

Development Tools for context aware and Secure

Pervasive Computing in Embedded Systems

Middleware

A THESIS

SUBMITTED TO THE SCHOOL OF

COMPUTING SCIENCE OF THE

UNIVERSITY OF NEWCASTLE UPON TYNE

IN PARTIAL FULFILMENT OF THE

REQUIREMENTS

 FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Ran Zhao

October 2013

i

Abstract

The increasing number of devices that are invisibly embedded into our

surrounding environment as well as the proliferation of wireless communication

and sensing technologies are the basis for visions like ambient intelligence,

ubiquitous and pervasive computing. The PErvasive Computing in Embedded

Systems (PECES) project developed the technological basis to enable the

global cooperation of embedded devices residing in different smart spaces in a

context-dependent, secure and trustworthy manner. The PECES development

tools aim to help the application developer to build applications using the

PECES middleware and simulate the smart space dynamics such as device

connections and context changes, etc. To ease the middleware development

process, the development tools are implemented as Eclipse plugins and

integrated into the Eclipse Integrated Development Environment (IDE). The

development tools provide graphical user interface (GUI) to configure, model

and test the PECES middleware based smart space applications. This thesis

presents the design, implementation and devaluation of three groups of tools

namely Configuration Tool (Peces Project, Peces Device Definition, Peces

Ontology Instantiation, Peces Security Configuration, Peces Service Definition,

Peces Role Specification Definition, Peces Hierarchical Role Specification

Definition), Modelling Tool (Peces Event Editor, Peces Event Diagram) and

Testing Tool which enalble application developer to build, model and test the

PECES middleware based smart space application using the novel concepts

such as role assignment, context ontologies and security.

ii

Acknowledgements

I would like to thank my parents they support me all the time. They also sponsor

me all my cost when I living and study in a UK for several years.

I would like to thank my supervisor, Dr Neil Speirs, You have given me

invaluable advice and guidance to help me finish my research.

I would like to thank my second supervisor, Dr Selva, you give me lots

suggestions and help me finish my project.

I would like to thank all project partners who give the contribution in Modelling

Tool development.

I would like to thank my close friends for helping me during the period of study.

iii

Table of Contents

Abstract .. i

Acknowledgements ... ii

Chapter 1 Introduction .. 1

1.1 Background and Motivation ... 1

1.2 Challenges of supporting PECES Middleware ... 2

1.3 Objectives and Methodology ... 5

1.4 Requirements of the Development Tool .. 6

1.5 Contributions ... 9

1.6 Structure of Thesis ... 12

1.7 Publication History ... 12

Chapter 2: Background and Related work .. 14

2.1 Pervasive Middleware and Smart Space ... 14

2.1.1 State of Art .. 14

2.1.2 PECES Middleware ... 19

2.2 Context Ontology ... 27

2.2.1 State of Art .. 27

2.2.2 PECES Context Ontology Concept ... 31

2.2.3 Ontology Tools .. 35

2.3 Security Issue .. 36

2.3.1 State of Art .. 37

2.3.2 PECES Security Concept .. 39

2.4 Related Works ... 42

2.4.1 Pervasive Software.. 42

2.4.2 Other Development Tools .. 44

Chapter 3: Development Tool Design: Configuration Tool 47

3.1 Overview of Development Tools .. 47

3.2 Configuration Tool Introduction .. 51

iv

3.2.1 Why we need configuration tool and what inside 51

3.2.2 Overview of Configuration Tool ... 52

3.2.3 Support for Role assignment architecture ... 55

3.3 Device Definition Tool .. 56

3.3.1 Device Definition Tool Prototype ... 56

3.3.2 Device Definition Tool Design ... 57

3.4 Ontology Definition Tool .. 59

3.4.1 Ontology Definition Tool Prototype .. 59

3.4.2 Ontology Definition Tool Design .. 61

3.5 Security Tool .. 63

3.5.1 Root Certificate Configuration ... 64

3.5.2 Intermediate Certificate Configuration ... 64

3.5.3 Client Certificate Configuration .. 65

3.5.4 Trusted Device Configuration .. 66

3.6 Service Definition Tool ... 67

3.7 Role Specification Definition Tool .. 69

3.8 Hierarchical Role Specification Tool .. 71

3.9 Cooperation with Modelling Tool.. 73

Chapter 4: Development Tool Design: Modelling Tools 74

4.1 Overview .. 74

4.1.1 Why we need modelling tool and what inside 74

4.1.2 Introduction of Modelling Tool ... 75

4.1.3 Support for Role assignment architecture ... 78

4.1.4 Cooperation with Configuration Tool ... 78

4.1.5 Discrete Event Dynamics Modelling .. 79

4.1.6 Cooperation with the Testing Tool ... 83

4.2 Event Editor ... 85

4.2.1Overview Page ... 86

v

4.2.2 Context Page ... 86

4.2.3 Connection Editor Page ... 87

4.3 Event Diagram Editor ... 88

4.4 Summary ... 89

Chapter 5: Development Tool Design: Testing Tools .. 90

5.1 Introduction .. 90

5.2 Architecture ... 92

5.2.1 Execution Engine .. 93

5.2.2 Connection Engine .. 94

5.2.3 Event Engine ... 94

5.2.4 Instantiation Engine ... 95

5.2.5 Log Files .. 96

5.2.6 Analysis and Evaluation .. 97

5.3 Modules ... 98

5.3.1 Central Control Module .. 99

5.3.2 Middleware Modules .. 101

5.4 Testing Tool Implementation ... 103

5.4.1 Execute page .. 103

5.4.2 Testlog page .. 105

5.4.3 Visualisation page ... 106

5.5 Summary ... 113

Chapter 6: Use Case Study: build a real Application by using Development Tool

 .. 115

6.1 Introduction .. 115

6.2 Smart booth navigation .. 117

6.2.1 Scenario .. 117

6.2.2 Development by Development Tools ... 121

6.2.3 Application Prototype ... 123

vi

6.2.3 Application Limitations ... 127

6.3 Smart Booth Monitoring ... 127

6.3.1 Scenario .. 128

6.3.2 Development by Development Tools ... 132

6.3.3 Application Prototype ... 134

6.3.3 Application Limitations ... 135

6.4 Smart Taxi Booking ... 136

6.4.1 Scenario .. 136

6.4.2 Development by Development Tools ... 138

6.4.3 Application Prototype ... 139

6.4.3 Application Limitations ... 142

6.5 Summary ... 142

Chapter 7 Evaluation .. 144

7.1 Evaluation Summary .. 144

7.2 Evaluation Methodological Approach ... 144

7.3 List of Associated Requirements Evaluation Results 147

7.4 Developer Feedback .. 151

7.2.1 Questionnaire Result ... 151

7.4.2 Questionnaire Result analysis ... 155

7.4.3 Productivity Plug-in .. 158

7.5 Summary ... 159

Chapter 8 Conclusions .. 160

8.1 Thesis Summary .. 160

8.2 List of Contributions and Benefits of Using PECES Development Tools

 .. 162

8.3 Future Work ... 166

8.4 Summary ... 167

References.. 168

vii

Appendix 1 - project.xml .. 173

Appendix 2 - project.owl .. 175

Appendix 3 - GuideSYSTEMContext.pctx ... 176

Appendix 4 - events.xml .. 177

Appendix 5 - Questionary ... 180

1

Chapter 1 Introduction

1.1 Background and Motivation

The increasing number of devices that are invisibly embedded into our

surrounding environment as well as the proliferation of wireless communication

and sensing technologies are the basis for visions like ambient intelligence,

ubiquitous and pervasive computing. The benefits of these visions and their

undeniable impact on the economy and society have led to a number of

research and development efforts.

These include various European projects such as EMMA [2], [3]that develop

specialized middleware abstractions for different application areas such as

automotive and traffic control systems or home automation. Middleware for

pervasive environments primarily manages the stationary infrastructure in the

environment. Usually, this infrastructure consists of stationary devices deployed

within a predefined physical location such as meeting room or car parking.

There are several other middleware systems have been developed for this

purpose such as Aura [19], Gaia [12], [13]and IROS [20]. Reliable service

management framework is proposed in [21]by formally defining a message-

oriented service application model and protocols that facilitate autonomous

composition, failure detection and recovery of services.

These efforts have enabled smart spaces that integrate embedded devices in

such a way that they interact with a user as a coherent system. However, they

fall short of addressing the cooperation of devices across different environments.

This results in isolated “islands of integration” with clearly defined boundaries

such as the smart home or office. For many future applications, the integration

of embedded systems from multiple smart spaces is a primary key to providing

a truly seamless user experience. Nomadic users that move through different

environments will need to access information provided by systems embedded in

their surroundings as well as systems embedded in other smart spaces. The

PECES project is committed to developing the technological basis to enable the

global cooperation of embedded devices residing in different smart spaces in a

context-dependent, secure, and trustworthy manner. The most innovative

features of the PECES middleware are to enable the communication among

2

heterogeneous devices across the different smart spaces using dynamic

addressing, security and context ontologies.

Pervasive computing application developers need development tools for rapid

development and evaluation of novel smart space systems application. This is

especially true for dealing with heterogeneous device environments with context

based smart space formation as proposed in the PECES prototype applications.

To the best of our knowledge, not many frameworks are available for effective

simulation, emulation and testing of smart space system applications.

As describe above, a set of development tools is needed and can be used by

the application developers to develop, test, and analyse their applications. The

Development tools also provide an environment to simulate/emulate

applications. These types of development tools are economical because

developers can carry out experiments without the actual hardware and it is a

feasible way to test scalability of any proposed applications.

The development tools focus on configuring devices, modelling smart spaces

and context dynamics and testing the novel concepts provided by the PECES

middleware. The tools provide support for application developers to build

PECES middleware application and simulate and analyse the smart space

behaviours with respect to the context changes and network changes. Instead

of running PECES application on real devices, application developers are able

to test the features of the PECES middleware in a development PC for any

specific application. This provides the opportunity for the application developers

to test and analyse their application in a controlled and repeatable environment

which enable them to optimise certain parameters which may be necessary for

the best performance of any smart space applications.

The PECES development tools provide a set of tools which are integrated into

the Eclipse development environment (as Eclipse Plugins). This way, the usual

development assistance provided by the Eclipse IDE can also be used for

development support.

1.2 Challenges of supporting PECES Middleware

The lack of a generalized interaction mechanism between smart spaces

restricts the availability of the remote functionality and access to the remote

3

services. Furthermore, due to the resulting lack of interaction, valuable context

information may be lost when a user moves between different smart spaces.

Yet, a user who may be interacting with several smart spaces in a day can be

better supported by sharing context information. Thus, in order to realize the full

potential of pervasive computing, smart spaces should support the interaction

among devices without technical boundaries. Considering this every day user

need, the PECES project develops a solution for enabling interaction with a

smart space in the immediate vicinity of the user as well as on remote locations.

Towards this end, the objective of the PECES project has been defined as the

development a middleware that enables secure interaction among the devices

in different smart spaces in context-dependent and trustworthy manner.

Besides supporting interactions among devices across the boundaries of smart

spaces, the PECES middleware necessarily has to provide suitable solutions to

several adjacent challenges of pervasive computing. Due to user mobility and

the heterogeneity of devices that constitute a smart space, these challenges

range from support for dynamic networks of embedded systems over

interoperability to support for resource-poor and resource-rich devices. By

providing a clear and uniform interface to application developers that is

applicable to a broad range of devices, the middleware delivered by the PECES

project greatly simplifies the task of the application developer in many

application scenarios.

1) Context-aware middleware

The integration of devices across different smart spaces as targeted by the

PECES project can support novel applications that combine services from

different smart spaces. In order to discover and use these services in a

distraction-free manner, PECES proposes the utilization of context information.

As a consequence of this approach, there needs to be a common shared

understanding of the information that is exchanged between different smart

spaces. To ensure that this understanding exists and to ensure that it can be

flexibly extended to new application scenarios, PECES relies on context

ontologies to represent the shared information. The ontologies are an integral

part of the dynamic addressing and grouping scheme and they ensure that the

addressed or grouped devices are sound. Furthermore, the use of ontologies

4

also ensures that there is a standard way of extending the context modeled for

the application prototypes.

2) Dynamic Addressing and Grouping

The PECES middleware support the integration of devices across different

smart spaces. Providing services and access to remote resource has several

advantages. First, it allows context sharing and, thus, reduces the required input

from the users. Secondly, it reduces the latency needed for collecting the data

and customizing the services. Third, and most importantly, it allows

collaborative services and functionalities that are combined across different

smart spaces.

To establish a suitable cooperation model (as described in section 2.1.3) among

devices, to identify the devices in the surrounding and to remotely locate and

utilize the services and resources, we need a global addressing scheme that is

able to identify specific devices or resources across the boundaries of smart

spaces. Traditionally the addressing schemes are designed according to the

topology of the network. Thereby, a part of the address – usually some form of

prefix – is used to identify the network of the device. However, in order to

dynamically form a smart space and to integrate new devices in the

environment, it may also be necessary to support processes, content, interfaces

or resource migration from one device or smart space to another.

3) Security Issue

A key objective of the PECES middleware is to provide a cooperation layer that

enables seamless interaction and coordination among devices in and across

smart spaces in a secure manner. Intuitively, this requires adequate security

mechanisms. To achieve this objective, the PECES middleware extends the

basic middleware prototype to derive a secure middleware prototype. Towards

this end, this specification introduced a basic trust model that is used as basis

for the concepts and mechanisms of the middleware. These mechanisms

enable the secure interaction of devices. To enable this, they span the

management of cryptographic keys, the authentication of information –

specifically context information and role assignments, the secure data- and

service-centric communication as well as role-based access control.

5

1.3 Objectives and Methodology

PECES aims at providing a novel software abstraction that enables context-

aware remote interaction among heterogeneous devices across different smart

spaces in secure and trustworthy manner. Moreover, PECES also provides

supplemental tools that support the novel abstraction and facilitate its effective

use. Thus, PECES offers a complete solution that simplifies the modeling,

configuration and testing of the application development. The main objective for

providing the supplemental tools is to enable the programmers to easily and

efficiently develop a wide range of pervasive applications. In addition to the

developer, these tools can help everyday users as well. The main research and

work areas that play significant roles in enabling cross smart space

communication are the context ontology, dynamic addressing and grouping,

and security. Naturally, the tools that will be developed during the course of the

project will be oriented towards these three areas.

Most of other development tools only provide limited support for PECES

developers as they have been designed for different goals and concepts.

Although many projects have proposed development tools to support for

pervasive computing environment application development, only little

methodological support offered for context-awareness and security. The

application developers also need support for development of highly dynamic

and adaptive pervasive computing environments. PECES development tools

will specifically target the novel concepts used in the proposed PECES

prototypes applications such as context ontologies, dynamic addressing and

grouping and security issues. The PECES development tools will empower

application developers to make effective use of the concepts and mechanisms

provided by the PECES middleware.

The PECES development tools will be the plug-ins of Eclipse integrated

environment with a set of suitable development tools for the pervasive

computing approach integrated with the novel concepts such as context

ontologies and access control polices. The PECES project will develop novel

development tools which are specifically provide support for PECES application

developers.

6

1.4 Requirements of the Development Tool

This section provides a detailed list of the requirements on the development

tools. The list also contains a rationale for the requirements and their priority as

well as acceptance criteria that clarifies the context and scope of the

corresponding requirement.

Requirement 1

Description: The development tools should support the programmming

language of the middleware.

Rationale: The development tools may not be able to support all

programming languages. A useful subset is required.

Acceptance Criteria: The development tools can be used to facilitate application

development in the language that has been used to implement

the middleware.

Priority Rationale: The consistency in using the same programming language (for

both the middleware and applications) will help avoid

compatibility issues.

Requirement 2

Description: The development tools should provide support for the devices of

the prototype applications.

Rationale: The development tools may not be able to provide support for

all kinds of devices. Thus, the selection of a relevant subset is

required.

Acceptance Criteria: The development tools should support the platforms used for

the prototype applications.

Priority Rationale: This requirement identifies a constraint on the selection of the

least set of devices. The development tools should support at

least the devices that are used in prototype applications.

7

Requirement 3

Description: The development tools should support the specification of

policies to limit the distribution of context information.

Rationale: The description of a service that is stored in the registry may

contain context information about devices and users. For some

services, it may be desirable to limit the distribution of the

information to a particular set of devices or users.

Acceptance Criteria: The development tools allow the specification of limitations on

the distribution of the context information that describes a

service.

Priority Rationale: A tool is needed to specify these policies and is part of the core

funtionality.

Requirement 4

Description: The development tools should support the configuration of

encryption keys.

Rationale: Some devices may not support direct interaction with the user.

As a result, some keys might have to be configured at

deployment time

Acceptance Criteria: The development tools enable the developer to configure

encryption keys for devices.

Priority Rationale: We need a tool to configure an encryption key if a user unable

to do directly. The tool is not needed if the key can be

configured automatically or a user can configure the key inside

the application.

Requirement 5

Description: The development tools should support the specification of static

device context.

Rationale: Some devices may not support direct interaction with the user.

As a result, some of their context information may have to be

configured statically.

Acceptance Criteria: The development tools support the specification of static device

context.

Priority Rationale: The devices in smart spaces will need context information such

as user profile. A tool should allow to statically configure the

context information.

8

Requirement 6

Description: The development tools should be integrated into an existing

IDE.

Rationale: Switching between an IDE and the development tools by

PECES can be distracting for the developer. Thus, the tools

should be integrated into a suitable IDE that provides traditional

programming support, for example.

Acceptance Criteria: The development tools are integrated into an existing IDE.

Priority Rationale: The tool will simplify the process of developing applications for

the middleware but it should be possible to create applications

with a simple text editor.

Requirement 7

Description: The development tools should support the testing of group

specifications.

Rationale: The outcomes of an abstract group specification language may

not be easy to understand for novice programmers. A testing

tool should help them to test the specification in different

scenarios.

Acceptance Criteria: The development tools empower the developer to define and

execute a group specification.

Priority Rationale: A testing tool would help developers to easily create and test

group specification but it is not a necessary requirement to

implement the core funtionality of the middleware.

Requirement 8

Description: The development tools should support the modelling of a set of

networked smart spaces.

Rationale: In order to test the group specifications, the development tools

must support the definition of a set of smart spaces.

Acceptance Criteria: The development tools enable the modelling of a number of

smart spaces.

Priority Rationale: The modeling tool will be helping in providing input for group

specificaiton testing. But the tool does not affect the core

funtionality of the middleware.

9

Requirement 9

Description: The development tools should use the context ontology to

simpify the user interface.

Rationale: The specificaiton of static device context for configuration and

testing purposes may be time-consuming. This can be simplified

by using the context ontology to define possible values.

Acceptance Criteria: The knowledge encoded in the context ontology is used to

simpify the user interfaces.

Priority Rationale: The tool to use context ontology will simplify the user interface,

but it does not have any impact on the middleware funtionality.

Requirement 10

Description: The development tool shall support debugging functionalities.

Rationale: Debugging functionalities reduce the time of the application

developers and accelerate development process.

Acceptance Criteria: The development tools provide basic debugging functionality.

Priority Rationale: This will help application developers but may not support for all

the devices used in the application.

Requirement 11

Description: The development tool should support the graphical user

interfaces of various devices and their interaction.

Rationale: A graphical user interface is can simplify the development of

applications using different smart spaces and devices.

Acceptance Criteria: Important variables and functionalities are represented

graphically.

Priority Rationale: This will make development tools more user friendly but this is

not a key innovation.

1.5 Contributions

The main contributions of this work are summarised as follows:

1) Configuration Tool

The configuration tool is responsible for coordinating initial instantiation and

reconfiguration of a device or smart space. The PECES configuration tool

10

enables application developers to specify the context elements of devices and

access control policies during device configuration. The tool also enables the

specification of the appropriate key and key generators.

1) Device Definition Tool

This tool provides a graphical user interface (GUI) for application

developers to specify the device. The Peces Device Definition Tool can

be used to define BASE/PECES middleware communication plugins

such as IP, Bluetooth, ZigBee and device functionalities and also device

names.

2) Ontology Instantiation Tool

The Ontology Instantiation Tool provides GUI mechanism to define static

context information relevant to the device and this information is used by

the PECES middleware context components during the model execution.

3) Security Configuration Tool

The Security Configuration Tool integrates the OpenSSL toolkit to enable

application developers to generate keys and certificates for smart space

applications. The Security Configuration Tool provides an interface to

gather necessary information for root certificate, intermediate certificate

(trust chain) and client certificate.

4) Service Definition Tool

The Service Definition tool provides a simple interface to the developers

that allows the automatic generation of all the code needed to instantiate

and make use of a PECES-based service.

5) Role Specification Definition Tool

The Role Specification tool provides an interface where developers can

define the different rules that the application use to dynamically form

groups of collaborative devices.

11

6) Hierarchical Role Specification Tool

The PECES Hierarchical Role Specification tool provides an easy

method to create all the code necessary to instantiate this kind of

“composed” smart spaces.

2) Modelling Tool

The main task of the modelling tool is to support application developers in

specifying the applications. The PECES modelling tool provides application

developers to model the execution environment with context elements,

resources and application properties. The modelling tool also allows the

specification the properties of the communication mechanism between the

individual devices such as requirements on encryption and the type of data

exchanged between the devices.

7) Event Editor Tool

Event Editor is used to edit single event definitions. Type, Contributing

Devices, Description and Duration (Delay) can be defined in the wizard

and later altered on the Overview Page. The Event Editor is a multipage

editor, on the second, Context Page the context of the corresponding

device can be changed if the event’s type is Device Context Change. On

the third page, connection can be defined if the event’s type is

Connection.

8) Event Diagram Editor Tool

Event Diagram Editor is used to define the sequence of the events when

the developer has defined the needed events.

3) Testing Tool

The PECES testing tool allows application developers to configure devices

using the configuration tool and generate execution environments using the

modelling tools. The testing tool then enables application developers to test if

the application adapts to changes in the execution environment in the desired

manner. For this purpose, the application developers need to provide context

changes for different scenarios.

12

1.6 Structure of Thesis

This thesis consists of seven chapters, a bibliography and an appendix. The

appendix lists the files sample using and generated by development tool.

The eight chapters start with this introductory Chapter 1. Next a brief literature

work survey is presented in Chapter 2. In it the reader is given an overview of

some of the background and related work in this area. The PECES concepts

are also stated in this chapter.

The Chapter 3 we introduced the first set of tools, configuration tool. It concerns

several tools which can be use to configuration the application. The goal of the

configuration tool is to define the application device, set context value, generate

security certificate and keys, set service and role specification. The follow

chapter, Chapter 4, describe the modelling toll which is used to specify the

environment, model the dynamic change of context and device and set the

sequence of device. In Chapter 5, the testing tool is introduced. The aim of

testing tool is to execute, test, validate and evaluate the application developed

by configuration tool and modelling tool.

The last content chapter, Chapter 6, demonstrates how development tools help

to develop a group of use case, trade show system. Trade show system has

three sub application, Smart Booth Navigation, Smart Booth Monitoring and

Taxi booking. This chapter shows the design, setting and how development tool

work for them.

The evaluation chapter, Chapter 7, shows the evaluation design, process, result

and the analysis of the result. The feedback from developers who attend test of

development tools is also stated.

Finally in Chapter 8 we summarize the conclusions of the work presented in this

thesis. We make recommendations for future work.

1.7 Publication History

Much of this thesis has been published in peer-reviewed publications and/or

presented at conferences and journal. In this section we will list this publication

history.

13

An early version of configuration tool was submitted to the International

Conference on Wireless Information Networks and Systems (WINSYS2011). It

was accept and published in the proceedings.

The way of building application by early version of development tool has been

submitted to Annual International Conference on Advances in Distributed and

Parallel Computing (ADPC2011). It was accepted and published in the GSTF

Journal on Computing (JoC - Print ISSN: 2010-2283, E-periodical: 2251-3043).

The extended version of Configuration Tool and Modelling Tool was submitted

to International Conference on Pervasive and Embedded Computing and

Communication Systems (PECCS 2012). It was accept and published in the

proceedings.

The final version of tools which include all features in testing tool was submitted

in Journal of Network (JNW). It got accepted and will be published in special

issue in 2013.

14

Chapter 2: Background and Related work

The Tools described in this thesis involves several aspects have not been

studied before. However this is some background and related work available.

In this chapter we will provide reference for the background and outline the

related research.

First, we talk about the research status of pervasive middleware and smart

space and the features of PECES middleware in Section 2.1. In Section 2.2, we

illustrate the development of Context ontology and show the PECES basic

ontologies which may be used in Configuration tool. In Section 2.3, we discuss

the security issue and some features about PECES security concept. We also

show some pervasive system software and other development tool in Section

2.4.

2.1 Pervasive Middleware and Smart Space

2.1.1 State of Art

Pervasive computing middleware can be defined as a software layer between

the operating system and the applications running in smart space. Thereby,

pervasive computing middleware provides additional abstractions and services

that support several applications and scenarios. To provide through support for

the application developer, the development of pervasive computing middleware

encompasses unique design considerations. Usually, a smart space consists of

heterogeneous devices and platforms that might run a variety of operating

systems. A middleware should hide the complexities of these underlying

systems to provide a unified interface to the applications to facilitate portability

and to lower the development effort. In addition to that, existing pervasive

middleware typically exhibits different characteristics that are motivated by

differences in their design goals. These characteristics include varying degrees

of transparency, support for context management, adaptability or quality of

service. In the following, we will discuss some of the most important existing

middleware systems. Thereby, we classify the systems according to their

cooperation models. There are two existing cooperation models for smart

spaces are smart environments and smart peers.

15

- Smart Environment

Initially researcher in the pervasive computing area focused on the development

of so-called smart environments. Smart environments define boundaries based

on a physical location. Thus, they integrate devices in a spatially limited area

such as a building or a room. Due to the static definition on the basis of location,

the cooperation model of a smart environment usually relies on the permanent

presence of a coordinating device to mediate the interaction of devices. Thus,

this type of smart spaces provides us a location-centric and infrastructure-based

solution. The services provided by these environments are location based. The

smart environments are immobile in the sense that the group of the devices

must remain in the close proximity e.g., in a smart conference room or garage,

the embedded devices are attached to the physical locations. In some cases,

however, the working group of the devices may have mobility as a group e.g., in

smart car, GPRS and infotainment system remains installed in the car but the

car itself moves.

- Smart Peers

Smart environments can provide services in a reliable manner. However, they

have the potential limitation that they are infrastructure-based and require

special effort for the initial setup. Furthermore, smart environments are not well

suited for scenarios where devices come in contact with each other for a limited

period of time or where ad hoc connectivity of the user devices is required. The

smart spaces that explicitly target support for such scenarios can be classified

as smart peers. Smart peers [4] are those smart spaces in which users of

common interest or goals in a close proximity use their devices to form a smart

space in a ad hoc manner. In this respect, the smart peers are more people

centric. A group of people with same goals and interests can conveniently

create smart peers using their mobile devices such as PPCs and laptops. Smart

peers do not require special infrastructure support and are tied to the user

instead of the location. In other words, this type of smart space is user-oriented

and “moves” with the user. Since this approach is decentralized, the devices

in the smart peers require a distributed coordination scheme to manage their

services. This may introduce a considerable runtime overhead when compared

with smart environments. Another issue with this kind of smart space is the

16

availability of the devices. Due to the ad hoc establishment of smart spaces the

continuous availability of a single device and the presence of a certain set of

necessary devices cannot be guaranteed which increases the complexities that

application developers are facing when building applications for this cooperation

model.

1) Middleware for Smart Environment

Middleware for smart environments primarily manages the stationary

infrastructure in the environment. Usually, this infrastructure consists of

stationary devices deployed within a predefined physical location such as

meeting room or car parking. In addition, the middleware supports the dynamic

integration of mobile devices carried by a user. Such devices may encompass

mobile phones, PDAs and laptops. The resulting smart spaces enable the

seamless interaction of the mobile devices with the stationary devices as long

as they are within the same physical area. Three main representatives for these

types of systems are Aura, Gaia and IROS which we briefly describe in the

following.

Aura [19] is a middleware that focuses on providing services in non-intrusive

manner. The design of the system is layer based. A layer observes a demand

from above layers and self tune itself by anticipating the possible requests. For

acquiring this proactive and self tuning behaviour, the Aura system requires

knowledge about the environment as well as the knowledge about user

intention. For example, suppose a user is watching a movie stream on network

connection and suddenly the network speed slows down. In this case, there are

a number of possible responses to the situation: 1) the user can be shown the

movie on lower resolution, 2) the video can be paused to first perform buffering,

or 3) the video can be stopped playing. The selection of the right choice mostly

depends on not only the user context information such as her current task but

also on her intent. Aura uses a task layer that works as a liaison between user

and the rest of the layers. The main purpose of this layer is to anticipate user

intent and to control the system accordingly. Aura provides high mobility for the

users with persistent services across different Aura spaces. Aura is not

designed to support specific scenario but is built to support different research

17

themes that include energy efficiency, user interface adaptability, task driven

computing, resource amplification and wearable computing.

Another example of middleware for smart environments is Gaia [12][13]. Gaia is

a system that provides services and infrastructure necessary to build general

purpose pervasive applications. The application framework supports adaptation,

mobility and dynamic binding. Overall, the Gaia kernel provides five basic

services that are: event manager, presence service, context, space repository

and context file system. The event manager manages the distribution of the

events in the space and implements a decoupled communication model by

means of information suppliers and information consumers. A presence service

is responsible for detecting and maintaining the information about the presence

of physical (e.g, people, devices) and digital (e.g., application and services)

entities. Handling of the context information for the user support is another

important aspect of smart spaces. A context service in kernel is responsible for

maintaining context information about the environment. The space repository

stores properties of the resources in the environment. Applications may use the

space repository service to find suitable resource for the processes. The context

file system uses the context information about the application task to guide the

application process. Using these services, Gaia tries to abstract the

heterogeneity of the devices in the smart environment and exploit the resources

in the environment in a uniform manner.

iROS [20] is a middleware that allows multiple devices and applications to

exchange information. The communication in iROS is supported through event

heaps that allow the subscription and auto expiration of the events. The main

purpose of the event heaps is to support dynamic coordination of the

applications. Besides event heaps, iROS has two more sub-systems namely,

data heap and iCrafter. Data heap allows moving data on application screens of

various devices whereas iCrafter allows the collaborative control over devices

and application in a meeting sessions. Overall the loose commutation

mechanism in iROS allows the indirections using event heap that is

advantageous in case where closely tied interdependencies might cause a

crash. However, it may be ill-suited for applications that require the tight

cooperation of several different systems.

