificial reef on the marine environment (Wilding, 

2003). The reef habitat complexity with its complex-blocks was considered to create a 

perfect habitat for crustacean fisheries. For one reason, the preferred environment for 
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some marine species such as lobsters found in the boundary layer between the concrete 

blocks and sedimentary substratum (Wickins, 1994). These areas provide protection 

with convenient access to sediment. As a result, Wilding (2003) speculated that the 

artificial reefs with longer edges might perform better due to their long boundary 

regions. The habitat complexity of the Loch Linnhe artificial reef was studied by Rose 

(2005) for the two types deployed in the site simple and complex modules. The results 

indicate that the lobster numbers on the complex modules are greater than on the simple 

one. In fact, Beaumont (2006) study results indicate that the Loch Linnhe reef modules 

may be more productive per unit area/volume for marine life compared to local natural 

rocky reefs in the same site. 

2.3 The physical oceanographic factors affecting the artificial reef 

There are physical factors can affect the species colonization on artificial reefs. 

These factors can be summarized in three main aspects as follows. 

2.3.1 The receiving environment and construction materials   

  In general, artificial reefs are sited in water depths such that divers and 

fishermen can access them. The initial phase of any artificial reef project should be the 

investigation of the local hydrodynamic conditions that characterise the selected site and 

identification of the engineering and biological design constraints they impose (Grove et 

al., 1991). In addition, the relevant hydrodynamic parameters, such as current and wave 

data, should be recorded for at least one year so seasonal hydrodynamic variations can 

be observed. In addition the biotic parameters, such as temperature and salinity, should 

also be determined (Bohnsack et al., 1991). In reality, the location of the artificial reef 

will dictate the environmental conditions and the potential colonizing species (Zintzen 

et al., 2008). The marine environment of the artificial reef location like water quality 

can influence the eutrophic conditions that increase the alga growth as well as sessile 

fauna. The suspended particles found in water cause turbidity that effect assemblages on 

artificial reefs due to light limitation (Falace and Bressan, 2002). Moreover, the initial 

recruitment of epifaunal assemblages can be effected by light and sedimentation 

conditions as concluded by Maughan 2001. Indeed, pollution and turbidity cause low 

fish density on artificial reefs and it was found that fish catches can be reduced due to 

high water turbidity (Bohnsack et al., 1991). These higher concentrations of suspended 

particles are found with rise in nutrients and toxicants (Greilach et al., 1997). Also, the 
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accumulation of sediment on the reef will reduce the growth of sessile communities 

(Fabi and Fiorentini, 1997).  

However, artificial reefs are made from a wide range of materials such as PVC, 

tyres, steel, old cars, offshore platforms and old vessels (Relini, 2000). In addition, in 

their early days some of the artificial reefs were found to be unstable due to material 

loss in strong currents and stormy weather (Turpin and Bortone, 2002). The artificial 

reef materials are generally the most inexpensive that can be used in their construction. 

Thus, waste materials have been used for creating artificial reefs and, in some cases, 

were found to be harmful to the marine environment. For this reason dumping 

regulations have been set in place by world countries such as those of Europe countries 

that specify the type of materials that can be deployed. Steel and concrete are most 

common materials used for artificial reef construction (Pickering and Whitmarsh, 1997). 

The best materials for construction have been found to be natural materials like rocks, 

which have been used very successfully as these kinds of materials, can integrate 

naturally with marine life habitats (Chapman and Clynick, 2006). In fact, construction 

materials with surface texture, such as rocks, can help in fouling assemblages whereas 

PVC is unsuitable for this purpose (Glasby, 2000). 

2.3.2 Artificial Reef surface and deployment time  

The surface texture of an artificial reef can affect its initial colonization since the 

roughness of its surface influences its settlement. Therefore, rougher surfaces can settle 

larvae that leach chemicals while colonizing the artificial reef more than smooth 

surfaces (Pawlik, 1992). It found that surfaces with vertical or sharp edges experience 

less sedimentation deposition, which encourages fouling settlement and colonization by 

sessile fauna. This kind of surface contains more fauna with biodiversity compared to 

horizontal surfaces (Chapman and clynick, 2006). In addition, the surface faces light 

will attract sessile invertebrates rather than shaded areas (Blockley and Chapman, 

2006). 

Nevertheless, time of deployment can affects the colonization of an artificial 

reef. As a matter of fact, the deployment of artificial reefs in the seasonal larval duration 

will support artificial reef colonization as concluded by Brown (2005) in his study of 

epifaunal colonization on the Loch Linnhe artificial reef. The larval supply and 

recruitment which can change according to seasonal variation may have an important 
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role in deciding the time of artificial reef deployment (Pondella and Stephens, 1994). 

The changes of temperature due to yearly fluctuation have an influence on artificial reef 

colonization (Karnofsky et al., 1989). Moreover, as the artificial reef increases its age 

the number of species, such as polychaetes, involved in colonization also increases 

(Nicoletti et al., 2007). The rise of soft-bottom species will increase the heterogeneity of 

the marine life settled on an artificial reef. As has been exhibited by Beaumont (2006) 

Loch Linnhe artificial reef marine complexity developed during two years of 

deployment time. 

 2.3.3 Artificial reef structure and hydrodynamics regime 

 The structural design and the form of the artificial reef can play a role in attracting 

fish by inducing hydrodynamic characteristics such as turbulence and variations in the 

strength of local vortices. A qualitative analysis carried out by Chang-Hai and Osamu 

(1986) to investigate the hydrodynamic characteristics on a group of regular shaped 

artificial reef models that could generate eddies. The scope was for understanding the 

hydrodynamic aspects of the artificial reefs and their implications for optimal artificial 

reef design. Truly, the artificial reefs with higher profiles expect to create higher levels 

of turbulence, which will increase Epifaunal growth and attract more fish (Brock and 

Kam, 1994). The stability of artificial reef structures can also be affected by water 

hydrodynamics (Sheng, 2000). The construction design of an artificial reef must be 

compatible with hydrodynamic forces existing on the reef site. Also, the construction 

materials used in building must be heavy and of high density, such as steel and concrete, 

to prevent the reef from moving (Mathews, 1985). 

 Yet, ocean hydrodynamics of tides and ocean waves can play an 

important role in macroalgae drifting. Marine life on the artificial reef will feed on this 

macroalgae including organisms of commercial importance such as abalone (Shepherd 

et al., 1992). The hydrodynamics concerning algae and macroalgae has been 

investigated by many researchers, such as kelp algae and its interaction with wave 

hydrodynamics for example (Massel, 1999; Lovas and Torum, 2001). Another example 

is the investigation of the hydrodynamics transport of drifting macroalge species like 

Rhodophyta during a tidal cut done by Biber (2007). In fact, invertebrates like plankton 

larvae or sessile species can disperse over great distances due to water hydrodynamics 

such as tidal and residual currents. The dispersed pelagic larvae will be transported to 

new marine habitats (Shepherd and Brown, 1993). The distance of dispersion may reach 



 

- 30 - 

 

several kilometres depending on the current direction, as has been observed by Tegner 

and Butler (1985) in his study of Haliotis fulgens larvae dispersal. In addition, a study 

by Shepherd et al. (1992) found Haliotis laevigata larvae may disperse to several 

kilometres. This long distance dispersion can be explained only with tidal current 

hydrodynamics, as suggested by Rodda et al. (1997). The productivity of the artificial 

reef may be enhanced by creating space between the reefs, which can distribute the 

drifting larvae and macro-algae, but still there is inadequate knowledge of this matter 

(Grove et al., 1991). In addition, strong currents can effect settlement, recruitment and 

growth of encrusting organisms that exhibit a planktonic stage (Baynes and Szmant, 

1989). Wilding (2006) speculated that the entrapment of drifting macroalgae at the 

periphery of the Loch Linnhe reef resulted in the observed changes in the sediment 

infaunal community. Moreover, the current not only affects Epifaunal organisms’ 

settlement and growth, it affects mobile animals which swim around the reef, and it has 

been found that fish are attracted to turbulent water (Lin and Su, 1994). A possible 

effect of currents on fish behaviour it is that they avoid swimming in laminar flow to 

save energy and to exploit prey swept-up and disorientated by the flow (Godoy et al., 

2002). 

 However, reef movements related to sediment transport occur due to subsidence 

when it sinks into the seabed because of its weight and the water motion which 

redistributes the sediment erosion and accretion surrounding the artificial reef (Grove at 

al., 1991). As a result, the design of an artificial reef structure should minimize 

sediment erosion. For example, some reefs in regions with moderate or high current 

flow have been designed so that the structures have an opening at the reefs base to let 

water flow pass without raising the velocity at the base edge (Mottet, 1981). Scour 

prevention is important since the fine materials will be carried away by the current 

leaving coarse sediment remaining which affects the input of shell detritus originating 

from reef-encrusting organisms, as well as influencing sediment oxygenation, which has 

an impact on the benthic environment (Barros et al., 2001). An observation on the Loch 

Linnhe site showed a hydrodynamic energy gradient across it. It has higher energies in 

the northeast part that may cause sediment scouring with sediment suspension in this 

high energy region and subsequent sediment deposition in low energy region. This 

current regime with its effect on sediment causes distribution of benthic Epifauna and 

Infauna which was observed in Loch Linnhe artificial reef (Wilding and Sayer, 2002a). 
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The reason for this distribution is due to the role of water movement in delivering 

oxygen to the benthos marine organisms (Forster et al., 1996).  

2.4 Cases for marine structure under hydrodynamics condition  

The hydrodynamics condition affecting the marine structure is important to 

investigate due to effectiveness on many characteristics such as structure stability. In 

this section, two cases have been chosen for demonstrating the effect of the 

hydrodynamics regimes. The offshore wind-turbine and artificial reefs deployed in the 

Western Adriatic, Italy. These examples assist to understand the collinear relationships 

between the reef hydrodynamics and the marine life that settle and live in its 

surrounding.                   

2.4.1 Offshore wind-turbine as an artificial reef 

Wind-turbines are one type of such platforms that have an impact on marine life. 

Since, the foundations of offshore wind turbines could be deliberately designed to 

function as artificial reefs intended to increase food availability and provide sheltered 

ecosystems for target fish species (Wilhelmsson et al., 2006). The foundations of wind 

turbines, which may be constructed by different techniques (Hammar et al., 2010), have 

an impact on the ecosystem according to their different sizes and the material used in 

their construction. In fact, the major difference between the commonly deployed 

artificial reefs and wind turbine foundations reviewed by Baine (2001) is that most of 

artificial reefs are sunken completely under water whereas wind-turbine artificial reefs 

penetrate the whole water column with dry parts of the turbines. Wind-turbine base can 

suffer from erosion or scour around due to strong currents which induce sediment 

transport and can cause damage to the wind turbine infrastructure. In fact, scour 

depends on the speed of the current, the sediment grain size and the nature of the 

structure (Linley et al., 2007) and it is crucial to be able to assess these factors reliably 

in order to produce a viable foundation/reef design. One method is increasing the depth 

of the pile into the sediment and placing a protective surface around the base of the 

turbine using rock armour as demonstrated by Figure 2.14. Rock armouring involves 

rock dumping around the turbine base and forming a circular reef of 10 – 15m in radius 

with the foundations at its centre (Linley et al. 2007). The materials used for scour 

protection may have an impact on the level of colonization that will be created. 
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Figure 2.14 Rock armour used around a monpile turbine foundation to protect it 

from scouring (Barton, 2006). 

Nevertheless, the current around the base of the wind-turbine will always be 

changed and it will affect the potential habitat surrounding the foundation. The varying 

strengths of current will create different types of bed forms, such as ripples to sand 

ribbons and hollows that may attract different benthic communities (Parkinson, 1999). 

The beginning of fouling colonization starts with same process described in section 

2.2.2. In fact, most of larvae species have adopted strategies to maximize their 

competence and settling chances. For example, the common mussel, found with high 

numbers at Horns Rev wind farm in Denmark, is a superior competitor to any other 

sedentary species of invertebrates and macro algae and can cover much larger areas, 

leading to a massive colonization of the common mussel in this area (The Danish Forest 

and Nature Agency, 2006). The mussel densities observed ranged between 90,000 to 

200,000 ind./m2 in 2003, with most of the mussels found on the upper part of the 

monopoles and the shafts of the turbines as shown in Figure 2.15. Truly, species that 

settle on wind turbine foundations, or artificial reefs can be surprisingly diverse, and 

their presence depends partly on the water quality and conditions available.  
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Figure 2.15 A massive colonization of the common mussel on turbine 

foundation at Horns Rev (The Danish Forest and                                       

Nature Agency, 2006) 

However, the flowing water offshore behaves as a boundary layer that is 

characterized by a velocity variation within the water column ranging from zero at the 

seabed to the full tidal flow at the free surface. The hydrodynamics of a surface piercing 

circular pier placed on a bed in steady current, for example, has been studied by many 

authors such as Roulund et al. (2005) also Sumer and Fredsoe (2001). The flow is 

accelerated around the pile and separates from its surface as it experiences an adverse 

pressure gradient on its downstream face. This process is commonly accompanied by 

vortex shedding and the formation of a disturbed wake downstream of the pile and a 

horseshoe vortex in the front of the pile as demonstrated in Figure 2.16. Depending on 

the flow conditions, turbulence may be generated due to the changes in the flow and, as 

a result, an increase of sediment transport near the structure will be observed. In 

generally, researchers found that the scour process depends on the flow velocity and the 

turbulence intensity at the transition between fixed body and erodible bed (Hoffmans 

and Verheij, 1997).  
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Figure 2.16 The flow pattern variation as a steady current passes a vertical pile 

(Roulund et al., 2005). 

As a result, any fixed body can develop scour downstream as shown the schematic flow 

pattern in Figure 2.17 which shows a sill with bed protection. As Figure 2.17 indicates 

vortices with vertical axes may develop due to the influence of a flow pattern with a 

vertical wall or any fixed structure. The vortex intensity can be very large and scour 

hole development can potentially be seen to take the form as shown in Figure 2.17. 

There is danger of structural instability unless sufficient precautions are taken 

(Hoffmans and Pilarczyk, 1995). Very turbulent flow, as will be the case with artificial 

reefs, causes sediment erosion at the bed due to ascending currents and rotation in 

separating vortices which lead to sediment settling out sideways (Hoffmans and 

Verheij, 1997). The phenomena will effect on sediment causing distribution of benthic 

Epifauna and Infauna as observed in Loch Linnhe artificial reef in Wilding and Sayer, 

(2002a) study. 
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Figure 2.17 The flow pattern downstream schematic over a sill                                 

(Hoffmans and Verheij, 1997). 

2.4.2 Artificial reef in the Western Adriatic Sea, Italy 

An artificial reef’s structural stability depends on the balance of sediment 

scouring and settlement, and an artificial reef can buried as a result of the ocean 

dynamic conditions over time. Manoukian et al. (2011) investigated acoustically an 

artificial reef that lies in the Western Adriatic Sea, Italy after thirty three years of 

deployment. The investigation was on sediment scouring, burial and any variation in the 

horizontal level. As shown from Figure 2.18 a pyramid artificial reef with 6 m height is 

suffering from currents parallel to the shoreline and an accumulation of sediment due to 

scouring can be clearly seen. The sediment surrounding the reef shows a sediment pile 

of about 1 m height as well as a scouring erosion site as multi-beam echo sounder 

indicates. The study concluded that artificial reef deployment can change the seabed 

topography due to local hydrodynamics raising the fluid velocity and the turbulence 

intensity. Manoukian et al. (2011) observed that several of their artificial reefs 

experienced geophysical processes such as scouring, sinking and deepening due to 

sediment instability. As a result, there is a decrease in the reef’s finfish and living 

marine life which affects the role of these reefs as aggregation devices.  
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Figure 2.18 The depth profile of a pyramid artificial reef indicting the sediment 

surrounding the reef due to Ocean conditions after 33 years of                           

deployments (Manoukian et al., 2011). 

2.5 Summary of artificial reef hydrodynamics and its environmental 

impacts 

In summary, the global hydrodynamic conditions in the vicinity of an artificial 

reef dictate its structural design (reef stability etc) and the nature of its large scale 

environmental impact (sediment transport and erosion etc). They also impose 

constraints on its functionality (it can only provide the ideal habitat for a target 

population if it can also maintain its structural integrity). The local hydrodynamic 

conditions dictate flow separation and the production of turbulence, generating eddies 

and vortices over a range of scale. This, in turn, determines the water quality (such as 

oxygen content), settlement patterns over the reef and regions favourable, or otherwise, 

to fish activity (predation, evasion, congregation etc). For these reasons, a reliable 

procedure for determining the hydrodynamics of local and global of flows about 

artificial reefs is an essential prerequisite to their satisfactory design. 



 

- 37 - 

 

Chapter 3. Tidal phenomena and numerical modelling of the shallow 

water equations 

3. Introduction 

The tides near coastlines can be very complex due to the presence of 

complicated bottom topographies, tidal flow hydrodynamics and irregular boundaries. 

In recent years, the effect of tidal flow hydrodynamics on artificial reef has been studied 

for its impacts on the artificial reef eco-efficiency. In fact, hydrodynamic process of ebb 

and flood tides can influence the seabed sediment that controls the activities of benthic 

marine organisms (Limpsaichol et al., 1994). In addition, intensive tidal current can 

cause stability problems in the form of local scour affecting the artificial reef structure 

as described in chapter two. Thus, the simulation of current hydrodynamics and water 

oscillation in artificial reef regions provides a powerful tool for understanding the 

different marine phenomena involved.  

 In previous decades there were many numerical methods proposed to simulate 

ocean problems. The shallow ocean area was focused on in these simulations due to its 

importance in marine environmental issues. The shallow water equations provide quite 

an efficient and effective method to be used in simulating shallow ocean area. 

Furthermore, shallow water equation models have been developed for many natural 

phenomena, such as predicting tidal ranges and storm surges, which is important in the 

development and planning of coastal areas. In addition, they can be used to study 

transport phenomena by coupling the shallow water equation models to transport 

models like that of pollution in bays and estuaries, which can affect commercial projects 

such as aquaculture operations in coastal water (Venayagamoorthy et al., 2011).  

The shallow water equations have been used to model many flows such as 

rivers, estuaries, shallow lakes and coastal zones (Yu and Kyozuka, 2004). There are 

many models available to evaluate tidal flows based on different numerical methods to 

solve these equations. The numerical methods include: the Finite Element Method 

[FEM] found in Akanbi and Katopodes (1988), Bermudez et al. (1991), Kodama and 

Kawahara (1994), Li et al. (2003), Leupi et al. (2009); the Finite Difference Method 

[FDM] shown in Garcia and Kahawitha (1986); Fennema and Chaudhry (1989; 1990); 

the Discontinuous Galerkin Finite Element Method [DG FEM] described in Aizinger 

and Dawson (2002) as well as Yu and Kyozuka (2004); the Lattice Boltzmann Method 
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[LBM] seen in Chen and Doolen (1998); Banda et al. (2009); Zhou (2002); and the 

Finite Volume Method [FVM] reported by e.g. Zhao et al. (1994; 1996). The Finite 

Volume Method [FVM] is one of the most common methods that have been used to 

solve problems related to bioenvironmental flows and it has often been applied in 

marine and ocean environments (Zhao et al., 1994).  