18

2) Middleware for Smart Peers

As discussed earlier, smart peers are not location centric but rather follow a

user centric approach. This is an immediate consequence of the fact that smart

spaces can be created and migrated together with the devices of the user.

Thereby, the migration of the smart spaces often takes place seamlessly.

One example of middleware that is based on the concept of smart peers is

BASE [9]. BASE is a service-oriented middleware that supports the adaptation

of communication protocols and technologies. It provides a uniform access to

remote application services and device capabilities. It treats the devices

capabilities same as application objects that offer services. The middleware is

itself highly configurable and can be deployed on resource-constrained devices

such as sensors as well as resource-rich computers. BASE is designed to

support spontaneous communication between the devices and can

automatically switch commutation stacks in cases where a problem with the

current communication stack occurs.

Another example for middleware that supports the idea of smart peers is

one.world [4]. The focus of the one.world project is to support the development

of adaptable applications that support adaptation of the applications if the

physical environment or computational environment changes. The main

objectives of the one.world design are to support high mobility of the users in

physical world, to support ad hoc connectivity with different devices and

applications and to facilitate sharing of information. The design focuses on

achieving these three objectives in a way that the overall system is less

obtrusive and all these tasks are accomplish seamlessly. One.world is using a

service-based architecture. It provides systems services that are implemented

on top of foundation services. There are four foundation services in one.world

that are virtual machine, tuples, asynchronous events and environments.

One.world uses the Java virtual machine to ensure the portability of the

application across heterogeneous devices. Tuples provide a data

representation with optionally typed fields. The event notification system

asynchronously notifies the application about their contextual change. The last

foundation service is the environment that is responsible for running

applications and keeping them isolated from other running applications.

19

One.world builds system services on top of these foundation services. Query

engine, structured I/O, remote events and check pointing services are used for

searching, storing data, communicating and fault protection respectively.

Besides these services two most important services are the discovery and

migration services. The discovery service is used to discover and connect with

existing services. The discovery process can easily exploit the tuples for

discovery as tuples are self describing data model. Migration services facilitate

the movement of the environment to another location and thus the design,

unlike smart environment is not tied to specific location.

2.1.2 PECES Middleware

1). BASE Middleware

The PECES project consortium built the targeted cooperation layer on top of

BASE[9] middleware. This enables the project consortium to focus the

development efforts on the novel and innovative features of the PECES

middleware. BASE is freely available as open source under BSD license which

facilitates the necessary modifications and extensions and enables the free

reuse – even for commercial exploitation.

The overall architecture of BASE is divided into three layers. At the highest

layer – the application layer, local and remote application objects and system

services interact with each other. This layer relies on the functionality offered by

the middleware core which is represented by the micro-broker layer. The micro-

broker layer, in turn, uses the capabilities of the plug-in layer to discover remote

devices and to communicate with them. Figure 2.1 shows the BASE three layer

architecture and its main components.

Figure 2.1 BASE Middleware Architecture

A
p

p
lic

a
ti

o
n

La

ye
r

M
ic

ro
-

b
ro

ke
r

La
ye

r
P

lu
g

-i
n

La
ye

r

Invocation
Broker

Plug-in Manager

Object
Registry

Device
Registry

Plug-ins

Invocations
Device & Plug-
in Descriptions

Invocation
Handlers

Proxies / Skeletons Proxies / Skeletons

Application Objects Services

20

2). PECES Middleware Structure

The BASE middleware enables the communication between devices that are

within communication range. Yet, in order to achieve the goal of providing

cooperation layer that enables the seamless interaction within and across the

boundaries of a single smart space, it is necessary to extend the basic concepts.

The extension of the BASE middleware focused communication gateway

concepts, addressing concepts and smart space concepts.

Figure 2.2 PECES Middleware Strucure

At the plug-ins level, PECES provide follow extension communication

capabilities of BASE middleware.

- Local & remote gateway plug-ins: The plug-ins provides support for

routing and forwarding information among devices which in different

smart space. For remote spaces, remote gateway plug-in requires

information which is distributed by the registry.

- Data-centric communication plug-ins: This plug-in supports the

transmission and reception of deta-centric messages which are

exchanged between devices. A client and a server part is included in the

data-centric plug-ins working with member and coordinator respectively.

- Service-centric communication plug-ins: This plug-in need to be installed

in all devices whatever the device provide or use a service. It provides a

request-response semantic for these devices.

A
p

p
lic

a
ti

o
n

La

ye
r

M
ic

ro
-

b
ro

ke
r

La
ye

r
P

lu
g

-i
n

La
ye

r

Invocation
Broker

Plug-in Manager

Object
Registry

Device
Registry

Plug-ins

Invocations
Device & Plug-
in Descriptions

Invocation
Handlers

Proxies / Skeletons Proxies / Skeletons

Application Objects Services

System Services
Context Storage

Notification
Member

Coordinator
Gateway
Registry

Plug-ins
Local & Remote Gateways

Data-centric Communication
Service-centric Communication

Frameworks
Role Assignment

Data-centric Communication
Service-centric Communication

21

At the higher level in middleware, system services provide several additional

features to improve the middleware’s functionality. The following services have

been added:

- Context Storage: This service allow device to store context information

that is available for role assignment process. Context information can be

retrieved by coordinator in role assignment.

- Notification: The coordinator will call this service when there is any

change such as a new role assigned or an existing role removed.

- Smart space: Three are three different types of device in smart space are

Coordinator, Member and Gateway. Each kind role has its own specific

functionality. The coordinator service provides the ability to compute role

assignments, the member service provides the ability to join and leave

smart spaces and the gateway service provides the ability of connecting

the space to the internet. Detail will be described in smart space concept

section.

- Registry: Device, Space and Internet are three different level of registry.

The registry is also implemented as a series of services. They provide

the capability to access device level, smart space level or internet level

service base on the scope of service. Device level registry is available on

all devices. The smart space level registry work in smart spaces. And the

internet level registry supplies more powerful devices which can access

internet. Detail will be described in registry concept section.

The PECES also implement following frameworks to provide functionality to all

applications:Role Assignment: The role assignment framework enables an

application developer to formulate a role specification. The role specification

can then be executed on the coordinator service which assigns the

corresponding roles according to the specified constraints to the available

devices.

- Data-centric Communication: The data-centric communication framework

allows application developers to use role assignments to scope the

distribution of messages.

22

- Service-centric Communication: The service-centric communication

framework is used to support service invocations. This framework enable

the usage of services among devices.

3). Communication Gateway

Due to the heterogeneity of devices and communication technologies, it is not

safe to assume all future devices will be equipped with the same set of

communication technologies. As an example consider that a sensor node might

only be equipped with ZigBee (based on IEEE 802.15.4) but not with Bluetooth

in order enable energy-efficient communication. Thus, in order to enable a

Bluetooth device to communicate with such sensor nodes, it is necessary to use

a device that is equipped with both technologies as a local gateway. Similarly,

due to the associated costs and other factors, not all devices will have a direct

connection to a global interconnection network like the Internet. In order to

enable the communication between devices that are not directly connected to

the Internet, it is necessary to enable some devices to act as remote gateways

for others. Figure 2.3 shows a local gate way:

Figure 2.3 Local Gateway

PECES middleware support local gateways as well as remote gateways. The

main difference between these two types of gateways is that the local gateway

locally shares the required knowledge. In the remote case, the knowledge

sharing should be restricted to a minimum in order to avoid the costly

distribution of frequently changing information. The remote gateways need to be

realized differently in that they require an external entity to distribute the

information that is distributed by means of device discovery in the local case.

This information is distributed by means of the registry that is specified in the

IEEE 802.11

Bluetooth

Com. Range

Com. Range

Phone

Laptop

Projector

PDA

Device

Gateway

23

PECES Communication Mechanism and Registry Interface Specification [8].

Figure 2.4 shows a remote game:

Figure 2.4 Remote Gateway

4). Generic Role Assignment Concept

Due to the continuous changes in context and due to the mobility of devices the

underlying systems can be highly dynamic and the network topology can

change frequently in the pervasive computing environments. So that it is vital to

enable pervasive computing applications such as PECES prototype applications

to adapt to the continuous changes in context and device availability. The

responsibility for adaptation can be shifted between different entities. In cases

where changes are infrequent, a user may manually configure and adapt the

system. However, if changes are frequent, manual configuration and adaptation

are clearly not a viable approach as they conflict with the goal of distraction free

support for tasks. In order to mitigate this, the adaptation can be automated

through the application. This approach relieves the user from performing

manual adaptation but it complicates the development of applications and it

may result in inefficiencies in cases where multiple applications implement and

use similar adaptation mechanisms. As a result, the PECES middleware is

aiming at automating the initial configuration and the continuous adaptation to

changes in order to shield the user and the application developer from the

accompanied complications.

In order to be suitable for a broad range of different systems and in order to

minimize the utilization of resources that are required for automation, PECES

middleware provides configuration and adaptation support by means of a

uniform abstraction. To create a uniform abstraction that is suitable for a broad

range of different configuration tasks, it is necessary to introduce a clear

IEEE 802.11

Bluetooth

Com. Range

Com. Range

Phone

Laptop

Projector

PDA

Device

Gateway (local)

Com. Range

Internet

Gateway (remote)

Smart
Phone

PC

24

separation between the result of a configuration, the computations that need to

be done to produce it and the utilization of this result. This enables the reuse of

the same basic mechanisms for different tasks. Generic role assignment

provides such a uniform abstraction. More detailed information about the role

assignment concepts can be found in [7].

A role can be assigned to any device as long as there are no further constraints

that limit the assignment. To enable the automated computation of an

assignment that reflects a particular goal of a configuration task, generic role

assignment introduces rules. Rules define contextual constraints on the

assignment of roles to devices. The simplest form of contextual constraint that

is generally useful for all configuration tasks is a simple filter. An example of

such a filter is to demand that all devices should be at a certain location.

Another form of contextual constraint that is particularly relevant for PECES

middleware are so called reference rules. Reference rules refer to a set of

devices that has been assigned a particular role.

The set of rules together with their corresponding roles form a role specification.

Given that the necessary contextual information can be captured by sensors or

other types of information sources, one can use an algorithm to automatically

assign roles to the devices whose context satisfies the constraints specified by

their rules.

The architecture or the role assignment system consists of three main layers.

These three main layers are context management, role assignment and service

that use an assignment which as shown in Figure 2.5.

- Context Management: As describe above, system can automatic

configuration and adaptation on the basis of context information by getting

context information from sensors or other sources. The context management

layer is responsible for gathering, inferring and fusing information that it

receives from various sources. This resulting context information is then

made accessible to the generic role assignment layer.

- Generic Role Assignment: The generic role assignment layer defines the

concepts for the role specification. The role specification consists of roles

and rules which are a set of conditions on which these roles are assigned to

the devices. The role assignment layer uses context information to evaluate

25

these conditions. Besides assigning roles automatically to the devices, the

role assignment system can also be used to assign the roles manually.

Manual assignment of the roles provides more control to the user and is

especially helpful in situations where manual configuration is desired.

- Services: Since roles are just tags, they are independent from their usage. In

order to make use of a role assignment, we need to use them with other

mechanisms. These mechanisms are specific to the configuration task. Thus,

above the role assignment layer there are typically additional services that

require assignments. To give some examples, for access control, the roles

may be directly used as part of a role-based access control model. In the

context of this specification, we will use them in order to address and group

different sets of devices. This will enable the development of role-based

communication mechanisms.

Figure 2.5: Role Assignment Architecture

5) Smart Space concept

A smart space can be defined as a group of networked devices that cooperate

to support their users. The boundaries of a smart space are typically defined on

the basis of a geographic location, e.g. a room or a building. However, such

narrow definitions are not flexible enough to support the application prototypes

in the PECES project. Obviously, these smart spaces cannot be defined on the

basis of a single location. For example in applications based upon a car, the

whole car, i.e. the smart space itself, is mobile.

Provisioning

Assignment
Registry

Automatic
Assignment

Manual
Assignment

R
o

le
 Sp

e
cificatio

n

Rule Specification

User
Interface

G
en

eric R
o

le
A

ssig
n

m
en

t
C

o
n

text
M

g
m

t.
Services

Role Definition

Role-based
Communication

Role-based
Access Control

26

In order to extend the definition, the addressing and grouping scheme can be

used to support the formation of smart spaces based on arbitrary contextual

properties. However, as explained earlier, the resulting definition is

automatically restricted to devices that are residing in the same local network.

This is a result of the fact that the formation process of basic groups is limited to

a local network. Yet, for typical smart spaces local connectivity is guaranteed.

To support smart space formation, the PECES middleware introduces three

additional components which are coordinator, member and gateway. These

components can be easily motivated by looking at the anatomy of the smart

spaces that are identified in the PECES Use-Case Specification:

Coordinator: A smart space consists of at least one coordinator device. This

device is responsible for identifying members of the smart space based on role

specification.

Member: In addition to coordinator device, a smart space may contain

additional devices that are dynamically entering or leaving the local network.

Depending on the context, a member device might either be integrated or not.

Currently, a member device can only be integrated at most into one smart

space at a time.

Gateway: Some devices that are part of a smart space may also be able to

communicate with other devices through an Internet connection. Examples for

such devices are smart phones or residential gateways as well as laptops that

are equipped with a UMTS modem. In these scenarios, the PECES middleware

gateway functionality provides connectivity for other devices in the smart space.

6) Registry Interface Concept

The PECES middleware provides a collaboration mechanism that enables

communication between devices in and across different smart spaces in a

context dependent manner. This requires a mechanism that allows devices to

discover and access information about each other. The BASE middleware

provides an internal service and device registries to maintain the access

information of the locally available services. Since the services are accessed

not only from inside but also outside the smart space, the PECES middleware

provides a distributed registry mechanism that can further be extended for

27

remote group formation. The distributed registry can facilitate the information

distribution of the assigned roles in the smart spaces coupled with necessary

context information for forming an overarching environment. The PECES

cooperation layer can thus use the distributed registry to lookup for devices

based on the role and retrieve necessary plug-in information to access the

devices. Hence, the distributed registry enables cooperation between

heterogeneous devices by identifying the relevant devices that may provide

services or can be used to form an overarching smart space on top of existing

smart spaces.

The spontaneous appearance and disappearance of the devices in a typical

smart space naturally requires a registry infrastructure where information about

the services and roles are easily but securely accessible. The accessibility and

security trade-off impose a natural scoping on the service availability. From a

device perspective, the required services for an application may reside on the

same device, or may be available on a remote device that may or may not be

the part of the same smart space. This clearly outlines three different scopes for

available services namely; “Device”, “Space” and “Internet”. More detailed

information about the PECES registry concepts can be found in [8].The registry

Scopes and interaction shows in the figure 2.6:

Figure 2.6 Registry Scopes and Interaction

2.2 Context Ontology

2.2.1 State of Art

Using context ontologies as an instrument for modeling contextual information

provides an instrument to capture terms within domains and relationships

among them in computer understandable formats. In order to leverage the

28

sharing of contextual knowledge and information reuse among PECES

middleware instances contextual concepts, sub-concepts, relationships,

properties and facts are represented in PECES ontology in a uniform way. This

contextual knowledge can be later interpreted and evaluated by employing

ontology reasoning which subsequently enables computers to determine the

contextual capability, to compare contextual facts and to infer new and more

complex context from primary measurements. There have been several related

works on context ontology engineering in recent years and this section

highlights the most relevant works to the PECES context ontology.

The PECES ontology aims to reuse as many as possible existing artifacts from

off-the-shelf contextual ontologies, and thus we start with investigating which

kind of concepts could be potentially reused in the PECES context ontology.

SOUPA [5] is an ontology which supports the largest amount of concepts

because it builds upon the following existing relevant ontologies.

- FOAF[26]: This ontology captures an expression of personal information and

relationships, and is a useful building block for creating information systems

that support online communities [6]. Pervasive computing applications can

use FOAF ontologies to express and reason about a person’s contact profile

and social connections to other people in their close vicinity.

- DAML-Time & the Entry Sub-ontology of Time [55][56]: The vocabularies of

these ontologies are designed for expressing temporal concepts and

properties common to formalization of time. Pervasive computing

applications can use these ontologies to share a common representation of

time and to reason about the temporal orders of different events.

- OpenCyc Spatial Ontologies [57] & RCC [58]: The OpenCyc spatial

ontologies define a comprehensive set of vocabularies for symbolic

representation of space. The ontology of RCC consists of vocabularies for

expressing spatial relations for qualitative spatial reasoning. In pervasive

computing applications, these ontologies can be exploited for describing and

reasoning about location and location context [59].

- COBRA-ONT [59] & MoGATU BDI [60] Ontology: Both the COBRA-ONT

and the MoGATU BDI ontology are aimed for supporting knowledge

representation and ontology reasoning in pervasive computing environment.

29

While the design of COBRA-ONT focuses on modeling contexts in smart

meeting rooms [61], the design of MoGATU BDI ontology focuses on

modeling the belief, desire, and intention of human users and software

agents [60].

- Rei Policy Ontology: The Rei policy language defines a set of deontic

concepts (i.e., rights, prohibitions, obligations, and dispensations) for

specifying and reasoning about security access control rules. In a pervasive

computing environment, users can use this policy ontology to specify high-

level rules for granting and revoking the access rights to and from different

services [61]. Along with SOUPA, CONON [62] is an upper context ontology

which defines 14 extensible core classes to model Person, Location, Activity

and Computational Entities. Similarly, by focusing on Ambient Intelligence

environments, the CoDAMoS [63] ontology focuses on the modeling of the

user, enviroment, platforms and services aspects of is context information.

Another approach of using ontologies to model contextual information in

applications and services is CAMidO [64]. CAMidDo uses ontologies to

represent its meta-model in 3 tiers: middleware, context and applications. The

first ontology is associated to the middleware level and concerns sensor

descriptions. This ontology contains information about sensors that the

middleware can interact with. This information is created and updated easily by

the middleware maintenance agent to enable the middleware to interact with

new sensors. Sensors can be used by all applications running on top of this

middleware.

The second ontology is associated with the context level. It gathers information

about context to which all context-aware applications, described using the

CAMidO meta-model, are sensitive. The Context class belongs to this ontology.

“Direct context” is captured directly from sensors, and “indirect context” is

interpreted from other contexts.

The third ontology is associated with the application level and gathers

information specific to the application allowing the designer to describe the

following:

- All relevant contexts to which the application is sensitive by creating

instances of the RelevantContext class.

30

- Context-aware components belonging to the application by creating

instances of the Component class, and binding them with the described

relevant context using the AwareOf property.

- Interpretation rules for indirect context description, by creating instances

of the Policy&Rule class to describe interpretation methods and the

HowDeduce property which enables the specification of indirect context

that can be deduced using context information.

- Reactive adaptation of the application, when a relevant context is

detected, by describing the ReactAdapt property which binds relevant

context with the associated adaptation method described in the

Policy&Rule class.

- Proactive adaptation of the application, by describing the ProactAdapt

property which binds relevant context with the policy to be invoked

(described as instance of the Policy&Rule class), and the component

(belonging to the Component class) which invokes the service described

in the CAService class.

- Context-aware services installed on top of the CAMidO middleware and

context to which they are sensitive, by creating instances of the

CAService class and binding each instance to the relevant context to

which it is sensitive using the DependsOn property.

As in most of the proposed context ontologies, OWL-DL [41] seems to be a

natural choice to model ontologies for its ensured decidability and as it is a W3C

recommendation. However, RDF [65] or RDFS [66] are also candidates for

modeling the simple relationships and taxonomies of contextual information. On

the other hand, in some cases, expressiveness of OWL-DL is not enough to

represent the contextual information. Furthermore, rule languages can be

combined with OWL which has been proposed in SWRL [67].

However, the more expressiveness the ontological language supports, the

higher demand of resource the hosting system should have to process.

Hence, available tools for fully processing ontological information can only

hosted in PCs or servers. So the main component of these tools that ontology-

driven application employs is reasoner. The reasoner enables inferring implicit

information defined by logic rules of ontological language. [68] has classified the

31

such support tools with respect to the underlying logic used ontological

language. In principle we can differentiate between two branches of formal

languages to use in ontologies: First-Order Logic (FOL,[69]) and Logic

Programming (LP, [70]). FOL does adhere to the open world semantics and the

non-unique name assumption, whereas the LP based languages usually do not.

Description Logics (DL) is a subset of FOL. The strength of DL lies in

subsumption reasoning and consistency checking. For classification and

satisfiability checking there are mature reasoners available, while there is a lack

of support for efficient instance retrieval.

2.2.2 PECES Context Ontology Concept

The PECES context ontologiesError! Reference source not found. are

onstituted from sub-ontologies such as Smart Space, Measurement, Device

profile, User Profile and Event. Figure 2.7 shows the dependencies among

them as well as external ontologies basing on which they extend concepts and

properties. The external ontologies include wgs84_pos[25], OWL-S[24], OWL-

Time[27] and FOAF[26]. wgs84_pos provides terms and property for

representing spatial context information. OWL-S contains a set of ontologies for

presenting services provided by devices/smart spaces. OWL-Time and FOAF

ontologies provide terms and properties to present events and user’s profiles as

described in the Use Case Specification.

Device

Profile User Profile

OWL-Timewgs84_pos FOAF

Measurement

Smart Space

OWL-S

Event

Figure 2.7 Dependencies of Context Ontology

32

The core ontology to describe the context information of smart space is Smart

Space ontology. The SmartSpace, Device, Location, Service and Context are

the basic concepts to model the context information of a smart space. All

relationships among them are shown in Figure 2.8. The SmartSpace concept is

used to extend to other sub kinds of smart spaces. StationarySmartSpace and

Non_StatioarySmartSpace are two major categories of smart space which are

defined as subclass by SmartSpace. Smart space is defined as

StationarySmartSpace when it having fixed location. Its location is referred to a

location instance using locatedAt property. In the other hand, the smart space

which does not have a fix location is defined as Non_StatioarySmartSpace. The

Device concept places the role as key abstraction for device profile ontology.

Context concept is used to extend subclasses such as LocationContext or

SmartSpaceContext. Location concept is used to representing the location

information for LocationContext by using relatedLocation property and

StatioarySmartSpace by locatedAt property. The Service concept gets

ServiceGrounding, ServiceModel and ServiceProfile from OWL-S ontology.

When a smart space provides a service, service:provides property is used to

connect Service instance to SmartSpace instance. And service:providedBy

property is used to express a service is provided by a smart space.

Figure 2.8 Core Contextual Concepts within a Smart Space

33

The Device profile ontology provides vocabularies to model specification of

devices in smart spaces. PECESEmbeeddedDevice, Accessory and

SensorDevice are three kinds of devices. PECESEmbeeddedDevice is the

devices which has the PECES middleware installed. Property service:provides

is used when the device provides a service. Three categories of embedded

devices are defined in PECESEmbeddedDevice which are Gateway,

Coordinator and Member. The Accessory property defined the accessories an

embedded device has. Property hasAccessory is used to connect Accesory

instance to PECESEmbeddedDevice instance. Input/output devices Keyboard,

Microphone, Touch Screen, Speaker and Screen are defined as subconcept

including in Accessory concept. The concept SensorDevice described the

specification of sensor devices. The sub concept MeasuringSensor is used to

represent a sensor which can measure a measurement. The concept

DeviceMobility is a sub concept of the Context concept and which is used to

form the mobility of device. The property smartspace:hasContext can link the

Device instance to its mobility attribute. There are two types of mobility called

Non_Stationary and Stationary. Stationary is used for device with fixed location.

Vice versa, Non_Stationary is for representing devices may move. And

Attached and Portable is defined as sub concepts for Non_Stationary. Figure

2.9 shows the relationship of Device Ontology.

34

Figure 2.9: Device Profile Ontology

The Measurement ontology provides the categories of measurements which

can be measured by sensor devices integrated in smart spaces. Figure 2.10

shows the graph of Measurement Ontology

Figure 2.10 Measurement Ontology

35

The User profile and Event ontologies provide vocabularies to model the user’s

information and events in which user is involved. The User profile ontology

extends FOAF ontology to identify the user’s information. Thus all properties

from concept foaf:Persion are inherited by User concept, and any new

properties can be added to User concept. The sub concept user:UserProfile and

user:Account are linked to User concept as skeleton concept which can be

added needed properties base on what kind of use case when developer want.

The Event ontology employs the OWL-Time ontology to recognize event

information. The Event concept is also defined as skeleton concepts which can

be easy extend by further need. Figure 2.11 shows the graph of User profile

and Event Ontology

Figure 2.11 User profile and Event Ontology

2.2.3 Ontology Tools

a. Jena

Jena[45] is a Java framework building for semantic web applications originally

developed by HP Lab. Jena support developers to handle several Ontology

languages like RDF, OWL and SPARQL[28][31] by provides extensive java

libraries. Jena includes a rule-based inference engine to perform reasoning

based on OWL and RDFS [43] Ontologies, and a variety of storage strategies to

36

store RDF triples in memory or on disk. Jena is an open-source framework and

has been extensively used in a wide variety of semantic web applications.

Jena was originally developed by researchers in HP Labs, starting in Bristol, UK,

in 2000. Jena has always been an open-source project, and has been

extensively used in a wide variety of semantic web applications and

demonstrators. In 2009, HP decided to refocus development activity away from

direct support of development of Jena, though remaining supportive of the

project's aims. The project team successfully applied to have Jena adopted by

the Apache Software Foundation in November 2010.

b. Protégé

A suite of tools used to construct domain models and knowledge-based

applications with ontologies was provided by Protégé[22]. Protégé implements a

rich set of knowledge-modelling structures and actions that support the creation,

visualization, and manipulation of ontologies in many different representation

formats. Protégé also provide a Java API for other developer to build their own

tools and applications. Protégé support two different tools for modelling

ontologies: Protégé-Frame editor and Protégé-OWL editor. Protégé-Frame

editor provides a set of tools to build frame-based Ontology which consistent

with OKBC (Open Knowledge Base Connectivity protocol)[44]. Protégé-OWL

editor allows developers to build ontologies for Semantic Web. As its name as

indicated by, Protégé-OWL editor is an extension of Protégé for supporting

Ontology Web Language (OWL). This editor enables developers to load and

save OWL and RDF ontologies, edit and visualize classes, properties, etc. In

addition, Mayo Clinic provides some extension of Protégé that make Protégé

can be embedded into eclipse as a plug-in.

2.3 Security Issue

Security and trust are essential parts of distributed system design. Although

some security solutions for distributed systems can also be used for smart

spaces, smart spaces usually require some additional considerations. Pervasive

devices are deployed in the everyday surroundings and are accessible to

everyone. This accessibility makes these devices vulnerable for hackers and

prone to hostile attacks (such as denial of service). Furthermore, the devices in

37

a smart space have limited memory and processing power, and are often

battery powered. These hardware limitations impose constraints on the

technologies that can be used to provide secure services. Therefore, existing

communication protocols that provide secure communication are not always

suitable for smart spaces due to their resource requirements. Another crucial

factor for security design is the distributed nature of the smart spaces.

Heterogeneous devices and platforms add extra complexities. To achieve the

goal of establishing secure and trustworthy communication of devices across

the boundaries of a single smart space, it is therefore necessary to integrate

appropriate security mechanisms and protocols.

2.3.1 State of Art

In many distributed systems, data is often transmitted through unreliable or

unsecure networks. The way of dealing with insecure routes is to use

cryptographic techniques. The two main classes of cryptography are symmetric

key and asymmetric key cryptography. In symmetric cryptography, two entities

share a same key. Entities in an authenticated network can use Kerberos [71]

or Diffie-Hellmann key exchange [72] to establish keys. Different encryption

algorithms can later be applied to ensure secrecy on the basis of the keys. AES,

DES, Twofish, Serpent and Blowfish are some examples of widely used

symmetric encryption algorithms. One drawback of symmetric keys is that they

require an appropriate key management. However there are some approaches

such as key exchange by means of physical location [73] or proximity [74] that

simplify the key management. To utilize the context information of a node,

Zhang et al [75] propose a location-based mechanism that assigns keys to

static nodes based on their geographical location. In asymmetric cryptography

which is also known as public key cryptography, the communicating entities use

two different keys that are mathematically related. Although symmetric

cryptography requires key management, it is usually considered to be more

feasible for resources constraint devices. This is due to the fact that the

asymmetric key cryptography usually requires more energy and memory to

process the keys [76]. To mitigate this problem, the TESLA [77] suite, for

example, introduces a mechanism that employs symmetric keys but later uses

time to achieve asymmetry. Besides from key distribution, a second major

problem of symmetric keys is that if a node is compromised, the whole network

38

becomes vulnerable. For this reason, some researchers shifted their focus to

public key cryptography for resources constraint devices.

Besides standard security suites for traditional distributes systems such as

IPSec [78] and Transport Layer Security (TSL) [79], there are several security

suites that are specially designed for resource constrained devices. Examples

are suites such as SPINS and TinySec. SPINS [80] proposes two protocols;

SNEP and μTESLA. SNEP (Secure Network Encryption Protocol) is used for

authentication, and maintains confidentiality and freshness and μTESLA

performs broadcast authentication. In contrast to this, TinySec [81] provides link

layer based security. However, TinySec is built for the TinyOS operating system

and even though it can support small sensor nodes, it cannot be used for the

communication between other types of devices such as PDAs and Industrial

PCs. SensorWare [82] are other notable examples of security suite for sensor

networks with similar characteristics.

For key management, Basagni et al proposed Pebblenets [83] that organize the

network into clusters. Cluster heads form each cluster form a backbone. After

that a Traffic Encryption Key (TEK) is generated by one cluster and forwarded

along the network backbone. Cluster heads later forward the TEK to their

cluster nodes. TinyKeyMan [84] is also another implementation on TinyOS for

establishing pair-wise keys. The Localized Encryption and Authentication

Protocol (LEAP) [85] is another key management protocol for small embedded

devices that supports multiple symmetric key mechanisms and allows in-

network processing. The rationale behind using multiple symmetric key is that

the messages in a network can have different security requirements (depending

on their content and context) and therefore they may require different encryption

key mechanisms.

Since smart spaces are accessible by anyone and are usually deployed on

insecure locations, a hostile attacker might pretend to be a legitimate user and

can try to access resources as well as sensitive context data. For such cases

Roman, Zhou and Lopez presented an intrusion detection system [86] where

nodes monitor the communications in their neighborhood. Another problem

usually faced by systems that are accessible to public is denial of service

attacks. Since smart spaces are typically resource constrained, we must be

39

able to identify the attacked node as soon as possible while trying to keep rest

of the environment functional. Against these denial of service attacks,

[87][88][89] have proposed different solutions.

Access control is the ability of a system to manage the access to computer

resources. A common technique is to maintain Access Control List (ACL). An

ACL contains a mapping or association of permissions to resources. Overall,

there are three basic access control techniques: Discretionary Access Control

(DAC), Mandatory Access Control (MAC), and Role Based Access Control

(RBAC). In DAC, the access to the resources is controlled by the resources

owner which is contrast to MAC where the access to the resources is controlled

by a central system. In Role Based Access Control (RBAC) [90], users are

assigned roles where each role contains a set of permission to access

resources. Generalized Role Based Access Control (GRBAC) [91] is a context-

oriented extension to the RBAC system where not only the users but also

environments and resources are assigned roles. GRBAC make context-based

decision to assign access privileges to the roles. Another extension of the Role

Based Access Control is Role Templates [92]. In Role Templates, permission or

privileges to access a resource depends upon the contents of the resource. For

example, Role Templates can only allow a sales manager to query data

relevant to the sales agents. TMAC [93] and OrBAC [94] focus on collaborative

environments. Zhang and Parashar [95] extended the RBAC model and assign

access control by combining user permission and the context information.

Different languages have been proposed to define access control policies such

as the Trust Policy Language [96], the Role Definition Language [97], and the

FAM/CAM language [98]. The Generalized Access Control Language (GACL)

[99] provides a RBAC based solution to control access control decisions based

on the system load. GACL measure the load of the systems and only allows a

program to execute if there is sufficient system capacity available.

2.3.2 PECES Security Concept

The PECES consortium extends the PECES middleware to derive a secure

middleware. For this, PECES consortium introduced a basic trust model that is

used as basis for the concepts and mechanisms of the middleware. These

mechanisms enable the secure interaction of devices. To enable this, they span

40

the management of cryptographic keys, the authentication of information –

specifically context information and role assignments, the secure data and

service centric communication as well as role based access control. Although

they do not introduce additional interaction features, together they span the

whole set of security related requirements that have been identified in the

PECES Requirements Specification [ref] and thus, they are sufficient to be

applicable to a broad range of scenarios.

The PECES security mechanisms are modular and they introduce a certain

degree of configurability that can be leveraged by application developers for

optimization purposes. This enables them to define application specific trade-

offs between security and application performance.

Figure 2.12 Secure PECES Middleware

At the plug-in level, the secure PECES middleware provides following

extensions to improve the functionality of the basic PECES middleware which

described in last sections:

- Secure Data-centric communication plug-in: This plug-in is an extension

to the data-centric communication plug-in discussed in section 2.1.2. The

secure version adds optional encryption capabilities, which can be

41

requested through the data-centric communication framework, to the

basic plug-in. The framework also is extended for support this.

- Secure Service-centric communication plug-in: This plug-in is an

extension to the service-centric communication plug-in discussed in

section 2.1.2. Same as Secure Data-centric communication plug-in, this

plug-in supply encryption capability for service-centric communication

plug-in. The difference is the framework does not need to extend to

support this plug-in. It only need the implementation provides some

methods for simplifying the specification of security requirements before

interaction between devices.

Secure system services provide following extra functionality of basic PECES

system services extension:

- Key Storage and Management: The secure system service provide a

new services named key storage and management service which supply

the capability of store certificates for a particular trust level. This service

not only stores the local keys but also temporary session keys. These

keys will be used to authentication individual devices when key exchange.

- Authenticated Context Storage: The authenticated context storage

service is an extension of the context storage part. When secure role

assignments is needed, this service provide a function for devices which

can give context information in an authentic way to the coordinator

service. Thus coordinators can check the credibility of the context

information they get and refuse the interaction from the devices with

forged context information.

- Secure Smart Space (Coordinator): Secure Coordinator, an extension to

coordinator, is used to secure role assignment and interaction of devices

in a smart space. This gives the ability to coordinator to understand the

security-relevant rules during role assignment. It also allows the

coordinator to distribute the key when assigning a role.

For supporting the security concepts just talking above, the following features

need to be added to basic frameworks:

- Secure Role Assignment Framework: As discussed above, coordinator

system service is extended to support the security-relevant rules during

42

role assignment. These rules are implemented as part of the role

assignment framework.

- Secure Data-centric Communication Framework: The secure data-centric

communication framework added additional functionality to supply

encrypts and decrypt messages with the group key distributed by

coordinator before role assignment.

Secure middleware also includes the feature to support access control to

services and information. The client-side component and service-side

component are implemented:

- Service-side Access Control Component: The service-side access

control component can validate the incoming requests and it can denies

the unsecured requests.

- Client-side Access Control Component: The client-side access control

component intercepts calls to service that are using service-side access

control component. It can help the component to require the security

privileges easily.

2.4 Related Works

2.4.1 Pervasive Software

a) DTT: A Distributed Trust Toolkit for Pervasive Systems

The Distributed Trust Toolkit (DTT) [11]proposed a framework for implementing

and evaluating trust mechanisms in pervasive computing systems and

introduced two new abstractions: trust groups and trust blocks. Trust groups

allow associated application devices to share recorded trust data and trust

computations. Trust blocks makes policy decisions based on data gathered by

the computation component which implements network based trust protocols

and allows the DTT to interoperate with legacy trust systems. The Distributed

Trust Toolkit facilitates the extension and adaptation of trust mechanisms by

abstracting trust mechanisms into interchangeable components. Furthermore,

the DTT provides a set of tools and interfaces to ease implementation of trust

mechanisms and facilitates their execution on a variety of platforms and

networks.

43

b) Gaia: Enabling Active Spaces

The Active Space consists of the Gaia middleware OS [13] managing a

distributed system composed of plasma displays, a video wall, audio system,

touch screens, IR beacons, badge detectors, wireless and wired networks

connecting several Windows 2000 and PDAs. The framework focuses on

providing an application framework that leverages the functionality provided by

the Gaia middleware OS to assist developers in the construction of Active

Space application. The application framework defines an application model that

accommodates the requirements of Active Spaces including dynamically

changing the cardinality, location, input, output and processing devices used by

an application. Then the application framework provides a mapping mechanism

to define applications requirements and automatically mapping them to the

resources present in a particular Active Space. Finally, the framework

implements a flexible policy driven application management interface that

allows customising applications to the dynamic behaviour of Active Spaces.

c) UBIWISE, A Ubiquitous Wireless Infrastructure Simulation Environment

UbiWise [15], a simulator for ubiquitous computing system was proposed in [14].

UbiWise concentrates on computation and communication devices situated

within their physical environments. Multiple users can attach to the same server

to create interactive ubiquitous computing scenarios. The devices are specified

through a combination of a device-description file in XML and Java.

d) UbiREAL: Realistic Smartspace Simulator for Systematic Testing

UbiREAL [16] simulator was proposed for realistic smart space systematic

testing. UbiREAL facilitates reliable and inexpensive development of ubiquitous

applications where application software controls a lot of information appliances

based on the state of external environment, user’s contexts information. The

simulator realistically reproduces behaviour of application software on virtual

devices in a virtual 3D space. Interestingly, it provides mechanisms to simulate

virtual devices with real devices.

e) A Middleware-based Application Framework for Active Space Applications

44

A Middleware based application framework for Active Space applications

[12]was proposed in M. Roman’s paper. The Active Space consists of the Gaia

middleware OS managing a distributed system composed of plasma displays,

a video wall, audio system, touch screens, IR beacons, badge detectors,

wireless and wired networks connecting several Windows PCs and PDAs. The

framework focuses on providing an application framework that leverages the

functionality provided by the Gaia middleware OS to assist developers in the

construction of Active Space application. The application framework defines an

application model that accommodates the requirements of Active Spaces

including dynamically changing the cardinality, location, input, output and

processing devices used by an application. Then the application framework

provides a mapping mechanism to define applications requirements and

automatically mapping them to the resources present in a particular Active

Space. Finally, the framework implements a flexible policy driven application

management interface that allows customising applications to the dynamic

behaviour of Active Spaces.

2.4.2 Other Development Tools

A development environment is a type of computer software that assists

programmers to develop, build, deploy and analyse applications. The

development environment normally consists of a source code editor, a compiler

or interpreter, build-automation tools, and usually a debugger. Typically a

development environment is devoted to a specific programming language, as in

the Visual Basic, C++ or Java, although some multiple-language development

environments are in use, such as Microsoft Visual Studio or NetBeans, In recent

years, there has been emergence and popularization of Open Source

development environment such as Eclipse and NetBeans.

Eclipse [10] is an open source development environment provides a robust,

commercial quality platform for development and support software engineering.

Generally Eclipse is frame-work for plug-ins. This plug-in architecture provides

flexible and scalable tool integration with features to customize or extend a

component to the developer’s needs. The Eclipse Graphical Modelling

Framework (GMF) and Graphical Editing Framework (GEF) provide a

generative component and runtime infrastructure to build graphical modelling

45

editors. The Eclipse Platform reduces the cost of tool integration by providing a

large number of services, APIs, and frameworks that enable effective and

scalable tool integration.

The Eclipse Platform provides a focal point for integrating and configuring tools

in a manner that best fits the end user's development process. Eclipse

Workbench provides a central integration point for project control and an

integration mechanism for resource-specific tools. This approach allows a user

to build applications using a heterogeneous set of tools while at the same time

providing a common view of the complete application across all components [5].

Eclipse UI integration allows a tool to participate with other tools as if they were

designed as a single application. Tool integration is done by specifying at run-

time the tools with which an application wants to integrate. It is believed that

Eclipse is a cost-effective, productive development environment to integrate

new tools for new project requirements.

There are several development tool have been proposed to support pervasive

computing middleware application developers. CASA (Contract-based Adaptive

Software Architecture) [100] middleware provides a framework for enabling the

development and operation of pervasive applications. CASA Runtime System

(CRS) is responsible for monitoring the execution environment and adaptation

of the affected applications. The monitoring contextual information includes

acquiring data, structuring the acquired data based on an application domain

specific ontology and deducting the final knowledge. The contract-based

adaptation policy used in CASA framework facilitates changes in the adaptation

policy at runtime.

The Component Synthesis using Model Integrated Computing (CoSMIC) [101]

is the Model Driven Architecture (MDA) based tools targeted primarily for

distributed real-time embedded applications. The CoSMIC tools consist of an

integrated collection of modelling, analysis and synthesis tools that address key

lifecycle challenges of middleware and applications. The tools initially targeted

CIAO [102] which is s QoS enabled CORBA component model middleware and

QuO [103] framework which is an adaptive middleware for distributed real-time

embedded systems. The CoSMIC tools provide a modelling and analysing

46

framework for key QoS properties of CIAO and QuO in the static and dynamic

execution environments.

Music project [104] proposed development tools for adaptive applications in

pervasive computing environment which support context changes and

maintains a high level of usefulness across context changes. The project uses a

model-driven approach for development of applications and services that utilize

context ontologies. Model-based development requires modelling and

transformation tools in order to automate the development process. An UML

modelling tool, an ontology editor for services ontologies and transformation

tools are used by the middleware to perform adaptations. Madam project [105]

has developed modeling language extensions and tools enabling application

designers to specify adaptation capabilities at design time. It also follows the

model-driven approach and the source code is automatically generated by

model transformation to pass the adaptation capabilities, context dependencies

and application properties to the MADAM Middleware.

In the PLASTIC [106] project, the development tools are based on UML, JDK

and Eclipse. It includes a model based testing tool that automatically derives

and executes invocation sequences on a service and given response

confirmation to a service state machine which can be modelled using

commercial UML editor. It also includes a synthetic-workload generator for

managing the deployment and execution environment. The PLASTIC

development tools are implemented as Eclipse plug-ins and each tool has been

developed in a modular way that would allow an application developer to use

the tool outside Eclipse.

However, development tools described above only provide limited support for

PECES developers as they have been designed for different goals and

concepts. Although many projects have proposed development tools to support

for pervasive computing environment application development, only little

methodological support offered for context-awareness and security. The

application developers also need support for development of highly dynamic

and adaptive pervasive computing environments.

47

Chapter 3: Development Tool Design: Configuration Tool

In this chapter we describe the Configuration Tool which is used to start the

application development. First of all, we give overview of Development Tool in

Section 3.1. The Configuration Tool contains six tools. Section 3.2 talks about

the architecture of Configuration Tool briefly. Device Definition tool is the first

tool to setting the application device’s attribute which will be described in

Section 3.3. The Ontology Instantiation Tool, addressed in Section 3.4, is used

to setting the static context properties. For security purpose, Security Tool can

be used to generate the necessary certificate and keys, which is discussed in

the Section 3.5. In Section 3.6, we show Service Definition Tool for helping

developer use a PECES-based service. When developer needs to set the group

rule set for smart spaces, Role Specification Tool will be used. It is described in

Section 3.7. The last tool of Configuration Tool will be addressed in Section 3.8.

It is Hierarchical Role Specification Definition Tool which possible to define

smart space hierarchically. The Role Specification Tool and Hierarchical Role

Specification Definition Tool has contributions from Alberto who from ETRA,

Spain. We end with a brief summary of this chapter in Section 3.9.

3.1 Overview of Development Tools

Providing people with useful services, making embedded devices cooperate

based on their context, is one of the most important challenges in smart space

environments. Since applications running on smart space concepts have huge

potential and convenience in our daily life, these applications must be

developed carefully and tested before deploying for real world environments.

However, it is very expensive to test them thoroughly in real world environments,

since experiment setup have to assemble a Test bed using various types of

sensors and embedded devices and generate a huge number of contexts for

tests where each context consists of user locations, behavior, time, etc. The

state of the art tools discussed in previous section can only be used to evaluate

little aspects of the smart space applications in the PECES project. In order to

cope with the applications proposed in the project and to test the novel features

introduced by the PECES middleware, we provide a different set of tools for

application developers.

48

PECES development tools focus on configuring devices, modelling smart

spaces and context dynamics and testing the role specification concepts for the

three proposed prototype applications. The tools are used for simulating and

analyzing the smart space behaviours and context changes of the different

application scenarios. The tools use the discrete event simulation concept

which is used in several network simulations. Instead of running PECES

application on real devices, application developer is able to test the features of

the PECES middleware in a development PC for any specific application. This

provides the opportunity for the application developers to test and analyse their

application in a controlled and repeatable environment which provide

information to optimise certain parameters which may be necessary for the best

performance of any smart space applications.

The PECES development tools provide graphical user interface (GUI) features

where application developers can configure and model any smart space

applications by using a drag and drop method and edit information by clicking

on the devices. The tools also provide GUI based test environment where

application developers can start, stop and suspend the application and evaluate

the application results. PECES development tools use the GUI device/model

description information to generate XML description files (JDOM plug-in can be

used in Java) which are used by the PECES middleware components during

execution. The tools also provide mechanism for network dynamics, context

changes which help application developer to understand the behaviour of the

PECES middleware for any given application in different scenarios.

Providing a realistic simulator/emulator environment would be very useful for

the application developers, but developing a complete realistic

simulator/emulator is a large effort. It is noteworthy that PECES tools target

novel features such as role assignment, context grouping and security

mechanism introduced by the PECES middleware which is not impacted by

wireless realistic simulations.

Due to the heterogeneity of devices that the PECES middleware addresses, it is

not feasible to provide development tools that deal with low level details (for

instance, emulation of specific hardware modules). As a result, the development

tools only focus on testing the novel features of the middleware which the

application developers will be interested when they are building application with

49

PECES middleware components. The tools do not concentrate on testing the

prototype applications behaviour on the specific hardware platforms.

The PECES project provides a set of tools which are integrated into the Eclipse

development environment. This way, the usual development assistance

provided by the Eclipse IDE is enhanced with the new PECES focused

development support. The PECES development environment have three tools

namely Configuration Tool, Modelling Tool and Testing Tool to support testing

the pervasive computing novel concepts introduced by the PECES middleware

such as dynamic grouping, context ontologies and access control policies.

 Configuration Tool

The Configuration Tool provides graphical user interface to configure the

virtual devices which is used for testing a specific application. The

Configuration Tool enables application developers to specify the device

properties and initial context information during the device configuration.

Keys and certificates are used by the security components of the PECES

middleware (asymmetric and symmetric cryptography) are configured by

the Configuration Tool as well. Device description information and context

information can be used to model smart space defined by the role

specification. Service running by devices also can be generated by

Configuration Tool.

 Modelling Tool

The Modelling Tool provides application developers to specifying the

application scenarios which include environment, event and dynamics of the

model. Role specification, connection dynamics and context changes are

handled by the Modelling Tool. Smart space definitions and PECES global

topology also has to be deployed by the Modelling Tool..

 Testing Tool

The Testing Tool allows application developers to execute the application

scenarios which are already defined by the Configuration Tool and the

Modelling Tool. The Testing Tool also provides a mechanism to evaluate

the test results. The Modelling Tool provides a ready to run test application

to the Testing Tool which is responsible for the execution of the defined

model and pass relevant data to the middleware component. The Testing

50

Tool allows application developer to start, stop and suspend the test

application and provide mechanism to evaluate the application results.

Figure 3.1: PECES Development Tools Interaction

The three tools discussed here are implemented in Java and provide

configuration, modelling and testing environments to application developers.

The tools interact with each other as shown in Figure 3.1. Initially, application

developer will start with the Configuration Tool by defining devices, deploying

keys, certificates, initial/static context information, role specification information

and service. The output of the Configuration Tool will be used by the Modelling

Tool which will add details about network dynamics and context changes which

will be used by the middleware to form the smart space. Output of the Modelling

Tool will be a test model which will be used by the Testing Tool to execute the

define application scenario. The Testing Tool will execute the applications and

provide evaluation mechanism for the test results.

Using PECES development tools, application developers will be able to model

smart spaces and integration of the smart spaces. A smart space can be

formed as a group of networked devices that cooperate to support any specific

task defined by the role specification. To model a smart space in the

development environment, application developers will have to configure several

51

devices using the Configuration Tool. A model smart space should consist of at

least one coordinator device and some other devices such as gateway and

member devices. In addition to these initial devices, a smart space may

integrate additional devices which effectively form a different network topology.

However, a device will be integrated only into one smart space at a time. Also

two smart spaces (Smartspace 1 and Smartspace 2 in Figure 3.2) can merge

as another smart space (Smartspace 4) but the new smart space will only have

one coordinator. All these information have to be defined by the application

developer in role specification phase and the Modelling Tool provides features

for this. The application developers is able to visualise different smart spaces

provided by the GUI in the Modelling Tool as illustrated in the Figure 3.2 below.

If the application developers are not modelling the smart space properly and

configure the devices incorrectly, the Modelling Tool and the Testing Tool

provide some error messages to the developers which help them to re-configure

and re-model their devices and application scenarios.

Figure 3.2: PECES Smart Spaces

3.2 Configuration Tool Introduction

3.2.1 Why we need configuration tool and what inside

As describe in first chapter, the main hypothesis of this research is to create a

set of development tools which can easy to be used and speed up the

development process for smart space application design and development. Is it

52

possible to design a tool that will aid the application developer in Configuration

the system and increase their productivity? In particular we assume the

following questions:

 How to define device information and context by an easy and clear way?

 How to set up security chains for devices by a easy and clear way?

 How to build up the smart space and configure role specification by using

the details of device and context?

 How to create service which device support and which can be used by

other remote devices?

For answering the above research questions, the main contributions are listed

below:

 Configuration tool Architecture

 Device definition tool to define the information of devices

 Ontology Instantiation tool to configure the context of device and smart

spaces

 Security tool to set the key and certificate for devices

 Service definition tool to create services and related files for running

them remotely

 Role specification tool to define smart spaces and roles

 Create executable device instance which can be run in testing tool

All these contributions will describe in the following sections.

3.2.2 Overview of Configuration Tool

The Configuration Tool provides graphical user interface to configure the virtual

devices which will be used for testing a specific application. The Configuration

Tool enables application developers to specify the device properties and initial

context information during the device configuration. Keys and certificates are

used by the security components of the PECES middleware (asymmetric and

symmetric cryptography) can be configured by the Configuration Tool as well.

The Figure 3.3 shows the architecture of Configuration Tool:

53

Figure 3.3: PECES Configuration Tool Architecture

The Configuration Tool is responsible for coordinating initial configuration of the

device properties, initial/static context information and application and services

deployment. The tool provides graphical user interface (GUI) for application

developers to specify the device description, initial context elements of devices.

The tool also enables the specification of the appropriate keys and certificate.

The Configuration Tool gathers initial context information for devices and this

information can be used by PECES context ontology functionalities (e.g.

eu.peces.middleware.context) at the runtime. This initial context information will

be updated by the Modelling Tool where application developers may wish to

test different sets of context values to validate any specific application. The

device properties and context information of the Configuration Tool GUI

representation can be specified through a XML device-description file. The

Configuration Tool also loads the necessary device related PECES middleware

functionalities to be executed as virtual devices by the Testing Tool. Figure 3.4

shows the relations between different files:

Device Defination
Tool

Ontology
Defination Tool

Service Defination
Tool

Role Specification
Tool

Security Tool

54

Figure 3.4: PECES Configuration Tool

The Configuration Tool is responsible for initializing the devices and providing

the context information of each device and other additional information. The

output of the Configuration Tool is the configuration files which will be used by

the Modelling Tool. The Modelling Tool will be discussed in detail in the Chapter

4. Basically, the Modelling Tool will use the Configuration Tool output files as

the initial input and provide role specification information, connection and

environment information to model the smart space system. The following sub-

sections will discuss how the application developers are able to use the

Configuration Tool graphical user interface (GUI) to generate initial device

configuration which will then be used by the Modelling Tool.

55

Figure 3.5: Configuration Tool GUI Prototype

The Configuration Tool GUI has icons related to the devices are used in the

PECES prototype applications. Developers drag necessary devices which are

necessary to make any specific application and place them in the Configuration

Tool workspace. The devices have included some properties such as

communication features by default but application developers are able to edit

them if necessary. Developers have to provide specific ID to each device and

once the ID is provided the device appears on the workspace as shown in figure

3.5.

3.2.3 Support for Role assignment architecture

Configuration Tool generates the basic information and provides some

configuration for supporting Role assignment architecture.

 The PECES Ontology Instantiation Tool enables the application

developer to instantiate the devices. This tool supports all PECES

ontologies as well as other custom ontologies which application

developers may wish to use for their application. All these context

information will be gathered by Context Management layer in Role

assignment architecture and can be used as initial data to make

accessible to the generic role assignment layer.

56

 Role Specification Definition Tool provides an interface where developers

can define the different rules that the application will use to dynamically

form groups of collaborative devices. These rules can be used in role

assignment layer to evaluate conditions.

Detail of Ontology Instantiation Tool and Role Specification Definition Tool will

describe in the following section.

3.3 Device Definition Tool

3.3.1 Device Definition Tool Prototype

The Configuration Tool GUI provides several device icons in the toolbar where

application developers can use very simple drag and drop method to place the

required devices in the Configuration Tool workspace. Device properties are

already defined in the device icon and application developers may use the

device default information or can modify by double clicking on device.

Figure 3.6: Configuration Tool Device Properties

57

After placing the device in the workspace, device ID will be automatically

generated according to the order of the placement (e.g first device placed in the

workspace will be give to 1, next device will be give 2 and so on). Application

developers may be able to change the device ID by double clicking on the

device. Application developers should select the device PECES functionality

choosing whether the device implements the coordinator, gateway or member.

After application developers make this selection, the device will appear with the

selected device ID and corresponding device functionalities colour (e.g.

coordinator = purple; gateway = blue; member = green) as shown in Figure 3.5.

Some of the device description information such as communication mechanism

will only be used by the Configuration Tool and other information such as

coordinator, gateway, member and device ID will also be used by the Modelling

Tool. For example, the type of communication links (Figure 3.6) available will be

necessary for determining the PECES communication plug-ins to be deployed

on the device. The devices will be attached with the corresponding application

which includes middleware component and services. If a device in the tool bar

is used in more than one application, application developers should have an

option to select the required applications from the list from all possible

applications.

3.3.2 Device Definition Tool Design

This tool provides a graphical user interface (GUI) for application developers to

specify the device description as discussed in above. The PECES Device

Definition Tool can be used to define BASE/PECES middleware communication

plugins such as IP, Bluetooth, ZigBee (e.g. MxIPBroadcastTransceiver,

MxIPMuticastTransceive, EmulationTransceiver), and device functionalities

(e.g. Coordinator, Gateway, Coordinator&Gateway, Member) and also device

names. Developers can choose the EmulationTransceiver plugin if they wish to

emulate their application. All smart space applications should define one device

with coordinator functionality which is responsible of the coordination of the

smart space and a gateway device is necessary if the devices in the smart

space should access other smart space services.

58

Figure 3.7: Screenshot of the Peces Device Definition Tool with Device Functionalities

The devices can be selected and placed in the Editor area of the tool and

necessary functionalities can be defined by right clicking on the devices. After

defining the device functionality, different colours will be shown according to the

selected device functionality (e.g., a coordinator is red).

Figure 3.8: Screenshot of the Peces Device Definition Tool

Figure 3.8 shows an example application in which four devices are defined

(GUIDESYSTEM, LOCATIONSYSTEM, VISITOR_IPAQ, VISITOR_HTC). The

GUIDESYSTEM is defined as the coordinator of the smart space (shown in red)

59

and LOCATIONSYSTEM is defined as a gateway device (shown in green). Two

member devices are VISITOR_IPAQ and VISITOR_HTC and those devices are

shown in blue in Figure 3.8.

The screenshot also shows four different Java projects which are automatically

generated by the tool namely GUIDESYSTEM, LOCATIONSYSTEM,

VISITOR_IPAQ and VISITOR_HTC. These Java projects include PECES

middleware libraries (peces-2.0.jar) and necessary Java files under the src

folder. These Java projects are configured with the additional PECES Nature

which automatically generates Java files from the context definition (*.pctx) file.

After placing the selected devices in the workspace, device IDs are

automatically generated according to the order of the placement (e.g. first

device placed in the workspace will be given an ID of 0, the next device will be

given ID 1 and so on). Application developers may change the device name and

device communication features as well as device functionalities such as

coordinator, gateway and member but the device ID cannot be changed. The

device related configuration details are recorded in project.xml file. The

project.xml file generated in this example application is presented in Appendix

1.

3.4 Ontology Definition Tool

3.4.1 Ontology Definition Tool Prototype

The PECES context ontologies are composed by the SmartSpace,

Measurement, Device profile, User Profile and Event ontologies, as defined in

Context Ontology and Query Specification. The document clearly explains the

dependencies among them, as well as the external ontologies which provide a

basis for the PECES concepts and properties. The core ontology for

representing contextual information of a smart space is the SmartSpace

ontology. The basic concepts to model the contextual information of a smart

space are Device, Context, Location and Service.

The Device profile ontology provides vocabularies to model specification of

devices inside smart spaces. There are three categories of devices defined in

the PECES prototype application which are PECESEmbeddedDevice,

Accessory and SensorDevice. PECESEmbeddedDevice represents those

60

embedded devices that deploy the PECES middleware. There are three

categories of embedded devices according to their role inside a smart space,

namely gateway, coordinator and member. In order to specify which kind of

accessories an embedded device has, the property hasAccessory can be used

to link a PECESEmbeddedDevice instance to an Accessory instance.

Accessory instances are Keyboard, Touch Screen, Speaker, Screen and

Microphone. In addition to this, SensorDevice has two sub-concepts: Detector

and MeasuringSensor. A MeasuringSensor instance represents a sensor which

can measure a measurement such as light, noise, temperature, etc.

The Configuration Tool provides GUI mechanism to define static context

information relevant to the device and this information is used by the PECES

middleware context components during the model execution. For example,

application developers may need to specify a device’s mobility-related

information, such as whether the device is Stationary or Non_Stationary. In

some cases, the application developers should provide some sensor context

values (light, noise and temperature, and the location of the measurements) to

configure a device.

Smart space mobility-related information (StationarySmartSpace,

Non_StationarySmartSpace) can only be specified by the Modelling Tool, as

smart spaces are formed based on role specification. Application developers

will be able provide context information by double clicking on any device in the

Configuration Tool workspace. The list of context properties related to specific

device will appear on a new window where application developer can enter

values or select possible option (e.g. Non_Stationary, Stationary).

The Configuration Tool only provides suitable static/initial value for context

information and the Testing Tool injects this information to the PECES context

functionalities. Nevertheless, application developers may be interested in

providing dynamic context information, in order to simulate contextual changes

and observe the behaviour of the applications under new context values. This

kind of context dynamics can be defined by the Modelling Tool.

61

3.4.2 Ontology Definition Tool Design

This tool implements the features discussed in above and provides a user

interface for static context properties. The Peces Ontology Instantiation Tool

enables the application developer to instantiate the devices. This tool supports

all PECES ontologies (e.g., http://www.ict-peces.eu/ont/device.owl) as well as

other custom ontologies (e.g., http://www.daml.org/services/owl-

s/1.1/Service.owl) which application developers may wish to use for their

application (Figure 3.8). The Ontology Instantiation Tool automatically loads the

participating device name and its assigned functionality information from the

project.xml file which was generated by the Peces Device Definition tool. The

Peces Ontology Instantiation Tool provides GUI where application developers

can add instances and link context properties. When the instantiation process is

completed, the tool creates a project.owl file (a sample file is available in

Appendix 2) in the DEMOPROJECT project ConfigurationTool folder and also

creates *.pctx files (a sample file is available in Appendix 3) which contains the

device context information for each device. Those device *.pctx files are placed

in the appropriate Java project and once placed in the Java project, the PECES

Nature automatically creates necessary Java files for the middleware from the

*.pctx files. The *.pctx files are used to provide local context information about

the devices.