3.1 The tides patterns and prediction 

The oscillation of the bodies of water has a natural period due to the tide-

generating forces, some of which act as daily or diurnal forces, and others as 

semidiurnal forces. There are several features that can be observed from tides. These 

features may include the relationship between solar declination and lunar and high 

diurnal tides as demonstrated in Figure 3.1, and others such as the spring-neap cycle of 

semidiurnal amplitudes (Pugh, 1996). In fact, tidal range changes according to the 

intensity of tide-generating forces due to astronomical effects. The synodic month, 

which is referenced to the phase of the sun or the moon, causes spring and neap tides 

during periods of 29.530588 days in length (Hicks, 2006). When the tide’s ranges are 

greater than the monthly averaged range they’re called spring tides, which occur twice 

every synodic month. Further, the neap tides are tidal ranges that are less than the 

monthly average and happen twice in the synodic month as shown in Figure 3.2 

(Trujillo, 2010). 

 

Figure 3.1 The tidal bulges centres may be set at any latitude from the equator 

with a declination angle 28.5o on either side of the equator,                     

depending on the season of the year (Trujillo, 2010). 
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Figure 3.2 The monthly tidal range variations at various sites on the world with 

different daily tidal patterns (Trujillo, 2010). 

On the other hand, the prediction of tides at a specific site can be estimated by 

an empirical determination that is based on harmonic analysis (Palmer et al., 1980). In 

addition, the rise and fall of water determined by the tide can be modelled in the form of 

a series of harmonic terms that represent the tide-generating forces related to 

astronomical conditions (Schurman, 1941). Every term in the series is represented by    

a hypothetical tide-generating force that is related to an orbiting earth, and a constituent 

tide with its own period (Marmer, 1954). In tidal analysis a constituent is usually 

described by its speed or frequency in degrees per hour forming one simple harmonic 

cosine curve see equation (3.1). In the equation (3.1), )(ttη  represent water elevation of 

the tide at time (t), R0 is the tide amplitude that is equal to one-half of the tidal range,    

φ is the phase degree and ω0 is angular speed. For example, the principal solar 

semidiurnal S2 the subscript 2 indicates two complete tidal cycles for each astronomic 

cycle which represents the earth spinning relative to the sun. Further, the period of the 

sun constituent is 12 mean solar hours which gives a speed of hrthatS oo /3012/3602 = . 

Note the constituent (cosine curve) is consisting of 360o from crest to crest (Hicks, 

2006). Similarly the principle lunar semidiurnal constituent M2 represents the earth 

spinning relative to the moon, which lasts 24.8412 mean solar hours known as lunar 

day. The period for a tidal cycle caused by the moon is 12.4206 mean solar hours that 

gives a speed of hr/984.284206.12/360thatM
oo

2 = . In fact, these tidal constituents 

can be shown as curves for every component which is described as oscillations about 

mean tide level. The S2 and M2 constituents combined in phase with its maxima gives 

the spring tide which will occur at new moon and full moon time (Hicks, 2006).           
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In addition, the neap tides happen when these constituents S2 and M2 don’t match in 

phase at the time of the first and third quarter as represented in Figure 3.3. There are 

several of constituents (see table 3.1) which can be theoretically calculated such as the 

Luni-solar declinational diurnal constituent K1 as well as the principal lunar 

declinational diurnal constituent O1 (Parker, 1991). In fact, U.S. NOAA uses 37 

constituents for standard analysis for most U. S. coasts to simulate the major motions 

and perturbations in the sun-moon-earth systems (Hicks, 2006).  

)tcos(R)t( 00t φ−ω=η                                                                               (3.1) 

 

Figure 3.3 The relationship of phases seen in spring and neap tides explained by 

the harmonic constituents (Hicks, 2006). 

M2 1.00 12.42hrs 

S2 0.46 12.00hrs 

O1 0.41 25.82hrs 

K1 0.40 23.93hrs 

N2 0.20 12.66hrs 

P1 0.19 24.07hrs 

L2 0.03 12.19hrs 

Table 3.1 Semidiurnal and diurnal constituents related to the theoretical relative 

magnitude with periods of the constituents [360o/speed] (Hicks, 2006). 
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Nevertheless, it must to be noticed that these constituents are computed 

theoretically depending on the equilibrium tides theory that calculate the tide-generating 

forces and it may not match the observed tide (Pugh, 1996). The harmonic constituents 

can be divided and solved for their amplitudes and phases from a tidal height record 

time series which can be analysis by a least squares fitting method that forms a series of 

sine and cosine curves. In fact, harmonic analysis uses the least-squares fitting method 

to fit and adjust so as to minimise the square of the differences )(
2

tS∑ between the 

observed and computed tidal level (Pugh, 1996). The schematic of least-squares fitting 

procedures which create a tidal function as follows: 

[ ] [ ] [ ]
unknown                         known                     known            

contants  empirical       Tide   mEquilibriulevel Observed =
 

The function of tidal oscillation is formed by a finite number of N harmonic 

constituents and it depends on the length and quality of the tidal data records. Further, 

information can be found in many references such as Forrester (1983), parker (1991), 

Pugh (1996) and Hicks (2006).  

3.2 Summery of numerical method applied to model tides 

In tidal flow computer simulations the Finite Difference Method [FDM] solving 

the shallow water equations has been the most commonly used method so far. This 

method has a long history in tidal flow simulation having been used for calculations 

such as simulating the tidal flow in the English Channel and Southern North Sea 

(Praagman et al., 1989). The FDM method transforms the governing partial differential 

equations into difference equations using a scheme applied at grid points. It has been 

popular in applications in regional seas and basin-scale Ocean modelling (Chu and Fan, 

1997). The solution of this method is strictly valid only at the grid points.  

Usually, in FDM the coordinates are (x, y) in the horizontal direction and z in the 

vertical direction but many finite difference models apply variations on the vertical 

coordinate. For example, Bryan (1969) uses z-coordinates as well as Blumberg and 

Mellor (1987) use sigma as a vertical coordinate. However, the application of a terrain-

following sigma coordinate as a vertical coordinate in the FDM causes truncation errors 

at sharp locations in the topography due to horizontal pressure gradient errors (Chu and 

Fan, 1997). An improvement in the accuracy of the sigma-coordinate in the FDM has 
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been worked by various researchers such as Gary (1973), McCalpin (1994) also Chu 

and Fan (1997).  

There are many finite difference models, the Princeton Ocean Model uses primitive 

three-dimensional flow equations with an assumption of hydrostatic pressure 

distribution in the vertical direction, and the FDM is used to solve resulting equations 

(Casulli and Cheng, 1992). It was applied to simulate flooding and drying of tidal mud- 

flats by the marine environmental commission (MEC) in Japan. Another well-known 

Finite Difference Method for tidal flow has been presented by the Japanese Society of 

Naval Architects and Ocean Engineering who have been using the model to study the 

water level variations in the Caspian Sea (Yang et al., 2008).  

For applications where the solution is smooth the Finite Difference Models may 

produce accurate results but they are not the preferred method for coping with more 

complex hydrodynamics which involve flow discontinuities (Yu and Kyozuka, 2004). 

The finite element method [FEM] is more suited to such flows and has been applied 

extensively in tidal flowing modelling. The most important characteristic of the FEM in 

this respect is its ability to handle complex geometries (and boundaries) with comfort. 

The FEM method has been illustrated in many oceanographic problems such as the 

numerical modelling carried out by Jones (2002) to study the coastal and shelf-sea in 

the European context, and Fortunato et al. (1997; 1999) who examined the influence of 

tidal hydrodynamics on the Tagus estuary. Walters Roy (1989) compared two Finite 

Element models: one model applied harmonic decomposition in time (Walters Roy, 

1989) and the other used a time-stepping approach (Werner and Lynch, 1987) in his 

prediction for North Sea tides in the English Channel.  

TELEMAC is a numerical modelling package that includes modules such as free 

surface modelling, sedimentology, water quality, sea waves and groundwater flow 

modelling. The TELEMAC system was developed by the Laboratorie National 

d’Hydraulique et Environment (L.N.H.E) which is a research department of the French 

Electricity Board [EDF-DRD] (Hervouet and Bates, 2000). The TELEMAC system has 

been developed applying the Finite Element Method which is available in two-

dimensional with triangular or quadrilateral meshes, and in three-dimensional with 

tetrahedron or prism meshes (Hervouet et al., 2010). TELEMAC has been widely 

applied in coastal simulation to model tidal currents and shelf seas flow (Sauvaget et al., 

2000; Jones and Davies, 2006; Hervouet, 2007). However, the finite element models 
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encounters similar obstacles when to the finite difference codes when it is applied to 

such flow problems. The FEM can experience difficulty when it encounters both sub-

critical and super-critical flows (Akanbi and Katopodes, 1988; Zoppou and Roberts, 

1999).  

A numerical method that has recently gained popularity for solving the shallow water 

equations is the Discontinuous Galerkin Finite Element Method [DG FEM] (Aizinger 

and Dawson, 2002). The DG FEM method differs from the FEM which assembles a 

global system and solves very large set of linear equations (Zhixing and Kyozuka, 

2004). In this method, mass conservation is locally enforced at each element in the DG 

FEM and it has ability to capture steep gradients and fronts. The DG FEM method 

doesn’t have a limit on the selection of element basis pairs which improves the 

compatibility of velocity and pressure in it, and it is an important characteristic in this 

method, whereas it is difficult to achieve in the continuous FEM method (Zhixing and 

Kyozuka, 2004). It has produced promising results in applying the hyperbolic 

conservation laws (Krivodnova et al., 2004). In fact, it was implemented on a tidal flow 

in a narrow straight channel that connects two bodies of water and it gave good results 

due to its ability to capture high velocity flows in the narrow channel which Zhixing and 

Kyozuka (2004) studied. The disadvantage of DG FEM is that it is a computationally 

intensive technique requiring large computer resources.  

Another numerical method that has been used by Zhou (2002) to solve the shallow 

water equations is the Lattice Boltzmann Method [LBM]. The LBM has the advantage 

of simple arithmetic calculations and its suitability for flow over complex geometries, 

such as porous media simulation, since it is easy to implement the boundary conditions 

and is well suited for implementation on parallel computer architecture (Banda et al., 

2009). This method has also been applied to solve the shallow water equations that 

represent wind-driven circulation (Salmon, 1999; Zhong et al., 2005). In addition, it was 

implemented to study pollutant dispersion by tidal flow with a complicated geometry 

due to irregular bathymetry (Banda et al., 2009).  

The Finite Volume Method [FVM] is a discretization method that transforms the partial 

differential equations into an integral equations form commonly used in ocean 

modelling (Chu and Fan, 2002). It is preferred in the numerical simulation of various 

types of hyperbolic systems that allow problems with discontinuities such as shocks 

(Valiani et al., 1999).  FVM is conserved even on arbitrary grids due to the integral 
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equations that link the fluxes across the boundary with the temporal variability of the 

dependent variables for the volume (Kobayashi, 1999; Hermeline, 2000). The FVM has 

a similar flexibility in handling complex geometry and abrupt topography as the FEM, 

combined with similar advantages of the simplicity of the FDM (Mingham and Causon, 

1998).  In fact, FVM is closely related to the FDM since FVM can be interpreted 

directly as a finite difference approximation to the differential equations (LeVeque, 

2002). Furthermore, FVM is computationally much more efficient than FEM. As a 

consequence FVM more commonly used than FEM for computing complex fluid flows. 

The Finite Volume Godunov-type scheme has been applied to simulate tidal flow 

modelling. In fact, Chippada et al. (1998) worked with it to simulate tidal waves in 

Galveston Bay in USA. The finite volume Godunov-type models compared with the 

aforementioned approaches have the ability to work with complex flow conditions like 

the discontinuities method and it’s more efficient than the DG FEM models. It can be 

implemented efficiently on both structured and unstructured meshes (Aghajanloo et al., 

2011). The FVM has been adopted by many CFD experts because of two main 

advantages (Lomax et al., 1999):  

1. The discretization values such as momentum and, mass is conserved in a 

discrete sense due to the integral form of the conservation equations. 

2. In order to be applied on irregular meshes finite volume methods do not 

necessitate a coordinate transformation. As a consequence, they can be 

applied on unstructured meshes consisting of arbitrary polygons in two 

dimensions as well as using arbitrary polyhedrals in three dimensions.  

3.3 Review of Godunov-type Finite Volume solvers 

The shallow water equation is a generalization of the dam break problem, which is 

similar to the Riemann problem. The Riemann problem consists of a conservation law 

together with piecewise constant data that have a single jump discontinuity. It appears 

in a natural way in the Finite Volume Methods in the solution of equation of 

conservation laws because of the discreteness of the grid. Godunov (1959) proposed in 

his paper a successful numerical approaches to solve a first-order hyperbolic system of 

equations that has been proven to be powerful in simulating discontinuous flows that 

can contained in the solution to the non-linear hyperbolic systems ( LeVeque, 1992; 

Guinot, 2003). In the Godunov approach the variables are approximated as average 
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inside the element volumes whereas the advective fluxes at each cell interface is 

calculated by solving the Riemann problem (Guinot, 2003). Therefore, fluxes computed 

at each element edges are the results of the solution to the Riemann problem defined by 

two constant states to either side of the edge. In the context of a Godunov method, inter-

cell fluxes may be obtained by solving local Riemann problem exactly, known as exact 

Riemann solver. The exact Riemann solver is complex in mathematical form and 

unreasonable in computational time (LeVeque, 2002). Therefore, it is common to apply 

an approximate Riemann solver. Several approximate Riemann solvers that have been 

derived to evaluate numerically convective fluxes such as conservative difference 

scheme van Leer (1977); Osher’s scheme seen in Osher and Solomon (1982). Roe’s 

scheme found in Roe (1981) has been one of the most commonly applied but its 

weakness is in ensuring the positivity of the discrete water height (Benkhaldoun et al., 

1999). 

 Another is the Harten-Lax-van Leer (HLL) scheme shown in Harten et al. 

(1983) which was extended to a family of HLL schemes. This scheme was developed 

for the Euler equations of gas dynamics by Harten et al. (1983) to estimate the wave 

speed in a Riemann problem. Discontinue in the Riemann problem is constructed by a 

linear solution and the wave speed is evaluated for the wave propagating discontinuities 

(Toro, 1997). This approach generated a number of applied schemes after Davies (1988) 

and Einfeldt (1988) suggested several techniques to compute the speed of waves 

required to determine the inter cell flux. These produce forms of efficient Riemann 

solvers with powerful approximations to the Godunov method (Davies, 1988). 

Therefore, a family of HLL solvers was produced such as: HLLE (Harten-Lax-van 

Leer-Einfeldt) found in Einfeldt (1988); HLLC Harten-Lax-van Leer in which the “C” 

denotes contact, suggested in the Toro et al., (1994) paper; the HLLD (Harten-Lax-van 

Leer Discontinuities) which is an enhancement of the HLLC scheme for modelling 

magnetohydrodynamics (MHD) presented in Miyoshi and Kusano (2005). The HLL 

solver in the most efficient and robust of the Riemann solvers due to its simplicity, and 

it can easily be extended to its family. The major characteristic in this scheme is its 

ability to satisfy very natural properties like the conservation and non-negativity of 

water height, including the capability to compute dry areas that can be found in coastal 

flow (Audusse and Bristeau, 2007). Therefore, the HLLC approximate Riemann solver 

scheme (Toro et al., 1994) is adopted in the present numerical model. The tidal flow 

over very complicated bed topographic will create complex hydrodynamics conditions 
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such as subcritical flow, transitional flow, hydraulic drops and hydraulic jumps (Liang, 

2008). The Godunov-type scheme is preferred for this kind of complex flow (Hu et al., 

1999; Causon, 1999). This numerical scheme has the capability of capturing different 

type of flow with shock-type flow discontinuities, such as hydraulic jumps. Therefore, 

the Godunov-type finite volume solvers for the non-linear shallow water equations 

models are commonly applied in shallow flow modelling (Liang, 2008). As an example, 

Chippada et al. (1998) adopt the Godunov-type method to simulate the shallow flow on 

complicated physical domains arising from irregular coast-line and island. The results 

gave excellent agreement between the predication and analytical solutions, giving 

confidence in this type of method for application to coastal tidal flow. The Godunov-

type Finite Volume Method has been adopted in the present work due to its accuracy in 

representing flow on complex seafloor geometry. 

 3.4 Model governing equations 

 The mathematics of shallow water equations can govern many physical 

phenomena, especially those with free surface flow under the influence of gravity, such 

as: flood waves, tides in oceans, wave breaking on beaches and dam-break wave 

modelling (Toro, 2001). It can be used to represent the hydrodynamics of a free surface 

in a vertically well mixed water mass where the horizontal length scale (wave length) is 

very large compared to the water depth. In this study, the shallow water equations were 

solved applying the finite volume Godunov-type scheme implemented with HLLC 

approximate Riemann solver. The original numerical model applied in the present work 

was developed by Dr.Qiuhua Laing and the numerical model scheme is explained in 

appendix A. The model has been intensively tested for fluvial flood modelling (Liang, 

2010) but has not been applied in modelling tidal flow hydrodynamics. Therefore, the 

initial and boundary condition in the numerical model must be modified to simulate the 

tidal hydrodynamics flow.    

 3.5 One-dimensional tidal wave flow tests  

The free surface tidal wave is considered to be a good test to validate the present 

numerical model. Two analytical tests were applied to study the computational accuracy 

of the used numerical scheme. The first test was a verification of a tidal flow in a 

channel with varying topography that has been solved analytical by Bermúdez and 

Vázquez (1994). Whereas, the second test was proposed by Goutal and Maurel (1997) 
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in a workshop on dam-break simulations to be applied for tidal wave flow over irregular 

bed topography. The effect of the mesh size and the numerical accuracy has also been 

investigated. These problem tests were studied by Zhou et al. (2001) to investigate the 

accuracy of his Godunov-type numerical scheme.    

3.5.1 Tidal wave test objective 

 The finite-volume schemes of the Godunov type that solve the shallow 

water equations require treatment of the source terms to balance the equations. These 

terms are relevant to bed topology and bed shear stress and their effect on the solution 

of the equations. Therefore, it is essential to model it with realistic problems such as 

tidal wave flows in coastal water regions, and tidal flows in estuaries, both of which 

require an idealization of the bed topology. The numerical model was tested in a 1D-

tidal wave flow condition to assess its numerical accuracy and usability.  

 3.5.2 Tidal wave flow in a channel over non-uniform bed topology 

 A channel has 14 km length (L) with 350 m wide with frictionless bed was 

proposed by Bermúdez and Vázquez (1994) to study tidal wave. The channel bed is 

defined with the following equation: 
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Bermúdez and Vázquez (1994) asymptotic analytical solutions for the still water depth 

(hs), water depth (h) as defined in Figure 3.4. The water depth and tidal flow velocity 

(u) equations are given follows: 
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Figure 3.4 The water depth definition applied in the numerical scheme. 

The initial and boundary conditions are given as: 

   )x(h  )0,x( h S= ,  z  (x,0) h  )0,x( b+=η and   0  )0,x( u =                                     (3.6) 

The inflow boundary condition at the western end of the numerical domain was set by

)t,0( u and )t,0( h . On the other side the outflow boundary at the eastern end of the 

channel was set to )t,L( u . The north and south boundary of the numerical domain was 

set to a slip boundary condition. The accuracy of the numerical model is demonstrated 

by comparing four uniform computational mesh sizes of 100, 200, 300 and 400 grid-

sizes that were adopted to achieve a grid-independent solution. The numerical 

modelling results were compared with the analytical solution for time simulation equal 

to 7552.13 sec. The water elevation (η) of the four mesh sizes is presented in Figure 3.5 

and tidal velocities with the four grid sizes is demonstrated in Figure 3.6. Avery good 

agreement has been found between the analytical solution and the numerical results. 

The tidal velocities of the four grid-sizes were subtracted from the analytical solution to 

indicate the differences between the numerical results and the analytical solution as seen 

in Figure 3.7. It shows that as the mesh size increases the differences between the two 

solutions decreases. The differences range of the tidal velocity component between the 

numerical model and the analytical solutions are of the order of 0.5 × 10-3 - 4.7 × 10-3. 