Figure 3.9: Screenshot of the Peces Ontology Instantiation Tool Wizard

62

Figure 3.10 shows an example ontology instantiation process in which four

devices defined (GUIDESYSTEM, LOCATIONSYSTEM, VISITOR_HT and

VISITOR_IPAQ) in the Device Definition Tool are automatically loaded by the

Ontology Instantiation Tool. Two new services (GuideService and

LocationService) are defined here with the Ontology Instantiation Tool. The

GUIDESYSTEM is defined to provide the GuideService and the

LOCATIONSYSTEM is defined to provide the LocationService. Also the

VISITOR_HTC and the VISITOR_IPAQ devices are defined to consume both

the GuideService and the GUIDESYSTEM device is defined to consume the

LocationService.

Figure 3.10: Screenshot of the Peces Ontology Instantiation Tool

Up to this point, the developers have configured Java projects for devices

without using the features of the PECES secure middleware. The PECES

development tools are designed to provide support for both secure and

unsecure version of the PECES middleware application development. So far the

device projects are configured for unsecure version of the PECES middleware.

If the application developers are interested in testing secure middleware

applications, then they should use the Peces Security Configuration Tool

(Section 3.4) to configure secure middleware Java projects and generate

necessary keys and certificates for the devices. Otherwise developers can skip

the Peces Security Configuration Tool and move on to the Peces Service

Definition Tool (Section 3.5) to continue application development with the

unsecure PECES middleware.

63

3.5 Security Tool

As described in Chapter 2 (Secure Concept), the PECES middleware relies on

asymmetric and symmetric cryptography that requires the availability of keys. In

the case of symmetric methods, the keys are available only to a particular set of

devices which may use this key to ensure different security goals, such as

authenticity with respect to the set of devices that shares the key. In the case of

asymmetric approaches, the key actually consists of a pair consisting of a public

part (public key) and a private part (private key).

Certificates are used to express trust between set of devices by pointing to the

certificate at a particular level and then verifying whether a particular certificate

belongs to that sub-tree by recursively validating the certificate chain from

bottom to top. For this purpose, each device is equipped with a number of

certificates to denote the sets of devices that are trusted. These certificates do

not need to refer to individual devices and they only have to refer to higher-level

entities.

The PECES middleware makes use of the X.509 standard for encryption

purposes. This standard defines a common format for certificates which enables

the use of existing tools to generate keys and certificates. PECES middleware

will use the implementations provided by the OpenSSL library. As a result, the

Configuration Tool integrates the OpenSSL toolkit to enable application

developers to generate keys for smart space devices which are supported by

the PECES middleware security components.

The Configuration Tool provides mechanism to generate public and private keys

for each device by using OpenSSL tool. It also provides mechanism to generate

certificates. The OpenSSL tool is an open source toolkit implementing the

secure sockets layer and transport layer security protocols as well as a full

strength general purpose cryptography library. Application developers are able

to generate asymmetric and symmetric cryptography keys and certificates for

their devices. The OpenSSL toolkit includes a command-line tool for using the

various cryptography functions of OpenSSL's cryptography library from the

shell. It can be used for creation of RSA, DH and DSA key parameters and

creation of X.509 certificates.

64

The PECES middleware uses the OpenSSL library to create necessary

certificates and keys. As a result, the Security Configuration Tool integrates the

OpenSSL toolkit to enable application developers to generate keys and

certificates for smart space applications. The Security Configuration Tool

provides an interface to gather necessary information for root certificate,

intermediate certificate (trust chain) and client certificate. The necessary

information gathered from the Java interface is passed to the OpenSSL

command line interface with the use of AutoIT script files. The AutoIT “Send”

command is used to send information.

3.5.1 Root Certificate Configuration

Figure 3.11 shows the interface needed to generate a root certificate.

Developers should first generate a root certificate and then are able to generate

necessary trust chain and client certificates.

Figure 3.11: Screenshot of the Security Configuration Tool – Root Certificate Creation

3.5.2 Intermediate Certificate Configuration

Once the root certificate is generated successfully, the name of the security root

certificate appears as a tree structure in the root Certificate section. To generate

the first trust chain, developers should select the root certificate and then click

on the “Trust Chain” button which provides an interface for trust chain

65

configuration. More trust chains can be added as required for the application

development.

Figure 3.12: Screenshot of the Security Configuration Tool – Trust Chain Creation

3.5.3 Client Certificate Configuration

Once necessary certificate chains are created, they appear as trees in the

Certificates area. To generate a Client certificate, first, developers must select

the appropriate trust chain in the tree, and then click on the “Client. Cert” button

to generate client certificate. The new interface provides feature to select the

device for client certificate configuration. For example, here we select the

GUIDESYSTEM as the device where the certificate will be deployed. When the

process is completed, all necessary root and intermediate certificates are

deployed in the “full” folder (full trust) in the certificate folder and keys and client

certificates are also deployed in the certificate folder as shown in the figure

below (certificate-demo folder in the GUIDESYSTEM Java project).

66

Figure 3.13: Screenshot of the Security Configuration Tool – Certificate Creation

3.5.4 Trusted Device Configuration

The tool also provides a mechanism for a device to deploy certificates to other

devices which are to be trusted. For example, the GUIDESYSTEM device can

specify that the LOCATIONSYSTEM is to be trusted by copying the necessary

certificates to the device. Figure 3.14 shows the trusted device configuration

page

67

Figure 3.14: Screenshot of the Security Configuration Tool – Trusted Device Selection

3.6 Service Definition Tool

The PECES Service Definition tool provides a simple interface to the

developers that allows the automatic generation of all the code needed to

instantiate and make use of a PECES-based service.

When the developer decides to make use of the PECES Service Definition tool

to define a service, a window shows a list of all the services that have been

defined with the PECES Ontology Instantiation tool. The developer can then

simply choose the service to be defined.

Once the selection is performed, the main window of the PECES Service

Definition tool appears on the IDE, showing the following options to configure

the service:

- Device: the device that will be implementing this service. The list of

possible devices is shown to the developer, based on the previous work

process. The PECES Service Definition Tool automatically infers which is

68

the possible candidate, but the developer can always change this default

configuration.

- Scope: determines at which scope the service will be published.

According to the PECES Communiation Mechanisms and Registry

Interface Specification, the possible scopes are “Device” (available only

to clients on the same device), “Space” (available to devices within the

same smart space) and “Internet” (available to all smart spaces).

- Implemented functions: the remaining menus of the PECES Service

Definition tool permit the developer to define the interface that the service

will offer to its clients (i.e. the functions that will be available to them).

This definitions follow a format that is similar to any Java function. It

means, the final function will have the following structure: [Returns]

[Name]([Parameters]). For instance, “void getGuideLocation()”

Figure 3.15: Screenshot of the Service Definition Tool

After saving changes, all necessary code is generated where needed:

- [name_of_service].peces.service: this file is generated in the “Modelling

Tool” folder of the PECES project, and contains all necessary information

to modify the service once it has been created. Any modification to the

service must be performed by editing this file.

- Services.java: this file is automatically generated on each device’s

project instantiating a service. This code performs the initialization of all

the proper services, and is run as part of the application initialization.

- [name_of_service]Service.java: this file is automatically generated and

includes an empty body for the service. Several “TODO” annotations

69

indicate the places where the implementation of the services needs to be

added.

- Service stubs and proxies: in addition, several .java files are generated

with all the code necessary to make PECES able to access and work

with the service.

3.7 Role Specification Definition Tool

The PECES Role Specification tool provides an interface where developers can

define the different rules that the application uses to dynamically form groups of

collaborative devices.

This tool targets specifically part of the context defination task. That task

describes how the role specifications need to be deployed in the devices in

order to trigger the smart space formation process. The PECES Role

Specification Definition tool assists the developers in the design of those Role

Specifications that defines the grouping process.

In a PECES project, these rules are written essentially as constrained queries

over the context properties of the devices. For that reason, the PECES Role

Specification Definition tool loads the results of the PECES Ontology

Instantiation tool, showing on a tree-shaped diagram all the devices that have

been defined in the project, and their properties (upon which the rules will be

defined). The process to define a new Role Specification is as follows:

1) Select the device that instantiates the Role Specification. This device must

be a coordinator. For these reason, a combo box with all coordinators

defined for the project is presented, where developers can choose the

proper one.

2) Select the scope of the Role Specification. According to the PECES

Communication Mechanisms and Registry Interface Specification, there are

three possible scopes: “Device” (available only to clients on the same

device), “Space” (available to devices within the same smart space) and

“Internet” (available to all smart spaces).

3) Select the member’s minimum trust level. In the final version of the PECES

middleware, it is possible to include certificates-based security and trust

concepts in PECES applications. In that case, the developer are able to

70

select the minimum trust level that all members must fulfill with the

coordinator in order to become members of the smartspace (None, Marginal

or Full). If no security concepts are being applied, the “Don’t apply” option

should be selected.

4) Append Rulesets to the Role Specification. A Ruleset is a constrained query

over the context properties of a device. A device fulfills a Ruleset when ALL

the conditions defined there are fulfilled (AND conditions). On the other hand,

a device fulfills a Role Specification when at least one of its Rulesets is

fulfilled (OR conditions). Therefore, by combining several Rulesets in a

single Role Specifications, reasonably complex conditions can be applied to

the group formation process.

Figure 3.16: Screenshot of the Role Specification Definition tool

When a Ruleset is selected, its definition can be altered using the two tree-

shaped property diagrams and the right-hand window editor.

- By double-clicking a property in the devices tree, a constraint over that

property is added to the Ruleset. For instance, a constraint “?device

provides ?service” would mean that “any device providing any service”

fulfills the Ruleset.

- The window showing the defined constraints allow to change the third

part of the constraints (“?service” in the example) by any possible value

actually defined (possible values are shown in a combobox). For

instance, a constraint “?device provides guideService” would mean that

“any device providing guideService” fulfills the Ruleset.

71

- If the third part of a constraint is left undefined (i.e. beginning with an

interrogation mark), it will appear in the variables tree. By appending a

property of that variable to the Ruleset, composed constraints can be

designed. For instance, two constraints – “?device provides ?service”

and “?service isConsumedBy the GUIDESYSTEM” – would mean that

“any device providing any service consumed by the GUIDESYSTEM

device” fulfills the Ruleset.

During the whole definition process, the bottom-left window with the title

“Preliminary members of this smartspace” shows a prediction of the devices

that fulfill the Role Specification, according to the static and initial context

properties of all the devices defined within the project (note that as the

applications run, their context may change, thus dynamically changing the

members list of each smart space).

By saving the Role Specification definition, the tool automatically generates all

necessary code in the required projects to define and instantiate it using the

middleware:

- [name_of_role_specification].pqry: this file is generated in the “Modelling

Tool” folder of the PECES project, and contains all necessary information

to modify the role specification once it has been created. Any

modification to the role specification must be performed by editing this

file.

- RoleSpecifications.java: this file is automatically generated on each

device’s project instantiating a role specification. This code performs the

initialization of all the proper role specifications, and is run as part of the

application initialization.

- [name_of_role_specification].java: this file is automatically generated and

includes the actual code defining the described role specification. It is

used during the instantiation made in RoleSpecifications.java

3.8 Hierarchical Role Specification Tool

In the final version of the PECES middleware, it is possible to define

smartspaces hierarchically, as unions of previously instantiated role

specifications.

72

That task considered smart space formation based on Role Specifications. This

is the basic method, but advanced version of the PECES middleware allows the

definition of hierarchical smart spaces, defined as the union of smaller smart

spaces. Therefore, it was convenient to introduce a new tool in the set of

development tools, assisting the developers in the use of this new feature.

The PECES Hierarchical Role Specification tool provides an easy method to

create all the code necessary to instantiate this kind of “composed” smart

spaces.

Figure 3.17: Screenshot of the Hierarchical Role Specification Definition Tool

The tool presents a list with all the smart spaces included in the project. The

following steps must be taken in order to define a hierarchical smart space:

1) Choose which coordinator will be in charge of instantiating the hierarchical

smart space. A combo box listing all coordinators defined in the project is

shown to the developer.

2) Choose which smart spaces will compose the hierarchical smart space. The

developer can easily compose the list of “selected smart spaces” by using

the proper buttons.

By saving the Hierarchical Role Specification, the following files are created:

- [name_of_hierarchical_role_specification].phqry: this file is generated in

the “Modelling Tool” folder of the PECES project, and contains all

necessary information to modify the hierarchical role specification once it

has been created. Any modification to the role specification must be

performed by editing this file.

73

- HierarchicalRoleSpecifications.java: this file is automatically generated

on each device’s project instantiating a role specification. This code

performs the initialization of all the proper hierarchical role specifications.

This code is not automatically called during initialization, since its

execution only makes sense under certain conditions during application

runtime. Therefore, it is responsibility of the developer to decide when to

instantiate the hierarchical role specifications, based on the application

logic.

3.9 Cooperation with Modelling Tool

As discussed above, the Configuration Tool is responsible for the initial

configuration of devices, initial context, keys and certificates and application and

services. This tool provides necessary device configuration information and

other device related information to the Modelling Tool. The Modelling Tool uses

this information and defines role specification, environment, and connection

information to provide a ready-to-run application model to the Testing Tool. The

Configuration Tool output is device description XML files which is generated

from the GUI interface description of the Configuration Tool. Using the

Configuration Tool output XML files, the Modelling Tool can be able to generate

a GUI setup with configured devices in the Modelling Tool workspace to model

the smart space application by providing necessary additional information.

Figure 3.18: Cooperation with the Modelling Tool

74

Chapter 4: Development Tool Design: Modelling Tools

In this Chapter we will discuss the Modelling Tool which get the information

form configuration tool and is used to define environment and event to provide a

ready-to-run application model to the Testing Tool. Alberto from ETRA, Spain,

gave lots contributions to help build Modelling tools. First of all, we will explain

the architecture and structure of modelling tool and how the modelling tool work

with other tools in Section 4.1 In Section 4.2 we will describe the Event Editor

which can define several event include dynamic context change and connection.

We will also show how to define the sequence of event by using Event Diagram

Editor in Section 4.3. We will end with a brief summary of this chapter in Section

4.4.

4.1 Overview

4.1.1 Why we need modelling tool and what inside

The main task of the Modelling Tool is to support application developers in

specifying the environment, the inter-entity binding and the event definitions

which describe the dynamics of the model. The Modelling Tool also allows the

specification of the communication mechanism (routing) between the individual

devices such as requirements on encryption and the type of data exchanged

between the devices. Basically, at this point the developer can start with the

definition of the environment where the application or service can be run and

can be validated. The result at the end of the Modelling Tool section will be, as

its name says, a model simulating the real life circumstances for the

applications and the services. With this, developers can gain a feedback of their

design even before the first real deployment of their software. The tool is

responsible for creating “ready to run” instances and also holding the

information of the model as a global unity in order to be able to provide this

information to the Testing Tool which is responsible for the execution of the

previously defined information.

Is it possible to design a tool that will aid the application developer in modelling

the discrete events and sequence and increase their productivity? In particular

we answer the following questions:

75

 How modelling tool work with configuration tool?

 How to define single event and how many different event types can by

simulate by development tool?

 How to define a executable event sequence by a simple and clear way?

For answering the above research questions, the main contributions are listed

below:

 Modelling Tool Architecture

 Event definition tool to define single event

 Event Diagram Editor to link events into a sequence which can be run in

Testing tool

All these contributions will describe in the following sections.

4.1.2 Introduction of Modelling Tool

The Modelling Tool provides a graphic user interface (GUI), and the necessary

tools to transform the model in XML descriptions in a seamless way to the users.

This feature has to be also presented at all tools in order to make easier for the

developer to create the needed definitions. The ontological syntax is an XML-

like syntax. There are several previously generated definitions which are

available for the developers. Besides that, the tool has to provide the ability to

instantiate these ontologies filling them with the application/service specific

information. These instantiations are application/service-specific descriptions of

the developer's model. In the current view the base device level definitions is

defined at the Configuration Tool, while the smart space and inter smart space-

related definitions can be defined by this tool. The Modelling Tool has to provide

an environment responsible for creation of these definitions. The next important

thing is the definition of the simulation scenario which can be done by defining

dynamics that are taking place at a certain time. These dynamics are presented

as event-timestamp pairs. The event defines exactly what has to be changed,

while the timestamp defines when the event is fired. Further sections (Dynamics

Modelling) describe in detail which events can be defined and how to do this.

Another important task for this tool is to assemble the components executed in

the runtime environment. This includes the association of components and

features of the middleware to the devices. For example which device will have a

context provisioning module, role assignment engine, etc? For this purpose,

76

there has to be an assemble perspective within the modelling perspective,

where the developer can easily review the main components of the virtual

devices and query them in detail. At the end of the modelling step there is a

certain number of virtual devices (attached to deployment/build files and their

corresponding source code files) and global model information.

Generally the Modelling Tool provides complete device definitions which are

ready to be instantiated, connection information and event definitions

responsible for the dynamics in the system. This information is passed as a

whole to the Testing Tool, which is responsible for instantiation, execution and

supervision of the current state and parameters of the system.

Basically there are three perspectives here: the context, communication and

events perspective. All three functionalities (context definition, communication

definition, event definition) can be presented as different development views, so

the developer is able to switch between them and the information available to

set and query is present at the corresponding views. In the context perspective,

the developer is able to set contextual information; the communication

perspective is responsible for defining and setting the connections

(communication links) between devices; the event perspective is used for event

definition and specification of the dynamics to be simulated during model

execution.

An important design aspect must be to keep clear for the developer what can be

done with the tools and where these features can be found. An elegant way

could be showing a model's graphical presentation always on the UI, while

focusing each of the perspective on their correspondent components. As an

example, imagine a developer who wants to set the communication links

between the different elements of the model. Therefore, the connection view

needs to be opened. The developer sees all the device entities and the link

connectors between them. Smart Space borders are visible, but become half

transparent and inactive, so the developer can concentrate better on the

connection related elements. The visualisation of this description can be seen in

the sections below (Context Modelling, Communication Modelling).

Figure 4.1 is introducing the logical “inner” architecture of the Modelling Tool. As

the first design steps recommend, it must have well-defined interfaces for

77

communication with the other tools, and a graphical interface for the interaction

with the developer. These three interfaces are designed in order to be able to

seamlessly communicate with the other tools and, in case of the GUI, to be as

much simple and easy-to-use as possible. Beside the three outer interfaces the

core of the Modelling Tool implements the sub-modules mentioned above,

which are responsible for holding the functionality of the perspectives needed in

the exact model definition. The context, communication and event sub-modules

mainly communicate with the three outer interfaces, but they will exchange data

between each other as well if needed. For example the communication and the

event module will exchange data when the initial context is defined and have to

be passed to the event generation module in order to define the dynamics for

the system during the simulation. The functionality needs to be described in the

present document is trivial for the outer interfaces as they have to bridge the

current tool with other tools and the developer. The detailed functionality of the

core parts in Modelling Tool will be explained in the upcoming sections.

Figure 4.1: Logical Architecture of the Modelling Tool

To understand better the usage of the modelling, a suggested sequence for

model definition is shown in Figure 4.2. Note that this is just a recommendation

and the developer can switch any time between the views and perspectives and

78

refine the correspondent parts. The general sequence should be, at first,

context extension and global context definition; then the definition of

communication links and, as the last step, the definition of the dynamics during

the simulation.

Figure 4.2: Usage for Modelling Tool

4.1.3 Support for Role assignment architecture

Altering a device context needs further considerations than the previous types

of events, since development tools should make the access to the actual

context descriptions of any device simple to the developer. When the developer

finishes, the changes have to be saved and provided to the Testing Tool's event

engine. The Event editor manages the context change at certain time stamp. All

these change will be gathered by Context Management Layer when this event

running in testing tool. It also may change the device status and lead the device

is allowed to join or leave smart space.

4.1.4 Cooperation with Configuration Tool

During the sequence of development, Configuration Tool supplies the

functionality for the first step of development. This tool provides static

configuration information about every instance which includes devices, context,

security, role specification and so on. All these information will be passed to

Modelling Tool. Then, Modelling Toll will transform these static configurations to

a cooperating system model, where multiple instances are connected and

communicate with each other.

The following data was defined by Configuration Tool and is provided as input

data for the Modelling Tool:

79

- Context definition of each device.

- Application and service mapping to devices with basic middleware

component definitions.

- Keys and certificate mappings for each device when secure

communication needs to be added.

4.1.5 Discrete Event Dynamics Modelling

Modelling system dynamics means defining events that happens during the

simulation time, thus simulating a dynamically changing environment. This

feature is a special one because at this point nearly all the other features used

before can be used to change the state of the defined model at a specified

timestamp.

At this stage the developer has the model completely defined, containing

devices with all necessary contextual information needed on them. The

topology and the connections are defined as well. The roles and needed

engines are deployed to the devices. The needed middleware components are

deployed to the devices (the model defines which components of the

middleware have to be made available during runtime on each device).

The definition of a change starts by creating a “New Event” on the modelling

GUI interface's “Event perspective” view. Here, the first step is to give a name

and description to the event for better understanding of its purpose, and a

timestamp stating when to actualize it during the simulation. An important

question is whether to use fix real time step for the simulation or to make the

simulation steps scalable. In practice, most simulation tools provide a feature for

scaling the step of the simulation time. This could be useful for example at big,

complex simulations where the developers are not interested in all events and

parts of the simulations, but just in a set of these. It is important to mention that

these scalable steps just take effect on the event scheduling and not on the

whole model so the runtime of the software itself won't be scaled, but just the

time of the event triggers. This can be imagined as the developer putting a fine

scale at the interesting parts and a larger scale at less interesting parts. For

example, a complex simulation which consists of events which are triggered

during a longer period and where the developer wants just to inspect a change

that normally occurs after an hour. The scale can be raised in order to fire all

80

not interesting changes faster in order to get almost directly to the interesting

point. The importance between dependent changes is present because if the

events are speed up the convergence time between dependent changes must

still be respected in order to have all the changes in valid circumstances. The

convergence time is in most cases very small. Then the tool must indicate a

minimum gap between each event so to be sure that the previous change is

actualized. This approach can be followed if all the modification delays are at

least relatively measureable so to have the exact information about the

minimum gap needed to place after each event. This way, the definition of an

additional dependency check engine can be excluded.

Summarizing this description in the Modelling Tool the timestamps are

implemented as units with no measure, and the scaling of them in comparison

with real time can be adjusted in the Testing Tool, during the execution. The

main event types provided by the tool are breakpoints, device switch on and off,

device context properties change, and communication link creation and

destruction. Here the developer has to define a simulation length and after that

the events on the timeline.

Figure 4.3: Example of Discrete Event Sequence

The following types of discrete events are defined by modelling tool:

a) Convergence Delay

These delays can be imagined as substitutes for usual breakpoints in software

debugging, where the execution of the code hangs and the developer can

81

observe the actual state of the program. In this terminology, a main purpose of

a delay is not to break the execution of the model. This feature is a tool for the

developer to specify a delay after he/she can investigate whether the changes

defined in the events before are present and whether the model at this stage

converged to the state the developer is expecting. In this aspect there won't be

classical execution breaks (the running of the JVM processes won't be paused).

The only purpose of this feature is to have a timestamp from the developer and

to dump all the interesting information at this timestamp.

The approach of having a classical breakpoint feature in the PECES

development tools has been discarded in a design decision, as it can produce a

very complex system. The PECES development tools rely on another

terminology of the breakpoint, the so called “convergence delay”. With this

definition, two timestamps are needed for an event. The first trigger defines the

moment when the modifications are performed, while the second one declares

a delay for the system to converge and update the modifications. This way,

there is no need of hanging the execution of all the JVMs. The Testing Tool gets

the required information from the model after the defined delay expires. In this

case the classical breakpoint does not be present as an event. Instead of this,

the developer will have the information about the model's state after the

specified delay in the trace or log file.

b) Device Switch On and Off

Device switching on and off does not mean just hanging the operation of the

JVM, but shutting it down completely and later executing it again. The explicit

work at this point is also done by the Testing Tool. The Modelling Tool just has

to provide the information about when these events happen, and which type of

action must be taken. This can be also done in classic XML configuration files

which the developers have to fill via the event definition interface. The

timestamp indicates when to do the switch and the virtual device's ID identifies

the JVM to stop or start. As mentioned before, the Modelling Tool is only in

charge of designing the scenario. The Testing Tool - based on this information -

monitors the actual state of the virtual devices. Switching on mean starting the

JVM with the full environment defined by the Modelling Tool and switching off

mean shutting down the corresponding JVM. This needs further features in the

82

Testing Tool to have an inventory of which JVM process belongs to which

device ID, and a simple query feature to get the device ID from the JVMs.

c) Device Context properties Change

Altering a device context needs further considerations than the previous types

of events, since development tools should make the access to the actual

context descriptions of any device simple to the developer. When the developer

finishes, the changes have to be saved and provided to the Testing Tool's event

engine. The way of the change definition is not trivial, as two situations can be

followed. The first solution is a so called stateless mode. There, the changes

defined before this event is not considered for validating the current event. In

this case, the developer has more responsibility on defining a valid change,

leading to a valid scenario. For example if the developer creates a change

where device A is switched off at timestamp 5.0000, and after that defines a

connection between devices A and B at 6.0000; this won't generate an error but

simply nothing will happen (because device A has been switched off at

timestamp 5.0000). Summarizing this explanation in stateless solution multiple

context property change events dependency among each other is not checked.

A helpful feature of the development tools would be to allow the developer to

watch the actual status of the devices upon the change defined in the events

timeline, prior to the execution of the model. This is a useful feature but brings

more complexity in the defined system. The current view about the

implementation of this part is to provide the stateless solution of event

definitions where the developer has the responsibility of defining events which

make consistent changes to the system at a certain timestamp.

d) Communication Link Creation and Destroy

Describing connection changes is a simpler process. For this purpose the

existing UI can be used. The GUI should allow users to choose a specific

simulation time, showing the active links at that moment (based on the initial

situation and the previously defined events). Once the connection topology

appears, the user can delete or add connectors. If connection changes are

already added and the developer wants to add or remove a connection with a

timestamp beyond already existing modifications then the actual connection

topology corresponding to that timestamp has to be shown, and not the initial.

83

The harder task here corresponds again to the Testing Tool; the Modelling Tool

only provides events information, and the event engine has to take care that the

corresponding sockets are opened or closed properly.

4.1.6 Cooperation with the Testing Tool

As shown on the Modelling Tool's logical architecture diagram Figure 4.4, the

Modelling Tool has an interface for communication with the Testing Tool. This

interface is responsible to produce the necessary input from the model

definitions done before.

The Modelling Tool has to provide the following information (some extend from

Configuration Tool) for the Testing Tool:

- The virtual device instances, which contain:

o The application/service code defined by developer

o The middleware components used on each device

o The keys and all the encryption related information

o Role specifications and assignment mechanisms (if available on

the devices)

- Event definitions which include the dynamic context change and

connection information.

- Event sequence which contain the dynamics through simulation time

84

Figure 4.4: Output to Testing Tool

Generally, after using the Modelling Tool to complete the details of the model,

the framework has to build complete deployed entity configurations which only

have to be compiled by the Testing Tool's instantiation engine in order to be

ready to be run in a JVM. This part will be sent to the instantiation engine. For

this purpose, additional data about the build mechanism (build file or script) has

to be generated for every instance to provide for the testing tool the exact way

of the instantiation so the Testing Tool just need to invoke a general

instantiation command and the build definitions provides a specialized

compilation sequence based on the information in the build file.

The connection information will be simply sent to the connection engine to

provide the initial connection topology.

The event definitions are processed by the event engine. Later, during the

model execution the event engine has to cooperate with the instantiation and

connection engine based on the content of the defined dynamics so to inform

the corresponding engines to process them.

The exact deployment functionality is taking place at the end of the modelling

section. The developer can do this for each device separately or for all devices

at once. After this action is initiated, the Modelling Tool has to assemble the

ready to compile packages for each device and make a common package

85

where the environment related metadata is taking place. This metadata consists

of the events and all generic data needed for the testing tool to be able to

execute the model. This is implemented as a sidebar where all the virtual

devices and the generic data are listed and where the developer can initiate the

deployment process. So after this process, when the developer starts the

Testing Tool, this data will be an additional input.

4.2 Event Editor

Event Editor is used to edit single discrete event definitions. Type, Contributing

Devices, Description and Duration (Delay) can be defined in the wizard and

later altered on the Overview Page. The Event Editor is a multipage editor, on

the second, Context Page the context of the corresponding device can be

changed if the event’s type is Device Context Change. On the third page,

connection can be defined if the event’s type is Connection.

This tool represents the Dynamics Modeling ability of the Development Tools. It

comes bundled with Event Diagram Editor detailed in section 4.3 and these two

editors form a logical whole in dynamics creation. The following two sections will

introduce how these tools help the developer to test the imagined system with

artificially produced changes in the context and in the designed topology itself.

The benefit of these tools is that the basic algorithms and the business logic of

the software and middleware can be validated even before the first real

deployment.

The Event Editor is used to edit single event definitions. Type, Contributing

Devices, Description and Duration (Delay) can be defined in the wizard and

later altered on the Overview Page. The Event Editor is a multipage editor. On

the second page, the Context Page the context of the corresponding device can

be changed if the event’s type is Device Context Change. The third page –

Connection Editor Page - is a whole graphical editor wrapped in a multipage

editor’s page. This editor deals with the definition of the connection related

changes. The developer can only switch to this third page if the event’s type is

Connection Link Change. The developer will work with *.peces.event files. Each

file contains the serialized event data itself.

86

4.2.1Overview Page

The Overview page is available if the developer wants to alter the event’s main

parameters after the definition in the wizard. The following screenshot shows

one sample event definition page with Type, Contributing Devices and Delay

information. This page can be used to modify information and so effectively

create new event definitions.

Figure 4.5: Screenshot of the Event Editor Overview Page

4.2.2 Context Page

The Context Page is used when the device type is Device Context Change.

Then on the Context Page the properties of the corresponding device can be

changed. It consists of two main parts. The left side is a tree view where the

device’s main properties and the linked instances can be seen. The main

properties are selected based on properties visualized in the Ontology

Instantiation Tool. On the right side the already defined changes are listed

compared to the device’s initial context. The change can be easily made using

the tree if the developer “right clicks” on the instances or the properties. If the

developer “right clicks” on a property, an “Add” context menu will appear and

she/he can link instances defined by this property to the device. If the developer

clicks on an already listed instance in the tree a “Delete” context menu will

appear so the developer can unlink the instance (delete it).

87

Figure 4.6: Screenshot of the Event Editor Context Page

4.2.3 Connection Editor Page

The Connection Editor Page is consists of a full featured graphical editor

wrapped in the form of a page. The editor/page can be only used if the event’s

type is Connection Link Change. This type of change is the most sophisticated

because here the developer can also add a compound change and, as its name

suggests, it can alter connections and disconnections. It is extended from a

standard graphical editor with a palette defined in the Eclipse SWT World. The

connector, disconnector and selection tools can be used from the palette,

devices can be added to the pane with the “+” sign on the top menu bar.

Contributing devices can be also deleted by selecting them and then using a

“right click” context menu or the delete button. The devices frame is highlighted

with the same color as in the Device Definition Tool and indicates their roles

(Blue-Member, Green-Gateway and Red-Coordinator). If the user hovers on a

device a tooltip shows its most important attributes the id, name and role.

88

Figure 4.7: Screenshot of the Event Editor Connection Editor Page

4.3 Event Diagram Editor

As I describe above, the Event Editor and the Event Diagram Editor are the

Event Manager’s two editors for the Dynamics definition. The benefits of the

tools were also described. Basically these two editors prepare the model for the

Testing Tool which can be imagined as a sophisticated and extended

debugging tool for the business logic validation. Event Diagram Editor is

important to build the sequence by using discrete event created by Event Editor.

This sequence is exported as a XML file and is used by Testing tool to emulate

the system.

When the developer has defined the needed events, the sequence of the

events can be easily defined with the Event Diagram Editor. During the

definition the contributing events can be added immediately but if the developer

wants to change the added event set she/he can do it by clicking on the “+” sign

at the already opened Event Diagram Editor. A single event can be added

multiple times to the sequence. By double-clicking on the event icons the Event

Editor will be opened with the corresponding event immediately and the event’s

parameters can be altered. The export of the events which can be done with the

icon next to the “+” icon will generate an events.xml file () with all the

information needed by the Testing Tool. Its location is in the file Modelling

89

Tool/Events/events.xml. Multiple event diagrams can be defined. The Testing

Tool always uses the diagram that was exported last to the events.xml file. The

event diagram’s name from which the events.xml was generated is stored in the

events.xml’s header. Export can be only done if the editor’s state is not “dirty”

and there are no separated events in the graph. Events and connection can be

deleted from the graph by selecting and using right click context menu or delete

button. The events.xml file generated for this example application is presented

in Appendix 4.

Figure 4.8: Screenshot of the Event diagram Editor

4.4 Summary

In this Chapter, we presented the Modelling Tools which for defining dynamic

environment and event. Modelling tool require essential data from Configuration

Tool, such as device attribute, device context definition, service mapping and

security information (if needed), to do dynamic modelling. The output of

modelling tool is written in an event.xml file which contain the sequence of event

will be used as an input script to run in Testing Tool.

90

Chapter 5: Development Tool Design: Testing Tools

This chapter describes the architecture, modular and design of Testing Tool. In

Section 5.2, we will discuss architecture include Execution Engine, Connection

Engine, Event Engine and Instantiation Engine. We also describe the structure

of log file which used as an output of testing environment. This chapter

mentioned the middleware modular which is implemented for interaction with

middleware component in Testing Tool in Section 5.3. In last content section,

Section 5.4 it shows the design and Implementation of Testing Tool and

demonstrates the way of Testing Tool working. Normally, we finish the chapter

with a summary in Section 5.5.

5.1 Introduction

The main task of the Testing Tool is to support application developers to

execute the application defined by the Configuration Tool and the Modelling

Tool. The Testing Tool also provides a mechanism to analyse and evaluate the

test results produced during the test execution. The Modelling Tool provides a

"ready to run” test model to the Testing Tool which is responsible for the

execution of the defined information and pass relevant information to the

middleware components. As discussed in the previous two sections, the

Configuration Tool and the Modelling Tool provide complete deployed entity of

the smart spaces, devices and context properties. Testing Tool has to execute

the application, record necessary information about the test results in a log file

and provides mechanism to evaluate test result to the developers.

The Testing Tool allows application developer to start, stop and suspend the

application and provide evaluation of the application results in a preferred

format. If the application does not start smoothly, the Testing Tool probably

generates some error indications or gives some information about the problems

to the application developers. For example, if the application developers defined

a device as part of two smart spaces, it provides an error message to the

developers that a device can be part of a smart space at the time. In order to

test the PECES middleware functionalities in different context, connectivity and

security considerations, the Modelling Tool and the Configuration Tool allows

the developers to simulate certain values of context changes and connection

91

changes and then the Testing Tool allows executing the changes and analysing

the new results with the Testing Tool.

As discussed in other sections, PECES development tools focus on the novel

functionality of the middleware such as role assignment concept, context

changes and security issues. These functionalities are very important for

application developers. The developers will be interested in testing these

functionalities for their applications in many different context and connection

settings. For this purpose, the Configuration and the Modelling Tool provide

dynamic context and connection information to the Testing Tool. The Testing

Tool provides mechanism to parse relevant dynamic information from the

Modelling Tool output text file and enables these changes are executed with

PECES middleware components.

The Testing Tool also provides a mechanism to generate log files to record the

results of the application which is necessary to evaluate the test. To create the

log files, the Testing Tool uses the logging functionalities provided by Java API.

Log file contains several types of information, such as event descriptor,

timestamp of that event and context values, message communication details,

etc. This detailed log file is used to analyse and evaluate the result of the

middleware functionalities. As discussed previously, the Testing Tool focuses

on testing novel feature of the PECES middleware such as role assignment

concept, context changes and security features but not the application and log

file only needs record any properties related to the novel features of the PECES

middleware.

Is it possible to design a tool that will aid the application developer in emulating

and testing the smart space system which defined by Configuration Tool and

Modelling Tool and increase their productivity? In particular we assume the

following questions:

 How to loading the sequence of discrete events as the script for

emulation?

 How to execute and control the device instance?

 How to build a connection between devices?

 How to manage all device instances and emulate the discrete event?

 How to get a understandable feedback for evaluation?

92

For answering the above research questions, the main contributions are listed

below:

 Testing Tool Architecture

 Testing Tool Event Engine

 Testing Tool Connection Engine

 Testing Tool Instantiation Engine

 Testing Tool Execution Engine

 Log File generate by testing tool

 Visualization page for showing the emulation process

All these contributions will describe in the following sections.

5.2 Architecture

The Testing Tool can be considered as the union of several parts: the Execution

Engine, the Connection Engine, the Instantiation Engine and the Event Engine.

The main part is the Execution Engine which is responsible for execution and

supervision of the test. Connection Engine, Instantiation Engine and Event

Engine cooperate with Execution Engine and are managed by the Execution

Engine. Connection Engine will be responsible for the device connection related

information and its dynamics. Instantiation Engine is responsible for invoking

instantiation command received by the Execution Engine. Event Engine will

parse information from the event description file generated by the Modeling Tool.

When an event reaches the timestamp, the Event Engine sends information to

the Execution Engine and then this information is provided to Instantiation

Engine. The Figure 5.1 below shows their interactions, inputs and outputs

information.

93

Figure 5.1: Testing Tool Architecture

5.2.1 Execution Engine

The heart of the Testing Tool is the Execution Engine which controls and

coordinates all other part of the Testing Tool. The Execution Engine is

responsible for the execution of the defined PECES middleware instances by

coordinating the information from the Connection Engine, Instantiation Engine

and Event Engine. It is also responsible for recording necessary information of

the test results to a log file. The Execution Engine supervises all JVM process

and is capable of controlling any specific process when a request is received

from the Event Engine. This is easily done by the Execution Engine as all JVM

processes are running on a single development PC. The java.lang.Management

package and the java.lang.Runtime package APIs are used for management

and supervision of the JVM processes.

Connection info. Event description

Event triggersActual connection map Execution status info.

Event triggers, context

changes, smartspace

redistributions...

94

5.2.2 Connection Engine

The Connection Engine is responsible for providing device connection related

information to the Execution Engine such as which devices are connected and

which devices are disconnected at a given time. The Modelling Tool output file

provides device connection information and the Connection Engine has to parse

relevant information from the output file. Due to the dynamic nature in the

device connections, the Execution Engine coordinates with the Connection

Engine which provides information of changes in device connection. The

Connection Engine provides connection mapping information to the Execution

Engine by parsing the connection information received by the Modelling Tool.

The Connection Engine is responsible for control and supervision of the network

topology. As discussed in the Modelling Tool section, BASE transceiver

emulator connects instances as found in the connection mapping file using java

socket communication mechanism. The BASE transceiver is modified to handle

the connect/break request received from the Execution Engine. Java socket

programming functionalities (java.net.Socket and java.net.ServerSocket) can be

used for Inter Process Communication (IPC) where objects are transmitted over

sockets through the use of ObjectInputStream and ObjectOutputStream classes.

Inter Process Communication (IPC) mechanism allows interaction between

instances running in a Java virtual machine in same machine.

5.2.3 Event Engine

This part of the Testing Tool is responsible for parsing the Modelling Tool event

description file and provides information for the Execution Engine. The

Modelling Tool uses the timestamp to describe relevant events. The timestamps

are defined by the modelling tool has no units and the Testing Tool has assign a

scale for the timestamps. It would be possible to assign both fixed time scale

and different time scale along with the simulation time. Events are ordered

according to the timestamps and once a timestamp reaches the event that

event will be fired. The event types provided by the Modelling Tool are the

device switch on and off information, context change and link communication

creation and link lost.

The Event Engine is responsible for time control. When the test starts, the

Event Engine performs time control. When the event reaches the timestamp,

95

the Event Engine provides necessary information to the Execution Engine as

defined in an event description file which is generated by the Modelling Tool. It

is very important that all events generated by the Modelling Tool get processed

by the Testing Tool during the execution phase. The Testing Tool records all

processed events in the log file where any failed events can be identified later

during the evaluation by the application developers.

The Modelling Tool section discussed about the ability of scaling the timeline of

the events. This feature enables the developer to fire quickly (relative to real

time) less interesting events and then eventually raises the scale at more

interesting parts to be able to follow the changes in real time. For this purpose

the Event Engine has an alternative time measurement mechanism where this

event timescale is measured relative to the scale set up by the developer. For

example, if there is a scenario where the developer sets 3 events which fire at

the 2nd, 5th and 12th second and when the scale is raised to 2 from the normal

scale (assume 1), the events will be fired relatively to real time after the 1st,

2.5th and 6th second.

5.2.4 Instantiation Engine

This part of the Testing Tool is responsible for instantiation of the PECES

entities. The input for the Instantiation Engine is given by the Modelling Tool

output device description files. The Modelling Tool provides a complete virtual

device configuration where Instantiation Engine will run as a JVM process. In

the testing process, the Event Engine cooperates with Instantiation Engine

through the Execution Engine. When an event defined at the event description

file reaches the timestamp, the Execution Engine informs to the Instantiation

Engine to start the corresponding process. The Execution Engine monitors all

process and provides information to the Instantiation Engine when to stop or

start the specific process. The Instantiation Engine has to map which processes

belong to which devices. An easy and elegant way of doing this is to name each

process with the device name it represents. There are a few wrapper utilities

which can be used for this purpose. Normally when a JVM process is started,

the running process list will be shown as java.exe or javaw.exe. The platform

independent utility such as launch4j can be used for this purpose to name the

processes. This wrapper names the process after instantiation the virtual

96

devices and they will be listed in the OS process list by their names (device1,

device2, device3). This makes easy for the Instantiation Engine to manage

them by referencing their name and no further mapping file is needed where the

PID name mapping has to be defined. When the Execution Engine receives

information about the device to be switched off from the Event Engine, it

provides this information to the Instantiation Engine which is responsible for

completely shutting down corresponding JVM. When the Instantiation Engine

receives instruction to be switched on, it will start the JVM defined by the

Modelling Tool. The java.lang.Runtime package APIs can be used to shutdown

any specific JVM process.

5.2.5 Log Files

The application developer may want to have detailed access to all interesting

information of the PECES middleware performance related parameters. During

the execution, a log file is generated with timestamps and other related

information. Log file records information such as:

- Event occurrences

- Context values

- Smart space member devices

- Changes on context values

- Change on smart space member devices

- Received/sent messages

- Event description

- Device ID

The log file can be analysed by the application developers by defining

constraints with timestamps. The validation of the constraints can be shown

when the simulation reaches to the specified timestamp. Constraints can be

defined with context values and this value will be checked with value in the log

file. Multiple constraints can also be defined in this way. Application developers

may define the expected number of devices in any smart space (e.g, 10) for a

given time (e.g, 100 seconds) and validate these constraints from the log file

results. The developers can validate the context changes effect by checking in

the log file whether expected results are produced. If the log file has well

detailed information about the test results, application developer can use this

97

data to get comprehensible information about the test. Recording all detailed

information into the log file may generate huge file which may cause some

problem. Due to this, log file only record the relevant information to be used by

the developers. The Execution Engine must have an interface to be informed

after an event convergence delay is expired and to gather all the needed

information for the other modules and dump it to the log file. This can be

imagined as a scenario where the Event Engine has the information about the

convergence delay of an event. When the delay expires the Event Engine

makes a query to gain all the interesting attributes from the virtual devices

and/or the Connection Engine. When the query is done the information is sent

to the Execution Engine via the mentioned interface and it will be dumped to the

log file. For the query process the modules and the devices must have an

interface, which consist on an IPC socket, with a service that serves predefined

queries about the needed attributes.

5.2.6 Analysis and Evaluation

From the log file, application developers are able to examine relevant features

of the middleware which are important to their application. Log file will only be

available once the test process is completed. The developers can analyse

middleware test results and easily map the meaning of the results. Application

developers can easily modify the scenarios using the Configuration and the

Modelling Tool can generate new test model and produce new test results with

the Testing Tool. The Testing Tool allows comparing the old scenario results

and with new scenario results. A Diff tool can be used to analyse two different

log files with different scenarios where application developers can easily

visualise the difference in the results. Also Eclipse provides open source log

and trace analyzer tools (e.g., The Eclipse Test and Performance Tools

Platform (TPTP)) which can be used to analyse the log file results. These

features in the Testing Tool help application developers to check and study how

the smart spaces and the devices perform as changes occur. For example,

application developers are able to find out how the smart space formation are

evolving and how many devices are taking part in a given time, etc..

The current version of Testing Tool does not have separate mechanism to

support fault Injection, but the testing tool is stable enough when some faults

98

occurred. As describe in modelling tool, a sequence of discrete events will be

generate by Event Manager. During the process of generating the sequence of

events, some faults may exist in the sequence. These faults may make in

purpose or not. In generally, the potential faults are listed below:

 Switch on a device already switched on

 Switch off a device already switched off

 connect two devices which already connected

 disconnect two devices which not connected

 connection a switched off device to another one

 context properties change in a switch off device

The first four fault types won't cause any change in testing too, the testing tool

automatic ignores these error events and send a message in log file to let

developer know. The last two fault types will cause the exception. This

exception will be thrown and get by log server. The error message will appear in

log file with all necessary information, such as, time, device ID, etc..

5.3 Modules

PECES Testing Tool has many modules and components to perform test and

record the results of the test performed. As discussed in the previous sections,

the Testing Tool has several parts which are responsible for execution,

connection, event and instantiation and logging. Testing Tool modules can be

defined as two main modules:

- Central Control Module

- Middleware Modules

Central Control Module is the main module which is responsible for the

functionalities of the Execution Engine, the Connection Engine, the Instantiation

Engine and the Event Engine. The Middleware Module is implemented as an

extension to PECES middleware component and it integrates the Central

Control Module with the PECES middleware components.

The Central Control Module handles most of the Testing Tool tasks such as

scenario control, device switch on and switch off and implements internet level

registry. The Middleware module has three sub-modules: networking, context

99

and logging. The following sections will explain briefly about the Central Control

module and the Middleware modules. The Figure 5.2 shows high level

architecture of the proposed modules.

Figure 5.2: Testing Tool Modules

5.3.1 Central Control Module

5.3.1.1 Overview

The Central Control Module will be responsible for test execution and acts like a

supervisor of the simulation as a whole. It is the underlying layer for the

connection, instantiation and event engine providing the interoperability

between them. Basically, this module implements the Execution Engine, the

Event Engine, the Instantiation Engine and the Connection Engine

functionalities and other necessary interfaces. This module is also responsible

for providing the log information of the test execution, as well as an interface for

other processes to attach themselves during the execution. The context

information and other connection related information defined by the Modelling

Tool has to be injected into the middleware by the Testing Tool. The Central

Control Module provides parsers which are used for translating the Modelling

Tool output such as connection information and event description into the

required format.

100

5.3.1.2 Central control over the scenario

In the development process, the Configuration Tool provides initial static

information to the Modelling Tool. The Modelling Tool uses this initial

information and adds additional information related to smart space connections,

events, etc. The outputs of the Modelling Tool provide connection information,

event definitions, etc which is used by the Testing Tool to execute required

testing scenarios defined by application developers. This module is responsible

to parse and manage the information from the Modelling Tool output files.

Output files interpretation of the necessary data will be passed to the

middleware component to run the scenarios. The Central Control Module also

cooperates with middleware logging module to provide test results output of

some important parameters such connection changes, context values and

smart space related information to the log file.

5.3.1.3 Starting and stopping devices

Device switching on and switching off adds dynamics to the test. The Central

Control Module supervises this process and provide mechanisms to switching

on or shutting down the device JVM as information provided by the Modelling

Tool. The Modelling Tool provides a complete virtual device configuration that

has to be run on a JVM by the Testing Tool. The Modelling Tool provides the

timestamp and virtual device ID to the Execution Engine. The timestamp

provides information about when switch on and switch off event will happen and

the virtual device ID identifies the JVM to stop or start. For this purpose, the

Testing Tool has to manage and record all JVM process by mapping them to

their corresponding virtual device. Switching on means starting the JVM with the

full environment defined by the Modelling Tool, while switching off will mean the

shutdown of the corresponding JVM. This module provides mechanism to

effectively create and manage the virtual devices for this task.

5.3.1.4 Internet level registry

The eu.peces.communication.registry.internet package is responsible for

providing discovery for the services and roles across smart spaces. The devices

in the smart space can use coordinator and gateway in the smart space to

access and publish information on the internet level registry. The service

101

information that is available includes information about the service name,

service description, service context information and the address of the target

device, coordinator and gateway with necessary plug-in description. Space-

level registry acts as a liaison to export, un-export and search the internet-level

registry and provides necessary forwarding mechanism between the device and

internet-level registry using the gateway role. As already discussed in the

Modelling Tool section, an additional “meta-node” representing PECES

compatible Internet registry which is capable of connecting with the device level

component and space level component provides necessary forwarding

mechanism to allow interaction between the applications and internet-level

registry during the development. The “meta-node” is initially configured by the

Configuration Tool and then additional information will be added by the

Modelling Tool. Having a “meta-node” concept to model internet registry will

fulfil the development process without breaking any PECES middleware

functionality. This Central Control module is responsible for implementing the

meta-node internet level registry concept in the development environment.

5.3.2 Middleware Modules

5.3.2.1 Overview

Middleware Modules is implemented to interact with PECES middleware

components. The Central Control Module is responsible for supervision of the

test process and will have information about the necessary connection changes,

context changes and other related information. This information will have to be

properly injected to the middleware. The Middleware Modules integrates the

Central Control Module with PECES middleware to achieve this objective.

5.3.2.2 Networking Module

The connection information generated by the Modelling Tool is used by the

Testing Tool. The Networking Module uses the connection information from the

Modelling Tool output file via Central Control Module. The connection scenario

may define several devices which are connected in different time. The

Networking Module interacts with middleware component such as coordinator,

gateway and device functionalities to inject the information received from the

102

Execution Engine. Actually, this module interacts with the Connection Engine

through the Execution Engine.

The Networking Module is responsible for handling device networking related

information such as which devices are connected and which devices are

disconnected during a period of time. This module is implemented as an

extension to the PECES middleware networking related component with the

only purpose to manage and simulate the network connections. During the

execution phase, a proper supervision of the network connection is necessary

due to the dynamics in the device connections. Connection dynamics is handled

by this module with the coordination of the Event Engine through the Execution

Engine.

5.3.3.3 Context Module

The eu.peces.middleware.context package contains the context provisioning

component that provides access to the context information. This context

information is necessary to perform the role assignment. The context

provisioning component allows the modelling of the context information

according to the PECES Context ontology and Query specification. The main

task of the context provisioning component is to support the storage and

retrieval of the context information using queries. This context module enables

the access to the context information defined the application developers at the

Modelling Tool and the Configuration Tool. As discussed in the Modelling Tool

section, context dynamics can be handled using stateful concept or stateless

concept. The PECES development tools implements the stateless concept,

since it is considered satisfactory to handle context dynamics. This module is

responsible for providing context information to the middleware by cooperating

with the Central Control module.

5.3.3.4 Logging Module

As discussed earlier, the Testing Tool records test results to a distinguished text

output called the log file. Log file records several parameters such as event

description, timestamp, context values, smart space devices, smart space name,

received/sent messages and any other information which are necessary to

103

evaluate any specific application scenario. This module is responsible for record

necessary information of the test results.

The Logging module is responsible for producing and managing log file which

will be analysed by the Testing Tool. This Logging module makes sure that

logging can be as inexpensive as possible and record necessary information to

one log file. Logging all test related information to the log file may slow the

application affecting PECES middleware performance, hence the test results.

The available logging API in the java package java.util.logging is used to log

necessary information such as role changes, context changes, communication

data and access control related information. The Java logging API is part of

J2SE of JDK 1.4 and greater, and it ships with the JDK. It is designed to let a

Java program to record messages of interest to the application developers. All

log messages can be sent to a TCP port where this module is listening and

registering the output of all devices. This is already implemented in the JAVA

package.

5.4 Testing Tool Implementation

5.4.1 Execute page

The initial device status information is displayed (for example, all devices are

“OFF”) in the Testing Tool multi-page editor Execute Page. Application

developers are able to define the required time to test the application specified

by the previous tools. Developers can also provide Internet Registry IP and port

information if they want to test that application with the internet registry. The

Figure 5.3 shows the defined application device status before the test was

executed.

104

Figure 5.3: Screenshot of the PECES Testing Tool Execute Page

The “Execute” button enables developers to run the application. As seen in

Figure 5.4 below, the status of each device is shown during test (three devices

are “ON” and one device is “OFF” at a particular time). All middleware and

application related information is logged to a single log file with the specific

device and absolute time of the system. Using this absolute time, the relevant

time between the devices (based on test start time) are calculated for further

analysis. The Figure 5.4 shows the defined application device status while the

test is running.

Figure 5.4: Screenshot of the PECES Testing Tool Execute Page during the test

105

5.4.2 Testlog page

The TestLog Page provides detailed information of the test performed.

Middleware and application related events are logged with specific device name,

absolute time and other relevant and available information. Figure 5.5 shows

the screenshot of the Testlog page.

Figure 5.5: Testing Tool Testlog page

There are two sources to generate the information in log file. The first one is

device instance. Information from single device shows the status of this device

at certain time when an important event happened, such as switch on, join

smart space, etc.. The other source is EmulationControl which is the global

engine to aspect the whole system. Logging from EmulationControl describe the

global events, relations between devices and faults such as smart space

established, adding connection between devices, etc.. Log file record all

important information when emulator running. Log file can be analyzed to help

developer to inspect the system running situation. Developers can check

whether the system running as they expect. If some errors during the emulation,

log file also helps the developer to debug and improve the design of the smart

space.

Here are some event logs of the defined example application in this document:

GUIDESYSTEM :[DBG|17:25:00.952|Notificator] BoothNavigation MEMBER no

data unsigned assigned (secure).

106

The above log provides information that GUIDESYSTEM is assigned as

BoothNavigation smart space at absolute time 17:25:00.952.

EmulationControl :[LOG|17:25:10.906|EmulationControl] Adding connection between

66a83d7381a3573497f1ef10fdf70eba271263c5

0157260cc7e27b27d8972e1690adb0f889a532d6

The above log provides information about adding a connection between the

devices GUIDESYSTEM (its system ID is

66a83d7381a3573497f1ef10fdf70eba271263c5) and VISITOR_HTC (its system

ID is 0157260cc7e27b27d8972e1690adb0f889a532d6) at absolute time

17:25:10.906.

EmulationControl :[LOG|17:25:25.918|EmulationControl] Removing Triplet

URI(http://www.ict-peces.eu/ont/device.owl#LOCATIONSYSTEM)

URI(http://www.daml.org/services/owl-s/1.1/Service.owl#provides)

URI(http://www.daml.org/services/owl-s/1.1/Service.owl#LocationService)

This above log provides information of a triplet removed (the LocationService)

from the LOCATIONSYSTEM at absolute time 17:25:25.918.

5.4.3 Visualisation page

The Testing Tool Visualise Page provides features to visualise the smart space

network status based on the test log data events with relative time. This

Visualise Page lists analyzed important events occurred during the test. The

“List of Events” may contain event such Device Switch ON, Device Switch OFF,

Connection, Disconnection and Smart Space Establish, Smart Space Join, etc.

The status of the system can be viewed by double clicking on the name of the

specific event. For example, by double clicking on the fourth event (Device 0 on)

in the list, Figure 5.6 below shows the visualisation of the system at time 11991

ms (after test started). It displays the four devices which are available (already

switched ON) at that time and the devices are expected to form a smart space

defined by the Role Specification Tool. This also shows that devices are

available but there is no communication between them.

Double clicking on the particular event from the “List of Events” provides not

only the particular event but also the status of the whole network and its devices,

its connections and smart space activities, etc. at a particular time.

107

Figure 5.6: Screenshot of the Visualise Page just after four devices were switched ON

The Figure 5.7 shows that coordinator role as “BoothNavigation” is assigned

and the coordinator is looking for the devices based on the context information

to form smart space. Still there is no communication between the devices (no

connections are seen between the devices).

Figure 5.7: Screenshot of the Visualise Page just after Smart Space established only with
GUIDESYSTEM

108

The Figure 5.8 shows that the three devices were connected with the

coordinator device which is assigned with the “BoothNavigation” role and

devices are expected to join in the smart space based on their context

information.

Figure 5.8: Screenshot of the Visualise Page just after devices were connected with the
GUIDESYSTEM

The Figure 5.9 shows that based on the context information and role

specification, the VISITOR_IPAQ the VISITOR_HTC and the

LOCATIONSYSTEM joined the smart space with the coordinator.

Figure 5.9: Screenshot of the Visualise Page just after devices joined the smart space

109

The Figure 5.10 shows that the LOCATIONSYSTEM context property

“LocationService” was removed from the device and the LOCATIONSYSTEM is

expected to leave the smart space when next role assignment takes place.

Figure 5.10: Screenshot of the Visualise Page just after the LOCATIONSYSTEM
“LocationService” Context was removed

The Figure 5.11 shows that the LOCATIONSYSTEM left the smart space due to

its context property changes (“LocationService” was successfully removed).

Figure 5.11: Screenshot of the Visualise Page just after LOCATIONSYSTEM left the smart
space due to its context change

110

The Figure 5.12 shows that connection between the VISITOR_IPAQ and the

GUIDESYSTEM was removed and the VISITOR_IPAQ is expected to leave the

smart space when next role assignment takes place.

Figure 5.12: Screenshot of the Visualise Page just after VISITOR_IPAQ disconnected from the
GUIDESYSTEM

It can be seen in the Figure 5.13 that VISITOR_IPAQ left the smart space

because the connection between the GUIDESYSTEM and the VISITOR_IPAQ

was removed earlier.

Figure 5.13: Screenshot of the Visualise Page just after VISITOR_IPAQ left the smart space

111

The Figure 5.14 shows that connection between the VISITOR_IPAQ and the

GUIDESYSTEM was established again and VISITOR_IPAQ is expected to join

the “BoothNavigation” smart space when next role assignment takes place.

Figure 5.14: Screenshot of the Visualise Page just after VISITOR_IPAQ connected to the
GUIDESYSTEM

It can be seen in the Figure 5.15 that VISITOR_IPAQ re-joined the smart space

as the connection between the GUIDESYSTEM and the VISITOR_IPAQ was

successfully re-established.

Figure 5.15: Screenshot of the Visualise Page just after VISITOR_IPAQ joined the smart space

112

Testing tool also support multi-smartspace emulation and the result can be

shown in visualization page. For example, by double clicking on the fourth event

(TaxiBooking Establish) in the list in Figure 5.16 shows the visualisation of the

smart space system at time 3050 ms (after test started). Figure 5.16 displays

the two different smart spaces (BoothNavigation and TaxiBooking) with its

coordinator devices and it also displays the PECES Internet Registry availability

but not connected with the smart spaces at this time event. The smart spaces

are expected to form a hierarchical smart space defined by the Peces Role

Specification tool.

Figure 5.16: Screenshot of the Testing Tool Visualisation with two smart spaces

Figure 5.17 shows that BoothNavigation smart sapce and TaxiBooking smart

space are formed a hierarchical smart space using the PECES Internet Registry

when it is necessary. This clearly visualise the PECES middleware enables

communication between devices in and across different smart spaces in a

context dependent and secure manner.

113

Figure 5.17: Screenshot of the Testing Tool Visualisation with a hierarchical smart space

5.5 Summary

This chapter present the Architecture by describe four different engines:

- Execution Engine: the core engine which control and coordinates all

others parts of the Testing tool.

- Connection Engine: provide device connection information to Execution

Engine

- Event Engine: get input from modelling tool and provides information

which get from the input data to Execution Engine.

- Instantiation Engine: is responsible for instantiation of PECES entities.

- Logging: record all execution information and output a log file for future

evaluation.

Two main modules which responsible these engines:

- Central Control Module: responsible for test execution and supervise the

simulation.

- Middleware Modules: is used to interact with PECES middleware

components.

114

We also explained the design and implantation of three pages of Testing Tool,

Execute page, Testlog page and Visualisation page, and demonstrate how it

works and result.

115

Chapter 6: Use Case Study: build a real Application by using

Development Tool

Chapter 3, 4 and 5 present the full set of Development Tools and describe how

they help developer to build an application. This chapter demonstrate a real

application which using PECES middleware. We will separately describe three

specific sub scenarios of the trade show guide system:

- Smart booth navigation: provides automatic guidance to the visitors

based on the booth availability in Section 6.2.