Note that the time step of the numerical model is governed by the Courant-Friedrichs-

Lewy (CFL) criterion to give stability to the numerical model by calculating the 

appropriate time step of each mesh size as shown in Figure 3.8. The smallest convenient 

time step is 0.35 sec adopted in the highest grid size. Whereas, the biggest relevant time 

step is 1.41 sec for the coarsest mesh. The good agreement of the numerical model 
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results with the analytical solution testifies to the capability of the present numerical 

model with regard to tidal flow simulation.  

 

Figure 3.5 The tidal wave elevation compared with solution suggested by 

Bermúdez and Vázquez (1994) as a benchmark test for numerical            

scheme verification for unsteady flows. 

 

Figure 3.6 The tidal current velocities of the each grid-size compared with the 

analytical solution. 
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Figure 3.7 The numerical model results of tidal wave velocity for each mesh 

size. It was subtracted from the analytical solution to investigate accuracy of                      

the numerical model for each grid. 

 

Figure 3.8 The appropriate time step estimation for each mesh-size in the          

x-direction as calculated by the CFL criterion. 
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3.5.3 A tidal wave propagating in a channel over an irregular bed 

The numerical method has been validated by solving a tidal wave flow over an 

irregular bed, as proposed by Goutal and Mourel (1997) in the Dam-break Wave 

Simulation Workshop and as considered by Zhou et al. (2001). This test was applied to 

verify the effectiveness of the present numerical model on dealing with complex bed 

topography. In this case, the test considers a coastal tidal wave propagating toward and 

through an upstream inlet of a river mouth. It is a 1D-problem with a channel length 

L=1500 m in the x-direction and 150 m width in the y-direction with frictionless bed. 

The tidal wave is propagating in a channel with an irregular bed defined by table 3.2. 

Table 3.2 The bed topology for irregular bed in the x-direction  

x 0 50 100 150 250 300 350 400 425 435 450 475 500 505 

�� 0 0 2.5 5 5 3 5 5 7.5 8 9 9 9.1 9 

x 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500 

�� 9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0 

 

The analytical solution of the water depth was solved by: 
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The x-direction velocity component is defined by equation (3-5). The initial and 

boundary conditions applied to simulate the present numerical model are defined as: 
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At the western inflow boundary was imposed with the following conditions:  
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Whereas, the eastern outflow boundary was given 0 )t,L( u =  that implies no flow 

boundary. Similar to the previous case, grid-independent solutions were investigated 

with four numerical domains with mesh sizes of 50, 100, 150 and 200 in the x-direction. 

The tidal wave was simulated for time record equal to 10,800 sec. The water elevation 

(η) of all chosen mesh sizes was correlated with the analytical solution. As Figure 3.9 

implies there is a complete match between the two solutions the numerical results and 

the analytical one. The tidal wave velocities of the four grid-sizes has been analysed 

with the analytical solution and excellent agreement has been observed as presented by 

Figure 3.10. The numerical results of the four grid-sizes were subtracted from the 

analytical solution to inspect the accuracy of the numerical model. The numerical 

solution indicated a grid-independent solution since the range of the differences was 

between 0.5 × 10-4 – 7 × 10-4 as demonstrated in Figure 3.11. The time stepping 

convergence was estimated by CFL criterion for the numerical model stability. The time 

step of the four mesh sizes are presented in Figure 3.12. Similar to the previous case as 

the grid-size increase the time step convergence decreases. This good agreement of the 

theoretical solution with the numerical results for the two test cases confirms the 

capability of the present numerical model with its balanced governing equations. In 

addition, it shows the numerical scheme accuracy and its ability to simulate unsteady 

flow over a complex bed topology.  
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Figure 3.9 The analytical tidal wave elevation compared with the selected group 

mesh-size over an irregular channel bed.   

 

Figure 3.10 The tidal wave velocities for each tested grid-size studied against the 

analytical solution. 
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Figure 3.11 The differences between the numerical results of every grid-size 

with the analytical solution. 

 

Figure 3.12 The CFL criterion calculations for the accepted time step during the 

numerical simulation of the four grid-sizes in the x-direction.    

3.6 The numerical modelling for the tidal dynamics of Cook Strait 

The islands of New Zealand lie on the South-West of the Pacific Ocean in the 

Southern Hemisphere. They consist of two big islands, as seen from Figure 3.13, 
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separated with a narrow channel known as the Cook Straits, which divide the Pacific 

Ocean into two voluminous water bodies. At their narrowest point the Straits are         

24 Kilometres wide. Numerical models of the tidal flow can predicate the ocean tidal 

dynamics and provide critical information that can predict shoreline variation, and also 

pollutant transport in the coastal zones due to the tidal cycles. New Zealand tidal 

modelling has been practised by several researchers such as Bye and Heath (1975), 

Heath (1985) and Stanton et al. (2001). 

 

Figure 3.13 The two islands of New Zealand with the Cook Strait. 

The tide can be determined by harmonic analysis as presented in section 3.1. In fact, 

tides can be represented with as many as 600 harmonic constituents of these tides 

components (Goring, 2001). There are eight major primary tides, four of them are 

diurnal tides (once daily) and the other four semi-diurnal tides (twice daily). Three of 

the semi-diurnal tides from the primary eight constituents contribute more than 90 % of 

the tidal energy in the world (Goring, 2001). Thus, the primary M2 semi-diurnal tides in 

New Zealand have been investigated by many researchers including Le Provost et al 

(1994) who discovered a complete rotation of the lunar constituent M2 around the New 

Zealand islands, as shown in Figure 3.14. The figure shows that the high water of the 

semi-diurnal M2 tides generates a resonant trapped tidal wave moving in a counter-

clockwise direction. It has a fairly uniform tidal current speed that completes the cycle 

every 12.4 hours. Further information of primary M2 semi-diurnal tides numerical 

modelling results of Figure 3.14 can be found in Goring (2001).  
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Figure 3.14 The computed M2 high water tidal constituent around New Zealand made by the coastal hydrodynamics group in NIWA. Note that 

the figure shows the high water only for half cycle see Goring (2001).The grade between red (high) and blue (low) indicate the tidal range 

height. 
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 This result was produced by a specific tidal finite-element hydrodynamic model 

run by the National Institute of Water and Atmospheric Research (NIWA) in 

Wellington New Zealand (Goring, 1995). 

The tidal range is small in most places in New Zealand but in the area of Cook 

Strait, such as Te Aumiti (French pass), it can be as much as 4 m and the time 

differences of high tide on either side of the pass about 25 minutes (Heath, 1978). This 

difference in water level creates one of the strongest tidal currents in the world. It may 

reach up to 1.4 m/sec [3 knots] through the Cook Strait whereas in Tory channel and 

French pass it can achieve 2 m/sec [4 knots] as shown in Figure 3.15 (Stevens and 

Sutton, 2007). In fact, the Energy Pacifica Company claim that installing 10 marine 

turbines near the Cook Strait in the Tory channel could generate electrical power up to 

1.2 MW (Clark, 2008). 

 

Figure 3.15 The French pass in the Marlborough sound which is the narrowest 

gap between headlands of the New Zealand two islands                                               

(Begg and Johnston, 2000).  

3.7 The Finite Volume Method for Cook Strait tidal dynamics 

 The Cook Strait was applied to simulate its M2 semi-diurnal tide waves by the 

present numerical model due to the high tidal current passing through it. A numerical 

domain with a region of interest of 500 kilometres wide was defined as presented by 

Figure 3.16 and the bathymetry of the region was taken from the Gerris flow solver 

website (Popinet, 2011) and it was presented in seabed form as demonstrated by          

Figure 3.17. The figure demonstrates the numerical grid of the numerical modelled 
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region defined in terms of longitude and latitude in degrees with the seabed in meters. 

Whereas, the numerical domain is presented in a Cartesian coordinate system with Cook 

Strait seabed topography as Figure 3.18.a appears. 

 

Figure 3.16 The Cook Strait numerical domain that was implemented in the tides 

numerical simulation is represented with the red quadrilateral. 

 

Figure 3.17 The numerical domain of the Cook Strait with the seabed (m) as 

recognize in the GIS format. 
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Figure 3.18.a, b The Cook Strait of New Zealand with seabed in Cartesian 

coordinate system in 3D as seen in (a) and 2D dimension shown in (b). 

(a) 

(b) 
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 The numerical domain was discretized applying quadrilateral Finite Volume 

cells with an equal gird cell size of 2.0 Km as demonstrated from Figure 3.18.b. 

3.7.1 Model configuration 

 The tides can be presented by harmonic constituents. The tidal constituents are 

estimated using cosine functions which analysis tide to determine the amplitude and 

phase of the cosine waves, as described in section 3.1 recalling equation (3.1).  

)tcos(R)t( 00t φ−ω=η                                                                        (3.11) 

Here )(ttη is the water elevation of the tide at time (t), R0 is the tide amplitude which is 

equal to one-half of the tidal range, φ is the phase in degrees and ω0= 28.984 degrees 

per mean solar hour, representing the principal lunar semi-diurnal constituent M2. 

Therefore, the lunar semi-diurnal frequency, known as πω 2/00 =f  was used to solve by 

the Least Squares method to find the corresponding tidal amplitude. The Least Squares 

method involved fitting measured data from the tide gauges with the best fit curve 

function which is represented by the following equation (3.12). 

)tsin(B)tcos(AZ)t(f 0000f ω+ω+=                                                   (3.12) 

The least square method solves the unknown parameters Zf, A0, B0 which gives the 

amplitude and phase as follows: 
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The effect of tides on the coastal waters in the Cook Strait was investigated by National 

Institute of Water and Atmospheric Research (NIWA). The tides were simulated using 

Gerris Flow Solver which is based on two-dimensional and three-dimensional 

hydrostatic oceanic equations developed by Stephan popinet (Msadek, 2005). A tidal 

wave was generated at the inlet using the data provided by the Gerri’s flow solver 

website (see references for website). In fact, the dominant component is the lunar-tide 

generating force M2 constituent that was applied in the present work and the tidal wave 

range applied for the Finite Volume Method numerical modelling is displayed in         

Figure 3.19. 
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Figure 3.19 The input tidal wave for lunar-tide generating force M2 constituent. 

3.7.2 The initial and boundary conditions for the Cook Strait tidal simulation 

The initial condition in the present numerical was set to still water elevation according 

to the water depth definition that was applied in the numerical scheme as presented in 

the above Figure 3.4.The two islands with the initial condition of still water elevation 

are shown in Figure 3.20. The inflow of the input zone was controlled by A FORTRAN 

program that fed the numerical domain with the tidal wave added to the still water 

elevation as presented in Figure 3.21. The initial condition of the water free surface was 

checked at time t=0 by creating a long-section of cells through the Cook Strait as shown 

in Figure 3.22.a. The water elevation was fixed with a still elevation at t=0 as           

Figure 3.22.b shows. 
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Figure 3.20 The still water elevation at time t=0 with 

the control input open boundary zone. 

Figure 3.21 The Lunar tidal wave added to the water still 

elevation (η=ℎ� + ��) which was applied in the present                       

numerical tides simulation. 
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Figure 3.22.a, b The initial conditions at time t=0 that indicate the free surafec 

elevation cells checkes represented in (a) with fixing the water                                  

elevation as seen in (b). 

 The coastal land boundary was raised above the still water surface elevation since it’s 

rigid and impermeable to water flow and the present model has the ability to work in wet-dry 

cell conditions suitable to coastal boundaries. In addition, the present Finite Volume model 
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wave inflow so that the water free surface at this outer boundary oscillates similar to the 

manner suggested by Popinet (2005).  

 3.7.3 The results of the Cook Strait tidal wave analysis 

 The Figure 3.23 presents the lunar semi-diurnal M2 tidal elevation and shows the 

differences in tidal elevation between the west side with a high water elevation and the east 

side with a low water elevation with a tidal range equal to 2.16 m. This tidal range is 

observed in the tidal elevation of Cook Strait.   

 

Figure 3.23 The semi-diurnal tidal wave simulation results in the New Zealand Cook 

Strait region. 

 An advantage of the present numerical model that its ability to capture the high tidal 

current with the water elevation. The long-section of the water elevation inside the Cook 

Strait was investigated to show the water elevation as the tidal wave enters from the west side 

to the east side in the narrowest gap that is called the French Pass, as shown in previous 

Figure 3.15. The Figure 3.24.a shows the tidal wave elevation as it propagates the Cook Strait 

traveling from the west to the east side’s with about 2 m tidal range inside it and the cells 

checker for the French Pass is exposed in (b).  
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Figure 3.24.a, b The tidal wave propagating the Cook Strait going through the French pass as demonstrated in (a). The location of the cells 

checker French pass as exhibited in (b).  

200 220 240 260 280 300 320 340 360 380 400
3290

3292

3294

3296

The Newzrland islands with Long-section
Applied to check the tidal wave inside Cook Strait 

Long-section (Km)T
h
e
 L

o
n
g
-s

e
c
ti
o
n
 o

f 
m

e
a
n
 s

e
a
 l
e
v
e
l

a
n
d
 t
id

a
l w

a
v
e
 in

 t
h
e
 C

o
o
k
 S

tr
a
it 

z
o
n
e
 (
m

)

 

 

water elevation level
 in the Cook Strait

sea bed

still water

200 220 240 260 280 300 320 340 360 380 400
0

1000

2000

3000

Long-section (Km)

T
h
e
 L

o
n
g
-s

e
c
tio

n
 o

f 
s
e
a
b
e
d
 (
m

)

(a) (b) 



 

 

-6
6

- 

 

Figure 3.25.a, b The velocity vectors in the Cook Strait especially in the Tory channel as shown in (a) and French pass as seen in (b).  

(a) (b) 
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The figure shows the ability of the present numerical model in recording the disturbance 

of the water elevation as the tidal wave enters the Tory channel and French Pass which 

is can’t be observed by other numerical models. The velocity vectors of the tidal current 

in Cook Strait have been computed, as defined in Figure 3.25.a, b above. The velocity 

inside the Cook Strait is strong due to the tidal range differences between the water 

surface elevations in the west and east regions. The maximum velocity may reach             

1.98 m/sec which is approximately equal to the observed values 2 m/sec [4 Knots] in 

the Tory channel as spotted in Figure 3.25.a and French pass as viewed in Figure 3.25.b. 

3.8 The comparison between the numerical models 

 The results from the Finite Volume Method were compared with the two 

numerical models results found in the Msadek (2005). The M2 tidal elevation of the 

driving model and Gerris Flow Solver model is shown in Figure 3.26.a, and           

Figure 3.26.b respectively. Note, the tidal amplitude in both figures is colour shaded 

with a scale of decreasing colours correspond to reducing water level from a maximum 

value of 1.37 m for red zones to 0 m for the blue zones. The colour scale applied in the 

Msadek (2005) was adopted in presenting the results of studied numerical model. In 

Figure 3.26.c the Finite Volume Method model tidal amplitude is compared with the 

two numerical models. The figure indicates the west side region has high tidal 

amplitude with a maximum value of 1.33 m. whereas; the east side region has low tidal 

amplitude that has a minimum value of 0.17m. The comparison in Figure 3.26 indicates 

a good agreement of Finite Volume Method results with the two other numerical models 

results as shown in the report of Msadek (2005). However, there are some differences in 

the results of the driving numerical model and the Gerris Flow model in the Cook Strait 

compared to the Finite Volume numerical method due to the spatially mesh refined near 

the coastal boundaries adopted in other numerical models.  
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               The tides driving numerical model.                The Gerris numerical model.  

 

The Finite Volume Method numerical model results.  

Figure 3.26.a, b, c The tidal amplitude of the Cook Strait for the two driving and 

Gerris numerical models compared with the present Finite                                 

Volume Method numerical model. 

The tidal amplitude was compared with a group of measured tidal stations as 

well as results from the Gerris Flow model. The stations selected are presented in  

Figure 3.27. The results of Finite Volume Method numerical model and results from the 

Gerris Flow model with the observed measured data are demonstrated in table 3.3. It 

shows the differences between the measured and numerical models predication of the 

tidal amplitude. As presented in table 3.3 a small difference in the results values of the 

tidal amplitude. It demonstrates the capability of the Finite Volume Method in 

predicting tidal waves in straits such as the Cook Strait.  
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Figure 3.27 The positions of the measured tidal amplitude stations around New 

Zealand. 

Table 3.3 The comparison of measured tidal amplitude around New Zealand 

islands with the Finite Volume Method numerical model and                          

the Gerris numerical model. 

The station 

location 

The 

observed 

tidal 

amplitude 

(cm) 

The predicted 

tidal amplitude 

from Gerris 

numerical model 

(cm) 

The predicted tidal 

amplitude applying the 

Finite Volume Method 

numerical model 

(cm) 

Little Kaiteriteri 130.9 133.2 127.1 

Wellington 49.3 48.1 48.58 

Nelson 129.8 134.3 126.9 

Kaikoura 67.0 66.4 60.1 

Charleston 105.7 119.0 120.3 
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Figure 3.28 The amplitude of tides for observation with the numerical models 

results of Gerris Flow solver and the results of the present Finite                                  

Volume Method numerical model. 

In Figure 3.28 the tidal amplitude observation against the Finite Volume Method 

numerical model with the Gerris Flow solver model was presented. The results from the 

present numerical model are in the range of ± 15% of the measured tides given from the 

tide gauge stations record. In fact, the results of tidal wave amplitude of the Finite 

Volume model are approximately equal to the values of the observation and nearly to 

the results solved by Popinet numerical model as presented in his report of NIWA 

written by Msadek (2005).  

The targeted region Loch Linnhe which the tidal wave was simulated by Finite Volume 

Method numerical model required a field measurement to verify the numerical results. 

This measurement was conducted with the Acoustic Doppler Current Profiles (ADCP) 

during 57 day’s time duration. In the next chapter, the data records is analysed during a 

chosen time periods of spring and neap cycles as presented in the following chapter. 
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Chapter 4.Tides and tidal current profiling measurements   

4. Introduction 

 A major objective of the PhD research is carrying out field measurements in the 

interested artificial reefs area. This assessment was funded by King Abdulaziz 

University to investigate the artificial reef hydrodynamics and supporting the PhD 

research. The ADCP instruments and installation was done with the help of the Scottish 

Association for Marine Science Institute Oban (SAMS). On the Loch Linnhe artificial 

reef site, one reef was selected to carry out field measurements on it. The survey 

duration was chosen to last about two months to cover the tidal spring-neap cycle 

phenomenon. The recorded data was focused on the tidal wave cycles, and the U and V 

components of the velocity profile were measured over the duration of the field 

measurements. An ADCP (Acoustic Doppler Current Profiler) instrument system was 

deployed for the purpose on the Loch Linnhe artificial reef location in about 25 meters 

of mean sea level water depth.  

An ADCP is an electronic instrument that transmits acoustic signals into the 

water column. In order to measure the water velocity the frequency of the transmitted 

signals is compared with the frequency of backscatter signals reflected off suspended 

particles, which are assumed to be moving at the same velocity as the water (WHOI, 

Ocean Instruments 2012). The ADCP can be anchored to the seabed which gives the 

current speed not only near the bottom, but it can also measure the velocities at equal 

vertical intervals in the water column, as seen from Figure 4.1. As the figure shows the 

bins, representing an upward vertical sequence of measurement cells, have a size that 

can be set for each instrument. For these experiments a three ADCP system was 

deployed surrounding the chosen Loch Linnhe artificial reef with two of the ADCP 

instruments having bins sizes of 0.5 meter, which resulted in 48 bins in a 24 meter water 

depth. Note that there is a one meter bottom unmeasured zone, as shown by Figure 4.1. 