- Smart booth monitoring: provides sensor information (temperature and

light level) to a remote emergency system to manage emergency

situations in Section 6.3.

- Smart taxi booking: allows a visitor to request a taxi without knowing the

visitor’s whereabouts in detail in Section 6.4.

In each scenario, we will describe the prototype, architecture, design and how

to use the development tools to development the application.

6.1 Introduction

The Trade Show Guide system use cases use wireless sensor networks as a

platform to provide guidance and navigation information to the visitors at the

trade show. For example, the trade show may have many booths and each

booth may target a specific technical area. At a particular time, some booths are

very busy with visitors and other booths are not. Gathering the availability of

each booth at a particular time would be interesting information which can be

used to make an intelligent guidance for the trade show visitors. The availability

of any booth can be determined by measuring noise level at a booth using

microphone. In addition to the noise level, the visitors (with Smartphones)

location information can also be used to determine the availability of each booth,

as visitors location can be determined with considerable accuracy with WiFi

fingerprinting indoor localization techniques. Based on the microphone sensor

reading and available visitor’s location information, the trade show guide system

can provide guidance to the visitors based on the booth availability.

116

Also temporarily installed infrastructure at any trade shows could be monitored

using wireless sensor network for the safety of the visitors. Each booth

surrounding temperature and light level reading can be monitored by the

wireless devices installed in each booth attached with temperature and light

sensors. These sensor readings can be used to provide actuate location

information (GPS location and local location) to a remote emergency system if

there is any emergency situation detected (e.g. high temperature or light level

reading). These warning can also be sent to the visitors at the trade show. By

knowing the exact local location of the incident and their current location,

visitors can be able to get emergency exit navigation information.

In addition to provide a seamless experience to the visitors at the trade show,

this use cases also provide a taxi booking service. This location based booking

service allows visitors to request a taxi without knowing his/her whereabouts in

details. If the visitors don’t have access to GPS location, they can get a GPS

location from the trade show guide system. Also the visitors do not have to wait

at the same place until the taxi arrives and the visitors can be able to move to

another nearby location where the taxi service is able to update the visitors’

location changes to the taxi which enable to the taxi to pick up the visitor from a

new location.

This chapter describes three specific scenarios of the trade show guide system:

- Smart booth navigation: provides automatic guidance to the visitors

based on the booth availability.

- Smart booth monitoring: provides sensor information (temperature and

light level) to a remote emergency system to manage emergency

situations.

- Smart taxi booking: allows a visitor to request a taxi without knowing the

visitor’s whereabouts in detail.

In each scenario, we will describe the prototype, architecture, design and how

to use the development tools to development the application. The following

sections will describe each one of the applications.

117

6.2 Smart booth navigation

The first use case in the trade show guide system is the Smart Booth

Navigation. This use case consists of two visitors (Visitor1 and Visitor2) and a

GuideSystem. The GuideSystem is providing the services to the visitors and is

also gathering each booth sensor reading and visitors’ location information

periodically. Using this sensor reading and the visitors’ location information, the

GuideSystem can be able to provide intelligent guidance and navigation

services to the visitors.

6.2.1 Scenario

6.2.1.1 Operation

A PECES application is installed with coordinator and gateway functionalities in

the GuideSystem (For this use case, the gateway functionality is not necessary

but it is required for the Smart Booth Monitoring use case as the same

application will be used).

When the application is started, the GuideSystem establishes BoothNavigation

smart space as defined by the role specification. When the visitors (Visitor1 and

Visitor2) enter to the WiFi coverage area of the GuideSystem, the visitors

expect to join with the BoothNavigation smart space.

The GuideSystem is also installed with Ekahau location tracking software which

records visitors’ location for every 5 seconds. The GuideSystem is connected to

a WSN gateway to receive each booth microphone sensor reading for every 2s.

The WSN gateway device and the sensor platforms are running on TinyOS 2.0

based applications.

The operation of the Smart Booth Navigation application is as follows:

1) The GuideSystem is assigned with BoothNavigation role and looking for

devices which consumes the GuideService.

2) Visitor1 and Visitor2 enter to the WiFi coverage area of the GuideSystem.

3) Visitor1 and Visitor2 locations are recorded by the GuideSystem for

every 5s.

4) The GuideSystem assigns BoothNavigation role to the Visitor1 and

Visitor2 and both devices will be part of the BoothNavigation smart space.

118

The GuideSystem will only allow the devices which have necessary

certificates.

5) The GuideSystem receives updates of each booth microphone reading

every 2s.

6) When Visitor1 requests booth availability information, the GuideSystem

will send available booth number and the Visitor1 latest location to the

Visitor1.

7) By receiving available booth number and its current location, the Visitor1

will be able to navigate to the booth suggested by the GuideSystem.

8) The Guidesytem can also send any events related announcement and its

location to the “BoothNavigation” smart space member devices using

data centric communication, in this case to the Visitor1 and Visitor2.

9) If the visitors are interested in the announced events, they can request

navigation information from the GuideSystem.

Figure 6.1 shows the smart booth navigation operation flowchart and the

interaction between the devices involved.[46]

Figure 6.1: Smart booth navigation operation

119

6.2.1.2 Context

Table below shows the context of the three devices in this use case. The

GuideSystem is the coordinator of the smart space and provides both the

GuideService and the LocationService. Visitor1 and Visitor2 are both members

of the smartspace and consume the services provided by the GuideSystem.

GuideSystem

Type Coordinator

Provides GuideService

Provides LocationService

Visitor1

Type Member

Carriedby Visitor1

Consumes GuideService

Consumes LocationService

Visitor2

Type Member

Carriedby Visitor2

Consumes GuideService

Consumes LocationService

Table 6.1: Smart Booth Navigation Context Details

6.2.1.3 Trust Chain

From the security perspective, the GuideSystem services are only available to

registered users. For example, the Visitor1 and the Visitor2 are able to join the

smart space with the GuideSystem, if three devices are installed with the

certificates issued by a common authority (originated from a root certificate).

Figure 6.2 shows a schema of the smart booth navigation trust chain.

Figure 6.2: Smart booth navigation trust chain

120

Table 6.2 summarizes the trust levels and the certificates associated to each

device involved in the smart booth navigation scenario.

Device Trust level Certificate

GuideSystem

Full Certificate issued by Ran

Marginal -

None -

Visitor1

Full Certificate issued by Ran

Marginal -

None -

Visitor2

Full Certificate issued by Ran

Marginal

None

Table 6.2: Smart Booth Navigation Context Details

6.2.1.4 Role Specification

A BoothNavigation smart space is formed with the three devices described here

based on the services they provide and services they consume. The

GuideSystem acts as a coordinator and Visitor1 and Visitor2 take member role.

The BoothNavigation role assignment is done by the following query by the

GuideSystem.

PREFIX j.4: <http://www.ict-peces.eu/ont/smartspace.owl#>

PREFIX j.2: <http://www.daml.org/services/owl-s/1.1/Service.owl#>

SELECT ?device

WHERE

{

 ?device j.2:provides j.2:GuideService

}

PREFIX j.4: <http://www.ict-peces.eu/ont/smartspace.owl#>

PREFIX j.2: <http://www.daml.org/services/owl-s/1.1/Service.owl#>

121

SELECT ?device

WHERE

{

 ?device j.4:consumes j.2:GuideService

}

PREFIX j.4: <http://www.ict-peces.eu/ont/smartspace.owl#>

PREFIX j.2: <http://www.daml.org/services/owl-s/1.1/Service.owl#>

SELECT ?device

WHERE

{

 ?device j.2:provides j.2:LocationService

}

6.2.2 Development by Development Tools

Application developers will begin with the Configuration Tool and start

configuring the application by drag and drop the devices in the workspace.

Double clicking on the device will provide a new window where application

developers can provide device properties. Different colour used to show the

different type of devices.

Figure 6.3: Booth Navigation: Device Definition Tool View

Initial context information, the application and services can be generated by

Ontology Tool. As describe above GuideService and LocationService are

provided by GuideSystem. Visitor1 and Visitor2 consume those services. The

following screenshot shows the context definition by Ontology Tool.

122

Figure 6.4: Booth Navigation: Ontology Definition Tool View

The necessary certificates will be deployed in a devices by the Configuration

Tool for this scenario (assume I am the user of the Booth Navigation) and the

figure 6.2 shows required certificate tree. Figure 6.5 shows the trust chain

generated by Security Tool and files generated by security configuration tool.

Figure 6.5: Booth Navigation: Security Tool View

The Configuration Tool output information then will be used by the Modelling

Tool to model the actual test. Here the role specification will be defined which

will form smart space with the devices configured by the Configuration Tool. If

the application developers want to test the dynamics context, they will provide

necessary information here. Developers will be able to provide different sensor

reading values using the Modelling Tool. After the role speciation and complete

123

modelling process, smart space BoothNavigation formed with the configured

devices as shown in the figures below.

Figure 6.6: Smartspace Role Specification Modelling

6.2.3 Application Prototype

Three devices are used in this prototype scenario, namely the GuideSystem,

the Visitor1 and the Visitor2.

- The GuideSystem is a Laptop (Windows XP) with WiFi and Internet

connection. The GuideSystem is also connected with MIB520

programming board which attached with a Micaz mote[30]. It is also

running Ekahau positioning engine software [54] to track the Visitor1 and

Visitor2 location.

Figure 6.7: Guidesystem Laptop

124

- The Visitor1 is a HTC Sensation device running on Android 2.3.3 –see

Figure 6.8.

- The Visitor2 is a HTC Desire device running on Android 2.2 –see figure

6.9.

 Figure 6.8: HTC Sensation Figure 6.9: HTC Desire

The WSN gateway connected with the GuideSystem receives each booth

microphone sensor readings for every 2s. Figure 6.10 show the microphone

sensor readings gathered from the wireless sensor platform installed in each

booth at a particular time.

Figure 6.10: Microphone sensor reading

125

The following screenshot shows the Visitor1 and the Visitor2 locations on a

trade system local map when both devices entered in to the WiFi coverage area

of the GuideSystem.

Figure 6.11: Visistor’s location

When the Visitor1 and the Visitor2 entered to the GuideSystem coverage area,

they joined with the BoothNavigation smart space as member devices with the

GuideSystem as a coordinator. The screenshot shown in Figure 6.12 shows

that the Visitor1 and Visitor2 joined with the BoothNavigation smart space and it

also shows each device local location coordinates and SystemID.

Figure 6.12: Visitors joined with the booth navigation smart space

Using the service centric communication mechanism, Visitor1 can request

booth guide information from the GuideSystem. The screenshot in Figure 6.13

shows an interface provided to the Visitor1 to request available booth to visit.

Following the request from the Visitor1, the GuideSystem identified Booth8 as

an available booth based on the all booth microphone readings and visitors

location. The screenshot shown in Figure 6.14 shows the booth guidance

information received by the Visitor1.

126

 Figure 6.13: Available booth to visit Figure 6.14: Booth guidance information

By receiving booth guidance information from the GuideSystem, the Visitor1

can navigate to Booth8. The screenshot shown in Figure 6.15 shows that

Booth8 is shown to the Visitor1 on a local map.

The GuideSystem can also send any announcement to the BoothNavigation

smart space members using data centric communication, for example sending

information about an event in Room0 in 15 minutes. By receiving this

information, visitors can navigate to the event location. The screenshot shown

in Figure 6.16 shows a message received by the Visitor1.

Figure 6.15: Available booth location Figure 6.16: Additional information message

127

6.2.3 Application Limitations

This application has some limitations can be improved in future:

- All sensors' location should be defined before its deployed, system

cannot collect it automatically

- Due to the wireless signal strength, the navigation system only works in

around 10-15 metres. Extra wireless range booster may solve this

problem

- Because using the old version of Ekahau in this application, sometimes

the navigation is not accurate enough. A new professional version of

Ekahau may improve this limitation.

- In this scenario, we hypothesize that booth with the lowest noise value is

the available one for visitor. In real world, it may need more accurate way

to define it.

6.3 Smart Booth Monitoring

The Smart Booth Monitoring is the second use case in the trade show guide

system. This use case is an extend version of the Smart Booth Navigation use

case. The objective is to provide features to handle any emergency situation at

the trade show.

Smart Booth Monitoring use case consists of the Visitor1 and the Visitor2 and

the GuideSystem as described in the previous section as well as another

remote EmergencySystem. The EmengerncySystem is a Desktop PC (Windows

7) with internet connection.

When an emergency situation is detected at the trade show, the GuideSystem

will be able to communicate with the remote EmergencySystem and provide

necessary information about the incident for further action.

128

6.3.1 Scenario

6.3.1.1 Operation

The BoothNavigation smart space operation is the same as in the previous

section, and the BoothNavigation smart space scope is global (available in the

registry).

In this case, the GuideSystem takes both Coordinator and Gateway

functionalities. Also, as mentioned before, the GuideSystem is providing

another additional service: the EmegencyGuideService.

The EmergencySystemforms an Emergency smart space itself with global

scope and takes both coordinator and gateway functionalities. When an

emergency situation is detected at the trade show (based on the booth

temperature and light sensor reading), the GuideSystem will form a hierarchical

smart space with the BoothNavigation smart space (with the GuideSystem,

Visitor1 and Visitor2) and the Emergency smart space(with EmergencySystem).

After successfully assigned the hierarchical role assignment (called

BoothNavigationEmergency), the GuideSystem will send emergency situation

related messages to the all members of the hierarchical smart space, in this

case (GuideSystem, Visitor1, Visitor2 and EmergencySystem).

The operation of the Smart Booth Monitoring application is as follows:

1) The BoothNavigation smart space operates as described in the previous

section. The BoothNavigation smart space has global scope.

2) The EmergencySystem forms an Emegency smart space with global

scope.

3) The GuideSystem receives updates of each booth temperature and light

sensor reading for every 2s.

4) When an emergency situation is detected, the GuideSystem will inject a

hierarchical role specification by including both BoothNavigation and

Emergency smart spaces and will form a new hierarchical

BoothNavigation Emergency smart space.

5) Using the data centric communication, the GuideSystem will send trade

show GPS (pre-measure) location as well as booths location information

129

where emergency is detected to all members of the

BoothNavigationEmergency hierarchical smart space.

6) The EmegencySystem will receive the emergency situation message

with GPS location and local location information which will enable to the

EmegencySystem to deal with the emergency situation efficiently.

7) Visitor1 and Visitor2 will receive the same message about the incident

and also able to request emergency exit navigation information from the

GuideSystem.

The figure below shows the smart booth monitoring operation flowchart and the

interaction of the devices involved.

Figure 6.17: Smart booth monitoring operation

6.3.1.2 Context

Table below shows the additional context information of the BoothNavigation

smart space member devices as well as the EmergencySystem. The

GuideSystem is the coordinator of the BoothNavigation smart space, providing

the EmergencyGuideService whilst the EmergencySystem is the coordinator of

the Emergency smart space and provides the EmergencyService. Both Visitor1

and Visitor2 are member devices carried by the visitors and consuming the

EmergencyGuideService.

130

GuideSystem

Type Coordinator

Provides EmergencyGuideService

Emergencysystem

Type Coordinator

Provides EmergencyService

Visitor1

Type Member

Carriedby Visitor1

Consumes EmergencyGuideService

Visitor2

Type Member

Carriedby Visitor2

Consumes EmergencyGuideService

Table 6.3: Smart Booth Monitoring Context Details

131

6.3.1.3 Trust Chain

Figure below shows a schema of the smart booth monitoring trust chain.

Figure 6.18: Smart booth monitoring trust chain

The trust relationship in this use case as shown in following table:

Device Trust level Certificate

GuideSystem

Full Certificate issued by UNEW

Marginal -

None -

Visitor1

Full Certificate issued by UNEW

Marginal -

None -

Visitor2

Full Certificate issued by UNEW

Marginal

None

EmergencySystem

Full Certificate issued by UNEW

Marginal

None

Table 6.4: Smart Booth Monitoring Trust Level and Certificates

132

6.3.1.4 Role Specification

The role specification of the BoothNavigation smart space is exactly the same

as in the previous section. The EmergencySystem is the only one device that is

part of the “Emegency” smart space and its role specification is carried by the

following query:

PREFIX j.0: <http://www.daml.org/services/owl-s/1.1/Service.owl#>

SELECT ?device

WHERE

{

 ?device j.0:provides j.0:EmergencyService

}

6.3.2 Development by Development Tools

Application developers will start with the Configuration Tool by drag and drop

the devices in the Configuration Tool workspace. By double clicking on the

device, they will be able to provide the device configuration details. Here they

will have to provide initial value for temperature to the Emergency System

EmergencySystem (device ID 3).

Figure 6.19: Emergency System: Device Definition Tool View

Initial context information, the application and services can be generated by

Ontology Tool. As describe above EmergencyGuideService are provided by

133

both GuideSystem and EmergencySystem. Visitor1 and Visitor2 consume this

service. The Figure 6.20 shows the context definition by Ontology Tool.

Figure 6.20: Emergency System: Ontology Definition Tool View

Necessary keys and certificates will be deployed to all devices by the openSSL

tool which is part of the Configuration Tool. After providing all necessary

configuration information to the devices, the Configuration Tool workspace will

look like in Figure 6.21.

Figure 6.21: Emergency System: Security Tool View

The Modelling Tool will be used define the role speciation and dynamics in

context, etc. Here dynamics context will be the temperature. Role specifications

will defined based on the context (temperature) values. For example, if the

context value (temperature) is below a certain value, Emergency smart space

and BoothNavigation smart space will function as two separate smart spaces.

If the context value is above certain value (high temperature value: emergency

situation), Emergency smart space and BoothNavigation smart space will

134

merged and a new EmergencySys smart space will be formed (defined by the

role specification). Figure 6.22 show the smart space EmergencySystem

contained two devices GuideSystem and EmergencySystem.

Figure 6.22: Emergency System: Role Specification Tool View

6.3.3 Application Prototype

This prototype is an extended version of the Smart Booth Navigation prototype

described in the previous section. In addition to the three devices used in the

Smart Booth Navigation prototype (GuideSystem, Visitor1 and Visitor2), another

remote EmergencySystem device is involved in this prototype. The

EmergencySystem is a Desktop PC (Windows 7) with internet connection.

The screenshot shown in Figure 6.23 shows the sensor readings gathered from

the booth temperature and light sensors at a particular time.

Figure 6.23: Temperature and Light sensor readings

135

When an emergency situation is detected (higher value of light sensor reading

at Booth7 and Booth8 in this scenario), the GuideSystem injects hierarchical

role specification and sends its GPS location (pre-measured) as well as local

location (in this case Booth7 location and Booth8 location). The message is

received by the EmegencySystem as shown in Figure 6.24. Using this

information the EmengencySystem can take effective action for this situation.

Figure 6.24: Emergency situation message received by the EmergencySystem

Finally, the Visitor1 and the Visitor2 also receive the same information but only

local location information is displayed to the visitors. The Visitor1 and Visitor2

are able to get emergency navigation information from the GuideSystem. This

shown in figure 6.25:

Figure 6.25: Information received by the visitors

6.3.3 Application Limitations

This application has some limitations can be improved in the future:

136

- In this scenario, we hypothesize that emergence event happened in the

booth with the highest temperature value. In real world, it may need more

accurate way to define it.

- The message sends by internet between emergency system and booth

navigation system. If may cause problem when internet is shut down.

6.4 Smart Taxi Booking

The Smart Taxi Booking is the last use case in the trade show guide system. In

addition to provide a seamless experience to the visitors at the trade show, the

objective of this use case is to provide service to the visitors to book a taxi. This

location aware booking service allows visitors to request a taxi without knowing

his/her whereabouts in detail. Also the visitors do not have to wait for the taxi in

the same location when they made request and can be able to move to another

nearby location as the taxi service is able to track the visitor location changes.

6.4.1 Scenario

6.4.1.1 Operation

This prototype consists of two different devices: Visitor1 and Taxi1. Visitor1 is

an Android based HTC Sensation Smartphone and Taxi1 is an Android based

HTC Flyer Tablet. The Visitor1 is installed with PECES application with

coordinator and gateway functionalities and it forms a TaxiBooking smart space

by its own. The Taxi1 is installed with PECES application with coordinator and

gateway functionalities and it forms a TaxiProviding smart space by its own.

The operation of the Smart Taxi Booking application is as follows:

1) The Taxi1 forms a TaxiProvidingsmart space and it is made available to

the internet registry.

2) The Visitor1 forms a TaxiBookingsmart space and it is made available to

the internet registry.

3) Whenever a taxi service is needed, the Visitor1 forms a hierarchical

smart space with TaxiBooking and TaxiProviding smart spaces and

sends taxi request information with its GPS coordinate information.

4) When the request is received by the Taxi1, if it is willing to provide a

service to the Visitor1, the Taxi1 forms a hierarchical smart space with

137

TaxiBooking and TaxiProviding smart spaces and sends response

message with its latest GPS location information.

5) The Visitor1 is able to get update of the taxi location.

6) The Visitor1 moves to new location and this information is sent to the

Taxi1.

7) The Taxi1 gets the Visitor1’s new location and calculates the new route

to get the Visitor1.

8) The Taxi1 reaches the Visitor1 at the new location.

The figure 6.26 shows smart taxi booking operation flowchart and the

interaction of the devices involved.

Figure 6.26: Smart taxi monitoring operation

138

6.4.1.2 Context

No context information is used in this prototype.

6.4.1.3 Trust Chain

The trust relationship in this use case as shown in Table 5

Device Trust level Certificate

Visitor1

Full Certificate issued by UNEW

Marginal -

None -

Taxi1

Full Certificate issued by UNEW

Marginal -

None -

Table 6.4: Smart Booth Monitoring Trust Level and Certificates

6.4.1.4 Role Specifications

The Visitor1 is assigned with TaxiBooking role and it alone forms a TaxiBooking

smart space. The Taxi1 is assigned with TaxiProviding role and it alone forms a

TaxiProviding smart space. When the Visitor1 wants to request a taxi, a

hierarchical smart space (called TaxiBookingTaxi1) will be formed with

TaxiBooking and TaxiProviding smart spaces. When the Taxi1 wants to send

any message to the Visitor1, the Taxi1 will form a hierarchical smart space

(called TaxiProvidingVisitor1) with TaxiProviding and TaxiBooking smart spaces.

6.4.2 Development by Development Tools

Application developers will start with the Configuration using drag and drop

method to place the devices in the workspace. This application scenario will

involve 2 devices. By double clicking on the device, developers will be able to

provide device description information. Here they will have to provide sample

GPS location to Visitor’s PDA and Taxi driver’s PDA. Another context value will

be given here is the device mobility (Stationary, Non_Stationary) information.

139

Necessary keys and certificates will be deployed by the Configuration Tool too.

After providing all necessary configuration information to the devices, the

Configuration Tool will look like in the Figure 6.27 below.

Figure 6.27: TaxiBooking System: Device Definition and Security Tool View

The next step is to use modeling Tool to identify role specification. The smart

spaces TaxiProviding and TaxiBooking will be defined by role specification tool.

As describe the above, a hierarchical smart space (called TaxiBookingTaxi1)

will be formed with TaxiBooking and TaxiProviding smart spaces, which can be

defined by Hierarchical Role Specification Tool. The figure below show the

hierarchical smart space formed:

Figure 6.28: TaxiBooking System: Hierarchical Role Specification Tool View

6.4.3 Application Prototype

This prototype consists of two different devices: Visitor1 and Taxi1.

• The Visitor1is a HTC Sensation Smartphone running on Android 2.3.3 –see

Figure 6.17-.

140

• The Taxi1is a HTC Flyer Tablet running on Android 2.3.3 –see Figure 6.18-.

 Figure 6.17: HTC Sensation Smartphone Figure 6.18: HTC Flyier Tablet

When a TaxiBookingTaxi1 hierarchical smart spaced is formed with Visitor1 and

Taxi1, Visitor1 sends its GPS location to the Taxi1 using data centric

communication. Google Map API [53] is used to build default navigation map in

this application.

When Taxi1 receives a request from the Visitor1, if the Taxi1 is available to

provide a taxi service to the Visitor1, the Taxi1 will form TaxiProvidingVisitor1

smart space and sends a response with its GPS location to the Visitor1 using

data centric communication. The screenshot shown in Figure 6.19 shows the

initial location of both the Visitor1 and Taxi1 on the Visitor1’s screen.

The screenshot sown in Figure 6.20 shows the initial route planning to Visitor1

location on the Taxi1’s screen.

141

Figure 6.19: Initial location in the visitor1’s

device

Figure 6.20: Initial route planning in the

Taxi1 device

Since the Taxi1 keeps updating its GPS location, the Visitor1 is able to see

current whereabouts of the Taxi1 shows in Figure 6.21.If any considerable

changes occurred in the Visitor1 initial location (>100m between two GPS

location updates), the Visitor1 sends its new GPS location to the Taxi1. The

screenshot in Figure 6.22 shows that Visitor1 moved from its initial location to a

new location.

Figure 6.21: Information about the Taxi1 location Figure 6.22: Visitor1’s modification of location

142

When the new location information is received from the Visitor1, the Taxi1 gets

a new route planning to the Visitor1 location. The screenshot in Figure 6.23

shows re-calculated route information on the Taxi1’s screen.

Finally the Taxi1 reaches the Visitor1 new location and picks him/her up.The

screenshot shownin Figure 6.24 shows the Taxi1 and the Visitor1 locations on

the Visitor1’s screen once the Taxi1 reached the Visitor1 new location.

Figure 6.23: Taxi1 re-calculated route Figure 6.24: Taxi1 and Visitor1 final locations

6.4.3 Application Limitations

This application has some limitations can be improved in future:

- The current version of this application can only support visitor and taxi

driver connection directly. The further improvement version may have a

taxi centre to send the visitor's request to the nearest available taxi.

6.5 Summary

In this Chapter we presented a real application trade show system. There are

three sub application are defined under trade show system. Each of them has

its own features:

- Smart Booth Navigation: using single smart space Guidesystem to

provide room information and navigation guide for visitors

143

- Smart Booth Monitoring: Using two smart spaces EmergencySystem and

GuideSystem to form a Hierarchical smart space. It will send emergency

information when emergency situation is detected.

- Smart Taxi Booking: Using two smart spaces Visitor and Taxi to form a

Hierarchical smart space to provide a seamless way to booking a taxi.

All applications talked above can be supporting developed by Development

Tools. Development tool dramatically decrease the difficulty and help the

developers to build their own application without knowing the mechanism of the

middleware.

144

Chapter 7 Evaluation

In order to verify whether Development Tools meet the hypothesis discussed in

Chapter 1, there are some evaluations methods have been used to evaluate the

Development Tools. A Laboratory testing evaluates the Development Tools

requirements discussed in Chapter 1. A productivity plug-in is used to evaluate

the Tools' performance. Because the end user of the development tools are the

developers that want to create PECES applications, a questionnaire was

handled to developers to get the real feedback from the people who will really

use these tools.

Section 7.2 describe the evaluation methodological approach which will be use

to evaluate the development tools. Section 7.3 lists the results of requirements

evaluation. Section 7.4 shows the demonstration evaluation, includeing

questionnaire design, result and analysis. This section also introduces the

productivity plug-in analysis results.

7.1 Evaluation Summary

The PECES development tools simplify many of the steps for application

development. For example, basic security related tasks such as the distribution

of keys and certificates may be handled using the development tools.

The development tools suite provides features to build and test applications

based on the PECES middleware. The tools are implemented as Eclipse

plugins. The development tools suite provides several tools to support different

activities during the application development, modelling and testing phases.

There are configuration tools to assist the user with Device Definition, Ontology

Instantiation, Security Configuration, Hierarchical Role Specification Definition

and Service Definition. There is also an Event editor tool to dynamically model

applications and a testing tool to test, analyse and then visual an application

developed using the configuration tools.

7.2 Evaluation Methodological Approach

The objective of the PECES Development Tool evaluation process is to assess

the performance of Development system functionalities in terms of complying

with the technical and functional requirements. The relevant evaluation process

145

is used to evaluate the main objective of PECES development tools which is to

facilitate the application development within the PECES middleware and will

focus on the novel concepts developed by the PECES projects. The end user of

the development tools are the developers that want to create PECES

applications.

A methodological framework is proposed for the Develoment evaluation, taking

into account the above features of the system. Under the proposed

methodological framework the evaluation of the PECES system involves the

following major steps: i) the determination of the objectives and the

performance expectation for the Developments, ii) the identification of the

measurable and not measurable requirements as well as any additional result

issued, iii) identification of methods for assessing the achievement of

requirements, iv) determination of the data needs and development of the

relevant data collection tools, and v) data analysis and results. The figure 7.1

illustrates the overall methodological framework for the evaluation of the

Development Tools results.

Figure 7.1: Development Tool Evaluation Framework

laboratory testing

Demonstration

PECES Development

Tools

PECES Development

Tools Use Case

Application

Measureable

requirements

Addiction results

 Non Measureable

requirements

Criteria

/Indicators

/Metrics

Reference

Chapter

Productivity Plug-in

Use Case

 Tool Performance
Test

Technical Test

146

The evaluation expectations for the Development Tools emerge from the

requirements specification performed within the design of the Development

Tools in Chapter 1. The evaluation framework proposed is based on a

laboratory testing phase where the Development Tools will be evaluated and a

demonstration phase where the development tools and the use case

applications will be assessed. The development tools evaluation is done both in

the laboratory testing and in the demonstration phase following two different

approaches.

The laboratory testing consists of the lab testing of the prototypes based on the

requirements defined in Chapter 1. A previous classification of the requirements

as measurable and not measurable has been done. For the measurable

requirements, the relevant evaluation criteria, indicators and metrics are defined

as well as the appropriate assessment methods and data needs. For the not

measurable requirements, the reference documentation where the requirement

achievement is justified is provided. The same approach is used for the

additional results identified based on the fact that they are measurable or not.

The demonstration consists of the evaluation of the development tools and the

assessment of the integration of the other three PECES prototypes into the

applications. For the evaluation of the development tools, an ECLIPSE plug in is

used as a monitoring tool which observes what the developer does and how

long it takes him/her while he/she is working on a specific task. It is noteworthy

to mention that the evaluation of the development tools is performed by

developers as end users, as a discussion later. The evaluation of the integration

of PECES prototypes in the applications is done based on a set of technical

tests which already be discussed separately in Chapter 6.

The evaluation of PECES system is performed by developers, which are the

end users of the PECES results. However, there are two different profiles that

are involved in the evaluation of PECES: the developers that will perform the

laboratory testing and the evaluation of the applications, and the developers

that perform the evaluation of the development tools. The development tools will

follow the basic procedure for the laboratory testing, but in the demonstration,

they are tested by external developers that try to build a PECES project,

creating a smart space with PECES development tools. These developers are

147

monitored by the productivity plug in which perspective or view they are using,

what file has been saved, how many times, etc.-. Furthermore, they will

complete a user acceptance questionnaire on the development tools to gather

additional information for the system assessment.

7.3 List of Associated Requirements Evaluation Results

MEASUREMENT INSTRUMENT

Requirement The development tools should support the programming

language of the middleware

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The development tools are implemented as Eclipse plug-ins.

Eclipse is a well known IDE for Java which is the the

programmming language of the middleware. The tools provided

support to generate and build Java project for each devices

which are participating in the smart space networks formation.

MEASUREMENT INSTRUMENT

Requirement The development tools should provide support for the devices of

the prototype applications

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The PECES middleware uses only the standard JAVA APIs

which gives portability via Java Virtual Machine (JVM). Hence

there is no necessity to deal with device specific elements. The

development tools provided support for configuration of device

communication capabilities and device functionalities. The

development tools provided support for the devices used in the

three prototpes applications where the tools enabled application

developers to use drag and drop method to form networks and

configure device functionalities and communication plug-ins.

148

MEASUREMENT INSTRUMENT

Requirement The development tools should support the specification of

policies to limit the distribution of context information

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The development tools provided mechanism for ontology

instantiation and role specification which enable the application

developers to limit the distribution of the context information.

MEASUREMENT INSTRUMENT

Requirement The development tools should support the configuration of

encryption keys

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion Current version of the development tools provided support to

deploy keys and certificates as well as certificates trust chain for

application development. The OpenSSL toolkit was integrated

as an Eclipse plugin (Peces Security Configuration Tool) to

generate/deploy keys and certificates for PECES middleware

application development.

MEASUREMENT INSTRUMENT

Requirement The development tools should support the specification of static

device context

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The development tools provided support for specification of the

context of the devices. Ontology instantiation tool has been

integrated with Eclipse so that application developers do not

149

have to rely on external tools to this, for example, Protege.

MEASUREMENT INSTRUMENT

Requirement The development tools should be integrated into an existing IDE

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The development tools are implemented as Eclipse plugins.

Application developers are able to use not only the

developments tools novel features but also able to use many

features available in the Eclipse IDE.

MEASUREMENT INSTRUMENT

Requirement The development tools should support the testing of group

specifications

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The development tools provided support for the testing of the

group specification based on the initial static context.

Application developers can use the PECES role specification

definition tool to define a smart space based on static context

information defined in the ontology instantiation tool.

MEASUREMENT INSTRUMENT

Requirement The development tools should support the modelling of a set of

networked smart spaces

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The current version of the development tools prototype provided

support for modelling local smart spaces based on switch on,

switch off, context changes and connection changes of the

150

devices. The Event Editor provided a mechanism to generate

different events with a delay time. The Event Diagram Editor

allowed events to be organised and generates a xml file. The

Testing Tool parsed the information in the xml file and

generates necessary java project and code for emulating the

defined model.

MEASUREMENT INSTRUMENT

Requirement The development tool shall support debugging functionalities

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The Development tools provided support to generate Java

project for each devices which are participating in the smart

space formation. So that application developers can be able to

use Java Eclipse debugging functionalities.

MEASUREMENT INSTRUMENT

Requirement The development tool should support the graphical user

interfaces of various devices and their interaction

Type Not Measurable

Reference Chapter 3, Chapter 4, Chapter 5

Result Requirement Achieved

Discussion The current version of the development tools prototype provided

features to visualize the smart space devices, connections

dynamics and context dynamics based on the test log data.

The Development Tools fulfil all the requirements identified by the Chapter 1

when their development. Furthermore the use of the tools has also been

evaluated and was found to be extremely useful.

151

7.4 Developer Feedback

As mentioned in previous sections, the evaluation of the development tools will

be made from two different perspectives: the productivity of the tools when

developers use them and the opinion of the developers that will test them. For

the first one, an ECLIPSE plug in will be used, as will be explained later on and

for the second one, the following user acceptance questionnaire will be

provided to the developers that will test the tools.

The PECES development tools have been evaluated by 20 evaluators from

Germany, Spain and the UK. The evaluators were all Java programmers with

varying degrees of experience ranging from Undergraduate Students thought to

Post-Doctoral researchers and programmers from industry. Evaluators were

given a short tutorial on PECES middleware and the development tools before

testing the tools. They were asked to develop a simple service which required

using the development tools (except for the Hierarchical Role Specification tool).

The evaluators completed a questionnaire and their development was

measured by an Eclipse Productivity Plug-in.

There were two main purposes of this evaluation. The first was to establish that

user found the PECES development tools useful application development.

Secondly, the tool developers wanted to obtain some useful suggestions as to

how to improve the tools in the future. The Questionnaire shows in the

Appendix 5.

7.2.1 Questionnaire Result

The PECES development tools were evaluated by users in Germany in July

2011, in UK in October 2011 and in Spain in November 2011. Those in

Germany were Undergraduate students, those in UK were Ph.D. students and

those in Spain were company employees. This questionnaire was distributed to

delegates to obtain their feedbacks. There were 20 delegates who participated

in this evaluation from Germany, Spain and UK. The following table shows the

result of the questionnaire.

152

Question Result

How difficult is to develop PECES

middleware application without the

PECES Development Tools ?(Range 1-5

where 1 indicated very difficult and 5

indicated very easy)

14 of 20 delegates answered this

question, 5 delegates from Germany and

1 from Spain didn’t answer this question.

0 delegates select 5 0%

0 delegates select 4 0%

5 delegates select 3 36%

5 delegates select 2 36%

4 delegates select 1 29%

Mean 2.07, Standard Deviation 0.82

What is the general impression you have

for the PECES Development Tools?

(Range 1-5 where 1 indicated very

impressive and 5 indicated very

unimpressive)

20 of 20 delegates answered this

question.

1 delegate selects 5 5%

4 delegates select 4 20%

3 delegates select 3 15%

10 delegates select 2 50%

2 delegates select 1 10%

Mean 2.60, Standard Deviation 1.07

Indicate the level of training is required for

the user to develop and test applications

using the PECES Development Tools?

(Range 1-5 where 1 indicated very low

and 5 indicated very high)

20 of 20 delegates answered this

question.

1 delegate selects 5 5%

3 delegates select 4 15%

7 delegates select 3 35%

8 delegates select 2 40%

1 delegate selects 1 5%

Mean 2.75, Standard Deviation 0.94

How reliable is the PECES Development

Tools for the middleware application

development? (Range 1-5 where 1

indicated very reliable and 5 indicated

very unreliable)

20 of 20 delegates answered this

question.

1 delegate selects 5 5%

3 delegates select 4 15%

7 delegates select 3 35%

8 delegates select 2 40%

0 delegate select 1 0%

Mean 2.9, Standard Deviation 0.889

How easy is to use the PECES Device

Definition tool for the middleware

application development? (Range 1-5

20 of 20 delegates answer this question.

2 delegates select 5 10%

1 delegate selects 4 5%

153

where 1 indicated very easy and 5

indicated very difficult)

3 delegates select 3 15%

10 delegates select 2 50%

4 delegates select 1 20%

Mean 2.35, Standard Deviation 1.15

How easy is to use the PECES Ontology

Instantiation tool for the middleware

application development? (Range 1-5

where 1 indicated very easy and 5

indicated very difficult)

20 of 20 delegates answered this

question.

0 delegate select 5 0%

2 delegates select 4 10%

6 delegates select 3 30%

11 delegates select 2 35%

1 delegate selects 1 5%

Mean 2.45, Standard Deviation 0.74

How easy is to use the PECES Security

Configuration tool for the middleware

application development? (Range 1-5

where 1 indicated very easy and 5

indicated very difficult)

12 of 20 delegates answered this

question, 7 delegates from Germany and

1 from Spain didn’t answer this question.

0 delegate select 5 0%

0 delegate select 4 0%

7 delegates select 3 58%

2 delegates select 2 17%

3 delegates select 1 25%

Mean 2.33, Standard Deviation 0.85

How easy is to use the PECES Service

Definition tool for the middleware

application development (Range 1-5

where 1 indicated very easy and 5

indicated very difficult)

20 of 20 delegates answered this

question.

0 delegate select 5 0%

2 delegates select 4 10%

4 delegates select 3 20%

9 delegates select 2 45%

5 delegates select 1 25%

Mean 2.15, Standard Deviation 0.91

How easy is to use the PECES Role

Specification tool for the middleware

application development? (Range 1-5

where 1 indicated very easy and 5

indicated very difficult)

20 of 20 delegates answered this

question.

0 delegate select 5 0%

6 delegates select 4 30%

4 delegates select 3 20%

6 delegates select 2 30%

4 delegates select 1 20%

Mean 2.60, Standard Deviation 1.11

154

How easy is to use the PECES

Hierarchical Role Specification tool for the

middleware application development?

(Range 1-5 where 1 indicated very easy

and 5 indicated very difficult)

14 of 20 delegates answered this

question, 5 delegates from Germany and

1 from Spain didn’t answer this question.

0 delegate select 5 0%

0 delegate select 4 0%

9 delegates select 3 64%

3 delegates select 2 21%

2 delegates select 1 15%

Mean 2.5, Standard Deviation 0.73

How easy is to use the PECES Event

Definition tool and PECES Event Diagram

tool for modelling smart space network

dynamics? (Range 1-5 where 1 indicated

very easy and 5 indicated very difficult)

15 of 20 delegates answered this

question, 5 delegates from Germany

didn’t answer this question.

0 delegate select 5 0%

2 delegates select 4 13%

3 delegates select 3 20%

8 delegates select 2 54%

2 delegates select 1 13%

Mean 2.33, Standard Deviation 0.87

How easy is to use the PECES Testing

Tool for testing smart space network

application? (Range 1-5 where 1 indicated

very easy and 5 indicated very difficult)

19 of 20 delegates answered this

question, 1 delegate from Spain didn’t

answer this question.

0 delegate select 5 0%

0 delegate select 4 0%

2 delegates select 3 11%

11 delegates select 2 58%

6 delegates select 1 31%

Mean 1.79, Standard Deviation 0.61

Do you think that the PECES

Development Tools are very useful for

middleware application development and

testing?

19 of 20 delegates answered this

question, 1 delegate from Germany didn’t

answer this question.

18 of 19 delegates answered yes. 95%

1 of 19 delegates answered no. 5%

94% delegates considered the PECES

Development Tools are very useful for

middleware application development and

testing.

155

How could the PECES Development

Tools be improved?

Improve Hotkeys and structure layout.

Make the user interface more intuitive.

Build in help manually in the tools.

Provide clear messages when the user

enters wrong or incomplete information.

Some interface features can be improved.

How do the PECES tools compare with

other tools used to develop similar

applications?

Most delegates hadn’t used this kind of

tool before.

Some of others thought these tools were

very impressive and user friendly.

Do you have any further comments

relating to the usability of the PECES

Development Tools

It was suggested that the developers

could get some ideas from Petri Net

Tools.

7.4.2 Questionnaire Result analysis

Figure 7.2 shows how difficult it was found to develop PECES middleware

application without the PECES Development Tools. The range is 1-5 where 1

indicated very difficult and 5 indicated very easy. Developing applications on

PECES middleware is thought to be difficult without development tools.

Figure 7.2: Difficulty of development without tools

The following figure indicates the responses to the question “what is the general

impression you have for the PECES Development Tools”. Range 1 indicated

very impressive and 5 indicated very unimpressive. Over half delegates (55%)

28%

43%

29%

How difficult develop application without
Tools

Normal

Difficult

very Diffcult

156

reported that the development tools are either impressive or very impressive.

Only 25% people from the survey do not agree.

Figure 7.3: General impression of Development Tools

Figure 7.4 compares the ease of use of the different tools used. Every tool that

was used is shown in the charts. The Range of responses was 1-5 where 1

indicated very easy to use and 5 indicated very difficult to use. Some tools are

not considered easy to use because they require extra background knowledge

or concepts from the middleware. The Ontology Definition tool, Role

Specification tool and Hierarchical Role Specification tool were in this category.

Figure 7.4: Mean of how easy to use development tools

Figure 7.5 depicts the percentage of users who agree that the PECES

development tools are useful. 95% delegates believe development tools really

5%

20%

15% 50%

5%

General impression of Development Tools

very UnImpressive

UnImpressive

Normal

Impressive

very Impressive

2.35

2.45

2.33

2.15

2.6

2.5

2.33

1.79

0 1 2 3 4 5

Testing Tool

Event&Event Diagram Tool

Hierarchical Role Tool

Role Specification Tool

Service Tool

Security Tool

Ontology Tool

Device Definition Tool

157

useful for developing PECES middleware based application. Only one person

thought that the tool set is unsuitable for application development.

Finally, 55% of the evaluators believe a high level of training is needed whereas

40% think they just need a normal amount of training.

These results suggest that the PECES Development Tools are useful for

experienced developers of PECES application rather than general users without

any background knowledge of the middleware.

Figure 7.5: Are PECES Development Tools Useful

For HCI related, some of delegates thought these tools were very impressive

and user friendly. Others give some suggestions for improve the tool in the

future. Most the suggestions are list below:

 Improve hotkeys and structure layout: some delegates believe support

hotkey can improve the usability for development tools

 Make the user interface more intuitive:

 Build in help manually in tools: We have a handbook for using

development tools but some delegates think if there is a built-in help it

may easier to looking for the resolution when meet some problems.

 Provide clear messages when the user enters wrong or incomplete

information: someone think part of error messages are not enough clear

to show how to find out the error

 Some interface features can be improved: such as role specification tool,

it is a bit complex to use when delegates not enough familiar the tools.

 A delegate suggests that we can get some ideas form Petri Net.

95%

Is PECES Development Tools useful ?

Tools useful

Tools not useful

158

7.4.3 Productivity Plug-in

For the development tools, statistical analysis was applied to the productivity log

server.

The productivity log server was used to log the development related low level

information (e.g. active file, perspective, developer, task, elapsed time, etc.).

Each log was then uploaded to the productivity Log Server. The project

manager estimates some project metrics such as the task time or the

developers’ experience and then, project metrics are calculated from the

Productivity Log Server.

The metric used to evaluate these measurements was the time as an indicator

of the effort required. The final objective was to obtain the assessment of the

difficulty experienced by the developer or the learning curve with and without

the use of the development tools until the developer is able to start producing

applications with the middleware. The analysis of the data gathered with the

productivity plug in together with the user acceptance questionnaires results will

be used to extract these conclusions.

For performing the evaluation data gathering, a team of 5 developers was

selected. The productivity plug in was installed on each workstation into the

development environment to log the development related low level information.

Each log was then uploaded to the productivity log server. This information was

used to calculate the process metrics previously defined.

Another aim of the productivity plug-in connected to Eclipse is to continuously

track the different tasks developers work on, the time they individually require

for carrying out those tasks, and the file operations needed to be performed

within a given development environment. During the monitoring process the

plug-in saves which file the developer edited and saved, when they started an

application server, and which project or sub-project the user was involved in,

and in which perspective.

The plugin measures the user interaction and hence the difficulty of use of each

tool. The Role Specification tool was found to be the hardest to use, requiring

almost twice as many interactions as the other tools.

159

7.5 Summary

As discussion in this chapter, the Development Tools fulfil all the requirements

identified by the Chapter 1 after laboratory testing evaluation. The

questionnaires and productivity plug-in data prove the development tools are

extremely useful for developers to build the smart space application base on

PECES middleware. These results also show an experienced and highly

educated developer finds the Development Tools much easier to use than

general users without background knowledge of the middleware.

160

Chapter 8 Conclusions

Through all set of Development Tools has been shown and experimental use

case are progressed their respective aims, It is worth revisiting their

achievements, while also looking beyond to how the work could be progressed

in the future. In this chapter, we describe the summary of the thesis in section

8.1. We also list the contributions and show the benefits to use the

developments in section 8.2. The work maybe done in the future are list in the

section 8.3.

8.1 Thesis Summary

The work described in this thesis is aimed to providing a set of tools to support

and help the application developer to build applications using the PECES

middleware and simulate the smart space dynamics such as device

connections and context changes, etc. The development tools which are

implemented as Eclipse plugins and integrated into the Eclipse Integrated

Development Environment (IDE) can ease the middleware development

process. The development tools provide graphical user interface (GUI) to

configure, model and test the PECES middleware based smart space

application.

There were a number of issues need to be considered and implemented during

the development of the tools:

- Application developers require a set of tool to help them define devices

which running in the application. They need to define the specification of

the devices, such as name, communication plug-in, type, context,

security trust chain, service provided, and role specification.

- If the application developer want to simulate and validate their

applications before deploy it in real devices. A set of event and their

sequence should be defined to simulate a real life circumstances for the

applications and the services.

- After the definition of devices, environment and event, to validate the

application, the application should be real run and some output can be

generated to analysis the application.

161

To address these issue, there are three different toolset was developed. As

described in Chapter 3, the configuration tool was designed and implemented to

solve the first issue. This toolset consist a series of components:

- Device Definition Tool: provides a GUI to help developer defined devices.

There are several device icons in the toolbar where developers can use

to configure the device. By right click developer is able to modify device

name, type and communication plug-in. Different type will be shown as

different colour.

- Ontology Definition Tool: provides a interface to define static context

information relevant to the device and this information will be used by the

PECES middleware context components during the model execution.

- Security Tool: provides mechanism to generate public and private keys

for each device by using OpenSSL tool. It will also provide mechanism to

generate certificates. Application developers are able to generate

asymmetric and symmetric cryptography keys and certificates for their

devices.

- Service Definition Tool: provides a simple interface to the developers that

allow the automatic generation of all the code needed to instantiate and

make use of a PECES-based service.

- Role Specification Definition Tool: provides an interface where

developers can define the different rules that the application will use to

dynamically form groups of collaborative devices.

- Hierarchical Role Specification Tool: provides a interface to define

smartspaces hierarchically.

In chapter 4, we described how to define dynamic context information, event

and sequence of event by using modelling tool. This toolset consist a series of

components:

- Event Editor: is used to edit single event definitions. Type, Contributing

Devices, Description and Duration (Delay) can be defined in the wizard

and later altered on the Overview Page. If the type is Device Context

Change or Connection, further definition need to be done in the Context

and Connection Page.

162

- Event Diagram Editor: provide an easy way to define the sequence of the

events. This sequence is used to be running in testing tool.

A testing tool is developed to support the application developer to execute,

simulate and validate the application defined by the Configuration Tool and the

Modelling Tool. The Testing Tool allows application developer to start, stop and

suspend the application and provide evaluation of the application results in a

preferred format. Testing Tool provide the Execution Engine, the Connection

Engine, the Instantiation Engine and the Event Engine to execute the

application. A log file will be generated as an output to developer to evaluation.

Testing tool has a Visualization Page which provides a engine to analysis the

log file and show the result of application running as a more intuitive approach.

Testing Tool is described in Chapter 5.

In Chapter 6, I built a real application trade show system which has three sub

systems, Smart booth navigation, Smart booth monitoring and taxi booking.

Scenario of the application and how to build the application by using Testing

Tool has been demonstrated.

At last in Chapter 7, we evaluate the Development tool by Laboratory Testing

and Demonstration Evaluation. We collect the data by questionnaire and

productivity plug-in in Eclipse. All data in evaluation prove the research of

development tool meet the requirement and hypothesis we describe in first

chapter. The evaluation result also shows the PECES Development Tools are

useful for experienced developers of PECES application rather than general

users without any background knowledge of smart space and the middleware.

8.2 List of Contributions and Benefits of Using PECES Development Tools

Application developers might be able to develop application without using the

development tools but they cannot properly test their application without using

the development tools provided by PECES consortium. It can be argued that

using the development tools hugely reduce the development efforts and hide

complexity provided by the PECES Middleware. The following sections highlight

the benefits of using each tool by comparing with the steps that have to be

taken by the developers to develop PECES middleware based applications

without using the tools.

163

a) PECES General Project

This tool is used to generate a PECES General Project Tool with three different

folders namely Configuration Tool, Modelling Tool and Testing Tool to store

different configuration, modelling and testing related files. This step is

necessary to provide a consistent interface between the tools. This project also

enables the user to locate necessary device java projects in the Eclipse

workspace, to copy necessary files generated by other tools and execute the

devices by the Testing Tool.

b) PECES Device Definition

The PECES Device Definition Tool provides features for initial configuration of

the devices which will be used in the application. Using this tool, developers can

generate necessary device Java middleware projects with a few mouse clicks

and this tool provide device image based visualisation and this device image is

very useful during the testing and analysing phase of the application

development. If they don’t use this tool, developers should create four different

java projects and write java code for each device with appropriate middleware

functionalities and communication plug-ins. In this case, application developers

are not only writing java code for each device but also need to have very

extensive knowledge of the PECES middleware.

c) PECES Ontology Instantiation Definition

The PECES Ontology Instantiation Tool provides features for Ontology

Instantiation for the smart space application. Using this tool, developers can

automatically load defined devices and its functionalities from the project.xml file

generated by the Device Definition Tool. Application developers can add other

context properties such as Services, Smart Space, etc. for their specific

application. Once the developers completed context ontology definition of their

application, this tool will generate project.owl file as well as device related

ontologies for each device. Without using this tool, application developers would

have to use Protege or another available ontology instantiation tool to define

devices and functionalities and generate a common owl file. They would then

need to manually generate the device context information for each device

(the .pctx files). This would be a hugely time consuming task without this tool. .

164

d) PECES Security Configuration

The PECES Security Configuration Tool provides features to easily generate

certificates and keys for the devices selected for the applications. The interface

gathers necessary information for root certificate, intermediate certificate (for

trust chain) and client certificate in one place. All of the necessary process of

generating, copying and naming the certificate is done by this tool. If the

developers do not use this tool, they would have to use the OpenSSL command

line interface and provide necessary commands step by step. They have to

repeat this for root certificate, trust chain and client certificate for each device.

Once they completed this process, they would need to copy necessary root

certificate, trust chain and client certificate and keys to the appropriate folders of

the device Java project. This is a hugely time consuming and extremely error

prone task.

e) PECES Service Definition

The PECES Service Definition tool reduces the learning curve of the PECES

middleware developer and accelerates the development process of a PECES

application. Developers do only need to focus on what kind of services they

want to offer, and their actual implementation. The tool takes care of generating

the code necessary to instantiate the service, making it public via the PECES

middleware to other smart space partners and automatically generating all

necessary proxy classes to allow clients of the service to interact with it via

PECES in a simple way.

f) PECES Role Specification Definition

Role Specifications are a key element in the development of a PECES

application, since the grouping of devices in smart spaces will be determined by

these definitions. In addition, Role Specifications are closely related to context

ontologies, another key element with a relatively large learning curve.

The Role Specification tool is necessary, since developers are able to get the

following benefits:

- They are able to get the greatest potential offered by the context

ontologies with minor effort, since the Role Specification tool assists the

165

developer by showing just the necessary information and hiding most of

the complexity.

- They are able to observe the preliminary results of the Role

Specifications they are writing, as they make changes to the Role

Specification under development. This fact can ensure a high rate of

correctness in the behavior of the smart space formation process during

the development phase, even before any simulation is run.

- Since all the code resulting from the definition of the Role Specifications

is automatically generated, correctness is ensured and the development

process is greatly speeded up.

g) PECES Hierarchical Role Specification

The possibility to work with Hierarchical Role Specifications is one of the latest

and most advanced features offered by the PECES Middleware. This kind of

Role Specifications defines super-smart spaces as unions of basic smart

spaces. It is not as well used as the basic version, since its use is only foreseen

in applications with very specific needs. Since the code necessary to work with

these Role Specifications is not straightforward to write, developers can take

advantage of the PECES Hierarchical Role Specification tool to generate it, just

by describing which groups they need to join.

h) Event Editor

The dynamics definition itself would be much harder without this editor because

plain XML formatted information needs to be passed to the Testing Tool. The

Event Editor covers all kind of dynamic specification in a dynamic, drag and

drop and “click only” manner. This helps greatly in defining a complex testing

scenario and could help significantly in application validation and testing of the

core functionality of an application.

i) Event Diagram Editor

The Event Diagram Editor can be used immediately after the developer has

defined the needed dynamics with the Event Editor tool. This is a very simple

graphical, graph visualization tool where a circuit-free graph can be defined

where the nodes are events. Every event has its delay and can be reused

multiple times. With the help of this and the previous tool the developer can

166

assemble complex and sophisticated simulations with a few clicks and drags,

instead of dealing with manually defined scripts or XML data sets.

j) PECES Testing Tool

The Testing Tool provides support to execute, analyse and then visualise the

application test configured by the previous tools. In addition to this, the tool

provides a visualisation of the log data of the test. This visualisation enables

developers to clearly understand the PECES middleware functionality and

evaluate its performance on the defined scenarios. Based on this, they can

easily reconfigure their application and test it again until they get required

results. Without this tool, application developers may not be able to test the

modeled smart space applications, device connections and device context

changes.

8.3 Future Work

There are still some room for improvements for the current version of the

development tools.

- At present, application execution, testing and validation is running in the

Eclipse platform, all application devices are assumed and generated as a

Java project. That means the device need support java application if

developer want to deploy the application to device directly. As can be

seen in Device Definition Tool, it shows several different device icons.

Nowadays, lot of devices especially in mobile devices are using other

operation system such as Android, windows, IOS, Symbian, etc. The

future work of this part is design a mechanism to generate appropriate

code for application due to which kind of device is chosen.

- As describe in section 3.4, security tool can generate essential certificate

and key for the applications. However, this tool has been optimized to

support X.509 presently. It cannot support other security format well in

this version. In the future, an advanced security tool will give more

options to developer by use openssl features.

- PECES middleware supports building applications with multiple numbers

of smart spaces. Even though all current the Peces Development Tools

provide support for building application with multiple smart spaces except

167

the Peces Testing Tool’s Visualization Page only supports two smart

spaces visualisation at the moment. We are currently looking at the

different options to provide support for visualizing multiple smart spaces.

8.4 Summary

One of the main objectives of the PECES middleware is to provide a

cooperation layer that enables seamless interaction and coordination among

devices in and across smart spaces in a secure manner. This thesis presented

a set of tools which provide support for context aware and secure pervasive

computing based application development. The tools provide support for device

configuration, ontology instantiation, security configuration and role specification.

The tools also enable dynamic modelling of the network connections and

context changes. Finally, the tools provide support to test the smart space

application performance and visualise the test results. The feedback of the

Development Tools suggests that tools are useful for smart space application

development. The evaluators’ comments have been considerate and integrated

in the tools already.

168

References

[1]. PECES Project, http://www.ict-peces.eu, last accessed June 2012

[2]. EMMA Project, http://www.emmaproject.eu, last accessed December 2010

[3]. K. Selvarajah, C. Shooter, L. Liotti and A. Tully: Heterogeneous Wireless Sensor

Networks for Transportation Applications, International Journal of Vehicular

Technology (Special Issue on Vehicular Ad Hoc Networks), Feb 2011

[4]. R. Grimm, T. Anderson, B. Bershad, D. Wetherall, “A system architecture for

Pervasive Computing”, proceedings of the 9th ACM SIGOPS European

Workshop, pp. 177-182, Denmark, September 2000.

[5]. H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard Ontology for

Ubiquitous and Pervasive Applications. In 1st Annual Int’l Conf. on Mobile and

Ubiquitous systems:Networking and Services, Aug. 2004..

[6]. Edd Dumbill. Finding friends with xml and rdf. In IBM developerWorks, XML

Watch. xmlhack.com, June 2002.

[7]. PECES Consortium, PECES Addressing Scheme Specification, Deliverable D.3.1,

PAS, http://www.ict-peces.eu, last accessed June 2012

[8]. PECES Consortium, PECES Communication Mechanisms and Registry Interface

Specification, Deliverable D.3.2, PAS, http://www.ict-peces.eu, last accessed June

2012

[9]. C. Becker, G. Schiele, H. Gubbels, K. Rothermel: BASE - A Micro-broker based

Middleware For Pervasive Computing, In Proceedings of the 1st IEEE

International Conference on Pervasive Computing and Communications, pp. 443-

451, Fort Worth, USA, March 2003

[10]. Eclipse IDE, Eclipse Website, http://www.eclipse.org/, June 2012

[11]. B. Lagesse, M. Kumar, J. M. Paluska and M. Wright, DTT: A Distributed Trust

Toolkit for Pervasive Systems,

http://www.ioc.ornl.gov/publications/lagesseDTT.pdf, last accessed June 2012

[12]. M. Roman and R. H. Campbell, A Middleware-based Application Framework for

Active Space Applications, Proceedings of the ACM/IFIP/USENIX International

Conference on Middleware, 2003

[13]. M. Roman and R. Campbell, Gaia: Enabling Active Spaces, 9th ACM SIGOPS

European Workshop, pp.229‐234, September 2000

[14]. PECES Consortium, PECES Secure Middleware Specification, Deliverable D 4.1,

PAS, http://www.ict-peces.eu, last accessed June 2012

[15]. J. Barton and V. Vijayaraghavan, UBIWISE, A Ubiquitous Wireless

Infrastructure Simulation Environment,

http://www.hpl.hp.com/techreports/2002/HPL-2002-303.html, last accessed June

2012

[16]. H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Kitani, N. Shibata, K.

Yasumoto and M. Ito, UbiREAL: Realistic Smartspace Simulator for Systematic

Testing, Proceedings of the 8th International Conference on Ubiquitous

Computing (UbiComp2006), LNCS4206, pp. 459-476, Sep. 2006.

[17]. PECES Ontologies, http://www.ict-peces.eu/ont/, last accessed June 2012

[18]. Productivity plug-in version 3 http://www.ict-peces.eu, last accessed June 2012

http://www.ict-peces.eu/
http://www.ict-peces.eu/
http://www.ict-peces.eu/
http://www.ict-peces.eu/
http://www.ict-peces.eu/

169

[19]. D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, “Project Aura: Towards

Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, vol. 1, no. 2,

pp. 22-31, April-June 2002.