The third ADCP was sufficiently far away from the selected reef for the water to be 

undisturbed by its presence, and it was given 24 bins with one meter for each bin size. 

The instruments were deployed in their selected locations to register the tidal elevation 

and currents so the data could be used for setting initial conditions and validating the 

numerical methods applied in the present work. The ADCP data records were studied 

and analysed over a tidal cycle to show the U and V velocity component as they relate to 

the tidal wave. The tidal current profiles of the U and V components were decomposed 



 

- 72 - 

 

during the lunar spring-neap cycle to be compared with the numerical results of the two-

dimensional Finite Volume Method model. A daily cycle from the spring and neap 

lunar period of the tidal current profiles was taken to be used for defining the initial 

conditions for the three-dimensional k-ε turbulent model simulation. A group of scripts 

codes were created to analyse and display the ADCP data. It is crucial to inspect the 

accuracy of the raw data before applying it because instrument error can occur during 

the measurements. In this chapter the data records were interrogated, processed and 

presented after analysing it.       

 

Figure 4.1 The ADCP velocity data series as it recorded by the instrument            

(Wall et al., 2006).   

 

 

Figure 4.2 The Loch Linnhe artificial reef modules with the chosen             

group-E at the measurement site. 
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Figure 4.3.a, b, c The position of the ADCP instruments on the chosen artificial reef site from group-E of the artificial reef modules in the Loch 

Linnhe is spotted in (a) along with the selected reef surrounded by the ADCP instruments is shown in (b) and the installation of the ADCP 

photography at the reef site is seen in (c) (picture taken from Wilding 2010). 

(a) (b) 

(c) 
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4.1 ADCP geographical setting in the Loch Linnhe  

 The artificial reefs on the Loch consist of several artificial reef modules as 

described in chapter two. One artificial reef module from group-E was selected for the 

measurement of the U and V velocity components of the tidal current profile using the 

ADCP instruments, see Figure 4.2 above. The ADCP instruments were set around the 

group-E reef module as illustrated overhead in Figure 4.3.a and the selected artificial 

reef surrounded by the ADCP instruments is seen up in Figure 4.3.b, which also shows 

a picture taken by Thomas Wilding of the ADCP installation in Figure 4.3.c above, 

(Scottish Association for Marine Science). Since, this artificial reef lay in the deeper 

zone with respect to other artificial reefs, the major influence of the water dynamics on 

the group-E artificial reef was caused by the tidal wave. 

4.2 The characteristics of ADCP data measurements 

    The ADCP instruments recorded the tides and the U and V components of the 

tidal current velocity profiles every 6 minutes during the time series. The ADCP’s are 

provided with pressure sensor that acts as wave gauge which record the tidal wave 

height. The tidal wave over the whole time duration of measurements, which was 

approximately 57 days, is shown in Figure 4.4.  

 

Figure 4.4 The wave tides as registered by the ADCP instruments after the 

deployment at the artificial reef in the Loch Linnhe. 
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Figure 4.5.a, b The bins averaged tidal current components of U are presented in (a) and V is viewed in (b) which was recorded by ADCP 

instrument presented in the whole time period. 

(a) (b) 
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The bins of U and V components recorded by the ADCP instrument No.2260 sited in 

the deeper region south of the artificial reef as demonstrated in Figure 4.3.b were 

averaged to represent the mean tidal current. The averaged U and V components data 

measurements are presented overhead in Figure 4.5.a, b showing the time duration of 

the records.  

A sample of the vertical velocity of the U component measured by the ADCP 

instruments with 48 bins as defined in Figure 4.1 with 0.5 m for each bin which 

represents 25 m that include the one meter of the unmeasured zone is demonstrated in 

Figure 4.6.    

 

Figure 4.6 The U (m/sec) component of the velocity profile within a daily spring 

tidal cycle. 

 

Figure 4.7 The V (m/sec) component of the velocity profile with the same  

period of the U component for a daily spring tidal cycle. 
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The Figure 4.6 above shows the U (m/sec) component tidal current velocity during a 

spring daily tidal cycle. Similarly, the V component of the profile was presented in 

Figure 4.7 overhead as recorded by the ADCP within the same time period of the spring 

tidal cycle. Note that, the near-surface boundary process is counted in the ADCP 

measurements, since the whole water column of the U and V components tidal current 

is covered. An indication of wind stress effect is clearly can be seen in both Figure 4.6 

and Figure 4.7 at the near-surface boundary due to high wind speed in Loch Linnhe 

region as has been presented in previous study such as Matsuura and Cannon (1997). 

 4.3 The spring and neap lunar period selection from the ADCP instruments  

 Daily spring and neap period cycles were chosen from the ADCP data 

measurements for use as input into, and a source of validation for, the numerical 

models. Figure 4.8 shows the selected periods of the tidal wave shown in red for neap 

and green for spring tides.  

 

Figure 4.8 The daily spring and neap periods adopted in the present work and 

taken from the data records length.  

The ADCP instruments data records were investigated and analysed during these 

spring-neap lunar cycles. The first ADCP investigated was the faraway ADCP No.6358. 

It was selected in this location to remove any velocity fluctuation my caused by the 
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water disturbance due to the presence of the artificial reef. The position of the 

instrument that collects the tidal current and wave tides is shown in Figure 4.9.a. The 

neap tidal wave and current taken over a time duration of two and half days is illustrated 

in Figure 4.9.b which shows the average of ADCP bins for tidal current pattern beneath 

the tidal wave. The U and V components averaged values shows a maximum of             

4 cm/sec for U and V record a maximum of 8 cm/sec in flood whereas in ebb the U and 

V components are -12 cm/sec and -14 cm/sec respectively. The U and V components of 

the velocity profiles for the neap period are presented in the contour maps in          

Figure 4.9.c. The maximum neap tidal current registered by this instrument was around 

9 cm/sec in the flood and -15 cm/sec in the ebb seen in the V component. Similarly, the 

spring tidal wave and current data from ADCP No.6358 was processed, as seen in 

Figure 4.10.a, b. Note that the tidal current reaches a peak of 25 cm/sec in the flood for 

the V component and 24 cm/sec for U component, whereas in ebb it my go to                   

-45 cm /sec for the V component and -28 cm/sec for the U component during the spring 

tidal wave as seen from Figure 4.10.b. The tidal current profiles of the U and V 

component were plotted as contour velocities, as displayed by Figure 4.10.c. A 

comparison between the U and V component contour velocities for the spring period 

against the U and V velocity components contour velocities of the neap period show a 

rise in the spring cycle of about twice or more those of the neap cycle as Figure 4.9.c for 

neap cycle and Figure 4.10.c for spring cycle displays.   
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Figure 4.9.a, b, c The analysis of the ADCP No.6358 sited in the Loch Linnhe seen in (a) with the tidal wave and current seeing in (b) with the 

U and V component profile contours represented in (c) during the neap period.  
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Figure 4.10.a, b, c The spring tidal wave and currents component for U and V exhibited in (b) with the ADCP location in (a) and the velocities 

of U and V contour profiles in (c) analysis for the ADCP No.6358 data collection.  
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The same tidal wave time periods displayed in the previous Figure 4.8, the data of tidal 

wave and current from the second ADCP No.3821 instrument location seen in         

Figure 4.11.a has been processed and the results of U and V components are displayed 

in Figure 4.11.b below. The averaged ADCP bins velocities of the U component reach a 

peak of 5 cm/sec and the V component equal to about 14 cm/sec in the flood tide. In the 

ebb flow, the U and V components scope to -14 cm/sec and -22 cm/sec respectively. 

The contour velocity profile for the U and V components is presented in Figure 4.11.c in  

which the V component velocity peaks can grasp 15 cm/sec in the flood tide. The U 

velocity components in the contour record are lower than the V components due to the 

disturbance of the flow occurring due to the position of the ADCP is near the artificial 

reef being investigated. The data recorded by the ADCP for the wave tides with the tidal 

current during the spring cycle is seen in Figure 4.12.b. The average ADCP bins 

velocity component of U can rise to 25 cm/sec as demonstrated by Figure 4.12.b 

whereas the V component can reach to 30 cm/sec in the flood and can orbit to around     

-63 cm/sec in the ebb tides and the U component give -33 cm/sec, which are larger 

magnitudes than achieved by the faraway ADCP results seen in the previous data. The 

velocity profile contours of the U component show reduce in the velocity profiles near 

the bottom that may imply to the influence of the artificial reef on the ADCP profile as 

exposed by Figure 4.12.c. The V component in the contour also exhibited increases in 

the velocity profile compared with the data recorded by the previous instrument.  

 

 

 



 

 

-8
2

- 

         

  

Figure 4.11.a, b, c The ADCP No.3821 data records in (a) for the neap cycle tidal wave with tidal current average are beneath it as seen in (b). 

The velocity components of U and V profiles are presented in contours as exposed in (c). 
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Figure 4.12.a, b, c The spring cycle of the ADCP No.3821 measurements is shown in (a)  with the tidal wave and current as demonstrated in (b) 

that includes the velocity profile contours seen in (c).   
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The last ADCP No.2260 was located south of the artificial reef as shown in the                 

Figure 4.13.a. The ADCP averaged bins tidal current and tidal waves during the neap 

cycle are spotted in Figure 4.13.b. The U and V velocity components maximum values 

vary between about 14 cm /sec for V component and 5 cm/sec for the U component 

during flood tide. In the ebb cycle they reach about -17 cm/sec for the U component and 

about -21 cm/sec for the V component of the neap cycle, as seen in Figure 4.13.b. Note 

the missing data gaps seen near the bottom of the Figure 4.13.c seen in the velocity 

contours, which may be due to the activity of fish living near the artificial reef. Since, 

the reflection of acoustic signal by the fish gives in velocity errors in the ADCP data 

(Freitag et al., 1992). On the other hand, for the spring tide and tidal current ADCP bins 

average achieved peaks of 22 cm/sec found in U component and 30 cm/sec for the V 

components in the flood period cycle. In the ebb cycle, the U and V components go to 

about -36 cm/sec and -54 cm/sec as exhibited respectively in Figure 4.14.b. The 

contours of U and V components of the profiles are exposing high values, as displayed 

in Figure 4.14.c. The V component profile through the water column is consistently 

large than U component. In summary, the ADCP data characteristic can be represented 

as having the following features: the ADCP No.6358 recorded the lowest values of U 

and V components of the tidal current profiles due to its installation in shallower region 

compared to other two ADCP instruments; the two ADCP instruments around the 

artificial reef registered data with higher values of the tidal current profiles for U and V 

components; the V components are consistently greater than the values of U 

components (indicating a tidal direction flowing toward North East); the ebb cycle was 

found to achieve higher tidal currents than the flood cycles in the preferred tidal periods; 

and finally, the maximum tidal current was recorded by ADCP No.3821 with                 

-63 cm/sec shown in the V component during spring ebb cycle. 
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Figure 4.13.a, b, c The average tidal current under tidal waves and associated velocities U and V components is displayed in (b) with profile 

contours shown in (c) as recorded by the third ADCP No.2260 sited in the Loch Linnhe as seen in (a). 
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Figure 4.14.a, b, c The spring period of the ADCP No.2260 measurements positioned in Loch Linnhe as spotted in (a) that shows the tidal 

current with tidal waves in (b) and the contour of the tidal current U and V components profiles in (c). 
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4.4 Tidal current profiles for spring and neap for a daily tidal wave period 

 The Loch Linnhe tide is semidiurnal, having two peaks and two troughs every 

24 hours. The spring and neap tidal wave periods recognized in pervious Figure 4.8 was 

picked to investigate the nature of the vertical tidal current profiles. The ADCP No.6358 

data was focused on due to the fact that it is relatively far away from the artificial reef 

and the tidal vertical velocity will not be significantly affected by reef. The daily spring 

is shown in Figure 4.15.a and neap tidal is spotted in Figure 4.15.b. Their waves record 

were subdivided into 12 points over the 24 hours tide cycle with each pair of 

corresponding points being represented by their average at the picked tide time during 

the daily cycle. Note that averaging was chosen because of unsymmetrical tidal wave 

patterns existing in the Loch Linnhe site as demonstrated in Figure 4.15.a, b. The figure 

illustrates an example of the pair-wise averaging at the first point of the spring and neap 

tidal wave, and it presents the positions of all other points on the spring and neap tidal 

waves for the tidal current profiles taken from the ADCP No.6358 data records. The 

tidal current profile curves taken from the processed data that was recorded by the 

ADCP have a zigzag pattern. Therefore, the moving average technique was 

implemented to smooth the tidal current profiles, for the first profile of spring presented 

in Figure 4.16.a with neap tidal current profiles demonstrated in Figure 4.16.b. As can 

be seen the tidal current profile was averaged between the two points of the recorded 

vertical velocity denoted by the dashed blue line. The blue averaged line representing 

the tidal current profile which was further smoothed by three points averaging method 

as represented by the solid green line in Figure 4.16.a, b. 
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Figure 4.15.a, b The point’s position of tidal current profiles selected on the tides wave of spring cycle viewed in (a) and neap cycle seen in (b) 

which was taken from ADCPNo.6358 measurements. Note that the spring cycle tidal wave indicates unsymmetrical pattern as recorded by the 

ADCP instrument.    
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Figure 4.16.a, b The process of smoothing the tidal current profiles by implementing the three point moving average technique to the tidal 

current profiles of the spring and neap tidal wave periods. As the figure indicates the pair-wise velocity profiles in spring cycle are dissimilar 

due to the unsymmetrical tidal wave pattern existed in the Loch Linnhe as demonstrated in Figure 4.15.a, b.   

(a) (b) 
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This method was applied to all tidal current profiles points demonstrated in           

Figure 4.15.a, b above to represent the vertical tidal current as a smooth curve for 

modelling purposes. The objective of smoothing the tidal current profiles was to 

simplify the vertical velocity so it can be easily and realistically input in the FLUENT 

software that has been applied in the present work to simulate the detailed 3D flow 

around the artificial reef.  

The first point of the tidal current profiles of the spring and neap periods is represented 

in Figure 4.17 for spring tidal current profile and Figure 4.18 for neap tidal current 

profile. The tidal current has been presented with the tidal current denoted as C, and 

with the two components U and V that indicating the direction of the tidal flow as it 

varies between the flood and ebb cycles. Note that the water depth was taken as the still 

water level (Mean Sea Level) with 25 m as displayed in the figures. Other eleven tidal 

current profiles processed during the spring and neap periods with the three point 

averaging method are calculated and exhibited in appendix (B).  

 The field measurement data taken from ADCP instruments can be used for 

validation of the two-dimensional numerical model. In the following chapter, the 

simulation of the Loch Linnhe tidal wave using the Finite Volume Method numerical 

model was carried out. The data record was compared with the numerical results to 

verify the accuracy and ability of the numerical model as will be seen in the next 

chapter. 
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Figure 4.17 The spring tidal current profiles for the first point as represented in the previous Figure 4.15.a, b.  
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Figure 4.18 The neap tidal current profiles for the first point as shown in the previous Figure 4.15.a, b.     
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Chapter 5. The numerical modelling of Loch Linnhe tidal dynamics 

applying the 2D shallow water equations 

5. Introduction 

 The Godunov-type Finite Volume numerical method has been tested by 

simulating various benchmark tests and realistic 1D-tidal flow and two-dimensional 

Cook Strait tidal flow in New Zealand problems, as seen in the previous chapter three. 

This numerical technique has received considerable attention recently due to its ability 

to simulate complex coastal flow problems. Therefore, the Godunov-type Finite 

Volume numerical method has been implemented to simulate the tidal dynamics in 

Loch Linnhe. The tidal flows of Loch Linnhe, lying on the West Coast of Scotland have 

been modelled to assess their influence on the marine environment with particular 

reference to, an artificial reef structure that was submerged to enhance the marine life in 

the Loch. However, the Loch Linnhe has a complicated topology that presents a 

challenge to any numerical modelling of the tides. In addition, the deployment of an 

irregular artificial reef structure increases the complexities of the seabed and increases 

the difficulties in the modelling Loch. The present model will describe the fluid 

dynamics of the tidal flow in the Loch and is intended to assist in understanding the 

complex interaction of physical parameters, such as tidal currents, and the marine 

habitat. In fact, fluid dynamics plays a role in settling, nutrients, oxygen and 

colonization of marine life, as seen in chapter two.  

The shallow water equations were solved using a Cartesian coordinate system. 

Thus, maps that were used in the numerical modelling had to be converted from 

WGS84 GPS (Global Positioning System) format to a Cartesian system, A MATLAB 

Geodetic toolbox provided from MATLAB central for file exchange (Craymer, 20111, 

see references for website) has been used to convert the WGS84 coordinate system to 

Cartesian coordinate system. In this chapter, the Loch Linnhe tidal dynamics was 

simulated for daily cycle, and for a half monthly cycle, for a period of 13 days. This 

time duration represents the phenomenon of the tidal dynamics during the neap and 

spring tides. The comparison between the numerical results and measurements data was 

satisfactory.  
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5.1 The Loch Linnhe tidal dynamics simulation 

A sea loch on the West Coast of Scotland, known as Loch Linnhe, has been used 

for the application of the Finite Volume Method numerical model. The Loch has a 

potentially important role to play in the sea fishing industry but the tidal flow pattern in 

the Loch have not been studied in detail yet. At the southern end of the loch, near an 

island called Lismore, lies an artificial reef system that was constructed in the period of 

2001-2006 (Beaumont, 2006) with an area size of 1Km × 1 Km as seen from Admiralty 

charts, Figure 5.1.a. Its purpose is to provide a site for studying artificial reefs for 

enhancing, protecting and restoring fisheries, as defined in chapter two.  

A numerical section zone was created to simulate the tidal dynamics on the Loch 

that include the artificial reef area as shown from an image of Google earth Figure 5.1.b. 

The bathymetry of Loch Linnhe was digitized from an Admiralty chart (Admiralty 

chart, 2010), as Figure 5.1.a indicates. A numerical grid was constructed for numerical 

tidal wave simulation as shown in Figure 5.2.a with longitude, latitude in degrees and 

seabed in meter. Note, the characteristic of the Finite Volume Method model with 

reference to its ability to work in wet-dry process was explained in the previous chapter 

three. Thus, the coastal boundary dry cells were defined as large positive elevations         

see Figure 5.2.a.  
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Figure 5.1.a, b The selected areas of Loch Linnhe with the artificial reef zone as seen from the Admiralty chart with the reefs                           

are near Lismore Island.  
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Figure 5.2.a, b The focused zone displayed in GIS foramt as seen in (a) and Cartesian coordinate system as presented in (b). 
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The Loch Linnhe numerical domain was converted to a Cartesian system using the 

previous information of map construction which was represented in the above        

Figure 5.2.b. 

5.2 Model configuration  

The Loch Linnhe water depth varies from 1m to 181m which implies that 

wetting and drying may occur, which can be dealt with by the present numerical model. 

The amplitude of the tidal range of the Loch varies from 1 to 2.5 m during a lunar 

month (Hydrographic Office, 2011). However, the tidal currents are moving from an 

open sea with a low speed range in the order of cm/sec and passing through a channel 

with a complicated bathymetry, such as Straits, or between Islands and shallow water 

zones where the tidal current gains power. Indeed, the powerful tidal currents exist in 

these specific sites where the tidal flow may increase in strength with tidal currents 

having peak velocities in the range of 2-3 m/sec (4-6 knots) or more during the monthly 

rhythms of spring-neap cycles (Fraenkel, 2002). At the Loch Linnhe shallow water 

region, with two exits zones near the port of Appin and near the Loch of Creran, a tidal 

current of approximately 4 knots in springs and 2.75 knots in neaps is indicated from 

seafarer’s navigation information, Figure 5.3. The numerical domain has been centred 

about the region with the artificial reef site, and zones not required in the tidal wave 

simulation have been blocked with dry cells, as shown in Figure 5.4. The Cartesian 

coordinate grids were defined by several matrixes to study the mesh convergence as will 

be demonstrated in the convergence curve section. A sample grid size of 94 × 89 cells 

with a dimensional size of 8072.4 m × 7638.4 m is presented in Figure 5.4 that gives a 

size of each 2D cell with 86 m × 86 m. The maximum water depth of new blocked 

region is about 60.5 m. Therefore, the coastal boundary dry cells height was set to 80 m. 