[20]. B. Johanson, A. Fox, and T. Winograd, “The Interactive Workspaces Project:

Experiences with Ubiquitous Computing Rooms”, IEEE Pervasive Computing, pp.

67‐74, April‐June, 2002

[21]. Chun-Feng Liao, Ya-Wen Jong and Li-Chen Fu, Toward Reliable Service

Management in Message-Oriented Pervasive Systems, IEEE Transactions on

Services Computing, July-Sept. 2011, Volume: 4 Issue: 3, pp. 183 - 195.

[22]. Protégé website: http://protege.stanford.edu/, last accessed June 2012

[23]. R. Zhao, K. Selvarajah and N. A. Speirs, “ Development Tools for Pervasive

Computing in Embedded Systems (PECES) Middle ware”, Proceedings of the

International Conference on Wireless Information Networks and Systems

(WINSYS), 2011

[24]. OWL-S: Semantic Markup for Web Services.

http://www.w3.org/Submission/OWL-S/

[25]. WGS84 Geo Positioning: an RDF vocabulary

http://www.w3.org/2003/01/geo/wgs84_pos

[26]. FOAF Vocabulary Specification. http://xmlns.com/foaf/spec/

[27]. Time Ontology in OWL. http://www.w3.org/TR/owl-time/

[28]. SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/

[29]. RDF Premier. http://www.w3.org/TR/REC-rdf-syntax/

[30]. Crossbow. http://www.xbow.com/

[31]. SPARQL Query Results XML Format.http://www.w3.org/TR/rdf-sparql-XMLres/

[32]. Serializing SPARQL Query Results in JSON

http://www.mindswap.org/~kendall/sparql-results-json/

[33]. CSV. http://en.wikipedia.org/wiki/Comma-separated_values

[34]. C. Becker, M. Handte, G. Schiele, K. Rothermel: PCOM - A Component System

for Adaptive Pervasive Computing Applications. In Proceedings of the 2nd IEEE

International Conference on Pervasive Computing and Communications, Orlando,

USA

[35]. M. Haroon, M. Handte and P. J. Marrón:. Generic Role Assignment: A Uniform

Middleware Abstraction for Configuration of Pervasive Systems, In Proceedings

of PerWare Workshop at the Seventh Annual IEEE International Conference on

Pervasive Computing and Communications (PerCom 2009), March 2009

[36]. CCITT, Recommendation X.509, “The Directory-Authentication Framework”,

Geneva, 1989

[37]. Anna V. Zhdanova and Uwe Keller: Choosing an Ontology Language

[38]. M. Sintek, S. Decker, “TRIPLE - An RDF Query, Inference, and Transformation

Language”, DDLP'2001, Japan, October 2001.

[39]. M. Sintek, S. Decker, “TRIPLE - A Query, Inference, and Transformation

Language for the Semantic Web”. International Semantic Web Conference

(ISWC), Sardinia, June 2002.

[40]. OWL 2 Web Ontology Language Structural Specification and Functional-Style

Syntax (Second Edition): http://www.w3.org/TR/owl2-syntax/

[41]. OWL Web Ontology Language Overview: http://www.w3.org/TR/owl-features/

[42]. Apache Jena: http://jena.apache.org/

[43]. RDF Schema RDFS: http://www.obitko.com/tutorials/ontologies-semantic-

web/rdf-schema-rdfs.html

[44]. Open Knowledge Base Connectivity Home Page: http://www.ai.sri.com/~okbc/

http://en.wikipedia.org/wiki/Comma-separated_values
http://iv.cs.uni-bonn.de/wg/snpc/staff/haroon/
http://iv.cs.uni-bonn.de/wg/snpc/staff/handte/
http://iv.cs.uni-bonn.de/wg/snpc/staff/leader/marron/
http://www.w3.org/TR/owl-features/

170

[45]. Openssl home page: http://www.openssl.org/

[46]. D. Pilone, N. Pitman: UML 2.0 in a Nutshell, 2
nd

 Edition, O'Reilly Media, June,

2005

[47]. A.D. Joseph, J.A. Tauber, and M.F. Kaashoek, “Mobile Computing with the

Rover Toolkit”, IEEE Transactions on Computers: Special issue on Mobile

Computing, vol. 46, no.3, pp. 337-352, March 1997

[48]. T. Kindberg, A. Fox, “System Software for Ubiquitous Computing”, IEEE

pervasive computing, vol. 1, no. 1, pp.70-81, January-March 2002

[49]. G. Biegel, and V. Cahill : “A Framework for Developing Mobile, Context-aware

Applications”, Proc. of 2nd IEEE Int’l Conf. on Pervasive Computing and Com
munications (PerCom2004), pp. 361–365, 2004.

[50]. T. Yamazaki, H. Ueda, A. Sawada, Y. Tajika, and M. Minoh : “Networked

Appliances Collaboration on the Ubiquitous Home”, Proc. of 3rd Int’l Conf. on

Smarthomes and health Telematic (ICOST 2005), Vol. 15, pp. 135–142, 2005.

[51]. E. Chan, J. Bresler, J. Al-Muhtadi, and R. Campbell : “Gaia Microserver: An

Extendable Mobile Middleware Platform”, Proc. of 3rd IEEE Int’l Conf. on

Pervasive Computing and Communications (PerCom2005), pp. 309–313, 2005.

[52]. K. Sanmugalingam, and G. Coulouris : “A Generic Location Event Simulator”,

Proc. of 4th Int’l Conf. on Ubiquitous Computing (UbiComp2002), pp. 308–

315 ,2002.

[53]. Google Map API:

https://developers.google.com/maps/documentation/staticmaps/index?hl=zh-en

[54]. Ekahau: http://www.ekahau.com/

[55]. Jerry R. Hobbs. A daml ontology of time.

http://www.cs.rochester.edu/~ferguson/daml/daml-time-20020830.txt, 2002.

[56]. Feng Pan and Jerry R. Hobbs. Time in owl-s. In Proceedings of AAAI-04 Spring

Symposium on Semantic Web Services, Stanford University, California, 2004.

[57]. Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems:

Representation and Inference in the Cyc Project. Addison-Wesley, February 1990.

[58]. David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on

regions and connection. In Proceedings of the 3rd International Conference on

Knowledge Representation and Reasoning, 1992.

[59]. Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware

pervasive computing environments. Special Issue on Ontologies for Distributed

Systems, Knowledge Engineering Review, 2003.

[60]. Filip Perich. MoGATU BDI Ontology, 2004.

[61]. Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin, and

Katia Sycara. Authorization and privacy for semantic web services. AAAI 2004

Spring Symposium on Semantic Web Services, March 2004.

[62]. X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung. Ontology-Based Context

Modeling and Reasoning using OWL. In Context Modeling and Reasoning

Workshop at PerCom, pp. 18–22, March 2004.

[63]. D. Preuveneers, J. v.d.Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx, Y.

Berbers,K. Coninx, V. Jonckers, and K. De Bosschere. Towards an Extensible

Context Ontology for Ambient Intelligence. In 2nd European Symposium on

Ambient Intelligence, Nov. 2004.

[64]. N. Belhanafi, Ch. Taconet, and G. Bernard. CAMidO, A Context-Aware

Middleware Based on Ontology Meta-Model. In Workshop on Context

Awareness for Proactive Systems, pp. 93–103, June 2005.

[65]. Resource Description Language. http://www.w3.org/RDF/.

[66]. RDF Vocabulary Description Language 1.0: RDF Schema.

http://www.w3.org/TR/rdf-schema/.

http://www.openssl.org/
https://developers.google.com/maps/documentation/staticmaps/index?hl=zh-en
http://www.ekahau.com/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/

171

[67]. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.w3.org/Submission/SWRL/.

[68]. Reto Krummenacher, Holger Lausen, Thomas Strang. Analyzing the Modeling of

Context with Ontologies. Int'l Workshop on Context-Awareness for Self-

Managing Systems

[69]. Michael H. Coen. Design principles for intelligent environments. In Proceedings

of AAAI/IAAI 1998, pages 547–554, 1998.

[70]. J.W. Lloyd. Foundations of Logic Programming. Springer, 1987.

[71]. J. Kohl, C. Neuman “The Kerberos Network Authentication Service (v5)”, IETF

RFC 1510, September 1993.

[72]. Bresson, O. Chevassut, D. Pointcheval, J. Quisquater, "Provably Authenticated

Group Diffie-Hellman Key Exchange" Proceedings of the Eight ACM conference

on Computer and Communications Security, 2001.

[73]. R. Mayrhofer, H. Gellersen, M. Hazas, "Security by Spatial Reference: Using

Relative Positioning to Authenticate Devices for Spontaneous Interaction",

International Conference on Ubiquitous Computing, 2007.

[74]. A. Varshavsky, A. Scannell, A. LaMarca, E. de Lara, "Amigo: Proximity-Based

Authentication of Mobile Devices", International Conference on Ubiquitous

Computing, 2007.

[75]. Y. Zhang, W. Liu, W. Lou, and Y. Fang, "Securing Sensor Networks with

Location-Based Keys," presented at IEEE Wireless Communications and

Networking Conference (WCNC 2005), New Orleans, LA, 2005.

[76]. D. Carman, P. Kruus, B. Matt, "Constraints and Approaches for Distributed

Sensor Network Security", NAI Labs, Tech. Rep. #00-010, September 2000.

[77]. A. Perrig, R. Canetti, J. Tygar, D. Song, “The TESLA broadcast authentication

protocol”, RSA CryptoBytes, 2002.

[78]. S. Kent, R. Atkinson, "Security Architecture for the Internet Protocol", IETF RFC

2401, November 1998.

[79]. T. Dierks, E. Rescorla, "The Transport Layer Security (TLS) Protocol", IETF

RFC 4346, April 2006.

[80]. A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, J. D. Tygar, "SPINS: Security

Protocols for Sensor Networks", Wireless Networks, vol. 8, pp. 189–199, 2002.

[81]. C. Karlof, N. Sastry, D. Wagner "TinySec: A Link Layer Security Architecture

for Wireless Sensor Networks", Second International Conference on Embedded

Networked Sensor Systems, pp. 162–175, New York, USA, 2004.

[82]. S. Slijepcevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, M. Srivastava, "On

Communication Security in Wireless Ad-Hoc Sensor Networks", Proceedings of

the Eleventh IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 2002.

[83]. S. Basagni, K. Herrin, D. Bruschi, E. Rosti, “Secure Pebblenets”, Proceedings of

ACM International Symposium on Mobile Ad Hoc Networking and Computing,

2001.

[84]. D. Liu, P. Ning, R. Li, "Establishing Pair-wise Keys in Distributed Sensor

Networks", in ACM Transactions on Information and System Security, Vol. 8,

No.1, pages 41-77, February 2005.

[85]. S. Zhu, S. Setia, Sushil Jajodia, " LEAP: Efficient Security Mechanisms for

Large-scale Distributed Sensor Networks", Centre for Secure Information

Systems, George Mason University, ACM Press, pp. 62-72, 2003.

[86]. R. Roman, J. Zhou, J. Lopez, "Applying Intrusion Detection Systems to Wireless

Sensor Networks", Consumer Communications and Networking Conference

(CCNC'06), pp. 640-644 IEEE Press, Las Vegas, USA. January 2006.

http://www.w3.org/Submission/SWRL/

172

[87]. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, D. Ganesan,

"Building Efficient Wireless Sensor Networks with Low-Level Naming", ACM

Symposium on Operating Systems Principles, pp.146-159, 2001.

[88]. ReoLive Project by “Centrum Wiskunde & Informatica - CWI”

http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/NetworkIdentifiers, last accessed

February 2009.

[89]. H. Baldus, K. Klabunde, G. Müsch, “Reliable Set-Up of Medical Body-Sensor

Networks”, Lecture Note in Computer Science, pp. 353-363, 2004.

[90]. H. Fientein, R. Sandhu, E. Coyne, C. Youman, “Role Based Access Control

Models”, IEEE Computer, pp. 38-47, 1996.

[91]. Sesame: RDF Schema Querying and Storage. http://www.openrdf.org/.

[92]. L. Giuri, P. Iglio, “Role Templates for Content-Based Access Control”

Proceedings of the Second ACM Workshop on Role Based Access Control, pp.

153-159, 1997.

[93]. R. Thomas, "Team-Based Access Control (TMAC): A Primitive for Applying

Role-Based Access Controls in Collaborative Environments", ACM Workshop on

Role Based Access Control, 1997.

[94]. A. Abou-El-Kalam, et al., "Organization Based Access Control", IEEE Fourth

International Workshop on Policies for Distributed Systems and Networks, 2003.

[95]. G. Zhang, M. Parashar, "Dynamic Context-aware Access Control for Grid

Applications", International Conference on Grid Computing, 2003.

[96]. A. Herzberg, Y. Mass, J. Mihaeli, “Access Control Meets Public Key

Infrastructure or: As Singing Roles to Strangers”, Proceedings of the IEEE

Symposium on Security and Privacy, pp. 2-14, 2000.

[97]. R. Hayton, J. Bacon, K. Moody, “Access Control in an Open Distributed

Environment”, Proceedings of the IEEE Symposium on Security and Privacy, pp.

3-14, 1998.

[98]. S. Jajodia, P. Samarati, V. Subrahmanian, E. Bertino, “A unified Framework for

Enforcing Multiple Access Control Policies”, Proceedings of the 1997 ACM

International SIGMOD Conference on Management of Data, May 1997.

[99]. T. Woo, S. Lam, “Designing a Distributed Authorization Service”, Processing of

IEEE INFOCOM, 1998.

[100]. Arun Mukhija and Martin Glinz, "The CASA Approach to Autonomic

Applications", Proceedings of the 5th IEEE Workshop on Applications and

Services in Wireless Networks (ASWN 2005), Paris, France, June-July 2005.

[101]. Component Synthesis with Model Integrated Computing (CoSMIC),

http://www.dre.vanderbilt.edu/cosmic/, last accesed February 2009.

[102]. N. Wang, K. Balasubramanian, C. Gill, “Towards a real-time corba component

model,” in OMG Workshop On Embedded & Real-Time Distributed Object

Systems, Washington, D.C.,July 2002, Object Management Group.

[103]. R. Vanegas, J. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and D. E. Bakken,

“QuO’s Runtime Support for Quality of Service in Distributed Objects,”

Proceedings of Middleware 98, the IFIP International Conference on

Distributed Systems Platform and Open Distributed Processing, September

1998.

[104]. IST-MUSIC, http://www.ist-music.eu/, last accessed Feb 2011.

[105]. The MADAM project, http://www.ist-music.eu/MUSIC/madam-project, last

accessed Feb 2011.

[106]. PLASTIC, http://www.ist-plastic.org/, last accessed Feb 2011.

http://www.openrdf.org/

173

Appendix 1 - project.xml

<?xml version="1.0" encoding="UTF-8"?>

<tns:projectSettings xmlns:tns="http://www.example.org/project"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <tns:general>

 <tns:projectName>/DEMOPROJECT</tns:projectName>

 <tns:projectFolder>/C:/runtime-

EclipseApplication//DEMOPROJECT</tns:projectFolder>

 <tns:ontologyURL>http://www.ict-peces.eu/ont/smartspace.owl</tns:ontologyURL>

 <tns:ontologyURL>http://www.ict-peces.eu/ont/device.owl</tns:ontologyURL>

 </tns:general>

 <tns:deviceInstances>

 <tns:contextRDF>project.owl</tns:contextRDF>

 <tns:device>

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 <tns:Type>Laptop</tns:Type>

 <tns:LocX>324</tns:LocX>

 <tns:LocY>185</tns:LocY>

 <tns:coordinatorRole>true</tns:coordinatorRole>

 <tns:gatewayRole>false</tns:gatewayRole>

 <tns:CommunicationMethod>EmulationTransceiver</tns:CommunicationMethod>

 <tns:DeviceSecurity>

 <tns:CertName>certificate-unewdemo</tns:CertName>

 <tns:TrustLevel>full</tns:TrustLevel>

 </tns:DeviceSecurity>

 <tns:service>

 <tns:name>GuideService</tns:name>

 <tns:scope>Space</tns:scope>

 </tns:service>

 <tns:roleSpecificationScope>Space</tns:roleSpecificationScope>

 <tns:roleSpecification>

 <tns:id>TRADEGUIDE.pqry</tns:id>

 <tns:roleSpecificationTrustLevel>Don't

apply</tns:roleSpecificationTrustLevel>

 </tns:roleSpecification>

 </tns:device>

 <tns:device>

 <tns:id>1</tns:id>

 <tns:name>LOCATIONSYSTEM</tns:name>

 <tns:Type>Laptop</tns:Type>

 <tns:LocX>161</tns:LocX>

 <tns:LocY>182</tns:LocY>

 <tns:coordinatorRole>false</tns:coordinatorRole>

 <tns:gatewayRole>true</tns:gatewayRole>

 <tns:CommunicationMethod>EmulationTransceiver</tns:CommunicationMethod>

 <tns:DeviceSecurity>

 <tns:CertName>certificate-unewdemo</tns:CertName>

 <tns:TrustLevel>full</tns:TrustLevel>

 </tns:DeviceSecurity>

 <tns:service>

 <tns:name>LocationService</tns:name>

 <tns:scope>Space</tns:scope>

 </tns:service>

 </tns:device>

 <tns:device>

 <tns:id>2</tns:id>

 <tns:name>VISITOR_IPAQ</tns:name>

174

 <tns:Type>IPAC614c</tns:Type>

 <tns:LocX>468</tns:LocX>

 <tns:LocY>112</tns:LocY>

 <tns:coordinatorRole>false</tns:coordinatorRole>

 <tns:gatewayRole>false</tns:gatewayRole>

 <tns:CommunicationMethod>EmulationTransceiver</tns:CommunicationMethod>

 <tns:DeviceSecurity>

 <tns:CertName>certificate-unewdemo</tns:CertName>

 <tns:TrustLevel>full</tns:TrustLevel>

 </tns:DeviceSecurity>

 </tns:device>

 <tns:device>

 <tns:id>3</tns:id>

 <tns:name>VISITOR_HTC</tns:name>

 <tns:Type>htc</tns:Type>

 <tns:LocX>460</tns:LocX>

 <tns:LocY>304</tns:LocY>

 <tns:coordinatorRole>false</tns:coordinatorRole>

 <tns:gatewayRole>false</tns:gatewayRole>

 <tns:CommunicationMethod>EmulationTransceiver</tns:CommunicationMethod>

 <tns:DeviceSecurity>

 <tns:CertName>certificate-unewdemo</tns:CertName>

 <tns:TrustLevel>full</tns:TrustLevel>

 </tns:DeviceSecurity>

 </tns:device>

 </tns:deviceInstances>

</tns:projectSettings>

175

Appendix 2 - project.owl

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Service.owl#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:j.2="http://www.ict-peces.eu/ont/device.owl#"

 xmlns:j.1="http://www.ict-peces.eu/ont/smartspace.owl#">

 <owl:Ontology rdf:about="http://www.example.com/project.owl">

 <owl:imports rdf:resource="http://www.ict-peces.eu/ont/smartspace.owl"/>

 <owl:imports rdf:resource="http://www.ict-peces.eu/ont/device.owl"/>

 </owl:Ontology>

 <j.1:SmartSpace rdf:about="http://www.ict-peces.eu/ont/smartspace.owl#BoothNavigation"/>

 <j.2:Member rdf:about="http://www.ict-peces.eu/ont/device.owl#VISITOR_IPAQ"/>

 <j.1:SmartSpace rdf:about="http://www.ict-peces.eu/ont/smartspace.owl#BoothMonitoring"/>

 <j.2:Gateway rdf:about="http://www.ict-peces.eu/ont/device.owl#LOCATIONSYSTEM">

 <j.0:provides>

 <j.0:Service rdf:about="http://www.daml.org/services/owl-s/1.1/Service.owl#LocationService"/>

 </j.0:provides>

 </j.2:Gateway>

 <j.2:Coordinator rdf:about="http://www.ict-peces.eu/ont/device.owl#GUIDESYSTEM">

 <j.0:provides>

 <j.0:Service rdf:about="http://www.daml.org/services/owl-s/1.1/Service.owl#GuideService"/>

 </j.0:provides>

 </j.2:Coordinator>

 <j.2:Member rdf:about="http://www.ict-peces.eu/ont/device.owl#VISITOR_HTC">

 <j.1:consumes rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl#GuideService"/>

 </j.2:Member>

 <j.1:SmartSpace rdf:about="http://www.ict-peces.eu/ont/smartspace.owl#TaxiBooking"/>

</rdf:RDF>

176

Appendix 3 - GuideSYSTEMContext.pctx

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:j.0="http://www.daml.org/services/owl-s/1.1/Service.owl#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:j.2="http://www.ict-peces.eu/ont/device.owl#"

 xmlns:j.1="http://www.ict-peces.eu/ont/smartspace.owl#">

 <owl:Class rdf:about="http://www.ict-peces.eu/ont/device.owl#Coordinator"/>

 <j.2:Coordinator rdf:about="http://www.ict-peces.eu/ont/device.owl#GUIDESYSTEM">

 <j.0:provides rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl#GuideService"/>

 <j.1:consumes rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl#LocationService"/>

 </j.2:Coordinator>

</rdf:RDF>

177

Appendix 4 - events.xml

<?xml version="1.0" encoding="UTF-8"?>

<tns:simulationEventList xmlns:tns="http://www.example.org/project"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

diagramName="new_diagram.peces.eventdiagram">

 <tns:simulationEvent>

 <tns:name>LOCATIONSYSTEM_ON</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>deviceSwitchON</tns:type>

 <tns:delay>2000</tns:delay>

 <tns:contributingDevice>

 <tns:id>1</tns:id>

 <tns:name>LOCATIONSYSTEM</tns:name>

 <tns:URI />

 </tns:contributingDevice>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>VISITOR_HTC_ON</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>deviceSwitchON</tns:type>

 <tns:delay>5000</tns:delay>

 <tns:contributingDevice>

 <tns:id>3</tns:id>

 <tns:name>VISITOR_HTC</tns:name>

 <tns:URI />

 </tns:contributingDevice>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>VISITOR_IPAQ_ON</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>deviceSwitchON</tns:type>

 <tns:delay>5000</tns:delay>

 <tns:contributingDevice>

 <tns:id>2</tns:id>

 <tns:name>VISITOR_IPAQ</tns:name>

 <tns:URI />

 </tns:contributingDevice>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>GUIDESYSTEM_ON</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>deviceSwitchON</tns:type>

 <tns:delay>10000</tns:delay>

 <tns:contributingDevice>

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 <tns:URI />

 </tns:contributingDevice>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>DevConnection</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>connectionLinkChange</tns:type>

 <tns:delay>15000</tns:delay>

 <tns:contributingDevice />

 <tns:connectionLinkChanges>

 <tns:connectionLinkChange>

 <tns:source>

 <tns:id>0</tns:id>

178

 <tns:name>GUIDESYSTEM</tns:name>

 </tns:source>

 <tns:target>

 <tns:id>1</tns:id>

 <tns:name>LOCATIONSYSTEM</tns:name>

 </tns:target>

 <tns:type>connect</tns:type>

 </tns:connectionLinkChange>

 <tns:connectionLinkChange>

 <tns:source>

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 </tns:source>

 <tns:target>

 <tns:id>3</tns:id>

 <tns:name>VISITOR_HTC</tns:name>

 </tns:target>

 <tns:type>connect</tns:type>

 </tns:connectionLinkChange>

 <tns:connectionLinkChange>

 <tns:source>

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 </tns:source>

 <tns:target>

 <tns:id>2</tns:id>

 <tns:name>VISITOR_IPAQ</tns:name>

 </tns:target>

 <tns:type>connect</tns:type>

 </tns:connectionLinkChange>

 </tns:connectionLinkChanges>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>context_change</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>deviceContextChange</tns:type>

 <tns:delay>10000</tns:delay>

 <tns:contributingDevice>

 <tns:id>1</tns:id>

 <tns:name>LOCATIONSYSTEM</tns:name>

 <tns:URI>http://www.ict-

peces.eu/ont/device.owl#LOCATIONSYSTEM</tns:URI>

 </tns:contributingDevice>

 <tns:contextChanges>

 <tns:contextChange>

 <tns:instance>LocationService</tns:instance>

 <tns:URI>http://www.daml.org/services/owl-

s/1.1/Service.owl#LocationService</tns:URI>

 <tns:property>provides</tns:property>

 <tns:action>delete</tns:action>

 </tns:contextChange>

 </tns:contextChanges>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>DevDisconnection</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>connectionLinkChange</tns:type>

 <tns:delay>10000</tns:delay>

 <tns:contributingDevice />

 <tns:connectionLinkChanges>

 <tns:connectionLinkChange>

 <tns:source>

179

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 </tns:source>

 <tns:target>

 <tns:id>1</tns:id>

 <tns:name>LOCATIONSYSTEM</tns:name>

 </tns:target>

 <tns:type>disconnect</tns:type>

 </tns:connectionLinkChange>

 <tns:connectionLinkChange>

 <tns:source>

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 </tns:source>

 <tns:target>

 <tns:id>2</tns:id>

 <tns:name>VISITOR_IPAQ</tns:name>

 </tns:target>

 <tns:type>disconnect</tns:type>

 </tns:connectionLinkChange>

 </tns:connectionLinkChanges>

 </tns:simulationEvent>

 <tns:simulationEvent>

 <tns:name>Devconnection_new</tns:name>

 <tns:description>This is a Peces event</tns:description>

 <tns:type>connectionLinkChange</tns:type>

 <tns:delay>10000</tns:delay>

 <tns:contributingDevice />

 <tns:connectionLinkChanges>

 <tns:connectionLinkChange>

 <tns:source>

 <tns:id>0</tns:id>

 <tns:name>GUIDESYSTEM</tns:name>

 </tns:source>

 <tns:target>

 <tns:id>2</tns:id>

 <tns:name>VISITOR_IPAQ</tns:name>

 </tns:target>

 <tns:type>connect</tns:type>

 </tns:connectionLinkChange>

 </tns:connectionLinkChanges>

 </tns:simulationEvent>

</tns:simulationEventList>

180

Appendix 5 - Questionary

PECES USER ACCEPTANCE

QUESTIONNAIRE FOR THE

EVALUATION OF THE DEVELOPMENT

TOOLS

Part I – User Information

1. Are you from industry or academia?

1. Industry

2. Academic

2. Are you member of PECES Interest Group?

1. Yes

2. No

3. Would youlike to register to become a member of the PECES Interest

Group?

1. Yes

2. No

If your answer is Yes please provide your email address to be added to the PECES

Interest Group mailing list

PECES USER ACCEPTANCE

QUESTIONNAIRE FOR THE

EVALUATION OF THE

DEVELOPMENT TOOLS

Part II – User Acceptance Questionnaire

1. On a scale from 1 to 5 please indicate how difficult is to develop PECES

middleware application without the PECES Development Tools

1. Very Difficult

2. Difficult

3. Neither Difficult Nor Easy

181

4. Easy

5. Very Easy

If your answer is very easy/ easy please explain what are the major factors forming your
opinion

--

2. On a scale from 1 to 5 please indicate what is the general impression you have for

the PECES Development Tools

1. Very Impressive

2. Impressive

3. Neither Impressive Nor Unimpressive

4. Unimpressive

5. Very Unimpressive

If your answer is very unimpressive / unimpressive please explain what are the major
problems forming your opinion.

3. On a scale from 1 to 5 please indicate the level of training is required for the user

to develop and test applications using the PECES Development Tools

1. Very Low

2. Low

3. Neither Low Nor High

4. High

5. Very High

If your answer is very high / high please explain what are the major problems forming
your opinion.

4. On a scale from 1 to 5 please indicate how reliable is the PECES Development

Tools for the middleware application development

1. Very Reliable

2. Reliable

3. Neither Reliable Nor Unreliable

4. Unreliable

5. Very Unreliable

If your answer is very unreliable / unreliable please explain what are the major problems
forming your opinion.

182

5. On a scale from 1 to 5 please indicate how easy is to use the PECES Device

Definition tool for the middleware application development

1. Very Easy

2. Easy

3. Neither Easy Nor Difficult

4. Difficult

5. Very Difficult

If your answer is very difficult / difficult please explain what are the major problems
forming your opinion.

6. On a scale from 1 to 5 please indicate how easy is to use the PECES Ontology

Instantiation tool for the middleware application development

1. Very Easy

2. Easy

3. Neither Easy Nor Difficult

4. Difficult

5. Very Difficult

If your answer is very difficult / difficult please explain what are the major problems
forming your opinion.

7. On a scale from 1 to 5 please indicate how easy is to use the PECES Service

Definition tool for the middleware application development

1. Very Easy

2. Easy

3. Neither Easy Nor Difficult

4. Difficult

5. Very Difficult

If your answer is very difficult / difficult please explain what are the major problems
forming your opinion.

--

183

8. On a scale from 1 to 5 please indicate how easy is to use the PECES Role

Specification tool for the middleware application development

1. Very Easy

2. Easy

3. Neither Easy Nor Difficult

4. Difficult

5. Very Difficult

If your answer is very difficult / difficult please explain what are the major problems
forming your opinion.

9. On a scale from 1 to 5 please indicate how easy is to use the PECES Event

Definition tool and PECES Event Diagram tool for modelling smart space

networks dynamics

1. Very Easy

2. Easy

3. Neither Easy Nor Difficult

4. Difficult

5. Very Difficult

If your answer is very difficult / difficult please explain what are the major problems
forming your opinion.

10. On a scale from 1 to 5 please indicate how easy is to use the PECES Testing tool

for simulating (testing) smart space networks application.

1. Very Easy

2. Easy

3. Neither Easy Nor Difficult

4. Difficult

5. Very Difficult

If your answer is very difficult / difficult please explain what are the major problems
forming your opinion.

--

184

11. Do you think that the PECES Development Tools are very useful for middleware

application development and testing?

1. Yes

2. No

If your answer is Yes please explain what are the major features forming your opinion.

--

If your answer is No please explain what are the major problems forming your opinion.

12. Please list the ways in which the PECES Development Tools could be improved

13. How do the PECES Development Tools compare with other tools you have used

to develop similar middleware applications

14. Do you have any further comments relating to the usability of the PECES

Development Tools