Nevertheless, the field measurement time duration was in the variation of winter-spring 

seasons which indicates seasonal high winds blowing on the Loch Linnhe region. 

  



 

- 98 - 

 

 

Figure 5.3 The tidal strength at the interaction between the Loch Linnhe and 

Loch Creran from the seafarer’s navigation information. 

The wind stress can affect the tidal current structure magnitude as demonstrated 

by previous studies such as Matsuura and Cannon (1996). Therefore, wind stress effect 

has been included in the Finite Volume numerical model which was calculated from 

(Stewart, 2008):  

 � ! ρ"#$%	&�                                                (5.1) 

            #$ ! '0.8 + 0.065	%	&- 	. 	100�                 (5.2) 

Here ρ" is air density,  #$ is the drag coefficient that was estimated applying the 

formula proposed by Wu (1982) as identified in equation (5.2). U10 is expressing the 

wind velocity measurement at 10 m above the mean sea surface. A data collection of 

wind speed and direction was taken from the meteorological station sited on the Eilean 

Dubh as presented in Figure 5.4.  



 

- 99 - 

 

 

Figure 5.4 The sample of a matrix of grid cells (94 × 89) of Longitude and 

Latitude in the Cartesian system with the blocked dry cells and the               

location of the weather station as displayed. 

A summary of the wind conditions during the field measurement is displayed in 

Figure 5.5.a, b in wind rose form. The hourly mean wind (m/sec) is presented in             

Figure 5.5.a whereas the maximum gust (m/sec) within each one-hour sample interval is 

exposed in Figure 5.5.b. The wind speed varies between 1.3 m/sec to gust that reach 

about 25 m/sec as established in Figure 5.5.a, b. The wind velocity has been considered 

in the Finite Volume numerical model calculation to investigate the effect of wind stress 

on the tidal current structure magnitude.  

However, very large wave lengths compared with the water depth is one of the 

characteristics of the shallow water wave. In fact, in a typical continental shelf with an 

average depth of 100 m and tidal period of 12 hours, a quarter wavelength shelves can 

reach a width of about 300 Km (Defant, 1961). Therefore, two tidal gauge stations were 

selected in the research to control the south inflow and the north outflow boundaries as 

spotted in Figure 5.6.  
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Figure 5.5.a, b The wind roses during the full deployment period demonstrating 

the frequency and the amplitude (m/sec) distrubtion of hourly mean winds 

presnted in (a) and the maximum gust winds within each one houre sample 

interval in (b). It has been notice that dominant winds were approximatley 

aligned with the axis of the Loch Linnhe.   

 

Figure 5.6 The location of the stations required to control the inflow and outflow 

boundaries. 

(b) (a) 
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The east outflow boundaries in the numerical domain were restrained with a 

tidal predication analysed by the UK Hydrographic Office for Pier of Barcaldine seen 

overhead in Figure 5.6, while the west side boundary is forced  by the Lismore Island as 

noticed in Figure 5.4. The tidal record was gathered from the UK Hydrographic Office 

(2011) for the two tidal gauge stations at the Port of Oban and the Port of Appin, as the 

stations location revealed in Figure 5.6. The duration of the two station tides recorded 

was for 13 days to include the spring and neap tides in the Loch. In addition, data 

records were taken for the same lunar dates to synchronize the inflow with the outflow 

boundary. On the other hand, tides predicted for Pier of Barcaldine were also 

synchronized according to the lunar month dates in a spring-neap pattern cycle as in the 

two tidal gauge stations data record. 

5.3 The Loch Linnhe harmonic analysis  

As described in chapter three the tidal wave can be analysed applying the 

harmonic analysis. The ultimate objective of the harmonic analysis was to model tidal 

variability and identifies semi-annual periods, or any well-defined cyclic oscillation, (as 

defined by Emery and Thomson, 2001) at a global scale in the vicinity of the artificial 

reef, the spring-neap tidal period was analysed to obtain the harmonic constituents that 

represent the tidal wave lunar cycle. The Least Squares method was applied to analyse 

the tides records of the two stations to solve the best fitting curve Figure 5.7 shows the 

Port of Oban 13 day’s tides regression curve compared with the measured data, which 

also presents their residual. The tidal record with same time duration for the Port of 

Appin was analysed to solve the constituents of the astronomical tidal forces as shown 

in Figure 5.8. The selection of the constituents related to tidal amplitude depends on the 

tidal time period. In general, the number of constituent’s increases with the length of the 

period of the tides data (Pugh, 1996). In the present case the choice of the harmonic 

constituents was based on the analysis of tides data in the North-West European Shelf, 

as described by Pugh (1996).  
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Figure 5.7 The harmonic analysis for Port of Oban compared with the measured 

tides data. 

 

Figure 5.8 The harmonic analysis for Port of Appin compared with the measured 

tides data. 
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Figure 5.9 The tidal wave constituent’s solution given by UK Hydrographic 

Office for Pier of Barcaldine.  

Additionally, the analysed tidal wave for Pier of Barcaldine taken from UK 

Hydrographic Office is presented in Figure 5.9. Note that the predication of tides seen 

in Pier of Barcaldine is actually analysis of tides data applying mathematical method 

such as Least Squares method, but the tides data couldn’t be hold. Besides, it’s crucial 

to restrict the east outflow boundaries and the tides analysis given by the UK 

Hydrographic Office will be preferred.          

5.4 The initial and boundary conditions for Loch Linnhe 

 The initial condition of the Loch Linnhe water elevation (η=ℎ�+zb) was set to 

60.5 m, as exhibited in Figure 5.10. The tidal series of the harmonic constituents solved 

for Port of Oban was applied to the inflow boundary and north outlet boundary 

conditions was controlled by the tidal solution of harmonic constituents for Port of 

Appin as shown in Figure 5.10. Whereas, toward the east outflow boundaries the tidal 

wave analysis for Pier of Barcaldine was adopted to command it.      
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Figure 5.10 The still water level at t=0 in the Loch Linnhe with the inflow and 

outflow boundaries as presented by the numerical model. 

 The numerical domain was monitored with a long-section of cells, as shown by 

Figure 5.11, so that it could be checked at from the initial condition and during the tides 

dynamics simulation. The water elevation (η) was taken as still during t=0 as            

Figure 5.11 established.  
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Figure 5.11 The long-section was implemented for checking the water elevation 

of Loch Linnhe tidal dynamics simulation. 

 5.5 The Loch Linnhe tidal analysis results  

 The tidal wave simulation of the Loch was computed during a daily 

spring-neap tides cycles as well as for a 13 day’s spring-neap tides lunar cycle, the 

water elevation in the location of the artificial reef with tidal current components was 

computed. Two ADCP (Acoustic Doppler Current Profiler) instruments were deployed 

in positions near the artificial reef to gather tidal measurements of the water elevation 

and velocity components over time duration of 57 days to detect the spring-neap lunar 
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cycle. The results of the ADCP were described in the previous chapter four. The 

locations of the ADCPs instruments are presented in Figure 5.12. The water elevation 

and velocity components, U and V, were recorded by the ADCPs during the required 

period. The location of seafarer’s navigation information that will be used for 

comparing the numerical tidal current speed with tidal current given by it, as shown in 

Figure 5.12. The tide gauge data taken from Port of Appin was used as a checking 

location for the numerical modelling. The grid size and numerical accuracy of 

numerical model was investigated to demonstrate the efficiency and the accuracy of the 

present numerical model as well be seen in the following section. 

 

Figure 5.12 The montoring cells in the Loch Linnhe during the tidal wave 

simulation. 

5.5.1 The convergence curve of the Finite Volume Method numerical model 

The effect of computational meshes on numerical accuracy and efficiency was 

investigated by applying four grid cell sizes. These grid cell sizes are constructed in 

regular square mesh size that increases with mesh density in the two-dimensional that 

has a resolution of 12, 13 !173.6, 86.8, 63.3 and 43.3 m. As shown in Figure 5.13.a, b 

the different grid resolutions of the U and V components for the numerical predictions 
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correlated with the ADCP measured at the artificial reef site for the U and V 

components represented in a daily cycle. The numerical model predicted the U and V 

components with good accuracy as shown in Figure 5.13.a, b. The convergence of the 

mean tidal wave elevation during the 13 day’s simulation time was checked as can be 

seen in Figure 5.14. The numerical model solution implies that as the mesh is refined 

the numerical results are more accurate. In fact, the comparison between the measured 

and the fine mesh grid size mean tidal wave is actually very small. In addition, the mean 

tidal current during the simulation time was investigated to obtain the convergence 

curve for the mesh refinement. As indicated from both Figure 5.14 and Figure 5.15 the 

numerical solution is converged in 12, 13 ! 43.3 m grid cell size, since the numerical 

solution has a negligible change in the results compared with other mesh sizes. As 

presented in chapter three the numerical model calculate the fitted time step according 

to the CFL criterion, for further details see appendix A. The preferred time steps 

estimated by CFL criterion for each mesh refinement are displayed in Figure 5.16. It has 

been observed that the time steps decreases as the mesh density increases. As 

experienced from the mesh convergence study finer grid cell size 43.3 m is giving good 

accurate mathematical solution and it can be said that grid independent solution has 

been achieved. All the results of the Finite Volume Method numerical model will be 

presented in the converged grid cell size 43.3 m.      
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Figure 5.13.a, b The U and V velocities components of the different mesh grid 

sizes correlated with the ADCP field measurement for one day cycle. 
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Figure 5.14 The Finite Volume Method convergence curve was performed to 

judge an adequate fine mesh grid size that provides an accurate numerical 

solution for mean tidal wave elevation.       

 

Figure 5.15 The sufficiently refined mesh was converged in the grid cell size of 

43.3 m which give a good numerical accuracy for the mean tidal current. 
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Figure 5.16 The CFL criterion calculation provides the numerical model with       

a suitable time step for mesh refinement during the convergence study. 

5.5.2 The daily tidal wave of the Loch Linnhe for spring and neap cycles  

The daily spring tidal wave cycle was applied as an input into the Finite Volume 

Method numerical model to simulate the tidal wave daily cycle over the whole 

computational domain with the adopted fine grid cell size 43.3 m. The outcome of the 

water elevation tidal wave is shown in Figure 5.17.a where it is compared with the 

measured values from the ADCP. The peaks of the modelled spring tidal wave on the 

artificial reef sites are nearly match the ADCP observations, as exhibited by           

Figure 5.17.a. In similar pattern, the daily neap tidal wave period was simulated and the 

numerical results were compared with the ADCP data tidal wave records as presented in 

Figure 5.17.b. The neap tide’s oscillation of both ADCP and numerical model agreed 

well with each other as illustrated in Figure 5.17.b. Note, the mean still water elevation 

is shown in both figures to indicate the tidal wave range. 
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Figure 5.17.a, b The tidal wave elevation for both numerical modelling results 

and the tides data measurment in a dialy spring(a)-neap(b) tide cycle. 

  Furthermore, the daily spring and neap tidal wave cycles of numerical 

conclusion were analysed against tides gauge data taken from Hydrographic Office. The 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

A comparison between the numerical scheme water elevation (η) results
against the measured result from ADCP instrument

in the artificial reef position
(Spring tides)

Time [Days]
(a)

T
id

e
s
 w

a
v
e

s
 (

m
) 

 

 

Measured tidal wave elevation (m)

Modelled tidal wave elevation (m)

Mean still water level (m)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
57.5

58

58.5

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

A comparison between the numerical scheme water elevation (η) results
against the measured result from ADCP instrument

in the artificial reef position
(Neap tides)

Time [Days]
(b)

T
id

e
s
 w

a
ve

s
 (

m
) 

 

 

Measured tidal wave elevation (m)

Modelled tidal wave elevation (m)

Mean still water level (m)



 

- 112 - 

 

comparison of the numerical daily spring tidal wave cycle against the tidal wave data at 

the Port of Appin is exhibited in Figure 5.18.a. The modelled tidal wave is differed 

slightly from the tide gauge data taken from Hydrographic Office, but it has same 

harmony with values are approximately equal. Note that, the seabed is produced from 

admiralty charts which indicate sensible conclusion given by the numerical model, since 

the accuracy of the seabed is important in this wet-dry numerical model.                       

In resemblance, the lowest astronomical tides wave recorded at Port Appin was 

compared with the numerical neap cycle outcome. A similarity of tides wave pattern is 

found between the numerical calculation and tidal gauge data as exposed by               

Figure 5.18.b. There is a small deviation in the tidal wave values between the numerical 

conclusion and measured tides data, but it is in an acceptable error range in the seabed 

accuracy provided. In fact, the numerical tidal results are approximately matching the 

tidal wave records from the tide gauges observed at Port of Appin. The Finite Volume 

Method numerical model delivers a very good prediction for the daily tidal wave during 

spring and neap tides cycles with a reasonable differences and good agreement between 

the numerical and the measured results. 
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Figure 5.18.a, b The numerical monitoring cell at the Port of Appin shown in 

Figure 5.12 compared with the tides observation taken from Hydrographic 

Office during a selected daily spring-neap tidal wave cycle. 
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  However, the numerical model results were inspected every three hours during 

the tidal dynamics simulation by monitoring the Long-section cells as seen above in 

Figure 5.11 during the tidal wave propagation. In Figure 5.19 the tidal wave is presented 

as it travels inside the computational domain of the Loch Linnhe region. A relationship 

exists between the vertical rise and fall of the tides and the horizontal motion of the 

water created by the tides. This relationship is complicated but it can be related to time 

and the phase of the motion (NOAA, 2012). 

 

Figure 5.19 The long-section cells checker in the Loch Linnhe seen above during 

the simulation time which indicates the tidal wave traveling in the Loch Linnhe 

region. 

There is a phase relationship between the times of high/low water tide and the times of 

the flood/ebb. The correlation of the tides and tidal currents can be classified according 

to three base case conditions. The Standing tidal wave is considered the first case in 

which the times of slack water have nearly the same time as the high and low tide 

conditions, but the maximum flood and ebb currents take place half way through the 

high and low tides, see Figure 5.20. The Standing tidal wave conditions are familiarly at 

the head of larger bays and harbours. The second condition is a Progressive tidal wave 

where the peaks of flood and ebb match the high and low tides as presented in       

The 

Loch 

Linnhe 

profile 
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Figure 5.20. The Progressive tidal wave condition can be seen at the oceanic entrance 

such as Loch Linnhe region. 

 

Figure 5.20 The tides and tidal current time relationship conditons            

(NOAA, 2012).   

A rare third case condition is known as a Hydraulic current that is created due to the 

contrariness in the height of the tides within two sites connected by a water path 

(NOAA, 2012). The peaks of flood and ebb currents occur as the variations of the tides 

heights are building up and the differences in the two tides heights are the greatest. This 

tides condition appears in finite number locations like Chesapeake and Delaware Canal 

that connects both bays together. The characteristic of tides and tidal currents of the 

Loch Linnhe are delineated in Figure 5.21. As seen from Figure 5.21 the tidal wave in 

the Loch Linnhe has similar characteristics to the Progressive tidal wave as expected 

since it lies in oceanic entrance, a matching pattern of tides peaks and tidal currents is 

displayed in Figure 5.21.   
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Figure 5.21 The relationship between tides and tidal currents in Loch Linnhe. 

 Note that, the tides and tidal current is demonstrated in a daily spring tide as 

recorded by the ADCP instrument at the artificial reef site. 

Neverthless, a comprsion between values of the U velocity component of the 

numerical model in the fine grid cell size 43.3 m and the measured ADCP data from the 

reef site is shown in Figure 5.22.a that demonstrates the differences of the U component 

values during the spring tides for a daily cycle. The tidal current pattern of both values 

are similar as seen in the Figure 5.22.a, the oscillation in the quantity in the measured 

ADCP data may occur due to the interaction between short frequency wave with the 

tidal current. Note that, the measured ADCP data actually is the average of the 48 

ADCP bins, it represents the U and V components of the field measurement tidal current 

which indicate surface gravity wave can be included.     
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Figure 5.22.a, b The numerical tidal current U and V components against the 

ADCP measured  U and V components at the reef location for spring daily 

period. 
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 The wave and current interaction is a very difficult issue to investigate due to the 

scale differences both spatially and temporally. It was concluded from previous studies 

such as Wolf et al. (1988), Janssen (1989) along with Wolf and Prandle (1999) that the 

surface gravity waves have a significant effect on the tidal current especially for higher 

wave amplitudes. In addition, the ADCP instrument measure the velocities in the bins of 

the water column in the z-direction which indicates it can measure the three-

dimensional physical features such as stratification condition that may cause internal 

waves, which in turn can affect the value of mean tidal current. Further details of the 

internal wave effect on tidal current can be found in Lee et al. (2011) and Tsimplis 

(2012).  The V component of the ADCP data was examined with the numerical model 

conclusion as seen in Figure 5.22.b above. A similarity in the tidal current pattern exists 

where the quantities of both V components are approximately in agreement, but the 

impact of the surface gravity waves and stratification condition on the measured ADCP 

data may be seen in the Figure 5.22.b. The lowest astronomical tides cycle was 

inspected for both numerical and measured U component values as spoted in           

Figure 5.23.a. Moreover, the V component of measured data at the artificial reef site was 

checked against the numerical V component outcome as presented in Figure 5.23.b. The 

previous comparison of the daily neap tidal current values of the U and V components 

may indicate the impact of surface gravity waves on both ADCP data measured 

quantities because of a high wind speed. In fact, the weather station recorded high speed 

winds during the neap cycle as demonstrated in Figure 5.24. The figure presents the U 

and V components of the tidal current in cm/sec against the U and V components of the 

mean wind speed in m/sec which implies the relationship between the wind speed and 

tidal current.  
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Figure 5.23.a, b The U and V components for the daily neap tidal current cycle 

of both the numerical model and the ADCP record in the reef position. 
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Figure 5.24 The U and V components of the tidal current record at station 226 

near the artificial reef with the mean wind speed data during the filed 

measurement.    

The Loch of Creran entrance was also investigated during the daily spring-neap 

cycles to compare with the seafarer’s navigation information as shown in Figure 5.25.  

 

  Figure 5.25 The Loch Creran inlet inspection cell and the comparison of the 

numerical results against the seafarer’s navigation information.   
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The U and V components that represent the tidal current for the daily spring 

cycle at the Loch of Creran inlet are demonstrated in Figure 5.26.a.  

 

 

  Figure 5.26.a, b The U and V components of the numerical model at the 

entrance of Loch Creran for the daily spring-neap tidal current                  

cycles as registered by the monitored cell. 

The resultant of both U and V components daily spring cycle gives a maximum value of 

1.96 m/sec (3.809 knots) which is approximately equal to the observed value of 4 knots 
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in spring tides as seen previously from seafarer’s navigation information. The neap tides 

were verified with the navigation observation for the same monitoring cell and the result 

is presented in Figure 5.26.b above. The maximum value recorded in the numerical 

results of the neap tidal current is 1.08 m/sec (2.099 knots). Whereas, the registered 

value from seafarer’s navigation information was 2.75 knots which is near to the 

numerical result. The Godunov-type Finite Volume numerical method did capture 

reasonable values of the tidal current at the entrance of Loch Creran which indicate the 

efficiency and numerical accuracy of the present model.   

 5.5.3 The tidal wave dynamics of the Loch Linnhe during a lunar cycle 

  The tidal wave was simulated for a lunar spring-neap cycle with duration of 13 

days to study the performance of the Finite Volume Method during long time periods. 

The tidal wave elevation of these periods is produced as seen in Figure 5.27.a, b. The 

sequence of the numerical model results was compared with data records from the 

ADCP measurements at the artificial reef location as shown in Figure 5.27.a. The water 

elevation of both numerical conclusion and measured ADCP data match together. In 

addition, the port of Appin tides elevation data was validated against the numerical 

model results at the port Appin position. Figure 5.27.b indicates a correspondence 

between the two values that show the present numerical model with tides elevation data 

at the port of Appin which demonstrate a very good performance for the studied 

numerical model, the differences are seen in the peaks of tidal waves elevation data, it 

can be related to the seabed accuracy applied in the numerical simulation since seabed 

created from admiralty chats, but the result is still very good.    
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  Figure 5.27.a, b The tidal waves for numerical results with ADCP 

measurements comparison during a period of 13 day’s time                    

duration in (a). The tidal wave data was taken from the tides                        

gauge station at port of Appin site against                                                                 

the numerical conclusion in (b). 
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Nevertheless, these results give confidence in the capability of the numerical 

model in handling the tidal hydrodynamics over a complex topology such as that 

exhibited by Loch Linnhe. However, the tidal wave current U and V components were 

compared with the measurements of the ADCP instruments. The measured values of the 

velocity components is exposed in Figure 5.28.a, b, it was taken from the averaging of 

the ADCP 48 bins data, as defined in the ADCP measurement chapter four. The results 

for the U velocity component from the numerical Finite Volume Method model were 

plotted opposed to the ADCP data record in Figure 5.28.a. The U component phase 

agreement between the numerical results and the ADCP records are clearly shown in 

Figure 5.28.a. The magnitude of the U component of the computed velocity displayed in 

magenta colour agrees well with the measured component in the black colour. Indeed, it 

is almost match each other. The small differences between both quantities that found in 

ADCP measured data, it can be related to the effect of surface gravity wave since the 

variation occur in the short frequency period. On the other hand, the phase between the 

computed results presented in red colour and measured V component seen in the black 

colour is identical whereas the magnitude of the V components are very well agreed 

with small differences due to seabed accuracy and surface gravity wave impact. In the 

numerical model it is critical to control the outflow boundary at the entrance of the Loch 

Creran on the East coast of the computational domain by applying the tidal wave 

constituent’s solution for Pier of Barcaldine. In addition, the impact of wind stress on 

the sea surface plays a role in the numerical model solution. In Figure 5.28.a, b the 

green colour line on both U and V component indicates the tidal current numerical 

results without controlling the outflow east boundary by tidal wave constituent’s 

solution for Pier of Barcaldine and neglecting the wind stress. Whereas, the magenta 

colour for U component and red colour for the V component in the numerical solution 

that agree more accurately with ADCP measured data, it shows the important role of 

both parameters in the numerical solution. 
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  Figure 5.28.a, b The comparison of U and V tidal current components between 

the numerical calculation results and ADCP measured data                     

quantification. 
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The tidal velocity vectors over the whole solution numerical domain presented on the 

finer grid cell size 43.3 m as the incoming tide propagates through Loch Linnhe are 

presented in Figure 5.29. The velocity vectors near the outlet rise due to the narrow 

cross section of the outlet and shallow topology as seen from Figure 5.30 that present 

the complexity of the Loch Linnhe seabed. The reverse tidal wave cycle is demonstrated 

in Figure 5.31 which is representing the velocity vectors in the reverse mode with high 

speed in the narrow region and low speed in the wider region. The flow is consistent 

with complicated Loch topology which leads to acceleration in regions where the water 

depth decreases or the channel narrows. The measurements are focused on the reefs site 

and there are no detailed measurements of the tidal flow away from it. The numerical 

model behaves as would be expected as presented from previous results.  

 

   Figure 5.29 The velocity vector of a positive tidal wave propagating in the 

Loch Linnhe. The position of the artificial reef is represented by                    

the diamond marker. 
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    Figure 5.30 The Loch Linnhe complex topology with the indication of the 

narrow outlet that has shallower seabed compared with other region                      

in the Loch. 

    

      Figure 5.31 The velocity vectors of a tidal wave in the negative cycle with    

a marker for the reef site. 
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 In conclusions, The Godunov-type shallow water flow model has been 

implemented to simulate tidal flow hydrodynamics in the Cook Straits, New Zealand as 

presented in chapter three, for validation of the model before applying it to the unknown 

case of Loch Linnhe, off the West Coast of Scotland. The numerical results from both 

tidal dynamics simulations were compared with measurements. In general, a good 

agreement between the predicted and measured values (where available) was obtained.  

These results demonstrate a good performance of the numerical model when it is 

applied for tidal dynamics simulation.  A relatively small disparity in the magnitudes of 

the numerical and measured velocities is found in some instances and the reasons for 

this are complex. It may be simply due to the use of the shallow water equations for a 

complicated three-dimensional domain. The measurements from ADCP may have been 

reflecting the influence of local features (e.g. the reefs themselves. 140 m away) on the 

global flow. The results of the 2D shallow water simulation have been published in the 

ISOPE (International Offshore and Polar Engineering Conference) Conference 

Proceedings for 2012, see appendix C. 

  In the next chapter a 3D model will be implemented for investigating the details 

of the local flow about the reef, and this will be followed by matching the local 3D flow 

to the global 2D flow by using output from the shallow water equation analysis as input 

to the 3D numerical model. 
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Chapter 6. The three-dimensional artificial reef flow modelling    

6. Introduction 

Attention has recently focused on artificial reefs due to the decline of marine 

fishery resources. The development of artificial reefs has increased rapidly around the 

world, particularly in countries such as Japan and the USA, but, there are still many 

unresolved problems regarding the hydrodynamics of artificial reefs from the design 

point of view. In addition, the artificial reef stability and structural integrity, which are 

important issues from an engineering perspective, are concerned with the prevention of 

reef failure under current conditions causing excessive drag on the reef structure or 

sediment erosion on the seabed at its base. For these reasons calculating and analysing 

the hydrodynamic capabilities of an artificial reef under ocean field conditions is a very 

important resource to have available. Researchers to date have largely adopted an 

experimental approach to studying the reef fluid dynamics phenomenon. For example, 

Liu et al. (2009) have conducted wind tunnel experiments on artificial reef elements 

represented by different shapes, including pyramids, triangular prisms and cubes, for 

comparison with a modelled flow field obtained by a numerical simulation method. 

Other experimental methods, such as particle image velocimetry (PIV), have been 

adopted by Su et al. (2007) to investigate the flow patterns within and surrounding an 

artificial reef, which have also been compared with the results from numerical 

simulation.  

However, the study of artificial reef flow patterns by conducting experiments in 

the laboratory or making in-situ observations have been time consuming and expensive. 

In principle, numerical modelling can obtain detailed flow patterns around artificial 

reefs without having to recourse too expensive and time consuming experiments. An 

understanding of the hydrodynamic capabilities of an artificial reef can be gained using 

computational fluid dynamics software such as FLUENT 12.0. This proprietary code 

has been employed in the present study for a three-dimensional numerical simulation of 

the detailed flow around an artificial reef using built-in unstructured tetrahedral grids to 

solve the three-dimensional incompressible Reynolds Averaged Navier-Stokes 

equations over the numerical domain. The k-ε renormalization group (RNG) was 

implemented in a Navier-Stokes solver to investigate the turbulent flow pattern around 

the selected reef. A number of case studies have been undertaken using the code 

including a comparison between a case with the initial conditions based on output from 
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the two-dimensional code described in previous chapter five, and a case with the initial 

conditions taken from experimental measurements of the flow profiles.  

6.1 The k-εεεε turbulence model 

The two-equations k - ε model has been applied in many practical engineering 

turbulent flow modelling problems due to its accuracy and reliability in a wide class of 

flows. An enhancement to the k - ε turbulence model was developed to give an 

improved version known as the renormalization group (RNG) k - ε model. The RNG 

based on the k - ε turbulence model has been developed for significant improvements in 

the accuracy for rapidly strained flow, and enhanced accuracy for the effect of swirling 

flows on turbulence. The RNG model gives improved flow prediction at low Reynolds 

number near wall flows due the analytically-derived differential formula for effective 

viscosity adopted (ANSYS FLUENT 12.0, 2009). The RNG k - ε model transport 

equations can be written in many ways but if it is assumed that the flow is fully 

turbulent and the effect of molecular viscosity is neglected the RNG transport equations 

can be simply represented as follows: 
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In these equations  kG  terms represent the generation of turbulent kinetic 

energy due to the gradient of the mean velocity: the kα and εα  quantities represent 

the inverse effective Prandtl numbers for k and ε  respectively; the ε1C , ε2C  terms 

are constant given values of 1.42 and 1.68 respectively. The term effµ is the turbulent 

(or eddy) viscosity that can be computed from the kinetic energy k  and dispassion rate 

ε as follows: 
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ρ=µ µ                                                          (6.3) 

Here µC is a constant given value of 0.09 and there is an additional term, εR ,which is 

the major difference between the standard k-ε and the RNG k-ε models. This term 

improves the accuracy for high strain rate and large degree high turbulent flows, and it 

is given by the formula: 
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Where, ε
θ k St=  and 

2/1

ijij )StSt2(St =  with the turbulent viscosity 

computed as in the standard k-ε model with 012.0 and 38.40 == βθ . A complete 

mathematical background to turbulence modelling is beyond the scope of this thesis but 

more comprehensive description of RNG theory and its application to turbulence 

modelling can be seen in Orszag et al. (1993). In the present study, the water is assumed 

to have a constant density and temperature, and the usual assumptions of an 

incompressible, viscous and Newtonian fluid with isothermal flows and no heat 

exchange have been adopted. 

6.2 Test case of a Backward Facing Step 

In order to gain experience with the FLUENT with the renormalization group 

(RNG) k -ε model and confidence in its capabilities with respect to modelling separated 

recirculating flows, the challenging case of flow past a backward-facing step was 

computed. This flow is    a good example of the flow separation of a boundary layer 

which is followed downstream by reattachment of the separated layer. The effect of 

Reynolds number on the separation and attachment points as briefly explained in 

appendix (D) which gives more details of these test cases. The test cases were run for 

two different Reynolds numbers, Re= 5100 and Re=44,000 as given in appendix (D). 

The numerical domain is seen in Figure 6.1.a. The numerical results at a Re of 5100 was 

compared with the experimental results presented by Jovic and Driver (1994), who 

found that the reattachment length (Lr) varied between 6.0H and 6.1H where H is the 

step height. The stream-wise velocity contours of the Re=5100 is displayed in       

Figure 6.1.b. The computational results are displayed with the experimental results in      
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Figure 6.2.a, b, c, d that indicates good agreement of the stream-wise velocities with   

(a) x/H=4 and (b) x/H=6 with slightly less good agreement for (c) x/H=10 and            

(d) x/H=19. The major characteristic of the flow is the recirculation zone that forms at 

the back of the step, as seen in Figure 6.1.b. This is a challenging flow to compute and 

is often used as a classic example for validating numerical models. Other tests have 

been considered as presented in Appendix (D).  
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Figure 6.1.a, b The numerical domain of the test case for Re=5100 is exhibited in (a) and the stream-wise velocity contour is spotted in (b). 
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(a) (b) 

(c) (d) 

Figure 6.2.a, b, c, d The comparison of the stream-wise velocity at Re=5100 at (a) x/H=4, (b) x/H=6, (c) x/H=10 and           

(d) x/H=19. 
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6.3 The artificial reef with initial conditions of the tidal velocity flow profile  

  The spring tidal cycle represented in Chapter four was selected due to the high 

speed of the tidal current compared with a neap cycle. The spring tidal current profile 

chosen has    a high tidal current strength as shown in Figure 6.3. However, it difficult 

to explain the vertical structure of the tidal current since the upper layer is affected by 

surface boundary layer process such as stratification. The stratified condition can create 

internal waves which cause interfacial disturbance along with a vertical shear of the 

tidal current. In fact, these conditions have been detected in the M2 tidal current Yellow 

Sea as discussed by Lee et al. (2011). In addition, the vertical structure of tidal current 

was observed to be parabolic in Guaymas Bay (Mexico) due to these surface boundary 

layer processes (Gómez-Valdés et al., 2012). The tidal current velocity profile was 

adopted to be set as a tidal current flow study case. The tidal velocity profile was set as 

an initial condition at the inlet face to investigate the tidal current flow pattern 

surrounding the artificial reef over a period of one hour on the grounds that the flow 

varies relatively slowly over the tidal cycle.  

 

Figure 6.3 The chosen velocity profile for reef hydrodynamics investigation. The 

point one refer to selected hour time as described in previous chapter four.  

6.3.1 The numerical method and model configuration 

The numerical method adopted for the calculations is embedded in the FLUENT 

software which discretises the 3D- incompressible Navier-Stokers equations. The 

software implements a pressure-based solver in a first order implicit unsteady 

formulation. The gradients are estimated by the Least Squares cell based method. The 

SIMPLE scheme algorithm was applied to solve the pressure and velocity coupling in 
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each time step. The discrete formats of the momentum, turbulent kinetic energy and 

turbulent dissipation rate were formulated in a second order upwind scheme. The 

solution convergence is controlled by the residuals. The residuals summarize the 

differences between the current and past states of the numerical solution which is done 

every time the solver iterate. Therefore, residuals indicate the degree to which the 

numerical solver is satisfied. Further details information of the residuals calculation for 

the conservation equation is found in theory guide in ANSYS-FLUENT 12.0 (April 

2009). In the present work the convergence was obtained if all residuals fell below 10-3 

every time step as suggested by theory guide manual. The numerical domain adopted 

for the modelling is generated in tetrahedral unstructured cells due to the irregularity of 

the object required for simulation. The numerical domain grid size is 3,605,318 

tetrahedral cells applied in the present work since, the actual reef is composed of a 

mound of concrete blocks dropped randomly onto the sea bed. The roughness applied in 

the calculation is based on results presented by Rose (2005) as will be demonstrated. 

The numerical domain and boundaries are defined as specified in Figure 6.4.a as inflow 

(velocity-inlet), outflow (pressure-outlet), symmetry (top and both sides) and two wall 

boundaries on the seafloor. The height of the domain was set to the still water depth as 

seen from figure. The walls were set with no-slip boundary conditions. As discussed in 

a previous chapter two the artificial reef itself was made from concrete blocks and has 

been individually set as a wall. In fact, the density of the concrete blocks making up the 

reef is high due to the randomly deployment, and it was considered that a solid structure 

would give a good approximation of the fluid/structure interaction. The wall roughness 

required for the computation was estimated from the roughness height of the artificial 

reef. The artificial reef structure complexity was studied by Rose (2005) and the 

roughness height has been adopted from data presented in his PhD thesis and shown in 

Figure 6.4.b, having a relative roughness, kr /D, of 0.0190 where kr is the roughness 

height and D is a reef length scale taken as the diameter of the base of the reef. The tidal 

current velocity profile of the inflow was set by applying a UDF (User Define function) 

formulated in a subroutine written in C code (see the ANSYS-FLUENT 12.0) and based 

on the measured values for the velocity. The outflow was set as a pressure-outlet that is 

allowed to change as the hydrodynamics pressure at all the boundaries is calculated 

from known values inside the computational domain.  
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Figure 6.4.a, b The numerical domain adopted in the numerical simulation with indication of the boundary condition applied during the 

simulation (a), whereas, (b) shows the wall roughness complexity in the randomly deployment                                                                            

of concrete blocks that creates the artificial reef as discussed in Rose (2005). 
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 6.3.2 The results of the tidal current flow profile 

 The tidal flow cycle was considered to be relatively slowly varying and well 

represented by dividing it up into a series of twelve different steady flows of one hour 

duration as described in chapter four. This assumption was subsequently tested by 

computing an actual unsteady flow over the same time duration. The execution time of 

each of the numerical simulations of the flow patterns surrounding the artificial reef was 

therefore set to correspond to one-hour of flow time. The results of the computational 

domain were output every 100 s of the flow time with a total duration of 3600 s. In this 

chapter, selective results will be displayed every 600 s in a time frame beginning from 

145 s after tidal current profile entered the computational domain and ending after the 

flow has propagated around the artificial reef over a time simulation of 3600 s. The 

results are presented as sections of the   Y-Z plane, the X-Z plane and the X-Y plane 

through the artificial reef, together with the seafloor as will be seen in all of the figures.  

The tidal current velocity profile at the inlet with the artificial reef is shown in         

Figure 6.7.a. The first time of 145 s frame contour of the tidal current velocity in the                

x-direction with the turbulent kinetic energy in the Y-Z plane is shown in Figure 6.8.a & 

6.8.c, X-Z plane viewed in Figure 6.9.a & 6.9.c and X-Y plane displayed in           

Figure 6.10.a & 6.10.c. The results show the early stage of the interaction of the 

artificial reef with the tidal current profiles and turbulent kinetic energy production 

which is low as the figures indicates. Finally, the seabed characteristic regarding the 

tidal velocity and kinetic energy production is presented in Figure 6.11.a & 6.11.c).  

 The middle time flow frame at 1345 s will be demonstrated in a similar format 

as in the previous time step. Figure 6.12.a & 6.12.c represent the Y-Z plane section of 

the tidal current at the same distance of 20 m from the inlet as presented for the previous 

time step. The X-Z plane is spotted in Figure 6.13.a & 6.13.c which indicates the 

changes in the velocity profile as well as the kinetic energy production. Figure 6.14.a 

&6.14.c presents the tidal current profile and the kinetic energy of turbulence in X-Y 

plane. In general, the tidal current profile has interacted with the artificial reef and 

created a turbulent region with an increased turbulent kinetic energy seen clearly in the 

X-Z plane and the X-Y plane. The seabed velocity and turbulent kinetic energy have 

been computed because of their possible effect on sediment transport problems, and are 

demonstrated in Figure 6.15.a & 6.15.c.  
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Finally, the results for the flow at 3600 s are presented in the same format as before in  

Figure 6.16.a & 6.16.c for the Y-Z plane, Figure 6.17.a & 6.17.c for the X-Z plane and   

Figure 6.18.a & 6.18.c for the X-Y plane. The impact of the tidal current on the seafloor 

can be assessed by considering the velocity effect in the x-direction and the turbulent 

kinetic energy as displayed in Figure 6.19.a & 6.19.c. In summary, the flow is 

separating from the artificial reef and creating a recirculating flow, or vortex, on its 

downstream face leading to an increase in the turbulent kinetic energy during the tidal 

current propagation as realized from Figure 6.20.a & 6.20.c that exhibit the                     

a recirculating flow caused by the artificial reef.  

However, the nature of the sediment transport on the marine organism that live 

on the artificial reef is a key factor for reef life productivity (Bacchiocchi and Airoldi, 

2003) and it is determined by the wall shear stress and skin friction coefficients in the 

near vicinity. The wall shear stress and the skin friction coefficient are calculated from 

the formulas: 

   45 ! 6'	 7879:-9:;&                                                      (6.5) 

  #<=> ! ?@ABρ	CDB                                                          (6.6) 

 The wall shear stress '45-	is estimated by equation (6.5), note that 3$ here 

represents the water depth, u is the free stream velocity and µ is the dynamics viscosity. 

The skin friction coefficient '#<=>-	is calculated from equation (6.6). In here, ρ is the 

water density, 45 is the wall shear stress and the free stream velocity	%�. The results of 

the wall shear stress and the skin friction coefficient is given in Figure 6.21.a and   

Figure 6.22.a. The seafloor wall cells estimation is seen in black whereas the artificial 

reef wall cells are shown in the red colour. The shear stress has a maximum value of 

0.35 Pascal on the reef at its peak as illustrated in Figure 6.21.a. The skin friction arises 

from the interaction between the fluid and the surface of the artificial reef body which 

gives peak values of the skin friction coefficient of 0.0225. These higher numbers of the 

shear stress and the skin friction coefficient on the artificial reef (as opposed to the sea 

bed) can be seen as red dots in both of Figure 6.21.a & 6.22.a. Note that in the present 

research, the aim is to indicate the magnitude of the shear stress and the sediment 

erosion is not focused on this study.   
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 Another parameter has been investigated is the drag coefficient, which is a 

measure of the resistance of an object in a fluid flow field. Since, the Loch Linnhe reef 

was constructed from concrete blocks, the drag coefficient plays an important role in 

calculations relating to its structure stability. The drag coefficient rises at early stage of 

time simulation and decreases to almost a fixed value about 0.027 as shown in            

Figure 6.23.a and which is characteristic of impulsively started flows.  

6.4 A comparison between flows based on numerically and empirically derived 

starting conditions    

One of the objectives of this study was to assess the viability of computing 

realistic three-dimensional flows about a reef, taking the output of a two-dimensional 

global model of the wider region as a starting point. To investigate this, a logarithmic 

velocity profile was developed from the mean velocity output from the shallow water 

equation solver in the vicinity of the reef. The velocity profile so derived was then used 

to formulate the initial conditions (input velocities) for the three-dimensional analysis. 

The results obtained were compared with the output from the three-dimensional 

software using experimental measurements of the velocity profile to define the initial 

conditions. If the method is viable, it follows that the two sets of results should be 

similar. 

 A selected average tidal current gained from the two-dimensional simulation 

described in Chapter five was simulated and compared with the modelled field 

measurement tidal current profile adopted in the previous section. The chosen average 

tidal current of 0.2284 m/sec calculated from the adopted tidal numerical model was 

transformed to a logarithmic profile as schemed by Figure 6.5 according to the formula 

(6.7) and on the basis that the integral of the mean velocity through the water column is 

equal to the integral of the measured velocity profile over the same limits. The 

logarithmic velocity profile derived from the average tidal current profile with the 

following equation (6.7) can be seen in Figure 6.6.  

  
0

*
Z

Z
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1

U

)z(U

κ
=                                                          (6.7) 

Whereas, U (z) is velocity function of Z, U* is friction velocity yield to a value 

of 2.5 cm/sec as investigated by Sanford and Lien (1999) which is almost equal to the 

typical value suggested by Marchuk and Kagan (1989) with a value of 3 cm/sec, κ is 
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von Kármán’s constant that equal to  0.41, Z is still water height and Z0 frequently 

termed a roughness length (Perlin et al., 2005).  

 

Figure 6.5 The transformation of mean tidal current for the two-dimensional 

depth averaged uniform velocity profile gained from Finite Volume                           

Method numerical model changed to a logarithmic profile                                                      

that adopted as inlet in the present investigation. 

The initial conditions using the average tidal current profile were set along 

similar to those adopted in the numerical method and model configuration detailed in 

pervious section 6.3.1 and the results of the measured tidal current profile with 

logarithmic tidal current profile were positioned opposite to each other.  
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Figure 6.6 The average tidal current gained from the two-dimensional tidal 

numerical model in the logarithmic profile. 

The output from the separate models based on the two tidal current profiles will 

be compared in the same frame times for the results as adopted in the previous case 

study. Both tidal current profiles are spotted in Figure 6.7.a, b. 

The model using the measured tidal current profiles viewed in Figure 6.7.a with 

its distinct feature of the effect of both surface and bottom boundary layers impact on 

the profile,  the upper layer of the tidal current suffers from the surface boundary layer 

process that cause a reduction in the tidal current. Further, information can be found in 

Lee et al. (2011) and Tsimplis (2012). On other hand, the bottom friction is affecting the 

bottom layer of the tidal current. The second model using the logarithmic tidal current 

profile displayed in Figure 6.7.b. The two profiles were run for one hour to produce the 

velocity profile in the x-direction and the production of turbulent kinetic energy 

presented in the three-plane sections (X-Y plane, X-Z plane and X-Y planes) in the near 

vicinity of the reef.  

The comparison of results indicates similarity in the Y-Z plane and seafloor 

contour of both tidal current profiles with some minor differences with the other two 

planes even though the, X-Z plane and the X-Y planes give similar distributions of 

turbulence in the wake of the reef. The logarithmic profile has a higher velocity near the 
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surface whose influence doesn’t extend significantly down to the reef. Therefore, the 

measured tidal current with the higher speed over the peak on the artificial reef than 

logarithmic tidal current, as seen from all figures, creates more turbulent kinetic energy 

than the logarithmic one. In addition, the vortices/recirculating flow created by both 

profiles have similar in velocity fields in magnitude and location. In Figure 6.20.a, b the 

velocity vector profiles are seen for both measured tidal current and logarithmic one in 

the X-Z plane. The turbulent circulation of the measured profile is wider than the 

logarithmic one. In fact, the logarithmic profile creates a vortex with almost circle shape 

whereas the measured vortex has an elliptical shape. The phenomenon is presented 

clearly in the X-Y plane which intimate to wider turbulent occur in the measured tidal 

profile than logarithmic one as demonstrated from Figure 6.20.c, d. This effect may be 

explained due to the higher velocity seen in the measured profile as shown in                 

Figure 6.17.a compared to lower velocity found in logarithmic velocity profile seen in 

the Figure 6.17.b. Therefore, the effect of the both tidal current profiles on the turbulent 

kinetic energy production is recognized in Figure 6.17.c, d due to the differences in the 

tidal current profiles. The shear stresses produced by both tidal current profiles indicates 

a higher wall shear stress for the measured profile (with 0.35 Pascal) compared to the 

logarithmic profile (with 0.25 Pascal) as presented in Figure 6.21.a, b.       
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    (a) 

    (b) 

Figure 6.7.a, b The tidal current measured is spotted in (a) with it distinct feature                                             

due to the effect of surface and bottom boundary layers and numerical averaged                                            

tidal current with the logarithmic profile presented in (b). 
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Figure 6.8.a, b, c, d The tidal current at frame time 145 s in Y-Z plane section. 

The measured tidal current profile is shown in (a) and numerical average tdial 

current is seen in (b).The turbulent kinetic energy in the same plane for                                        

the tidal current measured is spotted in (c) and numerical                                      

averaged tidal current is presented in (d). 
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    (c)     (d) 
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Figure 6.9.a, b, c, d The tidal current in the X-Z plane for the tidal current 

measured is exhibited in (a) and numerical averaged tidal current exposed        

in (b). The turbulent kinetic energy for the tidal current measured is      

displayed in (c) and numerical averaged tidal current is viewed in (d). 
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Figure 6.10.a, b, c, d The X-Y plane of tidal current velocity of the measured is 

demonstrated in (a) and numerical averaged tidal current is exposed in (b).The 

turbulent kinetic energy of the measured is displayed in (c) and numerical 

averaged tidal current is seen in (d). 

 

 

 

    (a)     (b) 

    (c)     (d) 
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Figure 6.11.a, b, c, d The seafloor tidal current profile of both (a) the measured 

tidal current and numerical averaged tidal current is presented in (b). The 

seafloor turbulent kinetic energy for both (c) the measured tidal current        

and numerical averaged tidal current is spotted in (d). 

 

 

    (a)     (b) 

    (c)     (d) 
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Figure 6.12.a, b, c, d The tidal current velocity of the measured profile is seen in 

(a) and for logarithmic profile is viewed in (b) as shown from the Y-Z plane 

(1345 s). The production of the turbulent kinetic energy for the measured 

current is displayed in (c) and for logarithmic profile is presented in (d). 

 

 

    (c) 

    (a) 

    (d) 

    (b) 
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Figure 6.13.a, b, c, d The tidal current profile in x-direction for measured profile 

from X-Z plane is exposed in (a) and logarithmic tidal current profile is        

exhibited in (b). The tidal current produce a turbulent kinetic energy                     

for the inflow measured profile is spotted in (c) and                                     

logarithmic profile is viewed in (d). 
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Figure 6.14.a, b, c, d The tidal current for measured current as pass the reef in    

x-direction is demonstrated in (a) and logarithmic current profile is presented in 

the X-Y plane on 50% of the reef height. The turbulent kinetic energy 

produced by the inflow measured current is exhibited in (c).                          

The logarithmic inlet effect on the turbulent is seen in (d). 
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Figure 6.15.a, b, c, d The seafloor velocity contour in x-direction for measured 

current is displayed in (a) and for logarithmic current is viewed in (b).                   

The seafloor turbulent kinetic energy with (c) the measured tidal                             

current and logarithmic tidal current energy production                                                    

as presented in (d). 
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Figure 6.16.a, b, c, d The Y-Z plane on cross section position for measured 

profile in (a) and logarithmic profile in (b). The turbulent energy production of 

both measured profile (c) and logarithmic profile in (d) has a similarly pattern 

of the energy production (3600 s).  
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Figure 6.17.a, b, c, d The measured velocity profile is shown (a) for the X-Z 

plane and the logarithmic profile is presented in (b). Turbulent kinetic energy 

production for both tidal current profiles (c) measured profile and (d) 

logarithmic profile. Note that, the higher turbulent kinetic energy                

viewed in the measured one due to the high velocity at the peak of                 

the artificial reef as demonstrated from the velocity                                        

profiles figures. 
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Figure 6.18.a, b, c, d The velocity in the x-direction of (a) measured tidal current 

profile and logarithmic tidal current profile in (b). The turbulent kinetic energy 

production for the measured profile current is seen in (c) has higher                        

value as the velocity is higher than the logarithmic tidal current                                 

shown in (d).  
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Figure 6.19.a, b, c, d The velocity on the seafloor has similarity values and 

location as presented for measured tidal current profile in (a) and logarithmic 

profile one in (b). The positions of higher turbulent kinetic energy are the same 

in both figures of measured tidal current profile (c)                                          

and logarithmic profile current on (d). 
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Figure 6.20.a, b, c, d The velocity vectors of both measured profile in (a) and 

logarithmic profile in (b) in the X-Y plane. The vectors velocity of both              

measured profile in (c) and logarithmic in (d) in the X-Y plane.                                       

It indicates the wake region in both profiles which                                

demonstrates the different size of the created                                                     

wake region.   

 

    (a)     (b) 

    (d)     (c) 
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Figure 6.21.a, b The shear stress of measured tidal current profile on the artifice 

reef is seen in (a) whereas, the shear stress of the logarithmic profile is shown 

in (b). Note that red dot for artificial reef wall and black dot for seafloor. 

  

Figure 6.22.a, b The skin friction coefficient of the artificial reef as tidal 

current profile of measured data propagate the reef is presented in (a) along 

with the logarithmic profile tidal current cause a skin friction coefficient that is       

demonstrated in (b). Note that red dot for artificial reef wall                                     

and black dot for seafloor. 

Similarly, as would be expected, the skin friction coefficient achieved a greater 

value for the measured tidal current profile than for the logarithmic profile as 

demonstrated in Figure 6.22.a, b above. 
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Figure 6.23.a, b The drag coefficient caused by both tidal current on the 

artificial reef is presented in (a) for measured tidal current profile and (b) for 

the logarithmic tidal current profile.  

The drag force on artificial reef was investigated for both tidal current profiles to 

reflect the relative impact of the drag forces on the structure integrity of the reef as is 

presented in Figure 6.23.a, b. Again, as would be expected, the measured tidal current 

profile shows a higher drag coefficient due to the higher velocity near the artificial reef 

compared to logarithmic tidal current profile. 

6.5 The artificial reef under varying tidal current profiles  

In the methods described in the previous sections the assumption has been made 

that the tidal cycle can be divided into twelve intervals points and the tidal variation can 

be represented by a corresponding series of step changes with each one having steady 

inlet conditions. This assumption is tested in the work described in the present section in 

which the inlet conditions are varied continuously over the hourly time interval. The 

measured data for the spring tidal current demonstrated in Chapter four was adopted for 

the exercise by selecting two points of the twelve described in the previous Chapter, the 

two profiles represents a variation of a one hour time duration that will define the inlet 

conditions with a similar numerical domain to the one viewed in Figure 6.4.a, b. The 

inlet was controlled as before using a UDF subroutine written to interpolate in time 

between two measured tidal current profiles. The two tidal current profiles adopted for 

the interpolation of a one hour time period can be seen in Figure 6.24.a, b which 

represents a tidal current similar to the natural ocean conditions and shows the input 

conditions at the beginning tidal current profile (point 7) and end of the interval 

represented by tidal current profile (point 8). Note that, the points refer to the twelve 

intervals points selected from the spring tidal cycle as explained in Chapter four. 

    (a)     (b) 
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Figure 6.24.a, b The chosen two profiles selected from the tidal spring cycle as 

illustrated in Chapter four. These were interpolated to create                                       

unsteady condition similar to what the artificial reef affected                                              

under the normal ocean condition.  

 The measured tidal current profiles were solved with the same numerical method 

and model configurations as presented in section 6.3.1 except the inlet conditions are 

varies with time. The data was output every 200 s during the time of flow to investigate 

its hydrodynamics as it propagates over the artificial reef. The results displayed in this 

section will be presented for three time frames of 574 sec, 1790 s and 3600 s shown in 

three section plans (Y-Z plane, X-Z plane, X-Y plane) as well as the seafloor contours 

for both the velocity and the turbulent energy in the following figures. 

The figures of the Y-Z plane of the unsteady flow a rise in the tidal current 

velocity profiles from 0.25 m/sec to 0.45 m/sec as viewed from Figure 6.25.a, b, c 

consistent with the unsteady inlet flow. Similarly, the turbulent kinetic energy increases 

as the tidal current speed surge and this energy is distributed around the artificial reef as 

spotted in Figure 6.26.a, b, c. The results for the X-Z plane reveal a similarity in 

behaviour to those of the Y-Z plane for the velocity tidal current profiles and turbulent 

kinetic energy. It can be witnessed that flow separation from the reef occurs leading to 

re-circulating flow and a growing vertical wake that boost as the velocity profiles 

increases as exhibited in Figure 6.27.a, b, c. A vector plot of the velocity field is 

delineated in Figure 6.28.a, b, c. It can be observed that the turbulent kinetic energy 

production rises with the growing region of high speed recirculating flow as viewed in 

the plot for the turbulent kinetic energy in Figure 6.29.a, b, c. In fact, the initial stages of 

vortex shedding from the artificial reef can be clearly identified from the X-Y plane, 

which was taken at a 2.0 m height above the seabed which is about 50 % of the artificial 

reef height as noticed by Figure 6.30.a, b, c. The tidal current velocity and turbulent 

    (a)     (b)  
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kinetic energy continue to increase in the last time frame due to the gain of speed in the 

tidal current. Note that, asymmetrical flow seen in Figure 6.30.a, b, c is due to the slope 

of the seafloor reinforced by effects due to the turbulent nature of the flow. The impact 

of the tidal current on the seabed is represented in the velocity contour and the 

production of the turbulent kinetic energy is laid out in Figure 6.32.a, b, c and               

Figure 6.33.a, b, c respectively. 

 The computed flow presented in this section is characterised by flow separation 

and the formation a vertical recirculating flow in the wake region of the artificial reef. 
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    (a) 

Figure 6.25.a, b, c The velocity in the Y-Z plane of chosen time frames that inidcate the rises of the tidal current profile during 

unsteady flow conditions. 
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Figure 6.26.a, b, c The turbulent kinetic energy production of the time dependent inlet conditions flow is seen in section Y-Z plane.   

Time 574 sec 

Time 1790 sec Time 3600 sec 
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Time 574 sec 

Time 1790 sec Time 3600 sec 

Figure 6.27.a, b, c The X-Z plane velocity contour in the x-direction which indicates the increases in of the 

tidal current profiles as inlet interpolate between the two profiles spotted in Figure 6.24.a, b. 
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Figure 6.28.a, b, c The vectors of the velocity profiles time frames displaying the development of vortex caused by the artificial reef during 

the simulation.   

Time 574 sec 

Time 1790 sec Time 3600 sec     (b)     (c) 
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Figure 6.29.a, b, c The turbulent kinetic energy as it generate during the unsteady flow modelling in a one hour time period.                           

Time 574 sec 

Time 1790 sec Time 3600 sec     (b)     (c) 
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Time 574 sec 

Time 1790 sec Time 3600 sec     (b)     (c) 

    (a) 

Figure 6.30.a, b, c The X-Y plane of the tidal current velocity contour at the half about 50% of the artificial reef 

height presenting the turbulent occur on the reef due to the unsteady flow. 
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Time 574 sec 

Time 1790 sec Time 3600 sec     (b)     (c) 

    (a) 

Figure 6.31.a, b, c The production of turbulent kinetic energy due to the unsteady tidal current as 

presented in the X-Y plane viewed in time frames. 
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Time 574 sec 

Time 1790 sec Time 3600 sec     (b)     (c) 

    (a) 

Figure 6.32.a, b, c The effect of velocity contour on the seabed that indicate an increase of the outcome as the tidal 

current interpolated between the two adopted profile seen in Figure 6.24.a, b increases. 
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Time 574 sec 

Time 1790 sec Time 3600 sec     (b)     (c) 

    (a) 

Figure 6.33.a, b, c The X-Y plane the turbulent kinetic energy production on the reef increases as the speed of the tidal current rises due 

to the interpolation between the two adopted profiles for the unsteady condition. 
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Chapter 7. Discussion and Conclusions   

In recent decades, marine resources have suffered a decline over the whole 

world due to intensive fishing and the retreat of the shelter and attraction regions like 

natural reefs. In consequence, members of the fishing industry in several countries have 

adopted artificial reefs to aggregate and increase total biomass production of fishes. 

Fluid hydrodynamics has an important influence on a number of aspects of artificial reef 

functionality and operability. For example, hydrodynamic forces from energetic 

complex flows can have an impact on the artificial reef stability (threatened by soil 

erosion at its base) and structural integrity (caused by removal of reef structural 

elements, such as blocks, by high drag forces). In addition, recent studies have 

postulated the importance of the role of the flow field in its influence on the artificial 

reef marine habitats in aquatic systems.  

The overall aim of the study, as stated in Chapter 1, is to develop a 

methodology, and provide the tools for its implementation, for the determination of the 

detailed hydrodynamic characteristics of an artificial reef with a specified topology at a 

given location defined only by its bathymetry and tidal information from Admiralty 

charts, or their equivalent. It was chosen to carry out the study using the artificial reef in 

Loch Linnhe as an example. From there it followed that the overall objective of the 

study is divided into three major parts. The first part is related to modelling Loch 

Linnhe at large scale (global) by analysing the tides’ hydrodynamics affecting the Loch. 

The second part involves small scale (local) modelling aimed at determining the 

detailed hydrodynamics of the flow surrounding the artificial reef as determined from 

the global flow. The third major element of the overall objectives involved obtaining 

measured data for the hydrodynamic characteristics of the artificial reef site from ADCP 

instruments deployed in its vicinity for refining and validating the numerical models. 

The overall objectives have all been met and the necessary numerical modelling for 

achieving the aim of the project has been achieved. Observations and conclusions 

arising from the work involved are made in the following sections. 
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7.1 The tides hydrodynamics on the Loch Linnhe 

  A two-dimensional numerical model solving the shallow water equations 

(Liang and Borthwick, 2009) was adopted in the present work and implemented to 

quantify the tidal (global) hydrodynamics on the Loch. Initially, the numerical model 

itself was intensively examined for fitness for purpose using a variety of benchmark 

tests in one-dimension. It was also implemented to model the flow through the New 

Zealand Strait, having similar execution aspects to Loch Linnhe, and the results were 

compared with the numerical model results presented by Msadek (2005). The adopted 

numerical model gave very accurate results compared with the standard benchmark tests 

and found an acceptable accuracy between its results and those of Msadek (2005) in 

numerically modelling tides. The preliminary numerical tests demonstrated the accuracy 

of the method and its suitability for modelling tidal hydrodynamics.  

The model was then used to simulate the global marine environmental 

conditions in Loch Linnhe. Implementing the computational domain based on the 

correct bathymetry and marine environmental conditions required extensive data mining 

and mesh development. The output from the model was compared with the measured 

output from instruments deployed around the chosen artificial reef, and with data from 

Admiralty charts. The model again gave acceptable accuracy and demonstrated its 

suitability for modelling the global flow in the Loch. 

7.2 The detailed hydrodynamics about the reef 

The three-dimensional modelling was focused in the present work on the 

detailed hydrodynamics, such as the velocity field and the turbulent intensity, arising 

from the interaction of the tidal flow with the artificial reef. The three-dimensional 

numerical modelling was into three test cases. Case one involved applying the measured 

data taken from the instrument deployed near the artificial reef to develop the inlet 

conditions for the 3D-simulation. The only difference in Case two is that the initial/inlet 

conditions were derived from the output from the Global Analysis (shallow water 

equations) so that the whole analysis was based on numerical modelling without 

empirical input. The inlet conditions were based on a velocity profile created by 

converting the global tidal average current (2D quantity) to a 3D logarithmic profile 
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with depth. The results from the two cases of the measured data tidal current profile and 

the logarithmic profile were compared to examine the degree of similarity between the 

two conditions. As seen in Figure 6.7.a, b to Figure 6.20.a, b the output from the two 

cases is nearly the same and it can be concluded on the basis of these results that a good 

representation of the detailed reef dynamics can be achieved solely through numerical 

modelling, ie by computing a global flow using the shallow water equations and 

matching it at a point of interest to a local flow computed using a Navier Stokes solver 

with a turbulence model. 

In Case three the computational domain remains the same, but the inlet 

conditions vary continuously over the period of computation. The unsteady inlet 

conditions were developed from one hour tidal current profiles taken from the measured 

data recorded by ADCP instruments. It can be seen from Figure 6.24.a, b to Figure 

6.33.a, b that the results from Case three are nearly similar in the turbulent production to 

those of Case one. From this it can be concluded that the tidal cycle can be modelled as 

a slowly varying process with a stepped-constant inlet flow distribution, as discussed in 

Chapter six. 

The results of all cases illustrate a bluff body flow regime around the artificial 

reef characterised by flow separation and a recirculating turbulent wake. There are some 

minor differences between the flows of Case One and Case Two but these are caused by 

differences in the vertical velocity distribution of the different velocity profiles. The 

measured profiles in the case study tend to have a higher velocity near reef than the 

logarithmic profile, which itself has a higher velocity nearer the free surface. The 

consequence is observed in the phasing of the development of the recirculating flow in 

the wake of the reef rather than in a difference in the qualitative nature of the flow. 

There is evidence that a steady vortex shedding process would develop if the steady 

inlet conditions were allowed to run for a long enough time duration, however this is 

constrained by the cyclic nature of the tidal flow. 

7.3 The ecological effect of hydrodynamics on the artificial reef habitats 

The role of reef hydrodynamics has been considered by several researchers such 

as Lin and Zhang (2006). The flows characterized by flow turbulence have been focused 
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on due to it’s impact on water quality. For example, eddy and upwelling current fields 

generated on the upstream and downstream faces of artificial reefs enhances the marine 

life productivity as found by Zhang and Sun (2001). In addition, one of the reasons that 

fish aggregate on artificial reefs is because of marine organisms such as plankton on 

which the fish feed. The concentration of the plankton may be affected by the flow or 

the current interacting with the artificial reef.  

An artificial reef generates a weak stream in the wake region that can be seen in 

the down-current area from the artificial reef. The wake region can flow in a counter-

direction with a weak flow and many eddies of varying in scale (Mann and Lazier, 

1996). The plankton that can be found in this region attracts fish to the artificial reef 

along with the shelter the reef provides. In addition, it has been found that turbulence on 

the edge of the weak region attracts a kind of marine pelagic species (Seaman and 

Jensen, 2000). Also, Kakimoto (1983) found that fishes are attracted to the contour flow 

regions on the down current side of the artificial reef due to the increase of zoolplankton 

concentration. Therefore, wake zone size is one parameter that affects the performance 

of the artificial reef (Gun Oh et al., 2011). The region of high turbulence for the present 

artificial reef is found in its wake, which indicates a likely region of fish attraction due 

to the high concentration of plankton likely to be found there. In addition, it is known 

that current affects the settlement and growth of Epifaunal organisms, which also has an 

impact on reef performance from biological productivity. The wake zones can be the 

perfect spot for this kind of marine organisms to settle. It has also been noticed that fish 

swim in turbulent zones and avoid laminar flow to save energy (Godoy et al., 2002).  

7.4 Concluding comments   

It has been concluded by various authors and in this thesis that the 

hydrodynamics of artificial reefs is a key factor in their successful design and operation. 

It is therefore of importance in the early design phase to be able predict the 

hydrodynamics of a prototype design in a given locality with the best possible reliability 

and accuracy with the minimum effort and expense. This study has demonstrated that 

this objective can be achieved by solving the shallow water equations in the general 

locality of the proposed reef and using its output to define initial/boundary conditions 
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for a detailed hydrodynamic analysis of the reef near vicinity using a three-dimensional 

Navier Stokes solver with a turbulence model. 

The study was focussed on a reef element in Loch Linnhe, and numerical 

descriptions of the marine (hydrodynamic) environment have been generated. The data 

displays special distributions of velocity fields and turbulent intensity on the reef and 

the study indicates correlations between the hydrodynamic reef characteristics and 

issues of marine biological interest. In addition some measured data has also been 

presented for the marine (hydrodynamic) environment in the vicinity of the reef. 

7.5 Suggestions for future work 

The study has focussed on the Loch Linnhe reef, which is an existing reef that 

was designed subject to specific constraints and without the benefit of the ‘design tools’ 

developed in this study. An interesting piece of work would be to investigate the 

hydrodynamic characteristics of a variety of reef geometries. 

It was not possible within the scope of this study to investigate the detailed 

relationship between reef hydrodynamics and its stability and structural integrity as 

touched upon in the thesis. 

There is a great deal of work that could be carried out on the correlation between 

reef hydrodynamics and its environmental impact in both the physical and the marine 

biological aspects of the subject. 

Finally, useful work could be carried out in developing explicit purpose made 

design tools similar to those proposed in principal in the thesis to facilitate the design of 

economic and effective artificial reefs.   
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Appendix (A).  The shallow water equations solver 

The two-dimensional non-linear shallow water equations (SWE) in its conservation law 

form can be written as: 

                                                    S
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 where x  and y are Cartesian coordinates in space, t denote time and u, f, g, and S are 

the vectors respectively representing the conserved variables, fluxes in the two 

Cartesian directions and source terms. The Coriolis effect has been neglected due to the 

relatively small horizontal scale of the numerical domain here. Further neglecting the 

viscous terms and surface stresses, the vector terms are given as follows: 
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Herein h = η - zb defines the total water depth, with η and zb representing the water 

surface elevation and bed elevation above datum. u and vare the depth-averaged 

velocity components in the x and y directions, respectively. g is the gravity 

acceleration. ρ is the water density. 
x

zb

∂

∂
−  and 

y

zb

∂

∂
−  represent the bed slope in the two 

Cartesian directions and bxτ , byτ  are the bed friction stresses which indicate the effect 

of bed roughness on the flow and it can be calculated by following empirical formulae: 

                       2222 vuvCandvuuC fbyfbx +=+= ρτρτ                   (A.3)  

The bed roughness coefficient fC  can be calculated by 
3/12 / hgnC f =  , where n is 

the Manning coefficient. By adopting water surface elevation as one of the flow 

variables, the above shallow water equations were specifically derived to preserve the 
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solution of lake at rest problem, which is an essential condition for stable and accurate 

simulation of shallow flow over non-uniform bed profile (Liang and Borthwick 2009).  

  A.2 Numerical model 

 The equations (A.1) and (A.2) are discretized using an explicit finite volume 

Godunov-type scheme with the HLLC approximate Riemann solver chosen to calculate 

fluxes across a cell interface. The flow variables are updated to a new time step using 

the following time-marching formula: 
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                                                        (A.4) 

Here, superscript n  denote the time level, subscript i  is the cell index, t∆ is the time 

step, wf and Ef  are the fluxes through the west and east cell interfaces and Sg with Ng  

are the fluxes through the south and north cell interfaces. These fluxes are calculated by 

solving local Riemann problems defined at the corresponding cell interfaces using an 

appropriate Riemann solver and an HLLC approximate Riemann solver (Toro et al., 

1994) is employed in this work. Taking the east interface flux Ef  as an example, it can be 

computed as follows: 

ffffF ! G ffffH if	0 ≤ KLffff∗H 										if	KL ≤ 0 ≤ KNffff∗O 										if	KN ≤ 0 ≤ KPffffO if	0 ≥ KP                                                                     (A.5) 

Here )LL f(uf =  and )RR f(uf = are estimated from the left and right Riemann states Lu

and Ru defining the local Riemann problem. The Riemann states Lu and Ru  are 

reconstructed from the central values of the flow variables by applying a piece-wise 

linear approach that leads to second-order accuracy in space. L*f and R*f  are the 

numerical fluxes in the left and right sides of the middle (contact) wave of the Riemann 

solution. LS , MS and RS are the estimated speeds of the left, middle (contact) and right 

waves. of the HLLC Riemann solution structure. L*f and R*f are calculated from:  
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 In here, Lv and Rv are the tangential velocity components of the left and right hand side 

of the Riemann states. The first 1*f  and second 2*f entries of the flux vector *f in the 

middle region can be calculated by the HLL formula proposed by Harten et al. (1983).  
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To apply the HLLC scheme for solving the shallow water equations, it require an 

identification of the correct left, middle and right wave speed, ML SS , and RS . 

Fraccarollo and Toro (1995) suggested using a two-rarefaction approximate Riemann 

solver and LS and RS  can be calculated using the following formulae: 
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Here, Lu , Ru , Lh and Rh are left and right initial values for a local Riemann problem, *u

and *h  are evaluated as follows: 
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The middle wave speed MS can be calculated as Toro (2001) recommended: 
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This scheme is used for computing the east interface flux and similar formula is applied to 

calculate the other cell interfaces.  

 In order to update the flow variables to a new time step, it is also necessary to 

properly evaluate the source terms. Due to the use of the pre-balanced shallow water 

equations as given in (A.1) and (A.2), the bed slope source terms can be simply 

evaluated using a central-differencing scheme at the cell centre. For example, the source 

terms in the x-direction are discretized as: 

− τ STU − gη 7WS7X ! −Y τ STU Z[\ − gη[\ ]WS^0WS_∆X a                                              (A.13) 

where ��F and ��b  are the bed elevation at the mid-point of the east-west interfaces of 

cell i. To maintain better numerical stability for simulations involving wetting and 

drying, the friction source terms are calculated separately using a point-wise implicit 

scheme as proposed in Liang (2010). The above numerical scheme is only first-order 

accurate in time and second-order accuracy can be achieved using the                       

MUSCL-Hancock method (refer to Liang and Borthwick (2009) for detailed 

implementation of this scheme). 

 The current numerical scheme is overall explicit and its numerical stability is 

governed by the Courant-Friedrichs-Lewy (CFL) criterion. The appropriate time step 

t∆ will be decided by the following expression: 
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Here, ix∆ and iy∆ are the cell dimensions, iu and iv are the depth-averaged velocity 

components at the cell centre. The Courant number  C  is in the range of ( 10 ≤< C ). In 

the present study the Courant number applied is equal to 0.5. 

 A.2.1 Boundary conditions 

  The numerical model has reflective slip and normal transmissive open boundary 

conditions. In the x-direction the boundary condition can be imposed as follows 
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At slip boundary boundaries 

                    ,IB hh =    ,0ˆ =Bu    IB vv ˆˆ =                                            (A.15) 

At open boundary conditions which are implemented based on Riemann invariants 

according to the local Froude number as shown below 

1. 1<Fr  (Subcritical flow) 

                        ),(2ˆˆ
BIIB hhguu −±=  ,ˆˆ

IB vv =                                             (A.16)  

In which Bh  is prescribed. 

Or 
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−±= BIIB uu

g
hh   IB vv ˆˆ = ,                                               (A.17) 

In which Bû is prescribed. 

The sign dependent on the flow direction inflow (–) ; outflow (+) 

3. 1>Fr  (Supercritical flow) 

For inflow, the variables BB uh ˆ, and Bv̂ are prescribed and for outflow  

,IB hh =   ,ˆˆ
IB uu =   IB vv ˆˆ =      

Note that û and v̂ are the depth-averaged velocity components in normal and tangential 

directions to the boundary and the subscripts B  and I represent the positions at the ghost 

boundary (next to the boundary) and inner boundary cells.  
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Appendix (B). The ADCP data registered for springs and neaps tidal 

current profiles.   

B.1. Tidal current profiles for neap tidal wave period 

The investigation of the neap period tidal current profiles showed the maximum 

tidal current profiles can rise to about 0.14 m/sec whereas most of the values are 

actually below this maximum. The investigation of tidal current profiles of the neap 

period begins from     Figure B.1 to Figure B.6. The majority of the tidal current profiles 

indicate negative direction as can be seen from Figure B.3 at point 5 towered           

Figure B.6 at point 12. 

 

         

Figure B.1 The tidal current profiles of the point 2 that presents the tidal current C and 

the two U and V components during the neap period. 
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Figure B.2 The tidal current profiles for the two points of 3 and 4 that show the tidal 

current C and the two U and V components in the neap cycle.  
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Figure B.3 The tidal current profiles of the two points of 5 and 6 that demonstrate the 

tidal current C with the two U and V components of neap period.  
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Figure B.4 The neap period tidal current profiles of the two positions of 7 and 8 that 

exhibited the tidal current C and the two U and V components.  
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Figure B.5 The tidal current profiles of the two positions of 9 and 10 which present the 

tidal current C and the two U and V components within the neap cycle.  
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Figure B.6 The tidal current profiles of the two positions of 11 and 12 which are 

showing the tidal current C and the two U and V components during the neap cycle.  
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 B.2.Tidal current profiles for spring tidal wave period 

 The spring tidal wave has been processed using a similar method to that used for 

the neap period. The tidal current data from the ADCP instrument was taken in the 

hour’s time duration as described in chapter four. In similarly process to the neap cycle 

the tidal current profiles was tender by applying the three moving average values that 

result  a smooth curve that can applied as an input for three-dimensional turbulent 

simulation. 

 However, there are twelve tidal current profiles within the spring cycle that was 

adopted with the method of three rolling average and the tidal current profiles of the 

eleven profiles are shown from Figure B.7 to Figure B.12. Note that, the first tidal 

current profile is already presented in chapter four. The tidal current C was displayed 

with the two components U and V which can indicates the tides cycle as it change 

between the flood and ebb cycles. The maximum tidal current profile seen in the figures 

was in the Figure B.10 with peak value reach 0.5 m/sec which was as expected from 

previous investigation of the ADCP data record that indicates the higher values are in 

the ebb cycle.  

Most of the high velocity tidal current profiles are in the ebb cycle as was found with 

the neap period but, since the tidal wave is in the spring period, the currents collected 

are of a higher speed than those found in the neap cycle.  
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Figure B.7 The tidal current profiles of tidal flow C and the two U and V components at 

the two point positions of 2 and 3 within the spring period. 
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Figure B.8 The two positions of 4 and 5 that show the tidal current profiles C and the 

two U and V components in the spring period. 



 

- 190 - 

 

 

     

 

       

Figure B.9 The tidal current profiles for the two positions of 6 and 7 as the tidal current 

C and the two U and V components are demonstrated in the spring duration. 
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Figure B.10 The spring period tidal current profiles of the two point positions of 8 and 9 

that exhibited the tidal current C and the two U and V components.  
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Figure B.11 The two positions of 10 and 11 which represent the tidal current profiles of 

C and the two U and V components within the spring cycle.  
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Figure B.12 The final tidal current profile for the tidal current C and the two U and V 

components of the point position 12 during the spring period.   
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Appendix (C). 

The paper published in ISOP (International Offshore and Polar 

Engineering Conference-2012) 
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Appendix (D).  The backward face step flow literature reviews  

The separations of the flow and its reattachment to solid surface occur in many 

engineering systems which are considered to be important theoretical and practically as 

shown in Figure D.1. The shear layer separates from the step and then it reattaches itself 

to the floor of the channel on further downstream as demonstrated in by Figure D.1. 

Therefore, it was stressed in many publications such as Abbott and Kline (1962) and 

Goldstein et al. (1970). In fact, the turbulent flow over backward facing step was widely 

applied as a benchmark problem test to analyse the performance of the turbulent models 

in the prediction of flow separation. The flow is known to be in the turbulent condition 

when the inertial forces of the fluid are higher than the viscous forces that create chaotic 

fluctuations in the flow. Thus, a ratio of the inertial forces to the viscous forces that 

characterized with non-dimensional form called the Reynolds number (Re) represented 

by the formula: 

ρ

µ
ν

ν
==       ,Re RRUL

              (D.1) 

Here ρ is the density of the fluid, ν is the kinematic viscosity, µ is the dynamic 

viscosity RL is the characteristic length scale of the flow and RU is the fluid velocity. In 

the present study a computation of the flow over a backward facing step by solving the 

Navier-Stokes equations with the RNG turbulence model to investigated the turbulence 

characteristic of the case. It was based on two different Reynolds numbers Re=5100 and 

Re=44,000. The first test case is displayed in Chapter 6. Another, two-dimensional 

numerical domain was built in uniform rectangular mesh for Re=44,000 as presented in 

Figure D.2. The numerical results were compared with experimental results that have 

similar flow configuration. The results of the numerical test case with Reynolds number 

equal to 44,000 and the numerical stream-wise profiles which was compared with the 

experimentally observed by Jovic and Driver (1994) and Kim et al. (1980). 
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Figure D.1 The schematic of the backward-facing step turbulent phenomenon 

(Simpson, 1996).  

 

Figure D.2 The dimension of backward-face step for Re=44,000. 

The observation results made by Jovic and Driver are seen in Figure D.3 

compared with the numerical computation that represents the velocity profile at two 

different positions (a) x/H=1.33 and (b) x/H=2.66 along the channel. The good 

agreement is spotted at Figure D.3 it shows the FLUENT RNG turbulence model 

numerical ability. The velocity profile with Re=44,000 has been numerical investigated 

and compared with an experimentally data done by Kim et al. (1980) in various 

positions on the channel at (a) x/H=1.33, (b) x/H=2.667, (c) x/H=6.22 and (d) x/H=8 

seen in both Figure D.3 and Figure D.4. There are good agreement between the 

numerical and the experiment measurement done by Kim et al. (1980) that indicate the 

numerical accuracy for the RNG turbulence model. This numerical model was adopted 

in the present study for the three-dimensional simulation. 
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Figure D.3 The Jovic and Driver experimental data compared with the numerical results is presented in the upper 

figure and the Kim experimental results differentiate with numerical ones is seen in the below. 
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Figure D.4 The Kim experimental measurements compared with the FLUENT RNG turbulence model numerical results at different position 

in the channel.  
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